Q ATR

Z380 ${ }^{\text {TM }}$ Microprocessor Unit

Preliminary Product Specification

Z380'm MPU Microprocessor Unit

Preliminary Product Specification

Z380＂${ }^{\text {m }}$ MPU MICROPROCESSOR UNIT

FEATURES

■ Static CMOS Design with Low－Power Standby Mode Option
－32－Bit Internal Data Paths and ALU
图 Operating Frequency
－DC－to－18 MHz at 5 V
－DC－to－10 MHz at 3.3 V
 Compatibility with $\mathrm{Z}^{2} 0^{\oplus}$ and $\mathrm{Z} 180^{\text {m＂}}$ Microprocessors
（16－Bit（64K）or 32－Bit（4G）Linear Address Space
图 16－Bit Data Bus with Dynamic Sizing
－Two－Clock Cycle Instruction Execution Minimum
－Four Banks of On－Chip Register Files
国 Enhanced Interrupt Capabilities，Including 16－Bit Vector

爰 Undefined Opcode Trap for Z380＂${ }^{\text {m }}$ Instruction Set
鹵 On－Chip I／O Functions：
－Six－Memory Chip Selects with Programmable Waits
－Programmable I／O Waits
－DRAM Refresh Controller
（100－Pin QFP Package

GENERAL DESCRIPTION

The $\mathrm{Z} 380^{\text {m™ }}$ Microprocessor Unit（MPU）is an integrated high－performance microprocessor with fast and efficient throughput and increased memory addressing capabili－ ties．The $\mathbf{Z 3 8 0}{ }^{\mathrm{m}}$ offers a continuing growth path for present Z80－or Z180－based designs，while maintaining Z80 ${ }^{\circledR}$ CPU and $\mathrm{Z} 180^{\circ}$ MPU object－code compatibility．The Z380 ${ }^{\text {m }}$ MPU enhancements include an improved 280 CPU，ex－ panded 4－Gbyte space and flexible bus interface timing．

An enhanced version of the Z80 CPU is key to the Z380 MPU．The basic addressing modes of the Z 80 micropro－ cessor have been augmented as follows：Stack Pointer Relative loads and stores，16－bit and 24－bit indexed off－ sets，and more flexible Indirect Register addressing，with all of the addressing modes allowing access to the entire

32－bit address space．Additions made to the instruction set，include a full complement of 16 －bit arithmetic and logical operations，16－bit I／O operations，multiply and divide，plus a complete set of register－to－register loads and exchanges．

The expanded basic register file of the Z80 MPU micropro－ cessor includes alternate register versions of the IX and IY registers．There are four sets of this basic $\mathrm{Z80}$ micropro－ cessor register file present in the Z380 MPU，along with the necessary resources to manage switching between the different register sets．All of the register－pairs and index registers in the basic Z 80 microprocessor register file are expanded to 32 bits．

GENERAL DESCRIPTION (Continued)

The Z380 MPU expands the basic 64 Kbyte $\mathbf{Z 8 0}$ and Z 180 address space to a full 4 Gbyte (32-bit) address space. This address space is linear and completely accessible to the user program. The I/O address space is similarly expanded to a full 4 Gbyte (32-bit) range and 16-bit I/O, and both simple and block move are added.

Some features that have traditionally been handled by external peripheral devices have been incorporated in the design of the Z380 microprocessor. The on-chip peripherals reduce system chip count and reduce interconnection on the external bus. The Z380 MPU contains a refresh controller for DRAMs that employs a /CAS-before-/RAS refresh cycle at a programmable rate and burst size.

Six programmable memory-chip selects are available, along with programmable wait-state generators for each chip-select address range.

The Z380 MPU provides flexible bus interface timing, with separate control signals and timing for memory and I / O. The memory bus control signals provide timing references suitable for direct interface to DRAM, static RAM,

EPROM, or ROM. Full control of the memory bus timing is possible because the NAIT signal is sampled three times during a memory transaction, allowing complete user control of edge-to-edge timing between the reference signals provided by the Z380 MPU. The I/O bus control signals allow direct interface to members of the Z80 family of peripherals, the Z8000 family of peripherals, or the Z8500 series of peripherals. Figure 1 shows the Z380 block diagram; Figure 2 shows the pin assignments.

Note:

All signals with a preceding front slash, "/", are active Low e.g., B / W (WORD is active Low); B / W is active Low, only)

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V_{cc}	V_{DD}
Ground	GND	V_{ss}

Figure 1. Z380 Functional Block Diagram

Figure 2. 100-Pin QFP Pin Assignments

PIN DESCRIPTION

A31-A0 Address Bus(outputs, activeHigh, tri-state). These non-multiplexed address signals provide a linear memory address space of four gigabytes. The 32-address signals are also used to access I/O devices.
/BACK Bus Acknowledge (output, active Low, tri-state). This signal, when asserted, indicates that the Z380 MPU has accepted an external bus request and has tri-stated its output drivers for the address bus, data bus and the bus control signals /TREFR, /TREFA, /TREFC, /BHEN, /BLEN, /MRD, /MWR, /IORQ, /IORD, and /IOWR. Note that the Z380 MPU cannot provide any DRAM refresh transactions while it is in the bus acknowledge state.

IBHEN Byte High Enable (output, active Low, tri-state). This signal is asserted at the beginning of a memory, or refresh transaction to indicate that an operation on D15-D8 is requested. For a 16-bit memory transaction, if /MSIZE is asserted, indicating a byte-wide memory, another memory transaction is performed to transfer the data on D15-D8, this time through D15-D8.
/BLEN Byte Low Enable(output, active Low, tri-state). This signal is asserted at the beginning of a memory or refresh transaction to indicate that an operation on D7-DO is requested. For a 16 -bit memory transaction, if /MSIZE is asserted, indicating a byte-wide memory, only the data on D7-DO will be transferred during this transaction, and another transaction will be performed to transfer the data on D15-D8, this time through D7-D0.
/BREQ Bus Request (input, active Low). When this signal is asserted, an external bus master is requesting control of the bus. /BREQ has higher priority than all nonmaskable and maskable interrupt requests.

BUSCLK Bus Clock (output, active High, tri-state). This signal, output by the Z380 MPU, is the reference edge for the majority of other signals generated by the Z380 MPU. BUSCLK is a delayed version of the CLK input.

CLKI Clock/Crystal (input, active High). An externally generated direct clock can be input at this pin and the Z380 MPU would operate at the CLKI frequency. Alternatively, a crystal up to 20 MHz can be connected across CLKI and CLKO, and the Z380 MPU would operate at half of the crystal frequency. The two clocking options are controlled by the CLKsel input.

CLKO Crystal (output, active High). Crystal oscillator connection. This pin should be left open if an externally generated direct clock is input at the CLKI pin.

CLKsel Clock Option Select (input, active High). This input should be connected to $V_{D D}$ to select the direct clock option and should be connected to V_{ss} for the crystal option.

D15-D0 Data Bus (input/outputs, active High, tri-state). This bi-directional 16-bit data bus is used for data transfer between the Z380 MPU and memory or I/O devices. Note that for a memory word transfer, the even-addressed ($\mathrm{AO}=0$) byte is generally transferred on D15-D8, and the odd-addressed ($\mathrm{AO}=1$) byte on D7-DO (see the /MSIZE pin description).
/EV Evaluation Mode(input, active Low). This input should be left unconnected for normal operation. When it is driven to logic 0 , the Z380 MPU conditions itself in the reset mode and tri-states all of its output pin drivers.
/HALT HaltStatus(output, active Low, tri-state). If the Z380 MPU standby mode option is not selected, a Sleep instruction is executed no different than a Halt instruction, and the one HALT signal goes active to indicate the CPU's HALT state. If the standby mode option is selected, this signal goes active only at the Halt instruction execution.

ISTNBY Standby Status (output, active Low, tri-state). If the Z380 MPU standby mode is selected, executing a sleep instruction stops clocking within the Z380 MPU and at BUSCLK and IOCLK after which this signal is asserted. The Z380 MPU is then in the low power standby mode, with all operations suspended.
/INT3-0 Interrupt Requests (inputs, active Low). These signals are four asynchronous maskable interrupt inputs.

IOCLK I/O Clock(output, active High, tri-state). This signal is a program controlled divided-down version of BUSCLK. The division factor can be two, four, six or eight with I/O transactions and interrupt-acknowledge transactions occurring relative to IOCLK.
/INTAK Interrupt Acknowledge Status (output, active Low, tri-state). This signal is used to distinguish between I/O and interrupt acknowledge transactions. This signal is High during I/O read and I/O write transactions and Low during interrupt acknowledge transactions.
/IORQ Input/Output Request(output, active Low, tri-state). This signal is active during all I/O read and write transactions and interrupt acknowledge transactions.
/M1 Machine Cycle One(output, active Low, tri-state). This signal is active during interrupt acknowledge and RETI transactions.
/IORD Input, Output Read Strobe (output, active Low, tristate). This signal is used strobe data from the peripherals during I/O read transactions. In addition, /IORD is active during the special RETI transaction and the I/O heartbeat cycle in the Z 80 protocol case.
/IOWR Input/Output Write Strobe (output, active Low, tristate). This signal is used to strobe data into the peripherals during I/O write transactions.
/LMCS Low Memory Chip Select (output, active Low, tristate). This signal is activated during a memory read or memory write transaction when accessing the lower portion of the linear address space within the first 16 Mbytes, but only if this chip select function is enabled.
/MCS3-/MCSO Mid-range Memory Chip Selects (output, active Low, tri-state). These signals are individually active during memory read or write transactions when accessing the mid-range portions of the linear address space within the first 16 Mbytes. These signals can be individually enabled or disabled.
/MRD Memory Read (output, active Low, tri-state). This signal indicates that the addressed memory location should place its data on the data bus as specified by the /BHEN and /BLEN control signals. /MRD is active from the end of T1 until the end of T4 during memory read transactions.

IMSIZE Memory Size (input, active Low). This input, from the addressed memory location, indicates if it is word size (logic High) or byte size (logic Low). In the latter case, the addressed memory should be connected to the D15-D8 portion of the data bus, and an additional memory transaction will automatically be generated to complete a word size data transfer.
/MWR Memory Write (output, active Low, tri-state). This signal indicates that the addressed memory location should store the data on the data bus, as specified by the /BHEN and /BLEN control signals. /MWR is active from the end of T2 until the end of T4 during memory write transactions.
/NMI Nonmaskable Interrupt(input, falling edge-triggered). This input has higher priority than the maskable interrupt inputs /INT3-INTO.
/RESET Reset (input, active Low). This input must be active for a minimum of five BUSCLK periods to initialize the Z380 MPU. The effect of /RESET is described in detail in the Reset section.
/TREFA Timing Reference A (output, active Low, tri-state). This timing reference signal goes Low at the end of T2 and returns High at the end of T4 during a memory read, memory write or refresh transaction. It can be used to control the address multiplexer for a DRAM interface or as the /RAS signal at higher processor clock rates.
/TREFC Timing Reference C (output, active Low, tri-state). This timing reference signal goes Low at the end of T 3 and returns High at the end of T4 during a memory read, memory write or refresh transaction. It can be used as the /CAS signal for DRAM accesses.
/TREFR Timing Reference R (output, active Low, tri-state). This timing reference signal goes Low at the end of T 1 and returns High at the end of T4 during a memory read, memory write or refresh transaction. It can be used as the /RAS signal for DRAM accesses.

IUMCS Upper Memory ChipSelect (output, active Low, tristate). This signal is activated during a memory read, memory write, or optionally a refresh transaction when accessing the highest portion of the linear address space within the first 16 Mbytes, but only if this chip select function is enabled.
\mathbf{V}_{DD} Power Supply. These eight pins carry power to the device. They must be tied to the same voltage externally.
\mathbf{V}_{ss} Ground. These eight pins are the ground references for the device. They must be tied to the same voltage externally.
/WAIT Wait (input, active Low). This input is sampled by BUSCLK or IOCLK, as appropriate, to insert Wait states into the current bus transaction.

The conditioning and characteristics of the Z380 MPU pins under various operation modes are defined in Table 1.

PIN DESCRIPTION (Continued)

Table 1. Z380 MPU Pin Conditioning Characteristics Operation Mode Conditions

Pin Names	$\begin{aligned} & \text { Normal } \\ & \text { /BREQ=1,/BACK=1, } \\ & / E V=N C \end{aligned}$	Bus Relinquish /BREQ=0,/BACK=0, /EV=NC	Evaluation
CLKI	Input	Input	Input
CLKO	Output/No Connection	Output/No Connection	No Connection
CLKSEL	Input	Input	Input
BUSCLK	Output	Output	Tri-state
IOCLK	Output	Output	Tri-state
A31-A0	Output	Tri-state	Tri-state
D15-D0	Input/Output	Tri-state	Tri-state
/TREFR,/TREFA, TREFC	Output	Tri-state	Tri-state
/MRD,/MWR	Output	Tri-state	Tri-state
/BHEN,/BLEN	Output	Tri-state	Tri-state
/LMCS,/UMCS, /MCS3-MCSO	Output	Tri-state	Tri-state
/MSIZE,NAIT	Input	Input	Input
/HALT,/STNBY	Output	Output	Tri-state
/M1,/INTAK	Output	Output	Tri-state
/IORQ,/IORD, /IOWR	Output	Tri-state	Tri-state
/BREQ	Input	Input	Input
/BACK	Output	Output	Tri-state
/NMI,/INT3-/INTO	Input	Input	Input
/RESET	Input	Input	Input
IEV	No Connection	No Connection	Input
$V_{\text {D }}$	Power	Power	Power
$\mathrm{V}_{\text {ss }}$	Ground	Ground	Ground

EXTERNAL INTERFACE

Two kinds of operations can occur on the system bus: transactions and requests. At any given time, one device (either the CPU or a bus master) has control of the bus and is known as the bus master.

This section shows all of the transaction and request timing for the device. For the sake of clarity, there are more figures than are actually necessary. This should aid the reader rather than confuse. In all of the timing diagram figures, the row labelled STATUS encompasses /BHEN, /BLEN, and the chip select signals.

Transactions

A transaction is initiated by the bus master and is responded to by some other device on the bus. Only one transaction can proceed at a time; six kinds of transactions can occur: Memory, Refresh, I/O, Interrupt Acknowledge, RETI (Return from Interrupt), and Halt. The Z380 MPU is unique in that memory and I / O bus transactions use separate control signals. This allows the memory interface to be optimized independently of the I/O interface.

Memory Transactions

Memory transactions move instructions or data to or from memory when the Z380 MPU performs a memory access. Thus, they are generated during program execution to fetch instructions from memory and to fetch and store memory data. They are also generated to store old program status and fetch new program status during interrupt and trap handling, and are used by DMA peripherals to transfer information. A memory transaction is two clock cycles long unless extended with wait states. Wait states may be inserted between each of the four T states in a memory transaction and are one BUSCLK cycle long per wait state. The external WAIT input is sampled only after any internally-generated wait states are inserted. Memory transactions may transfer either bytes or words. If the Z380 MPU attempts to transfer a word to a byte-wide memory, the /MSIZE signal should be asserted Low to force this transaction to be byte-wide dynamically. The Z380 MPU will then perform another memory transaction to transfer the byte that was not transferred during the first transaction.

Read memory transactions are shown without wait states, with wait states between T1 and T2, between T2 and T3, and between T3 and T4 (Figures 3A-D). The data bus is driven by the memory being addressed, and the memory data is latched immediately before the rising edge of BUSCLK which terminates T4.

EXTERNAL INTERFACE (Continued)

Figure 3A. Read Cycle, No Waits

MMWR
Figure 3B. Read Cycle, T1 Wait

EXTERNAL INTERFACE (Continued)

/MRD

/MWR

/MWR

Figure 3D. Read Cycle, T3 Wait

EXTERNAL INTERFACE (Continued)

Write memory transactions are shown without wait states, with wait states between T1 and T2, between T2 and T3, and between T3 and T4 (Figures 4A-D). The /MWR strobe
is activated at the end of T1, to allow write data setup time for the memory since the write data is driven on to the data bus at the beginning of T 1 .

Figure 4A. Write Cycle, No Waits

Figure 4B. Write Cycle, T1 Wait

EXTERNAL INTERFACE (Continued)

TREFR

мео 7
ммп 7

Figure 4C. Write Cycle, 12 Wait

мпо 7
ммп 7

Figure 4D. Write Cycle, T3 Wait

EXTERNAL INTERFACE (Continued)

Refresh Transactions

A memory refresh transaction is generated by the Z380 MPU refresh controller and can occur immediately after the final clock cycle of any other transaction. The address during the refresh transaction is not defined as the CAS-before-RAS refresh cycle is assumed, which uses the on-chip refresh address generator present on DRAMs. Prior to the first refresh transaction, a refresh setup cycle is performed to guarantee that the /CAS precharge time is met. This refresh setup cycle is present only prior to the first
refresh transaction in a burst (Figure 5). Refresh transactions are shown without wait states, with wait states between T 1 and T 2 , between T 2 and T 3 , and between T 3 and T4 (Figures 6A-D). Note that during the refresh cycle the data bus is continuously driven, /MRD and /MWR remain inactive, /BHEN and /BLEN are active to enable all /CAS signals to the DRAMS, and those Chip Select signals enabled for DRAM refresh transactions are active.

Figure 5. Refresh Setup

Figure 6A. Refresh Cycle, No Waits

EXTERNAL INTERFACE (Continued)

/MRD
/MWR
Figure 6B. Refresh Cycle, T1 Wait

Figure 6C. Refresh Cycle, T2 Wait

EXTERNAL INTERFACE (Continued)

/MRD
/MWR
Figure 6D. Refresh Cycle, T3 Wait

I/O Transactions

1/O transactions move data to or from an external peripheral when the Z380 MPU performs an I/O access. All I/O transactions occur referenced to the IOCLK signal, when it is a divided-down version of the BUSCLK signal. BUSCLK may be divided by a factor of from two to eight to form the

IOCLK, under program control. An example of this division is shown, for the four possible divisors, in Figure 7. Note that the IOCLK divider is synchronized (i.e., starts with a known timing relationship) at the trailing edge of /RESET. This is discussed in the Reset Section.

Figure 7. IOCLK Timing

EXTERNAL INTERFACE (Continued)

The Z380 MPU is unique in that it employs separate control signals for accessing the memory and I/O. This allows the two interfaces to be optimized independent of one another. The I/O bus control signals allow direct connection to members of the Z80 family of peripherals of the Z8500 family of peripherals.

Note that because all I/O bus transactions start on a rising edge of IOCLK, there may be up to n BUSCLK cycles of latency between the execution unit request for the transaction and the transaction actually starting, where n is the programmed clock divisor for IOCLK. This implies that the lowest possible divisor should always be used for IOCLK.

All I/O transactions are four IOCLK cycles long unless extended by Wait states. Wait states may be inserted between the third and fourth IOCLK cycles in an I/O transaction and are one IOCLK cycle per wait state. The external/WAIT input is sampled only after internally-generated wait states are inserted.

I/O Read transactions are shown with and without a wait state (Figures $8 \mathrm{~A}-\mathrm{B}$). The contents of the data bus is latched immediately before the falling edge of IOCLK during the last IOCLK cycle of the transaction.

IOCLK

ADDRESS

DATA

/MI
/IORQ

/IORD

/IOWR

IINTAK
Figure 8A. I/O Read Cycle, No Waits

IOCLK

ADDRESS

WAIT

/MI
/IORQ
/IORD
/IOWR
/INTAK

Figure 8B. I/O Read Cycle, T1 Wait

EXTERNAL INTERFACE (Continued)
I/O Write transactions are shown with and without a wait state (Figures 9A-B). The data bus is driven throughout the transaction.

Figure 9A. I/O Write Cycle, No Waits

IOCLK

ADDRESS

DATA

/MI

/IORD
/IOWR

/INTAK

Figure 9B. I/O Write Cycle, T1 Wait

EXTERNAL INTERFACE (Continued)

Interrupt Acknowledge Transactions

An interrupt acknowledge transaction is generated by the Z380 MPU in response to an unmasked external interrupt request. Figure 10A shows an interrupt acknowledge transaction in response to /INTO and Figure 10B shows an interrupt acknowledge transaction in response to either one of /INT-3. Note that because all I/O bus transactions
start on a rising edge of IOCLK, there may be up to n BUSCLK cycles of latency between the execution unit request for the transaction and the transaction actually starting (where n is the programmed clock divisor for IOCLK).

/IORQ

/IORD

Figure 10A. Interrupt Acknowledge Cycle, /INTO

Figure 10B. Interrupt Acknowledge Cycle, INT3-1

An interrupt acknowledge transaction for /INTO is five IOCLK cycles long unless extended by Wait states. WAIT is sampled at two separate points during the transaction. WAIT is first sampled at the end of the first IOCLK cycle during the transaction. Wait states inserted here allow the external daisy-chain between peripherals with a longer time to settle before the interrupt vector is requested. WAIT is then sampled at the end of the fourth IOCLK cycle to delay the point at which the interrupt vector is read by the Z380 MPU, after it has been requested.

The interrupt vector may be either eight or sixteen bits, under program control, and is latched by the falling edge of IOCLK in the last cycle of the interrupt acknowledge transaction. When using Mode 0 interrupts, where the Z380 MPU fetches an instruction from the interrupting device, these fetches are always eight bits wide and are transferred over D7-DO.

An interrupt acknowledge transaction in response to one of /INT3-/INT1 is also five IOCLK cycles long, unless extended by wait states. The waits are sampled and inserted at similar locations as an interrupt acknowledge transaction is for /INTO. Note, however, only the /INTAK signal is active with /MI, /IORQ, /IORD and /IOWR held inactive.

For either type of INTACK transaction the address bus is driven with a value which indicates the type of interrupt being acknowledged as follows: A31-A6 are all one, and $\mathrm{A}-\mathrm{AO}$ are one except for a single zero corresponding to the maskable interrupt being acknowledged. Thus an /INT3 acknowledge is signaled by A3 being zero during the interrupt acknowledge transaction, /INT2 acknowledge is signalled by A2 being zero, etc.

RETI Transactions

The RETI transaction is generated whenever an RETI instruction is executed by the Z380 MPU. This transaction is necessary because Z80 family peripherals are designed to watch instruction fetches and take special action upon seeing a RETI instruction (this is the only instruction that the Z80 family peripherals watch for). Since the Z380 MPU fetches instructions using the memory control signals, a simulated RETI instruction fetch must be placed on the bus with the appropriate I/O bus control signals. This is shown in Figure 11. Again, note that because all I/O bus transactions start on a rising edge of IOCLK, there may be up to n BUSCLK cycles of latency between the execution unit request for the transaction and the transaction actually starting, where n is the programmed clock divisor for IOCLK.

EXTERNAL INTERFACE (Continued)

ADDRESS

/IORQ
/IORD

IIOWR

INTAK
Figure 11. Return From Interrupt Cycle

The RETI transaction is ten IOCLK cycles long unless extended by Wait states, and WAIT is sampled at three separate points during the transaction. WAIT is first sampled in the middle of the third IOCLK cycle to allow for longer/IORDLow-time requirements. NAIT is then sampled again during the middle of the fifth IOCLK cycle to allow for longer internal daisy-chain settling time within the peripheral. Wait states inserted here have the effect of separating what the peripheral sees as two separate instruction fetch cycles. Finally, WAIT is sampled in the middle of the ninth IOCLK cycle, again to allow for longer /IORD Low-time requirements.

The Z380 MPU drives the data bus throughout the RETI transaction, with EDEDH during the first half of the transaction (the first byte of a RETI instruction is EDH) and with 4D4DH during the second half of the transaction (the second byte of an RETI instruction is 4DH).

HALT Transactions

A HALT transaction occurs whenever the Z380 MPU executes a Halt instruction, with the /HALT signal activated on the falling edge of BUSCLK. If the standby mode is not enabled, executing a Sleep instruction would also cause a Halt transaction to occur. While in the Halt state, the Z380 MPU continues to drive the address and data buses, and the /HALT signal remains active until either an interrupt request is acknowledged or a reset is received. Refresh transactions may occur while in the halt state and the bus can be granted. The timing of entry into the Halt state is shown in Figure 12, while the timing of exiting from Halt state is shown in Figure 13.

Figure 12. HALT Entry

EXTERNAL INTERFACE (Continued)

\qquad
/MSIZE \qquad
/TREFR
/TREFA
/TREFC
/MRD

Figure 13. HALT Exit

Requests

A request can be initiated by a device that does not have control of the bus. Two types of request can occur: Bus request and Interrupt request. When an interrupt or bus request is made, it is answered by the CPU according to its type. For an interrupt request, the CPU initiates an interrupt acknowledge transaction and for bus requests, the CPU enters the bus disconnect state, relinquishes the bus, and activates an Acknowledge signal.

BUS Requests

To generate transactions on the bus, a potential bus master (such as a DMA controller) must gain control of the bus by making a bus request. A bus request is initiated by driving/BREQ Low. Several bus requesters may be wiredOR to the /BREQ pin; priorities are resolved externally to the CPU, usually by a priority daisy chain.

The asynchronous /BREQ signal generates an internal /BUSREQ, which is synchronous. If the /BREQ is active at the beginning of any transaction, the internal /BUSREQ causes the /BACK signal to be asserted after the current transaction is completed. The Z380 MPU then enters the Bus Disconnect state and gives up control of the bus. All Z380 MPU control signals, except/BACK, /MI and /INTAK are tri-stated. Note that release of the bus may be inhibited under program control to allow the Z380 MPU exclusive access to a shared resource; this is controlled by the SETC LCK and RESC LCK instructions. Entry into the Bus Disconnect state is shown in Figure 14. The Z380MPU regains control of the bus after/BREQ is deasserted. This is shown in Figure 15.

Interrupt Requests

The Z380 MPU supports two types of interrupt requests, maskable /INT3-INTO and nonmaskable (/NMI). The interrupt request line of a device that is capable of generating an interrupt can be tied to either /NMI or one of the maskable interrupt request lines, and several devices can be connected to one interrupt request line with the devices arranged in a priority daisy chain. However, because of the need for Z80 family peripheral devices to see the RETI instruction, only one daisy chain of Z80-family peripherals can be used. The Z380 MPU handles maskable and nonmaskable interrupt requests somewhat differently, as follows:

Any High-to-Low transition on the /NMI input is asynchronously edge-detected, and the internal NMI latch is set. At the beginning of the last clock cycle in the last internal machine cycle of any instruction, the maskable interrupts are sampled along with the state of the NMI latch.

If an enabled maskable interrupt is requested, at the next possible time (the next rising edge of IOCLK) an interrupt acknowledge transaction is generated to fetch the interrupt vector from the interrupting device. For a nonmaskable interrupt, no interrupt acknowledge transaction is generated; the NMI service routine always starts at address 00000066 H .

EXTERNAL INTERFACE (Continued)

Figure 14. Bus Request/Acknowledge Cycle

Figure 15. Bus Request/Acknowledge End Cycle

EXTERNAL INTERFACE (Continued)

Miscellaneous Timing

There are two cases where a specific transaction is not taking place on the bus which are illustrated in this section: the bus idle cycle and the I/O heartbeat cycle.

Idle Cycles

When no transactions are being performed on the bus, an idle cycle occurs (Figure 16). All control signals, for both memory and I/O, are inactive during the Idle cycle.

Figure 16. Idle Cycle

I/O Heartbeat Cycle

The Z380 MPU is capable of generating an I/O heartbeat cycle on the I/O bus in response to an I/O write to an onchip control register. This cycle is most useful with Z80
family peripherals, where some members require a transaction that looks like a Z80 CPU instruction fetch to perform certain interrupt functions (Figure 17).

/IORQ

Figure 17. //O Heartbeat Cycle

EXTERNAL INTERFACE (Continued)

Reset Timing

The timing for entering and exiting the reset state is shown in Figures 18 and 19. The effects of reset on the internal state of the Z380 MPU are detailed in the Reset section.

The synchronization of IOCLK at the end of the reset state is shown in Figure 20. Note that the IOCLK divisor is set to the maximum value (eight) by /RESET and is only synchronized at the end of the reset state.

Figure 18. Reset Entry

Figure 19. Reset Exit

EXTERNAL INTERFACE (Continued)

Figure 20. IOCLK Reset Start-up

CPU ARCHITECTURE

The Central Processing Unit (CPU) of the Z380 MPU is a binary-compatible extension of the Z80 CPU and Z180 CPU architectures. High throughput rates for the Z380 CPU are achieved by a high clock rate, high bus bandwidth and instruction fetch/execute overlap. Communicating to the external world through an 8 - or 16 -bit data bus, the Z380 CPU is a full 32-bit machine internally, with a 32 -bit ALU and 32-bit registers.

Modes Of Operation

The Z380 CPU can operate in either Native or Extended mode, as controlled by a bit in the Select Register (SR). In Native mode (the Reset configuration), all address manipulations are performed modulo 65536 (16 bits). In this mode the Program Counter (PC) only increments across 16 bits, all address manipulation instructions (increment, decrement, add, subtract, indexed, stack relative, and PC relative) only operate on 16 bits, and the Stack Pointer (SP) only increments and decrements across 16 bits. The program counter high-order word is left at all zeros, as is the high-order words of the stack pointer and the I register. Thus Native mode is fully compatible with the Z80 CPU's 64 Kbyte address space. It is still possible to address memory outside of the 64 Kbyte address space for data storage and retrieved in Native mode, however, direct addresses, indirect addresses, and the high-order word of the SP, I and the IX and IY registers may be loaded with non-zero values. But executed code and interrupt service routines must reside in the lowest 64 Kbytes of the address space.

In Extended mode, however, all address manipulation instructions operate on 32 bits, allowing access to the entire 4 Gbyte address space of the Z380 MPU. In both Native and Extended modes, the Z380 CPU drives all 32 bits of the address onto the external address bus; only the
width of manipulated addresses distinguish Native from Extended mode. The Z380 CPU implements one instruction to allow switching from Native to Extended mode, but once in Extended mode, only Reset returns the Z380 MPU to Native mode. This restriction applies because of the possibility of "misplacing" interrupt service routines or vector tables during the translation from Extended mode back to Native mode.

In addition to Native and Extended mode, which is specific to memory space addressing, the Z380 MPU can operate in either Word or Long Word mode specific to data load and exchange operations. In Word mode (the reset configuration), all word load and exchange operations manipulate 16 -bit quantities. For example, only the low-order words of the source and destination are exchanged in an exchange operation, with the high-order words unaffected. In Long Word mode, all 32 bits of the source and destination are directives to allow switching between Word and Long Word mode; SETC LW (Set Control Long Word) and RESC LW (Reset Control Long Word) perform a global switch, while DDIR W, DDIR LW and their variants are decoder directives that select a particular mode only for the instruction that they precede.

Note that all word data arithmetic (as opposed to address manipulation arithmetic), rotate, shift and logical operations are always in 16-bit quantities. They are not controlled by either the Native/Extended or Word/Long Word selections. The exceptions to the 16-bit quantities are, of course, those multiply and divide operations with 32-bit products or dividends.

Lastly, all word Input/Output operations are performed on 16-bit values.

CPU ARCHITECTURE (Continued)

Address Spaces

The Z380 CPU architecture supports five distinct address spaces corresponding to the different types of locations that can be accessed by the CPU. These five address spaces are: CPU register space, CPU control register space, memory address space, and I/O address space (on-chip and external).

CPU Register Space

The CPU register space is shown in Figure 21 and consists of all of the registers in the CPU register file. These CPU registers are used for data and address manipulation, and are an extension of the Z80 CPU register set, with four sets of this extended Z80 CPU register set present in the Z380 CPU. Access to these registers is specified in the instruction, with the active register set selected by bits in the Select Register (SR) in the CPU control register space.

Each register set includes the primary registers A, F, B, C, $\mathrm{D}, \mathrm{E}, \mathrm{H}, \mathrm{L}, \mathrm{IX}$, and IY, as well as the alternate registers A^{\prime}, $F^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, H^{\prime}, L^{\prime}, I X^{\prime}$, and $I Y^{\prime}$. These byte registers can be paired B with C, D with E, H with L, B^{\prime} with C^{\prime}, D^{\prime} with E^{\prime} and H^{\prime} with L' to form word registers. These word registers are extended to 32 bits with the z extension to the register. This register extension is only accessible when using the register as a 32-bit register (the Long Word mode) or when swapping between the most-significant and least-significant word of a 32-bit register. Whenever an instruction refers to a word register, the implicit size is controlled by the Word or Long Word mode. Also included are the R, I and SP registers, as well as the PC.
4 Sets of Registers

SPz	SP
PCz	PC

Figure 21. Register Set

CPU Control Register Space

The CPU control register space consists of the 32-bit Select Register (SR), Figure 22. The SR may be accessed as a whole or the upper three bytes of the SR may be accessed individually as the YSR, XSR, and DSR. In
addition, these upper three bytes can be loaded with the same byte value. The SR may also be PUSHed and POPed and is cleared to all zeros on Reset.

Figure 22. Select Register

IYBANK (IY Bank Select). This 2-bit field selects the register set to be used for the IY and IY' registers. This field can be set independently of the register set selection for the other Z380 CPU registers. Reset selects Bank 0 for IY and I^{\prime} '.

IYP (IYPrime RegisterSelect). This bit controls and reports whether IY or $\mid Y^{\prime}$ is the currently active register. IY is selected when this bit is cleared and IY' is selected when this bit is set. Reset clears this bit and selects IY.

IXBANK (IX Bank Select). This 2-bit field selects the register set to be used for the IX and IX' registers. This field can be set independently of the register set selection for the other Z380 CPU registers. Reset selects Bank 0 for IX and $I X^{\prime}$.

IXP (IXPrime RegisterSelect). This bit controls and reports whether IX or IX' is the currently active register. IX is selected when this bit is cleared and IX' is selected when this bit is set. Reset clears this bit and selects IX.

MAINBANK (Main Bank Select). This 2-bit field selects the register set to be used for the $A, F, B C, D E, H L, A^{\prime}, F^{\prime}, B^{\prime}$, $D E^{\prime}$ and HL^{\prime} registers. This field can be set independently of the register set selection for the other Z380 CPU registers. Reset selects Bank 0 for these registers.

ALT (BC/DE/HL or BC'/DE'/HL' Register Select). This bit controls and reports whether $\mathrm{BC} / \mathrm{DE} / \mathrm{HL}$ or $\mathrm{BC}^{\prime} / \mathrm{DE}^{\prime} / \mathrm{HL}^{\prime}$ is the currently active bank of registers. $\mathrm{BC} / \mathrm{DE} / \mathrm{HL}$ are selected when this bit is cleared and $\mathrm{BC}^{\prime} / \mathrm{DE}^{\prime} / \mathrm{HL}$ ' are selected when this bit is set. Reset clears this bit, selecting $\mathrm{BC} / \mathrm{DE} / \mathrm{HL}$.

CPU ARCHITECTURE (Continued)

XM (Extended Mode). This bit controls the Extended/ Native mode selection for the Z380 CPU. This bit is set by the SETC XM instruction, and once set, it can be cleared only by a reset on the /RESET pin. When this bit is set, the Z380 CPU is in Extended mode. Reset clears this bit and the Z380 CPU is in Native mode.

LW (Long Word Mode). This bit controls the Long Word/ Word mode selection for the Z380 CPU. This bit is set by the SETC LW instruction and cleared by the RESC LW instruction. When this bit is set, the Z380 CPU is in Long Word mode; when this bit is cleared, the Z380 CPU is in Word mode. Reset clears this bit. Note that individual instructions may be executed in either Word or Long Word load and exchange mode, using the DDIRW and DDIR LW decoder directives.

IEF1 (Interrupt Enable Flag). This bit is the master Interrupt Enable for the Z380 CPU. This bit is set by the El instruction and cleared by the DI instruction. When this bit is set, interrupts are enabled; when this bit is cleared, interrupts are disabled. Reset clears this bit.

IM (Interrupt Mode). This 2-bit field controls the interrupt mode for the /INTO interrupt request. These bits are controlled by the IM instructions $(00=\mathrm{IM} 0,01=\mathrm{IM} 1$, $10=1 \mathrm{M} 2,11=\mathbb{M} 3)$. Reset clears both of these bits, selecting Interrupt Mode 0 .

LCK (Lock). This bit controls the Lock/ Unlock status of the Z380 CPU. This bit is set by the SETC LCK instruction and cleared by the RESC LCK instruction. When this bit is set, no bus requests are accepted, providing exclusive access to the bus by the Z380 CPU. When this bit is cleared the Z 380 CPU will grant bus requests in the normal fashion. Reset clears this bit.

AFP (AF Prime Register Select). This bit controls and reports whether $A F$ or $A F '$ is the currently active pair of registers. AF is selected when this bit is cleared and AF' is selected when this bit is set. Reset clears this bit and selects AF.

Memory Address Space

The memory address space can be viewed as a string of 4 Gbyte numbered consecutively in ascending order. The 8 -bit byte is the basic addressable element in the Z380 MPU memory address space. However, there are other addressable data elements; bits, 2-byte words, byte strings, and 4-byte words.

The size of the data element being addressed depends on the instruction being executed as well as the Word/Long Word mode. A bit can be addressed by specifying a byte, and a bit within that byte. Bits are numbered from right to left, with the least significant bit being bit 0 (Figure 23).

The address of a multiple-byte entity is the same as the address of the byte with the lowest memory address in the entity. Multiple-byte entities can be stored beginning with either even or odd memory addresses. A word (either 2-byte or 4-byte entity) is aligned if its address is even; otherwise, it is unaligned. Multiple bus transactions, which may be required to access multiple-byte entities, can be minimized if alignment is maintained.

The formats of multiple-byte data types are also shown in Figure 23. Note that when a word is stored in memory, the least significant byte precedes the more significant byte of the word, as in the Z80 CPU architecture. Also, the loweraddressed byte is present on the upper byte of the external data bus.

Bits within a byte:

7	6	5	4	3	2	1	0

16-bit word at address n :

Least Significant Byte	Address n
Most Significant Byte	Address $\mathrm{n}+1$

32-bit word at address n :

D7-0 (Least Significant Byte)	Address n
D15-8	Address n+1
D23-16	Address n+2
D31-24 (Most Significant Byte)	Address n+3

Figure 23. Bit/Byte Ordering Conventions

CPU ARCHITECTURE (Continued)

External I/O Address Space

External I/O addresses are generated by I/O instructions, except those reserved for on-chip I/O address space accesses, and can take a variety of forms (Table 2). An I/O read or write is always one transaction, regardless of the bus size and the type of I/O instruction.

On-chip I/O Address Space

The Z380 MPU's on-chip peripheral functions and a portion of its interrupt functions are controlled by several on-chip registers, which occupy an On-chip I/O Address Space. This on-chip I/O address space can be accessed only with the following reserved on-chip I/O instructions.

INO	R, (n)	OTIM
INO	(n)	OTIMR
OUTO	(n), R	OTDM
TSTIO	n	OTDMR

When one of these I/O instructions is executed, the Z380 MPU outputs the register address being accessed in a pseudo transaction of two BUSCLK cycles duration, with the address signals A31-A8 all at zeros. In the pseudo transaction, all bus control signals are at their inactive states.

Table 2. External I/O Addressing Options

I/O Instruction	A31-A24	Address Bus A23-A16	A15-A8	A7-A0
IN A, (n)	00000000	00000000	Contents of A reg	
IN dst,(C)	BC31-BC24	BC23-BC16	BC15-BC8	BC7-BC0
INO dst,(n)	00000000	00000000	00000000	n
INA(W) dst, (mn)	00000000	00000000	m	n
DDIR IB INA(W) dst,(Imn)	00000000	1	m	n
DDIR IW INA(W) dst,(klmn)	k	1	m	n
Block Input	BC31-BC24	BC23-BC16	BC15-BC8	BC7-BC0
OUT (n),A	00000000	00000000	Contents of A reg	n
OUT (C), dst	BC31-BC24	BC23-BC16	BC15-BC8	BC7-BC0
OUTO (n), dst	00000000	00000000	00000000	n
OUTA(W) (mn), dst	00000000	00000000	m	n
DDIR IB OUTA(W) (Imn), dst	00000000	1	m	n
DDIR IW OUTA(W) (kImn), dst	k	1	m	
Block output	BC31-BC24	BC23-BC16	BC15-BC8	BC7-BC0

DATA TYPES

The Z380 CPU can operate on bits, Binary-Coded Decimal (BCD) digits (4 bits), bytes (8 bits), words (16 bits or 32 bits), byte strings, and word strings. Bits in registers can be set, cleared, and tested. BCD digits, packed two to a byte, can be manipulated with the Decimal Adjust Accumulator instruction (in conjunction with binary addition and subtraction) and the Rotate Digit instructions. Bytes are operated on by 8-bit load, arithmetic, logical, and shift and rotate instructions. Words are operated on in a similar manner by the word load, arithmetic, logical, and shift and rotate instructions. Block move and search operations can manipulate byte strings and word strings up to 64 Kbytes or words long. Block I/O instructions have identical capabilities.

CPU Registers

The Z380 CPU contains abundant register resources (Figure 21). At any given time, the program has immediate access to both the primary and alternate registers in the selected register set. Changing register sets is a simple matter of a LDCTL instruction.

Primary and Working Registers

The working register set is divided into the two register files; the primary file and the alternate (designated by ') file. Each file contains an 8-bit Accumulator (A), a Flag register (F), and six general-purpose registers (B, C, D, E, H, and L). Only one file can be active at any given time, although data in the inactive file can still be accessed. Upon reset, the primary register file in register set 0 is active. Exchange instructions allow the programmer to exchange the active file with the inactive file.

The accumulator is the destination register for 8-bit arithmetic and logical operations. The six general-purpose registers can be paired (BC, DE, and HL), and are extended to 32 bits by the z extension to the register, to form three 32 -bit general-purpose registers. The HL register serves as the 16 -bit or 32 -bit accumulator for word operations.

CPU Flag Register

The Flag register contains six flags that are set or reset by various CPU operations. This register is illustrated in Figure 24 and the various flags are described below.

Figure 24. CPU Flag Register

Carry (C). This flag is set when an add instruction generates a carry or a subtract instruction generates a borrow. Certain logical, rotate and shift instructions affect the Carry flag.

Add/Subtract (N). This flag is used by the Decimal Adjust Accumulator instruction to distinguish between add and subtract operations. The flag is set for subtract operations and cleared for add operations.

Parity/Overflow (PN). During arithmetic operations this flag is set to indicate a two's complement overflow. During logical and rotate operations, this flag is set to indicate even parity of the result or cleared to indicate odd parity.

Half Carry (H). This flag is set if an 8-bit arithmetic operation generates a carry or borrow between bits 3 and 4, or if a 16-bit operation generates a carry or borrow between bits 11 and 12, or if a 32-bit operation generates a carry or borrow between bits 27 and 28. This bit is used to correct the result of a packed BCD addition or subtract operation.

Zero (Z). This flag is set if the result of an arithmetic or logical operation is a zero.

Sign (S). This flag stores the state of the most significant bit of the accumulator.

Index Registers

The four index registers, IX, IX', IY and IY', each hold a 32 -bit base address that is used in the Indexed addressing mode. The Index registers can also function as generalpurpose registers with the upper and lower byte of the lower 16 bits being accessed individually. These byte registers are called IXU, IXU', IXL and IXL' for the IX and IX' registers, and IYU, IYU', IYL and IYL' for the IY and IY' registers.

Interrupt Register

The Interrupt register (I) is used in interrupt modes 2 and 3 for /INTO to generate a 32-bit indirect address to an interrupt service routine. The I register supplies the upper twenty-four or sixteen bits of the indirect address and the interrupting peripheral supplies the lower eight or sixteen bits. In the Assigned Vectors mode for /INT1-3 the upper sixteen bits of the vector are supplied by the I register; bits $15-9$ are the assigned vector base and bits 8-0 are the assigned vector unique to each of /INT1-3.

DATA TYPES

Program Counter

The Program Counter (PC) is used to sequence through instructions in the currently executing program and to generate relative addresses. The PC contains the 32-bit address of the current instruction being fetched from memory. In the Native mode, the PC is effectively only 16 bits long, as carries from bit 15 to bit 16 are inhibited in this mode. In Extended mode, the PC is allowed to increment across all 32 bits.

R Register

The R register can be used as a general-purpose 8-bit read/write register. The R register is not associated with the refresh controller and its contents are changed only by the user.

Stack Pointer

The Stack Pointer (SP) is used for saving information when an interrupt or trap occurs and for supporting subroutine calls and returns. Stack Pointer relative addressing allows parameter passing using the SP.

Select Register

The Select Register (SR) controls the register set selection and the operating modes of the Z380 CPU. The reserved bits in the SR are for future expansion; they will always read as zeros and should be written with zeros for future compatibility. The SR is shown in Figure 22.

Addressing Modes

Addressing modes are used by the Z380 CPU to calculate the effective address of an operand needed for execution of an instruction. Seven addressing modes are supported by the Z380 CPU. Of these seven, one is an addition to the Z80 CPU addressing modes (Stack Pointer Relative) and the remaining six modes are either existing or extensions to the Z80 CPU addressing modes.

Register. The operand is one of the 8 -bit registers (A, B, C, D, E, H, L, IXU, IXL, IYU, IYL, A', B', C', D', E', H' or L'); or is one of the 16 -bit or 32 -bit registers ($B C, D E, H L, I X, I Y$, $B C^{\prime}, D E^{\prime}, H L^{\prime}, I X^{\prime}, I Y^{\prime}$ or $S P$) or one of the special registers (I or R).

Immediate. The operand is in the instruction itself and has no effective address. The DDIR IB and DDIR IW decoder directives allow specification of 24 -bit and 32 -bit immediate operands, respectively.

Indirect Register. The contents of a register specify the effective address of an operand. The HL register is the primary register used for memory accesses, but BC and DE can also be used. (For the JP instruction, IX and IY can also be used for indirection.) The BC register is used for I/O space accesses.

Direct Address. The effective address of the operand is the location whose address is contained in the instruction. Depending on the instruction, the operand is either in the I/O or memory address space. Sixteen bits of direct address is the norm, but the DDIR IB and DDIR IW decoder directives allow 24-bit and 32 -bit direct addresses, respectively.

Indexed. The effective address of the operand is the location computed by adding the two's-complementsigned displacement contained in the instruction to the contents of the IX or IY register. Eight bits of index is the norm, but the DDIR IB and DDIR IW decoder directives allow 16-bit and 24-bit indexes, respectively.

Program Counter Relative. An 8-, 16- or 24-bit displacement contained in the instruction is added to the Program Counter to generate the effective address. This mode is available only for Jump and Call instructions.

Stack Pointer Relative. The effective address of the operand is the location computed by adding the two'scomplement signed displacement contained in the instruction to the contents of the Stack Pointer. Eight bits of index is the norm, but the DDIR IB and DDIR IW decoder directives allow 16 - and 24 -bit indexes, respectively.

INSTRUCTION SET

The Z380 CPU's instruction set is a superset of the Z80 CPU's; the Z380 CPU is opcode compatible with the Z80 CPU. Thus a Z80 program can be executed on a Z380 MPU without modification. The instruction set is divided into seventeen groups by function:

The instructions are divided into the following categories. - 8-bit load group - 16/32 bit load group

- Push/Pop group
- Exchanges, block transfers, and searches
- 8-bit arithmetic and logic operations
- General purpose arithmetic and CPU control
- Decoder Directive Instructions
- 16/32 bit arithmetic operations
- Multiply/Divide Instruction group
- 8-bit Rotates and shifts
- 16-bit Rotates and shifts
- 8-bit bit set, reset, and test operations
- Jumps
- Calls, returns, and restarts
- 8-bit input and output operations for External I/O address space
- 8-bit input and output operations for Internal I/O address space
- 16-bit input and output operations

Instruction Set

The following is a summary of the Z380 instruction set which shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instructions.

Note that mnemonic and object code assignmentfor newly added instructions (instructions in Italic face) are preliminary and subject to change without notice.

The Z380 Technical Manual will contain significantly more details for programming use. A list of instructions, as well as encoding is included in Appendix A of this document.

Instruction Set Notation

Symbols. The following symbols are used to describe the instruction set.

n	An 8-bit constant
nn	A 16-bit constant
d	An 8-bit offset. (2's complement)
r	Any one of the CPU register A, B, C, D, $\mathrm{E}, \mathrm{H}, \mathrm{L}$
s	Any 8-bit location for all the addressing modes allowed for the particular instruction.
dd,qq,ss,tt,uu	Any 16-bit location for all the addressing modes allowed for the particular instruction.
xxh	MS Byte of the specified 16-bit location
xx	LS Byte of the specified 16-bit location
SR	Select Register
XY	Index register (IX or IY)
XYz	Index Register Extend (IXz or IYz)
XYU	MS Byte of index register (IXU or IYU)
XYL	LS Byte of index register (IXL or IYL)
SP	Current Stack Pointer
(C)	I/O Port pointed by C register
cc	Condition Code
[]	Optional field
()	Indirect Address Pointer or Direct Address

A 16-bit constant

Any one of the CPU register A, B, C, D, E, H, L
Any 8 -bit location for all the addressing modes allowed for the particular instruction.
Any 16-bit location for all the addressing modes allowed for the particular instruction.
MS Byte of the specified 16-bit location LS Byte of the specified 16-bit location Select Register Index register (IXor IY) dexRegister Exted (IXz orIYz) MS Byte of index register (IXU or IYU) Current Stack Pointer I/O Port pointed by C register Condition Code Optional field Indirect Address Pointer or Direct Address

INSTRUCTION SET (Continued)

Assignment of a value is indicated by the symbol " \leftarrow ". For example,
$\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}$
indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "dst (b)" is used to refer bit " b " of a given location, "dst($m-n$) is used to refer bit location m to n of the destination. For example,
$\mathrm{HL}(7)$ specifies bit 7 of the destination.
And
$\mathrm{HL}(23-16)$ specifies bit location 23 to 16 of the HL register.

Flags. The F register contains the following flags followed by symbols.

S Sign flag
Z Zero flag
H Half carry flag
PN Parity/Overflow flag
N Add/Subtract flag
C Carry Flag
\checkmark The flag is affected according to the result of the operation.

- The flag is unchanged by the operation.

0 The flag is reset to 0 by operation.
1 The flag is set to 1 by operation.
V PN flag affected according to the overflow result of the operation.
P PN flag affected according to the parity result of the operation.

Condition Codes. The following symbols describe the condition codes.

Z	Zero*
NZ	Not Zero*
C	Carry*
NC	No carry*
S	Sign
NS	No Sign
NV	No overflow
V	Overflow
PE	Parity even
PO	Parity odd
P	Positive
M	Minus

[^0]
Field Encoding

The convention for opcode binary format is shown in the following Tables. For example, to get the opcode format on the instruction LD (IX+12h), C; first find out the entry for LD (XY+d),r. That entry has an opcode format of:

At the bottom of each Table (between Table and Notes), the binary format is the following:

rrer	Reg	s Regs		y	XY
000	B	000	B	0	IX
001	C	001	C	1	IY
010	D	010	D		
011	E	011	E		
100	H	100			
101	L	101			
111	A	111	A		

To form the opcode first look for the y field value for the IX register, which is 0 . Then find r field value for the C register, which is 001 . Replace the y and r fields with the value from the table; replace d value with the real number. The results are:

76	543	210	Hex
11	011	101	DD
01	110	$\underline{001}$	71
00	010	$\mathbf{0 1 0}$	12

8-BIT LOAD GROUP

8-BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	$\begin{aligned} & \text { Flags } \\ & S \mathrm{Z} x \end{aligned}$	H	$\begin{aligned} & \mathrm{P} / \\ & \mathbf{V} \end{aligned}$	N	C	76	$\begin{gathered} \text { Spcod } \\ 543 \end{gathered}$	210	HEX	\# of Bytes	Execute Time	Notes	
LD XYU, s	$\mathrm{XYU} \leftarrow \mathrm{s}$	-•x - x - -					11	y11	101		2	2		
						01	100	s						
LD XYL,s	$\mathrm{XYL} \leftarrow \mathrm{s}$	- - x - x - -						11	y11	101		2	2	
						01		101	s					
LD s,XYU	$s \leftarrow X Y U$	- - x	- x - -			-	11	y11	101		2	2		
						01	s	100						
LD s,XYL	$s \leftarrow X Y L$	- - x - x - -					-	11	y11	101		2	2	
						01		s	101					
LD A, I	$A \leftarrow 1$	$\bigcirc 0$	$0 \times$	x IEF 0		-	11	101	101	ED	2	2		
						01	010	111	57					
LD A,R	$A \leftarrow R$	$00 x$	$0 \times \mathrm{IEF} 0$				-	11	101	101	ED	2	2	
						01		011	111	5 F				
LD I,A	$1 \leftarrow A$	- - x - x - -					11	101	101	ED	2	2		
							01	000	111	47				
LD R,A	$R \leftarrow A$	- - x	x	-		-	11	101	101	ED	2	2		
						01	001	111	4F					

$\underline{1}$	Reg	S	Regs	v	XY
000	B	000	B	0	IX
001	C	001	C	1	IY
010	D	010	D		
011	E	011	E		
100	H	100	IXU ($x=0), \operatorname{IYU}(x=1)$		
101	L	101	IXL ($x=0), \operatorname{IYL}(x=1)$		
111	A	111	A		

Notes:

Instructions in Italic face are Z 380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.

16/32 BIT LOAD GROUP

16/32 BIT LOAD GROUP (Continued)

Mnemonic	Symbolic Operation	Flags			P/				Opcode			HEX	\# ofBytes	Execute	
					H x			C	76	543	210				Notes
LD IY,IX	$I Y \leftarrow I X$	-	-		- x	-	-	-	11	111	101	FD	2	2	L1
									00	100	111	27			
LD pp,XY	$\mathrm{pp} \leftarrow \mathrm{XY}$	-	- \times		- x	-	-	-	11	y11	101		2	2	L1
									00	pp1	011				
$L D(p p), X Y$	$(\mathrm{pp}+1) \leftarrow \mathrm{XYU}$	-	-		x	-	-	-	11	y11	101		2	$3+$ w	L1
	$(\mathrm{pp}) \leftarrow \mathrm{XYL}$								00	pp0	001				
LD XY, (pp)	$\mathrm{XYU} \leftarrow(\mathrm{pp}+1)$	-	-		x	-		-	11	y11	101		2	2+r	L1
	$\mathrm{XYL} \leftarrow(\mathrm{pp})$								00	pp0	011				
LD pp, $(X Y+d)$	$\mathrm{pph} \leftarrow(X Y+d) h$	-	-		x	-	-	-					4	$4+r$	L1, I
	$\mathrm{ppl} \leftarrow(\mathrm{XY}+\mathrm{d}) \mid$								11	001	011	CB			
										d					
$L D I X,(I Y+d)$	$I X U \leftarrow(I Y+d) h$	-	-		x		-	-	11	111	101	FD	4	$4+r$	L1,I
	$\|X L \leftarrow(\mid Y+d)\|$								11	001	011	CB			
									$\stackrel{ }{ }$	d					
									00	100	011	23			
LD IY,(IX+d)	$I Y U \leftarrow(I X+d) h$	-	-		x		-	-	11	011	101	DD	4	$4+r$	L1, I
	$I Y L \leftarrow(\mid X+d) \mid$								11		011	CB			
									\leftarrow	d					
									00	100	011	23			
LD pp,(SP+d)	$\mathrm{pph} \leftarrow(\mathrm{SP}+\mathrm{d}) \mathrm{h}$	-	-		x		-	-	11	011	101	DD	4	4+r	L1,I
	$\mathrm{ppl} \leftarrow(\mathrm{SP}+\mathrm{d}) \mid$								11		011	CB			
										d					
									00	ppo	001				
$L D X Y,(S P+d)$	$X Y U \leftarrow(S P+d) h$	-	-		x			-	11	y11	101		4	4+r	L1, I
	$\mathrm{XYL} \leftarrow(\mathrm{SP}+\mathrm{d}) \mathrm{l}$								11	001	011	CB			
										d					
									00	100	001	21			
$L D(X Y+d), p p$	$(\mathrm{XY}+\mathrm{d}) \mathrm{h} \leftarrow \mathrm{pph}$	-	-					-	11	y11	101		4	5+w	L1, I
	$(\mathrm{XY}+\mathrm{d}) \mathrm{l} \leftarrow \mathrm{ppl}$								11	001	011	CB			
										d					
									00		011				
$L D(I X+d), I Y$	$(\mathrm{IX}+\mathrm{d}) \mathrm{h} \leftarrow \mathrm{IYU}$	-	-						11	011	101	DD	4	5+w	L1, I
	$(I X+d)\|\leftarrow\| Y L$								11	001	011	CB			
										d					
									00	101	011	2B			
$L D(I Y+d), I X$	$(I Y+d) h \leftarrow I X U$	-	-		- \times	-	-•		11	111	101	FD	4	5+w	L1, I
	$(\mid Y+d)\|\leftarrow\| X L$								11	001	011	CB			
										d					
									00	101	011	2B			

dd	Pair	$\frac{q q}{}$	Pair	pp.uu	Pair	y	XY
00	BC	00	BC	00	BC	0	IX
01	DE	01	DE	01	DE	1	$I Y$
10	HL	10	HL	11	$H L$		
11	SP	11	AF				

Notes:
Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
L1: In Long Word mode, this instruction loads in 32 bits; dst(31-0) $\leftarrow \operatorname{src}(31-0)$

PUSH／POP INSTRUCTIONS

da	Pair	y	$X Y$
00	BC	0	$I X$
01	DE	1	$I Y$
10	HL		
11	AF		

Notes：

Instructions in Italic face are Z380 new instructions，instructions with underline are Z 180 original instructions．
I：This instruction may be used with DDIR Immediate instructions．
L2：In Long Word mode，this instruction PUSHes the register＇s extended portion（register with＂z＂suffix）before pushing the contents of the register to the stack．
L3：In Long Word mode，this instruction POPs the register＇s extended portion（register with＂z＂suffix）after popping the contents of the register to the stack．
L4：In Long Word mode，PUSH AF and PUSH nn instructions push 0000h onto stack in the place of the extended register portion．
L5：In Long Word mode，POP AF instruction increments SP by two atter POPing 1 word of data from stack．
L6：In Long Word mode，this instruction POPs one more word from stack and loads into SR（31－16），instead of duplicating（SP＋1）location into SR（31－ 16）．
N ：In Native mode，this instruction uses addresses modulo 65536.
（10）：In case of AF register pair，execute time is one clock less．

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS

EXCHANGE, BLOCK TRANSFER, BLOCK SEARCH GROUPS (Continued)

Mnemonic	Symbolic Operation	$\begin{aligned} & \text { Flags } \\ & \mathrm{s} \mathrm{Z} \mathrm{x} \end{aligned}$	H	$\mathbf{v}^{\mathrm{P} /} \mathrm{N}$		$\begin{array}{r} \mathrm{Opc} \\ 76543 \end{array}$	$\begin{gathered} \text { code } \\ 210 \end{gathered}$	HEX	\# of Bytes	Execute Time	Notes
LDDR	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E-1 \\ & H L \leftarrow H L-1 \\ & B C(15-0) \leftarrow B C(15-0)-1 \\ & \text { Repeat until } B C=0 \end{aligned}$		0	$\begin{aligned} & 00 \\ & \text { (2) } \end{aligned}$		$\begin{aligned} & 11101 \\ & 10111 \end{aligned}$		$\begin{aligned} & \text { ED } \\ & \text { B8 } \end{aligned}$	2	$(3+r+w) n$	N
CPI	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}+1 \\ & \mathrm{BC}(15-0) \leftarrow \mathrm{BC}(15-0)-1 \end{aligned}$	$00 x$ (3)		$\begin{aligned} & V 1 \\ & (1) \end{aligned}$		$\begin{aligned} & 11101 \\ & 10100 \end{aligned}$		$\begin{aligned} & \text { ED } \\ & \text { A1 } \end{aligned}$	2	$3+r$	N
CPIR	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & H \mathrm{HL} \leftarrow \mathrm{HL}+1 \\ & \mathrm{BC}(15-0) \leftarrow \mathrm{BC}(15-0)-1 \\ & \text { Repeat until } \mathrm{A}=(\mathrm{HL}) \text { or } \mathrm{BC}=0 \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ & x \\ (3) \end{array}$		$\begin{aligned} & 0 \\ & \\ & (2) \end{aligned}$		$\begin{aligned} & 11101 \\ & 10110 \end{aligned}$		$\begin{aligned} & \text { ED } \\ & \text { B1 } \end{aligned}$	2	$(3+r) n$	N
CPD	$\begin{aligned} & A-(H L) \\ & H L \leftarrow H L-1 \\ & B C(15-0) \leftarrow B C(15-0)-1 \end{aligned}$	$00 x$ (3)		$\begin{aligned} & V 1 \\ & (1) \end{aligned}$		$\begin{aligned} & 11101 \\ & 10101 \end{aligned}$		$\begin{aligned} & \text { ED } \\ & \text { A9 } \end{aligned}$	2	$3+r$	N
CPDR	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \\ & \mathrm{BC}(15-0) \leftarrow \mathrm{BC}(15-0)-1 \\ & \text { Repeat until } \mathrm{A}=(\mathrm{HL}) \text { or } \mathrm{BC}=0 \end{aligned}$	$\diamond 0 x$ (3)		$\begin{aligned} & 01 \\ & (2) \end{aligned}$		$\begin{aligned} & 11101 \\ & 10111 \end{aligned}$		$\begin{aligned} & \text { ED } \\ & \text { B9 } \end{aligned}$	2	$(3+r) n$	N
LDIW	$\begin{aligned} & (D E) \leftarrow(H L) \\ & (D E+1) \leftarrow(H L+1) \\ & D E \leftarrow D E+2 \\ & H L \leftarrow H L+2 \\ & B C(15-0) \leftarrow B C(15-0)-2 \end{aligned}$	- x	0	$\begin{aligned} & V 0 \\ & (1) \end{aligned}$		$\begin{aligned} & 11101 \\ & 11100 \end{aligned}$		$\begin{aligned} & \text { ED } \\ & \text { EO } \end{aligned}$	2	$(3+r+w) n$	N,L8(4)
LDIRW	$\begin{aligned} & (D E) \leftarrow(H L) \\ & (D E+1) \leftarrow(H L+1) \\ & D E \leftarrow D E+2 \\ & H L \leftarrow H L+2 \\ & B C(15-0) \leftarrow B C(15-0)-2 \\ & \text { Repeat until } B C=0 \end{aligned}$	- - x	0	00 (2)		$\begin{aligned} & 11101 \\ & 11110 \end{aligned}$		$\begin{aligned} & \text { ED } \\ & \text { FO } \end{aligned}$	2	$(3+r+w) n$,L8(4)

Mnemonic	Symbolic Operation	Flags$S \mathrm{Zx}$		H		P/	,	Opcode			HEX	\# of Execute Bytes Time		Notes		
				76	543			210								
LDDW	$(\mathrm{DE}) \leftarrow(\mathrm{HL})$	- -	- x			0	x	V 0		11	101	101	ED	1	$3+r+w$	N,L8(4)
	$(\mathrm{DE}+1) \leftarrow(\mathrm{HL}+1)$					(1)		11	101	000	E8					
	$D E \leftarrow D E-2$															
	$\mathrm{HL} \leftarrow \mathrm{HL}-2$															
	$\mathrm{BC}(15-0) \leftarrow \mathrm{BC}(15-0)-2$															
LDDRW	$(\mathrm{DE}) \leftarrow(\mathrm{HL})$	- -	- x	0	x	00	-	11	101	101	ED	1	$(3+r+w) n$	N,L8(4)		
	$(\mathrm{DE}+1) \leftarrow(\mathrm{HL}+1)$					(2)		11	111	000	F8					
	$D E \leftarrow D E-2$															
	$\mathrm{HL} \leftarrow \mathrm{HL}-2$															
	$\mathrm{BC}(15-0) \leftarrow \mathrm{BC}(15-0)-2$															
	Repeat until $\mathrm{BC}=0$															

r	Reg	pp	Regs	\underline{y}	XY
000	B	00	BC	0	IX
001	C	00	DE	1	IY
010	D	11	HL		
011	E				
100	H				
101	L				
111	A				

Notes:

Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
L7: In Long Word mode, this instruction exchanges in 32-bits; $\operatorname{src}(31-0) \leftrightarrow \operatorname{dst}(31-0)$
L8: In Long Word mode, this instruction transfers in 2 words and BC modified by 4 instead of 2
N : In Native mode, this instruction uses addresses modulo 65536.
(1): $P N$ flag is 0 if the result of $B C-1=0$, otherwise $P N=1$.
(2): PN flag is 0 only at completion of instruction.
(3): Z Flag is 1 if $A=(H L)$, otherwise $Z=0$
(4): Source, Destination address, count value must be even numbers.

8-BIT ARITHMETIC AND LOGICAL GROUP

Mnemonic	Symbolic Operation	S		$\begin{aligned} & \text { lags } \\ & \mathbf{x} \end{aligned}$		x	V	$\begin{aligned} & \mathbf{P} / \\ & \mathbf{N} \end{aligned}$	C	$\begin{gathered} \text { Opcode } \\ 76 \quad 543210 \end{gathered}$	HEX	\# of Bytes	Exec Time	Notes
ADD A,r	$A \leftarrow A+r$	\checkmark	\checkmark	x	\bigcirc	x	V	0	\bigcirc	10 (000)		1	2	
ADD A,n	$A \leftarrow A+n$	\checkmark	\bigcirc	x	\bigcirc	\times	V	0	\bigcirc	11 (000) 110		2	2	
										$\longleftarrow n \longrightarrow$				
ADD A, HL)	$A \leftarrow A+(H L)$	\bigcirc	\bigcirc	x	\bigcirc	x	V	0	0	10 (000) 110		,	$2+r$	
ADD A, (XY+d)	$A \leftarrow A+(X Y+d)$	\checkmark	\bigcirc	x	\bigcirc	x	V	0	0	11 y11 101		3	4+r	1
										10 (000) 110				
										$\longleftarrow d \longrightarrow$				
ADD A,XYU	$A \leftarrow A+X Y U$	\bigcirc	0	x	\checkmark	x	V	0	0	11 y11 101		2	2	
										10 (000) 100				
ADD A,XYL	$A \leftarrow A+X Y L$	\bigcirc	0	x	\bigcirc	x	V	0	0	11 y11 101		2	2	
										10 (000) 101				
ADC A, s	$A \leftarrow A+s+C Y$		0	x	\bigcirc	x	V	0	0	(001)				
SUB s	$A \leftarrow A-s$	\checkmark	\bigcirc	x	\bigcirc	x	V	1	0	(010)				
SBC A, s	$A \leftarrow A-s-C Y$	\bigcirc	\bigcirc	x	\bigcirc	\times	V	1	0	(011)				
AND s	$A \leftarrow A A N D s$	\bigcirc	\bigcirc	x	1	x	P	0	0	(100)				
OR s	$A \leftarrow A O R s$	\bigcirc	\bigcirc	x	0	\times	P	0	0	(110)				
XOR s	$A \leftarrow A X O R s$	\bigcirc	\bigcirc	x	0	x	P	0	0	(101)				
CP s	A-s	\checkmark	\bigcirc	x	\bigcirc	\times	V	1	\bigcirc	(111)				

s is any of $r, n, X Y U, X Y L,(H L),(I X+d),(I Y+d)$ as shown for ADD instruction. The indicated bits replace the (000) in the ADD set above.

m is any of $r, X Y U, X Y L,(H L),(I X+d),(I Y+d)$ as shown for INC instructions. The indicated bits replace (100) with (101) in operand.

Mnemonic	Symbolic Operation	S	Flags				P/			Opcode			HEX	\# of Bytes	Execute	
			Z	x	H	V			C	76		210			Time	Notes
ISTr	A AND r	\bigcirc	\bigcirc	x	1		P	0	0	11	101	101	ED	2	2	
										00	r	100				
ISTn	A AND n	\bigcirc	\checkmark	x	1		P	0	0	11	101	101	ED	3	2	
										01	100	100	64			
TST (H)	A AND (HL)	\bigcirc	\bigcirc	x	1		P	0	0					2	$2+r$	
ISI(HL)	A AND (HL)	0	0	x	1			0	0	00	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	$\begin{aligned} & 101 \\ & 100 \end{aligned}$	34	2	$2+1$	

			Reg
000	B	Y	XY
001	C	1	IX
010	D		IY
011	E		
100	H		
101	L		
111	A		

Notes:

Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
(5): Two cycles to execute for Accumulator, three cycles to execute for any other registers.

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUP

Mnemonic	Symbolic Operation	Flags			P/			C	Opcode			HEX	\# of Bytes	Execute Time	Notes
DAA	(1)	\bigcirc	$0 \times$	\bigcirc	x	P	-	0	00	100	111	27	1	3	
CPL[A]	$A \leftarrow \operatorname{NOT} A$ One's complement	-		1	x	-	1	-	00	101	111	2F	1	2	
CPLW[HL]	$\mathrm{HL} \leftarrow$ NOT HL	-	- x	1	x	-	1	-	11	011		DD	2	2	
NEG[A]	$A \leftarrow 0-A$	\checkmark	$\checkmark \times$	\bigcirc	x	V	1	\bigcirc	11	101	101	ED	1	2	
	Two's complement								01	000	100	44			
NEGW[HL]	$\mathrm{HL} \leftarrow 0-\mathrm{HL}$	\bigcirc	$\bigcirc \times$	\bigcirc	x	V	1	\bigcirc	11	101	101	ED	1	2	
	Two's complement								01	010	100	54			
EXTS [A]	$L \leftarrow A$	-		-	x	-	-	-	11	101	101	ED	2	3	L9
	$\begin{aligned} & H \leftarrow 00 \text { if } D 7=0 \\ & H \leftarrow F F \text { if } D 7=1 \end{aligned}$								01	100	101	65			
EXTSW [HL]	$\mathrm{HLz} \leftarrow 0000$ if $\mathrm{H}[7]=0$	-	- \times	-	x	-	-	-	11	101	101	ED		3	
	$\mathrm{HLz} \leftarrow \mathrm{FFFF}$ if $\mathrm{H}[7]=1$								01	110	101	75			
CCF	$\mathrm{CY} \leftarrow \mathrm{NOTCY}$	-	- x	\checkmark	x	-	0	\bigcirc	00	111	111	3F	1	2	
	Complement carry flag														
SCF	$\mathrm{CY} \leftarrow 1$	-	- x	0	x	-	0	1	00	110	111	37	1	2	
NOP	No operation	-		\bullet	x	-	-	-	00	000	000	00	1	2	
HALT	CPU halted	\bullet		\bullet	x	-	-	-	01	110	110	76	1	2	
SLP	Sleep	-	- x	-	x	-	-	-	11	101	101	ED	2	2	
									01	110	110	76			
DI \#	$\mathrm{SR}(5) \leftarrow 0$	-		-	X	-	-	-	11		011	F3	1	2	
DIn\#	$\operatorname{IER}(\mathrm{i}) \leftarrow 0$ if $\mathrm{n}(\mathrm{i})=1$	-	- x	-	x	-	-	-	11		101	DD	3	2	
	$\mathrm{SR}(5) \leftarrow 0$ if $\mathrm{n}(0)=1$								11	110	011	F3			
										n	\rightarrow				
El \#	$\mathrm{SR}(5) \leftarrow 1$				x	-	-	-	11		011	FB	1	2	
Eln\#	$\operatorname{IER}(\mathrm{i}) \leftarrow 1$ if $\mathrm{n}(\mathrm{i})=1$	-	- \times	-	x	-	-	-	11		101	DD	3	2	
	$\mathrm{SR}(5) \leftarrow 1$ if $\mathrm{n}(0)=1$								11	111	011	FB			
IM 0	Set INT mode 0	-		-	x	-	-	-	$\stackrel{11}{ }$		$\xrightarrow{101}$	ED	2	4	
									01	000	110	46			
IM 1	Set INT mode 1	-	- \times	-	x	-	-	-	11	101	100	ED	2	4	
									01		101	56			
IM 2	Set INT mode 2	-	- x	-	x	-	-	-	11	101	101	ED	2	4	
									01	011	110	5E			
IM 3	Set INT mode 3	-	-	-	x	-	-	-	11	101	101	ED	2	4	
									01	001	110	4E			
LDCTL SR,A	$\mathrm{SR}(31-24) \leftarrow \mathrm{A}$	-	- x	-	x	-	-	-	11	011	101	DD	2	4	
	$\mathrm{SR}(23-16) \leftarrow A$								11	001	000	C8			
	$\mathrm{SR}(15-8) \leftarrow \mathrm{A}$														
LDCTL SR,n	$\mathrm{SR}(31-24) \leftarrow \mathrm{n}$	-	- \times		x	-	-	-	11		101	DD	3	4	
	$\mathrm{SR}(23-16) \leftarrow \mathrm{n}$								11	001	010	CA			
	$\mathrm{SR}(15-8) \leftarrow \mathrm{n}$									n	\longrightarrow				
LDCTL HL,SR	$\mathrm{HL}(15-0) \leftarrow \mathrm{SR}(15-0)$	-	-	-	x	-	-	-	11	101	101	ED	2	2	L1
									11	000	000	C0			

yv	Control Regs
01	XSR
10	DSR
11	YSR

Notes:

Instructions in Italic face are Z 380 new instructions, instructions with underline are Z 180 original instructions.

L1: In Long Word mode, this instruction loads in 32 bits; dst $(31-0) \leftarrow \operatorname{src}(31-0)$
L9: In Long Word mode, this instruction operates in 32-bits; If $A(7)=0$ then $\mathrm{HL}(31-16)=0000 \mathrm{~h}$ else FFFFh
@: Converts accumulator content into packed BCD following add or subtract with packed BCD operands.
\#: Interrupts are not sampled at the end of El and DI.

DECODER DIRECTIVE INSTRUCTIONS

Mnemonic	Operation		$\begin{gathered} \text { pde } \\ 543 \end{gathered}$	210	$\begin{aligned} & \text { \# of } \\ & \text { HEX } \end{aligned}$	Bytes	Execute Time	Notes
DDIR W	Operate following inst in word mode.	11	011	101	DD	+2	0	
		11	000	000	CO			
DDIR IB, W	Operate following inst in word mode.	11	011	101	DD	+3	0	
	Fetching additional byte data.	11	000	001	C1			
DDIR IW, W	Operate following inst in word mode.	11	011	101	DD	+4	0	
	Fetching additional word data.	11	000	010	C2			
DDIR IB	Fetching additional byte data.	11	011	101	DD	+3	0	
		11	000	011	C3			
DDIR LW	Operate following inst in Long Word mode.	11	111	101	FD	+2	0	
		11	000	000	C0			
DDIR IB,LW	Operate following inst in Long Word mode.	11	111	101	FD	+3	0	
	Fetching additional byte data.	11	000	001	C1			
DDIR IW,LW	Operate following inst in word mode.	11	111	101	FD	+4	0	
	Fetching additional word data.	11	000	010	C2			
DDIR IW	Fetching additional word data.	11	111	101	FD	+4	0	
		11	000	011	C3			

16/32 BIT ARITHMETIC AND LOGICAL GROUP

Mnemonic	Symbolic Operation	Flags			H	P/				Opcode			HEX	\# of Execute		
			Z	x		x	V	N	C	76	543	210		Bytes	Time	Notes
$\begin{aligned} & \text { ADD HL,dd } \\ & \text { ADC HL, dd } \end{aligned}$	$\mathrm{HL} \leftarrow \mathrm{HL}+\mathrm{dd}$	-	-	\times	\bigcirc	x	-	0	\bigcirc	00	dd1	001		1	2	X1
	$\mathrm{HL} \leftarrow \mathrm{HL}+\mathrm{dd}+\mathrm{CY}$	\bigcirc	\bigcirc	x	0	x	V	0	\bigcirc	11	101	101	ED	2	2	
										01	dd1	010				
SBC HL, dd	$\mathrm{HL} \leftarrow \mathrm{HL}-\mathrm{dd}-\mathrm{CY}$	\bigcirc	\bigcirc	x	\bigcirc	x	V	1	\bigcirc	11	101	101	ED	2	2	
										01	dd0	010				
ADD XY,qq	$X Y \leftarrow X Y+q q$	-	-	x	0	x	-	0	\bigcirc	11	y11	101		2	2	X1
										00	qq1	001				
ADD XY, XY	$X Y \leftarrow X Y+X Y$	-	-	x	0	x	-	0	\bigcirc	11	y11	101		2	X1	
										00	101	001	29			
INC[W] dd	$d d \leftarrow d d+1$	-	-	X	-	x	-	-	-	00	dd0	011		1	2	X1
INC[W] XY	$X Y \leftarrow X Y+1$	-	-	x	-	X	-	-	-	11	y11	101		2	2	X1
										00	100	011	23			
DEC[W] dd	$\mathrm{dd} \leftarrow \mathrm{dd}-1$	-	-	x	-	x	-	-	-	00	dd1	011		1	2	X1
DEC[W] XY	$X Y \leftarrow X Y-1$	-	-	x	-	x	-	-	-	11	y11	101		2	2	X1
										00	101	011	2 B			
ADD SP,nn	$\mathrm{SP} \leftarrow \mathrm{SP}+\mathrm{nn}$	-	-	x	\checkmark	x	-	0	\bigcirc	11	101	101	ED	4	2	X1, I
										10	000	010	82			
											n-					
SUB SP,nn	$\mathrm{SP} \leftarrow \mathrm{SP}-\mathrm{nn}$	-	-	x	\checkmark	x	-	1	\bigcirc	11	101	101	ED	4	2	X1, I
										10	010	010	92			
											n-					
ADDW [HL,]pp	$\mathrm{HL} \leftarrow \mathrm{HL}+\mathrm{pp}$	\bigcirc	\bigcirc	x	\bigcirc	x	V	0	\bigcirc	$\stackrel{\leftarrow}{11}$	-n 101		ED	2	2	
										10						

16/32 BIT ARITHMETIC AND LOGICAL GROUP (Continued)

uu is any of $\mathrm{rr}, \mathrm{nn}, \mathrm{t},(\mathrm{IX}+\mathrm{d}),(\mathrm{IY}+\mathrm{d})$ as shown for ADDW instruction. The indicated bits replace the (000) is the ADD set above.

$d d$	Pair	pp	Pair	$\frac{q q}{}$	Pair	y	XY
00	BC	00	BC	00	BC	0	$I X$
01	DE	01	DE	01	DE	1	IY
10	HL	11	HL	11	SP		
11	SP						

Notes:

Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
X1: In Extend mode, this instruction operates in 32-bits;
$\operatorname{src}(31-0) \leftarrow \operatorname{src}(31-0)$ opr dst(31-0)

MULTIPLY/DIVIDE INSTRUCTION GROUP

MULTUW uu instructions, uu is any of $p p, n n, X Y,(n n),(X Y+d)$ as shown for MULTW instruction with replacing (010) by (010). Execute time is time required for MUTW with one more clock.

MULTIPLY/DIVIDE INSTRUCTION GROUP (Continued)

r	Req
000	B
001	C
010	D
011	E
100	H
101	L
111	A

pp	Reas
00	BC
00	DE
11	$H L$

HL

dd	Regs
00	BC
01	DE
10	HL
11	SP

Notes:
Instructions in Italic face are Z 380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.

8-BIT ROTATE AND SHIFT GROUP

Mnemonic	Symbolic Operation	Flags			P/					Opcode			\# of Execute			
				x	H	x	V	N	C	76			HEX	Bytes		Notes
RLCA	Rotate Left Circular	-	-	x	0	x	-	0	\bigcirc	00	000		07	1	2	
	Accumulator															
RLA	Rotate Left Accumulator	\bullet	-	x	0	x	-	0	0	00	010		17	1	2	
RRCA	Rotate Right Circular	-	-	x	0	X	-	0	\bigcirc	00	001	111	OF	1	2	
	Accumulator															
RRA	Rotate Right Accumulator	-	-	x	0	x	-	0	\bigcirc	00	011	111	1 F	1	2	
RLC r	Rotate Left Circular	\bigcirc	\checkmark	x	0	\times	P	0	\bigcirc	11		011	CB	2	2	
	register r										(000)					
RLC (HL)	Rotate Left Circular	\bigcirc	0	x	0	x	P	0	0	11		011	CB	2	$2+r$	
											(000)		06			
RLC (XY+d)	Rotate Left Circular	0	\bigcirc	x	0	x	P	0	\bigcirc	11	y11	101		4	$4+r$	1
										11			CB			
											-d					
											(000)					
RL m	Rotate Left	\bigcirc	0	x	0	x	P	0	\bigcirc		(010)					
RRC m	Rotate Right Circular	\bigcirc	\bigcirc	\times	0	x	P	0	0		(001)					
RR m	Rotate Right	\bigcirc	\bigcirc	\times	0	X	P	0	\bigcirc		(011)					
SLA m	Shift Left Arithmetic	\bigcirc	\bigcirc	\times	0	\times	P		0		(100)					
SRA m	Shift Right Arithmetic	\bigcirc	\bigcirc	x	0	x	P	0	-		(101)					
SRL m	Shift Right Logical	0	\bigcirc	\times	0	x	P	0	-		(111)					

Above instruction's format and states are as shown for RLC's. To form new opcode replace (000) of RLCs with shown code.

RLD	Rotate Left Digit between the accumulator and location (HL)	\checkmark	\bigcirc	x			P	0	1	10				2
RRD	Rotate Right Digit between the accumulator and location (HL)	\bigcirc	\bigcirc	x	0		P	0	1	10		$\begin{aligned} & 101 \\ & 111 \end{aligned}$		2

r	Reg	pp	Regs	y	$X Y$
000	B	00	$B C$	0	$I X$
001	C	00	DE	1	$I Y$
010	D	11	HL		
011	E				
100	H				
101	L				
111	A				

Notes:

Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
(6): The contents of the upper half of the accumulator is unaffected.

16/32 BIT ROTATE AND SHIFT GROUP

$p p$	Regs	y	$X Y$
00	$B C$	0	$I X$
00	$D E$	1	$I Y$
11	$H L$		

Notes:

Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.

8-BIT BIT SET, RESET, AND TEST GROUP

Mnemonic	Symbolic Operation	Flags			P/			Opcode				\# of	Execute	
			x	H x		N	C	76	543	210	HEX	Bytes		Notes
BIT b,r	$\mathrm{Z} \leftarrow \mathrm{rb}$	- 0	x	$1 \times$	-	0	-	11	001	011	CB	2		
								01	b	r				
BIT b, (HL)	$\mathrm{Z} \leftarrow(\mathrm{HL}) \mathrm{b}$	- 0	x	1 x	-	0	-	11	001	011	CB	2		
								01	b	110				
BIT b, (XY+d)	$\mathrm{Z} \leftarrow(\mathrm{XY}+\mathrm{d}) \mathrm{b}$	- 0	x	1 x	-	0	-	11	y11	101		4		1
								11	001	011	CB			
								\leftarrow	d					
								01	b	110				
SET b,r	$\mathrm{rb} \leftarrow 1$	- -	x	x	-	-	-	11	001	011	CB	2		
								(11)	b	r				
SET b, (HL)	$(\mathrm{HL}) \mathrm{b} \leftarrow 1$	- -	x	- x	-	-	-	11	001	011	CB	2		
								(11)	b	110				
SET b, $(X Y+d)$	$(\mathrm{XY}+\mathrm{d}) \mathrm{b} \leftarrow 1$	- -	x	- x	-	-	-	11	y11	101		4		1
								11	001	011	CB			
								\longleftarrow	d					
								(11)	b	110				
RES b, m	$\mathrm{mb} \leftarrow 0$							(10)						

To form new opcode replace (11) of SET b, s with (10). s is any of $r,(H L),(X Y+d)$.
The notation mb indicates location m , bit $\mathrm{b}(0 \sim 7)$

	Req	y	$X Y$
000	B	0	IX
001	C	1	IY
010	D		
011	E		
100	H		
101	L		
111	A		

Notes:

Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be operate with DDIR Immediate instructions.

JUMP GROUP

cc	Condition
000	NZ (Non-zero)
001	Z (Zero)
010	NC (Non-carry)
011	C (Carry)
100	PO (Parity Odd), or NV (Non-Overflow)
101	PE (Parity Even), or V (Overflow)
110	P (Sign positive), or NS (No sign)
111	M (Sign negative), or S (Sign)

Notes:

Instructions in Italic face are Z 380 new instructions, instructions with underline are Z 180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
N: In Native mode, this instruction uses addresses modulo 65536.
X2: In Extend mode, this instruction loads bit 31-16 portion of the operand into $\mathrm{PC}(31-16)$.
(7): e is a signed two's complement number in the range [-126, 129], $e-2$ in the opcode provides an effective address of pc $+e$ as PC is incremented by 2 prior to the addition of e.
(8): ee is a signed two's complement number in the range [$-32765,32770$], ee-4 in the opcode provides an effective address of pc+e as PC is incremented by 4 prior to the addition of e.
(9): eee is a signed two's complement number in the range [-8388604, 8388611], eee-5 in the opcode provides an effective address of pc+e as PC is incremented by 5 prior to the addition of e.

CALL AND RETURN GROUP

Mnemonic	Symbolic Operation	Flags	H x		N	C	76	$\begin{gathered} \text { pcod } \\ 543 \end{gathered}$	210	HEX	\# of Bytes	Execute Time	Notes
RETN	Return from NMI	- - x • x		- -		-	11	101	101	ED	2	$2+r$	N,X4,(10)
					- -		01	000	101	45			
RST p	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{PCh} \\ & (\mathrm{SP}-2) \leftarrow \mathrm{PCl} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \\ & \mathrm{PCh} \leftarrow 0 \\ & \mathrm{PCl} \leftarrow \mathrm{p} \end{aligned}$	- - x	x -	x •			11	t	111		1	4+w	N, X3, X5

cc Condition

000 NZ (Non-zero)

t	D
0000	00 H
001	08 H
010	10 H
011	18 H
100	20 H
101	28 H
110	30 H
111	38 H

Notes:
Instructions in Itallc face are Z 380 new instructions, instructions with underline are Z 180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
$\mathrm{N}: \quad$ In Native mode, this instruction uses addresses modulo 65536.
X3: In Extended mode, this instruction pushes PC(31-16) into the stack before pushing PC(15-0) into the stack.
X4: In Extended mode, this instruction pops PC(31-16) from the stack after poping PC(15-0) from the stack.
X5: In Extended mode, this instruction loads 00h into PC(31-16).
(2) In Extended mode, all return instructions pops PCz from the stack after poping PC from the stack.
(8): ee is a signed two's complement number in the range [-32765, 32770], ee-4 in the opcode provides an effective address of pc+e as PC is incremented by 4 prior to the addition of e.
(9): eee is a signed two's complement number in the range [$-8388604,8388611$], eee-5 in the opcode provides an effective address of pc+e as PC is incremented by 5 prior to the addition of e.
(10) RETN loads IFF2 to IFF1.
(11): e is a signed two's complement number in the range [-127, 128], e-3 in the opcode provides an effective address of pc+e as PC is incremented by 3 prior to the addition of e.

8-BIT INPUT AND OUTPUT GROUP

PREL|M|NARY
Z380" MPU

Mnemonic	Symbolic Operation	Flags					Opcode			HEX	\# of Bytes	Execute Time	Notes
					N		76	543	210				
OUTI	B " B-1	- $0 x$	x	-	1	-	11	101	101	ED	2	$2+r+0$	N
	$(\mathrm{C}) \leftarrow(\mathrm{HL})$	(1)					10	100	011	A3			
	$\mathrm{HL} \leftarrow \mathrm{HL}+1$												
OTIR	$\mathrm{B} \leftarrow \mathrm{B}-1$	1 x	- x	-	1	-	11	101	101	ED	2	2+r+0	N
	$(\mathrm{C}) \leftarrow(\mathrm{HL})$	(2)					10	110	011	B3			
	HL"HL + 1												
	Repeat until $\mathrm{B}=0$												
OUTD	$\mathrm{B} \leftarrow \mathrm{B}-1$	- 1 x	x	-	1	-	11	101	101	ED	2	2+r+0	N
	(C) $\leftarrow(\mathrm{HL})$	(2)					10	111	011	BB			
	HL"HL-1												
	Repeat until $\mathrm{B}=0$												
OTDR	$\mathrm{B} \leftarrow \mathrm{B}-1$	- 1 x	- x	-	1	-	11	101	101	ED	2	2+r+0	N
	$(\mathrm{C}) \leftarrow(\mathrm{HL})$	(2)					10	111	011	BB			
	HL"HL-1												
	Repeat until $\mathrm{B}=0$												

L	Req
000	B
001	C
010	D
011	E
100	H
101	L
111	A

Notes:

Instructions in Italic face are $\mathbf{Z} 380$ new instructions, instructions with underline are Z 180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
N: In Native mode, this instruction address modulo 65536.
(1): $P N$ flag is 0 if the result of $B C-1=0$, otherwise $P N=1 /$.
(2): $P N$ flag is 0 only at completion of instruction.

INPUT AND OUTPUT INSTRUCTIONS FOR ON-CHIP I/O SPACE

Mnemonic	Symbolic Operation	Flags S Z x		Hx ${ }^{\text {P }}$				C	Opcode			HEX	\# of Bytes	Execute Time	Notes
INO r,(n)	$r \leftarrow(\mathrm{n})$	\bigcirc	x	0	x	P	0	-	$\begin{aligned} & 11 \\ & 00 \end{aligned}$			ED	3	$3+i$	(3)
INO (n)	$r \leftarrow(n)$ Changes Flag only.	\bigcirc	x	0	x	P	0	-	$\begin{aligned} & 11 \\ & 00 \end{aligned}$		$\begin{aligned} & 101 \\ & 000 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & 30 \end{aligned}$	3	$3+i$	(3)
OUTO (n), r	$(\mathrm{n}) \leftarrow \mathrm{r}$		- x	-	x	-		-			$\begin{aligned} & 101 \\ & 001 \end{aligned}$	ED	3	$3+0$	(3)
TSTIO n	(C) AND n	\bigcirc	0 x	1	x	P	0	0				$\begin{aligned} & \text { ED } \\ & 74 \end{aligned}$	3	$3+i$	(3)
OTIM	$\begin{aligned} & (C) \leftarrow(H L) \\ & H L \leftarrow H L+1 \\ & C \leftarrow C+1 \\ & B \leftarrow B-1 \end{aligned}$	\bigcirc	Δx	\bigcirc	x	P	\bigcirc	\bigcirc	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 000 \end{aligned}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & 83 \end{aligned}$	3	2+r+o	(3), N
OTIIMR	$\begin{aligned} & (C) \leftarrow(H L) \\ & H L \leftarrow H L+1 \\ & C \leftarrow C+1 \\ & B \leftarrow B-1 \\ & \text { Repeat until } B=0 \end{aligned}$	0	$\begin{aligned} & 1 \times x \\ & (2) \end{aligned}$		x	1	0	0	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	101	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & 93 \end{aligned}$	3	$2+r+0$	(3),N
OTDM	$\begin{aligned} & (\mathrm{C}) \leftarrow(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \\ & \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \mathrm{~B} \leftarrow \mathrm{~B}-1 \end{aligned}$	\bigcirc	$\bigcirc x$	\bigcirc	x	P	\bigcirc	\bigcirc	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & E D \\ & 8 B \end{aligned}$	3	$2+r+0$	(3), N
OTDMR	$\begin{aligned} & (C) \leftarrow(H L) \\ & H L \leftarrow H L-1 \\ & C \leftarrow C-1 \\ & B \leftarrow B-1 \\ & \text { Repeat until } B=0 \end{aligned}$	0	$\begin{aligned} & 1 \times \\ & (2) \end{aligned}$	0	x	1	\bigcirc	0	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & E D \\ & 9 B \end{aligned}$	3	$2+r+0$	(3), N

r	Reg
010	D
011	E
100	H
101	L
111	A

Notes:

Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
N : In Native mode, this instruction address modulo 65536.
(1): $P N$ flag is 0 if the result of $B C-1=0$, otherwise $P N=1 /$.
(2): PN flag is 0 only at completion of instruction.

16-BIT INPUT AND OUTPUT GROUP

16-BIT INPUT AND OUTPUT GROUP (Continued)

Mnemonic	Symbolic Operation	Flags S 2 x	$H x$	$\begin{aligned} & \text { P/ } \\ & \text { V N } \end{aligned}$	N C	76	543	210	HEX	\# of Bytes	Execute Time	Notes
OUTDW	$\begin{aligned} & \mathrm{BC}(15-0) \leftarrow \mathrm{BC}(15-0)-1 \\ & (\mathrm{DE}) \leftarrow(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow H L-2 \end{aligned}$	- $0 x$ (1)	- x			$\begin{aligned} & 11 \\ & 11 \end{aligned}$			$\begin{aligned} & \text { ED } \\ & \text { EB } \end{aligned}$	2	$2+\mathrm{r}+\mathrm{O}$	
OTDRW	$\begin{aligned} & \mathrm{BC}(15-0) \leftarrow \mathrm{BC}(15-0)-1 \\ & (\mathrm{DE}) \leftarrow(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}-2 \\ & \text { Repeat until } \mathrm{B}=0 \end{aligned}$	- 1 x (2)		- 1	1	$\begin{aligned} & 11 \\ & 11 \end{aligned}$		$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \text { FB } \end{aligned}$	2	$2+r+0$	

ppp	Req
000	BC
010	DE
111	HL

Notes:
Instructions in Italic face are Z380 new instructions, instructions with underline are Z180 original instructions.
I: This instruction may be used with DDIR Immediate instructions.
N: In Native mode, this instruction uses addresses modulo 65536.
(1) If the result of $B-1$ is zero, the Z flag is set; otherwise it is reset.
(2) Z flag is set upon instruction completion only.

I/O Instruction	A31-A24	Address Bus A23-A16	A15-A8	A7-A0
IN A, (n)	00000000	00000000	Contents of A reg	
IN dst,(C)	BC31-BC24	BC23-BC16	BC15-BC8	BC7-BC0
INA(W) dst, (mn)	00000000	00000000	m	n
DDIR IB INA(W) dst, (Imn)	00000000	1	m	n
DDIR IW INA(W) dst,(klmn)	k	1	m	n
Block Input	BBC31-BC24	BC23-BC16	BC15-BC8	BC7-BCO
OUT (n),A	00000000	00000000	Contents of A reg	n
OUT (C), dst	BC31-BC24	BC23-BC16	BC15-BC8	BC7-BC0
OUTA(W) (mn), dst	00000000	00000000	m	n
DDIR IB OUTA(W) (Imn), dst	00000000	1	m	n
DDIR IW OUTA(W) (kImn), dst	,	1	m	n
Block output	BC31-BC24	BC23-BC16	BC15-BC8	BC7-BC0

INTERRUPTS

The Z380 MPU's interrupt structure provides compatibility with the existing Z80 and Z180 MPUs with the following exception: The undefined opcode trap's occurrence is with respect to the $Z 380$ instruction set, and its response is improved (vs the Z180) to make trap handling easier. The Z380 MPU also offers additional features to enhance flexibility in system design.

Of the five external interrupt inputs provided, the /NMI is a nonmaskable interrupt. The remaining inputs, /INT3-/INTO, are four asynchronous maskable interrupt requests.

In an Interrupt Acknowledge transaction, address outputs $\mathrm{A} 31-\mathrm{A} 0$ are driven to logic 1 's. One output among A3-A0 is driven to logic 0 to indicate the maskable interrupt request being acknowledged. If /INTO is being acknowledged, $A 3-A 1$, is at logic 1's and AO is at logic 0 .

Interrupt modes 0 through 3 are supported for the external maskable interrupt request /INTO. Modes 0,1 and 2 have the same schemes as those in the Z80 and Z180 MPUs. Mode 3 is similar to mode 2, except that 16-bit interrupt vectors are expected from the I/O devices. Note that 8 -bit and 16 -bit I/O devices can be intermixed in this mode by having external pull up resistors at the data bus signals D15-D8, for example.

The external maskable interrupt requests /INT3-/INT1 are handled in an assigned interrupt vectors mode.

As discussed in the CPU Architecture section, the Z380 MPU can operate in either the Native or Extended Mode. In Native Mode, PUSHing and POPing of the stack to save and retrieve interrupted $P C$ values in interrupt handling are done in 16-bit sizes, and the stack pointer rolls over at the 64 Kbyte boundary. In Extended Mode, the PC PUSHes and POPs are done in 32-bit sizes, and the stack pointer rolls over at the 4 Gbyte memory space boundary. The Z380MPU provides an Interrupt Register Extension, whose contents are always outputted as the address bus signals A31-A16 when fetching the starting addresses of service routines from memory in interrupt modes 2, 3 and the assigned vectors mode. In Native Mode, such fetches are automatically done in 16-bit sizes and in Extended Mode, in 32-bit sizes. These starting addresses should be evenaligned in memory locations. That is, their least significant bytes should have addresses with $\mathrm{AO}=0$.

Interrupt Priority Ranking

The Z380 MPU assigns a fixed priority ranking to handle its interrupt sources, as shown in Table 2.

Table 2. Interrupt Priority Ranking

Priority	Interrupt Sources
Highest	Trap (undefined opcode)
\downarrow	INMI
	INTO
	INT1
Lowest	INT2

Interrupt Control

The Z380 MPU＇s flags and registers associated with inter－ rupt processing are listed in Table 4．As discussed in the CPU Architecture section，some of the registers reside in
the on－chip I／O address space and can be accessed only with reserved on－chip I／O instructions．

Table 3．Interrupt Flags and Registers

Names	Mnemonics	Access Methods
Interrupt Enable Flags	IEF1，IEF2	EI and DI instructions
Interrupt Register	Iz	LD I，A and LD A，I instructions
Interrupt Register Extension		LD I，HL and LD HL，I instructions
Interrupt Enable Register	（accessing both Iz and I）	
		On－chip I／O instructions，addr
Assigned Vectors Base Register		00000017 H, El and DI instructions
	AVBR	On－chip I／O instructions，addr
Trap and Break Register		00000018 H
	TRPBK	On－chip I／O instructions，addr
		00000019 H

IEF1，IEF2

IEF1 controls the overall enabling and disabling of all on－ chip peripheral and external maskable interrupt requests． If IEF1 is at logic 0 ，all such interrupts are disabled．The purpose of IEF2 is to correctly manage the occurrence of ／NMI．When／NMI is acknowledged，the state of IEF1 is copied to IEF2 and then IEF1 is cleared to logic 0 ．At the
end of the／NMI interrupt service routine，execution of the Return From Nonmaskable Interrupt instruction，RETN， automatically copies the state of IEF2 back to IEF1．This is a means to restore the interrupt enable condition existing before the occurrence of／NMI．Table 5 summarizes the states of IEF1 and IEF2 resulting from various operations．

Table 4．Operation Effects on IEF1 and IEF2

Operation	IEF1	IEF2	Comments
／RESET	0	0	Inhibits all interrupts except Trap and／NMI．
Trap	0	0	Disables interrupt nesting．
NMI	0	IEF1	IEF1 value copied to IEF2，then IEF1 is cleared．
RETN	IEF2	NC	Returns from／NMI service routine．
INT3－／INTO	0	0	Disables interrupt nesting．
RETI	NC	NC	Returns from service routine，Z80 I／O device．
RET	NC	NC	Returns from service routine，non－Z80 I／O device．
EI	1	1	
DI	0	0	
LD A，I or LD R，I	NC	NC	IEF2 value is copied to PN Flag．
LD HL，I	NC	NC	

Note：

NC＝No Change

I，I Extend

The 8 －bit Interrupt Register and the 16－bit Interrupt Register Extension are cleared during reset．

Interrupt Enable Register

IE3-IEO (Interrupt Request Enable Flags). These flags individually indicate F /INT3, /INT2, /INT1 or /INTO is enabled. Note that these flags are conditioned with enable and disable interrupt instructions (with arguments).

Reserved bits 7-4. Read as 0s, should write to as 0s.

IER: 00000017H
Read Only

Figure 25. Interrupt Enable Register

Assigned Vectors Base Register

AB15-AB9 (Assigned Vectors Base). The Interrupt Register Extension, lz, together with AB15-AB9, define the base address of the assigned interrupt vectors table in memory space (Figure 26).

Reserved Bit 0. Read as 0, should write to as 0 .

Figure 26. Assigned Vectors Base Register

Trap and Break Register

Reserved bits 7-2. Some of these bits are reserved for breakpoint functions, including a Break-on-Halt feature.

Refer to the Z380 ICE specifications for details. Read asOs, should write to as Os.

Figure 27. Trap and Break Register

TF (Trap on Instruction Fetch). TF goes active to logic 1 when an undefined opcode fetched in the instruction stream is detected. TF can be reset under program control by writing it with a logic 0 . However, it cannot be written with a logic 1.

TV (Trap on Interrupt Vector). TV goes active to logic 1 when an undefined opcode is returned as a vector in an interrupt acknowledge transaction in mode 0 . TV can be reset under program control by writing it with a logic 0 . However, it cannot be written with a logic 1.

Trap Interrupt

The Z380 MPU generates a trap when an undefined opcode is encountered. The trap is enabled immediately after reset, and it is not maskable. This feature can be used to increase software reliability or to implement extended instructions. An undefined opcode can be fetched from the instruction stream, or it can be returned as a vector in an interrupt acknowledge transaction in interrupt mode 0. When a trap occurs, the Z380 MPU operates as follows.

1. The TF or TV bit in the Assigned Vectors Base and Trap Register goes active, to indicate the source of the undefined opcode.
2. If the undefined opcode was fetched from instruction stream, the starting address of the trap causing instruction is pushed onto the stack. (Note that the starting address of a decoder directive preceding an instruction encoding is considered the starting address of the instruction.)

If the undefined opcode was a returned interrupt vector (in interrupt mode 0), the interrupted PC value is pushed onto the stack.
3. The states of IEF1 and IEF2 are cleared.
4. The Z380 MPU commences to fetch and execute instructions from address 00000000 H .

Note that instruction execution resumes at address 0 , similar to the occurrence of a reset. Testing the TF and TV bits in the Assigned Vectors Base and Trap Register will distinguish the two events. Even if trap handling is not in place, repeated restarts from address 0 is an indicator of possible illegal instructions at system debugging.

Nonmaskable Interrupt

The nonmaskable interrupt input /NMI is edge sensitive, with the Z380 MPU internally latching the occurrence of its falling edge. When the latched version of $/ \mathrm{NMI}$ is recognized, the following operations are performed.

1. The interrupted PC (Program Counter) value is pushed onto the stack.
2. The state of IEF1 is copied to IEF2, then IEF1 is cleared.
3. The Z380 MPU commences to fetch and execute instructions from address 00000066 H .

Interrupt Mode 0 Response For Maskable Interrupt /INTO

During the interrupt acknowledge transaction, the external I/O device being acknowledged is expected to output a vector onto the lower portion of the data bus, D7-D0. The Z380 MPU interprets the vector as an instruction opcode, which is usually one of the single-byte Restart (RST) instructions that pushes the interrupted PC (Program Counter) value onto the stack and resumes execution at a fixed memory location. However, the Z380 MPU will generate multiple transactions to capture vectors that form a multi-byte instruction. IEF1 and IEF2 are reset to logic 0's, disabling all further maskable interrupt requests. Note that unlike the other interruptresponses, the PC is not automatically PUSHed onto the stack. Note also that a trap occurs if an undefined opcode is supplied by the I/O device as a vector.

Interrupt Mode 1 Response For Maskable Interrupt /INTO

An interruptacknowledge transaction is generated, during which the data bus contents are ignored by the Z380 MPU. The interrupted PC value is PUSHed onto the stack. IEF1 and IEF2 are reset to logic 0's so as to disable further maskable interrupt requests. Instruction fetching and execution restarts at memory location 00000038 H .

Interrupt Mode 2 Response For Maskable interrupt /INTO

During the interrupt acknowledge transaction, the external I/O device being acknowledged is expected to output a vector onto the lower portion of the data bus, D7-D0. The interrupted PC value is PUSHed onto the stack and IEF1 and IEF2 are reset to logic 0's so as to disable further maskable interrupt requests. The Z380 MPU then reads an entry from a table residing in memory and loads it into the PC to resume execution. The address of the table entry is composed of the I Extend contents as A31-A16, the I Register contents as A15-A8 and the vector supplied by the I/O device as A7-AO. Note that the table entry is effectively the starting address of the interrupt service routine designed for the I/O device being acknowledged. The table, composed of starting addresses for all the interrupt mode 2 service routines, can be referred to as the interrupt mode two vector table. Each table entry should be word-sized if the Z380 MPU is in the Native Mode and longword-sized if in the Extended Mode, in either case it is even-aligned (least significant byte with address $\mathrm{AO}=0$).

Interrupt Mode 3 Response For Maskable Interrupt /INTO

Interrupt mode 3 is similar to mode 2 except that a 16 -bit vector is expected to be placed on the data bus D15-DO by the I/O device during the interrupt acknowledge transaction. The interrupted PC is PUSHed onto the stack. IEF1 and IEF2 are reset to logic O's so as to disable further maskable interrupt requests. The starting address of the service routine is fetched and loaded into the PC to resume execution from the memory location with an address composed of the I Extend contents as A31-A16 and the vector supplied by the I/O device as A15-AO. Again the starting address of the service routine is word-sized if the Z380 MPU is in the Native Mode and longword-sized if in the Extend Mode, in either case even-aligned.

Assigned Interrupt Vectors Mode For Maskable interrupt INT3-/INT1

When the Z380 MPU recognizes one of the external maskable interrupts it generates an Interrupt Acknowledge transaction which is different than that for /INTO. The Interrupt Acknowledge transaction for /INT3-/INT1 has the I/O bus signal /INTAK active, with /MI, /IORQ, /IORD and/ IOWR inactive. The interrupted PC value is PUSHed onto the stack. IEF1 and IEF2 are reset to logic Os, disabling further maskable interrupt requests. The starting address of an interrupt service routine is fetched from a table entry and loaded into the PC to resume execution. The address of the table entry is composed of the I Extend contents as A31-A16, the AB bits of the Assigned Vectors Base Register as A15-A9 and an assigned interrupt vector specific to the request being recognized as A8-A0. The assigned vectors are defined in Table 5.

Table 5. Assigned Interrupt Vectors

Interrupt Source	Assigned Interrupt Vector
/INT1	00 H
INT2	04 H
INT3	08 H

RETI Instruction

The Z80 family I/O devices are designed to monitor the Return from Interrupt opcodes in the instruction stream (RETI-EDH, 4DH), signifying the end of the current interrupt service routine. When detected, the daisy chain within and among the device(s) resolves and the appropriate interrupt-under-service condition clears. The Z380 MPU reproduces the opcode fetch transactions on the I/O bus when the RETI instruction is executed. Note that the Z380 MPU outputs the RETI opcodes onto both portions of the data bus (D15-D8 and D7-D0) in the transactions.

ON-CHIP PERIPHERAL FUNCTIONS

The Z380 MPU incorporates a number of functions to ease its interface with external I/O devices and with various types of memories. The Z380 MPU's I/O bus can be programmed to run at a slower rate than its memory bus. In addition, a heartbeat transaction can be generated on the I/O bus that emulates a Z80 CPU instruction fetch cycle. Such a transaction is useful for a particular Z80 family I/O device to perform its interrupt functions. Memory chip select signals can be activated to access the lowest 16 Mbytes of the Z380MPU's memory address space, with wait state insertions. Lastly, a DRAM refresh function is incorporated, with programmable refresh transaction burst size. The above functions are controlled by several onchip registers. As described in the CPU Architecture section, these registers together with several other registers that control a portion of the interrupt functions, occupy an on-chip I/O address space. This on-chip I/O address can be accessed only by the following reserved on-chip I/O instructions.

Some on-chip peripherals are capable of generating interrupt requests, which are always handled in the assigned interrupt vectors mode.

I/O Bus Control

The Z380 MPU is designed to interface easily with external I/O devices that can be of either the $\mathbf{Z 8 0}$ or $\mathbf{Z 8 5 0 0}$ product family by supplying five I/O bus control signals: /M1, /IORQ, /IORD, /IOWR and /INTAK. In addition, the Z380 MPU is supplying an IOCLK that is a divided down version of its BUSCLK. Programmable wait states can be inserted in the various I/O transactions. The External Interface section details all the I/O transactions.

INO	R, (n)	OTIM
INO	(n)	OTIMR
OUTO	$(n), R$	OTDM
TSTIO	n	OTDMR

When one of the above instructions is executed, the Z380 MPU outputs the register address being accessed in a pseudo transaction of two BUSCLK cycles duration, with the address signals A31-A8 at logic Os. In the pseudo transaction, all bus control signals are at their inactive states. It is to be emphasized that the Z380 MPU adopts an instruction specific scheme to access on-chip I/O registers, with their unique address space. This is in contrast to mapping such registers with external peripherals in a common I/O address space, as is done in the Z180 MPU.

I/O Bus Control Register 0

CR2-CRO (//O Clock Rate). BUSCLK is divided down to produce IOCLK as defined in the following.

000	divided-by-8	001	divided-by-1
010	divided-by-2	011	divided-by-1
100	divided-by-4	101	divided-by-1
110	divided-by-6	111	divided-by-1

Note that if a clock divide rate of 1 is specified, BUSCLK should be used to connect to I/O devices that require a clock input, since the Z380 MPU outputs a constant logic 1 at IOCLK.

Reserved bits 7-3. Read as 0s, should write to as Os.

IOCRO: 00000011H

RN

Figure 28. I/O Bus Control Register 0

I/O Bus Control Register 1

When this phantom register IOCR1 with address 00000012 H is accessed with one of the on-chip I/O write instructions, a heartbeat transaction that emulates a Z80 CPU instruction fetch is performed on the I/O bus. This transaction provides a /M1 pulse which is necessary as part of an interrupt enable sequence for aZ80PIO product. In the on-chip I/O write instruction, the data being "written" can be of any value. In case of an on-chip I/O read with the IOCR1 address, the data returned is unpredictable.

I/O Waits Register

OW2-IOW0 (I/O Waits). This binary field defines up to seven wait states to be inserted in external I/O read and write transactions, and at the latter portions of interrupt transactions to capture interrupt vectors. The defined wait
states are also inserted in each of the opcode fetch transactions of the Return from Interrupt (RETI) instruction reproduced on the I/O bus. When programmed withOs, the I/O waits are disabled.

RTW1-RTW0 (RETI Waits). This binary field defines up to three wait states to be inserted between opcode fetch transactions of the Return from Interrupt instruction reproduced on the I/O bus.

DCW2-DCW0 (Interrupt Daisy Chain Waits). This binary field defines up to seven wait states to be inserted at the early portions of interrupt acknowledge transactions, for the interrupt daisy chain through the external I/O devices to settle.

IOWR: 0000000EH
RN
7 0

Figure 29. I/O Waits Register

MEMORY CHIP SELECTS AND WAITS

The Z380 MPU offers two schemes to generate chip select signals to access the lowest 16 Mbytes of its memory address space. The first scheme provides six chip select signals, with the address space partitioned as shown in Figure 30. The second scheme provides three chip select signals, and the address space partitioning is shown in Figure 31. Note that the /MCSO signal is used to indicate accesses to the entire mid-range memory in the second scheme.

Memory Chip Select Scheme 1

Figure 30. Chip Select Address Space

A flexible wait state insertion scheme is incorporated in the chip select logic. A user can program T1, T2 and T3 waits separately for accesses to the lower, upper and mid-range memory areas. If chip select scheme one is in effect, different wait states can be defined for each of the midrange memory areas 3 through 0 .

Memory Chip Select Scheme 2

Figure 31. Chip Select Address Space

Lower Memory Chip Select Control

This memory area has its lower boundary at address 000000000 H ．A user can define the size to be an integer power of two，starting at 4 Kbytes．For example，the lower memory area can be either 4 Kbytes， 8 Kbytes， 16 Kbytes， etc．，starting from address 0 ．The／LMCS signal can be enabled to go active during refresh transactions．

Lower Memory Chip Select Register 0

MA15－MA12（Match Address Bits 15－12）．If a match ad－ dress bit is at logic 1 ，the corresponding address signal of a memory transaction is compared for a logic 0 ，as a condition for／LMCS to become active．If the match ad－ dress bit is at logic 0 ，the corresponding address signal is not compared（don＇t care）．For example，MA12 deter－ mines if A12 should be tested for a logic 0 in memory transactions．

Reserved bits 3－1．Read as 0s，should write to as Os．
ERF（Enable for Refresh transactions）．If this bit is pro－ grammed to a logic one，／LMCS goes active during refresh transactions．

Lower Memory Chip Select Register 1

MA23－MA16（Match Address Bits 23－16）．If a match address bit is at logic 1 ，the corresponding address signal of a memory transaction is compared for a logic 0 ， as a condition for／LMCS to become active．If the match address bit is at logic 0 ，the corresponding address signal is not compared（don＇t care）．For example，MA23 deter－ mines if A23 should be tested for a logic 0 in memory transactions．Note that in order for／LMCS to go active in a memory transaction，the／LMCS function has to be enabled in the Memory Selects Master Enable Register（described later），all the address signals A31－A24 at logic Os，and all the address signals A23－A12 programmed for address matching in the above registers have to be at logic Os．To define the lower memory area as 4 Kbytes，MA23－MA12 should be programmed with 1 s ．For an area larger than 4 Kbytes，MA23－MA12（in thatorder）should be programmed with contiguous 1 s followed by contiguous 0 s ．This is the intended usage to maintain the lower memory area as a single block．Note also that／LMCS can be enabled for refresh transactions independent of the value programmed into the Memory Selects Master Enable Register．

LMCSR1：00000001H
RN
70

Figure 33．Lower Memory Chip Select Register 1

Figure 32．Lower Memory Chip Select Register 0

Upper Memory Chip Select Control

The upper boundary for this memory area is address OOFFFFFFH. A user can define the area immediately below this boundary with a size that is an integer power of two, starting at 4 Kbytes. That is, the upper memory area can be either 4 Kbytes, 8 Kbytes, 16 Kbytes and so on. The/UMCS signal can be enabled to go active during refresh transactions.

Upper Memory Chip Select Register 0

MA15-MA12 (Match Address Bits 15-12). If a match address bit is at logic 1 , the corresponding address signal of a memory transaction is compared for a logic 1, as a condition for /UMCS to become active. If the match address bit is at logic 0 , the corresponding address signal is not compared (don't care). For example, MA12 determines if A12 should be tested for a logic 1 in memory transactions.

Reserved bits 3-1. Read as 0s, should write to as 0s.
ERF (Enable for Refresh Transactions). If this bit is programmed to a logic 1, /UMCS goes active during refresh transactions.

UMCSRO: 00000002H
RN
7

Upper Memory Chip Select Register 1

MA23-MA16 (Match Address Bits 23-16). If a match address bit is at logic 1 , the corresponding address signal of a memory transaction is compared for a logic 1 , as a condition for /UMCS to become active. If the mask address bit is at logic 0 , the corresponding address signal is not compared (don't care). For example, MA23 determines if A23 should be tested for a logic 1 in memory transactions. Note that in order for/UMCS to go active in a memory transaction, the /UMCS function has to be enabled in the Memory Selects Master Enable Register (described later), all the address signals A31-A24 at logic Os, and all the address signals A23-A12 programmed for address matching in the above registers have to be at logic 1s. To define the upper memory area as 4 Kbytes, MA23-MA12 should be programmed with 1 s . For an area larger than 4 Kbytes, MA23-MA12 (in that order) should be programmed with contiguous 1 s followed by contiguous 0 s . This is the intended usage to maintain the upper memory area as a single block. Note also that /UMCS can be enabled for refreshtransactions independent of the value programmed into the Memory Selects Master Enable Register.

UMCSR1: 00000003H
RW

Figure 35. Upper Memory Chip Select Register 1

Figure 34. Upper Memory Chip Select Register 0

Mid-range Memory Chip Select(s) Control

In chip select scheme 1, a user can define the base address and the total size of the mid-range memory area. The /MCSO signal would be active for the lowest quarter portion of the area defined, starting from the base address. Each of the /MCS1-/MCS3 signals would be active, corresponding to the successively higher quarter portions of the total mid-range memory area. In chip select scheme 2, the mid-range memory area is between the lower and upper memory areas. The/MCS3-/MCSO signals can be individually enabled to go active in refresh transactions.

Mid-range Memory Chip Select Register 0

MA15-MA14 (Match Address Bits 15-14). In chip select scheme 1 , if a match address bit is at logic 1 , the corresponding address signal of a memory transaction is compared with the corresponding base address bit for a match, as a condition for one of/MCS3-/MCS0 to become active. If the match address bit is at logic 0 , the corresponding address signal and base address bit are not compared (don't care). For example, MA14 determines if A14 should be compared for a match with BA14. The values of MA15-MA14 have no effects in chip select scheme 2.

Reserved bits 5-4. Read as 0s, should write to as Os.
ERF3-ERF0 (Enable for Refresh Transactions). The midrange memory chip select signals can be individually enabled to go active during refresh transactions. As an example, /MCSO goes active in refresh transactions if ERFO is programmed at logic 1.

MMCSRO: 00000004H

R/W

Mid-range Memory Chip Select Register 1

MA23-MA16 (Match Address bits). In chip select scheme 1 , if a match address bit is at logic 1 , the corresponding address signal of a memory transaction is compared with the corresponding base address bit for a match, as a condition for one of /MCS3-/MCSO to become active. If the match address bit is at logic 0 , the corresponding address signal and base address bit are not compared (don't care). For example, MA23 determines if A23 should be compared for a match with BA23. The contents of this register have no effects in chip select scheme 2.

MMCSR1: 00000005H
RNW

Figure 37. Mid-range Memory Chip Select Register 1

Mid-range Memory Chip Select Register 2 \& 3

MMCSR2: 00000006 H
R/W

Figure 38. Mid-range Memory Chip Select Register 2

Figure 36. Mid-range Memory Chip Select Register 0

BA23-BA14 (Base Address 23-14). In chip select scheme 1 , the address signals A23-A16 of a memory transaction are compared with BA23-BA16 for a match, for those bits programmed for address matching in the Mid-range Memory Chip Select Register 1. The contents of this register have no effects in chip select scheme 2. Note that in order for one of /MCS3-/MCSO to go active in a memory transaction in chip select scheme 1, the ENM1 bit in the Memory Selects Master Enable Register (described later) has to be at logic 1, all the address signals A31-A24 at logic Os, and for those bits programmed for address matching, A23-A14 matching BA23-BA14. For the intended usage to maintain the mid-range memory area as a single block, MA23-MA14 (in that order) should be programmed for address matching with contiguous 1s followed by contiguous Os. Note also that /MCS3-/MCSO can be individually enabled to go active during refresh transactions, independent of the value programmed into the Memory Selects Master Enable Register.

MMCSR3: 00000007H

RN

$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & <- \text { Reset Value }\end{array}$

Figure 39. Mid-range Memory Chip Select Register 3

Lower Memory Wait Register

T1W2-T1W0 (T1 Waits). This binary field defines up to seven T1 wait states to be inserted in transactions accessing the lower memory area.

T2W1-T2W0 (T2 Wait States). This binary field defines up to three T2 wait states to be inserted in transactions accessing the lower memory area.

T3W2-T3W0 (T3 Waits). This binary field defines up to seven T3 wait states to be inserted in transactions accessing the lower memory area.

LMWR: 00000008H
RW

T1W2	T1W1	T1W0	T2W1	T2W0	T3W2	T3W1	T3W0

Figure 40. Lower Memory Waits Register

Upper Memory Wait Register

T1W2-T1W0 (T1 Waits). This binary field defines up to seven T1 wait states to be inserted in transactions accessing the upper memory area.

T2W1-T2W0 (T2 Waits). This binary field defines up to three T2 wait states to be inserted in transactions accessing the upper memory area.

T3W2-T3W0 (T3 Waits). This binary field defines up to seven T3 wait states to be inserted in transactions accessing the upper memory area.

UMWR: 00000009H

R/W

Figure 41. Upper Memory Waits Register

Mid-range Memory Wait Register 0

T1W2-T1W0 (T1 Waits). This binary field defines up to seven T1 wait states to be inserted in transactions accessing the mid-range memory area 0 in chip select scheme 1 , or the entire mid-range memory area in chip select scheme 2.

T2W1-T2W0 (T2 Waits). This binary field defines up to three T2 wait states to be inserted in transactions accessing the mid-range memory area 0 in chip select scheme 1 , or the entire mid-range memory area in chip select scheme 2.

T3W2-T3W0 (T3 Waits). This binary field defines up to seven T3 wait states to be inserted in transactions accessing the mid-range memory area 0 in chip select scheme 1 , or the entire mid-range memory area in chip select scheme 2.

Mid-Range Memory Wait Register 1

T1W2-T1W0 (T1 Waits). This binary field defines up to seven T1 wait states to be inserted in transactions accessing the mid-range memory area 1 in chip select scheme 1.

T2W1-T2W0 (T2 Waits). This binary field defines up to three T2 wait states to be inserted in transactions accessing the mid-range memory area 1 in chip select scheme 1.

T3W2-T3W0 (T3 Waits). This binary field defines up to seven T3 wait states to be inserted in transactions accessing the mid-range memory area 1 in chip select scheme 1. The contents of this register have no effects in chip select scheme 2.

MMWR1: 0000000BH

R/W

Figure 43. Mid-range Memory Waits Register 1

Figure 42. Mid-range Memory Waits Register 0

Mid-Range Memory Wait Register 2

T1W2-T1W0 (T1 Waits). This binary field defines up to seven T1 wait states to be inserted in transactions accessing the mid-range memory area 2 in chip select scheme 1.

T2W1-T2W0 (T2 Waits). This binary field defines up to three T2 wait states to be inserted in transactions accessing the mid-range memory area 2 in chip select scheme 1.

T3W2-T3W0 (T3 Waits). This binary field defines up to seven T3 wait states to be inserted in transactions accessing the mid-range memory area 2 in chip select scheme 1. The contents of this register have no effects in chip select scheme 2.

MMWR2: 0000000CH
RNW

Figure 44. Mid-Range Memory Waits Register 2

Mid-range Memory Waits Register 3

T1W2-T1W0 (T1 Waits). This binary field defines up to seven T1 wait states to be inserted in transactions accessing the mid-range memory area 3 in chip select scheme 1.

T2W1-T2W0 (T2 Waits). This binary field defines up to three T2 wait states to be inserted in transactions accessing the mid-range memory area 3 in chip select scheme 1.

T3W2-T3W0 (T3 Waits). This binary field defines up to seven T3 wait states to be inserted in transactions accessing the mid-range memory area 3 in chip select scheme 1. The contents of this register have no effects in chip select scheme 2.

MMWR3: 0000000DH
RN

Figure 45. Mid-range Memory Waits Register 3

Memory Chip Selects and Waits Master Control

The memory chip selects and their associated waits are enabled or disabled by writing to a single register described in the following:

Memory Selects Master Enable Register
A user can set or reset the desired bits 7-4 in this register without modifying the states of the remaining bits, with the SR bit defining the set or reset function.

Figure 46. Memory Selects Master Enable Register

ENLM (EnableLowerMemory Chip Selectand Waits). This bit at logic 1 enables the/LMCS signal to go active starting at T1 cycle time of a memory transaction accessing the lower memory area. The associated programmed wait states are automatically inserted in the transaction.

ENUM (Enable Upper Memory Chip Select and Waits). This bit at logic 1 enables the /UMCS signal to go active starting at T1 cycle time of a memory transaction accessing the upper memory area. The associated programmed wait states are automatically inserted in the transaction.

ENM1 (Enable Mid-range Memory Chip Select Scheme 1 and Waits). This bit at logic 1 enables one of /MCS3/MCSO to go active starting at T1 cycle time of a memory transaction, depending on which of the mid-range memory areas $3-0$ is being accessed. The corresponding programmed wait states are automatically inserted in the transaction.

ENM2 (Enable Mid-range Memory Chip Select Scheme 2 and Waits). This bit at logic 1 enables the /MCSO to go active starting at T1 cycle time of a memory transaction accessing the mid-range memory area. The corresponding programmed wait states are automatically inserted in the transaction.

Reserved bits 3-1. Read as Os, should write to as Os.

SR (Set Reset Control). When writing to the Memory Selects Master Enable Register with SR = 1, bits 7-4 that are selected with logic is are set. When writing with $S R=0$, bits $7-4$ that are selected with logic 1 s are cleared. In either case, the bits not selected are not modified. The SR bit is always read as a logic 0 .

Additional Comments. In either chip select scheme, if the chip select and waits functions are enabled, or their memory areas are defined to cause overlaps, the precedence of conflict resolution is /LMCS, then /UMCS, then /MCS3-/MCSO. As an example, consider the case where both the lower and mid-range memory area 0 are defined to occupy the same address space. With ENLM $=1$ in the Memory Selects Master Enable Register (ENM1 can be either 0 or 1), /LMCS goes active in the memory transaction that accesses the overlapped address space. With ENLM $=0$ and ENM1 $=1$, /MCSO would go active in the transaction instead. Regardless of the state of the address bus, the chip select signals are at their inactive logic is when the corresponding enable bits in the Memory Selects Master Enable Register (MSMER) are at logic Os, except during DRAM refresh transactions if so enabled, or the Z380 MPUs CPU is in its halt state, except during DRAM refresh transactions if so enabled, or the Z380 MPU relinquishes the system bus with its /BREQ input active, or the Z380 MPU is in the low power standby mode.

DRAM Refresh

The Z380MPU is capable of providing refresh transactions to dynamic memories that have internal refresh address counters. A user can select how often refresh requests should be made to the Z80MPU's External Interface Logic, as well as the burst size (number of refresh transactions) for each request iteration. The External Interface Logic grants these requests by performing refresh transactions with CAS-before-RAS timing on the /TREFR, /TREFA and TTREFC bus control signals. In these transactions, /BHEN, /BLEN and the user specified chip select signal(s) are driven active to facilitate refreshing all the DRAM modules at the same time. A user can also specify the T1, T2 and T3 waits to be inserted. Note that the Z380 MPU cannot provide refresh transactions when it relinquishes the system bus, with its /BREQ input active. In that situation, the number of missed refresh requests are accumulated in a counter, and when the Z80 MPU regains the system bus, the missed refresh transactions will be performed.

Refresh Register 0

RI7-RIO (Request Interval). RI7-RIO defines the interval between refresh requests to the Z380 MPU's External Interface Logic. A valuen specified in this field denotes the request interval to be ($4 \times n$) BUSCLK periods. If RI7-RIO are programmed as Os, the request interval is 1024BUSCLK periods.

RFSHRO: 00000013H

RW

Figure 47. Refresh Register 0

Refresh Register 1

MR7-MR0 (Missed Requests Count). This count increments by 1 when a refresh request is made, to a maximum value of 255 . Refresh requests over the maximum value would be lost. When the Z380 MPU's External Interface Logic completes each burst of refresh transactions, the count decrements by 1. A user can read the count status, and if necessary, take corrective actions such as adjusting the burst size. When refresh function is disabled, this count is held at 0 .

Figure 48. Refresh Register 1

Refresh Register 2

RFEN (Refresh Enable). Enables the refresh function when programmed to logic 1.

Reserved bit 6. Read as 0 , should write to as 0 .
BS5-BS0 (Burst Size). This field defines the number of refresh transactions per refresh request made to the Z380 MPU's External Interface Logic. The burst size ranges from 1 to 64 , with the highest size specified with BS5-BSO equal to Os.

RFSHR2: 00000015H
RW

Figure 49. Refresh Register 2

Refresh Wait Register

T1W2-T1W0 (T1 Waits). This binary field defines up to seven T 1 wait states to be inserted in refresh transactions.

T1W1-T2W0 (T2 Waits). This binary field defines up to three T2 wait states to be inserted in refresh transactions.

T3W2-T3W0 (T3 Waits). This binary field defines up to seven T3 wait states to be inserted in refresh transactions. Note that care should be exercised in defining refresh burst size and request intervals to avoid over-burdening the system bus with refresh transactions. The memory chip select signals can be selectively enabled to go active during refresh transactions, such enabling is described in the Memory Chip Selects and Waits section.

RFWR: 0000000FH
RN

Figure 50. Refresh Waits Register

LOW POWER STANDBY MODE

The Z380 MPU provides an optional standby mode to minimize power consumption during system idle time. If this option is enabled, executing the Sleep instruction would stop clocking internal to the Z380 MPU, as well as at the BUSCLK and IOCLK outputs. The /STNBY signal goes to active logic 0 , indicating the Z380 MPU is entering the standby mode. All Z380 MPU operations are suspended, the bus control signals are driven inactive and the address bus is driven to logic 1s. Note that if an external crystal oscillator is used to drive the Z380 MPU's CLKI input, /STNBY can be used to stop its operation. This is a means
to further reduce power dissipation for the overall system. The standby mode can be exited by asserting any of the /RESET, /NMI, /INT3-/INTO (if enabled), or optionally, /BREQ inputs.

If the standby mode option is not enabled, the Sleep instruction is interpreted and executed no different than the HALT instruction, stopping the Z30 MPU from further instruction execution. In this case, /HALT goes to active logic 0 to indicate the Z380 MPU's halt status.

Standby Mode Control and Entering

STBY (Enable Standby Mode Option). Enables the Z380 MPU to go into low power standby mode when the Sleep instruction is executed.

BRXT (Bus Request to Exit Standby Mode). If BRXT is at logic 1 , standby mode can be exited by asserting /BREQ.

Reserved Bits 5-3. Read as 0s, should write to as Os.

WM2-WMO (Warm-up Time Selection). WM2-WM0 determines the approximate running duration of a warm-up counter that provides a delay before the Z380 MPU resumes its clocking and operations, from the time an interrupt or bus request (if so enabled) is asserted to exit standby mode. In a system where an external crystal oscillator is used to drive the Z380 MPU's CLK input, an appropriate warm-up time can be selected for the oscillator to stabilize.

Figure 51. Standby Mode Control Register

Standby Mode Exit With Bus Request

Optionally, if the BRXT bit of the Standby Mode Control Register (SMCR) was previously set, /STNBY goes to logic 1 when the /BREQ input is asserted, allowing the external crystal oscillator that drives the Z380 MPU's CLK input to restart. A warm-up counter internal to the Z380 MPU proceeds to count, for a duration long enough for the oscillator to stabilize, which was selected with the WM bits in the SMCR. When the counter reaches its end-count, clocking resumes within the Z380 MPU and at the BUSCLK and IOCLK outputs.

Figure 52. Standby Mode Exit with Bus Request Timing

Standby Mode Entering Timing

Figure 53 shows standby mode entering timing in an example where IOCLK was programmed to be BUSCLK
divided-by-2. Note that clocking stops only after IOCLK has changed to logic 0 .

Figure 53. Standby Mode Entering Timing

Standby Mode Exit With Reset

When/RESET is asserted, /STNBY goes to logic 1, allowing the external crystal oscillator that drives the Z380 MPU's CLKI input to restart. The /RESET pulse provided should be of a duration long enough for oscillator stabilization. The Z380 MPU exits standby mode, and when /RESET is
deasserted, it goes through the normal reset timing to start instruction execution at address 00000000 H . Note that clocking resumes within the Z380 MPU and at the BUSCLK and IOCLK outputs soon after/RESET is asserted, when

Standby Mode Exit With External Interrupts

Standby mode can be exited by asserting input /NMI. Asserting the maskable interrupt inputs /INT3-/INTO may also exit standby mode, if the global interrupt flag IEF1 was previously enabled at logic 1, and for those requests individually enabled, as indicated in the Interrupt Enable Register.

When exit conditions are met, /STNBY goes to logic 1 , allowing the external crystal oscillator that drives the Z380 MPU's CLK input to restart.

The Z380 MPU's internal warm-up counter proceeds to count, for a duration long enough for the oscillator to stabilize, as selected by the WM bits in the Standby Mode Control Register. When the counter reaches its end-count, clocking resumes within the Z380 MPU, as well as at the BUSCLK and IOCLK outputs. The Z380 MPU performs an interrupt acknowledge procedure appropriate to the interrupt request that initiated the standby mode exit.

Figure 55. Standby Mode Exit with External Interrupts Timing

Standby Mode for On-chip Crystal Oscillator

The previous discussions have been focused on situations where a direct clock is supplied to the Z380 MPU's CLKI input. Such a clock may be sourced by an external crystal with its oscillation circuit. In the case where a crystal is connected to the Z380MPU'son-chip oscillator, all standby functions described earlier apply. Items worth noting are as follows.

1. When standby mode is entered, the feedback path for the on-chip oscillator is disabled, reducing power consumption.
2. A user can select a warm-up time appropriate for the crystal being used, by programming the WM2-WMO bits in the Standby Mode Control Register (SMCR).

Table 6. Z380 MPU On-chip I/O Registers

Register	Mnemonic	On-Chip I/O Address
Lower Memory Chip Select Register 0	LMCSO	00000000 H
Lower Memory Chip Select Register 1	LMCS1	00000001 H
Upper Memory Chip Select Register 0	UMCSO	00000002 H
Upper Memory Chip Select Register 1	UMCS1	00000003 H
Midrange Memory Chip Select Register 0	MMCSO	00000004 H
Midrange Memory Chip Select Register 1	MMCS1	00000005 H
Midrange Memory Chip Select Register 2	MMCS2	00000000 H
Midrange Memory Chip Select Register 3	MMCS3	00000007 H
Lower Memory Waits Register	LMWR	000000008 H
Upper Memory Waits Register	UMWR	00000009 H
Midrange Memory Waits Register 0	MMWRO	0000000 AH
Midrange Memory Waits Register 1	MMWR1	0000000 BH
Midrange Memory Waits Register 2	MMWR2	0000000 CH
Midrange Memory Waits Register 3	MMWR3	0000000 DH
l/O Waits Register	IOWR	0000000 EH
Refresh Waits Register	RFWR	0000000 FH
Memory Selects Master Enable Register	MSMER	00000010 H
I/O Bus Control Register 0	IOCRO	00000011 H
I/O Bus Control Register 1	IOCR1	0000001 H
Refresh Register 0	RFSHR 0	00000013 H
Refresh Register 1	RFSHR1	00000014 H
Refresh Register 2	RFSHR2	00000015 H
Standby Mode Control Register	SMCR	00000016 H
Interrupt Enable Register	IER	00000017 H
Assigned Vectors Base Register	AVBR	00000018 H
Trap and Break Register	TRPBK	00000019 H

RESET

The Z380 MPU is placed in a dormant state when the /RESET input is asserted. All its operations are terminated, including any interrupt, bus request or bus transaction that may be in progress. Its IOCLK goes Low on the next BUSCLK rising edge, and enters into the BUSCLK divided-down-by-eight mode. The address and data buses are tristated, and the bus control signals are driven to their inactive states. The effect of a reset on the Z380 CPU and related I/O registers is depicted in Table 6, and the effect on the on-chip peripheral functions is summarized in Table 8.

The /RESET input may be asynchronous to BUSCLK, though it is sampled internally at BUSCLK's falling edges. For proper initialization of the $Z 380 \mathrm{MPU}, \mathrm{V}_{\mathrm{DD}}$ must be within operating specification and its BUSCLK must be stable for more than five cycles with/RESET held Low. The /RESET input has a built-in Schmitt trigger buffer to facilitate power-on reset generation through an RC network.

Note that if a user system has devices external to the Z380 MPU that are clocked by IOCLK, these devices may require a/RESET pulse width that spans over a number of IOCLK cycles (now at BUSCLK/8) for proper initialization.

The Z380 MPU proceeds to fetch its first instruction 3.5 BUSCLK cycles after /RESET is deasserted, provided such deassertion meets the proper setup and hold times with reference to the falling edge of BUSCLK, as depicted in Figure 20 in the External Interface Section. Figure 19 in the same section indicates a synchronization of IOCLK when /RESET is deasserted. Again with the proper setup and hold times being met, IOCLK's first rising edge is 11.5 BUSCLK cycles after the /RESET deassertion, preceded by a minimum of 4 BUSCLK cycles where IOCLK is at Low.

Note that if/BREQ is active when/RESET is deasserted, the Z380 MPU would relinquish the bus instead of fetching its first instruction. IOCLK synchronization would still take place as described before.

Table 7. Effect of a Reset on Z380 CPU and Related I/O Registers

Register	Reset Value	Comments
Program Counter	00000000	PCz, PC
Stack Pointer	00000000	SPz, SP
$\begin{aligned} & \text { I } \\ & \text { R } \end{aligned}$	$\begin{array}{r} 000000 \\ 00 \end{array}$	Iz, I
Select Register	00000000	Register Bank 0 Selected: AF, Main Bank, IX, IY Native Mode Maskable Interrupts Disabled, in Mode 0 Bus Request Lock-Off
A and F Registers		Register Banks 3-0: A, F, A', F' Unaffected
Register Extensions	0000	Register Bank 0: BCz, DEz, HLz, IYz, $B C z^{\prime}, D E z^{\prime}, H L z^{\prime}, I Y z^{\prime}$ (All "non-extended" portions unaffected.) Register Bank 3-1 Unaffected.
I/O Bus Control Register 0	00	IOCLK = BUSCLK/8
Interrupt Enable Register	01	/INTO Enabled
Assigned Vector Base Register	00	
Trap and Break Register	00	

Table 8. Effect of a Reset on On-chip Peripheral Functions

Peripheral Functions	Reset Conditions
Memory Chip Selects and Waits	Lower Memory Chip Select Signal enabled for lowest 1 MBytes ($00000000 \mathrm{H}-000 \mathrm{FFFFFH}$), with 7 T1, 3 T2, and 7 T3 waits. Upper Memory Chip Select Signal enabled for highest 16 th MBytes (00 F 00000 H - OOFFFFFFH), with $7 \mathrm{~T} 1,3 \mathrm{~T} 2$, and 7 T 3 waits. Midrange Memory Chip Select Signal and waits disabled.
I/O Waits	External I/O read, write -- 7 waits. RETI -- 3 waits. Interrupt daisy chain -- 7 waits.
DRAM Refresh Controller	Disabled
Standby Mode	Disabled

ABSOLUTE MAXIMUM RATINGS

Voltage on V_{DD} with respect to V_{SS}........... -0.3 V to +7.0 V Voltage on all pins,
with respect to $\mathrm{V}_{\mathrm{Ss}} \ldots \ldots-0.3 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3\right) \mathrm{V}$ Operating Ambient Temperature: 0 to $+70^{\circ} \mathrm{C}$
Storage Temperature: $-85^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The AC and DC Characteristics sections below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to $\mathrm{V}_{\mathrm{ss}}(\mathrm{OV})$. Positive current flows into the referenced pin.

Standard conditions are as follows:

$$
\begin{aligned}
& 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5.25 \mathrm{~V} \\
& \text { Low Voltage } 3.15<3.3<3.45 \\
& \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}
\end{aligned}
$$

Standard test load on all outputs.

DC CHARACTERISTICS

Z380 ${ }^{\text {m }}$ Version

Symbol	Parameter	Min	Max	Unit	Note
$V_{\text {IH }}$	Input High Voltage	2.0	$V_{D D}+0.3$	V	
$V_{1 L}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{V}_{\text {OH1 }}$	Output High Voltage ($-4 \mathrm{~mA} \mathrm{I}_{\text {OH }}$)	2.4	-	V	
$V_{\text {OH2 }}$	Output High Voltage ($-250 \mu \mathrm{~A} \mathrm{I}_{\text {OH }}$)	$\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V}$	-	V	
$\mathrm{V}_{\text {oL }}$	Output Low Voltage ($4 \mathrm{~mA} \mathrm{loL}_{\text {) }}$)	${ }_{\text {DD }}$	0.5	V	
1 l	Input Leakage Current	-10	10	$\mu \mathrm{A}$	1
$\mathrm{I}_{\text {TL }}$	Tri-State Leakage Current	-10	10	$\mu \mathrm{A}$	2
$I_{\text {DD1 }}$	Power Supply Current (@ 18 MHz)		TBS	mA	3
$\mathrm{I}_{\text {DO3 }}$	Standby Power Supply Current		TBS	$\mu \mathrm{A}$	4
$\mathrm{C}_{\text {IN }}$	Input Capacitance ($\mathrm{f}=1 \mathrm{MHz}$)		15	pF	5
$\mathrm{C}_{\text {out }}$	Output Capacitance ($f=1 \mathrm{MHz}$)		15	pF	5
C_{10}	I/O Capacitance ($f=1 \mathrm{MHz}$)		15	pF	5
C_{L}	Output Load Capacitance		100	pF	
$\mathrm{C}_{\text {LD }}$	AC Output Derating (Above 100 pF)		50	pS/pF	

Notes:

1. $0.4 \mathrm{~V}<\mathrm{V}_{\text {IN }}<2.4 \mathrm{~V}$
2. $0.4 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<2.4 \mathrm{~V}$
3. $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.2 \mathrm{~V}$
4. $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0.2 \mathrm{~V}$
5. Unmeasured pins returned to V_{ss}.

* All parameters are preliminary and subject to change without notice.

AC CHARACTERISTICS

Z380 ${ }^{\text {™ }}$ Version

No.	Symbol	Parameter	Z8038018		Note
			Min	Max	
1	TcC	CLK Cycle Time	55		
2	TwCh	CLK Width High	24.5		
3	TwCl	CLK Width Low	24.5		
4	TrC	CLK Rise Time		3	
5	TfC	CLK Fall Time		3	
6	TdCf(BCr)	CLK Fall to BUSCLK Rise Delay		30	
7	TdCr(BCf)	CLK Rise to BUSCLK Fall Delay		27	
8	TdBCr(OUT)	BUSCLK Rise to Output Valid Delay		6.5	
9	TdBCf(OUT)	BUSCLK Fall to Output Valid Delay		6.5	
10	$\mathrm{Ts} / \mathrm{N}(\mathrm{BCr})$	Input to BUSCLK Rise Setup Time	16		1
11	Thin($\mathrm{BCr}^{\text {) }}$	Input to BUSCLK Rise Hold Time	0		1
12	TsBR(BCf)	/BREQ to BUSCLK Fall Setup Time	16		2
13	ThBR(BCf)	/BREQ to BUSCLK Fall Hold Time	0		2
14	TsMW(BCr)	Mem Wait to BUSCLK Rise Setup Time	16		3
15	ThMW(BCr)	Mem Wait to BUSCLK Rise Hold Time	0		3
16	TsMW(BCf)	Mem Wait to BUSCLK Fall Setup Time	24		3
17	ThMW(BCf)	Mem Wait to BUSCLK Fall Hold Time	0		3
18	TsIOW(BCr)	IO Wait to BUSCLK Rise Setup Time	24		3
19	ThIOW(BCr)	10 Wait to BUSCLK Rise Hold Time	0		3
20	TsIOW(BCf)	IO Wait to BUSCLK Fall Setup Time	24		3
21	ThIOW(BCf)	IO Wait to BUSCLK Fall Hold Time	0		3
22	TwNMI1	/NMI Low Width	25		
23	TwRES1	Reset Low Width	10		
24	Tx01(02)	Output Skew (Same Clock Edge)	-2	+2	4
25	Tx01(03)	Output Skew (Opposite Clock Edge)	-3	+3	5

Notes:

1. Applicable for Data Bus and /MSIZE inputs
2. /BREQ can also be asserted/deasserted asynchronously
3. External waits asserted at NAIT input
4. $\mathrm{Tx01}$ (02) $=$ [Output 1] $\mathrm{TdBCr}(\mathrm{OUT})-$ [Output 2] $\mathrm{TdBCr}(\mathrm{OUT})$
or [Output 1] TdBCf(OUT) - [Output 2] TdBCf(OUT)
5. $\operatorname{Tx01}(03)=[$ Output 1] $\operatorname{TdBCr}(O U T)-$ [Output 3] $\operatorname{TdBCf}(O U T)$
or [Output 1] TdBCf(OUT) - [Output 3] $\operatorname{TdBCr}(O U T)$

* All parameters are preliminary and subject to change without notice.

DC CHARACTERISTICS
Low Voltage Z380 ${ }^{\text {m" }}$ Version

Symbol	Parameter	Min	Max	Unit	Note
V_{1+}	Input High Voltage	2.0	$V_{D D}+0.5$	V	
V_{12}	Input Low Voltage	-0.5	0.8	V	
$\mathrm{V}_{\text {OH1 }}$	Output High Voltage ($-200 \mu \mathrm{~A} \mathrm{I}_{\text {OH }}$)	2.15	-	V	
$V_{\text {oL }}$	Output Low Voltage ($1.6 \mathrm{~mA} \mathrm{IOL}^{\text {) }}$)	-	0.4	V	
$I_{\text {IL }}$	Input Leakage Current	-10	10	$\mu \mathrm{A}$	1
$\mathrm{I}_{\text {TL }}$	Tri-State Leakage Current	-10	10	$\mu \mathrm{A}$	2
$\mathrm{I}_{\text {DD1 }}$	Power Supply Current (@10 MHz)		TBS	mA	3
$\mathrm{I}_{\text {DO3 }}$	Standby Power Supply Current		20	$\mu \mathrm{A}$	4
$\mathrm{C}_{1 \times}$	Input Capacitance ($f=1 \mathrm{MHz}$)		15	pF	5
$\mathrm{C}_{\text {out }}$	Output Capacitance ($f=1 \mathrm{MHz}$)		15	pF	5
C_{10}	l / O Capacitance ($\mathrm{f}=1 \mathrm{MHz}$)		15	pF	5
C_{L}	Output Load Capacitance		100	pF	
$\mathrm{C}_{\text {LD }}$	AC Output Derating (Above 100 pF)		250	pS/pF	

Notes:

1. $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
2. $0.4 \mathrm{~V}<\mathrm{V}_{\text {out }}<2.15 \mathrm{~V}$
3. $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0.2 \mathrm{~V}$
4. $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0.2 \mathrm{~V}$
5. Unmeasured pins returned to V_{ss}.

* All parameters are preliminary and subject to change without notice.

AC CHARACTERISTICS

Low Voltage Z380 ${ }^{\text {TM }}$

No.	Symbol	Parameter	Z8L38010		Note
			Min	Max	
1	TcC	CLK Cycle Time	100		
2	TwCh	CLK Width High	40		
3	TwCl	CLK Width Low	40		
4	TrC	CLK Rise Time		5	
5	TfC	CLK Fall Time		5	
6	TdCf(BCr)	CLK Fall to BUSCLK Rise Delay		60	
7	$\mathrm{TdCr}(\mathrm{BCf})$	CLK Rise to BUSCLK Fall Delay		55	
8	TdBCr(OUT)	BUSCLK Rise to Output Valid Delay		15	
9	TdBCf(OUT)	BUSCLK Fall to Output Valid Delay		15	
10	TsIN(BCr)	Input to BUSCLK Rise Setup Time	30		1
11	ThiN(BCr)	Input to BUSCLK Rise Hold Time	0		1
12	TsBR(BCf)	/BREQ to BUSCLK Fall Setup Time	30		2
13	ThBR(BCf)	/BREQ to BUSCLK Fall Hold Time	0		2
14	TsMW(BCr)	Mem Wait to BUSCLK Rise Setup Time	30		3
15	ThMW (BCr)	Mem Wait to BUSCLK Rise Hold Time	0		3
16	TsMW(BCf)	Mem Wait to BUSCLK Fall Setup Time	45		3
17	ThMW(BCf)	Mem Wait to BUSCLK Fall Hold Time	0		3
18	TsIOW(BCr)	IO Wait to BUSCLK Rise Setup Time	45		3
19	ThIOW(BCr)	10 Wait to BUSCLK Rise Hold Time	0		3
20	TsiOW(BCf)	IO Wait to BUSCLK Fall Setup Time	45		3
21	ThIOW(BCf)	IO Wait to BUSCLK Fall Hold Time	0		3
22	TwNM11	/NMI Low Width	50		
23	TwRES1	Reset Low Width	10		
24	Tx01(02)	Output Skew (Same Clock Edge)	-4	+4	4
25	Tx01(03)	Output Skew (Opposite Clock Edge)	-6	+6	5

Notes:

1. Applicable for Data Bus and /MSIZE inputs
2. /BREQ can also be asserted/deasserted asynchronously
3. External waits asserted at /WAIT input
4. $\mathrm{Tx01}$ (02) $=$ [Output 1] $\mathrm{TdBCr}(\mathrm{OUT})-$ [Output 2] $\mathrm{TdBCr}(\mathrm{OUT})$
or [Output 1] TdBCf(OUT) - [Output 2] TdBCf(OUT)
5. $\operatorname{Tx01(03)}=$ [Output 1] $\operatorname{TdBCr}($ OUT) - [Output 3] $\operatorname{TdBCf}(O U T)$
or [Output 1] $\mathrm{TdBCf}(\mathrm{OUT})$ - [Output 3] $\mathrm{TdBCr}(\mathrm{OUT})$

* All parameters are preliminary and subject to change without notice.

APPENDIX A

	no esc	ED esc	DD esc	FD esc	CB esc	ED－CB	DD－CB	FD－CB
00	NOP	INOB，（n）	－	－	RLC B	RLCW BC	－	－
01	LD BC，nn	OUTO（ n ，B	LD（BC），IX	LD（BC），IY	RLC C	RLCW DE	LDBC，（SP＋d）	－
02	LD（BC）， A	LD BC，BC	LD BC，DE	LD BC，HL	RLC D	RLCW（HL）	RLCW（IX＋d）	RLCW（IY＋d）
03	INC BC＊＊	EX BC，IX	LD IX，（BC）	LD IY，（BC）	RLCE	RLCW HL	LD BC，（IX＋d）	LDBC，（IY＋d）
04	INC B	TSTB	－	－	RLC H	RLCW IX	－	－
05	DEC B	EX BC，DE	－	－	RLC L	RLCW IY	－	－
06	LD B，${ }^{\text {n }}$	LD（BC），nn	－${ }^{\text {IX }}$ ，	－	RLC（HL）	－	RLC（ $1 \mathrm{X}+\mathrm{d}$ ）	RLC（ $1 \mathrm{Y}+\mathrm{d}$ ）
07	RLCA	EX A，B	LD IX，BC	LD IY，BC	RLC A	－	－	－
08	EXAF，AF＇	INOC，（n）	－	－	RRC B	RRCW BC		－
09	ADD HL，BC＊＊	OUTO（n）， C	ADD IX，BC＊＊	ADD IY，BC＊＊	RRC C	RRCW DE	LD（SP＋d），BC	－
OA	LD A，（BC）	－	－	－	RRC D	RRCW（HL）	RRCW（IX + d）	RRCW（ ${ }^{\text {P }}$＋d）
OB	DEC BC＊＊	EX BC，IY	LD BC，IX	LD BC，IY	RRCE	RRCW HL	LD（IX＋d），BC	LD（IY＋d），BC
0 C	INC C	TST C	LD BC，（BC）	LD（BC），BC	RRC H	RRCW IX	－	－
OD	DEC C	EX BC，HL	LD BC，（DE）	LD（DE），BC	RRCL	RRCW IY	－	－
OE	LD C，${ }^{\text {n }}$	SWAP BC	－		RRC（HL）	－	RRC（ $1 \times+\mathrm{d}$ ）	RRC（ $1 \mathrm{Y}+\mathrm{d}$ ）
0 F	RRCA	EX A，C	LD BC，（HL）	LD（HL），BC	RRC A	－	－	－
10	DJNZe	INO D，（n）	DJNZ 8 e	DJNZ eee	RL B	RLW BC	－	－
11	LD DE，nn	OUTO（n），D	LD（DE），IX	LD（DE），IY	RLC	RLW DE	LD DE，（SP＋d）	－
12	LD（DE）， A	LD DE，BC	LD DE，DE	LD DE，HL	RL D	RLW（HL）	RLW（IX＋d）	RLW（IY＋d）
13	INC DE＊＊	EX DE，IX	LD IX，（DE）	LD IY，（DE）	RLE	RLW HL	LD DE，（IX＋d）	LD DE，（IY＋d）
14	INC D	TST D	－	－	RLH	RLW IX		－
15	DEC D	－		－	RLL	RLW IY		
16	LD D，n	LD（DE），nn		－	RL（HL）	－	RL（IX＋d）	RL（ $1 \mathrm{Y}+\mathrm{d}$ ）
17	RLA	EXA，D	LD IX，DE	LD IY，DE	RLA	－	－	－
18	JRe	INOE，（n）	JR ө日	JR өe日	RR B	RRW BC	－	－
19	ADD HL，DE＊＊	OUTO（n），E	ADD IX，DE＊＊	ADD IY，DE＊＊	RR C	RRW DE	LD（SP＋d），DE	－
1 A	LD A，（DE）	－	－	－	RRD	RRW（HL）	RRW（IX + d）	RRW（IY + d）
1B	DEC DE＊＊	EX DE，IY	LD DE，IX	LD DE，IY	RRE	RRW HL	LD（IX + d），DE	LD（IY＋d），DE
1 C	INCE	TSTE	LD DE，（BC）	LD（BC），DE	RR H	RRW IX	－	－
1D	DEC E	－	LD DE，（DE）	LD（DE），DE	RR L	RRW IY	－	－
1 E	LD E，n	SWAP DE	－	－	RR（HL）	－	RR（ $1 \mathrm{X}+\mathrm{d}$ ）	RR（（Y＋d）
1 F	RRA	EX A，E	LD DE，（HL）	LD（HL），DE	RRA	－	－	－
20	JR NZ，e	INOH， n ）	JR NZ，${ }^{\text {e日 }}$	JR NZ，e日e	SLAB	SLAW BC	－	－
21	LD HL，nn	OUTO（n），H	LD IX，nn	LD IY，nn	SLAC	SLAW DE	LD IX，（SP＋d）	LD IY，（SP＋d）
22	LD（nn），HL	（	LD（ nm ），IX	LD（ n ），IY	SLAD	SLAW（HL）	SLAW（IX＋d）	SLAW（IY＋d）
23	INCHL＊＊	－	INC IX＊＊	INC IY＊＊	SLAE	SLAW HL．	LD IY，（IX＋d）	LD IX，（IY＋d）
24	INC H	TST H	INC IXU	INC IYU	SLAH	SLAW IX	－	－
25	DEC H	－	DEC IXU	DEC IYU	SLAL	SLAW IY	－	－
26	LD H， n	－	LD IXU，${ }^{\text {n }}$	LD IYU，${ }^{\text {n }}$	SLA（HL）	－	SLA（ $\mathrm{X}+\mathrm{d}$ ）	SLA（IY＋d）
27	DAA	EX A，H	LD IX，IY	LD IY，IX	SLAA	－	－	－
28	JR Z，	INOL，（n）	JR 2，0日	JR 2，日暏	SRA B	SRAW BC	－	－
29	ADD HL，HL＊＊	OUTO（n），L	ADD IX，IX＊＊	ADD IY，IY＊＊	SRAC	SRAW DE	LD（SP＋d），IX	LD（SP＋d），IY
2A	LD HL，（nn）	－	LDIX，（nn）	LD IY，（nn）	SRA D	SRAW（HL）	SRAW（IX＋d）	SRAW（IY＋d）
2B	DEC HL＊＊	EX IX，IY	DEC IX＊＊	DEC IY＊＊	SRA E	SRAW HL	LD（IX＋d），IY	LD（IY＋d），IX
2 C	INCL	TSTL	INC IXL	INC IYL	SRA H	SRAW IX	－	－
2D	DECL	－	DEC IXL	DEC IYL	SRAL	SRAW IY	－	－
2 E	LD L，${ }^{\text {n }}$	－	LD IXL，${ }^{\text {n }}$	LD IYL，${ }^{\text {n }}$	SRA（HL）	－	SRA（ $1 \times+\mathrm{d}$ ）	SRA（ $1 \mathrm{Y}+\mathrm{d}$ ）
2 F	CPL	EX A，L	CPLW	－	SRA A	－	－	－
30	JR NC，e	INO（ n ）	JR NC，ee	JR NC，8e8	EX B，${ }^{\prime}$	EX BC，BC＇	－	－

APPENDIX A（Continued）

	no esc	ED esc	DD esc	FD esc	CB esc	ED－CB	DD－CB	FD－CB
31	LD SP，nn	－	LD（HL），IX	LD（HL），IY	EX C，C＇	EX DE，DE＇	LD HL，（SP＋d）	－
32	LD（nn），A	LD HL，BC	LD HL，DE	LD HL，HL	EX D，${ }^{\text {＇}}$	－	－	－
33	INC SP＊＊	EX HL，IX	LD IX，（HL）	LD IY，（HL）	EX E，E＇	EX HL，HL＇	LD HL，（IX＋d）	LD HL，（IY＋d）
34	INC（HL）	TST（HL）	INC（ $1 \mathrm{X}+\mathrm{d}$ ）	INC（IY＋d）	EX H， H^{\prime}	EX IX，IX＇－	－	
35	DEC（HL）	－	DEC（ $1 \mathrm{X}+\mathrm{d}$ ）	DEC（ $1 \mathrm{Y}+\mathrm{d}$ ）	EXL，${ }^{\prime}$	EX IY，IY＇	－	－
36	LD（HL）， n	LD（HL），nn	LD（ $\mathrm{X}+\mathrm{d}$ ）， n	LD（ $(Y+d)$ ，n	－	－		
37	SCF	EX A，（HL）	LD IX，HL	LD IY，HL	EX A，A＇	－	－	－
38	JR C，e	INOA，（n）	JR C，日e	JR C，8e日	SRL B	SRLW BC	－	－
39	ADD HL，SP＊＊	OUTO（n），A	ADD IX，SP＊＊	ADD IY，SP＊＊	SRLL C	SRLW DE	LD（SP＋d），HL－	
3 A	LD A，（nn）	－	－	－	SRLD	SRLW（HL）	SLRW（IX＋d）	SRLW（IY＋d）
3B	DEC SP＊＊	EX HL，IY	LD HL，IX	LD HL，IY	SRLE	SRLW HL	LD（IX＋d），HL	LD（IY＋d），HL
3 C	INC A	TSTA	LD HL，（BC）	LD（BC），HL	SRL H	SRLW IX	－	－
3 D	DEC A	－	LD HL，（DE）	LD（DE），HL	SRLL	SRLW IY	－	－
3 E	LD A，${ }^{\text {n }}$	SWAP HL	SWAP IX	SWAP IY	SRL（HL）	－	SRL（ $1 \times+\mathrm{d}$ ）	SRL（ $1 \mathrm{Y}+\mathrm{d}$ ）
3 F	CCF	EX A，A	LD HL，（HL）	LD（HL），HL	SRLA	－	－	－
40	LD B，B	IN B，（C）	INW BC，（C）	－	BIT $0, B$	－	－	－
41	LD B，C	OUT（C），B	OUTW（C），BC	－	BIT 0，C	－	－	－
42	LD B，D	SBC HL，BC	－	－	BIT O，D	－	－	－
43	LD B，	LD（nn），BC	－	－	BIT 0，E	－	－	－
44	LD B，H	NEG	LD B，IXU	LD B，IYU	BIT $0, \mathrm{H}$	－	－	－
45	LD B，L	RETN	LD B，IXL	LD B，IYL	BIT O，L	－	－	－
46	LD B，（HL）	IM 0	LD B，（IX＋d）	LD B，（IY＋d）	BIT 0，（HL）	－	BIT 0，（IX＋d）	BIT 0，（IY＋d）
47	LD B，A	LD I，A	LD I，HL	－	BIT 0，A	－	－	－
48	LD C，B	IN C，（C）	－	－	BIT 1，B	－	－	－
49	LD C， C	OUT（C）， C	－	－	BIT 1，C	－	－	－
4A	LD C，	ADC HL，BC	－	－	BIT 1，D	－	－	－
4B	LD C，E	LD BC，（nn）	－	－	BIT 1，E	－	－	－
4 C	LD C，H	MLT BC	LD C，IXU	LD C，IYU	BIT 1，H	－	－	－
4D	LD C，L	RETI	LD C，IXL	LD C，IYL	BIT 1，L	－	－	－
4E	LD C，（HL）	IM 3	LD C，（ $\mathrm{X}+\mathrm{d}$ ）	LD C，（IY＋d）	BIT 1，（HL）	－	BIT 1，（IX＋d）	BIT 1，（IY＋d）
4 F	LD C，A	LD R，A	－	－	BIT 1，A	－	－	－
50	LD D，B	IN D，（C）	INW DE，（C）	－	BIT 2，B	－	－	－
51	LDD，${ }^{\text {c }}$	OUT（C），D	OUTW（C），DE	－	BIT 2，C	－	－	－
52	LD D，	SBC HL，DE	－	－	BIT 2，D	－	－	－
53	LD D，	LD（n），DE	－	－	BIT 2，E	－	－	－
54	LD D，H	NEGW	LD D，IXU	LD D，IYU	BIT 2，H	－	－	－
55	LD D，L	RETB	LD D，IXL	LD D，YML	BIT 2，L	－	－	－
56	LD D，（HL）	IM 1	LD D，（IX＋d）	LD D，（IY＋d）	BIT 2，（HL）	－	BIT 2，（IX＋d）	BIT 2，（IY＋d）
57	LD D，A	LD A，	LD HL，	－	BIT 2，A	－	－	－
58	LD E，B	IN E，（C）	－	－	BIT 3，${ }^{\text {B }}$	－	－	－
59	LDE，C	OUT（C），E	－	－	BIT 3，C	－	－	－
5A	LD E，D	ADC HL，DE	－	－	BIT 3，D	－	－	－
5B	LDE，E	LD DE，（nn）	－	－	BIT 3，E	－	－	－
5 C	LD E，H	MLT DE	LD E，IXU	LD E，IYU	BIT 3，H	－	－	－
5D	LD E，L	－	LD E，IXL	LD E，IYL	BIT 3，L	－	－	－
5E	LD E，（HL）	IM 2	LD E，（ 1 ＋+ ）	LD E，（Y＋d）	BIT 3，（HL）	－	BIT 3，（IX＋d）	BIT 3，（Y＋d）
5 F	LD E，A	LD A，R	－	－	BIT 3，A	－	－	
60	LD H，B	INH，（C）	LD IXU，B	LDIYU，B	BIT 4，${ }^{\text {B }}$	－	－	－
61	LD H，C	OUT（C），H	LD IXU，C	LDIYU，${ }^{\text {c }}$	BIT 4， C	－	－	－
62	LD H，D	SBC HL，HL	LD IXU，D	LDIYU，D	BIT 4，${ }^{\text {D }}$	－	－	－
63	LD H，E	LD（nn），HL	LD IXU，E	LDIYU，E	BIT 4，	－	－	－
64	LD H，H	TST m	LD IXU，IXU	LDIYU，IYU	BIT 4，H	－	－	－
65	LD H，L	EXTS	LD IXU，IXL	LDIYU，IYL	BIT 4，L	－	－	－

	no esc	ED esc	DD esc	FD esc	CB esc	ED-CB	DD-CB	FD-CB
66	LD H, (HL)	-	LD H,(IX+d)	LD H, (YY+d)	BIT 4,(HL)	-	BIT 4,(IX+d)	BIT 4,(Y+d)
67	LD H,A	RRD	LD IXU,A	LD IYU,A	BIT 4,A	-	-	-
68	LD L,B	IN L, (C)	LD IXL, B	LD IYL,B	BIT 5, B	-	-	-
69	LD L,C	OUT (C), L	LD IXL, C	LD IYL,C	BIT 5, C	-	-	-
6A	LD L,D	ADC HL,HL	LD IXL, D	LD IYL,D	BIT 5, D	-	-	-
6 B	LD L,E	LD HL,(nn)	LD IXL,E	LD IYL,E	BIT 5, E	-	-	-
6 C	LD L,H	MLT HL	LD IXL,IXU	LD IYL,IYU	BIT 5, H	-	-	-
6 D	LD L,L	-	LDIXL,IXL	LD IYL,IYL	BIT 5, L	-		-
6 E	LD L, (HL)	-	LD L, ($\mathrm{X}+\mathrm{d}$)	LD L, (Y+d)	BIT 5,(HL)	-	BIT 5,(IX+d)	BIT5,(IY+d)
6 F	LD L,A	RLD	LD IXL,A	LD IYL,A	BIT 5, A	-	-	-
70	LD (HL), B	-	LD ($1 \times+\mathrm{d}$), B	LD ($(Y+d), B$	BIT 6, ${ }^{\text {a }}$	-	-	-
71	LD (HL), C	OUT (C),n	LD ($1 \times+\mathrm{d}$), C	LD ($1 Y+d), \mathrm{C}$	BIT 6, C	-		-
72	LD (HL), D	SBC HL,SP	LD ($1 \mathrm{X}+\mathrm{d}$), D	LD (1 Y +d), D	BIT 6, ${ }^{\text {d }}$	-	-	-
73	LD (HL), E	LD (nn),SP	LD (IX+d), E	LD ($1 \mathrm{Y}+\mathrm{d}$), E	BIT 6, ${ }^{\text {E }}$	-	-	-
74	LD (HL), H	TST10 m	LD ($\mathrm{IX}+\mathrm{d}$), H	LD ($1 \mathrm{Y}+\mathrm{d}$), H	BIT 6, H	-	-	-
75	LD (HL), L	EXTSW	LD (IX+d), L	LD (1 Y Cd) L	BIT 6,L	-	-	-
76	HALT	SLP	-	-	BIT 6,(HL)	-	BIT 6,(IX+d)	BIT 6, (1 + d)
77	LD (HL), A	-	LD ($\mathrm{I}+\mathrm{d}$), A	LD (1 Y +d), A	BIT 6,A	-	-	-
78	LD A, B	IN A, (C)	INW HL, (C)	-	BIT 7, B	-	-	-
79	LD A,C	OUT (C), A	OUTW (C),HL	OUTW (C),nn	BIT 7,C	-	-	-
7A	LD A, D	ADC HL,SP	-	-	BIT 7, D	-		-
7 B	LD A, E	LD SP,(nn)	-	-	BIT 7,E	-	-	-
7 C	LD A, H	MLT SP	LD A, IXU	LD A,IYU	BIT 7, H	-	-	-
7 D	LD A, L	-	LD A,IXL	LD A,IYL	BIT 7, L	-	-	-
7 E	LD A, (HL)	-	LD A, (IX+d)	LD A, (Y+d)	BIT 7,(HL)	-	BIT 7,(IX+d)	BIT 7,(Y+d)
7 F	LD A,A	-	-	-	BIT 7,A	-	-	-
80	ADD A,B	-	-	-	RES $0, B$	-	-	-
81	ADD A, ${ }^{\text {c }}$	-	-	-	RES $0, \mathrm{C}$	-	-	-
82	ADD A, D	ADD SP,nn **	-	-	RES $0, \mathrm{D}$	-	-	-
83	ADD A, E	OTIM	-	-	RES $0, \mathrm{E}$	-	-	-
84	ADD A, H	ADDW BC	ADD IXU	ADD IYU	RES $0, \mathrm{H}$	-	-	-
85	ADD A,L	ADDW DE	ADD IXL	ADD IYL	RES $0, \mathrm{~L}$	-	-	-
86	ADD A, (HL)	ADDW nn	ADD A, (1X+d)	ADD A, (IY+d)	RES 0,(HL)	-	RES 0 , (IX+d)	RES 0,(IY+d)
87	ADD A,A	ADDW HL	ADDW IX	ADDW IY	RES 0,A	-	-	-
88	ADC A,B	-	-	-	RES 1, ${ }^{\text {d }}$	-	-	-
89	ADC A, C	-	-	-	RES 1, C	-	-	-
8A	ADC A, D	-	-	-	RES 1, ${ }^{\text {d }}$	-	-	-
8 B	ADC A,E	OTDM	-	-	RES 1, E	-	-	-
8 C	ADC A, H	ADCW BC	ADC A, IXU	ADC A,IYU	RES $1, \mathrm{H}$	-	-	-
8 D	ADC A,L	ADCW DE	ADC A, IXL	ADC A,YL	RES 1,L	-	-	-
8 E	ADC A, (HL)	ADCW nn	ADC A, (IX+d)	ADC A, ($1 \mathrm{Y}+\mathrm{d}$)	RES 1,(HL)	-	RES 1,(IX+d)	RES 1,(IY+d)
8F	ADC A,A	ADCW HL	ADCW IX	ADCW IY	RES 1,A	-	-	-
90	SUB B	-	-	-	RES 2,B	MULTW BC	-	-
91	SUB C	-	-	-	RES 2,C	MULTW DE	-	-
92	SUB D	SUB SP,nn **	-	-	RES 2,D	-	MULTW (IX+d)	MULTW (IY+d)
93	SUBE	OTIMR	-	-	RES 2,E	MULTW HL	-	-
94	SUB H	SUBW BC	SUB IXU	SUB IYU	RES $2, \mathrm{H}$	MULTW IX	-	-
95	SUBL	SUBW DE	SUB IXL	SUB IYL	RES 2,L	MULTW IY	-	-
96	SUB (HL)	SUBW nn	SUB (IX Cd)	SUB ($\mathrm{Y}^{\text {+ }}$ d)	RES 2,(HL)	-	RES 2,(IX+d)	RES 2,(Y+d)
97	SUB A	SUBW HL	SUBW IX	SUBW IY	RES 2,A	MULTW nn	-	-

APPENDIX A（Continued）

	no esc	ED esc	DD esc	FD esc	CB esc	ED－CB	DD－CB	FD－CB
98	SBC A，${ }^{\text {B }}$	－	－	－	RES 3，B	MULTUW BC	－	－
99	SBC A，${ }^{\text {c }}$	－	－	－	RES 3，C	MULTUW DE		－
9A	SBC A，$D^{\text {d }}$	－	－	－	RES 3，${ }^{\text {d }}$	－	MULTUW（IX＋d）	MULTUW（IY＋d）
9B	SBC A， E	OTDMR	－	－	RES 3，E	MULTUW HL	－	－
9 C	SBC A，H	SBCW BC	SBC A，IXU	SBC A，IYU	RES $3, \mathrm{H}$	MULTUW IX	－	－
9 D	SBC A，	SBCW DE	SBC A，IXL	SBC A，IYL	RES 3，L	MULTUW IY	－	－
9 E	SBC A，（HL）	SBCW nn	SBC A，（ $1 \mathrm{X}+\mathrm{d}$ ）	SBC A，（ $1 \mathrm{Y}+\mathrm{d}$ ）	RES 3，（HL）	－	RES 3，（IX＋d）	RES 3，（IY＋d）
9 F	SBC A，A	SBCW HL	SBCW IX	SBCW IY	RES 3，A	MULTUW nn	－	－
A0	AND B	LDI	－	－	RES $4, B$	－	－	－
A1	AND C	CPI	－	－	RES 4， C	－	－	－
A2	AND D	INI	－	－	RES 4，D	－	－	－
A3	AND E	OUTI	－	－	RES 4，E	－	－	－
A4	AND H	ANDW BC	AND IXU	AND IYU	RES $4, \mathrm{H}$	－	－	－
A5	AND L	ANDW DE	AND IXL	AND IYL	RES 4，L	－	－	－
A6	AND（HL）	ANDW nn	AND（ $\mathrm{X}+\mathrm{d}$ ）	AND（ $\mathrm{Y}^{\text {＋}}$ ）	RES 4，（HL）	－	RES 4，（IX +d ）	RES 4，（IY＋d）
A7	AND A	ANDW HL	ANDW IX	ANDW IY	RES 4， A	－	－	－
A8	XORB	LDD	－	－	RES 5，${ }^{\text {a }}$	－	－	－
A9	XOR C	CPD	－	－	RES 5，C	－	－	－
AA	XOR D	IND	－	－	RES 5，D	－	－	－
AB	XORE	OUTD	－	－	RES 5，${ }^{\text {E }}$	－	－	－
AC	XOR H	XORW BC	XOR IXU	XOR IYU	RES 5， H	－	－	－
AD	XORL	XORW DE	XOR IXL	XOR IYL	RES 5，L	－	－	－
AE	XOR（HL）	XORW nn	XOR（IX＋d）	XOR（ $1 \mathrm{Y}+\mathrm{d}$ ）	RES 5，（HL）	－	RES 5，（IX＋d）	RES 5，（IY＋d）
AF	XORA	XORW HL	XORW IX	XORW IY	RES 5，A	－	－	－
B0	OR B	LDIR	－	－	RES A，B	－	－	－
B1	ORC	CPIR	－	－	RES 6，C	－	－	－
B2	ORD	INR	－	－	RES 6，${ }^{\text {d }}$	－	－	－
B3	ORE	OTIR	－	－	RES 6，E	－	－	－
B4	ORH	ORW BC	ORIXU	ORIYU	RES $6, \mathrm{H}$	－	－	－
B5	ORL	ORW DE	ORIXL	OR IYL	RES 6，L	－	－	－
B6	OR（HL）	ORW nn	OR（IX＋d）	OR（IY＋d）	RES 6，（HL）	－	RES 6，（IX＋d）	RES 6，（IY＋d）
B7	ORA	ORW HL．	ORW IX	ORW IY	RES 6，A	－	－	－
B8	CP B	LDDR	－	－	RES 7，B	DIVUW BC	－	－
B9	CPC	CPDR	－	－	RES 7，C	DIVUW DE	－	－
BA	CPD	INDR	－	－	RES 7，D	－	DIVUW（IX＋d）	DIVUW（IY＋d）
BB	CPE	OTDR	－	－	RES 7，E	DIVUW HL	－	－
BC	CPH	CPW BC	CPIXU	CPIYU	RES 7，H	DIVUW IX	－	－
BD	CPL	CPW DE	CP IXL	CP IYL	RES 7，L	DIVUW IY	－	－
BE	CP（HL）	CPW nn	CP（ $\mathrm{X}+\mathrm{d}$ ）	CP（ $\mathrm{Y}+\mathrm{d}$ ）	RES 7，（HL）	－	RES 7，（ $\mathrm{X}+\mathrm{d}$ ）	RES 7，（IY＋d）
BF	CPA	CPW HL	CPW IX	CPW IY	RES 7，A	DIVUW nn	－	－
CO	RET NZ	LDCTL HL，SR	DDIR W	DDIR LW	SET $0, B$	－	－	－
C1	POP BC	POP SR	DDIR IB，W	DDIR IB，LW	SET 0，C	－	－	－
C2	JP NZ，nn	－	DDIR IW，W	DDIR IW，LW	SET 0，D	－	－	－
C3	JPnn	－	DDIR IB	DDIR IW	SET 0，E	－	－	－
C4	CALL NZ，nn	CALR HZ，0	CALR NZ，日e	CALR NZ， 0 e日	SET O，H	－	－	－
C5	PUSH BC	PUSH SR	－	－	SET 0，L	－	－	－
C6	ADD A，${ }^{\text {a }}$	ADD HL，（mn）＊＊	ADDW（ $\mathrm{X}+\mathrm{d}$ ）	ADDW（ $1 \mathrm{Y}+\mathrm{d}$ ）	SET 0，（HL）	－	SET 0，（IX＋d）	SET 0，（IY＋d）
C7	RST 0	－	－	－	SET 0，A	－	－	－
C8	RET Z	LDCTL SR，HL	LDCTL SR，A	－	SET 1，${ }^{\text {d }}$	－	－	－
C9	RET	－	－	－	SET 1，C	－	－	－

	no esc	ED esc	DD esc	FD esc	CB esc	ED－CB	DD－CB	FD－CB
CA	JP Z，nn	－	LDCTL SR，n	－	SET 1，D	－	－	－
CB	escape	escape	escape	escape	SET 1，E	－	－	－
CC	CALL Z，nn	CALR Z，0	CALR 2，0日	CALR Z，e日e	SET 1，H	－	－	－
CD	CALL n n	CALR ${ }^{\text {e }}$	CALR ex	CALR eee	SET 1，L	－	－	－
CE	ADC A，${ }^{\text {n }}$	－	ADCW（ $1 \times+\mathrm{d}$ ）	ADCW（IY＋d）	SET 1，（HL）	－	SET 1，（1X＋d）	SET 1，（IY＋d）
CF	RST 1	BTEST	MTEST	－	SET 1，A	－	－	－
D0	RET NC	LDCTL A，DSR	LDCTL A，XSR	LDCTL A，YSR	SET 2，B	－	－	－
D1	POP DE	－	－	－	SET 2， C	－	－	－
D2	JP NC，nn	－	－	－	SET 2，D	－	－	－
D3	OUT（ n ），A	OUTA（ nn ），A	－	OUTAW（nn），HL	SET 2，E	－	－	－
D4	CALL NC，nn	CALR NC，${ }^{\text {e }}$	CALR NC，ee	CALR NC，ee日	SET 2，H	－	－	－
D5	PUSH DE	－	－	－	SET 2， L	－	－	－
D6	SUB n	SUB HL，（nn）＊＊	SUBW（IX＋d）	SUBW（IY＋d）	SET 2，（HL）	－	SET 2，（IX＋d）	SET 2，（IY＋d）
D7	RST 2		－	－	SET 2，A	－	－	－
D8	RET C	LDCTL DSR，A	LDCTL XSR，A	LDCTL YSR，A	SET 3，B	－	－	－
D9	EXX	EXALL	EXXX	EXXY	SET 3， C	－	－	－
DA	JP C，nn	LDCTL DSR，n	LDCTL XSR，n	LDCTL YSR，n	SET 3，D	－	－	－
DB	IN A ，（n）	INA A，（nn）	－	INAW HL，（nn）	SET 3，E	－	－	－
DC	CALL C，nn	CALR C，${ }^{\text {e }}$	CALR C，e日	CALR C，e日e	SET 3，H	－	－	－
DD	escape	reserved	reserved	reserved	SET 3，L	－	－	－
DE	SBC A，n	－	SBCW（IX＋d）	SBCW（IY＋d）	SET 3，（HL）	－	SET 3，（IX＋d）	SET 3，（IY＋d）
DF	RST 3	－	－	－	SET 3，A	－	－	－
EO	RET PO	LDIW	－	－	SET 4，B	－	－	－
E1	POP HL	－	POP IX	POPIY	SET 4， C	－	－	－
E2	JP P0，nn	INIW	－	－	SET 4，${ }^{\text {d }}$	－	－	－
E3	EX（SP），HL	OUTIW	EX（SP），IX	EX（SP），IY	SET 4，	－	－	－
E4	CALL PO，nn	CALR PO，0	CALR PO，e日	CALR PO，e88	SET 4，H	－	－	－
E5	PUSH HL	－	PUSH IX	PUSH IY	SET 4，L	－	－	－
E6	AND n	－	ANDW（IX＋d）	ANDW（IY＋d）	SET 4，（HL）	－	SET 4，（IX＋d）	SET 4，（IY＋d）
E7	RST 4	－	－	－	SET 4，A	－	－	－
E8	RET PE	LDDW	－	－	SET 5，${ }^{\text {c }}$	－	－	－
E9	JP（HL）	－	JP（ X ）	JP（IY）	SET 5，C	－	－	－
EA	JPPE，nn	INDW	－	－	SET 5，D	－	－	－
EB	EX DE，HL	OUTDW	－	－	SET 5，E	－	－	－
EC	CALL PE，nn	CALR PE，${ }^{\text {e }}$	CALR PE，ee	CALR PE，日ө日	SET 5，H	－	－	－
ED	escape	reserved	reserved	reserved	SET 5，L	－	－	－
EE	XOR n	－	XORW（IX＋d）	XORW（IY＋d）	SET 5，（HL）	－	SET 5，（XX＋d）	SET 5，（IY＋d）
EF	RST 5	－	－	－	SET 5，A	－	－	－
FO	RET P	LDIRW	－	－	SET 6，B	－	－	－
F1	POP AF	－	－	－	SET 6， C	－	－	－
F2	JP P，nn	INIRW	－	－	SET 6，${ }^{\text {d }}$	－	－	－
F3	DI	OTIRW	DI n	－	SET 6，E	－	－	－
F4	CALL P，nn	CALR P，${ }^{\text {e }}$	CALR P，日e	CALR P，eee	SET 6，H	－	－	－
F5	PUSH AF	－	－	PUSH nn	SET 6，L	－	－	－
F6	ORn	－	ORW（IX＋d）	ORW（IY＋d）	SET 6，（HL）	－	SET 6，（IX＋d）	SET 6，（IY＋d）
F7	RST 6	SETC LCK	SETC LW	SETC XM	SET 6，A	－	－	－
F8	RET M	LDDRW	－	－	SET 7，B	－	－	－
F9	LD SP，HL	－	LD SP，IX	LD SP，IY	SET 7，C	－	－	－
FA	JP M，nn	INDRW	－	－	SET 7，D	－	－	－
FB	El	OTDRW	El n	－	SET 7，E	－	－	－
FC	CALL M，nn	CALR M，${ }^{\text {a }}$	CALR M，ө日	CALR M，e日e	SET 7，H	－	－	－
FD	escape	reserved	reserved	reserved	SET 7，L	－	－	－
FE	CPn	－	CPW（IX＋d）	CPW（IY＋d）	SET 7，（HL）	－	SET 7，（IX＋d）	SET 7，（IY＋d）
FF	RST 7	RESC LCK	RESC LW	－	SET 7，A	－	－	－

PACKAGE INFORMATION

NDTES,

1. CONTROLLING DIMENSIONS ; MILLIMETER
2. MAX CIPLANARITY 1.10 mm

SYMBDL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A1	0.10	0.30	.004	.012
AL	2.60	2.80	.102	.110
b	0.25	0.40	.010	.016
C	0.13	0.20	.005	.008
HD	23.80	24.40	.937	.961
D	19.90	20.10	.783	.791
HE	17.80	18.40	.701	.724
E	13.90	14.10	.547	.555
R	0.65 TYP		.026	TYP
L	0.70	1.20	.028	.047

100-Lead QFP Package Diagram

ORDERING INFORMATION

Z380 MPU

$\mathbf{1 8} \mathbf{~ M H Z}$	$\mathbf{1 0} \mathbf{~ M H z , 3}$ Volts
100-Pin QFP	$100-$ Pin QFP
Z8038018FSC	Z8L38010FSC

Package

F = Plastic Quad Flat Pack

Temperature

$\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Environmental
C = Plastic Standard Flow

Example:

Block Diagram	ROM UART CPU 8611 CPU COUNTERU RAM TIMERS PAM PO P1	ROM CPU WDT 236 RAM P1 P2 P3 PO	Z8 DSP 24 K 4 K ROM ROM A/D D/A 31 or 47 DIGITAL I/O	Z8 DSP 24 K $6 \mathrm{6K}$ ROM ROM A/D D/A 31 or 47 DIGITAL $/ 0$
Part Number	28600/28611	286C30/E30/C31/E31	289C65/289666	289165/289166
Description			Telephone Answering Controller Z89C66 = ROMLess with 31 I/O Pins	Low-Cost DTAD Controller Z89166 = ROMLess with 31 I/O Pins
Process/Speed	NMOS: 8,12 MHz	cmOS: 12 MHz	CMOS: 20 MHz	CMOS: 20 MHz
Features	- 2 K/4K ROM - 128 Bytes RAM 2231/ Lines On-Chip Oscillator - Two CounterTimers - Six Vectored. Priority Interrupts - UART (Z8611 Only)			24K ROM (Z89165 Only) - 16 -Bit DSP 6K Word DSP ROM - 8 -Bit AD with Automatic Gain Control (AGC) - DTMF Macro Avalable LPC Macro Available - 10 -Bit PWM D/A Othe DSP Sotware Options Available - 47 IVO Pins (Z89165 Only)
Pagkage	28-Pin DIP 40-Pin DIP 44-Pin PLCC	28-Pin DIP 40-Pin DIP 44-Pin PLCC, QFP	68-Pin PLCC	68-Pin PLCC 80-Pin QFP
SUPPORT Products	Z86C1200ZEM - Emulator Z0860000ZCO - Evaluation Board Z0860000ZDP - Adaptor Kit	Z86CCPOOZEM - Emulator Z86CCP00ZAC - Emulator Z86C5000ZEM - Emulator Z86E3000ZDP - Adaptor Kit Z86E4000ZDP - Program Adaptor Kit	Z89C6501ZEM - Emulator Z89C6500ZDB - Emulator	Z89C6501ZEM - Emulator Z89C6500ZDB - Emulator Z8916500ZCO -Evaluation Board

Block Diagram		Z8 DSP 24K ROM 8K ROM RAM PORT CODEC ITE RAM RERESH CODEC ITE 27 Or 43 DIGITAL I/O	Z8 DSP 32K ROM 8K ROM RAM PORT CODEC INTE: RAM CODEC INTF ReFRESH CIIIAL $/ / 0$ 27 or 43 DIGIAL
Part Number	289C67/889C68/289C69	289167/289168	289169
Description	Telephone Answering Controller Z89C67 $=24$ Kbytes of Program ROM Z89C68 $=$ ROMLess with $271 / 0$ Pins Z89C69 $289 \mathrm{C} 69=32$ Kbytes of Program ROM	Enhanced Telephone Answering Controller Z89168 = ROMLess with $27 / / 0$ Pins	Enhanced Telephone Answering Controller
Process/Speed	CMOS: 20 MHz	CMOS: 24 MHz	CMOS: 24 MHz
Features	- 16 -Bit DSP - 6 K Word ROM - DTMF Macro Avaiable - LPC Macro Available 10-Bit PWM D/A - Othe DSP Sotware Options Available - ARAMDRAM/ROM Controller and Interface - Dual CODEC Interface - $43 / 1 / 0$ (ZZ9C67 Only)		
Package	84-Pin PLCC	84-Pin PLCC 100-Pin QFP	84-Pin PLCC 100-Pin QFP
SUPPORT Products	Z89C5900ZEM - Emulator Z89C6700ZEM - Emulator Z89C6700ZDB - Emulator Z8916902ZCO - Evaluation Board	Z89C5900ZEM - Emulator Z89C6700ZEM - Emulator Z89C6700ZDB - Emulator Z8916902ZCO - Evaluation Board	Z89C5900ZEM - Emulator Z89C6700ZEM -Emulator Z89C6700ZDB - Emulator Z8916902ZCO - Evaluation Board

Q Zinco TV/Video Products

Superintegration ${ }^{\text {tw }}$ Phoducts Guide

Superintegration ${ }^{\text {m }}$ Phoducts Guide

Block Diagram					
Patt Number	286640786640	286661788662	28930002204066/4	29930113305077/13	289331/89336
Description		$28^{89} \mathrm{MCU}$ vilt Epanated O Os	$\begin{aligned} & \text { Cable, Satellite } \\ & \text { Z89301 = OTP Version } \end{aligned}$	Advanced TV Controller with CCD Satellitite for TV, VCR, Cab Z89301 = 0TP Version	Adancer IV C Contolle wit
Process/Speed	cmos: 12 NHz	cmos: $16,20 \mathrm{MHz}$	cmos: 12 NHz	cmos: 12 MHz	cmos: 12 MH
Features			- StarSight Capability Closed-Captioning DSP 12 MHz 16-Bit, 512 Byte (Z89314) 640 Byte RAM Programmable OSD $1^{2} \mathrm{C}^{\star}, 7$ PWM Watch-Dog Timer (WDT) Two Ports Low-Power Mode Not Available on 289314	StarSight Capability Closed-Captionin 16-Bit, 640 Byte RAM $12 \mathrm{~K} / 16 \mathrm{~K} / 24 \mathrm{~K}$ ROM Programmable 0 S RC, 9 PWM 4-Channel ADC Watch-Dog Timer (WDT) Two Ports - Low-Power Mode	
Package			40-Pin Solp	52-Pin Solp	42-Pin SOIP
Support Products			Z8930900ZEM - Emulator Z8930901TSC - Emulator \qquad	Z8930900ZEM - Emulator Z8930900TSC - Emulator Z8930901TSC - Emulator	Z8930900ZEM - Emulator Z8930901TSC - Emulato

Block Diagram	$\frac{\text { 2K }}{2 \times \mathrm{O}} \mathrm{M}$	${ }^{\text {4 }}$	$\frac{2 \mathrm{~K} \text { Rom }}{28 \mathrm{cou}}$
	Wor Ram P0 P2	P0 ${ }^{\text {P }}$ P3	
Part Number	286608/286E08	286C30/286E30	286C31/286E31
Description	$Z 86 C 08=28^{8}$ MCU with 2 Kbyte ROM Z86E08 = OTP Version	Z86C30 $=$ Z88 (CCP") with 4 Kbyte ROM $286 E 30=0 T P$ Version	$286 C 31=8$-Bit MCU with 2 Kbyte ROM $286 E 31=0 T P$ Version
Process/Speed	cmos: 12 MHz	cmos: 12 MHz	cmos: 8 MHz
Features			
Package	18-Pin DIP 18-Pin SOIC	28-Pin DIP	28-Pin DIP 28-Pin PLCC
Support Products	286C08002CO - Evaluation Board Z86C0800ZDP - Adaptor Kit 286C12002EM - Emulator Z86C1200ZDP - Adaptor Kit 2866CCPOOZZM - Emulator Z86Cle 286CCPOOZAC - Emulator	786E3000ZDP - Adaptor Kit Z86C5000ZEM - Emulator Z86C5000ZPD - Emulator Pod Z86CCPOOZEM - Emulator Z86CCP00ZAC - Emulator	286E3000ZDP - Adaptor Kit Z86C5000ZEM - Emulator Z86C5000ZPD - Emulator Pod Z86CCP00ZEM - Emulator Z86CCPOOZAC - Emulator

4 2 Man Mulimedia/PC Audo

Superintegration ${ }^{\text {mw }}$ Products Guide

Block Diagram		DSP 512 RAM $/ 4 \mathrm{~K}$ ROM 16-BIT MAC Peripherals Interface	DSP 512 RAM 4K ROM 16-BIT MAC Peripherals Interface	ISA Bus I/F
				DMA Interface Loogic Logic
				Interrupt Logic Control Logic
				$\begin{array}{\|c\|c\|} \hline \text { Logic } & \text { Logic } \\ \hline \text { Registers } \\ \hline \end{array}$
Part Number	286321	289320	289321/289371	25380
Description	8-Bit Digital Audio Processor	16-Bit Digital Signal Processor	16-Bit Digital Signal Processor Z89371= OTP Version	Small Computer System Interace (SCSI)
Process/Speed	CMOS: 12 MHz	CMOS: 10 MHz	CMOS: 20 MHz	Clock: $1.5 \mathrm{Mb} / \mathrm{s}$
Features	国 Sound Blaster" Compatible - ${ }^{\text {a }}$ ADPCM Decompression 国 8-Bit DAC Interface - Successive Approximation ADC Algoritant a MID Interiace			- Compatible 5380 Pin-out - CMOS - Asynchronous I/F Supports $1.5 \mathrm{Mb} / \mathrm{s}$ - 48 Am Drivers - Arbitration Support - Support Normal or Block Mode DMA
Package	40-Pin DIP 44-Pin PLCC	40-Pin DIP 44-Pin PLCC	$40-\mathrm{Pin}$ DIP 44-Pin PLCC	$\begin{aligned} & \text { 40-Pin DIP } \\ & 44-\text { Pin PLC } \end{aligned}$
Support Products	Support Documentation Provided with Device	Z89C0000ZEM - Emulator	Z89371007EM - Emulator	Support Documentation Provided with Device

SoundBlaster ${ }^{\text {m" }}$ is a Trademark of Creative Labs, Inc.

A 2 UL MULTMED/A/PG AUDIO						MIRELESS DEVICES				
Block Diagram			Host $1 / \mathrm{F}$ SRAM Control Zero Corssing Detector Amplitude Processing Drata TranserCommand Control ROM I/F Parameter Acquisition Bank Waveform Data Input MCA							
Part Number	253C80		289341/289342			Z2000*		Z87000		
DESCRIPTION	SCSI Adaptor		Wave Synthesis Chip Set			Spread Spectrum Burst Processor		Cordless Phone Transceiver/Controller		
Speed MHz	Clock: $3 \mathrm{Mb} / \mathrm{s}$		CMOS: 36 MHz			CMOS: 45 MHz Clock: $2.048 \mathrm{Mb} / \mathrm{s}$		CMOS: 16.384 MHz		
Features	- ANSI X3, 131-1986 Standard DMA or Programmed $1 / 0$ Data Transfers - Asynchronous Interface Support - 3 Mb/s - ISA Bus $1 /$ F - Glitch Eater		4-Channel16-Bit LinearPCM Sound GeneratorSampling Rates 20 kHz to 44.1 kHzSupport $16-, 18$-, and $20-$ Bit DACAudio Bandwidth 0 Hz to $20,000 \mathrm{~Hz}$Direct Interface with PC ISA BusDirect Support 4 Mx 16 ROM			- Operates up to 11.1264 Mchips Second in Transmit and Receive Modes - Maximum Data Rate of 2.048 Mbps in Conformance with FCC Regulations - Supports Differentially Encoded BPSK or QPSK Modulation - Full-or Half-Duplex Operation for FDD or TDD Implementations - Two Independent PN Sequences - Power Management Features		- Supports 900 MHz SpreadSpectrum Cordless PhoneDesignAdaptive Frequency HoppingTransmit Power ControlBus Interface to ADPCMProcessor12K Words of RAM forTransceiver and PhoneControl Software32 Pins of Program I/OROM Code, OTP and ICEBOX"Version to be Available Q3/94		
Package	$\begin{aligned} & \text { 40-Pin DIP } \\ & \text { 44-Pin PLCC } \end{aligned}$		84-Pin PLCC			100-Pin VQFP		84-Pin PLCC		
SUPPORT Products	Support Documentation Provided with Device		Support Documentation Provided with Device			Z0200000ZCO - Evaluation Board		Z870000ZEM - Emulator		

Superintegration ${ }^{\text {tw }}$ Phoducts Guide

Block Diagram	$84 C 00$ CPU Power Down C	CTC PIO OSC	CTC CGC SIO WDT Z80 CPU	PIO CGC WDT SIO CTC Z 80 CPU
Part Number	284C01	284690	284013/284C13	284015/884C15
Description	$280{ }^{\circ} \mathrm{CPU}$ with Clock Generator/Clock	Killer I/0 (Three $280{ }^{*}$ Peripherals)	Intelligent Peripheral Controller	Enhanced Intelligent Peripheral
Process/Speed	CMOS: 10 MHz	CMOS: $8,10,12 \mathrm{MHz}$	$Z 84013=$ CMOS: $6,10 \mathrm{MHz}$ Z84C13 = CMOS: $6,10 \mathrm{MHz}$	$\begin{aligned} & \text { Z84015 = CMOS: } 6,10 \mathrm{MHz} \\ & \text { Z84C15 = CMOS: } 16 \mathrm{MHz} \end{aligned}$
Features	- Clock Generator/Controller - Four Power Down Modes	- Serial Input/Output (SIO) - Counter/Timer Circuit (CTC) - Plus Eight $/ / 0$ Lines - Three 8-Bit Ports	- Serial Input/Output (SIO) - Counter/Timer Circuit (CTC) Watch-Dog Timer (WDT) - Clock Generator Circuit (CGC) Wait State Generator (WSG) - Power-On Reset (POR) Two Chip Selects - Evaluation Mode	Serial Input/Output (SIO) Counter/Timer Circuit (CTC) Watch-Dog Timer (WDT) Clock Generator Circuit (CGC) Gour Power-Down Modes Power-On Reset Two Chip Selects 32-Bit CRC Wait State Generator (WSG) - Evaluation Mode
Package	44-Pin QFP 44-Pin PLCC	84-Pin PLCC 80-Pin QFP	84-Pin PLCC	100-Pin OFP 100-Pin VQFP
SUPPORT Products	Z84C9000ZCO - Evaluation Board	284C9000zCO - Evaluation Board	Z84C1500ZCO - Evaluation Board	Z84C15002C0 - Evaluation Board

Block Diagram	Z80 CPU 	2 DMA				24 I/0		$\begin{array}{c}\text { Clock w/ } \\ \text { Standby } \\ \text { Control }\end{array}$ Refresh Control $1 \begin{gathered}16-\text {-it } \\ \text { CPU }\end{gathered}$	
		2 UART				85230 16550 ESCC MIMIC (2 CH)			
		$2 \mathrm{C} / \mathrm{T}$							
		C/Ser							
		OSC							
Part Number	Z80180/28S180/28L180		280181			Z80182/28L182		Z80380/28L380	
Description	High-Performance $\mathbf{Z 8 0}{ }^{\oplus}$ CPU with Peripherals Z8S180 = Static Version Z8L180 = Low-Voltage Version		Smart Access Controller			Zilog Intelligent Peripheral (ZIP") Z8L182 = Low-Voltage Version		$\begin{aligned} & \text { Z380" Microprocessor } \\ & \text { Z8L380 = Low-Voltage Z380 } \end{aligned}$	
Process/Speed	$\begin{aligned} & \text { Z80180 = CMOS: } 6,8,10, \text { MHz } \\ & \text { Z8S180 = CMOS: } 16 \mathrm{MHz} \\ & \text { Z8L180 = CMOS: } 20,33 \mathrm{MHz} \end{aligned}$		CMOS: $10,12 \mathrm{MHz}$			$\begin{aligned} & \text { Z80182 = CMOS: } 16,33 \mathrm{MHz} \\ & \text { Z8L182 }=\text { CMOS: } 20 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \text { Z8L280 }=\text { CMOS: } 10 \mathrm{MHz} \\ & \text { Z80380 }=\text { CMOS: } 16,18 \mathrm{MHz} \end{aligned}$	
Features	Enhanced Z80 ${ }^{\otimes}$ CPU1 Mbyte MMU2 DMAs2 UARTs with Baud Rate GeneratorsC/Serial I/O Port OscillatorZ8S180 Includes;- Power-Down- Programmable EMI- Divide-By-One- Clock Option- 3.3 V and 5 V Version		Complete Z180" plus SCC/2 Counter/Timer Circuit 16 I/O Lines Emulation Mode			Static Version of Z180" plus ESCC (2 Channels of Z 85230 with 32 -Bit CRC Not Available for 16 MHz) 16550 MIMIC 24 Parallel I/O Emulation Mode 3.3V and 5V Version		- 16/32-Bit MPU - Internal 32-Bit Datapaths and ALU - 2 Clocks/Cycle Instruction Execution up to 4 Gbytes of Linear Addressing - Enhanced Instruction Set - 4 Banks of On-Chip Register Files - Object-Code Compatible with Z80/Z180 Microprocessors up to 6 Programmable Memory Chip Selects 3.3 V and 5 V Version	
Package	64-Pin DIP 68-Pin PLCC 80-Pin QFP		100-Pin QFP			$\begin{aligned} & \text { 100-Pin QFP } \\ & 100 \text {-Pin VQFP } \end{aligned}$		100-Pin QFP	
SUPPORT Products	Z8S18000ZCO - Evaluation Board ZEPMIP00001-EPM" Manual		Z8018100ZCO - Evaluation Board Z8018100ZDP - Adaptor Kit Z8018101ZC0* - Evaluation Board *Includes LLAP software that can be licensed (Z80181ZA6). ZEPMIP00001-EPM ${ }^{-1}$ Manual			Z8018200ZCO - Evaluation Board ZEPMIPO0002-EPM" Manual		Z8038000ZCO - Evaluation Board ZEPMIP00003-EPM" Manual	

人己inc Modem/Fax
Superintegration ${ }^{\text {tw }}$ Phoducts Guide

Block Diagram	DSP 512 RAM $4 K$ ROM 16-BIT MAC DATA RAM I/0 $1 / 0$			
Part Number	z89C00	289120	289920	286017
Description	16-Bit Digital Signal Processor	Zilog Modem/Fax Controller	Zilog Modem/Fax Controller	PCMCIA Interface Adaptor
Process/Speed	CMOS: $10,15 \mathrm{MHz}$	CMOS: 20 MHz	CMOS: 20 MHz	CMOS: 20 MHz
Features	- 16 -Bit Multiply/Accumulate 75 ns Two Data RAMs (256 Words each) - 4 K Word ROM 64Kx16 Ext. ROM 16-Bit I/O Port 74 Instructions Most Single Cycle Two Conditional Branch Inputs, Two User Outputs - Library of Macros Zero Overhead Pointers			
Package	68-Pin PLCC $60-$ Pin VQFP	68-Pin PLCC	68-Pin PLCC	100-Pin VQFP
SUPPORT Products	Z89C0000ZEM - Emulator Z89C0000ZCC - Emulator	Z89C6501ZEM - Emulator Z89C6500ZDP - Emulator	Z89C6501ZEM - Emulator Z89C6500ZDB - Emulator	286017002C0-Evaluation Board

Q Zing Modem/Fax
Superintegration ${ }^{\text {mi" }}$ Products Guide

人己LOES Serial Communications

Superintegration ${ }^{\text {m }}$ Phoducts Guide

9 ¢	ASS STORAGE		Superintecration ${ }^{\text {TM }}$ Products Guide	
Block Diagram	UART CPU OSC 256 RAM CLOCK PO P1 P2		DSP 512 RAM 4 K ROM $16-\mathrm{BIT}$ MAC DATA $1 / 0$ $)$RAM	MULT DIV OPURT CPU OSC 256 RAM CLOCK P0 P1 P2
Part Number	286C91/28691	286E21/286621	289C00	286C93
Description	ROMLEss $78{ }^{8}$	$\begin{aligned} & Z 86621=8 \mathrm{~K} \mathrm{OTP} \\ & Z 86 \mathrm{C} 21=8 \mathrm{~K} \text { ROM } \end{aligned}$	16-Bit Digital Signal Processor	ROMLess Enhanced $288^{\text {® }}$ MultJiv
Process/Speed	Z86C91 = CMOS: 16 MHz Z8691 = NMOS: 12 MHz	CMOS: $12,16 \mathrm{MHz}$	CMOS: $10,15 \mathrm{MHz}$	CMOS: $20,25,33 \mathrm{MHz}$
Features	$\begin{aligned} & \text { Full-Duplex UART } \\ & \text { Two Standby Modes } \\ & \text { (STOP and HALT) } \\ & \text { 2x8 Bit } \\ & \text { Counter/Timer } \end{aligned}$	- 256 Byte RAM Full-Duplex UART - Two Standby Modes (STOP and HALT) - Two Counter/Timers - ROM Protect Option - RAM Protect Option - Low-EMI Option	- 16 -Bit Multiply/Accumulate - 75 ns Two Data RAMs (256 Words Each) - 46 W Word ROM - $64 \mathrm{Kx16}$ Ext. ROM - 16 -Bit $/$ Po Port - 74 I Instructions - Most Single Cycle - Two Conditional Branch Inputs, TWo User uutputs - Library of Macros - Zero Overhead Pointers	- 16×16 Multiply 17 Clocks - 32×16 Divide 20 Clocks - Full-Duplex UART Two Standy Modes (STOP and HALT) - Three 16-Bii Counter/Timers
Package	40-Pin DIP 44-Pin PLCC 44-Pin QFP	40-Pin DIP 44-Pin PLCC 44-Pin QFP	68-Pin PLCC	40-Pin DIP 44-Pin PLCC 44-Pin QFP
Support Products	Z08600002CO - Evaluation Board Z86C0000ZUSP064 - Signum Emulator Z86C1200ZPD - Signum Emulator Pod	Z0860000ZCO - Evaluation Board Z86C0000ZUSP064 - SignumEmulator Z86C 1200ZPD - Signum Emulator Pod	Z89C00ZEM - Emulator	Z0860000ZCO - Evaluation Board Z86C0000ZUSP064-Signum Emulator Z86C0001ZUSP064 - Signum Emulator Z86C9300ZPD - Signum Emulator Pod Z86C9301ZPD - Signum Emulator Pod

M
Superintegration ${ }^{\text {m" }}$ Products Guide

Block Diagram				
Part Number	286016	286017	286M17	286020
Description	8-Bit PCMCIA Interface Adaptor	PCMCIA Interface Adaptor	PCMCIA Interace Adaptor	PC/Multifiunction Bridge
Process/Speed	CMOS: 20 MHz	CMOS: 20 MHz	CMOS: 20 MHz	CMOS: 33 MHz
Features	286017 with 8-Bit Peripheral Bus Only	- 256 Bytes of Attribute Memory - Five Contiguration Registers - EEPROM Sequencer or SPI Interface - PCMCIA to $1 / 0$, Memory or Both - PCMCIA to ATAIDE - ATAIDE to ATAIDE - 3.0V to 5.5 V Operation - 8- or 16-Bit Peripheral Support	Mirror Image Pin-Out of Z86017 for Opposite PCB - Surface Layout	- 256 Bytes of Contiguration Memory 64 PCl Configuration Registers Eight Programmable Memory or I/O Map Ranges with Independent Timing Control 128 Byte FIFO's Two Full Featured DMA Channels PCI Initiator/Target Operations On-Chip Peripheral Bus Arbitration
Package	48-Pin VQFP 64-Pin VOFP	100-Pin VQFP	100-Pin VQFP	160-Pin QFP
Support Products	Z8601600ZCO - Evaluation Board (Available Q494)	Z8601700ZC0 -Evaluation Board	28601700ZC0 - Evaluation Board	Available Q494

Zilog's Customer Development Center

The Zilog Customer Development Center is available to provide product information, answer preliminary technical questions, and review application needs and requirements for existing and potential customers.

By utilizing an automated database program, the Customer Development Center team can track all phone and written inquiries to develop future ongoing customer relationships. Our services currently target nationwide markets, including Canada. Zilog's Application Specific Products can meet your design requirements to shorten your time to market, and the Customer Development Center is ready to offer prompt assistance.

For immediate assistance in the U.S. or Canada, contact our Customer Development Center for product information:

408-370-8016 (Eastern, Southern U.S.)
408-370-8358 (California, Arizona, New Mexico, Texas, Louisiana, Arkansas and Oklahoma)
\section*{408-370-8357 (Northwest, Central U.S. and Canada)}

For international assistance:

CHINA

Shenzhen
Shanghai
86-755-2236089
86-21-4370050, x5204 86-21-4331020

GERMANY

Munich ..49-8967-2045
Sömmerda..................................49-3634-23906

JAPAN

Tokyo

HONG KONG

Kowloon 852-723897981-3-3587-0528

KOREA

Seoul 82-2-577-3272

SINGAPORE

Singapore 65-2357155

TAIWAN

Taipei 886-2-741-3125
UNITED KINGDOM
Maidenhead 44-628-392-00

LITERATURE GUIDE

Z8® MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS

Databooks By Market Niche	Part No	Unit Cost
Z8® Microcontrollers Databook	DC-8305-02	\$ 5.00
Product Specifications		
Z86C07 CMOS 28 8-Bit Microcontroller		
Z86C08 CMOS 888 -Bit Microcontroller		
Z86E08 CMOS 288 -Bit OTP Microcontroller		
Z86C11 CMOS 28 Microcontroller		
Z86C12 CMOS 28 In-Circuit Microcontroller Emulator		
Z86C21 8K ROM Z8 CMOS Microcontroller		
Z86E21 CMOS Z88K OTP Microcontroller		
Z86C61/62/96 CMOS 28 Microcontroller		
Z86C63/64 32K ROM 28 CMOS Microcontroller		
Z86C91 CMOS 78 ROMless Microcontroller		
Z86C93 CMOS 28 Multiply/Divide Microcontroller		
Support Product Specifications		
Z0860000ZCO Development Kit		
Z86C0800ZCO Applications Board		
Z86C0800ZDP Adaptor Board		
Z86E2100ZDF Adaptor Kit		
Z86E2100ZDP Adaptor Kit		
Z86E2100ZDV Adaptor Kit		
Z86E2100ZDV Adaptor Kit		
286E221012DF Conversion Kit		
Z86E2101ZDV Conversion Kit		
Z86C6100TSC Z86C61/63 MCU OTP Emulation Board		
Z86C62002EM In-Circuit Emulator		
Z86C12002EM Z88 $^{\text {In }}$ I-Circuit Emulator -C12		
Z8® ${ }^{\text {S Series }}$ Emulators, Base Units and Pods		
Additional Information		
Zilog's Superintegration" Products Guide		
Literature Guide		
Third Party Support Vendors		
Zilog's Sales Offices, Representatives and Distributors		
Infrared Remote (IR) Controllers Databook	DC-8301-04	\$5.00
Product Specifications		
Z86L06 Low Voltage CMOS Consumer Controller Processor (Preliminary)		
Z86L29 6K Infrared (IR) Remote (ZIRC") Controller (Advance information)		
Z86L70/L71/L72/L75/L76 Zilog IR (ZIRC"') CCP ${ }^{\text {m }}$ Controller Family (Preliminary)		
Z86E72/E73/E74 Zilog IR (ZIRC") ${ }^{\text {a }}$ (CP ${ }^{\text {m }}$ Controller Family (Preliminary)		
Application Note		
Beyond the 3 Volt Limit		
Support Product Specifications		
Z86L7100ZDB Emulator Board		
Z86L7100ZEM ICEBOX ${ }^{\text {m }}$ In-Circuit Emulator Board		
Additional Information		
Zilog's Superintegration" Products Guide		
Literature Ordering Guide		
Zilog's Sales Offices, Representatives and Distributors		

Z8® MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS

Databooks By Market Niche	Part No	Unit Cost
Discrete $\mathrm{Z} 8^{\text {® }}$ Microcontrollers	DC 8318-01	\$5.00
Product Specifications		
Z86C03/C06 CMOS $28{ }^{\text {® }} 8$-Bit Microcontroller		
Z86E03/E06 CMOS Z8® $^{8} 8$-Bit OTP Microcontroller		
Z86C04/C08 CMOS 288 8-Bit Low Cost 1K/2K ROM Microcontroller		
Z86E04/E08 CMOS 28 0 0 TP Microcontroller		
Z86C07 CMOS Z8 $^{8} 8$-Bit Microcontroller		
Z86E07 CMOS Z8® 8 -Bit OTP Microcontroller		
Z86C30 and Z86C31 CMOS $28{ }^{\text {® }} 8$-Bit Microcontroller		
Z86E30 and Z86E31 CMOS Z88 8 -Bit OTP Microcontroller		
Z86C40 CMOS ${ }^{\text {8 }}{ }^{\text {® }} 8$-Bit CCP" Microcontroller		
Z86E40 CMOS Z8® ${ }^{\text {OTP }}$ CCP" ${ }^{\text {m }}$ Microcontroller		
Support Product Specifications and Third Party Vendors		
Z86C0800ZCO Applications Board		
Z86C0800ZDP Adaptor Board		
Z86E0600ZDP Conversion Kit		
Z86E3000ZDP Adaptor Kit		
Z86E4000ZDF Adaptor Kit		
Z86E4000ZDP Adaptor Kit		
Z86E4000ZDV Adaptor Kit		
Z86E4001ZDF Conversion Kit		
Z86E4001ZDV Conversion Kit		
Z86CCP00ZAC Emulator Accessory Kit		
Z86CCP00ZEM In-Circuit Emulator		
Additional Infor		
Zilog's Superintegration"' Products Guide		
Literature Guide and Ordering Information		
Zilog's Sales Offices, Representatives and Distributors		

Digital Television Controllers
Product Specifications
Z89300 Series Digital Television Controller
Z86C27/97 CMOS Z8® Digital Signal Processor
Z86C47/E47 CMOS Z8® Digital Signal Processor
Z86127 Low Cost Digital Television Controller
Z86128/228 Line 21 Closed-Caption Controller (L21C" ${ }^{\text {m }}$)
Z86227 40-Pin Low Cost (4LDTC ${ }^{\text {T }}$) Digital Television Controller
Support Product Specifications
Z86C2700ZCO Application Kit
Z86C2700ZDB Emulation Board
Z86C2702ZEM In-Circuit Emulator
Additional Information
Zilog's Superintegration" Products Guide
Literature Guide and Ordering Information
Zilog's Sales Offices, Representatives and Distributors

LITERATURE GUIDE

Z8® MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS
Databooks By Market Niche Part No Unit Cost
Telephone Answering Device DatabookDC-8300-02$\$ 5.00$
Product Specifications
Z89C65, Z89C66 (ROMless) Dual Processor T.A.M. Controller (Preliminary)Z89C67, Z89C68/C69 (ROMless) Dual Processor Tapeless T.A.M. Controller (Preliminary)
Development Guides
Z89C65 Software Development Guide
Z89C67/C69 Software Development Guide
Technical Notes
Using Samsung KT8554 Codec on the ZTAD Development Board
Z89C67/C69 Design Guidelines
Z89C67/C69 ARAM Bit-Rate Measurements
Z89C67 Codec Interfacing (Preliminary)
Controlling the Out -5 V and Codec Clock Signals for Low-Power Halt Mode
Support Product Specifications
Z89C5900ZEM Emulation Module
Z89C6500ZDB Emulation Board
Z89C6501ZEM ICEBOX ${ }^{\text {m" }}$ In-Circuit Emulator
Z89C6700ZDB Emulator Board
Z89C6700ZEM ICEBOX ${ }^{\text {T4 }}$ Emulator Board
Additional Information
Zilog's Superintegration" ${ }^{\text {mi }}$ Products Guide
Literature Ordering Guide
Zilog's Sales Offices, Representatives and Distributors

LITERATURE GUIDE
Z8® MICROCONTROLLERS - PERIPHERALS MULTIMEDIA FAMILY OF PRODUCTS
Databooks By Market Niche Part No Unit Cost
Digital Signal Processor Databook DC-8299-04 $\$ 5.00$
Product Specifications
Z89321/371 16-Bit Digital Signal Processor (Preliminary)Z89C00 16-Bit Digital Signal Processor (Preliminary)Z89320 16-Bit Digital Signal Processor (Preliminary)Z86C95 Z8 ${ }^{\text {® }}$ Digital Signal Processor (Preliminary)Z89120, Z89920 (ROMless) 16-Bit Mixed Signal Processor (Preliminary)Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor (Preliminary)
Application Note
Using the Z89371/321 CODEC Interface
Z89371 Inter Processor Communication
Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP)
Support Product Specifications
Z8937100ZEM In-Circuit Emulator -COO
Z8937100TSC Emulation Module
Z89C0000ZAS Z89C00 Assembler, Linker and Librarian
Z89C0000ZCC Z89C00 C Cross Compiler
Z89C0000ZEM In-Circuit Emulator -C00
Z89C0000ZHP Logic Analyzer Adaptor Board
Z89C0000ZSD Z89C00 Simulator/Debugger
Z89C0000ZTR Z89C00 Translator
Additional Information
Zilog's Superintegration" ${ }^{\text {m" }}$ Products Guide
Literature Guide and Third Party Support
Zilog's Sales Offices, Representatives and Distributors

Databooks By Market Niche	Part No	Unit Cost
Keyboard/Mouse/Pointing Devices Databook	DC-8304-00	\$ 5.00
Product Specifications		
Z8602 NMOS $78{ }^{\text {® }} 8$-Bit Keyboard Controller		
Z8614 NMOS Z8® ${ }^{\text {8 }}$-Bit Keyboard Controller		
Z8615 NMOS Z8 ${ }^{\text {® }} 8$-Bit Keyboard Controller		
Z86E23 Z8® ${ }^{\text {8-Bit Keyboard Controller with } 8 \mathrm{~K} \text { 0TP }}$		
Z86C04 CMOS $28{ }^{\text {® }} 8$-Bit Microcontroller		
Z86C08 CMOS $28{ }^{\text {® }}$ 8-Bit Microcontroller		
Z88C17 CMOS Z $^{\text {® }}$ 8-Bit Microcontroller		
Additional Information		
Zilog's Superintegration ${ }^{\text {mw }}$ Products Guide		
Literature Guide		
PC Audio Databook	DC-8317-00	\$ 5.00
Product Specifications		
Z86321 Digital Audio Processor (Preliminary)		
Z89320 16-Bit Digital Signal Processor (Preliminary)		
Z89321/371 16-Bit Digital Signal Processor (Preliminary)		
Z89331 16-Bit PC ISA Bus Interface (Advance Information)		
Z89341/42/43 Wave Synthesis Chip Set (Advance Information)		
Z5380 Small Computer System Interface		
Additional Information		
Zilog's Superintegration ${ }^{\text {m' }}$ Products Guide		
Literature Guide		

Z8® MICROCONTROLLERS - PERIPHERALS MEMORY FAMILY OF PRODUCTS

Databooks By Market Niche	Part No	Unit Cost
Mass Storage Solutions	DC-8303-01	\$5.00
Product Specifications		
Z86C21 8K ROM Z8 CMOS Microcontroller		
Z86E21 CMOS Z8 8K OTP Microcontroller		
Z86C91 CMOS 78 ROMless Microcontroller		
Z86C93 CMOS 88 Multiply/Divide Microcontroller		
Z86C95 28 Digital Signal Processor		
Application Note		
Understanding Q15 Two's Complement Fractional Multip		
Support Product Specifications		
Z8060000ZCO Development Kit		
Z86C1200ZEM In-Circuit Emulator		
286E2100ZDF Adaptor Kit		
Z86E2100ZDV Adaptor Kit		
Z86E21017DF Conversion Kit		
Z86E21012DV Conversion Kit		
Z86C9500ZCO Evaluation Board		
28 S Series Emulators, Base Units and Pods		
Z89C00002CC Z89C00 C Cross Compiler		
Z89C0000ZSD Z89C00 Simulator/Debugger		
ZPCMCIAOZDP PCMCIA Extender Card		
Additional Information		
Zilog's Superintegration" Products Guide		
Zilog's Literature Guide		
Zilog's Sales Offices, Representatives and Distributors		

人スレロ
 LITERATURE GUIDE

Z8® ${ }^{\text {M }}$ ICROCONTROLLERS LITERATURE（Continued）

Technical Manuals and Users Guides	Part No．	Unit Cost
Z8® Microcontrollers Technical Manual	DC－8291－02	5.00
Z86018 Preliminary User＇s Manual	DC－8296－00	N／C
Digital TV Controller User＇s Manual	DC－8284－01	5.00
Z89C00 16－Bit Digital Signal Processor User＇s Manual／DSP Software Manual	DC－8294－02	5.00
Z86C95 16－Bit Digital Signal Processor User Manual	DC－8595－00	5.00
Z86017 PCMCIA Adaptor Chip User＇s Manual and Databook	DC－8298－03	5.00
PLC Z89C00 Cross Development Tools Brochure	DC－5538－01	N／C
Z8® ${ }^{\text {a }}$ Application Notes	Part No	Unit Cost
The Z8 MCU Dual Analog Comparator	DC－2516－01	N／C
Z8 Applications for I／O Port Expansions	DC－2539－01	N／C
Z86E21 Z8 Low Cost Thermal Printer	DC－2541－01	N／C
Zilog Family On－Chip Oscillator Design	DC－2496－01	N／C
Using the Zilog Z86C06 SPI Bus	DC－2584－01	N／C
Interfacing LCDs to the Z8	DC－2592－01	N／C
X－10 Compatible Infrared（IR）Remote Control	DC－2591－01	N／C
Z86C17 In－Mouse Applications	DC－3001－01	N／C
Z86C40／E40 MCU Applications Evaluation Board	DC－2604－01	N／C
Z86C08／C17 Controls A Scrolling LED Message Display	DC－2605－01	N／C
Z86C95 Hard Disk Controller Flash EPROM Interface	DC－2639－01	N／C
Three Z8® Applications Notes：Timekeeping with Z8；DTMF Tone Generation； Serial Communication Using the CCP Sottware UART	DC－2645－01	N／C

Z80®/Z8000 ${ }^{\text {D }}$ DTACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks By Market Niche	Part No	Unit Cost
High-Speed Serial Communication Controllers	DC-8314-00	5.00
Product Specifications		
Z16C30 CMOS Universal Serial Controller (USC"') (Preliminary)		
Z16C32 Integrated Universal Serial Controller (IUSC'I') (Preliminary)		
Application Notes		
Using the Z16C30 Universal Serial Controller with MIL-STD-1553B		
Design a Serial Board to Handle Multiple Protocols		
Datacommunications IUSC"/MUSC ${ }^{\text {m" }}$ Time Slot Assigner		
Support Products		
Z16C30012CO Evaluation Board Product Specification		
Z8018600ZCO Evaluation Board Product Specification		
Additional Information		
Zilog's Superintegration" Products Guide		
Literature Guide		
Third Party Support Vendors		
Serial Communication Controllers	DC-8316-00	5.00
Product Specifications		
Z8030/Z8530 Z-Bus $^{\text {® }}$ SCC Serial Communication Controller		
Z80C30/Z85C30 CMOS 2 -Bus ${ }^{\text {® }}$ SCC Serial Communication Controller		
Z80230 Z-Bus $^{\text {® }}$ ESCC ${ }^{\text {² }}$ Enhanced Serial Communication Controller (Preliminary)		
Z85230 ESCC" Enhanced Serial Communication Controller		
Z85233 EMSCC" Enhanced Mono Serial Communication Controller		
Z85C80 SCSCl" Serial Communications and Small Computer Interiace		
Z16C35/885C35 CMOS ISCC'I Integrated Serial Communications Controller		
Application Notes		
Interfacing $\mathbf{Z 8 5 0 0}$ Peripherals to the 68000		
SCC in Binary Synchronous Communications		
Zilog SCC Z8030/Z8530 Questions and Answers		
Integrating Serial Data and SCSI Peripheral Control on One Chip		
Zilog ISCC ${ }^{\text {m }}$ Controller Questions and Answers		
Boost Your System Performance Using the Zilog ESCC ${ }^{\text {TM }}$		
Zilog ESCC"' Controller Questions and Answers		
The Zilog Datacom Family with the 80186 CPU		
On-Chip Oscillator Design		
Support Products		
Z8S18000ZCO Evaluation Board Product Specification		
Z8523000ZCO Evaluation Board Product Specification		
Z8018600ZCO Evaluation Board Product Specification		
ZEPMDC00002 Electronic Programmer's Manual Software		
Additional Information		
Zilog's Superintegration" ${ }^{\text {" Products Guide }}$		
Literature Guide		

Z80$/ Z 8000^{\oplus}$ DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks	Part No	Unit Cost
Z80 Family Databook	DC-8321-00	5.00
Discrete $\mathbf{7 8 0}{ }^{\text {® }}$ Family		
Z8400/C00 NMOS/CMOS $280{ }^{\circ}$ CPU Product Specitication		
Z8410/C10 NMOS/CMOS 280 DMA Product Specification		
Z8420/C20 NMOS/CMOS 280 PIO Product Specification		
Z8430/C30 NMOS/CMOS 880 CTC Product Specification		
Z8440/C40 NMOS/CMOS 880 SIO Product Specification		
Embedded Controllers		
Z84C01 280 CPU with CGC Product Specification		
28470 Z80 DART Product Specification		
Z84C90 CMOS 880 K10" Product Specification		
Z84013/015 Z84C13/C15 IPC/EIPC Product Specification		
Application Notes and Technical Articles		
Z80® Family Interrupt Structure		
Using the $280{ }^{\text {® }}$ S10 with SDLC		
Using the $\mathrm{Z} 80{ }^{\text {® }} \mathrm{SIO}$ in Asynchronous Communications		
Binary Synchronous Communication Using the Z80 ${ }^{\text {® }}$ SIO		
Serial Communication with the Z80A DART		
Interfacing 280 $^{\circ} \mathrm{CPUs}$ to the 88500 Peripheral Family		
Timing in an Interrupt-Based System with the 880 $^{\circ} \mathrm{CTC}$		
A Z80-Based System Using the DMA with the SIO		
Using the Z84C11/C13/C15 in Place of the Z84011/013/015		
On-Chip Oscillator Design		
A Fast 280° Embedded Controller		
Z80® ${ }^{\text {® }}$ Questions and Answers		
Additional Information		
Zilog's Superintegration" ${ }^{\text {m }}$ Products Guide		
Literature Guide		
Third Party Support Vendors		
Zilog's Sales Offices, Representatives and Distributors		

Z80$/ Z 8000^{\circledR}$ DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks	Part No	Unit Cost
Z180" Microprocessors and Peripherals Databook	DC-8322-00	5.00
Product Specifications		
Z80180/Z8S180/Z8L180 Z180" Microprocessor		
Z80181 Z181"' $^{\text {² }}$ Smart Access Controller (SAC")		
Z80182/Z8L182 Zilog Intelligent Peripheral Controller (ZIP"')		
Application Notes and Technical Articles		
Z180" Questions and Answers		
Z180 $/$ /SCC Serial Communication Controller Interiace at 10 MHz		
Interfacing Memory and I/O to the 20 MHz Z8S180 System		
Break Detection on the Z80180 and Z181"'		
Z182 Programming the MIMIC Autoecho ECHOZ182 Sample Code		
Local Talk Link Access Protocol Using the Z80181		
Support Products		
Z8S18000ZCO Evaluation Board		
Z80181002CO Evaluation Board		
Z8018101ZCO Evaluation Board		
Z8018101ZA6 Driver Software		
Z8018100ZDP Adaptor Board		
Z8018200ZCO Evaluation Board		
Z80 ${ }^{\text {® }}$ and $\mathrm{Z80180}$ Hardware and Software Support		
Third Party Support Vendors		
Additional Information		
Zilog's Superintegration" Products Guide		
Literature Guide		
Zilog's Sales Offices, Representatives and Distributors		

LITERATURE GUIDE
Z80 $/$ Z8000 ${ }^{\oplus}$ DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks and User's Manuals	Part No	Unit Cost
Z8000 Family of Products	DC-8319-00	5.00
Z8000 Family Databook		
Zilog's 28000 Family Architecture		
Z8001/Z8002 28000 CPU Product Specification		
Z8016 28000 Z-DTC Product Specification		
Z8036 Z8000 Z-CIO Product Specification		
Z8536 CIO Counter/Timer and Parallel I/O Unit Product Specification		
Z8038/Z8538 F10 FIFO Input/Output Interface Unit Product Speciication		
Z8060/Z8560 FIFO Buffer Unit		
Z8581 Clock Generator and Controller Product Specification		
User's Manuals		
Z8000 CPU Central Processing Unit User's Manual		
Z8010 Memory Management Unit (MMU) User's Manual		
Z8036 Z-CIO/Z8536 CIO Counter/Timer and Parallel Input/Output User's Manual		
Z8038 Z8000 Z-FIO FIFO Input/Output Interface User's Manual		
Z8000 Application Notes and Military Products		
Application Notes		
Using SCC with 88000 in SDLC Protocol		
SCC in Binary Synchronous Communication		
Zilog's Military Products Overview		
Additional Information		
Zilog's Superintegration" Products Guide		
Literature Guide		
Zilog's Sales Offices, Representatives and Distributors		

Z80 Family Technical Manual	DC-8309-00	5.00
Z80180 Z180 MPU Microprocessor Unit Technical Manual	DC-8276-04	5.00
Z280 MPU Microprocessor Unit Technical Manual	DC-8224-03	5.00
Z380" Preliminary Product Specification	DC-6003-03	N / C
Z380" User's Manual	DC-8297-02	5.00
ZNW2000 User's Manual for PC WAN Adaptor Board Development Kit	DC-8315-00	N / C
SCC Serial Communication Controller User's Manual	DC-8293-02	5.00
High-Speed SCC, Z16C30 USC User's Manual	DC-8280-04	5.00
High-Speed SCC, Z16C32 IUSC User's Manual	DC-8292-02	5.00
Z16C35 ISCC Integrated Serial Communication Controller Technical Manual	DC-8286-01	5.00
Z16C35 ISCC Integrated Serial Communication Controller Addendum	DC-8286-01A	N/C

MILITARY COMPONENTS FAMILY

Military Product Specifications	Part No	Unit Cost
Z8681 ROMless Microcomputer	DC-2392-02	N/C
Z8001/8002 Military Z8000 CPU Central Processing Unit	DC-2342-03	N/C
Z8581 Military CGC Clock Generator and Controller	DC-2346-01	N/C
Z8030 Military Z8000 Z-SCC Serial Communications Controller	DC-2388-02	N/C
Z8530 Military SCC Serial Communications Controller	DC-2397-02	N/C
Z8036 Military Z8000 Z-CIO Counter/Timer Controller and Parallel I/0	DC-2389-01	N/C
Z8038/8538 Military FIO FIFO Input/Output Interface Unit	DC-2463-02	N/C
Z8536 Military CIO Counter/Timer Controller and Parallel I/0	DC-2396-01	N/C
Z8400 Military 280 CPU Central Processing Unit	DC-2351-02	N/C
Z8420 Military PIO Parallel Input/Output Controller	DC-2384-02	N/C
Z8430 Military CTC Counter/Timer Circuit	DC-2385-01	N/C
Z8440/1/2/4 $\mathrm{Z80}$ SIO Serial Input/Output Controller	DC-2386-02	N/C
Z80C30/85C30 Military CMOS SCC Serial Communications Controller	DC-2478-02	N/C
Z84C00 CMOS 280 CPU Central Processing Unit	DC-2441-02	N/C
Z84C20 CMOS 880 P10 Parallel Input/Output	DC-2384-02	N/C
Z84C30 CMOS Z80 CTC Counter/Timer Circuit	DC-2481-01	N/C
Z84C40/1/2/4 CMOS 280 SIO Serial Input/Output	DC-2482-01	N/C
Z16C30 CMOS USC Universal Serial Controller (Preliminary)	DC-2531-01	N/C
280180 Z180 MPU Microprocessor Unit	DC-2538-01	N/C
Z84C90 CMOS KIO Serial/Parallel/Counter Timer (Preliminary)	DC-2502-00	N/C
Z85230 ESCC Enhanced Serial Communication Controller	DC-2595-00	N/C

GENERAL LITERATURE

Catalogs, Handbooks, Product Flyers and Users Guides	Part No	Unit Cost
Superintegration Master Selection Guide 1994-1995	DC-5634-00	N/C
Superintegration Products Guide	DC-5676-00	N/C
Quality and Reliability Report	DC-8329-00	N/C
ZIA ${ }^{\text {mT }}$ 3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet	DC-5556-01	N/C
ZIA ZIA00ZCO Disk Drive Development Kit Datasheet	DC-5593-01	N/C
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet	DC-5560-01	N/C
Zilog Infrared (IR) Controllers - ZIRC' ${ }^{\text {m }}$ Datasheet	DC-5558-01	N/C
Zilog V. Fast Modem Controller Solutions	DC-5525-02	N/C
Zilog Digital Signal Processing - Z89320 Datasheet	DC-5547-01	N/C
Zilog Keyboard Controllers Datasheet	DC-5600-01	N/C
	DC-5580-02	N/C
Fault Tolerant Z $^{\text {® }}$ Microcontroller Datasheet	DC-5603-01	N/C
32 K ROM Z $^{\text {® }}$ Microcontrollers Datasheet	DC-5601-01	N/C
Zilog Datacommunications Brochure	DC-5519-00	N/C
Z89300 DTC Controller Family Brochure	DC-5608-01	N/C
Zilog Digital Signal Processing Brochure	DC-5536-02	N/C
Zilog ASSPs - Partnering With You Product Brochure	DC-5553-01	N/C
Zilog Wireless Products Datasheet	DC-5630-00	N/C
Zilog Z8604 Cost Efficient Datasheet	DC-5662-00	N/C
Zilog Chip Carrier Device Packaging Datasheet	DC-5672-00	N/C
Zilog Database of IR Codes Datasheet	DC-5631-00	N/C
Zilog PCMCIA Adaptor Chip Z86017 Datasheet	DC-5585-01	N/C
Zilog Television/Video Controllers Datasheet	DC-5567-01	N/C
Zilog TAD Controllers - Z89C65/C67/C69 Datasheet	DC-5561-02	N/C
Zilog Z87000 Z-Phone Datasheet	DC-5632-00	D/C
Zilog 1993 Annual Report	DC-1993-AR	N/C
Zilog 1994 First Quarter Financial Report	DC-1994-Q1	N/C

ORDERING INFORMATION

Complete the attached literature order form. Be sure to enclose the proper payment or supply a purchase order. Please reference specific order requirements.

MINIMUM ORDER REQUIREMENTS

Orders under $\$ 300.00$ must be prepaid by check, money order or credit card. Canadian and foreign orders must be accompanied by a cashier's check in U.S. dollars, drawn on a correspondent U.S. bank only.

Orders over $\$ 300.00$ may be submitted with a Purchase Order.

SHIPMENT

Orders will be shipped after your check is cashed or credit is checked via the most economical method. Please allow four weeks for delivery.

RETURNS ARE NOT ACCEPTED.

Phone: (408)370-8016
Fax: (408)370-8056

ZILOG DOMESTIC SALES OFFICES AND TECHNICAL CENTERS

CALIFORNIA
Agoura 818-707-2160
Campbell 408-370-8120
Irvine 714-453-9701
San Diego 619-658-0391
COLORADO
Boulder 303-494-2905
FLORIDA
Clearwater 813-725-8400
GEORGIA
Duluth 404-931-4022
ILLINOIS
Schaumburg 708-517-8080
MINNESOTAMinneapolis612-944-0737
NEW HAMPSHIRE
Nashua 603-888-8590
OHIO
Independence 216-447-1480
OREGON
Portland 503-274-6250
PENNSYLVANIA
Horsham 215-784-0805
TEXAS
Austin 512-343-8976
Dallas 214-987-9987
© 1994 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

INTERNATIONAL SALES OFFICES

CANADA

Toronto ...905-850-2377

CHINA

Shenzhen ...86-755-2236089
Shanghai .. 86-21-4370050, x5204 86-21-4331020

GERMANY

Munich ...49-8967-2045
Sömmerda ..49-3634-23906
JAPAN
Tokyo ...81-3-3587-0528
HONG KONG
Kowloon
852-7238979
KOREA
Seoul
82-2-577-3272

SINGAPORE

Singapore
65-2357155

TAIWAN

Taipei
886-2-741-3125

UNITED KINGDOM

Maidenhead
44-628-392-00

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.

Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056

Sales Representatives and Distributors

U.S., CANADIAN \& PUERTO RICAN REPRESENTATIVES

ARIZONA

Scottsdale

Thom Luke Sales, Inc.
(602) 451-5400

CALIFORNIA
Santa Clara
Phase II Technical Sales (408) 980-0414
Irvine
Infinity Sales \qquad (714) 833-0300

COLORADO
Englewood
Thorson Rocky Mountain \qquad
CONNECTICUT
Wallingford
Advanced Technical Sales (508) 664-0888
FLORIDA
Altamonte Springs
Semtronic Associates, Inc
(407) 831-8233

Clearwater
Semtronic Associates, Inc
(813) 461-4675

Fort Lauderdale
Semtronic Associates, Inc \qquad

ILLINOIS

Hoffman Estates
Victory Sales, Inc.
(708) 490-0300

IOWA
Cedar Rapids
Advanced Technical Sales (319) 393-8280
KANSAS
Olathe
Advanced Technical Sales \qquad (913) 782-8702

MARYLAND

Pasadena
Electronic Engineering \& Sales
(410) 255-9686

MASSACHUSETTS

North Reading
Advanced Technical Sales
(508) 664-0888

MICHIGAN

Novi

Rathsburg Associates, Inc.
(810) 615-4000

MINNESOTA

Minneapolis
Professional Sales for Industry (612) 944-8545

MISSOURI

Bridgeton
Advanced Technical Sales (314) 291-5003
NEW JERSEY
Cherry Hill
Tritek
(609) 667-0200

NEW MEXICO

Albuquerque
Quatra \& Associates
(505) 296-6781

NEW YORK
Fairport
L-Mar Associates, Inc. (716) 425-9100

OHIO

Centerville
Q-Mark, Inc. .. (513) 438-1129
Independence
Rathsburg Associates, Inc. (216) 447-8825
OKLAHOMA
Tulsa
Nova Marketing, Inc. (918) 660-5105

OREGON

Portland
Phase II Technical Sales
(503) 643-6455

TEXAS

Austin
Nova Marketing, Inc. (512) 343-2321
Dallas
Nova Marketing, Inc. (214) 265-4630
Houston
Nova Marketing, Inc.
(713) 240-6082

Sales Representatives and Distributors

U.S., CANADIAN \& PUERTO RICANREPRESENTATIVES
UTAH
Salt Lake CityThorson Rocky Mountain(801) 942-1683
WASHINGTON
KirklandPhase II Technical Sales(206) 823-3874
WISCONSIN
Brookfield
Victory Sales, Inc. (414) 789-5770
CANADA
British ColumbiaBBD Electronics, Inc(604) 465-4907
Ontario
BBD Electronics, Inc (905) 821-7800
Ottawa
BBD Electronics, Inc (613) 764-1752
Quebec
BBD Electronics, Inc (514) 697-0801
PUERTO RICO
San JuanSemtronic Associates, Inc.(809) 766-0700

SOUTH AMERICAN REPRESENTATIVES

ARGENTINA

Buenos Aires

Parallax Sales \& Distribution
(1) 372-7140

BRAZIL

Sao Paulo
Parallax Sales \& Distribution
(11) 535-1755

Sales Representatives and Distributors

U.S. AND CANADIAN DISTRIBUTORS
NATIONWIDE
Newark Electronics 1-800-367-3573
ALABAMA
Hamilton Hallmark Electronics Inside Alabama 800-572-7236
Outside Alabama 800-633-2918
Huntsville
Arrow Electronics (205) 837-6955 (205) 837-8700
Hamilton Hallmark Electronics
Hamilton Hallmark Electronics
ARIZONA
Hamilton Hallmark Electronics
Inside Arizona 800-352-8489
Outside Arizona 800-528-8471
Phoenix
Hamilton Hallmark Electronics (602) 437-1200
Tempe
Anthem Electronics (602) 966-6600
Arrow Electronics (602) 431-0030
CALIFORNIA
Calabasas
Arrow Electronics (818) 880-9686
Chatsworth
Anthem Electronics (818) 700-1000
Costa Mesa
Hamilton Hallmark Electronics (714) 641-4100
Hayward
Arrow Electronics (510) 487-8416
Irvine
Anthem Electronics (714) 768-4444
Arrow Electronics (714) 587-0404
Rocklin
Anthem Electronics (916) 624-9744
Hamilton Hallmark Electronics (916) 624-9781
San Diego
Anthem Electronics (619) 453-9005
Arrow Electronics (619) 565-4800
Hamilton Hallmark Electronics (619) 277-6136
San Jose
(408) 453-1200 Anthem Electronics (408) 453-1200
Arrow Electronics
Arrow Electronics
(408) 435-3500
Hamilton Hallmark Electronics
Woodland Hills
Hamilton Hallmark Electronics (818) 594-0404

COLORADO

Colorado Springs

Hamilton Hallmark Electronics (719) 637-0055
Englewood
Anthem Electronics (303) 790-4500
Arrow Electronics ... (303) 799-0258
Hamilton Hallmark Electronics (303) 790-1662

CONNECTICUT

Cheshire

Hamilton Hallmark Electronics (203) 271-2844
Wallingford
Arrow Electronics (203) 265-7741
Waterbury
Anthem Electronics (203) 596-3200

FLORIDA

Deerfield Beach

Arrow Electronics (305) 429-8200
Lake Mary
Arrow Electronics (407) 333-9300
Largo
Hamilton Hallmark Electronics (813) 541-7440
(800) 282-9350

Fort Lauderdale

Hamilton Hallmark Electronics (305) 484-5482
Winter Park
Hamilton Hallmark Electronics (407) 657-3300

GEORGIA

Duluth
Arrow Electronics (404) 497-1300
Hamilton Hallmark Electronics (404) 623-5475
ILLINOIS

Bensonville

Hamilton Hallmark Electronics (708) 860-7780
Itasca
Arrow Electronics (708) 250-0500
Schaumburg
Anthem Electronics (708) 884-0200

Sales Representatives and Distributors

U.S. AND CANADIAN DISTRIBUTORS
INDIANA
Indianapolis
Arrow Electronics (317) 299-2071 Hamilton Hallmark Electronics $317)$
$800)$
$829-8146$
Cedar Rapids
Arrow Electronics (319) 395-7230
KANSAS
Lenexa
Arrow Electronics (913) 541-9542
Hamilton Hallmark Electronics 913
$800)$
$382-47475$
KENTUCKY
Lexington
Hamilton Hallmark Electronics (800) 235-6039
(800) 525-0069
MARYLAND
Columbia
Anthem Electronics (410) 995-6640
Arrow Electronics (410) 596-7000
Hamilton Hallmark Electronics (410) 988-9800
MASSACHUSETTS
Peabody
Hamilton Hallmark Electronics (508) 532-9808
Wilmington
Anthem Electronics (508) 657-5170
Arrow Electronics (508) 658-0900
MICHIGAN
LivoniaArrow Electronics(313) 462-2290
Nori
Hamilton Hallmark Electronics (313) 347-4271
Plymouth
Hamilton Hallmark Electronics (313) 416-5800
(800) 767-9654
MINNESOTA
Bloomington
Hamilton Hallmark Electronics (612) 881-2600
Eden Prairie
Anthem Electronics (612) 944-5454
Arrow Electronics (612) $941-5280$

MISSOURI

Earth City
Hamilton Hallmark Electronics (314) 291-5350
St. Louis
Arrow Electronics
(314) 567-6888

NEVADA
Sparks
Arrow Electronics
(702) 331-5000

NEW JERSEY
Cherry Hill
Hamilton Hallmark Electronics (609) 235-1900
Marlton
Arrow Electronics (609) 596-8000
Pinebrook
Anthem Electronics (201) 227-7960
Arrow Electronics (201) 227-7880
Parsippany
Hamilton Hallmark Electronics (201) 575-4415

NEW YORK

Commack

Anthem Electronics (516) 864-6600
Hauppauge
Arrow Electronics (516) 231-2500
Hamilton Hallmark Electronics (516) 737-0600

Melville

Arrow Electronics
(516) 391-1300

Rochester
Arrow Electronics (716) 427-0300
Hamilton Hallmark Electronics716) 475-9130
Ronkonkoma
Hamilton Hallmark Electronics
(516) 737-0600

NORTH CAROLINA

Raleigh

Arrow Electronics (919) 876-3132
Hamilton Hallmark Electronics (919) 872-0712

Sales Representatives and Distributors

U.S. AND CANADIAN DISTRIBUTORS
OHIO
Centerville
Arrow Electronics (513) 435-5563
Dayton
Hamilton Hallmark Electronics (513) 439-6735
(800) 423-4688
Solon
Arrow Electronics (216) 248-3990Hamilton Hallmark Electronics(216) 498-1100
WorthingtonHamilton Hallmark Electronics(614) 888-3313
OKLAHOMA
Tulsa
Arrow Electronics (918) 252-7537
Hamilton Hallmark Electronics (918) 254-6110
OREGON
Beaverton
ALMAC/Arrow Electronics (503) 629-8090
Anthem Electronics 503 643-1114
Hamilton Hallmark Electronics (503) 526-6200
PENNSYLVANIA
Horsham
Anthem Electronics (215) 443-5150
Pittsburgh
Arrow Electronics (412) 963-6807
TEXAS
Austin
Arrow Electronics (512) 835-4180
Hamilton Hallmark Electronics (512) 258-8848
Carrollton
Arrow Electronics (214) 380-6464
Dallas
Hamilton Hallmark Electronics (214) 553-4300
Houston
Arrow Electronics (713) 530-4700
Hamilton Hallmark Electronics (713) 781-6100
Richardson
Anthem Electronics (214) 238-7100
San Antonio
Hamilton Hallmark Electronics (210) 828-2246
UTAH
Salt Lake City
Anthem Electronics (801) 973-8555Arrow Electronics801) 973-6913
Hamilton Hallmark Electronics (801) 266-2022
WASHINGTON
Bellevue
ALMAC/Arrow Electronics (206) 643-9992
Bothell
Anthem Electronics (206) 483-1700
Redmond
Hamilton Hallmark Electronics (206) 881-6697
Spokane
ALMAC/Arrow Electronics (509) 924-9500
WISCONSIN
Brookfield
Arrow Electronics (414) 792-0150
New Berlin
Hamilton Hallmark Electronics (414) 797-7844
CANADA
Alberta
Future Electronics (403) 250-5550
Future Electronics (403) 438-2858
British Columbia
Arrow Electronics (604) 421-2333
Future Electronics (604) 294-1166
Hamilton Hallmark Electronics (604) 420-4101
Manitoba
Future Electronics (204) 786-7711
Ontario
Arrow Electronics (613) 226-6903
Arrow Electronics (905) 670-7769
Future Electronics 905 612-9200
Future Electronics (613) 820-8313
Hamilton Hallmark Electronics (416) $564-6060$
Hamilton Hallmark Electronics (613) 226-1700
Quebec
Arrow Electronics (514) 421-7411
Future Electronics 514) 694-7710
Hamilton Hallmark Electronics (514) 335-1000

Sales Representatives and Distributors

CENTRAL AND SOUTH AMERICA

MEXICO
SemiconductoresProfesionales
525-524-6123
Proyeccion Electronica 525-264-7482
ARGENTINA

Buenos Aires

YEL SRL 011-541-440-1532

BRAZIL

Sao Paulo

Nishicom 011-55-11-535-1755

ASIA-PACIFIC

AUSTRALIAR\&D Electronics 61-3-558-0444
GEC Electronics Division 61-2-638-1888
CHINA
Beijing
Lestina International Ltd 86-1-849-8888Rm. 20469
China Electronics Appliance Corp. 86-755-335-4214
TLG Electronics, Ltd. 85-2-388-7613
Guang Zhou
Lestina International Ltd 86-20-885-0613 86-20-886-1615
HONG KONG
Lestina International Ltd. 852-735-1736
Electrocon Products Ltd. 852-481-6022
INDIA
Bangalore
Zenith Technologies Pvt. Ltd. 91-812-586782
Bombay
Zenith Technologies Pvt. Ltd. 91-22-4947457
INDONESIA
JakartaCinergi Asiamaju62-21-7982762
JAPAN
Tokyo
Teksel Co., Ltd. 81-3-5467-9000
Internix Incorporated 81-3-3369-1101
Kanematsu Elec. Components Corp. 81-3-3779-7811
Osaka
Teksel Co., Ltd. 81-6368-9000
KOREA
ENC-Korea 822-523-2220
MALAYSIA
Eltee Electronics Ltd. 60-3-7038498
NEW ZEALAND
GEC Electronics Division 64-25-971057
PHILIPPINES
Alexan Commercial 63-2-402223
SINGAPORE
Eltee Electronics Ltd 65-2830888
TAIWAN (ROC)
Acer Sertek, Inc. 886-2-501-0055
Orchard Electronics Co. 886-2-504-7083
Promate Electronics Co. Ltd. 886-2-659-0303
THAILAND
Eltee Electronics Ltd. 66-2-538-4600

Sales Representatives and Distributors

EUROPE

AUSTRIA
Vienna
EBV Elektronik GMBH 0043-1-8941774
Avnet/Electronic 2000 0043-1-9112847
BELGIUM
Antwerp
D \& D Electronics PVBA 32-3-8277934
Zaventem
EBV Elektronik 322-7160010
DENMARK
Brondby
Ditz Schweitzer AS 4542-453044
Lynge
Rep Delco 45-35-821200
ENGLAND
Berkshire
Future Electronics 44-753-687000
Gothic Crellon 44-734-787848
Macro Marketing 44-628-604383
Lancashire
Complementary Technologies Ltd. 44-942-274731
FINLAND
Espoo
OY SW Instruments AB 358-0-522-122
FRANCE
Cedex
A2M 331-46232425
Champs sur Marne
EBV Elektronik $331-64688600$
Massy
Reptronic SA 331-60139300
GERMANY
Berlin
EBV Elektronik GMBH 030-3421041
Avnet/Electronic 2000 030-2110761
Burgwedel
EBV Elektronik GMBH 05139-80870
Dortmund
Future GMBH 02305-42051
Duesseldorf
Avnet/Electronic 2000 0211-92003-0
Thesys/AE 0211-53602-0
Erfurt
Thesys 0361-4278100
Frankfurt
EBV Elektronik GMBH 069-785037
Avnet/Electronic 2000 069-973840
Future GMBH 06126-54020
Thesys/AE 06434-5041
Hamburg
Avnet/Electronic 2000 040-64557021
Leonberg
EBV Elektronik GMBH 07152-30090
Muenchen
Avnet/Electronic 2000 089-4511004
EBV Elektronik GMBH 089-456100
Future GMBH 089-9571950
Nuernberg
Avnet/Electronic 2000 0911-9951610
Neuss
EBV Elektronik GMBH 02131-96770
Stuttgart
Avnet/Electronic 2000 07156-356190
Future GMBH 0711-830830
Thesys/AE 0711-9889100
Weissbach
EBV Elektronik GMBH 036-426486

ISRAEL	SPAIN
RDT ..972-36450707	Barcelona
ITALY	Amitron-Arrow S.A. 0034-3-4907494
Milano	Madrid ${ }_{\text {Amitron-Arrow S A }}$
De Mico S.P.A.. 0039-295-343600	Amitron-Arrow S.A. 0034-1-3043040
EBV Elektronik 0039-2-66017111	SWEDEN
Firenze	Bexab Sweden AB 46-8-630-8800
EBV Elektronik 0039-55-350792	
Roma	SWITZERLAND
EBV Elektronik 0039-6-2253367	Dietikon
Modena	EBV Elektronik GMBH 0041-1-7401090
EBV Elektronik 0039-59-344752	Lausanne EBV Elektronik AG \qquad 0041-21-3112804
Napoli	Regensdorf
EBV Elektronik 0039-81-2395540	Eurodis AG0041-1-8433111
Torino	
EBV Elektronik 0039-11-2161531	UKRAINE
Vicenza	Kiev
EBV Elektronik 0039-444-572366	Thesys/Mikropribor04434-9533
NETHERLANDS	
EBV Elektronik313-46562353	
NORWAY Bexab Norge \qquad 47-63833800	
POLAND	
Warsaw	
Gamma Ltd.004822-330853	
PORTUGAL	
Amadora	
Amitron-Arrow. 0035-1-4714806	
RUSSIA	
Woronesh	
Thesys/Intertechna.................................. 0732593697	
Vyborg	
Gamma Ltd. ..081278-31509	
St. Petersburg	
Gamma Ltd. ..0812-5131402	

Zilog, Inc.
210 East Hacienda Ave. Campbell, CA 95008-6600
408-370-8000

[^0]: *Abbreviated set

