Q حانた

Digital Signal Processors

Includes Specifications and Application Notes for the following parts:

Z89C00 Z86C95
Z89120/920 Z89121/921 Z89320/321

Digital Signal Processors

Includes Specifications for the following parts:
- Z86C95
- Z89C00
■ Z89120/920
- Z89121/921
- Z89320/321

Databook

DSP DATABOOK

Table of Contents

Title Page
Introduction I-1
Z86C95 Z8 ${ }^{\circledR}$ Digital Signal Processor 1-1
Z89C00 16-Bit Digital Signal Processor 2-1
Z89C00 DSP Application Note 3-1
"Understanding Q15 Two's Complement Fractional Multiplication"
Z89120, Z89920 (ROMless) 16-Bit Mixed Signal Processor. 4-1
Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor. 5-1
Z89320 16-Bit Mixed Signal Processor 6-1
Z89321 16-Bit Mixed Signal Processor 7-1
Support Product Information 8-1
Superintegration ${ }^{m \times 1}$ Products Guide S-1
Literature Guide and Third Party Support L-1
Zilog's Sales Offices, Representatives and Distributors Z-1
\square

Introduction

2

Z89C00 DSP
 Application Note

289120, 289920 (ROMIess) 16-Bit Mixed Signal Processor

INTRODUCTION

Zilog's Focus on Application Specific Products Helps You Maintain Your Technological Edge

Zilog's DSP products are suitable for a broad range of applications, from general-purpose use through speech synthesis and mass storage. Whichever device you choose, you'll find a comprehensive feature set and easy-to-use development tools to speed your design time to production.

Z86C95 CMOS Z8 ${ }^{\text {® }}$ Digital Signal Processor

The Z86C95 is a ROMless Z8 microcontroller with an embedded 16-bit DSP. This device is well suited for servo control in mass storage applications, digital filtering in motor controllers and non-interruptable power supplies. The slave DSP executes most instructions in a single clock cycle, including 16-bit by 16-bit multiplication and accumulation. The Z86C95 has 16 digital I/O lines, an 8-channel, 8-bit A-to-D converter with 2μ s conversion time, an 8-bit D-to-A converter with programmable gain, a PWM, UART, and SPI, three 16-bit timers with capture and compare registers, a hardwired 16-bit by 16-bit multiplier and a 32-bit/16-bit divider for the Z8. Support tools include demonstration boards, assemblers/linkers, and a real time trace emulation system.

Z89C00 16-Bit Digital Signal Processor

With a high-performance single-cycle multiply/accumulate instruction and zero software overhead pointer architecture, the Z89C00 is an excellent choice for many DSP designs. Flexible general-purpose I/O features, including a 16-bit address and data bus and a 16-bit I/O bus, make it easy to configure even slow peripherals into the system. A comprehensive set of development support tools makes it even easier to work with the Z89C00. This device offers broad functionality in an affordable package for consumer and industrial product designs alike.

Z89120, Z89920 (ROMless) 16-Bit Mixed Signal Processor

Multiple-chip capability in a single-chip solution is the hallmark of the Z89120. Combining 16 -bit DSP functions with an integrated 8-bit microcontroller and A/D, D/A converters, it is an optimal choice for communications applications including audio, fax, voice mail, modems and data transmission, as the Z89120 can handle several of these functions without additional hardware. Its very low power consumption and small footprint make it ideal for portable use, or in applications requiring long-term continuous operation, such as security systems and other supervisory instrumentation. The Z89920 is the ROMless version of the Z89120 device.

Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor

The Z89121 system processor offers exceptional flexibility for applications like voice mail and personal communications, which involve substantial I/O and storage requirements. Two Codec ports allow extensive analog interfacing, and expanded DSP program memory space—plus a 32-Mbit DRAM interface-accommodates digital speech generation and storage. The Z8912's compact design provides maximum space-efficiency for remote messaging and paging applications. The Z89921 is the ROMless version of the Z89121 device.

Z89320 16-Bit Digital Signal Processor

The $\mathbf{Z 8 9 3 2 0}$ provides the computational power of the Z89C00 at a cost effective price. This device incorporates 512 bytes of RAM and 4 K words of program ROM. Two general purpose user inputs and two user outputs provide convenient peripheral monitoring or control. A dedicated 16 -bit I/O bus assists in transferring information to and from external peripherals. The compact instruction set is standard to all Zilog DSP products and provides ease-of-use programming. Applications include high-volume multimedia, digital audio, speech processing, and system control.

Z89321 16-Bit Digital Signal Processor

Building on the Z89320 feature set, the Z89321 integrates a dual codec interface to assist in the transfer of analog signals to the processor. A standard 8-bit codec can be used to communicate with the interface. An upgrade to the Z89321 will provide an expansion to the interface capabilities to include 16-bit linear and 16-bit stereo codecs. This integration path provides additional cost advantages to customers that use codecs for transfer of data.

Introduction

Z86C95 Z8 Digital Signal Processor

Z89C00 16-Bit Digital Signal Processor

Z89C00 DSP Application Note

289120, 289920 (ROMless) 16-Bit Mixed Signal Processor

289121, 289921 (ROMIess) 16-Bit Mixed Signal Processor

\qquad

Z86C95 CMOS Z8® DIGITAL SIGNAL PROCESSOR

FEATURES

- Complete Microcontroller, 16 I/O Lines, and up to 64 Kbytes of Addressable External Space Each for Program and Data Memory
- Embedded Reduced InstructionSetDSP (Digital Signal Processor) for Digital Servo Control, with 16×16-Bit Multiply and Accumulate in One Clock Cycle
- 8-Channel, 8-Bit A/D Converter with Track and Hold and Minimum Single Conversion Time of $2 \mu \mathrm{~s}$
- 8-Bit D/A Converter with Programmable Gain Stage and a Maximum Settling Time of $3 \mu \mathrm{~s}$
- Single Channel $40 / 80 \mathrm{kHz}$ Pulse Width Modulator
- 256-Byte Register File, Including 236 General-Purpose Registers, Four I/O Port Registers and 16 Status and Control Registers
- 16×16-Bit Hardwired Multiply and 32 -Bit by 16 -Bit Divide, Exclusive of DSP
- Four External Vectored Priority Interrupts for I/O, Counter/Timers and UART

■ On-Chip Oscillator that Accepts Crystal or External Clock Drive

- Full-Duplex UART
- 16-Bit Counter/Timers with Capture and Compare Registers
- Register Pointer for Short, Fast Instructions to Any One of the 16 Working Register Groups
- Serial Peripheral Interface
- Multiplexed and Demultiplexed Address/Data Bus
- Single +5 V Power Supply, All I/O Pins TTL Compatible
- 1.2 Micron CMOS Technology

■ Clock Speeds 20 and 24 MHz

- Three Low-Power Standby Modes; STOP, HALT, and PAUSE
- Flash EPROM Write Support

GENERAL DESCRIPTION

The Z86C95 MCU (Microcontroller Unit) introduces a new level of sophistication to Superintegration ${ }^{\mathrm{TM}}$. The Z86C95 is a member of the Z^{8} single-chip microcontroller family incorporating aCMOSROMless Z8 microcontroller with an embedded DSP processor for digital servo control. The DSP slave processor can perform 16×16-bit multiplicates and accumulates in one clock cycle. Additionally, the Z86C95 is further enhanced with a hardwired 16×16-bit multiplier and 32 -bit/16-bit divider, three 16 -bit counter timers with capture and compare registers, a half flash 8bit A/D converter with a 2μ s conversion time, an 8 -bit DAC with $1 / 4$ programmable gain stage, UART, serial periph-
eral interface, and a PWM output channel (Figure 1). It is fabricated using 1.2 micron CMOS technology and offered in an 80-pin QFP, 84-pin PLCC package, or a 100-pin VQFP (Figures 2, 3, and 4).

The Z86C95 provides up to 16 output address lines. This permits an address space of up to 64 Kbytes of data and program memory each. Eight address outputs (AD7-ADO) are provided by a multiplexed, 8 -bit, Address/Data bus. The remaining eight bits are provided through output address bits A15-A8.

GENERAL DESCRIPTION (Continued)

There are 256 registers located on chip and organized as 236 general-purpose registers, 16 control and status registers, and four I/O port registers. The register file can be divided into 16 groups of 16 working registers each. Configuration of the registers in this manner allows the use of short format instructions; in addition, any of the individual registers can be accessed directly. The Z86C95 contains 256 words of DSP Program RAM configured from the $Z 8$ side as 512 bytes of RAM and 128 words of DSP data RAM.

Notes:

All Signals with a preceding front slash, " $/ 1$, are active Low, e.g., B / W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V_{cc}	V_{DD}
Ground	GND	V_{ss}

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 80-Pin QFP Pin Assignments

PIN DESCRIPTION (Continued)
Table 1. 80-Pin QFP Pin Identification

No.	Symbol	Function	Direction
1-5	ANA(3)-ANA(7)	Input to A/D	Input
6	$V D_{\text {Lo }}$	Low Ref Volt, DAC	Input
7	DAC	D/A Converter Output	Output
8	$\mathrm{VD}_{\mathrm{HI}}$	High Ref Volt, DAC	Input
9	$V_{\text {D }}$	Digital Power Supply	Input
10-12	P3(7)-P3(5)	Port 3, Pins 7,6,5	Output
13-16	P3(3)-P3(0)	Port 3, Pins 3, 2, 1,0	Input
17	XTAL1	Crystal, OSC CLK	Input
18	XTAL2	Crystal, OSC CLK	Output
19	PWM	Pulse Width Modulator	Output
20	/RESET	Reset	Input
21	SCLK	System Clock	Output
22	SYNC	Synchronize Pin	Output
23	IACK	Interrupt Acknowledge	Output
24	P3(4)	Port 3, Pin 4	Output
25	IAS	Address Strobe	Output
26	/DS	Data Strobe	Output
27	R/W	Read/Write	Output
28-34	AD7-AD1	MUX ADD/DATA, Pins 7-1	Input/Output
35	$V_{\text {ss }}$	Digital Ground	Input
36	ADO	MUX ADD/DATA, Pin 0	Input/Output
37-52	AO-A15	External Address	Output
53		Digital Ground	
54	$V_{\text {D }}$	Digital Power Supply	Input
55	DO	SPI Data Out	Output
56	DI	SPI Data In	Input
57	SK	SPI Clock	Input/Output
58	SLAVESEL	Slave Select	Input
59	DSP_RW	DSP Emulation RNW Pin	Output
60	DSP_SYNC	DSP Emulation Sync Pin	Output
	CO2-CO1	Compare Outputs for Timer 2	Output
63	DSP_SSN	DSP Emulation Single Step Pin	Input
64	WAIT	Wait	Input
65-72	P2(0)-P2(7)	Port 2, Pins 0-7	Input, Output
73	V_{ss}	Digital Ground	Input
74			
75	$\mathrm{AV}_{\text {cc }}$	Analog Power Supply	Input
76	$V A_{\text {HI }}$	High Ref Volt, A/D	Input
77	$V A_{\text {Lo }}$	Low Ref Volt, A/D	Input
78-80	ANA(0)-ANA(2)	Input to A/D	Input

Figure 3. 84-Pin PLCC Pin Assignments

PIN DESCRIPTION (Continued)
Table 2. 84-Pin PLCC Pin Identification

No.	Symbol	Function	Direction
1	P27	Port 2 Pin 7	Input/Output
2	$\mathrm{V}_{\text {ss }}$	Digital Ground	Input
3	$A \mathrm{~N}_{\text {GNo }}$	Analog Ground	Input
4	$\mathrm{AV}_{\text {cc }}^{\text {GNo }}$	Analog Power Supply	Input
5	$\mathrm{VA}_{\text {HI }}$	High Ref Volt, A/D	Input
6	VA	Low Ref Volt, A/D	Input
7-10	ANAO-ANA3	Input to A/D, Pins 0-3	Input
12-15	ANA4-ANA7	Input to AD, Pins 5-7	Input
16	$\mathrm{VD}_{\text {Lo }}$	Low Ref Volt, DAC	Input
17	DAC	D/A Converter Output	Output
18	$\mathrm{VD}_{\text {HI }}$	High Ref Volt, DAC	Input
19	$V_{\text {DD }}$	Digital Power Supply	Input
20-22	P37-P35	Port 3, Pins 7-5	Output
23-26	P33-P30	Port 3, Pins 3-0	Input
27	XTAL1	Crystal, OSC CLK	Input
28	XTAL2	Crystal, OSC CLK	Output
29	PWM	Pulse Width Modulator	Output
30	/RESET	Reset	Input
31	SCLK	System Clock	Output
32	SYNC	Z8 Emulation Sync Pin	Output
33	N/C	No Connection	
34	IACK	Interrupt Acknowledge	Output
35	P34	Port 3, Pin 4	Output
36	/AS	Address Strobe	Output
37	/DS	Data Strobe	Output
38	R/W	Read/Write	Output
39-45	AD7-AD1	MUX ADD/DATA, Pins 7-1	Input/Output
46	$V_{\text {ss }}$	Digital Ground	Input
47	ADO	MUX ADO/DATA Pin 0	Input/Output
48-51	AO-A3	External Address	Output
52	DSP-A8	MSB of DSP PC	Output
53	A4	External Address	Output
54-64	A5-A15	External Address	Output
65	$\mathrm{V}_{\text {ss }}$	Digital Ground	Input
66	$\mathrm{V}_{\text {D }}$	Digital Power Supply	Input
67	DO	SPI Data Out	Output
68	DI	SPI Data In	Input
69	SK	SPI Clock	Input/Output
70	SLAVESEL	Slave Select	Input
71	DSP_RW	DSP Emulation R/W Pin	Output
72	DSP_SYNC	DSP Emulation SYNC Pin	Output
73-74	C02-C01	Compare Outputs for Timer 2	Output
75	DSP_SSN	DSP Emulation Single Step Pin	Output
76	N/C	No Connection	
77	WAIT	Wait	Input
78-84	P20-P26	Port 2, Pins 0-6	Input/Output

Figure 4. 100-Pin VQFP Pin Assignments

PIN DESCRIPTION (Continued)

Table 3. 100-Pin VQFP Pin Identification

No.	Symbol	Function	Direction
1-2	N/C	No Connection	
3-6	ANA4-ANA7	Input to AD, Pins 5-7	Input
7	VDLO	Low Ref Volt, DAC	Input
8	DAC	D/A Converter Output	Output
9	VDHI	High Ref Volt, DAC	Input
10	VDD	Digital Power Supply	Input
11-13	P37-P35	Port 3, Pins 7-5	Output
14-17	P33-P30	Port 3, Pins 3-0	Input
18	XTAL1	Crystal, OSC CLK	Input
19	XTAL2	Crystal, OSC CLK	Output
20	PWM	Pulse Width Modulator	Output
21	/RESET	Reset	Input
22	N/C	No Connection	
23	SCLK	System Clock	Output
24	SYNC	Synchronize Pin	Output
25-28	N/C	No Connection	
29	IACK	Interrupt Acknowledge	Output
30	P34	Port 3, Pin 4	Output
31	IAS	Address Strobe	Output
32	/DS	Data Strobe	Output
	R/W		Output
$34-40$	AD7-AD1	MUX ADD/DATA, Pins 7-1	Input/Output
41	VSS	Digital Ground	Input
42	ADO	MUX ADO/DATA Pin 0	Input/Output
43-46	AD-A3	External Address	Output
47	DSP-A8	MSB of DSP PC	Output
48-50	N/C	No Connection	
51-62	A5-A15	External Address	Output
63	VSS	Digital Ground	Input
64	VDD	Digital Power Supply	Input
65	N/C	No Connection	
66	D0	SPI Data Out	Output
67	D1	SPI Data In	Input
68	SK	SPI Clock	Input/Output
69	SLAVESEL	Slave Select	Input
70	DSP_RW	DSP Emulation R/W Pin	Output
71	DSP_SYNC	DSP Emulation SYNC Pin	Output
72-73	C02-C01	Compare Outputs for Timer 2	Output
74	DSP_SSN	DSP Emulation Single Step Pin	Output
75	WAIT	Wait	Input
76-77	N/C	No Connection	
78-85	P20-P27	Port 2, Pins 0-6	Input/Output
86	VSS	Digital Ground	Input
87-89	N/C	No Connection	
90	ANGND	Analog Ground	Input
91	AVCC	Analog Power Supply	Input
92	VAHI	High Ref Volt, A/D	Input
93	VALO	Low Ref Volt, A/D	Input
94-97	ANAO-ANA3	Input to A/D, Pins 0-3	Input
98-100	N/C	No Connection	

PIN FUNCTIONS

Figure 5. Pin Functions
/DS (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid. Data Strobe will tri-state in reset.

IAS (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the highimpedance state along with Port 1, Data Strobe, and Read/ Write.

PIN FUNCTIONS (Continued)

/RESET (input, active Low). To avoid asynchronous and noisy reset problems, the Z86C95 is equipped with a reset filter of four external clocks (4TpC). If the external /RESET signal is less than 4TpC in duration, no reset occurs.

On the fifth clock after the /RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is held active Low while /AS cycles at a rate of $\mathrm{TpC} / 2$. When /RESET is deactivated, program execution begins at location 000 CH . Reset time must be held Low for 50 ms or until $V_{D D}$ is stable, whichever is longer.

XTAL1, XTAL2 Crystal 1, Crystal 2 (time-based input and output, respectively). These pins connect a parallelresonant crystal, ceramic resonator, LC, or any external single-phase clock to the on-chip oscillator and buffer.

R//W (output, read High/write Low). The Read/Write signal is low when the MCU is writing to the external program or data memory. Will tri-state in reset.

A15-A8 (output). Demultiplexed high byte of Z8 external address bus. Auto Latch when in reset.

A7-A0 (output). Demultiplexed low byte of Z8 external address bus or internal DSP address bus.

AD7-AD0 (input, output). Multiplexed Z8 address/data bus. Auto Latch when in reset.

AN7-AN0 (analog input). Analog inputs to the A/D converter.

DAC (output). Analog output of the D/A converter.
PWM (output). Pulse Width Modulator output. Open-Drain.
CO1 (output). Compare output1 for timer T2.
$\mathbf{C O 2}$ (output). Compare output2 for timer T2.
SLAVESEL (input, active Low). SPI Slave Select is used in Slave mode to mark the beginning and end of a transaction.

SK (input, output). SPI clock.
DI (input, active High). SPI serial data input in both master and slave mode.

DO (output, active High). SPI serial data output.
/WAIT (input, active Low). Introduces asynchronous wait states into the external memory fetch cycle. When this input goes Low during an external memory access, the Z8 freezes the fetch cycle until this pin goes High. This pin is sampled after /DS goes Low; should be pulled up if not used.

VA $_{H I}$ (input). Reference voltage (High) for the A/D converter.
$\mathbf{V A}_{\text {Lo }}$ (input). Reference voltage (Low) for the A/D converter.
$\mathbf{A N V}_{\mathbf{c c}}$ (input). Analog power supply for A / D and D / A.
$\mathbf{A N} \mathbf{G N D}$ (input). Analog ground for A / D and D / A.
$\mathrm{VD}_{\mathrm{HI}}$ (input). Reference voltage (High) for D/A converter.
VD ${ }_{\text {Lo }}$ (input). Reference voltage (Low) for D/A converter.
SSTEP (input, active High). DSP single-step control pin. The DSP processor will execute a NOP instruction and hold the program counter value when this pin is High. /SSTEP is synchronized with the system clock; should be pulled Low if not used.

SCLK System Clock (output). The internal system clock is available at this pin.

IACK Interrupt Acknowledge (output, active High). This output, when High, indicates that the Z86C95 is in an interrupt cycle.

ISYNC (output, active Low). This signal indicates the last clock cycle of the currently executing instruction.

Port 2 （P27－P20）．Port 2 is an 8 －bit，bit programmable， bidirectional，CMOS compatible port．Each of these eight I／O lines can be independently programmed as an input or output or globally as an open－drain output．Port 2 is always available for I／O operation．When used as an I／O port，Port 2 may be placed under handshake control．In this configu－
ration，Port 3 lines P31（Port 3，bit 1）and P36 are used as the handshake controls lines／DAV2 and RDY2．The hand－ shake signal assignment for Port 3 lines P31 and P36 is dictated by the direction（input or output）assigned to P27 （Figure 6）．

Figure 6．Port 2 Configuration

PIN FUNCTIONS (Continued)

Port3(P37-P30). Port3 is an 8-bit, CMOS compatible fourfixed input and four-fixed output port. These 8 I/O lines have four-fixed (P33-P30) input and four-fixed (P37-P34)
output ports (Table 3). Port 3 P30 and P37, when used as serial I/O, are programmed as serial in and serial out, respectively (Figure 7).

Figure 7. Port 3 Configuration

Port 3 is configured under software control to provide the following control functions: Handshakes for Ports 2 (/DAV and RDY); four external interrupt request signals (IRQ3IRQO); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {out }}$), and Data Memory Select (/DM).

Port 3 lines P37 and P30, can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by the Counter/ Timer0.

Table 4. Port 3 Pin Assignments

Pin \#	VO	CTC1	Int.	P2HS	UART	Ext.
P30	In		IRQ3		Serial In	
P31	In	$T_{\text {IN }}$	IRQ2	D/R		
P32	In		IRQ0			
P33	In		IRQ1			/DM
P34	Out					
P35	Out			R/D		
P36	Out	$T_{\text {Out }}$			Serial Out	
P37	Out					

The Z86C95 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is On , bit 7 of the received data
is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs that are not externally driven. Whether this level is 0 or 1 , cannot be determined. A valid CMOS level rather, than a floating node, reduces excessive supply current flow in the input buffer.

Received Data (No Parity)

Figure 8. Serial Data Formats

ADDRESS SPACE

Program Memory. The Z86C95 can address up to 64 Kbytes of external program memory (Figure 9). Program execution begins at external location 000 CH after a reset.

Data Memory (/DM). The Z86C95 can address up to 64 Kbytes of external data memory (Figure 9). External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function, that can be programmed to appear on P34 (Port 3 , bit 4), is used to distinguish between data and program memory space. The state of the/DM signal is controlled by
the type instruction being executed. An LDC opcode references program (/DM inactive) memory, and an LDE instruction references DATA (/DM active Low) memory. Data Memory will tri-state in reset.

Register Memory Map. The Z86C95 register memory space is split into five register files; the original Z8 Register File, Expanded Register File A (ERF-A), Expanded Register File B (ERF-B), Expanded Register File C (ERF-C) and Expanded Register File D (ERF-D) (Figure 10).

Figure 9. Program and Data Memory Configuration

Z8 Standard Control Registers

Figure 10. Register File

ADDRESS SPACE（Continued）

Register File．The Register File consists of four I／O port registers， 236 General－Purpose Registers and 16 control and status registers．The instructions can access registers directly or indirectly through an 8 －bit address field．The Z86C95 also allows short 4－bit register addressing using the Register Pointer（Figures 11，12）．In the 4－bit mode，the Register File is divided into 16 working register groups， each occupying 16 contiguous locations．The Register Pointer addresses the starting location of the active work－ ing－register group．

Expanded Register File．The register memory has been further expanded into four additional register files known as Expanded Register Files A thorough D．Each of these register files contain 15 banks of 16 registers per bank． ERF－A stores data for the DSP processor in nine banks of its register space as well as system control registers and peripheral device registers in the remaining six banks． ERF－B contains the remaining four banks of DSP data memory（total DSP data memory is 208 bytes［accessible by the Z8］）as well as ten banks of DSP program memory． ERF－C contains fourteen banks of DSP program memory， and ERF－D contains eight banks of DSP program memory making a total of 512 bytes．Bank F is common to all four Expanded Register Files．Register（8H）in bankF is the Z8／ DSP control register．This register allows a quick means of switching between register files while in the DSP．To do this，bits 5 and 6 of the Z8／DSP control register are used as follows：D6／5－00 for ERF－A，D6／5－01 for ERF－B，D6／5－10 for ERF－C，D6／5－11 for ERF－D．On power－up，bits 5 and 6 are reset to 0 thereby enabling access to ERF－A．Bits 7－4 of the register pointer，RP，select the working register bank of the register file while bits $3-0$ of the register pointer，RP， selects the working register bank of the Expanded Regis－ ter File．Once an expanded register bank is selected it is effectively overlayed onto Bank 0 of the Z8＇s working register file．When an expanded register bank is selected， access to the Z8＇s ports is turned off．

Stack．The Z86C95 has a 16 －bit Stack Pointer（FEH－FFH） used for external stack that resides anywhere in the data memory．An 8 －bit Stack Pointer（FFH）is used for the internal stack that resides within the 236 general－purpose registers（ $04 \mathrm{H}-\mathrm{EFH}$ ）．The High byte of the Stack Pointer （SPI－Bits 15－8）can be used as a general－purpose register when using internal stack only．

R253 RP

Figure 11．Register Pointer Register

The upper nibble of the register file address provided by the register pointer specifies the active working－register group．

Figure 12．Register Pointer

Z8®／DSP MEMORY INTERFACE

There are three types of memory spaces residing in the Z8／ DSP interface：

1．DSP Program Memory．The size of this memory is 512 bytes．This memory space is mapped into ERF－B，C， and D of the $Z 8$ ．It occupies bank 1 through bank A in ERF－B，bank 1 through bank E in ERF－C，and bank 1 through bank 8 in ERF－D．（Figures 13 and 14）．

2．DSP Data Memory．There are two data memory banks each 64×16 in size called DSP RAM0 and DSP RAM1． This translates to 256 bytes．However，only 208 bytes
out of 256 are shared between the $Z 8$ and the DSP．Out of this 208 bytes， 144 bytes are mapped to Bank 1 through Bank 9 of ERF－A．The remaining bytes are mapped into Bank B through Bank E of ERF－B．

3．Z8／DSP Interface Registers．The register mapping of the various registers which are part of the Z8／DSP interface are shown in Figure 15.

Figure 13．DSP Program and Data Memory

Z8/DSP MEMORY INTERFACE (Continued)

Figure 14. DSP Program and Data Memory

	ERF (A) ERF (B) Bank F
9 H	Register Pointer 0 (R0)
1H	Register Pointer 1 (R1)
2 H	Register Pointer 2 (R2)
3 H	Register Pointer 3 (R3)
4H	DSP Status Register High Byte
5 H	DSP Status Register Low Byte
6 H	Psuedo Program Counter (LSB)
7H	Psuedo Instruction Register
8H	Z8/DSP Control Register
AH	Psuedo Program Counter (MSB)
CH	Shadow Latch (LSB)
DH	Shadow Latch (MSB)

Figure 15. Z8/DSP Interface Register Mapping

The details of the data memory mapping between the Z8 and the DSP are shown in Figures 16 and 17 . For example,
Bank 1 of ERF-A is split between DSP RAM1 and RAMO. and the DSP are shown in Figures 16 and 17. For example,
Bank 1 of ERF-A is split between DSP RAM1 and RAMO. Bytes 15 through 8 are mapped to DSP RAM1 and bytes 7 through 0 are mapped to DSP RAMO. Similarly, Banks 2,

3 and so on are all split between RAMO for the first 8 bytes and RAM1 for the last 8 bytes. Also, notice that the higher order bits (15 through 8 of the DSP word) are mapped to an even number byte of the $\mathrm{Z8}$ and the lower order bits of the DSP (7 through 0) are mapped to the odd numbered bytes of the Z8. The size of DSP RAM1 and RAMO is 64 16bit words each. These occupy hex addresses 00 through $3 F$. The following is the bank mapping of $Z 8$ ERF-A and ERF-B to the DSP RAM1 and RAMO.

DSP RAM1/RAM0	Z8 Bank
$00-03$	Bank 1 of ERF-A
$04-07$	Bank 2 of ERF-A
$08-0 B$	Bank 3 of ERF-A
$0 C-0 F$	Bank 4 of ERF-A
$10-13$	Bank 5 of ERF-A
$14-17$	Bank 6 of ERF-A
$18-1 B$	Bank 7 of ERF-A
$1 C-1 F$	Bank 8 of ERF-A
$20-23$	Bank 9 of ERF-A
$24-27$	Bank B of ERF-B
$28-2 B$	Bank C of ERF-B
$2 C-2 F$	Bank D of ERF-B
$30-33$	Bank E of ERF-B
$34-3 F$	Not mapped to Z8

Z8/DSP MEMORY INTERFACE (Continued)

Access to a working bank in ERF-A is achieved by selecting the appropriate lower four bits, 3-0 of the Register Pointer, RP located within the Z8's Standard Register Bank. Bits 5 and 6 of the Z8/DSP control register are used to access the remaining register files as follows: D6/5-00 for ERF-A, D6/5-01 for ERF-B,D6/5-10 for ERF-C,D6/511 for ERF-D. Notice that bank F in ERF-B or C or D is the same as that of ERF-A. This provides common access to the Z8/DSP control register which allows movement from
any register file to any other file. In other words, all the registers in bank F can be accessed from any of the four ERFs.

The interface registers (except the Z8/DSP control register) program memory and data memory of the DSP can not be accessed while the DSP is executing from the internal program memory.

Figure 17. Close-Up of ERF (A) Bank 1 Byte Addressing

Figure 16. Data Memory Mapping of Z8 and DSP

Z8／DSP Interface．The block diagram of the Z8／DSP interface logic and shared RAM between the Z8 and DSP is shown in Figures 18 and 19.

Figure 18．Block Diagram of Z8／DSP Interface

Z8/DSP MEMORY INTERFACE (Continued)

Figure 19. DSP Core

Access to DSP Processor

There are three ways to instruct the DSP to execute instructions．

1．Through the internal program memory（512 Bytes）：
The program memory can be loaded by the $Z 8$（series of load immediate instructions）．After loading the pro－ gram memory，the Pseudo－PC can be loaded with the start address for program execution．Loading of the pseudo－PC will start the DSP．The DSP keeps execut－ ing until STOP DSP instruction which puts the DSP in the low power mode．As shown in the DSP instruction set，branching is allowed within the program memory space（ 512 bytes）．The instruction execution time in this mode is one state time in the pipeline mode except for Branch and Load Immediate to the register point－ ers．This takes three and two state times，respectively， in the pipeline mode．

2．Another way to start the DSP execution from the internal program memory is to load the Shadow latch register with the start address and set bit 3 of the Z ／ DSP control register to 1 ．When the A／D converter finishes conversion，it generates an interrupt to the DSP which then loads the pseudo－PC from the shadow latch and start the execution from that location．Notice that this enables a very fast LOOP execution by avoiding a $Z 8$ interrupt wait time delay．

3．Through loading the Psuedo－IR with the appropriate instruction：

The DSP instruction（8 bits）is loaded as a Load Immediate data value into the Pseudo－IR．The DSP then wakes up from the power－down mode，executes the instruction and goes back to the power down mode．Since a Load Immediate operation takes six clocks，the instruction execution time in this mode is six clocks．Notice，that branching in this mode can be done by examining the Status register of the DSP which is mapped to the $\mathrm{Z8}$ space（Figure 20）．

ERF（A）（B）Bank F，Register 8

Figure 20．Z8／DSP Control Register

Bits 7 not implemented．
Bits 5， 6 Access to ERF A／B／C／D．
Bit 4 enables the Z8 to execute from internal memory（256 bytes）when set to 1 ，this bit is automatically reset to 0 on power－up．

Bit 3 enables automatic DSP execution when the A／D completes conversion（when set to 1）．

Bit 2 allows reset of the DSP．
Bit 1 indicates the status of the DSP．When bit 1 is set to 1 it indicates the DSP is busy executing from internal pro－ gram memory．Bit 1 is reset to 0 on power－up．

Bit 0 enables PAUSE mode when set to 1 ．Bit 0 is reset to 0 on power－up（see power－down mode）．

FUNCTIONAL DESCRIPTION

Z8 Multiply/Divide Unit

This section describes the basic features, implementation details and the interface between the Z8 and the multiply/ divide unit (Figure 21).

Basic features:
16×16-Bit Multiply with 32 -Bit Product

- 32×16-Bit Divide with 16 -Bit Quotient and 16-Bit Remainder
- Unsigned Integer Data Format

Simple Interface to Z8

Interface to Z8. The following is a brief description of the register mapping in the multiply/divide unit and its interface to $Z 8$.

The multiply/divide unit is interfaced like a peripheral. The only addressing mode available with the peripheral interface is register addressing. In other words, all the operands are in the respective registers before a multiplication/ division can start.

Figure 21. Z8 Multiply/Divide Unit Block Diagram

Register Mapping. The registers used in the multiply/ divide unit are mapped onto the expanded register file A in Bank E. The exact register locations used are as shown below.

Register	Address
REG0	(E) 00 H
REG1	(E) 01 H
REG2	(E) 02 H
REG3	(E) 03 H
REG4	(E) 04 H
REG5	(E) 05 H
REG6	(E) 06 H
REG7	(E) 14 H
REG8	(E) 15 H

Register Allocation. The following is the register allocation during multiplication.

Allocation	Register
Multiplier high byte	REG2
Multiplier low byte	REG3
Multiplicand high byte	REG4
Multiplicand low byte	REG5
Result high byte of high word	REGO
Result low byte of high word	REG1
Result high byte of low word	REG2
Result low byte of low word	REG3
Control register	REG6

The following is the register allocation during division.

Allocation	Register
High byte of high word of dividend	REG0
Low byte of high word of dividend	REG1
High byte of low word of dividend	REG2
Low byte of low word of dividend	REG3
High byte of divisor	REG4
Low byte of divisor	REG5
High byte of remainder	REG0
Low byte of remainder	REG1
High byte of quotient	REG2
Low byte of quotient	REG3
Control register	REG6

Control Register. The MDCON control register is used to interface with the multiply/divide unit (Figures 22 and 23). Specific functions of various bits in the control register are shown.

DONE Bit (D7). This bit is a handshake bit between the math unit and the external world. On power up, this bit is set to 1 to indicate that the math unit has completed the previous operation and is ready to perform the next operation.

Before starting a new multiply/divide operation this bit should be reset to 0 by the processor/programmer. This will indicate that all the data registers have been loaded and the math unit can now begin a multiply/divide operation. During the process of multiplication or division, this bit is write-protected. Once the math unit completes its operation it will set this bit to indicate the completion of operation. The processor/programmer can then read the result.

FUNCTIONAL DESCRIPTION (Continued)

Figure 22. Multiply/Divide Control Register (MDCON)

General-Purpose Register
General-Purpose Register
Compare Register 1 Low Byte
Compare Register 1 High Byte
Not Used
MUL/DIV Control Register
MUL/DIV Register 5
MUL/DIV Register 4
MUL/DIV Register 3
MUL/DIV Register 2
MULDIV Register 1
MUL/DIV Register 0

Figure 23. ERF (A) Bank E

MULSL Multiply Select (D6). If this bit is set to 1 , it will indicate a multiply operation directive. Like the DONE bit, this bit is also write-protected during math unit operation and is reset to zero by the math unit upon starting of multiply/divide operation.

DIVSL Division Select (D5). Similar to D6, D5 will start a division operation.

D4-D2 Reserved.

DIVOVF Division Overflow (D1). This bit indicated an overflow during the division process. Division overflow occurs when the high word of the dividend is greater than or equal to the divisor. This bit is read only. When set to 1 , it indicates overflow error.

DIVZR Division by Zero (DO). When set to 1 this indicates an error of division by 0 . This bit is read only.

Example:

Upon reset, the status of the MDCON register is 100uuu00b (D7 to DO).

$$
\begin{aligned}
& u=\text { Undefined } \\
& x=\text { Irrelevant } \\
& b=\text { Binary }
\end{aligned}
$$

If multiplication operation is desired, the MDCON register should be set to 010xxxxxb.

If the MDCON register is READ during multiplication, it would have a value of 000uuu00b.

On completion of multiplication, the result of the MDCON register will be 100uuu00b.

If division operation is desired, the MDCON register should be set to 001xxxxxb.

During division operation, the register would contain OOOuu??b (? - value depends on the DIVIDEND, DIVISOR).

Upon completion of division operation, the MDCON register would contain 100uuu??b.

Note that once the multiplication/division operation starts, all data registers (REG5 thorough REGO) are writeprotected and so are the writable bits of the MDCON register. The write protection is released once the math unit operation is complete. However, the registers can be read any time.

A multiplication sequence would look like:

1. Load multiplier and multiplicand.
2. Load MDCON register to start multiply operation.
3. Wait for the DONE bit of the MDCON register to be set to 1 and then read results.

Note that while the multiply/divide operation is in progress, the programmer can use the Z 8 to do other things. Also, since the multiplication/division takes fixed numbers of cycles, the results can be read before the DONE bit is set.

During a division operation, the error flag bits are set at the beginning of the division operation which means the flag bits can be checked by the $Z 8$ while the division operation is being done.

REG7 and REG8 can be used as scratch pad registers or as external data memory address pointers during an LDE instruction. REG0 thorough REG5 and REG7 and REG8, if not used for multiplication or division, can be used as general-purpose registers.

Performance of Multiplication. The actual multiplication takes 17 clock cycles. It is expected that the chip would run at a 10 MHz internal clock frequency (external clock
divided-by-two). This would result in an actual multiplication time (16×16-bit) of $1.7 \mu \mathrm{~s}$. If we include the time taken to load and read the registers:

$$
\text { number of clock cycles to load } 5 \text { registers }=30
$$

number of clock cycles to read 4 registers $=24$
then, the total number of clock cycles is 71 . This results in a net multiplication time of $7.1 \mu \mathrm{~s}$. Note that this would be the worst case. This assumes that all of the operands are loaded from the external world as opposed to some of the operands being already in place as a result of a previous operation whose destination register is one of the math unit registers.

Performance of Division. The actual division needs 20 clock cycles. This translates to 2.0μ s for the actual division at 10 MHz (internal clock speed). If the time to load operands and read results is included:
number of clock cycles to load operands $=42$
number of clock cycles to read results $=24$
The total clock cycles to perform a division is 86 cycles. This translates to $8.6 \mu \mathrm{~s}$ at 10 MHz .

FUNCTIONAL DESCRIPTION（Continued）

Counter／Timers

This section describes the enhanced features of the counter／ timers（CTC）on the Z86C95（Figure 24）．It contains the register mapping of CTC registers and the bit functions of the newly added Timer2 control register．

In astandard Z8，there are two 8－bitprogrammable counter／ timers（ TO and T 1 ），each driven by its own 6 －bit program－ mable prescaler．The T1 prescaler can be driven by internal or external clock sources；however，the TO prescaler is driven by the internal clock only．

The 6 －bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 ．Each prescaler drives its counter，which decrements the value （ 1 to 256）that has been loaded into the counter．When the counter reaches the end of the count，a timer interrupt request，IRQ4（T0）or IRQ5（T1），is generated．

The counters can be programmed to start，stop，restart to continue，or restart from the initial value．Also，the counters can be programmed to stop upon reaching zero（single pass mode）or to automatically reload the initial value and continue counting（modulo－n continuous mode）．

The counters，but not the prescalers，can be read at any time without disturbing their value or count mode．The clock source for $T 1$ is user－definable and can be either the internal microprocessor clock divided by four，or an exter－ nal signal input through Port 3．The Timer Mode register configures the external timer input（P31）as an external clock，a trigger input that can be retriggerable or non－ retriggerable，or as a gate input for the internal clock．The counter／timers can be cascaded by connecting the TO output to the input of T1．Either TO or T1 can be outputted through P36．

The following are the enhancements made to the counter／ timer block on the Z86C95：

TO counter length is extended to 16 bits．For example，TO now has a 6 －bit prescaler and 16 －bit down counter．

T 1 counter length is extended to 16 bits．For example，T1 now has a 6 －bit prescaler and 16 －bit down counter．

A new counter／timer T2 is added．T2 has a 4－bit prescaler and a 16－bit down counter with three capture registers and two compare registers．

These three counters are cascadable as shown in Table 5. The result is that T2 may be extendable to 32 bits and T1 extendable to 24 bits．Bits 1 and 0 （CAS1 ANDCASO）of the T2 Prescaler Register（PRE2）determine the counter length．

Table 5．Z86C95 Counter Length Configurations

CAS1	CASO	T0	T1	T2
0	0	8	8	32
0	1	16	16	16
1	0	8	24	16
1	1	8	16	24

The controlling clock input to T2 can be programmed to XTAL／2 or XTAL／8 which results in a resolution of 100 ns at external XTAL clock speed of 20 MHz ．

Figure 24．Counter／Timer Block Diagram

Capture and Compare

There are three capture registers associated with T2 HIGH BYTE and T2 LOW BYTE registers and two compare registers on timer T2 (Figure 25). At the falling edge of the appropriate Port 3 input, the current value of Timer 2 (T2) is "captured" into a read only register. For example, the negative going transition on P33 will enable the latching of the current T2 value (16-bits) into the Capture Register 1
(CAP1). The register mapping and the appropriate inputs are shown below (Table 6). Note that the negative transition on P33, P32, and P30 is capable of generating an interrupt. Also, the negative transition on Port 3 will always latch the current T2 value into the capture register. There in no need for a control bit to enable/disable the latching.

	ERF (A), Bank D
(D) 0 FH	Compare Register 2 Low Byte
(D)0EH	Compare Register 2 High Byte
(D)0DH	Capture Register 3 Low Byte
(D)0CH	Capture Register 3 High Byte
(D) 0 BH	Capture Register 2 Low Byte
(D)OAH	Capture Register 2 High Byte
(D)09H	Capture Register 1 Low Byte
(D)08H	Capture Register 1 High Byte
(D)07H	Timer2 Low Byte
(D)06H	Timer2 High Byte
(D)05H	Capture/Compare Control Register
(D) 04 H	Timer0 High Byte
(D)03H	Timer2 Prescaler
(D)02H	Timer1 High Byte
(D) 01 H	Timer2 Mode Register

Figure 25. Capture and Compare Registers

Table 6. Capture Register Mapping

Capture Register	Port 3	Input	Addr. High	Addr. Low
CAP1	P33	Falling	(D) 8	(D) 9
CAP2	P32	Falling	(D) A	(D) B
CAP3	P30	Falling	(D) C	(D) D

FUNCTIONAL DESCRIPTION（Continued）

Compare Registers．Whenever the current value of T2 equals the contents of the compare register，some action is taken depending on the contents of the T2 Compare

Control Register（COMCON）．Also，a successful com－ parison can generate an interrupt（if enabled）and also set a bit in the control register that can be polled at a later date （Figure 26）．

COM2 Compare 2 （D7）．This bit is set to 1 when the contents of Compare Register 2 （COM2）match the current value of T2．This bit will have to be cleared by the interrupt polling routine．

Interrupt Enable 2 （D6）．This bit，when set to 1，will enable the interrupt for COM2．

CO2 Output（D5，D4）．Controls the value outputted on CO2 according to Table 7.

COM1 Compare 1 （D3）．This bit is set to 1 when the contents of Compare Register 1 （COM1）match the current value of T2．This bit will have to be cleared by the interrupt polling routine（Table 8）．

Interrupt Enable 1 （D2）．This bit when set to 1 enables the interrupt for COM1．When either D6 or D2 is set and the corresponding compare register contents match the cur－ rent value of $T 2$ ，an interrupt is generated on IRQ5，which is configured as an OR of T1IRQ，COM1，or COM2 interrupts．

Figure 26．T2 Compare Control Register（COMCON）

CO1 Output（D1，D0）．Controls the value outputted on CO1 according to the following table：

Table 7．Compare Output Status

Bit $\mathbf{5}$	Bit $\mathbf{4}$	
Bit $\mathbf{1}$	Bit $\mathbf{0}$	Output on Compare Output
0	0	NOP（CO1／CO2 retain previous value）
0	1	Reset to＂0＂
1	0	Set to＂1＂
1	1	Toggle status

Table 8．Compare Register Mapping

Compare Register	Addr．High	Addr．Low
COM1	（E）C	（E）D
COM2	（D）E	（D）F

Observations：

Except for the programmable down counter length and clock input，T2 is identical to TO．

TO and T1 retain all their features except that now they are extendable interims of the down counter length．

The output of T2，under program control，can go to an output pin（P35）．Also，the interrupt generated by T2 can be ORed with the interrupt request generated by P32．Note that the service routine then has to poll the T2 flag bit and also clear it（bit 7 of T2 Timer Mode Register）．

On power up，TO and T1 are configured in the 8 －bit down counter length mode（to be compatible with Z86C91）and T2 is in the 32 －bit mode with its output disabled（no interrupt is generated and T2 output DOES NOT go to port P35）．

The UART uses TO for generating the bit clock．This means， while using UART TO should be in 8 －bit mode．So，while using the UART there are only two independent timer／ counters．

The counters are configured in the following manner:

T0 in 8-bit mode T0 in 16-bit mode	T0 Low byte T0 High byte, T0 Low byte
T1 in 8-bit mode	T1 Low byte
T1 in 16-bit mode	T1 High byte, T1 Low byte
T1 in 24-bit mode	T0 High byte, T1 High byte T1 Low byte
T2 in 16-bit mode	T2 High byte, T2 Low byte T2 in 24-bit mode T0 High byte, T2 High byte T2 Low byte
T2 in 32-bit mode	T0 High byte, T1 High byte,

Note that the T2 interrupt is logically ORed with P32 to generate IRQO.

The T2 Timer Mode register is shown in Figure 27. Upon reaching end of count, bit 7 of this register is set to 1 . This bit ISNOT reset in hardware and it has to be cleared by the interrupt service routine.

The register map of the new CTC registers is shown in Figure 12. T0 High byte, T1 High byte are at the same relative locations as their respective Low bytes, but in a different register bank.

The T2 prescaler register is shown in Figure 28. Bit 1 and Bit 0 of this register controls the various cascade modes of the counters as shown in Table 1.

Figure 28. T2 Prescaler Register (PRE2)

ERF (A) Bank D, Register 1

Figure 27. T2 Timer Mode Register (T2)

Analog to Digital Converter (ADC)

The ADC is an 8-bit half flash converter which uses two reference resistor ladders for its upper 4 bits (MSBs) and lower 4 bits (LSBs) conversion. Two reference voltage pins, $\mathrm{VA}_{\mathrm{HI}}$ (High) and VA LO_{O} (Low), are provided for external reference voltage supplies. During the sampling period from one of the eight channel inputs, the converter is also being auto-zeroed before starting the conversion. The conversion time is dependent on the external clock frequency and the selection of the prescaler value for the internal ADC clock source. The minimum conversion time is $2.0 \mu \mathrm{~s}$. (See Figure 29, ADC Architecture.)

The ADC is controlled by the $\mathrm{Z8}$ and its six registers (two Control and four Result) are mapped into the Extended Register File. The first Result register is also readable by the DSP. The DSP can access the ADC control register 0 , and this allows the DSP to change Input Channel selections.

A conversion can be initiated in one of four ways: by writing to the Command register, from a rising or falling edge on Port32 pin or Timer0 equal 0 . These four are programmably selectable. There are four modes of operation that can be selected: one channel converted four times with the results written to each Result register, one channel continuously converted and one Result channel updated for each conversion, four channels converted once each and the four results written to the Result registers, and four channels repeatedly converted and the Result registers kept updated. The channel to be converted is programmable and if one of the four-channel modes is selected then the programmed channel will be the first channel converted
and the other three will be in sequence following with wraparound from Channel 7 to Channel 0.

The start commands are implemented in such a way as to begin a conversion at any time, if a conversion is in progress and a new start command is received, then the conversion in progress will be aborted and a new conversion will be initiated. This allows the programmed values to be changed without affecting a conversion-in-progress. The new values will take effect only after a new start command is received.

The clock prescaler can be programmed to derive a minimum 2μ s conversion time for XTAL clock inputs from 4 MHz to 20 MHz . For example, with a 20 MHz XTAL clock the prescaler should be programmed for divide by 40 which then gives a 2μ s conversion rate.

The ADC can generate an Interrupt after either the first or fourth conversion is complete depending on the programmable selection.

The ADC can be disabled (for low power) or enabled by a Control Register bit.

Though the ADC will function for a smaller input voltage and voltage reference, the noise and offsets remain constant over the specified electrical range. The errors of the converter will increase and the conversion time may also take slightly longer due to smaller input signals.

Figure 29. ADC Architecture

FUNCTIONAL DESCRIPTION (Continued)

Figure 30. ADC Control Register 0

Prescaler Values (bits 7, 6, 5).

D2	D1	D0	Prescaler (XTAL divided by)
0	0	0	8
0	0	0	128^{\star}
0	0	1	16
0	1	0	24
0	1	1	32
1	0	0	40
1	0	1	48
1	1	0	66
1	1	1	64

Note:

The ADC is being characterized as of this date. The errors of the converter are estimated to increase to 2LSBs (Integral non-linearity), 1 LSB (Differential non-linearity) and 10 mV (Zero error at $25^{\circ} \mathrm{C}$) if the voltage swing on the reference ladder is decreased to -3 V .

* 33 MHz Device only.

Modes (bits 4, 3).

QUAD	SCAN	
0	0	Convert selected channel 4 times then stop
0	1	Convert selected channel then stop
1	0	Convert 4 channels then stop
1	1	Convert 4 channels continuously

Channel Select (bits 2, 1, 0).

CSEL2	CSEL1	CSELO	Channel
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

ERF (A) Bank C, Register 9

Figure 31. ADC Control Register 1

ADE (bit 7). AO disables any A/D conversions or accessing any ADC registers except writing to ADE bit. A1 Enables all ADC accesses.

Reserved (bits 6, 5). Reserved for future use.
ADCINT (bit 4). This is the ADC Interrupt bit and is read only by the Z8, the ADCINT will be reset any time this register is written.

ADIT (bit 3). This bit selects when to set the ADC Interrupt if $A D I E=1$. A 0 sets the Interrupt after the first A / D conversion is complete. A 1 sets the Interrupt after the fourth A / D conversion is complete.

ADIE (bit 2). This is the ADC Interrupt Enable. A 0 disables setting the ADC Interrupt. A 1 enables setting the ADC Interrupt.

START (bits 1, 0).

ADST1	ADST0	Mode
0	0	Conversion starts when this register is written.
0	1	Conversion starts on a rising edge at Port 3-2. Conversion starts on a falling edge at Port 3-2.
1	0	Conversion starts when Timer0 times out.

These are the four ADC result registers, Reg-A holds the first result and Reg-D the fourth result. These registers are RNW by the Z8 (Writable for test purposes) and Reg-A is Read Only by the DSP and is mapped to Reg 1 for the DSP. Figure 32 shows the timing diagram for the ADC.
ERF (A) Bank C, Registers A,B,C,D

Figure 32. Result Registers

Figure 33. ADC Timing Diagram

Figure 34. ERF(A) Bank C

Figure 35 shows the input circuit of the ADC. When conversion starts the analog input voltage from one of the eight channel inputs is connected to the MSB and LSB flash converter inputs as shown in the Input Impedance CKT diagram. Effectively, shunting 31 parallel internal resistance of the analog switches and simultaneously charging 31 parallel 0.5 pF capacitors, which is equivalent to seeing a 400 Ohms input impedance in parallel with a

16 pF capacitor. Other input stray capacitance adds about 10 pF to the input load. For input source resistances up to 2 kOhms can be used under normal operating condition without any degradation of the input settling time. For larger input source resistance, longer conversion cycle time may be required to compensate the input settling time problem.

Figure 35. Input Impedance of ADC

Digital to Analog Converter (DAC)

The DAC (Digital to Analog Converter) is an 8-bit resistor string, with a programmable 0.25 X and 0.5 X gain output buffer. The DAC output voltage is settled after the internal digital data is latched. Two pins are provided externally for
the DAC reference voltage supplies, $\mathrm{VD}_{\mathrm{H} \mid}$ and VD_{L}, these should not exceed the supply voltages. The DAC output is latch-up protected and can drive output loads (Figure 36).

Figure 36. DAC Block Diagram

The DAC is controlled by the Z8. Its two registers (Control

1 and Data 1) are mapped into the ERF (Figures 37 and 38). The Data 1 register is writable by the DSP.

The DAC can be enabled or disabled by programming the Control 1 register or it can be programmed to output an analog voltage when the Data 1 register is loaded. The Control 1 register is used to program for the Gain factor of the DAC output.

The DAC Data Register is initialized to 80 H on power-up (Figure 38). Also the DAC gain control pivots about a midpoint rather than ground. (Figure 38). When the gain control is at 1.0 X or 0.5 X or 0.25 X the DAC output remains constant when the DAC data register equals 80 H (Figure 39).

ERF (A) Bank C, Register 7

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{D} 7 & \mathrm{D} 6 & \mathrm{D} 5 & \mathrm{D} 4 & \mathrm{D} 3 & \mathrm{D} 2 & \mathrm{D} 1 & \mathrm{D} 0 \\
\hline
\end{array}
$$

Figure 37. DAC Control Register

DAC Output in Volts

Figure 39. Gain Control on DAC

FUNCTIONAL DESCRIPTION (Continued)

Serial Peripheral Interface

Serial Peripheral Interface (SPI). The Z86C95 incorporates a serial peripheral interface for communication with other microcontrollers and peripherals. The SPI includes features such as Master/Slave selection and Compare mode. The SPI consists of four registers; SPI Control Register (SCON), SPI Compare Register (SCOMP), SPI Receive/Buffer Register (RxBUF), and SPI Shift Register (Figures 40, 41, and 42). SCON is located in bank C of the Expanded Register Group at Address 02. This register is a read/write register that controls; Master/Slave selection, interrupts, clock source and phase selection, and error flag. Bit 0 enables/disables the SPI with the default being SPI disabled. A 1 in this location enables the SPI, and a 0 disables the SPI.

Bits 1 and 2 of the SCON register in Master Mode selects the clock rate. The user may choose whether internal clock is divide by $2,4,8$, or 16 . In Slave Mode, Bit 1 of this register flags the user if an overrun of the RxBUF Register has occurred.

The RxCharOverrun flag can only be reset by writing a 0 to this bit. In slave mode, bit 2 of the Control Register can disable the data-out I/O function. If a 1 is written to this bit, the data-out pin is tri-stated. If 00 is written to this bit, the SPI will shift out one bit for each bit received. Bit 3 of the SCON Register enables the interrupt of the SPI, with the default being disabled. Bit 4 signals that a receive character is available in the RxBUF Register. If the associated

IRQ0 is enabled, an interrupt is generated. Bit 5 controls the clock phase of the SPI. A 1 in Bit 5 allows for receiving data on the clock's falling edge and transmitting data on the clock's rising edge. A 0 allows receiving data on the clock's rising edge and transmitting on the clock's falling edge.

The SPI clock source is defined in bit 6 for Master mode. A 1 uses TimerO output for the SPI clock, and a O uses TCLK for clocking the SPI. In Slave mode, bit 6 will enable or disable the address compare feature. Finally, bit 7 determines whether the SPI is used as a Master or a Slave. A 1 puts the SPI into Master mode and a 0 puts the SPI into Slave mode.

SPI Operation. The SPI can be used in one of two modes; either as system slave, or a system master. In the slave mode, data transfer starts when the slave select (SLAVESEL) pin goes active. Data is transferred into the slave's SPI Shift Register, through the DI pin, which has the same address as the RxBUF Register. After a byte of data has been received by the SPI Shift Register a Receive Character Available (RCA/IRQO) interrupt and flag is generated. The next byte of data may be received at this time, but the RxBUF Register must be cleared, or a Receive Character Overrun (RxCharOverrun) flag is set in the SCON Register and the data in the RxBUF Register is overwritten.

ERF (A) Bank C, Register 2

$\mathrm{D7}$	D 6	D 5	D 4	D 3	D 2	D 1	D 0

ERF (A) Bank C, Register 1

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{D} 7 & \mathrm{D} 6 & \mathrm{D} 5 & \mathrm{D} 4 & \mathrm{D} 3 & \mathrm{D} 2 & \mathrm{D} 1 & \mathrm{D} 0 \\
\hline
\end{array}
$$

Figure 41. SPI TXRXDATA Register

ERF (A) Bank C, Register 0

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{D} 7 & \mathrm{D} 6 & \mathrm{D} 5 & \mathrm{D} 4 & \mathrm{D} 3 & \mathrm{D} 2 & \mathrm{D} 1 & \mathrm{D} 0 \\
\hline
\end{array}
$$

Figure 42. SPI Compare Register

Figure 40. SPI Control Register (SCON)

Serial Peripheral Interface（Continued）

When the communication between the master and slave is complete，the SS goes inactive．Unless disconnected，for every bit that is transferred into the slave through the DI pin， a bit is transferred out through the DO pin on the opposite clock edge．During slave operation，the SPI clock pin（SK） is an input（Figure 43）．In master mode，the CPU must first activate a SS through one of it＇s I／O ports．Next，data is transferred through the master＇s DO pin one bit per master clock cycle．Loading data into the shift register initiates the transfer．In master mode，the master＇s clock drives the slave＇s clock．At the conclusion of a transfer，a Receive Character Available（RCA／IRQ0）interrupt and flag is gen－ erated．Before data is transferred through the DO pin，the SPI Enable bit in the SCON Register must be enabled．

SPI Compare．When the SPI Compare Enable bit，D6 of the SCON Register is set to 1 ，the SPI Compare feature is enabled．The compare feature is only valid for slave mode． A compare transaction begins when the SS line goes active．Data is received as if it were a normal transaction， but there is no data transmitted to avoid bus contention with other slave devices．When the compare byte is re－ ceived，IRQ0 is not generated．Instead，the data is com－ pared with the contents of the SCOMP Register．If the data does not match，DO will remain inactive and the slave will ignore all data until the SS signal is reset．

SPI Clock．The SPI clock can be driven from three sources； with Timer0，a division of the internal system clock，or an external master when in slave mode．Bit D6 of the SCON Register controls what source drives the SPI clock．Di－ vided－by－2，4，8，or 16 can be chosen as the scaler with bits D2，D1 in master mode．

Receive Character Available and Overrun．When a com－ plete data stream is received an interrupt is generated and the RxCharAvail bit in the SCON Register is set．Bit 4 in the SCONRegister is for enabling or disabling the RxCharAvail interrupt．The RxCharAvail bit is available for interrupt polling purposes and is reset when the RxBUF Register is read．RxCharAvail is generated in both master and slave modes．While in slave mode，if the RxBUF is not read before the next data stream is received and loaded into the RxBUF Register，Receive Character Overrun （RxCharOverrun）occurs．Since there is no need for clock control in slave mode，bit D1 in the SPI Control Register is used to log any RxCharOverrun．

Figure 43．SPI Timing

Interrupts

The Z86C95 has six different interrupts from ten different sources (Table 9). The interrupts are maskable and prioritized. The eight sources are divided as follow: four sources are claimed by Port 3 lines P33-P30, one is Serial Out, one is Serial In, and two in the counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z86C95 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated an interrupt request is granted. Thus, this disables all of the subsequent interrupts, save the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need
service. Software initiated interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request must be valid $5 T p C$ before the falling edge of the last clock cycle of the currently executing instruction.

When the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupts on the Z86C95.

Table 9. Z86C95 Interrupts

Name	Source	Vector	Comments
IRQ0	P3.2, SPI, A/D Start	0,1	Falling Edge Triggered
IRQ1	P3.3, A/D Finish	2,3	Falling Edge Triggered
IRQ2	P3.2, T	N	Falling Edge Triggered
IRQ3	P3.0, Serial In	6,5	Falling Edge Triggered
IRQ4	T0, Serial Out	8,9	Internal
IRQ5	T1	10,11	Internal

FUNCTIONAL DESCRIPTION (Continued)

Clock

The Z86C95 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = input, XTAL2 = Output). The crystal should be AT cut, 1 MHz to 24 MHz max, and series resistance (RS) is less than
or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the crystal vendor's recommended capacitors ($10 \mathrm{pF}<\mathrm{CL}<100 \mathrm{pF}$) from each pin $V_{\text {ss }}$ pin (Figure 44).

Figure 44. Oscillator Configuration

Power Down Modes

HALT. Will turn off the internal CPU clock but not the XTAL oscillation. The counter/timers and the external interrupt IRQ0, IRQ1, IRQ2, and IRQ3 remains active. The devices may be recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to $10 \mu \mathrm{~A}$ or less. The STOP mode is terminated by a /RESET, which causes the processor to restart the application program at address 000 CH .

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=OFFH) immediately before the appropriate sleep instruction. i.e.:

FF	NOP	; clear the pipeline
6F	STOP	; enter STOP mode
		or
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT mode

PAUSE. This is similar to the STOP mode, except in the recovery method, and the fact that the program counter simply continues from where it paused instead of resetting to 000 CH . PAUSE mode is entered by setting bit 0 of DSP control register to 1 and executing a HALT instruction. All the internal clocks are stopped during the PAUSE mode thus resulting in very low power. To recover from the PAUSE mode, the Z86C95 needs to see a negative going transition on Port 32. This generates an interrupt and operation can resume by simply doing an IRET in the interrupt execution routine. The recovery time from PAUSE mode is equal to the XTAL oscillator stabilization time +1.3 ms (XTAL frequency of 20 MHz).

Pulse Width Modulator (PWM)

This block provides a Pulse Width Modulated output at a constant period based on the input clock.

The PWM provides an output waveform whose period is either the internal system clock or the buffered XTAL input divided by 256. The duty cycle of this waveform is programmable by a register in the Extended Register File of the $\mathrm{Z8}$ and can have values from 0 to 99.6% ($\mathrm{Reg}=0$ to 255). A programmed value of O will disable the counter and place the PWM in a low power mode. Any non-zero value programmed in this register will enable the PWM divider and generate the selected output waveform.

The clock source for the PWM is programmable providing the user access to a higher frequency clock versus using the internal clock. The clock source is selected using Bit 7 of the DAC control register (ERF(A) Bank C, Register 6). D7 $=1$ selects a buffered XTAL1 clock, D7 $=0$ selects XTAL divided-by-2 (Figure 37).

Figure 45. Pulse Width Modulation Register Assignment

The PWM register is used to program the duty cycle of the PWM. If the programmed value is 0 , then the PWM is disabled and the PWM output is OFF. For any non-zero value the PWM output is a periodic waveform which is High for (value/256)X100\% of the period.

DIGITAL SIGNAL PROCESSOR

The DSP slave processor is a 16-bit fixed point, two's complement high-speed digital signal processor. The basic concept behind the DSP megacell is to simplify the architecture and instructions as much as possible, providing a user-friendly programming environment for various DSP algorithms (Figure 47). Additionally, a convenient mapping architecture was designed to allow the Z8 to map the DSP memory into the shared expanded register file architecture of the $\mathbf{Z 8}$.

The Z86C95's DSP has two sets of high-speed on-chip RAM for data storage. The RAM data specified by two different RAM address registers or instruction address field are read out in one machine cycle. Multiplication, addition and register loading can be accomplished in one clock cycle. The instructions are one cycle pipelined, which are transparent to the users.

Architectural Overview

The Z86C95's DSP employs a 16-bit fixed point, two's complement number system (Figure 50). The binary point is assumed to be placed right next to the sign bit. DSP algorithms are accomplished by single-cycle multiply/ accumulate instructions, two on-chip RAM banks, dedicated arithmetic logic unit, user-definable I/O for signal processing and other functions. (See DSP Commands Section below.)

Cycles Per Instruction

Most instructions are one machine cycle instructions which are executed in 1 cycle time. Load register pointer immediate and Branch instructions need two machine cycles to execute. Besides these execution machine cycles, one more cycle is required if the PC (program counter) is selected as the destination of a data transfer instruction. This happens when register indirect branch is executed. An a1*b1 +ACC \rightarrow ACC calculation is done in one machine clock cycle modifying the RAM pointer contents. Both a1 and b1 can be RAM contents located in two independent addresses. Since each instruction is fetched into the instruction register one cycle earlier and the pre-fetched instruction is decoded at the next machine cycle, one
additional machine cycle is required to modify the PC content. For instance, consider the example of a simple branch instruction, "BRA NZ, 135.At $t=T_{n}$ ", the pre-fetched content of the pseudo instruction register, "BRA NZ, 135", starts to decode and execute while the pseudo PC is automatically increased to "105". Since the instruction is to change the PC to " 135 " if the condition is NZ, the next fetched instruction would be treated as a NOP.

Indirect Addressing Mode

Register INDIRECT addressing is the method of addressing within the Z86C95's DSP. This is accomplished by means of four register pointers, two for each bank. These pointers are R0 and R1 for DSP RAM(0) and R2 and R3 for DSP RAM(1). The register pointers are located within the Z8/DSP interface register bank (BankF in both ERF (A) and ERF (B)). For example, "LDI RO, 14" will load "14" into the register pointer RO. If followed by an instruction "LD (RO)" for example the contents of the register in DSP RAMO whose address is "14" will be loaded into the accumulator (Figures 48 and 49).

Arithmetic Logic Unit

Upon loading the DSP data RAM the Z86C95's DSP can multiply two 16-bit integers and accumulate a 24-bit result in one clock cycle. For example, an "MPYA (RO), (R1)" will load the contents of the DSP RAM(0) registers pointed to by R0 and R1 respectively into the multiplier, multiply the RAM (0) registers and add the result to the accumulator. The result of the multiplication is available at the next machine cycle.

DSP Single Step Timing

The occurrence of pre-selected DSP_PC stop address and DSP_SYNC needs to be detected. DSP_SSN is pulled high which stops the DSP until DSP_SSN is pulled low at which time the DSP will execute until the next time DSP_SSN is high. DSP_SSN should not be pulled high for second or third bytes of multi-byte instructions, only for first byte of multi-byte instructions or for single byte instructions (Figure 46).

Figure 46. DSP Single Step Timing

DIGITAL SIGNAL PROCESSOR (Continued)

Figure 47. Block Diagram of DSP

Figure 48. DSP Status Register 1

Figure 50. Z86C95 Memory Architecture

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Unit
$V_{D D}$	Supply Voltage＊	-0.3	+7.0	V
$\mathrm{~T}_{\text {STG }}$	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp	\dagger	\dagger	C

＊Voltages on all pins with respect to GND．
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device．This is a stress rating only；operation of the device at any condition above those indicated in the operational sec－ tions of these specifications is not implied．Exposure to absolute maximum rating conditions for an extended pe－ riod may affect device reliability．

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted（Figure 51）．

Figure 51．Test Load Diagram

DC ELECTRICAL CHARACTERISTICS
$V_{c c}=3.3 V \pm 10 \%$

Sym	Parameter	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { Min } \quad \text { Max } \end{aligned}$		Typical at $25^{\circ} \mathrm{C}$	Units	Conditions
	Max Input Voltage		7		V	$\mathrm{I}_{\mathbb{W}}<250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {ch }}$	Clock Input High Voltage	0.8 V cc	$V_{\text {cc }}$		V	Driven by External Clock Generator
$V_{\text {a }}$	Clock Input Low Voltage	-0.3	$0.1 \mathrm{~V}_{\text {cc }}$		V	Driven by External Clock Generator
$V_{\text {IH }}$	Input High Voltage	$0.6 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}$		V	
V_{11}	Input Low Voltage	-0.3	$0.2 \mathrm{~V}_{\mathrm{cc}}$		V	
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.0			V	$\mathrm{I}_{\text {OH }}=-1.0 \mathrm{~mA}$
$V_{\text {он }}$	Output High Voltage	$\mathrm{V}_{\text {cc }}-100 \mathrm{mV}$			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
V_{0}	Output Low Voltage		0.4		V	$\mathrm{I}_{\mathrm{OL}}=+1.0 \mathrm{~mA}$
$V_{\text {RH }}$	Reset Input High Voitage	$0.8 \mathrm{~V}_{\mathrm{cc}}$	$V_{c c}$		V	
$V_{\text {R1 }}$	Reset Input Low Voltage	-0.3	$0.2 \mathrm{~V}_{\text {cc }}$		V	
1	Input Leakage	-2	2		$\mu \mathrm{A}$	Test at OV, $\mathrm{V}_{\text {cc }}$
10	Output Leakage	-2	2		$\mu \mathrm{A}$	Test at OV, V_{cc}
$I_{\text {IR }}$	Reset Input Current		-120		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$
I_{cc}	Supply Current		50	40	mA	@ 24 MHz [1]
	HALT mode		15	10	mA	HALT mode $\mathrm{V}_{\mathrm{w}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} @ 24 \mathrm{MHz}$ [1]
lcCl	PAUSE and STOP mode		20	6	$\mu \mathrm{A}$	STOP mode $V_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}[1]$
$\mathrm{l}_{\text {clu }}$	Auto Latch Low Current	-10	10	5	$\mu \mathrm{A}$	

Note:

[1] All inputs driven to $\mathrm{OV}, \mathrm{V}_{\mathrm{cc}}$ and outputs floating.

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$

Sym	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { Min } \end{aligned}$		Typical at $25^{\circ} \mathrm{C}$	Units	Conditions
	Max Input Voltage		7		\checkmark	$\mathrm{I}_{\mathrm{N}}<250 \mu \mathrm{~A}$
$V_{\text {ch }}$	Clock Input High Voltage	3.8	$V_{c c}$		v	Driven by External Clock Generator
$V_{\text {c }}$	Clock Input Low Voltage	-0.3	0.8		V	Driven by External Clock Generator
$V_{\text {H }}$	Input High Voltage	2.0	V_{cc}		V	
V_{11}	Input Low Voltage	-0.3	0.8		V	
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4			,	$\mathrm{I}_{\text {OH }}=-2.0 \mathrm{~mA}$
$V_{\text {OH }}$	Output High Voltage	$\mathrm{V}_{\text {cc }}-100 \mathrm{mV}$			V	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$
V_{0}	Output Low Voltage		0.4		V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
$V_{\text {RH }}$	Reset Input High Voltage	3.8	$V_{\text {cc }}$		V	
$V_{\text {RI }}$	Reset Input Low Voltage	-0.03	0.8		V	
	Input Leakage	-2	2		$\mu \mathrm{A}$	Test at OV, $\mathrm{V}_{\text {cc }}$
10	Output Leakage	-2	2		$\mu \mathrm{A}$	Testat $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$
$I_{\text {IR }}$	Reset Input Current		-120		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{fL}}=0 \mathrm{~V}$
$l_{\text {cc }}$	Supply Current		82	50	mA	@ $24 \mathrm{MHz} \mathrm{[1]}$
			120	70	mA	(c) 33 MHz [1]
$\mathrm{ICC1}$	HALT mode		20	13	mA	
			30	20	mA	HALT mode $V_{\mathbb{N}}=O V, V_{c c} @ 33 \mathrm{MHz}$ [1]
Icc 2	PAUSE and STOP mode		20	6	$\mu \mathrm{A}$	STOP mode $V_{\mathbb{W}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}[1]$
${ }_{\text {all }}$	Auto Latch Low Current	-10	10	5	$\mu \mathrm{A}$	

Note:

[1] All inputs driven to $\mathrm{OV}, \mathrm{V}_{\mathrm{cc}}$ and outputs floating.

AC CHARACTERISTICS

External I/O or Memory Read/Write Timing Diagram

Figure 52. External VO or Memory Read/Write Timing

AC CHARACTERISTICS

External I/O or Memory Read and Write; DSR/DSW; WAIT Timing Table

No	Sym	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 33 \mathrm{MHz}^{* *} \quad 24 \mathrm{MHz} \end{gathered}$				$\begin{gathered} \text { Typical } \\ \mathbf{V}_{\text {cc }}=5.0 \mathrm{~V} \\ @\left(25^{\circ} \mathrm{C}\right. \end{gathered}$	Units
			Min	Max	Min	Max		
1	TdA(AS)	Address Valid To /AS Rise Delay	13		22			ns
2	TdAS(A)	/AS Rise To Address Hold Time	20		25			ns
3	TdAS(D)	/AS Rise Data In Req'd Valid Delay		90		130		ns
4	TwAS	/AS Low Width	20		28			ns
5	TdAZ(DSR)	Address Float To /DS Fall (Read)	0		0			ns
6	TwDSR	/DS (Read) Low Width	65		100			ns
7	TwDSW	/DS (Write) Low Width	40		65			ns
8	TdDSR(DI)	/DS Fall (Read) To Data Req'd Valid Delay		30		85		ns
9	ThDSR(DI)	/DS Rise (Read) to Data In Hold Time	0		0			ns
10	TdDS(A)	/DS Rise To Address Active Delay	25		40			ns
11	TdDS(AS)	/DS Rise To /AS Delay	16		30			ns
12	TdRN(AS)	R/W To Valid /AS Rise Delay	12		26			ns
13	TdDS(R/W)	/DS Rise To R/W Not Valid Delay	12		30			ns
14	TdDO(DSW)	Data Out To /DS Fall (Write) Delay	12		34			ns
15	ThDSW(D0)	/DS Rise (Write) To Data Out Hold Time	12		34			ns
16	TdA(DI)	Address Valid To Data Req'd Valid Delay		110		160		ns
17	TdAS(DSR)	/AS Rise To /DS Fall (Read) Delay	20		40			ns
18	TdDM(AS)	/DM Valid To /AS Rise Delay	10		22			ns
19	TdDS(DM)	/DS Rise To /DM Valid Delay					34*	ns
20	ThDS(A)	/DS Rise To Address Valid Hold Time					34^{*}	ns
21	TdXT(SCR)	XTAL Falling to SCLK Rising					20*	ns
22	TdXT(SCF)	XTAL Falling to SCLK Falling					23*	ns
23	TdXT(DSRF)	XTAL Falling to/DS Read Falling					29*	ns
24	TdXT(DSRR)	XTAL Falling to /DS Read Rising					29*	ns
25	TdXT(DSWF)	XTAL Falling to /DS Write Falling					29*	ns
26	TdXT(DSWF)	XTAL Falling to /DS Write Rising					29*	ns
27	TsW(XT)	Wait Set-up Time					10*	ns
28	ThW(XT)	Wait Hold Time					15*	ns
29	TwW	Wait Width (One Wait Time)					25^{*}	ns

Notes:

When using extended memory timing add 2 TpC .
Timing numbers given are for minimum TpC.

* Preliminary value, to be characterized (24 MHz).
** Preliminary engineering value, to be characterized.

Figure 53. XTALSCLK to DSR and DSW Timing

Figure 54. XTALSCLK to WAIT Timing

AC CHARACTERISTICS (Continued)

Figure 55. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\begin{array}{rl} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 24 \mathrm{MHz} & 33 \mathrm{MHz} \end{array}$				Units	Notes
			Min	Max	Min	Max		
1	TpC	Input Clock Period	42	1000	30	1000	ns	[1]
2	TrC, TfC	Clock Input Rise \& Fall Times		10		5	ns	[1]
3	TwC	Input Clock Width	11		10		ns	[1]
4	TwTinL	Timer Input Low Width	75		75		ns	[2]
5	TwTinH	Timer Input High Width	3 TpC		3 TpC			[2]
6	TpTin	Timer Input Period	8 TpC		8TpC			[2]
7	TrTin, TfTin	Timer Input Rise \& Fall Times	100		100		ns	[2]
8 a	TwIL	Interrupt Request Input Low Times	70		70		ns	[2,4]
8b	TwIL	Interrupt Request Input Low Times	5 TpC		5 TpC			[2,5]
9	TwIH	Interrupt Request Input High Times	3 TpC		3 TpC			[2,3]

Notes:

[1] Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0 .
[2] Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .
[3] Interrupt references request through Port 3.
[4] Interrupt request through Port 3 (P33-P31).
[5] Interrupt request through Port 30.

AC CHARACTERISTICS

Handshake Timing Diagrams

Figure 56. Input Handshake Timing

Figure 57. Output Handshake Timing

Z8 ${ }^{\oplus}$ DSP
AC CHARACTERISTICS
Handshake Timing Table

No	Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { Min } \end{aligned}$		Units	Data Direction
1	TSDI(DAV)	Data In Setup Time to /DAV	0		ns	In
2	ThDI(DAV)	RDY to Data In Hold Time	0		ns	In
	TwDAV	/DAV Width	40		ns	In
4	TdDAVIf(RDYf)	/DAV to RDY Delay		70	ns	In
5	TdDAVIIr(RDYr)	DAV Rise to RDY Wait Time		40	ns	In
6	TdRDYOr(DAVII)	RDY Rise to DAV Delay	0		ns	In
7	TdDO(DAV)	Data Out to DAV Delay		TpC	ns	Out
8	TdDAVOf(RDYIf)	/DAV to RDY Delay	0		ns	Out
9	TdRDYIf(DAVOr)	RDY to /DAV Rise Delay		70	ns	Out
10	TwRDY	RDY Width	40		ns	Out
11	TdRDYIr(DAVOf)	RDY Rise to DAV Wait Time		40	ns	Out

AD Converter Electrical Characteristics

$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 10 \%$				
Parameter	Minimum	Typical	Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.5	1	LSB
Differential non-linearity		0.5	1	LSB
Zero Error at $25^{\circ} \mathrm{C}$			5.0	mV
Supply Range	2.7	3.0	3.3	Volts
Power dissipation, no load		20	40	mW
Clock frequency			24	MHz
Input voltage range	$\mathrm{VA}_{\text {Lo }}$		$\mathrm{VA}_{\text {HI }}$	Volts
Conversion time			2	$\mu \mathrm{s}$
Input capacitance on ANA	25		40	pF
$V A_{\text {H1 }}$ range	$\mathrm{VA}_{\text {LO }}+2.5$		$\mathrm{AV}_{\text {cc }}$	Volts
$V A_{L O}$ range	$\mathrm{AN}_{\text {and }}$		$\mathrm{AV}_{\text {cc }}-2.5$	Volts
$V A_{\text {HI }}-\mathrm{VA}_{\text {LO }}$	2.5		$A V_{c c}$	Volts

Notes:
Voltage 2.7-3.3V
Temp 0-86 ${ }^{\circ} \mathrm{C}$

D/A Converter Electrical Characteristics
$V_{c c}=3.3 \mathrm{~V} \pm 10 \%$

Parameter	Minimum	Typical	Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.25	.	LSB
Differential non-linearity		0.25	0.5	LSB
Setting time, 1/2 LSB		1.5	3.0	$\mu \mathrm{s}$
Zero Error at $25^{\circ} \mathrm{C}$		10	20	mV
Full Scale error at $25^{\circ} \mathrm{C}$		0.25	0.5	LSB
Supply Range	2.7	3.0	3.3	Volts
Power dissipation, no load		10		mW
Ref Input resistance	2 K	4 K	10K	Ohms
Output noise voltage		50		$\mu \vee p-p$
$\mathrm{VD}_{\text {HII }}$ range at 3 V	1.5	1.8	2.1	Volts
$\mathrm{VD}_{\mathrm{LO}}$ range at 3 V	0.2	0.5	0.8	Volts
$\mathrm{VD}_{\mathrm{Hl}}-\mathrm{VD}_{\text {Lo }}$, at 3 V	1.3	1.6	1.9	Volts
Capacitive output load, CL			20	pF
Resistive output load, RL	50K			Ohms
Output slew rate	1.0	3.0		$\mathrm{V} / \mathrm{\mu s}$

Notes:

Voltage 2.7-3.3V
Temp $0-86^{\circ} \mathrm{C}$

AC CHARACTERISTICS (Continued)
A/D Converter Electrical Characteristics

$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$				
Parameter	Minimum	Typical	Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.5	1	LSB
Differential non-linearity		0.5	1	LSB
Zero Error at $25^{\circ} \mathrm{C}$			5.0	mV
Supply Range	4.5	5.0	5.5	Volts
Power dissipation, no load		35	75	mW
Clock frequency			33	MHz
Input voltage range	$\mathrm{VA}_{\text {Lo }}$		$\mathrm{VA}_{\text {н }}$	Volts
Conversion time				$\mu \mathrm{s}$
Input capacitance on ANA	25		40	pF
$V \mathrm{~A}_{\text {H\| }}$ range	$\mathrm{VA}_{\text {LO }}+2.5$		$\mathrm{AV}_{\text {cc }}$	Volts
$V A_{\text {LO }}$ range	AN ${ }_{\text {GNo }}$		$\mathrm{AV}_{\mathrm{cc}}-2.5$	Volts
$V A_{H}-\mathrm{VA}_{\text {LO }}$	2.5		$\mathrm{AV}_{c c}$	Volts

Notes:
Voltage $4.5-5.5 \mathrm{~V}$
Temp $0-86^{\circ} \mathrm{C}$
D/A Converter Electrical Characteristics

$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$				
Parameter	Minimum	Typical	Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.25	1	LSB
Differential non-linearity		0.25	0.5	LSB
Setting time, 1/2 LSB		1.5	3.0	$\mu \mathrm{s}$
Zero Error at $25^{\circ} \mathrm{C}$		10	20	mV
Full Scale error at $25^{\circ} \mathrm{C}$		0.25	0.5	LSB
Supply Range	4.5	5.0	5.5	Volts
Power dissipation, no load		10		mW
Ref Input resistance	2 K	4 K	10K	Ohms
Output noise voltage		50		$\mu \mathrm{Vp}$-p
$\mathrm{VD}_{\text {HH }}$ range at 3 V	2.6		3.5	Volts
$\mathrm{VD}_{\text {Lo }}$ range at 5 V	0.8		1.7	Volts
$\mathrm{VD}_{\text {Hil }}-\mathrm{VD}_{\text {Lo }}$, at 5 V	0.9		2.7	Volts
Capacitive output load, CL			30	pF
Resistive output load, RL	20 K			Ohms
Output slew rate	1.0	3.0		$\mathrm{V} / \mathrm{\mu s}$

Notes:

Voltage $4.5-5.5 \mathrm{~V}$
Temp $0-86^{\circ} \mathrm{C}$

EXPANDED REGISTER FILE CONTROL REGISTERS

T2 TMR (D) 01

Figure 58. Timer 2 Mode Register (DH 01: Read/Write)

T1H (D) 02

T1 High Byte Initial Value (When Written)

T1 High Byte Current Value (When Read)

Figure 59. Counter Timer 1 Register High Byte (DH 02: Read/Write)

Figure 60. Prescaler 2 Register High Byte (DH 03: Write Only)

TOH (D) 04

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

Figure 61. Counter Timer 0 Register High Byte (DH 04: Read/Write)

Figure 62. Counter Timer 2 Register High Byte (DH 06: Read/Write)

T2L (D) 07

D7	D6	D5	D4	D3	D2	D1	D0

T2 Low Byte Current Value (When Read)

Figure 63. Counter Timer 2 Register Low Byte (DH 07: Read/Write) (D)

Z8 CONTROL REGISTER DIAGRAMS

Figure 64. Serial I/O Register (FOH: Read/Write)

Figure 65. Timer Mode Register (F1H: Read/Write)

R242 T1

$D 7$	$D 6$	$D 5$	D4	D3	D2	D1	D0

R243 PRE1

Figure 67. Prescaler 1 Register (F3H: Write Only)

R244 T0

Figure 68. Counter/Timer 0 Register (F4H: Read/Write)

R245 PRE0

Figure 69. Prescaler 0 Register (F5H: Write Only)

Figure 70. Port 2 Mode Register (F6H: Write Only)

Figure 71. Port 3 Mode Register (F7H: Write Only)

Figure 72. Interrupt Priority Register
(F9H: Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 73. Interrupt Request Register (FAH: Read/Write)

R253 RP

Figure 76. Register Pointer (FDH: Read/Write)

Figure 77. Stack Pointer High (FEH: Read/Write)

Figure 78. Stack Pointer Low (FFH: Read/Write)

Figure 75. Flag Register (FCH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address r
Working-register address only	
IR	Indirect-register or indirect working-register address
Indirect working-register address only	
Ir	Register pair or working register pair address
RR	

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
x	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	$(S \times O R V)=0$
0001	LT	Less than	$(S X O R V)=1$
1010	GT	Greater Than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V})$] $=0$
0010	LE	Less Than or Equal	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V})$] $=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$C=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0 \mathrm{AND} Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C O R Z)=1$
0000	F	Never True (Always False)	-

INSTRUCTION FORMATS

FFH	
6 FH	7 FH

STOP/HALT

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Z 8^{\circledR} DSP

OPCODE MAP

DSP COMMANDS

LD (Ri),ADC
Instruction: 1 Byte
Cycle: 1 Cycle
Operation:
The contents of the ADC register are copied to the register specified by the register pointer.

ADC \rightarrow (Ri)
Flag change: No
The ADC register is a Read - Only register as far as the DSP is concerned. It may be used to transfer the current A / D conversion result into DSP memory space.

$\mathbf{S T}$ (Ri)
Instruction: 1 Byte
Cycle: 1 Cycle
Operation:
The contents of the accumulator are stored into the register specified by the register pointer.

Accumulator \rightarrow (Ri)
Flag change: No
Addressing:
(Ri) is specified by both the bank bit (bit 3) and bit 2 as follows:

B	\mathbf{S}	
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Addressing:

(Ri) is specified by both the bank bit (Bit 3) and bit 2 as follows.

\mathbf{B}	\mathbf{S}	
0	0	R0
0	1	R1
1	0	R2
1	1	R3

RO and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1)

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).
P field (modification field for register pointers):

0	0	NOP
0	1	+1
1	0	-1 Loop
1	1	ILLEGAL

Example:

The instruction ST (R2-) will store the accumulator into the register whose address is specified by R2 and then it will decrement R2.

Quick reference:

Accumulator \rightarrow (Ri)
$\mathrm{Ri}+1$ or $\mathrm{Ri}-1$ or $\mathrm{Ri} \rightarrow \mathrm{Ri}$

DSP COMMANDS (Continued)

ST DAC

Instruction: 1 Byte
Cycle: 1 Cycle

Operation:

The contents of the accumulator are copied to the DAC register.

Accumulator \rightarrow DAC
Flag change: No
The DAC register is a write-only register as far as the DSP is concerned. It may be used to transfer the DSP results into the D/A converter register.

4	4					2
1	0	1	0	B	S	P

ADD (Ri)

Instruction: 1 Byte
Cycle: 1 Cycle

Operation:

The contents of the register specified by the register pointer are added to the accumulator. Riregister is modified according to the P field after execution.

Accumulator \leftarrow Accumulator $+($ Ri)
Flag change: Yes (OV), (L), (Z), (N)

Addressing:

(Ri) is specified by both the bank bit (bit 3) and bit 2 as follows:

B	\mathbf{S}	
0	0	R0
0	1	R1
1	0	R2
1	1	R3

RO and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

P field (modification field for register pointers):

0	0	NOP
0	1	+1
1	0	-1 Loop
1	1	+1 Loop

Example:

The instruction ADD (RO+) will add the accumulator with the register whose address is specified by RO and then it will increment Ro.

Quick reference:

Accumulator \leftarrow Accumulator + (Ri)
$\mathrm{Ri}+1$ or $\mathrm{Ri}-1$ or $\mathrm{Ri} \rightarrow \mathrm{Ri}$

SUB (Ri)

Instruction: 1 Byte
Cycle: 1 Cycle

Operation:

The contents of the register specified by the register pointer are subtracted from the accumulator. Ri register is modified according to the P field after execution.

Accumulator \leftarrow Accumulator - (Ri)
Flag change: $\mathrm{Yes}(\mathrm{OV}),(\mathrm{L}),(\mathrm{Z}),(\mathrm{N})$

Addressing:

(Ri) is specified by both the bank bit (bit 3) and bit 2 as follows:

\mathbf{B}	\mathbf{S}	
0	0	R0
0	1	R1
1	0	R2
1	1	R3

MLD (Ri),(Rj)
Instruction: 1 Byte
Cycle: 1 Cycle

Operation:

The contents of the RAM registers whose address is specified by the register pointers Ri and Rj are copied to the multiplier temporary registers X and Y respectively. Ri specifies the addresss for DSP DataRAM(0) andRjspecifies the address for DSP Data RAM(1). Ri,Rj are modified according to the modification field P after accumulator is cleared.

Quick reference:

$$
\begin{aligned}
& \mathrm{X} \leftarrow(\mathrm{Ri}) \\
& \mathrm{Y} \leftarrow(\mathrm{Rj}) \\
& \text { Accumulator } \leftarrow 0
\end{aligned}
$$

Flag change: No

RO and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

P field (modification field for register pointers):

0	0	NOP
0	1	+1
1	0	-1 Loop
1	1	+1 Loop

Example:

The instruction SUB (RO+) will subtract the register whose address is specified by RO form the accumulator and then it will increment RO .

Quick reference:

Accumulator \leftarrow Accumulator - (Ri)
$\mathrm{Ri}+1$ or $\mathrm{Ri}-1$ or $\mathrm{Ri} \rightarrow \mathrm{Ri}$

Addressing:

(Ri) is specified by bit 4 and (Rj) by bit 3 as follows:
If bit $4=0, R 0$ is selected else R1 is selected.
If bit $3=0, R 2$ is selected else R3 is selected.
RO and R1 are register pointers associated with DSP Data
Memory RAM(0).
R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

P field (modification field for register pointers):

$\mathbf{P (2 : 0)}$	$\mathbf{R i}$	$\mathbf{R j}$
000	NOP	+1
001	NOP	-1 Loop
010	+1	NOP
011	+1	+1
100	+1	-1 Loop
101	-1 Loop	NOP
110	-1 Loop	+1
111	-1 Loop	-1 Loop

DSP COMMANDS (Continued)

MPYA (Rj),(Ri)
Instruction: 1 Byte
Cycle: 1 Cycle

Operation:

The multipler output is added to the accumulator. Then, the contents of the RAM registers whose address is specified by register pointers Ri and Rj are copied to the multiplier temporary registers X and Y respectively. Ri specifies the address for DSP Data RAM (0) and Rj specifies the address for DSP Data RAM(1). Ri,Rj are modified according to the modification field P after the copy execution.

Quick reference:
$X \leftarrow(\mathrm{Ri})$
$\mathrm{Y} \leftarrow(\mathrm{Rj})$
Accumulator \leftarrow Accumlator +P

Flag change: Yes (OV), (L), (Z), (N)
Addressing:
(Ri) is specified by bits 2-0 and (Rij) by bit 5-3 as follows:
If bit $2=0, R O$ is selected else R1 is selected.
If bit $5=0, R 2$ is selected else R3 is selected.
RO and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM (1).

Modification field for register pointers:

Bit 1/Bit 4	Bit $\mathbf{0} /$ Bit 3	Ri/Rj
0	0	NOP
0	1	+1
1	0	-1 Loop
1	1	+1 Loop

Flag change: Yes (OV), (L), (Z), (N)

Addressing:

(Ri) is specified by bits 2-0 and (Rj) by bit 5-3 as follows:
If bit $2=0, R 0$ is selected else R1 is selected.
If bit $5=0$, R2 is selected else R3 is selected.
RO and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM (1).

Modification field for register pointers:

Bit 1/Bit 4	Bit 0/Bit 3	Ri/Rj
0	0	NOP
0	1	+1
1	0	-1 Loop
1	1	+1 Loop

$X \leftarrow(\mathrm{Ri})$
$\mathrm{Y} \leftarrow(\mathrm{Rj})$
Accumulator \leftarrow Accumlator - P
$\mathrm{Ri}+1$ or $\mathrm{Ri}-1$ or $\mathrm{Ri} \rightarrow \mathrm{Ri}$
$R j+1$ or $R j-1$ or $R j \rightarrow R j$
Cycle: 1 Cycle
Operation:
The multipler output is subbtracted from the accumulator. Then, the contents of the RAM registers whose address is specified by register pointers Ri and Rj are copied to the multiplier temporary registers X and Y respectively. Ri specifies the address for DSP DataRAM(0) and Rj specifies the address for DSP Data RAM(1). Ri,Rj are modified according to the modification field P after the copy execution.

Quick reference:

MOD cond, OP

Instruction: 1 Byte
Cycle: 1 Cycle

Operation:

The contents of the accumulator are modified if the condition is met. Otherwise a NOP is executed. The exact nature of the accumulator modification is specified by the OPCODE field.

Opcode	Mnemonic	Operation	Flags
000	ROR	Rotate Right	(OV) (Z) (N)
001	ROL	Rotate Left	(OV) (Z) (N)
010	SHR	Arithmetic Right Shift	(OV) (Z) (N)
011	SHL	Arithmetic Left Shift	(OV) (Z) (N)
100	INC	Increment A	(OV) (Z) (N)
101	DEC	Decrement A	(OV) (Z) (N)
110	NEG	Negate A	(OV) (Z) (N)
111	ABS	Absolute A	(OV) (Z) (N)

Condition Field:

Bit 4 Bit 3

0	0	ILLEGAL
0	1	Always True (MOD, always, OP)
1	0	IF OV =1 (MOD, OV = 1, OP)
1	1	IFN =1 (MOD, $N=1, O P)$

If the condition is met then
000 (L) $\rightarrow \mathrm{a} 15, \mathrm{a} 15 \rightarrow \mathrm{a} 14, \ldots ., \mathrm{a} 1 \rightarrow \mathrm{a} 0, \mathrm{aO} \rightarrow(\mathrm{L})$
$001(\mathrm{~L}) \leftarrow \mathrm{a} 15, \mathrm{a} 15 \leftarrow \mathrm{a} 14, \ldots ., \mathrm{a} 1 \leftarrow \mathrm{a} 0, \mathrm{a} 0 \leftarrow(\mathrm{~L})$
010 Accumulator/ $2 \rightarrow$ Accumulator
011 Accumulator*2 \rightarrow Accumulator
100 Accumulator $+1 \rightarrow$ Accumulator
101 Accumulator-1 \rightarrow Accumulator
110 -Accumulator \rightarrow Accumulator
111 |Accumulatorl \rightarrow Accumulator

Flag change: Yes (OV), (L), (Z), (N)

DSP COMMANDS (Continued)

LD (Ri)
Instruction: 1 Byte
Cycle: 1 Cycle
Operation:
The contents of the register specified by the register pointer are copied to the accumulator.
(Ri) \rightarrow Accumulator
Flag change: No
Addressing:
(Ri) is specified by both the bank bit (bit 3) and bit 2 as follows:

B	\mathbf{S}	
0	0	R0
0	1	R1
1	0	R2
1	1	R3

LDI Ri

Instruction: 2 Bytes
Cycle: 2 Cycles

Operation:

The register pointers (R0, R1, R2, R3) are loaded with the immediate value specified

Flag change: No

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

P field (modification field for register pointers):

0	0	NOP
0	1	+1
1	0	-1 Loop
1	1	ILLEGAL

Example:

The instruction LD (RO+) will load the accumulator with the register whose address is specified by RO and then it will increment RO.

Quick reference:

(Ri) \rightarrow Accumulator
$\mathrm{Ri}+1$ or $\mathrm{Ri}-1$ or $\mathrm{Ri} \rightarrow \mathrm{Ri}$

Addressing:

(Ri) is specified by bits (1:0) as follows.

Bit 1	Bit 0	
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Quick reference:

$\mathrm{Ri} \leftarrow$ Immediate data

Branch Address MSB

Branch Address LSB

Quick reference:

If condition = True, then Pseudo $\mathrm{PC}=$ Branchaddress Else,

BRA cond,addr

Instruction: 3 Bytes
Cycle: 3 Cycles

Operation:

The condition is tested and the branch is taken if the condition is true. The branch address has to be within the internal program memory space (512 bytes).

Flag change: No
Branch conditions are specified as follows:

Bit $\mathbf{1}$	Bit $\mathbf{0}$	
0	0	Branch on NOT ZERO
0	1	Branch on OVERFLOW
1	0	Branch ALWAYS
1	1	Branch on LINK bit SET

DSP STOP

Instruction: 1 Byte
Cycle: 1 Cycle

Operation:

This instruction will stop the DSP.
Flag change: No

PACKAGE INFORMATION

SYMBLL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A1	0.10	0.30	.004	.012
$A 2$	2.60	2.80	.102	.110
b	0.30	0.45	.012	.018
C	0.13	0.20	.005	.008
HD	23.80	24.40	.937	.961
D	19.90	20.10	.783	.791
HE	17.80	18.40	.701	.724
E	13.90	14.10	.547	.555
S	0.80 TYP		.031	
L	0.70			

80－Pin QFP Package Diagram

SYMBDL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A	4.32	4.57	.170	.180
Al	2.67	2.92	.105	.115
D/E	30.10	30.35	1.185	1.195
DI/E1	29.21	29.41	1.150	1.158
$D 2$	27.94	28.58	1.100	1.125
\square	1.27			TYP

84-Pin PLCC Package Diagram

PACKAGE INFORMATION (Continued)

SYMBEL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A	1.35	1.60	.053	.063
A1	0.05	0.20	.002	.008
A2	1.30	1.50	.051	.059
b	0.15	0.26	.006	.010
C	0.10	0.20	.004	.008
HD	15.85	16.15	.624	.636
D	13.90	14.10	.547	.555
HE	15.85	16.15	.624	.636
E	13.90	14.10	.547	.555
R	0.50		TYP	.020
L	0.35	0.65	.014	.026
LE	0.90	1.10	.035	.043

1. CONTRULLING DIMENSIDNS : MM
2. MAX CIPLANARITY ' $\frac{10 \mathrm{mM}}{004^{\prime}}$

100-Pin VQFP Package Diagram

ORDERING INFORMATION

Z86C95

84-pin PLCC
Z86C9524VSC

24 MHz
80-pin QFP 100-pin VQFP
Z86C9524FSC Z86C9524ASC
33 MHz
84-pin PLCC
Z86C9533VSC

80-pin QFP
Z86C9533FSC

100-pin VQFP
Z86C9533ASC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.
Package
V = Plastic Chip Carrier
Longer Lead Time
F = Plastic Quad Flat Pack
A = Very Small QFP
Temperature
$\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Speed

$24=24 \mathrm{MHz}$
$33=33 \mathrm{MHz}$
Environmental
C = Plastic Standard

Example:

)

Introduction

286C95 $28^{\text {® }}$ Digital Signal Processor

Z89C00 16-Bit Digital Signal Processor

Z89C00 DSP Application Note

Z89120, 289920 (ROMIess) 16-Bit Mixed Signal Processor

Z89C00
 16-BIT DIGITAL SIGNAL PROCESSOR

FEATURES

\author{

- 16-Bit Single Cycle Instructions
 - Zero Overhead Hardware Looping
 - 16-Bit Data
 - Ready Control for Slow Peripherals
 ■ Single Cycle Multiply/Accumulate (100 ns)
 - Six-Level Stack
 - 512 Words of On-Chip RAM
 - Static Single-Cycle Operation
}

16-Bit I/O Port
- 4K Words of On-Chip Masked ROM
- Three Vectored Interrupts
- 64K Words of External Program Address Space
- Two Conditional Branch Inputs/Two User Outputs
- 24-Bit ALU, Accumulator and Shifter
IBM ${ }^{\star}$ PC Development Tools

GENERAL DESCRIPTION

The Z89C00 is a second generation, 16-bit, fractional, two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate, are accomplished in a single clock cycle. The processor contains 1 Kbyte of on-chip data RAM (two blocks of 256 16-bit words), 4 K words of program ROM and 64 K words of program memory addressing capability. Also, the processor features a 24 -bit ALU, a 16×16 multiplier, a 24-bit Accumulator and a shifter. Additionally, the processor contains a six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of three pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multiplier for a true single cycle multiply.

There is a 16 -bit address and a 16 -bit data bus for external program memory and data, and a 16 -bit $1 / \mathrm{O}$ bus for transferring data. Additionally, there are two general purpose user inputs and two user outputs. Operation with slow peripherals is accomplished with a ready input pin. The clock may be stopped to conserve power.

Development tools for the IBM PC include a relocatable assembler, a linker loader, and an ANSI-C compiler. Also, the development tools include a simulator/debugger, a cross assembler for the TMS320 family assembly code and a hardware emulator.

To assist the user in understanding the Z89C00 DSP Q15 two's complement fractional multiplication, an application note has been included in this product specification as an appendix.

Notes:

All Signals with a preceding front slash, " $"$ ", are active Low, e.g., B / W (WORD is active Low); /BM (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V_{CC}	V_{DD}
Ground	GND	V_{SS}

Figure 2. 68-Pin PLCC Pin Assignments

Table 1. 68-Pin PLCC Pin Identification

No.	Symbol	Function	Direction
$1-9$	EXT15-EXT7	External data bus	Input/Output
10	V $_{\text {SS }}$	Ground	Input
$11-26$	PD15-PDO	Program data bus	Input
$27-38$	PA11-PA0	Program address bus	Output
39	V $_{\text {DD }}$	Power Supply	Input
$40-43$	PA15-PA12	Program address bus	Output
$44-46$	EA2-EAO	External address bus	Output
47	IEI	RNW for external bus	Output
48	ER/N	External bus direction	Output
49	RDYE	Data ready	Input
50	CLK	Reset	Input
51	CLK	Clock	Input
52	IROMEN	Enable ROM	Input
53	HALT	Stop execution	Input
$54-55$	UI1-UIO	User inputs	Input
$56-58$	INT2-INT1	Interrupts	Input
$59-60$	UO1-UOO	User outputs	Output
$61-64$	EXT3-EXTO	External data bus	Input/Output
65	VSS	Ground	Input
$66-68$	EXT6-EXT4	External data bus	Input/Output

PIN FUNCTIONS

CLK Clock (input). External clock. The clock may be stopped to reduce power.

EXT15-EXTO External Data Bus (input/output). Data bus for user defined outside registers such as an ADC or DAC. The pins are normally in output mode except when the outside registers are specified as source registers in the instructions. All the control signals exist to allow a read or a write through this bus.

ER/W External Bus Direction (output, active Low). Data direction signal for EXT-Bus. Data is available from the CPU on EXT15-EXT0 when this signal is Low. EXT-Bus is in input mode (high-impedance) when this signal is High.

EA2-EAO External Address(output). User-defined register address output. One of eightuser-defined external registers is selected by the processor with these address pins for read or write operations. Since the addresses are part of the processor memory map, the processor is simply executing internal reads and writes.
/EI Enable Input (output). Write timing signal for EXT-Bus. Data is read by the external peripheral on the rising edge of /El. Data is read by the processor on the rising edge of CLK, not/EI.

HALT Halt State (input). Stop Execution Control. The CPU continuously executes NOPs and the program counter remains at the same value when this pin is held High. This signal must be synchronized with CLK.

INT2-INTO Three Interrupts(rising edge triggered). Interrupt request 2-0. Interrupts are generated on the rising edge of the input signal. Interrupt vectors for the interrupt service starting address are stored in the programmemory locations OFFDH for INTO, OFFEH for INT1 and OFFFH for INT2. Priority is: $2=$ lowest, $0=$ highest.

PA15-PA0 Program memory address bus (output). For up to $64 \mathrm{~K} \times 16$ external program memory. These lines are tristated during Reset Low.

PD15-PD0 Program Memory Data Input (input). Instructions or data are read from the address specified by PD15PDO, through these pins and are executed or stored.
/RES Reset(input, active Low). Asynchronous reset signal. A Low level on this pin generates an internal reset signal. The /RES signal must be kept Low for at least one clock cycle. The CPU pushes the contents of the PC onto the stack and then fetches a new Program Counter (PC) value from program memory address OFFCH after the Reset signal is released. RES Low tri-states the PA and PD bases.
/ROMEN ROMEnable(input). An active Low signal enables the internal ROM. Program execution begins at 0000 H from the ROM. An active High input disables the ROM and external fetches occur from address 0000 H .
/RDYE Data Ready (input). User-supplied Data Ready signal for data to and from external data bus. This pin stretches the/El and ER/W lines and maintains data on the address bus and data bus. The ready signal is sampled from the rising edge of the clock with appropriate setup and hold times. The normal write cycle will continue from the next rising clock only if ready is active.

UI1-UIO Two Input Pins (input). General purpose input pins. These input pins are directly tested by the conditional branch instructions. These are asynchronous input signals that have no special clock synchronization requirements.

U01-U00 Two Output Pins (output). General purpose output pins. These pins reflect the inverted value of status register bits S5 and S6. These bits may be used to output data by writing to the status register.

ADDRESS SPACE

Program Memory. Programs of up to 4 K words can be masked into internal ROM. Four locations are dedicated to the vector address for the three interrupts (OFFDH-OFFFH) and the starting address following a Reset (OFFCH). Internal ROM is mapped from 0000 H to OFFFH, and the highest location for program is OFFBH. If the /ROMEN pin is held High, the internal ROM is inactive and the processor executes external fetches from 0000 H to FFFFH. In this case, locations FFFC-FFFF are used for vector addresses.

Internal Data RAM. The Z89C00 has an internal $512 \times$ 16-bit word data RAM organized as two banks of $256 \times$ 16 -bit words each, referred to as RAMO and RAM1. Each data RAM bank is addressed by three pointers, referred to as $\mathrm{Pn}: \mathrm{O}(\mathrm{n}=0-2)$ for RAMO and Pn:1 ($\mathrm{n}=0-2$) for RAM1. The RAM addresses for RAMO and RAM1 are arranged from $0-255$ and 256-511, respectively. The address pointers, which may be written to or read from, are 8-bit registers
connected to the lower byte of the internal 16 -bit D-Bus and are used to perform no overhead looping. Three addressing modes are available to access the Data RAM: register indirect, direct addressing, and short form direct. These modes are discussed in detail later. The contents of the RAM can be read or written in one machine cycle per word without disturbing any internal registers or status other than the RAM address pointer used for each RAM. The contents of each RAM can be loaded simultaneously into the X and Y inputs of the multiplier.

Registers. The Z89C00 has 12 internal registers and up to an additional eight external registers. The external registers are user definable for peripherals such as A/D or D/A or to DMA or other addressing peripherals. External registers are accessed in one machine cycle the same as internal registers.

FUNCTIONAL DESCRIPTION

General．The Z89C00 is a high－performance Digital Signal Processor with a modified Harvard－type architecture with separate program and data memory．The design has been optimized for processing power and minimizing silicon space．

Instruction Timing．Many instructions are executed in one machine cycle．Long immediate instructions and Jump or Call instructions are executed in two machine cycles． When the program memory is referenced in internal RAM indirect mode，it takes three machine cycles．In addition， one more machine cycle is required if the PC is selected as the destination of a data transfer instruction．This only happens inthe case of a register indirect branch instruction．

An Acc $+P \Rightarrow A c c ; a(i)^{*} b(j) \rightarrow P$ calculation and modification of the RAM pointers，is done in one machine cycle．Both operands，$a(i)$ and $b(j)$ ，can be located in two independent RAM（0 and 1）addresses．

Multiply／Accumulate．The multiplier can perform a 16－bit x 16－bit multiply or multiply accumulate in one machine cycle using the Accumulator and／or both the X and Y inputs．The multiplier produces a 32－bit result，however， only the 24 most significant bits are saved for the next instruction or accumulation．The multiplier provides a flow through operation whenever the X or Y register is updated， an automatic multiply operation is performed and the P register is updated．For operations on very small numbers where the least significant bits are important，the data should first be scaled by eight bits（or the multiplier and multiplicand by four bits each）to avoid truncation errors． Note that all inputs to the multiplier should be fractional two＇s complement 16－bit binary numbers．This puts them in the range［ -1 to 0.9999695 ］，and the result is in 24 －bits so that the range is［ -1 to 0.9999999 ］．In addition，if 8000 H is loaded into both X and Y registers，the resulting multiplication is considered an illegal operation as an overflow would result．Positive one cannot be represented in fractional notation，and the multiplier will actually yield the result $8000 \mathrm{H} \times 8000 \mathrm{H}=8000 \mathrm{H}(-1 \times-1=-1)$ ．

ALU．The 24－bit ALU has two input ports，one of which is connected to the output of the 24 －bit Accumulator．The other input is connected to the 24－bit P－Bus，the upper 16 bits of which are connected to the 16－bit D－Bus．A shifter between the P－Bus and the ALU input port can shift the data by three bits right，one bit right，one bit left or no shift．

Hardware Stack．A six－level hardware stack is connected to the D－Bus to hold subroutine return addresses or data． The CALL instruction pushes PC＋2 onto the stack．The RET instruction pops the contents of the stack to the PC．

User Inputs．The Z89C00 has two inputs，UIO and UI1， which may be used by jump and call instructions．The jump or call tests one of these pins and if appropriate，jumps to a new location．Otherwise，the instruction behaves like a NOP．These inputs are also connected to the status register bits S10 and S11 which may be read by the appropriate instruction（Figure 3）．

User Outputs．The status register bits S5 and S6 connect through an inverter to UOO and UO1 pins and may be written to by the appropriate instruction．

Interrupts．The Z89C00 has three positive edge triggered interrupt inputs．An interrupt is acknowledged at the end of any instruction execution．It takes two machine cycles to enter an interrupt instruction sequence．The PC is pushed onto the stack．A RET instruction transfers the contents of the stack to the PC and decrements the stack pointer by one word．The priority of the interrupts is $0=$ highest， 2 ＝lowest．

Registers．The Z89C00 has 12 physical internal registers and up to eight user－defined external registers．The EA2－ EAO determines the address of the external registers．The ／EI，／RDYE，and ER／M signals are used to read or write from the external registers．

REGISTERS

There are 12 internal registers which are defined below:

Register	Register Definition
P	Output of Multiplier, 24-bit, Read Only
X	X Multiplier Input, 16-bit
Y	Y Multiplier Input, 16-bit
A	Accumulator, 24-bit
SR	Status Register, 16-bit
Pn:b	Six Ram Address Pointers, 8-bit Each
PC	Program Counter, 16-bit

The following are virtual registers as physical RAM does not exist on the chip.

Register	Register Definition
EXTn	External registers, 16-bit
BUS	D-Bus
Dn:b	Eight Data Pointers

\mathbf{P} holds the result of multiplications and is read only.
\mathbf{X} and \mathbf{Y} are two 16-bit input registers for the multiplier. These registers can be utilized as temporary registers when the multiplier is not being used. The contents of the P register will change if X or Y is changed.

A is a 24 -bit Accumulator. The output of the ALU is sent to this register. When 16 -bit data is transferred into this register, it goes into the 16 MSB's and the least significant eight bits are set to zero. Only the upper 16 bits are transferred to the destination register when the Accumulator is selected as a source register in transfer instructions.

Pn:b are the pointer registers for accessing data RAM. ($n=0,1,2$ refer to the pointer number) ($b=0,1$ refers to RAM bank 0 or 1). They can be directly read from or written to, and can point to locations in data RAM or indirectly to Program Memory.
$\operatorname{EXT}(\mathrm{n})$ are external registers ($\mathrm{n}=0$ to 7). There are eight 16 -bit registers here for accessing External data, peripherals, or memory. Note that the actual register RAM does not exist on the chip, but would exist as part of the external device such as an ADC result latch.

BUS is a read-only register which, when accessed, returns the contents of the D-Bus.

Dn:b refer to possible locations in RAM that can be used as a pointer to locations in program memory. The programmer decides which location to choose from two bits in the status register and two bits in the operand. Thus, only the lower 16 possible locations in RAM can be specified. At any one time there are eight usable pointers, four per bank, and the four pointers are in consecutive locations in RAM. For example, if $\mathrm{S} 3 / \mathrm{S} 4=01$ in the status register, then D0:0/D1:0/D2:0/D3:0 refer to locations 4/5/6/7 in RAM bank 0 . Note that when the data pointers are being written to, a number is actually being loaded to Data RAM, so they can be used as a limited method for writing to RAM.

REGISTERS (Continued)

Figure 3. Status Register

SR is the status register (Figure 3) which contains the ALU status and certain control bits as shown in the following table.

Status	
Register Bit	Function
S15 (N)	ALU Negative
S14 (OV)	ALU Overflow
S13 (Z)	ALU Zero
S12 (L)	Carry
S11 (Ul1)	User Input 1
S10 (UIO)	User Input 0
S9 (SH3)	MPY Output Shifted Right by Three Bits
S8 (OP)	Overflow Protection
S7 (IE)	Interrupt Enable
S6 (UO1)	User Output 1
S5 (UOO)	User Output O
S4-3	"Short Form Direct" Bits
S2-0 (RPL)	RAM Pointer Loop Size

RPL Description

S2	S1	S0	Loop Size
0	0	0	256
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

The status register may always be read in its entirety. S15-S10 are set/reset by the hardware and can only be read by software. S9-SO can be written by software.

Z89C00

S15-S12 are set/reset by the ALU after an operation. S11-S10 are set/reset by the user inputs. S6-S0 are control bits described elsewhere. S 7 enables interrupts. S 8 , if 0 (reset), allows the hardware to overflow. If S 8 is set, the hardware clamps at maximum positive or negative values instead of overflowing. If S9 is set and a multiply instruction is used, the shifter shifts the result three bits right with sign extension.

PC is the Program Counter. When this register is assigned as a destination register, one NOP machine cycle is added automatically to adjust the pipeline timing.

RAM ADDRESSING

The address of the RAM is specified in one of three ways (Figure 4):

Figure 4. RAM, ROM, and Pointer Architecture

1. Register Indirect

Pn:b $n=0-2, b=0-1$
The most commonly used method is a register indirect addressing method, where the RAM address is specified by one of the three RAM address pointers (n) for each bank (b). Each source/destination field in Figures 5 and 8 may be used by an indirect instruction to specify a register pointer and its modification after execution of the instruction.

Figure 5. Indirect Register

RAM ADDRESSING (Continued)

The register pointer is specified by the first and second bits in the source/destination field and the modification is specified by the third and fourth bits according to the following table:

D3-D0		Meaning
00xx	NOP	No Operation
01xx	+1	Simple Increment
10xx	-1/LOOP	Decrement Modulo the Loop Count
11xx	+1/LOOP	Increment Modulo the Loop Count
x<00	PO:0 or P0:1	See Note a.
xx01	P1:0 or P1:1	See Note a.
xx10	P2:0 or P2:1	See Note a.
xx11		See Short Form Direct

Note:
a. If bit 8 is zero, P0:0 to P2:0 are selected; if bit 8 is one, $\mathrm{PO}: 1$ to $\mathrm{P} 2: 1$ are selected.

When Loop mode is selected, the pointer to which the loop is referring will cycle up or down, depending on whether a -LOOP or +LOOP is specified. The size of the loop is obtained from the least significant three bits of the Status Register. The increment or decrement of the register is accomplished modulo the loop size. As an example, if the loop size is specified as 32 by entering the value 101 into bits 2-0 of the Status Register (S2-SO) and an increment +LOOP is specified in the address field of the instruction, i.e., the RPi field is 11 xx , then the register specified by RPi will increment, but only the least significant five bits will be affected. This means the actual value of the pointer will cycle round in a length 32 loop, and the lowest or highest value of the loop, depending on whether the loop is up or down, is set by the three most significant bits. This allows repeated access to a set of data in RAM without software intervention. To clarify, if the pointer value is 10101001 and if the LOOP $=32$, the pointer increments up to 10111111, then drops down to 10100000 and starts again. The upper three bits remaining unchanged. Note that the original value of the pointer is not retained.

2. Direct Register

The second method is a direct addressing method. The address of the RAM is directly specified by the address field of the instruction. Because this addressing method consumes nine bits ($0-511$) of the instruction field, some instructions cannot use this mode (Figure 6).

Figures 8 to 13 show the different register instruction formats along with the two tables below Figure 8.

Figure 7. Short Form Direct Address
3. Short Form Direct

Dn: $b n=0-3, b=0-1$
The lastmethod is called Short Form Direct Addressing, where one out of 32 addresses in internal RAM can be specified. The 32 addresses are the 16 lower addresses in RAM Bank 0 and the 16 lower addresses in RAM Bank 1. Bit 8 of the instruction field determines RAM Bank 0 or 1. The 16 addresses are determined by a 4-bit code comprised of bits S3 and S4 of the status register and the third and fourth bits of the Source/ Destination field. Because this mode can specify a direct address in a short form, all of the instructions using the register indirect mode can use this mode (Figure 7). This method can access only the lower 16 addresses in the both RAM banks and as such has limited use. The main purpose is to specify a data register, located in the RAM bank, which can then be used to point to a program memory location. This facilitates down-loading look-up tables, etc. from program memory to RAM.

Figure 6. Direct Internal RAM Address Format

INSTRUCTION FORMAT

Note:
Source/Destination fields can specify either register or RAM addresses in RAM pointer indirect mode.

Figure 8. General Instruction Format

Figure 9. Short Immediate Data Load Format

INSTRUCTION FORMAT (Continued)

Figure 10. Immediate Data Load Format

Figure 11. Accumulator Modification Format

Figure 12. Branching Format

Figure 13. Flag Modification Format

ADDRESSING MODES

This section discusse the syntax of the addressing modes supported by the DSP assembler. The symbolic name is
used in the discussion of instruction syntax in the instruction descriptions.

Symbolic Name	Syntax	Description
<pregs>	Pn:b	Pointer Register
<dregs> (Points to RAM)	Dn:b	Data Register
<hwregs>	$\begin{aligned} & \text { X,Y,PC,SR,P } \\ & \text { EXTn,A,BUS } \end{aligned}$	Hardware Registers
<accind> (Points to Program Memory)	@A	Accumulator Memory Indirect
<direct>	<expression>	Direct Address Expression
<limm>	\#<const exp>	Long (16-bit) Immediate Value
<simm>	\#<const exp>	Short (8-bit) Immediate Value
<regind> (Points to RAM)	@Pn:b @Pn:b+ @Pn:b-LOOP @Pn:b+LOOP	Pointer Register Indirect Pointer Register Indirect with Increment Pointer Register Indirect with Loop Decrement Pointer register Indirect with Loop Increment
<memind> (Points to Program Memory)	@@Pn:b @Dn:b @@Pn:b-L00P @@Pn:b+L00P @@Pn:b+	Pointer Register Memory Indirect Data Register Memory Indirect Pointer Register Memory Indirect with Loop Decrement Pointer Register Memory Indirect with Loop Increment Pointer Register Memory Indirect with Increment

There are eight distinct addressing modes for transfer of data (Figure 4 and the table above).
<pregs>, <hwregs> These two modes are used for simple loads to and from registers within the chip such as loading to the Accumulator, or loading from a pointer register. The names of the registers need only be specified in the operand field. (Destination first then source)
<regind> This mode is used for indirect accesses to the data RAM. The address of the RAM location is stored in the
pointer. The "@" symbol indicates "indirect" and precedes the pointer, so @P1:1 tells the processor to read or write to a location in RAM1, which is specified by the value in the pointer.
<dregs> This mode is also used for accesses to the data RAM but only the lower 16 addresses in either bank. The 4-bit address comes from the status register and the operand field of the data pointer. Note that data registers are typically used not for addressing RAM, but loading data from program memory space.
<memind> This mode is used for indirect, indirectaccesses to the program memory. The address of the memory is located in a RAM location, which is specified by the value in a pointer. So @@P1:1 tells the processor to read (write is not possible) from a location in memory, which is specified by a value in RAM, and the location of the RAM is in turn specified by the value in the pointer. Note that the data pointer can also be used for a memory access in this manner, but only one " $@^{\prime}$ " precedes the pointer. In both cases the memory address stored in RAM is incremented by one each time the addressing mode is used to allow easy transfer of sequential data from program memory.
<accind> Similar to the previous mode, the address for the program memory read is stored in the Accumulator. @A in the second operand field loads the number in memory specified by the address in A.
<direct> The directmode allows read or write to data RAM from the Accumulator by specifying the absolute address of the RAM in the operand of the instruction. A number between 0 and 255 indicates a location in RAMO, and a number between 256 and 511 indicates a location in RAM1.
<limm> This indicates a long immediate load. A 16-bit word can be copied directly from the operand into the specified register or memory.
<simm> This can only be used for immediate transfer of 8 -bit data in the operand to the specified RAM pointer.

CONDITION CODES

The following table defines the condition codes supported by the DSP assembler. If the instruction description refers to the <cc> (condition code) symbol in one of its

Name	Description
C	Carry
EQ	Equal (same as Z)
F	False
IE	Interrupts Enabled
MI	Minus
NC	No Carry
NE	Not Equal (same as NZ)
NIE	Not Interrupts Enabled
NOV	Not Overflow
NUO	Not User Zero

addressing modes, the instruction will only execute if the condition is true.

Name	Description
NU1	Not User One
NZ	Not zero
OV	Overflow
PL	Plus (Positive)
UO	User Zero
U1	User One
UGE	Unsigned Greater Than or
	Equal (Same as NC)
ULT	Unsigned Less Than (Same as C)
Z	Zero

INSTRUCTION DESCRIPTIONS

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
ABS	Absolute Value	ABS[<cc>, $<$ sric>	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ABS NC,A ABS A
ADD	Addition	ADD<dest>, <sic>	A,<pregs> A,<dregs> A,<limm> A,<memind> A,<direct> A,<regind> A,<hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ADD A,PO:O ADD A, DO: 0 ADD A.\#\%1234 ADD A,@@PO:O ADD A,\%F2 ADD A,@P1:1 ADD A, X
AND	Bitwise AND	AND<dest><SIC>	A,<pregs> A,<dregs> A,<limm> A,<memind> A,<direct> A,<regind> A,<hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AND A,P2:0 AND A, DO: 1 AND A,\#\%1234 AND A,@@P1:0 AND A,\%2C AND A,@P1:2+LOOP AND A,EXT3
CALL	Subroutine call	CALL [<cc>,]<address>	<CC>,<direct> <direct>	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	CALL Z,sub2 CALL sub1
CCF	Clear carry flag	CCF	None	1	1	CCF
CIEF	Clear Carry Flag	CIEF	None	1	1	CIEF
COPF	Clear OP flag	COPF	None	1	1	COPF
CP	Comparison	CP<sic1>, <src2>	A,<pregs> A,<dregs> A,<memind> A,<direct> A,<regind> A, <hwregs> A<limm>	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	CP A,PO:O CP A, D3:1 CP A,@@P0:1 CP A, \%FF CP A,@P2:1+ CP A,STACK CP A,\#\%FFCF
DEC	Decrement	DEC [<<c> ${ }^{\text {, }}$ <dest>	$\begin{aligned} & \langle C C>A, \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	DEC NZ,A DEC A
INC	Increment	INC [<CC>,] <dest>	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	INC PL,A INC A
JP	Jump	JP [<cc>,]<address>	<CC>,<direct> <direct>	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	JP NIE,Label JP Label

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
LD	Load destination	LD<dest, <src>	A, <hwregs>	1	1	LD A, X
	with source		A,<dregs>	1	1	LD A, DO:0
			A,<pregs>	1	1	LD A,PO:1
			A, <regind>	1	1	LD A,@P1:1
			A, <memind>	1	3	LD A,@DO:0
			A,<direct>	1		LD A, 124
			<direct, A	1	1	LD 124,A
			<dregs>, <hwregs>	1	1	LD DO:0,EXT7
			<pregs>,<simm>	1	1	LD P1:1,\#\%FA
			<pregs>,<hwregs>	1	1	LD P1:1,EXT1
			<regind>,<limm>	1	1	LD@P1:1,\#1234
			<regind>,<hwregs>	1	1	LD @P1:1+,X
			<hwregs>,<pregs>	1	1	LD Y,PO:O
			<hwregs><dregs>	1	1	LD SR, DO:O
			<hwregs>,<limm>	2	2	LD PC,\#\%1234
			<hwregs>,<accind>	1	3	LD X,@A
			<hwregs>,<memind>	1	3	LD Y,@DO:0
			<hwregs>,<regind>	1	1	LD A,@P0:O-LOOP
			<hwregs>,<hwregs>	1	1	LD X,EXT6

Note: If X or Y register is the destination, an automatic multiply operation is performed.
Note: The P register is Read Only and cannot be destination.
Note: LD EXT ${ }_{N}$ EXT $_{N}$ is not allowed.
Note: LD A, @A is not allowed.

MPYA	Multiply and add	MPYA <srcc1>,<src2>[,<bank switch>]	<hwregs>,<regind>	1	1	MPYA A,@P0:0
			<hwregs>,<regind>,<bank switch>	1	1	MPYA A,@P1:0,0FF
			<regind>,<regind>	1	1	MPYA @P1:1,@P2:0
			<regind>,<regind>,<bank switch>		1	MPYA@PO:1,@P1:0,0N

Note: If src1 is <regind> it must be a bank 1 register.
Src2's <regind> must be a bank 0 register.
Note: <hwregs> for Src1 cannot be X or A.
Note: For the operands <hwregs>, <regind> the <bank switch> defaults to OFF. For the operands <regind>, the <bank switch> defaults to ON .

INSTRUCTION DESCRIPTIONS (Continued)

Inst.	Description	Synopsis	Operands W	Words Cycles	Examples
MPYS	Multiply and subtract	MPYS<srcc1>,<src2>[,<bank switch>]	<hwregs>,<regind>	11	MPYS A,@PO:0
			<hwregs>,<regind><bank switch>	> 1	MPYS A,@P1:0,0FF
			<regind>,<regind>	1	MPYS @P1:1,@P2:0
			<regind>,<regind>,<bank switch>	11	MPYS@P0:1,@P1:0,0N

Note: If src1 is <regind> it must be a bank 1 register.
Src2's <regind> must be a bank 0 register.
Note: <hwregs> for src1 cannot be X or A.
Note: For the operands <hwregs>, <regind> the <bank switch>defaults to OFF.
For the operands <regind>, <regind> the <bank switch> defaults to ON .

$\overline{\text { NEG }}$	Negate	NEG <Cc>, A	$\langle C C\rangle, A$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { NEG MI,A } \\ & \text { NEG A } \end{aligned}$
NOP	No operation	NOP	None	1	1	NOP
OR	Bitwise OR	OR <dest , <SIC>	A, <pregs> A, <dregs> A, <limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OR A,PO:1 ORA, DO:1 OR A,\#\%2C21 OR A,@@P2:1+ OR A, \%2C OR A,@P1:O-LOOP OR A,EXT6
$\overline{\text { POP }}$	Pop value from stack	POP <dest>	$\begin{aligned} & \text { <pregs> } \\ & \text { <dregs> } \\ & \text { <regind> } \\ & \text { <hwregs> } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { POP PO:O } \\ & \text { POP DO:1 } \\ & \text { POP @PO:0 } \\ & \text { POP A } \end{aligned}$
PUSH	Push value onto slack	PUSH <src>	<pregs> <dregs> <regind> <hwregs> <limm> <accind> <memind>	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	PUSH PO:O PUSH D0:1 PUSH @PO:O PUSH BUS PUSH \#12345 PUSH @A PUSH @@PO:0
RET	Return from subroutine	RET	None	1	2	RET
$\overline{\text { RL }}$	Rotate Left	RL <CC>, A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 1	$\begin{aligned} & \text { RL NZ,A } \\ & \text { RLA } \end{aligned}$
$\overline{\mathbf{R R}}$	Rotate Right	RR <CC>, A	$\begin{aligned} & \langle C C>A \\ & A \end{aligned}$	1 1	1 1	$\begin{aligned} & \text { RR C,A } \\ & \text { RR A } \end{aligned}$

Inst.	Description	Synopsis	Operands	Words Cycles	Examples
SCF	Set C flag	SCF	None	1	SCF
SIEF	Set IE flag	SIEF	None	1	SIEF
SLL	Shift left logical	SLL	$\begin{aligned} & {[<C C>] A} \\ & A \end{aligned}$	$\begin{array}{ll} \hline 1 & 1 \\ 1 & 1 \end{array}$	SLL NZ,A SLL A
SOPF	Set OP flag	SOPF	None	11	SOPF
SRA	Shift right arithmetic	SRA<CC>,A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{array}{ll} \hline 1 & 1 \\ 1 & 1 \end{array}$	SRA NZ,A SRA A
SUB	Subtract	SUB<dest>,<sIC>	A,<pregs> A,<dregs> A,<limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{array}{ll} \hline 1 & 1 \\ 1 & 1 \\ 2 & 2 \\ 1 & 3 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}$	SUB A,P1:1 SUB A, DO:1 SUB A,\#\%2C2C SUB A,@DO:1 SUB A,\%15 SUB A,@P2:0-LOOP SUB A,STACK
XOR	Bitwise exclusive OR	XOR <dest>, <ric>	A, <pregs> A, <dregs> A, <limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 2 & 2 \\ 1 & 3 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}$	XOR A,P2:O XOR A, DO:1 XOR A,\#13933 XOR A,@@P2:1+ XOR A,\%2F XOR A,@P2:0 XOR A,BUS

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this, two keywords are used (ON and OFF)
which state the direction of the switch. These keywords are referred to in the instruction descriptions through the <bank switch> symbol.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage(*)	-0.5	7.0	V
$\mathrm{~T}_{\text {sTG }}$	Storage Temp.	-65°	$+150^{\circ}$	C
T_{A}	Oper. Ambient Temp.	\dagger		C
Notes:				

Notes:

* Voltages on all pins with respect to ground.
\dagger See Ordering Information

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Test Load Diagram, Figure 14).

Figure 14. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Condition	Min.	Max.	Units
$I_{c c}$	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V} \\ & \text { fclock }=10 \mathrm{MHz} \end{aligned}$		60	mA
$\mathrm{ICC1}$	Halt Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V} \\ & \text { fclock }=0 \mathrm{MHz} \text { (stopped) } \end{aligned}$	1	5	mA
$\begin{aligned} & \overline{V_{1 H}} \\ & V_{H} \\ & I_{\mathrm{LL}} \end{aligned}$	Input High Level Input Low Level Input Leakage		$0.9 \mathrm{~V}_{\text {cc }}$	$\mathrm{O}_{1}^{0.1 \mathrm{~V}_{\mathrm{cc}}}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$
$\begin{aligned} & \overline{\mathrm{V}_{\mathrm{OH}}} \\ & \mathrm{~V}_{\mathrm{O}} \end{aligned}$	Output High Voltage Output Low Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {c }}-0.2$	0.5	V
$\mathrm{I}_{\text {FL }}$	Output Floating Leakage Current			5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified)

No.	Symbol	Parameter	Min.	Max.	Units
1	TCY	Clock Cycle Time	100	1000	ns
2	PWW	Clock Pulse Width	45		ns
3	Tr	Clock Rise Time	2	4	ns
4	Tf	Clock Fall Time	2	4	ns
5	TEAD	EA,ER/W Delay from CK	9	33	ns
6	TXVD	EXT Data Output Valid from CLK	5	27	ns
7	TXWH	EXT Data Output Hold from CLK	6	22	ns
8	TXRS	EXT Data Input Setup Time	15		ns
9	TXRH	EXT Data Input Hold from CLK	5	15	ns
10	TIEDR	/EI Delay Time from Rising CLK Edge	3	15	ns
11	TIEDF	/EI Delay Time from Falling CLK Edge	0	23	ns
12	TINS	Interrupt Setup Time	5		ns
13	TINL	Interrupt Hold Time	15		ns
14	TPAD	PA Delay from CLK	5	22	ns
15	TPDS	PD Input Setup Time	20		ns
16	TPDH	PD Input Hold Time	20	28	ns
17	TCTLS	Halt Setup Time	5		ns
18	TCTLH	Halt Hold Time	20		ns
19	RDYS	Ready Setup Time	20		
20	RDYH	Ready Hold Time	10		ns

AC TIMING DIAGRAM

Figure 15. Write To External Device Timing

Figure 16. Read From External Device Timing

AC TIMING DIAGRAM

Figure 17. Write To External Device Timing (/RDYE used to hold data one clock cycle)*

Note: */RDYE is checked during rising edge of clock.

Figure 18. Read From External Device Timing (/RDYE used to hold data one clock cycle)*

Note: */RDYE is checked during rising edge of clock.

AC TIMING DIAGRAM

Figure 19. Memory Port Timing

Figure 20. Interrupt and HALT Timing

PACKAGE INFORMATION

NDTES

1. CONTRILLLING DIMENSIDNS , INCH
2. LEADS ARE CDPLANAR WITHIN .004 IN.
3. DIMENSIDN $1 \frac{\text { MM }}{\text { INCH }}$

SYMBLL	MILLIMETER		INCH		
	MIN	MAX	MIN	MAX	
A	4.32	4.57	.170	.180	
A1	2.67	2.92	.105	.115	
D/E	25.02	25.40	.985	1.000	
D1/E1	24.13	24.33	.950	.958	
D2	22.86	23.62	.900	.930	
日	1.27 TYP			.050 TYP	

68-Pin PLCC Package Diagram

ORDERING INFORMATION

Z89C00

10 MHz
68-pin PLCC
Z89C0010VSC

15 MHz

68-pin PLCC
Z89C0015VSC
For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

V = Plastic Leaded Chip Carrier

Temperature

$\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Speeds

$10=10 \mathrm{MHz}$
$15=15 \mathrm{MHz}$

Environmental

C = Plastic Standard
Example:
Z

Z89C00 16-Bit Digital Signal Processor

Z89C00 DSP Application Note

Z89120, 289920 (ROMless) 16-Bit Mixed Signal Processor

Z89121, 289921 (ROMIEss) 16-Bit Mixed Signal Processor

9 حانた Z89C00 DSP Understanding Q15 Two's Complement FRACTIONAL MULTIPLICATION

DSP multiply/accumulate instructions are computed in a single machine cycle with the Zilog Z89C00. This Application Note describes the two's complement fractional multiplication process.

INTRODUCTION

DSP (Digital Signal Processor) multiplication is broken down into its elements in this Application Note. All the DSP requires is that the values to be multiplied are entered and the result will be given in one cycle.

The Zilog Z89C00 uses fixed point, two's complement fractional representation. The left-most bit (MSB) has a sign or weight of -1 and all the remaining bits have positive fractional weights (Q15). Values to be multiplied are written into the X (16-bit) and Y (16-bit) registers and the result (32-bit) is read in the P register. Note that only the 24 most significant bits are saved for the next instruction or accumulation.

The following working examples can be used with either a scientific calculator, a Lotus ${ }^{\otimes} 1-2-3^{\infty}$ spreadsheet, or a Z89C00 Zilog DSP GUI emulator or PLC simulator/emulator interface.

SCIENTIFIC CALCULATOR

The calculator should, in addition to all the regular functions, have hexadecimal to decimal (HEX to DEC, DEC to HEX) and exclusive OR (XOR). Before beginning the multiplication, a couple of quick conversions from two's complement fractional notation numbers to decimal:

Converting Positive Numbers:

Converting Negative Numbers:

HEX Two's Complement

8000 XOR with FFFF $+1=8000 \rightarrow$ DEC 32768/32768 •-1 =
DEC Result
8008 XOR with FFFF + $1=7$ FF8 \rightarrow DEC $32760 / 32768$ • $-1=$
-1.0000
$9 A B C \quad$ XOR with $\mathrm{FFFF}+1=6544 \rightarrow$ DEC 25924/32768 •-1 $=$
-0.9997
-0.7911

> DEC Two's Complement HEX Result
$-1.0000 \cdot-1=1.0000 \cdot 32768$ to HEX $\rightarrow 8000$ XOR with FFFF $+1=8000$
$-0.9997 \bullet-1=0.9997 \cdot 32768$ to HEX $\rightarrow 7$ FF6 XOR with FFFF $+1=8008$
$-0.7911 \cdot-1=0.7911 \cdot 32768$ to HEX $\rightarrow 6542$ XOR with FFFF $+1=9 A B C$

8000 H is 32768 (215 plus a sign bit) decimal. Everything that has a range of ± 32768 to a range of -1 (the sign bit has a weight of -1) to +0.9999695 is being rescaled, hence, the division and multiplication by 32768 . Note: Recorder can be taught to perform this function by using the windows calculator.

One line of code is required before implementing the multiplication examples:
Instruction
MLD @P0:1,@PO:0

Operation
@P0:1•@P0:0
This instruction multiplies two RAM operands. The format requires that RAM Bank 1 be referenced first.

Example 1: (+ve) • (+ve)

Multiplying a positive two's complement fractional notation number with a positive two's complement fractional notation number:

```
((+ve) - (+ve)) \bullet2)
```

a. Multiply
b. Shift left 1 bit (Multiply by 2)
c. Use only top 4 bytes

```
6FFF • 6FFF
        6FFF (Place in X register)
        < 6FFF (Place in Y register)
        30FF2001 
        < <1FE4002 (Multiply \bullet2 equivalent to shift left 1 bit)
```

 61FE40 (Save only top 6 bytes. This is what appears in the \(P\) register)
 61FE (Use only top four bytes)
 In summary,
6FFF HEX (0.8749 DEC) • 6FFF HEX (0.8749 DEC) $=61$ FE HEX (0.7655 DEC)

Example 2: (-ve) • (-ve)

Multiplying a negative two's complement fractional notation number with a negative two's complement fractional notation number:
$((\mathrm{XOR}(-\mathrm{ve}, \mathrm{FFFF})+1) \cdot(\mathrm{XOR}(-\mathrm{ve}, \mathrm{FFFF})+1)) \cdot 2$
a. Take Two's Complement of both -ve negative numbers (XOR with FFFF then add 1)
b. Multiply results
c. Shift left 1 bit (Multiply by 2)
d. Use only top 4 bytes

9DAB • AEAF

6255 (Two's Complement of 9DAB, i.e., XOR(9DAB,FFFF) +1)
$\times \quad 5151$ 1F3C01E5
$\times \quad 2$ (Multiply $\bullet 2$ equivalent to shift left 1 bit)
3E7803CA
(Save only top 6 bytes. This is what appears in the P register)
3E78 (Use only top four bytes)
In summary,

$$
\text { 9DAB HEX (-0.7682 DEC) • AEAF HEX (-0.6352 DEC) = } 3 \text { E78 HEX (0.4880 DEC) }
$$

Example 3：（－ve）•（＋ve）

Multiplying a negative two＇s complement fractional notation number with a positive two＇s complement fractional notation number：

$$
(\text { XOR }((((X O R(-v e, F F F F)+1) \cdot(+v e)) \bullet 2), F F F F))+1
$$

a．Take Two＇s Complement of－ve（XOR with FFFF then add 1）
b．Multiply result with＋ve
c．Shift left 1 bit（Multiply by 2 ）
d．Take Two＇s Complement－ve（XOR with FFFF then add 1）
e．Use only top 4 bytes

```
9DAB - 6FFF
            6255 (Two's Complement of 9DAB, i.e., XOR(9DAB,FFFF) +1)
        * 6FFF
        2B04CDAB
    \
    A9F664AA (Two's Complement)
            A9F664 (Save only top 6 bytes. This is what appears in the P register)
                A9F6 (Use only top four bytes)
```

In summary,
9DAB HEX (-0.7682 DEC) • 6FFF HEX (0.8749 DEC) = A9F6 HEX (-0.6721)

Be especially careful to note the truncations that take place which are normally implicit in this type of mathematics． Although the multiplier produces a 32－bit result，only the 24 most significant bits are saved．For example，if this result is saved temporarily in a RAM BANK，then only the 16 most significant bits are saved．If greater precision （using very small numbers）is required，then the data should be scaled before doing the multiplication．

NOTE：The DSP is designed for two＇s complement fractional multiplies and is useless for scalar multiplication．

LOTUS

LOTUS spreadsheet software can be used to make conversions and do two＇s complement fractional multiplica－ tion．Convert from HEX to decimal and multiply both decimal numbers together and reconvert the result to HEX． When converting from decimal to HEX，use HEX $16^{\circ}=1,16^{1}=16,16^{2}=256$ ，and $16^{3}=4096$ ．The equivalent decimal value is checked for sign，and，by dividing by $16^{3}, 16^{2}, 16^{1}$ ，and 16° ，is converted to HEX．This version was tested and written using a UNIX ${ }^{\text {TM }}$ version of LOTUS but it should work on most versions of LOTUS．LOTUS does not have a hexadecimal format．However，conversions can still be done as shown in the following example：

Q15
NOTE：Enter hex value in＂HEX to＂as a character string，i．e．，＇6ff9．

DEC to	HEX	$\mathbf{0 3 2 7 6 8}$	$\mathbf{4 0 9 6}$	$\mathbf{2 5 6}$	$\mathbf{1 6}$	$\mathbf{1}$			
-0.67217	A9F6	43510.39	10.62265	9.962474	15.39958	6.393219	A 9	F	6

In the spreadsheet，enter the two numbers to be multiplied 9 dab and 6 fff as above．These numbers are converted to decimal，multiplied together，and then reconverted to HEX．

In summary，
9DAB HEX（ -0.7682 DEC）• 6FFF HEX（ 0.8749 DEC）$=$ A9F6 HEX（ -0.6721 ）

The equations used for the spreadsheet are listed below row by row, but must be entered in the appropriate cells as indicated below:

A:A1:	[W9]	'Q15
A:C1:	[W9]	'NOTE: Enter hex value in "HEX to" as character string, i.e., '6ff9
A:A3:	[W9]	'DEC to
A:C3:	[W9]	'HEX
A:D3:	[W9]	'*32768
A: ${ }^{\text {P3: }}$	[W9]	4096
A:F3:	[W9]	256
A:G3:	[W9]	16
A:H3:	[W9]	1
A:A5:	[W9]	+C11
A:C5:	[W9]	+15\&J5\&K5\&L5
A:D5:	[W9]	(@1F((A5*32768)>1,(A5*32768),(2^16+(A5*32768)))
A:E5:	[W9]	(D5/\$E\$3)
A:F5:	[W9]	((E5-(@\|NT(E5)))*\$E\$3/\$F\$3)
A:G5:	[W9]	((F5-(@\|NT(F5)))*\$F\$3)/\$G\$3
A:H5:	[W9]	(G5-@INT(G5))*\$G\$3
A: 15 :	[W2]	@CHOOSE((@INT(E5)), "0","1","2", "3","4","5", "6", "7","8", "9", "A","B", "C", "D", "E","F", "0")
A:J5:	[W2]	@CHOOSE((@\|NT(F5)), "0", "1", "2", "3", "4","5", "6", "7", "8", "9, "A", "B", "C", "D","E", "F","0")
A:K5:	[W2]	@CHOOSE((@INT(G5)),"0","1","2", "3","4","5", "6", "7", "8", "9", "A","B", "C", "D", "E", "F", "0")
A:L5:	[W2]	@CHOOSE((@INT(H5)), "0","1","2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "0")
A:A7:	[W9]	'HEX to
A:C7:	[W9]	'DEC
A:A9:	[W9]	'9dab
A:C9:	[W9]	(@IF((H9/32768)<1,(H9/32768),((-2^16+H9)/32768)))
A:D9:	[W9]	@IF(@ISSTRING(19),@CODE(19)-87,19)
A:E9:	[W9]	@1F(@1SSTRING(J9),@CODE(J9)-87, 19)
A:F9:	[W9]	@IF(@ISSTRING(K9),@CODE(K9)-87,K9)
A:G9:	[W9]	@IF(@ISSTRING(L9),@CODE(L9)-87,L9)
A:H9:	[W9]	+D9*\$E\$3+E9*\$F\$3+F9*\$G\$3+G9
A:19:	[W2]	@IF(@CODE(@MID(\$A9,0,1))<58,@VALUE(@MID(\$A9,0,1)),@MID(\$A9,0,1))
A:J9:	[W2]	@IF(@CODE(@MID(\$A9, 1,1$)$)<58,@VALUE(@MID(\$A9,1,1)),@MID(\$A9, 1,1$)$)
A:K9:	[W2]	@IF(@CODE(@MID(\$A9,2,1))<58,@VALUE(@MID(\$A9,2,1)),@MID(\$A9,2,1))
A:L9:	[W2]	@IF(@CODE(@MID(\$A9,3,1))<58,@VALUE(@MID(\$A9,3,1)),@MID(\$A9,3,1))
A:A10:	[W9]	'6fff
A:C10:	[W9]	(@IF((H10/32768)<1,(H10/32768),((-2^16+H10)/32768)))
A:D10:	[W9]	@\|F(@ISSTRING(110),@CODE(110)-87,110)
A:E10:	[W9]	@IF(@ISSTRING(J10),@CODE(J10)-87,J10)
A:F10:	[W9]	@IF(@ISSTRING(K10),@CODE(K10)-87,K10)
A:G10:	[W9]	@IF(@ISSTRING(L10),@CODE(L10)-87,L10)
A:H10:	[W9]	+D10*\$E\$3+E10*\$F\$3+F10*\$G\$3+G10
A:I10:	[W2]	@IF(@CODE(@MID(\$A10,0,1))<58,@VALUE(@MID(\$A10,0,1)),@MID(\$A10,0,1))
A:J10:	[W2]	@IF(@CODE(@MID(\$A10, 1,1))<58,@VALUE(@MID(\$A10,1,1)),@MID(\$A10, 1,1$)$)
A:K10:	[W2]	$@ 1 \mathrm{~F}$ @CODE(@MID(\$A10,2,1))<58,@VALUE $(@ \mathrm{MID}(\$ 410,2,1)), @$ MID $(\$ 410,2,1))$
A:L10:	[W2]	@IF(@CODE(@MID(\$A10,3,1))<58,@VALUE(@MID(\$A10,3,1)),@MID(\$A10,3,1))
A:C11:	[W9]	+C9*C10

[^0]UNIX is a trademark of Bell Laboratories.

Z89C00 16-Bit Digital Signal Processor

Z89C00 DSP
Application Note

Z89120, 289920 (ROMless) 16-Bit Mixed Signal Processor

$Z 89120$
 Z89920 (ROMLESS) 16-Bit Mixed Signal Processor

FEATURES

- ZB^{\oplus} Microcontroller with 47 I/O Lines
- 24 Kbytes of Z8 Program ROM (Z89120)
- 256 Bytes On-Chip Z8 RAM
- Watch-Dog Timer and Power-On Reset
- Low Power STOP Mode
- On-Chip Oscillator which Accepts a Crystal or External Clock Drive
- Two 8-Bit Z8 Counter Timers with 6-Bit Prescaler
- Global Power-Down Mode
- Low Power Consumption - 200 mW (Typical)
- Two Comparators with Programmable InterruptPriority
- Six Vectored, Z8 Priority Interrupts
- RAM and ROM Protect
- Clock Speed of 20.48 MHz

Z89C00 Core 16-Bit Digital Signal Processor (DSP)

- 4K Words DSP Program ROM
- 512 Words On-Chip DSP RAM
- 8-Bit A/D Converter with up to 128 kHz Sample Rate
- 10-Bit PWM D/A Converter (4 kHz to 64 kHz)
- Two DSP Timers to Support Different A/D and D/A Sampling Rates (Automatic TriggeringA/D + D/A may be Asynchronous Triggered)
- Zero Overhead Hardware Looping
- 16-Bit Single Cycle DSP Instructions
- 16-Bit Single Cycle DSP Multiply/Accumulate
- Six-Level DSP Stack
- 24-Bit DSP ALU, Accumulator and Shifter
- Three Vectored DSP Interrupts
- Independent Z8 and DSP Operations
- IBM ${ }^{\infty}$ PC-Based Development Tools

GENERAL DESCRIPTION

The Z89120/920 is a fully integrated, mixed signal, dual processor chip system designed for lower sample rates such as audio, telephone, security systems, modem, faxes, instrumentation, noise cancellation, and sonar. The I/O control processor is a $\mathrm{Z8}^{\star}$ with 24 Kbytes of program memory, two 8-bit counter timers, and up to 47 I/O pins. The DSP is a 16-bit processor with a 24-bit ALU and Accumulator, 512×16 bits of RAM, single cycle instructions, and 6K word program ROM memory. The chip also contains an 8-bit A/D converter with up to 128 kHz sample rate and 10-bit PWM D/A converter. The sampling rates for the converters are independently programmable. The precision of the 8-bit A/D may be extended by resampling the data at a lower rate in software. Separate power supply
pins are provided to increase noise immunity. The A/D has external reference inputs wich may be connected to the Z8 ports to affect two-three extra bits of automatic gain control/dynamic range.

The Z8 and DSP processors are loosely coupled by mailbox registers and an interrupt system. DSP or Z8 programs may be directed by events in each other's domain.

The Z89920 is the ROMless version of the Z89120. In the Z89920, only the Z8 is ROMless, the DSP is not ROMless. The DSP's program memory is always the internal ROM.

Figure 1. Functional Block Diagram

Z8 ${ }^{\text {® }}$ Core Processor

The Z8 is Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register-mapped peripheral and I/O circuits and the DSP. The Z8 offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features. The Z8 pipelined instructions and register file memory provide improved programming efficiency.

For applications demanding powerful I/O capabilities, the Z89120/920 fulfills this with 47 pins dedicated to input and output. These lines are grouped into five ports. Each port is configurable under software control to provide timing, status signals and parallel I/O with or without handshake.

There are four basic memory resources for the Z8 that are available to support a wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Z8 core processor is characterized by an efficient register file that allows any of 256 on-board data and control registers to be the source and/or the destination of almost any instruction. Traditional microprocessor Accumulator bottlenecks are eliminated.

The Register File is composed of 236 bytes of generalpurpose registers, four I/O port registers, and 15 control and status registers. The Expanded Register File consists of control registers, mailbox registers, two additional timing registers and data registers. Peripheral control registers and an additional Port 4 and Port 5 are mapped into the expanded-register file to further enhance the system performance and code efficiency.

To unburden the software from supporting the real-time problems, such as counting/timing and data communication, the Z8 offers two on-chip counter/timers with a large number of user selectable modes.

Watch-Dog Timer (WDT) and STOP-Mode Recovery (SMR) features are software driven by setting specific bits in control registers.

STOP and HALT instructions support reduced power operation. The low power STOP mode allows parameter information to be stored in the register file if power fails. An external capacitor or battery retains power to the device.

DSP Coprocessor

The DSP coprocessor is a second generation, 16-bit two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate, are accomplished in a single clock cycle. The processor contains two on-chip data RAM blocks of 256 words, a 4 K word program ROM, 24-bit ALU, 16×16 multipiler, 24-bit Accumulator, shifter, six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of four pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multiplier for a true single cycle scalar multiply.

Four extended DSP registers are mapped into the expanded register file of the Z8. Communication between the Z8 and the DSP occurs through those common registers which form the mailbox registers.

Analog Interface

The analog signal is generated by a 10-bit resolution Pulse Width Modulator D/A converter. The PWM output is a digital signal with CMOS output levels. The output signal has a resolution of 1 in 1024 with a sampling rate of 16 kHz (XTAL $=20.48 \mathrm{MHz}$). The sampling rate can be changed under software control and can be set at 4,10,16, and 64 kHz . The dynamic range of the PWM is from 0 to 4 V .

An 8-bit resolution half flash A/D converter is provided. The conversion is conducted with a sampling frequency of 8 , $16,32,64$, or 128 kHz . (XTAL $=20.48 \mathrm{MHz}$) in order to provide oversampling. The input signal maybe up to 5 V peak to peak. Normally input signals are level shifted to 2.5 V with $\mathrm{a} \pm 2.5 \mathrm{~V}$ deviation.

The reference voltages for the A / D converter can be adjusted by the Z8 by external connection to provide automatic gain control.

Two additional timers (Timer2 and Timer3) have been added to support different sampling rates for the A/D and D/A converters. These timers are free running counters that divide the crystal frequency.

Notes:

All signals with a preceding front slash, " $/ 1$ ", are active Low, e.g., B / N (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circult	Device
Power	V_{cc}	V_{DD}
Ground	GND	V_{ss}

PIN DESCRIPTION

Figure 2. Z89120 68-Pin PLCC Pin Assignments

Table 1. Z89120 68-Pin PLCC Pin Identification

Pin \#	Symbol	Function	Direction
1	IR/RL	ROM/ROMless	Control Input
2	$V_{\text {DD }}$	Power Supply	
3	P04	Port 0, bit 4	Input/Output
4	P50	Port 5, bit 0	Input/Output
5	P57	Port 5, bit 7	Input/Output
6	P03	Port 0, bit 3	Input/Output
7	P02	Port 0, bit 2	Input/Output
8	P01	Port 0, bit 1	Input/Output
9	P00	Port 0, bit 0	Input/Output
10	XTAL2	Crystal Oscillator Clock	Output
11	XTAL11	Crystal Oscillator Clock	Innut
12	P22	Port 2, bit 2	Input/Output
13	P56	Port 5, bit 6	Input/Output
14	P23	Port 2, bit 3	Input/Output
15	P55	Port 5, bit 5	Input/Output
16	P54	Port 5, bit 4	Input/Output
17	GND	Ground	
18	P17	Port 1, bit 7	Input/Output
19	P05	Port 0, bit 5	Input/Output
20	P24	Port 2, bit 4	Input/Output
21	P16	Port 1, bit 6	Input//Output
22	P25	Port 2, bit 5	Input//utput
23	P15	Port 1, bit 5	Input/Outut
24	P26	Port 2, bit 6	Input/Output
25	P27	Port 2, bit 7	Input/Output
26	NC	Not Connected	
27	P31	Port 3, bit 1	Input
28	P32	Port 3, bit 2	Input
29	P33	Port 3, bit 3	Input
30	P34	Port 3, bit 4	Output
31	$V_{\text {DD }}$	Power Supply	Output
32	P35	Port 3, bit 5	Input/Output
33	P14	Port 1, bit 4	Output
34	DSP1	DSP User Output 1	

Pin \#	Symbol	Function	Direction
35	DSPO	DSP User Output 0	Output
36	P36	Port 3, bit 7	Output
37	P13	Port 1, bit 3	Input/Output
38	P37	Port 3, bit 7	Output
39	P40	Port 4, bit 0	Input/Output
40	P12	Port 1, bit 2	Input/Output
41	P06	Port 0, bit 6	Input/Output
42	P41	Port 4, bit 1	Input/Output
43	P42	Port 4, bit 2	Input/Output
44	NC	Not Connected	
45	P43	Port 4, bit 3	Input/Output
46	P44	Port 4, bit 4	Input/Output
47	P45	Port 4, bit 5	Input/Output
48	P53	Port 5, bit 3	Input/Output
49	P46	Port 4, bit 6	Input/Output
50	P11	Port 1, bit 1	Input/Output
51	P47	Port 4, bit 7	Input/Output
52	P10	Port 1, bit 0	Input/Output
53	PWM	Pulse Width Modulator	Output
54	R/W	Read/Write	Output
55	/RESET	Reset	Input
56	/AS	Address Strobe	Output
57	$\mathrm{AN}_{\text {Gno }}$	Analog Ground	
58	$V_{\text {REF }}$.	Analog Voltage Ref.	Input
59	$\mathrm{AN}_{\text {IN }}$	Analog Input	Input
60	$\mathrm{V}_{\text {REF }+}$	Analog Voltage Ref.	Input
61	ANV ${ }_{\text {DD }}$	Analog Power Supply	
62	GND	Ground	
63	P07	Port 0, bit 7	Input/Output
64	P20	Port 2, bit 0	Input/Output
65	P21	Port 2, bit 1	Input/Output
66	P52	Port 5, bit 2	Input/Output
67	P51	Port 5, bit 1	Input/Output
68	IDS	Data Strobe	Output

PIN DESCRIPTION (Continued)

Figure 3. Z89920 68-Pin PLCC Pin Assignments

Table 2. Z89920 68-Pin PLCC Pin Identification

Pin \#	Symbol	Function	Direction
1	NC	Not Connected	
2	V $_{\text {DD }}$	Power Supply	
3	P04	Port 0, bit 4	Input/Output
4	P50	Port 5, bit 0	Input/Output
5	P57	Port 5, bit 7	Input/Output
6	P03	Port 0, bit 3	Input/Output
7	P02	Port 0, bit 2	Input/Output
8	P01	Port 0, bit 1	Input/Output
9	P00	Port 0, bit 0	Input/Output
10	XTAL2	Crystal Oscillator Clock	Output
11	XTAL1	Crystal Oscillator Clock	Input
12	P22	Port 2, bit 2	Input/Output
13	P56	Port 5, bit 6	Input/Output
14	P23	Port 2, bit 3	Input/Output
15	P55	Port 5, bit 5	Input/Output
16	P54	Port 5, bit 4	Input/Output
17	GND	Ground	
18	P17	Port 1, bit 7	Input/Output
19	P05	Port 0, bit 5	Input/Output
20	P24	Port 2, bit 4	Input/Output
21	P16	Port 1, bit 6	Input/Output
22	P25	Port 2, bit 5	Input//utput
23	P15	Port 1, bit 5	Input/output
24	P26	Port 2, bit 6	Input/Output
25	P27	Port 2, bit 7	Input/Output
26	SCLK	System Clock	Output
27	P31	Port 3, bit 1	Input
28	P32	Port 3, bit 2	Input
29	P33	Port 3, bit 3	Input
30	P34	Port 3, bit 4	Output
31	$V_{\text {pD }}$	Power Supply	Output
32	P35	Port 3, bit 5	Input/Output
33	P14	Port 1, bit 4	Output
34	DSP1	DSP User Output 1	Out

Pin \#	Symbol	Function	Direction
35	DSPO	DSP User Output 0	Output
36	P36	Port 3, bit 7	Output
37	P13	Port 1, bit 3	Input/Output
38	P37	Port 3, bit 7	Output
39	P40	Port 4, bit 0	Input/Output
40	P12	Port 1, bit 2	Input/Output
41	P06	Port 0, bit 6	Input/Output
42	P41	Port 4, bit 1	Input/Output
43	P42	Port 4, bit 2	Input/Output
44	/SYNC	Synchronize Pin	Output
45	P43	Port 4, bit 3	Input/Output
46	P44	Port 4, bit 4	Input/Output
47	P45	Port 4, bit 5	Input/Output
48	P53	Port 5, bit 3	Input/Output
49	P46	Port 4, bit 6	Input/Output
50	P11	Port 1, bit 1	Input/Output
51	P47	Port 4, bit 7	Input/Output
52	P10	Port 1, bit 0	Input/Output
53	PWM	Pulse Width Modulator	Output
54	R/W	Read/Write	Output
55	/RESET	Reset	Input
56	IAS	Address Strobe	Output
57	$\mathrm{AN}_{\text {GND }}$	Analog Ground	
58	$V_{\text {REF }}$	Analog Voltage Ref.	Input
59	$\mathrm{AN}_{\text {IN }}$	Analog Input	Input
60	$V_{\text {REF }+}$	Analog Voltage Ref.	Input
61	ANV ${ }_{\text {R }}^{\text {do }}$	Analog Power Supply	
62	GND ${ }^{\text {DD }}$	Ground	
63	P07	Port 0, bit 7	Input/Output
64	P20	Port 2, bit 0	Input/Output
65	P21	Port 2, bit 1	Input/Output
66	P52	Port 5, bit 2	Input/Output
67	P51	Port 5, bit 1	Input/Output
68	IDS	Data Strobe	Output

PIN FUNCTIONS

/RESET (input, active Low). Initializes the MCU. Reset is accomplished either through Power-OnReset(POR), WDT reset, SMR or external reset. During POR and WDT reset, the internally generated reset is driving the reset pin Low for the POR time. Any devices driving the reset line must be open drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally. A /RESET signal resets both the Z8 and the DSP.

For the Z8:

After the POR time, /RESET is a Schmitt-triggered input. To avoid asynchronous and noisy reset problems, the $Z 8$ is equipped with a reset filter of four external clocks (4TpC). If the external reset signal is less than 4 TpC in duration, no reset occurs. On the fifth clock after the reset is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. Program execution begins at location 000 CH (Hexadecimal), 5-10 TpC cycles after the /RESET is released. For Power-On Reset, the typical reset time is 5 ms . The $Z 8$ does not reset WDT, SMR, P2M, and P3M registers on a STOP-Mode Recovery operation.

For the DSP:

A low level on the /RESET pin generates an internal reset signal. The /RESET signal must be kept low for at least one clock cycle. The CPU will push the contents of the PC onto the stack and then fetch a new Program Counter (PC) value from program memory address OFFCH after the reset signal is released.
/R/RL ROM/ROMless (input, active Low). This pin, when connected to $\mathrm{V}_{c c}$, disables the internal Z8 ROM only and forces the device to function as a Z89920 ROMless. (Note that when pulled Low to GND, the Z89120 functions normally as the ROM version). The DSP can not be configured as ROMless. This is available only on the Z89120.

R//W Read/Write (output, write Low). The R/W signal defines the signal flow when the $\mathbf{Z 8}$ is reading or writing to external program or data memory. The $Z 8$ is reading when this pin is High and writing when this pin is Low.

IAS Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is through Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

IDS Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer. For read operations, data must be available prior to the trailing edge of /DS. For write operations, the falling edge of /DS indicates that output data is valid.

XTAL1 Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, RC network or an external single-phase clock to the on-chip oscillator input.

XTAL2 Crystal 2 (time-based output). This pin connects a parallel-resonant, crystal, ceramic resonant, or LC network to the on-chip oscillator output.

DSPO (output). DSPO is a general purpose output pin connected to bit 6 of the Analog Control Register (DSP EXT4). This bit has no special significance and may be used to output data by writing to bit 6 of the ACR.

DSP1 (output). DSP1 is a general purpose output pin connected to bit 7 of the Analog Control Register (DSP EXT4). This bit has no special significance and may be used to output data by writing to bit 7 of the ACR.

SCLK System Clock (output). SCLK outputs the internal system clock. This pin is only available on the $\mathbf{Z 8 9 9 2 0}$.
/SYNC Synchronize (output). This signal indicates the last clock cycle of the currently executing $\mathrm{Z8}$ instruction. This pin is only available on the Z89920.

PWM Pulse Width Modulator (output). The PWM is a 10-bit resolution D/A converter. This output is a digital signal with CMOS output levels.
$\mathbf{A N}_{\mathbb{I N}}$ (input). Analog input for the A / D converter. Signal range is $A N_{G N D}$ to $A N_{V D D}$.

ANV cc. $^{\text {. Analog power supply for the } A / D \text { and } D / A ~}$ converters.
$\mathbf{A N}_{\text {GND. }}$. Analog ground for the A / D converter.
$\mathbf{V}_{\text {REF+ }}$ (input). Reference voltage (High) for the A/D converter.
$\mathbf{V}_{\text {ref- }}$ (input). Reference voltage (Low) for the A/D converter.
$\mathbf{V}_{\mathbf{c c}}$. Digital power supply for the Z89120/920.
GND. Digital ground for the Z89120/920.

Port 0 (P07-P00). Port 0 is an 8-bit, bidirectional, CMOS compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and the output drivers are push-pull. Port 0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAVO and RDYO. Handshake signal direction is dictated by the I/O direction to Port 0 of the upper nibble P07-P04. The lower nibble must have the same direction as the upper nibble.

The Auto Latch on Port 0 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 , cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I / O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they are configured by writing to the Port 0 mode register.

In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. (In ROM mode, Port 0 is defined as input after reset.)

Port 0 is set in the high-impedance mode if selected as an address output state along with Port 1 and the control signals /AS, /DS, and R/W (Figure 4).

Figure 4. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1 (P17-P10). Port 1 is an 8 -bit, bidirectional, CMOS compatible port(Figure5). It has multiplexed Address (A7AO) and Data (D7-DO) ports. These eight I/O lines are programmed as inputs or outputs, or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitttriggered and the output drivers are push-pull.

Port 1 may be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and /DAV1 (Ready and Data

Available). Memory locations greater than 24575 (in ROM mode) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port 0, /AS, /DS and R/W, allowing the Z89120/920 to share common resources in multiprocessor and DMA applications.

Figure 5. Port 1 Configuration

Port 2 （P27－P20）．Port 2 is an 8－bit，bidirectional，CMOS compatible I／O port．These eight I／O lines are indepen－ dently configured under software control as an input or output．Port 2 is always available for I／O operation．The input buffers are Schmitt－triggered．Bits programmed as outputs may be globally programmed as either push－pull or open－drain．

Port 2 may be placed under handshake control．In this configuration，Port 3 lines P31 and P36 are used as the handshake controls lines／DAV2 and RDY2．The hand－ shake signal assignment for Port 3 lines P31 and P36 is
dictated by the direction（input or output）assigned to bit 7， Port 2 （Figure 6）．

Port 26 can be configured in DSP software to activate DSP INTO．

The Auto Latch on Port 2 puts valid CMOS levels on all CMOS inputs which are not externally driven．Whether this level is 0 or 1 ，cannot be determined．A valid CMOS level， rather than a floating node，reduces excessive supply current flow in the input buffer．

Figure 6．Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3 (P37-P31). Port 3 is a 7-bit, CMOS compatible port with three fixed inputs (P33-P31) and four fixed outputs (P37-P34). It is configured under software control for input/ output, counter/timers, interrupt, and port handshakes. Pins P31, P32, and P33 are standard CMOS inputs; outputs are push-pull.

Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). Port3, pin 3 is a falling edge interrupt input. P31 and P32 are programmable as rising, falling or both edge-triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to Counter/Timer1 is made through P31 ($\mathrm{T}_{\text {IN }}$) and P36 ($\mathrm{T}_{\text {out }}$). Handshake lines for Ports 0, 1, and 2 are available on P31 through P36.

Port 3 also provides the following control functions: handshake for Ports 0,1 , and 2 (/DAV and RDY); three external interrupt request signals (IRQ3-IRQ1); timer input and output signals ($\mathrm{T}_{\mathbb{I N}}$ and $\mathrm{T}_{\text {out }}$); Data Memory Select (/DM); (Figure 7 and Table 3).

Comparator Inputs. Port 3, Pins P31 and P32 each have a comparator front end. The comparator reference voltage, pin P33, is common to both comparators. In analog mode, the P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, pin P33 can be used as a P33 register input or IRQ1 source.

Table 3. Port 3 Pin Assignments

Pin	VO	CTC1	AN IN	Int.	P0 HS	P1HS	P2 HS	EXT
P31	IN	$T_{\text {m }}$	AN1	IRQ2			D/R	
P32	IN		AN2	IRQ0	D/R			
P33	IN		REF	IRQ1		D/R		
P34	OUT					R/D		/DM
P35	OUT				R/D		R/D	
P36	OUT	$T_{\text {out }}$						
P37	OUT							

Notes:
HS = Handshake Signals
$D=D A V$
$R=R D Y$

Figure 7. Port 3 Configuration

PIN FUNCTIONS (Continued)

Port 4 (P47-P40). Port 4 is an 8 -bit, bidirectional, CMOS compatible I/O port (Figure 8). These eight I/O lines are configured under software control as an input or output, independently. Port 4 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 4 is a bit programmable general purpose I / O port. The control and data registers for Port 4 are mapped into the expanded register file (Bank F) of the Z8.

Auto Latch. The Auto Latch on Port 4 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 , cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Figure 8. Port 4 Configuration

Port 5 （P57－P50）．Port 5 is an 8－bit，bidirectional，CMOS compatible I／O port（Figure 9）．These eight I／O lines are configured under software control as an input or output， independently．Port 5 is always available for I／O operation． The input buffers are Schmitt－triggered．Bits programmed as outputs may be globally programmed as either push－ pull or open－drain．

Port 5 is a bit programmable general purpose I / O port．The control and data registers for Port 5 are mapped into the expanded register file（Bank F）of the Z8．

Auto Latch．The Auto Latch on Port 5 puts valid CMOS levels on all CMOS inputs which are not externally driven． Whether this level is 0 or 1 ，cannot be determined．A valid CMOS level，rather than a floating node，reduces exces－ sive supply current flow in the input buffer．

Figure 9．Port 5 Configuration

Z8 ${ }^{\circledR}$ FUNCTIONAL DESCRIPTION

The Z8 CCP core incorporates special functions to enhance the Z8's performance in control applications.

Pipelined Instructions. The Z8 instructions (see page 4-70) are comprised of two parts, an instruction fetch and execute part. The instructions typically take between six and ten cycles to fetch and five cycles to execute. Five cycles of the next instruction fetch may be overlapped with five cycles of the current instruction execution. This improves performance over sequential methods. Additionally, the register-based archetecture allows any registers to be picked as the source and destination in an instruction saving intermediate move.

Reset. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP-Mode Recovery Source
- External Reset

Program Memory. The Z8 addresses up to 24 Kbytes of internal program memory and 40 Kbytes external memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors which correspond to the five user interrupts and one DSP interrupt. Byte 12 to byte 24575 consists of on-chip mask-programmed ROM. At addresses 24576 and greater, the $Z 8$ executes external program memory. In ROMless mode, the $\mathrm{Z8}$ will execute from external program memory beginning at byte 12 and continuing through byte 65535 .

Figure 10. Program Memory Map

ROM Protect. The 24 Kbytes of internal program memory for the Z 8 is mask programmable. A ROM Protect feature prevents "dumping" of the ROM contents of Program Memory by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions. The ROM Protect option is maskprogrammable, to be selected by the customer at the time when the ROM code is submitted.

Data Memory (/DM). In ROM mode, the Z8 can address up to 40 Kbytes of external data memory beginning at location 24576 (Figure 11). In ROMless mode, the Z 8 can address the full 64 Kbytes of external data memory beginning at location 12. External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on Port 34, is used to distinguish between data and program memory space (Table 3). The state of the /DM signal is controlled by the type of instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references data (/DM active Low) memory.

Figure 11. Data Memory Map

Z8 FUNCTIONAL DESCRIPTION (Continued)

Register File. The standard Z8 $^{\oplus}$ register file consists of four I/O port registers, 236 general-purpose registers, and 15 control and status registers (R3-R0, R239-R4, and R255-R241, respectively). The instructions access registers directly or indirectly through an 8 -bit address field. This allows a short, 4-bit register address using the Register Pointer (Figure 12). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group (Figure 13).

Note: Register Group E (Registers EO-EF) is only accessed through a working register and indirect addressing modes.

R253 RP

Default setting after RESET $\mathbf{= 0 0 0 0 0 0 0 0}$

Figure 12. Register Pointer Register

Figure 13. Register Pointer

RAM Protect. The upper portion of the Z8's RAM address spaces 80 FH to EFH (excluding the control registers) are protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user activates from the internal ROM code to turn off/on the RAM Protect by loading a bit D6 in the IMR register to either a 0 or a 1, respectively. A 1 in D6 indicates RAM Protect enabled.

Stack. The Z8's external data memory or the internal register file is used for the stack. The 16-bit Stack Pointer (R255-R254) is used for the external stack which can reside only from 24576 to 65535 in ROM mode or 0 to 65535 in ROMless mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R239-R4). SPH can be used as a general-purpose register when using internal stack only.

Expanded Register File. The register file on the Z8 has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices along with I/O ports into the register address area. The Z8 register address space has now been implemented as 16 banks of 16 registers groups per bank (Figure 14). These register banks are known as the ERF (Expanded Register File). Bits 7-4 of register RP (Register Pointer) select the working register group. Bits 3-0 of register RP select the Expanded Register bank (Figure 14).

System configuration registers, Ports 4 and 5 mode registers, data registers and a DSP control register reside in Bank F of the Expanded Register File. Bank B of the Expanded Register File consists of the Mailbox Interface in which the Z8 and the DSP communicate. The rest of the Expanded Register is not physically implemented and is open for future expansion.

Z8 FUNCTIONAL DESCRIPTION (Continued)

Figure 14. Expanded Register File Architecture

Interrupts. The Z8 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 15). The six sources are divided as follows; three sources are claimed by Port 3 lines P33-P31, two in
counter/timers, and one by the DSP (Table 4). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.

Figure 15. Interrupt Block Diagram

Table 4. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ0	IDAV0, P32, AN2	0,1	External (P32), Programmable Rise or Fall Edge Triggered
IRQ1	/DAV1, P33	2,3	External (P33), Fall Edge Triggered
IRQ2	IDAV2, P31, T IN $^{\prime}$, AN2	4,5	External (P31), Programmable Rise or Fall Edge Triggered
IRQ3	DSP	6,7	Internal (DSP activated)
IRQ4	T0	8,9	Internal
IRQ5	T1	10,11	Internal

Z8 FUNCTIONAL DESCRIPTION (Continued)

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register. An interrupt machine cycle is activated when an interrupt request is granted. Thus, this disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt.

All Z8 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the InterruptRequest Register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQO. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select is located in the IRQ Register (R250), bits D7 and D6 . The configuration is shown in Table 5.

Table 5. IRQ Register

IRQ		Interrupt Edge	
D7	D6	P31	P32
0	0	F	F
0	1	R	R
1	0	F	
1	1	R/F	R/F

Notes:

F = Falling Edge
$R=$ Rising Edge
Clock. The Z89120/920 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, $\mathrm{XTAL2}=$ Output). The crystal should be AT cut, 20.48 MHz max., with a series resistance (RS) less than or equal to 100 Ohms. The system clock (SCLK) is one half the crystal frequency.

The crystal is connected across XTAL1 and XTAL2 using capacitors from each pin to ground (Figure 16).

Figure 16. Oscillator Configuration

Counter/Timers. There are two 8 -bit programmable counter/timers (T1-TO), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 17).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (TO) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can
also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input through Port 31. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the TO output to the input of T 1 .

Figure 17. Counter/Timer Block Diagram

Z8 FUNCTIONAL DESCRIPTION (Continued)

Port Configuration Register (PCON). The PCON register configures the port individually; comparator output on Port 3, and open-drain on Port 0 and Port 1. The PCON register is located in the Expanded Register File at BankF, location OOH (Figure 18).

Comparator Output Port 3 (DO). Bit 0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35, and a 0 releases the port to its standard I/O configuration.

Port 0 Open-Drain (D1). Port 0 can be configured as an open-drain by resetting this bit ($\mathrm{D} 1=0$) or configured as push-pull active by setting this bit (D1 = 1). The default value is 1 .

Port 1 Open-Drain (D2). Port 1 can be configured as an open-drain by resetting this bit ($\mathrm{D} 2=0$) or configured as push-pull active by setting this bit ($\mathrm{D} 2=1$). The default value is 1 .

* Default setting after Reset

Figure 18. Port Configuration Register (PCON)

Port 4 and 5 Configuration Register (P45CON). The P45CON register configures Port 4 and Port 5, individually, to open-drain or push-pull active. This register is located in the Expanded Register File at Bank F, location 06H (Figure 19).

Port 4 Open-Drain (DO). Port 4 can be configured as an open-drain by resetting this bit ($\mathrm{DO}=0$) or configured as push-pull active by setting this bit $(\mathrm{DO}=1)$. The default value is 1 .

Port 5 Open-Drain (D4). Port 5 can be configured as an open-drain by resetting this bit ($D 4=0$) or configured as push-pull active by setting this bit ($\mathrm{D} 4=1$). The default value is 1 .

P45M (FH) 06H

Figure 19. Port 4 and 5 Configuration Register (F) 06 H [Write Only]

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{cc} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

1. Power fail to Power OK status.
2. STOP-Mode Recovery (if D5 of SMR = 1).
3. WDT timeout.

The POR time is a nominal 5 ms . Bit 5 of the STOP mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock, RC/ LC oscillators).

HALT. HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

STOP. This instruction turns off the internal clock and external crystal oscillation. It reduces the standby current to $10 \mu \mathrm{~A}$ (typical) or less. The STOP mode is terminated by a reset only, either by WDT timeout, POR, SMR, or external reset. This causes the processor to restart the application program at address 000 CH . In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=FFH) immediately before the appropriate sleep instruction, i.e.,

STOP-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP-Mode Recovery (Figure 20). All bits are write only, except bit 7 which is read only. Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2,3 , and 4 , or the SMR register, specify the source of the STOP-Mode Recovery signal. Bits 0 and 1 determine the timeout period of the WDT. The SMR is located in Bank F of the Expanded Register group at address OBH.

* Default setting after

Figure 20. STOP-Mode Recovery Register (SMR)

FF NOP	; clear the pipeline
6F STOP	; enter STOP mode
	or
FF NOP	; clear the pipeline
7F HALT	; enter HALT mode

Z8 FUNCTIONAL DESCRIPTION (Continued)

SCLK/TCLK Divide-By-16 Select (DO). DO of the SMR controls a divide-by- 16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

STOP-Mode Recovery Source (D4-D2). These three bits of the SMR specify the wake-up source of the STOP recovery (Figure 21 and Table 6).

Figure 21. STOP-Mode Recovery Source

Table 6. STOP-Mode Recovery Source

SMR:432			Operation D4
D3	D2	Description of Action	
0	0	0	POR and/or external reset recovery
0	0	1	Reserved
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of P20 through P23
1	1	1	Logical NOR of P20 through P27

STOP-Mode Recovery Delay Select(D5). This bit, if High, disables the $5 \mathrm{~ms} /$ RESET delay after STOP-Mode Recovery. The default configuration of this bit is one. If the "fast" wake up is selected, the STOP-Mode Recovery source is kept active for at least 5 TpC .

STOP-Mode Recovery Edge Select (D6). A 1 in this bit position indicates that a high level on any one of the recovery sources wakes the Z89120 from STOP mode. A 0 indicates low level recovery. The default is 0 on POR (Figure 20).

Cold or Warm Start (D7). This bit is set by the device upon entering STOP mode. It is active High, and is 0 (cold) on PORNDT /RESET. This bit is read only. It is used to distinguish between cold or warm start.

DSP Control Register（DSPCON）．The DSPCON register controls various aspects of the Z8 and the DSP．It can configure the internal system clock（SCLK）or the Z8， ／RESET and HALT of the DSP，and control the interrupt interface between the Z8 and the DSP（Figure 22）．

Figure 22．DSP Control Register （F）OCH［Read／Write］

Z8 IRQ3（DO）．This bit，when read，indicates the status of $\mathrm{Z8}$ IRQ3． $\mathrm{Z8}$ IRQ3 is set by the DSP by writing to DSP Expanded Register 4．By writing a 1 to this bit， $\mathrm{Z8}$ IRQ3 is ／RESET．

DSP INT2（D1）．This bit is linked to DSP INT2．Writing a 1 to this bit sets DSP INT2．Reading this bit indicates the status of DSP INT2．

DSP RUN（D4）．This bit defines the HALT mode of the DSP． If this bit is set to 0 ，then the DSP clock is turned off to minimize power consumption．After this bit is set to 1 ，then the DSP will continue code execution from where it was halted．After a hardware reset，this bit is set to 0 ．

DSP RESET（D5）．Setting this bit to 1 will reset the DSP．If the DSP was in HALT mode，this bit is automatically preset to 1 ．Writing a 0 has no effect．This bit is write only．

Z8 SLCK（D8－D7）．These bits define the SCLK frequency of the Z8．The oscillator can be either divided by 8,4 ，or 2. After／RESET，both of these are defaulted to 00 ．

Watch－Dog Timer Mode Register（WDT）．The WDT is a retriggerable one－shot timer that resets the Z8 if it reaches its terminal count．The WDT is initially enabled by execut－ ing the WDT instruction and refreshed on subsequent executions of the WDT instruction．The WDT circuit is driven by an on－board RC oscillator or external oscillator from the XTAL1 pin．The POR clock source is selected with bit 4 of the WDT register（Figure 23）．The WDT affects the Z（zero），S（sign），and V（overflow）flags．

＊Default setting after RESET

Figure 23．Watch－Dog Timer Mode Register

Z8 FUNCTIONAL DESCRIPTION (Continued)

WDT Time Select (D0, D1). Selects the WDT time period (Figure 24). It is configured as shown in Table 7.

Table 7. WDT Time Select

D1	D0	Timeout of Internal RC OSC	Timeout of XTAL clock
0	0	5 ms min	256 TpC
0	1	15 ms min	512 TpC
1	0	25 ms min	1024 TpC
1	1	100 ms min	4096 TpC

Notes:
TpC = XTAL clock cycle
The default on reset is 15 ms .
See Figures 54 to 57 for details.

WDT During HALT (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1 .

WDT During STOP (D3). This bit determines whether or not the WDT is active during STOP mode. Since XTAL clock is stopped during STOP mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1 .

Clock Source for WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1 , the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 which selects the RC oscillator.

Figure 24. Resets and WDT

DSP FUNCTIONAL DESCRIPTION

General．The DSP is a high－performance second genera－ tion CMOS Digital Signal Processor with a modified Harvard－ type architecture with separate program and data ports． The design has been optimized for processing power and saving silicon space．

Program Memory．Programs of up to 4 K words can be masked into internal DSP ROM．Four locations are dedi－ cated to the vector address for the three interrupts（OFFDH－ OFFFH）and the starting address following a reset（OFFCH）．

Internal Data RAM．The DSP has an internal 512×16－bit word data RAM organized as two banks of 256×16－bit words each，referred to as RAMO and RAM1．Each data RAM bank is addressed by three address register point－ ers，referred to as P0：0－P2：0 for RAMO and P0：1－P2：1 for RAM1．Three addressing modes are available to access the data RAM：register indirect，direct，and short－form direct addressing．These modes are discussed in detail in Functional Description．The contents of each RAM can be loaded simultaneously into the X and Y inputs of the multiplier．

Registers．The DSP has twelve internal registers and seven extended registers．The extended registers are for the A / D and D / A converters，and the mailbox and interrupt interfacing between DSP to the Z8．Extended registers are accessed in one machine cycle，the same as internal registers．

Instruction Timing．Many instructions are executed in one machine cycle．Long immediate instructions and Branch or Call instructions are executed in two machine cycles．When the program memory is referenced in inter－ nal RAM indirect mode，it takes three machine cycles．In addition，one more machine cycle is required if the $P C$ is selected as the destination of a data transfer instruction．This only happens in the case of a register indirect branch instruction．

For example，an $a(i) * b(j)+A c c \rightarrow A c c$ calculation is done in one machine cycle，modifying the RAM pointer contents． Both operands，$a(i)$ and $b(j)$ ，can be located in two inde－ pendent RAM（ 0 and 1 ）addresses．

Multiply／Accumulate．The multiplier can perform a 16－bit $\times 16$－bit multiply or multiply accumulate in one machine cycle using the Accumulator and／or both the X and Y inputs．The multiplier produces a 32－bit result，however， only the 24 most significant bits are saved for the next instruction or accumulation．For operations on very small numbers where the least significant bits are important，the data should first be scaled by eight bits to avoid truncation errors．

ALU．The 24－bit ALU has two input ports，one of which is connected to the output of the 24 －bit Accumulator．The other input is connected to the 24 －bit P－Bus，the upper 16 bits of which are connected to the 16 －bit D－Bus．A shifter between the P－Bus and the ALU input port can shift the data by three bits right，during a multiply／accumulator operation or no shift．

Hardware Stack．A six－level hardware stack is connected to the D－Bus to hold subroutine return addresses or data． The CALL instruction pushes PC＋2 onto the stack．The RET instruction pops the contents of the stack to the PC．

Interrupts．The DSP has three positive edge triggered interrupt inputs．An interrupt is acknowledged at the end of any instruction execution．It takes two machine cycles to enter an interrupt instruction sequence．The PC is pushed onto the stack．A RET instruction transfers the contents of the stack to the PC and decrements the stack pointer by one word．The priority of the interrupts is $0=$ highest， 2 ＝lowest．

DSP Registers

There are 15 internal and extended 16-bit registers which are defined in Table 8.

Table 8. DSP Registers

Register	Attribute	Register Definition
BUS	Read	Data-Bus
X	Read/Write	X Multiplier Input, 16-Bit
Y	Read/Write	Y Multiplier Input, 16-Bit
A	Read/Write	Accumulator, 24-Bit
SR	Read/Write	Status Register
SP	Read/Write	Stack Pointer
PC	Read/Write	Program Counter
P	Read	Output of MAC, 24-Bit
EXT0	Read	Z8 ERF Bank B, Register 00-01 (from Z8)
	Write	Z8 ERF Bank B, Register 08-09 (to Z8)
EXT1	Read	Z8 ERF Bank B, Register 02-03 (from Z8)
	Write	Z8 ERF Bank B, Register 0A-0B (to Z8)
EXT2	Read	Z8 ERF Bank B, Register 04-05 (from Z8)
	Write	Z8 ERF Bank B, Register 0C-0D (to Z8)
EXT3	Read	Z8 ERF Bank B, Register 06-07 (from Z8)
	Write	Z8 ERF Bank B, Register 0E-0F (to Z8)
EXT4	Read/Write	DSP Interrupt Control Register
EXT5	Read	A/D Converter
EXT6	Write	D/A Converter

Two registers, Bus and P are read only. If either of these registers are designated as the destination of a data transfer instruction, the contents will be unaffected.

BUS is a read-only register which, when accessed, returns the contents of the D-Bus.
\mathbf{X} and \mathbf{Y} are two 16-bit input registers for the multiplier. These registers can be utilized as temporary registers when the multiplier is not being used. The P register is affected by changing X or Y .

A is a 24 -bit Accumulator. The output of the ALU is sent to this register. When 16 -bit data is transferred into this register, it goes into the 16 MSB's and the least significant eight bits are set to zero. Only the upper 16 bits are transferred to the destination register when the Accumulator is selected as a source register in transfer instructions.
$\mathbf{S R}$ is the DSP status register (Figure 25) which contains the ALU status and certain control bits as shown in Table 9.

Figure 25. DSP Status Register

DSP FUNCTIONAL DESCRIPTION (Continued)

Table 9. DSP Status Register Bits

Status	Register Bit	Function
S15	(N)	ALU Negative
S14	(OV)	ALU Overilow
S13	(Z)	ALU Zero
S12	(C)	Carry
S11	(U01)	User Pin 1 Input (DSP1)
S10	(U00)	User Pin O Input (DSPO)
S9	(SH3)	MPY Output Snitted by 3 Bits
S8	(OP)	Overflow Protection
S7	(IE)	Interrupt Enable
S6	(P1)	User Output (General Purpose)
S5	(PO)	User Output (General Purpose)
S4-S3	(RBi)	General Purpose Register Ban
S2-S0	(RPL)	RAM Pointer Loop Size
S2	S1	S0
0	0	0
0	0	1
0	1	0
0	1	1

PC is the program counter. When this register is assigned as a destination register, one NOP machine cycle is added automatically to adjust the pipeline timing.
\mathbf{P} is the output register for the 24 -bit multiplier.
EXT3-EXTO (Extended Registers 0-3) are the Mailbox Registers in which the DSP and the Z8 communicate (Figure 26). These four 16 bit registers correspond to the eight outgoing and eight incoming 8 -bit registers in Bank B of the Z8's Expanded Register File.

EXT4 (DSP Interrupt Control Register (ICR)) controls the interrupts in the DSP as well as the interrupts in common between the DSP and the Z8. It is accessible by the DSP only, except for the bit F and bit 9.

EXT5 (D/A and A/D Data Register) is used by both D/A and A/D converters. The D/A converter will be loaded by writing to this register, while the A/D converter will be addressed by reading from this register. The Register EXT5 is accessible by the DSP only.

EXT6 (Analog Control Register) controls the D/A and A/D converters. It is a read/write register accessible by the DSP only.

Mail Box Registers

Figure 26. Z8-DSP Interface

DSP-Z8 Mailbox

To receive information from the DSP, the Z8 uses eight incoming registers which are mapped in the Z8 Extended Register File (Bank B, 08 to OF). The DSP treats these as four 16-bit registers that correspond to the eight incoming Z8 registers.

Both the outgoing registers and the incoming registers share the same DSP address (EXT3-EXTO).

Note: The Z8 can read and write to ERF Bank B R00-R07, Registers 08-0F are read only from the Z8.

Table 10. Outgoing Registers (Read Only from DSP)

Field (Z8 Side)	Z8 Position	Z8 Attributes	DSP Position	DSP Attributes	Label
Outgoing [0]	76543210	RN	FEDCBA98	R	DSPext0_hi (15-8)
Outgoing [1]	76543210	R/W	765434210	R	DSPext0_10 (7-0)
Outgoing [2]	76543210	RN	FEDCBA98	R	DSPext1_hi (15-8)
Outgoing [3]	76543210	RN	765434210	R	DSPext1_lo (7-0)
Outgoing [4]	76543210	RN	FEDCBA98	R	DSPext2_hi (15-8)
Outgoing [5]	76543210	RNW	765434210	R	DSPext2_lo (7-0)
Outgoing [6]	76543210	RNW	FEDCBA98	R	DSPext3_hi (15-8)
Outgoing [7]	76543210	RNW	765434210	R	DSPext3_lo (7-0)

Table 10. Incoming Registers (Write Only from DSP)

Field (Z8 Side)	Z8 Position	Z8 Attributes	DSP Position	DSP Attributes	Label
Incoming [0]	76543210	R	FEDCBA98	W	DSPext0_hi (15-8)
Incoming [1]	76543210	R	76543210	W	DSPext0_lo (7-0)
Incoming [2]	76543210	R	FEDCBA98	W	DSPext1_hi (15-8)
Incoming [3]	76543210	R	76543210	W	DSPext1_lo (7-0)
Incoming [4]	76543210	R	FEDCBA98	W	DSPext2_hi (15-8)
Incoming [5]	76543210	R	76543210	W	DSPext2_lo (7-0)
Incoming [6]	76543210	R	FEDCBA98	W	DSPext3_hi (15-8)
Incoming [7]	76543210	R	76543210	W	DSPext3_lo (7-0)

DSP Interrupts

The DSP processor has three interrupt sources (INT2, INT1, INTO) (Figure 27). These sources have different priority levels (Figure 28). The highest priority, the next lower and the lowest priority level are assigned to INT2, INT1, and INTO, respectively. The DSP does not allow
interrupt nesting (interrupting service routines that are currently being executed). When two interrupt requests occur simultaneously, the DSP starts servicing the interrupt with the highest priority level (Figure 29).

Figure 27. DSP Interrupts

Figure 28. DSP Interrupt Priority Structure

DSP Interrupts (Continued)

Figure 29. Interprocessor Interrupts Structure

Interrupt Control Register (ICR). The ICR is mapped into EXT4 of the DSP (Figure 30). The bits are defined as follows.

DSP_IRQ2 (Z8 Interrupt). This bit can be read by both Z8 and DSP and can be set only by writing to the $Z 8$ expanded Register File (Bank F, ROC, bit 0). This bit asserts IRQ2 of the DSP and can be cleared by writing to the Clear_IRQ2 bit.

DSP_IRQ1 (A/D Interrupt). This bit can be read by the DSP only and is set when valid data is present at the A/D output register (conversion done). This bit asserts IRQ1 of the DSP and can be cleared by writing to the Clear_IRQ1bit.

DSP_IRQ0 (D/A Interrupt). This bit can be read by DSP only and is set by Timer3. This bit assists IRQO of the DSP and can be cleared by writing to the Clear_IRQ0 bit.

DSP_MaskIntX. These bits can be accessed by the DSP only. Writing a 1 to these locations allows the INT to be serviced, while writing a 0 masks the corresponding INT off.

Z8_IRQ3. This bit can be read from both Z8 and DSP and can be set by DSP only. Addressing this location accesses bit D 3 of the Z 8 IRQ register, hence this bit is not implemented in the ICR. During the interrupt service routine executed on the Z8 side, the user has to reset the Z8_IRQ3 bit by writing a 0 to bit D9. The hardware of the Z89120 automatically resets Z8_IRQ3 bit three instructions of the $Z 8$ after 0 is written to its location in register bank OF. This delay provides the timing synchronization between the Z8 and the DSP sides during interrupts. In summary, the interrupt service routine of the Z8 for IRQ3 should be finished by:

SRP	$0 F$
AND	$0 \mathrm{C}, \# \% \mathrm{FD}$
POP	RP
IRET	

DSP Enable_INT. Writing a 1 to this location enables global interrupts of the DSP while writing 0 disables them. A system reset globally disables all interrupts.

DSP_IPRX. This 3-bit group defines the Interrupt Priority according to Table 12.

Figure 30. EXT4 DSP Interrupt Control Register (ICR) Definition

Table 12. DSP Interrupt Priority

High Priority int0 Interrupt	Medium Priority int1 Interrupt	Low Priority int2 Interrupt	DSP_IPR2, 1, $\mathbf{0}$
IRQ0	IRQ1	IRQ2	000
IRQ0	IRQ2	IRQ1	001
IRQ1	IRQ0	IRQ2	010
IRQ1	IRQ2	IRQ0	011
IRQ2	IRQ0	IRQ1	100
IRQ2	IRQ1	IRQ0	101

DSP Interrupts (Continued)

Clear_IRQX.These bits can be accessed by the DSP only. Writing a 1 to these locations resets the corresponding DSP_IRQX bits to 0 . Clear_IRQX are virtual bits and are not implemented.

The Z8 can supply the DSP with data through eight outgoing registers mapped into both the Z8 Extended Register File (Bank B, Registers 00 to 07) and the external
register interface of the DSP. These registers are RW and can be used as general purpose registers of the Z8. The DSP can only read information from these registers. Since the DSP uses a 16 -bit data format and the Z 8 uses an 8 -bit data format, eight outgoing registers of the $\mathrm{Z8}$ correspond to four DSP registers. The DSP can only read information from the outgoing registers.

DSP Analog Data Registers

The D/A conversion is DSP driven by sending 10-bit data to the EXT5 of the DSP. The six remaining bits of EXT5 are not used (Figure 31).

The A/D supplies 8-bit data to the DSP through register EXT5 of the DSP. From the 16 bits of EXT5, only bits 2 through 9 are used by the A/D (Figure 32). Bits 0 and 1 are padded with zeroes.

Figure 31. EXT5 Register D/A Mode Definition

Figure 32. EXT5 Register A/D Mode Definition

Analog Control Register (ACR)

The Analog Control Register is mapped to register EXT6 of the DSP (Figure 33). This read/write register is accessible by the DSP only.

The 16 -bit field of EXT6 defines modes of both the A/D and the D/A. The High Byte configures the D/A, while the Low Byte controls the A/D mode.

DSP IRQO. Defines the source of DSP IRQO interrupt.
D/A Converter Effective Sampling Rate. This field defines the effective sampling rate of the D/A output (Figure 33). It changes the period of Timer3, which generates the interrupt for updating the output sample and in turn affects the maximum possible accuracy of the D/A (Table 13).

Table 13. D/A Data Accuracy

Sampling Rate	D/A Accuracy
64 kHz	8 Bits
16 kHz	10 Bits
10 kHz	10 Bits
4 kHz	10 Bits

DSPO. DSPO is a general purpose output pin connected to bit 6 . This bit has no special significance and may be used to output data by writing to bit 6 .

DSP1. DSP1 is a general purpose output pin connected to bit 7. This bit has no special significance and may be used to output data by writing to bit 7 .

Figure 33. EXT6 Analog Control Register (ACR)

ANALOG CONTROL REGISTER (Continued)

Enable A/D. Writing a 0 to this location disables the A/D converter, a 1 will enable it. A hardware reset forces this bit to be 0 .

Conversion Done. This read only flag indicates that the -A/D conversion is complete. Upon reading EXT5 (A/D data), the Conversion Done flag is cleared.

Start AVD Conversion. Writing a 1 to this location immediately starts one conversion cycle. If this bit is reset to 0 the input data is converted upon successive Timer2 time-outs. A hardware reset forces this bit to be 1.

AD Converter Sampling Rate. This field defines the sampling rate of the A/D. It changes the period of Timer2 interrupt (Figure 33).

DSP Timers

Timer2 is a free running counter that divides the XTAL frequency to support different sampling rates for the A/D converter. The sampling rate is defined by the Analog Control Register. Upon reaching the end of a count, the timer generates an interrupt request to the DSP.

Analogous to Timer2, Timer3 generates the different sampling rates for the D/A converter. Timer3 also generates an interrupt request to the DSP upon reaching its final count value (Figure 34).

Note: that the crystal speed in this example is 20.48 MHz , which is the maximum tested speed, but lower speeds may be used.

DSP RAM. The DSP has two 256 word \times 16-bit internal RAMs (RAMO and RAM1) with three address pointer registers for each RAM Bank, P0:0-P2:0 and P0:1-P2:1. The RAM addresses for RAMO and RAM1 are arranged from 255-0 and 256-511, respectively. The address pointers, which may be written or read, are 8-bit registers connected to the lower byte of the internal 16-bit, D-Bus and are used to perform no overhead hardware looping.

Figure 34. Timer2 and Timer3

The contents of the RAM can be read or written in one machine cycle per word without disturbing any internal registers or status other than the RAM address pointer used for each RAM.

The address of the RAM is specified in one of three ways:

1. Register Indirect (Figures 35 and 38) Pn:b $n=0-2$, $\mathrm{b}=0-1$: The most commonly used method is a register indirect addressing method, where the RAM address is specified by one of the three RAM address pointers (n) for each bank (b). Each source/destination field in Figures 35 and 39 may be used by an indirect instruction to specify a register pointer and its modification after execution of the instruction (Figures 35 and 39).

The register pointer is specified by the first and second bits in the source/destination field and the modification is specified by the third and fourth bits according to Table 14.

Figure 35. DSP Register Indirect Fields

Table 14. Register Indirect Fields

S/D Field	Modification	Meaning
$00 \times x$	NOP	No Operation
$01 \times x$	+1	Simple increment
$10 x x$	$-1 /$ LOOP	Decrement modulo the loop count
11 xx	$+1 / \mathrm{LOOP}$	Increment modulo the loop count
$\times \times 00$	$\mathrm{PO:O}$ or P0:1*	See Note a.
$\times \times 01$	$\mathrm{P} 1: 0$ or P1:1**	See Note a.
$\mathrm{xx10}$	P2:0 or P2:1*	See Note a.

Notes:

a. If bit 8 is zero, $\mathrm{PO}: 0-2: 0$ are selected; if bit 8 is one, $\mathrm{PO}: 1-2: 1$ are selected.

* P0:0-P2:0 and P0:1-P2:1 refer to the DSP pointer registers and not to the $/ / O$ ports in the $Z 8$.

When LOOP mode is selected, the size of the loop is obtained from the least-most-significant three bits of the Status Register. The increment or decrement of the register is accomplished modulo the loop size. As an example, if the loop size is specified as 32 by entering the value 101
into bits 2-0 of the Status Register (S2-SO) and an increment $+1 /$ LOOP is specified in the address field of the instruction, i.e., the RPi field is 11xx, then the register specified by RPi will increment, but only the least significant five bits will be affected.
2. Register Direct (Figure 36): The second method is a direct addressing method. The address of the RAM is specified by the address field of the instruction directly.

Because this addressing method consumes nine bits (0-511) of the instruction field, some instructions cannot use this mode.

Figure 36. DSP Internal RAM Address Format

DSP Timers (Continued)

3. Short Form Direct (Figure 37) Dn:b $n=0-3, b=0-1$: The last method is called Short Form Direct Addressing, where one-out- of 32 addresses in internal RAM can be specified. The 32 addresses are the 16 Low addresses in RAM Bank 0 and the 16 Low addresses in RAM Bank 1. Bit 8 of the instruction field determines RAM Bank 0 or 1. The 16
addresses are determined by a 4-bit code comprised of bits S3 and S4 of the status register and the third and fourth bits of the Source/Destination field. Because this mode can specify a direct address in a short form, all the instructions where the register indirect mode is used can use this mode.

Figure 37. Short Form Direct Address

INSTRUCTION FORMAT

Note: Source/Destination fields can specify either register or RAM address in RAM pointer indirect mode.

Figure 38. General Instruction Format

Table 15. Registers Fields

Source/Destination	Register
0000	BUS**
0001	X
0010	Y
0011	A
0100	S
0101	ST
0110	PC
0111	$\mathrm{P}^{\star *}$
1000	EXTO
1001	EXT1
1010	EXT2
1011	EXT3
1100	EXT4
1101	EXT5
1110	EXT6
1111	Reserved

Table 16. Register Pointers Fields

Source/Destination	Meaning
$00 x x$	NOP
$01 \times x$	+1
$10 x x$	$-1 / \mathrm{LOOP}$
11 xx	$+1 / \mathrm{LOOP}$
$\mathrm{xx00}$	$\mathrm{PO:O}$ or PO: 1^{*}
$\mathrm{xx01}$	$\mathrm{P} 1: 0$ or $\mathrm{P}: 1^{*}$
$\mathrm{xx10}$	$\mathrm{P} 2: 0$ or $\mathrm{P} 2: 1^{*}$

Notes:

* If RAM Bank bit is 0 then PO:0-P2:0 are selected. If RAM Bank bit is 1 then PO:1-P2:1 are selected. Also note, P0:0-P2:0 and P0:1-P2:1 refer to the DSP pointer registers and not to the I/O ports in the Z8.
** Read only.
S4, S3 $=$ bits 4, 3 of Status Register
D3, D2 $=$ bits 4,3 of Source/Destination Field

Short Immediate Data
Reg. Pointer
000 P0:0
001 P1:0
010 P2:0

Figure 39. Short Immediate Data Load Format

INSTRUCTION FORMAT (Continued)

Figure 40. Immediate Data Load Format

Figure 41. Accumulator Modification Format

Figure 42. Branching Format

Figure 43. Flag Modification Format

PULSE WIDTH MODULATOR (PWM)

Digital to Analog Converter

The analog signal is generated by a 10 -bit resolution oversampling pulse distribution modulator (OPDM). The OPDM output is a digital signal with 0 to V_{cc} output levels. The effective sampling rate is directly programmable by the DSP processor and indirectly by the $\mathrm{Z8}^{\oplus}$ processor. The effective sampling rate is a function of the external clock frequency and the mode set by the Analog Control Register (ACR) (see Figure 33). For a clock frequency of 20.48 MHz , effective sample rates of $4,10,16$, and 64 kHz are available. The output must be filtered by an appropriate external reconstruction filter to obtain an analog signal.

The converter accepts 10-bit inputs for the 4,10, and 16 kHz modes and eight bits for the 64 kHz mode. The effective sample period is the time it takes to output successive samples which is found by taking the reciprocal of the effective sample rate. Example: Assume a system clock of 20.48 MHz with the converter programmed via the ADC for the 16 kHz mode. Then actual effective sample rate is 16 kHz and the sample period is $1+16 \times 10^{3}$, or $62.5 \mu \mathrm{~s}$. If the system clock were 19.432 MHz , then the effective sample rate would actually be 14.4 kHz and the sample period $1+14.4 \mathrm{kHz}$, or $69.4 \mu \mathrm{~s}$.

A sample period is divided into small time slots which are filled with pulses proportional to the digital input value to be converted. Some modes may have more time slots than the 8- or 10-bit input value can fill. In this case there is an active area and an inactive area filled with zeroes. In the 4 kHz mode there are 5120 possible slots of which 4096 of these (4×1024) are actually used, (divided into 4 groups of 1024), which repeat the same pattern. These 1024 slots are divided into 32 equidistant groups of 32 bits called C-slots. In the 10 kHz mode there are 2048 possible slots. All 2048 are used, (2 groups of 1024) which are then divided into C -slots as in the 4 kHz mode. In the 16 kHz mode, there are 1280 slots of which 1024 are used. The 1024 group is divided into C -slots as in the 4 kHz mode.

In the 64 kHz mode, there are 320 time slots of which 256 are actually used. The 256 slots are divided into eight C-slots. The 10 kHz mode is the only mode where all time slots can potentially be filled.

Digital to Analog Converter (Continued)

4 kHz mode (10 bit resolution)

10 kHz mode (10 bit resolution)

16 kHz mode (10 bit resolution)

64 kHz mode (8 bit resolution)

The 1 st 5 bits fill a C-slot. Bits 6,7 and 8 are used to insert the correct number of filled C-slots.

Figure 44. PWM Output

A/D CONVERTER (ADC)

Analog To Digital Converter

The A/D converter is an 8 -bit half-flash converter which uses two reference resistor ladders for its upper four bits (MSBs) and lower four bits (LSBs) conversion (Figure 45). Two reference voltage pins, $\mathrm{V}_{\text {REF }}$ (High) and $\mathrm{V}_{\text {REF- }}$ (Low), are provided for external reference voltage supplies. During the sampling period, the converter is auto-zeroed before starting the conversion depending on the external
clock frequency and the selection of the A / D sampling rate. The sampling rates are in the order of $8,16,32,64$, or $128 \mathrm{kHz}(\mathrm{XTAL}=20.48 \mathrm{MHz})$ in order to provide oversampling. The rates are software controlled by the ACR (DSP Extended Register 6). Timer2 supports the ADC. The minimum conversion time is $2 \mu \mathrm{~s}$.

Figure 45. A/D Converter

Conversion begins by writing to the appropriate bit in the Analog Control Register (ACR). The start commands are implemented in such a way as to begin a conversion at any time. If a conversion is in progress and a new start command is received, then the conversion in progress is aborted and a new conversion initiated. This allows the programmed values to be changed without affecting a conversion-in-progress. The new values take effect only after a new start command is received.

The ADC can be disabled (for low power) or enabled by an ACR bit.

Though the ADC functions for a smaller input voltage and voltage reference, the noise and offsets remain constant over the specified electrical range. The errors of the converter will increase and the conversion time may also take slightly longer due to smaller input signals.

Figure 46. ADC Timing Diagram

A/D CONVERTER (ADC) (Continued)

Figure 47 shows the input circuit of the ADC. When conversion starts, the analog input voltage from the input is connected to the MSB and LSB flash converter inputs as shown in the Input Impedance circuit diagram. Shunting 31 parallel internal resistances of the analog switches and simultaneously charging 31 parallel 0.5 pF capacitors (only the first, 0.5 pF caps matter) is equivalent to a 400 Ohm input impedance in parallel with a 16 pF capacitor. Other input stray capacitance adds about 10 pF to the input load. Input source resistances of up to 2 kOhms can be used under normal operating conditions without any degradation of the input settling time. For larger input source resistance, longer conversion cycle times may be required to compensate for the input settling time problem. $V_{\text {REF }}$ is set using the $V_{\text {REF }+}$ pin.

The operation of the flash converter is divided into two parts. The first section converts the four MSBs and the second similar section converts the four LSBs. Before a
conversion starts all the switches across the comparators are shut, thus forcing input and output to $\mathrm{V}_{\mathrm{cc}}+2$. The input switches are also closed, forcing the 0.5 pF sample capacitors to track the input voltage on one side while the other side is held at $\mathrm{V}_{\mathrm{cc}}+2$. When the switch inputs (Si) open the charge is stored on the sample capacitor. A linear resistor ladder divides the reference voltage into 32 equal steps. When the Si's open, they are connected to the stepped reference voltages at the same time the switch comparators (Sc's) are opened, allowing the input to the comparator to change. The new input to the comparator will be the sum of the original voltage across the sample cap and the reference voltage. This voltage is compared to $\mathrm{V}_{\mathrm{cc}}+2$ on the threshold of the comparator. For any given input voltage, the 31 comparators will divide between all "on" above the input voltage and all "off" below it. The parallel output then is converted by logic into a binary value.

Transfer gate on resistance $=2-5 \mathrm{k} \Omega$.

Figure 47. Input Impedance of ADC

Once the determination has been made as to which point in the resistor divider the signal came closest to, the second part of the conversion takes place. In this case, the LSB part of the signal is across the resistor in the ladder
adjacent to the comparison point. A second resistor ladder and comparators similar to the first are connected across the resistor (see Figure 48). A second conversion similar to the first takes place to complete the LSB portion.

Figure 48. Input Impedance of ADC

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$V_{\text {CC }}$	Supply Voltage (${ }^{*}$)	-0.3	+7.0	V
$T_{\text {STG }}$	Storage Temp	-65°	$+150^{\circ}$	C
T_{A}	Oper Ambient Temp		\dagger	C

Notes:

* Voltage on all pins with respect to GND.
\dagger See Ordering Information.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 49).

Figure 49. Test Load Diagram

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$, unmeasured pins returned to GND.

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

DC ELECTRICAL CHARACTERISTICS

Sym	Parameter	$\begin{gathered} \mathbf{V}_{\text {cc }} \\ \text { Note [1] } \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { Min } \quad \operatorname{Max} \end{aligned}$	Typical © $25^{\circ} \mathrm{C}$	Units
$l_{\text {cc }}$	Supply Current	5.0 V	65	40	mA
$\mathrm{lcCl}^{\text {ch }}$	HALT Mode Current	5.0 V	10	6	mA
$\mathrm{l}_{\mathrm{CC2}}$	STOP Mode Current	5.0 V	20	6	$\mu \mathrm{A}$

Notes:
[1] $50 \mathrm{~V} \pm 05 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Diagram

Figure 50. External VO or Memory Read/Write Timing

AC CHARACTERISTICS

External I／O or Memory Read and Write Timing Table

No	Symbol	Parameter	$\begin{aligned} & \mathbf{V}_{\text {ce }} \\ & \text { [4] } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{1}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { Min } \quad \text { Max } \end{aligned}$		Units	Notes
1	TdA（AS）	Address Valid to／AS Rise Delay	5．0V	25		ns	［2，3］
2	TdAS（A）	／AS Rise to Address Float Delay	5．0V	35		ns	［2，3］
3	TdAS（DR）	／AS Rise to Read Data Req＇d Valid	5．0V		150	ns	［1，2，3］
4	TwAS	／AS Low Width	5．0V	35		ns	［2，3］
5	TdAZ（DS）	Address Float to／DS Fall	5.0 V	0		ns	
6	TwDSR	／DS（Read）Low Width	5．0V	125		ns	［1，2，3］
7	TwDSW	／DS（Write）Low Width	5.0 V	75		ns	［1，2，3］
8	TdDSR（DR）	／DS Fall to Read Data Req＇d Valid	5.0 V		90	ns	［1，2，3］
9	ThDR（DS）	Read Data to／DS Rise Hold Time	5.0 V	0		ns	［2，3］
10	TdDS（A）	／DS Rise to Address Active Delay	5.0 V	40		ns	［2，3］
11	TdDS（AS）	／DS Rise to／AS Fall Delay	5．0V	35		ns	［2，3］
12	TdR／N（AS）	R／W Valid to／AS Rise Delay	5.0 V	25		ns	$[2,3]$
13	TdDS（R／W）	／DS Rise to R／W Not Valid	5．0V	35		ns	［2，3］
14	TdDW（DSW）	Write Data Valid to／DS Fall（Write）Delay	5.0 V	40		ns	$[2,3]$
15	TdDS（DW）	／DS Rise to Write Data Not Valid Delay	5.0 V	25		ns	［2，3］
16	TdA（DR）	Address Valid to Read Data Req＇d Valid	5.0 V		180	ns	［1，2，3］
17	TdAS（DS）	／AS Rise to／DS Fall Delay	5．0V	48		ns	［2，3］
18	TdDI（DS）	Data Input Setup to／DS Rise	5．0V	50		ns	［1，2，3］
19	TdDM（AS）	／DM Valid to／AS Fall Delay	5．0V	20		ns	$[2,3]$

Notes：

［1］When using extended memory timing add 2 TpC．
［2］Timing numbers given are for minimum TpC．
［3］See clock cycle dependent characteristics table．
［4］ $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ ．
Standard Test Load
All timing references use $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 ．

AC ELECTRICAL CHARACTERISTICS
Additional Timing Diagram

Figure 51. Additional Timing

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\begin{aligned} & V_{c c} \\ & {[4]} \end{aligned}$	T Min M	$\begin{gathered} +70^{\circ} \mathrm{C} \\ \text { Max } \end{gathered}$	Units	Notes	
1	TpC	Input Clock Period	5.0 V	48.83		ns	［1］	
2	TrC，TfC	Clock Input Rise \＆Fall Times	5.0 V		6	ns	［1］	
3	TwC	Input Clock Width	5.0 V	16		ns	［1］	
4	TwTinL	Timer Input Low Width	5.0 V	70		ns		
5	TwTinH	Timer Input High Width	5.0 V	3 TpC			［1］	
6	TpTin	Timer Input Period	5.0 V	8 TpC			［1］	
7	TrTin， TfTin	Timer Input Rise \＆Fall Timer	5.0 V		100	ns	［1］	
8A	TwIL	Int．Request Low Time	5.0 V	70		ns	［1，2］	
8 B	TwIL	Int．Request Low Time	5.0 V	3 Tp C			［1］	
9	TwIH	Int．Request Input High Time	5.0 V	3 TpC			［1］	
10	Twsm	Stop－Mode Recovery Width Spec	5.0 V	12		ns	［1］	
11	Tost	Oscillator Startup Time	5.0 V	5 TpC				［3］
12	Twdt	Watch－Dog Timer	5.0 V	5		ms	D0＝ 0 ［4］	
			5.0 V	15		ms	$D 0=1[4]$	
			5.0 V	25		ms	D0 $=0$［4］	
			5.0 V	100		ms	$D 0=1[4]$	

Notes：

［1］Timing Reference uses $0.9 \mathrm{~V}_{c c}$ for a logic 1 and $0.1 \mathrm{~V}_{c c}$ for a logic 0.
［2］Interrupt request through Port 3 （P31－P33）．
［3］SMR－D5 $=0$.
［4］Reg．WDT．
［5］ $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ ．

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Diagrams

Figure 52. Input Handshake Timing

Figure 53. Output Handshake Timing

AC ELECTRICAL CHARACTERISTICS
Handshake Timing Table

No	Symbol	Parameter	$\begin{gathered} V_{\text {cc }} \\ \text { Note [1] } \end{gathered}$	$\begin{aligned} & \mathrm{T}_{=}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \operatorname{Min} \quad \mathrm{Max} \end{aligned}$		Units	Data Direction
1	TsDI(DAV)	Data In Setup Time	5.0 V	0		ns	IN
2	ThDI(DAV)	Data In Hold Time	5.0 V	115		ns	IN
3	TwDAV	Data Available Width	5.0 V	110		ns	IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay	5.0 V		115	ns	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay	5.0 V		80	ns	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	5.0 V	0		ns	IN
7	TCLDAVO(RDY)	Data Out to DAV Fall Delay	5.0 V	25		n's	OUT
8	TcLDAVO(RDY)	DAV Fall to RDY Fall Delay	5.0 V	0		ns	OUT
,	TdRDYO(DAV)	RDY Fall to DAV Rise Delay	5.0 V		115	ns	OUT
10	TwRDY	RDY Width	5.0 V	80		ns	OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay	5.0 V		80	ns	OUT

Note:
[1] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

A/D Electrical Characteristics
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Parameter	Minimum	Maximum	Typical	Units
Resolution			8	bits
Integral non-linearity		1	0.5	Isb
Differential non-linearity		0.5		Isb
Zero Error at $25^{\circ} \mathrm{C}$		50		mV
Power Dissipation		75	35	mW
Clock Frequency		20		MHz
Clock Pulse Width	35			ns
Input Voltage Range	$\mathrm{AN}_{\text {GNo }}$	$\mathrm{ANV}_{\text {cc }}$		V
Conversion Time		2		$\mu \mathrm{s}$
Input Capacitance on		60		pF
$\mathrm{VA}_{\text {HII }}$ range damage	$\mathrm{AN}_{\text {GND }}$	ANV ${ }_{\text {cc }}$		V
$V A_{L O}$ range damage	$\mathrm{AN}_{\text {GND }}$	$\mathrm{ANV}_{\mathrm{cc}}$		V
$\mathrm{ANV}_{c c}$	$\mathrm{AN}_{\text {GND }}$	$V_{c c}$		V
III ana	-10	+10		$\mu \mathrm{A}$
III VA ${ }_{\text {HI, }} \mathrm{VA}_{\text {LO }}$	TBD	TBD		$\mu \mathrm{A}$

Z8 EXPANDED REGISTER FILE REGISTERS

Expanded Register Bank B

(B) 00

Figure 54. Outgoing Register to DSP EXTO (High Byte)
(B) $\mathbf{0 0 H}$ [Read/Write]
(B) 01

Figure 55. Outgoing Register to DSP EXTO (Low Byte)
(B) 01H [Read/Write]
(B) 02

Figure 56. Outgoing Register to DSP EXT1 (High Byte)
(B) 02 H [Read/Write]

Figure 57. Outgoing Register to DSP EXT1 (Low Byte)
(B) 03H [Read/Write]
(B) 04

Figure 58. Outgoing Register to DSP EXT2 (High Byte)
(B) 04H [Read/Write]

Figure 59. Outgoing Register to DSP EXT2 (Low Byte)
(B) 05H [Read/Write]

Figure 60. Outgoing Register to DSP EXT3 (High Byte)
(B) 06 H [Read/Write]

Figure 61. Outgoing Register to DSP EXT3 (Low Byte)
(B) 07H [Read/Write]

Expanded Register Bank B (Continued)

Figure 62. Incoming Register from DSP EXTO
(High Byte)
(B) 08H [Read Only]
(B) $0 C$

Figure 66. Incoming Register from DSP EXT2
(High Byte)
(B) OCH [Read Only]
(B) $O D$

Figure 67. Incoming Register from DSP EXT2 (Low Byte)
(B) ODH [Read Only]
(B) $O E$

Figure 68. Incoming Register from DSP EXT3
(High Byte)
(B) OEH [Read Only]
(B) OF

Figure 69. Incoming Register from DSP EXT3
(Low Byte)
(B) 0FH [Read Only]

Expanded Register Bank F

PCON (FH) OOH

* Default Setting After Reset

Figure 70. Port Configuration Register (PCON) (F) 00 [Write Only]

Figure 71. Port 4 Data Register (F) 02H [Read/Write]

Figure 72. Port 4 Mode Register (F) 03H [Write Only]

Figure 73. Port 5 Data Register (F) 04H [Read/Write]

P5M (FH) 05H

Figure 74. Port 5 Mode Register (F) 05H [Write Only]

Figure 75. Port 4 and 5 Configuration Register
(F) 06H [Write Only]

* Default setting after

Figure 76. Stop-Mode Recovery Register (SMR) (F) OBH [Read/Write]

Expanded Register Bank F (Continued)

Figure 77. DSP Control Register
(F) OCH [Read/Write]

WDTMR (FH) OFH

Figure 78. Watch-Dog Timer Mode Register (F) OFH [Read/Write]

Z8 CONTROL REGISTERS

Figure 79. Reserved (FOH)

Figure 80. Timer Mode Register (F1H:Read/Write)

R243 PRE1

Figure 82. Prescaler 1 Register (F3H:Write Only)

R244 T0

To Low Byte Initial Value (When Written)

TO Low Byte Current Value (When Read)

Figure 83. Counter/Timer 0 Register (F4H:Read/Write)

R242 T1

Figure 81. Counter/Timer 1 Register (F2H:Read/Write)

Figure 84. Prescaler 0 Register (F5H:Write Only)

Z8 CONTROL REGISTERS (Continued)

R246 P2M

Figure 86. Port 3 Mode Register (F7H:Write Only)

R248 P01M

Figure 87. Port 0 Mode Register (F8H:Write Only)

Figure 88. Interrupt Priority Register (F9H:Write Only)

R250 IRQ

Figure 89. Interrupt Request Register (FAH:Read/Write)

R251 IMR

Figure 90. Interrupt Mask Register (FBH:Read/Write)

R253 RP

Figure 92. Register Pointer (FDH:Read/Write)

Figure 93. Stack Pointer High (FEH:Read/Write)

R255 SPL

Figure 94. Stack Pointer Low (FFH:Read/Write)

Figure 91. Flag Register (FCH:Read/Write)

Z8 INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address Working-register address only
IR	Indirect-register or indirect working-register address
Ir	Indirect working-register address only Register pair or working register pair address
RR	

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
	Set to clear according to operation
	Unaffected

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	$(S \times O R V)=0$
0001	LT	Less than	(S XOR V) $=1$
1010	GT	Greater Than	[Z OR (S XOR V) $=0$
0010	LE	Less Than or Equal	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V})$] = 1
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C O R Z)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
d s t \leftarrow d s t+s r c
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

INSTRUCTION SUMMARY (Continued)

OPCODE MAP

DSP INSTRUCTION SET NOTATION

Register Names. The following lists the register names and their descriptions.

Name	Description
A	Accumulator
BUS	Bus Dummy Register
Dn:b	Data Register where n is the register number ($0 . . .3$) and b is the bank in which is resides (0.1).
EXTn	Extended Registers where n is the register number (0.7).
P	Multiplier Product Register
Pn:b	Pointer Registers where n is the register number ($0 \ldots .2$) and b is the bank into which it points ($0 . . .1$).
X	Multiplier Input Register X
Y	Multiplier Input Register Y
PC	Program Counter Register
SR	Status Register

Condition Codes. The following defines the condition codes supported by the DSP assembler. In the instruction descriptions, condition codes are referred to via the <cc> symbol. If the instruction description refers to a condition code in one of its addressing modes, the instruction will only execute if the condition is true.

Name	Description
C	Carry
EQ	Equal (same as Z)
F	False
IE	Interrupts Enabled
MI	Minus
NC	No Carry
NE	Not Equal (same as NZ)
NIE	Not Interrupts Enabled
NOV	Not Overflow
NUO	Not User Zero
NU1	Not User One
NZ	Not zero
OV	Overflow
PL	Plus (Positive)
UO	User Zero
U1	User One
UGE	Unsigned Greater Than or Equal
	(Same as NC)
ULT	Unsigned Less Than (Same as C)
Z	Zero

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this two keywords are used (ON and OFF) which state the direction of the switch. These keywords are refered to in the instruction descriptions through the <bank switch> symbol.

Addressing Modes. This section discusses the syntax of the addressing modes supported by the DSP assembler.

The symbolic name is used in the discussion of instruction syntax in the instruction descriptions.

Symbolic Name	Syntax	Description
<pregs>	Pn:b	Pointer Register
<dregs>	Dn:b	Data Register
(Points to RAM)		
<hwregs>	X,Y,PC,SR,P	Hardware Registers
	EXTn,A,BUS	
<accind>	@A	Accumulator Memory Indirect
(Points to Program Memory)		
<direct>	<expression>	Direct Address Expression
<limm>	\#<const exp>	Word (16-bit) Immediate Value
<simm>	\#<const exp>	Short (8-bit) Immediate Value
<regind>	@Pn:b	Pointer Register Indirect
(Points to RAM)	@Pn:b-LOOP	Pointer Register Indirect with Loop Decrement
	@Pn:b+LOOP	Pointer register Indirect with Loop Increment
<memind>	@@Pn:d	Pointer Register Memory Indirect
(Points to Program Memory)	@Dn:b	Data Register Memory Indirect
	@@Pn:b-LOOP	Pointer Register Memory Indirect with Loop Decrement
	@@Pn:b+LOOP	Pointer Register Memory Indirect with Loop Increment
	@@Pn:b+	Pointer Register Memory Indirect with Increment

DSP INSTRUCTION DESCRIPTIONS

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
ABS	Absolute Value	ABS[<CC>,]<Src>	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ABS NC,A ABS A
$\overline{\text { ADD }}$	Addition	ADD<dest>, <SIC>	A,<pregs> A,<dregS> A,<limm> A,<memind> A,<direct> A,<regind> A,<hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ADD A,\#128 ADD ADO:1 ADD A,@@LOOP ADD A,@P2:1+ ADD A,X
AND	Bitwise AND	AND<dest>, <SIC>	A,<pregs> A,<dregS> A,<limm> A,<memind> A,<direct> A,<regind> A,<hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AND A,\#128 AND A, DO:1 AND A,@@PO:O+LOOP AND A,@P2:1+ AND A, X
CALL	Subroutine call	CALL [<cc>, <address>	<CC>,<direct> <direct>	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { CALL sub1 } \\ & \text { CALL Z,sub2 } \end{aligned}$
CCF	Clear carry flag	CCF	None	1	1	CCF
$\overline{\text { CIEF }}$	Clear Carry Flag	CIEF	None	1	1	CIEF
COPF	Clear OP flag	COPF	None	1	1	COPF
CP	Comparison	CP<srcli $<$ SrcC2>	A,<pregs> A,<dregs> A,<memind> A,<direct> A,<regind> A,<hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	CP A,PO:O CP A, D3:1 CP A, 4512 CP A,@@PO:1 CP A, LABEL CP A,@DO:O CPA, X
DEC	Decrement	DEC [<CC>, $<$ dest>	$\begin{aligned} & \langle C C>A, \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { DEC NZ,A } \\ & \text { DEC A } \end{aligned}$
INC	Increment	INC [<cc> ${ }^{\text {] }}$] dest>	$\begin{aligned} & \text { <CC>,A } \\ & \mathrm{A} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { INC NZ,A } \\ & \text { INC A } \end{aligned}$
JP	Jump	JP [<Cc>, kaddress>	<CC>,<direct> <direct>	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	JP NIE,Label JP Label

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
LD	Load destination	LD<dest>,<src>	A, <hwregs>	1	1	LD A, ${ }^{\text {P }}$
	with source		A,<dregs>		1	LD A, DO: 0
			A,<pregs>	1	1	LD A,PO: 1
			A, <regind>	1	1	LD A,@@P1:1
			A,<memind>	1	3	LD A,MEMADDR
			A,<directs	1	1	LD MEMADDR,A
			<direct, A	1	1	LD D0:1,A
			<dregs>,<hwregs>	1	1	LD P1:0\#128
			<pregs>,<simm>	1	1	LDP1:1,X
			<pregs>,<hwregs>	1	1	LD@P0:0+LOOP,\#1234
			<regind>,<limm>	1	1	LD @P1:1+,X
			<regind>, <hwregs>	1	1	LD X, PO:O
			<hwregs>,<pregs>	1	1	LD Y,PO:O
			<hwregs>,<dregs>	1	1	LD SR,\#\%1023
			<hwregs>, <limm>	2	2	LD PC,(A)
			<hwregs>,<accind>	1	3	LD X,@@PO:0
			<hwregs>,<memind>	1	3	LD Y,@P1:0-L00P
			<hwregs>,<regind>	1	1	LD SR,X
			<hwregs>,<hwregs>	1	1	

Note: When <dest> is <hwregs>, <dest> cannot be P.
Note: When <dest is <hwregs> and <src> is <hwregs>, <dest> cannot be EXTn if <src> is EXTn, <dest> cannot be X if <src> is X , <dest> cannot be SR if <src> is SR.
Note: When <src> is <accind> <dest> cannot be A.

$\overline{\text { MLD }}$	Multiply	MLD<srcl>,<srcli [,<bank switch>]	<hwregs>,<regind>	1	1	MLD A@PO:0
			<hwregs>,<regind><<bank switch>	1	1	MLD A@P1:0,0FF
			<regind>,<regind>	1	1	MLD @P1:1,@P2:0
			<regind>,<regind>,<bank switch>		1	MLD @P0:1,@P1:0,0N

Note: If src1 is <regind> it must be a bank 1 register. Src2's <regind must be a bank 0 register.
Note: <hwregs> for src1 cannot be X.
Note: For the operands <hwregs>, <regind> the <band switch> defaults to OFF. For the operands <regind>, the <bank switch> defaults to ON .

MPYA Multiply and add MPYA <srcl>,<SIC2>_[,bank switch>]

<hwregs>,<regind>	1	1	MPYA A@P0:0
<hwregs>,<regind>,<bank switch>	1	1	MPYA A,@P1:0,0FF
<regind>, <regind>	1	1	MPYA @P1:1,@P2:0
<regind>,<regind>,<bank switch>	1	1	MPYA@P0:1,@P1:0,

Note: If src1 is <regind> it must be a bank 1 register. Src2's <regind> must be a bank 0 register.
Note: <hwregs> for src1 cannot be X.
Note: For the operands <hwregs>, <regind> the <bank switch> defaults to OFF. For the operands <regind>, the <bank switch> defaults to ON .

DSP INSTRUCTION DESCRIPTIONS (Continued)

Inst.	Description	Synopsis	Operands Words	Cycles	s Examples
MPYS	Multiply and subtract	MPYS<src1>><src2>[,<bank switch>]	<hwregs>,<regind> 1 <wwregs><regind>><bank switch> 1 <regind><<regind> 1 <regind>,<regind>,<bank switch> 1	1	MPYS A,@P0:0
				1 N	MPYS A,@P1:0,0FF
				1	MPYS @P1:1,@P2:0
				1 N	MPYS@P0:1,@P1:0,0N

Note: If src1 is <regind> it must be a bank 1 register. Scc2's <regind> must be a bank 0 register.
Note: <hwregs> for src1 cannot be X.
Note: For the operands <hwregs>, <regind> the <bank switch> defaults to OFF. For the operands <regind>, <regind> the <bank switch> defaults to ON .

$\overline{\text { NEG }}$	Negate	NEG <CC>, A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	1 1	1	NEG NZ,A NEG A
NOP	No operation	NOP	None	1	1	NOP
OR	Bitwise OR	OR <dest \ll SrC>	A, <pregs> A, <dregs> A, <limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OR A,\#128 OR A, DO:1 OR ,@@PO:O+LOOP OR A,@P2:1+ OR A, X
POP	Pop value from stack	POP <dest>	<pregs> <pregs> <regind> <hwregs>	1 1 1	1 1 1 1	POP PO:O POP D0:1 POP @PO:O POPA POP BUS
PUSH	Push value onto stack	PUSH <s'c>	<pregs> <dregs> <regind> <hwregs> <limm> <accind> <memind>	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	1 1 1 1 2 3 3	PUSH PO:O PUSH D0:1 PUSH @PO:O PUSHA PUSH BUS PUSH \#12345 PUSH ©A PUSH @@PO:O
RET	Return from subroutine	RET	None	1	2	RET
RL	Rotate Left	RL <CC>, A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	1	1 1	RL NZ,A RLA
RR	Rotate Right	RR <CC>, ${ }^{\text {a }}$	$\begin{aligned} & \langle C C>A \\ & A \end{aligned}$	1	1	RR NZ,A RR A

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
SCF	Set C flag	SCF	None	1	1	SCF
SIEF	Set IE flag	SIEF	None	1	1	SIEF
SLL	Shift left logical	SLL	$\begin{aligned} & {[\langle C C>] A} \\ & \mathrm{A} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { SLL NZ,A } \\ & \text { SLL A } \end{aligned}$
SOPF	Set OP flag	SOPF	None	1	1	SOPF
SRA	Shift right arithmetic	SRA<CC>, A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	SRA NZ,A SRA A
$\overline{\text { SUB }}$	Subtract	SUB<dest>,<src>	A,<pregs> A,<dregs> A,<limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { SUB A,F128 } \\ & \text { SUB A,DO:1 } \\ & \text { SUB A,@@PO:O+LOOP } \\ & \text { SUB A,@P2:1+ } \\ & \text { SUB A,X } \end{aligned}$
$\overline{X O R}$	Bitwise exclusive OR	XOR <dest>,<sIC>	A, <pregs> A, <dregS> A, <limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { XOR A,\#128 } \\ & \text { XOR A,D0:1 } \\ & \text { XOR A,@@PO:0+LOOP } \\ & \text { XOR A,@P2:1+ } \\ & \text { XORA, X } \end{aligned}$

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this two keywords are used (ON and OFF) which
state the direction of the switch. These keywords are referred to in the instruction descriptions through the <bank switch> symbol.

PACKAGE INFORMATION

nates

1. CONTRILLING DIMENSIDNS I INCH 2. LEADS ARE CDPLANAR WITHIN .004 IN 3. DIMENSIDN ' $\frac{\text { MM }}{\text { INCH }}$

SYMBLL	MLLLIMETER		INCH	
	MIN	MAX	MIN	MAX
A	4.32	4.57	.170	.180
A1	2.67	2.92	.105	.115
D/E	25.02	25.40	.985	1.000
D1/E1	24.13	24.33	.950	.958
D2	22.86	23.62	.900	.930
\square	1.27 TYP	.050 TYP		

68-Pin PLCC Package Diagram

ORDERING INFORMATION

Z89120	Z89920
$\mathbf{2 0} \mathbf{~ M H z}$	$\mathbf{2 0 ~ M H z}$
68-Pin PLCC	$68-$ Pin PLCC
Z8912020VSC	Z8992021VSC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.
Speed
$20=20.48 \mathrm{MHz}$

Package

V = Plastic Leaded Chip Carrier (PLCC)

Temperature

$\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Environment

C = Plastic Standard

Example:

Introduction

Z86C95 Z8®$^{\circledR}$ Digital Signal Processor

z89C00 16-Bit Digital Signal Processor

289c00 DSP Application Note

289120, 289520 (ROMIess) 16-Bil Mixed Signal Processor

5

289121
 Z89921 (ROMLESS)
 16-Bit Mixed
 Signal Processor

FEATURES

■ Z8 ${ }^{\text {® }}$ Microcontroller with 43 I/O Lines (27 I/O Lines for the Z89921)

- 24 Kbytes of Z8 Program ROM (Z89121)
- 256 Bytes On-Chip Z8 RAM
- Watch-Dog Timer and Power-On Reset
- Low Power STOP Mode
- On-Chip Oscillator which Accepts a Crystal or External Clock Drive
- Two 8-Bit Z8 Counter/Timers with 6-Bit Prescaler
- Low Power Consumption - 200 mW (typical)
- Two Comparators with Programmable InterruptPriority
- Six Vectored, Z8 Prioritized Interrupts
- RAM and ROM Protect

■ Clock Speed of 20.48 MHz

- 16-Bit Digital Signal Processor (DSP)
- 6K Words DSP Program ROM
- 512 Words On-Chip DSP RAM
- 10-Bit PWM D/A Converter (4 kHz to 64 kHz)
- Z8 and DSP Operation in Parallel
- Three Vectored, Prioritized DSP Interrupts
- IBM ${ }^{\otimes}$ PC-Based Development Tools
- Interface for Two Codecs with 8 kHz and 6.66 kHz Sampling Rate and 2.048 MHz Clock
- Two DSP Timers to Support Different Sampling Rates for Codecs and PWM

■ Built-in DRAM Interface. Direct Support of up to 48 Mbit DRAM with 4-Bit Wide Data Bus

GENERAL DESCRIPTION

The Z89121/921 is a dual CPU 16 -bit mixed signal processor designed for digital audio compression plus storage systems. The I/O control processor is a $\mathrm{ZB}^{\text {® }}$ with 24 Kbytes of program memory, two 8 -bit counter timers, a DRAM controller with up to 48 Mbit accessibility and up to 43 I/O pins. The DSP is a 16 -bit processor with a 24 -bit ALU and accumulator, 512×16 bits of RAM, single cycle instructions, and 6 K word program ROM. The chip also contains a 10-bit PWM D/A converter and interface for two Codecs. The sampling rates for the PWM and Codec interface are programmable.

The Z8 and DSP processors are coupled by mailbox registers and an interrupt system. DSP or Z8 programs may be directed by events in each other's domain.

The Z89921 is the ROMless version of the Z89121. The DSP is not ROMless. The DSP's programmemory is always the internal ROM.

Notes:

All Signals with a preceding front slash, " "", are active Low, e.g.: B / W (WORD is active Low); /BN (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V_{cc}	V_{DD}
Ground	GND	V_{ss}

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

Z8 Core Processor

The Z8 is Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register-mapped peripheral and I/O circuits. The Z8 offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features. The Z8 also excels in many industrial uses, high-volume processing, peripheral controllers and consumer applications.

For applications demanding powerful I/O capabilities, the Z89121/921 has 43 pins dedicated to input and output. These lines are grouped into six ports. Each port is configurable under software control to provide timing, status signals and parallel I/O with or without handshake.

Four basic memory resources for the Z8 are available to support a wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Z8 core processor is characterized by an efficient register file that allows any of 256 on-board data and control registers to be the source and/or the destination of almost any instruction. Traditional microprocessor Accumulator bottlenecks are eliminated.

The Register File is composed of 236 bytes of generalpurpose registers, four I/O port registers, and 15 control and status registers. The Expanded Register File consists of mailbox registers, WDT mode register, DSP Control register, Stop-Mode Recovery register, Port Configuration register, and the control and data registers for Port 4 and Port 5.

To unburden the software from supporting real-time problems, such as counting/timing and data communication, the Z8 offers two on-chip counter/timers with a large number of user selectable modes.

Watch-Dog Timer and STOP-Mode Recovery features are software driven by setting specific bits in control registers.

Stop and Halt instructions support reduced power operation. The low power STOP mode allows parameter information to be stored in the register file if power fails. An external capacitor or battery retains power to the device.

DSP Coprocessor

The DSP coprocessor is a second generation, 16-bit two's complement CMOS Digital Signal Processor (DSP). Four external DSP registers are mapped into the expanded register file of the $\mathrm{Z8}$. Communication between the $\mathrm{Z8}$ and the DSP occurs through those common registers which form the mailbox registers.

The analog signal is generated by a 10-bit resolution Pulse Width Modulator. The PWM output is a digital signal with CMOS output levels. The output signal has a resolution of 1 in 1024 with a sampling rate of 16 kHz (XTAL $=20.48 \mathrm{MHz}$). The sampling rate can be changed under software control and can be set at 4, 10, 16, and 64 kHz . The dynamic range of the PWM is from 0 to 4 volts.

Two additional timers (Timer2 and Timer3) have been added to support different sampling rates for the Codec interface and Pulse Width Modulator. These timers are free-running counters that divide the crystal frequency.

PIN DESCRIPTION（Continued）

Figure 2． $\mathbf{Z 8 9 1 2 1}$ 84－Pin PLCC Pin Assignments

Table 1. Z89121 84-Pin PLCC Pin Identification

VO Port Functions	Pin Number	1/0	Function
$\mathrm{V}_{\text {ss }}$	32, 54, 65		Digital Ground
$V_{\text {cc }}$	12, 44, 74		Digital $\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$
P07-P00	43-36	Input/Output	P07-P00 (General purpose nibble programmable I/O port.)
P17-P10	55, 53-51, 49-46	Input/Output	P17-P10 (General purpose byte programmable I/O port.)
P27-P20	2-9	Input/Output	P27-P20 (General purpose bit programmable I/O.)
P37-P31	57-63	Input/Output	P37-P31 (General purpose I/O port. Bits P31-P33 are inputs, while bits P37-P34 are outputs.)
P47-P40	77-84	Input/Output	P47-P40 (General purpose bit programmable I/O.)
P53-P50	70-67	Input/Output	P53-P50 (General purpose bit programmable I/O.)
C_DIN	76	Input	Data input from Codec.
C_DOUT	75	Output	Data output to Codec.
C_CLOCK	73	Output	Codec clock (2.048 MHz)
C_ENAO	72	Output	Codec0 enable (8 kHz)
C_ENA1	71	Output	Codec1 enable (8 kHz)
PWM	56	Output	Pulse Width Modulator output
DATAO	26	Input/Output	Data $01 / \mathrm{O}$ of the DRAM Interface
DATA1	27	Input/Output	Data 1 I/O of the DRAM Interface
DATA2	28	Input/Output	Data 2 I/O of the DRAM Interface
DATA3	29	Input/Output	Data 3 I/O of the DRAM Interface
ADDR0	13	Output	Address 0 line of the DRAM Interface
ADDR1	14	Output	Address 1 line of the DRAM Interface
ADDR2	15	Output	Address 2 line of the DRAM Interface
ADDR3	16	Output	Address 3 line of the DRAM Interface
ADDR4	17	Output	Address 4 line of the DRAM Interface
ADDR5	18	Output	Address 5 line of the DRAM Interface
ADDR6	19	Output	Address 6 line of the DRAM Interface
ADDR7	20	Output	Address 7 line of the DRAM Interface
ADDR8	21	Output	Address 8 line of the DRAM Interface
ADDR9	22	Output	Address 9 line of the DRAM Interface
ADDR10	23	Output	Address 10 line of the RAM Interface for 4 Meg ARAMs. Select 2 output of DRAM Interface for 1 Meg ARAMs support. The latter mode is used to switch between different pages of ARAM.
DRAM_SELO	24	Output	SelectO output of DRAM Interface. Used to switch between different pages of DRAM.
DRAM_SEL. 1	25	Output	Select1 output of DRAM Interface. Used to switch between different pages of DRAM.
/RAS	30	Output	Row Address Strobe of DRAM Interface.
ICAS	31	Output	Column Address Strobe of DRAM Interface.
DRAM_R/W	34	Output	Read/Write Strobe of DRAM Interface.
DRAM_OE	33	Output	Output Enable Strobe of DRAM Interface.
XTAL1	11	Input	20.48 MHz crystal input
XTAL2	10	Output	20.48 MHz crystal output
ROMless	45 35	Input	Z8 ROMless mode input (P0 and P1 are switched to D/A mode if this pin is connected to V_{cc}). Internally this pin is tied to GND.
/Reset	35	Input	/RESET input
IAS	50 64	Output	Z8 external memory interface R/W output
/DS	1	Output	Z8 external memory interface /DS
OUT_5V	66	Output	-5V charge pump

PIN DESCRIPTION (Continued)

Figure 3. Z89921 84-Pin PLCC Pin Assignments

Table 2. Z89921 84-Pin PLCC Pin Identification

VO Port Functions	Pin Number	VO	Function
$\mathrm{V}_{\text {ss }}$	32, 54, 65		Digital Ground
$V_{\text {cc }}$	12, 44, 74		Digital $\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$
P07-P00	43-36	Input/Output	P07-P00 (General purpose nibble programmable I/O port.)
P17-P10	55, 53-51, 49-46	Input/Output	P17-P10 (General purpose byte programmable 1/O port.)
P27-P20	2-9	Input/Output	P27-P20 (General purpose bit programmable I/O.)
P37-P31	57-63	Input/Output	P37-P31 (General purpose I/O port. Bits P31-P33 are inputs, while bits P37-P34 are outputs.)
P47-P40	77-84	Input/Output	P47-P40 (General purpose bit programmable I/O.)
P53-P50	70-67	Input/Output	P53-P50 (General purpose bit programmable I/O.)
C_DIN	76	Input	Data input from Codec.
C_DOUT	75	Output	Data output to Codec.
C_CLOCK	73	Output	Codec clock (2.048 MHz)
C_ENAO	72	Output	CodecO enable (8 kHz)
C_ENA1	71	Output	Codec 1 enable (8 kHz)
PWM	56	Output	Pulse Width Modulator output
DATAO	26	Input/Output	Data 0 I/O of the DRAM Interface
DATA1	27	Input/Output	Data 1 I/O of the DRAM Interface
DATA2	28	Input/Output	Data 2 I/O of the DRAM Interface
DATA3	29	Input/Output	Data 3 I/O of the DRAM Interface
ADDRO	13	Output	Address 0 line of the DRAM Interface
ADDR1	14	Output	Address 1 line of the DRAM Interface
ADDR2	15	Output	Address 2 line of the DRAM Interface
ADDR3	16	Output	Address 3 line of the DRAM Interface
ADDR4	17	Output	Address 4 line of the DRAM Interface
ADDR5	18	Output	Address 5 line of the DRAM Interface
ADDR6	19	Output	Address 6 line of the DRAM Interface
ADDR7	20	Output	Address 7 line of the DRAM Interface
ADDR8	21	Output	Address 8 line of the DRAM Interface
ADDR9	22	Output	Address 9 line of the DRAM Interface
ADDR10	23	Output	Address 10 line of the DRAM Interface for 4 Meg ARAMs. Select 2 output of DRAM Interface for 1 Meg ARAMs support. The latter mode is used to switch between different pages of ARAM.
DRAM_SELO	24	Output	Select0 output of DRAM Interface. Used to switch between different pages of DRAM.
DRAM_SEL1	25	Output	Select1 output of DRAM Interface. Used to switch between different pages of DRAM.
/RAS	30	Output	Row Address Strobe of DRAM Interface.
/CAS	31	Output	Column Address Strobe of DRAM Interface.
DRAM_R/W	34	Output	Read/Write Strobe of DRAM Interface.
DRAM J OE	33	Output	Output Enable Strobe of DRAM Interface.
XTAL1	11	Input	20.48 MHz crystal input
XTAL2	10	Output	20.48 MHz crystal output
NC	45	Not Connecte	
/Reset	35	Input	/RESET input
R/W	50	Output	Z8 external memory interface R/W output
IAS	64	Output	Z8 external memory interface /AS output
IDS	1	Output	Z8 external memory interface /DS output
OUT_5V	66	Output	-5V Charge Pump

PIN FUNCTIONS

/RESET (input, active Low). Initializes the MCU. Reset is accomplished either through Power-On Reset (POR), Watch-Dog Timer reset, STOP-Mode Recovery, or external reset. During POR and WDT Reset, the internally generated reset signal is driving the reset pin Low for the POR time. Any devices driving the reset line must be opendrain to avoid damage from a possible conflict during reset conditions. A /RESET will reset both the Z8 and the DSP.

For the Z8:

After the POR time, /RESET is a Schmitt-triggered input. To avoid asynchronous and noisy reset problems, the $Z 8$ is equipped with a reset filter of four external clocks (4 TpC). If the external reset signal is less than 4 TpC in duration, no reset occurs. On the fifth clock after the reset is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. Program execution begins at location 000 CH (hexadecimal), $5-10 \mathrm{TpC}$ cycles after the /RESET is released. The Z8 does not reset WDT, SMR, P2M, and P3M registers on a STOP-Mode Recovery operation.

For the DSP:

A low level on the /RESET pin generates an internal reset signal. The /RESET signal must be kept Low for at least one clock cycle. The CPU will fetch a new Program Counter (PC) value from program memory address OFFCH after the reset signal is released.

ROMless (input, active High). This pin, when connected to $V_{D D}$, disables the internal Z8 ROM. (Note, when pulled Low to GND the part functions normally as the ROM version.) The DSP can not be configured as ROMless. This pin is available only on the Z89121.

R//W Read/Write (output, write Low). The R/W signal defines the signal flow when the $\mathrm{Z8}$ is reading or writing to external program or data memory. The $\mathrm{Z8}$ is reading when this pin is High and writing when this pin is Low.

IAS Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is through Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.
/DS Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer. For read operations, data must be available prior to the trailing edge of /DS. For write operations, the falling edge of /DS indicates that output data is valid.

XTAL1 Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, RC network or an external single-phase clock to the on-chip oscillator input.

XTAL2 Crystal 2 (time-based output). This pin connects a parallel-resonant, crystal, ceramic resonant, or LC network to the on-chip oscillator output.

PWM Pulse Width Modulator (output). The PWM is a 10-bit resolution D/A converter. This output is a digital signal with CMOS output levels.
\mathbf{V}_{DD}. Digital power supply for the Z89121/921.
GND. Digital ground for the Z89121/921.
C_DIN (input). Data input from Codec.
C_DOUT (output). Data output to Codec.
C_CLOCK (output). 2.048 MHz data rate clock signal output to Codec.

C_ENAO (output). Enable signal to CodecO
C_ENA1 (output). Enable signal to Codec1.
DRAM_SELO (output). Select0 of DRAM.
DRAM_SEL1 (output). Select1 of DRAM.

Port 0 (P07-P00). Port 0 is an 8 -bit, bidirectional, CMOS compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and the output drivers are push-pull. Port 0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAVO and RDYO. Handshake signal direction is dictated by the I/O direction to Port 0 of the upper nibble P07-P04. The lower nibble must have the same direction as the upper nibble.

The Auto Latch on Port 0 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port O can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for $1 / O$ operation, they are configured by writing to the Port 0 mode register.

In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. (In ROM mode, Port 0 is defined as input after reset.)

Port 0 is set in the high-impedance mode if selected as an address output state along with Port 1 and the control signals /AS, /DS and R/W (Figure 4).

Figure 4. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1 (P17-P10). Port 1 is an 8 -bit, bidirectional, CMOS compatible port(Figure5). It has multiplexed Address (A7AO) and Data (D7-DO) ports. These eight I/O lines are programmed as inputs or outputs, or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitttriggered and the output drivers are push-pull.

Port 1 may be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and /DAV1 (Ready and Data

Available). Memory locations greater than 24575 (in ROM mode) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port 0, /AS, /DS and R/W, allowing the Z89121/68 to share common resources in multiprocessor and DMA applications.

Figure 5. Port 1 Configuration

Port 2 (P27-P20). Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines are configured under software control independently as inputs or outputs. Port 2 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either push-pull or open-drain.

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The hand-
shake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to bit 7, Port 2 (Figure 6).

The Auto Latch on Port 2 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 , cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Figure 6. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3 (P37-P31). Port 3 is a 7-bit, CMOS compatible port with three fixed inputs (P33-P31) and four fixed outputs (P37-P34). It is configured under software control for input/ output, counter/timers, interrupt, and port handshakes. Pins P33, P32, and P31 are standard CMOS inputs; outputs are push-pull.

Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). Port 3, pin 3 is a falling edge interrupt input. P31 and P32 are programmable as rising, falling or both edge-triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to Counter/Timer1 is made through P31 ($\mathrm{T}_{\text {IN }}$) and P36 ($\mathrm{T}_{\text {out }}$). Handshake lines for ports 0,1 , and 2 are available on P31 through P36.

Port 3 also provides the following control functions: handshake for Ports 0,1 , and 2 (/DAV and RDY); three external interrupt request signals (IRQ3-IRQ1); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {out }}$); (Figure 7).

Comparator Inputs. Port 3, pins P31 and P32 both have a comparator front end. The comparator reference voltage, pin P33, is common to both comparators. In analog mode, P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, pin P33 can be used as a P33 register input or IRQ1 source.

Table 3. Port 3 Pin Assignments

Pin	VO	CTC1	AN IN	Int.	PO HS	P1HS	P2 HS	EXT
P31	\mathbb{N}	$T_{\mathbb{N}}$	AN1	IRQ2			D/R	
P32	\mathbb{N}		AN2	IRQ0	D/R			
P33	\mathbb{N}		REF	IRQ1		D/R		
P34	OUT					R/D		DM
P35	OUT				R/D		R/D	
P36	OUT	$T_{\text {OUT }}$						
P37	OUT							

Notes:

HS = Handshake Signals
$D=D A V$
$R=R D Y$

Figure 7．Port 3 Configuration

PIN FUNCTIONS (Continued)

Port 4 (P47-P40). Port 4 is an 8-bit, bidirectional, CMOS compatible I/O port (Figure 8). These eight I/O lines are configured under software control independently as inputs or outputs. Port 4 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 4 is a bit programmable general purpose I/O port. The control registers for Port 4 are mapped into the expanded register file (Bank F) of the Z8.

Auto Latch. The Auto Latch on Port 4 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Figure 8. Port 4 Configuration

Port 5 (P53-P50). Port 5 is an 4-bit, bidirectional, CMOS compatible I/O port (Figure 9). These four I/O lines are configured under software control independently as inputs or outputs. Port 5 is always available for $1 / O$ operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 5 is a bit programmable general purpose I/O port. The control registers for Port 5 are mapped into the expanded register file (Bank F) of the Z8.

Auto Latch. The Auto Latch on Port 5 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Figure 9. Port 5 Configuration

Z8 ${ }^{\circledR}$ FUNCTIONAL DESCRIPTION

The Z8 CCP core incorporates special functions to enhance the Z 's performance in control applications.

Pipelined Instructions. The Z8 instructions (see page $5-66$) are comprised of two parts, an instruction fetch and execute part. The instructions typically take between six and ten cycles to fetch and five cycles to execute. Five cycles of the next instruction fetch may be overlapped with five cycles of the current instruction execution. This improves performance over sequential methods. Additionally, the register-based architecture allows any registers to be picked as the source and destination in an instruction saving intermediate move.

Reset. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP-Mode Recovery Source
- External Reset

Program Memory. The Z8 addresses up to 24 Kbytes of internal program memory and 40 Kbytes external memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors which correspond to the five user interrupts and one DSP interrupt. Byte 12 to byte 24575 consists of on-chip mask-programmed ROM. Ataddresses 24576 and greater, the $Z 8$ executes external program memory. In ROMless mode, the Z8 will execute from external program memory beginning at byte 12 and continuing through byte 65535 .

Figure 10. Program Memory Map

ROM Protect. The 24 Kbyte of internal program memory for the Z 8 is mask programmable. A ROM protect feature prevents "dumping" of the ROM contents of Program Memory by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions. The ROM Protect option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted.

Data Memory (/DM). In ROM mode, the Z8 can address up to 40 Kbytes of external data memory beginning at location 24576 (Figure 11). In ROMless mode, the Z8 can address the full 64 Kbytes of external data memory beginning at location 12. External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on Port 34, is used to distinguish between data and program memory space (Table 3). The state of the /DM signal is controlled by the type of instruction being executed. An LDC opcode references program (/DM inactive) memory, and an LDE instruction references data (/DM active Low) memory.

Figure 11. Data Memory Map

Z8 FUNCTIONAL DESCRIPTION (Continued)

Register File. The standard Z8 $^{\text {® }}$ register file consists of four I/O port registers, 236 general-purpose registers, and 15 control and status registers (R3-RO, R239-R4, and R255-R241, respectively). The instructions access registers directly or indirectly through an 8 -bit address field. This allows a short, 4-bit register address using the Register Pointer (Figure 12). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group (Figure 13).

Note: Register Group E (Registers EO-EF) is only accessed through a working register and indirect addressing modes.

R253 RP

Default setting after RESET $=00000000$

Figure 12. Register Pointer Register

The upper nibble of the register file address provided by the register pointer specifies the active working-register group.

Figure 13. Register Pointer

RAM Protect. The upper portion of the Z8's RAM address spaces 90 H to EFH (excluding the control registers) is protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user activates the RAM Protect from the internal ROM code by loading bit D6 in the IMR register to either a 0 (off) or a 1 (on). A 1 in D6 indicates RAM Protect enabled.

Stack. The Z8's external data memory or the internal register file is used for the stack. The 16-bit Stack Pointer (R255-R254) is used for the external stack which can reside only from 24576 to 65535 in ROM mode or 0 to 65535 in ROMless mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R239-R4). SPH can be used as a general-purpose register when using internal stack only.

Expanded Register File. The register file on the Z 8 has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices, along with I/O ports, into the register address area. The Z 8 register address space has now been implemented as 16 banks of 16 register groups per bank (Figure 14). These register banks are known as the ERF (Expanded Register File). Bits 7-4 of register RP (Register Pointer) select the working register group. Bits 3-0 of register RP select the expanded register bank (Figure 14).

The SMR register, WDT Register, control and data registers for Port 4 and Port 5, and the DSP control register are located in Bank F of the Expanded Register File. Bank B of the Expanded Register File consists of the Mailbox Interface in which the Z8 and the DSP communicate. The rest of the Expanded Register is not physically implemented and is open for future expansion.

Z8 FUNCTIONAL DESCRIPTION (Continued)

Figure 14. Expanded Register File Architecture

Interrupts. The Z8 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 15). The six sources are divided as follows; three sources are claimed by Port 3 lines P33-P31, two by
counter/timers, and one by the DSP (Table 4). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.

Figure 15. Interrupt Block Diagram

Table 4. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ0	IDAV0, P32	0,1	External (P32), Programmable Rise or Fall Edge Triggered
IRQ1	IDAV1, P33	2,3	External (P33), Fall Edge Triggered
IRQ2	IDAV2, P31, T IN	4,5	External (P31), Programmable Rise or Fall Edge Triggered
IRQ3	IRQ3	6,7	Internal (DSP activated), Fall Edge Triggered
IRQ4	T0	8,9	internal
IRQ5	TI	10,11	Internal

Z8 FUNCTIONAL DESCRIPTION (Continued)

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle is activated when an interrupt request is granted. This disables all subsequent interrupts, pushes the Program Counter and Status Flags to the stack, and then branches to the program memory vector location reserved for that interrupt.

All Z8 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the InterruptRequest Register is polled to determine which of the interrupt requests needs service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQO. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select is located in the IRQ Register (R250), bits D7 and D6. The configuration is shown in Table 5.

Table 5. IRQ Register

IRQ		Interrupt Edge	
D7	D6	P31	P32
0	0	F	F
0	1	R	R
1	0	R	F
1	1	R/F	

Notes:

F = Falling Edge
R = Rising Edge
Clock. The Z89121/921 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = input, XTAL2 = Output). The crystal should be AT cut, 20.48 MHz maximum, with a series resistance (RS) less than or equal to 100 Ohms. The system clock (SCLK) is one half the crystal frequency (Figure 16).

The crystal is connected across XTAL1 and XTAL2 using capacitors from each pin to ground.

Ceramic Resonator or Crystal

LC

External Clock

Figure 16. Oscillator Configuration

Counter/Timers. There are two 8-bit programmable counter/timers (TO-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 17).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can
also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and is either the internal microprocessor clock divided-by-four, or an external signal input through Port 31. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the TO output to the input of T1.

Figure 17. Counter/Timer Block Diagram

Z8 FUNCTIONAL DESCRIPTION (Continued)

Port Configuration Register (PCON). The PCON register configures each port individually; comparator output on Port 3, and open-drain on Port 0 and Port 1. The PCON register is located in the Expanded Register File at bankF, location 00 H (Table 6).

Comparator Output Port 3 (DO). Bit 0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35, and a 0 releases the Port to its standard I/O configuration.

Port 0 Open-Drain (D1). Port 0 can be configured as an open-drain by resetting this bit ($\mathrm{D} 1=0$) or configured as push-pull active by setting this bit ($\mathrm{D} 1=1$). The default value is 1 .

Port 1 Open-Drain (D2). Port 1 can be configured as an open-drain by resetting this bit ($\mathrm{D} 2=0$) or configured as push-pull active by setting this bit ($\mathrm{D} 2=1$). The default value is 1 .

Table 6. Port Configuration Register (PCON) (F) 00H

Register PCON (F)\%00	Position	Attrib.	Value	Description
	$76543---$			Reserved
	$-\cdots--2-$	R	0	Port 1 Open-drain
			1	Port 1 Push-pull Active*
		R	0	Port 0 Open-drain
	-----0	R	1	Port 0 Push-pull Active*
		0	P34, P35 Standard Output*	
		1	P34, P35 Comparator Output	

Note:

* Default setting after Reset

Port 4 and 5 Configuration Register (P45CON). The P45CON register configures Port 4 and Port5, individually, to open-drain or push-pull active. This register is located in the Expanded Register File at Bank F, location 06H (Table 7).

Port 4 Open-Drain (DO). Port 4 can be configured as an open-drain by resetting this bit ($\mathrm{DO}=0$) or configured as push-pull active by setting this bit ($\mathrm{DO}=1$). The default value is 1 .

Port 5 Open-Drain (D4). Port 5 can be configured as an open-drain by resetting this bit ($\mathrm{D} 4=0$) or configured as push-pull active by setting this bit ($\mathrm{D} 4=1$). The default value is 1 .

Table 7. Port 4 and 5 Configuration Register
(F) 06 H [Write Only]

Register P45CON (F)\%06	Position	Attrib.	Value	Description
	$765-321-$			Reserved
	$---4---$	W	0	Port 5 Open-drain $-\cdots---0$
		W	1	Port 5 Push-pull Active*

[^1]Power－On Reset（POR）．A timer circuit clocked by a dedicated on－board RC oscillator is used for the Power－On Reset（POR）timer function．The POR time allows $V_{c c}$ and the oscillator circuit to stabilize before instruction execu－ tion begins．

The POR timer circuit is a one－shot timer triggered by one of three conditions：

1．Power fail to Power OK status．
2．STOP－Mode Recovery（if D5 of SMR＝1）．
3．WDT time－out．
The POR time is a nominal 5 ms ．Bit 5 of the Stop－Mode Register determines whether the POR timer is bypassed after STOP－Mode Recovery（typical for external clock， RC／LC oscillators）．

HALT．HALT turns off the internal CPU clock，but not the XTAL oscillation．The counter／timers and external inter－ rupts $\operatorname{IRQ} 0, \operatorname{IRQ} 1, \operatorname{IRQ} 2$ ，and $\operatorname{IRQ3}$ remain active．The devices are recovered by interrupts，either externally or internally generated．An interrupt request must be ex－ ecuted（enabled）to exit HALT mode．After the interrupt service routine，the program continues from the instruction after the HALT．

STOP．This instruction turns off the internal clock and external crystal oscillation．It reduces the standby current to $10 \mu \mathrm{~A}$（typical）or less．The STOP mode is terminated by
a reset only，either by WDT time－out，POR，SMR recovery or external reset．This causes the processor to restart the application program at address 000 CH ．In order to enter STOP（or HALT）mode，it is necessary to first flush the instruction pipeline to avoid suspending execution in mid－ instruction．To do this，the user must execute a NOP （opcode $=$ FFH）immediately before the appropriate Sleep instruction，i．e．；

$$
\begin{array}{ll}
\text { FF NOP } & \text {; clear the pipeline } \\
\text { 6F STOP } & \text {; enter STOP mode } \\
& \text { or } \\
\text { FF NOP } & \text {; clear the pipeline } \\
\text { 7F HALT } & \text {; enter HALT mode }
\end{array}
$$

STOP－Mode Recovery Register（SMR）．This register se－ lects the clock divide value and determines the mode of STOP－Mode Recovery（Table 8）．All bits are write only except bit 7 ，which is read only．Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and reset by a power－on cycle．Bit 6 controls whether a Low level or a High level is required from the recovery source．Bit 5 controls the reset delay after recovery．Bits 2,3 ，and 4 ，or the SMR register，specify the source of the STOP－Mode Recovery signal．Bits 0 and 1 determine the time－out period of the WDT．The SMR is located in Bank F of the Expanded Register Group at address OBH．

Table 8．Stop－Mode Recovery Register（SMR）（F）OBH

Register SMR（F）\％0B	Position	Attrib．	Value	Description
	7－－－－－－－	R	0	POR＊
			1	Stop Recovery
	－6－－－－－－	W	0	Low Stop Recovery Level＊
			1	High Stop Recovery Level
	－－5－－－－－	W	0	Stop Delay On＊
			1	Stop Delay Off
	－－－432－－	W		STOP－Mode Recovery Source
			000	POR Only＊
			001	Reserved
			010	P31
			011	P32
			100	P33
			101	P27
			110	P2 NOR 0－3
			111	P2 NOR 0－7
	－－－－－－1－			Reserved
	－－－－－－－0	W	0	SCLK／TCLK Not Divide－by－16 ${ }^{\dagger}$
			1	SCLK／TCLK Divide－by－16

[^2]SCLK/TCLK divide-by-16 Select (DO). DO of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

STOP-Mode Recovery Source (D2, D3, and D4). These three bits of the SMR specify the wake-up source of the STOP recovery (Figure 18 and Table 9).

Figure 18. STOP-Mode Recovery Source

Table 9. STOP-Mode Recovery Source

SMR:432			Operation D4
D3	D2	Description of Action	
0	0	0	POR and/or external reset recovery
0	0	1	Reserved
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of P20 through ' P23
1	1	1	Logical NOR of P20 through P27

STOP-Mode Recovery Delay Select(D5). This bit, if High, disables the $5 \mathrm{~ms} /$ RESET delay after STOP-Mode Recovery. The default configuration of this bit is one. If the "fast" wake up is selected, the Stop-Mode Recovery source is kept active for at least five TpC.

STOP-Mode Recovery Edge Select (D6). A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the Z89121/921 from STOP mode. A 0 indicates Low level recovery. The default is 0 on POR (Table 9).

Cold or Warm Start (D7). This bit is set by the device upon entering STOP mode. It is active High, and is 0 (cold) on POR/WDT /RESET. This bit is read only. It is used to distinguish between cold or warm start.

DSP Control Register (DSPCON). The DSPCON register controls various aspects of the Z8 and the DSP. It can configure the internal system clock (SCLK) or the Z8, RESET, and HALT of the DSP, and control the interrupt interface between the Z8 and the DSP (Table 10).

Z8 IRQ3 (D0). This bit, which causes the Z8 interrupt, can be set by the DSP by writing bit 9 of ICR. $Z 8$ has to set this bit after serving the IRQ3 interrupt. The DSP can poll the status of IRQ3 by reading ICR bit 9 .

DSP INT2 (D1). This bit is linked to DSP interrupt (INT2). It can be set by the Z8. After serving INT2, the DSP has to write a 1 to an appropriate bit in ICR (EXT4) to clear the IRQ. Reading this bit reflects the status of INT2 of the DSP.

Table 10. DSP Control Register
(F) OCH [Read/Write]

DSP RUN(D4). This bit defines the HALT mode of the DSP. If this bit is set to 0 , then the DSP clock is turned off to minimize power consumption. After this bit is set to 1 , then the DSP will continue code execution from where it was halted. After a hardware reset, this bit is reset to 1 .

DSP RESET (D5). Setting this bit to 1 will reset the DSP. If the DSP was in HALT mode, this bit is automatically preset to 1 . Writing a 0 has no effect.

Watch-Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the $\mathrm{Z8}$ if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT circuit is driven by an on-board RC oscillator or external oscillator from the XTAL1 pin. The POR clock source is selected with bit 4 of the WDT register (Table 11). The WDT affects the Z (Zero), S (Sign), and V (Overflow) flags.

Z8 SLCK (D6-D7). These bits define the SCLK frequency of the Z8. The oscillator can be either divided-by-8, 4 , or 2 . After a reset, both of these are defaulted to 00 .

Table 11. Watch-Dog Timer Mode Register (F) OF

Register WDTMR (F)\%0F	Position	Attrib	Value	Description
	765-----			Reserved
	---4----	R/W	0	On-Board RC for WDT*
			1	XTAL for WDT
	----3---	R/W	0	WDT Off During STOP
			1	WDT On During STOP*
	-----2--	R/W	0	WDT Off During HALT
			1	WDT On During HALT*
	------10	R/W		Int RC Osc Ext. Clock
			00	5 ms 256 TpC
			01	15 ms 512 TpC*
			10	25 ms 1024 TpC
			11	100 ms 4096 TpC

Note:

* Default setting after Reset

Z8 FUNCTIONAL DESCRIPTION (Continued)

Figure 19. Resets and WDT

WDT Time Select (D0, D1). Selects the WDT time period. It is configured as shown in Table 12.

Table 12. WDT Time Select

D1	D0	Time-out of internal RC OSC	Time-out of XTAL clock
0	0	$5 \mathrm{~ms} \min$	256 TpC
0	1	15 ms min	512 TpC
1	0	25 ms min	1024 TpC
1	1	100 ms min	4096 TpC

Notes:

TpC = XTAL clock cycle
The default on reset is 15 ms .

WDT During HALT (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1 .

WDT During STOP (D3). This bit determines whether or not the WDT is active during STOP mode. Since XTAL clock is stopped during STOP mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1 .

Clock Source for WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1 , the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 which selects the RC oscillator.

DSP FUNCTIONAL DESCRIPTION

The DSP coprocessor is characterized by an efficient hardware architecture that allows fast arithmetic operations such as multiplication, addition, subtraction and multiply accumulate of two 16-bit operands. Most instructions are executed in one clock cycle.

Four DSP registers (EXT3-EXTO) are shared through a quasi dual port mapping with the expanded register file of the Z8. Communication between the Z8 and the DSP occurs through these mailbox registers and interprocessor interrupt mechanism.

Figure 20. Z8-DSP Interface

DSP-Z8 Mail Box

To receive information from the DSP, the $Z 8$ uses eight incoming registers which are mapped in the $Z 8$ extended Register File (Bank B, 08 to 0F). The DSP treats these as four 16-bit registers that correspond to the eight incoming Z8 registers (Figure 20).

The Z8 can supply the DSP with data through eight outgoing registers mapped into both the $Z 8$ Expanded Register File (Bank B, Registers 00 to 07) and the external register interface of the DSP. These registers are R/W and can be used as general purpose registers of the $Z 8$. The

DSP can only read information from these registers. Since the DSP uses a 16-bit data format and the $Z 8$ an 8-bit data format, eight outgoing registers of the $\mathrm{Z8}$ correspond to four DSP registers. The DSP can only read information from the outgoing registers.

Both the outgoing registers and the incoming registers share the same DSP address (EXT3-EXTO).

Note: The Z8 can read and write to ERF Bank B R00-R07, Registers 08-0F are read only from the Z8.

Table 13. Z8 Outgoing Registers (Read Only from DSP)

Field	Position	Attrib.	Value	Label
Outgoing [0] (B)00	76543210	RNW	\%NN	(B)00/DSP_ext0_hi
Outgoing [1] (B)01	76543210	RNW	\%NN	(B)01/DSP_ext0_lo
Outgoing [2] (B)02	76543210	RNW	\%NN	(B)02/DSP_ext1_hi
Outgoing [3] (B)03	76543210	R/W	\%NN	(B)03/DSP_ext1_lo
Outgoing [4] (B)04	76543210	RN	\%NN	(B)04/DSP_ext2_hi
Outgoing [5] (B)05	76543210	RNW	\%NN	(B)05/DSP_ext2_lo
Outgoing [6] (B)06	76543210	R/W	\%NN	(B)06/DSP_ext3_hi
Outgoing [7] (B)07	76543210	RNW	\%NN	(B)07/DSP_ext3_lo

Table 14. Z8 Incoming Registers (Write Only from DSP)

Field	Position	Attrib.	Value	Label
Incoming [8] (B)08	76543210	$\begin{aligned} & \hline R \\ & \mathrm{~W} \end{aligned}$	\%NN	DSP_ext0_hi No Effect
Incoming [9] (B)09	76543210	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$	\%NN	DSP_ext0_lo No Effect
Incoming [a] (B)OA	76543210	$\begin{aligned} & R \\ & \mathrm{~W} \end{aligned}$	\%NN	$\begin{aligned} & \text { DSP_ext1_hi } \\ & \text { No Effect } \end{aligned}$
Incoming [b] (B)OB	76543210	$\begin{aligned} & R \\ & W \end{aligned}$	\%NN	DSP_ext1_lo No Effect
Incoming [c] (B)OC	76543210	$\begin{aligned} & R \\ & \mathrm{~W} \end{aligned}$	\%NN	DSP_ext2_hi No Effect
Incoming [d] (B)OD	76543210	$\begin{aligned} & R \\ & \mathrm{~W} \end{aligned}$	\%NN	DSP_ext2_lo No Effect
Incoming [e] (B)OE	76543210	$\begin{aligned} & R \\ & W \end{aligned}$	\%NN	DSP_ext3_hi No Effect
Incoming [f] (B)0F	76543210	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$	\%NN	DSP_ext3_10 No Effect

Table 15. DSP Incoming Registers

Field	Position	Attrib.	Value	Label
DSP_ext0	fedcba9876543210	R	\%NNNN	(B)00, (B)01
Mail Box		W		(B)08, (B)09
DSP_ext1	fedcba9876543210	R	\%NNNN	(B)O2, (B)03
Mail Box		W		(B)OA, (B)OB
DSP_ext2	fedcba9876543210	R	\%NNNN	(B)04, (B)05
Mail Box		W		(B)OC, (B)OD
DSP_ext3	fedcba9876543210	R	\%NNNN	(B)06, (B)07
Mail Box			W	

DSP Interrupts

The DSP processor has three interrupt sources (INT2, INT1, INTO) (Figure 21). These sources have different priority levels (Figure 22). The highest priority, the next lower and the lowest priority level are assigned to INT2, INT1 and INTO, respectively. The DSP does not allow
interrupt nesting (interrupting service routines that are currently being executed). When two interrupt requests occur simultaneously the DSP starts servicing the interrupt with the highest priority level.

Figure 21. DSP Interrupts

Figure 22. DSP Interrupt Priority Structure

DSP Interrupts (Continued)
Table 16. EXT4 DSP Interrupt Control Register (ICR) Definition

Field	Position	Attrib	Value	Label
DSP_INT2	£---------------	R	1	INT2_is set
			0	INT2_is reset
	£---------------	W	1	Clear_DSP_INT2
			0	Has_no_effect
DSP_INT1	-e--------------	R	1	INT1_is set
			0	INT1_is reset
	-e--------------	W	1	Clear_DSP_INT1
			0	Has_no_effect
DSP_INTO	--d-------------	R	1	INTO_is set
			0	INTO_is reset
	--d-------------	W	1	Clear_DSP_INTO
			0	Has_no_effect
DSP_MaskINT2	---c------------	R/W	1	Enable_INT2
			0	Disable_INT2
DSP_MaskINT1	----b-----------	R/W	1	Enable_INT1
			0	Disable_INT1
DSP_MaskINTO	------a----------	R/W	1	Enable_INTO
			0	Disable_INTO
Z8_IRQ3	------9----------	R	1	IRQ3_active
			0	IRQ3_inactive
	------9----------	W	1	Set_Z8_IRQ3
			0	Has_no_effect
Enable_INT	-------8--------	R/W	1	Enable_INT
			0	Disable_INT
DSP_INTSel2	--------7-------	R/W	Binary	INTSel2
DSP_INTSel1	---------6------	R/W	Binary	INTSel1
DSP_INTSel0	----------5-----	R/W	Binary	INTSel0
Reserved	-----------43210		xxxxx	Reserved

Interrupt Control Register (ICR). The ICR is mapped into EXT4 of the DSP (Table 16). The bits are defined as follows.

DSP_IRQ2 (Z8 Interrupt). This bit can be read by both Z8 and DSP and can be set only by writing to the Z8 expanded Register File (Bank F, ROC, bit 0). This bit asserts IRQ2 of the DSP and can be cleared by writing to the Clear_IRQ2 bit.

DSP_IRQ1 (A/D Interrupt). This bit can be read by the DSP only and is set when valid data is present at the A/D output register (conversion done). This bit asserts IRQ1 of the DSP and can be cleared by writing to the Clear_IRQ1bit.

DSP_IRQ0 (D/A Interrupt). This bit can be read by DSP only and is set by Timer3. This bit assists IRQ0 of the DSP and can be cleared by writing to the Clear_IRQO bit.

DSP_MaskIntX. These bits can be accessed by the DSP only. Writing a 1 to these locations allows the INT to be serviced, while writing a 0 masks the corresponding INT off.

Z8_IRQ3. This bit can be read from both Z8 and DSP and can be set by DSP only. Addressing this location accesses bit D3 of the Z8 IRQ register; hence, this bit is not implemented in the ICR. During the interrupt service routine executed on the Z8 side, the User has to reset the Z8_IRQ3 bit by writing a 1 to bit DO of the DSPCON. Three Z8 instructions after this operation, the hardware of the Z89121/ 921 automatically resets Z8_IRQ3. This delay provides the timing synchronization between the Z8 and the DSP sides during interrupts. In.summary, the interrupt service routine of the Z8 for IRQ3 should be finished by:

DSP Enable_INT. Writing a 1 to this location enables global interrupts of the DSP while writing 0 disables them. A system Reset globally disables all interrupts.

DSP_IPRX. This 3-bit group defines the Interrupt Select logic according to Table 17.

Clear_IRQX. These bits can be accessed by the DSP only. Writing a 1 to these locations rests the corresponding DSP_IRQX bits to 0 . Clear_IRQX are virtual bits and are not implemented.

PUSH RP
LD RP,\#\%0F
OR r12,\#\%01
POP RP
IRET
Table 17. DSP Interrupt Selection

$\begin{gathered} \text { DSP_IPR[2-0] } \\ 210 \end{gathered}$	Z8_INT is Switched to	Codec_INT is Switched to	D/A_INT is Switched to
000	INT2	INT1	INTO
001	INT1	INT2	INTO
010	INT2	INTO	INT1
011	INT1	INTO	INT2
100	INTO	INT2	INT1
101	INTO	INT1	INT2
110	Reserved	Reserved	Reserved
111	Reserved	Reserved	Reserved

PULSE WIDTH MODULATOR (PWM)

4 kHz mode (10 bit resolution)

10 kHz mode (10 bit resolution)

subdivided into C -slots as above

16 kHz mode (10 bit resolution)

64 kHz mode (8 bit resolution)

Figure 23. PWM Output

CODEC INTERFACE

Codec interface provides the user all the necessary signals to connect two independent codec chips. The supported sampling rate is 8 K samples $/ \mathrm{sec}$. at a data rate of 2.048 MHz , or 6.66 K samples $/ \mathrm{sec}$. at a 1.7066 MHz data
rate. Figure 24 shows the connection of T2 (TCM29C18) and Motorola (MC145503) Codec to Z89121. The timing diagram is shown in Figure 25.

TCM29C18

Figure 24. Connecting TCM29C18 and MC145503 to Z89121/921

CODEC INTERFACE (Continued)

Figure 25. Timing Diagram of Codec Interface

D/A (PWM) Converter/Codec interface Register - EXT5

External DSP register EXT5 is used by the D/A converter and an External Codec Interface. The accessibility of all these devices is driven by the Analog Control register (EXT6).

The D/A converter (10-bit PWM) will be loaded by writing to register EXT5 of the DSP.

Two different Codecs can be addressed by the Analog Control register (EXT6). The data loaded to Codec0 and Codec 1 is defined by writing to the EXT5 register of the DSP, while reading from this register gives the data received from Codecs.

Because the same logical register (EXT5) can be either the source or the destination for several physical devices (D/A and Codecs), the user must specify which one of all available devices is desirable to write (read) to (from). EXT5 bits 'e' and ' f ' are used to distinguish between different devices upon writing data to D/A, CodecO and Codec 1, as shown below. Upon reading from EXT5, the DSP reads in sequence all active (enabled) devices according to the definition of the Select_Sequence field (bits ' c ' and ' d ') in ACR (EXT6). The sequence of reading data can be reset by writing a 1 to the Reset_Toggle field of EXT6.

Register EXT5 is accessible to the DSP only.

Digital to Analog Converter - EXT5 (when written)

The D/A conversion is DSP driven by sending 10-bit data to the external register EXT5 of the DSP. The six remaining bits of EXT5 are reserved, as shown in the following table.

Data will be loaded into the D/A latch during the clock cycle following the (Id EXT5, data) instruction.

Table 18. EXT5 (when written)

Field	Position	Attrib.	Value	Label
Data	f---------------	W	0	Should be '0'
	-edcba----------			Reserved
	------98765-----	W	\%NN	Data To PWM (High Val)
	-----------43210	W	\%NN	Data To PWM (Low Val)

Codec Interface Controller - EXT5 (when written)

The two Data registers of the External Codec interface are mapped into the external register EXT5 of the DSP. The eight remaining bits of EXT5 are reserved as shown in the

Table 19. Data will be loaded into the corresponding Data register (defined by field 'e') during the clock cycle following the (id EXT5, data) instruction.

Table 19. EXT5 (when written)

Field	Position	Attrib.	Value	Label
Data	£---------------		1	Should be '1'
	-e--------------		0	Codec0
			1	Codec 1
	--dcba98--------			Reserved
	--------76543210		\%NN	DataToCodec

Codec Interface Controller - EXT5 (when read)

8 -Bit Data can be read from the Codec by the DSP through eight bits, 0 through 7, return Data; the remaining bits are the external register, EXT5. Of the 16 bits of the EXT5, only padded with zeroes.

Table 20. EXT5 (when read)

Field	Position	Attrib.	Value	Label
Data	fedcba98--------			Return '0' ------76543210
		\%NN	DataFromCodec	

Analog Control Register (ACR)

The Analog Control register is mapped to register EXT6 of the DSP (Table 21). This read/write register is accessible by the DSP only.

The 16 -bit field of EXT6 defines modes of both the A/D and the D/A. The High Byte configures the Codec.

Table 21. EXT6 Analog Control Register (ACR)

Field	Position	Attrib.	Value	Label
MPX_DSP_INTO	f---------------	R/W	1	P26
			0	Timer3
Reset_Toggle	-e----------	R		Return '0'
	-e--------------	W	1	Reset Toggle
			0	No Effect
Select_Sequence	--dc------------	R/W	XX	Selects CodecO/Codec1 upon
				Reading EXT5
Reserved	----b-----------	R		Return ' 0 '
		W		No Effect
D/A_SamplingRate	-----a98--------	R/W	11x	Reserved
			101	Reserved
			100	64 kHz
			010	16 kHz
			011	10 kHz
			001	4 kHz
			000	Reserved
Div10/12	--------7-------	R/W	1	Divided-by-10
			0	Divided-by-12
Reserved Reserved	------------------------133210	R/W		Should Be Set to ' 0 '
		R	\%DD	Return '0'
		W		No Effect

DSP IRQO. Defines the source of DSP IRQ0 interrupt.
Select_Sequence. Defines the Codec 0 and Codec 1 enabling/disabling and the sequence of reading data from these devices starting from the reset condition (Table 22).

A 1 should be written to bit ' e ' in order to reset the sequence. Writing 1 to bit e ensures the next data read from EXT5 is the data of Codec0.

Table 22. Select_Sequence

Select Sequence					
\mathbf{d}	\mathbf{c}	Codec Enabled/Disabled		Sequence of Access Codec0	
0	0	Codec1	First	Second	
0	1	Disable	Disable	N/A	
1	0	Enable	Disable	Codec0	N/A
1	1	Enable	Enable	Codec0	Codec1

Div 10/12. This bit defines the speed of the Codecs. If the bit is set to 1 , the Codec clock frequency is set to 2.048 MHz , and the sampling rate is 8 kHz . If the bit is reset to 0 , Codec clock frequency is set to 1.7066 MHz and the sampling rate to 6.66 kHz .

Note: Bit 6 of ACR should be set to zero.
D/A_Sampling Rate. This field defines the sampling rate

Table 23. D/A Data Accuracy

D/A_Sampling Rate D/A Accuracy	Sampling Rate	
100	64 kHz	8 Bits
010	16 kHz	10.Bits
011	10 kHz	10 Bits
001	4 kHz	10 Bits

DSP Timers

Timer2 is a free-running counter that divides the XTAL frequency (20.48 MHz) to support different sampling rates for the A/D converter. The sampling rate is defined by the Analog Control Register. Upon reaching the end of a count, the timer generates an interrupt request to the DSP.

Analogous to Timer2, Timer3 generates the different sampling rates for the D/A converter. Timer3 also generates an
interrupt request to the DSP upon reaching its final count value (Figure 26).

Note: The crystal speed in this example is 20.48 MHz , which is the maximum tested speed, but other lower speeds may be used.

Figure 26. Timer2 and Timer3

Minus 5V DC Generation

Some Codecs require a $\pm 5 \mathrm{~V}$ power supply. The Z89121/921 provides a $-5 \mathrm{~V}_{\text {out }}$ output to drive an external pump circuit. A complete circuit diagram for the -5 V generation is shown in Figure 27. The reference voltage of 2.5 V is generated by a resistor divider R5, R6 on the P33 input of Z86C67/921. This voltage is compared with the voltage of the voltage divider formed by R2, R4. If the latter voltage rises above
the reference voltage, the comparator (inside Z86C67/ 921) will be switched and connect the internal 128 kHz output of Timer2 to the $-5 \mathrm{~V}_{\text {out }}$ output pin of $\mathrm{Z} 89121 / 921$. On the contrary, the $-5 \mathrm{~V}_{\text {out }}$ will be switched off if the voltage from voltage divider R2, R4 drops below the reference voltage. This regulates the voltage across C 1 to be -5 V .

Figure 27. Circuit Diagram for -5V Generation

DRAM INTERFACE

The DRAM interface controller accepts a wide variety of external DRAM configurations（up to 48 Mbits ）with 4－bit wide data buses．It can be reconfigured from the software
to support： 1 Mbit $\times 1,4$ Mbit $\times 1,1$ Mbit $\times 4,4$ Mbit $\times 4$ DRAM．DRAM interface registers are mapped to ex－ panded register file（bankOA）．

Table 24．Registers of DRAM Interface

Field	Position	Attrib．	Value	Label
Data（Register（A）00）	76543210	RN	\％FF	Data
Control（Register（A）01）	76543210	RNW	\％FF	See Text
Most Significant Byte（Register（A）02）	76543210	RNW	\％FF	Data
Middle Significant Byte（Register（A）03）	76543210	RNW	\％FF	Data
Least Significant Byte（Register（A）04）	76543210	RNW	\％FF	Data
Refresh Count（Register（A）05）	76543210	RN	\％FF	Data

Data Register．This register is used as a logical device for reading（writing）data from（to）the DRAM．After reading by the Z8 in Auto Increment mode，the logical DRAM address specified by register（AH）04H is increased by 1 and new DRAM data at this address will be read and stored into the data register．When data is written to this register，it will be stored into the last valid DRAM logical address．The hardware write－data－to－DRAM cycle is implemented as an early write cycle with Twcs＞ 40 ns ．The user has to load a 23－bit address into the Least，Middle，and Most Significant Byte Registers and then write the 8－bit data to the Data Register．The data will be automatically separated into higher nibble and lower nibble and stored into two subse－ quent locations in the DRAM（2＊Address for higher nibble and 2^{*} Address +1 for lower nibble）．Writing data to the Data Register with the Auto－incremental Bit（bit 0）of the DRAM Control Register equal to 0 increases the address in the Least Significant DRAM register（AH）04H by 1.

Most，Middle，and Least Significant Byte Registers．The 23－bit logical address of DRAM is stored in these three registers．Upon writing to these registers，the read cycle from DRAM is executed so that the new data is available in the data register．

Refresh Count Register．The／RAS－only refresh cycle is transparent to the user and is supported by hardware logic．This register specifies how many rows of memory matrix，starting from the beginning of the DRAM（logical address 000000 H ），should be refreshed．The number of the rows in DRAM to be refreshed is defined by the value in Refresh Count Register plus one and then multiplied by eight．

The basic timing diagram of the DRAM interface is shown
in Figure 28.

AH－Address Hi （During／RAS）
ALO－Address Lo（During／CAS）Bit $0=0$
AL1－Address Lo（During／CAS）Bit $0=1$
RE－Refresh Address

Figure 28．Timing Diagram for DRAM Interface

DRAM Control Register

The register defines DRAM access time, DRAM memory size, refresh operation, etc. (Figure 29). After Power-On Reset, the DRAM Control Register is set to \%00, which
defines 1 Mbit DRAM configuration with permanently active DRAM refreshing.

Table 25. DRAM Control Register

Register	Position	Attrib.	Value	Description
Access_Time	7-------	R/W	0	400 ns
			1	200 ns
ARAM_size	-6------	R/W	0	1 Mbit
			1	4 Mbit
Reserved	--54----	R/W	\%DD	number
				These two bits can be used as User defined flags.
Refresh_start	----32--	RNW	00	Permanently
			01	Upon TO
			10	Upon TO
			11	Refresh off
Refresh_clear	------1-	R		Return '0'
		W	1	Refresh clear
			0	No effect
Autoincrement	-------0	R/W	0	Increment ON
			1	Increment OFF

Access_time. This bit defines the speed of DRAM Controller. The read/write cycle width can be changed to support slower DRAMs. When set to 1 , the width of /CAS signal is set to 200 ns . Reset the Access_time bit to 0 set the width of /CAS signal to 400 ns .

DRAM_size. DRAM interface supports four different sizes of ARAM: 1 Mbit $\times 1,1$ Mbit $\times 4,4$ Mbit $\times 1$ and 4 Mbit $\times 4$. These require either 11 - or 10 -bit address bus. For 1 Mbit $\times 1$ or 1 Mbit $\times 4$ DRAM, the ADDR10 is used to generate select (/CAS) signal.

Bit 6	/CAS	ARAM_SEL1	ARAM_SELO	Addr10
0	1st /CAS	3rd /CAS	2nd /CAS	Addr10
1	1st /CAS	3rd /CAS	2nd /CAS	4th /CAS

Auto Increment. This bit specifies the Auto Increment of the LBS byte of the DRAM address. The Auto Increment function does not affect any flag of $Z 8$.

DRAM Interface

Figure 29. Block Diagram of the DRAM Interface

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min.	Max.	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage (*)	-0.3	+7.0	V
$\mathrm{T}_{\text {StG }}$	Storage Temp	-65°	$+150^{\circ}$	C
TA	Oper Ambient Temp		\dagger	C

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 30).

Figure 30. Test Load Diagram

CAPACITANCE
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$, unmeasured pins returned to GND.

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
l/O capacitance	12 pF

DC ELECTRICAL CHARACTERISTICS

Note:

[1] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS

AC CHARACTERISTICS

External I／O or Memory Read and Write Timing Diagram

Figure 31．External VO or Memory Read／Write Timing

AC CHARACTERISTICS
External I/O or Memory Read and Write Timing Table

No	Symbol	Parameter	$\begin{gathered} V_{\text {cc }} \\ \text { Note [4] } \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}^{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+7 \mathbf{7 0}^{\circ} \mathrm{C} \\ & \operatorname{Min} \quad \text { Max } \end{aligned}$		Units	Notes
1	TdA(AS)	Address Valid to /AS Rise Delay	5.0	20		ns	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	5.0	25		ns	[2,3]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid	5.0		150	ns	[1, 2, 3]
4	TwAS	/AS Low Width	5.0	30		ns	$[2,3]$
5	TdAZ(DS)	Address Float to /DS Fall	5.0	0		ns	
6	TwDSR	/DS (Read) Low Width	5.0	105		ns	[1, 2, 3]
7	TwDSW	/DS (Write) Low Width	5.0	65		ns	[1, 2, 3]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid	5.0		55	ns	[1, 2, 3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	5.0	0		ns	[2, 3]
10	TdDS(A)	/DS Rise to Address Active Delay	5.0	40		ns	[2, 3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	5.0	25		ns	[2,3]
12	TdRN(AS)	R/W Valid to /AS Rise Delay	5.0	20		ns	[2,3]
13	TdDS(R/W)	/DS Rise to R/W Not Valid	5.0	25		ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	5.0	20		ns	[2,3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	5.0	25		ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid	5.0		180	ns	[1, 2, 3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	5.0	35		ns	[2,3]
18	TdDI(DS)	Data Input Setup to /DS Rise	5.0	50		ns	$[1,2,3]$
19	TdDM(AS)	/DM Valid to /AS Fall Delay	5.0	20		ns	$[2,3]$

Notes:

[1] When using extended memory timing add 2 TpC .
[2] Timing numbers given are for minimum TpC.
[3] See clock cycle dependent characteristics table.
[4] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Standard Test Load
All timing references use $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .

AC ELECTRICAL CHARACTERISTICS
Additional Timing Diagram

Figure 32. Additional Timing

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\begin{gathered} \mathbf{v}_{\text {cc }} \\ \text { Note [5] } \end{gathered}$		$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & \text { Max } \end{aligned}$	Units	Notes
1	TpC	Input Clock Period	5.0 V	48.83		ns	[1]
2	TrC,TTC	Clock Input Rise \& Fall Times	5.0 V		6	ns	[1]
3	TwC	Input Clock Width	5.0 V	16		ns	[1]
4	TwTinL	Timer Input Low Width	5.0 V	70		ns	
5	TwTinH	Timer Input High Width	5.0 V	3 TpC			[1]
6	TpTin	Timer Input Period	5.0 V	8TpC			[1]
7	TrTin, TTTin	Timer Input Rise \& Fall Timer	5.0 V		100	ns	[1]
8 A	TwIL	Int. Request Low Time	5.0 V	70		ns	[1, 2]
8B	TwIL	Int. Request Low Time	5.0 V	3 Tp C			[1]
9	TwlH	Int. Request Input High Time	5.0 V	3 TpC			[1]
10	Twsm	STOP-Mode Recovery Width Spec	5.0 V	12		ns	[1]
				5 TpC			
11	Tost	Oscillator Startup Time	5.0 V	5 TpC			[3]
12	Twdt	Watch-Dog Timer	5.0 V	5		ms	$D 1=0, \mathrm{DO}=0[4]$
			5.0 V	15		ms	$D 1=0, D 0=1[4]$
			5.0V	25		ms	$D 1=1, D 0=0[4]$
			5.0V	100		ms	$D 1=1, D 0=1[4]$

Notes:

[1] Timing Reference uses $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0.
[2] Interrupt request via Port 3 (P31-P33).
[3] SMR-D5 $=0$.
[4] Reg. WDT.
[5] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Diagrams

Figure 33. Input Handshake Timing

Figure 34. Output Handshake Timing

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameier	Note [1]	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { Min } \quad \operatorname{Max} \end{aligned}$		Units	Data Direction
1	TsDI(DAV)	Data In Setup Time	5.0 V	0		ns	IN
2	ThDI(DAV)	Data In Hold Time	5.0 V	115		ns	IN
3	TwDAV	Data Available Width	5.0 V	110		ns	IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay	5.0 V		115	ns	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay	5.0 V		80	ns	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	5.0 V	0		ns	IN
7	TCLDAVO(RDY)	Data Out to DAV Fall Delay	5.0 V	25		ns	OUT
8	TCLDAVO(RDY)	DAV Fall to RDY Fall Delay	5.0 V	0		ns	OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay	5.0 V		115	ns	OUT
10	TwRDY	RDY Width	5.0 V	80		ns	OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay	5.0 V		80	ns	OUT

Note:

[1] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Z8 EXPANDED REGISTER FILE REGISTERS

Expanded Register Bank B

Register	Position	Attrib．	Value	Description
Outgoing Reg． to DSP EXTO （High Byte）（B）\％00	76543210	R／W		DSP EXTO，Bits D15－D8
Outgoing Reg． to DSP EXTO （Low Byte）（B）\％01	76543210	R／W		DSP EXT0，Bits D7－DO
Outgoing Reg． to DSP EXT1 （High Byte）（B）\％02	76543210	R／W		DSP EXT1，Bits D15－D8
Outgoing Reg． to DSP EXT1 （Low Byte）（B）\％03	76543210	R／W		DSP EXT1，Bits D7－D0
Outgoing Reg． to DSP EXT2 （High Byte）（B）\％04	76543210	R／W		DSP EXT2，Bits D15－D8
Outgoing Reg． to DSP EXT2 （Low Byte）（B）\％05	76543210	R／W		DSP EXT2，Bits D7－D0
Outgoing Reg． to DSP EXT3 （High Byte）（B）\％06	76543210	R／W		DSP EXT3，Bits D15－D8
Outgoing Reg． to DSP EXT3 （Low Byte）（B）\％07	76543210	R／W		DSP EXT3，Bits D7－D0

Z8 EXPANDED REGISTER FILE REGISTERS

Expanded Register Bank B (Continued)

Register	Position	Attrib.	Value	Description
Incoming Reg. to DSP EXTO (High Byte) (B)\%08	76543210	R		DSP EXT0, Bits D15-D8
Incoming Reg. to DSP EXT0 (Low Byte) (B)\%09	76543210	R	DSP EXT0, Bits D7-D0	
Incoming Reg. to DSP EXT1 (High Byte) (B)\%0A	76543210	R	DSP EXT1, Bits D15-D8	
Incoming Reg. to DSP EXT1 (Low Byte) (B)\%0B	76543210	R		
Incoming Reg. to DSP EXT2 (High Byte) (B)\%0C	76543210	R	DSP EXT1, Bits D7-D0	
Incoming Reg. to DSP EXT2 (Low Byte) (B)\%0D	76543210	R	DSP EXT2, Bits D15-D8	
Incoming Reg. to DSP EXT3 (High Byte) (B)\%0E	76543210	R	DSP EXT2, Bits D7-D0	
Incoming Reg. to DSP EXT3 (Low Byte) (B)\%OF	76543210	R	DSP EXT3, Bits D15-D8	

Expanded Register Bank F

Register	Position	Attrib.	Value	Description
PCON (F)\%00				
	76543---			Reserved
	-----2--	R	0	Port 1 Open-drain
			1	Port 1 Push-pull Active*
	------1-	R	0	Port 0 Open-drain
			1	Port 0 Push-pull Active*
	-------0	R	0	P34, P35 Standard Output*
			1	P34, P35 Comparator Output
DSPCON (F)0CH				
Z8_SCLK	76------	R/W	00	2.5 MHz (OSC/8)
			01	5 MHz (OSC/4)
			1 x	10 MHZ (OSC/2)
DSP_Reset	--5-----			Return ' 0^{\prime}
		W	0	No effect
			1	Reset DSP
DSP_Run	---4----	R/W	0	Halt_DSP
			1	Run_DSP
Reserved	----32--		xx	
				Return '0'
				No effect
IntFeedback	----1-			FB_DSP_INT2
		W	1	Set DSP_INT2
			0	No effect
	-------0	R		FB_Z8_IRQ3
		W	1	Clear IRQ3
			0	No effect
P4 (F)\%02	76543210	R/W	\%NN	Port 4 Data Register
P4M (F)\%03	76543210	R	\%FF	Returns \%FF
			W	0 Defines P4X as Output 1 Defines P4X as Input
P5 (F)\%04	76543210	R/W	\%NN	Port 5 Data Register
P5M (F)\%05	76543210	R	\%FF	
			W	0 Defines P5X pin as Output
				1 Defines P5X pin as Input
P45CON (F)\%06				
	765-321-			Reserved
	---4----	W	0	Port 5 Open-drain
			1	Port 5 Push-pull Active*
	-------0	W	0	Port 4 Open-drain
			1	Port 4 Push-pull Active*

Note:

* Default setting after Reset

Z8 EXPANDED REGISTER FILE REGISTERS
Expanded Register Bank F (Continued)

Register	Position	Attrib.	Value	Description
SMR (F)\%0B				
	7-------	R	0	POR*
			1	Stop Recovery
	-6------	W	0	Low Stop Recovery Level*
			1	High Stop Recovery Level
	--5-----	W	0	Stop Delay On*
			1	Stop Delay Off
	---432--	W		STOP-Mode Recovery Source
			000	POR Only*
			001	Reserved
			010	P31
			011	P32
			100	P33
			101	P27
			110	P2 NOR 0-3
			111	P2 NOR 0-7
	------1-			Reserved
	-------0	W	0	SCLK/TCLK Not Divide-by-16 ${ }^{\dagger}$
			1	SCLK/TCLK Divide-by-16
WDTMR (F)\%OF				
	765-----			Reserved
	---4----	R/W	0	On-Board RC for WDT*
			1	XTAL for WDT
	----3---	R/W	0	WDT Off During STOP
			1	WDT On During STOP*
	-----2--	R/W	0	WDT Off During HALT
			1	WDT On During HALT*
	------10	RW		Int RC Osc Ext Clock
			00	5 ms 256 TpC
			01*	
			10	25 ms 1024 TpC
			11	100 ms 4096 TpC

Notes:

* Default setting after Reset
${ }^{\dagger}$ Reset after STOP-Mode Recovery

Z8 CONTROL REGISTERS

Register	Position	Attrib.	Value	Description
\%F0	76543210			Reserved
TMR \%F1	76 --54---- ----3--- -----2-- -------1- \qquad	RW RW R/W R/W R/W R/ N	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & 00 \\ & 01 \\ & 10 \\ & 11 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	```\(\mathrm{T}_{\text {out }}\) Modes Not Used TO Out T1 Out Internal Clock Out P36 \(\mathrm{T}_{\text {IN }}\) Modes External Clock Input Gate Input Trigger Input (Non-Retriggerable) Trigger Input (Retriggerable) Disable T1 Count Enable T1 Count No Effect Load T1 Disable TO Count Enable TO Count No Effect Load TO```
T1 \%F2	76543210	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline \% N N \\ & \% N N \end{aligned}$	T1 Current Value T1 Initial Value
PRE1 \%F3	$\begin{aligned} & \hline 765432-- \\ & ------1--1 \end{aligned}$	W W W	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Prescaler Modulo (1-64 Dec) T1 Clock Source External Timing Input ($\mathrm{T}_{\text {IN }}$) Mode Internal Clock T1 Count Mode Single Pass Modulo-n
T0 \%F4	76543210	$\begin{aligned} & \hline R \\ & W \end{aligned}$	$\begin{aligned} & \text { \%NN } \\ & \text { \%NN } \end{aligned}$	TO Current Value TO Initial Value
PREO \%F5	$\begin{aligned} & \hline 765432-- \\ & ------1- \\ & ----1 \end{aligned}$	W w	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Prescaler Modulo (1-64 Dec) Reserved To Count Mode Single Pass Modulo-n
P2M \%F6	76543210	W	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	Defines P2X pin as Output Defines P2X pin as Input

Z8 CONTROL REGISTERS (Continued)

Register	Position	Attrib.	Value	Description
P3M \%F7				
	7-------			Reserved
	-6------	W	0	P30 = Input; P37 = Output
	--5-----	W	0	P31 $=$ Input ($\mathrm{T}_{\mathbb{N}}$); P36 = Output ($\left.\mathrm{T}_{\text {OUT }}\right)^{*}$
			1	P31 = /DAV2/RDY2; P36 = RDY2//DAV2
	---43---	W	00	P33 $=$ Input P34 $=$ Output*
			01	P33 = Input $;$ P34 $=/ \mathrm{DM}$
			10	P33 = Input ${ }^{\text {P34 }}=/ \mathrm{DM}$
			11	P33 = /DAV1/RDY1; P34 = RDY1//DAV1
	-----2--	W	0	P32 $=$ Input; P35 $=$ Output*
			1	P32 = /DAV0/RDY0; P35 = RDYO//DAVO
	------1-	W	0	P31, P32 Digital Mode
			1	P31, P32 Analog Mode
	-------0	R/W	0	Port 2 Open-drain*
			1	Port 2 Push-pull Active
P01M \%F8	76-----	W		$\begin{aligned} & \mathrm{T}_{\text {out }} \text { Modes } \\ & \text { PO4-P07 Mode } \end{aligned}$
			00	Output
			01	Input*
			1 x	A15-A12
	--5-----	W		External Memory Timing
			0	Normal*
			1	Extended
	---43---	W		P10-P17 Mode
			00	Byte Output
			01	Byte Input*
			10	AD7-AD0
			11	High-Z AD7-ADO, IAS, /DS/ RN, A11-A8 A15-A12, If selected
	-----2--	W		Stack Selection
			0	External
			1	Internal*
	------10	W		P00-P03 Mode
			00	Output
			01	Input*
			1 x	A11-A8

Note:

* Default setting after Reset.

Register	Position	Attrib.	Value	Description
IPR \%F9	76------ --5----- -----1-- ------2-- $---43--0$	W w w	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & \\ & 000 \\ & 001 \\ & 010 \\ & 011 \\ & 100 \\ & 101 \\ & 110 \\ & 111 \end{aligned}$	Reserved IRQ3, IRQ5 Priority (Group A) IRQ5 > IRQ3 IRQ3 > IRQ5 IRQ0, IRQ2 Priority (Group B) IRQ2 > IRQ0 IRQ0 $>$ IRQ2 IRQ1, IRQ4 Priority (Group C) IRQ1 > IRQ4 IRQ4 > IRQ1 Interrupt Group Priority Reserved $C>A>B$ $A>B>C$ $A>C>B$ $B>C>A$ $C>B>A$ $B>A>C$ Reserved
IRQ \%FA	76 $--543210$	R/W R/W	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	```Inter Edge (R = Rising edge; F = Falling edge) P31 \(=F ;\) P32 \(=F\) P31 \(=F ;\) P32 \(=\) R \(\mathrm{P} 31=\mathrm{R} ; \mathrm{P} 32=\mathrm{F}\) P31 \(=\) RF; P32 \(=\) RF IRQ5 \(=T 1\) IRQ4 \(=\) TO IRQ3 \(=\) DSP IRQ2 \(=\) P31 Input IRQ1 = P33 Input IRQ0 = P32 Input```
IMR \%FB	$\begin{aligned} & 7------ \\ & -6------543210 \end{aligned}$	RN RW RN	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Disables Interrupts Enables Interrupts Disables RAM Protect Enables RAM Protect Disables IRQ5-IRQO ($\mathrm{DO}=\mathrm{IRQ0}$) Enables IRQ5-IRQ0
Flags \%FC		R/W R/W RW R/W R/W R/W R/W R/W		Carry Flag Zero Flag Sign Flag Overflow Flag Decimal Adjust Flag Half Carry Flag User Flag F2 User Flag F1
RP \%FD	$\begin{aligned} & \hline 7654------3210 \\ & ---1 \end{aligned}$	$\begin{aligned} & \text { RW } \\ & \text { RW } \end{aligned}$	$\begin{aligned} & \hline \text { \%NO } \\ & \text { \%ON } \end{aligned}$	Working Register Group Expanded Register File Bank
SPH \%FE	76543210	R/W	\%NN	Stack Pointer Upper Byte
SPL \%FF	76543210	R/W	\%NN	Stack Pointer Lower Byte

Z8 INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address r IR
Working-register address only Indirect-register or indirect	
working-register address	
Ir	Indirect working-register address only Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cC	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
\mathbf{x}	Unaffected

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	S $=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S X O R V)=0$
0001	LT	Less than	(SXORV) $=1$
1010	GT	Greater Than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V)}]=0$
0010	LE	Less Than or Equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C O R Z)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

FFH	
6 FH	7 FH

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
d s t \leftarrow d s t+\operatorname{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

INSTRUCTION SUMMARY (Continued)

OPCODE MAP

Lower Nibble (Hex)

Bytes per instruction

Legend:

$R=8$-bit Address
$r=4$-bit Address
R1 or $\mathrm{rl}=$ Dst Address
R2 or $\mathrm{r} 2=$ Src Address

Sequence:

Opcode, First Operand,
Second Operand
Note: Blank areas not defined.
*2-byte instruction appears as a 3-byte instruction

PACKAGE INFORMATION

NDTES

1. CDNTROLLING DIMENSIDNS I INCH 2. LEADS ARE CIPLANAR VITHIN 004 IN. DIMENSIEN $\frac{\mathrm{MH}}{\text { INCH }}$

SYMBCL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A	4.32	4.57	.170	.180
Al	2.67	2.92	.105	.115
D / E	30.10	30.35	1.185	1.195
$\mathrm{D} 1 / E 1$	29.21	29.41	1.150	1.158
D 2	27.94	28.58	1.100	1.125
B	1.27			TYP

84-Lead PLCC Package Diagram

ORDERING INFORMATION

Z89121 Z89921

$\mathbf{2 0} \mathbf{~ M H z}$	$\mathbf{2 0} \mathbf{~ M H z}$
84-Pin PLCC	$\mathbf{8 4 - P i n}$ PLCC
Z8912120VSC	Z8992120VSC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Speed

$20=20.48 \mathrm{MHz}$

Package

V = Plastic Leaded Chip Carrier (PLCC)
Temperature
$\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Environment

C = Plastic Standard

Example:

Z89320 16-Bit Mixed

 Signal ProcessorZ89321 16-Bit Mixed Signal Processor

Support Product Information

Superintegration ${ }^{\text {m" }}$ Products Guide

Literature Guide and Third Party Support

Zilog Sales Offices Representatives \& Distributors

289320
 16-BIT DIIITAL
 SIGNAL PROCESSOR

FEATURES

- 16 -Bit Single Cycle Instructions
- Zero Overhead Hardware Looping
- 16 -Bit Data
- Ready Control for Slow Peripherals
- Single Cycle Multiply/Accumulate (100 ns)
- \quad Six-Level Stack
- 512 Words of On-Chip RAM
- 512 Words of On-Chip RAM
- 16-Bit I/O Port
- 4K Words of On-Chip Masked ROM
- Three Vectored Interrupts
- Two Conditional Branch Inputs/Two User Outputs
- 24-bit ALU, Accumulator and Shifter
- IBM ${ }^{\circledR}$ PC Development Tools

■ Cost Effective 40-pin DIP Package

GENERAL DESCRIPTION

The Z89320 is a second generation, 16 -bit, fractional, two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate, are accomplished in a single clock cycle. The processor contains 1 Kbyte of on-chip data RAM (two blocks of 256 16 -bit words), 4 K words of program ROM. Also, the processor features a 24 -bit ALU, a 16×16 multiplier, a 24-bitAccumulator and a shifter. Additionally, the processor contains a six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of three pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multiplier for a true single cycle multiply.

The device includes a 16 -bit I/O bus for transferring data or for mapping peripherals into the processor address space. Additionally, there are two general purpose user
inputs and two user outputs. Operation with slow peripherals is accomplished with a ready input pin.

Development tools for the IBM PC include a relocatable assembler, a linker loader, and an ANSI-C compiler. Also, the development tools include a simulator/debugger, a cross assembler for the TMS320 family assembly code and a hardware emulator.

Notes:

All Signals with a preceding front slash, " $"$ ", are active Low, e.g., B / N (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Clrcuit	Device
Power	V_{cC}	V_{DD}
Ground	GND	V_{ss}

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 40-Pin DIP Pin Assignments

PIN DESCRIPTION (Continued)
Table 1. 40 -Pin DIP Pin Identification

No.	Symbol	Function	Direction
1-3	EXT12-EXT14	External data bus	Input/Output
4	$\mathrm{V}_{\text {ss }}$	Ground	Input
5	EXT15	External data bus	Input/Output
6-7	EXT3-EXT4	External data bus	Input/Output
8	$\mathrm{V}_{\text {ss }}$	Ground	Input
9-13	EXT5-EXT9	External data bus	Input/Output
14	$V_{\text {ss }}$	Ground	Input
15-16	EXT10-EXT11	External data bus	Input/Output
17	INT2	Interrupt	Input
18	INT1	Interrupt	Input
19	Ul1	User input	Input
20	UIO	User input	Input
21	$V_{D D}$	Power Supply	Input
	ER/W	R/W for external bus	Output
23	/RDYE	Data ready	Input
24	/RES	RESET	Input
25-27	EAO-EA2	External address bus	Output
28	$V_{\text {D }}$	Power Supply	Input
29	El	Data strobe for external bus	Output
30	CK	CLOCK	Input
31	HALT	STOP execution	Input
32	INTO	Interrupt	Input
33-34	U00-UO1	User output	Output
35	NC	No Connection	
36	$\mathrm{V}_{\text {ss }}$	Ground	Input
37-39	EXTO-EXT2	External data bus	Input/Output
40	$\mathrm{V}_{\text {ss }}$	Ground	Input

Figure 3. 44-Pin PLCC Pin Assignments (Standard Mode)

PIN DESCRIPTION (Continued)
Table 2. 44-Pin PLCC Pin Identification

No.	Symbol	Function	Direction
1	HALT	STOP execution	Input
2	NC	No Connection	
3	INTO	Interrupt	Input
4-5	U00-UO1	User output	Output
6	NC	No Connection	
7	$V_{\text {ss }}$	Ground	Input
8-10	EXTO-EXT2	External data bus	Input/Output
11	$\mathrm{V}_{\text {ss }}$	Ground	Input
12	NC	No Connection	
13-15	EXT12-EXT14	External data bus	Input/Output
16	$\mathrm{V}_{\text {ss }}$	Ground	Input
17	EXT15	External data bus	Input/Output
18-19	EXT3-EXT4	External data bus	Input/Output
20	$V_{\text {ss }}$	Ground	Input
21-23	EXT5-EXT7	External data bus	Input/Output
24	NC	No Connection	
25-26	EXT8-EXT9	External Data Bus	Input/Output
27	$\mathrm{V}_{\text {ss }}$	Ground	Input
28-29	EXT10-EXT11	External data bus	Input/Output
30	INT2	Interrupt	Input
31	INT1	Interrupt	Input
32	UI1	User input	Input
33	UIO	User input	Input
34	NC	No Connection	
35	$V_{\text {D }}$	Power Supply	Input
36	ER/W	R/W for external bus	Output
37	/RDYE	Data ready	Input
38	/RES	RESET	Input
39-41	EAO-EA2	External address bus	Output
42	$V_{\text {D }}$	Power Supply	Input
43	El	Data strobe for external bus	Output
44	CK	CLOCK	Input

PIN FUNCTIONS

CK Clock (input). External clock.
EXT15-EXTO External Data Bus (input/output). Data bus for user defined outside registers such as an ADC or DAC. The pins are normally in output mode except when the outside registers are specified as source registers in the instructions. All the control signals exist to allow a read or a write through this bus.

ER/W External Bus Direction (output). Data direction signal for EXT-Bus. Data is available from the CPU on EXT15-EXTO when this signal is Low. EXT-Bus is in input mode (high-impedance) when this signal is High.

EA2-EAO External Address(output). User-defined register addressoutput. One of eightuser-defined external registers is selected by the processor with these address pins for read or write operations. Since the addresses are part of the processor memory map, the processor is simply executing internal reads and writes.

EI Enable Input(output). Read/Write timing signal for EXTBus. User defined register or the processor can put data on the EXT-Bus during a Low state. Data is read by the external peripheral on the rising edge of El. Data is read by the processor on the rising edge of CK not EI.

HALT Halt State (input). Stop Execution Control. The CPU continuously executes NOPs and the program counter remains at the same value when this pin is held High. This signal must be synchronized with CK. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

INT2-INTO Three Interrupts (input, active Low). Interrupt request 2-0. Interrupts are generated on the rising edge of the input signal. Interrupt vectors for the interrupt service starting address are stored in the programmemory locations OFFFH for INTO, OFFEH for INT1, and OFFDH for INT2. Priority is : $\operatorname{NT} 2=$ lowest, INTO $=$ highest.
/RES Reset(input, active Low). Asynchronous reset signal. A Low level on this pin generates an internal reset signal. The /RES signal must be kept Low for at least one clock cycle. The CPU fetches a new Program Counter (PC) value from program memory address OFFCH after the reset signal is released.
/RDYE Data Ready (input). User-supplied Data Ready signal for data to and from external data bus. This pin stretches the El and ER/W lines and maintains data on the address bus and data bus. The ready signal is sampled at the rising edge of the clock with appropriate setup and hold times. The normal write cycle will continue from the next rising clock only if ready is active (High state).

Ul1-UIO Two Input Pins (input). General purpose input pins. These input pins are directly tested by the conditional branch instructions. These are asynchronous inputsignals that have no special clock synchronization requirements.

U01-U00 Two Output Pins (output). General purpose output pins. Their value is determined by the status register bits S 5 and S 6 . If a one is loaded into S 5 or S 6 , a Low output appears at the respective pin. If a zero is used, a High output appears.

ADDRESS SPACE

Program Memory. Programs of up to 4 K words can be masked into internal ROM. Four locations are dedicated to the vector address for the three interrupts (OFFDH-OFFFH) and the starting address following a Reset (OFFCH). Internal ROM is mapped from 0000 H to OFFFH, and the highest location for program is 0 FFBH.

Internal Data RAM. The Z89320 has an internal 512×16 bit word data RAM organized as two banks of 256×16-bit words each, referred to as RAMO and RAM1. Each data RAM bank is addressed by three pointers, referred to as Pn:O ($\mathrm{n}=0-2$) for RAM0 and Pn:1 ($\mathrm{n}=0-2$) for RAM1. The RAM addresses for RAM0 and RAM1 are arranged from $0-255$ and $256-511$ respectively. The address pointers, which may be written to or read from, are 8 -bit registers connected to the lower byte of the internal 16-bit D-Bus. and are used to perform no overhead looping. Three
addressing modes are available to access the Data RAM: register indirect, direct addressing, and short form direct. These modes are discussed in detail later. The contents of the RAM can be read or written in one machine cycle per word without disturbing any internal registers or status other than the RAM address pointer used for each RAM. The contents of each RAM can be loaded simultaneously into the X and Y inputs of the multiplier.

Registers. The Z89320 has 12 internal registers and up to an additional eight external registers. The external registers are user definable for peripherals such as A / D or D / A or to DMA or other addressing peripherals. External registers are accessed in one machine cycle the same as internal registers.

FUNCTIONAL DESCRIPTION

General. The Z89320 is a high-performance Digital Signal Processor with a modified Harvard-type architecture with separate program and data memory. The design has been optimized for processing power and minimizing silicon space.

Instruction Timing. Many instructions are executed in one machine cycle. Long immediate instructions and Jump or Call instructions are executed in two machine cycles. When the program memory is referenced in internal RAM indirect mode, it takes three machine cycles. In addition, one more machine cycle is required if the PC is selected as the destination of a data transfer instruction. This only happens in the case of a register indirect branch instruction.
$A n A c c+P \Rightarrow A c c ; a(i)^{*} b(j) \rightarrow P$ calculation and modification of the RAM pointers, is done in one machine cycle. Both operands, $a(i)$ and $b(j)$, can be located in two independent RAM (0 and 1) addresses.

Multiply/Accumulate. The multiplier can perform a 16-bit x 16-bit multiply or multiply accumulate in one machine cycle using the Accumulator and/or both the X and Y inputs. The multiplier produces a 32-bit result, however, only the 24 most significant bits are saved for the next instruction or accumulation. For operations on very small numbers where the least significant bits are important, the data should first be scaled by eight bits (or the multiplier and multiplicand by four bits each) to avoid truncation errors. Note that all inputs to the multiplier should be fractional two's complement 16-bit binary numbers. This puts them in the range [-1 to 0.9999695], and the result is in 24 bits so that the range is [-1 to 0.9999999]. In addition, if 8000 H is loaded into both X and Y registers, the resulting multiplication is considered an illegal operation as an overflow would result. Positive one cannot be represented in fractional notation, and the multiplier will actually yield the result $8000 \mathrm{H} \times 8000 \mathrm{H}=8000 \mathrm{H}(-1 \mathrm{x}-1=-1)$.

ALU. The 24-bit ALU has two input ports, one of which is connected to the output of the 24-bit Accumulator. The other input is connected to the 24-bit P-Bus, the upper 16 bits of which are connected to the 16-bit D-Bus. A shifter between the P-Bus and the ALU input port can shift the data by three bits right, one bit right, one bit left or no shift.

Hardware Stack. A six-level hardware stack is connected to the D-Bus to hold subroutine return addresses or data. The CALL instruction pushes PC+2 onto the stack. The RET instruction pops the contents of the stack to the PC.

User Inputs. The Z89320 has two inputs, UIO and Ul1, which may be used by Jump and Call instructions. The Jump or Call tests one of these pins and if appropriate, jumps to a new location. Otherwise, the instruction behaves like a NOP. These inputs are also connected to the status register bits S10 and S11 which may be read by the appropriate instruction (Figure 4).

User Outputs. The status register bits S5 and S6 are connected to UOO and UO1 pins and may be written to by the appropriate instruction. The status bits are inverted prior to being output to the external pin.

Interrupts. The Z89320 has three positive edge-triggered interrupt inputs. An interrupt is acknowledged at the end of any instruction execution. It takes two machine cycles to enter an interrupt instruction sequence. The PC is pushed onto the stack. A RET instruction transfers the contents of the stack to the PC and decrements the stack pointer by one word. The priority of the interrupts is INTO = highest, INT2 = lowest.

Registers. The $Z 89320$ has 12 physical internal registers and up to eight user-defined external registers. The EA2-EA0 determines the address of the external registers. The/EI, /RDYE, and ER/M signals are used to read or write from the external registers.

REGISTERS

There are 12 internal registers which are defined below:

Register	Register Definition
P	Output of Multiplier, 24-bit
X	X Multiplier Input, 16-bit
Y	Y Multiplier Input, 16-bit
A	Accumulator, 24-bit
SR	Status Register, 16-bit
Pn:b	Six Ram Address Pointers, 8-bit each
PC	Program Counter, 16-bit

The following are virtual registers as physical RAM does not exist on the chip.

Register	Register Definition
EXTn	External registers, 16-bit
BUS	D-Bus
Dn:b	Eight Data Pointers

\mathbf{P} holds the result of multiplications and is read-only.
\mathbf{X} and \mathbf{Y} are two 16-bit input registers for the multiplier. These registers can be utilized as temporary registers when the multiplier is not being used. Since the multiplier provides a flow through process, any data placed in the X or Y register automatically invokes a multiplication.

A is a 24 -bit Accumulator. The output of the ALU is sent to this register. When 16-bit data is transferred into this register, it goes into the 16 MSB's and the least significant eight bits are set to zero. Only the upper 16 bits are transferred to the destination register when the Accumulator is selected as a source register in transfer instructions.

Pn:b are the pointer registers for accessing data RAM, ($n=0,1,2$ refers to the pointer number) ($b=0,1$ refers to RAM Bank0 or 1). They can be directly read from or written to, and can point to locations in data RAM or Program Memory.

EXTn are external registers ($\mathrm{n}=0$ to 7). There are eight 16-bit registers here for mapping external devices into the address space of the processor. Note that the actual register RAM does not exist on the chip, but would exist as part of the external device such as an ADC result latch.
bus is a read-only register which, when accessed, returns the contents of the D-Bus.

Dn:b refer to possible locations in RAM that can be used as a pointer to locations in program memory. The programmer decides which location to choose from two bits in the status register and two bits in the operand. Thus, only the lower 16 possible locations in RAM can be specified. At any one time there are eight usable pointers, four per bank, and the four pointers are in consecutive locations in RAM. For example, if $\mathrm{S} 3 / \mathrm{S} 4=01$ in the status register, then D0:0/D1:0/D2:0/D3:0 refer to locations 4/5/6/7 in RAM Bank 0 . Note that when the data pointers are being written to, a number is actually being loaded to Data RAM, so they can be used as a limited method for writing to RAM.

REGISTERS (Continued)

Figure 4. Status Register

SR is the status register (Figure 4) which contains the ALU status and certain control bits as shown in the following table.

Table 3. Status Register Bit Functions

Status Register Bit	Function
S15 (N)	ALU Negative
S14 (OV)	ALU Overflow
S13 (Z)	ALU Zero
S12 (L)	Carry
S11 (UI1)	User Input 1
S10 (UIO)	User Input 0
S9 (SH3)	MPY Output Shifted by three bits
S8 (OP)	Overflow Protection
S7 (IE)	Interrupt Enable
S6 (UO1)	User Output 1
S5 (UOO)	User Output 0
S4-S3	"Short Form Direct" bits
S2-SO (RPL)	RAM Pointer Loop Size

Table 4. RPL Description

S2	S1	S0	Loop Size
0	0	0	256
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

The status register may always be read in its entirety. S15S10 are set/reset by the hardware and can only be read by software. S9-SO can be written by software.

S15-S12 are set/reset by the ALU after an operation. S11S10 are set/reset by the user inputs. S6-S0 are control bits described elsewhere. S7 enables interrupts. S8, if O (reset), allows the hardware to overflow. If S 8 is set, the hardware clamps at maximum positive or negative values instead of overflowing.

If S9 is set and the MPYA or MPYS instruction is used, then the shifter to the ALU shifts the result three bits right.

PC is the Program Counter. When this register is assigned as a destination register, one NOP machine cycle is added automatically to adjust the pipeline timing.

RAM ADDRESSING

The address of the RAM is specified in one of three ways (Figure 5):

Figure 5. RAM, ROM, and Pointer Architecture

Register Indirect

Pn:b $n=0-2, b=0-1$

The most commonly used method is a register indirect addressing method, where the RAM address is specified by one of the three RAM address pointers (n) for each bank (b). Each source/destination field in Figures 6 and 9 may be used by an indirect instruction to specify a register pointer and its modification after execution of the instruction.

Figure 6. Indirect Register

RAM ADDRESSING (Continued)

The register pointer is specified by the first and second bits in the source/destination field and the modification is specified by the third and fourth bits according to the following table:

D3-DO	Meaning	
OOxx	NOP	No Operation
01xx	+1	Simple Increment
10xx	$-1 /$ LOOP	Decrement Modulo the Loop Count
11xx	$+1 /$ LOOP	Increment Modulo the Loop Count
$\times \times 00$	PO:0 or PO:1	See Note a.
xx01	P1:0 or P1:1	See Note a.
xx10	P2:0 or P2:1	See Note a.
xx11		See Short Form Direct

Notes:

a. If bit 8 is zero, P0:0 to P2:0 are selected; if bit 8 is one, P0:1 to P2:1 are selected.

When LOOP mode is selected, the pointer to which the loop is referring will cycle up or down, depending on whether a-LOOP or +LOOP is specified. The size of the loop is obtained from the least significant three bits of the Status Register. The increment or decrement of the register is accomplished modulo the loop size. As an example, if the loop size is specified as 32 by entering the value 101 into bits 2-0 of the Status Register (S2-SO) and an increment +LOOP is specified in the address field of the instruction, i.e., the RPi field is 11 xx , then the register specified by RPi will increment, but only the least significant five bits will be affected. This means the actual value of the pointer will cycle round in a length 32 loop, and the lowest or highest value of the loop, depending on whether the loop is up or down, is set by the three most significant bits. This allows repeated access to a set of data in RAM without software intervention. To clarify, if the pointer value is 10101001 and if the loop $=32$, the pointer increments up to 10111111, then drops down to 10100000 and starts again. The upper three bits remaining unchanged. Note that the original value of the pointer is not retained.

Direct Register

The second method is a direct addressing method. The address of the RAM is directly specified by the address field of the instruction. Because this addressing method consumes nine bits ($0-511$) of the instruction field, some instructions cannot use this mode (Figure 7).

Figures 9 to 14 show the different register instruction formats along with the two tables below Figure 9.

Figure 7. Direct Internal RAM Address Format

Short Form Direct

Dn:b $n=0-3, b=0-1$
The last method is called Short Form Direct Addressing, where one out of 32 addresses in internal RAM can be specified. The 32 addresses are the 16 lower addresses in RAM Bank 0 and the 16 lower addresses in RAM Bank 1. Bit 8 of the instruction field determines RAM Bank 0 or 1. The 16 addresses are determined by a 4 -bitcode comprised of bits S3 and S4 of the status register and the third and fourth bits of the Source/Destination field. Because this mode can specify a direct address in a short form, all of the instructions using the register indirect mode can use this mode (Figure 8). This method can access only the lower 16 addresses in the both RAM banks and as such has limited
use. The main purpose is to specify a data register, located in the RAM bank, which can then be used to point to a program memory location. This facilitates down-loading look-up tables etc. from program memory to RAM.

Figure 8. Short Form Direct Address

INSTRUCTION FORMAT

Note: Source/Destination fields can specify either register or RAM address in RAM pointer indirect mode.

Figure 9. General Instruction Format

Table 5. Registers

Source/Destination	Register
0000	BUS** $^{* *}$
0001	X
0010	Y
0011	A
0100	SR
0101	STACK
0110	PC
0111	$\mathrm{P}^{* *}$
1000	EXT0
1001	EXT1
1010	EXT2
1011	EXT3
1100	EXT4
1101	EXT5
1110	EXT6
1111	EXT7

Table 6. Register Pointers Field

Source/Destination	Meaning
00xx	NOP
01xx	+1
10xx	-1/LOOP
11xx	+1/LOOP
xx00	P0:0 or PO:1*
xx01	P1:0 or P1:1*
xx10	P2:0 or P2:1*
xx11	Short Form Direct Mode***

Notes:

* If RAM Bank bit is 0 , then $\mathrm{Pn}: 0$ are selected.

If RAM Bank bit is 1 , then $\mathrm{Pn}: 1$ are selected.
** Read only.
*** When the short form direct mode is selected, 00000-01111 or 10000-11111 are used as RAM addresses.

Figure 10. Short Immediate Data Load Format

INSTRUCTION FORMAT (Continued)

Figure 11. Immediate Data Load Format

Figure 12. Accumulator Modification Format

Figure 13. Branching Format

Figure 14. Flag Modification Format

ADDRESSING MODES

This section discusses the syntax of the addressing modes supported by the DSP assembler. The symbolic name is
used in the discussion of instruction syntax in the instruction descriptions.

Table 7. Addressing Modes

Symbolic Name	Syntax	Description
<pregs>	Pn:b	Pointer Register
<dregs> (Points to RAM)	Dn:b	Data Register
<hwregs>	$\begin{aligned} & \text { X,Y,PC,SR,P } \\ & \text { EXTn,A,BUS } \end{aligned}$	Hardware Registers
<accind> (Points to Program Memory)	@A	Accumulator Memory Indirect
<direct>	<expression>	Direct Address Expression
<limm>	\#<const exp>	Long (16-bit) Immediate Value
<simm>	\#<const exp>	Short (8-bit) Immediate Value
<regind> (Points to RAM)	@Pn:b @Pn:b+ @Pn:b-LOOP @Pn:b+LOOP	Pointer Register Indirect Pointer Register Indirect with Increment Pointer Register Indirect with Loop Decrement Pointer register Indirect with Loop Increment
<memind> (Points to Program Memory)	@ @Pn:b © Dn:b @ @Pn:b-LOOP @ @Pn:b+LOOP @ @Pn:b+	Pointer Register Memory Indirect Data Register Memory Indirect Pointer Register Memory Indirect with Loop Decrement Pointer Register Memory Indirect with Loop Increment Pointer Register Memory Indirect with Increment

There are eight distinct addressing modes for transfer of data (Figure 5 and Table 7).
<pregs>, <hwregs>. These two modes are used for simple loads to and from registers within the chip such as loading to the Accumulator, or loading from a pointer register. The names of the registers need only be specified in the operand field. (Destination first then source.)
<regind>. This mode is used for indirect accesses to the data RAM. The address of the RAM location is stored in the
pointer. The "@" symbol indicates "indirect" and precedes the pointer, so @P1:1 tells the processor to read or write to a location in RAM1, which is specified by the value in the pointer.
<dregs>. This mode is also used for accesses to the data RAM but only the lower 16 addresses in either bank. The 4 -bit address comes from the status register and the operand field of the data pointer. Note that data registers are typically used not for addressing RAM, but loading data from program memory space.
<memind>. This mode is used for indirect, indirect accesses tothe programmemory. The addressof thememory is located in a RAM location, which is specified by the value in a pointer. So @@P1:1 tells the processor to read (write is not possible) from a location in memory, which is specified by a value in RAM, and the location of the RAM is in turn specified by the value in the pointer. Note that the data pointer can also be used for a memory access in this manner, but only one "@" precedes the pointer. In both cases the memory address stored in RAM is incremented by one each time the addressing mode is used to allow easy transfer of sequential data from program memory.
<accind>. Similar to the previous mode, the address for the program memory read is stored in the Accumulator. @A in the second operand field loads the number in memory specified by the address in A .
<direct>. The direct mode allows read or write to data RAM from the Accumulator by specifying the absolute address of the RAM in the operand of the instruction. A number between 0 and 255 indicates a location in RAMO, and a number between 256 and 511 indicates a location in RAM1.
<limm>. This indicates a long immediate load. A 16-bit word can be copied directly from the operand into the specified register or memory.
<simm>. This can only be used for immediate transfer of 8 -bit data in the operand to the specified RAM pointer.

CONDITION CODES

The following defines the condition codes supported by the DSP assembler. If the instruction description refers to the
<cc> (condition code) symbol in one of its addressing modes, the instruction will only execute if the condition is true.

Table 8. Condition Codes

Name	Description	Name	Description
C	Carry	NU1	Not User One
EQ	Equal (same as Z)	NZ	Not zero
F	False	OV	Overflow
IE	Interrupts Enabled	PL	Plus (Positive)
MI	Minus	UO	User Zero
NC	No Carry	U1	User One
NE	Not Equal (same as NZ)	UGE	Unsigned Greater Than or
NIE	Not Interrupts Enabled		Equal (Same as NC)
NOV	Not Overflow	ULT	Unsigned Less Than (Same as C)
NUO	Not User Zero	Z	Zero

INSTRUCTION DESCRIPTIONS

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
ABS	Absolute Value	ABS[<cc>,]<S「C>	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ABS NC,A ABS A
$\overline{\text { ADD }}$	Addition	ADD<dest>,<sic>	A,<pregs> A,<dregs> A, <limm> A,<memind> A,<direct A,<regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ADD A,PO:O ADD A, DO: 0 ADD A,\#\%1234 ADD A,@@PO:0 ADD A,\%F2 ADD A,@P1:1 ADD A, X
AND	Bitwise AND	AND<dest>, <sic>	A,<pregs> A,<dregs> A, <limm> A,<memind> A,<direct A,<regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AND A,P2:0 AND A,DO:1 AND A.\#\%1234 AND A,@@P1:0 AND A,\%2C AND A,@P1:2+LOOP AND A, EXT3
CALL	Subroutine call	CALL [<cc>, kaddress>	<Cc>,<direct> <direct>	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \text { CALL Z,sub2 } \\ & \text { CALL sub1 } \end{aligned}$
CCF	Clear carry flag	CCF	None	1	1	CCF
CIEF	Clear Carry Flag	CIEF	None	1	1	CIEF
COPF	Clear OP flag	COPF	None	1	1	COPF
$\overline{C P}$	Comparison	CP<SrCl>, <SCC2>	A,<pregs> A,<dregs> A,<memind> A,<direct> A,<regind> A, <hwregs> A<limm>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	CP A, PO:O CP A, D3:1 CP A,@@P0:1 CPA,\%FF CP A,@P2:1+ CPA,STACK CP A,\#\%FFCF
$\overline{\text { DEC }}$	Decrement	DEC [<CC>, $<$ dest>	$\begin{aligned} & \langle C C>A, \\ & A \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { DEC NZ,A } \\ & \text { DEC A } \end{aligned}$
INC	Increment	INC [<cc>] $]$ dest>	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	INC PL,A INC A
JP	Jump	JP [<CC>, kaddress>	<CC>,<direct> <direct>	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	JP NIE,Label JP Label

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
LD	Load destination with source	LD<dest, <src>	A, <hwregs>	1	1	LD A, ${ }^{\text {d }}$
			A,<dregs>	1	1	LD A,DO:O
			A,<pregs>	,	1	LD A,PO:1
			A,<regind>	1	1	LD A,@P1:1
			A, <memind>	1	,	LD A,@DO:0
			A,<directs	1	1	LD A, 124
			<direct>, A	1	1	LD 124,A
			<dregs>,<hwregs>	1	1	LD DO:0,EXT7
			<pregs>,<simm>	1	1	LD P1:1,\#\%FA
			<pregs>,<hwregs>	1	1	LD P1:1,EXT1
			<regind>,<limm>	1	,	LD@P1:1,\#1234
			<regind>, <hwregs>	1	1	LD @P1:1+,X
			<hwregs>,<pregs>	1	1	LD Y,PO:0
			<hwregs>,<dregs>	1	1	LD SR,DO:0
			<hwregs>,<limm>	2	2	LD PC;\#\%1234
			<hwregs>,<accind>	1	3	LD X,@A
			<hwregs>,<memind>	1	3	LD Y,@DO:O
			<hwregs>,<regind>	1	1	LD A,@PO:O-LOOP
			<hwregs>, <hwregs>	1	1	LD X,EXT6

Note: When <dest is <hwregs>, <dest> cannot be P.
Note: When <dest> is <hwregs> and <sic> is <hwregs>, <dest>cannot be EXTn if <src> is EXTn, <dest cannot be X if <src> is X, <dest cannot be SR if $\langle\mathrm{src}\rangle$ is SR.
Note: When <src> is <accind> <dest> cannot be A.

MLD	Multiply	MLD<srcl>, <srcl>[_<bank switch>]	<hwregs>,<regind>	1	1	MLD A,@PO:O+LOOP
			<hwregs>,<regind>,<bank switch>	1	1	MLD A,@P1:0,0FF
			<regind>,<regind>	1	1	MLD @P1:1,@P2:0
			<regind>,<regind>,<bank switch>		1	MLD @PO:1,@P1:0,0N

Note: If scc1 is <regind> it must be a bank 1 register. Src2's <regind must be a bank 0 register.
Note: <hwregs> for src1 cannot be X.
Note: Forthe operands <hwregs>,<regind> the <band switch> defaultsto OFF. For the operands <regind>, the <bank switch> defaults to ON .
MPYA Multiply and add MPYA <srcl>,<src2>>,<bank switch>]

<hwregs>,<regind>	1	1	MPYA A,@P0:0
<hwregs>,<regind>>bank switch>	1	1	MPYA A,@P1:0,0FF
<regind>,<regind>	1	1	MPYA @P1:1,@P2:0
<regind>,<regind>,<bank switch>	1	1	MPYA@P0:1,@P1:0,0N

Note: If scc1 is <regind> it must be a bank 1 register. Src2's <regind> must be a bank 0 register.
Note: <hwregs> for src 1 cannot be X.
Note: For the operands <hwregs>, <regind> the <bank switch> defaults to OFF. For the operands <regind>, the <bank switch> defaults to ON .

INSTRUCTION DESCRIPTIONS (Continued)

Inst.	Description	Synopsis	Operands W	Words Cycles	Examples
MPYS	Multiply and subtract	MPYS<src1>><src2>[,<bank switch>]	<hwregs>,<regind>	11	MPYS A,@P0:0
			<hwregs>,<regind>,<bank switch>	> 1	MPYS A,@P1:0,0FF
			<regind>, <regind>	11	MPYS @P1:1,@P2:0
			<regind>,<regind>,<bank switch>	> 1	MPYS@P0:1,@P1:0,0N

Note: If src1 is <regind> it must be a bank 1 register. Src2's <regind> must be a bank 0 register.
Note: <hwregs> for src1 cannot be X.
Note: For the operands <hwregs>, <regind> the <bank switch> defaults to OFF. For the operands <regind>, <regind> the <bank switch> defaults to ON .

NEG	Negate	NEG <CC>, A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	1	NEG MI,A NEG A
NOP	No operation	NOP	None	1	1	NOP
OR	Bitwise OR	OR <dest>,<src>	A, <pregs> A, <dregs> A, <limm> A_{1} <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 1 2 3 1 1 1	OR A,PO:1 OR A, D0:1 OR A,\#\%2C21 OR A,@@P2:1+ OR A, \%2C OR A, ©P1:0-L00P OR A,EXT6
POP	Pop value from stack	POP <dest>	<pregs> <dregs> <regind> <hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 1 1 1	$\begin{aligned} & \hline \text { POP PO:0 } \\ & \text { POP DO:1 } \\ & \text { POP @PO:0 } \\ & \text { POP A } \end{aligned}$
PUSH	Push value onto stack	PUSH <src>	<pregs> <dregs> <regind> <hwregs> <limm> <accind> <memind>	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	1 1 1 1 2 3 3	PUSH PO:O PUSH D0:1 PUSH @PO:0 PUSH BUS PUSH \#12345 PUSH ©A PUSH @@PO:0
RET	Return from subroutine	RET	None	1	2	RET
$\overline{\text { RL }}$	Rotate Left	RL <CC>, A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	1	$\overline{\text { RLNZ,A }}$ RLA
RR	Rotate Right	RR <CC>, A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & \text { RR C,A } \\ & \text { RR A } \end{aligned}$

Inst.	Description	Synopsis	Operands	Words	ycles	Examples
SCF	Set C flag	SCF	None	1	1	SCF
SIEF	Set IE flag	SIEF	None	1	1	SIEF
SLL	Shift left logical	SLL	$\begin{aligned} & {[<C C>] A} \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	SLL NZ,A SLL A
SOPF	Set OP flag	SOPF	None	1	1	SOPF
SRA	Shift right arithmetic	SRA<CC>,A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	SRA NZ,A SRA A
SUB	Subtract	SUB<dest>, <sIC>	A,<pregs> A,<dregs> A,<limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	SUB A,P1:1 SUB A, DO:1 SUB A.\#\%2C2C SUB A,@DO:1 SUB A,\%15 SUB A,@P2:0-LOOP SUB A,STACK
XOR	Bitwise exclusive OR	XOR <dest>, <SIC>	A, <pregs> A, <dregs> A, <limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	XOR A,P2:O XOR A, DO:1 XOR A,\#13933 XOR A,@@P2:1+ XOR A,\%2F XOR A,@P2:0 XOR A,BUS

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this two keywords are used (ON and OFF) which
state the direction of the switch. These keywords are referred to in the instruction descriptions through the <bank switch> symbol.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min.	Max.	Units
$V_{\text {CC }}$	Supply Voltage (*)	-0.3	+7.0	V
$T_{\text {STG }}$	Storage Temp	-65°	$+150^{\circ}$	C
T_{A}	Oper Ambient Temp		\dagger	C

Notes:

* Voltage on all pins with respect to GND.
\dagger See Ordering Information.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Figure 15).

Figure 15. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Condition	Min.	Max.	Units
I_{DD}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V} \\ & \text { fclock }=10 \mathrm{MHz} \end{aligned}$		60	mA
I_{DC}	DC Power Consumption	$\mathrm{V}_{\text {D }}=5.25 \mathrm{~V}$	1	5	mA
$\mathrm{V}_{\text {IH }}$	Input High Level		0.9 V D		V
$V_{\text {IL }}$	Input Low Level			$0.1 \mathrm{~V}_{\text {D }}$	V
IL	Input Leakage			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OH }}$	Output High Voltage	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {D }}-0.2$		V
$\mathrm{V}_{\text {or }}$	Output Low Voltage	$\mathrm{I}_{\mathrm{oL}}=0.5 \mathrm{~mA}$		0.5	V
$\mathrm{IfL}_{\text {fl }}$	Output Floating Leakage Current			5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units
TCY	Clock Cycle Time	100	1000	ns
PWW	Clock Pulse Width	45		ns
Tr	Clock Rise Time	2	4	ns
Tf	Clock Fall Time	2	4	ns
TEAD	EA,ER/W Delay from CK	15	25	ns
TXVD	EXT Data Output Valid from CK	5	25	ns
TXWH	EXT Data Output Hold from CK	15		ns
TXRS	EXT Data Input Setup Time	15		ns
TXRH	EXT Data Input Hold from CK	0	15	ns
TIED	lEI Delay Time from CK	0	5	ns
RDYS	Ready Setup Time	10		ns
RDYH	Ready Hold Time	0		ns

AC TIMING DIAGRAM

Figure 16. Write To External Device Timing

AC TIMING DIAGRAM (Continued)

Figure 17. Read From External Device Timing

PACKAGE INFORMATION

SYMBCL	MILLIMETER		INCH	
	MIN	max	MIN	MAX
Al	0.51	0.81	. 020	. 032
A2	3.25	3.43	. 128	. 135
B	0.38	0.53	. 015	. 021
Bl	1.02	1.52	. 040	. 060
C	$0: 23$	0.38	. 009	. 015
D	52.07	52.58	2.050	2.070
E	15.24	15.75	. 600	. 620
El	13.59	14.22	. 535	. 560
-	2.5	TYP		TYP
eA	15.49	16.51	. 610	. 650
L	3.18	3.81	. 125	. 150
- al	1.52	1.91	. 060	. 075
S	1.52	2.29	. 060	. 090

cantrolling dimensidns I inch

40-Lead DIP Package Diagram

PACKAGE INFORMATION (Continued)

IRP VIEK

DIM. FROM CENTER
TI CENTER OF RADII
NOTES:

1. CDNTROLLING DIMENSIONS : INCH 2. LEADS ARE CIPLANAR WITHIN .004 IN. 3. DIMENSIDN , $\frac{\text { MM }}{\text { INCH }}$

SYMBLL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A	4.27	4.57	.168	.180
A1	2.67	2.92	.105	.115
D/E	17.40	17.65	.685	.695
DI/E1	16.51	16.66	.650	.656
D2	15.24	16.00	.600	.630
	1.27 TYP		.050 TYP	

44-Pin PLCC Package Diagram

ORDERING INFORMATION

Z89320

10 MHz
40-pin DIP
Z8932010PSC

10 MHz
44-pin PLCC
Z8932010VSC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

P = Plastic DIP
$V=$ Plastic Chip Carrier

Temperature

$\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Speed
$10=10 \mathrm{MHz}$

Environmental

C = Plastic Standard

Example:

	is a $\mathrm{Z} 89320,10 \mathrm{MHz}, \mathrm{DIP}, 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Plastic Standard Flow Environmental Flow Temperature Package Speed Product Number Zilog Prefix

Z89320 16-Bit Mixed Signal Processor

Z89321 16-Bit Mixed Signal Processor

Literature Guide and
Third Party Support

$Z 89321$
 16-BIT DIGITAL
 SIGNAL PROCESSOR

FEATURES

- 16-Bit Single Cycle Instructions
- Zero Overhead Hardware Looping
- 16-Bit Data
- Ready Control for Slow Peripherals
- Single Cycle Multiply/Accumulate (100 ns)
- Six-Level Stack
- 512 Words of On-Chip RAM
- Programmable Timer
- 16-Bit I/O Port
- 4K Words of On-Chip Masked ROM
- Three Vectored Interrupts
- Two Conditional Branch Inputs/Two User Outputs
- 24-Bit ALU, Accumulator and Shifter
- IBM ${ }^{\circledR}$ PC Development Tools
- Cost Effective 44-Pin PLCC Package
- CODEC Interface

GENERAL DESCRIPTION

The Z89321 is a second generation, 16-bit, fractional, two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate, are accomplished in a single clock cycle. The processor contains 1 Kbyte of on-chip data RAM (two blocks of 256 16 -bit words), 4 K words of program ROM. Also, the processor features a 24 -bit ALU, a 16×16 multiplier, a 24-bit Accumulator and a shifter. Additionally, the processor contains a six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of three pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multiplier for a true single cycle multiply.

The device includes a 16 -bit I/O bus for transferring data or for mapping peripherals into the processor address space. Additionally, there are two general purpose user
inputs and two user outputs. Operation with slow peripherals is accomplished with a ready input pin.

Development tools for the IBM PC include a relocatable assembler, a linker loader, and an ANSI-C compiler. Also, the development tools include a simulator/debugger, a cross assembler for the TMS320 family assembly code and a hardware emulator.

Notes:

All Signals with a preceding front slash, " $"$ ", are active Low, e.g., B / W (WORD is active Low); /BN (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V_{cc}	V_{DD}
Ground	GND	V_{ss}

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 44-Pin PLCC Pin Assignments

PIN DESCRIPTION (Continued)
Table 1. 44-Pin PLCC Pin Identification

No.	Symbol	Function	Direction
1	HALT	Stop execution	Input
2	$\mathrm{D}_{\text {out }}$	Data Out	Output
3	/INTO	Interrupt	Input
4-5	U00-UO1	User output	Output
6	$\mathrm{D}_{\text {IN }}$	Data In	Input
7	DCLK	CODEC Lock	Output
8-10	EXTO-EXT2	External data bus	Input/Output
11	$\mathrm{V}_{\text {S }}$	Ground	Input
12	DENA1	Enable 1	Output
13-15	EXT12-EXT14	External data bus	Input/Output
16	$\mathrm{V}_{\text {ss }}$	Ground	Input
17	EXT15	External data bus	Input/Output
18-19	EXT3-EXT4	External data bus	Input/Output
20	$\mathrm{V}_{\text {ss }}$	Ground	Input
21-23	EXT5-EXT7	External data bus	Input/Output
24	DENAO	Enable 0	Output
25-26	EXT8-EXT9	External Data Bus	Input/Output
27	V_{ss}	Ground	Input
28-29	EXT10-EXT11	External data bus	Input/Output
30	/INT2	Interrupt	Input
31	/INT1	Interrupt	Input
32	Ul1	User input	Input
33	UIO	User input	Input
34	T0	Timer Output	Output
35	$V_{D D}$	Power Supply	Input
36	ER/W	R/W for external bus	Output
37	/RDYE	Data ready	Input
38	/RES	Reset	Input
39-41	EAO-EA2	External address bus	Output
42	$V_{\text {D }}$	Power Supply	Input
43	/EI	Data strobe for external bus	Output
44	CK	Clock	Input

CODEC INTERFACE CONTROLLER

External DSP registers EXT5 and EXT6 are used by External Codec Interface. The accessibility of these devices is driven by the Codec/Timer Control register (EXT7).

Two different Codecs can be addressed by the Codec/ Timer Control register (EXT7). The data can be loaded to Codec 0 or Codec 1 by writing to EXT5 or EXT6 correspondingly. In order to receive the data from the Codecs the DSP should read EXT5 and EXT6.

1. Codec Data Registers - EXT5 and EXT6

The DSP writes data to Codecs using the lower eight bits of the EXT5 and EXT6 registers. The eight remaining upper bits of EXT5 and EXT6 are reserved, as shown in Table 2.

2. Codec/Timer Control Register

The DSP can define the status of the Codecs and the frequency of the Timer output by writing data to a Codec/ Timer Control Register (Table 3).

Table 2. Codec Data Registers - EXT5 and EXT6

Field	Position	Attrib.	Value	Label
Reserved	fedcba988--------	R		Return 'O'
		W		No effect
		R	\%NN	Data from Codec
			W	\%NN

Table 3. Codec/Timer Control Register

Field	Position	Attrib.	Value	Label
Reserved	fedcba9876-----	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Return '0' No effect
Codec_enable	----------54----	R/W	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	Disabled CO enable Reserved Enabled
Div_5/6	-3---	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Divided-by-6 Divided-by-5
Sampling	---2--	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Normal Slow
Timer_rate	---------10	R/W	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	Divided-by-2 Divided-by-4 Divided-by-8 Divided-by-16

Codec_enable. This field enables the Codecs. The options are disable both Codecs, enable both Codecs, or enable Codec0 only. Codec 1 can not be enabled alone.

Div5/6. This bit defines the speed of codecs. If the bit is set to a ' 1 ' the Codec clock frequency is set to 2.048 MHz and the sampling rate equals to 8 KHz . If the bit is reset to ' 0 ' the codec clock frequency is equal to 1.7066 MHz , while the sampling rate is setto 6.66 KHz . Upon a POR the bit is reset to ' 0 '.

Sampling. This field defines the sampling rate of the Codecs. The sampling rate can be selected from 8 KHz (' 0 ') and 6.66 (' 1 '). The clockfrequency of the Codecs is not controlled by this field. Upon POR the bit is set to a ' 0 '.

Timer-rate. This field defines the frequency of the embedded Timer. Upon POR the field is reset to a ' 00 '.

CODEC INTERFACE CONTROLLER (Continued)

3. The Codec Interface Timings

Codec interface provides the customer with all necessary signals to connect two independent Codec chips. The supported effective data rate for each Codec is $8 / 6.66$ Kbytes/sec. The Clock frequency is fixed to 2.048/1.7066 MHz . Figure 4 timing diagrams describe the functionality of Codec interface.

Figure 3 shows the connection of Z89321 to popular TI (TCM29C18) and Motorola's (MC145503) codecs. No additional components are necessary.

TCM29C18

Figure 3. Connection of TCM29C18 and MC145503 To Z89321

Figure. 4 CODEC Interface Tming Diagram

* Data Valid is an internal signal generated by the CODEC interface. When the CODEC is enabled, this signal is applied to interrupt 0 and user input 0 . In this way, the DSP
can determine when data is valid either by an interrupt on INTO or by polling UIO. Under these conditions, INTO and UIO are disabled.

PIN FUNCTIONS

CK Clock (input). External clock.
EXT15-EXTO External Data Bus (input/output). Data bus for user defined outside registers such as an ADC or DAC. The pins are normally in output mode except when the outside registers are specified as source registers in the instructions. All the control signals exist to allow a read or a write through this bus.

ER/W External Bus Direction (output). Data direction signal for EXT-Bus. Data is available from the CPU on EXT15-EXTO when this signal is Low. EXT-Bus is in input mode (high-impedance) when this signal is High.

EA2-EAO ExternalAddress(output). User-defined register address output. One of eightuser-defined external registers is selected by the processor with these address pins for read or write operations. Since the addresses are part of the processor memory map, the processor is simply executing internal reads and writes.
/EI Enable Input(output). Read/Write timing signal for EXTBus. User defined register or the processor can put data on the EXT-Bus during a Low state. Data is read by the external peripheral on the rising edge of /EI. Data is read by the processor on the rising edge of CK not/EI.

HALT Halt State (input). Stop Execution Control. The CPU continuously executes NOPs and the program counter remains at the same value when this pin is held High. This signal must be synchronized with CK. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.
/INT2-/INTO Three Interrupts (input, active Low). Interrupt request $2-0$. Interrupts are generated on the rising edge of the input signal. Interrupt vectors for the interrupt service starting address are stored in the programmemory locations OFFFH for /INTO, OFFEH for /INT1, and OFFDH for /INT2. Priority is: $\operatorname{INT} 2=$ lowest, $\operatorname{INT0}=$ highest .
/RES Reset(input, active Low). Asynchronous reset signal. A Low level on this pin generates an internal reset signal. The /RES signal must be kept Low for at least one clock cycle. The CPU pushes the contents of the PC onto the stack and then fetches a new Program Counter (PC) value from program memory address OFFCH after the reset signal is released.
/RDYE Data Ready (input). User-supplied Data Ready signal for data to and from external data bus. This pin stretches the /El and ER/W lines and maintains data on the address bus and data bus. The ready signal is sampled from the rising edge of the clock with appropriate setup and hold times. The normal write cycle will continue from the next rising clock only if ready is active.

Ul1-UIO Two Input Pins (input). General purpose input pins. These input pins are directly tested by the conditional branch instructions. These are asynchronous inputsignals that have no special clock synchronization requirements.

U01-UOO Two Output Pins (output). General purpose output pins. These pins reflect the value of two bits in the status register S5 and S6. These bits have no special significance and may be used to output data by writing to the status register.

ADDRESS SPACE

Program Memory. Programs of up to 4 K words can be masked into internal ROM. Four locations are dedicated to the vector address for the three interrupts (OFFDH-OFFFH) and the starting address following a Reset (OFFCH). Internal ROM is mapped from 0000 H to OFFFH, and the highest location for program is 0 FFBH.

Internal Data RAM. The Z89321 has an internal $512 \times$ 16-bit word data RAM organized as two banks of $256 \times$ 16 -bit words each, referred to as RAMO and RAM1. Each data RAM bank is addressed by three pointers, referred to as Pn:O ($\mathrm{n}=0-2$) for RAMO and Pn:1 ($\mathrm{n}=0-2$) for RAM1. The RAM addresses for RAMO and RAM1 are arranged from $0-255$ and $256-511$ respectively. The address pointers, which may be written to or read from, are 8-bit registers connected to the lower byte of the internal 16 -bit D-Bus
and are used to perform no overhead looping. Three addressing modes are available to access the Data RAM: register indirect, direct addressing, and short form direct. These modes are discussed in detail later. The contents of the RAM can be read or written in one machine cycle per word without disturbing any internal registers or status other than the RAM address pointer used for each RAM. The contents of each RAM can be loaded simultaneously into the X and Y inputs of the multiplier.

Registers. The Z89321 has 12 internal registers and up to an additional eight external registers. The external registers are user definable for peripherals such as A/D or D/A or to DMA or other addressing peripherals. External registers are accessed in one machine cycle the same as internal registers.

FUNCTIONAL DESCRIPTION

General. The Z89321 is a high-performance Digital Signal Processor with a modified Harvard-type architecture with separate program and data memory. The design has been optimized for processing power and minimizing silicon space.

Instruction Timing. Many instructions are executed in one machine cycle. Long immediate instructions and Jump or Call instructions are executed in two machine cycles. When the program memory is referenced in internal RAM indirect mode, it takes three machine cycles. In addition, one more machine cycle is required if the PC is selected as the destination of a data transfer instruction. This only happens in the case of a register indirect branch instruction.

An Acc + P => Acc; $a(i)$ * $b(j) \rightarrow P$ calculation and modification of the RAM pointers, is done in one machine cycle. Both operands, $\mathrm{a}(\mathrm{i})$ and $\mathrm{b}(\mathrm{j})$, can be located in two independent RAM (0 and 1) addresses.

Multiply/Accumulate. The multiplier can perform a 16 -bit $x 16$-bit multiply or multiply accumulate in one machine cycle using the Accumulator and/or both the X and Y inputs. The multiplier produces a 32-bit result, however, only the 24 most significant bits are saved for the next instruction or accumulation. For operations on very small numbers where the least significant bits are important, the data should first be scaled by eight bits (or the multiplier and multiplicand by four bits each) to avoid truncation errors. Note that all inputs to the multiplier should be fractional two's complement 16 -bit binary numbers. This puts them in the range [-1 to 0.9999695], and the result is in 24 bits so that the range is [-1 to 0.9999999]. In addition, if 8000 H is loaded into both X and Y registers, the resulting multiplication is considered an illegal operation as an overflow would result. Positive one cannot be represented in fractional notation, and the multiplier will actually yield the result $8000 \mathrm{H} \times 8000 \mathrm{H}=8000 \mathrm{H}(-1 \times-1=-1)$.

ALU. The 24-bit ALU has two input ports, one of which is connected to the output of the 24 -bit Accumulator. The other input is connected to the 24 -bit P-Bus, the upper 16 bits of which are connected to the 16-bit D-Bus. A shifter between the P-Bus and the ALU input port can shift the data by three bits right, one bit right, one bit left or no shift.

Hardware Stack. A six-level hardware stack is connected to the D-Bus to hold subroutine return addresses or data. The Call instruction pushes PC +2 onto the stack. The RET instruction pops the contents of the stack to the PC.

User Inputs. The Z89321 has two inputs, UIO and UI1, which may be used by Jump and Call instructions. The Jump or Call tests one of these pins and if appropriate, jumps to a new location. Otherwise, the instruction behaves like a NOP. These inputs are also connected to the status register bits S10 and S11 which may be read by the appropriate instruction (Figure 5).

User Outputs. The status register bits S5 and S6 connect directly to UOO and UO1 pins and may be written to by the appropriate instruction.

Interrupts. The Z89321 has three positive edge-triggered interrupt inputs. An interrupt is acknowledged at the end of any instruction execution. It takes two machine cycles to enter an interrupt instruction sequence. The PC is pushed onto the stack. A RET instruction transfers the contents of the stack to the PC and decrements the stack pointer by one word. The priority of the interrupts is INTO = highest, INT2 = lowest.

Registers. The Z89321 has 12 physical internal registers and up to eight user-defined external registers. The EA2-EAO determines the address of the external registers. The/EI, /RDYE, and ER/W signals are used to read or write from the external registers.

REGISTERS

There are 12 internal registers which are defined below:

Register	Register Definition
P	Output of Multiplier, 24-bit
X	X Multiplier Input, 16-bit
Y	Y Multiplier Input, 16-bit
A	Accumulator, 24-bit
SR	Status Register, 16-bit
Pn:b	Six Ram Address Pointers, 8-bit each
PC	Program Counter, 16-bit

The following are virtual registers as physical RAM does not exist on the chip.

Register	Register Definition
EXTn	External Registers, 16-bit
BUS	D-Bus
Dn:b	Eight Data Pointers

\mathbf{P} holds the result of multiplications and is read-only.
\mathbf{X} and \mathbf{Y} are two 16-bit input registers for the multiplier. These registers can be utilized as temporary registers when the multiplier is not being used.

A is a 24 -bit Accumulator. The output of the ALU is sent to this register. When 16 -bit data is transferred into this register, it goes into the 16 MSB's and the least significant eight bits are set to zero. Only the upper 16 bits are transferred to the destination register when the Accumulator is selected as a source register in transfer instructions.

Pn:b are the pointer registers for accessing data RAM, ($n=0,1,2$ refer to the pointer number) $(b=0,1$ refers to RAM Bank0 or 1). They can be directly read from or written to, and can point to locations in data RAM or Program Memory.

EXTn are external registers ($\mathrm{n}=0$ to 7). There are eight 16-bit registers here for mapping external devices into the address space of the processor. Note that the actual register RAM does not exist on the chip, but would exist as part of the external device such as an ADC result latch.

BUS is a read-only register which, when accessed, returns the contents of the D-Bus.

Dn:b refer to possible locations in RAM that can be used as a pointer to locations in program memory. The programmer decides which location to choose from two bits in the status register and two bits in the operand. Thus, only the lower 16 possible locations in RAM can be specified. At any one time there are eight usable pointers, four per bank, and the four pointers are in consecutive locations in RAM. For example, if $\mathrm{S} 3 / \mathrm{S} 4=01$ in the status register, then D0:0/D1:0/D2:0/D3:0 refer to locations $4 / 5 / 6 / 7$ in RAM Bank 0 . Note that when the data pointers are being written to, a number is actually being loaded to Data RAM, so they can be used as a limited method for writing to RAM.
$\mathbf{S R}$ is the status register (Figure 5) which contains the ALU status and certain control bits (Table 4). The status register may always be read in its entirety. S15-S10 are set/reset by the hardware and can only be read by software. S9-SO can be written by software (Table 5).

S15-S12 are set/reset by the ALU after an operation. S11S 10 are set/reset by the user inputs. $\mathrm{S} 6-\mathrm{SO}$ are control bits described elsewhere. S7 enables interrupts. S8, if 0 (reset), allows the hardware to overflow. If S8 is set, the hardware clamps at maximum positive or negative values instead of overflowing. If S 9 is 0 , the shifter shifts data one bit left or right. If S 9 is set and a shift is called for on a multiply instruction, then the shifter shifts the result three bits right instead of one bit right.

PC is the Program Counter. When this register is assigned as a destination register, one NOP machine cycle is added automatically to adjust the pipeline timing.

Figure 5. Status Register

Table 4. Status Register Bit Functions

Status Register Bit	Function
S15 (N)	ALU Negative
S14 (OV)	ALU Overflow
S13 (Z)	ALU Zero
S12 (L)	Carry
S11 (Ul1)	User Input 1
S10 (UIO)	User Input 0
S9 (SH3)	MPY Output Shifted by three bits
S8 (OP)	Overflow Protection
S7 (IE)	Interrupt Enable
S6 (UO1)	User Output 1
S5 (UOO)	User Output 0
S4-S3	"Short Form Direct" bits
S2-S0 (RPL)	RAM Pointer Loop Size

Table 5. RPL Description

$\mathbf{S 2}$	$\mathbf{S 1}$	$\mathbf{S 0}$	Loop Size
0	0	0	256
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

RAM ADDRESSING
The address of the RAM is specified in one of three ways (Figure 6):

Figure 6. RAM, ROM, and Pointer Architecture

Register Indirect

Pn:b $n=0-2, b=0-1$
The most commonly used method is a register indirect addressing method, where the RAM address is specified by one of the three RAM address pointers (n) for each bank (b). Each source/destination field in Figures 7 and 10 may be used by an indirect instruction to specify a register pointer and its modification after execution of the instruction.

Figure 7. Indirect Register

The register pointer is specified by the first and second bits in the source/destination field and the modification is specified by the third and fourth bits according to the following table:

D3-D0	Meaning	
OOxx	NOP	No Operation
O1xx	+1	Simple Increment
10xx	$-1 /$ LOOP	Decrement Modulo the Loop Count
11xx	$+1 /$ LOOP	Increment Modulo the Loop Count
x $\times 00$	PO:0 or PO:1	See Note a.
xx01	P1:0 or P1:1	See Note a.
xx10	P2:0 or P2:1	See Note a.
xx11		See Short Form Direct

Notes:

a. If bit 8 is zero, $\mathrm{PO}: 0$ to $\mathrm{P} 2: 0$ are selected; if bit 8 is one, $\mathrm{PO}: 1$ to $\mathrm{P} 2: 1$ are selected.

When LOOP mode is selected, the pointer to which the loop is referring will cycle up or down, depending on whether a-LOOP or +LOOP is specified. The size of the loop is obtained from the least significant three bits of the Status Register. The increment or decrement of the register is accomplished modulo the loop size. As an example, if the loop size is specified as 32 by entering the value 101 into bits 2-0 of the Status Register (S2-SO) and an increment +LOOP is specified in the address field of the instruction, i.e., the RPi field is 11 xx , then the register specified by RPi will increment, but only the least significant five bits will be affected. This means the actual value of the pointer will cycle round in a length 32 loop, and the lowest or highest value of the loop, depending on whether the loop is up or down, is set by the three most significant bits. This allows repeated access to a set of data in RAM without software intervention. To clarify, if the pointer value is 10101001 and if the loop $=32$, the pointer increments up to 10111111, then drops down to 10100000 and starts again. The upper three bits remain unchanged. Note that the original value of the pointer is not retained.

Direct Register

The second method is a direct addressing method. The address of the RAM is directly specified by the address field of the instruction. Because this addressing method consumes nine bits ($0-511$) of the instruction field, some instructions cannot use this mode (Figure 8).

Figures 10 to 15 show the different register instruction formats along with the two tables below Figure 9.

Figure 8. Direct Internal RAM Address Format

Short Form Direct

Dn: $b n=0-3, b=0-1$
The last method is called Short Form Direct Addressing, where one out of 32 addresses in internal RAM can be specified. The 32 addresses are the 16 lower addresses in RAM Bank 0 and the 16 lower addresses in RAM Bank 1. Bit 8 of the instruction field determines RAM Bank 0 or 1. The 16addresses are determined by a 4 -bitcode comprised of bits S3 and S4 of the status register and the third and fourth bits of the Source/Destination field. Because this mode can specify a direct address in a short form, all of the instructions using the register indirect mode can use this mode(Figure9). This method can access only the lower 16 addresses in the both RAM banks and as such has limited use. The main purpose is to specify a data register, located
in the RAM bank, which can then be used to point to a program memory location. This facilitates down-loading look-up tables etc. from program memory to RAM.

Figure 9. Short Form Direct Address

INSTRUCTION FORMAT

Note: Source/Destination fields can specify either register or RAM address in RAM pointer indirect mode.

Figure 10. General Instruction Format

Table 6. Registers

Source/Destination	Register
0000	BUS**
0001	X
0010	Y
0011	A
0100	SR
0101	STACK
0110	PC
0111	$\mathrm{P}^{* *}$
1000	EXTO
1001	EXT1
1010	EXT2
1011	EXT3
1100	EXT4
1101	EXT5
1110	EXT6
1111	EXT7

Table 7. Register Pointers Field

Source/Destination	Meaning
00xx	NOP
01xx	+1
10xx	-1/LOOP
11xx	+1/LOOP
x×00	P0:0 or PO:1*
x×01	P1:0 or P1:1*
xx10	P2:0 or P2:1*
x $\times 11$	Short Form Direct Mode

Notes:

* If RAM Bank bit is 0 , then $\mathrm{Pn}: 0$ are selected. If RAM Bank bit is 1 , then $\mathrm{Pn}: 1$ are selected.
** Read only.
*** When the short form direct mode is selected, 00000-01111 or 10000-11111 are used as RAM addresses.

Figure 11. Short Immediate Data Load Format

Figure 12. Immediate Data Load Format

Figure 13. Accumulator Modification Format

INSTRUCTION FORMAT (Continued)

Figure 14. Branching Format

Figure 15. Flag Modification Format

ADDRESSING MODES

This section discusses the syntax of the addressing modes supported by the DSP assembler. The symbolic name is
used in the discussion of instruction syntax in the instruction descriptions.

Table 8. Addressing Modes

Symbolic Name	Syntax	Description
<pregs>	Pn:b	Pointer Register
<dregs> (Points to RAM) Dn:b Data Register		

<hwregs>	X,Y,PC,SR,P EXTn,A,BUS	Hardware Registers
	@A	Accumulator Memory Indirect

<direct>	<expression>	Direct Address Expression
<limm>	\#<const exp>	Long (16-bit) Immediate Value
<simm>	\#<const exp>	Short (8-bit) Immediate Value
<regind>	@Pn:b	Pointer Register Indirect
(Points to RAM)	@Pn:b+	Pointer Register Indirect with Increment
	@Pn:b-LOOP	Pointer Register Indirect with Loop Decrement
	@Pn:b+LOOP	Pointer register Indirect with Loop Increment
<memind>	@ @Pn:b	Pointer Register Memory Indirect
(Points to Program Memory)	@Dn:	Data Register Memory Indirect
	@ @ Pn:b-LOOP	Pointer Register Memory Indirect with Loop Decrement
	@ @Pn:b+LOOP	Pointer Register Mernory Indirect with Loop Increment
	@ @Pn:b+	Pointer Register Memory Indirect with Increment

There are eight distinct addressing modes for transfer of data (Figure 6 and Table 8).
<pregs>, <hwregs> These two modes are used for simple loads to and from registers within the chip such as loading to the Accumulator, or loading from a pointer register. The names of the registers need only be specified in the operand field. (Destination first then source.)
<regind> This mode is used for indirect accesses to the data RAM. The address of the RAM location is stored in the
pointer. The "@" symbol indicates "indirect" and precedes the pointer, so @P1:1 tells the processor to read or write to a location in RAM1, which is specified by the value in the pointer.
<dregs> This mode is also used for accesses to the data RAM but only the lower 16 addresses in either bank. The 4 -bit address comes from the status register and the operand field of the data pointer. Note that data registers are typically used not for addressing RAM, but loading data from program memory space.
<memind> This mode is used for indirect, indirect accesses tothe programmemory. The addressofthememory is located in a RAM location, which is specified by the value in a pointer. So @@P1:1 tells the processor to read (write is not possible) from a location in memory, which is specified by a value in RAM, and the location of the RAM is in turn specified by the value in the pointer. Note that the data pointer can also be used for a memory access in this manner, but only one " $@$ " precedes the pointer. In both cases the memory address stored in RAM is incremented by one each time the addressing mode is used to allow easy transfer of sequential data from program memory.
<accind> Similar to the previous mode, the address for the program memory read is stored in the Accumulator. @A in the second operand field loads the number in memory specified by the address in A .
<direct> The direct mode allows read or write to data RAM from the Accumulator by specifying the absolute address of the RAM in the operand of the instruction. A number between 0 and 255 indicates a location in RAMO, and a number between 256 and 511 indicates a location in RAM1.
<limm> This indicates a long immediate load. A 16-bit word can be copied directly from the operand into the specified register or memory.
<simm> This can only be used for immediate transfer of 8 -bit data in the operand to the specified RAM pointer.

CONDITION CODES

The following defines the condition codes supported by the DSP assembler. If the instruction description refers to the

Name	Description
C	Carry
EQ	Equal (same as Z)
F	False
IE	Interrupts Enabled
MI	Minus
NC	No Carry
NE	Not Equal (same as NZ)
NIE	Not Interrupts Enabled
NOV	Not Overflow
NUO	Not User Zero

<cC> (condition code) symbol in one of its addressing modes, the instruction will only execute if the condition is true.

Name	Description
NU1	Not User One
NZ	Not zero
OV	Overflow
PL	Plus (Positive)
UO	User Zero
U1	User One
UGE	Unsigned Greater Than or
	Equal (Same as NC)
ULT	Unsigned Less Than (Same as C)
Z	Zero

INSTRUCTION DESCRIPTIONS

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
ABS	Absolute Value	ABS[<cc>, $<$ <sic>	$\begin{aligned} & \langle C C>A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ABS NC,A ABS A
$\overline{\text { ADD }}$	Addition	ADD<dest>, <s'C>	A, <pregs> A,<dregs> A, <limm> A,<memind> A,<direct> A, <regind> A, <hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ADD A,\#128 } \\ & \text { ADD A,DO:1 } \\ & \text { ADD A,@@LOOP } \\ & \text { ADD A,@P2:1+ } \\ & \text { ADD A,X } \end{aligned}$
AND	Bitwise AND	AND<dest>, <sic>	A,<pregs> A,<dregS> A,<limm> A,<memind> A,<direct> A,<regind> A, <hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AND A,\#128 AND A,DO:1 AND A,@@PO:O+LOOP AND A,@P2:1+ AND A, X
CALL	Subroutine call	CALL [<cc>, <<address>	<CC>,<direct> <direct>	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	CALL sub1 CALL Z,sub2
CCF	Clear carry flag	CCF	None	1	1	CCF
$\overline{\text { CIEF }}$	Clear Carry Flag	CIEF	None	1	1	CIEF
COPF	Clear OP flag	COPF	None	1	1	COPF
$\overline{\text { CP }}$	Comparison	CP<srcli>, <scc2>	A,<pregS> A,<dregs> A,<memind> A,<direct> A,<regind> A,<hwregs>	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	CP A,PO:O CP A, D3:1 CP A, 4512 CP A,@@P0:1 CP A, LABEL CP A, @DO:O CP A, X
DEC	Decrement	DEC [<CC>, ${ }^{\text {d dest }}$]	$\begin{aligned} & \langle C C>A, \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { DEC NZ,A } \\ & \text { DEC A } \end{aligned}$
$\overline{\text { INC }}$	Increment	INC [<cc>,] <dest>	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	INC NZ,A INC A
JP	Jump	JP [<CC>, kaddress>	<CC>,<direct> <direct>	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	JP NIE,Label JP Label

INSTRUCTION DESCRIPTIONS (Continued)

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
LD	Load destination with source	LD<dest>,<src>	A, <hwregs>	1	1	LD A, X
			A,dregs>		1	LD A, DO:0
			A,<pregs>	1	1	LD A,PO:1
			A, <regind>	1	1	LD A,@@P1:1
			A,<memind>	1	3	LD A,MEMADDR
			A,<direct>	1	1	LD MEMADDR,A
			<direct>, A	1	1	LD D0:1,A
			<dregs>,<hwregs>	1	1	LD P1:0\#128
			<pregs>,<simm>	1	1	LDP1:1,X
			<pregs>,<hwregs>	1	1	LD@PO:0+LOOP,\#1234
			<regind>,<limm>	1	1	LD @P1:1+, X
			<regind>,<hwregs>	1	1	LD X,PO:O
			<hwregs>,<pregs>	1	1	LD Y,PO:O
			<hwregs>,<dregs>	1	1	LD SR,\#\%1023
			<hwregs>,<limm>	2	2	LD PC,(A)
			<hwregs>,<accind>	1	3	LD X,@@PO:O
			<hwregs>,<memind>	1	3	LD Y,@P1:0-L00P
			<hwregs>,<regind>	1	1	LD SR,X
			<hwregs>,<hwregs>	1	1	

Note: When <dest is <hwregs>, <dest> cannot be P.
Note: When<dest> is <hwregs>and<sic> is <hwregs>, <dest>cannot be EXTn if <src> is EXTn, <dest> cannot be X if <src> is X , <dest> cannot be SR if $\langle\mathrm{sic}\rangle$ is SR .
Note: When <sic> is <accind> <dest> cannot be A.
MLD Multiply MLD<srcl>,<srcl>>,,bbank switch>]

<hwregs>,<regind>	1	1	MLD A@PO:0
<hwregs>,<regind>>bank switch>	1	1	MLD A@P1:0,OFF
<regind>,<regind>	1	1	MLD @P1:1,@P2:0
<regind>,<regind><bank switch>	1	1	MLD @P0:1,@P1:0,ON

Note: If src1 is <regind> it must be a bank 1 register. Src2's <regind must be a bank 0 register.
Note: <hwregs> for src1 cannot be X.
Note: For the operands <hwregs>, <regind> the <band switch> defaults to OFF. For the operands <regind>, the <bank switch> defaults to ON .

MPYA Multiply and add MPYA <srcl>,<src2>[,<bank switch>]

<hwregs>,<regind>	1	1	MPYA A@PO:0
<hwregs>,<regind>,<bank switch>	1	1	MPYA A,@P1:0,0FF
<regind> <regind>	1	1	MPYA @P1:1,@P2:0
<regind>,<regind>,<bank switch>	1	1	MPYA@P0:1,@P1:0,0N

Note: If scc1 is <regind> it must be a bank 1 register. Src2's <regind> must be a bank 0 register.
Note: <hwregs> for scc1 cannot be X.
Note: For the operands <hwregs>, <regind> the <bank switch> defaults to OFF. For the operands <regind>, the <bank switch> defaults to ON .

Inst.	Description	Synopsis	Operands W	Words Cycles	Examples
MPYS	Multiply and subtract	MPYS<srct 1>,<src2>[,<bank switch>]	<hwregs>,<regind>	11	MPYS A,@P0:0
			<hwregs>,<regind>,<bank switch>	> 1	MPYS A,@P1:0,0FF
			<regind>,<regind>	1	MPYS @P1:1,@P2:0
			<regind>,<regind>,<bank switch>	11	MPYS@P0:1,@P1:0,0N

Note: If src1 is <regind> it must be a bank 1 register. Src2's <regind> must be a bank 0 register.
Note: <hwregs> for scc1 cannot be X.
Note: For the operands <hwregs>, <regind> the <bank switch> defaults to OFF. For the operands <regind>,<regind> the<bank switch>defaults to ON .

NEG	Negate	NEG <CC>,A	$\begin{aligned} & \langle C C>A \\ & A \end{aligned}$	1	1	NEG NZ,A NEG A
NOP	No operation	NOP	None	1	1	NOP
OR	Bitwise OR	OR <dest>,<src>	A, <pregs> A, <dregs> A, <limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	1 1 2 1 1 1 1	1 1 2 3 1 1 1	OR A,\#128 OR A, D0:1 OR A,@@P0:O+LOOP OR A,@P2:1+ ORA, X
POP	Pop value from stack	POP <dest>	<pregs> <pregs> <regind> <hwregs>	1 1 1 1	1 1 1 1	POP PO:O POP DO:1 POP @PO:O POPA POPBUS
$\overline{\text { PUSH }}$	Push value onto stack	PUSH <sIC>	<pregs> <dregs> <regind> <hwregs> <limm> <accind> <memind>	1 1 1 1 2 1 1	1 1 1 1 2 3 3	PUSH PO:O PUSH D0:1 PUSH @PO:O PUSH A PUSH BUS PUSH \#12345 PUSH @A PUSH @@P0:0
RET	Return from subroutine	RET	None	1	2	RET
RL	Rotate Left	RL <cc>, A	$\begin{aligned} & \langle C C>, A \\ & A \end{aligned}$	1	1	RL NZ,A RLA
RR	Rotate Right	RR <cc>, ${ }^{\text {a }}$	$\begin{aligned} & \langle C C>A \\ & A \end{aligned}$	1	1	RR NZ,A RR A

INSTRUCTION DESCRIPTIONS (Continued)

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
SCF	Set C flag	SCF	None	1	1	SCF
SIEF	Set IE flag	SIEF	None	1	1	SIEF
SLL	Shift left logical	SLL	$\begin{aligned} & {[\langle C C>,] A} \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \hline \text { SLL NZ,A } \\ & \text { SLL A } \end{aligned}$
SOPF	Set OP flag	SOPF	None	1		SOPF
SRA	Shift right arithmetic	SRA<CC>,A	$\begin{aligned} & \langle C \subset\rangle, A \\ & A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	SRA NZ,A SRA A
$\overline{\text { SUB }}$	Subtract	SUB<dest><<Sic>	A,<pregs> A,<dregs> A,<limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	SUB A,\#128 SUB A,DO:1 SUB A,@@PO:O+LOOP SUB A,@P2:1+ SUB A, X
$\overline{\text { XOR }}$	Bitwise exclusive OR	XOR <dest>, <src>	A, <pregs> A, <dregs> A, <limm> A, <memind> A, <direct> A, <regind> A, <hwregs>	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	XOR A,\#128 XOR A, DO: 1 XORA,@@PO:O+LOOP XOR A,@P2:1+ XORA, X

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this two keywords are used (ON and OFF) which
state the direction of the switch. These keywords are referred to in the instruction descriptions via the <bank switch> symbol.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min.	Max.	Units
$V_{\text {Cc }}$	Supply Voltage (
$T_{\text {sTG }}$	Storage Temp	-0.3	+7.0	V
T_{A}	Oper Ambient Temp	-65°	$+150^{\circ}$	C

Notes:

* Voltage on all pins with respect to GND.
\dagger See Ordering Information.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Figure 16).

Figure 16. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS
$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Condition	Min.	Max.	Units
$l_{\text {D }}$	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V} \\ & \text { fclock }=10 \mathrm{MHz} \end{aligned}$		60	mA
l_{oc}	DC Power Consumption	$V_{D D}=5.25 \mathrm{~V}$	1	5	mA
$\mathrm{V}_{\text {H }}$	Input High Level		$0.9 \mathrm{~V}_{\text {D }}$		V
$\mathrm{V}_{\text {IL }}$	Input Low Level			$0.1 \mathrm{~V}_{\text {D }}$	V
IL	Input Leakage			1	$\mu \mathrm{A}$
	Output High Voltage Output Low Voltage	$\begin{aligned} \mathrm{I}_{\text {OH }} & =-100 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}-0.2$		
$\mathrm{V}_{\text {OL }}$	Output Low Voltage Output Floating Leakage Current	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$		$\begin{aligned} & 0.5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \end{aligned}$

289321
16-Bit Digital Signal Processor
AC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units
TCY	Clock Cycle Time	100	1000	ns
PWW	Clock Pulse Width	45		ns
Tr	Clock Rise Time	2	4	ns
Tf	Clock Fall Time	2	4	ns
TEAD	EA,ER/W Delay from CK	15	25	ns
TXVD	EXT Data Output Valid from CK	5	25	ns
TXWH	EXT Data Output Hold from CK	15		ns
TXRS	EXT Data Input Setup Time	15		ns
TXRH	EXT Data Input Hold from CK	0	15	ns
TIED	/EI Delay Time from CK	0	5	ns
RDYS	Ready Setup Time	10		ns
RDYH	Ready Hold Time	0		ns

AC TIMING DIAGRAM

Figure 17. Write To External Device Timing

Figure 18. Read From External Device Timing

PACKAGE INFORMATION

NDTESI

1. CINTRDLLING DIMENSIDNS : INCH 2. LEADS ARE CDPLANAR WITHIN .004 IN . 3. DIMENSIDN : MM

SYMBIL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A	4.27	4.57	.168	.180
A1	2.67	2.92	.105	.115
D/E	17.40	17.65	.685	.695
DI/EI	16.51	16.66	.650	.656
D2	15.24	16.00	.600	.630
D	1.27 TYP		.050 TYP	

44-Lead PLCC Package Diagram

ORDERING INFORMATION

Z89321

10 MHz

44-pin PLCC
Z8932110VSC
Z8932110VEC
For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

$V=$ Plastic PLCC

Temperature

$\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{E}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

Speed

$10=10 \mathrm{MHz}$

Environmental

C = Plastic Standard

Example:

| $\mathbf{Z} 89321$ | |
| :--- | :--- | :--- |
| | 10 V S |
| | is a Z89321, 10 MHz, DIP, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Plastic Standard Flow. |
| \square | Environmental Flow
 Temperature
 Package
 Speed
 Product Number
 Zilog Prefix |

289320 16-Bit Mixed Signal Processor

289321 16-Bit Mixed Signal Processor

Support Product Information

Superintegration ${ }^{m}$ Products Guide

Literature Guide and Third Party Support

Z86C9500ZCO Evaluation Board PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z86C95

DESCRIPTION

The Z86C9500ZCO Evaluation Board contains an assembled circuit board, software and documentation for use in evaluating the Z86C95 Z8 ${ }^{\circledR} /$ DSP microcontroller. The board comes equipped with a monitor program which provides access to all the Z86C95 registers and on-board memory and assists in using the Z86C95.

SPECIFICATIONS

Power Requirements

$$
+3<V_{c c}<+5 \mathrm{Vdc}
$$

Dimensions

Width: $5.2 \mathrm{in} .(13.2 \mathrm{~cm})$
Length: 5.0 in . (12.7 cm)

KIT CONTENTS
 Z86C95 Evaluation Board

Z86C95 CMOS Microcontroller Z8®/DSP Unit 8K X 8 EPROM with Monitor Program
32K X 8 SRAM
RS232-C Port
Sockets for external DAC80 and ADC0820 12 LEDs
Headers for access to all signals
Pin-out Header
RS232-C Connector
Power Connector

Software (IBM ${ }^{\otimes}-$ PC Platform)

Z8® ${ }^{\star} 80^{\oplus} / Z 8000^{\star}$ Cross Assembler
MOBJ Link/Loader

Documentation

Z8 Cross Assembler User's Guide MOBJ Link/Loader User's Guide Z86C95 User's Manual
Z86C95 Evaluation Kit User's Guide
ORDERING INFORMATION
Part No: Z86C9500ZCO
8-2

Z86C95 Evaluation Board Schematic 2 of 2

DSP DATABOOK SUPPORT PRODUCTS

Z86C9900ZCO DEVELOPMENT BOARD PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z86C99

DESCRIPTION

The kit contains an assembled development board plus software and documentation for the Z86C99 Hard Disk Controller.

The board is designed to evaluate the operation of the Z86C95 with Oak Technology's OTIO18 AT disk controller IC. The cores of these two parts together constitute the Z86C99. The board is equipped with both an ESDI interface and an AT bus interface. When the ESDI drive is connected to the ESDI interface it provides a target from which to read or write data. The AT interface provides a path to the host for full evaluation of the AT command set.

When the board is used in this configuration, it provides a simulated AT/IDE drive.

SPECIFICATIONS

Power Requirements

$$
+3<V_{c c}<+5 \mathrm{Vdc}
$$

Operating Temperature

0° to $50^{\circ} \mathrm{C}$

Dimensions

Width: $\quad 5.8 \mathrm{in} .(14.7 \mathrm{~cm})$
Length: $6.5 \mathrm{in} .(16.5 \mathrm{~cm})$
KIT CONTENTS
Z86C99 Hard Disk Controller Development Board
CMOS Z86C95 MPU
CMOS OTIO18 Disk Controller
20 MHz Crystal
ESDI/AT IDE Interface
Software (IBM ${ }^{\otimes}$-PC Platform)
Source code available with factory approval.
Z8® ${ }^{\circledR} 80^{\oplus} / Z 8000^{\oplus}$ Cross Assembler
MOBJ Link/Loader
Documentation
Z8 Technical Manual
Z8 Cross Assembler User's Guide
MOBJ Link/Loader User's Guide
Z86C95 User's Manual
OTIO18 Disk Controller
Registration Card
ORDERING INFORMATION
Part No: Z86C9900ZCO

Z89C00002EM In CIrcuit Emulator - COO PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z89C00

DESCRIPTION

The Z89C0000ZEM is a member of Zilog's ICEBOX ${ }^{\text {m" }}$ product family of in-circuit emulators. The ICEBOX -COO provides emulation for Zilog's Z89C00 DSP core. This includes all the essential DSP timing and I/O circuitry which simplifies user emulation of the prototype hardware/ software product. The ICEBOX can be connected to a serial port COM 1 through COM 4 of the host computer (IBM ${ }^{\oplus} 386,486$, or compatible).

The ICEBOX provides basic support of a emulator (program execution, single step, jump, halt, breakpoint, download/upload program code, etc.). In addition, $64 \mathrm{~K} \times 16$ program memory in steps of $4 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}, 32 \mathrm{~K}$, and 64 K (software selectable), 64K breakpoint support, maximum internal clock frequency of up to 16 MHz .

The host software runs under both MS Windows 3.0 and 3.1, it creates the Graphical User Interface (GUI) for the COO ICEBOX. The software trace and symbolic debugging features give a big advantage for user code debugging.

SPECIFICATIONS

Emulation Specification

Maximum Emulation Speed: 16 MHz

Power Requirements

+5 Vdc @ 1.5 A

Dimensions

Width: $\quad 6.0 \mathrm{in} .(15.2 \mathrm{~cm})$
Length: $8.8 \mathrm{in} .(22.4 \mathrm{~cm})$

Serial Interface

RS-232C © 19200 baud
Z89C00 EMULATOR
Z8 Emulation Base Board
CMOS Z86C9120PSC
8K X 8 EPROM (Programmed with Debug Monitor)
32K X 8 Static RAM
RS-232C Interface
Three 64K X 4 Static RAM
Z89C00 Emulation Daughter Board
Z89C00 DSP ICE Chip
Five $64 \mathrm{~K} \times 4$ Static RAM
80/60 Pin Target Connectors
100-Pin HP-16500 Interface Board Connector
Cables12", 68-Pin PLCC Emulation Cable15", Power Cable with Banana Plugs
60", DP25 RS-232C Cable
Software (IBM PC platform)ICEBOX ${ }^{\text {m }}$ GUI Host Package
DocumentationZ8 ICEBOX User ManualICEBOX ${ }^{\text {x }}$ GUI User ManualRegistration Card
ORDERING INFORMATION
Part No: Z86C0000ZEM

DSP DATABOOK
SUPPORT PRODUCTS

Z89C0000ZAS Z89C00 AssEMBLER, LINKER AND LIBRARIAN Product Specification

SUPPORTED DEVICE: Z89COO

DESCRIPTION

The Z89C00 Macro Assembler

The Z89C00 Macro Assembler (Z89ASM) generates relocatable object code modules in IEEE 695 OMF format. The assembler also handles macros and conditional assembly, eliminating the need for a macro preprocessor.

The Z89C00 Linker

The Z89C00 Linker (Z89LINK) links object modules produced by the assembler. The linker produces two files:

- an absolute object file in Motorola S-record format, and
- an optional comprehensive linkmap file.

Linking offers the benefits of:

- smaller, faster-assembling modules,
- use of local and global variables, and
- ease of relocating to a specified address.

Linking lets the user develop commonly-used routines separately, test them, and link them to programs under development.

The Z89C00 Librarian

The Z89C00 Librarian (Z89LIB) is the librarian facility. The librarian can be used to place the re-locatable object files in a library. In this way, the user can collect user-defined modules which allows commonly used routines to be easily included in programs.

The PLC Z89C00 Macro Assembler/Linker/Librarian requires an $\mathrm{IBM}^{\otimes} \mathrm{PC}$ or true compatible with:

- DOS 3.2 or higher,
- a hard drive, and
- a floppy drive.

The real-mode version requires at least 640K of RAM.
The protected-mode version requires:

- an 80386 or 80486 CPU and
- 2 Mbytes of RAM with at least 1 Mbyte of extended memory free.

KIT CONTENTS

Software (IBM PC platióomi)
Assembler, linker, librarian

Documentation

Macro Assembler/linker/librarian User's Guide.
Registration Card.

ORDERING INFORMATION

Part No: Z89C0000ZAS

Z89C0000ZCC Z89COO C CROSS COMPILER Product Specification

SUPPORTED DEVICE：Z89C00

DESCRIPTION

The Z89C0000ZCC produces assembly language code which can be assembled and linked with Z89C0000ZAS． After linking，the code can then be simulated and de－ bugged using the Z89C0000ZDB or Z89C0000ZSM．

The Z89C0000ZCC requires an IBM ${ }^{\star}$ PC or true compat－ ible with：
－DOS 3.2 or higher
－a hard drive，and
－a floppy drive．
The real－mode version requires at least 640K of RAM．
The protected－mode version requires：
－an 80386 or 80486 CPU and
－ 2 Mbytes of RAM with at least 1 Mbyte of extended memory free．

KIT CONTENTS
 Software（IBM PC platform）

C Cross Compiler
Documentation
ANSI C Cross Compiler User＇s Manual
Registration Card

ORDERING INFORMATION

Part No：Z89C0000ZCC

Z89COOOOZEM In Circuit Emulator -COO Product Specification

SUPPORTED DEVICE: Z89COO

DESCRIPTION

The Z89C0000ZEM is a member of Zilog's ICEBOX ${ }^{\text {m }}$ product family of in-circuit emulators. The ICEBOX -C00 provides emulation for Zilog's Z89C00 DSP core. This includes all the essential DSP timing and I/O circuitry which simplifies user emulation of the prototype hardware/ software product. The ICEBOX can be connected to a serial port COM 1 through COM 4 of the host computer (IBM ${ }^{\oplus} 386,486$, or compatible).

The ICEBOX provides basic support of a emulator (program execution, single step, jump, halt, breakpoint, download/upload program code, etc.). In addition, $64 \mathrm{~K} \times 16$ program memory in steps of $4 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}, 32 \mathrm{~K}$, and 64 K (software selectable), 64 K breakpoint support, maximum internal clock frequency of up to 16 MHz .

The host software runs under both MS Windows 3.0 and 3.1, it creates the Graphical User Interface (GUI) for the COO ICEBOX. The software trace and symbolic debugging features give a big advantage for user code debugging.

SPECIFICATIONS

Emulation Specification

Maximum Emulation Speed: 16 MHz

Power Requirements

+5 Vdc @ 1.5 A

Dimensions

Width: $6.0 \mathrm{in} .(15.2 \mathrm{~cm})$
Length: $8.8 \mathrm{in} .(22.4 \mathrm{~cm})$

Serial Interface

RS-232C @ 19200 baud
KIT CONTENTS
Z89C00 Emulator
Z8 Emulation Base Board
CMOS Z86C9120PSC
8K X 8 EPROM (Programmed with Debug Monitor)
32K X 8 Static RAM
RS-232C Interface
Three 64K X 4 Static RAM
Z89C00 Emulation Daughter Board
Z89C00 DSP ICE Chip
Five $64 \mathrm{~K} \times 4$ Static RAM
80/60 Pin Target Connectors
100-Pin HP-16500 Interface Board Connector
Cables
12", 68-Pin PLCC Emulation Cable
15", Power Cable with Banana Plugs
60", DP25 RS-232C Cable
Software (IBM PC platform)
ICEBOX ${ }^{\text {m }}$ GUI Host Package
Documentation
Z8 ICEBOX ${ }^{\text {™ }}$ User Manual
ICEBOX ${ }^{\text {T }}$ GUI User Manual
Registration Card
ORDERING INFORMATION

Z89C0000ZHP Logic Analyzer Adapter Board Product Specification

SUPPORTED DEVICES: L7X, C67/121, C65/120, COO

DESCRIPTION

The ICEBOX/H-P Logic Analyzer Adapter Board provides the owner of a Hewlett-Packard Logic Analyzer (model \#16500A) with real-time trace capabilities for the Zilog ICEBOX Emulator. The adapter board interfaces to the H-P Logic Analyzer probes and ICEBOX interface connector. At the touch of a button, the captured code can be disassembled, providing a complete listing of program flow in native assembly language on the analyzer screen. This simple and low-cost setup transforms the logic analyzer into a powerful tool for software debugging.

SPECIFICATIONS Dimensions
 Width: $\quad 4.9$ in. $(12.4 \mathrm{~cm})$
 Length: $5.4 \mathrm{in} .(13.7 \mathrm{~cm})$

KIT CONTENTS

ICEBOX/H-P Logic Analyzer Adapter Board
10, 18-Pin DIP RC Network ICs
100-Pin ICEBOX Interface Connector
5, H-P 165XX Logic Analyzer Connectors

Cables

2", 100-Pin Cable

Software (IBM-PC Platform)

Z89C00 Disassembler Software
Z8 ${ }^{\circledR}$ Disassembler Software (future support)

Documentation

H-P Adapter Board User Guide
ORDERING INFORMATION
Part No: Z89C0000ZHP

Z89C0000ZSD Z89COO SIMULATOR/DEBUGGER Product Specification

DEVICE SUPPORTED: Z89COO

DESCRIPTION

The Z89C00 Simulator is designed to work with the PLC Z89C00 development tools to simulate code written with those tools.

The simulator interacts with the user through a userdefined, windowed interface. The user has complete control over what each window looks like, where it is located on the screen, when it is displayed, and what information the window contains. Thus, the simulator display may be tailored to a specific application.

The debugger is designed to work with the PLC Z89C00 and $\mathrm{Z8}^{\circ}$ development tools to debug code written with these tools. The debugger supports several DSP and Z8 devices and must be used in conjunction with the appropriate simulator and assemblers for a particular device.

The debugger interacts with the user through a userdefined, windowed interface. The user has complete control over what each window looks like, where it is located on the screen, when it is displayed, and what information the window contains. Thus, the debugger display may be tailored to a specific application.

Features include:

- Source code window
- All registers are displayed, and can be modified.
- Single step or operate at full speed.
- Break points can be set.
- Disassembler with line assembler.
- RAM and ROM windows.
- Clock/time count
- Mouse option for user interface

The Simulator (Z89SIM) and Debugger (Z89BUG) requires an $\mathrm{IBM}^{\star} \mathrm{PC}$ or true compatible with:

- DOS 3.2 or higher,
- a hard drive, and
- a floppy drive.

The real-mode version requires at least 640K of RAM.
The protected-mode version requires:

- an 80386 or 80486 CPU and
- 2 Mbytes of RAM with at least 1 Mbyte of extended memory free.

KIT CONTENTS

Software (IBM PC platform)

Simulator

Documentation

Z89C00 Simulator User's Guide
Z89C00 Debugger User's Guide
Registration Card

ORDERING INFORMATION

Part No: Z89C0000ZSD

Z8912000ZEM In Circuit Emulator -120 Product Specification

SUPPORTED DEVICES: Z89120, $\mathbf{Z 8 9 9 2 0}$

DESCRIPTION

The Z89C6500ZEM is a member of Zilog's ICEBOX ${ }^{\text {¹ }}$ product family of in circuit emulators. The emulator provides emulation support for Zilog's Z89120 and Z89920 microcontrollers. This includes all the essential MCU timing and I/O circuitry which simplifies user emulation of the prototype hardware and/or software.

Data entering and program debugging are performed by the monitor ROM and the Host Package which communicates via a RS-232C serial interface with a fixed 19200 baud rate. The user program can be downloaded directly from the host computer via the RS-232C connector and may then be executed using various debugging commands in the monitor. The ICEBOX can be connected to a serial port COM1 or COM2 of the host computer (IBM ${ }^{\otimes}$ XT, AT, 286, 386 or 486 compatible).

SPECIFICATIONS

Emulation Specification

Maximum Emulation Speed: 20.48 MHz

Power Requirements

+5 Vdc @ 1.4 A

Operating Temperature

0° to $50^{\circ} \mathrm{C}$

Dimensions

Width: 6.25 in.
Length: 9.50 in .
Height: 2.50 in .

Serial Interface

RS-232 @ 19200 baud

KIT CONTENTS Z89C65 Emulator

Z8 ${ }^{m}$ Emulation Base Board CMOS Z86C91120PSC
8K X 8 EPROM (Programmed with Debug Monitor) EPM5128 EPLD
32K X 8 Static RAM
Three 64×4 Static RAM
RS-232C Interface
Reset Switch
Z89C65 Emulation Daughter Board
Z86C5020GSE ICE Chip
CD2400
Two EPM5128 EPLD
Two EPM5192 EPLD
$32 \mathrm{~K} \times 8$ Static RAM, $16 \mathrm{~K} \times 8$ Static RFA - 2 each
Six HP-16500A Logic Analysis
System Interface Connectors
80/60 Pin Target Connectors

Cables

12", 68-Pin PLCC Emulation Cable
15 ", Power Cable with Banana Plugs
60", DP25 RS-232C Cable
Software (IBM PC platform)
Z8* ${ }^{\circledR} 80^{\infty} / Z 8000^{\oplus}$ Cross Assembler
MOBJ Link/Loader
Host Package
Includes Windows and non-Windows software for emulation

Documentation

Z8 ICEBOX User Manual Z89120 User Manual Supplement Z8 Cross Assembler User's Guide MOBJ Link/Loader User Guide Registration Card

ORDERING INFORMATION

Part No: Z8912000ZEM
\qquad

925

Z89320 16-Bit Mixed Signal Processor

Z89321 16-Bit Mixed Signal Processor

Support Product Information

Superintegration ${ }^{\text {m }}$ Products Guide

Literature Guide and Third Party Support

92105		Fax/Modem Sup		perintegration" Products Guide			
	mp	Sing	Chip			tiolors	
Slick							Escc
Part	zascoo	28920	28920	$z^{29 a c t s}$	280182	28088	28530
Doscripition				pecripcamoler			come
Process//ppeed	cous 0.10 .5 mm		cwosemut	cunses.1.8.6Mz	cross 6.20 mt		
Featues							
Package		Espminco	Saminco				
Otiner						Empotec Comel	

ヘ) 25 Telephone Answering Devices

AppleTalk ${ }^{\otimes}$ A Registered Trademark of Apple Computer, Inc

Peripherals Superintegration " Products Guide				
	$\begin{aligned} & \text { Z8036 } \\ & \text { Z8536 } \end{aligned}$	Z32H00	Z5380 Z53C80	Z85C80
Description	Counter/Timer \& parallel I/O Unit (C10)	Hyperstone Enhanced Fast Instruction Set Computer (EFISC) Embedded (RISC) Processor	Small Computer System Interface (SCSI)	Serial Communication Controller and Small Computer System Interface
Process/ Speed	NMOS $4,6 \mathrm{MHz}$	CMOS 25 MHz	CMOS 25380: $1.5 \mathrm{MB} / \mathrm{s}$ 253C80: $3.0 \mathrm{MB} / \mathrm{s}$	CMOS SCC - $10,16 \mathrm{MHz}$ SCSI $-3.0 \mathrm{MB} / \mathrm{s}$
Features	Three 16-bit Counter/Timers, Three 1/0 ports with bit catching, pattern matching interrupts and handshake I/O	32-bit MPU 4 Gbytes address space 19 global and 64 local registers of 32 bits each 128 bytes instruction cache $1.2 \mu \mathrm{CM}$ OS $42 \mathrm{~mm}^{2}$ die	ANSI X3.131-1986 Direct SCSI bus interface On-board 48 mA drivers Normal or Block mode DMA transfers Bus interface, target and initiator	Full dual-channel SCC plus SCSI sharing databus and read/write functions
Package	40-pin PDIP 44-pin PLCC	$\begin{aligned} & 144-\text {-pin PGA } \\ & 132 \text {-pin QFP } \end{aligned}$	$\begin{aligned} & \text { Z5380: } 40 \text {-pin DIP } \\ & \text { Z53C80: } 44-\text {-pin PLCC } \\ & 44 \text {-pin PLP } \\ & \text { PLCC } \end{aligned}$	68-pin PLCC
Application	General-Purpose Counter/Timers and $I / 0$ system designs	Embedded high-performance industrial controller Workstations	Bus host adapters, formatters, host ports	AppleTalk ${ }^{\bullet}$ networking SCSI disk drives

${ }^{2}$ Soltware and harchware compatible with discretet devices

s

289320 16-Bit Mixed Signal Processor

289321 16-Bit Mixed Signal Processor

Support Product
Information

Superintegration" ${ }^{\text {m }}$ Products Guide

Literature Guide and
 Third Party Support

LITERATURE GUIDE

Z ${ }^{\circledR}$ /SUPER8 ${ }^{\text {m }}{ }^{\text {M }}$ MICROCONTROLLER FAMILY

Databooks	Part No Unit Cost
Z8 Microcontrollers Databook (includes the following documents)	DC-8275-04 5.00
28 CMOS MIcrocontrollers	Peripheral Products
286C00/C10/C20 MCU OTP Product Specification	286128 Closed-Captioned Controller Adv. Info. Specification
Z86C06 28 CCP ${ }^{\text {m }}$ Preliminary Product Specification	2765A Floppy Disk Controller Product Specitication
Z86C08 8-Bit MCU Product Specification	25380 SCSI Product Specification
Z86E08 78 OTP MCU Product Specification	Z53C80 SCSI Advance Information Specification
Z86C09/19 28 CCP Product Specification	
Z86E19 28 OTP MCU Advance Information Specification	Z8 Application Notes and Technical Articles
Z86C11 28 MCU Product Specification	Zilog Family On-Chip Oscillator Design
Z86C12 28 ICE Product Specification	Z86E21 28 Low Cost Thermal Printer
Z86C21 28 MCU Product Specification	Z8 Applications for 1/0 Port Expansions
Z86E21/286E22 OTP Product Specification	Z86C09/19 Low Cost 28 MCU Emulator
Z86C30 78 CCP Product Specification	Z8602 Controls A 101/102 PC/Keyboard
Z86E30 Z8 OTP CCP Product Specification	The 28 MCU Dual Analog Comparator
Z86C40 Z8 CCP Product Specification	The Z8 MCU In Telephone Answering Systems
Z86E40 Z8 OTP CCP Product Specification	28 Subroutine Library
Z86C27/97 78 DTC ${ }^{\text {m }}$ Product Specification	A Comparison of MCU Units
Z86127 Low-Cost Digital Television Controller Adv. Info. Spec.	286xx Interrupt Request Registers
Z86C50 Z8 CCP ICE Advance Information Specification	28 Family Framing
Z86C61 28 MCU Advance Information Specification	A Programmer's Guide to the Z8 MCU
Z86C62 28 MCU Advance Information Specification	Memory Space and Register Organization
Z86C89/C90 CMOS 28 CCP Product Specification	
Z86C91 28 ROMless MCU Product Specification	Super8 Application Notes and Technical Articles
Z86C93 28 ROMIess MCU Preliminary Product Specification	Getting Started with the Zilog Super8
Z86C94 28 ROMless MCU Product Specification	Polled Async Serial Operations with the Super8
Z86C96 28 ROMIess MCU Advance Information Specification	Using the Super8 Interrupt Driven Communications
Z88C00 CMOS Super8 MCU Advance Information Specification	Using the Super8 Serial Port with DMA
	Generating Sine Waves with Super8
Z8 NMOS MIcrocontrollers	Generating DTMF Tones with Super8
Z8600 Z8 MCU Product Specification	A Simple Serial Parallel Converter Using the Super8
28601/03/11/13 28 MCU Product Specification	
28602 8-Bit Keyboard Controller Preliminary Product Spec.	Additional Information
Z8604 8-Bit MCU Product Specification	Z8 Support Products
Z8612 28 ICE Product Specification	Zilog Quality and Reliability Report
Z8671 28 MCU With BASIC/Debug Interpreter Product Spec.	Literature List
Z8681/82 28 MCU ROMless Product Specification	Package Information
Z8691 28 MCU ROMless Product Specification	Ordering Information

LITERATURE GUIDE

Z8® ${ }^{\text {/ }}$ SUPER8 ${ }^{\text {m }}{ }^{\text {MICROCONTROLLER FAMILY (Continued) }}$

Databooks By Market Niche	Part No	Unit Cost
Digital Signal Processor Databook (includes the following documents) Z86C95 Z8® Digital Signal Processor Preliminary Product Specification Z89C00 16-Bit Digital Signal Processor Preliminary Product Specification Z89C00 DSP Application Note "Understanding Q15 Two's Complement Fractional Multiplication" Z89120, Z89920 (ROMless) 16-Bit Mixed Signal Processor Preliminary Product Specification Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor Preliminary Product Specification Z89320 16-Bit Digital Signal Processor Preliminary Product Specification Z89321 16-Bit Digital Signal Processor Advance Information Specification	DC-8299-02	3.00
Telephone Answering Device Databook (includes the following documents) Z89C65, Z89C66 (ROMless) Dual Processor T.A.M. Controller Preliminary Product Specification Z89C67, Z89C68/C69 (ROMless) Dual Processor Tapeless T.A.M. Controller Preliminary Product Specification Z89C65 Sotware Development Guide Z89C67/C69 Software Development Guide	DC-8300-02	3.00
Infrared Remote (IR) Control Databook (includes the following documents) Z86L06 Low Voltage CMOS Consumer Controller Processor Preliminary Product Specification Z86L29 6K Infrared (IR) Remote (ZIRCy Controller Advance Information Specification Z86L70/L71/L72, Z86E72 Zilog IR (ZIRCT) CCP ${ }^{\text {P* }}$ Controller Family Preliminary Product Specification	DC-8301-03	3.00
Z8 Microcontrollers (includes the following documents) Z86C07 CMOS Z88-Bit Microcontroller Product Specification Z86C08 CMOS 28 8-Bit Microcontroller Product Specification Z86E08 CMOS Z8 8-Bit OTP Microcontroller Product Specification Z86C11 CMOS 28 Microcontroller Product Specification Z86C12 CMOS 28 In-Circuit Microcontroller Emulator Product Specification Z86C21 8K ROM Z8 CMOS Microcontroller Product Specification Z $86 E 21$ Civios Z̄ 8 BK OTTP Microconiroiier Produci Speciificaiton Z86C61/62/96 CMOS 28 Microcontroller Product Specification Z86C63/64 32K ROM Z8 CMOS Microcontroller Product Specification Z86C91 CMOS Z8 ROMless Microcontroller Product Specification Z86C93 CMOS Z8 Multiply/Divide Microcontroller Product Specification	DC-8305-01	3.00
Z8 Microcontrollers (includes the following documents) Z86C04 CMOS Z8 8-Bit Low Cost 1K ROM Microcontroller Product Specification Z86E04 CMOS Z8 OTP 8-Bit Low Cost Microcontroller Product Specification	DC-6018-01	3.00
Mass Storage (includes the following documents) Z86C21 8K ROM Z8 CMOS Microcontroller Product Specification Z86E21 CMOS Z8 8K OTP Microcontroller Product Specification Z86C91 CMOS Z8 ROMless Microcontroller Product Specification Z86C93 CMOS Z8 Multiply/Divide Microcontroller Product Specification Z86C95 28 Digital Signal Processor Product Specification Z89C00 16-Bit Digital Signal Processor Product Specification Z89C00 DSP Application Note - "Understanding Q15 Two's Complement Fractional Multiplication"	DC-8303-00	3.00

Z8® ${ }^{\circledR}$ SUPER8 ${ }^{\text {T }}$ MICROCONTROLLER FAMILY (Continued)

Databooks By Market Niche	Part No	Unit Cost
Digital Television Controllers (includes the following documents) Z86C27/97 CMOS Z8® Digital Signal Processor Product Specification Z86C61/62/96 CMOS $Z 8$ Microcontroller Product Specification Z86C63/64 32K ROM CMOS Z8 Microcontroller Product Specification Z86127 Low Cost Digital Television Controller Product Specification Z86128 Line 21 Closed-Caption Controller (L21CT) Digital Television Controller Product Specification Z86227 40-Pin Low Cost (4LDTC') Digital Television Controller Product Specification	DC-8308-00	3.00
Keyboard/Mouse/Pointing Devices Databook (includes the following documents) Z8602 NMOS Z8® 8-Bit Keyboard Controller Product Specification Z8614 NMOS Z8 8 -Bit Keyboard Controller Product Specification Z8615 NMOS Z8® 8 -Bit Keyboard Controller Product Specification Z86E23 Z8® 8-Bit Keyboard Controller with 8K OTP Product Specification Z86C04 CMOS Z8® 8 -Bit Microcontroller Product Specification Z86C08 CMOS Z8 ${ }^{\text {8 }} 8$-Bit Microcontroller Product Specification Z88C17 CMOS Z8® 8 -Bit Microcontroller Product Specification	DC-8304-00	3.00
PC Audio Databook (includes the following documents) Z86321 Digital Audio Processor Preliminary Product Specification Z89320 16-Bit Digital Signal Processor Preliminary Product Specification Z89321/371 16-Bit Digital Signal Processor Preliminary Product Specification Z89331 16-Bit PC ISA Bus Interface Advance Information Specification Z89341/42/43 Wave Synthesis Chip Set Advance Information Specification Z5380 Small Computer System Interface Product Specification	DC-8317-00	3.00
PCMCIA/SCSI Interface Controllers (includes the following documents) Z5380 Small Computer System Interface Product Specification z53C80 Small Computer System Interface Product Specification Z85C80 SCSClㄹ Serial Communications and Small Computer Interface Product Specification 286017 PCMCIA Interface Preliminary Product Specification Z86015 PCMCIA Interface with DMA Support Advance Product Specification Z86020 CardBus/PCI Interiace Advance Product Specification	DC 8313-00	3.00
Z8® Low End MCU Databook (includes the following documents) Z86C04	DC-8318-00	3.00

Z ${ }^{\circledR}$ TSUPER8 ${ }^{\text {m }}{ }^{\text {M }}$ MICROCONTROLLER FAMILY (Continued)

Z8 Product Specifications, Technical Manuals and Users Guides	Part No	Unit Cost
Z86E23 CMOS 28 OTP Microcontroller Preliminary Product Specification	DC-2598-00	N/C
Z8614 NMOS Z8 8-Bit MCU Keyboard Controller Preliminary Product Specification	DC-2576-00	N/C
Z8 OTP CMOS One-Time-Programmable Microcontrollers Addendum	DC-2614-AA	N/C
Z8 Microcontrollers Technical Manual	DC-8291-02	5.00
Z86018 Preliminary User's Manual	DC-8296-00	N/C
Digital TV Controller User's Manual	DC-8284-01	3.00
Z89C00 16-Bit Digital Signal Processor User's Manual/DSP Software Manual	DC-8294-02	3.00
PLC Z89C00 Cross Development Tools Brochure	DC-5538-01	N/C
Z86C95 16-Bit Digital Signal Processor User Manual	DC-8595-00	3.00
286017 PCMCIA Adaptor Chip User's Manual	DC-8298-01	3.00
Z89C65/C67/C69 Software Manual	DC-8310-00	3.00
Z8 Application Notes	Part No	Unit Cost
28602 Controls A 101/102 PC/Keyboard	DC-2601-01	N/C
The Z8 MCU Dual Analog Comparator	DC-2516-01	N/C
Z8 Applications for I/O Port Expansions	DC-2539-01	N/C
Z86E21 28 Low Cost Thermal Printer	DC-2541-01	N/C
Zilog Family On-Chip Oscillator Design	DC-2496-01	N/C
Using the Zilog Z86C06 SPI Bus	DC-2584-01	N/C
Interfacing LCDs to the Z8	DC-2592-01	N/C
X-10 Compatible Infrared (IR) Remote Control	DC-2591-01	N/C
Z86C17 In-Mouse Applications	DC-3001-01	N/C
Z86C40/E40 MCU Applications Evaluation Board	DC-2604-01	N/C
Z86C08/C17 Controls A Scrolling LED Message Display	DC-2605-01	N/C
Z86C95 Hard Disk Controller Flash EPROM Interface	DC-2639-01	N/C
Timekeeping with Z8; DTMF Tone Generation; Serial Communication Using the CCP Software UART	DC-2645-01	N/C

Z80²／Z8000 ${ }^{\text {® }}$ CLASSIC FAMILY OF PRODUCTS

Databooks By Market Niche	Part No	Unit Cost
High－Speed Serial Communication Controllers Z16C30 CMOS Universal Serial Controller（USC＇）Preliminary Product Specification Z16C32 Integrated Universal Serial Controller（IUSC＇․ Preliminary Product Specification Application Notes and Support Products Zilog＇s Superintegration ${ }^{\text {wx }}$ Products Guide Literature Guide and Third Party Support	DC－8314－00	3.00
Serial Communication Controllers Z8030／Z8530 Z－Bus SCC Serial Communication Controller Product Specification Z80C30／Z85C30 CMOS Z－Bus ${ }^{\text {® }}$ SCC Serial Communication Controller Product Specification Z80230 Z－Bus ${ }^{\oplus}$ ESCC ${ }^{\text {m }}$ Enhanced Serial Communication Controller Preliminary Product Specification Z85230 ESCC ${ }^{\text {TM }}$ Enhanced Serial Communication Controller Product Specification $Z 85233$ EMSCC ${ }^{\text {m＂}}$ Enhanced Mono Serial Communication Controller Product Specification Z85C80 SCSCI＂ Serial Communications and Small Computer Interface Product Specification Z16C35／Z85C35 CMOS ISCC ${ }^{\text {ma }}$ Integrated Serial Communications Controller Product Specification Application Notes and Support Products Zilog＇s Superintegration ${ }^{\text {m＂}}$ Products Guide Literature Guide and Third Party Support	DC－8316－00	3.00

Z80／Z180／Z280 Product Specifications，Technical Manuals and Users Guides	Part No	Unit Cost
Z80 Family Technical Manual	DC－8306－00	3.00
Z80180 Z180 MPU Microprocessor Unit Technical Manual	DC－8276－04	3.00
Z280 MPU Microprocessor Unit Technical Manual	DC－8224－03	3.00
Z80180／Z8S180 Z180 Microprocessor Product Specification	DC－2609－03	N／C
Z80182 Zilog Intelligent Peripheral（ZIP）	DC－2616－03	N／C
Z380m Preliminary Product Specification	DC－6003－03	N／C
Z380™ User＇s Manual	DC－8297－00	3.00
Z80 Family Programmer＇s Reference Guide	DC－0012－04	N／C

Z80／Z180／Z280 Application Notes	Part No	Unit Cost
Z180／SCC	Serial Communications Controller Interiace at 10 MHz	$\mathrm{DC}-2521-02$
Z80 Using the 84C11／C13／C15 in place of the $84011 / 013 / 015$	$\mathrm{DC}-2499-02$	$\mathrm{~N} / \mathrm{C}$
A Fast Z80 Embedded Controller	DC－2578－01	N / C

LITERATURE GUIDE

Z80® ${ }^{\circledR}$ Z8000 ${ }^{\circledR}$ CLASSIC FAMILY OF PRODUCTS (Continued)

Z8000 Product Specifications, Technical Manuals and Users Guides	Part No	Unit Cost
Z8000 CPU Central Processing Unit Technical Manual	DC-2010-06	3.00
SCC Serial Communication Controller User's Manual	DC-8293-02	3.00
Z8036 Z-CIO/Z8536 CIO Counter/Timer and Parallel Input/Output Technical Manual	DC-2091-02	3.00
Z8038 Z8000 Z-FIO FIFO Input/Output Interface Technical Manual	DC-2051-01	3.00
Z8000 CPU Central Processing Unit Programmer's Pocket Guide	DC-0122-03	3.00
Z85233 EMSCC Enhanced Mono Serial Communication Controller Preliminary Product Specification	DC-2590-00	N/C
Z85C80 SCSCIm Serial Communication and Small Computer Interface Preliminary Product Specification	DC-2534-02	N/C
Z16C30 USC Universal Serial Controller Preliminary Technical Manual	DC-8280-02	3.00
Z16C32 IUSC Integrated Universal Serial Controller Technical Manual	DC-8292-03	3.00
Z16C35 ISCC Integrated Serial Communication Controller Technical Manual	DC-8286-01	3.00
Z16C35 ISCC Integrated Serial Communication Controller Addendum	DC-8286-01A	N/C
Z53C80 Small Computer System Interface (SCSI) Product Specification	DC-2575-01	N/C
Z80230 Z-BUS ${ }^{\text {® }}$ ESCC Enhanced Serial Communication Controller Preliminary Product Specification	DC-2603-01	N/C
Z8000 Application Notes	Part No	Unit Cost
Z16C30 Using the USC in Military Applications	DC-2536-01	N/C
Datacom IUSC/MUSC Time Slot Assigner	DC-2497-02	N/C
Datacom Evaluation Board Using The Zilog Family With The 80186 CPU	DC-2560-03	N/C
Boost Your System Performance Using the Zilog ESCC Controller	DC-2555-02	N/C
Z16C30 USC - Design a Serial Board for Multiple Protocols	DC-2554-01	N/C
Using a SCSI Port for Generalized I/O	DC-2608-01	N/C

MILITARY COMPONENTS FAMILY

Military Specifications	Part No	Unit Cost
Z8681 ROMless Microcomputer Military Product Specification	DC-2392-02	N/C
Z8001/8002 Military 28000 CPU Central Processing Unit Military Product Speciitication	DC-2342-03	N/C
Z8581 Military CGC Clock Generator and Controller Military Product Specification	DC-2346-01	N/C
Z8030 Military Z8000 Z-SCC Serial Communications Controller Military Product Specification	DC-2388-02	N/C
Z8530 Military SCC Serial Communications Controller Military Product Specification	DC-2397-02	N/C
Z8036 Military Z8000 Z-Cl0 Counter/Timer Controller and Parallel I/O Military Electrical Specification	DC-2389-01	N/C
Z8038/8538 Military FIO FIFO Input/Output Interface Unit Military Product Specification	DC-2463-02	N/C
Z8536 Military C10 Counter/Timer Controller and Parallel I/O Military Electrical Specification	DC-2396-01	N/C
Z8400 Military $\mathrm{Z80}$ CPU Central Processing Unit Military Electrical Specification	DC-2351-02	N/C
Z8420 Military PIO Paralle Input/Output Controller Military Product Specification	DC-2384-02	N/C
Z8430 Military CTC Counter/Timer Circuit Military Electrical Specification	DC-2385-01	N/C
Z8440/1/2/4 280 SIO Serial Input/Output Controller Military Product Specification	DC-2386-02	N/C
Z80C30/85C30 Military CMOS SCC Serial Communications Controller Military Product Specification	DC-2478-02	N/C
Z84C00 CMOS 880 CPU Central Processing Unit Military Product Specification	DC-2441-02	N/C
Z84C20 CMOS Z80 PIO Parallel Input/Output Military Product Specification	DC-2384-02	N/C
Z84C30 CMOS 280 CTC Counter/Timer Circuit Military Product Specification	DC-2481-01	N/C
Z84C40/1/2/4 CMOS Z80 SIO Serial Input/Output Military Product Specification	DC-2482-01	N/C
Z16C30 CMOS USC Universal Serial Controller Military Preliminary Product Specification	DC-2531-01	N/C
Z80180 Z180 MPU Microprocessor Unit Military Product Specification	DC-2538-01	N/C
Z84C90 CMOS KIO Seria/Paralle//Counter Timer Preliminary Military Product Specification	DC-2502-00	N/C
Z85230 ESCC Enhanced Serial Communication Controller Military Product Specification	DC-2595-00	N/C

LITERATURE GUIDE

GENERAL LITERATURE

Catalogs, Handbooks, Product Flyers and Users Guides	Part No	Unit Cost
Superintegration Shortform Catalog 1994	DC-5472-12	N/C
Superintegration Products Guide	DC-5499-07	N/C
ZIATM 3.3 -5.5V Matched Chip Set for AT Hard Disk Drives Datasheet	DC-5556-01	N/C
ZIA ZIAOOZCO Disk Drive Development Kit Datasheet	DC-5593-01	N/C
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet	DC-5560-01	N/C
Zilog Infrared (IR) Controllers - ZIRC ${ }^{\text {m }}$ Datasheet	DC-5558-01	N/C
Zilog Intelligent Peripheral Controller - Z\|PTM Z80182 Datasheet	DC-5525-01	N/C
Zilog Digital Signal Processing - Z89320 Datasheet	DC-5547-01	N/C
Zilog Keyboard Controllers Datasheet	DC-5600-01	N/C
Z380 ${ }^{\text {max }}$ - Next Generation $\mathrm{Z80}{ }^{\text {® }} / 2180^{\text {mx }}$ Datasheet	DC-5580-02	N/C
Fault Tolerant Z $^{\otimes}$ Microcontroller Datasheet	DC-5603-01	N/C
32 K ROM 88 $^{\text {® }}$ Microcontrollers Datasheet	DC-5601-01	N/C
Zilog Datacommunications Brochure	DC-5519-00	N/C
Zilog Digital Signal Processing Brochure	DC-5536-02	N/C
Zilog PCMCIA Adaptor Chip 286017 Datasheet	DC-5585-01	N/C
Zilog TelevisionNideo Controllers Datasheet	DC-5567-01	N/C
Zilog TAD Controllers - 289C65/C67/C69 Datasheet	DC-5561-01	N/C
Zilog ASSPs - Partnering With You Product Flyer	DC-5553-01	N/C
Quality and Reliability Report	DC-2475-11	N/C
The Handling and Storage of Surface Mount Devices User's Guide	DC-5500-02	N/C
Universal Object File Utilities User's Guide	DC-8236-04	3.00
Zilog 1991 Annual Report	DC-1991-AR	N/C
Zilog 1992 Annual Report	DC-1992-AR	N/C
Zilog 1993 First Quarter Financial Report	DC-1993-Q1	N/C
Zilog 1993 Second Quarter Financial Report	DC-1993-Q2	N/C
Microcontroller Quick Reference Folder	DC-5508-01	N/C

Z8 ${ }^{\circledR}$ Hardware and Software Support

28 Support

Company	Assembler	C Compiler	Simulator	Forth	Operating System	Phone Number
Allen Ashley	\mathbf{X}		\mathbf{X}		DOS, CP/M	$(818) 793-5748$
Avocet Systems	\mathbf{X}				DOS	$(800) 448-8500$
Byte Craft		\mathbf{X}			DOS	$(519) 888-6911$
Cybernetic Micro	\mathbf{X}				DOS	$(415) 726-3000$
Laboratory Microsystems				\mathbf{X}	DOS	$(213) 306-7412$
Micro Computer Control	\mathbf{X}	\mathbf{X}	\mathbf{X}		DOS	$(609) 466-1751$
Micro Dialects	\mathbf{X}				Macintosh	$(513) 271-9100$
MPE	\mathbf{X}	\mathbf{X}	\mathbf{X}		DOS $(386+)$	$(817) 599-8363$ Production Language Corp. Pseudo Corp.
Software Development Systems	\mathbf{X}		\mathbf{X}		DOS	$(804) 873-1947$
Western Wares	\mathbf{X}				DOS UNIX	$(800) 448-7733$

Super8 ${ }^{\circledR}$ Support

Company	Assembler	C Compiler	Simulator	Forth	Operating System	Phone Number
Allen Ashley	\mathbf{X}		\mathbf{X}		Macintosh	$(818) 793-5748$
Micro Computer Control		\mathbf{X}			DOS	$(609) 466-1751$
Pseudo Corp.	\mathbf{X}		\mathbf{X}		DOS	$(804) 873-1947$
2500AD Software	\mathbf{X}		\mathbf{X}		DOS	$(719) 345-8683$

Z8 ${ }^{\circledR}$ Hardware and Software Support

A = Emulate with Z86C0800ZDP Adaptor
B = Emulate with Z8612 Board
C = Emulate with Z86C0800ZDP and Z8612 Board or Z86C0800ZEM
D = Emulate with Z8612 Board
$E=$ Emulate with Z86C90 Board

[^3]
Z8 ${ }^{\circledR}$ Hardware and Software Support

Company	Product
Allen Ashley	Assembler
395 Sierra Madre Villa	Disassembler
Pasadena, CA 91107-2902	Simulator
(818) 793-5748	
A	

Avocet Systems	Assembler
120 Union Street	
Rockport, ME 04856	
(800) 448-8500	
Byte Craft Limited	
421 King Street North	
Waterloo, Ontario	
Canada N2J4E4	
(519) 888-6911	
Creative Technology	
5144 Peachtree Road	
Suite 301	
Atlanta, GA 30341	
(404) 455-8255	

Cybernetic Micro Systems Assembler
P.O. Box 3000

San Gregorio, CA 94074
(415) 726-3000
Dantrol Emulator

1910 Rena Ln.
Dalton, GA 30720
(404) 226-3714

Data I/O, Inc.
10525 Willows Road N.E.
OTP Programmer
P.O. Box 97046

Redmond, WA 98073-9746
(206) 867-6829

Systems GmbH	Emulator
Einsteinstr. 5	
W8050 Dachau, Germany	
(49) 8131-25085	

JK Engineering Emulator

37 Kallang Pudding Rd. Blk. B
Tong Lee Bldg. \#08-03
Singapore 1334
011-65-7448418

Laboratory Microsystems	Forth Compiler
12555 West Jefferson Blvd.	
Los Angeles, CA 90060	

(Z86E21)

Systems GmbH

Emulator

Laboratory Microsystems
Forth Compiler 12555 West Jefferson Blvd.
Los Angeles, CA 90060
(213) 306-7412

Company	Product
Logical Devices, Inc. 1201 NW 65th Place Fort Lauderdale, FL 33309 (800) 331-7766	OTP Programmer (Z86E21, Z86E22)
Micro Computer Control P.O. Box 275 / 17 Model Ave. Hopewell, NJ 08525 (609) 466-1751	Assembler C Compiler Simulator
Micro Dialects P.O. Box 30014 Cincinnati, OH 45230 (513) 271-9100	Assembler
MicroTime 10F No. 1180 Chen-De Rd. 11148 Taipei, Taiwan, R O.C. 11-886-2-881-1791	Emulator
MPE 2604 Elmwood Ave. Rochester, NY 14618 (716) 461-9187	Forth Complier
Needham Electronics 4539 Orange Grove Ave. Sacramento, CA 95841 (916) 924-8037	OTP Programming
Orion Instruments 180 Independence Dr. Menlo Park, CA 94025 (415) 327-8800	Emulator
Production Languages Corp. P.O. Box 109 Weatherford, TX 76086-0109 (817) 599-8363	Assembler Simulator C Compiler
Pseudo Corp. 716 Thimble Shoals Blvd. Ste. E Newport News, VA 23606 (804) 873-1947	Assembler Disassembler Simulator
Signum Systems 171 E. Thousand Oaks Blvd. Thousand Oaks, CA 91360 (805) 371-4608	Emulator

Z8® ${ }^{\circledR}$ Hardware and Software Support

Company	Product
Smart Access, Inc.	OTP Programmer
124 Robin Road	(Z86E21, Z86E22)
Altamonte Springs, FL 32701	
(407) 331-4724	
Software Development Systems	Assembler
4248 Belle Aire Lane	
Downers Grove, IL 60515	
(800) 448-7733	
Software Science	
3750 Round Bottom Road	Z8
Cincinnati, OH 45244	

Company	Product
Western Wares	Assembler
P.O. Box C	
Norwood, CO 81423	
(303) 327-4898	
Wytec	Emulator
185C East Lake Street Ste. 140	
Bloomingdale, IL 60108	
(708) 894-1440	
2500AD Software, Inc.	Assembler
109 Brookdale Ave.	Compiler
P.O. Box 480	Simulator
Buena Vista, CO 81211	
(719) 345-8683	

ORDERING
 INFORMATION

Complete the attached literature order form. Be sure to enclose the proper payment or supply a purchase order. Please reference specific order requirements.

MINIMUM ORDER REQUIREMENTS

Orders under $\$ 300.00$ must be prepaid by check, money order or credit card. Canadian and foreign orders must be accompanied by a cashier's check in U.S. dollars, drawn on a correspondent U.S. bank only.

Orders over $\$ 300.00$ may be submitted with a
Purchase Order.

SHIPMENT

Orders will be shipped after your check is cashed or credit is checked via the most economical method. Please allow four weeks for delivery.

RETURNS ARE NOT ACCEPTED.

PLEASE PRINT OR TYPE						
NAME				PHONE $($)	-
COMPANY				Method of Payment (Check One) \square Check Credit Card QVISA \square MC		
ADDRESS						
CITY		STATE	ZIP	COUNTRY		
PART NUMBER		DOCUMENT TITLE		UNIT COST	QTY.	TOTAL
-	- \quad -			\$		\$
-	-			\$		\$
-	- -			\$		\$
-	- -			\$		\$
-	-			\$		\$
-	-			\$		\$
-	\rightarrow -			\$		\$
-	\pm -			\$		\$
-	-			\$		\$
-	-			\$		\$
-	-			\$		\$
-	- -			\$		\$
	$\rightarrow-1$			\$		\$
	-			\$		\$
Mail To: 210 E. HACIENDA AVE. M/S C1-0 CAMPBELL, CA 95008-6600		Credit Card or Purchase Order \# \qquad SUBTOTAL Expiration Date \qquad ADD APPLICABLE SALES TAX (CA ONLY)				
		-	$ـ$	PING AND HAN	NDING TOTAL	

Phone: (408)370-8016
Fax: (408)370-8056

Z89320 16-Bit Mixed Signal Processor

Z89321 16-Bit Mixed Signal Processor

Support Product Information

Products cuide

Hheraturg Cutde ant

ZILOG DOMESTIC SALES OFFICES AND TECHNICAL CENTERS

CALIFORNIA
Agoura 818-707-2160
Campbell 408-370-8120
Irvine 714-453-9701
San Diego 619-658-0391
COLORADO
Boulder 303-494-2905
FLORIDA
Clearwater 813-725-8400
GEORGIA
Duluth 404-931-4022
ILLINOIS
Schaumburg 708-517-8080
MINNESOTA
Minneapolis 612-944-0737
NEW HAMPSHIRE
Nashua 603-888-8590
OHIO
Independence 216-447-1480
OREGON
Portland 503-274-6250
PENNSYLVANIA
Horsham 215-784-0805
TEXAS
Austin 512-343-8976
Dallas 214-987-9987
© 1993 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

INTERNATIONAL SALES OFFICES

CANADA

Toronto
905-673-0634

CHINA

Shenzhen ..86-755-2236089

GERMANY
Munich ...49-8967-2045
Sömmerda ...49-3634-23906
JAPAN
Tokyo
81-3-3587-0528

HONG KONG
Kowloon
852-7238979

KOREA
Seoul
82-2-577-3272

SINGAPORE
Singapore
65-2357155
TAIWAN
Taipei
886-2-741-3125

UNITED KINGDOM
Maidenhead
44-628-392-00

Sales Representatives and Distributors

U.S., CANADIAN \& PUERTO RICAN REPRESENTATIVES

ALABAMAHuntsvilleElectronic Sales, Inc.(205) 533-1735
ARIZONA
Scottsdale
Thom Luke Sales, Inc. (602) 451-5400
COLORADO
Englewood
Thorson Rocky Mountain (303) 773-6300
CONNECTICUT
Wallingford
Advanced Technical Sales (508) 664-0888
FLORIDA
Altamonte Springs
Semtronic Associates, Inc. (407) 831-8233
Clearwater
Semtronic Associates, Inc. (813) 461-4675
Fort Lauderdale
Semtronic Associates, Inc. (305) 731-2484
GEORGIA
Avorcross
Electronic Sales, Inc. (404) 448-6554
ILLINOIS
Hoffman EstatesVictory Sales, Inc.(708) 490-0300
IOWA
Cedar Rapids
Advanced Technical Sales (319) 393-8280
KANSAS
OlatheAdvanced Technical Sales(913) 782-8702
MARYLAND
Pasadena
Electronic Engineering \& Sales (410) 255-9686

Sales Representatives and Distributors

U.S., CANADIAN \& PUERTO RICAN REPRESENTATIVES

TEXAS

Austin

Nova Marketing, Inc.
(512) 343-2321

Dallas
Nova Marketing, Inc
(214) 265-4630

Houston
Nova Marketing, Inc. \qquad (713) 988-6082

UTAH

Salt Lake City

Thorson Rocky Mountain
(801) 942-1683

WISCONSIN
Brookfield
Victory Sales, Inc \qquad

CANADA

British Columbia

BBD Electronics, Inc.(604) 465-4907

Ontario

BBD Electronics, Inc.(905) 821-7800
Ottawa
BBD Electronics, Inc.(613) 764-1752
Quebec
BBD Electronics, Inc.(514) 697-0801

PUERTO RICO
San Juan
Semtronic Associates, Inc.
(809) 766-0700

Sales Representatives and Distributors

U.S. AND CANADIAN DISTRIBUTORS
NATIONWIDE
Newark Electronics 1-800-367-3573
ALABAMA
Inside Alabama 800-572-7236
Outside Alabama 800-633-2918
Huntsville
Arrow Electronics (205) 837-6955
Hamilton Hallmark Electronics (205) 837-8700
ARIZONA
Inside Arizona 800-352-8489
Outside Arizona 800-528-8471
Phoenix
Hamilton Hallmark Electronics (602) 437-1200
Tempe
Anthem Electronics (602) 966-6600
Arrow Electronics (602) 431-0030
CALIFORNIA
Calabasas
Arrow Electronics (818) 880-9686
Chatsworth
Anthem Electronics (818) 700-1000
Costa Mesa
Hamilton Hallmark Electronics (714) 641-4100
Hayward
Arrow Electronics (510) 487-8416
Irvine
Anthem Electronics (714) 768-4444
Arrow Electronics (714) 587-0404
Rocklin
Anthem Electronics (916) 624-9744
Hamilton Hallmark Electronics (916) 961-0922
San Diego
Anthem Electronics (619) 453-9005
Arrow Electronics 619 565-4800
Hamilton Hallmark Electronics (619) 277-6136
San Jose
Anthem Electronics (408) 453-1200
Arrow Electronics (408) 441-9700
Sunnyvale
Hamilton Hallmark Electronics (408) 743-3300
Woodland Hills
Hamilton Hallmark Electronics (818) 594-0404
COLORADO
Colorado Springs
Hamilton Hallmark Electronics (719) 637-0055
Englewood(303) 790-4500
Arrow Electronics. (303) 799-0258 (303) 790-1662

CONNECTICUT

Cheshire

Hamilton Hallmark Electronics(203) 271-2844
Wallingford
Arrow Electronics(203) 265-7741
Waterbury
Anthem Electronics(203) 596-3200

FLORIDA

Deerfield Beach
Arrow Electronics(305) 429-8200
Lake Mary
Arrow Electronics(407) 333-9300
Largo
Hamilton Hallmark Electronics(813) 541-7440
(800) 282-9350

Fort Lauderdale

Hamiltón Hallmark Electronics(305) 484-5482
Winter Park
Hamilton Hallmark Electronics(407) 657-3300

GEORGIA

Duluth
Arrow Electronics (404) 497-1300
Hamilton Hallmark Electronics (404) 623-5475
(404) 623-4400

iLiiñois

Bensonville

Hamilton Hallmark Electronics(708) 860-7780

Itasca

Arrow Electronics (708) 250-0500
Schaumburg
Anthem Electronics(708) 884-0200

INDIANA

Indianapolis

Arrow Electronics (317) 299-2071
Hamilton Hallmark Electronics(317) 872-8875
(800) 829-0146

IOWA
Cedar Rapids
Arrow Electronics
(319) 395-7230

KANSAS

Lenexa

Arrow Electronics
(913) 541-9542

Hamilton Hallmark Electronics
(913) 888-4747
(800) 332-4375

Sales Representatives and Distributors

U.S. AND CANADIAN DISTRIBUTORS
KENTUCKY
Lexington
Hamilton Hallmark Electronics (800) 235-6039
(800) 525-0069
MARYLAND
Columbia
Anthem Electronics (301) 995-6640
Arrow Electronics..................................301) 596-7800 (410) 988-9800
MASSACHUSETTS
Peabody
Hamilton Hallmark Electronics (508) 532-9808
Wilmington
Anthem Electronics (508) 657-5170
Arrow Electronics (508) 658-0900
MICHIGAN
Livonia
Arrow Electronics (313) 462-2290
Nori
Hamilton Hallmark Electronics (313) 347-4271
Plymouth
Hamilton Hallmark Electronics (313) 416-5800 (800) 767-9654
MINNESOTA
Bloomington
Hamilton Hallmark Electronics (612) 881-2600
Eden Prairie
Anthem Electronics (612) 944-5454
Arrow Electronics (612) $941-5280$
MISSOURI
Earth City
Hamilton Hallmark Electronics (314) 291-5350
St. LouisArrow Electronics(314) 567-6888
NEVADA
SparksArrow Electronics(702) 331-5000
NEW JERSEY
Cherry Hill
Hamilton Hallmark Electronics (609) 424-0110
Marlton
Arrow Electronics (609) 596-8000
Pinebrook
Anthem Electronics (201) 227-7960
Arrow Electronics (201) 227-7880
Parsippany
Hamilton Hallmark Electronics (201) 515-1601
NEW YORK
Commack
Anthem Electronics (516) 864-6600
Hauppauge
Arrow Electronics (516) 231-1000
Hamilton Hallmark Electronics (516) 434-7470
Melville
Arrow Electronics (516) 391-1300
Rochester
Arrow Electronics (716) 427-0300
Hamilton Hallmark Electronics (716) 475-9130
Ronkonkoma
Hamilton Hallmark Electronics (516) 737-0600
NORTH CAROLINA
Raleigh
Arrow Electronics (919) 876-3132
Hamilton Hallmark Electronics (919) 872-0712
OHIO
Centerville
Arrow Electronics (513) 435-5563
Dayton
Hamilton Hallmark Electronics (513) 439-6735(800) 423-4688
Solon
Arrow Electronics (216) 248-3990
Hamilton Hallmark Electronics (216) 498-1100
Worthington
Hamilton Hallmark Electronics (614) 888-3313

Sales Representatives and Distributors

U.S. AND CANADIAN DISTRIBUTORS
OKLAHOMA
TulsaArrow Electronics(918) 252-7537
Hamilton Hallmark Electronics (918) 254-6110
OREGON
Beaverton
ALMAC/Arrow Electronics (503) 629-8090
Hamilton Hallmark Electronics (503) 526-6200
PENNSYLVANIA
Horsham
Anthem Electronics (215) 443-5150
Pittsburgh
Arrow Electronics (412) 963-6807
TEXAS
Austin
Arrow Electronics (512) 835-4180
Hamilton Hallmark Electronics (512) 258-8848
Carrollton
Arrow Electronics (214) 380-6464
Dallas
Hamilton Hallmark Electronics (214) 553-4300
Houston
Arrow Electronics (713) 530-4700
Hamilton Hallmark Electronics (713) 781-6100
Richardson
Anthem Electronics (214) 238-7100
San Antonio
Hamilton Hallmark Electronics (210) 828-2246
UTAH
Salt Lake City
Anthem Electronics(801) 973-8555
Arrow Electronics 801) 973-6913
Hamilton Hallmark Electronics (801) 266-2022
WASHINGTON
Bellevue
ALMAC/Arrow Electronics (206) 643-9992
Bothell
Anthem Electronics (206) 483-1700
Redmond
Hamilton Hallmark Electronics (206) 881-6697
Spokane
ALMAC/Arrow Electronics (509) 924-9500
WISCONSIN
Brookfield
Arrow Electronics (414) 792-0150
New Berlin
Hamilton Hallmark Electronics (414) 797-7844
CANADA
Alberta
Future Electronics (403) 250-5550
Future Electronics (403) 438-2858
British Columbia
Arrow Electronics (604) 421-2333
Future Electronics (604) 294-1166
Manitoba
Future Electronics (204) 786-7711
Ontario
Arrow Electronics (613) 226-6903
Arrow Electronics 670-7769
Future Electronics (905) 612-9200
Future Electronics (613) 820-8313
Quebec
Arrow Electronics (514) 421-7411
Future Electronics (514) 694-7710
Burnaby
Hamilton Hallmark Electronics (604) 420-4101
Mississauga
Hamilton Hallmark Electronics (416) 564-6060
Nepean
Hamilton Hallmark Electronics (613) 226-1700
Ville St. LaurentHamilton Hallmark Electronics(514) 335-1000

Sales Representatives and Distributors

CENTRAL AND SOUTH AMERICA

MEXICO

Semiconductores
Profesionales ...525-524-6123
Proyeccion Electronica7482

ARGENTINA

Buenos Aires
YEL SRL ..011-541-440-1532

BRAZIL

Sao Paulo

Digibyte
011-55-11-581-4100
Nishicom 011-55-11-535-1755
ASIA-PACIFIC
AUSTRALIA
R\&D Electronics 61-3-558-0444
GEC Electronics Division 61-2-638-1888
CHINA
Lestina International Ltd 86-1-849-8888
Rm. 20469
China Electronics Appliance Corp 86-755-335-4214
TLG Electronics, Ltd 852-388-7613
HONG KONG
Lestina International Ltd 852-735-1736
Electrocon Products Ltd 852-481-6022
INDIA
Bangalore
Zenith Technologies Pvt. Ltd 91-812-586782
Bombay
Zenith Technologies Pvt. Ltd 91-22-4947457
JAPAN
Teksel Co., Ltd. 81-44-812-7430
Internix Incorporated 81-3-3369-1101
Kanematsu Electronic81-3-3779-7811
KOREA
ENC-Korea 822-579-3330
MALAYSIA
Eltee Electronics Ltd. 60-3-7038498
NEW ZEALAND
GEC Distributors Ltd. 64-25-971057
PHILIPPINESAlexan Commercial63-2-402223
SINGAPORE
Eltee Electronics Ltd. 65-2830888
TAIWAN (ROC)
Acer Sertek, Inc 886-2-501-0055
Orchard Electronics Co. 886-2-504-7083
Weikeng Ind. Co. Ltd 886-2-659-0303
THAILAND
Eltee Electronics Ltd. 66-2-530-1739

Sales Representatives and Distributors

EUROPE

AUSTRIA
Vienna
EBV Elektronik GMBH43-222-8941774
BELGIUMAntwerpD \& D Electronics PVBA010-323-82779
Zaventem
EBV Elektronik 010-322-7209936
DENMARK
Brondby
Ditz Schweitzer AS 010-4542-453044
Lynge
Delco A/S 011-45-35-821200
ENGLAND
Berkshire
Future Electronics 0753-687000
Gothic Crellon 0734-787848
Macro Marketing 0628-604383
Lancastershire
Complementary Technologies Ltd 44-942-274731
FINLAND
Espoo
OY SW Instruments AB $011-358-0-522-122$
FRANCE
Cedex
A2M010-331-46232425
Massy
Reptronic SA 010-331-60139300
GERMANY
Berlin
EBV Elektronik GMBH 030-3421041
Electronic 2000 030-2110761
Burgwedel
EBV Elektronik GMBH 051-3980870
Dortmund
Future Electronics 02305-42051
Duesseldorf
Electronic 2000 021-1920030
Erfurt
Thesys 036-1476000
Frankfurt
EBV Elektronik GMBH 069-785037
Electronic 2000 069-973840
Future Electronics 6126-54020
Hamburg
Electronic 2000 040-64557021
Leonberg
EBV Elektronik GMBH 071-5230090
Muenchen
Electronic 2000 089-451101
EBV Elektronik GMBH 089-460960
Future Electronics 089-9571950
Nuernberg
Electronic 2000 911-9951610
Neuss
EBV Elektronik GMBH $021-31530072$
Stuttgart
Electronic 2000 071-563560
Future Electronics 711-830830

Sales Representatives and Distributors

ISRAELRDT010-972-35483737
ITALY
Milano
De Mico S.P.A. 39-295-343600
NETHERLANDS
Tekelec 010-3179-310100
NORWAYHefro010-47-22676800
PORTUGAL
Ibertronics 35-1-471-6587
SPAIN
Madrid
Unitronics S.A. 34-1-5428493
SWEDEN
NC Nordcomp Sweden AB 010-46-87646710
SWITZERLAND
Dietikon
EBV Elektronik GMBH 41-1-7401090
Regensdorf
Moor elektronik AG 41-1-8433111
Lausanne
EBV Elektronik GMBH 41-21-3112804

Zilog, Inc.
210 East Hacienda Ave. Campbell, CA 95008-6600
408-370-8000

[^0]: Lotus and 1-2-3 are registered trademarks of Lotus Development Corp.

[^1]: Note:

 * Default setting after Reset

[^2]: Notes：
 ＊Default setting after Reset
 ${ }^{\dagger}$ Reset after STOP－Mode Recovery

[^3]: * Single and Gang Programming Available

