

Digital Signal Processors

Includes Specifications and Application Notes for the following parts:

> Z89C00 Z86C95 Z89120/920 Z89121/921 Z89320/321

Product Specifications Databook

Digital Signal Processors

Includes Specifications for the following parts:

- Z86C95Z89C00
- **Z89120/920**
- **Z89121/921**
- **Z89320/321**

Databook

...

DSP DATABOOK

TABLE OF CONTENTS

TITLE	PAGE
INTRODUCTION	I-1
Z86C95 Z8 [®] Digital Signal Processor	1-1
Z89C00 16-BIT DIGITAL SIGNAL PROCESSOR	2-1
Z89C00 DSP Application Note "Understanding Q15 Two's Complement Fractional Multiplication	
Z89120, Z89920 (ROMLESS) 16-BIT MIXED SIGNAL PROCESSOR	4-1
Z89121, Z89921 (ROMLESS) 16-BIT MIXED SIGNAL PROCESSOR	5-1
Z89320 16-Bit Mixed Signal Processor	6-1
Z89321 16-BIT MIXED SIGNAL PROCESSOR	7-1
Support Product Information	8-1
Superintegration [™] Products Guide	S-1
LITERATURE GUIDE AND THIRD PARTY SUPPORT	L-1
ZILOG'S SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	Z-1

•

Introduction

Z86CS5 28° Digital Signal Processor

289000 16-Bit Digital Signal Processor

Z89C00 DSP Application Note

Z89120, Z89920 (ROMIess) 16-Bit Mixed Signal Processor

Z89121, Z89921 (ROMIess) 16-Bit Mixed Signal Processor

.

.

· .

.

、

INTRODUCTION

Zilog's Focus on Application Specific Products Helps You Maintain Your Technological Edge

Zilog's DSP products are suitable for a broad range of applications, from general-purpose use through speech synthesis and mass storage. Whichever device you choose, you'll find a comprehensive feature set and easy-to-use development tools to speed your design time to production.

Z86C95 CMOS Z8® Digital Signal Processor

The Z86C95 is a ROMless Z8 microcontroller with an embedded 16-bit DSP. This device is well suited for servo control in mass storage applications, digital filtering in motor controllers and non-interruptable power supplies. The slave DSP executes most instructions in a single clock cycle, including 16-bit by 16-bit multiplication and accumulation. The Z86C95 has 16 digital I/O lines, an 8-channel, 8-bit A-to-D converter with 2 μ s conversion time, an 8-bit D-to-A converter with programmable gain, a PWM, UART, and SPI, three 16-bit timers with capture and compare registers, a hardwired 16-bit by 16-bit multiplier and a 32-bit/16-bit divider for the Z8. Support tools include demonstration boards, assemblers/linkers, and a real time trace emulation system.

Z89C00 16-Bit Digital Signal Processor

With a high-performance single-cycle multiply/accumulate instruction and zero software overhead pointer architecture, the Z89C00 is an excellent choice for many DSP designs. Flexible general-purpose I/O features, including a 16-bit address and data bus and a 16-bit I/O bus, make it easy to configure even slow peripherals into the system. A comprehensive set of development support tools makes it even easier to work with the Z89C00. This device offers broad functionality in an affordable package for consumer and industrial product designs alike.

Z89120, Z89920 (ROMIess) 16-Bit Mixed Signal Processor

Multiple-chip capability in a single-chip solution is the hallmark of the Z89120. Combining 16-bit DSP functions with an integrated 8-bit microcontroller and A/D, D/A converters, it is an optimal choice for communications applications including audio, fax, voice mail, modems and data transmission, as the Z89120 can handle several of these functions without additional hardware. Its very low power consumption and small footprint make it ideal for portable use, or in applications requiring long-term continuous operation, such as security systems and other supervisory instrumentation. The Z89920 is the ROMless version of the Z89120 device.

Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor

The Z89121 system processor offers exceptional flexibility for applications like voice mail and personal communications, which involve substantial I/O and storage requirements. Two Codec ports allow extensive analog interfacing, and expanded DSP program memory space—plus a 32-Mbit DRAM interface—accommodates digital speech generation and storage. The Z8912's compact design provides maximum space-efficiency for remote messaging and paging applications. The Z89921 is the ROMless version of the Z89121 device.

Z89320 16-Bit Digital Signal Processor

The Z89320 provides the computational power of the Z89C00 at a cost effective price. This device incorporates 512 bytes of RAM and 4K words of program ROM. Two general purpose user inputs and two user outputs provide convenient peripheral monitoring or control. A dedicated 16-bit I/O bus assists in transferring information to and from external peripherals. The compact instruction set is standard to all Zilog DSP products and provides ease-of-use programming. Applications include high-volume multimedia, digital audio, speech processing, and system control.

Z89321 16-Bit Digital Signal Processor

Building on the Z89320 feature set, the Z89321 integrates a dual codec interface to assist in the transfer of analog signals to the processor. A standard 8-bit codec can be used to communicate with the interface. An upgrade to the Z89321 will provide an expansion to the interface capabilities to include 16-bit linear and 16-bit stereo codecs. This integration path provides additional cost advantages to customers that use codecs for transfer of data.

Z89C00 16-Bit Digital Signal Processor

Z89C00 DSP Application Note

Z89120, Z89920 (ROMIess) 16-Bit Mixed Signal Processor

Z89121, Z89921 (ROMIess) 16-Bit Mixed Signal Processor

.

[®]ZiLŒ

PRELIMINARY PRODUCT SPECIFICATION

Z86C95 CMOS Z8[®] DIGITAL SIGNAL PROCESSOR

FEATURES

- Complete Microcontroller, 16 I/O Lines, and up to 64 Kbytes of Addressable External Space Each for Program and Data Memory
- Embedded Reduced Instruction Set DSP (Digital Signal Processor) for Digital Servo Control, with 16 x 16-Bit Multiply and Accumulate in One Clock Cycle
- 8-Channel, 8-Bit A/D Converter with Track and Hold and Minimum Single Conversion Time of 2 μs
- 8-Bit D/A Converter with Programmable Gain Stage and a Maximum Settling Time of 3 μs
- Single Channel 40/80 kHz Pulse Width Modulator
- 256-Byte Register File, Including 236 General-Purpose Registers, Four I/O Port Registers and 16 Status and Control Registers
- 16 x 16-Bit Hardwired Multiply and 32-Bit by 16-Bit Divide, Exclusive of DSP
- Four External Vectored Priority Interrupts for I/O, Counter/Timers and UART

- On-Chip Oscillator that Accepts Crystal or External Clock Drive
- Full-Duplex UART
- 16-Bit Counter/Timers with Capture and Compare Registers
- Register Pointer for Short, Fast Instructions to Any One of the 16 Working Register Groups
- Serial Peripheral Interface
- Multiplexed and Demultiplexed Address/Data Bus
- Single +5V Power Supply, All I/O Pins TTL Compatible
- 1.2 Micron CMOS Technology
- Clock Speeds 20 and 24 MHz
- Three Low-Power Standby Modes; STOP, HALT, and PAUSE
- Flash EPROM Write Support

GENERAL DESCRIPTION

The Z86C95 MCU (Microcontroller Unit) introduces a new level of sophistication to Superintegration™. The Z86C95 is a member of the Z8[®] single-chip microcontroller family incorporating a CMOS ROMless Z8 microcontroller with an embedded DSP processor for digital servo control. The DSP slave processor can perform 16 x 16-bit multiplicates and accumulates in one clock cycle. Additionally, the Z86C95 is further enhanced with a hardwired 16 x 16-bit multiplier and 32-bit/16-bit divider, three 16-bit counter timers with capture and compare registers, a half flash 8-bit A/D converter with a 2 µs conversion time, an 8-bit DAC with 1/4 programmable gain stage, UART, serial periph-

eral interface, and a PWM output channel (Figure 1). It is fabricated using 1.2 micron CMOS technology and offered in an 80-pin QFP, 84-pin PLCC package, or a 100-pin VQFP (Figures 2, 3, and 4).

The Z86C95 provides up to 16 output address lines. This permits an address space of up to 64 Kbytes of data and program memory each. Eight address outputs (AD7-AD0) are provided by a multiplexed, 8-bit, Address/Data bus. The remaining eight bits are provided through output address bits A15-A8.

GENERAL DESCRIPTION (Continued)

There are 256 registers located on chip and organized as 236 general-purpose registers, 16 control and status registers, and four I/O port registers. The register file can be divided into 16 groups of 16 working registers each. Configuration of the registers in this manner allows the use of short format instructions; in addition, any of the individual registers can be accessed directly. The Z86C95 contains 256 words of DSP Program RAM configured from the Z8 side as 512 bytes of RAM and 128 words of DSP data RAM.

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	Vss

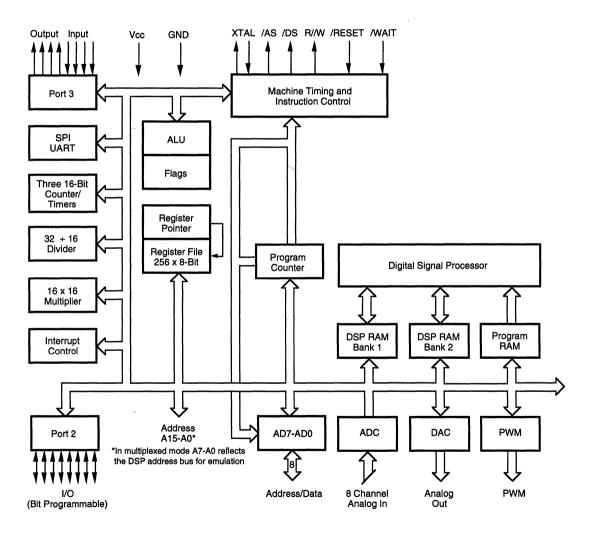
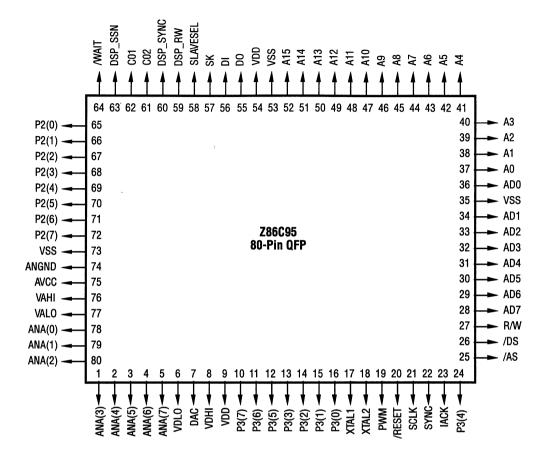



Figure 1. Functional Block Diagram

Silas

PIN DESCRIPTION

Figure 2. 80-Pin QFP Pin Assignments

1-3

PIN DESCRIPTION (Continued)

Table 1. 80-Pin QFP Pin Identification	Table 1.	80-Pin	QFP Pi	n Identification
--	----------	--------	--------	------------------

No.	Symbol	Function	Direction
1-5	ANA(3)-ANA(7)	Input to A/D	Input
6	VDLO	Low Ref Volt, DAC	Input
7	DAČ	D/A Converter Output	Output
8	VD _H	High Ref Volt, DAC	Input
9		Digital Power Supply	Input
10-12	P3(7)-P3(5)	Port 3, Pins 7,6,5	Output
13-16	P3(3)-P3(0)	Port 3, Pins 3,2,1,0	Input
17	XTAL1	Crystal, OSC CLK	Input
18	XTAL2	Crystal, OSC CLK	Output
19	PWM	Pulse Width Modulator	Output
20	/RESET	Reset	Input
21	SCLK	System Clock	Output
22	SYNC	Synchronize Pin	Output
23	IACK	Interrupt Acknowledge	Output
23		Port 3, Pin 4	
	P3(4)	·	Output
25	/AS	Address Strobe	Output
26	/DS	Data Strobe	Output
27	R//W	Read/Write	Output
28-34	AD7-AD1	MUX ADD/DATA, Pins 7-1	Input/Output
35	V _{ss}	Digital Ground	Input
36	ADO	MUX ADD/DATA, Pin 0	Input/Output
37-52	A0-A15	External Address	Output
53	V _{ss}	Digital Ground	Input
54	V	Digital Power Supply	Input
55		SPI Data Out	Output
56	DI	SPI Data In	Input
57	SK	SPI Clock	Input/Output
58	SLAVESEL	Slave Select	Input
59	DSP_RW	DSP Emulation R/W Pin	Output
60	DSP_SYNC	DSP Emulation Sync Pin	Output
61-62	CO2-CO1	Compare Outputs for Timer 2	Output
63	DSP_SSN	DSP Emulation Single Step Pin	Input
64	/WAIT	Wait	Input
65-72	P2(0)-P2(7)	Port 2, Pins 0-7	Input, Output
73	V _{ss}	Digital Ground	Input
74	AN _{GND}	Analog Ground	Input
75	AV _{CC}	Analog Power Supply	Input
76	VA _{HI}	High Ref Volt, A/D	Input
77	VALO	Low Ref Volt, A/D	Input
• •	ANA(0)-ANA(2)	Input to A/D	Input

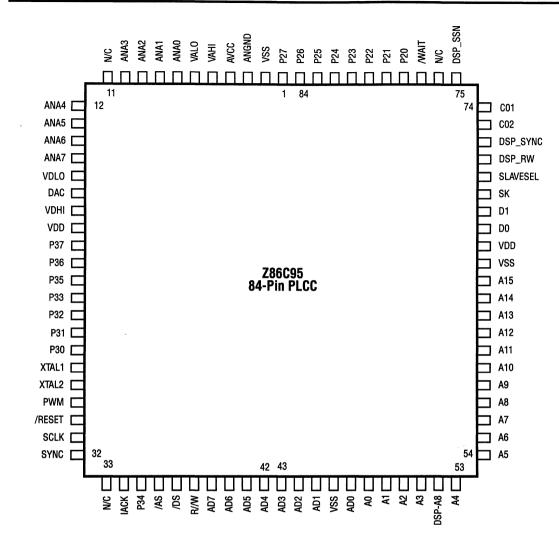
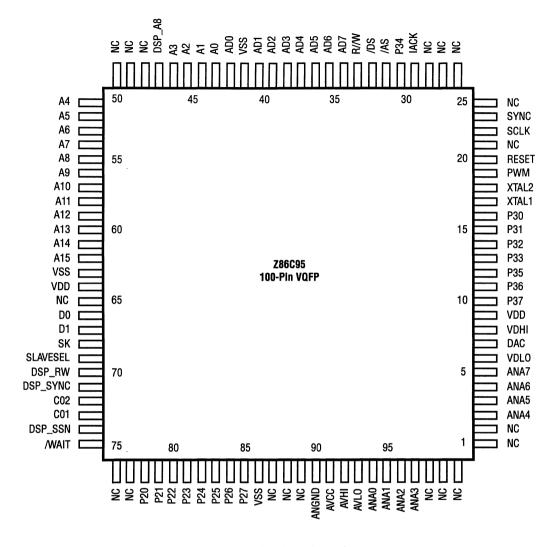


Figure 3. 84-Pin PLCC Pin Assignments

Z86C95 Z8® DSP



PIN DESCRIPTION (Continued)

No.	Symbol	Function	Direction
1	P27	Port 2 Pin 7	Input/Output
2	V _{ss}	Digital Ground	Input
3	AN	Analog Ground	Input
4		Analog Power Supply	Input
5	VA _{HI}	High Ref Volt, A/D	Input
		.	· · · · · · · · · · · · · · · · · · ·
6 7-10	VA _{LO} ANAO-ANA3	Low Ref Volt, A/D Input to A/D, Pins 0-3	Input Input
12-15	ANA4-ANA7	Input to AD, Pins 5-7	Input
16	VD _{LO} DAC	Low Ref Volt, DAC	Input
17	DAC	D/A Converter Output	Output
18	VD _{HI}	High Ref Volt, DAC	Input
19	V _{DD}	Digital Power Supply	Input
20-22	V _{DD} P37-P35	Port 3, Pins 7-5	Output
23-26	P33-P30	Port 3, Pins 3-0	Input
27	XTAL1	Crystal, OSC CLK	Input
28	XTAL2	Crystal, OSC CLK	Output
29	PWM	Pulse Width Modulator	Output
			•
30	/RESET	Reset	Input
31	SCLK	System Clock	Output
32	SYNC	Z8 Emulation Sync Pin	Output
33	N/C	No Connection	
34	IACK	Interrupt Acknowledge	Output
35	P34	Port 3, Pin 4	Output
36	/AS	Address Strobe	Output
37	/DS	Data Strobe	Output
38	R//W	Read/Write	Output
39-45	AD7-AD1	MUX ADD/DATA, Pins 7-1	Input/Output
46	V _{ss}	Digital Ground	Input
47	AD0	MUX AD0/DATA Pin 0	Input/Output
48-51	A0-A3	External Address	Output
			•
52	DSP-A8	MSB of DSP PC	Output
53	A4	External Address	Output
54-64	A5-A15	External Address	Output
65	V _{ss}	Digital Ground	Input
66		Digital Power Supply	Input
67	DO	SPI Data Out	Output
68	DI	SPI Data In	Input
69	SK	SPI Clock	Input/Output
70	SLAVESEL	Slave Select	Input
70	DSP_RW	DSP Emulation R/W Pin	Output
70		DSP Emulation SYNC Pin	Output
72	DSP_SYNC		
73-74	C02-C01	Compare Outputs for Timer 2	Output
75	DSP_SSN	DSP Emulation Single Step Pin	Output
76	N/C	No Connection	
77	/WAIT P20-P26	Wait	Input
78-84		Port 2, Pins 0-6	Input/Output

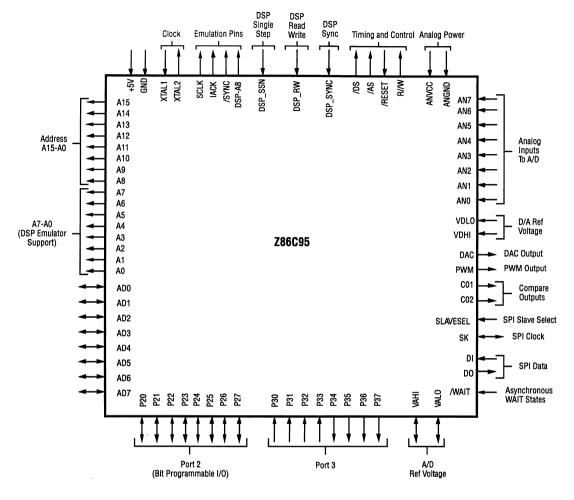
Table 2. 84-Pin PLCC Pin Identification

[⊗]ZiLO5

•

PIN DESCRIPTION (Continued)

Table 3. 100-Pin VQFP Pin Identification


No.	Symbol	Function	Direction
1-2	N/C	No Connection	
3-6	ANA4-ANA7	Input to AD, Pins 5-7	Input
7	VDLO	Low Ref Volt, DAC	Input
8	DAC	D/A Converter Output	Output
9	VDHI	High Ref Volt, DAC	Input
10	VDD	Digital Power Supply	Input
11-13	P37-P35	Port 3, Pins 7-5	Output
14-17			
	P33-P30	Port 3, Pins 3-0	Input
18	XTAL1	Crystal, OSC CLK	Input
19	XTAL2	Crystal, OSC CLK	Output
20	PWM	Pulse Width Modulator	Output
21	/RESET	Reset	Input
22	N/C	No Connection	
23	SCLK	System Clock	Output
24	SYNC	Synchronize Pin	Output
25-28	N/C	No Connection	•
29	IACK	Interrupt Acknowledge	Output
30	P34	Port 3, Pin 4	Output
31	/AS	Address Strobe	Output
32	/DS	Data Strobe	Output
33	R//W	Read/Write	Output
34-40	AD7-AD1	MUX ADD/DATA, Pins 7-1	Input/Output
41	VSS	Digital Ground	Input
42	AD0	MUX AD0/DATA Pin 0	Input/Output
43-46	AO-A3	External Address	Output
47	DSP-A8	MSB of DSP PC	Output
48-50	N/C	No Connection	
51-62	A5-A15	External Address	Output
63	VSS	Digital Ground	Input
64	VDD	Digital Power Supply	Input
65	N/C	No Connection	
66	DO	SPI Data Out	Output
67	D1	SPI Data In	Input
68	SK	SPI Clock	Input/Output
69	SLAVESEL	Slave Select	Input
70	DSP_RW	DSP Emulation R/W Pin	Output
70 71			
	DSP_SYNC	DSP Emulation SYNC Pin	Output
72-73	C02-C01	Compare Outputs for Timer 2	Output
74	DSP_SSN	DSP Emulation Single Step Pin	Output
75	/WAIT	Wait	Input
76-77	N/C	No Connection	
78-85	P20-P27	Port 2, Pins 0-6	Input/Output
86	VSS	Digital Ground	Input
87-89	N/C	No Connection	·
90	ANGND	Analog Ground	Input
91	AVCC	Analog Power Supply	Input
92	VAHI	High Ref Volt. A/D	Input
93	VALO	Low Ref Volt, A/D	Input
	ANAO-ANA3	Input to A/D, Pins 0-3	Input
94-97			

⊗ Silas

PRELIMINARY

Z86C95 Z8®DSP

PIN FUNCTIONS

/DS (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid. Data Strobe will tri-state in reset.

/AS (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the highimpedance state along with Port 1, Data Strobe, and Read/ /Write.

PIN FUNCTIONS (Continued)

/RESET (input, active Low). To avoid asynchronous and noisy reset problems, the Z86C95 is equipped with a reset filter of four external clocks (4TpC). If the external /RESET signal is less than 4TpC in duration, no reset occurs.

On the fifth clock after the /RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is held active Low while /AS cycles at a rate of TpC/2. When /RESET is deactivated, program execution begins at location 000CH. Reset time must be held Low for 50 ms or until V_{nn} is stable, whichever is longer.

XTAL1, XTAL2 *Crystal 1, Crystal 2* (time-based input and output, respectively). These pins connect a parallel-resonant crystal, ceramic resonator, LC, or any external single-phase clock to the on-chip oscillator and buffer.

R//W (output, read High/write Low). The Read/Write signal is low when the MCU is writing to the external program or data memory. Will tri-state in reset.

A15-A8 (output). Demultiplexed high byte of Z8 external address bus. Auto Latch when in reset.

A7-A0 (output). Demultiplexed low byte of Z8 external address bus or internal DSP address bus.

AD7-AD0 (input, output). Multiplexed Z8 address/data bus. Auto Latch when in reset.

AN7-AN0 (analog input). Analog inputs to the A/D converter.

DAC (output). Analog output of the D/A converter.

PWM (output). Pulse Width Modulator output. Open-Drain.

CO1 (output). Compare output1 for timer T2.

CO2 (output). Compare output2 for timer T2.

SLAVESEL (input, active Low). SPI Slave Select is used in Slave mode to mark the beginning and end of a transaction.

SK (input, output). SPI clock.

DI (input, active High). SPI serial data input in both master and slave mode.

DO (output, active High). SPI serial data output.

/WAIT (input, active Low). Introduces asynchronous wait states into the external memory fetch cycle. When this input goes Low during an external memory access, the Z8 freezes the fetch cycle until this pin goes High. This pin is sampled after /DS goes Low; should be pulled up if not used.

 $\textbf{VA}_{\textbf{HI}}$ (input). Reference voltage (High) for the A/D converter.

 $\textbf{VA}_{\textbf{LO}}$ (input). Reference voltage (Low) for the A/D converter.

ANV_{cc} (input). Analog power supply for A/D and D/A.

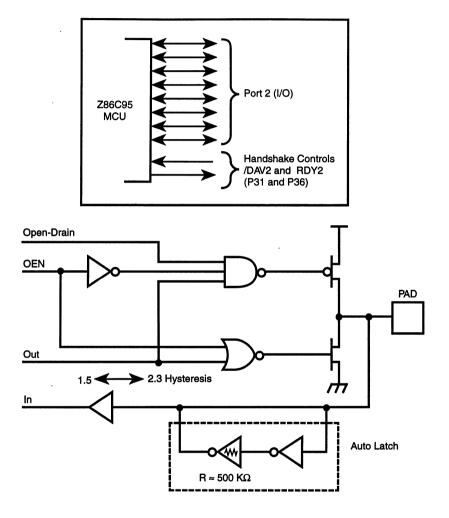
AN_{GND} (input). Analog ground for A/D and D/A.

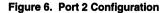
VD_{HI} (input). Reference voltage (High) for D/A converter.

VD_{LO} (input). Reference voltage (Low) for D/A converter.

SSTEP (input, active High). DSP single-step control pin. The DSP processor will execute a NOP instruction and hold the program counter value when this pin is High. /SSTEP is synchronized with the system clock; should be pulled Low if not used.

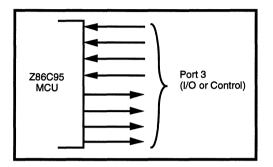
SCLK System Clock (output). The internal system clock is available at this pin.


IACK Interrupt Acknowledge (output, active High). This output, when High, indicates that the Z86C95 is in an interrupt cycle.


/SYNC (output, active Low). This signal indicates the last clock cycle of the currently executing instruction.

Port 2 (P27-P20). Port 2 is an 8-bit, bit programmable, bidirectional, CMOS compatible port. Each of these eight I/O lines can be independently programmed as an input or output or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port 2 may be placed under handshake control. In this configu-

ration, Port 3 lines P31 (Port 3, bit 1) and P36 are used as the handshake controls lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27 (Figure 6).



PIN FUNCTIONS (Continued)

Port 3 (P37-P30). Port 3 is an 8-bit, CMOS compatible fourfixed input and four-fixed output port. These 8 I/O lines have four-fixed (P33-P30) input and four-fixed (P37-P34) output ports (Table 3). Port 3 P30 and P37, when used as serial I/O, are programmed as serial in and serial out, respectively (Figure 7).

Port 3 is configured under software control to provide the following control functions: Handshakes for Ports 2 (/DAV and RDY); four external interrupt request signals (IRQ3-IRQ0); timer input and output signals (T_{IN} and T_{OUT}), and Data Memory Select (/DM).

Port 3 lines P37 and P30, can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by the Counter/ Timer0.

Pin #	VO	CTC1	Int.	P2HS	UART	Ext.
P30	In		IRQ3		Serial In	
P31	In `	T _{IN}	IRQ2	D/R		
P32	In		IRQ0			
P33	In		IRQ1			
P34	Out					/DM
P35	Out					
P36	Out	Τ _{ουτ}		R/D		
P37	Out	001			Serial Out	

⊗ Zilos

The Z86C95 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is On, bit 7 of the received data

is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs that are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level rather, than a floating node, reduces excessive supply current flow in the input buffer.

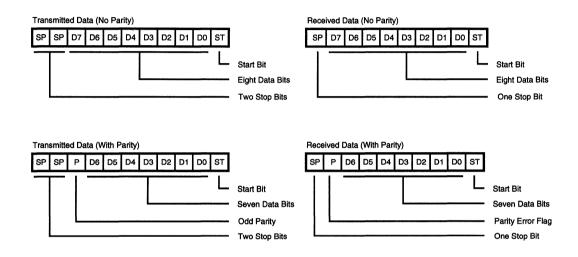


Figure 8. Serial Data Formats

ADDRESS SPACE

Program Memory. The Z86C95 can address up to 64 Kbytes of external program memory (Figure 9). Program execution begins at external location 000CH after a reset.

Data Memory (/DM). The Z86C95 can address up to 64 Kbytes of external data memory (Figure 9). External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function, that can be programmed to appear on P34 (Port 3, bit 4), is used to distinguish between data and program memory space. The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references program (/DM inactive) memory, and an LDE instruction references DATA (/DM active Low) memory. Data Memory will tri-state in reset.

Register Memory Map. The Z86C95 register memory space is split into five register files; the original Z8 Register File, Expanded Register File A (ERF-A), Expanded Register File B (ERF-B), Expanded Register File C (ERF-C) and Expanded Register File D (ERF-D) (Figure 10).

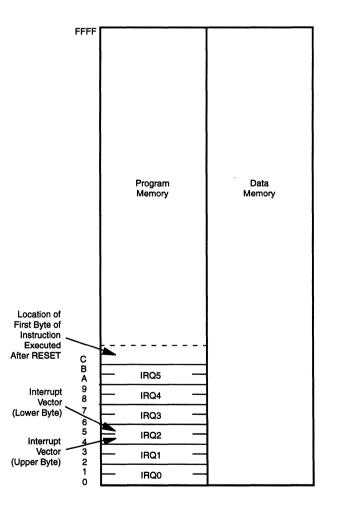


Figure 9. Program and Data Memory Configuration

Z8 Standard Control Registers

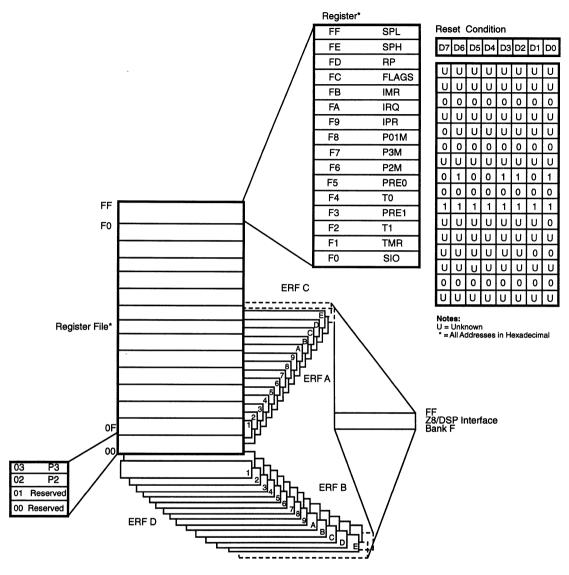


Figure 10. Register File

ADDRESS SPACE (Continued)

Register File. The Register File consists of four I/O port registers, 236 General-Purpose Registers and 16 control and status registers. The instructions can access registers directly or indirectly through an 8-bit address field. The Z86C95 also allows short 4-bit register addressing using the Register Pointer (Figures 11, 12). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 contiguous locations. The Register Pointer addresses the starting location of the active working-register group.

Expanded Register File. The register memory has been further expanded into four additional register files known as Expanded Register Files A thorough D. Each of these register files contain 15 banks of 16 registers per bank. ERF-A stores data for the DSP processor in nine banks of its register space as well as system control registers and peripheral device registers in the remaining six banks. ERF-B contains the remaining four banks of DSP data memory (total DSP data memory is 208 bytes [accessible by the Z8]) as well as ten banks of DSP program memory. ERF-C contains fourteen banks of DSP program memory. and ERF-D contains eight banks of DSP program memory making a total of 512 bytes. Bank F is common to all four Expanded Register Files. Register (8H) in bank F is the Z8/ DSP control register. This register allows a quick means of switching between register files while in the DSP. To do this, bits 5 and 6 of the Z8/DSP control register are used as follows: D6/5 - 00 for ERF-A, D6/5 - 01 for ERF-B, D6/5 - 10 for ERF-C,D6/5 - 11 for ERF-D. On power-up, bits 5 and 6 are reset to 0 thereby enabling access to ERF-A. Bits 7-4 of the register pointer, RP, select the working register bank of the register file while bits 3-0 of the register pointer, RP, selects the working register bank of the Expanded Register File. Once an expanded register bank is selected it is effectively overlayed onto Bank 0 of the Z8's working register file. When an expanded register bank is selected, access to the Z8's ports is turned off.

Stack. The Z86C95 has a 16-bit Stack Pointer (FEH-FFH) used for external stack that resides anywhere in the data memory. An 8-bit Stack Pointer (FFH) is used for the internal stack that resides within the 236 general-purpose registers (04H-EFH). The High byte of the Stack Pointer (SPI-Bits 15-8) can be used as a general-purpose register when using internal stack only.

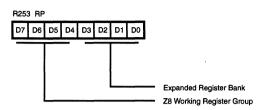


Figure 11. Register Pointer Register

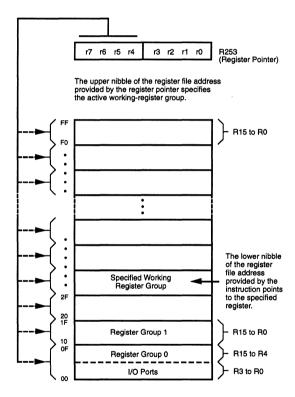
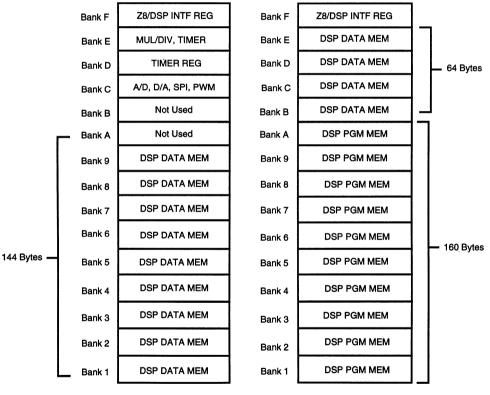


Figure 12. Register Pointer


Z8®/DSP MEMORY INTERFACE

There are three types of memory spaces residing in the Z8/ DSP interface:

- 1. DSP Program Memory. The size of this memory is 512 bytes. This memory space is mapped into ERF-B, C, and D of the Z8. It occupies bank 1 through bank A in ERF-B, bank 1 through bank E in ERF-C, and bank 1 through bank 8 in ERF-D. (Figures 13 and 14).
- DSP Data Memory. There are two data memory banks each 64 x 16 in size called DSP RAM0 and DSP RAM1. This translates to 256 bytes. However, only 208 bytes

out of 256 are shared between the Z8 and the DSP. Out of this 208 bytes, 144 bytes are mapped to Bank 1 through Bank 9 of ERF-A. The remaining bytes are mapped into Bank B through Bank E of ERF-B.

3. Z8/DSP Interface Registers. The register mapping of the various registers which are part of the Z8/DSP interface are shown in Figure 15.

Expanded Register File A (ERF A)

Expanded Register File B (ERF B)

Figure 13. DSP Program and Data Memory

[®]Silæ

Z8/DSP MEMORY INTERFACE (Continued)

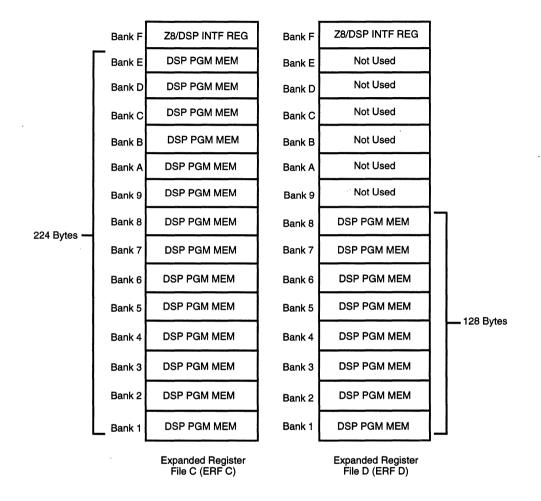
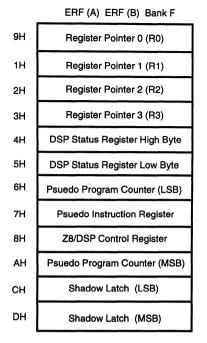



Figure 14. DSP Program and Data Memory

Silos

PRELIMINARY

Figure 15. Z8/DSP Interface Register Mapping

The details of the data memory mapping between the Z8 and the DSP are shown in Figures 16 and 17. For example, Bank 1 of ERF-A is split between DSP RAM1 and RAM0. Bytes 15 through 8 are mapped to DSP RAM1 and bytes 7 through 0 are mapped to DSP RAM0. Similarly, Banks 2, 3 and so on are all split between RAM0 for the first 8 bytes and RAM1 for the last 8 bytes. Also, notice that the higher order bits (15 through 8 of the DSP word) are mapped to an even number byte of the Z8 and the lower order bits of the DSP (7 through 0) are mapped to the odd numbered bytes of the Z8. The size of DSP RAM1 and RAM0 is 64 16bit words each. These occupy hex addresses 00 through 3F. The following is the bank mapping of Z8 ERF-A and ERF-B to the DSP RAM1 and RAM0.

DSP RAM1/RAM0	Z8 Bank
00 - 03	Bank 1 of ERF-A
04 - 07	Bank 2 of ERF-A
08 - 0B	Bank 3 of ERF-A
0C - 0F	Bank 4 of ERF-A
10 - 13	Bank 5 of ERF-A
14 - 17	Bank 6 of ERF-A
18 - 1B	Bank 7 of ERF-A
1C - 1F	Bank 8 of ERF-A
20 - 23	Bank 9 of ERF-A
24 - 27	Bank B of ERF-B
28 - 2B	Bank C of ERF-B
2C - 2F	Bank D of ERF-B
30 - 33	Bank E of ERF-B
34 - 3F	Not mapped to Z8

Z8/DSP MEMORY INTERFACE (Continued)

Access to a working bank in ERF-A is achieved by selecting the appropriate lower four bits, 3-0 of the Register Pointer, RP located within the Z8's Standard Register Bank. Bits 5 and 6 of the Z8/DSP control register are used to access the remaining register files as follows: D6/5 - 00 for ERF-A, D6/5 - 01 for ERF-B,D6/5 - 10 for ERF-C,D6/5 -11 for ERF-D. Notice that bank F in ERF-B or C or D is the same as that of ERF-A. This provides common access to the Z8/DSP control register which allows movement from

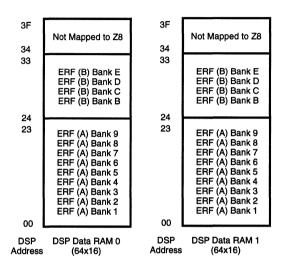
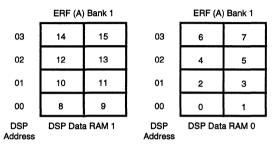
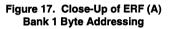




Figure 16. Data Memory Mapping of Z8 and DSP

any register file to any other file. In other words, all the registers in bank F can be accessed from any of the four ERFs.

The interface registers (except the Z8/DSP control register) program memory and data memory of the DSP can not be accessed while the DSP is executing from the internal program memory.

Z8/DSP Interface. The block diagram of the Z8/DSP interface logic and shared RAM between the Z8 and DSP is shown in Figures 18 and 19.

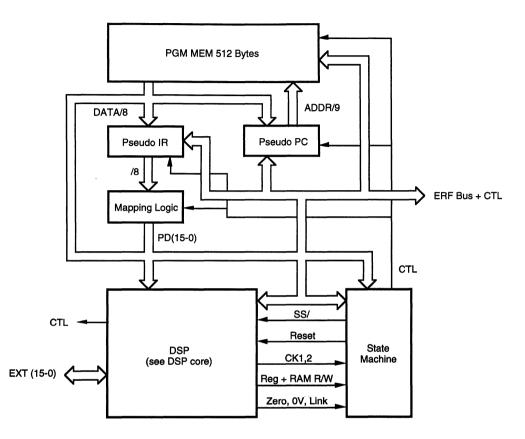


Figure 18. Block Diagram of Z8/DSP Interface

Z8/DSP MEMORY INTERFACE (Continued)

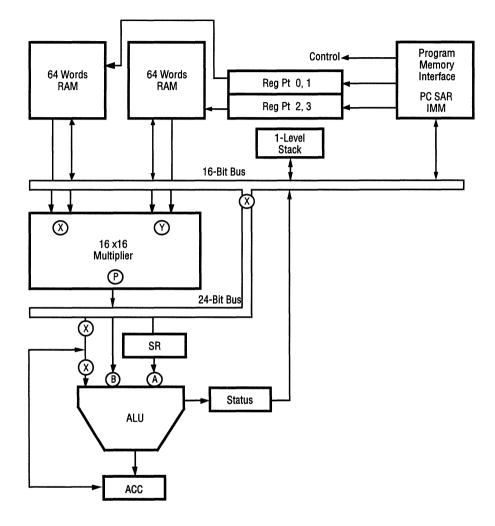


Figure 19. DSP Core

Access to DSP Processor

There are three ways to instruct the DSP to execute instructions.

1. Through the internal program memory (512 Bytes):

The program memory can be loaded by the Z8 (series of load immediate instructions). After loading the program memory, the Pseudo-PC can be loaded with the start address for program execution. Loading of the pseudo-PC will start the DSP. The DSP keeps executing until STOP DSP instruction which puts the DSP in the low power mode. As shown in the DSP instruction set, branching is allowed within the program memory space (512 bytes). The instruction execution time in this mode is one state time in the pipeline mode except for Branch and Load Immediate to the register pointers. This takes three and two state times, respectively, in the pipeline mode.

- 2. Another way to start the DSP execution from the internal program memory is to load the Shadow latch register with the start address and set bit 3 of the Z8/ DSP control register to 1. When the A/D converter finishes conversion, it generates an interrupt to the DSP which then loads the pseudo-PC from the shadow latch and start the execution from that location. Notice that this enables a very fast LOOP execution by avoiding a Z8 interrupt wait time delay.
- **3.** Through loading the Psuedo-IR with the appropriate instruction:

The DSP instruction (8 bits) is loaded as a Load Immediate data value into the Pseudo-IR. The DSP then wakes up from the power-down mode, executes the instruction and goes back to the power down mode. Since a Load Immediate operation takes six clocks, the instruction execution time in this mode is six clocks. Notice, that branching in this mode can be done by examining the Status register of the DSP which is mapped to the Z8 space (Figure 20).

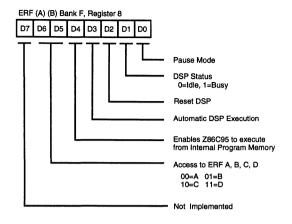


Figure 20. Z8/DSP Control Register

Bits 7 not implemented.

Bits 5, 6 Access to ERF A/B/C/D.

Bit 4 enables the Z8 to execute from internal memory (256 bytes) when set to 1, this bit is automatically reset to 0 on power-up.

Bit 3 enables automatic DSP execution when the A/D completes conversion (when set to 1).

Bit 2 allows reset of the DSP.

Bit 1 indicates the status of the DSP. When bit 1 is set to 1 it indicates the DSP is busy executing from internal program memory. Bit 1 is reset to 0 on power-up.

Bit 0 enables PAUSE mode when set to 1. Bit 0 is reset to 0 on power-up (see power-down mode).

FUNCTIONAL DESCRIPTION

Z8 Multiply/Divide Unit

This section describes the basic features, implementation details and the interface between the Z8 and the multiply/ divide unit (Figure 21).

Basic features:

- 16 x 16-Bit Multiply with 32-Bit Product
- 32 x 16-Bit Divide with 16-Bit Quotient and 16-Bit Remainder
- Unsigned Integer Data Format
- Simple Interface to Z8

Interface to Z8. The following is a brief description of the register mapping in the multiply/divide unit and its interface to Z8.

The multiply/divide unit is interfaced like a peripheral. The only addressing mode available with the peripheral interface is register addressing. In other words, all the operands are in the respective registers before a multiplication/ division can start.

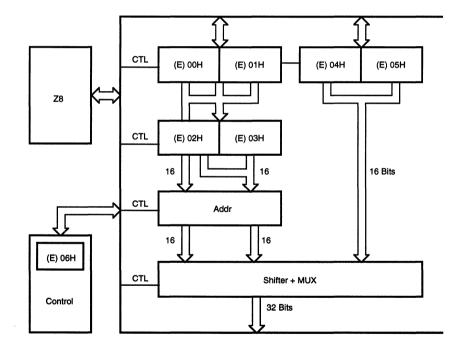


Figure 21. Z8 Multiply/Divide Unit Block Diagram

[⊗]Zilos

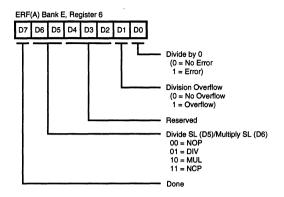
Register Mapping. The registers used in the multiply/ divide unit are mapped onto the expanded register file A in Bank E. The exact register locations used are as shown below.

Register	Address
REG0	(E) 00H
REG1	(E) 01H
REG2	(E) 02H
REG3	(E) 03H
REG4	(E) 04H
REG5	(E) 05H
REG6	(E) 06H
REG7	(E) 14H
REG8	(E) 15H

Register Allocation. The following is the register allocation during multiplication.

Allocation	Register
Multiplier high byte	REG2
Multiplier low byte	REG3
Multiplicand high byte	REG4
Multiplicand low byte	REG5
Result high byte of high word	REG0
Result low byte of high word	REG1
Result high byte of low word	REG2
Result low byte of low word	REG3
Control register	REG6

The following is the register allocation during division.


Allocation	Register
High byte of high word of dividend	REG0
Low byte of high word of dividend	REG1
High byte of low word of dividend	REG2
Low byte of low word of dividend	REG3
High byte of divisor	REG4
Low byte of divisor	REG5
High byte of remainder	REG0
Low byte of remainder	REG1
High byte of quotient	REG2
Low byte of quotient	REG3
Control register	REG6

Control Register. The MDCON control register is used to interface with the multiply/divide unit (Figures 22 and 23). Specific functions of various bits in the control register are shown.

DONE Bit (D7). This bit is a handshake bit between the math unit and the external world. On power up, this bit is set to 1 to indicate that the math unit has completed the previous operation and is ready to perform the next operation.

Before starting a new multiply/divide operation this bit should be reset to 0 by the processor/programmer. This will indicate that all the data registers have been loaded and the math unit can now begin a multiply/divide operation. During the process of multiplication or division, this bit is write-protected. Once the math unit completes its operation it will set this bit to indicate the completion of operation. The processor/programmer can then read the result.

FUNCTIONAL DESCRIPTION (Continued)

Figure 22. Multiply/Divide Control Register (MDCON)

General-Purpose Register
General-Purpose Register
Compare Register 1 Low Byte
Compare Register 1 High Byte
Not Used
MUL/DIV Control Register
MUL/DIV Register 5
MUL/DIV Register 4
MUL/DIV Register 3
MUL/DIV Register 2
MUL/DIV Register 1
MUL/DIV Register 0

Figure 23. ERF (A) Bank E

MULSL *Multiply Select* (D6). If this bit is set to 1, it will indicate a multiply operation directive. Like the DONE bit, this bit is also write-protected during math unit operation and is reset to zero by the math unit upon starting of multiply/divide operation.

DIVSL *Division Select* (D5). Similar to D6, D5 will start a division operation.

D4-D2 Reserved.

DIVOVF Division Overflow (D1). This bit indicated an overflow during the division process. Division overflow occurs when the high word of the dividend is greater than or equal to the divisor. This bit is read only. When set to 1, it indicates overflow error.

DIVZR *Division by Zero* (D0). When set to 1 this indicates an error of division by 0. This bit is read only.

Example:

Upon reset, the status of the MDCON register is 100uuu00b (D7 to D0).

- u = Undefined
- x = Irrelevant
- b = Binary

If multiplication operation is desired, the MDCON register should be set to 010xxxxxb.

If the MDCON register is READ during multiplication, it would have a value of 000uuu00b.

On completion of multiplication, the result of the MDCON register will be 100uuu00b.

If division operation is desired, the MDCON register should be set to 001xxxxxb.

During division operation, the register would contain 000uu??b (? – value depends on the DIVIDEND, DIVI-SOR).

Upon completion of division operation, the MDCON register would contain 100uuu??b.

Note that once the multiplication/division operation starts, all data registers (REG5 thorough REG0) are writeprotected and so are the writable bits of the MDCON register. The write protection is released once the math unit operation is complete. However, the registers can be read any time.

[⊗]ZiL05

A multiplication sequence would look like:

- 1. Load multiplier and multiplicand.
- 2. Load MDCON register to start multiply operation.
- **3.** Wait for the DONE bit of the MDCON register to be set to 1 and then read results.

Note that while the multiply/divide operation is in progress, the programmer can use the Z8 to do other things. Also, since the multiplication/division takes fixed numbers of cycles, the results can be read before the DONE bit is set.

During a division operation, the error flag bits are set at the beginning of the division operation which means the flag bits can be checked by the Z8 while the division operation is being done.

REG7 and REG8 can be used as scratch pad registers or as external data memory address pointers during an LDE instruction. REG0 thorough REG5 and REG7 and REG8, if not used for multiplication or division, can be used as general-purpose registers.

Performance of Multiplication. The actual multiplication takes 17 clock cycles. It is expected that the chip would run at a 10 MHz internal clock frequency (external clock

divided-by-two). This would result in an actual multiplication time (16 x 16-bit) of 1.7 μ s. If we include the time taken to load and read the registers:

number of clock cycles to load 5 registers = 30 number of clock cycles to read 4 registers = 24

then, the total number of clock cycles is 71. This results in a net multiplication time of 7.1 μ s. Note that this would be the worst case. This assumes that all of the operands are loaded from the external world as opposed to some of the operands being already in place as a result of a previous operation whose destination register is one of the math unit registers.

Performance of Division. The actual division needs 20 clock cycles. This translates to 2.0 μ s for the actual division at 10 MHz (internal clock speed). If the time to load operands and read results is included:

number of clock cycles to load operands = 42 number of clock cycles to read results = 24

The total clock cycles to perform a division is 86 cycles. This translates to $8.6 \,\mu s$ at 10 MHz.

FUNCTIONAL DESCRIPTION (Continued)

Counter/Timers

This section describes the enhanced features of the counter/ timers (CTC) on the Z86C95 (Figure 24). It contains the register mapping of CTC registers and the bit functions of the newly added Timer2 control register.

In a standard Z8, there are two 8-bit programmable counter/ timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. Also, the counters can be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the T0 output to the input of T1. Either T0 or T1 can be outputted through P36.

The following are the enhancements made to the counter/ timer block on the Z86C95:

T0 counter length is extended to 16 bits. For example, T0 now has a 6-bit prescaler and 16-bit down counter.

T1 counter length is extended to 16 bits. For example, T1 now has a 6-bit prescaler and 16-bit down counter.

A new counter/timer T2 is added. T2 has a 4-bit prescaler and a 16-bit down counter with three capture registers and two compare registers.

These three counters are cascadable as shown in Table 5. The result is that T2 may be extendable to 32 bits and T1 extendable to 24 bits. Bits 1 and 0 (CAS1 AND CAS0) of the T2 Prescaler Register (PRE2) determine the counter length.

Table 5. Z86C95 Counter Length Configurations

CAS1	CAS0	то	T1	T2
0	0	8	8	32
0	1	16	16	16
1	0	8	24	16
1	1	8	16	24

The controlling clock input to T2 can be programmed to XTAL/2 or XTAL/8 which results in a resolution of 100 ns at external XTAL clock speed of 20 MHz.

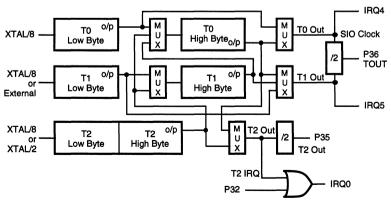


Figure 24. Counter/Timer Block Diagram

Capture and Compare

There are three capture registers associated with T2 HIGH BYTE and T2 LOW BYTE registers and two compare registers on timer T2 (Figure 25). At the falling edge of the appropriate Port 3 input, the current value of Timer 2 (T2) is "captured" into a read only register. For example, the negative going transition on P33 will enable the latching of the current T2 value (16-bits) into the Capture Register 1 (CAP1). The register mapping and the appropriate inputs are shown below (Table 6). Note that the negative transition on P33, P32, and P30 is capable of generating an interrupt. Also, the negative transition on Port 3 will always latch the current T2 value into the capture register. There in no need for a control bit to enable/disable the latching.

(D)0FH	Compare Register 2 Low Byte
(D)0EH	Compare Register 2 High Byte
(D)0DH	Capture Register 3 Low Byte
(D)0CH	Capture Register 3 High Byte
(D)0BH	Capture Register 2 Low Byte
(D)0AH	Capture Register 2 High Byte
(D)09H	Capture Register 1 Low Byte
(D)08H	Capture Register 1 High Byte
(D)07H	Timer2 Low Byte
(D)06H	Timer2 High Byte
(D)05H	Capture/Compare Control Register
(D)04H	Timer0 High Byte
(D)03H	Timer2 Prescaler
(D)02H	Timer1 High Byte
(D)01H	Timer2 Mode Register

ERF (A), Bank D

Capture Register	Port 3	Input	Addr. High	Addr. Low
CAP1	P33	Falling	(D) 8	(D) 9
CAP2	P32	Falling	(D) A	(D) B
CAP3	P30	Falling	(D) C	(D) D

Table 6. Capture Register Mapping

FUNCTIONAL DESCRIPTION (Continued)

Compare Registers. Whenever the current value of T2 equals the contents of the compare register, some action is taken depending on the contents of the T2 Compare

Control Register (COMCON). Also, a successful comparison can generate an interrupt (if enabled) and also set a bit in the control register that can be polled at a later date (Figure 26).

COM2 Compare 2 (D7). This bit is set to 1 when the contents of Compare Register 2 (COM2) match the current value of T2. This bit will have to be cleared by the interrupt polling routine.

Interrupt Enable 2 (D6). This bit, when set to 1, will enable the interrupt for COM2.

CO2 Output (D5,D4). Controls the value outputted on CO2 according to Table 7.

COM1 Compare 1 (D3). This bit is set to 1 when the contents of Compare Register 1 (COM1) match the current value of T2. This bit will have to be cleared by the interrupt polling routine (Table 8).

Interrupt Enable 1 (D2). This bit when set to 1 enables the interrupt for COM1. When either D6 or D2 is set and the corresponding compare register contents match the current value of T2, an interrupt is generated on IRQ5, which is configured as an OR of T1IRQ, COM1, or COM2 interrupts.

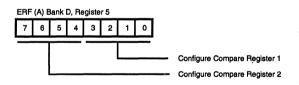


Figure 26. T2 Compare Control Register (COMCON)

CO1 Output (D1,D0). Controls the value outputted on CO1 according to the following table:

Table 7.	Compare	Output	Status

	5 Bit 4 1 Bit 0	Output on Compare Output
0	0	NOP (CO1/CO2 retain previous value)
0	1	Reset to "0"
1	0	Set to "1"
1	1	Toggle status

	ipare negister	mapping
Compare Register	Addr. High	Addr. Low
COM1	(E) C	(E) D
COM2	(D) E	(D) F

Table 8 Compare Register Manning

Observations:

Except for the programmable down counter length and clock input, T2 is identical to T0.

T0 and T1 retain all their features except that now they are extendable interims of the down counter length.

The output of T2, under program control, can go to an output pin (P35). Also, the interrupt generated by T2 can be ORed with the interrupt request generated by P32. Note that the service routine then has to poll the T2 flag bit and also clear it (bit 7 of T2 Timer Mode Register).

On power up, T0 and T1 are configured in the 8-bit down counter length mode (to be compatible with Z86C91) and T2 is in the 32-bit mode with its output disabled (no interrupt is generated and T2 output DOES NOT go to port P35).

The UART uses T0 for generating the bit clock. This means, while using UART T0 should be in 8-bit mode. So, while using the UART there are only two independent timer/ counters.

The counters are configured in the following manner:

T0 in 8-bit modeT0 Low byteT0 in 16-bit modeT0 High byte, T0 Low byteT1 in 8-bit modeT1 Low byteT1 in 16-bit modeT1 High byte, T1 Low byteT1 in 24-bit modeT0 High byte, T1 High byteT1 in 24-bit modeT0 High byte, T1 High byteT2 in 16-bit modeT2 High byte, T2 Low byte
T1 in 16-bit modeT1 High byte, T1 Low byteT1 in 24-bit modeT0 High byte, T1 High byteT1 Low byteT1 Low byte
T1 Low byte
T2 in 16-bit mode T2 High byte T2 I ow byte
T2 in 24-bit mode T0 High byte, T2 High byte T2 Low byte
T2 in 32-bit mode T0 High byte, T1 High byte, T2 High byte, T2 Low byte

Note that the T2 interrupt is logically 0Red with P32 to generate IRQ0.

The T2 Timer Mode register is shown in Figure 27. Upon reaching end of count, bit 7 of this register is set to 1. This bit IS NOT reset in hardware and it has to be cleared by the interrupt service routine.

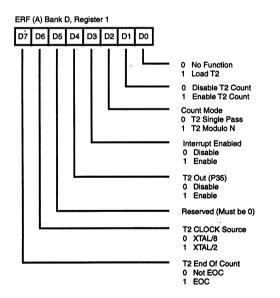


Figure 27. T2 Timer Mode Register (T2)

The register map of the new CTC registers is shown in Figure 12. T0 High byte, T1 High byte are at the same relative locations as their respective Low bytes, but in a different register bank.

The T2 prescaler register is shown in Figure 28. Bit 1 and Bit 0 of this register controls the various cascade modes of the counters as shown in Table 1.

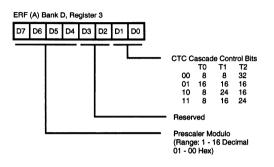


Figure 28. T2 Prescaler Register (PRE2)

Analog to Digital Converter (ADC)

The ADC is an 8-bit half flash converter which uses two reference resistor ladders for its upper 4 bits (MSBs) and lower 4 bits (LSBs) conversion. Two reference voltage pins, VA_{HI} (High) and VA_{LO} (Low), are provided for external reference voltage supplies. During the sampling period from one of the eight channel inputs, the converter is also being auto-zeroed before starting the conversion. The conversion time is dependent on the external clock frequency and the selection of the prescaler value for the internal ADC clock source. The minimum conversion time is 2.0 μ s. (See Figure 29, ADC Architecture.)

The ADC is controlled by the Z8 and its six registers (two Control and four Result) are mapped into the Extended Register File. The first Result register is also readable by the DSP. The DSP can access the ADC control register 0, and this allows the DSP to change Input Channel selections.

A conversion can be initiated in one of four ways: by writing to the Command register, from a rising or falling edge on Port 32 pin or Timer 0 equal 0. These four are programmably selectable. There are four modes of operation that can be selected: one channel converted four times with the results written to each Result register, one channel continuously converted and one Result channel updated for each conversion, four channels converted once each and the four results written to the Result registers, and four channels repeatedly converted and the Result registers kept updated. The channel to be converted is programmable and if one of the four-channel modes is selected then the programmed channel will be the first channel converted and the other three will be in sequence following with wraparound from Channel 7 to Channel 0.

The start commands are implemented in such a way as to begin a conversion at any time, if a conversion is in progress and a new start command is received, then the conversion in progress will be aborted and a new conversion will be initiated. This allows the programmed values to be changed without affecting a conversion-in-progress. The new values will take effect only after a new start command is received.

The clock prescaler can be programmed to derive a minimum 2 μ s conversion time for XTAL clock inputs from 4 MHz to 20 MHz. For example, with a 20 MHz XTAL clock the prescaler should be programmed for divide by 40 which then gives a 2 μ s conversion rate.

The ADC can generate an Interrupt after either the first or fourth conversion is complete depending on the programmable selection.

The ADC can be disabled (for low power) or enabled by a Control Register bit.

Though the ADC will function for a smaller input voltage and voltage reference, the noise and offsets remain constant over the specified electrical range. The errors of the converter will increase and the conversion time may also take slightly longer due to smaller input signals.

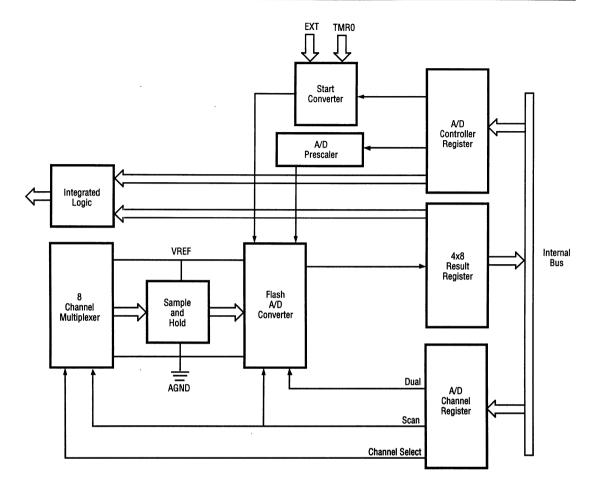
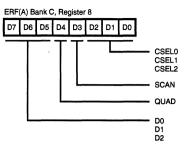



Figure 29. ADC Architecture

Z86C95 Z8®DSP

FUNCTIONAL DESCRIPTION (Continued)

Modes (bits 4, 3).

QUAD	SCAN	
0	0	Convert selected channel 4 times then stop
0	1	Convert selected channel then stop
1	0	Convert 4 channels then stop
1	1	Convert 4 channels continuously

Channel Salast (hits 2 1 0)

Figure 30. ADC Control Register 0

Prescaler Values (bits 7, 6, 5).

D2	D1	D0	Prescaler (XTAL divided by)
0	0	0	8
0	0	0	128*
0	0	1	16
0	1	0	24
0	1	1	32
1	0	0	40
1	0	1	48
1	1	0	56
1	1	1	64

Note:

The ADC is being characterized as of this date. The errors of the converter are estimated to increase to 2LSBs (Integral non-linearity), 1 LSB (Differential non-linearity) and 10mV (Zero error at 25°C) if the voltage swing on the reference ladder is decreased to -3V.

* 33 MHz Device only.

CSEL2	CSEL1	CSEL0	Channel
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

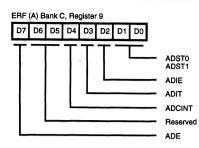


Figure 31. ADC Control Register 1

ADE (bit 7). A0 disables any A/D conversions or accessing any ADC registers except writing to ADE bit. A1 Enables all ADC accesses.

Reserved (bits 6, 5). Reserved for future use.

ADCINT (bit 4). This is the ADC Interrupt bit and is read only by the Z8, the ADCINT will be reset any time this register is written.

ADIT (bit 3). This bit selects when to set the ADC Interrupt if ADIE=1. A 0 sets the Interrupt after the first A/D conversion is complete. A 1 sets the Interrupt after the fourth A/D conversion is complete.

ADIE (bit 2). This is the ADC Interrupt Enable. A 0 disables setting the ADC Interrupt. A 1 enables setting the ADC Interrupt.

START	(bits	1,	0)).
-------	-------	----	----	----

ADST1	ADST0	Mode
0	0	Conversion starts when this register is written.
0	1	Conversion starts on a rising edge at Port 3-2.
1	0	Conversion starts on a falling edge at Port 3-2.
1	1	Conversion starts when Timer0 times out.

These are the four ADC result registers, Reg-A holds the first result and Reg-D the fourth result. These registers are R/W by the Z8 (Writable for test purposes) and Reg-A is Read Only by the DSP and is mapped to Reg 1 for the DSP. Figure 32 shows the timing diagram for the ADC.

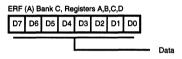
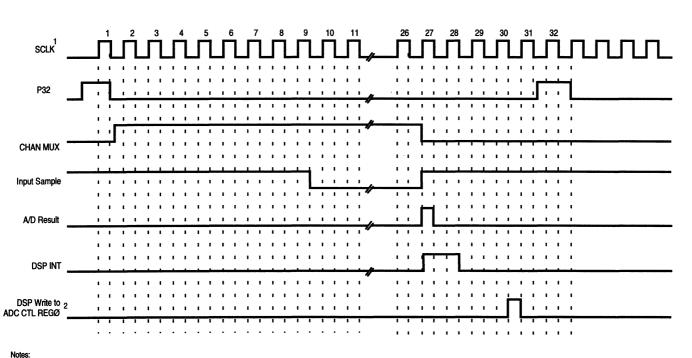



Figure 32. Result Registers

Notes: 1. SCLK = 12 MHz (XTAL = 24 MHz) 2. ADC CTL REGØ = 85 ADC CTL REG1 = 85

Figure 33. ADC Timing Diagram

Ъ

FUNCTIONAL DESCRIPTION (Continued)

§ 2ïCG5

Z86C95 Z8® DSP

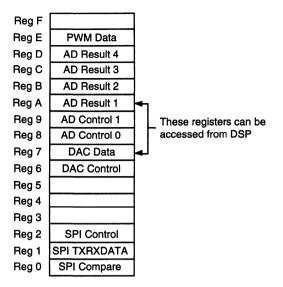


Figure 34. ERF(A) Bank C

Figure 35 shows the input circuit of the ADC. When conversion starts the analog input voltage from one of the eight channel inputs is connected to the MSB and LSB flash converter inputs as shown in the Input Impedance CKT diagram. Effectively, shunting 31 parallel internal resistance of the analog switches and simultaneously charging 31 parallel 0.5 pF capacitors, which is equivalent to seeing a 400 Ohms input impedance in parallel with a 16 pF capacitor. Other input stray capacitance adds about 10 pF to the input load. For input source resistances up to 2 kOhms can be used under normal operating condition without any degradation of the input settling time. For larger input source resistance, longer conversion cycle time may be required to compensate the input settling time problem.

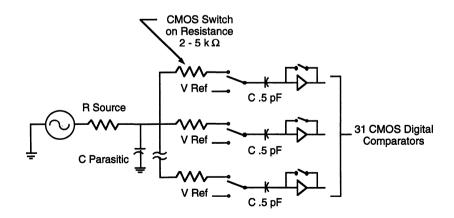
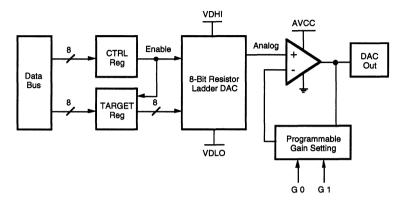



Figure 35. Input Impedance of ADC

Digital to Analog Converter (DAC)

The DAC (Digital to Analog Converter) is an 8-bit resistor string, with a programmable 0.25X and 0.5X gain output buffer. The DAC output voltage is settled after the internal digital data is latched. Two pins are provided externally for the DAC reference voltage supplies, VD_{HI} and VD_{LO} , these should not exceed the supply voltages. The DAC output is latch-up protected and can drive output loads (Figure 36).

The DAC is controlled by the Z8. Its two registers (Control 1 and Data 1) are mapped into the ERF (Figures 37 and 38). The Data 1 register is writable by the DSP.

The DAC can be enabled or disabled by programming the Control 1 register or it can be programmed to output an analog voltage when the Data 1 register is loaded. The Control 1 register is used to program for the Gain factor of the DAC output.

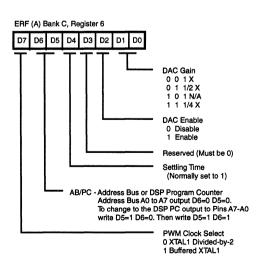
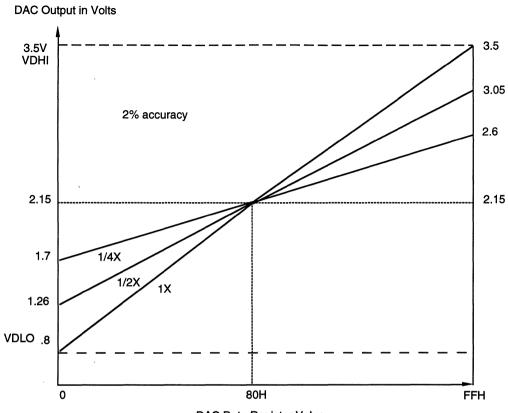



Figure 37. DAC Control Register

The DAC Data Register is initialized to 80H on power-up (Figure 38). Also the DAC gain control pivots about a midpoint rather than ground. (Figure 38). When the gain control is at 1.0X or 0.5X or 0.25X the DAC output remains constant when the DAC data register equals 80H (Figure 39).

ERF	(A) E	Bank	C, Re	giste	r 7		
D7	D6	D5	D4	D3	D2	D1	D0

DAC Data Register Value

Figure 39. Gain Control on DAC

Z86C95 Z8®DSP

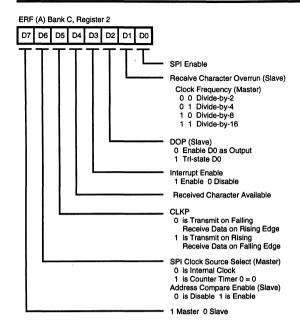
FUNCTIONAL DESCRIPTION (Continued)

Serial Peripheral Interface

Serial Peripheral Interface (SPI). The Z86C95 incorporates a serial peripheral interface for communication with other microcontrollers and peripherals. The SPI includes features such as Master/Slave selection and Compare mode. The SPI consists of four registers; SPI Control Register (SCON), SPI Compare Register (SCOMP), SPI Receive/Buffer Register (RxBUF), and SPI Shift Register (Figures 40, 41, and 42). SCON is located in bank C of the Expanded Register forup at Address 02. This register is a read/write register that controls; Master/Slave selection, interrupts, clock source and phase selection, and error flag. Bit 0 enables/disables the SPI with the default being SPI disabled. A 1 in this location enables the SPI, and a 0 disables the SPI.

Bits 1 and 2 of the SCON register in Master Mode selects the clock rate. The user may choose whether internal clock is divide by 2, 4, 8, or 16. In Slave Mode, Bit 1 of this register flags the user if an overrun of the RxBUF Register has occurred.

The RxCharOverrun flag can only be reset by writing a 0 to this bit. In slave mode, bit 2 of the Control Register can disable the data-out I/O function. If a 1 is written to this bit, the data-out pin is tri-stated. If a 0 is written to this bit, the SPI will shift out one bit for each bit received. Bit 3 of the SCON Register enables the interrupt of the SPI, with the default being disabled. Bit 4 signals that a receive character is available in the RxBUF Register. If the associated IRQ0 is enabled, an interrupt is generated. Bit 5 controls the clock phase of the SPI. A 1 in Bit 5 allows for receiving data on the clock's falling edge and transmitting data on the clock's rising edge. A 0 allows receiving data on the clock's rising edge and transmitting on the clock's falling edge.


The SPI clock source is defined in bit 6 for Master mode. A 1 uses Timer0 output for the SPI clock, and a 0 uses TCLK for clocking the SPI. In Slave mode, bit 6 will enable or disable the address compare feature. Finally, bit 7 determines whether the SPI is used as a Master or a Slave. A 1 puts the SPI into Master mode and a 0 puts the SPI into Slave mode.

SPI Operation. The SPI can be used in one of two modes; either as system slave, or a system master. In the slave mode, data transfer starts when the slave select (SLAVESEL) pin goes active. Data is transferred into the slave's SPI Shift Register, through the DI pin, which has the same address as the RxBUF Register. After a byte of data has been received by the SPI Shift Register a Receive Character Available (RCA/IRQ0) interrupt and flag is generated. The next byte of data may be received at this time, but the RxBUF Register must be cleared, or a Receive Character Overrun (RxCharOverrun) flag is set in the SCON Register and the data in the RxBUF Register is overwritten.

⊗ Zilos

PRELIMINARY

Z86C95 Z8® DSP

ERF	(A) E	Bank	C, Re	egiste	r 1			
D7	D6	D5	D4	D3	D2	D1	D0	

Figure 41. SPI TXRXDATA Register

ERF	(A) E	3ank	C, Re	giste	r O			
D7	D6	D5	D4	D3	D2	D1	D0	

Figure 42. SPI Compare Register

Serial Peripheral Interface (Continued)

When the communication between the master and slave is complete, the SS goes inactive. Unless disconnected, for every bit that is transferred into the slave through the DI pin, a bit is transferred out through the DO pin on the opposite clock edge. During slave operation, the SPI clock pin (SK) is an input (Figure 43). In master mode, the CPU must first activate a SS through one of it's I/O ports. Next, data is transferred through the master's DO pin one bit per master clock cycle. Loading data into the shift register initiates the transfer. In master mode, the master's clock drives the slave's clock. At the conclusion of a transfer, a Receive Character Available (RCA/IRQ0) interrupt and flag is generated. Before data is transferred through the DO pin, the SPI Enable bit in the SCON Register must be enabled.

SPI Compare. When the SPI Compare Enable bit, D6 of the SCON Register is set to 1, the SPI Compare feature is enabled. The compare feature is only valid for slave mode. A compare transaction begins when the SS line goes active. Data is received as if it were a normal transaction, but there is no data transmitted to avoid bus contention with other slave devices. When the compare byte is received, IRQ0 is not generated. Instead, the data is compared with the contents of the SCOMP Register. If the data does not match, DO will remain inactive and the slave will ignore all data until the SS signal is reset.

SPI Clock. The SPI clock can be driven from three sources; with Timer0, a division of the internal system clock, or an external master when in slave mode. Bit D6 of the SCON Register controls what source drives the SPI clock. Divided-by-2, 4, 8, or 16 can be chosen as the scaler with bits D2, D1 in master mode.

Receive Character Available and Overrun. When a complete data stream is received an interrupt is generated and the RxCharAvail bit in the SCON Register is set. Bit 4 in the SCON Register is for enabling or disabling the RxCharAvail interrupt. The RxCharAvail bit is available for interrupt polling purposes and is reset when the RxBUF Register is read. RxCharAvail is generated in both master and slave modes. While in slave mode, if the RxBUF is not read before the next data stream is received and loaded into the RxBUF Register, Receive Character Overrun (RxCharOverrun) occurs. Since there is no need for clock control in slave mode, bit D1 in the SPI Control Register is used to log any RxCharOverrun.

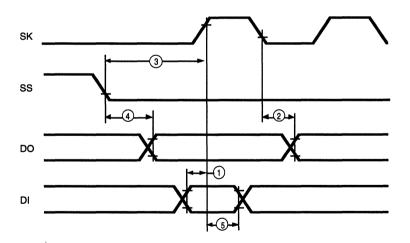


Figure 43. SPI Timing

& Sirae

Interrupts

The Z86C95 has six different interrupts from ten different sources (Table 9). The interrupts are maskable and prioritized. The eight sources are divided as follow: four sources are claimed by Port 3 lines P33-P30, one is Serial Out, one is Serial In, and two in the counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z86C95 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated an interrupt request is granted. Thus, this disables all of the subsequent interrupts, save the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initiated interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request must be valid 5TpC before the falling edge of the last clock cycle of the currently executing instruction.

When the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupts on the Z86C95.

Name	Source	Vector	Comments	
IRQ0	P3.2, SPI, A/D Start	0,1	Falling Edge Triggered	
IRQ1	P3.3, A/D Finish	2,3	Falling Edge Triggered	
IRQ2	P3.2, T	4,5	Falling Edge Triggered	
IRQ3	P3.0. Serial In	6,7	Falling Edge Triggered	
IRQ4	T0, Serial Out	8.9	Internal	
IRQ5	T1	10,11	Internal	

Table 9. Z86C95 Interrupts

FUNCTIONAL DESCRIPTION (Continued)

Clock

The Z86C95 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = input, XTAL2 = Output). The crystal should be AT cut, 1 MHz to 24MHz max, and series resistance (RS) is less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the crystal vendor's recommended capacitors (10 pF < CL < 100 pF) from each pin V_{ss} pin (Figure 44).

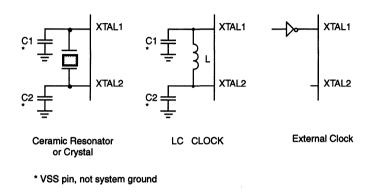


Figure 44. Oscillator Configuration

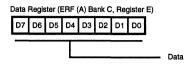
Power Down Modes

HALT. Will turn off the internal CPU clock but not the XTAL oscillation. The counter/timers and the external interrupt IRQ0, IRQ1, IRQ2, and IRQ3 remains active. The devices may be recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 μ A or less. The STOP mode is terminated by a /RESET, which causes the processor to restart the application program at address 000CH.

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=OFFH) immediately before the appropriate sleep instruction. i.e.:

FF	NOP	; clear the pipeline
6F	STOP	; enter STOP mode
		or
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT mode


PAUSE. This is similar to the STOP mode, except in the recovery method, and the fact that the program counter simply continues from where it paused instead of resetting to 000CH. PAUSE mode is entered by setting bit 0 of DSP control register to 1 and executing a HALT instruction. All the internal clocks are stopped during the PAUSE mode thus resulting in very low power. To recover from the PAUSE mode, the Z86C95 needs to see a negative going transition on Port 32. This generates an interrupt and operation can resume by simply doing an IRET in the interrupt execution routine. The recovery time from PAUSE mode is equal to the XTAL oscillator stabilization time +1.3 ms (XTAL frequency of 20 MHz).

Pulse Width Modulator (PWM)

This block provides a Pulse Width Modulated output at a constant period based on the input clock.

The PWM provides an output waveform whose period is either the internal system clock or the buffered XTAL input divided by 256. The duty cycle of this waveform is programmable by a register in the Extended Register File of the Z8 and can have values from 0 to 99.6% (Reg = 0 to 255). A programmed value of 0 will disable the counter and place the PWM in a low power mode. Any non-zero value programmed in this register will enable the PWM divider and generate the selected output waveform.

The clock source for the PWM is programmable providing the user access to a higher frequency clock versus using the internal clock. The clock source is selected using Bit 7 of the DAC control register (ERF(A) Bank C, Register 6). D7=1 selects a buffered XTAL1 clock, D7=0 selects XTAL divided-by-2 (Figure 37).

Figure 45. Pulse Width Modulation Register Assignment

The PWM register is used to program the duty cycle of the PWM. If the programmed value is 0, then the PWM is disabled and the PWM output is OFF. For any non-zero value the PWM output is a periodic waveform which is High for (value/256)X100% of the period.

DIGITAL SIGNAL PROCESSOR

The DSP slave processor is a 16-bit fixed point, two's complement high-speed digital signal processor. The basic concept behind the DSP megacell is to simplify the architecture and instructions as much as possible, providing a user-friendly programming environment for various DSP algorithms (Figure 47). Additionally, a convenient mapping architecture was designed to allow the Z8 to map the DSP memory into the shared expanded register file architecture of the Z8.

The Z86C95's DSP has two sets of high-speed on-chip RAM for data storage. The RAM data specified by two different RAM address registers or instruction address field are read out in one machine cycle. Multiplication, addition and register loading can be accomplished in one clock cycle. The instructions are one cycle pipelined, which are transparent to the users.

Architectural Overview

The Z86C95's DSP employs a 16-bit fixed point, two's complement number system (Figure 50). The binary point is assumed to be placed right next to the sign bit. DSP algorithms are accomplished by single-cycle multiply/ accumulate instructions, two on-chip RAM banks, dedicated arithmetic logic unit, user-definable I/O for signal processing and other functions. (See DSP Commands Section below.)

Cycles Per Instruction

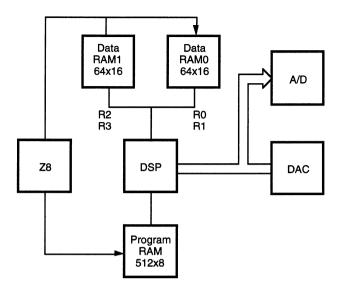
Most instructions are one machine cycle instructions which are executed in 1 cycle time. Load register pointer immediate and Branch instructions need two machine cycles to execute. Besides these execution machine cycles, one more cycle is required if the PC (program counter) is selected as the destination of a data transfer instruction. This happens when register indirect branch is executed. An a1 *b1 +ACC→ACC calculation is done in one machine clock cycle modifying the RAM pointer contents. Both a1 and b1 can be RAM contents located in two independent addresses. Since each instruction is fetched into the instruction register one cycle earlier and the pre-fetched instruction is decoded at the next machine cycle, one additional machine cycle is required to modify the PC content. For instance, consider the example of a simple branch instruction, "BRA NZ, 135.At $t=T_n$ ", the pre-fetched content of the pseudo instruction register, "BRA NZ, 135", starts to decode and execute while the pseudo PC is automatically increased to "105". Since the instruction is to change the PC to "135" if the condition is NZ, the next fetched instruction would be treated as a NOP.

Indirect Addressing Mode

Register INDIRECT addressing is the method of addressing within the Z86C95's DSP. This is accomplished by means of four register pointers, two for each bank. These pointers are R0 and R1 for DSP RAM(0) and R2 and R3 for DSP RAM(1). The register pointers are located within the Z8/DSP interface register bank (Bank F in both ERF (A) and ERF (B)). For example, "LDI R0, 14" will load "14" into the register pointer R0. If followed by an instruction "LD (R0)" for example the contents of the register in DSP RAM0 whose address is "14" will be loaded into the accumulator (Figures 48 and 49).

Arithmetic Logic Unit

Upon loading the DSP data RAM the Z86C95's DSP can multiply two 16-bit integers and accumulate a 24-bit result in one clock cycle. For example, an "MPYA (R0), (R1)" will load the contents of the DSP RAM(0) registers pointed to by R0 and R1 respectively into the multiplier, multiply the RAM(0) registers and add the result to the accumulator. The result of the multiplication is available at the next machine cycle.


DSP Single Step Timing

The occurrence of pre-selected DSP_PC stop address and DSP_SYNC needs to be detected. DSP_SSN is pulled high which stops the DSP until DSP_SSN is pulled low at which time the DSP will execute until the next time DSP_SSN is high. DSP_SSN should not be pulled high for second or third bytes of multi-byte instructions, only for first byte of multi-byte instructions or for single byte instructions (Figure 46).

Z86C95 Z8®DSP 2ilas PRELIMINARY SCLK 7/ # DSP_PC Pins A7-A0 STOP Addr STOP Addr STOP Addr+1 -// 1/ DSP_SYNC DSP_SSN SSN t50 SSN tsec

DIGITAL SIGNAL PROCESSOR (Continued)

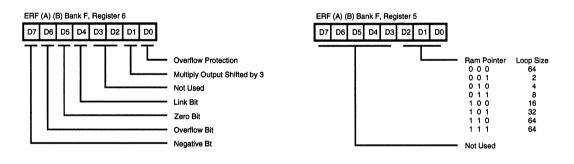


Figure 48. DSP Status Register 1

Figure 49. DSP Status Register 0

[⊗]Silas

PRELIMINARY

Z86C95 Z8®DSP

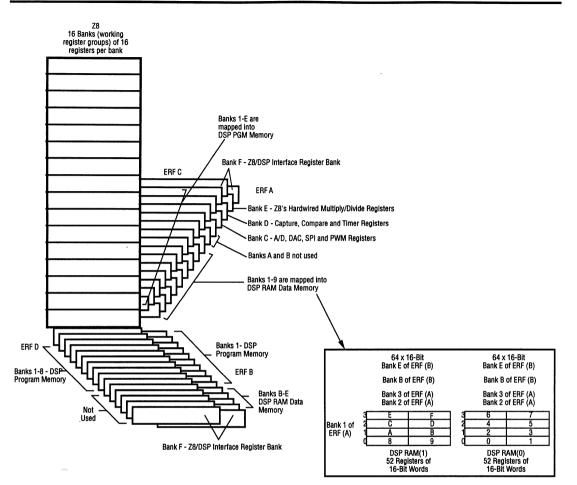


Figure 50. Z86C95 Memory Architecture

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Unit
	Supply Voltage*	-0.3	+7.0	v
T _{STG}	Storage Temp	-65	+150	С
Ť,	Oper Ambient Temp	+	+	С

* Voltages on all pins with respect to GND.

† See Ordering Information

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted (Figure 51).

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

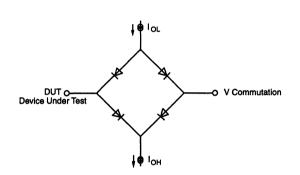


Figure 51. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS V_{cc} = 3.3V $\pm 10\%$

Sym	Parameter	T _A = 0°C t Min	o +70°C Max	Typical at 25°C	Units	Conditions
	Max Input Voltage		7		V	l _{in} < 250 μΑ
СН	Clock Input High Voltage	0.8 V _{cc}	V _{cc} 0.1 V _{cc}		V	Driven by External Clock Generator
CL.	Clock Input Low Voltage	0.3	0.1 V _{cc}		V	Driven by External Clock Generator
н	Input High Voltage	0.6 V _{cc}	V _{cc}		V	
IL	Input Low Voltage	-0.3	0.2 V _{cc}		V	
0H	Output High Voltage	2.0			V	$I_{0H} = -1.0 \text{ mA}$
л, ЭН	Output High Voltage	V _{cc} –100 mV			V	$I_{0\mu} = -100 \mu A$
DL	Output Low Voltage		0.4		V	$I_{01} = +1.0 \text{ mA}$
RH	Reset Input High Voltage	0.8 V _{cc}	V _{cc}		V	
RI	Reset Input Low Voltage	0.3 [~]	0.2 ϔ _{cc}		۷	
	Input Leakage	-2	2		μA	Test at OV, V _{cc}
	Output Leakage	-2	2		μA	Test at OV, V _{cc}
	Reset Input Current		-120		μA	$V_{BI} = 0V$
l C	Supply Current		50	40	mA	@ 24 MHz [1]
 C1	HALT mode		15	10	mA	HALT mode V _{IN} =OV, V _{CC} @ 24 MHz [1]
22	PAUSE and STOP mode		20	6	μA	STOP mode V _{IN} =OV, V _{CC} [1]
.L	Auto Latch Low Current	-10	10	5	μA	00

Note:

[1] All inputs driven to 0V, V_{cc} and outputs floating.

DC ELECTRICAL CHARACTERISTICS $V_{cc} = 5.0V \pm 10\%$

Sym	Parameter	T _A = 0°C t Min	0 +70°C Max	Typical at 25°C	Units	Conditions
-	Max Input Voltage		7		V	l _m < 250 μA
/ _{сн}	Clock Input High Voltage	3.8	V _{cc}		v	Driven by External Clock Generator
CH Cl	Clock Input Low Voltage	-0.3	0.8		v	Driven by External Clock Generator
CL IH	Input High Voltage	2.0	V _{cc}		v	
IH IL	Input Low Voltage	-0.3	0.8		v	
ЭН	Output High Voltage	2.4		··· <u>·</u> ················	٧	$I_{0H} = -2.0 \text{ mA}$
)H	Output High Voltage	V _{cc} –100 mV			٧	$I_{0H}^{0H} = -100 \ \mu A$
DL DL	Output Low Voltage	66	0.4		٧	$I_{0}^{0} = +2.0 \text{ mA}$
л. 3Н	Reset Input High Voltage	3.8	V _{cc}		٧	0C
RI	Reset Input Low Voltage	-0.03	0.8		V	
	Input Leakage	-2	2		μA	Test at 0V, V _{cc}
	Output Leakage	-2	2		μA	Test at OV, V _{cc}
	Reset Input Current		-120		μA	$V_{\rm BI} = 0V$
C	Supply Current		82	50	mA	@ 24 MHz [1]
0			120	70	mA	@ 33 MHz [1]
C1	HALT mode		20	13	mA	HALT mode V _{IN} =OV, V _{CC} @ 24 MHz [1]
			30	20	mA	HALT mode V _{IN} =OV, V _{cc} @ 33 MHz [1]
C2	PAUSE and STOP mode		20	6	μA	STOP mode V _{IN} =OV, V _{cc} [1]
L	Auto Latch Low Current	-10	10	5	μA	

Note:

[1] All inputs driven to 0V, $\rm V_{cc}$ and outputs floating.

AC CHARACTERISTICS External I/O or Memory Read/Write Timing Diagram

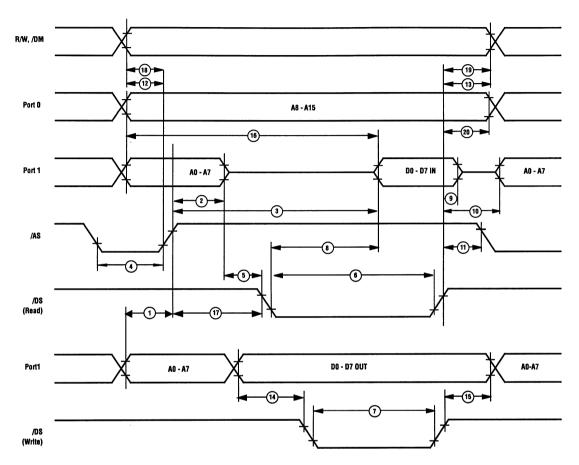


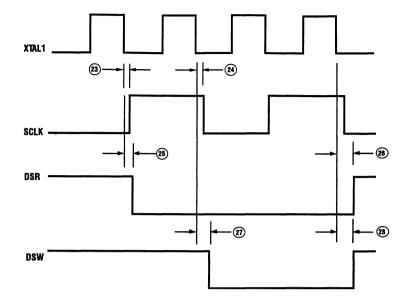
Figure 52. External I/O or Memory Read/Write Timing

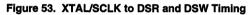
AC CHARACTERISTICS

External I/O or Memory Read and Write; DSR/DSW; WAIT Timing Table

					C to +70°C		Typical	
				MHz**		MHz	V _{cc} = 5.0 V	
No	Sym	Parameter	Min	Max	Min	Max	@ 25° C	Units
1	TdA(AS)	Address Valid To /AS Rise Delay	13		22			ns
2	TdAS(A)	/AS Rise To Address Hold Time	20		25			ns
3	TdAS(DI)	/AS Rise Data In Reg'd Valid Delay		90		130		ns
4	TwAS	/AS Low Width	20		28			ns
5	TdAZ(DSR)	Address Float To /DS Fall (Read)	0		0			ns
6	TwDSR	/DS (Read) Low Width	65		100			ns
7	TwDSW	/DS (Write) Low Width	40		65			ns
8	TdDSR(DI)	/DS Fall (Read) To Data Req'd Valid Delay		30		85		ns
9	ThDSR(DI)	/DS Rise (Read) to Data In Hold Time	0		0			ns
10	TdDS(A)	/DS Rise To Address Active Delay	25		40			ns
11	TdDS(AS)	/DS Rise To /AS Delay	16		30			ns
12	TdR/W(AS)	R/W To Valid /AS Rise Delay	12		26			ns
13	TdDS(R/W)	/DS Rise To R/W Not Valid Delay	12		30			ns
14	TdDO(DSW)	Data Out To /DS Fall (Write) Delay	12		34			ns
15	ThDSW(DO)	/DS Rise (Write) To Data Out Hold Time	12		34			ns
16	TdA(DI)	Address Valid To Data Req'd Valid Delay		110		160		ns
17	TdAS(DSR)	/AS Rise To /DS Fall (Read) Delay	20		40			ns
18	TdDM(AS)	/DM Valid To /AS Rise Delay	10		22			ns
19	TdDS(DM)	/DS Rise To /DM Valid Delay					34*	ns
20	ThDS(A)	/DS Rise To Address Valid Hold Time					34*	ns
21	TdXT(SCR)	XTAL Falling to SCLK Rising					20*	ns
22	TdXT(SCF)	XTAL Falling to SCLK Falling					23*	ns
23	TdXT(DSRF)	XTAL Falling to/DS Read Falling					29*	ns
24	TdXT(DSRR)	XTAL Falling to /DS Read Rising					29*	ns
25	TdXT(DSWF)	XTAL Falling to /DS Write Falling					29*	ns
26	TdXT(DSWF)	XTAL Falling to /DS Write Rising					29*	ns
27	TsW(XT)	Wait Set-up Time					10*	ns
28	ThW(XT)	Wait Hold Time					15*	ns
29	TwW	Wait Width (One Wait Time)					25*	ns

Notes:


When using extended memory timing add 2 TpC.


Timing numbers given are for minimum TpC.

* Preliminary value, to be characterized (24 MHz).

** Preliminary engineering value, to be characterized.

PRELIMINARY

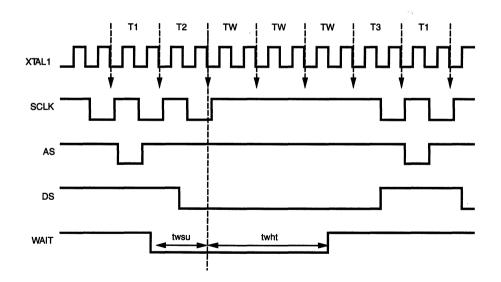
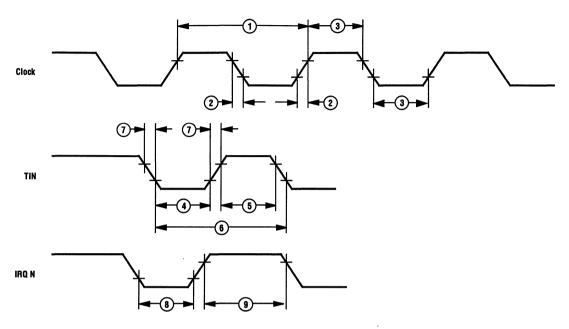



Figure 54. XTAL/SCLK to WAIT Timing

AC CHARACTERISTICS (Continued)

Figure 55. Additional Timing

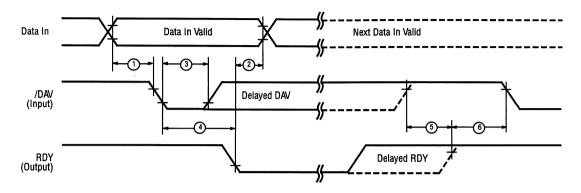
AC CHARACTERISTICS Additional Timing Table

No			°C to +70°(
	Symbol	Parameter	24 Min	MHz Max	33 N Min	Max	Units	Notes
1	ТрС	Input Clock Period	42	1000	30	1000	ns	[1]
2	TrC,TfC	Clock Input Rise & Fall Times		10		5	ns	[1]
3	TwC	Input Clock Width	11		10		ns	[1]
4	TwTinL	Timer Input Low Width	75		75		ns	[2]
5	TwTinH	Timer Input High Width	3TpC		3TpC			[2]
3	TpTin	Timer Input Period	8TpC		8TpC			[2]
7	TrTin,TfTin	Timer Input Rise & Fall Times	100		100		ns	[2]
Ba	TwiL	Interrupt Request Input Low Times	70		70		ns	[2,4]
3b	TwiL	Interrupt Request Input Low Times	5TpC		5TpC			[2,5]
9	TwiH	Interrupt Request Input High Times	3TpC		3TpC			[2,3]

Notes:

[1] Clock timing references use 3.8V for a logic 1 and 0.8V for a logic 0.

[2] Timing references use 2.0V for a logic 1 and 0.8V for a logic 0.


[3] Interrupt references request through Port 3.


[4] Interrupt request through Port 3 (P33-P31).

[5] Interrupt request through Port 30.

AC CHARACTERISTICS

Handshake Timing Diagrams

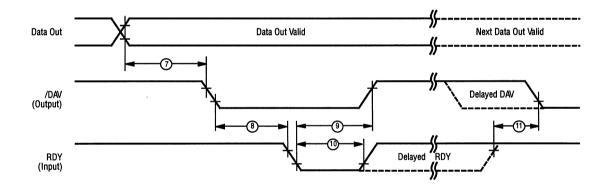


Figure 57. Output Handshake Timing

AC CHARACTERISTICS Handshake Timing Table

No	Symbol		T, = 0°C to +70°C			Data
		Parameter	Ŵin	Max	Units	Direction
1	TsDI(DAV)	Data In Setup Time to /DAV	0		ns	in
2	ThDI(DAV)	RDY to Data In Hold Time	0		ns	In
3	TwDAV	/DAV Width	40		ns	In
4	TdDAVIf(RDYf)	/DAV to RDY Delay		70	ns	ln
5	TdDAVIr(RDYr)	DAV Rise to RDY Wait Time		40	ns	In
6	TdRDYOr(DAVIf)	RDY Rise to DAV Delay	0		ns	In
7	TdD0(DAV)	Data Out to DAV Delay		ТрС	ns	Out
8	TdDAV0f(RDYIf)	/DAV to RDY Delay	0		ns	Out
9	TdRDYIf(DAVOr)	RDY to /DAV Rise Delay		70	ns	Out
10	TwRDY	RDY Width	40		ns	Out
11	TdRDYIr(DAVOf)	RDY Rise to DAV Wait Time		40	ns	Out

A/D Converter Electrical Characteristics

$V_{cc} = 3.3V \pm 10$

Parameter	Minimum Typical		Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.5	1	LSB
Differential non-linearity		0.5	1	LSB
Zero Error at 25°C			5.0	mV
Supply Range	2.7	3.0	3.3	Volts
Power dissipation, no load		20	40	mW
Clock frequency			24	MHz
Input voltage range	VALO		VA _{HI}	Volts
Conversion time			2	μs
Input capacitance on ANA	25		40	pF
VA _{HI} range	VA _{LO} + 2.5		AV _{cc}	Volts
VA _{LO} range			AV _{cc} –2.5	Volts
VA _{HI} –VA _{LO}	2.5		Α̈́V _{cc}	Volts

Notes:

Voltage 2.7-3.3V Temp 0-86°C

D/A Converter Electrical Characteristics

 $\rm V_{cc}=3.3V\pm10\%$

Parameter	Minimum	Typical	Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.25	1	LSB
Differential non-linearity		0.25	0.5	LSB
Setting time, 1/2 LSB		1.5	3.0	μs
Zero Error at 25°C		10	20	mV
Full Scale error at 25°C		0.25	0.5	LSB
Supply Range	2.7	3.0	3.3	Volts
Power dissipation, no load		10		mW
Ref Input resistance	2K	4K	10K	Ohms
Output noise voltage		50		μVp-p
VD _H range at 3V	1.5	1.8	2.1	Volts
VD _{LO} range at 3V	0.2	0.5	0.8	Volts
VD _{HI} –VD _{IO} , at 3V	1.3	1.6	1.9	Volts
Capacitive output load, CL			20	pF
Resistive output load, RL	50K			Öhms
Output slew rate	1.0	3.0		V/µs

Notes:

Voltage 2.7-3.3V Temp 0-86°C _

AC CHARACTERISTICS (Continued)

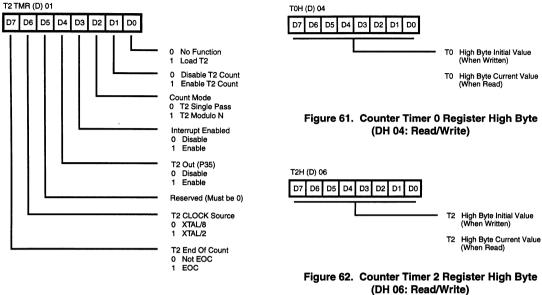
A/D Converter Electrical Characteristics

V _{cc} = 5.0V ±10%					
Parameter Minimum Typical Maximum				Units	
Resolution		8		Bits	
Integral non-linearity		0.5	1	LSB	
Differential non-linearity		0.5	1	LSB	
Zero Error at 25°C			5.0	mV	
Supply Range	4.5	5.0	5.5	Volts	
Power dissipation, no load		35	75	mW	
Clock frequency			33	MHz	
Input voltage range	VALO		VA _{HI}	Volts	
Conversion time			2	μs	
Input capacitance on ANA	25		40	pF	
VA _{HI} range	VA _{LO} + 2.5		AV _{cc}	Volts	
VA _{LO} range	AN		AV _{cc} – 2.5	Volts	
VA _{HI} – VĀ _{LO}	2.5		ĂŬ _{cc}	Volts	

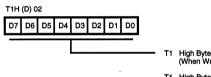
Notes:

Voltage 4.5-5.5V Temp 0-86°C

D/A Converter Electrical Characteristics

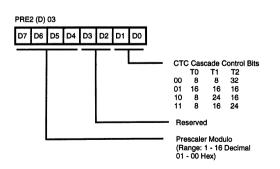

 V_{cc} = 5.0V ±10%

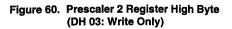
Parameter	Minimum	Typical	Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.25	1	LSB
Differential non-linearity		0.25	0.5	LSB
Setting time, 1/2 LSB		1.5	3.0	μs
Zero Error at 25°C		10	20	mV
Full Scale error at 25°C		0.25	0.5	LSB
Supply Range	4.5	5.0	5.5	Volts
Power dissipation, no load		10		mW
Ref Input resistance	2K	4K	10K	Ohms
Output noise voltage		50		μVp-p
VD _{HI} range at 3V	2.6		3.5	Volts
VD ₁₀ range at 5V	0.8		1.7	Volts
VD _H -VD _{LO} , at 5V	0.9		2.7	Volts
Capacitive output load, CL			30	pF
Resistive output load, RL	20K			Ohms
Output slew rate	1.0	3.0		V/µs

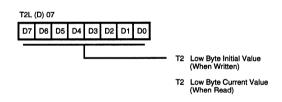

Notes:

Voltage 4.5-5.5V Temp 0-86°C

EXPANDED REGISTER FILE CONTROL REGISTERS

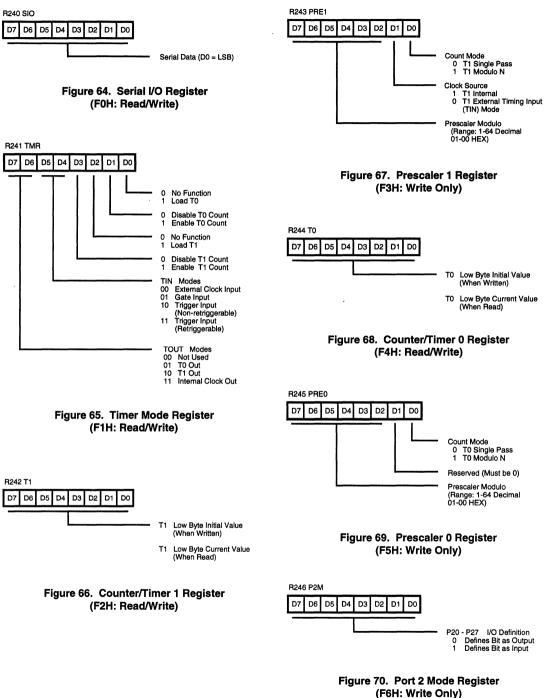


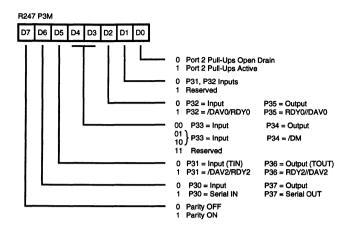

Figure 58. Timer 2 Mode Register (DH 01: Read/Write)



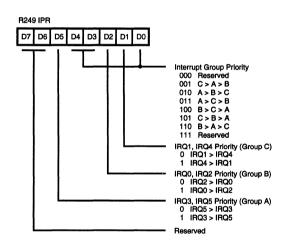
- High Byte Initial Value (When Written)
- T1 High Byte Current Value (When Read)

Figure 59. Counter Timer 1 Register High Byte (DH 02: Read/Write)




Figure 63. Counter Timer 2 Register Low Byte (DH 07: Read/Write)

Z8 CONTROL REGISTER DIAGRAMS



PRELIMINARY

Z86C95 Z8® DSP

Z8 CONTROL REGISTER DIAGRAMS (Continued)

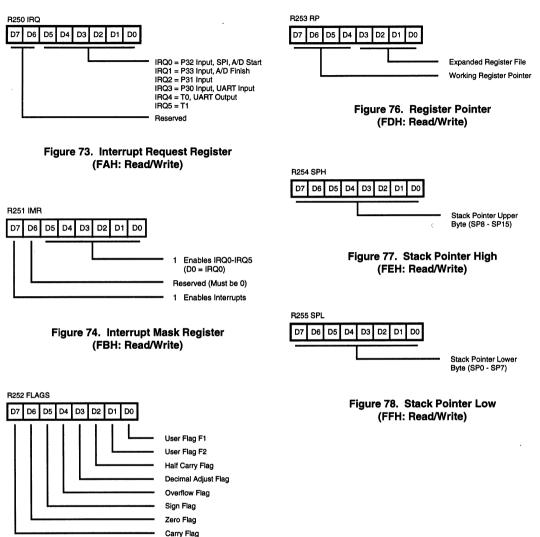


Figure 75. Flag Register (FCH: Read/Write)

1-64

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
Х	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
	working-register address
lr	Indirect working-register address only
RR	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

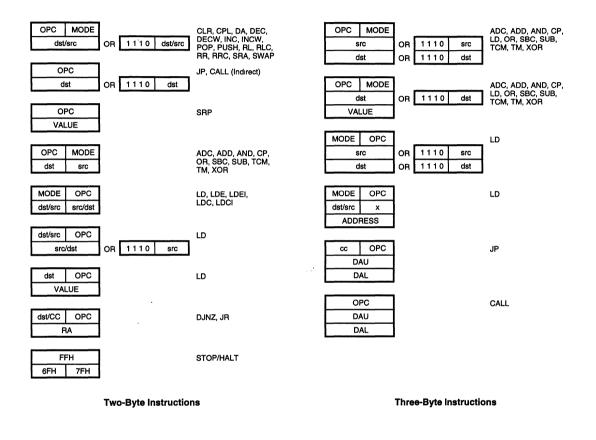
Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
сс	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
С	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
Н	Half-carry flag
Affected flag	gs are indicated by:
0	Clear to zero
1	Set to one
*	Set to clear according to operation
-	Unaffected

x Undefined

CONDITION CODES


Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	С	Carry	C = 1
1111	NC	No Carry	C = 0
0110	Z	Zero	Z = 1
1110	NZ	Not Zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No Overflow	V = 0
0110	EQ	Equal	Z = 1
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	(S XOR V) = 0
0001	LT	Less than	(S XOR V) = 1
1010	GT	Greater Than	[Z OR (S XOR V)] = 0
0010	LE	Less Than or Equal	[Z OR (S XOR V)] = 1
1111	UGE	Unsigned Greater Than or Equal	C = 0
0111	ULT	Unsigned Less Than	C = 1
1011	UGT	Unsigned Greater Than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned Less Than or Equal	(C OR Z) = 1
0000	F	Never True (Always False)	_

INSTRUCTION FORMATS

CCF, DI, EI, IRET, NOP, RCF, RET, SCF

One-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol " ← ". For example:

dst ← dst + src

notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:

dst (7)

indicates that the source data is added to the destination data and the result is stored in the destination location. The

refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Af	ags fec Z	ted		D	н	Instruction and Operation	Мо	dress de src	Opcode Byte (Hex)	Af	ags fec Z	ted		D	F
ADC dst, src dst←dst + src + C	+	1[]		*					INC dst dst←dst + 1	r		rE r = 0 – F	-		*			-
ADD dst, src dst←dst + src	†	0[]	*	*	*	*	0	*		R IR		20 21						
031-031 + 310									INCW dst	RR		A0		*	*	*	_	
AND dst, src dst←dst AND src	†	5[]	-	*	*	0	-	-	dst←dst + 1 	IR		A1						
												BF	*	*	*	*	*	Ş
CALL dst SP←SP – 2	DA IRR	D6 D4	-	-	-	-	-	-	FLAGS←@SP; SP←SP + 1									
@SP←PC, PC←dst									PC←@SP; SP←SP + 2;									
CCF		EF	*			_	_	_	IMR(7)←1									
C←NOT C		2.	•						JP cc, dst if cc is true	DA		cD c = 0 - F	-	-	-	-	-	_
CLR dst	R	B0	-	-	-	-	-	-	PC←dst	IRF	1	30						
dst←0	IR	B1							JR cc, dst	RA		сВ						
COM dst	R	60	_	*	*	0			if cc is true.	RA		с=0-F	-	-	-	-	-	-
dst←NOT dst	IR	61				Ū			$PC \leftarrow PC + dst$ Range: +127,			0						
CP dst, src dst – src	†	A[]	*	*	*	*	-	-	-128									
									LD dst, src	r	Im	rC	-	-	-	-	-	-
DA dst dst←DA dst	R IR	40 41	*	*	*	X		-	dst←src	r R	R r	r8 r9 r = 0 – F						
DEC dst	R	00	_	*	*	*	_	_		r	х	C7						
dst←dst – 1	IR	01								х	r	D7						
										r	lr	E3						
DECW dst	RR	80	-	*	*	*	-	-		lr	r	F3						
dst←dst – 1	IR	81								R	R	E4						
DI		8F								R R	IR IM	E5 E6						
IMR(7)←0		01	-	-	-	-	-	-		IR	IM	E7						
									~	IR	R	F5						
DJNZr, dst	RA	rA				-	-	-										
r←r – 1 if r ≠ 0		r = 0 – F							LDC dst, src	r	Irr	C2	-	-	-	-	-	
PC←PC + dst Range: +127, -128									LDCI dst, src dst←src r←r +1; rr←r + 1	lr	Irr	СЗ	_	-	-	-	-	_
EI IMR(7)←1		9F	-	_	-	-	-	-	 ←- +									
HALT		7F																

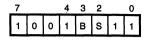
[⊗]ZiL05

PRELIMINARY

Z86C95 Z8®DSP

Instruction and Operation	Addı Mode dst	Ð	Opcode Byte (Hex)	Af	ags fec Z	ted		D	н	Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Af		ted		D	н
NOP			FF	-	-	-	-	-	-	STOP		6F	-	-	-	-	-	-
OR dst, src dst←dst OR src	†		4[]	-	*	*	0	-	-	SUB dst, src dst←dst←src	†	2[]	*	*	*	*	1	*
POP dst dst ←@ SP; SP←SP + 1	R IR		50 51	-	-	-	-	-	-	SWAP dst	R IR	F0 F1	x	*	*	x	-	_
PUSH src SP←SP – 1; @SP←src		R IR	70 71		-	-	-	-	_	TCM dst, src		6[]		*	*	0	_	_
RCF C←0			CF	0	_	-	_	-	-	(NOT dst) AND src								
RET PC←@SP:			AF	-	-	-	-	-	-	TM dst, src dst AND src	†	7[]	-	*	*	0	-	
SP←SP + 2										XOR dst, src dst←dst	†	B[]	-	*	*	0	-	-
RL dst	R		90	*	*	*	*	-	-	XOR src								
	IR		91															
وہد (7 وہ م) RLC dst	R		91 10 11	*	*	*	*		_	† These instruction are encoded for bre set table above. Th in this table, and its applicable address	vity. The first of e second nibb value is found	ocode nibble is le is expressed in the followin	fou d syr	nd ii nbc	n the olica	e ins Ily b	truc y a	tic '[
RLC dst	R		10		*					are encoded for bre set table above. Th in this table, and its	vity. The first op e second nibb value is found ing mode pair pcode of an A	bcode nibble is le is expressed in the followin DC instruction	fou d syr g tal	nd ii nbc ble 1	n the blica to th	e ins Ily b Ie le	truc y a ft of	tio '[th
RLC dst	R IR R		10 11 E0	*	-	*	*	-	-	are encoded for bre set table above. Th in this table, and its applicable address For example, the o	vity. The first op e second nibb value is found ing mode pair pcode of an A n) and Ir (sour	bcode nibble is le is expressed in the followin DC instruction	fou d syr g tal	nd ii mbc ble f	n the blica to th	e ins Ily b ie le add er	ft of	tic '[sin
RLC dst	R IR R IR		10 11 E0 E1 C0	*	*	*	*	-	-	are encoded for bre set table above. Th in this table, and its applicable address For example, the o modes r (destinatio	vity. The first op e second nibb value is found ing mode pair pcode of an A n) and Ir (sour	bcode nibble is le is expressed in the followin DC instruction	fou d syr g tal	nd ii mbc ble f	to the the	e ins lly b ie le add er Nib	ft of	tic '[sin
RLC dst C - 7 0+ RR dst -C - 7 0- RRC dst -C - 7 0 SBC dst, src	R IR R IR		10 11 E0 E1 C0	*	*	*	*	-	-	are encoded for bre set table above. Th in this table, and its applicable address For example, the o modes r (destinatio Address Moc dst sr	vity. The first op e second nibb value is found ing mode pair pcode of an A n) and Ir (sour	bcode nibble is le is expressed in the followin DC instruction	fou d syr g tal	nd ii mbc ble f	n the blica to th the .ow	e ins lly b e le add er Nib	ft of	tic '[sin
RLC dst RR dst RR dst RC dst SBC dst, src dst dst, src dst src cC SCF	R IR IR IR IR		10 11 E0 E1 C0 C1	*	* *	*	*	-	-	are encoded for bre set table above. Th in this table, and its applicable address For example, the o modes r (destinatio Address Moc dst sr r r r	vity. The first op e second nibb value is found ing mode pair pcode of an A n) and Ir (sour	bcode nibble is le is expressed in the followin DC instruction	fou d syr g tal	nd ii mbc ble f	the toth the [2]	e ins lly b le le add er Nib	ft of	tic '[th
RLC dst Control control contr	R IR R IR †		10 11 E0 E1 C0 C1 3[] DF	* * 1	* * -	* *	* *	-	-	are encoded for breset table above. The in this table, and its applicable address For example, the or modes r (destination of the destination of t	vity. The first of e second nibb value is found ing mode pair pcode of an A n) and Ir (sour	bcode nibble is le is expressed in the followin DC instruction	fou d syr g tal	nd ii mbc ble f	the (2] (3]	add	ft of	tic '[th
RLC dst RR dst RR dst RC dst SBC dst, src dst dst, src dst src cC SCF	R IR IR IR IR		10 11 E0 E1 C0 C1 3[]	* *	* *	* *	* *	-	-	are encoded for breset table above. The in this table, and its applicable address For example, the ormodes r (destination of the destination of th	vity. The first of e second nibb value is found ing mode pair pcode of an A n) and Ir (sour	bcode nibble is le is expressed in the followin DC instruction	fou d syr g tal	nd ii mbc ble f	n the blica to th the .ow [2] [3] [4]	add	ft of	tic '[sin
RLC dst Control control contr	R IR R IR R IR R		10 11 E0 E1 C0 C1 3[] DF D0	* * 1	* * -	* *	* *	-	-	are encoded for breset table above. The in this table, and its applicable address For example, the or modes r (destination destination destination destination r r r r r r r r r r r R R R R R IR R I	vity. The first of e second nibb value is found ing mode pair pcode of an A n) and Ir (sour	bcode nibble is le is expressed in the followin DC instruction	fou d syr g tal	nd ii mbc ble f	in the blica to th the [2] [3] [4] [5]	add	ft of	tic '[sin

2ilas


Upper Nibble (Hex)

OPCODE MAP

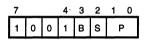
0										h1- (1										
		0	1	2	3	4	5	6	ower Nib 7	1) 910(8	He)	x) 9	A		в		5	D	Е	F
		65	65	65	65	10 5	10 5	10.5	10.5	65	_	6.5	12/10	5 1	2/10.0	6		12.10.0	65	· · · · · ·
	0	DEC	DEC	ADD	ADD	ADD	ADD	ADD	ADD	LD		LD	DJN:		JR	L	D	JP	INC	
		R1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM	r1, R	2	r2, R1	r1, R/	A C	c, RA	r1,	IM	cc, DA	r1	
	1	6.5 RLC	6.5 RLC	65 ADC	6.5 ADC	10.5 ADC	10.5 ADC	10.5 ADC	10.5 ADC											
		R1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM											
	2	6.5 INC	65 INC	65 SUB	6.5 SUB	10 5 SUB	10.5 SUB	10.5 SUB	10.5 SUB											
	-	R1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM											
	3	80	61	6.5	65	10.5	10.5	10.5	10.5											
	3	JP IRR1	IM	SBC r1, r2	SBC r1, lr2	SBC R2, R1	SBC IR2, R1	SBC R1, IM	SBC IR1, IM											
		85	85	65	65	105	10.5	10 5	105											
	4	DA R1	DA IR1	OR	OR	OR	OR	OR												
		10.5	10.5	r1, r2 6.5	r1, lr2 6.5	R2, R1 10.5	IR2, R1 10 5	R1, IM 10.5	IR1, IM 10.5											
	5	POP	POP	AND	AND	AND	AND	AND	AND											
		R1 65	IR1 65	r1, r2 6.5	r1, lr2 65	R2, R1 10 5	IR2, R1 10 5	R1, IM 10.5	IR1, IM 10.5											6.0
_	6	сом	СОМ	TCM	ТСМ	TCM	TCM	TCM	TCM											STOP
Ę	i	R1	IR1 12/14.1	r1, r2 6.5	r1, lr2	R2, R1	IR2, R1	R1, IM 10.5	IR1, IM 10.5											7.0
e (t	7	10/12.1 PUSH	PUSH	TM	6.5 TM	10.5 TM	10.5 TM	TM	10.5 TM											HALT
ļģ		R2	IR2	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM											
۲ N	8	10 5 DECW	10.5 DECW	12.0 LDE	18 0 LDEI															61 DI
Upper Nibble (Hex)	-	RR1	IR1	r1, Irr2	Ir1, Irr2															
	9	6.5 RL	65 RL	12.0	180															6.1 El
	3	R1	IR1	LDE r2, Irr1	LDEI															
	_	10.5	10 5	6.5	6.5	10 5	10 5	10.5	10.5											14.0
4	A	INCW RR1	INCW IR1	CP r1, r2	CP r1, lr2	CP R2, R1	CP IR2, R1	CP R1, IM	CP IR1, IM											RET
		65	65	65	6.5	10.5	10 5	10 5	10.5											160
I	В	CLR	CLR	XOR	XOR	XOR	XOR	XOR	XOR											IRET
		R1 6.5	IR1 65	r1, r2 12.0	r1, lr2 18.0	R2, R1	IR2, R1	R1, IM	IR1, IM 10.5											65
	С	RRC	RRC	LDC	LDCI				LD											RCF
		R1 65	IR1 6.5	r1, Irr2 12.0	Ir1, Irr2 18.0	20.0		20.0	r1,x,R2 10 5											6.5
I	D	SRA	SRA	LDC	LDCI	CALL*		CALL	LD											SCF
		R1	IR1	r1, Irr2	ir1, irr2	IRR1	10.5	DA	r2,x,R1											0.5
I	E	6.5 RR	6.5 RR		6.5 LD	10.5 LD	10 5 LD	10.5 LD	10.5 LD											65 CCF
		R1	IR1		r1, IR2	R2, R1		R1, IM	IR1, IM											
	F	85 SWAP	85 SWAP		6.5 LD		10 5 LD			1			1		1	Ι.			11	60 NOP
		R1	IR1		lr1, r2		R2, IR1													
		<u> </u>		<u> </u>		<u> </u>												\sim	\sim	\sim
			:	2			:	3 5.					2					3		1
								Бу	rtes per	instri	uct	lion					`			
						ower boode							Lege	end:						
			-			ibble									Addr					
			E	xecution Cycles			Pipe	line							Addre					
				-,	\mathbf{i}	4 ,	/ Cycl	9S							= Ds = Src					
			Up	oer		10.5							112 0		- 0.0			0		
			Opco	de		CP-	Mi	nemonic					Sequ			_				
			Nibi	ble	R	1, R2									First Opera		ranc	ł,		
							$\mathbf{\mathbf{N}}$						3600	na (opera	und				
			· _	First	·			ond					Note	: Bla	ank a	eas	not	defined.		
			O	perand			Ор	ərand					*0 -	do i	notri - r	tion		0010 00		
															e instruc			ears as		
													`							

Z86C95 Z8®DSP

DSP COMMANDS

LD (Ri),ADC

Instruction: 1 Byte Cycle: 1 Cycle


Operation:

The contents of the ADC register are copied to the register specified by the register pointer.

 $ADC \rightarrow (Ri)$

Flag change: No

The ADC register is a Read - Only register as far as the DSP is concerned. It may be used to transfer the current A/D conversion result into DSP memory space.

ST (Ri)

Instruction: 1 Byte Cycle: 1 Cycle

Operation:

The contents of the accumulator are stored into the register specified by the register pointer.

Accumulator \rightarrow (Ri)

Flag change: No

Addressing:

(Ri) is specified by both the bank bit (bit 3) and bit 2 as follows:

 в	Ş		
0	0	R0	
0	1	R1	
1	0	R2	
1	1	R3	

Addressing:

(Ri) is specified by both the bank bit (Bit 3) and bit 2 as follows.

В	S		
0	0	R0	
0	1	R0 R1	
1	0	R2	
1	1	R2 R3	

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

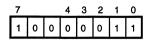
R2 and R3 are register pointers associated with DSP Data Memory $\mathsf{RAM}(1)$

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

P field (modification field for register pointers):

(C	0	NOP
(C	1	+1
	1	0	–1 Loop
	1	1	ILLEGÁL

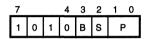

Example:

The instruction ST (R2–) will store the accumulator into the register whose address is specified by R2 and then it will decrement R2.

Quick reference:

Accumulator \rightarrow (Ri) Ri + 1 or Ri – 1 or Ri \rightarrow Ri

DSP COMMANDS (Continued)



ST DAC

Instruction: 1 Byte Cycle: 1 Cycle

Operation:

The contents of the accumulator are copied to the DAC register.

ADD (Ri)

Instruction: 1 Byte Cycle: 1 Cycle

Operation:

The contents of the register specified by the register pointer are added to the accumulator. Ri register is modified according to the P field after execution.

Accumulator ← Accumulator + (Ri)

Flag change: Yes (OV), (L), (Z), (N)

Addressing:

(Ri) is specified by both the bank bit (bit 3) and bit 2 as follows:

В	S		
0	0	R0	
0	1	R1	
1	0	R2	
1	1	R3	

Accumulator \rightarrow DAC

Flag change: No

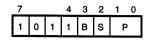
The DAC register is a write-only register as far as the DSP is concerned. It may be used to transfer the DSP results into the D/A converter register.

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

P field (modification field for register pointers):

0	0	NOP	
0	1	+1	
1	0	–1 Loop	
1	1	+1 Loop	


Example:

The instruction ADD (R0+) will add the accumulator with the register whose address is specified by R0 and then it will increment R0.

Quick reference:

Accumulator \leftarrow Accumulator + (Ri) Ri + 1 or Ri - 1 or Ri \rightarrow Ri

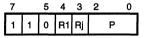
PRELIMINARY

SUB (Ri)

Instruction: 1 Byte Cycle: 1 Cycle

Operation:

The contents of the register specified by the register pointer are subtracted from the accumulator. Ri register is modified according to the P field after execution.


Accumulator \leftarrow Accumulator – (Ri)

Flag change: Yes (OV), (L), (Z), (N)

Addressing:

(Ri) is specified by both the bank bit (bit 3) and bit 2 as follows:

В	S		
0	0	R0	
0	1	R1	
1	0	R2	
1	1	R3	

MLD (Ri),(Rj)

Instruction: 1 Byte Cvcle: 1 Cvcle

Operation:

The contents of the RAM registers whose address is specified by the register pointers Ri and Rj are copied to the multiplier temporary registers X and Y respectively. Ri specifies the addresss for DSP Data RAM(0) and Rj specifies the address for DSP Data RAM(1). Ri,Rj are modified according to the modification field P after accumulator is cleared.

Quick reference:

X ← (Ri)	
Y ← (Rj)	
Accumulator ← ()

Flag change: No

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

P field (modification field for register pointers):

0	0	NOP
0	1	+1
1	0	–1 Loop
1	1	+1 Loop

Example:

The instruction SUB (R0+) will subtract the register whose address is specified by R0 form the accumulator and then it will increment R0.

Quick reference:

Accumulator \leftarrow Accumulator – (Ri) Ri + 1 or Ri – 1 or Ri \rightarrow Ri

Addressing:

(Ri) is specified by bit 4 and (Rj) by bit 3 as follows:

If bit 4 = 0, R0 is selected else R1 is selected. If bit 3 = 0, R2 is selected else R3 is selected.

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

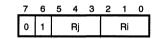
P field (modification field for register pointers):

P(2:0)	Ri	Rj
000	NOP	+1
001	NOP	–1 Loop
010	+1	NOP
011	+1	+1
100	+1	–1 Loop
101	–1 Loop	NOP
110	-1 Loop	+1
111	-1 Loop	–1 Loop

DSP COMMANDS (Continued)

7	6	5	4	3	2	1	0
0	0		Rj			Ri	

MPYA (Rj),(Ri)


Instruction: 1 Byte Cycle: 1 Cycle

Operation:

The multipler output is added to the accumulator. Then, the contents of the RAM registers whose address is specified by register pointers Ri and Rj are copied to the multiplier temporary registers X and Y respectively. Ri specifies the address for DSP Data RAM(0) and Rj specifies the address for DSP Data RAM(1). Ri,Rj are modified according to the modification field P after the copy execution.

Quick reference:

 $X \leftarrow (Ri)$ $Y \leftarrow (Rj)$ Accumulator \leftarrow Accumlator + P

MPYS (Rj),(Ri)

Instruction: 1 Byte Cycle: 1 Cycle

Operation:

The multipler output is subtracted from the accumulator. Then, the contents of the RAM registers whose address is specified by register pointers Ri and Rj are copied to the multiplier temporary registers X and Y respectively. Ri specifies the address for DSP Data RAM(0) and Rj specifies the address for DSP Data RAM(1). Ri,Rj are modified according to the modification field P after the copy execution.

Quick reference:

 $\begin{array}{l} X \leftarrow (Ri) \\ Y \leftarrow (Rj) \\ Accumulator \leftarrow Accumlator - P \\ Ri + 1 \ or \ Ri - 1 \ or \ Ri \rightarrow Ri \\ Rj + 1 \ or \ Rj - 1 \ or \ Rj \rightarrow Rj \end{array}$

Flag change: Yes (OV), (L), (Z), (N)

Addressing:

(Ri) is specified by bits 2-0 and (Rj) by bit 5-3 as follows:

If bit 2 = 0, R0 is selected else R1 is selected. If bit 5 = 0, R2 is selected else R3 is selected.

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM (1).

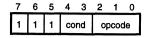
Modification field for register pointers:

Bit 1/Bit 4	Bi t 0/Bit 3	Ri/Rj
0	0	NOP
0	1	+1
1	0	–1 Loop
1	1	+1 Loop

Flag change: Yes (OV), (L), (Z), (N)

Addressing:

(Ri) is specified by bits 2-0 and (Rj) by bit 5-3 as follows:


If bit 2 = 0, R0 is selected else R1 is selected. If bit 5 = 0, R2 is selected else R3 is selected.

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM (1).

Modification field for register pointers:

Bit 1/Bit 4	Bit 0/Bit 3	Ri/Rj
0	0	NOP
0	1	+1
1	0	–1 Loop
1	1	+1 Loop

MOD cond, OP

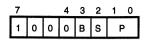
Instruction: 1 Byte Cycle: 1 Cycle

Operation:

The contents of the accumulator are modified if the condition is met. Otherwise a NOP is executed. The exact nature of the accumulator modification is specified by the OPCODE field.

Opcode	Mnemonic	Operation	Flags
000	ROR	Rotate Right	(OV) (Z) (N)
001	ROL	Rotate Left	(OV) (Z) (N)
010	SHR	Arithmetic Right Shift	(OV) (Z) (N)
011	SHL	Arithmetic Left Shift	(OV) (Z) (N)
100	INC	Increment A	(OV) (Z) (N)
101	DEC	Decrement A	(OV) (Z) (N)
110	NEG	Negate A	(OV) (Z) (N)
111	ABS	Absolute A	(OV) (Z) (N)

Condition Field:


Bit 4	Bit 3	
0	0	ILLEGAL
0	1	Always True (MOD, always, OP)
1	0	IFOV = 1 (MOD, OV = 1, OP)
1	1	IF N = 1 (MOD, N = 1, OP)

If the condition is met then

- 000 (L) \rightarrow a15, a15 \rightarrow a14, ..., a1 \rightarrow a0, a0 \rightarrow (L)
- 001 (L) \leftarrow a15, a15 \leftarrow a14, ..., a1 \leftarrow a0, a0 \leftarrow (L)
- 010 Accumulator/2 \rightarrow Accumulator
- 011 Accumulator*2 → Accumulator
- 100 Accumulator+1 \rightarrow Accumulator
- 101 Accumulator-1 \rightarrow Accumulator
- 110 -Accumulator \rightarrow Accumulator
- 111 IAccumulatori \rightarrow Accumulator

Flag change: Yes (OV), (L), (Z), (N)

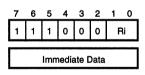
DSP COMMANDS (Continued)

LD (Ri)

Instruction: 1 Byte Cycle: 1 Cycle

Operation:

The contents of the register specified by the register pointer are copied to the accumulator.


(Ri) → Accumulator

Flag change: No

Addressing:

(Ri) is specified by both the bank bit (bit 3) and bit 2 as follows:

в	S		
0	0	R0	
0	1	R1	
1	0	R2	
1	1	R3	

LDI Ri

Instruction: 2 Bytes Cycle: 2 Cycles

Operation:

The register pointers (R0, R1, R2, R3) are loaded with the immediate value specified

Flag change: No

R0 and R1 are register pointers associated with DSP Data Memory RAM(0).

R2 and R3 are register pointers associated with DSP Data Memory RAM(1).

P field (modification field for register pointers):

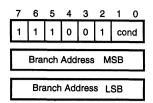
0	0	NOP	
0	1	+1	
1	0	–1 Loop	
1	1	ILLEGÁL	

Example:

The instruction LD (R0+) will load the accumulator with the register whose address is specified by R0 and then it will increment R0.

Quick reference:

(Ri) \rightarrow Accumulator Ri + 1 or Ri – 1 or Ri \rightarrow Ri


Addressing:

(Ri) is specified by bits (1:0) as follows.

Bit 1	Bit 0	
0	0	R0
0	1	R1
1	0	R2 R3
1	1 ΄	R3

Quick reference:

Ri ← Immediate data

BRA cond,addr

Instruction: 3 Bytes Cycle: 3 Cycles

Operation:

The condition is tested and the branch is taken if the condition is true. The branch address has to be within the internal program memory space (512 bytes).

Flag change: No

Branch conditions are specified as follows:

Bit 1	Bit 0	
0	0	Branch on NOT ZERO
0	1	Branch on OVERFLOW
1	0	Branch ALWAYS
1	1	Branch on LINK bit SET

7	6	5	4	з	2	1	0
1	0	0	0	0	1	1	1

DSP STOP

Instruction: 1 Byte Cycle: 1 Cycle


Operation: This instruction will stop the DSP.

Flag change: No

Quick reference:

If condition = True, thenPseudo PC = Branch addressElse,Pseudo PC = Pseudo PC + 1

PACKAGE INFORMATION

NDTES: 1. CONTROLLING DIMENSIONS : MILLIMETER 2. MAX COPLANARITY : <u>10 m</u>m .004"

SYMBOL	MILLIMETER		INCH	
STRUC	MIN	MAX	MIN	MAX
Al	0.10	0.30	.004	.012
A2	2.60	2.80	.102	.110
b	0.30	0.45	.012	.018
c	0.13	0.20	.005	.008
HD	23.80	24.40	.937	.961
D	19.90	20.10	.783	.791
HE	17.80	18.40	.701	.724
E	13.90	14.10	.547	.555
8	0.80 TYP		.031	TYP
L	0.70	1.20	.028	.047

80-Pin QFP Package Diagram

84-Pin PLCC Package Diagram

1-79

MAX

.063

.008

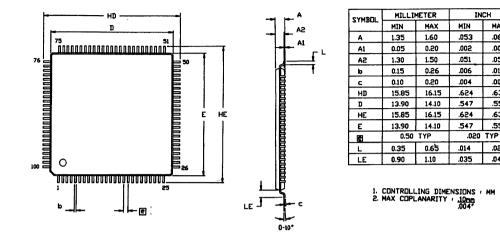
.059

.010

.008

.636

.555


.636

.555

.026

.043

PACKAGE INFORMATION (Continued)

[⊗]ZiL05

ORDERING INFORMATION

Z86C95

	24 MHz	
84-pin PLCC	80-pin QFP	1
Z86C9524VSC	Z86C9524FSC	Z

100-pin VQFP Z86C9524ASC

84-pin PLCC Z86C9533VSC 33 MHz 80-pin QFP Z86C9533FSC

100-pin VQFP Z86C9533ASC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

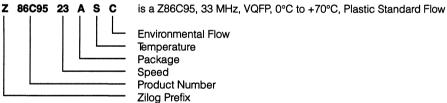
Package V = Plastic Chip Carrier

Longer Lead Time

F = Plastic Quad Flat Pack A = Very Small QFP

Temperature

 $S = 0^{\circ} C$ to $+70^{\circ} C$


Speed

24 = 24 MHz 33 = 33 MHz

Environmental

C = Plastic Standard

Example:

Introduction

Z86C95 Z8® Digital **Signal Processor**

Z89C00 16-Bit Digital Signal Processor 2

Z89C00 DSP Application Note

5

Z89120, Z89920 (ROMIess) **16-Bit Mixed Signal Processor**

Z89121, Z89921 (ROMIess) **16-Bit Mixed Signal Processor**

PRELIMINARY PRODUCT SPECIFICATION

Z89C00

16-BIT DIGITAL SIGNAL PROCESSOR

FEATURES

- 16-Bit Single Cycle Instructions
- Zero Overhead Hardware Looping
- 16-Bit Data
- Ready Control for Slow Peripherals
- Single Cycle Multiply/Accumulate (100 ns)
- Six-Level Stack
- 512 Words of On-Chip RAM
- Static Single-Cycle Operation

4K Words of On-Chip Masked ROM

16-Bit I/O Port

- Three Vectored Interrupts
- 64K Words of External Program Address Space
- Two Conditional Branch Inputs/Two User Outputs
- 24-Bit ALU, Accumulator and Shifter
- IBM® PC Development Tools

GENERAL DESCRIPTION

The Z89C00 is a second generation, 16-bit, fractional, two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate. are accomplished in a single clock cycle. The processor contains 1 Kbyte of on-chip data RAM (two blocks of 256 16-bit words), 4K words of program ROM and 64K words of program memory addressing capability. Also, the processor features a 24-bit ALU, a 16 x 16 multiplier, a 24-bit Accumulator and a shifter. Additionally, the processor contains a six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of three pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multiplier for a true single cycle multiply.

There is a 16-bit address and a 16-bit data bus for external program memory and data, and a 16-bit I/O bus for transferring data. Additionally, there are two general purpose user inputs and two user outputs. Operation with slow peripherals is accomplished with a ready input pin. The clock may be stopped to conserve power.

Development tools for the IBM PC include a relocatable assembler, a linker loader, and an ANSI-C compiler. Also, the development tools include a simulator/debugger, a cross assembler for the TMS320 family assembly code and a hardware emulator.

To assist the user in understanding the Z89C00 DSP Q15 two's complement fractional multiplication, an application note has been included in this product specification as an appendix.

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GŇĎ	V _{ss}

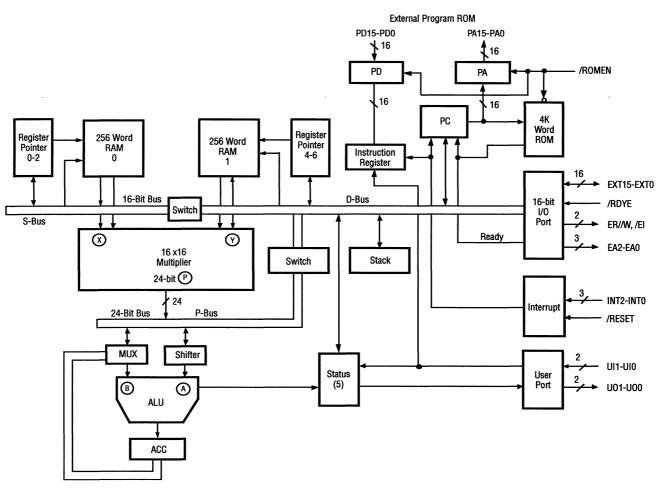


Figure 1. Functional Block Diagram

2-2

Z89C00 16-Bit Digital Signal Processor

[®]Silos

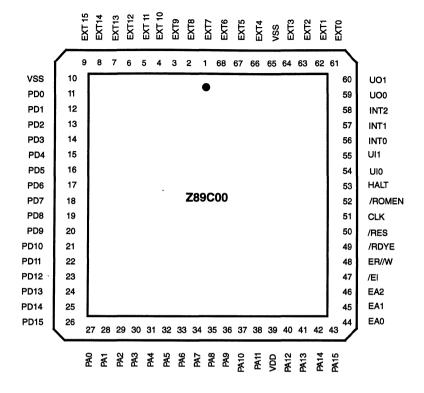


Figure 2. 68-Pin PLCC Pin Assignments

No.	Symbol	Function	Direction
1-9	EXT15-EXT7	External data bus	Input/Output
10	V _{ss}	Ground	Input
11-26	PD15-PD0	Program data bus	Input
27-38	PA11-PA0	Program address bus	Output
39	V _{DD}	Power Supply	Input
40-43	PĂ15-PA12	Program address bus	Output
44-46	EA2-EA0	External address bus	Output
47	/EI	R/W for external bus	Output
48	ER//W	External bus direction	Output
49	/RDYE	Data ready	Input
50	/RES	Reset	Input
51	CLK	Clock	Input
52	/ROMEN	Enable ROM	Input
53	HALT	Stop execution	Input
54-55	UI1-UI0	User inputs	Input
56-58	INT2-INT1	Interrupts	Input
59-60	UO1-UO0	User outputs	Output
61-64	EXT3-EXT0	External data bus	Input/Output
65	V _{ss}	Ground	Input
66-68	EXT6-EXT4	External data bus	Input/Output

Table 1. 68-Pin PLCC Pin Identification

PIN FUNCTIONS

CLK *Clock* (input). External clock. The clock may be stopped to reduce power.

EXT15-EXT0 *External Data Bus* (input/output). Data bus for user defined outside registers such as an ADC or DAC. The pins are normally in output mode except when the outside registers are specified as source registers in the instructions. All the control signals exist to allow a read or a write through this bus.

ER//W External Bus Direction (output, active Low). Data direction signal for EXT-Bus. Data is available from the CPU on EXT15-EXT0 when this signal is Low. EXT-Bus is in input mode (high-impedance) when this signal is High.

EA2-EA0 External Address (output). User-defined register address output. One of eight user-defined external registers is selected by the processor with these address pins for read or write operations. Since the addresses are part of the processor memory map, the processor is simply executing internal reads and writes.

/EI *Enable Input* (output). Write timing signal for EXT-Bus. Data is read by the external peripheral on the rising edge of /EI. Data is read by the processor on the rising edge of CLK, not /EI.

HALT *Halt State* (input). Stop Execution Control. The CPU continuously executes NOPs and the program counter remains at the same value when this pin is held High. This signal must be synchronized with CLK.

INT2-INT0 *Three Interrupts* (rising edge triggered). Interrupt request 2-0. Interrupts are generated on the rising edge of the input signal. Interrupt vectors for the interrupt service starting address are stored in the program memory locations OFFDH for INT0, OFFEH for INT1 and OFFFH for INT2. Priority is: 2 = lowest, 0 = highest.

PA15-PA0 *Program memory address bus* (output). For up to 64K x 16 external program memory. These lines are tristated during Reset Low.

PD15-PD0 *Program Memory Data Input* (input). Instructions or data are read from the address specified by PD15-PD0, through these pins and are executed or stored.

/RES *Reset* (input, active Low). Asynchronous reset signal. A Low level on this pin generates an internal reset signal. The /RES signal must be kept Low for at least one clock cycle. The CPU pushes the contents of the PC onto the stack and then fetches a new Program Counter (PC) value from program memory address 0FFCH after the Reset signal is released. RES Low tri-states the PA and PD bases.

(ROMEN *ROM Enable* (input). An active Low signal enables the internal ROM. Program execution begins at 0000H from the ROM. An active High input disables the ROM and external fetches occur from address 0000H.

/RDYE Data Ready (input). User-supplied Data Ready signal for data to and from external data bus. This pin stretches the /El and ER//W lines and maintains data on the address bus and data bus. The ready signal is sampled from the rising edge of the clock with appropriate setup and hold times. The normal write cycle will continue from the next rising clock only if ready is active.

UI1-UI0 *Two Input Pins* (input). General purpose input pins. These input pins are directly tested by the conditional branch instructions. These are asynchronous input signals that have no special clock synchronization requirements.

UO1-UO0 *Two Output Pins* (output). General purpose output pins. These pins reflect the inverted value of status register bits S5 and S6. These bits may be used to output data by writing to the status register.

ADDRESS SPACE

Program Memory. Programs of up to 4K words can be masked into internal ROM. Four locations are dedicated to the vector address for the three interrupts (0FFDH-0FFFH) and the starting address following a Reset (0FFCH). Internal ROM is mapped from 0000H to 0FFFH, and the highest location for program is 0FFBH. If the /ROMEN pin is held High, the internal ROM is inactive and the processor executes external fetches from 0000H to FFFFH. In this case, locations FFFC-FFFF are used for vector addresses.

Internal Data RAM. The Z89C00 has an internal 512 x 16-bit word data RAM organized as two banks of 256 x 16-bit words each, referred to as RAM0 and RAM1. Each data RAM bank is addressed by three pointers, referred to as Pn:0 (n = 0-2) for RAM0 and Pn:1 (n = 0-2) for RAM0. The RAM addresses for RAM0 and RAM1 are arranged from 0-255 and 256-511, respectively. The address pointers, which may be written to or read from, are 8-bit registers

connected to the lower byte of the internal 16-bit D-Bus and are used to perform no overhead looping. Three addressing modes are available to access the Data RAM: register indirect, direct addressing, and short form direct. These modes are discussed in detail later. The contents of the RAM can be read or written in one machine cycle per word without disturbing any internal registers or status other than the RAM address pointer used for each RAM. The contents of each RAM can be loaded simultaneously into the X and Y inputs of the multiplier.

Registers. The Z89C00 has 12 internal registers and up to an additional eight external registers. The external registers are user definable for peripherals such as A/D or D/A or to DMA or other addressing peripherals. External registers are accessed in one machine cycle the same as internal registers.

FUNCTIONAL DESCRIPTION

General. The Z89C00 is a high-performance Digital Signal Processor with a modified Harvard-type architecture with separate program and data memory. The design has been optimized for processing power and minimizing silicon space.

Instruction Timing. Many instructions are executed in one machine cycle. Long immediate instructions and Jump or Call instructions are executed in two machine cycles. When the program memory is referenced in internal RAM indirect mode, it takes three machine cycles. In addition, one more machine cycle is required if the PC is selected as the destination of a data transfer instruction. This only happens in the case of a register indirect branch instruction.

An Acc + P => Acc; $a(i) * b(j) \rightarrow P$ calculation and modification of the RAM pointers, is done in one machine cycle. Both operands, a(i) and b(j), can be located in two independent RAM (0 and 1) addresses.

Multiply/Accumulate. The multiplier can perform a 16-bit x 16-bit multiply or multiply accumulate in one machine cycle using the Accumulator and/or both the X and Y inputs. The multiplier produces a 32-bit result, however, only the 24 most significant bits are saved for the next instruction or accumulation. The multiplier provides a flow through operation whenever the X or Y register is updated, an automatic multiply operation is performed and the P register is updated. For operations on very small numbers where the least significant bits are important, the data should first be scaled by eight bits (or the multiplier and multiplicand by four bits each) to avoid truncation errors. Note that all inputs to the multiplier should be fractional two's complement 16-bit binary numbers. This puts them in the range [-1 to 0.9999695], and the result is in 24-bits so that the range is [-1 to 0.9999999]. In addition, if 8000H is loaded into both X and Y registers, the resulting multiplication is considered an illegal operation as an overflow would result. Positive one cannot be represented in fractional notation, and the multiplier will actually yield the result 8000H x 8000H = $8000H(-1 \times -1 = -1)$.

ALU. The 24-bit ALU has two input ports, one of which is connected to the output of the 24-bit Accumulator. The other input is connected to the 24-bit P-Bus, the upper 16 bits of which are connected to the 16-bit D-Bus. A shifter between the P-Bus and the ALU input port can shift the data by three bits right, one bit right, one bit left or no shift.

Hardware Stack. A six-level hardware stack is connected to the D-Bus to hold subroutine return addresses or data. The CALL instruction pushes PC+2 onto the stack. The RET instruction pops the contents of the stack to the PC.

User Inputs. The Z89C00 has two inputs, UI0 and UI1, which may be used by jump and call instructions. The jump or call tests one of these pins and if appropriate, jumps to a new location. Otherwise, the instruction behaves like a NOP. These inputs are also connected to the status register bits S10 and S11 which may be read by the appropriate instruction (Figure 3).

User Outputs. The status register bits S5 and S6 connect through an inverter to UO0 and UO1 pins and may be written to by the appropriate instruction.

Interrupts. The Z89C00 has three positive edge triggered interrupt inputs. An interrupt is acknowledged at the end of any instruction execution. It takes two machine cycles to enter an interrupt instruction sequence. The PC is pushed onto the stack. A RET instruction transfers the contents of the stack to the PC and decrements the stack pointer by one word. The priority of the interrupts is 0 = highest, 2 = lowest.

Registers. The Z89C00 has 12 physical internal registers and up to eight user-defined external registers. The EA2-EA0 determines the address of the external registers. The /EI, /RDYE, and ER//W signals are used to read or write from the external registers.

⊗ Silas

PRELIMINARY

REGISTERS

There are 12 internal registers which are defined below:

Register	Register Definition
P	Output of Multiplier, 24-bit, Read Only
X	X Multiplier Input, 16-bit
Y	Y Multiplier Input, 16-bit
A	Accumulator, 24-bit
SR	Status Register, 16-bit
Pn:b	Six Ram Address Pointers, 8-bit Each
PC	Program Counter, 16-bit

The following are virtual registers as physical RAM does not exist on the chip.

Register	Register Definition
EXTn	External registers, 16-bit
BUS	D-Bus
Dn:b	Eight Data Pointers

P holds the result of multiplications and is read only.

X and **Y** are two 16-bit input registers for the multiplier. These registers can be utilized as temporary registers when the multiplier is not being used. The contents of the P register will change if X or Y is changed.

A is a 24-bit Accumulator. The output of the ALU is sent to this register. When 16-bit data is transferred into this register, it goes into the 16 MSB's and the least significant eight bits are set to zero. Only the upper 16 bits are transferred to the destination register when the Accumulator is selected as a source register in transfer instructions. **Pn:b** are the pointer registers for accessing data RAM. (n = 0,1,2 refer to the pointer number) (b = 0,1 refers to RAM bank 0 or 1). They can be directly read from or written to, and can point to locations in data RAM or indirectly to Program Memory.

EXT(n) are external registers (n = 0 to 7). There are eight 16-bit registers here for accessing External data, peripherals, or memory. Note that the actual register RAM does not exist on the chip, but would exist as part of the external device such as an ADC result latch.

BUS is a read-only register which, when accessed, returns the contents of the D-Bus.

Dn:b refer to possible locations in RAM that can be used as a pointer to locations in program memory. The programmer decides which location to choose from two bits in the status register and two bits in the operand. Thus, only the lower 16 possible locations in RAM can be specified. At any one time there are eight usable pointers, four per bank, and the four pointers are in consecutive locations in RAM. For example, if S3/S4 = 01 in the status register, then D0:0/D1:0/D2:0/D3:0 refer to locations a 4/5/6/7 in RAM bank 0. Note that when the data pointers are being written to, a number is actually being loaded to Data RAM, so they can be used as a limited method for writing to RAM.

[©]Silæ

REGISTERS (Continued)

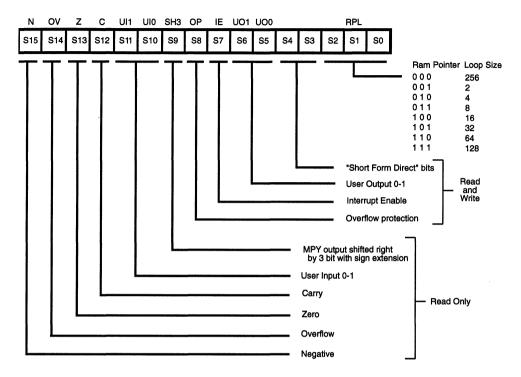


Figure 3. Status Register

SR is the status register (Figure 3) which contains the ALU status and certain control bits as shown in the following table.		RPL Description			
		S2	S1	S0	Loop Size
		0	0	0	256
Status		0	0	1	2
Register Bit	Function	0	1	0	4
		0	1	1	8
S15 (N) S14 (OV) S13 (Z) S12 (L) S11 (UI1) S10 (UI0)	ALU Negative ALU Overflow ALU Zero Carry User Input 1 User Input 0	1 1 1 1	0 0 1 1	0 1 0 1	16 32 64 128
S9 (SH3)MPY Output Shifted Right by Three BitsS8 (OP)Overflow ProtectionS7 (IE)Interrupt EnableS6 (UO1)User Output 1S5 (UO0)User Output 0S4-3"Short Form Direct" Bits		S15-S10 are s	set/reset by	the hardw	e read in its entirety. vare and can only be tten by software.

S2-0 (RPL)

RAM Pointer Loop Size

S15-S12 are set/reset by the ALU after an operation. S11-S10 are set/reset by the user inputs. S6-S0 are control bits described elsewhere. S7 enables interrupts. S8, if 0 (reset), allows the hardware to overflow. If S8 is set, the hardware clamps at maximum positive or negative values instead of overflowing. If S9 is set and a multiply instruction is used, the shifter shifts the result three bits right with sign extension. **PC** is the Program Counter. When this register is assigned as a destination register, one NOP machine cycle is added automatically to adjust the pipeline timing.

RAM ADDRESSING

The address of the RAM is specified in one of three ways (Figure 4):

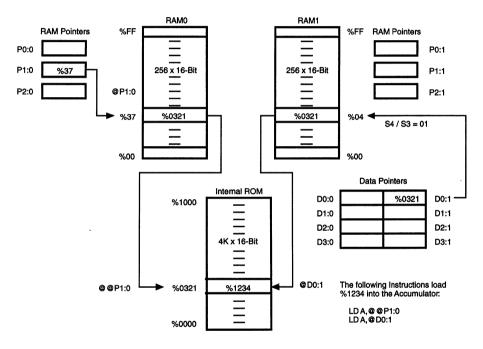


Figure 4. RAM, ROM, and Pointer Architecture

1. Register Indirect

Pn:b n = 0-2, b = 0-1 The most commonly used method is a register indirect addressing method, where the RAM address is specified by one of the three RAM address pointers (n) for each bank (b). Each source/destination field in Figures 5 and 8 may be used by an indirect instruction to specify a register pointer and its modification after execution of the instruction.

RAM ADDRESSING (Continued)

The register pointer is specified by the first and second bits in the source/destination field and the modification is specified by the third and fourth bits according to the following table:

D3-D0)	Meaning
00xx	NOP	No Operation
01xx	+1	Simple Increment
10xx	-1/LOOP	Decrement Modulo the Loop Count
11xx	+1/LOOP	Increment Modulo the Loop Count
xx00	P0:0 or P0:1	See Note a.
xx01	P1:0 or P1:1	See Note a.
xx10	P2:0 or P2:1	See Note a.
xx11		See Short Form Direct

Note:

 If bit 8 is zero, P0:0 to P2:0 are selected; if bit 8 is one, P0:1 to P2:1 are selected.

When Loop mode is selected, the pointer to which the loop is referring will cycle up or down, depending on whether a -LOOP or +LOOP is specified. The size of the loop is obtained from the least significant three bits of the Status Register. The increment or decrement of the register is accomplished modulo the loop size. As an example, if the loop size is specified as 32 by entering the value 101 into bits 2-0 of the Status Register (S2-S0) and an increment +LOOP is specified in the address field of the instruction, i.e., the RPi field is 11xx, then the register specified by RPi will increment, but only the least significant five bits will be affected. This means the actual value of the pointer will cycle round in a length 32 loop, and the lowest or highest value of the loop, depending on whether the loop is up or down, is set by the three most significant bits. This allows repeated access to a set of data in RAM without software intervention. To clarify, if the pointer value is 10101001 and if the LOOP = 32, the pointer increments up to 10111111, then drops down to 10100000 and starts again. The upper three bits remaining unchanged. Note that the original value of the pointer is not retained.

2. Direct Register

The second method is a direct addressing method. The address of the RAM is directly specified by the address field of the instruction. Because this addressing method consumes nine bits (0-511) of the instruction field, some instructions cannot use this mode (Figure 6).

Figures 8 to 13 show the different register instruction formats along with the two tables below Figure 8.

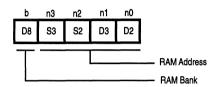
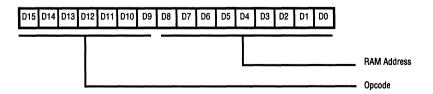
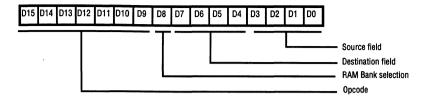



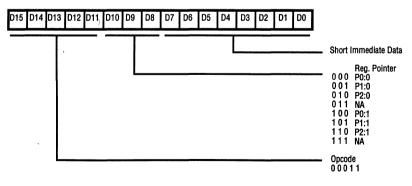
Figure 7. Short Form Direct Address

3. Short Form Direct


Dn:b n = 0-3, b = 0-1

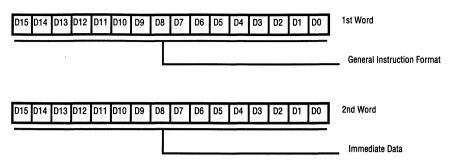
The last method is called Short Form Direct Addressing, where one out of 32 addresses in internal RAM can be specified. The 32 addresses are the 16 lower addresses in RAM Bank 0 and the 16 lower addresses in RAM Bank 1. Bit 8 of the instruction field determines RAM Bank 0 or 1. The 16 addresses are determined by a 4-bit code comprised of bits S3 and S4 of the status register and the third and fourth bits of the Source/ Destination field. Because this mode can specify a direct address in a short form, all of the instructions using the register indirect mode can use this mode (Figure 7). This method can access only the lower 16 addresses in the both RAM banks and as such has limited use. The main purpose is to specify a data register. located in the RAM bank, which can then be used to point to a program memory location. This facilitates down-loading look-up tables, etc. from program memory to RAM.

INSTRUCTION FORMAT

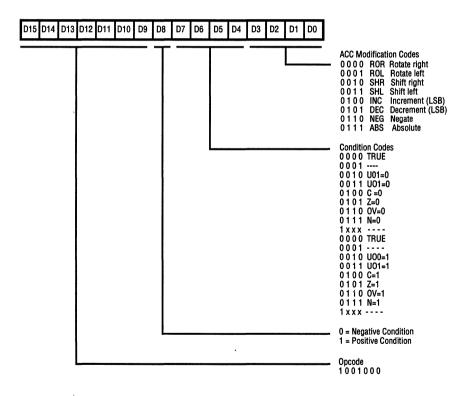


Note:

Source/Destination fields can specify either register or RAM addresses in RAM pointer indirect mode.



A. Registers		B. Register Po	ointers Field
Source/Destination	Register	Source/Destination	Meaning
0000	BUS**	00xx	NOP
0001	Х	01xx	+1
0010	Y	10xx	-1/LOOP
0011	Α	11xx	+1/LOOP
0100	SR		P0:0 or P0:1*
0101	STACK	xx01	P1:0 or P1:1*
0110	PC	xx10	P2:0 or P2:1*
0111	P**	xx11	Short Form Direct
, 1000			Mode
1000	EXT0	Netro	
1001	EXT1	Notes: * If RAM Bank bit is 0, then Pn:0 are	aplastad
1010	EXT2	If RAM Bank bit is 0, then Ph.0 are	
1011	EXT3	** Read only.	3000100.
1100	EXT4	—	
1101	EXT5		
1110	EXT6		
1111	EXT7		



INSTRUCTION FORMAT (Continued)

PRELIMINARY

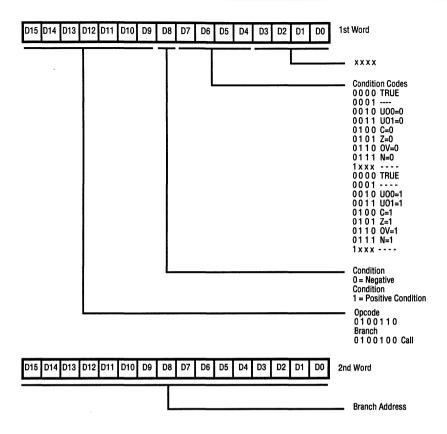


Figure 12. Branching Format

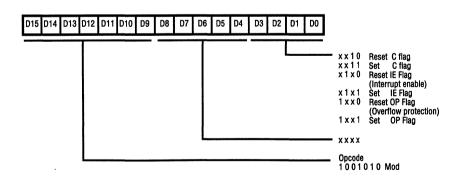


Figure 13. Flag Modification Format

ADDRESSING MODES

This section discusses the syntax of the addressing modes supported by the DSP assembler. The symbolic name is

used in the discussion of instruction syntax in the instruction descriptions.

Symbolic Name	Syntax	Description
<pregs></pregs>	Pn:b	Pointer Register
<dregs> (Points to RAM)</dregs>	Dn:b	Data Register
<hwregs></hwregs>	X,Y,PC,SR,P EXTn,A,BUS	Hardware Registers
<accind> (Points to Program Memory)</accind>	@A	Accumulator Memory Indirect
<direct></direct>	<expression></expression>	Direct Address Expression
limm>	# <const exp=""></const>	Long (16-bit) Immediate Value
<simm></simm>	# <const exp=""></const>	Short (8-bit) Immediate Value
<regind> (Points to RAM)</regind>	@Pn:b @Pn:b+ @Pn:b-LOOP @Pn:b+LOOP	Pointer Register Indirect Pointer Register Indirect with Increment Pointer Register Indirect with Loop Decrement Pointer register Indirect with Loop Increment
<memind> (Points to Program Memory)</memind>	@@Pn:b @Dn:b @@Pn:b-LOOP @@Pn:b+LOOP @@Pn:b+	Pointer Register Memory Indirect Data Register Memory Indirect Pointer Register Memory Indirect with Loop Decrement Pointer Register Memory Indirect with Loop Increment Pointer Register Memory Indirect with Increment

There are eight distinct addressing modes for transfer of data (Figure 4 and the table above).

<pregs>, <hwregs> These two modes are used for simple loads to and from registers within the chip such as loading to the Accumulator, or loading from a pointer register. The names of the registers need only be specified in the operand field. (Destination first then source)

<regind> This mode is used for indirect accesses to the data RAM. The address of the RAM location is stored in the

pointer. The "@" symbol indicates "indirect" and precedes the pointer, so @P1:1 tells the processor to read or write to a location in RAM1, which is specified by the value in the pointer.

<dregs> This mode is also used for accesses to the data RAM but only the lower 16 addresses in either bank. The 4-bit address comes from the status register and the operand field of the data pointer. Note that data registers are typically used not for addressing RAM, but loading data from program memory space.

& Sirae

<memind> This mode is used for indirect, indirect accesses to the program memory. The address of the memory is located in a RAM location, which is specified by the value in a pointer. So @@P1:1 tells the processor to read (write is not possible) from a location in memory, which is specified by a value in RAM, and the location of the RAM is in turn specified by the value in the pointer. Note that the data pointer can also be used for a memory access in this manner, but only one "@" precedes the pointer. In both cases the memory address stored in RAM is incremented by one each time the addressing mode is used to allow easy transfer of sequential data from program memory.

<a>ccind> Similar to the previous mode, the address for the program memory read is stored in the Accumulator. @A in the second operand field loads the number in memory specified by the address in A.

<direct> The direct mode allows read or write to data RAM from the Accumulator by specifying the absolute address of the RAM in the operand of the instruction. A number between 0 and 255 indicates a location in RAM0, and a number between 256 and 511 indicates a location in RAM1.

limm> This indicates a long immediate load. A 16-bit word can be copied directly from the operand into the specified register or memory.

<simm> This can only be used for immediate transfer of 8-bit data in the operand to the specified RAM pointer.

CONDITION CODES

The following table defines the condition codes supported by the DSP assembler. If the instruction description refers to the <cc> (condition code) symbol in one of its addressing modes, the instruction will only execute if the condition is true.

Name	Description	Name	Description
С	Carry	NU1	Not User One
EQ	Equal (same as Z)	NZ	Not zero
F	False	OV	Overflow
IE	Interrupts Enabled	PL	Plus (Positive)
MI	Minus	UO	User Zero
NC	No Carry	U1	User One
NE	Not Equal (same as NZ)	UGE	Unsigned Greater Than or
NIE	Not Interrupts Enabled		Equal (Same as NC)
NOV	Not Overflow	ULT	Unsigned Less Than (Same as C)
NUO	Not User Zero	Z	Zero

INSTRUCTION DESCRIPTIONS

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
ABS	Absolute Value	ABS[<cc>,]<src></src></cc>	<cc>,A</cc>	1	1	ABS NC,A
			Α	1	1	ABS A
\DD	Addition	ADD <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	ADD A, P0:0
			A, <dregs></dregs>	1	1	ADD A,D0:0
			A, <limm></limm>	2	2	ADD A,#%1234
			A, <memind></memind>	1	3	ADD A,@@P0:0
			A, <direct></direct>	1	1	ADD A,%F2
			A, <regind></regind>	1	1	ADD A,@P1:1
			A, <hwregs></hwregs>	1	1	ADD A,X
ND	Bitwise AND	AND <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	AND A,P2:0
			A, <dregs></dregs>	1	1	AND A,DO:1
			A, <limm></limm>	2	2	AND A,#%1234
			A. <memind></memind>	1	3	AND A.@@P1:0
			A. <direct></direct>	1	1	AND A,%2C
	10		A, <regind></regind>	1	1	AND A,@P1:2+L00P
			A, <hwregs></hwregs>	1	1	AND A,EXT3
ALL	Subroutine call	CALL [<cc>,]<address></address></cc>	<cc>,<direct></direct></cc>	2	2	CALL Z,sub2
		• • • •	<direct></direct>	2	2	CALL sub1
CF	Clear carry flag	CCF	None	1	1	CCF
IEF	Clear Carry Flag	CIEF	None	1	1	CIEF
OPF	Clear OP flag	COPF	None	1	1	COPF
P	Comparison	CP <src1>,<src2></src2></src1>	A, <pregs></pregs>	1	1	CP A,P0:0
	•		A, <dregs></dregs>	1	1	CP A,D3:1
			A. <memind></memind>	1	3	CP A,@@P0:1
			A, <direct></direct>	1	1	CP A, %FF
			A, <regind></regind>	1	1	CP A.@P2:1+
			A. <hwreas></hwreas>	1	1	CP A,STACK
			A <limm></limm>	2	2	CP A,#%FFCF
EC	Decrement	DEC [<cc>,]<dest></dest></cc>	<cc>A,</cc>	1	1	DEC NZ,A
			A	1	1	DEC A
NC	Increment	INC [<cc>,] <dest></dest></cc>	<cc>,A</cc>	1	1	INC PL,A
			A	1	1	INC A
P	Jump	JP [<cc>,]<address></address></cc>	<cc>,<direct></direct></cc>	2	2	JP NIE,Label
			<direct></direct>	2	2	JP Label

⊗ Silas

PRELIMINARY

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples			
LD	Load destination	LD <dest>,<src></src></dest>	A, <hwregs></hwregs>	1	1	LD A,X			
	with source		A, <dregs></dregs>	1	1	LD A.D0:0			
			A, <pregs></pregs>	1	1	LD A.P0:1			
			A. <regind></regind>	1	1	LD A.@P1:1			
			A, <memind></memind>	1	3	LD A,@D0:0			
			A, <direct></direct>	1	1	LD A.124			
			<direct>,A</direct>	1	1	LD 124,A			
			<dregs>,<hwregs></hwregs></dregs>	1	1	LD D0:0.EXT7			
			<pregs>,<simm></simm></pregs>	1	1	LD P1:1,#%FA			
			<pregs>,<hwregs></hwregs></pregs>	1	1	LD P1:1,EXT1			
			<regind>,<limm></limm></regind>	1	1	LD@P1:1,#1234			
			<regind>,<hwregs></hwregs></regind>	1	1	LD @P1:1+,X			
			<hwregs>,<pregs></pregs></hwregs>	1	i	LD Y P0:0			
			<hwregs>,<pre>chwregs>,<dregs></dregs></pre></hwregs>	i	1	LD SR,D0:0			
			<hwregs>,<limm></limm></hwregs>	2	2	LD PC,#%1234			
			<hwregs>,<accind></accind></hwregs>	1	3	LD X,@A			
			<hwregs>,<memind></memind></hwregs>	1	3	LD Y.@D0:0			
			<hwregs>,<regind></regind></hwregs>	1	1	LD A,@P0:0-L00P			
			<hwregs>,<hwregs></hwregs></hwregs>	1	1	LD X,EXT6			
			Note: If X or Y register is the destination, an automatic multiply operation is performed.						
			Note: The P register is Read Or		annot be d	estination.			
			Note: LD EXT _N , EXT _N is not allo	wed.					
			Note: LD A, @A is not allowed.						
MLD	Multiply	MLD <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	<hwregs>,<regind></regind></hwregs>	1	1	MLD A,@P0:0+L00P			
			<hwregs>,<regind>,<bank switch<="" td=""><td>⊳ 1</td><td>1</td><td>MLD A,@P1:0,0FF</td></bank></regind></hwregs>	⊳ 1	1	MLD A,@P1:0,0FF			
			<regind>,<regind></regind></regind>	1	1	MLD @P1:1,@P2:0			
			<regind>,<regind>,<bank switch:<="" td=""><td></td><td>1</td><td>MLD @P0:1,@P1:0,0N</td></bank></regind></regind>		1	MLD @P0:1,@P1:0,0N			
			Note: If src1 is <regind> it mus</regind>		•	ter.			
			Src2's <regind a<="" be="" must="" td=""><td></td><td>egister.</td><td></td></regind>		egister.				
			Note: <hwregs> for src1 canno</hwregs>						
					d>the cha	nd switch> defaults to UFF.			
			Note: For the operands <hwregs For the operands <regind< td=""><td>>, <reyin >, the <b< td=""><td>ank switch</td><td>n> defaults to ON.</td></b<></reyin </td></regind<></hwregs 	>, <reyin >, the <b< td=""><td>ank switch</td><td>n> defaults to ON.</td></b<></reyin 	ank switch	n> defaults to ON.			
MPYA	Multiply and add	MPYA <src1>,<src2>[<bank switch="">]</bank></src2></src1>	Note: For the operands <hwregs For the operands <regind <hwregs>,<regind></regind></hwregs></regind </hwregs 	>, the <b< td=""><td>ank switch</td><td>n> defaults to ON. MPYA A,@P0:0</td></b<>	ank switch	n> defaults to ON. MPYA A,@P0:0			
MPYA	Multiply and add	MPYA <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	For the operands <regind< td=""><td>>, the <t< td=""><td>ank switch</td><td>n> defaults to ON.</td></t<></td></regind<>	>, the <t< td=""><td>ank switch</td><td>n> defaults to ON.</td></t<>	ank switch	n> defaults to ON.			
MPYA	Multiply and add	MPYA <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	For the operands <regind <hwregs>,<regind> <hwregs>,<regind>,<bank switch<="" td=""><td>>, the <t< td=""><td>ank switch</td><td>n> defaults to ON. MPYA A,@P0:0 MPYA A,@P1:0,0FF</td></t<></td></bank></regind></hwregs></regind></hwregs></regind 	>, the <t< td=""><td>ank switch</td><td>n> defaults to ON. MPYA A,@P0:0 MPYA A,@P1:0,0FF</td></t<>	ank switch	n> defaults to ON. MPYA A,@P0:0 MPYA A,@P1:0,0FF			
MPYA	Multiply and add	MPYA <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	For the operands <regind< td=""><td> >, the <t 1 > 1 1</t </td><td>ank switch</td><td>n> defaults to ON. MPYA A,@P0:0</td></regind<>	>, the <t 1 > 1 1</t 	ank switch	n> defaults to ON. MPYA A,@P0:0			
MPYA	Multiply and add	MPYA <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	For the operands <regind <hwregs>,<regind> <hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<tergind> <regind>,<regind>,<bank switch:<br="">Note: If src1 is <regind> it mus</regind></bank></regind></regind></tergind></regind></regind></bank></regind></hwregs></regind></hwregs></regind 	>, the <t 1 > 1 > 1 > 1 t be a ba</t 	nank switch 1 1 1 1 1 nk 1 regist	MPYA A,@P0:0 MPYA A,@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N			
MPYA	Multiply and add	MPYA <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	For the operands <regind <hwregs>,<regind> <hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<regind> <regind>,<regind>,<bank switch<br="">: If src1 is <regind> it mus Src2's <regind> must be</regind></regind></bank></regind></regind></regind></regind></regind></bank></regind></hwregs></regind></hwregs></regind 	>, the <t 1 > 1 > 1 > 1 → 1 t be a ba a bank 0</t 	ank switch 1 1 1 1 nk 1 regist register.	MPYA A,@P0:0 MPYA A,@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N			
MPYA	Multiply and add	MPYA <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	For the operands <regind <hwregs>,<regind> <hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<tergind> <regind>,<regind>,<bank switch:<br="">Note: If src1 is <regind> it mus Src2's <regind> must be Note: <hwregs> for src1 cannot</hwregs></regind></regind></bank></regind></regind></tergind></regind></regind></bank></regind></hwregs></regind></hwregs></regind 	I>, the 111<	nank switch 1 1 1 1 nk 1 regist register. A.	n> defaults to ON. MPYA A,@P0:0 MPYA A,@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N ter.			
MPYA	Multiply and add	MPYA <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	For the operands <regind <hwregs>,<regind> <hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<regind> <regind>,<regind>,<bank switch<br="">: If src1 is <regind> it mus Src2's <regind> must be</regind></regind></bank></regind></regind></regind></regind></regind></bank></regind></hwregs></regind></hwregs></regind 	 b>, the <t< li=""> 1 1 1 1 a bank 0 be X or s>, <regi< li=""> </regi<></t<>	ank switch 1 1 1 1 nk 1 regist register. A. nd> the <t< td=""><td>n> defaults to ON. MPYA A,@P0:0 MPYA A,@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N ter. bank switch> defaults to</td></t<>	n> defaults to ON. MPYA A,@P0:0 MPYA A,@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N ter. bank switch> defaults to			

.

INSTRUCTION DESCRIPTIONS (Continued)

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
MPYS	Multiply and subtract	MPYS <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	<hwregs>,<regind> <hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch:<="" td=""><td>1</td><td>1 1</td><td>MPYS A,@P0:0 MPYS A,@P1:0,0FF MPYS @P1:1,@P2:0 MPYS@P0:1,@P1:0,0N</td></bank></regind></regind></regind></regind></bank></regind></hwregs></regind></hwregs>	1	1 1	MPYS A,@P0:0 MPYS A,@P1:0,0FF MPYS @P1:1,@P2:0 MPYS@P0:1,@P1:0,0N
		N	ote: If src1 is <regind> it must be Src2's <regind> must be a ba ote: <hwregs> for src1 cannot be ote: For the operands <hwregs>, < For the operands <regind>, <</regind></hwregs></hwregs></regind></regind>	nk 0 reg X or A. regind>	gister. the <ban< td=""><td>k switch> defaults to OFF</td></ban<>	k switch> defaults to OFF
NEG	Negate	NEG <cc>,A</cc>	<cc>, A A</cc>	1		NEG MI,A NEG A
NOP	No operation	NOP	None	1		NOP
OR	Bitwise OR	OR <dest>,<src></src></dest>	A, <pregs></pregs>	1		OR A,P0:1
UN	DILWISE ON	0h <uesi>,<sic></sic></uesi>	A, <pregs> A, <dregs></dregs></pregs>	1		OR A, D0:1
			A, <ureys> A, <limm></limm></ureys>	2		OR A,#%2C21
			A, <memind></memind>	2		OR A.@@P2:1+
			A, <direct></direct>	1		OR A, %2C
			A, <regind></regind>	1		OR A, @P1:0-LOOP
			A, <hwregs></hwregs>	1		OR A,EXT6
POP	Pop value	POP <dest></dest>	<pregs></pregs>	1	1	POP PO:0
	from stack		<dregs></dregs>	1	1	POP DO:1
			<regind></regind>	1	1	POP @P0:0
			<hwregs></hwregs>	1	1	POP A
PUSH	Push value	PUSH <src></src>	<pregs></pregs>	1		PUSH P0:0
	onto stack		<dregs></dregs>	1		PUSH D0:1
			<regind></regind>	1		PUSH @P0:0
			<hwregs></hwregs>	1		PUSH BUS
			<limm></limm>	2		PUSH #12345
			<accind></accind>	1	-	PUSH @A
			<memind></memind>	1	3	PUSH @@P0:0
RET	Return from subroutine	RET	None	1	2	RET
RL	Rotate Left	RL <cc>,A</cc>	<cc>,A</cc>	1		RL NZ,A
			A	1	1	RL A
RR	Rotate Right	RR <cc>,A</cc>	<cc>,A</cc>	1		RR C,A
			Α	1	1	RR A

.

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
SCF	Set C flag	SCF	None	1	1	SCF
SIEF	Set IE flag	SIEF	None	1	1	SIEF
SLL	Shift left	SLL	[<cc>,]A</cc>	1	1	SLL NZ,A
	logical		А	1	1	SLL A
SOPF	Set OP flag	SOPF	None	1	1	SOPF
SRA	Shift right	SRA <cc>,A</cc>	<cc>,A</cc>	1	1	SRA NZ,A
	arithmetic		Α	1	1	SRA A
SUB	Subtract	SUB <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	SUB A,P1:1
			A, <dregs></dregs>	1	1	SUB A,D0:1
			A, <limm></limm>	2	2	SUB A,#%2C2C
			A, <memind></memind>	1	3	SUB A,@D0:1
			A, <direct></direct>	1	1	SUB A, %15
			A, <regind></regind>	1	1	SUB A,@P2:0-LOOP
			A, <hwregs></hwregs>	1	1	SUB A, STACK
XOR	Bitwise exclusive OR	XOR <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	XOR A,P2:0
			A, <dregs></dregs>	1	1	XOR A,D0:1
			A, <limm></limm>	2	2	XOR A,#13933
			A, <memind></memind>	1	3	XOR A,@@P2:1+
			A, <direct></direct>	1	1	XOR A,%2F
			A, <regind></regind>	1	1	XOR A,@P2:0
			A, <hwregs></hwregs>	1	1	XOR A, BUS

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this, two keywords are used (ON and OFF) which state the direction of the switch. These keywords are referred to in the instruction descriptions through the <bank switch> symbol.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V _{cc} T _{cro}	Supply Voltage(*) Storage Temp.	0.5 65°	7.0 +150°	V C
	Oper. Ambient Temp.	†		Č

Notes:

* Voltages on all pins with respect to ground.

† See Ordering Information

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Test Load Diagram, Figure 14). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

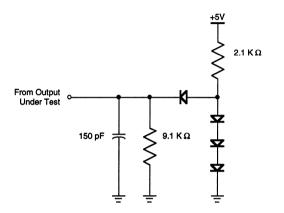
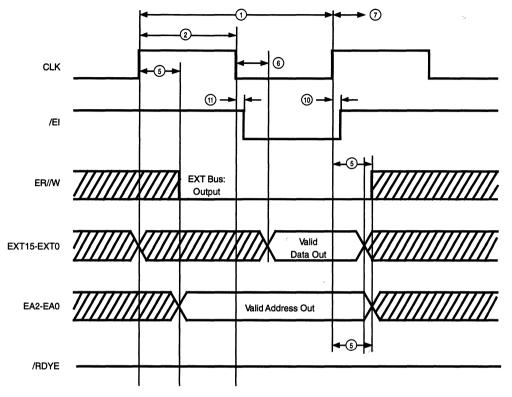


Figure 14. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS


 $(V_{cc} = 5V \pm 5\%, T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Condition	Min.	Max.	Units
I _{cc}	Supply Current	V _{cc} = 5.25V fclock = 10 MHz		60	mA
I _{CC1}	Halt Mode	V _{cc} = 5.25V fclock = 0 MHz (stopped)	1	5	mA
V _{IH}	Input High Level		0.9 V _{cc}		V
V	Input Low Level			0.1 V _{cc}	V
I _{IL}	Input Leakage			1	μA
V _{OH}	Output High Voltage	$I_{0\mu} = -100 \mu A$	V _{cc} -0.2		V
VOL	Output Low Voltage	I _{OH} = -100 μA I _{OL} = 0.5 mA	00	0.5	V
I _{FL}	Output Floating Leakage Current			5	μA

AC ELECTRICAL CHARACTERISTICS ($V_{cc} = 5V \pm 5\%$, $T_A = 0^{\circ}C$ to +70°C unless otherwise specified)

No.	Symbol	Parameter	Min.	Max.	Units
1	TCY	Clock Cycle Time	100	1000	ns
2	PWW	Clock Pulse Width	45		ns
3	Tr	Clock Rise Time	2	4	ns
4	Tf	Clock Fall Time	2	4	ns
5	TEAD	EA,ER//W Delay from CK	9	33	ns
6	TXVD	EXT Data Output Valid from CLK	5	27	ns
7	TXWH	EXT Data Output Hold from CLK	6	22	ns
8	TXRS	EXT Data Input Setup Time	15		ns
9	TXRH	EXT Data Input Hold from CLK	5	15	ns
10	TIEDR	/EI Delay Time from Rising CLK Edge	3	15	ns
11	TIEDF	/EI Delay Time from Falling CLK Edge	0	23	ns
12	TINS	Interrupt Setup Time	5		ns
13	TINL	Interrupt Hold Time	15		ns
14	TPAD	PA Delay from CLK	5	22	ns
15	TPDS	PD Input Setup Time	20		ns
16	TPDH	PD Input Hold Time	20	28	ns
17	TCTLS	Halt Setup Time	5		ns
18	TCTLH	Halt Hold Time	20		ns
19	RDYS	Ready Setup Time	10		ns
20	RDYH	Ready Hold Time	7		ns

AC TIMING DIAGRAM

Silas

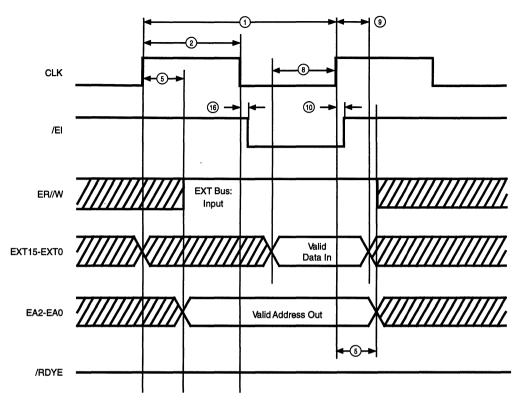


Figure 16. Read From External Device Timing

AC TIMING DIAGRAM

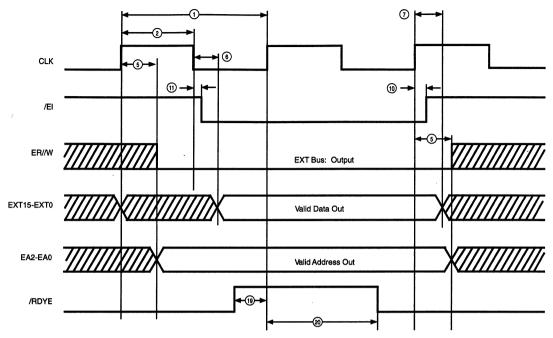
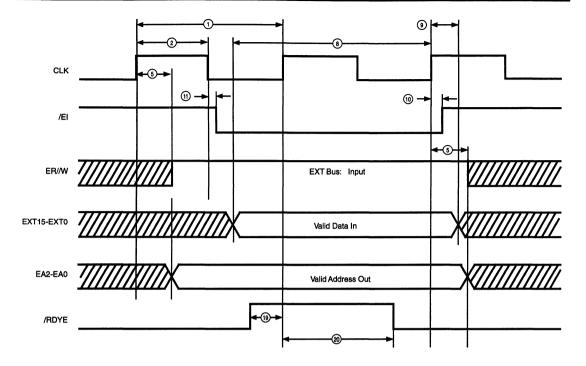
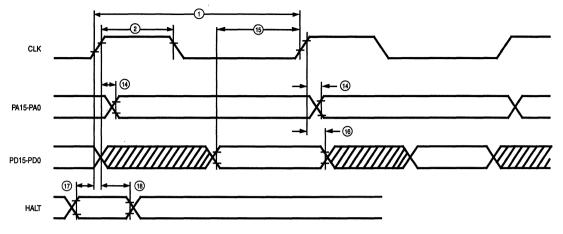
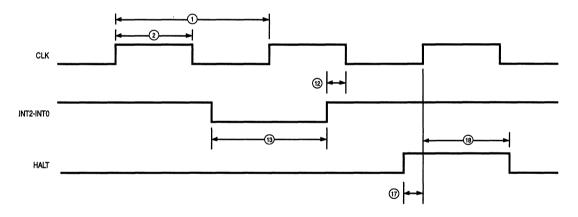


Figure 17. Write To External Device Timing (/RDYE used to hold data one clock cycle)*

Note: * /RDYE is checked during rising edge of clock.

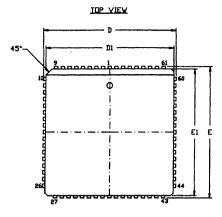
[⊗]ZiL05

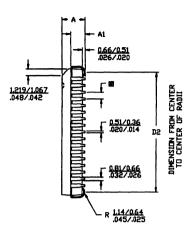




Figure 18. Read From External Device Timing (/RDYE used to hold data one clock cycle)*

Note: * /RDYE is checked during rising edge of clock.

AC TIMING DIAGRAM





PACKAGE INFORMATION

NOTES

1. CONTROLLING DIMENSIONS / INCH 2. LEADS ARE COPLANAR VITHIN .004 IN. 3. DIMENSION / <u>MM</u> INCH

SYMBOL	MILLIMETER		IN	СН
STADUC	MIN	MAX	MIN	MAX
A	4.32 •	4.57	.170	180
A1	2.67	2.92	.105	.115
D/E	25.02	25.40	.985	1.000
D1/E1	24.13	24.33	.950	.958
DS	22.86	23.62	.900	.930
8	1.27 TYP		.050	TYP

68-Pin PLCC Package Diagram

ORDERING INFORMATION

Z89C00

10 MHz 68-pin PLCC

Z89C0010VSC

15 MHz

68-pin PLCC Z89C0015VSC

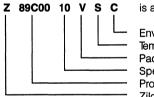
For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

V = Plastic Leaded Chip Carrier

Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$


Speeds

10 = 10 MHz 15 = 15 MHz

Environmental

C = Plastic Standard

Example:

is a Z89C00, 10 MHz, PLCC, 0°C to +70°C, Plastic Standard Flow

- Environmental Flow Temperature Package Speed Product Number
 - Zilog Prefix

Introduction

Z89120, Z89920 (ROMIess) 16-Bit Mixed Signal Processor

Z89121, Z89921 (ROMIess) 16-Bit Mixed Signal Processor

Z89C00 DSP UNDERSTANDING Q15 TWO'S COMPLEMENT FRACTIONAL MULTIPLICATION

DSP multiply/accumulate instructions are computed in a single machine cycle with the Zilog Z89C00. This Application Note describes the two's complement fractional multiplication process.

INTRODUCTION

DSP (Digital Signal Processor) multiplication is broken down into its elements in this Application Note. All the DSP requires is that the values to be multiplied are entered and the result will be given in one cycle.

The Zilog Z89C00 uses fixed point, two's complement fractional representation. The left-most bit (MSB) has a sign or weight of -1 and all the remaining bits have positive fractional weights (Q15). Values to be multiplied are written into the X (16-bit) and Y (16-bit) registers and the result (32-bit) is read in the P register. Note that only the 24 most significant bits are saved for the next instruction or accumulation.

The following working examples can be used with either a scientific calculator, a Lotus[®] 1-2-3[®] spreadsheet, or a Z89C00 Zilog DSP GUI emulator or PLC simulator/emulator interface.

SCIENTIFIC CALCULATOR

The calculator should, in addition to all the regular functions, have hexadecimal to decimal (HEX to DEC, DEC to HEX) and exclusive OR (XOR). Before beginning the multiplication, a couple of quick conversions from two's complement fractional notation numbers to decimal:

Converting Positive Numbers:

Con

6FFF 5ABC 28AD	$\begin{array}{rrrr} \text{HEX} \rightarrow 28671 & \text{DEC}/32768 &= 0.8749 & \text{DEC} \\ \text{HEX} \rightarrow 23228 & \text{DEC}/32768 &= 0.7088 & \text{DEC} \\ \text{HEX} \rightarrow 10413 & \text{DEC}/32768 &= 0.3177 & \text{DEC} \\ \end{array}$	
0.8749 0.7088 0.3177	DEC • 32768 = 28671 DEC → 6FFF HEX DEC • 32768 = 23228 DEC → 5ABC HEX DEC • 32768 = 10413 DEC → 28AD HEX	
NVERTING HEX 8000 8008 9ABC	Negative Numbers: Two's Complement XOR with FFFF + 1 = 8000 \rightarrow DEC 32768/32768 \bullet -1 = XOR with FFFF + 1 = 7FF8 \rightarrow DEC 32760/32768 \bullet -1 = XOR with FFFF + 1 = 6544 \rightarrow DEC 25924/32768 \bullet -1 =	DEC Result -1.0000 -0.9997 -0.7911
	Two's Complement • $-1 = 1.0000 \bullet 32768$ to HEX $\rightarrow 8000$ XOR with FFFF + 1 = • $-1 = 0.9997 \bullet 32768$ to HEX \rightarrow 7FF6 XOR with FFFF + 1 =	8000

 $-0.7911 \bullet -1 = 0.7911 \bullet 32768$ to HEX $\rightarrow 6542$ XOR with FFFF + 1 =

3-1

9ABC

8000H is 32768 (215 plus a sign bit) decimal. Everything that has a range of \pm 32768 to a range of -1 (the sign bit has a weight of -1) to \pm 0.9999695 is being rescaled, hence, the division and multiplication by 32768. Note: Recorder can be taught to perform this function by using the windows calculator.

One line of code is required before implementing the multiplication examples:

Instruction	Operation
MLD @P0:1,@P0:0	@P0:1 • @P0:0

This instruction multiplies two RAM operands. The format requires that RAM Bank 1 be referenced first.

Example 1: (+ve) • (+ve)

Multiplying a positive two's complement fractional notation number with a positive two's complement fractional notation number:

((+ve) • (+ve)) •2)

- a. Multiply
- b. Shift left 1 bit (Multiply by 2)
- c. Use only top 4 bytes

```
6FFF • 6FFF
```

	(Place in X register) (Place in Y register) (Multiply •2 equivalent to shift left 1 bit)
61FE4002 61FE40 61FE	(Save only top 6 bytes. This is what appears in the P register) (Use only top four bytes)
• · · =	(

In summary,

6FFF HEX (0.8749 DEC) • 6FFF HEX (0.8749 DEC) = 61FE HEX (0.7655 DEC)

Example 2: (-ve) • (-ve)

Multiplying a negative two's complement fractional notation number with a negative two's complement fractional notation number:

((XOR(-ve,FFFF)+1) • (XOR(-ve,FFFF)+1)) •2

- a. Take Two's Complement of both -ve negative numbers (XOR with FFFF then add 1)
- b. Multiply results
- c. Shift left 1 bit (Multiply by 2)
- d. Use only top 4 bytes

9DAB • AEAF

- 6255 (Two's Complement of 9DAB, i.e., XOR(9DAB,FFFF) +1) (Two's Complement of AEAF, i.e., XOR(AEAF,FFFF) +1) 1F3C01E5 (Multiply •2 equivalent to shift left 1 bit) 3E7803CA
 - 3E7803 (Save only top 6 bytes. This is what appears in the P register) 3E78 (Use only top four bytes)

In summary,

9DAB HEX (-0.7682 DEC) • AEAF HEX (-0.6352 DEC) = 3E78 HEX (0.4880 DEC)

Example 3: (-ve) • (+ve)

Multiplying a negative two's complement fractional notation number with a positive two's complement fractional notation number:

(XOR((((XOR(-ve,FFFF)+1) • (+ve)) •2),FFFF)) +1

- a. Take Two's Complement of -ve (XOR with FFFF then add 1)
- b. Multiply result with +ve
- c. Shift left 1 bit (Multiply by 2)
- d. Take Two's Complement -ve (XOR with FFFF then add 1)
- e. Use only top 4 bytes

9DAB • 6FFF 6255 ×6FFF 2B04CDAB	(Two's Complement of 9DAB, i.e., XOR(9DAB,FFFF) +1)
× <u>2</u> 56099B56	(Multiply •2 equivalent to shift left 1 bit)
A9F664AA A9F664 A9F6	(Two's Complement) (Save only top 6 bytes. This is what appears in the P register) (Use only top four bytes)

In summary,

9DAB HEX (-0.7682 DEC) • 6FFF HEX (0.8749 DEC) = A9F6 HEX (-0.6721)

Be especially careful to note the truncations that take place which are normally implicit in this type of mathematics. Although the multiplier produces a 32-bit result, only the 24 most significant bits are saved. For example, if this result is saved temporarily in a RAM BANK, then only the 16 most significant bits are saved. If greater precision (using very small numbers) is required, then the data should be scaled before doing the multiplication.

NOTE: The DSP is designed for two's complement fractional multiplies and is useless for scalar multiplication.

LOTUS

LOTUS spreadsheet software can be used to make conversions and do two's complement fractional multiplication. Convert from HEX to decimal and multiply both decimal numbers together and reconvert the result to HEX. When converting from decimal to HEX, use HEX $16^{\circ} = 1$, $16^{1} = 16$, $16^{2} = 256$, and $16^{3} = 4096$. The equivalent decimal value is checked for sign, and, by dividing by 16^{3} , 16^{2} , 16^{1} , and 16° , is converted to HEX. This version was tested and written using a UNIXTM version of LOTUS but it should work on most versions of LOTUS. LOTUS does not have a hexadecimal format. However, conversions can still be done as shown in the following example:

Q15 NOTE: Enter hex value in "HEX to" as a character string, i.e., '6ff9. DEC to HEX 32768 4096 256 16 1 15.39958 -0.67217 A9F6 43510.39 10.62265 9.962474 6.393219

HEX to	DEC						
9dab	-0.76822	9	13	10	11	40363	9dab
6fff	0.874969	6	15	15	15	28671	6 f f f
	-0.67217						

In the spreadsheet, enter the two numbers to be multiplied 9dab and 6fff as above. These numbers are converted to decimal, multiplied together, and then reconverted to HEX.

In summary,

9DAB HEX (-0.7682 DEC) • 6FFF HEX (0.8749 DEC) = A9F6 HEX (-0.6721)

A 9 F 6

The equations used for the spreadsheet are listed below row by row, but must be entered in the appropriate cells as indicated below:

A:A1: [W9]	ʻQ15
A:C1: [W9]	NOTE: Enter hex value in "HEX to" as character string, i.e., '6ff9
A:A3: [W9]	DEC to
A:C3: [W9]	'HEX
A:D3: [W9]	*32768
A:E3: [W9]	4096
	256
• •	16
A:G3: [W9] A:H3: [W9]	1
	+C11
A:A5: [W9] A:C5: [W9]	+011 +I5&J5&K5&L5
A:D5: [W9]	(@IF((A5*32768)>1,(A5*32768),(2^16+(A5*32768))))
A:E5: [W9]	
A:F5: [W9]	((E5-(@INT(E5)))*\$E\$3/\$F\$3)
A:G5: [W9]	((F5-(@INT(F5)))*\$F\$3)/\$G\$3
A:H5: [W9]	
A:I5: [W2]	@CHOOSE((@INT(E5)), "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "0")
A:J5: [W2]	@CHOOSE((@INT(F5)), "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "0")
A:K5: [W2]	@CHOOSE((@INT(G5)), "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "0")
A:L5: [W2]	@CHOOSE((@INT(H5)),"0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","0")
A:A7: [W9]	'HEX to
A:C7: [W9]	'DEC
A:A9: [W9]	
A:C9: [W9]	(@IF((H9/32768)<1,(H9/32768),((-2^16+H9)/32768)))
A:D9: [W9]	@IF(@ISSTRING(I9),@CODE(I9)-87,I9)
A:E9: [W9]	@IF(@ISSTRING(J9),@CODE(J9)-87,J9)
A:F9: [W9]	@IF(@ISSTRING(K9),@CODE(K9)-87,K9)
A:G9: [W9]	@IF(@ISSTRING(L9),@CODE(L9)-87,L9)
A:H9: [W9]	+D9*\$E\$3+E9*\$F\$3+F9*\$G\$3+G9
A:19: [W2]	@IF(@CODE(@MID(\$A9,0,1))<58,@VALUE(@MID(\$A9,0,1)),@MID(\$A9,0,1))
A:J9: [W2]	@IF(@CODE(@MID(\$A9,1,1))<58,@VALUE(@MID(\$A9,1,1)),@MID(\$A9,1,1))
A:K9: [W2]	@IF(@CODE(@MID(\$A9,2,1))<58,@VALUE(@MID(\$A9,2,1)),@MID(\$A9,2,1))
A:L9: [W2]	@IF(@CODE(@MID(\$A9,3,1))<58,@VALUE(@MID(\$A9,3,1)),@MID(\$A9,3,1))
A:A10: [W9]	'6fff
A:C10: [W9]	(@IF((H10/32768)<1,(H10/32768),((-2^16+H10)/32768)))
A:D10: [W9]	@IF(@ISSTRING(I10),@CODE(I10)-87,I10)
A:E10: [W9]	@IF(@ISSTRING(J10),@CODE(J10)-87,J10)
A:F10: [W9]	@IF(@ISSTRING(K10),@CODE(K10)-87,K10)
A:G10: [W9]	@IF(@ISSTRING(L10),@CODE(L10)-87,L10)
A:H10: [W9]	+D10*\$E\$3+E10*\$F\$3+F10*\$G\$3+G10
A:110: [W2]	@IF(@CODE(@MID(\$A10,0,1))<58,@VALUE(@MID(\$A10,0,1)),@MID(\$A10,0,1)) @IF(@CODE(@MID(\$A10,1,1)) <58,@VALUE(@MID(\$A10,1,1)),@MID(\$A10,1,1))
A:J10: [W2]	@IF(@CODE(@MID(\$A10,1,1))<58,@VALUE(@MID(\$A10,1,1)),@MID(\$A10,1,1))
A:K10: [W2]	@IF(@CODE(@MID(\$A10,2,1))<58,@VALUE(@MID(\$A10,2,1)),@MID(\$A10,2,1))
A:L10: [W2]	@IF(@CODE(@MID(\$A10,3,1))<58,@VALUE(@MID(\$A10,3,1)),@MID(\$A10,3,1))
A:C11: [W9]	+C9*C10

Lotus and 1-2-3 are registered trademarks of Lotus Development Corp. UNIX is a trademark of Bell Laboratories.

Introduction

Z86C95 Z8® Digital Signal Processor

5

Z89C00 16-Bit Digital Signal Processor

Z89C00 DSP Application Note

Z89120, Z89920 (ROMIess) 16-Bit Mixed Signal Processor

Z89121, Z89921 (ROMIess) 16-Bit Mixed Signal Processor

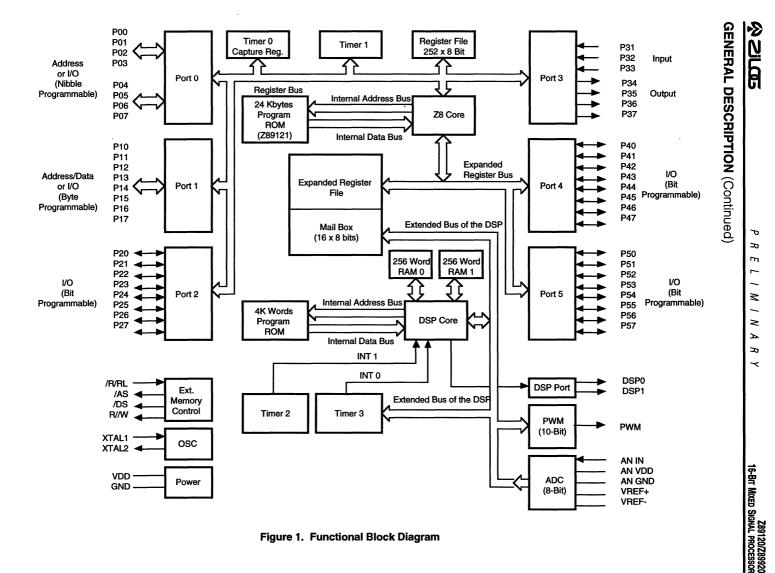
PRELIMINARY PRODUCT SPECIFICATION

Z89120 Z89920 (ROMLESS) 16-BIT MIXED SIGNAL PROCESSOR

FEATURES

- Z8[®] Microcontroller with 47 I/O Lines
- 24 Kbytes of Z8 Program ROM (Z89120)
- 256 Bytes On-Chip Z8 RAM
- Watch-Dog Timer and Power-On Reset
- Low Power STOP Mode
- On-Chip Oscillator which Accepts a Crystal or External Clock Drive
- Two 8-Bit Z8 Counter Timers with 6-Bit Prescaler
- Global Power-Down Mode
- Low Power Consumption 200 mW (Typical)
- Two Comparators with Programmable Interrupt Priority
- Six Vectored, Z8 Priority Interrupts
- RAM and ROM Protect
- Clock Speed of 20.48 MHz
- Z89C00 Core 16-Bit Digital Signal Processor (DSP)

GENERAL DESCRIPTION


The Z89120/920 is a fully integrated, mixed signal, dual processor chip system designed for lower sample rates such as audio, telephone, security systems, modem, faxes, instrumentation, noise cancellation, and sonar. The I/O control processor is a Z8[®] with 24 Kbytes of program memory, two 8-bit counter timers, and up to 47 I/O pins. The DSP is a 16-bit processor with a 24-bit ALU and Accumulator, 512 x 16 bits of RAM, single cycle instructions, and 6K word program ROM memory. The chip also contains an 8-bit A/D converter with up to 128 kHz sample rate and 10-bit PWM D/A converter. The sampling rates for the converters are independently programmable. The precision of the 8-bit A/D may be extended by resampling the data at a lower rate in software. Separate power supply

pins are provided to increase noise immunity. The A/D has external reference inputs wich may be connected to the Z8 ports to affect two-three extra bits of automatic gain control/dynamic range.

The Z8 and DSP processors are loosely coupled by mailbox registers and an interrupt system. DSP or Z8 programs may be directed by events in each other's domain.

The Z89920 is the ROMless version of the Z89120. In the Z89920, only the Z8 is ROMless, the DSP is not ROMless. The DSP's program memory is always the internal ROM.

- 4K Words DSP Program ROM
- 512 Words On-Chip DSP RAM
- 8-Bit A/D Converter with up to 128 kHz Sample Rate
- 10-Bit PWM D/A Converter (4 kHz to 64 kHz)
- Two DSP Timers to Support Different A/D and D/A Sampling Rates (Automatic Triggering— A/D + D/A may be Asynchronous Triggered)
- Zero Overhead Hardware Looping
- 16-Bit Single Cycle DSP Instructions
- 16-Bit Single Cycle DSP Multiply/Accumulate
- Six-Level DSP Stack
- 24-Bit DSP ALU, Accumulator and Shifter
- Three Vectored DSP Interrupts
- Independent Z8 and DSP Operations
- IBM[®] PC-Based Development Tools

4-2

PRELIMINARY

& Sila⊒

Z8® Core Processor

The Z8 is Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register-mapped peripheral and I/O circuits and the DSP. The Z8 offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features. The Z8 pipelined instructions and register file memory provide improved programming efficiency.

For applications demanding powerful I/O capabilities, the Z89120/920 fulfills this with 47 pins dedicated to input and output. These lines are grouped into five ports. Each port is configurable under software control to provide timing, status signals and parallel I/O with or without handshake.

There are four basic memory resources for the Z8 that are available to support a wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Z8 core processor is characterized by an efficient register file that allows any of 256 on-board data and control registers to be the source and/or the destination of almost any instruction. Traditional microprocessor Accumulator bottlenecks are eliminated.

The Register File is composed of 236 bytes of generalpurpose registers, four I/O port registers, and 15 control and status registers. The Expanded Register File consists of control registers, mailbox registers, two additional timing registers and data registers. Peripheral control registers and an additional Port 4 and Port 5 are mapped into the expanded-register file to further enhance the system performance and code efficiency.

To unburden the software from supporting the real-time problems, such as counting/timing and data communication, the Z8 offers two on-chip counter/timers with a large number of user selectable modes.

Watch-Dog Timer (WDT) and STOP-Mode Recovery (SMR) features are software driven by setting specific bits in control registers.

STOP and HALT instructions support reduced power operation. The low power STOP mode allows parameter information to be stored in the register file if power fails. An external capacitor or battery retains power to the device.

DSP Coprocessor

The DSP coprocessor is a second generation, 16-bit two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate, are accomplished in a single clock cycle. The processor contains two on-chip data RAM blocks of 256 words, a 4K word program ROM, 24-bit ALU, 16 x 16 multipiler, 24-bit Accumulator, shifter, six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of four pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multipiler for a true single cycle scalar multiply.

Four extended DSP registers are mapped into the expanded register file of the Z8. Communication between the Z8 and the DSP occurs through those common registers which form the mailbox registers.

Analog Interface

The analog signal is generated by a 10-bit resolution Pulse Width Modulator D/A converter. The PWM output is a digital signal with CMOS output levels. The output signal has a resolution of 1 in 1024 with a sampling rate of 16 kHz (XTAL = 20.48 MHz). The sampling rate can be changed under software control and can be set at 4, 10, 16, and 64 kHz. The dynamic range of the PWM is from 0 to 4V.

An 8-bit resolution half flash A/D converter is provided. The conversion is conducted with a sampling frequency of 8, 16, 32, 64, or 128 kHz. (XTAL = 20.48 MHz) in order to provide oversampling. The input signal maybe up to 5V peak to peak. Normally input signals are level shifted to 2.5V with a $\pm 2.5V$ deviation.

The reference voltages for the A/D converter can be adjusted by the Z8 by external connection to provide automatic gain control.

Two additional timers (Timer2 and Timer3) have been added to support different sampling rates for the A/D and D/A converters. These timers are free running counters that divide the crystal frequency.

Notes:

All signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	Vss

PIN DESCRIPTION

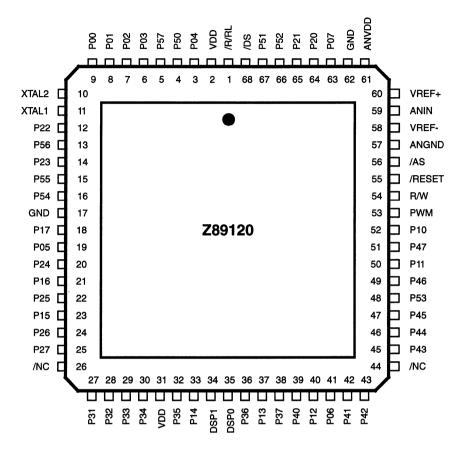


Figure 2. Z89120 68-Pin PLCC Pin Assignments

Pin #	Symbol	Function	Direction	Pin #	Symbol	Function	Direction
1	/R/RL	ROM/ROMless	Control Input	35	DSP0	DSP User Output 0	Output
2	V _{DD}	Power Supply		36	P36	Port 3, bit 7	Output
3	P04	Port 0, bit 4	Input/Output	37	P13	Port 1, bit 3	Input/Output
4	P50	Port 5, bit 0	Input/Output	38	P37	Port 3, bit 7	Output
5	P57	Port 5, bit 7	Input/Output	39	P40	Port 4, bit 0	Input/Output
6	P03	Port 0, bit 3	Input/Output	40	P12	Port 1, bit 2	Input/Output
7	P02	Port 0, bit 2	Input/Output	41	P06	Port 0, bit 6	Input/Output
8	P01	Port 0, bit 1	Input/Output	42	P41	Port 4, bit 1	Input/Output
9	P00	Port 0, bit 0	Input/Output	43	P42	Port 4, bit 2	Input/Output
10	XTAL2	Crystal Oscillator Clock		44	NC	Not Connected	
11	XTAL1	Crystal Oscillator Clock	Input	45	P43	Port 4, bit 3	Input/Output
12	P22	Port 2, bit 2	Input/Output	46	P44	Port 4, bit 4	Input/Output
13	P56	Port 5, bit 6	Input/Output	47	P45	Port 4, bit 5	Input/Output
14	P23	Port 2, bit 3	Input/Output	48	P53	Port 5, bit 3	Input/Output
15	P55	Port 5, bit 5	Input/Output	49	P46	Port 4, bit 6	Input/Output
16	P54	Port 5, bit 4	Input/Output	50	P11	Port 1, bit 1	Input/Output
17	GND	Ground		51	P47	Port 4, bit 7	Input/Output
18	P17	Port 1, bit 7	Input/Output	52	P10	Port 1, bit 0	Input/Output
19	P05	Port 0, bit 5	Input/Output	53	PWM	Pulse Width Modulator	Output
20	P24	Port 2, bit 4	Input/Output	54	R//W	Read/Write	Output
21	P16	Port 1, bit 6	Input/Output	55	/RESET	Reset	Input
22	P25	Port 2, bit 5	Input/Output	56	/AS	Address Strobe	Output
23	P15	Port 1, bit 5	Input/Output	57	ANGND	Analog Ground	
24	P26	Port 2, bit 6	Input/Output	58	V _{REF-}	Analog Voltage Ref.	Input
25	P27	Port 2, bit 7	Input/Output	59	AN	Analog Input	Input
26	NC	Not Connected		60	V _{ref+}	Analog Voltage Ref.	Input
27	P31	Port 3, bit 1	Input	61	V _{REF+} ANV _{DD}	Analog Power Supply	
28	P32	Port 3, bit 2	Input	62	GND	Ground	
29	P33	Port 3, bit 3	Input	63	P07	Port 0, bit 7	Input/Output
30	P34	Port 3, bit 4	Output	64	P20	Port 2, bit 0	Input/Output
31	V _{DD}	Power Supply		65	P21	Port 2, bit 1	Input/Output
32	P35	Port 3, bit 5	Output	66	P52	Port 5, bit 2	Input/Output
33	P14	Port 1, bit 4	Input/Output	67	P51	Port 5, bit 1	Input/Output
34	DSP1	DSP User Output 1	Output	68	/DS	Data Strobe	Output

Table 1. Z89120 68-Pin PLCC Pin Identification

& Silæ

PIN DESCRIPTION (Continued)

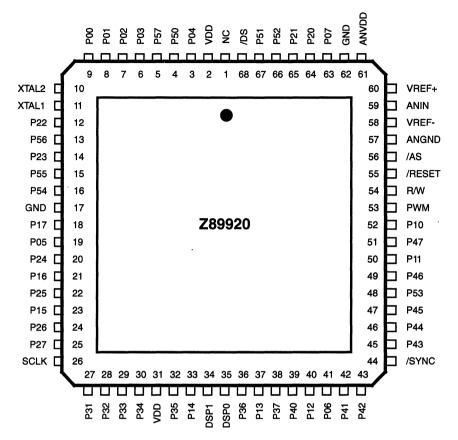


Figure 3. Z89920 68-Pin PLCC Pin Assignments

Pin #	Symbol	Function	Direction	Pin #	Symbol	Function	Direction
1	NC	Not Connected		35	DSP0	DSP User Output 0	Output
2	V _{DD}	Power Supply		36	P36	Port 3, bit 7	Output
3	PÕ4	Port 0, bit 4	Input/Output	37	P13	Port 1, bit 3	Input/Output
4	P50	Port 5, bit 0	Input/Output	38	P37	Port 3, bit 7	Output
5	P57	Port 5, bit 7	Input/Output	39	P40	Port 4, bit 0	Input/Output
6	P03	Port 0, bit 3	Input/Output	40	P12	Port 1, bit 2	Input/Output
7	P02	Port 0, bit 2	Input/Output	41	P06	Port 0, bit 6	Input/Output
8	P01	Port 0, bit 1	Input/Output	42	P41	Port 4, bit 1	Input/Output
9	P00	Port 0, bit 0	Input/Output	43	P42	Port 4, bit 2	Input/Output
10	XTAL2	Crystal Oscillator Clock		44	/SYNC	Synchronize Pin	Output
11	XTAL1	Crystal Oscillator Clock	Input	45	P43	Port 4, bit 3	Input/Output
12	P22	Port 2, bit 2	Input/Output	46	P44	Port 4, bit 4	Input/Output
13	P56	Port 5, bit 6	Input/Output	47	P45	Port 4, bit 5	Input/Output
14	P23	Port 2, bit 3	Input/Output	48	P53	Port 5, bit 3	Input/Output
15	P55	Port 5, bit 5	Input/Output	49	P46	Port 4, bit 6	Input/Output
16	P54	Port 5, bit 4	Input/Output	50	P11	Port 1, bit 1	Input/Output
17	GND	Ground		51	P47	Port 4, bit 7	Input/Output
18	P17	Port 1, bit 7	Input/Output	52	P10	Port 1, bit 0	input/Output
19	P05	Port 0, bit 5	Input/Output	53	PWM	Pulse Width Modulator	Output
20	P24	Port 2, bit 4	Input/Output	54	R//W	Read/Write	Output
21	P16	Port 1, bit 6	Input/Output	55	/RESET	Reset	Input
22	P25	Port 2, bit 5	Input/Output	56	/AS	Address Strobe	Output
23	P15	Port 1, bit 5	Input/Output	57	ANGND	Analog Ground	
24	P26	Port 2, bit 6	Input/Output	58	V _{REF-}	Analog Voltage Ref.	Input
25	P27	Port 2, bit 7	Input/Output	59	AN	Analog Input	Input
26	SCLK	System Clock	Output	60	V _{REF+} ANV _{DD}	Analog Voltage Ref.	Input
27	P31	Port 3, bit 1	Input	61		Analog Power Supply	
28	P32	Port 3, bit 2	Input	62	GND	Ground	
29	P33	Port 3, bit 3	Input	63	P07	Port 0, bit 7	Input/Output
30	P34	Port 3, bit 4	Output	64	P20	Port 2, bit 0	Input/Output
31	V _{DD}	Power Supply		65	P21	Port 2, bit 1	Input/Output
32	P35	Port 3, bit 5	Output	66	P52	Port 5, bit 2	Input/Output
33	P14	Port 1, bit 4	Input/Output	67	P51	Port 5, bit 1	Input/Output
34	DSP1	DSP User Output 1	Output	68	/DS	Data Strobe	Output

Table 2. Z89920 68-Pin PLCC Pin Identification

[®]Zilos

PIN FUNCTIONS

/RESET (input, active Low). Initializes the MCU. Reset is accomplished either through Power-On Reset (POR), WDT reset, SMR or external reset. During POR and WDT reset, the internally generated reset is driving the reset pin Low for the POR time. Any devices driving the reset line must be open drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally. A /RESET signal resets both the Z8 and the DSP.

For the Z8:

After the POR time, /RESET is a Schmitt-triggered input. To avoid asynchronous and noisy reset problems, the Z8 is equipped with a reset filter of four external clocks (4TpC). If the external reset signal is less than 4TpC in duration, no reset occurs. On the fifth clock after the reset is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. Program execution begins at location 000CH (Hexadecimal), 5-10 TpC cycles after the /RESET is released. For Power-On Reset, the typical reset time is 5 ms. The Z8 does not reset WDT, SMR, P2M, and P3M registers on a STOP-Mode Recovery operation.

For the DSP:

A low level on the /RESET pin generates an internal reset signal. The /RESET signal must be kept low for at least one clock cycle. The CPU will push the contents of the PC onto the stack and then fetch a new Program Counter (PC) value from program memory address OFFCH after the reset signal is released.

/R/RL *ROM/ROMIess* (input, active Low). This pin, when connected to V_{cc} , disables the internal Z8 ROM only and forces the device to function as a Z89920 ROMIess. (Note that when pulled Low to GND, the Z89120 functions normally as the ROM version). The DSP can not be configured as ROMIess. This is available only on the Z89120.

R/W *Read/Write* (output, write Low). The R/W signal defines the signal flow when the Z8 is reading or writing to external program or data memory. The Z8 is reading when this pin is High and writing when this pin is Low.

/AS Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is through Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

/DS *Data Strobe* (output, active Low). Data Strobe is activated once for each external memory transfer. For read operations, data must be available prior to the trailing edge of /DS. For write operations, the falling edge of /DS indicates that output data is valid.

XTAL1 *Crystal 1* (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, RC network or an external single-phase clock to the on-chip oscillator input.

XTAL2 *Crystal 2* (time-based output). This pin connects a parallel-resonant, crystal, ceramic resonant, or LC network to the on-chip oscillator output.

DSP0 (output). DSP0 is a general purpose output pin connected to bit 6 of the Analog Control Register (DSP EXT4). This bit has no special significance and may be used to output data by writing to bit 6 of the ACR.

DSP1 (output). DSP1 is a general purpose output pin connected to bit 7 of the Analog Control Register (DSP EXT4). This bit has no special significance and may be used to output data by writing to bit 7 of the ACR.

SCLK *System Clock* (output). SCLK outputs the internal system clock. This pin is only available on the Z89920.

/SYNC Synchronize (output). This signal indicates the last clock cycle of the currently executing Z8 instruction. This pin is only available on the Z89920.

PWM *Pulse Width Modulator* (output). The PWM is a 10-bit resolution D/A converter. This output is a digital signal with CMOS output levels.

 ${\rm AN}_{\rm IN}$ (input). Analog input for the A/D converter. Signal range is ${\rm AN}_{\rm AND}$ to ${\rm AN}_{\rm VDD}.$

 $\textbf{ANV}_{cc}\textbf{.}$ Analog power supply for the A/D and D/A converters.

AN_{GND}. Analog ground for the A/D converter.

 $\boldsymbol{V}_{\text{REF+}}$ (input). Reference voltage (High) for the A/D converter.

 $\boldsymbol{V}_{\text{REF-}}$ (input). Reference voltage (Low) for the A/D converter.

V_{cc}. Digital power supply for the Z89120/920.

GND. Digital ground for the Z89120/920.

⊗ Ziloos

Port 0 (P07-P00). Port 0 is an 8-bit, bidirectional, CMOS compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and the output drivers are push-pull. Port 0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAV0 and RDY0. Handshake signal direction is dictated by the I/O direction to Port 0 of the upper nibble P07-P04. The lower nibble must have the same direction as the upper nibble.

The Auto Latch on Port 0 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they are configured by writing to the Port 0 mode register.

In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. (In ROM mode, Port 0 is defined as input after reset.)

Port 0 is set in the high-impedance mode if selected as an address output state along with Port 1 and the control signals /AS, /DS, and R//W (Figure 4).

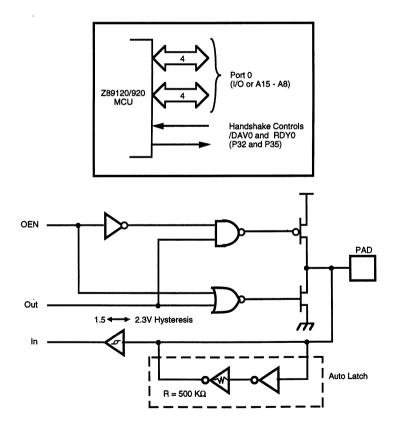


Figure 4. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1 (P17-P10). Port 1 is an 8-bit, bidirectional, CMOS compatible port (Figure 5). It has multiplexed Address (A7-A0) and Data (D7-D0) ports. These eight I/O lines are programmed as inputs or outputs, or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitttriggered and the output drivers are push-pull.

Port 1 may be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and /DAV1 (Ready and Data

Available). Memory locations greater than 24575 (in ROM mode) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port 0, /AS, /DS and R//W, allowing the Z89120/920 to share common resources in multiprocessor and DMA applications.

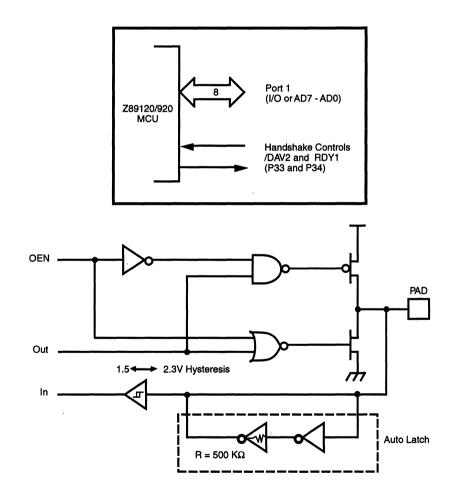


Figure 5. Port 1 Configuration

& Silas

Port 2 (P27-P20). Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines are independently configured under software control as an input or output. Port 2 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either push-pull or open-drain.

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is

dictated by the direction (input or output) assigned to bit 7, Port 2 (Figure 6).

Port 26 can be configured in DSP software to activate DSP INTO.

The Auto Latch on Port 2 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

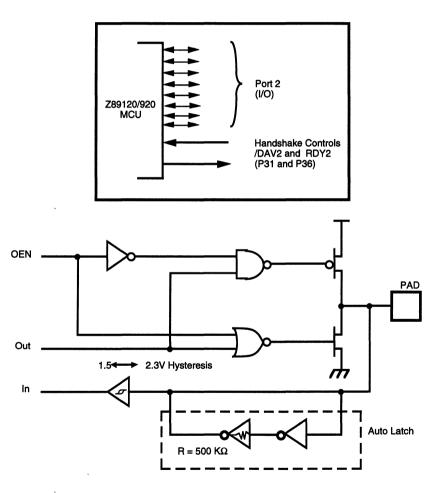


Figure 6. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3 (P37-P31). Port 3 is a 7-bit, CMOS compatible port with three fixed inputs (P33-P31) and four fixed outputs (P37-P34). It is configured under software control for input/ output, counter/timers, interrupt, and port handshakes. Pins P31, P32, and P33 are standard CMOS inputs; outputs are push-pull.

Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). Port 3, pin 3 is a falling edge interrupt input. P31 and P32 are programmable as rising, falling or both edge-triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to Counter/Timer1 is made through P31 (T_{IN}) and P36 (T_{OUT}). Handshake lines for Ports 0, 1, and 2 are available on P31 through P36.

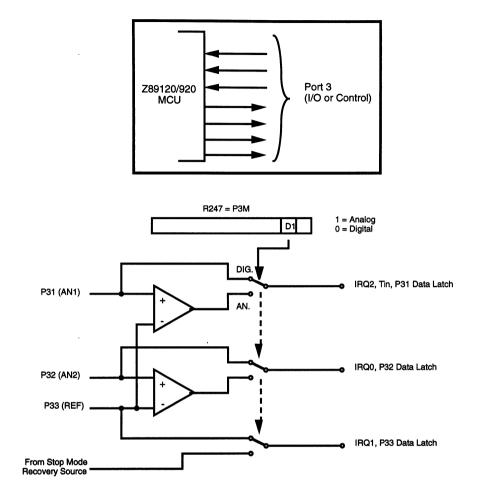
Port 3 also provides the following control functions: handshake for Ports 0, 1, and 2 (/DAV and RDY); three external interrupt request signals (IRQ3-IRQ1); timer input and output signals (T_{IN} and T_{OUT}); Data Memory Select (/DM); (Figure 7 and Table 3).

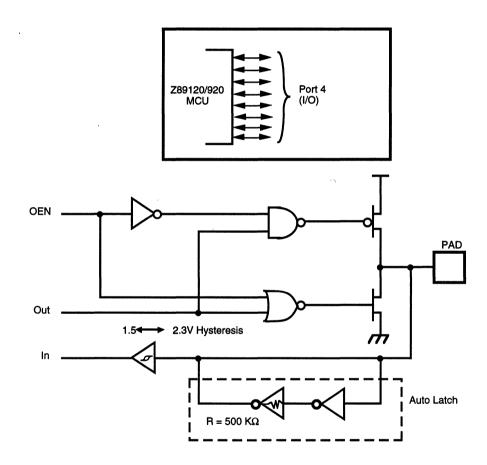
Comparator Inputs. Port 3, Pins P31 and P32 each have a comparator front end. The comparator reference voltage, pin P33, is common to both comparators. In analog mode, the P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, pin P33 can be used as a P33 register input or IRQ1 source.

	Table 3. Port 3 Pin Assignments								
Pin	I/O	CTC1	AN IN	Int.	P0 HS	P1HS	P2 HS	EXT	
P31	IN	T	AN1	IRQ2			D/R		
P32	IN		AN2	IRQ0	D/R				
P33	IN		REF	IRQ1		D/R			
P34	OUT					R/D		/DM	
P35	OUT				R/D				
P36	OUT	Tout					R/D		
P37	OUT								

Notes:

HS = Handshake Signals D = DAV R = RDY



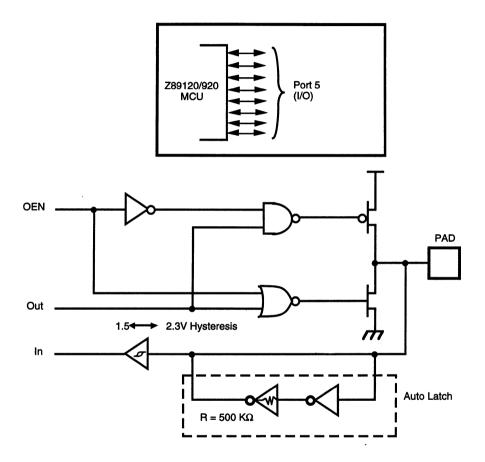

Figure 7. Port 3 Configuration

PIN FUNCTIONS (Continued)

Port 4 (P47-P40). Port 4 is an 8-bit, bidirectional, CMOS compatible I/O port (Figure 8). These eight I/O lines are configured under software control as an input or output, independently. Port 4 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either push-pull or open-drain.

Port 4 is a bit programmable general purpose I/O port. The control and data registers for Port 4 are mapped into the expanded register file (Bank F) of the Z8.

Auto Latch. The Auto Latch on Port 4 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.



Port 5 (P57-P50). Port 5 is an 8-bit, bidirectional, CMOS compatible I/O port (Figure 9). These eight I/O lines are configured under software control as an input or output, independently. Port 5 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 5 is a bit programmable general purpose I/O port. The control and data registers for Port 5 are mapped into the expanded register file (Bank F) of the Z8.

Auto Latch. The Auto Latch on Port 5 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Z8® FUNCTIONAL DESCRIPTION


The Z8 CCP core incorporates special functions to enhance the Z8's performance in control applications.

Pipelined Instructions. The Z8 instructions (see page 4-70) are comprised of two parts, an instruction fetch and execute part. The instructions typically take between six and ten cycles to fetch and five cycles to execute. Five cycles of the next instruction fetch may be overlapped with five cycles of the current instruction execution. This improves performance over sequential methods. Additionally, the register-based archetecture allows any registers to be picked as the source and destination in an instruction saving intermediate move.

Reset. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP-Mode Recovery Source
- External Reset

Program Memory. The Z8 addresses up to 24 Kbytes of internal program memory and 40 Kbytes external memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors which correspond to the five user interrupts and one DSP interrupt. Byte 12 to byte 24575 consists of on-chip mask-programmed ROM. At addresses 24576 and greater, the Z8 executes external program memory. In ROMless mode, the Z8 will execute from external program memory beginning at byte 12 and continuing through byte 65535.

& Silæ

ROM Protect. The 24 Kbytes of internal program memory for the Z8 is mask programmable. A ROM Protect feature prevents "dumping" of the ROM contents of Program Memory by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions. The ROM Protect option is maskprogrammable, to be selected by the customer at the time when the ROM code is submitted.

Data Memory (/DM). In ROM mode, the Z8 can address up to 40 Kbytes of external data memory beginning at location 24576 (Figure 11). In ROMless mode, the Z8 can address the full 64 Kbytes of external data memory beginning at location 12. External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on Port 34, is used to distinguish between data and program memory space (Table 3). The state of the /DM signal is controlled by the type of instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references data (/DM active Low) memory.

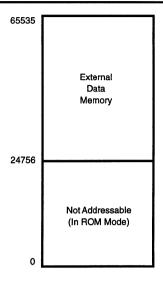
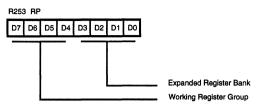



Figure 11. Data Memory Map

Z8 FUNCTIONAL DESCRIPTION (Continued)

Register File. The standard Z8[®] register file consists of four I/O port registers, 236 general-purpose registers, and 15 control and status registers (R3-R0, R239-R4, and R255-R241, respectively). The instructions access registers directly or indirectly through an 8-bit address field. This allows a short, 4-bit register address using the Register Pointer (Figure 12). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group (Figure 13).

Note: Register Group E (Registers E0-EF) is only accessed through a working register and indirect addressing modes.

Default setting after RESET = 00000000

Figure 12. Register Pointer Register

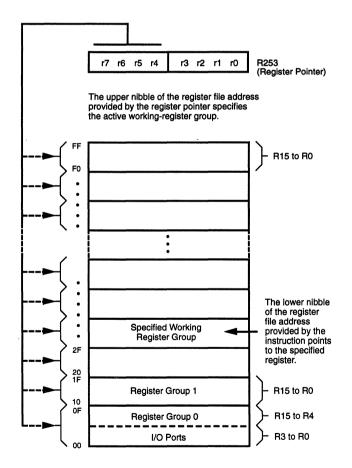


Figure 13. Register Pointer

& Silæ

RAM Protect. The upper portion of the Z8's RAM address spaces 80FH to EFH (excluding the control registers) are protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user activates from the internal ROM code to turn off/on the RAM Protect by loading a bit D6 in the IMR register to either a 0 or a 1, respectively. A 1 in D6 indicates RAM Protect enabled.

Stack. The Z8's external data memory or the internal register file is used for the stack. The 16-bit Stack Pointer (R255-R254) is used for the external stack which can reside only from 24576 to 65535 in ROM mode or 0 to 65535 in ROMless mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R239-R4). SPH can be used as a general-purpose register when using internal stack only.

Expanded Register File. The register file on the Z8 has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices along with I/O ports into the register address area. The Z8 register address space has now been implemented as 16 banks of 16 registers groups per bank (Figure 14). These register banks are known as the ERF (Expanded Register File). Bits 7-4 of register RP (Register Pointer) select the working register group. Bits 3-0 of register RP select the Expanded Register bank (Figure 14).

System configuration registers, Ports 4 and 5 mode registers, data registers and a DSP control register reside in Bank F of the Expanded Register File. Bank B of the Expanded Register File consists of the Mailbox Interface in which the Z8 and the DSP communicate. The rest of the Expanded Register is not physically implemented and is open for future expansion.

Z8 FUNCTIONAL DESCRIPTION (Continued)

Z8 STANDARD CONTROL REGISTERS

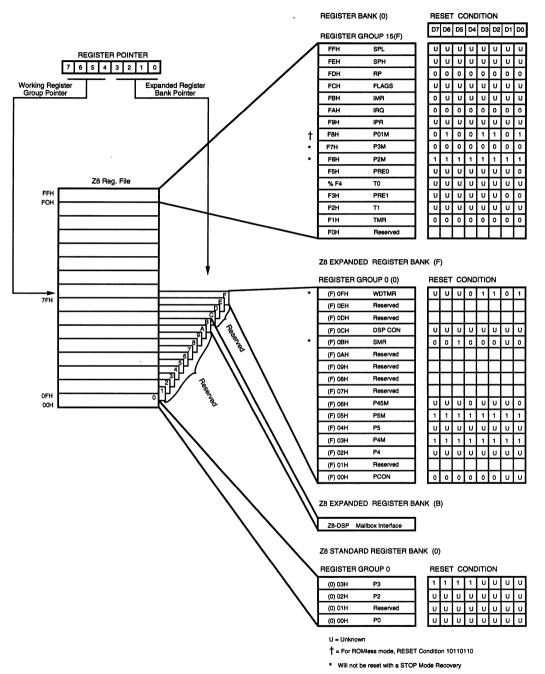
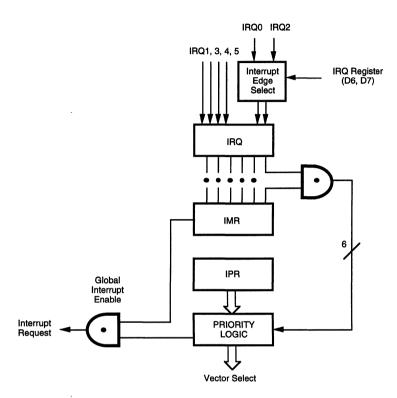



Figure 14. Expanded Register File Architecture

Interrupts. The Z8 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 15). The six sources are divided as follows; three sources are claimed by Port 3 lines P33-P31, two in

counter/timers, and one by the DSP (Table 4). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.

Name	Source	Vector Location	Comments
IRQ0	/DAV0, P32, AN2	0, 1	External (P32), Programmable Rise or Fall Edge Triggered
IRQ1	/DAV1, P33	2, 3	External (P33), Fall Edge Triggered
IRQ2	/DAV2, P31, T _{IN} , AN2	4, 5	External (P31), Programmable Rise or Fall Edge Triggered
IRQ3	DSP	6, 7	Internal (DSP activated)
IRQ4	то	8, 9	Internal
IRQ5	T1	10, 11	Internal

Table 4. Inter	rrupt Types,	Sources,	and	Vectors
----------------	--------------	----------	-----	---------

Z8 FUNCTIONAL DESCRIPTION (Continued)

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register. An interrupt machine cycle is activated when an interrupt request is granted. Thus, this disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt.

All Z8 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request Register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select is located in the IRQ Register (R250), bits D7 and D6. The configuration is shown in Table 5.

Table 5. IRQ Register

IR	Q	Interru	pt Edge
D7	D6	P31	P32
0	0	F	F
0	1	F	R
1	0	R	F
1	1	R/F	R/F

Notes:

F = Falling Edge

R = Rising Edge

Clock. The Z89120/920 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 20.48 MHz max., with a series resistance (RS) less than or equal to 100 Ohms. The system clock (SCLK) is one half the crystal frequency.

The crystal is connected across XTAL1 and XTAL2 using capacitors from each pin to ground (Figure 16).

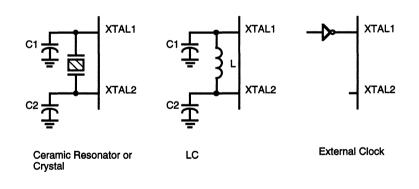


Figure 16. Oscillator Configuration

Counter/Timers. There. are two 8-bit programmable counter/timers (T1-T0), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only (Figure 17).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can

also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input through Port 31. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the T0 output to the input of T1.

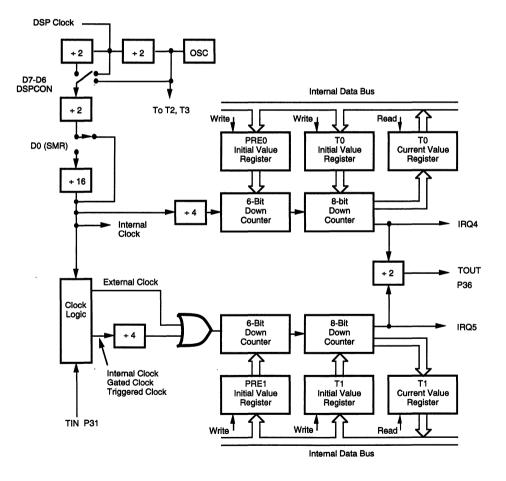
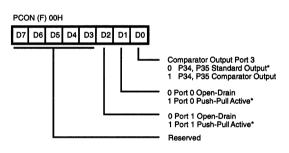


Figure 17. Counter/Timer Block Diagram


Z8 FUNCTIONAL DESCRIPTION (Continued)

Port Configuration Register (PCON). The PCON register configures the port individually; comparator output on Port 3, and open-drain on Port 0 and Port 1. The PCON register is located in the Expanded Register File at Bank F, location 00H (Figure 18).

Comparator Output Port 3 (D0). Bit 0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35, and a 0 releases the port to its standard I/O configuration.

Port 0 Open-Drain (D1). Port 0 can be configured as an open-drain by resetting this bit (D1 = 0) or configured as push-pull active by setting this bit (D1 = 1). The default value is 1.

Port 1 Open-Drain (D2). Port 1 can be configured as an open-drain by resetting this bit (D2 = 0) or configured as push-pull active by setting this bit (D2 = 1). The default value is 1.

* Default setting after Reset

Figure 18. Port Configuration Register (PCON)

Port 4 and 5 Configuration Register (P45CON). The P45CON register configures Port 4 and Port 5, individually, to open-drain or push-pull active. This register is located in the Expanded Register File at Bank F, location 06H (Figure 19).

Port 4 Open-Drain (D0). Port 4 can be configured as an open-drain by resetting this bit (D0 = 0) or configured as push-pull active by setting this bit (D0 = 1). The default value is 1.

Port 5 Open-Drain (D4). Port 5 can be configured as an open-drain by resetting this bit (D4 = 0) or configured as push-pull active by setting this bit (D4 = 1). The default value is 1.

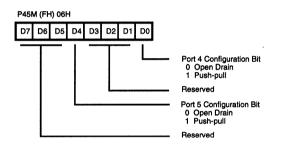
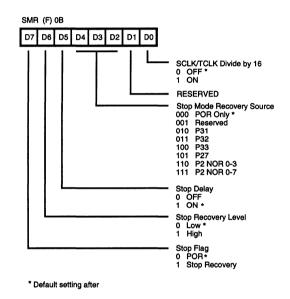


Figure 19. Port 4 and 5 Configuration Register (F) 06H [Write Only] **Power-On Reset** (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{cc} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- 1. Power fail to Power OK status.
- 2. STOP-Mode Recovery (if D5 of SMR = 1).
- 3. WDT timeout.

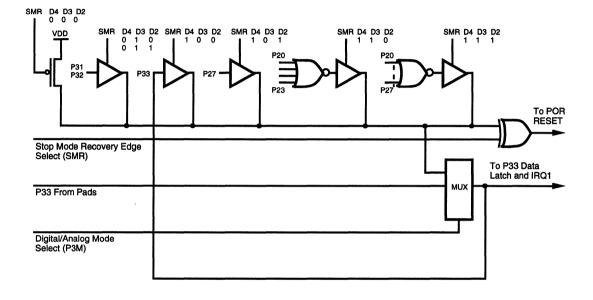

The POR time is a nominal 5 ms. Bit 5 of the STOP mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock, RC/ LC oscillators).

HALT. HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

STOP. This instruction turns off the internal clock and external crystal oscillation. It reduces the standby current to 10 μ A (typical) or less. The STOP mode is terminated by a reset only, either by WDT timeout, POR, SMR, or external reset. This causes the processor to restart the application program at address 000CH. In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=FFH) immediately before the appropriate sleep instruction, i.e.,

FF NOP 6F STOP	; clear the pipeline ; enter STOP mode
	or
FF NOP	; clear the pipeline
7F HALT	; enter HALT mode

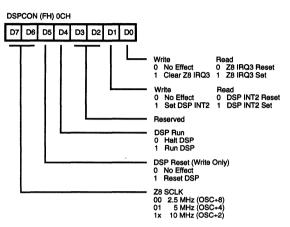
STOP-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP-Mode Recovery (Figure 20). All bits are write only, except bit 7 which is read only. Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4, or the SMR register, specify the source of the STOP-Mode Recovery signal. Bits 0 and 1 determine the timeout period of the WDT. The SMR is located in Bank F of the Expanded Register group at address 0BH.



Z8 FUNCTIONAL DESCRIPTION (Continued)

SCLK/TCLK Divide-By-16 Select (D0). D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

STOP-Mode Recovery Source (D4-D2). These three bits of the SMR specify the wake-up source of the STOP recovery (Figure 21 and Table 6).


Table 6. STOP-Mode Recovery Source

SMR:432 D4 D3 D2			Operation Description of Action				
0	0	0	POR and/or external reset recovery				
0	0	1	Reserved				
0	1	0	P31 transition				
0	1	1	P32 transition				
1	0	0	P33 transition				
1	0	1	P27 transition				
1	1	0	Logical NOR of P20 through P23				
1	1	1	Logical NOR of P20 through P27				

STOP-Mode Recovery Delay Select (D5). This bit, if High, disables the 5 ms /RESET delay after STOP-Mode Recovery. The default configuration of this bit is one. If the "fast" wake up is selected, the STOP-Mode Recovery source is kept active for at least 5 TpC.

STOP-Mode Recovery Edge Select (D6). A 1 in this bit position indicates that a high level on any one of the recovery sources wakes the Z89120 from STOP mode. A 0 indicates low level recovery. The default is 0 on POR (Figure 20).

Cold or Warm Start (D7). This bit is set by the device upon entering STOP mode. It is active High, and is 0 (cold) on POR/WDT /RESET. This bit is read only. It is used to distinguish between cold or warm start. **DSP Control Register** (DSPCON). The DSPCON register controls various aspects of the Z8 and the DSP. It can configure the internal system clock (SCLK) or the Z8, /RESET and HALT of the DSP, and control the interrupt interface between the Z8 and the DSP (Figure 22).

Figure 22. DSP Control Register (F) 0CH [Read/Write]

Z8 IRQ3 (D0). This bit, when read, indicates the status of Z8 IRQ3. Z8 IRQ3 is set by the DSP by writing to DSP Expanded Register 4. By writing a 1 to this bit, Z8 IRQ3 is /RESET.

DSP INT2 (D1). This bit is linked to DSP INT2. Writing a 1 to this bit sets DSP INT2. Reading this bit indicates the status of DSP INT2.

DSP RUN (D4). This bit defines the HALT mode of the DSP. If this bit is set to 0, then the DSP clock is turned off to minimize power consumption. After this bit is set to 1, then the DSP will continue code execution from where it was halted. After a hardware reset, this bit is set to 0.

DSP RESET (D5). Setting this bit to 1 will reset the DSP. If the DSP was in HALT mode, this bit is automatically preset to 1. Writing a 0 has no effect. This bit is write only.

Z8 SLCK (D8-D7). These bits define the SCLK frequency of the Z8. The oscillator can be either divided by 8, 4, or 2. After /RESET, both of these are defaulted to 00.

Watch-Dog Timer Mode Register (WDT). The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT circuit is driven by an on-board RC oscillator or external oscillator from the XTAL1 pin. The POR clock source is selected with bit 4 of the WDT register (Figure 23). The WDT affects the Z (zero), S (sign), and V (overflow) flags.

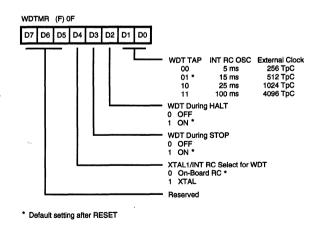


Figure 23. Watch-Dog Timer Mode Register

Z8 FUNCTIONAL DESCRIPTION (Continued)

WDT Time Select (D0, D1). Selects the WDT time period (Figure 24). It is configured as shown in Table 7.

Table 7. WDT Time Select

D1	D0	Timeout of Internal RC OSC	Timeout of XTAL clock
0	0	5 ms min	256 TpC
0	1	15 ms min	512 TpC
1	0	25 ms min	1024 TpC
1	1	100 ms min	4096 TpC

Notes:

TpC = XTAL clock cycle The default on reset is 15 ms. See Figures 54 to 57 for details. **WDT During HALT** (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1.

WDT During STOP (D3). This bit determines whether or not the WDT is active during STOP mode. Since XTAL clock is stopped during STOP mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1.

Clock Source for WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 which selects the RC oscillator.

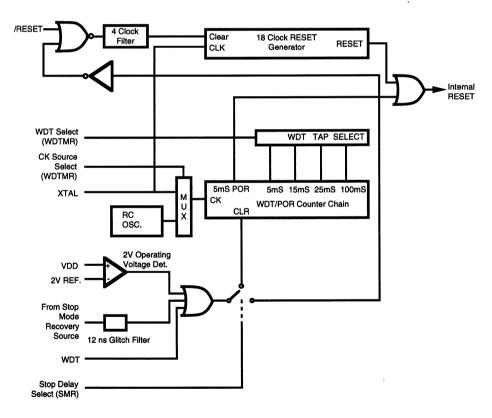


Figure 24. Resets and WDT

DSP FUNCTIONAL DESCRIPTION

General. The DSP is a high-performance second generation CMOS Digital Signal Processor with a modified Harvardtype architecture with separate program and data ports. The design has been optimized for processing power and saving silicon space.

Program Memory. Programs of up to 4K words can be masked into internal DSP ROM. Four locations are dedicated to the vector address for the three interrupts (OFFDH-OFFFH) and the starting address following a reset (OFFCH).

Internal Data RAM. The DSP has an internal 512 x 16-bit word data RAM organized as two banks of 256 x 16-bit words each, referred to as RAM0 and RAM1. Each data RAM bank is addressed by three address register pointers, referred to as P0:0-P2:0 for RAM0 and P0:1-P2:1 for RAM1. Three addressing modes are available to access the data RAM: register indirect, direct, and short-form direct addressing. These modes are discussed in detail in Functional Description. The contents of each RAM can be loaded simultaneously into the X and Y inputs of the multiplier.

Registers. The DSP has twelve internal registers and seven extended registers. The extended registers are for the A/D and D/A converters, and the mailbox and interrupt interfacing between DSP to the Z8. Extended registers are accessed in one machine cycle, the same as internal registers.

Instruction Timing. Many instructions are executed in one machine cycle. Long immediate instructions and Branch or Call instructions are executed in two machine cycles. When the program memory is referenced in internal RAM indirect mode, it takes three machine cycles. In addition, one more machine cycle is required if the PC is selected as the destination of a data transfer instruction. This only happens in the case of a register indirect branch instruction. For example, an $a(i) * b(j) + Acc \rightarrow Acc$ calculation is done in one machine cycle, modifying the RAM pointer contents. Both operands, a(i) and b(j), can be located in two independent RAM (0 and 1) addresses.

Multiply/Accumulate. The multiplier can perform a 16-bit x 16-bit multiply or multiply accumulate in one machine cycle using the Accumulator and/or both the X and Y inputs. The multiplier produces a 32-bit result, however, only the 24 most significant bits are saved for the next instruction or accumulation. For operations on very small numbers where the least significant bits are important, the data should first be scaled by eight bits to avoid truncation errors.

ALU. The 24-bit ALU has two input ports, one of which is connected to the output of the 24-bit Accumulator. The other input is connected to the 24-bit P-Bus, the upper 16 bits of which are connected to the 16-bit D-Bus. A shifter between the P-Bus and the ALU input port can shift the data by three bits right, during a multiply/accumulator operation or no shift.

Hardware Stack. A six-level hardware stack is connected to the D-Bus to hold subroutine return addresses or data. The CALL instruction pushes PC+2 onto the stack. The RET instruction pops the contents of the stack to the PC.

Interrupts. The DSP has three positive edge triggered interrupt inputs. An interrupt is acknowledged at the end of any instruction execution. It takes two machine cycles to enter an interrupt instruction sequence. The PC is pushed onto the stack. A RET instruction transfers the contents of the stack to the PC and decrements the stack pointer by one word. The priority of the interrupts is 0 = highest, 2 = lowest.

DSP Registers

There are 15 internal and extended 16-bit registers which are defined in Table 8.

Register	Attribute	Register Definition
BUS	Read	Data-Bus
Х	Read/Write	X Multiplier Input, 16-Bit
Y	Read/Write	Y Multiplier Input, 16-Bit
A	Read/Write	Accumulator, 24-Bit
SR	Read/Write	Status Register
SP	Read/Write	Stack Pointer
PC	Read/Write	Program Counter
Р	Read	Output of MAC, 24-Bit
EXT0	Read	Z8 ERF Bank B, Register 00-01 (from Z8)
	Write	Z8 ERF Bank B, Register 08-09 (to Z8)
EXT1	Read	Z8 ERF Bank B, Register 02-03 (from Z8)
	Write	Z8 ERF Bank B, Register 0A-0B (to Z8)
EXT2	Read	Z8 ERF Bank B, Register 04-05 (from Z8)
	Write	Z8 ERF Bank B, Register 0C-0D (to Z8)
EXT3	Read	Z8 ERF Bank B, Register 06-07 (from Z8)
	Write	Z8 ERF Bank B, Register 0E-0F (to Z8)
EXT4	Read/Write	DSP Interrupt Control Register
EXT5	Read	A/D Converter
	Write	D/A Converter
EXT6	Read/Write	Analog Control Register

Table 8. DSP Registers

Two registers, Bus and P are read only. If either of these registers are designated as the destination of a data transfer instruction, the contents will be unaffected.

BUS is a read-only register which, when accessed, returns the contents of the D-Bus.

X and **Y** are two 16-bit input registers for the multiplier. These registers can be utilized as temporary registers when the multiplier is not being used. The P register is affected by changing X or Y. A is a 24-bit Accumulator. The output of the ALU is sent to this register. When 16-bit data is transferred into this register, it goes into the 16 MSB's and the least significant eight bits are set to zero. Only the upper 16 bits are transferred to the destination register when the Accumulator is selected as a source register in transfer instructions.

SR is the DSP status register (Figure 25) which contains the ALU status and certain control bits as shown in Table 9.

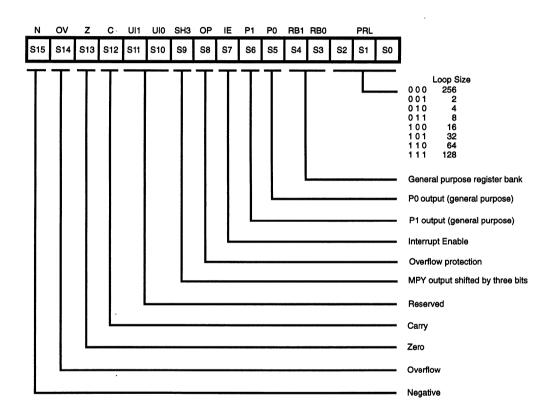


Figure 25. DSP Status Register

⊗ Zilos

DSP FUNCTIONAL DESCRIPTION (Continued)

Table 9. DSP Status Register Bits

Status	Register Bit	Func	tion	
S15	(N)	ALU Negative		
S14	()		Overflow	
S13	(Z)	ALU Z		
S12	(C)	Carry		
S11	(U01)		Pin 1 Input (DSP1)	
S10	(UO0)		Pin 0 Input (DSP0)	
S9	(SH3)		Output Shifted by 3 Bits	
S8	(OP)	Overfl	ow Protection	
S7	(IE)	Interrupt Enable		
S6	(P1)		Dutput (General Purpose)	
S5	(P0)		Dutput (General Purpose)	
S4-S3	(RBi)	General Purpose Register Ban		
S2-S0	(RPL)	RAM Pointer Loop Size		
S2	S1	S0	Loop Size	
0	0	0	256	
0	0	1	2	
0	1	0	4	
0	0 1		8	
1	0	0	16	
1	0	1	32	
1	1	0	64	
1	1	1	128	

PC is the program counter. When this register is assigned as a destination register, one NOP machine cycle is added automatically to adjust the pipeline timing.

P is the output register for the 24-bit multiplier.

EXT3-EXT0 (Extended Registers 0-3) are the Mailbox Registers in which the DSP and the Z8 communicate (Figure 26). These four 16 bit registers correspond to the eight outgoing and eight incoming 8-bit registers in Bank B of the Z8's Expanded Register File.

EXT4 (DSP Interrupt Control Register (ICR)) controls the interrupts in the DSP as well as the interrupts in common between the DSP and the Z8. It is accessible by the DSP only, except for the bit F and bit 9.

EXT5 (D/A and A/D Data Register) is used by both D/A and A/D converters. The D/A converter will be loaded by writing to this register, while the A/D converter will be addressed by reading from this register. The Register EXT5 is accessible by the DSP only.

EXT6 (Analog Control Register) controls the D/A and A/D converters. It is a read/write register accessible by the DSP only.

Mail Box Registers

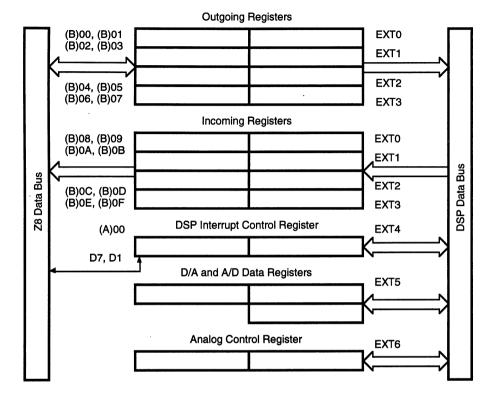


Figure 26. Z8-DSP Interface

[⊗]ZiLŒ

DSP-Z8 Mailbox

To receive information from the DSP, the Z8 uses eight incoming registers which are mapped in the Z8 Extended Register File (Bank B, 08 to 0F). The DSP treats these as four 16-bit registers that correspond to the eight incoming Z8 registers.

Both the outgoing registers and the incoming registers share the same DSP address (EXT3-EXT0).

Note: The Z8 can read and write to ERF Bank B R00-R07, Registers 08-0F are read only from the Z8.

_ _ _ _

. .

Field (Z8 Side)	Z8 Position	Z8 Attributes	DSP Position	DSP Attributes	Label
Outgoing [0]	76543210	R/W	FEDCBA98	R	DSPext0_hi (15-8)
Outgoing [1]	76543210	R/W	765434210	R	DSPext0_lo (7-0)
Outgoing [2]	76543210	R/W	FEDCBA98	R	DSPext1_hi (15-8)
Outgoing [3]	76543210	R/W	765434210	R	DSPext1_lo (7-0)
Outgoing [4]	76543210	R/W	FEDCBA98	R	DSPext2_hi (15-8)
Outgoing [5]	76543210	R/W	765434210	R	DSPext2_lo (7-0)
Outgoing [6]	76543210	R/W	FEDCBA98	R	DSPext3_hi (15-8)
Outgoing [7]	76543210	R/W	765434210	R	DSPext3_lo (7-0)

Table 10. Incoming Registers (Write Only from DSP)

Field (Z8 Side)	Z8 Position	Z8 Attributes	DSP Position	DSP Attributes	Label
Incoming [0]	76543210	R	FEDCBA98	W	DSPext0_hi (15-8)
Incoming [1]	76543210	R	76543210	W	DSPext0_lo (7-0)
Incoming [2]	76543210	R	FEDCBA98	W	DSPext1_hi (15-8)
Incoming [3]	76543210	R	76543210	W	DSPext1_lo (7-0)
Incoming [4]	76543210	R	FEDCBA98	W	DSPext2_hi (15-8)
Incoming [5]	76543210	R	76543210	W	DSPext2_lo (7-0)
Incoming [6]	76543210	R	FEDCBA98	W	DSPext3_hi (15-8)
Incoming [7]	76543210	R	76543210	W	DSPext3_lo (7-0)

DSP Interrupts

The DSP processor has three interrupt sources (INT2, INT1, INT0) (Figure 27). These sources have different priority levels (Figure 28). The highest priority, the next lower and the lowest priority level are assigned to INT2, INT1, and INT0, respectively. The DSP does not allow

interrupt nesting (interrupting service routines that are currently being executed). When two interrupt requests occur simultaneously, the DSP starts servicing the interrupt with the highest priority level (Figure 29).

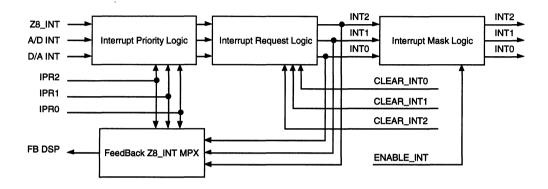


Figure 27. DSP Interrupts

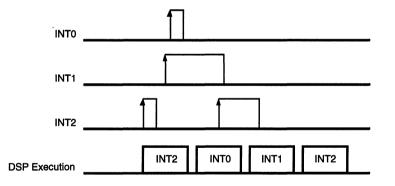


Figure 28. DSP Interrupt Priority Structure

DSP Interrupts (Continued)

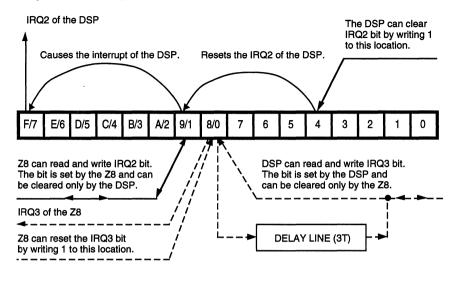


Figure 29. Interprocessor Interrupts Structure

Interrupt Control Register (ICR). The ICR is mapped into EXT4 of the DSP (Figure 30). The bits are defined as follows.

DSP_IRQ2 (Z8 Interrupt). This bit can be read by both Z8 and DSP and can be set only by writing to the Z8 expanded Register File (Bank F, ROC, bit 0). This bit asserts IRQ2 of the DSP and can be cleared by writing to the Clear_IRQ2 bit.

DSP_IRQ1 (A/D Interrupt). This bit can be read by the DSP only and is set when valid data is present at the A/D output register (conversion done). This bit asserts IRQ1 of the DSP and can be cleared by writing to the Clear_IRQ1bit.

DSP_IRQ0 (D/A Interrupt). This bit can be read by DSP only and is set by Timer3. This bit assists IRQ0 of the DSP and can be cleared by writing to the Clear_IRQ0 bit.

DSP_MaskintX. These bits can be accessed by the DSP only. Writing a 1 to these locations allows the INT to be serviced, while writing a 0 masks the corresponding INT off.

Z8_IRQ3. This bit can be read from both Z8 and DSP and can be set by DSP only. Addressing this location accesses bit D3 of the Z8 IRQ register, hence this bit is not implemented in the ICR. During the interrupt service routine executed on the Z8 side, the user has to reset the Z8_IRQ3 bit by writing a 0 to bit D9. The hardware of the Z89120 automatically resets Z8_IRQ3 bit three instructions of the Z8 after 0 is written to its location in register bank 0F. This delay provides the timing synchronization between the Z8 and the DSP sides during interrupts. In summary, the interrupt service routine of the Z8 for IRQ3 should be finished by:

SRP	0F
AND	0C,#%FD
POP	RP
IRET	

DSP Enable_INT. Writing a 1 to this location enables global interrupts of the DSP while writing 0 disables them. A system reset globally disables all interrupts.

DSP_IPRX. This 3-bit group defines the Interrupt Priority according to Table 12.

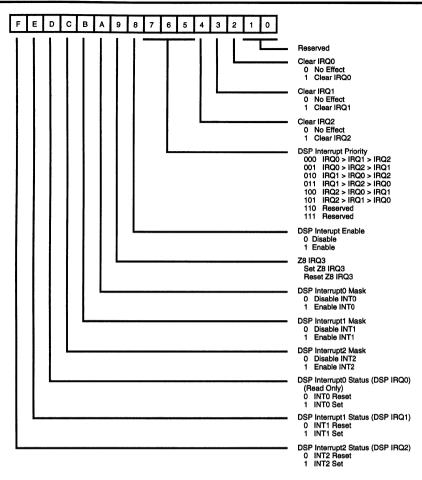


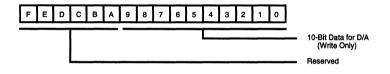
Figure 30. EXT4 DSP Interrupt Control Register (ICR) Definition

T	able	12.	DSP	Interrupt	Priority
---	------	-----	-----	-----------	----------

High Priority int0 Interrupt	Medium Priority int1 Interrupt	Low Priority int2 Interrupt	DSP_IPR2, 1, 0
IRQ0	IRQ1	IRQ2	000
IRQ0	IRQ2	IRQ1	001
IRQ1	IRQ0	IRQ2	010
IRQ1	IRQ2	IRQ0	011
IRQ2	IRQ0	IRQ1	100
IRQ2	IRQ1	IRQ0	101

DSP Interrupts (Continued)

Clear_IRQX.These bits can be accessed by the DSP only. Writing a 1 to these locations resets the corresponding DSP_IRQX bits to 0. Clear_IRQX are virtual bits and are not implemented.


The Z8 can supply the DSP with data through eight outgoing registers mapped into both the Z8 Extended Register File (Bank B, Registers 00 to 07) and the external

register interface of the DSP. These registers are R/W and can be used as general purpose registers of the Z8. The DSP can only read information from these registers. Since the DSP uses a 16-bit data format and the Z8 uses an 8-bit data format, eight outgoing registers of the Z8 correspond to four DSP registers. The DSP can only read information from the outgoing registers.

DSP Analog Data Registers

The D/A conversion is DSP driven by sending 10-bit data to the EXT5 of the DSP. The six remaining bits of EXT5 are not used (Figure 31).

The A/D supplies 8-bit data to the DSP through register EXT5 of the DSP. From the 16 bits of EXT5, only bits 2 through 9 are used by the A/D (Figure 32). Bits 0 and 1 are padded with zeroes.

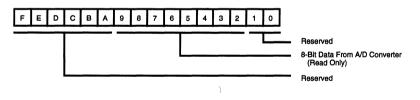


Figure 32. EXT5 Register A/D Mode Definition

Analog Control Register (ACR)

The Analog Control Register is mapped to register EXT6 of the DSP (Figure 33). This read/write register is accessible by the DSP only.

The 16-bit field of EXT6 defines modes of both the A/D and the D/A. The High Byte configures the D/A, while the Low Byte controls the A/D mode.

DSP IRQO. Defines the source of DSP IRQO interrupt.

D/A Converter Effective Sampling Rate. This field defines the effective sampling rate of the D/A output (Figure 33). It changes the period of Timer3, which generates the interrupt for updating the output sample and in turn affects the maximum possible accuracy of the D/A (Table 13).

Table 13.	D/A Data	Accuracy
-----------	----------	----------

Sampling Rate	D/A Accuracy
64 kHz	8 Bits
16 kHz	10 Bits
10 kHz	10 Bits
4 kHz	10 Bits

DSP0. DSP0 is a general purpose output pin connected to bit 6. This bit has no special significance and may be used to output data by writing to bit 6.

DSP1. DSP1 is a general purpose output pin connected to bit 7. This bit has no special significance and may be used to output data by writing to bit 7.

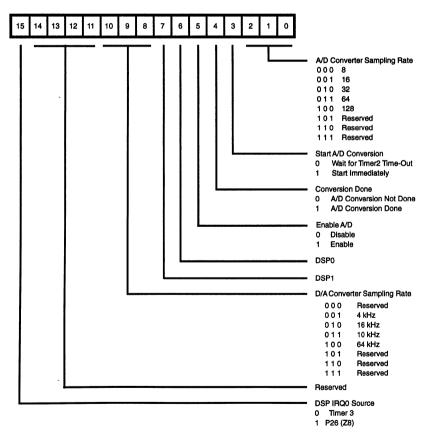


Figure 33. EXT6 Analog Control Register (ACR)

ANALOG CONTROL REGISTER (Continued)

Enable A/D. Writing a 0 to this location disables the A/D converter, a 1 will enable it. A hardware reset forces this bit to be 0.

Conversion Done. This read only flag indicates that the A/D conversion is complete. Upon reading EXT5 (A/D data), the Conversion Done flag is cleared.

Start A/D Conversion. Writing a 1 to this location immediately starts one conversion cycle. If this bit is reset to 0 the input data is converted upon successive Timer2 time-outs. A hardware reset forces this bit to be 1.

A/D Converter Sampling Rate. This field defines the sampling rate of the A/D. It changes the period of Timer2 interrupt (Figure 33).

DSP Timers

Timer2 is a free running counter that divides the XTAL frequency to support different sampling rates for the A/D converter. The sampling rate is defined by the Analog Control Register. Upon reaching the end of a count, the timer generates an interrupt request to the DSP.

Analogous to Timer2, Timer3 generates the different sampling rates for the D/A converter. Timer3 also generates an interrupt request to the DSP upon reaching its final count value (Figure 34).

Note: that the crystal speed in this example is 20.48 MHz, which is the maximum tested speed, but lower speeds may be used.

DSP RAM. The DSP has two 256 word x 16-bit internal RAMs (RAM0 and RAM1) with three address pointer registers for each RAM Bank, P0:0-P2:0 and P0:1-P2:1. The RAM addresses for RAM0 and RAM1 are arranged from 255-0 and 256-511, respectively. The address pointers, which may be written or read, are 8-bit registers connected to the lower byte of the internal 16-bit, D-Bus and are used to perform no overhead hardware looping.

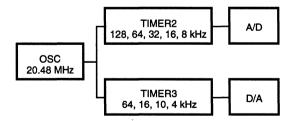


Figure 34. Timer2 and Timer3

The contents of the RAM can be read or written in one machine cycle per word without disturbing any internal registers or status other than the RAM address pointer used for each RAM.

The address of the RAM is specified in one of three ways:

1. Register Indirect (Figures 35 and 38) Pn:b n = 0-2, b = 0-1: The most commonly used method is a register indirect addressing method, where the RAM address is specified by one of the three RAM address pointers (n) for each bank (b). Each source/destination field in Figures 35 and 39 may be used by an indirect instruction to specify a register pointer and its modification after execution of the instruction (Figures 35 and 39).

The register pointer is specified by the first and second bits in the source/destination field and the modification is specified by the third and fourth bits according to Table 14.

b			n1	n0
D8	D3	D2	D1	DO

S/D Field	Modification	Meaning
00xx	NOP	No Operation
01xx	+1	Simple increment
10xx	-1/LOOP	Decrement modulo the loop count
11xx	+1/LOOP	Increment modulo the loop count
xx00	P0:0 or P0:1*	See Note a.
xx01	P1:0 or P1:1*	See Note a.
xx10	P2:0 or P2:1*	See Note a.

Table 14. Register Indirect Fields

a. If bit 8 is zero, P0:0-2:0 are selected; if bit 8 is one, P0:1-2:1 are selected.

* P0:0-P2:0 and P0:1-P2:1 refer to the DSP pointer registers and not to the I/O ports in the Z8.

When LOOP mode is selected, the size of the loop is obtained from the least-most-significant three bits of the Status Register. The increment or decrement of the register is accomplished modulo the loop size. As an example, if the loop size is specified as 32 by entering the value 101 into bits 2-0 of the Status Register (S2-S0) and an increment +1/LOOP is specified in the address field of the instruction, i.e., the RPi field is 11xx, then the register specified by RPi will increment, but only the least significant five bits will be affected.

2. Register Direct (Figure 36): The second method is a direct addressing method. The address of the RAM is specified by the address field of the instruction directly.

Because this addressing method consumes nine bits (0-511) of the instruction field, some instructions cannot use this mode.

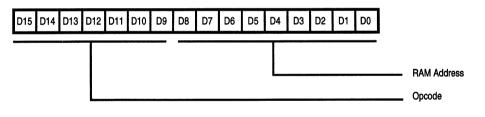


Figure 36. DSP Internal RAM Address Format

Notes:

DSP Timers (Continued)

3. Short Form Direct (Figure 37) Dn:b n = 0-3, b = 0-1: The last method is called Short Form Direct Addressing, where one-out- of 32 addresses in internal RAM can be specified. The 32 addresses are the 16 Low addresses in RAM Bank 0 and the 16 Low addresses in RAM Bank 1. Bit 8 of the instruction field determines RAM Bank 0 or 1. The 16

addresses are determined by a 4-bit code comprised of bits S3 and S4 of the status register and the third and fourth bits of the Source/Destination field. Because this mode can specify a direct address in a short form, all the instructions where the register indirect mode is used can use this mode.

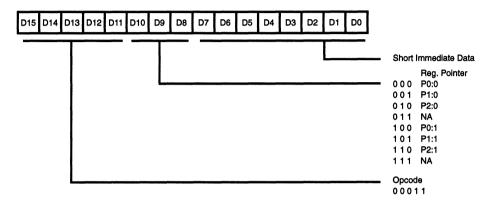
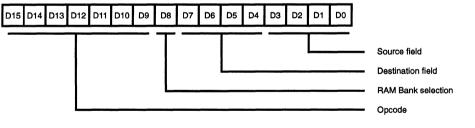



Figure 37. Short Form Direct Address

INSTRUCTION FORMAT

Note: Source/Destination fields can specify either register or RAM address in RAM pointer indirect mode.

Figure 38. General Instruction Format

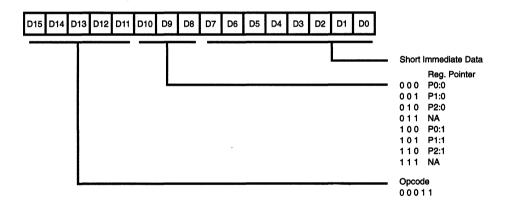
⊗ Silas

Table 15. Registers Fields

Source/Destination	Register
0000	BUS**
0001	X
0010	Y
0011	A
0100	S
0101	ST
0110	PC
0111	P**
1000	EXT0
1001	EXT1
1010	EXT2
1011	EXT3
1100	EXT4
1101	EXT5
1110	EXT6
1111	Reserved

.

Source/Destination	Meaning	
00xx	NOP	
01xx	+1	
10xx	-1/LOOP	
11xx	+1/LOOP	
xx00	P0:0 or P0:1*	
xx01	P1:0 or P1:1*	
xx10	P2:0 or P2:1*	


Table 16. Register Pointers Fields

Notes:

 If RAM Bank bit is 0 then P0:0-P2:0 are selected. If RAM Bank bit is 1 then P0:1-P2:1 are selected. Also note, P0:0-P2:0 and P0:1-P2:1 refer to the DSP pointer registers and not to the I/O ports in the Z8.
 ** Read only.

S4, S3 = bits 4, 3 of Status Register

D3, D2 = bits 4, 3 of Source/Destination Field

Figure 39. Short Immediate Data Load Format

INSTRUCTION FORMAT (Continued)

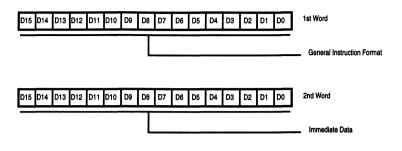


Figure 40. Immediate Data Load Format

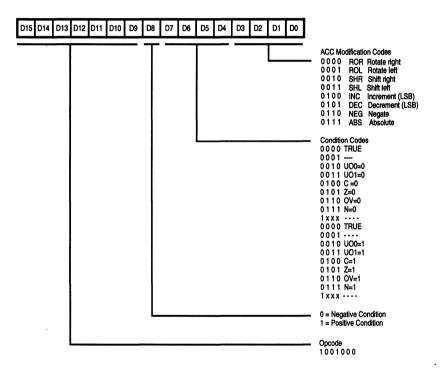
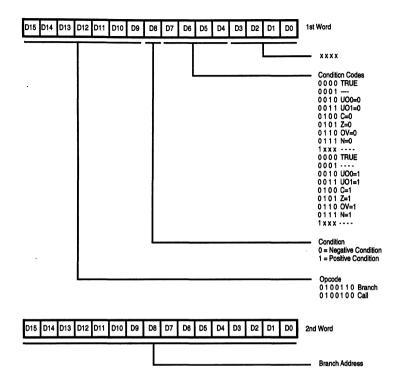



Figure 41. Accumulator Modification Format

PRELIMINARY

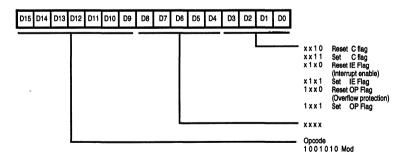


Figure 43. Flag Modification Format

4-45

PULSE WIDTH MODULATOR (PWM)

Digital to Analog Converter

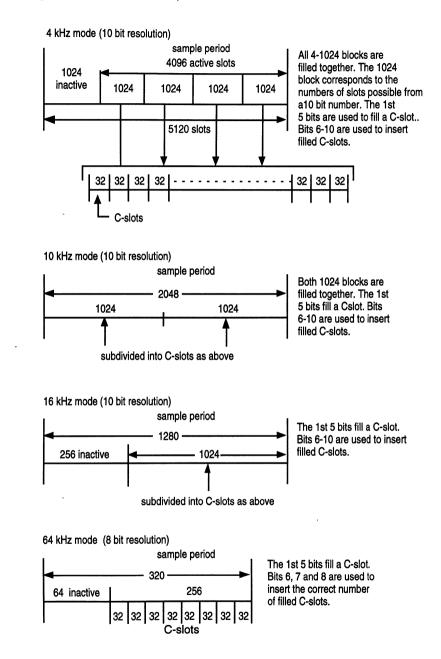
The analog signal is generated by a 10-bit resolution oversampling pulse distribution modulator (OPDM). The OPDM output is a digital signal with 0 to V_{cc} output levels. The effective sampling rate is directly programmable by the DSP processor and indirectly by the Z8° processor. The effective sampling rate is a function of the external clock frequency and the mode set by the Analog Control Register (ACR) (see Figure 33). For a clock frequency of 20.48 MHz, effective sample rates of 4, 10, 16, and 64 kHz are available. The output must be filtered by an appropriate external reconstruction filter to obtain an analog signal.

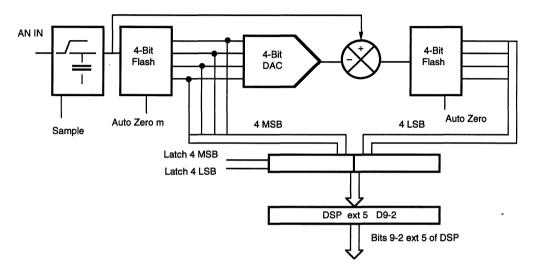
The converter accepts 10-bit inputs for the 4,10, and 16 kHz modes and eight bits for the 64 kHz mode. The effective sample period is the time it takes to output successive samples which is found by taking the reciprocal of the effective sample rate. Example: Assume a system clock of 20.48 MHz with the converter programmed via the ADC for the 16 kHz mode. Then actual effective sample rate is 16 kHz and the sample period is 1+16x10³, or 62.5 μ s. If the system clock were 19.432 MHz, then the effective sample rate would actually be 14.4 kHz and the sample period 1+14.4 kHz, or 69.4 μ s.

A sample period is divided into small time slots which are filled with pulses proportional to the digital input value to be converted. Some modes may have more time slots than the 8- or 10-bit input value can fill. In this case there is an active area and an inactive area filled with zeroes. In the 4 kHz mode there are 5120 possible slots of which 4096 of these (4 x 1024) are actually used, (divided into 4 groups of 1024), which repeat the same pattern. These 1024 slots are divided into 32 equidistant groups of 32 bits called C-slots. In the 10 kHz mode there are 2048 possible slots. All 2048 are used, (2 groups of 1024) which are then divided into C-slots as in the 4 kHz mode. In the 16 kHz mode, there are 1280 slots of which 1024 are used. The 1024 group is divided into C-slots as in the 4 kHz mode.

In the 64 kHz mode, there are 320 time slots of which 256 are actually used. The 256 slots are divided into eight C-slots. The 10 kHz mode is the only mode where all time slots can potentially be filled.

Digital to Analog Converter (Continued)

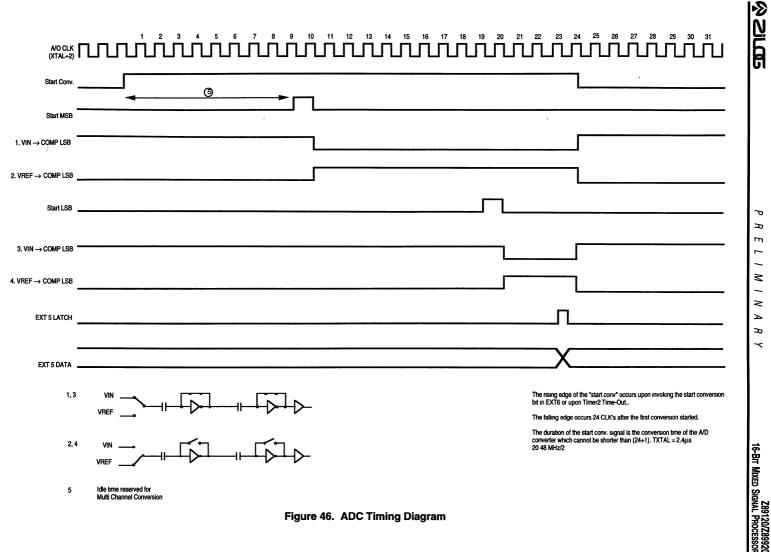



Figure 44. PWM Output

A/D CONVERTER (ADC)

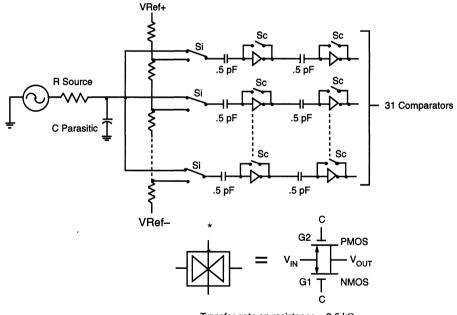
Analog To Digital Converter

The A/D converter is an 8-bit half-flash converter which uses two reference resistor ladders for its upper four bits (MSBs) and lower four bits (LSBs) conversion (Figure 45). Two reference voltage pins, V_{REF} (High) and V_{REF} (Low), are provided for external reference voltage supplies. During the sampling period, the converter is auto-zeroed before starting the conversion depending on the external


clock frequency and the selection of the A/D sampling rate. The sampling rates are in the order of 8, 16, 32, 64, or 128 kHz (XTAL = 20.48 MHz) in order to provide oversampling. The rates are software controlled by the ACR (DSP Extended Register 6). Timer2 supports the ADC. The minimum conversion time is 2 μ s.

Conversion begins by writing to the appropriate bit in the Analog Control Register (ACR). The start commands are implemented in such a way as to begin a conversion at any time. If a conversion is in progress and a new start command is received, then the conversion in progress is aborted and a new conversion initiated. This allows the programmed values to be changed without affecting a conversion-in-progress. The new values take effect only after a new start command is received. The ADC can be disabled (for low power) or enabled by an ACR bit.

Though the ADC functions for a smaller input voltage and voltage reference, the noise and offsets remain constant over the specified electrical range. The errors of the converter will increase and the conversion time may also take slightly longer due to smaller input signals.


в m -N _ 2 ъ R

A/D CONVERTER (ADC) (Continued)

Figure 47 shows the input circuit of the ADC. When conversion starts, the analog input voltage from the input is connected to the MSB and LSB flash converter inputs as shown in the Input Impedance circuit diagram. Shunting 31 parallel internal resistances of the analog switches and simultaneously charging 31 parallel 0.5 pF capacitors (only the first, 0.5 pF caps matter) is equivalent to a 400 Ohm input impedance in parallel with a 16 pF capacitor. Other input stray capacitance adds about 10 pF to the input load. Input source resistances of up to 2 kOhms can be used under normal operating conditions without any degradation of the input settling time. For larger input source resistance, longer conversion cycle times may be required to compensate for the input settling time problem. V_{RFF} is set using the V_{RFF} pin.

The operation of the flash converter is divided into two parts. The first section converts the four MSBs and the second similar section converts the four LSBs. Before a

conversion starts all the switches across the comparators are shut, thus forcing input and output to V_{cc}+2. The input switches are also closed, forcing the 0.5 pF sample capacitors to track the input voltage on one side while the other side is held at V_{cc}+2. When the switch inputs (Si) open the charge is stored on the sample capacitor. A linear resistor ladder divides the reference voltage into 32 equal steps. When the Si's open, they are connected to the stepped reference voltages at the same time the switch comparators (Sc's) are opened, allowing the input to the comparator to change. The new input to the comparator will be the sum of the original voltage across the sample cap and the reference voltage. This voltage is compared to V_{cc}+2 on the threshold of the comparator. For any given input voltage, the 31 comparators will divide between all "on" above the input voltage and all "off" below it. The parallel output then is converted by logic into a binary value.

Transfer gate on resistance = 2-5 k Ω .

Figure 47. Input Impedance of ADC

Once the determination has been made as to which point in the resistor divider the signal came closest to, the second part of the conversion takes place. In this case, the LSB part of the signal is across the resistor in the ladder adjacent to the comparison point. A second resistor ladder and comparators similar to the first are connected across the resistor (see Figure 48). A second conversion similar to the first takes place to complete the LSB portion.

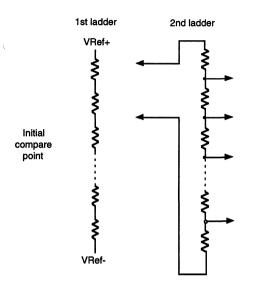


Figure 48. Input Impedance of ADC

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V _{cc}	Supply Voltage (*)	-0.3	+7.0	V
V _{CC} T _{STG}	Storage Temp	–65°	+150°	С
T _A	Oper Ambient Temp		†	С

Notes:

* Voltage on all pins with respect to GND.

† See Ordering Information.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 49).

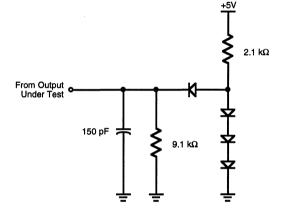


Figure 49. Test Load Diagram

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

DC ELECTRICAL CHARACTERISTICS

		V _{cc}	T, = 0°C	C to +70°C	Typical	_
Sym	Parameter	V _{cc} Note [1]	Min	Max	@ 25°C	Units
I _{cc}	Supply Current	5.0V		65	40	mA
I _{CC1}	HALT Mode Current	5.0V		10	6	mA
I _{CC2}	STOP Mode Current	5.0V		20	6	μA

Notes:

[1] 5 0V ±0 5V

DC ELECTRICAL CHARACTERISTICS

0	Devenuenter	V _{cc} Note [1]	$T_A = 0^{\circ}C$ to		Typical		0
Sym	Parameter	Note [1]	Min	Max	@ 25°C	Units	Conditions
	Max Input Voltage	3.3V		7		٧	l _{IN} 250 μA
		5.0V		7		V	l,
V _{CH}	Clock Input High Voltage	3.3V	0.7 V _{cc}	V _{cc} +0.3	1.3	V	Driven by External Clock Generator
Un		5.0V	0.7 V _{cc}	V _{cc} +0.3	2.5	۷	Driven by External Clock Generator
V _{CL}	Clock Input Low Voltage	3.3V	GND0.3	0.2 V _{cc}	0.7	V	Driven by External Clock Generator
		5.0V	GND0.3	0.2 V _{cc}	1.5	V	Driven by External Clock Generator
V _{IH}	Input High Voltage	3.3V	0.7 V _{cc}	V _{cc} +0.3	1.3	٧	
		5.0V	0.7 V _{cc}	V _{cc} +0.3	2.5	V	
V	Input Low Voltage	3.3V	GND0.3	0.2 V _{cc}	0.7	V	
		5.0V	GND0.3	0.2 V _{cc}	1.5	V	
V _{oh}	Output High Voltge	3.3V	V _{cc} -0.4		3.1	٧	I _{0H} = -2.0 mA
011		5.0V	V _{cc} -0.4		4.8	V	$I_{0H}^{0H} = -2.0 \text{ mA}$
V _{OL1}	Output Low Voltage	3.3V		0.6	0.2	٧	$l_{01} = +4.0 \text{ mA}$
021		5.0V		0.4	0.1	۷	$I_{01}^{-} = +4.0 \text{ mA}$
V _{ol2}	Output Low Voltage	3.3V		1.2	0.3	٧	$I_{01}^{C} = +6 \text{ mA}, 3 \text{ Pin Max}$
ULL.		5.0V		1.2	0.3	V	$I_{0L}^{0L} = +12 \text{ mA}, 3 \text{ Pin Max}$
V _{RH}	Reset Input High Voltage	3.3V	0.8 V _{cc}	V _{cc}	1.5	٧	
		5.0V	0.8 V _{cc}	V _{cc} 0.2 V _{cc}	2.1	۷	
V _{ri}	Reset Input Low Voltage	3.3V	GNDÖ.3	0.2 Ŭ _{cc}	1.1		
		5.0V	GND-0.3	0.2 V _{cc}	1.7		
V _{offset}	Comparator Input Offset	3.3V		25	10	mV	
0.102.	Voltage	5.0V		25	10	mV	
l _{il}	Input Leakage	3.3V	-1	1	<1	μA	$V_{iN} = OV, V_{CC}$
		5.0V	-1	1	<1	μA	$V_{\rm IN}^{\rm H} = {\rm OV}, V_{\rm CC}^{\rm OO}$
IOL	Output Leakage	3.3V	-1	1	<1	μA	$V_{\rm IN} = 0V, V_{\rm CC}$
UL	-	5.0V	-1	1	<1	μA	$V_{iN}^{iN} = OV, V_{CC}^{OO}$
l _{ir}	Reset Input Current	3.3V		-45	-20	μA	
***		5.0V		55	-30	μA	

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Diagram

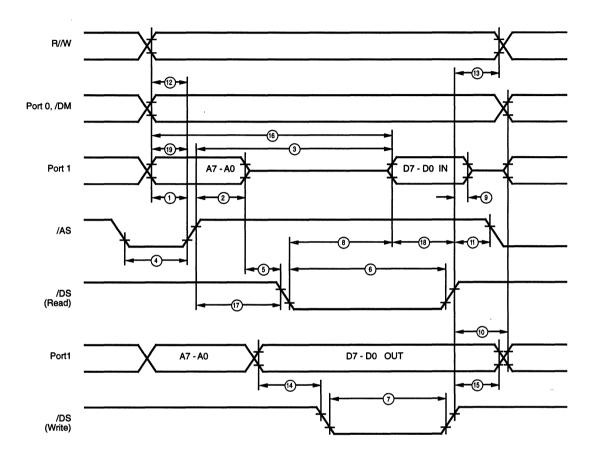


Figure 50. External I/O or Memory Read/Write Timing

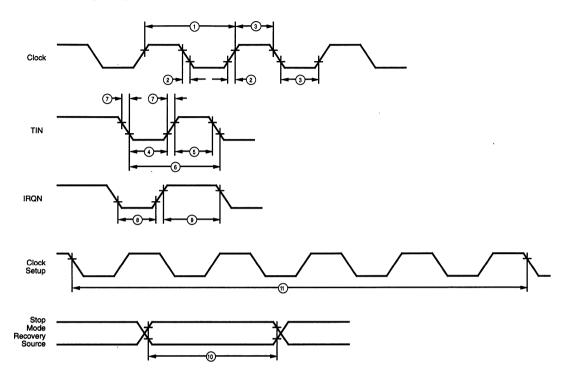
AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Table

			V _{cc}	T.=0°C	to +70°C		
No	Symbol	Parameter	[4]	Min	Max	Units	Notes
1	TdA(AS)	Address Valid to /AS Rise Delay	5.0V	25		ns	[2, 3]
2	TdAS(A)	/AS Rise to Address Float Delay	5.0V	35		ns	[2, 3]
3	TdAS(DR)	/AS Rise to Read Data Reg'd Valid	5.0V		150	ns	[1, 2, 3]
4	TwAS	/AS Low Width	5.0V	35		ns	[2, 3]
5	TdAZ(DS)	Address Float to /DS Fall	5.0V	0		ns	
6	TwDSR	/DS (Read) Low Width	5.0V	125		ns	[1, 2, 3]
7	TwDSW	/DS (Write) Low Width	5.0V	75		ns	[1, 2, 3]
}	TdDSR(DR)	/DS Fall to Read Data Req'd Valid	5.0V		90	ns	[1, 2, 3]
)	ThDR(DS)	Read Data to /DS Rise Hold Time	5.0V	0		ns	[2, 3]
10	TdDS(A)	/DS Rise to Address Active Delay	5.0V	40		ns	[2, 3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	5.0V	35		ns	[2, 3]
12	TdR/W(AS)	R//W Valid to /AS Rise Delay	5.0V	25		ns	[2, 3]
13	TdDS(R/W)	/DS Rise to R//W Not Valid	5.0V	35		ns	[2, 3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	5.0V	40		ns	[2, 3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	5.0V	25	he d'a	ns	[2, 3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid	5.0V		180	ns	[1, 2, 3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	5.0V	48		ns	[2, 3]
18	TdDI(DS)	Data Input Setup to /DS Rise	5.0V	50		ns	[1, 2, 3]
19	TdDM(AS)	/DM Valid to /AS Fall Delay	5.0V	20		ns	[2, 3]

Notes:

[1] When using extended memory timing add 2 TpC.


[2] Timing numbers given are for minimum TpC.

[3] See clock cycle dependent characteristics table. [4] $5.0V \pm 0.5V$.

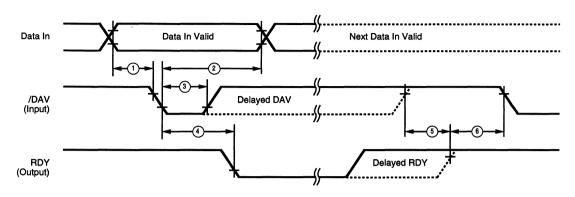
Standard Test Load

All timing references use 0.9 V_{cc} for a logic 1 and 0.1 V_{cc} for a logic 0.

AC ELECTRICAL CHARACTERISTICS Additional Timing Diagram

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table


		_	V _{cc}	•	to +70°C		
No	Symbol	Parameter	[4]	Min	Max	Units	Notes
1	ТрС	Input Clock Period	5.0V	48.83		ns	[1]
2	TrC,TfC	Clock Input Rise & Fall Times	5.0V		6	ns	[1]
3	TwC	Input Clock Width	5.0V	16		ns	[1]
4	TwTinL	Timer Input Low Width	5.0V	70		ns	
5	TwTinH	Timer Input High Width	5.0V	3TpC			[1]
6	TpTin	Timer Input Period	5.0V	8TpC			[1]
7	TrTin,	Timer Input Rise & Fall Timer	5.0V		100	ns	[1]
	TfTin						
8A	TwiL	Int. Request Low Time	5.0V	70		ns	[1, 2]
8B	TwiL	Int. Request Low Time	5.0V	3TpC			[1]
9	TwlH	Int. Request Input High Time	5.0V	3TpC			[1]
10	Twsm	Stop-Mode Recovery Width Spec	5.0V	12		ns	[1]
				5TpC			
11	Tost	Oscillator Startup Time	5.0V	5TpC			[3]
12	Twdt	Watch-Dog Timer	5.0V	5	<u></u>	ms	D0 = 0 [4]
			5.0V	15		ms	D0 = 1 [4]
			5.0V	25		ms	D0 = 0 [4
			5.0V	100		ms	D0 = 1[4]

Notes: [1] Timing Reference uses 0.9 V_{cc} for a logic 1 and 0.1 V_{cc} for a logic 0. [2] Interrupt request through Port 3 (P31-P33). [3] SMR-D5 = 0.

[4] Reg. WDT. [5] 5.0V ± 0.5V.

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Diagrams

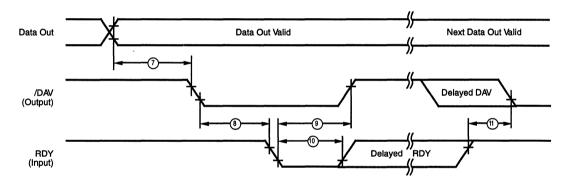


Figure 53. Output Handshake Timing

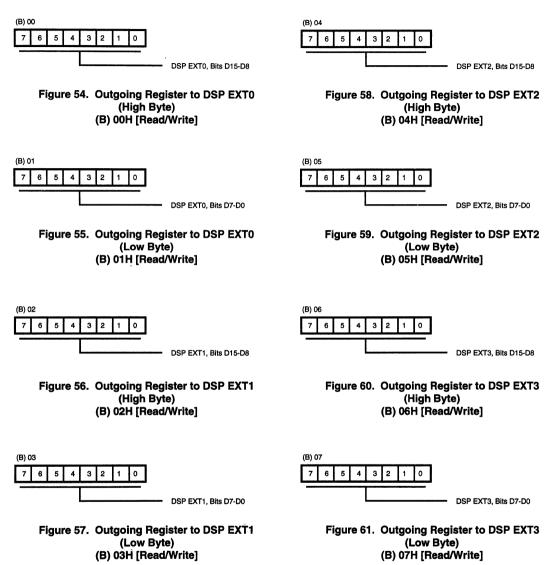
AC ELECTRICAL CHARACTERISTICS

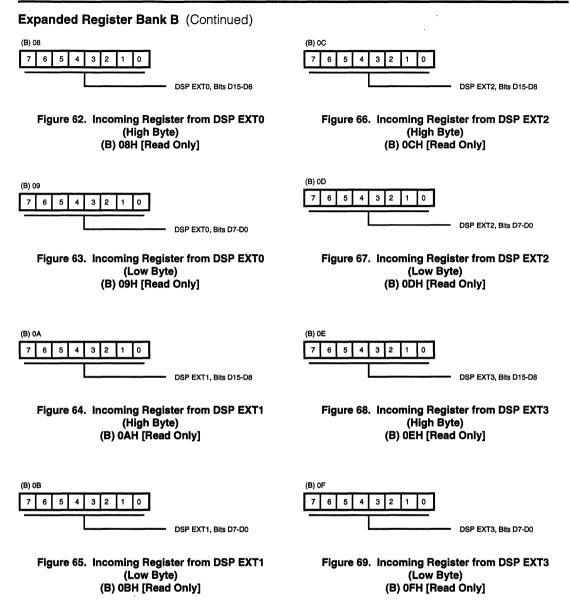
Handshake Timing Table

No	Symbol	Parameter	V _{cc} Note [1]	T _A =0°C Min	to +70°C Max	Units	Data Direction
1	TsDI(DAV)	Data In Setup Time	5.0V	0		ns	IN
2	ThDI(DAV)	Data In Hold Time	5.0V	115		ns	IN
3	TwDAV	Data Available Width	5.0V	110	*	ns	IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay	5.0V		115	ns	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay	5.0V		80	ns	IN
6	TdDO(DÀV)	RDY Rise to DAV Fall Delay	5.0V	0		ns	IN
7	TcLDAV0(RDY)	Data Out to DAV Fall Delay	5.0V	25		ns	OUT
8	TcLDAV0(RDY)	DAV Fall to RDY Fall Delay	5.0V	0		ns	OUT
9	TdRDY0(DAV)	RDY Fall to DAV Rise Delay	5.0V		115	ns	OUT
10	TwRDY	RDY Width	5.0V	80		ns	OUT
11	TdRDY0d(DAV)	RDY Rise to DAV Fall Delay	5.0V		80	ns	OUT

Note:

[1] 5.0V ± 0.5V

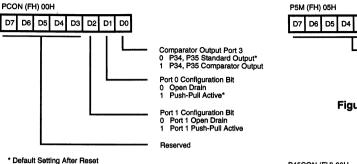

ELECTRICAL CHARACTERISTICS

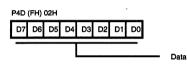

A/D Electrical Characteristics $T_A = 0^{\circ}C - 70^{\circ}C; V_{cc} = 5.0V \pm 0.5V$

Parameter	Minimum	Maximum	Typical	Units
Resolution			8	bits
Integral non-linearity		1	0.5	lsb
Differential non-linearity		0.5		lsb
Zero Error at 25°C		50		mV
Power Dissipation		75	35	mW
Clock Frequency		20		MHz
Clock Pulse Width	35			ns
Input Voltage Range	AN _{GND}	ANV _{cc}		V
Conversion Time		2		μs
Input Capacitance on		60		pF
VA _H range damage	AN	ANV _{cc}		V
VA _{LO} range damage				V
AN _{GND}	V _{ss}	ANV _{cc}		V
ANV _{cc}	AN _{GND}	V _{cc}		V
III ana	-10	+10		μA
III VA _{HI} , VA _{LO}	TBD	TBD		μA

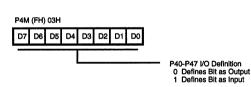
Z8 EXPANDED REGISTER FILE REGISTERS

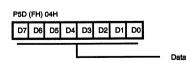
Expanded Register Bank B

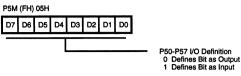



[⊗]ZiLŒ

PRELIMINARY


Expanded Register Bank F


Figure 70. Port Configuration Register (PCON) (F) 00 [Write Only]


Figure 71. Port 4 Data Register (F) 02H [Read/Write]

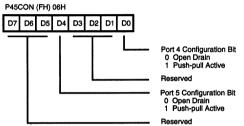

Figure 72. Port 4 Mode Register (F) 03H [Write Only]

Figure 74. Port 5 Mode Register (F) 05H [Write Only]

Figure 75. Port 4 and 5 Configuration Register (F) 06H [Write Only]

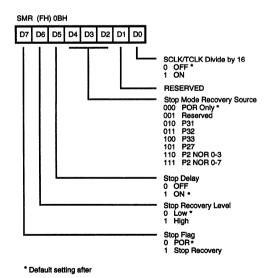
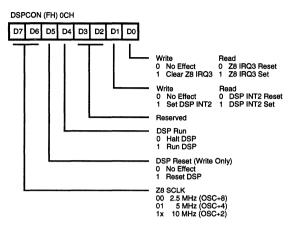
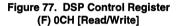
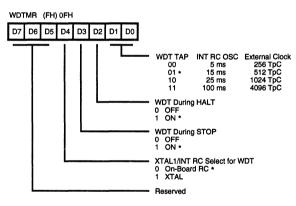
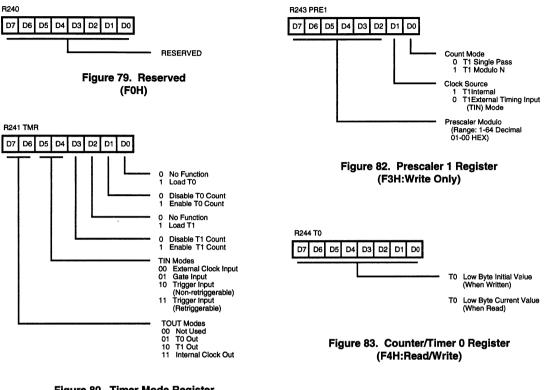





Figure 76. Stop-Mode Recovery Register (SMR) (F) 0BH [Read/Write]

Expanded Register Bank F (Continued)



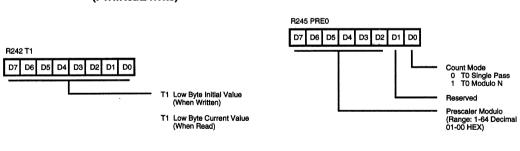

* Default setting after RESET

Figure 78. Watch-Dog Timer Mode Register (F) 0FH [Read/Write]

Z8 CONTROL REGISTERS

Z8 CONTROL REGISTERS (Continued)

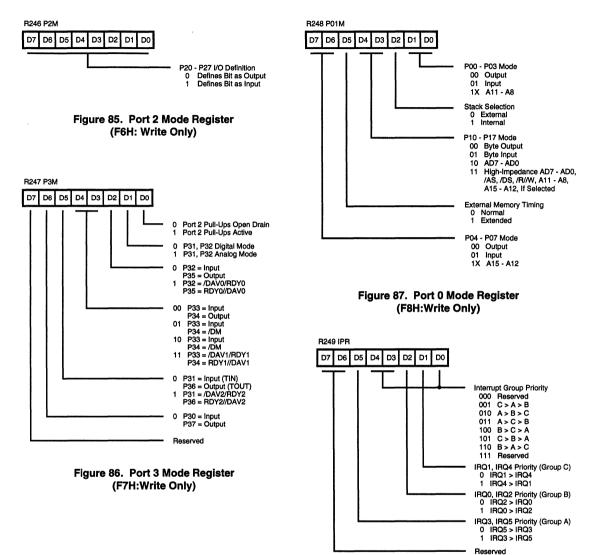
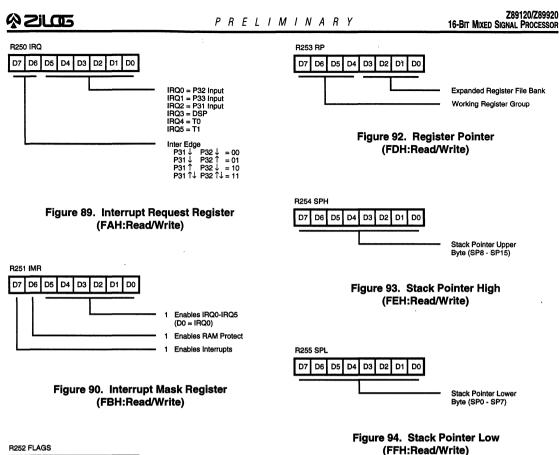



Figure 88. Interrupt Priority Register

(F9H:Write Only)

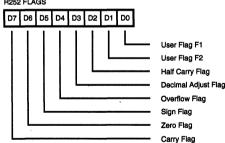


Figure 91. Flag Register (FCH:Read/Write)

4-67

Z8 INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working-
	register pair address
Irr	Indirect working-register pair only
Х	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
	working-register address
Ir	Indirect working-register address only
RR	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
сс	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning		
С	Carry flag		
Z	Zero flag		
S	Sign flag		
V	Overflow flag		
D	Decimal-adjust flag		
н	Half-carry flag		
Affected flag	gs are indicated by:		
0	Clear to zero		
1	Set to one		
*	Set to clear according to operation		
-	Unaffected		
x	Undefined		

CONDITION CODES


Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	С	Carry	C = 1
1111	NC	No Carry	C = 0
0110	Z	Zero	Z = 1
1110	NZ	Not Zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No Overflow	V = 0
0110	EQ	Equal	Z = 1
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	(S XOR V) = 0
0001	LT	Less than	(S XOR V) = 1
1010	GT	Greater Than	[Z OR (S XOR V)] = 0
0010	LE	Less Than or Equal	[Z OR (S XOR V)] = 1
1111	UGE	Unsigned Greater Than or Equal	C = 0
0111	ULT	Unsigned Less Than	C = 1
1011	UGT	Unsigned Greater Than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned Less Than or Equal	(C OR Z) = 1
0000		Never True	

INSTRUCTION FORMATS

CCF, DI, EI, IRET, NOP, RCF, RET, SCF

One-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol " \leftarrow ". For example:

dst ← dst + src

indicates that the source data is added to the destination data and the result is stored in the destination location. The

notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:

dst (7)

refers to bit 7 of the destination operand.

PRELIMINARY

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		ags Z				н	Instruction and Operation	Mod	ress le src	Opcode Byte (Hex)	Fla	ags 7	Aff	ect	ed D	н
ADC dst, src dst←dst + src + C ADD dst, src	+	1[] 0[]	*	*	*	*	0		INC dst dst←dst + 1	r R	310	rE r = 0 - F 20	-			*		-
$dst \leftarrow dst + src$, 	5[]	-	-	-		-		INCW dst	IR RR		21 A0	-	*	*	*	-	-
dst←dst AND src	1	511	-	Υ	ጥ	U			dst←dst + 1	IR		A1						
CALL dst SP←SP – 2 @SP←PC, PC←dst	DA IRR	D6 D4	-	-	-	-	-	-	IRET FLAGS←@SP; SP←SP + 1 PC←@SP; SP←SP + 2; IMR(7)←1			BF	*	*	*	*	*	*
CCF C←NOT C		EF	*	-	-	-	-	-	JP cc, dst	DA		cD		_	_	-	_	
CLR dst dst←0	R IR	B0 B1	-	-	-	-	-	-	if cc is true PC←dst	IRR		c = 0 - F 30						
COM dst dst←NOT dst	R IR	60 61	-	*	*	0	-	-	JR cc, dst if cc is true, PC←PC + dst	RA		сВ с = 0 — F	-	-	-	-	-	-
CP dst, src dst – src	†	A[]	*	*	*	*	-	-	Range: +127, -128									
DA dst dst←DA dst	R IR	40 41	*	*	*	Х	-	-	LD dst, src dst←src	r r	lm R	rC r8	-	-	-	-	-	-
DEC dst dst←dst – 1	R IR	00 01	-	*	*	*	-	-		R	r	$r_{\rm F}$						
DECW dst dst←dst – 1	RR . IR	80 81	-	*	*	*	-	-		r X r Ir	X r Ir r	C7 D7 E3 F3						
DI IMR(7)←0		8F	-	-	-	-	-	-		R R R	R IR IM	E4 E5 E6						
DJNZ dst $r \leftarrow r - 1$ if $r \neq 0$	RA	rA r = 0 - F	-	-	-	-	-	-		R IR IR	IM IM R	E0 E7 F5						
PC←PC + dst Range: +127,									LDC dst, src	r	Irr	C2	-	-	-	-	-	-
-128									LDCI dst, src dst←src	lr	Irr	C3	-	-	-	-	-	-
EI IMR(7)←1		9F	-	-	-	-	-	-	r←r +1; rr←rr + 1									
HALT		7F	-	-	-	-	-	-										

_

-

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Addr Mode dst		Opcode Byte (Hex)		igs Z	Aff S	ecte V	ed D	Н
NOP			FF	-	-	-	-	-	-
OR dst, src dst←dst OR src	†		4[]	-	*	*	0	-	-
POP dst dst←@SP; SP←SP + 1	R IR		50 51	-	-	-	-	-	-
PUSH src SP←SP – 1; @SP←src		R IR	70 71	-	-	-	-	-	-
RCF C←0			CF	0	-	-	-	-	-
RET PC←@SP; SP←SP + 2			AF	-	-	-	-	-	-
RL dst	R IR		90 91	*	*	*	*	-	-
RLC dst	R IR		10 11	*	*	*	*	-	-
RR dst	R IR		E0 E1	*	*	*	*	-	-
RRC dst	R IR		C0 C1	*	*	*	*	-	-
SBC dst, src dst←dst←src←C	†		3[]	*	*	*	*	1	*
SCF C←1			DF	1	-	-	-	-	-
	R IR		D0 D1	*	*	*	0	-	-
SRP src RP←src		lm	31	-	-	-	-	-	-

Instruction	Address Mode	Opcode	FI	ags	Aff	ect	ed	
and Operation	dst src	Byte (Hex)		Ž	S	V	D	Н
STOP		6F	-	-	-	-	-	-
SUB dst, src dst←dst←src	†	2[]	*	*	*	*	1	*
SWAP dst	R IR	F0 F1	X	*	*	X	-	-
TCM dst, src (NOT dst) AND src	t	6[]	-	*	*	0	-	-
TM dst, src dst AND src	†	7[]	-	*	*	0	-	-
WDT		5[]	-	Х	Х	Х	-	-
XOR dst, src dst←dst XOR src	†	B[]	-	*	*	0	-	-

† These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and lr (source) is 13.

Addres dst	ss Mode src	Lower Opcode Nibble
r	r	[2]
r	Ir	[3]
R	R	[4]
R	IR	[5]
R	IM	[6]
IR	IM	[7]

4	2	
---	---	--

Ŧ

OPCODE MAP

								Lo	wer Nib	ble (He	x)						
		0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F
	0	6.5 DEC	6.5 DEC	6.5 ADD	6.5 ADD	10.5 ADD	10.5 ADD	10.5 ADD	10.5 ADD	6.5 LD	6.5 LD	12/10.5 DJNZ	12/10 0 JR	6.5 LD	12.10 0 JP	6.5 INC	
		R1 6.5	IR1 6.5	r1, r2	r1, lr2 6.5	R2, R1 105	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5	r1, R2	r2, R1	r1, RA	cc, RA	r1, IM	cc, DA	r1 ∎	
	1	RLC	RLC	ADC	ADC	ADC	ADC	ADC	ADC								
		R1 6.5	IR1 6.5	r1, r2 65	r1, lr2 6.5	R2, R1 105	IR2, R1 105	R1, IM 10.5	IR1, IM 10.5								
	2	INC R1	INC IR1	SUB r1, r2	SUB r1, lr2	SUB R2, R1	SUB IR2, R1	SUB R1, IM	SUB								
	3	8.0	61	6.5	6.5	105	10.5	105	105								
	3	JP IRR1	IM	SBC r1, r2	SBC r1, lr2	SBC R2, R1	SBC IR2, R1	SBC R1, IM	SBC IR1, IM								
	4	8.5 DA	8.5 DA	6.5 OR	6.5 OR	10.5 OR	10.5 OR	10.5 OR	10.5 OR								
		R1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM								
	5	10.5 POP	10.5 POP	6.5 AND	6.5 AND	10.5 AND	10.5 AND	10.5 AND	10.5 AND								60 WDT
		R1 6.5	IR1 6.5	r1, r2 6.5	r1, ir2 6.5	R2, R1 10.5	IR2, R1 10.5	R1, IM 10.5	IR1, IM 105								60
~	6	сом	сом	тсм	тсм	тсм	тсм	тсм	тсм								STOP
Hex		R1 10/12.1	IR1 12/14.1	r1, r2 6.5	r1, lr2 6.5	R2, R1 10 5	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5								7.0
ble (7	PUSH R2	PUSH IR2	TM r1, r2	TM r1, lr2	TM R2, R1	TM IR2, R1	TM R1, IM	TM IR1, IM								HALT
Upper Nibble (Hex)	•	10.5	10.5	12.0	18.0	112,111	11.12, 11.1	111, 114	111, IW								6.1
bbei	8	DECW RR1	IR1	LDE r1, irr2	LDEI Ir1, Irr2												Di
5	9	6.5 RL	6.5 RL	12 0 LDE	18 0 LDEI												6.1 El
	-	R1	IR1	r2, Irr1	lr2, irr1												
	A	10.5 INCW	10 5 INCW	-65 CP	65 CP	10 5 CP	10 5 CP	10 5 CP	10 5 CP								14 0 RET
		RR1 65	IR1 6.5	r1, r2 6.5	r1, lr2 6.5	R2, R1 10.5	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5								160
	в	CLR	CLR	XOR	XOR	XOR	XOR	XOR	XOR								IRET
	_	R1 6.5	IR1 6.5	r1, r2 12.0	r1, ir2 18.0	R2, R1	IR2, R1	R1, IM	IR1, IM 10 5								6.5
	С	RRC R1	IR1	LDC	LDCI				LD r1,x,R2								RCF
	D	6.5 SRA	6.5 SRA	12.0 LDC	18.0 LDCI	20.0 CALL*		20.0 CALL	10.5 LD	11							6.5 SCF
	5	R1	IR1	r1, Irr2	lr1, irr2	IRR1		DA	r2,x,R1								
	Е	6.5 RR	6.5 RR		6.5 LD	10 5 LD	10 5 LD	10.5 LD	10.5 LD								6.5 CCF
		R1 8.5	IR1 8.5		r1, IR2 6.5	R2, R1	IR2, R1 10.5	R1, IM	IR1, IM								6.0
	F	SWAP	SWAP		LD		LD									L.	NOP
		R1	IR1	<u> </u>	lr1, r2		R2, IR1					<u>└</u>	<u> </u>		\leftarrow	4	
			:	2			:	3				2			3		1
								B)	rtes per	Instruc	tion						
						ower ocode						Legen	d: bit Addre				
			E	ecution		ibble I	Pipe	line					it Addre				
				Cycles			/ Cycl						r1 = Dst				
			Up	oer		10.5						H2 or	r2 = Src	Addres	8		
			Opco	de	-•A (СРе	Mi	nemonic				Seque		Dooron	4		
			Nib	nie		1, R2							le, First (d Opera		A,		
				First	/		∕ _{Sec}	cond				Note:	Blank an	eas not	defined.		
			O	perand				erand									
													yte instruc		ears as		

DSP INSTRUCTION SET NOTATION

Register Names. The following lists the register names and their descriptions.

Name	Description
A	Accumulator
BUS	Bus Dummy Register
Dn:b	Data Register where n is the register num- ber (03) and b is the bank in which is resides (01).
EXTn	Extended Régisters where n is the register number (07).
Р	Multiplier Product Register
Pn:b	Pointer Registers where n is the register number (02) and b is the bank into which it points (01).
Х	Multiplier Input Register X
Y	Multiplier Input Register Y
PC	Program Counter Register
SR	Status Register

Condition Codes. The following defines the condition codes supported by the DSP assembler. In the instruction descriptions, condition codes are referred to via the <cc> symbol. If the instruction description refers to a condition code in one of its addressing modes, the instruction will only execute if the condition is true.

Name	Description
С	Carry
EQ	Equal (same as Z)
F	False
IE	Interrupts Enabled
MI	Minus
NC	No Carry
NE	Not Equal (same as NZ)
NIE	Not Interrupts Enabled
NOV	Not Overflow
NU0	Not User Zero
NU1	Not User One
NZ	Not zero
OV	Overflow
PL	Plus (Positive)
UO	User Zero
U1	User One
UGE	Unsigned Greater Than or Equal (Same as NC)
ULT	Unsigned Less Than (Same as C)
Z	Zero

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this two keywords are used (ON and OFF) which state the direction of the switch. These keywords are refered to in the instruction descriptions through the <bank switch> symbol.

[⊗]ZIL05

Addressing Modes. This section discusses the syntax of the addressing modes supported by the DSP assembler.

The symbolic name is used in the discussion of instruction syntax in the instruction descriptions.

Symbolic Name	Syntax	Description
<pregs></pregs>	Pn:b	Pointer Register
<dregs> (Points to RAM)</dregs>	Dn:b	Data Register
<hwregs></hwregs>	X,Y,PC,SR,P EXTn,A,BUS	Hardware Registers
<accind> (Points to Program Memory)</accind>	@A	Accumulator Memory Indirect
<direct></direct>	<expression></expression>	Direct Address Expression
<limm></limm>	# <const exp=""></const>	Word (16-bit) Immediate Value
<simm></simm>	# <const exp=""></const>	Short (8-bit) Immediate Value
<regind> (Points to RAM)</regind>	@Pn:b @Pn:b-LOOP @Pn:b+LOOP	Pointer Register Indirect Pointer Register Indirect with Loop Decrement Pointer register Indirect with Loop Increment
<memind> (Points to Program Memory)</memind>	@@Pn:d @Dn:b @@Pn:b-LOOP @@Pn:b+LOOP @@Pn:b+	Pointer Register Memory Indirect Data Register Memory Indirect Pointer Register Memory Indirect with Loop Decrement Pointer Register Memory Indirect with Loop Increment Pointer Register Memory Indirect with Increment

4

DSP INSTRUCTION DESCRIPTIONS

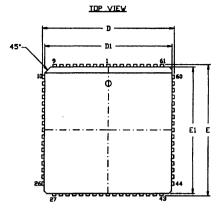
Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
ABS	Absolute Value	ABS[<cc>,]<src></src></cc>	<cc>,A</cc>	1	1	ABS NC,A
			А	1	1	ABS A
ADD	Addition	ADD <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	ADD A,#128
			A, <dregs></dregs>	1	1	ADD A,D0:1
			A, <limm></limm>	2	2	ADD A,@@LOOP
			A, <memind></memind>	1	3	ADD A,@P2:1+
			A, <direct></direct>	1	1	ADD A,X
			A, <regind></regind>	1	1	
			A, <hwregs></hwregs>	1	1	
AND	Bitwise AND	AND <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	AND A,#128
			A, <dregs></dregs>	1	1	AND A,DO:1
			A, <limm></limm>	2	2	AND A,@@P0:0+LOOP
			A, <memind></memind>	1	3	AND A,@P2:1+
			A, <direct></direct>	1	1	
			A, <regind></regind>	1	1	AND A,X
			A, <hwregs></hwregs>	1	1	,
CALL	Subroutine call	CALL [<cc>,]<address></address></cc>	<cc>,<direct></direct></cc>	2	2	CALL sub1
			<direct></direct>	2	2	CALL Z,sub2
CCF	Clear carry flag	CCF	None	1	1	CCF
CIEF	Clear Carry Flag	CIEF	None	1	1	CIEF
COPF	Clear OP flag	COPF	None	1	1	COPF
СР	Comparison	CP <src1>,<src2></src2></src1>	A, <pregs></pregs>	1	1	CP A,P0:0
			A, <dregs></dregs>	1	1	CP A,D3:1
			A, <memind></memind>	1	3	CP A,#512
			A, <direct></direct>	1	1	CP A,@@P0:1
			A, <regind></regind>	1	1	CP A, LABEL
			A, <hwregs></hwregs>	1	1	CP A,@D0:0
						CP A,X
DEC	Decrement	DEC [<cc>,]<dest></dest></cc>	<cc>A,</cc>	1	1	DEC NZ,A
			A	1	1	DEC A
INC	Increment	INC [<cc>,] <dest></dest></cc>	<cc>,A</cc>	1	1	INC NZ,A
			А	1	1	INC A
JP	Jump	JP [<cc>,]<address></address></cc>	<cc>,<direct></direct></cc>	2	2	JP NIE,Label
			<direct></direct>	2	2	JP Label

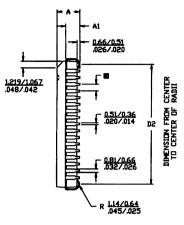
[®]Silæ

PRELIMINARY

	Description	Synopsis	Operands	Words	Cycles	Examples
LD	Load destination	LD <dest>,<src></src></dest>	A, <hwregs></hwregs>	1	1	LD A,X
	with source		A, <dregs></dregs>	1	1	LD A,D0:0
			A, <pregs></pregs>	1	1	LD A,P0:1
			A, <regind></regind>	1	1	LD A,@@P1:1
			A, <memind></memind>	1	3	LD A.MEMADDR
			A, <direct></direct>	1	1	LD MEMADDR.A
			<direct>.A</direct>	1	1	LD D0:1,A
			<dregs>,<hwregs></hwregs></dregs>	1	1	LD P1:0#128
			<pregs>,<simm></simm></pregs>	1	1	LDP1:1.X
			<pregs>,<hwregs></hwregs></pregs>	1	1	LD@P0:0+L00P,#1234
			<regind>,<limm></limm></regind>	1	i	LD @P1:1+,X
			<regind>,<hwregs></hwregs></regind>	i	1	LD X,PO:0
			<hwregs>,<pregs></pregs></hwregs>	i	1	LD Y,P0:0
			<hwregs>,<pre>chwregs>,<dregs></dregs></pre></hwregs>	i	1	LD SR,#%1023
			<hwregs>,<limm></limm></hwregs>	2	2	LD PC.(A)
				1	3	
			<hwregs>,<accind></accind></hwregs>	1	3	LD X,@@P0:0
			<hwregs>,<memind></memind></hwregs>			LD Y,@P1:0-LOOP
			<hwregs>,<regind></regind></hwregs>	1	1	LD SR,X
			<hwregs>,<hwregs></hwregs></hwregs>	1	1	
			Note: When < dest> is < hwregs	>and <sr< td=""><td>c> is <hwree< td=""><td>ns> <dest> cannot be FXT</dest></td></hwree<></td></sr<>	c> is <hwree< td=""><td>ns> <dest> cannot be FXT</dest></td></hwree<>	ns> <dest> cannot be FXT</dest>
				cannot b	e X if <src></src>	is X, <dest> cannot be S</dest>
			if <src> is EXTn, <des⊳ if <src> is SR. Note: When <src> is <accind></accind></src></src></des⊳ </src>	<pre>cannot b <dest> c</dest></pre>	e X if <src> cannot be A</src>	is X, <dest> cannot be Si </dest>
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <des> if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind></regind></hwregs></accind></src></src></des></src>	<pre>cannot b <dest> c </dest></pre>	e X if <src> cannot be A</src>	is X, <dest> cannot be S MLD A@P0:0</dest>
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <des> if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<="" td=""><td>cannot b <dest> c </dest></td><td>e X if <src> cannot be A 1 1</src></td><td>is X, <dest> cannot be S MLD A@P0:0 MLD A@P1:0,0FF</dest></td></bank></regind></hwregs></regind></hwregs></accind></src></src></des></src>	cannot b <dest> c </dest>	e X if <src> cannot be A 1 1</src>	is X, <dest> cannot be S MLD A@P0:0 MLD A@P1:0,0FF</dest>
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <des> if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind></regind></hwregs></accind></src></src></des></src>	<pre>cannot b <dest> c </dest></pre>	e X if <src> cannot be A 1 1 1</src>	is X, <dest> cannot be S MLD A@P0:0</dest>
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <des> if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<="" td=""><td>cannot b <dest> c </dest></td><td>e X if <src> cannot be A 1 1</src></td><td>is X, <dest> cannot be S MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0</dest></td></bank></regind></hwregs></regind></hwregs></accind></src></src></des></src>	cannot b <dest> c </dest>	e X if <src> cannot be A 1 1</src>	is X, <dest> cannot be S MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0</dest>
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <dest if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind> <regind>,<regind> <regind>,<regind> mote: If src1 is <regind> it mu</regind></regind></regind></regind></regind></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest </src>	<pre>cannot b <dest> c </dest></pre>	e X if <src> xannot be A 1 1 1 1</src>	is X, <dest> cannot be S MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N</dest>
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <dest if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind>,<bank switcl<br=""><regind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu a bank 0 register.</regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest </src>	 cannot b <dest> c</dest> 1 ch> 1 1 h> 1 st be a basis 	e X if <src> xannot be A 1 1 1 1</src>	is X, <dest> cannot be Si MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N</dest>
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <dest if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu a bank 0 register. Note: <hwregs> for src1 cann</hwregs></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest </src>	 cannot b <dest> c</dest> 1 1	e X if <src> cannot be A 1 1 1 1 1 ank 1 regist</src>	IS X, <dest> cannot be Si MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<="" must="" td=""></regind></dest>
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <dest if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind>,<bank switcl<br=""><regind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu a bank 0 register.</regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest </src>	 cannot b <dest> c</dest> 1 1	e X if <src> annot be A 1 1 1 1 ank 1 regist</src>	MLD A@P0:0 MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to 0FF</regind>
	Multiply Multiply and add	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	if <src> is EXTn, <dest> if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind>,<bank switcl<br=""><regind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu a bank 0 register. Note: <hwregs> for src1 cann Note: For the operands <hwreg< td=""><td> cannot b <dest> c</dest> 1 1</td><td>e X if <src> annot be A 1 1 1 1 ank 1 regist</src></td><td>MLD A@P0:0 MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to 0FF</regind></td></hwreg<></hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest></src>	 cannot b <dest> c</dest> 1 1	e X if <src> annot be A 1 1 1 1 ank 1 regist</src>	MLD A@P0:0 MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to 0FF</regind>
			if <src> is EXTn, <dest> if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind>,<bank switcl<br=""><regind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu a bank 0 register. Note: <hwregs> for src1 cann Note: For the operands <hwreg For the operands <regin< td=""><td> cannot b <dest> c</dest> 1 </td><td>e X if <src> cannot be A 1 1 1 1 ank 1 regist nd> the <ba bank switcl 1</ba </src></td><td>IS X, <dest> cannot be SI MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to OFF n> defaults to ON. MPYA A@P0:0</regind></dest></td></regin<></hwreg </hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest></src>	 cannot b <dest> c</dest> 1 	e X if <src> cannot be A 1 1 1 1 ank 1 regist nd> the <ba bank switcl 1</ba </src>	IS X, <dest> cannot be SI MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to OFF n> defaults to ON. MPYA A@P0:0</regind></dest>
			if <src> is EXTn, <dest if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind>,<bank switcl<br=""><regind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu a bank 0 register. Note: <hwregs> for src1 cann Note: For the operands <hwreg For the operands <regind> <hwregs>,<regind>,<bank switcl<br=""><hwregs>,<regind>,<bank switcl<="" td=""><td> cannot b <dest> c</dest> 1 </td><td>e X if <src> cannot be A 1 1 1 1 1 1 1 1 1 1 1 sink 1 regist bank switch 1 1</src></td><td>IS X, <dest> cannot be SI MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to 0FF n> defaults to 0N. MPYA A@P0:0 MPYA A,@P1:0,0FF</regind></dest></td></bank></regind></hwregs></bank></regind></hwregs></regind></hwreg </hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest </src>	 cannot b <dest> c</dest> 1 	e X if <src> cannot be A 1 1 1 1 1 1 1 1 1 1 1 sink 1 regist bank switch 1 1</src>	IS X, <dest> cannot be SI MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to 0FF n> defaults to 0N. MPYA A@P0:0 MPYA A,@P1:0,0FF</regind></dest>
MLD MPYA			if <src> is EXTn, <dest> if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind>,<bank switcl<br=""><regind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu a bank 0 register. Note: <hwregs> for src1 cann Note: For the operands <hwreg For the operands <regin< td=""><td> cannot b <dest> c</dest> 1 </td><td>e X if <src> cannot be A 1 1 1 1 ank 1 regist nd> the <ba bank switcl 1</ba </src></td><td>IS X, <dest> cannot be SI MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to OFF n> defaults to ON. MPYA A@P0:0</regind></dest></td></regin<></hwreg </hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest></src>	 cannot b <dest> c</dest> 1 	e X if <src> cannot be A 1 1 1 1 ank 1 regist nd> the <ba bank switcl 1</ba </src>	IS X, <dest> cannot be SI MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to OFF n> defaults to ON. MPYA A@P0:0</regind></dest>
			if <src> is EXTn, <dest> if <src> is SR. Note: When <src> is SR. </src></src></dest></src>	 cannot b <dest> c</dest> 1 	e X if <src> annot be A 1 1 1 1 1 ank 1 regist ank 1 regist bank switch 1 1 1 1</src>	IS X, <dest> cannot be SI MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to 0FF n> defaults to 0N. MPYA A@P0:0 MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0IF</regind></dest>
			if <src> is EXTn, <dest> if <src> is SR. Note: When <src> is <accind> <hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind>,<bank switcl<br=""><regind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu a bank 0 register. Note: <hwregs> for src1 cann Note: For the operands <hwreg For the operands <regin <hwregs>,<regind>,<bank switcl<br=""><hwregs>,<regind>,<bank switcl<br=""><hwregs>,<regind>,<bank switcl<br=""><hwregs>,<regind>,<bank switcl<br=""><hwregs>,<regind>,<bank switcl<br=""><hwregs>,<regind>,<bank switcl<br=""><hwregs>,<regind>,<bank switcl<br=""><hwregs>,<regind>,<bank switcl<br=""><hwregs,<regind>,<bank switcl<br=""><hwregs,<regind>,<bank switcl<br=""><hwregind>,<regind>,<bank switcl<br="">Note: If src1 is <regind> it mu</regind></bank></regind></hwregind></bank></hwregs,<regind></bank></hwregs,<regind></bank></regind></hwregs></bank></regind></hwregs></bank></regind></hwregs></bank></regind></hwregs></bank></regind></hwregs></bank></regind></hwregs></bank></regind></hwregs></bank></regind></hwregs></regin </hwreg </hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs></accind></src></src></dest></src>	 cannot b <dest> c</dest> 1 1	e X if <src> annot be A 1 1 1 1 ank 1 registe bank switch 1 1 1 1 1 1 1 1</src>	MLD A@P0:0 MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N MLD @P0:1,@P1:0,0N er. Src2's <regind b<br="" must="">nd switch> defaults to OFF n> defaults to 0N. MPYA A@P0:0 MPYA @P1:1,@P2:0 MPYA@P1:1,@P2:0 MPYA@P1:1,@P1:0,0I er. Src2's <regind> must b</regind></regind>

DSP INSTRUCTION DESCRIPTIONS (Continued)


Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
MPYS	Multiply and subtract	MPYS <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	<hwregs>,<regind> <hwregs>,<regind>,<bank switc<br=""><regind>,<regind> <regind>,<regind>,<bank switcl<="" td=""><td>1</td><td>1 MI 1 MI</td><td>PYS A,@P0:0 PYS A,@P1:0,0FF PYS @P1:1,@P2:0 PYS@P0:1,@P1:0,0N</td></bank></regind></regind></regind></regind></bank></regind></hwregs></regind></hwregs>	1	1 MI 1 MI	PYS A,@P0:0 PYS A,@P1:0,0FF PYS @P1:1,@P2:0 PYS@P0:1,@P1:0,0N
			Note:If src1 is <regind> it must be a bank 0 register.Note:<hwregs> for src1 cant For the operands <hwrego </hwrego OFF. For the operand defaults to ON.</hwregs></regind>	ot be X. gs>, <reg< td=""><td>ind> the <b< td=""><td>ank switch> defaults to</td></b<></td></reg<>	ind> the <b< td=""><td>ank switch> defaults to</td></b<>	ank switch> defaults to
NEG	Negate	NEG <cc>,A</cc>	<cc>, A A</cc>	1		ig NZ,A ig A
NOP	No operation	NOP	None	1	1 NC)P
OR	Bitwise OR	OR <dest>,<src></src></dest>	A, <pregs> A, <dregs> A, <limm> A, <memind> A, <direct> A, <regind> A, <heregind></heregind></regind></direct></memind></limm></dregs></pregs>	1 1 2 1 1 1 1	1 OF 2 OF 3 OF	A,#128 A, D0:1 A,@@P0:0+L00P A,@P2:1+ A, X
POP	Pop value from stack	POP <dest></dest>	<pregs> <pregs> <regind> <hwregs></hwregs></regind></pregs></pregs>	1 1 1	1 PC 1 PC 1 PC	PP P0:0 PP D0:1 PP @P0:0 IP A IP BUS
PUSH	Push value onto stack	PUSH <src></src>	<pregs> <dregs> <regind> <hwregs> <limm> <accind> <memind></memind></accind></limm></hwregs></regind></dregs></pregs>	1 1 1 2 1 1	1 PL 1 PL 1 PL 2 PL 3 PL 3 PL	ISH P0:0 ISH D0:1 ISH @P0:0 ISH A ISH BUS ISH #12345 ISH @A ISH @@P0:0
RET	Return from subroutine	RET	None	1	2 RE	T
RL	Rotate Left	RL <cc>,A</cc>	<cc>,A A</cc>	1	1 RL 1 RL	NZ,A A
RR	Rotate Right	RR <cc>,A</cc>	<cc>,A A</cc>	1		NZ,A KA


Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
SCF	Set C flag	SCF	None	1	1	SCF
SIEF	Set IE flag	SIEF	None	1	1	SIEF
SLL	Shift left	SLL	[<cc>,]A</cc>	1	1	SLL NZ,A
	logical		A	1	1	SLL A
SOPF	Set OP flag	SOPF	None	1	1	SOPF
SRA	Shift right	SRA <cc>,A</cc>	<cc>,A</cc>	1	1	SRA NZ,A
	arithmetic		Α	1	1	SRA A
SUB	Subtract	SUB <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	SUB A,#128
			A, <dregs></dregs>	1	1	SUB A,DO:1
			A, <limm></limm>	2	2	SUB A @@P0:0+L00P
			A, <memind></memind>	1	3	SUB A @P2:1+
			A, <direct></direct>	1	1	SUB AX
			A, <regind></regind>	1	1	•
			A, <hwregs></hwregs>	1	1	
XOR	Bitwise exclusive OR	XOR <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	XOR A,#128
			A, <dregs></dregs>	1	1	XOR A.DO:1
			A, <limm></limm>	2	2	XOR A,@@P0:0+L00P
			A, <memind></memind>	1	3	XOR A.@P2:1+
			A, <direct></direct>	1	1	XOR A, X
			A, <regind></regind>	1	1	•
			A, <hwregs></hwregs>	۰ <u>۱</u>	1	

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this two keywords are used (ON and OFF) which

state the direction of the switch. These keywords are referred to in the instruction descriptions through the
bank switch> symbol.

PACKAGE INFORMATION

NOTES

1. CONTROLLING DIMENSIONS ; INCH 2. LEADS ARE COPLANAR WITHIN .004 IN. 3. DIMENSION ; <u>MM</u> INCH

SYMBOL	MILLIMETER		INCH	
UTHDUL	MIN	MAX	MIN	MAX
A	4.32 -	4.57	.170	.180
A1	2.67	2.92	.105	.115
D/E	25.02	25.40	.985	1.000
D1/E1	24.13	24.33	.950	.958
D2	22.86	23.62	.900	.930
12	1.27 TYP		.050 TYP	

68-Pin PLCC Package Diagram

ORDERING INFORMATION

Z89120 Z89920

20 MHz	20 MHz	
68-Pin PLCC	68-Pin PLCC	
Z8912020VSC	Z8992021VSC	

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Speed

20 = 20.48MHz

Package

V = Plastic Leaded Chip Carrier (PLCC)

Temperature

 $S = 0^{\circ}C$ to + 70°C

Environment C = Plastic Standard

Example:

Examplei	
Z 89120 10 V S C	is a Z89120, 20.48 MHz, PLCC, 0°C to +70°C, Plastic Standard Flow
	Environmental Flow
	Temperature
	Package
	Speed
	Product Number
	Zilog Prefix

· · ·

La desta de la constante de la c

Z86C95 Z8® Digital Signal Processor

Z89C00 16-Bit Digital Signal Processor

Z89C00 DSP Application Note

Z89120, Z89920 (ROMIess) 16-Bit Mixed Signal Processor

Z89121, Z89921 (ROMIess) 16-Bit Mixed Signal Processor 5

PRELIMINARY PRODUCT SPECIFICATION

Z89121 Z89921 (ROMLESS) 16-BIT MIXED SIGNAL PROCESSOR

FEATURES

- Z8[®] Microcontroller with 43 I/O Lines (27 I/O Lines for the Z89921)
- 24 Kbytes of Z8 Program ROM (Z89121)
- 256 Bytes On-Chip Z8 RAM
- Watch-Dog Timer and Power-On Reset
- Low Power STOP Mode
- On-Chip Oscillator which Accepts a Crystal or External Clock Drive
- Two 8-Bit Z8 Counter/Timers with 6-Bit Prescaler
- Low Power Consumption 200 mW (typical)
- Two Comparators with Programmable Interrupt Priority
- Six Vectored, Z8 Prioritized Interrupts
- RAM and ROM Protect

- Clock Speed of 20.48 MHz
- 16-Bit Digital Signal Processor (DSP)
- 6K Words DSP Program ROM
- 512 Words On-Chip DSP RAM
- 10-Bit PWM D/A Converter (4 kHz to 64 kHz)
- Z8 and DSP Operation in Parallel
- Three Vectored, Prioritized DSP Interrupts
- IBM[®] PC-Based Development Tools
- Interface for Two Codecs with 8 kHz and 6.66 kHz Sampling Rate and 2.048 MHz Clock
- Two DSP Timers to Support Different Sampling Rates for Codecs and PWM
- Built-in DRAM Interface. Direct Support of up to 48 Mbit DRAM with 4-Bit Wide Data Bus

GENERAL DESCRIPTION

The Z89121/921 is a dual CPU 16-bit mixed signal processor designed for digital audio compression plus storage systems. The I/O control processor is a Z8^{\circ} with 24 Kbytes of program memory, two 8-bit counter timers, a DRAM controller with up to 48 Mbit accessibility and up to 43 I/O pins. The DSP is a 16-bit processor with a 24-bit ALU and accumulator, 512 x 16 bits of RAM, single cycle instructions, and 6K word program ROM. The chip also contains a 10-bit PWM D/A converter and interface for two Codecs. The sampling rates for the PWM and Codec interface are programmable.

The Z8 and DSP processors are coupled by mailbox registers and an interrupt system. DSP or Z8 programs may be directed by events in each other's domain.

The Z89921 is the ROMIess version of the Z89121. The DSP is not ROMIess. The DSP's program memory is always the internal ROM.

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device	
Power Ground		V _{DD} V _{ss}	

GENERAL DESCRIPTION (Continued)

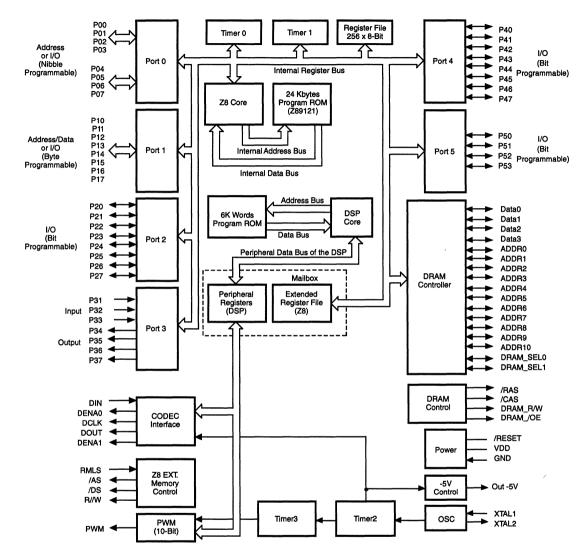


Figure 1. Functional Block Diagram

& Silæ

Z8 Core Processor

The Z8 is Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register-mapped peripheral and I/O circuits. The Z8 offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features. The Z8 also excels in many industrial uses, high-volume processing, peripheral controllers and consumer applications.

For applications demanding powerful I/O capabilities, the Z89121/921 has 43 pins dedicated to input and output. These lines are grouped into six ports. Each port is configurable under software control to provide timing, status signals and parallel I/O with or without handshake.

Four basic memory resources for the Z8 are available to support a wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Z8 core processor is characterized by an efficient register file that allows any of 256 on-board data and control registers to be the source and/or the destination of almost any instruction. Traditional microprocessor Accumulator bottlenecks are eliminated.

The Register File is composed of 236 bytes of generalpurpose registers, four I/O port registers, and 15 control and status registers. The Expanded Register File consists of mailbox registers, WDT mode register, DSP Control register, Stop-Mode Recovery register, Port Configuration register, and the control and data registers for Port 4 and Port 5.

To unburden the software from supporting real-time problems, such as counting/timing and data communication, the Z8 offers two on-chip counter/timers with a large number of user selectable modes. Watch-Dog Timer and STOP-Mode Recovery features are software driven by setting specific bits in control registers.

Stop and Halt instructions support reduced power operation. The low power STOP mode allows parameter information to be stored in the register file if power fails. An external capacitor or battery retains power to the device.

DSP Coprocessor

The DSP coprocessor is a second generation, 16-bit two's complement CMOS Digital Signal Processor (DSP). Four external DSP registers are mapped into the expanded register file of the Z8. Communication between the Z8 and the DSP occurs through those common registers which form the mailbox registers.

The analog signal is generated by a 10-bit resolution Pulse Width Modulator. The PWM output is a digital signal with CMOS output levels. The output signal has a resolution of 1 in 1024 with a sampling rate of 16 kHz (XTAL = 20.48 MHz). The sampling rate can be changed under software control and can be set at 4, 10, 16, and 64 kHz. The dynamic range of the PWM is from 0 to 4 volts.

Two additional timers (Timer2 and Timer3) have been added to support different sampling rates for the Codec interface and Pulse Width Modulator. These timers are free-running counters that divide the crystal frequency. PIN DESCRIPTION (Continued)

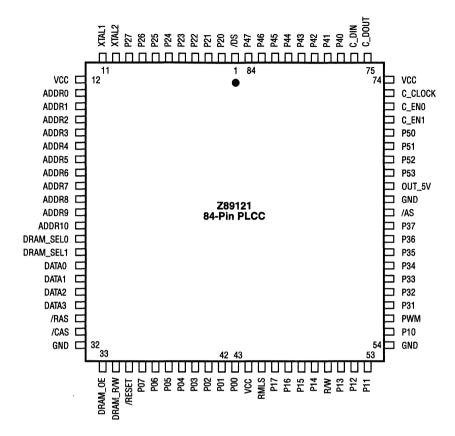


Figure 2. Z89121 84-Pin PLCC Pin Assignments

[⊗] ZiLŒ

I/O Port Functions	Pin Number	VO	Function
V _{ss} V _{cc}	32, 54, 65 12, 44, 74		Digital Ground Digital V _{cc} = +5V
P07-P00	43-36	Input/Output	P07-P00 (General purpose nibble programmable I/O port.)
P17-P10	55, 53-51, 49-46	Input/Output	P17-P10 (General purpose byte programmable I/O port.)
P27-P20	2-9	Input/Output	P27-P20 (General purpose bit programmable I/O.)
P37-P31	57-63	Input/Output	P37-P31 (General purpose I/O port. Bits P31-P33 are inputs, while bits P37-P34 are outputs.)
P47-P40	77-84	Input/Output	P47-P40 (General purpose bit programmable I/O.)
P53-P50	70-67	Input/Output	P53-P50 (General purpose bit programmable I/O.)
C_DIN	76	Input	Data input from Codec.
C_DOUT	75	Output	Data output to Codec.
C_CLOCK	73	Output	Codec clock (2.048 MHz)
C_ENA0	72	Output	Codec0 enable (8 kHz)
C_ENA1	71	Output	Codec1 enable (8 kHz)
PWM	56	Output	Pulse Width Modulator output
DATA0	26	Input/Output	Data 0 I/O of the DRAM Interface
DATA1	27	Input/Output	Data 1 I/O of the DRAM Interface
DATA2	28	Input/Output	Data 2 I/O of the DRAM Interface
DATA3	29	Input/Output	Data 3 I/O of the DRAM Interface
ADDR0	13	Output	Address 0 line of the DRAM Interface
ADDR1	14	Output	Address 1 line of the DRAM Interface
ADDR2	15	Output	Address 2 line of the DRAM Interface
ADDR3	16	Output	Address 3 line of the DRAM Interface
ADDR4	17	Output	Address 4 line of the DRAM Interface
ADDR5	18	Output	Address 5 line of the DRAM Interface
ADDR6	19	Output	Address 6 line of the DRAM Interface
ADDR7	20	Output	Address 7 line of the DRAM Interface
ADDR8	21	Output	Address 8 line of the DRAM Interface
ADDR9	22	Output	Address 9 line of the DRAM Interface
ADDR10	23	Output	Address 10 line of the RAM Interface for 4 Meg ARAMs. Select 2 output of DRAM Interface for 1 Meg ARAMs support. The latter
DRAM_SEL0	24	Output	mode is used to switch between different pages of ARAM. Select0 output of DRAM Interface. Used to switch between different pages of DRAM.
DRAM_SEL1	25	Output	Select1 output of DRAM Interface. Used to switch between different pages of DRAM.
/RAS	30	Output	Row Address Strobe of DRAM Interface.
/CAS	31	Output	Column Address Strobe of DRAM Interface.
DRAM_R/W	34	Output	Read/Write Strobe of DRAM Interface.
DRAM_/OE	33	Output	Output Enable Strobe of DRAM Interface.
XTAL1	11	Input	20.48 MHz crystal input
XTAL2	10	Output	20.48 MHz crystal output
ROMless	45	Input	Z8 ROMIess mode input (P0 and P1 are switched to D/A mode if this pin is connected to V_{cc}). Internally this pin is tied to GND.
/Reset	35	Input	/RESET input
R/W	50	Output	Z8 external memory interface R/W output
/AS	64	Output	Z8 external memory interface /AS output
/DS	1	Output	Z8 external memory interface /DS
OUT_5V	66	Output	-5V charge pump

Table 1. Z89121 84-Pin PLCC Pin Identification

PIN DESCRIPTION (Continued)

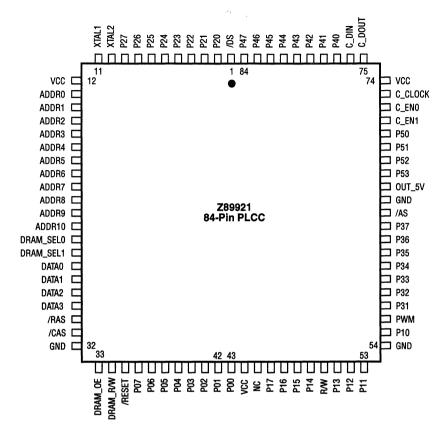


Figure 3. Z89921 84-Pin PLCC Pin Assignments

[⊗]ZiLOS

I/O Port **Functions** Pin Number VO Function Vss 32.54.65 **Digital Ground** V_{cc} 12.44.74 Digital $V_{cc} = +5 V$ P07-P00 43-36 Input/Output P07-P00 (General purpose nibble programmable I/O port.) P17-P10 55, 53-51, 49-46 Input/Output P17-P10 (General purpose byte programmable I/O port.) P27-P20 2 - 9Input/Output P27-P20 (General purpose bit programmable I/O.) P37-P31 57-63 Input/Output P37-P31 (General purpose I/O port. Bits P31-P33 are inputs. while bits P37-P34 are outputs.) P47-P40 77-84 Input/Output P47-P40 (General purpose bit programmable I/O.) P53-P50 70-67 Input/Output P53-P50 (General purpose bit programmable I/O.) C DIN 76 Input Data input from Codec. C DOUT 75 Output Data output to Codec. C CLOCK 73 Output Codec clock (2.048 MHz) C ENA0 72 Output Codec0 enable (8 kHz) C_ENA1 71 Output Codec1 enable (8 kHz) PWM 56 Pulse Width Modulator output Output 26 DATA0 Input/Output Data 0 I/O of the DRAM Interface DATA1 27 Input/Output Data 1 I/O of the DRAM Interface DATA2 28 Input/Output Data 2 I/O of the DRAM Interface 29 DATA3 Input/Output Data 3 I/O of the DRAM Interface Output ADDR0 13 Address 0 line of the DRAM Interface ADDR1 Output Address 1 line of the DRAM Interface 14 ADDR2 15 Output Address 2 line of the DRAM Interface ADDR3 16 Output Address 3 line of the DRAM Interface ADDR4 17 Output Address 4 line of the DRAM Interface ADDR5 18 Output Address 5 line of the DRAM Interface Address 6 line of the DRAM Interface ADDR6 19 Output Address 7 line of the DRAM Interface ADDR7 20 Output ADDR8 21 Output Address 8 line of the DRAM Interface 22 ADDR9 Output Address 9 line of the DRAM Interface ADDR10 23 Output Address 10 line of the DRAM Interface for 4 Meg ARAMs. Select 2 output of DRAM Interface for 1 Meg ARAMs support. The latter mode is used to switch between different pages of ARAM. Select0 output of DRAM Interface. Used to switch between DRAM_SEL0 24 Output different pages of DRAM. DRAM SEL1 25 Output Select1 output of DRAM Interface. Used to switch between different pages of DRAM. /RAS 30 Row Address Strobe of DRAM Interface. Output /CAS 31 Output Column Address Strobe of DRAM Interface. Read/Write Strobe of DRAM Interface. DRAM_R/W 34 Output DRAM_/OE 33 Output Output Enable Strobe of DRAM Interface. XTAL1 11 Input 20.48 MHz crystal input XTAL2 10 20.48 MHz crystal output Output NC 45 Not Connected /Reset 35 Input /RESET input 50 R/W Output Z8 external memory interface R/W output /AS 64 Output Z8 external memory interface /AS output 1 Z8 external memory interface /DS output /DS Output OUT_5V 66 Output -5V Charge Pump

Table 2. Z89921 84-Pin PLCC Pin Identification

& Silæ

PIN FUNCTIONS

/RESET (input, active Low). Initializes the MCU. Reset is accomplished either through Power-On Reset (POR), Watch-Dog Timer reset, STOP-Mode Recovery, or external reset. During POR and WDT Reset, the internally generated reset signal is driving the reset pin Low for the POR time. Any devices driving the reset line must be opendrain to avoid damage from a possible conflict during reset conditions. A /RESET will reset both the Z8 and the DSP.

For the Z8:

After the POR time, /RESET is a Schmitt-triggered input. To avoid asynchronous and noisy reset problems, the Z8 is equipped with a reset filter of four external clocks (4TpC). If the external reset signal is less than 4TpC in duration, no reset occurs. On the fifth clock after the reset is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. Program execution begins at location 000CH (hexadecimal), 5-10 TpC cycles after the /RESET is released. The Z8 does not reset WDT, SMR, P2M, and P3M registers on a STOP-Mode Recovery operation.

For the DSP:

A low level on the /RESET pin generates an internal reset signal. The /RESET signal must be kept Low for at least one clock cycle. The CPU will fetch a new Program Counter (PC) value from program memory address 0FFCH after the reset signal is released.

ROMIess (input, active High). This pin, when connected to V_{DD} , disables the internal Z8 ROM. (Note, when pulled Low to GND the part functions normally as the ROM version.) The DSP can not be configured as ROMIess. This pin is available only on the Z89121.

R//W *Read/Write* (output, write Low). The R//W signal defines the signal flow when the Z8 is reading or writing to external program or data memory. The Z8 is reading when this pin is High and writing when this pin is Low.

/AS Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is through Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

/DS *Data Strobe* (output, active Low). Data Strobe is activated once for each external memory transfer. For read operations, data must be available prior to the trailing edge of /DS. For write operations, the falling edge of /DS indicates that output data is valid.

XTAL1 *Crystal 1* (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, RC network or an external single-phase clock to the on-chip oscillator input.

XTAL2 *Crystal 2* (time-based output). This pin connects a parallel-resonant, crystal, ceramic resonant, or LC network to the on-chip oscillator output.

PWM *Pulse Width Modulator* (output). The PWM is a 10-bit resolution D/A converter. This output is a digital signal with CMOS output levels.

V_{pp}. Digital power supply for the Z89121/921.

GND. Digital ground for the Z89121/921.

C_DIN (input). Data input from Codec.

C_DOUT (output). Data output to Codec.

C_CLOCK (output). 2.048 MHz data rate clock signal output to Codec.

C_ENA0 (output). Enable signal to Codec0

C_ENA1 (output). Enable signal to Codec1.

DRAM_SEL0 (output). Select0 of DRAM.

DRAM_SEL1 (output). Select1 of DRAM.

[⊗]ZiL005

Port 0 (P07-P00). Port 0 is an 8-bit, bidirectional, CMOS compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and the output drivers are push-pull. Port 0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAV0 and RDY0. Handshake signal direction is dictated by the I/O direction to Port 0 of the upper nibble P07-P04. The lower nibble must have the same direction as the upper nibble.

The Auto Latch on Port 0 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they are configured by writing to the Port 0 mode register.

In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. (In ROM mode, Port 0 is defined as input after reset.)

Port 0 is set in the high-impedance mode if selected as an address output state along with Port 1 and the control signals /AS, /DS and R//W (Figure 4).

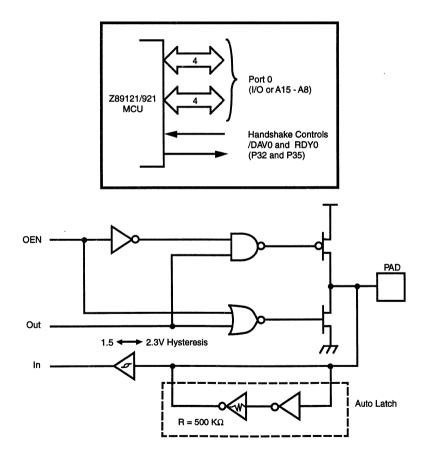


Figure 4. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1 (P17-P10). Port 1 is an 8-bit, bidirectional, CMOS compatible port (Figure 5). It has multiplexed Address (A7-A0) and Data (D7-D0) ports. These eight I/O lines are programmed as inputs or outputs, or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitttriggered and the output drivers are push-pull.

Port 1 may be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and /DAV1 (Ready and Data

Available). Memory locations greater than 24575 (in ROM mode) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port 0, /AS, /DS and R/W, allowing the Z89121/68 to share common resources in multiprocessor and DMA applications.

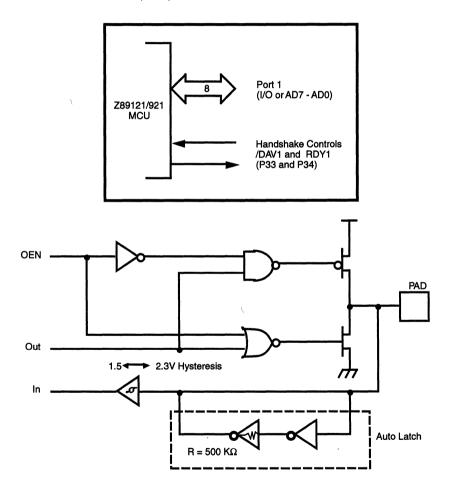
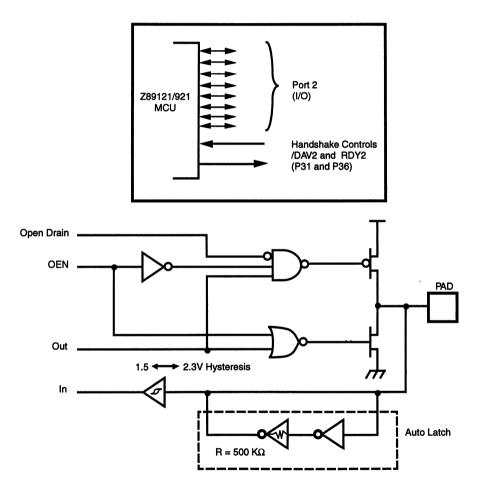
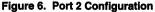


Figure 5. Port 1 Configuration


⊗ Zilas


Port 2 (P27-P20). Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines are configured under software control independently as inputs or outputs. Port 2 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either push-pull or open-drain.

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The hand-

shake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to bit 7, Port 2 (Figure 6).

The Auto Latch on Port 2 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

PIN FUNCTIONS (Continued)

Port 3 (P37-P31). Port 3 is a 7-bit, CMOS compatible port with three fixed inputs (P33-P31) and four fixed outputs (P37-P34). It is configured under software control for input/ output, counter/timers, interrupt, and port handshakes. Pins P33, P32, and P31 are standard CMOS inputs; outputs are push-pull.

Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). Port 3, pin 3 is a falling edge interrupt input. P31 and P32 are programmable as rising, falling or both edge-triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to Counter/Timer1 is made through P31 (T_{IN}) and P36 (T_{our}). Handshake lines for ports 0, 1, and 2 are available on P31 through P36.

Port 3 also provides the following control functions: handshake for Ports 0, 1, and 2 (/DAV and RDY); three external interrupt request signals (IRQ3-IRQ1); timer input and output signals (T_{IN} and T_{OUT}); (Figure 7).

Comparator Inputs. Port 3, pins P31 and P32 both have a comparator front end. The comparator reference voltage, pin P33, is common to both comparators. In analog mode, P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, pin P33 can be used as a P33 register input or IRQ1 source.

Pin	١/O	CTC1	AN IN	int.	P0 HS	P1HS	P2 HS	EXT
P31	IN	T _{IN}	AN1	IRQ2			D/R	
P32	IN	114	AN2	IRQ0	D/R			
P33	IN		REF	IRQ1		D/R		
P34	OUT					R/D		DM
P35	OUT				R/D			
P36 P37	OUT OUT	T _{OUT}					R/D	

Notes:

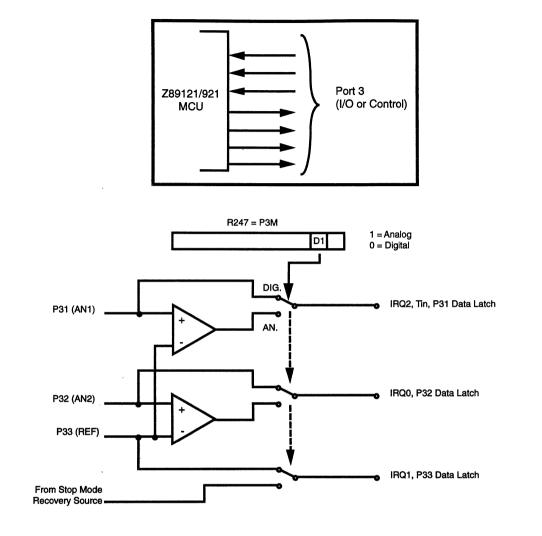

HS = Handshake Signals D = DAV B = BDY

Figure 7. Port 3 Configuration

PIN FUNCTIONS (Continued)

Port 4 (P47-P40). Port 4 is an 8-bit, bidirectional, CMOS compatible I/O port (Figure 8). These eight I/O lines are configured under software control independently as inputs or outputs. Port 4 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 4 is a bit programmable general purpose I/O port. The control registers for Port 4 are mapped into the expanded register file (Bank F) of the Z8.

Auto Latch. The Auto Latch on Port 4 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

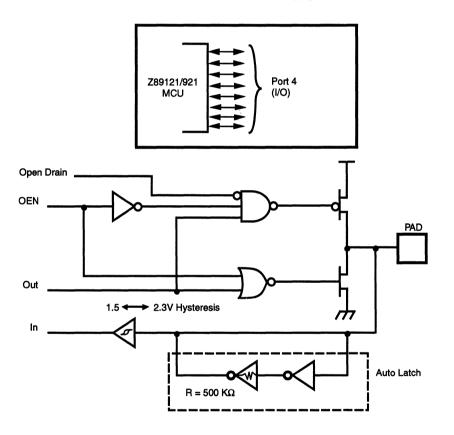


Figure 8. Port 4 Configuration

Port 5 (P53-P50). Port 5 is an 4-bit, bidirectional, CMOS compatible I/O port (Figure 9). These four I/O lines are configured under software control independently as inputs or outputs. Port 5 is always available for I/O operation. The input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either pushpull or open-drain.

Port 5 is a bit programmable general purpose I/O port. The control registers for Port 5 are mapped into the expanded register file (Bank F) of the Z8.

Auto Latch. The Auto Latch on Port 5 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

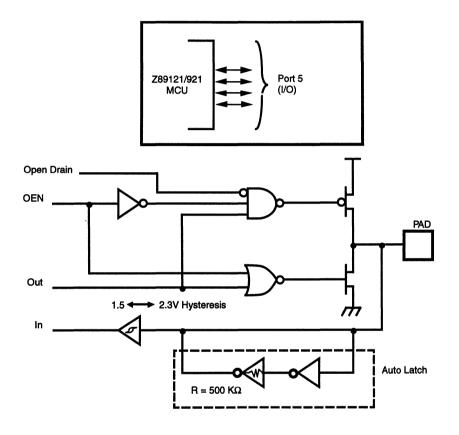
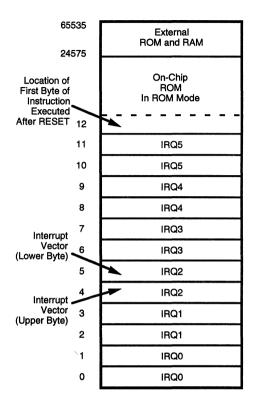


Figure 9. Port 5 Configuration

Z8® FUNCTIONAL DESCRIPTION


The Z8 CCP core incorporates special functions to enhance the Z8's performance in control applications.

Pipelined Instructions. The Z8 instructions (see page 5-66) are comprised of two parts, an instruction fetch and execute part. The instructions typically take between six and ten cycles to fetch and five cycles to execute. Five cycles of the next instruction fetch may be overlapped with five cycles of the current instruction execution. This improves performance over sequential methods. Additionally, the register-based architecture allows any registers to be picked as the source and destination in an instruction saving intermediate move.

Reset. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP-Mode Recovery Source
- External Reset

Program Memory. The Z8 addresses up to 24 Kbytes of internal program memory and 40 Kbytes external memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors which correspond to the five user interrupts and one DSP interrupt. Byte 12 to byte 24575 consists of on-chip mask-programmed ROM. At addresses 24576 and greater, the Z8 executes external program memory. In ROMless mode, the Z8 will execute from external program memory beginning at byte 12 and continuing through byte 65535.

ROM Protect. The 24 Kbyte of internal program memory for the Z8 is mask programmable. A ROM protect feature prevents "dumping" of the ROM contents of Program Memory by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions. The ROM Protect option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted.

Data Memory (/DM). In ROM mode, the Z8 can address up to 40 Kbytes of external data memory beginning at location 24576 (Figure 11). In ROMless mode, the Z8 can address the full 64 Kbytes of external data memory beginning at location 12. External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on Port 34, is used to distinguish between data and program memory space (Table 3). The state of the /DM signal is controlled by the type of instruction being executed. An LDC opcode references program (/DM inactive) memory, and an LDE-instruction references data (/DM active Low) memory.

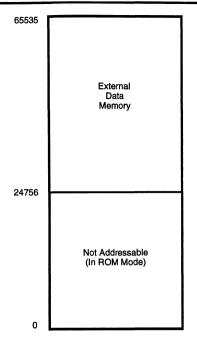
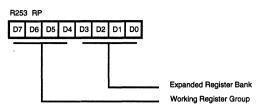



Figure 11. Data Memory Map

Z8 FUNCTIONAL DESCRIPTION (Continued)

Register File. The standard Z8[®] register file consists of four I/O port registers, 236 general-purpose registers, and 15 control and status registers (R3-R0, R239-R4, and R255-R241, respectively). The instructions access registers directly or indirectly through an 8-bit address field. This allows a short, 4-bit register address using the Register Pointer (Figure 12). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group (Figure 13).

Note: Register Group E (Registers E0-EF) is only accessed through a working register and indirect addressing modes.

Default setting after RESET = 00000000

Figure 12. Register Pointer Register

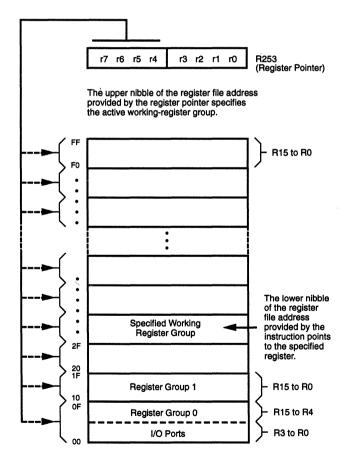
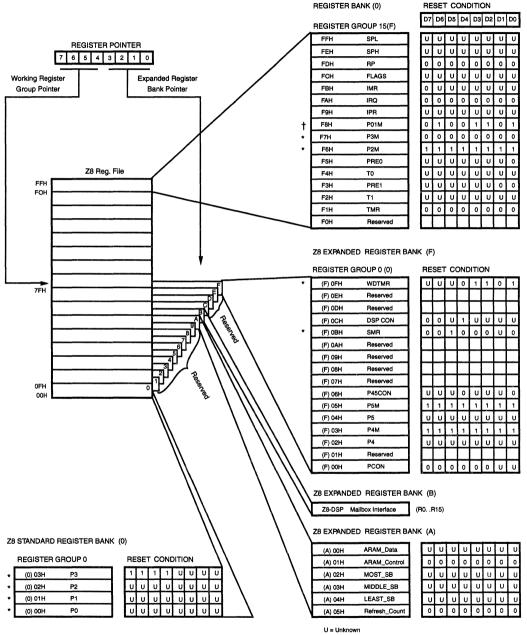


Figure 13. Register Pointer

RAM Protect. The upper portion of the Z8's RAM address spaces 90H to EFH (excluding the control registers) is protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user activates the RAM Protect from the internal ROM code by loading bit D6 in the IMR register to either a 0 (off) or a 1 (on). A 1 in D6 indicates RAM Protect enabled.

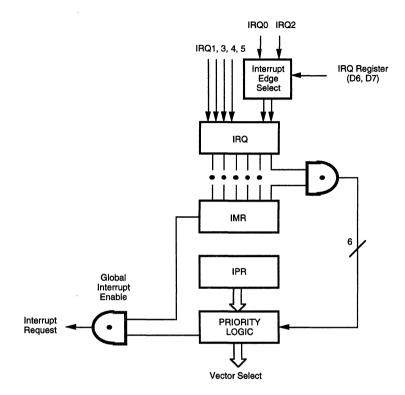

Stack. The Z8's external data memory or the internal register file is used for the stack. The 16-bit Stack Pointer (R255-R254) is used for the external stack which can reside only from 24576 to 65535 in ROM mode or 0 to 65535 in ROMless mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R239-R4). SPH can be used as a general-purpose register when using internal stack only.

Expanded Register File. The register file on the Z8 has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices, along with I/O ports, into the register address area. The Z8 register address space has now been implemented as 16 banks of 16 register groups per bank (Figure 14). These register banks are known as the ERF (Expanded Register File). Bits 7-4 of register RP (Register Pointer) select the working register group. Bits 3-0 of register RP select the expanded register bank (Figure 14).

The SMR register, WDT Register, control and data registers for Port 4 and Port 5, and the DSP control register are located in Bank F of the Expanded Register File. Bank B of the Expanded Register File consists of the Mailbox Interface in which the Z8 and the DSP communicate. The rest of the Expanded Register is not physically implemented and is open for future expansion.

Z8 FUNCTIONAL DESCRIPTION (Continued)

Z8 STANDARD CONTROL REGISTERS


+ = For ROMless mode, RESET Condition 10110110

* Will not be Reset with a Stop-Mode Recovery

Interrupts. The Z8 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 15). The six sources are divided as follows; three sources are claimed by Port 3 lines P33-P31, two by

counter/timers, and one by the DSP (Table 4). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.

Name	Source	Vector Location	Comments
IRQ0	/DAV0, P32	0, 1	External (P32), Programmable Rise or Fall Edge Triggered
IRQ1	/DAV1, P33	2, 3	External (P33), Fall Edge Triggered
IRQ2	/DAV2, P31, T _{IN}	4, 5	External (P31), Programmable Rise or Fall Edge Triggered
IRQ3	IRQ3	6, 7	Internal (DSP activated), Fall Edge Triggered
IRQ4	то	8, 9	Internal
IRQ5	TI	10, 11	Internal

Table 4. Interrupt Types, Sources, and Vectors

Z8 FUNCTIONAL DESCRIPTION (Continued)

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle is activated when an interrupt request is granted. This disables all subsequent interrupts, pushes the Program Counter and Status Flags to the stack, and then branches to the program memory vector location reserved for that interrupt.

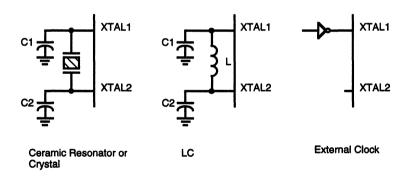
All Z8 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request Register is polled to determine which of the interrupt requests needs service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select is located in the IRQ Register (R250), bits D7 and D6. The configuration is shown in Table 5.

Table 5.	IRQ	Register
----------	-----	----------

IRQ		Interru	pt Edge
D7	D6	P31	P32
0	0	F	F
0	1	F	R
1	0	R	F
1	1	R/F	R/F


Notes:

F = Falling Edge

R = Rising Edge

Clock. The Z89121/921 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 20.48 MHz maximum, with a series resistance (RS) less than or equal to 100 Ohms. The system clock (SCLK) is one half the crystal frequency (Figure 16).

The crystal is connected across XTAL1 and XTAL2 using capacitors from each pin to ground.

Counter/Timers. There are two 8-bit programmable counter/timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only (Figure 17).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can

also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided-by-four, or an external signal input through Port 31. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the T0 output to the input of T1.

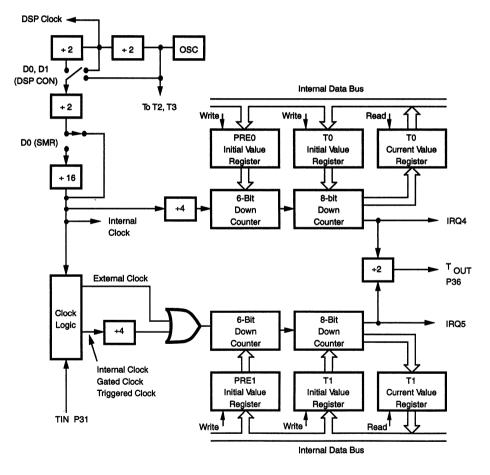


Figure 17. Counter/Timer Block Diagram

Z8 FUNCTIONAL DESCRIPTION (Continued)

Port Configuration Register (PCON). The PCON register configures each port individually; comparator output on Port 3, and open-drain on Port 0 and Port 1. The PCON register is located in the Expanded Register File at bank F, location 00H (Table 6).

Comparator Output Port 3 (D0). Bit 0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35, and a 0 releases the Port to its standard I/O configuration.

Port 0 Open-Drain (D1). Port 0 can be configured as an open-drain by resetting this bit (D1 = 0) or configured as push-pull active by setting this bit (D1 = 1). The default value is 1.

Port 1 Open-Drain (D2). Port 1 can be configured as an open-drain by resetting this bit (D2 = 0) or configured as push-pull active by setting this bit (D2 = 1). The default value is 1.

Register				
PCON (F)%00	Position	Attrib.	Value	Description
	76543			Reserved
	2	R	0	Port 1 Open-drain
			1	Port 1 Push-pull Active*
	1-	R	0	Port 0 Open-drain
			1	Port 0 Push-pull Active*
	0	R	0	P34, P35 Standard Output*
			1	P34, P35 Comparator Output

Table 6. Port Configuration Register (PCON) (F) 00H

Note:

* Default setting after Reset

Port 4 and 5 Configuration Register (P45CON). The P45CON register configures Port 4 and Port 5, individually, to open-drain or push-pull active. This register is located in the Expanded Register File at Bank F, location 06H (Table 7).

Port 5 Open-Drain (D4). Port 5 can be configured as an open-drain by resetting this bit (D4 = 0) or configured as push-pull active by setting this bit (D4 = 1). The default value is 1.

Port 4 Open-Drain (D0). Port 4 can be configured as an open-drain by resetting this bit (D0 = 0) or configured as push-pull active by setting this bit (D0 = 1). The default value is 1.

Table 7. P	Port 4 and 5	Configuration	Register
------------	--------------	---------------	----------

Register				
P45CON (F)%06	Position	Attrib.	Value	Description
	765-321-			Reserved
	4	W	0	Port 5 Open-drain
			1	Port 5 Push-pull Active*
	0	W	0	Port 4 Open-drain
			1	Port 4 Push-pull Active*

(E) AALL DAL. A. A. I. J

Note:

* Default setting after Reset

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{cc} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- 1. Power fail to Power OK status.
- 2. STOP-Mode Recovery (if D5 of SMR = 1).
- 3. WDT time-out.

The POR time is a nominal 5 ms. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after STOP-Mode Recovery (typical for external clock, RC/LC oscillators).

HALT. HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

STOP. This instruction turns off the internal clock and external crystal oscillation. It reduces the standby current to $10 \,\mu$ A (typical) or less. The STOP mode is terminated by

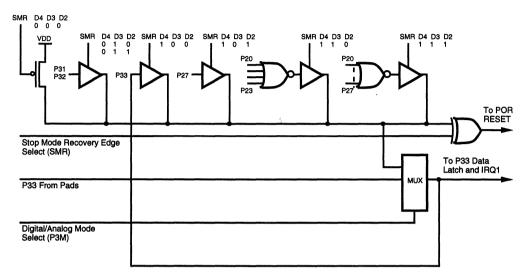
a reset only, either by WDT time-out, POR, SMR recovery or external reset. This causes the processor to restart the application program at address 000CH. In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in midinstruction. To do this, the user must execute a NOP (opcode = FFH) immediately before the appropriate Sleep instruction, i.e.;

FF	NOP	; clear the pipeline
6F	STOP	; enter STOP mode
		or
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT mode

STOP-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP-Mode Recovery (Table 8). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and reset by a power-on cycle. Bit 6 controls whether a Low level or a High level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4, or the SMR register, specify the source of the STOP-Mode Recovery signal. Bits 0 and 1 determine the time-out period of the WDT. The SMR is located in Bank F of the Expanded Register Group at address 0BH.

Register SMR (F)%0B	Position	Attrib.	Value	Description
	7	R	0	POR*
			1	Stop Recovery
	-6	W	0	Low Stop Recovery Level*
			1	High Stop Recovery Level
	5	W	0	Stop Delay On*
			1	Stop Delay Off
	432	W		STOP-Mode Recovery Source
			000	POR Only*
			001	Reserved
			010	P31
			011	P32
			100	P33
			101	P27
			110	P2 NOR 0-3
			111	P2 NOR 0-7
	1-			Reserved
	0	W	0	SCLK/TCLK Not Divide-by-16 [†]
			1	SCLK/TCLK Divide-by-16

Table 8. Stop-Mode Recovery Register (SMR) (F) 0BH


Notes:

* Default setting after Reset

* Reset after STOP-Mode Recovery

SCLK/TCLK divide-by-16 Select (D0). D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

STOP-Mode Recovery Source (D2, D3, and D4). These three bits of the SMR specify the wake-up source of the STOP recovery (Figure 18 and Table 9).

	Table 9. STOP-Mode Recovery Source							
SMR:432			Operation					
D4	D3	D2	Description of Action					
0	0	0	POR and/or external reset recovery					
0	0	1	Reserved					
0	1	0	P31 transition					
0	1	1	P32 transition					
1	0	0	P33 transition					
1	0	1	P27 transition					
1	1	0	Logical NOR of P20 through P23					
1	1	1	Logical NOR of P20 through P27					

STOP-Mode Recovery Delay Select (D5). This bit, if High, disables the 5 ms /RESET delay after STOP-Mode Recovery. The default configuration of this bit is one. If the "fast" wake up is selected, the Stop-Mode Recovery source is kept active for at least five TpC.

STOP-Mode Recovery Edge Select (D6). A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the Z89121/921 from STOP mode. A 0 indicates Low level recovery. The default is 0 on POR (Table 9).

Cold or Warm Start (D7). This bit is set by the device upon entering STOP mode. It is active High, and is 0 (cold) on POR/WDT /RESET. This bit is read only. It is used to distinguish between cold or warm start.

DSP Control Register (DSPCON). The DSPCON register controls various aspects of the Z8 and the DSP. It can configure the internal system clock (SCLK) or the Z8, RESET, and HALT of the DSP, and control the interrupt interface between the Z8 and the DSP (Table 10).

Z8 IRQ3 (D0). This bit, which causes the Z8 interrupt, can be set by the DSP by writing bit 9 of ICR. Z8 has to set this bit after serving the IRQ3 interrupt. The DSP can poll the status of IRQ3 by reading ICR bit 9.

DSP INT2 (D1). This bit is linked to DSP interrupt (INT2). It can be set by the Z8. After serving INT2, the DSP has to write a 1 to an appropriate bit in ICR (EXT4) to clear the IRQ. Reading this bit reflects the status of INT2 of the DSP.

) Zilas

Field DSPCON (F)0CH	Position	Attrib.	Value	Label
Z8_SCLK	76	R/W	00	2.5 MHz (OSC/8)
			01	5 MHz (OSC/4)
			1x	10 MHz (OSC/2)
DSP_Reset	5	R		Return '0'
		W	0	No effect
			1	Reset DSP
DSP_Run	4	R/W	0	Halt_DSP
			1	Run_DSP
Reserved	32		xx	_
				Return '0'
				No effect
ntFeedback	1-	R		FB_DSP_INT2
		Ŵ	1	Set DSP_INT2
			0	No effect
	0	R		FB_Z8_IRQ3
		W	1	Clear IRQ3
			0	No effect

Table 10. DSP Control Register (F) 0CH [Read/Write]

DSP RUN (D4). This bit defines the HALT mode of the DSP. If this bit is set to 0, then the DSP clock is turned off to minimize power consumption. After this bit is set to 1, then the DSP will continue code execution from where it was halted. After a hardware reset, this bit is reset to 1.

DSP RESET (D5). Setting this bit to 1 will reset the DSP. If the DSP was in HALT mode, this bit is automatically preset to 1. Writing a 0 has no effect.

Z8 SLCK (D6-D7). These bits define the SCLK frequency of the Z8. The oscillator can be either divided-by-8, 4, or 2. After a reset, both of these are defaulted to 00.

Watch-Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT circuit is driven by an on-board RC oscillator or external oscillator from the XTAL1 pin. The POR clock source is selected with bit 4 of the WDT register (Table 11). The WDT affects the Z (Zero), S (Sign), and V (Overflow) flags.

Register				
WDTMR (F)%0F	Position	Attrib	Value	Description
	765			Reserved
	4	R/W	0	On-Board RC for WDT*
			1	XTAL for WDT
	3	R/W	0	WDT Off During STOP
			1	WDT On During STOP*
	2	R/W	0	WDT Off During HALT
			1	WDT On During HALT*
	10	R/W		Int RC Osc Ext. Clock
			00	5 ms 256 TpC
			01	15 ms 512 TpC*
			10	25 ms 1024 TpC
			11	100 ms 4096 TpC

Note:

* Default setting after Reset

Z8 FUNCTIONAL DESCRIPTION (Continued)

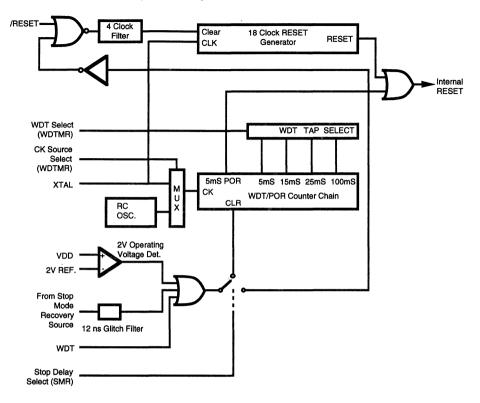


Figure 19. Resets and WDT

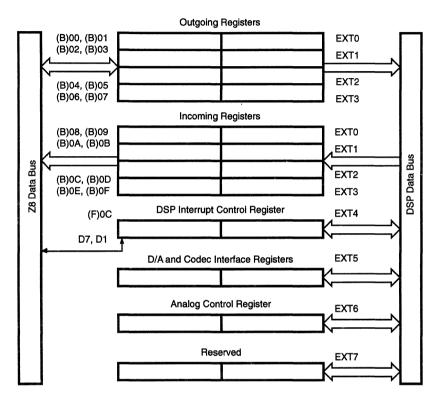
WDT Time Select (D0, D1). Selects the WDT time period. It is configured as shown in Table 12.

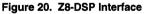
D1	D0	Time-out of internal RC OSC	Time-out of XTAL clock
0	0	5 ms min	256 TpC
0	1	15 ms min	512 TpC
1	0	25 ms min	1024 TpC
1	1	100 ms min	4096 TpC

Notes:

TpC = XTAL clock cycle

The default on reset is 15 ms.


WDT During HALT (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1.


WDT During STOP (D3). This bit determines whether or not the WDT is active during STOP mode. Since XTAL clock is stopped during STOP mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1.

Clock Source for WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 which selects the RC oscillator.

DSP FUNCTIONAL DESCRIPTION

The DSP coprocessor is characterized by an efficient hardware architecture that allows fast arithmetic operations such as multiplication, addition, subtraction and multiply accumulate of two 16-bit operands. Most instructions are executed in one clock cycle. Four DSP registers (EXT3-EXT0) are shared through a quasi dual port mapping with the expanded register file of the Z8. Communication between the Z8 and the DSP occurs through these mailbox registers and interprocessor interrupt mechanism.

DSP-Z8 Mail Box

To receive information from the DSP, the Z8 uses eight incoming registers which are mapped in the Z8 extended Register File (Bank B, 08 to 0F). The DSP treats these as four 16-bit registers that correspond to the eight incoming Z8 registers (Figure 20).

The Z8 can supply the DSP with data through eight outgoing registers mapped into both the Z8 Expanded Register File (Bank B, Registers 00 to 07) and the external register interface of the DSP. These registers are R/W and can be used as general purpose registers of the Z8. The

DSP can only read information from these registers. Since the DSP uses a 16-bit data format and the Z8 an 8-bit data format, eight outgoing registers of the Z8 correspond to four DSP registers. The DSP can only read information from the outgoing registers.

Both the outgoing registers and the incoming registers share the same DSP address (EXT3-EXT0).

Note: The Z8 can read and write to ERF Bank B R00-R07, Registers 08-0F are read only from the Z8.

Table 13	Z8 Outgoing	Registers	(Read Only	(from DSP)
14010 10.	20 Outgoing	ricgiatora	(incad only	

Field	Position	Attrib.	Value	Label
Outgoing [0] (B)00	76543210	R/W	%NN	(B)00/DSP_ext0_hi
Outgoing [1] (B)01	76543210	R/W	%NN	(B)01/DSP_ext0_lo
Outgoing [2] (B)02	76543210	R/W	%NN	(B)02/DSP_ext1_hi
Outgoing [3] (B)03	76543210	R/W	%NN	(B)03/DSP_ext1_lo
Outgoing [4] (B)04	76543210	R/W	%NN	(B)04/DSP_ext2_hi
Outgoing [5] (B)05	76543210	R/W	%NN	(B)05/DSP_ext2_lo
Outgoing [6] (B)06	76543210	R/W	%NN	(B)06/DSP_ext3_hi
Outgoing [7] (B)07	76543210	R/W	%NN	(B)07/DSP_ext3_lo

Table 14. Z8 Incoming Registers (Write Only from DSP)

Field	Position	Attrib.	Value	Label
Incoming [8] (B)08	76543210	R	%NN	DSP_ext0_hi
		W		No Effect
Incoming [9] (B)09	76543210	R	%NN	DSP_ext0_lo
·		W		No Effect
Incoming [a] (B)0A	76543210	R	%NN	DSP_ext1_hi
		W		No Effect
Incoming [b] (B)0B	76543210	R	%NN	DSP_ext1_lo
		W		No Effect
Incoming [c] (B)0C	76543210	R	%NN	DSP_ext2_hi
		W		No Effect
Incoming [d] (B)0D	76543210	R	%NN	DSP_ext2_lo
		W		No Effect
Incoming [e] (B)0E	76543210	R	%NN	DSP_ext3_hi
		W		No Effect
Incoming [f] (B)0F	76543210	R	%NN	DSP_ext3_lo
		W		No Effect

Table 15. DSP Incoming Registers

Field	Position	Attrib.	Value	Label
DSP_ext0	fedcba9876543210	R	%NNNN	(B)00, (B)01
Mail Box		W		(B)08, (B)09
DSP_ext1	fedcba9876543210	R	%NNNN	(B)02, (B)03
Mail Box		W		(B)0A, (B)0B
DSP_ext2	fedcba9876543210	R	%NNNN	(B)04, (B)05
Mail Box		W		(B)OC, (B)OD
DSP_ext3	fedcba9876543210	R	%NNNN	(B)06, (B)07
Mail Box		W		(B)OE, (B)OF

DSP Interrupts

The DSP processor has three interrupt sources (INT2, INT1, INT0) (Figure 21). These sources have different priority levels (Figure 22). The highest priority, the next lower and the lowest priority level are assigned to INT2, INT1 and INT0, respectively. The DSP does not allow

interrupt nesting (interrupting service routines that are currently being executed). When two interrupt requests occur simultaneously the DSP starts servicing the interrupt with the highest priority level.

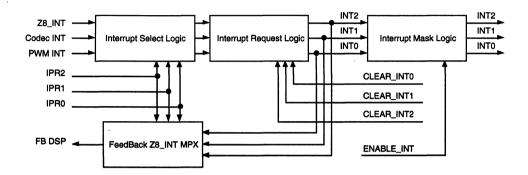


Figure 21. DSP Interrupts

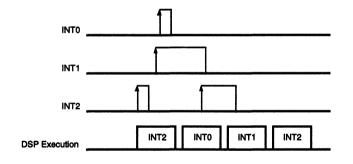


Figure 22. DSP Interrupt Priority Structure

& Silæ

DSP Interrupts (Continued)

Field	Position	Attrib	Value	Label
DSP_INT2	f	R	1	INT2_is set
			0	INT2_is reset
	f	W	1	Clear_DSP_INT2
			0	Has_no_effect
DSP_INT1	-e	R	1	INT1_is set
			0	INT1_is reset
	-e	W	1	Clear_DSP_INT1
			0	Has_no_effect
DSP_INT0	d	R	1	INT0_is set
			0	INT0_is reset
	d	W	1	Clear_DSP_INT0
			0	Has_no_effect
DSP_MaskINT2	c	R/W	1	Enable_INT2
			0	Disable_INT2
DSP_MaskINT1	b	R/W	1	Enable_INT1
			0	Disable_INT1
DSP_MaskINT0	a	R/W	1	Enable_INT0
			0	Disable_INT0
Z8_IRQ3	9	R	1	IRQ3_active
			0	IRQ3_inactive
	9	W	1	Set_Z8_IRQ3
			0	Has_no_effect
Enable_INT	8	R/W	1	Enable_INT
			0	Disable_INT
DSP_INTSel2	7	R/W	Binary	INTSel2
DSP_INTSel1	6	R/W	Binary	INTSel1
DSP_INTSel0	5	R/W	Binary	INTSel0
Reserved	43210		XXXXX	Reserved

Table 16. EXT4 DSP Interrupt Control Register (ICR) Definition

Interrupt Control Register (ICR). The ICR is mapped into EXT4 of the DSP (Table 16). The bits are defined as follows.

DSP_IRQ2 (Z8 Interrupt). This bit can be read by both Z8 and DSP and can be set only by writing to the Z8 expanded Register File (Bank F, ROC, bit 0). This bit asserts IRQ2 of the DSP and can be cleared by writing to the Clear_IRQ2 bit.

DSP_IRQ1 (A/D Interrupt). This bit can be read by the DSP only and is set when valid data is present at the A/D output register (conversion done). This bit asserts IRQ1 of the DSP and can be cleared by writing to the Clear_IRQ1bit.

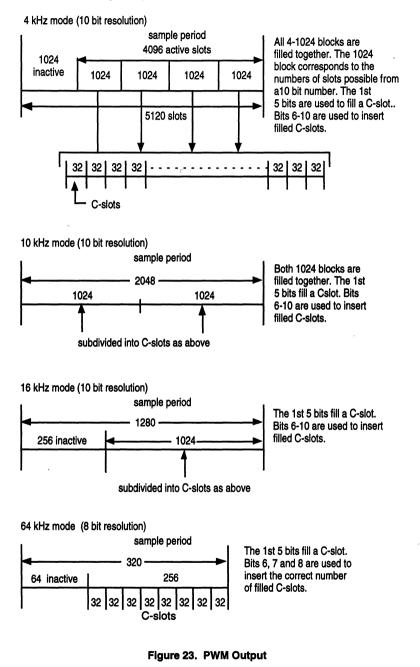
DSP_IRQ0 (D/A Interrupt). This bit can be read by DSP only and is set by Timer3. This bit assists IRQ0 of the DSP and can be cleared by writing to the Clear_IRQ0 bit.

DSP_MaskIntX. These bits can be accessed by the DSP only. Writing a 1 to these locations allows the INT to be serviced, while writing a 0 masks the corresponding INT off.

Z8_IRQ3. This bit can be read from both Z8 and DSP and can be set by DSP only. Addressing this location accesses bit D3 of the Z8 IRQ register; hence, this bit is not implemented in the ICR. During the interrupt service routine executed on the Z8 side, the User has to reset the Z8_IRQ3 bit by writing a 1 to bit D0 of the DSPCON. Three Z8 instructions after this operation, the hardware of the Z8121/921 automatically resets Z8_IRQ3. This delay provides the timing synchronization between the Z8 and the DSP sides during interrupts. In-summary, the interrupt service routine of the Z8 for IRQ3 should be finished by:

PUSH	RP
LD	RP,#%0F
OR	r12,#%01
POP	RP
IRET	

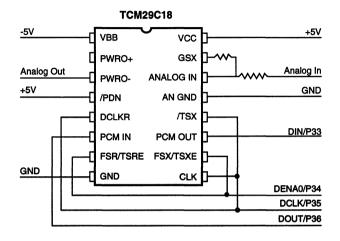
DSP Enable_INT. Writing a 1 to this location enables global interrupts of the DSP while writing 0 disables them. A system Reset globally disables all interrupts.


DSP_IPRX. This 3-bit group defines the Interrupt Select logic according to Table 17.

Clear_IRQX. These bits can be accessed by the DSP only. Writing a 1 to these locations rests the corresponding DSP_IRQX bits to 0. Clear_IRQX are virtual bits and are not implemented.

Table 17. DSP Interrupt Selection

DSP_IPR[2-0] 2 1 0	Z8_INT is Switched to	Codec_INT is Switched to	D/A_INT is Switched to
000	INT2	INT1	INTO
001	INT1	INT2	INTO
010	INT2	INTO	INT1
011	INT1	· INTO	INT2
100	INTO	INT2	INT1
101	INTO	INT1	INT2
110	Reserved	Reserved	Reserved
111	Reserved	Reserved	Reserved


PULSE WIDTH MODULATOR (PWM)

5-34

CODEC INTERFACE

Codec interface provides the user all the necessary signals to connect two independent codec chips. The supported sampling rate is 8K samples/sec. at a data rate of 2.048 MHz, or 6.66K samples/sec. at a 1.7066 MHz data rate. Figure 24 shows the connection of T2 (TCM29C18) and Motorola (MC145503) Codec to Z89121. The timing diagram is shown in Figure 25.

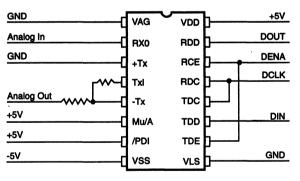
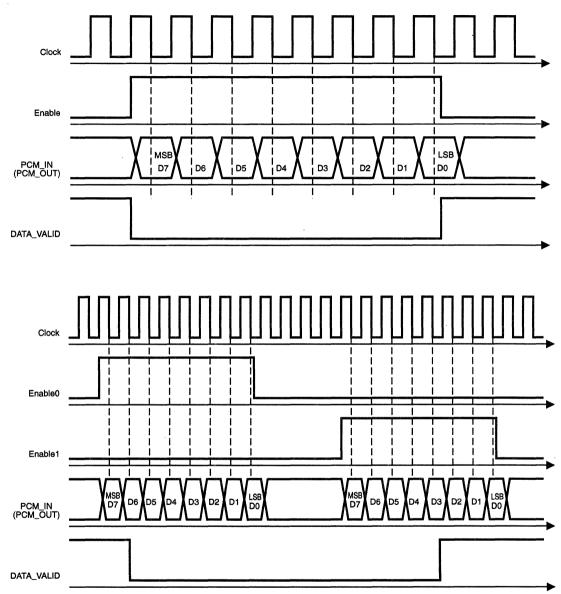



Figure 24. Connecting TCM29C18 and MC145503 to Z89121/921

CODEC INTERFACE (Continued)

D/A (PWM) Converter/Codec interface Register - EXT5

External DSP register EXT5 is used by the D/A converter and an External Codec Interface. The accessibility of all these devices is driven by the Analog Control register (EXT6).

The D/A converter (10-bit PWM) will be loaded by writing to register EXT5 of the DSP.

Two different Codecs can be addressed by the Analog Control register (EXT6). The data loaded to Codec0 and Codec1 is defined by writing to the EXT5 register of the DSP, while reading from this register gives the data received from Codecs.

Because the same logical register (EXT5) can be either the source or the destination for several physical devices (D/A and Codecs), the user must specify which one of all available devices is desirable to write (read) to (from). EXT5 bits 'e' and 'f' are used to distinguish between different devices upon writing data to D/A, Codec0 and Codec1, as shown below. Upon reading from EXT5, the DSP reads in sequence all active (enabled) devices according to the definition of the Select_Sequence field (bits 'c' and 'd') in ACR (EXT6). The sequence of reading data can be reset by writing a 1 to the Reset_Toggle field of EXT6.

Register EXT5 is accessible to the DSP only.

Digital to Analog Converter - EXT5 (when written)

The D/A conversion is DSP driven by sending 10-bit data to the external register EXT5 of the DSP. The six remaining bits of EXT5 are reserved, as shown in the following table.

Data will be loaded into the D/A latch during the clock cycle following the (Id EXT5, data) instruction.

Field	Position	Attrib.	Value	Label
Data	f	W	0	Should be '0'
	-edcba			Reserved
	98765	W	%NN	Data To PWM (High Val)
	43210	W	%NN	Data To PWM (Low Val)

Codec Interface Controller - EXT5 (when written)

The two Data registers of the External Codec interface are mapped into the external register EXT5 of the DSP. The eight remaining bits of EXT5 are reserved as shown in the Table 19. Data will be loaded into the corresponding Data register (defined by field 'e') during the clock cycle following the (Id EXT5, data) instruction.

Table	19.	EXT5	(when	written)

Field	Position	Attrib.	Value	Label
Data	£		1	Should be '1'
	-e		0	Codec0
			1	Codec1
	dcba98			Reserved
	76543210		%NN	DataToCodec

Codec Interface Controller - EXT5 (when read)

8-Bit Data can be read from the Codec by the DSP through the external register, EXT5. Of the 16 bits of the EXT5, only

eight bits, 0 through 7, return Data; the remaining bits are padded with zeroes.

ield	Position	Attrib.	Value	Label
ta	fedcba98			Return '0'
	76543210		%NN	DataFromCodec

Analog Control Register (ACR)

The Analog Control register is mapped to register EXT6 of the DSP (Table 21). This read/write register is accessible by the DSP only.

The 16-bit field of EXT6 defines modes of both the A/D and the D/A. The High Byte configures the Codec.

Table 21. E	EXT6 Analog	Control Re	egister (ACR)
-------------	-------------	------------	---------------

Field	Position	Attrib.	Value	Label
MPX_DSP_INT0	f	R/W	1	P26
			0	Timer3
Reset_Toggle	-e	R		Return '0'
- 00	-e	W	1	Reset Toggle
			0	No Effect
Select_Sequence	dc	R/W	XX	Selects Codec0/Codec1 upon
— •				Reading EXT5
Reserved	b	R		Return '0'
		W		No_Effect
D/A_SamplingRate	a98	R/W	11x	Reserved
•			101	Reserved
			100	64 kHz
			010	16 kHz
			011	10 kHz
			001	4 kHz
			000	Reserved
Div10/12	7	R/W	1	Divided-by-10
			0	Divided-by-12
Reserved	6	R/W		Should Be Set to '0'
Reserved	543210	R	%DD	Return '0'
		W		No Effect

DSP IRQ0. Defines the source of DSP IRQ0 interrupt.

Select_Sequence. Defines the Codec0 and Codec1 enabling/disabling and the sequence of reading data from these devices starting from the reset condition (Table 22).

A 1 should be written to bit 'e' in order to reset the sequence. Writing 1 to bit e ensures the next data read from EXT5 is the data of Codec0.

Select Sequence		Codec Enat	Codec Enabled/Disabled		Access
d	C	Codec0	Codec1	First	Second
0	0	Disable	Disable	N/A	
0	1	Enable	Disable	Codec0	N/A
1	0	Enable	Enable	Codec0	Codec1
1	1	Disable	Disable	Reserved	Reserved

Div 10/12. This bit defines the speed of the Codecs. If the bit is set to 1, the Codec clock frequency is set to 2.048 MHz, and the sampling rate is 8 kHz. If the bit is reset to 0, Codec clock frequency is set to 1.7066 MHz and the sampling rate to 6.66 kHz.

Note: Bit 6 of ACR should be set to zero.

D/A_Sampling Rate. This field defines the sampling rate of the D/A output. It changes the period to Timer3 interrupt and the maximum possible accuracy of the D/A (Table 23).

DSP Timers

Timer2 is a free-running counter that divides the XTAL frequency (20.48 MHz) to support different sampling rates for the A/D converter. The sampling rate is defined by the Analog Control Register. Upon reaching the end of a count, the timer generates an interrupt request to the DSP.

Analogous to Timer2, Timer3 generates the different sampling rates for the D/A converter. Timer3 also generates an Table 23. D/A Data Accuracy

D/A_Sampling Rate D/A Accuracy	Sampli	ng Rate
100	64 kHz	8 Bits
010	16 kHz	10.Bits
011	10 kHz	10 Bits
001	4 kHz	10 Bits

interrupt request to the DSP upon reaching its final count value (Figure 26).

Note: The crystal speed in this example is 20.48 MHz, which is the maximum tested speed, but other lower speeds may be used.

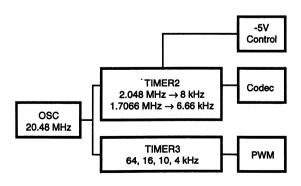


Figure 26. Timer2 and Timer3

Minus 5V DC Generation

Some Codecs require $a \pm 5V$ power supply. The Z89121/921 provides $a - 5V_{out}$ output to drive an external pump circuit. A complete circuit diagram for the -5V generation is shown in Figure 27. The reference voltage of 2.5V is generated by a resistor divider R5, R6 on the P33 input of Z86C67/921. This voltage is compared with the voltage of the voltage divider formed by R2, R4. If the latter voltage rises above

the reference voltage, the comparator (inside Z86C67/ 921) will be switched and connect the internal 128 kHz output of Timer2 to the $-5V_{out}$ output pin of Z89121/921. On the contrary, the $-5V_{out}$ will be switched off if the voltage from voltage divider R2, R4 drops below the reference voltage. This regulates the voltage across C1 to be -5V.

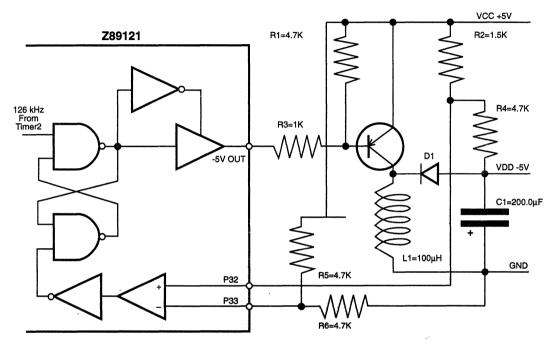


Figure 27. Circuit Diagram for -5V Generation

DRAM INTERFACE

The DRAM interface controller accepts a wide variety of external DRAM configurations (up to 48 Mbits) with 4-bit wide data buses. It can be reconfigured from the software to support: 1 Mbit x 1, 4 Mbit x 1, 1 Mbit x 4, 4 Mbit x 4 DRAM. DRAM interface registers are mapped to expanded register file (bank0A).

Field	Position	Attrib.	Value	Label
Data (Register (A)00)	76543210	R/W	%FF	Data
Control (Register (A)01)	76543210	R/W	%FF	See Text
Most Significant Byte (Register (A)02)	76543210	R/W	%FF	Data
Middle Significant Byte (Register (A)03)	76543210	R/W	%FF	Data
Least Significant Byte (Register (A)04)	76543210	R/W	%FF	Data
Refresh Count (Register (A)05)	76543210	R/W	%FF	Data

Table 24. Registers of DRAM Interface

Data Register. This register is used as a logical device for reading (writing) data from (to) the DRAM. After reading by the Z8 in Auto Increment mode, the logical DRAM address specified by register (AH)04H is increased by 1 and new DRAM data at this address will be read and stored into the data register. When data is written to this register, it will be stored into the last valid DRAM logical address. The hardware write-data-to-DRAM cycle is implemented as an early write cycle with Twcs > 40 ns. The user has to load a 23-bit address into the Least, Middle, and Most Significant Byte Registers and then write the 8-bit data to the Data Register. The data will be automatically separated into higher nibble and lower nibble and stored into two subsequent locations in the DRAM (2*Address for higher nibble and 2*Address+1 for lower nibble). Writing data to the Data Register with the Auto-incremental Bit (bit 0) of the DRAM Control Register equal to 0 increases the address in the Least Significant DRAM register (AH)04H by 1.

Most, Middle, and Least Significant Byte Registers. The 23-bit logical address of DRAM is stored in these three registers. Upon writing to these registers, the read cycle from DRAM is executed so that the new data is available in the data register.

Refresh Count Register. The /RAS-only refresh cycle is transparent to the user and is supported by hardware logic. This register specifies how many rows of memory matrix, starting from the beginning of the DRAM (logical address 000000H), should be refreshed. The number of the rows in DRAM to be refreshed is defined by the value in Refresh Count Register plus one and then multiplied by eight.

The basic timing diagram of the DRAM interface is shown in Figure 28.

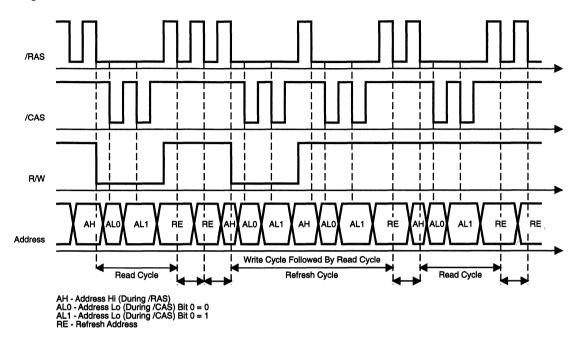


Figure 28. Timing Diagram for DRAM Interface

DRAM Control Register

The register defines DRAM access time, DRAM memory size, refresh operation, etc. (Figure 29). After Power-On Reset, the DRAM Control Register is set to %00, which

defines 1 Mbit DRAM configuration with permanently active DRAM refreshing.

Register	Position	Attrib.	Value	Description
Access_Time	7	R/W	0	400 ns
			1	200 ns
ARAM_size	-6	R/W	0	1 Mbit
			1	4 Mbit
Reserved	54	R/W	%DD	number
				These two bits can be used as User defined flags
Refresh_start	32	R/W	00	Permanently
			01	Upon T0
			10	Upon T0
			11	Refresh off
Refresh clear	1-	R		Return '0'
_		w	1	Refresh clear
			0	No effect
Autoincrement	0	R/W	0	Increment ON
		-	1	Increment OFF

Table 25. DRAM Control Register

Access_time. This bit defines the speed of DRAM Controller. The read/write cycle width can be changed to support slower DRAMs. When set to 1, the width of /CAS signal is set to 200 ns. Reset the Access_time bit to 0 set the width of /CAS signal to 400 ns.

Bit 6	/CAS	ARAM_SEL1	ARAM_SEL0	Addr10
0	1st /CAS	3rd /CAS	2nd /CAS	Addr10
1	1st /CAS	3rd /CAS	2nd /CAS	4th /CAS

DRAM_size. DRAM interface supports four different sizes of ARAM: 1 Mbit x 1, 1 Mbit x 4, 4 Mbit x 1 and 4 Mbit x 4. These require either 11- or 10-bit address bus. For 1 Mbit x 1 or 1 Mbit x 4 DRAM, the ADDR10 is used to generate select (/CAS) signal.

Auto Increment. This bit specifies the Auto Increment of the LBS byte of the DRAM address. The Auto Increment function does not affect any flag of Z8.

DRAM Interface

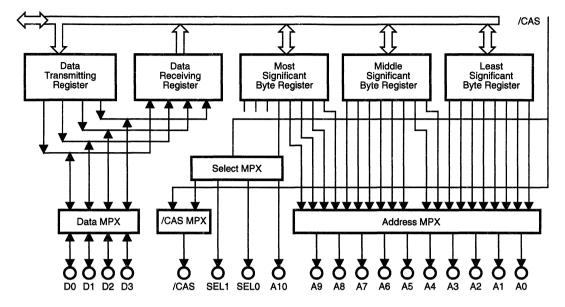


Figure 29. Block Diagram of the DRAM Interface

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min.	Max.	Units
V _{cc} T _{stg} T _A	Supply Voltage (*) Storage Temp	0.3 65°	+7.0 +150°	V C
	Oper Ambient Temp		+	č

Notes:

* Voltage on all pins with respect to GND.

† See Ordering Information.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 30). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

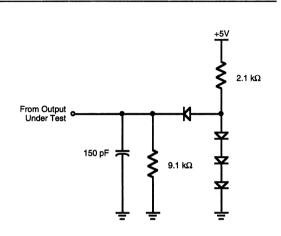


Figure 30. Test Load Diagram

CAPACITANCE

 $T_{a} = 25^{\circ}C$, $V_{cc} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

DC ELECTRICAL CHARACTERISTICS

<u></u>		V_{cc} $T_A = 0^{\circ}C$ to		to +70°C	Typical		
Symbol	Parameter	Note [1]	Min	Max	@ 25°C	Units	
	Supply Current	5.0V		65	40	mA	
'cc	HALT Mode Current	5.0V		10	6	mA	
CC1	STOP Mode Current	5.0V		20	6	μA	
CC2	Output Current, -5V Supply		-15		-20	mA	

Note: [1] 5.0V ±0.5V

DC ELECTRICAL CHARACTERISTICS

Sym	Parameter	V _{cc} Note [3]	T _A = 0°C to +70°C Min	Max	T _A =40° to +105° Min		Typical @ 25°C	Units	Conditions
	Max Input Voltage	3.3V		7		7		۷	I _{IN} 250 uA
		5.0V	a = 1/	7		7		V	I _{IN} 250 uA
V _{CH}	Clock Input High Voltage	3.3V 5.0V	0.7 V _{cc} 0.7 V _{cc}	V _{cc} +0.3 V _{cc} +0.3	0.7 V _{cc} 0.7 V _{cc}	V _{cc} +0.3 V _{cc} +0.3	1.3 2.5	V V	Driven by External Clock Generator Driven by External Clock Generator
V _{CL}	Clock Input Low Voltage	3.3V	GND-0.3		GND-0.3	0.2 V _{cc}	0.7	٧	Driven by External Clock Generator
		5.0V	GND0.3	0.2 V _{cc}	GND-0.3	0.2 V _{cc}	1.5	V	Driven by External Clock Generator
V _{IH}	Input High Voltage	3.3V	0.7 V _{cc}	V _{cc} +0.3	0.7 V _{cc}	V _{cc} +0.3	1.3	V	
		5.0V	0.7 V _{cc}	V _{cc} +0.3	0.7 V _{cc}	V _{cc} +0.3	2.5	V	
VIL	Input Low Voltage	3.3V	GND-0.3	0.2 V _{cc}	GND-0.3	0.2 V _{cc}	0.7	V	
		5.0V	GND0.3	0.2 V _{cc}	GND0.3	0.2 V _{cc}	1.5	v	
V _{он}	Output High Voltage	3.3V	V _{cc} 0.4		V _{cc} -0.4		3.1	V	I _{он} = -2.0 mA
		5.0V	V _{cc} -0.4		V _{cc} -0.4		4.8	۷	l _{он} = —2.0 mA
V _{OL1}	Output Low Voltage	3.3V	e or feeder and a second s	0.6		0.6	0.2	٧	l _{oL} = +4.0 mA
		5.0V		0.4		0.4	0.1	v	$I_{o} = +4.0 \text{ mA}$
V _{ol2}	Output Low Voltage	3.3V		1.2		1.2	0.3	V	$I_{ol} = +6 \text{ mA}, 3 \text{ Pin Max}$
		5.0V		1.2		1.2	0.3	V	$I_{oL}^{oL} = +12 \text{ mA}, 3 \text{ Pin Max}$
V _{RH}	Reset Input High Voltage	3.3V	0.8 V _{cc} 0.8 V _{cc} GND-0.3	V _{cc}	0.8 V _{cc}	V _{cc}	1.5	٧	
		5.0V	$0.8 V_{cc}$	V _{cc} 0.2 V _{cc}	0.0 V _{CC}	Vcc	2.1	۷	
V _{ri}	Reset Input Low Voltage	3.3V	GND0.3	0.2 V _{cc}	GND-0.3	$0.2 V_{cc}$	1.1		
		5.0V	GND0.3	0.2 V _{cc}	GND0.3	0.2 V _{cc}	1.7		
VOFFSET	Comparator Input Offset	3.3V		25		25	10	mV	
	Voltage	5.0V		25		25	10	mV	
l _u	Input Leakage	3.3V	-1	1	-1	2	<1	μA	$V_{iN} = OV, V_{CC}$
		5.0V	-1	1	-1	2	<1	μA	$V_{IN} = OV, V_{CC}$
	Output Leakage	3.3V	-1	1	-1	2	<1	μA	$V_{iN} = OV, V_{CC}$
		5.0V	-1	1	-1	2	<1	μA	$V_{iN} = OV, V_{CC}$
l _{iR}	Reset Input Current	3.3V		-45		-60	-20	μA	
		5.0V		55		-70	30	μA	

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Diagram

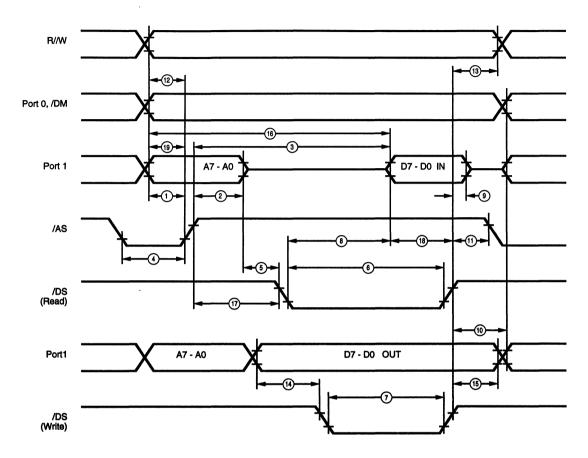


Figure 31. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS

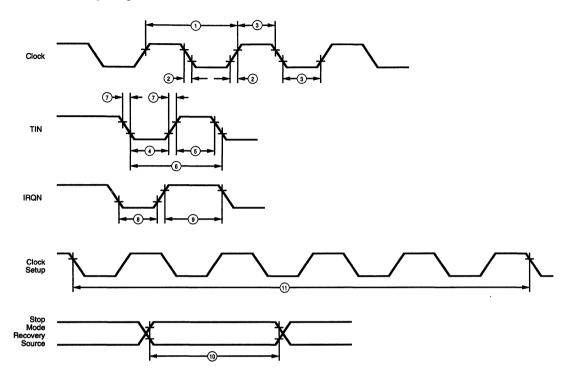
External I/O or Memory Read and Write Timing Table

No	Symbol	Parameter	V _{cc} Note [4]	T _A = 0°(Min	C to +70°C Max	Units	Notes
1	TdA(AS)	Address Valid to /AS Rise Delay	5.0	20		ns	[2, 3]
2	TdAS(A)	/AS Rise to Address Float Delay	5.0	25		ns	[2, 3]
3	TdAS(DR)	/AS Rise to Read Data Reg'd Valid	5.0		150	ns	[1, 2, 3]
4	TwAS	/AS Low Width	5.0	30		ns	[2, 3]
5	TdAZ(DS)	Address Float to /DS Fall	5.0	0		ns	Leader
6	TwDSR	/DS (Read) Low Width	5.0	105		ns	[1, 2, 3]
7	TwDSW	/DS (Write) Low Width	5.0	65		ns	[1, 2, 3]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid	5.0		55	ns	[1, 2, 3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	5.0	0		ns	[2, 3]
10	TdDS(A)	/DS Rise to Address Active Delay	5.0	40		ns	[2, 3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	5.0	25		ns	[2, 3]
12	TdR/W(AS)	R//W Valid to /AS Rise Delay	5.0	20		ns	[2, 3]
13	TdDS(R/W)	/DS Rise to R//W Not Valid	5.0	25		ns	[2, 3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	5.0	20		ns	[2, 3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	5.0	25	and and shake a second of the second s	ns	[2, 3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid	5.0		180	ns	[1, 2, 3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	5.0	35		ns	[2, 3]
18	TdDI(DS)	Data Input Setup to /DS Rise	5.0	50		ns	[1, 2, 3]
19	TdDM(AS)	/DM Valid to /AS Fall Delay	5.0	20		ns	[2, 3]

Notes:

[1] When using extended memory timing add 2 TpC.

[2] Timing numbers given are for minimum TpC.


[3] See clock cycle dependent characteristics table.

[4] 5.0V ±0.5V

Standard Test Load

All timing references use 0.9 V_{cc} for a logic 1 and 0.1 V_{cc} for a logic 0.

AC ELECTRICAL CHARACTERISTICS Additional Timing Diagram

AC ELECTRICAL CHARACTERISTICS

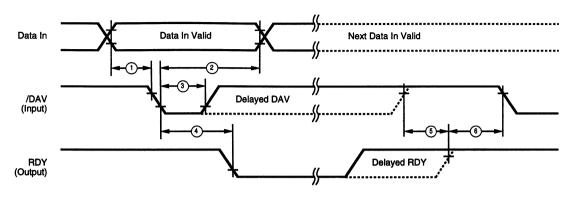
Additional Timing Table

No	Symbol	Parameter	V _{cc} Note [5]	T _A = 0°C to Min	o +70°C Max	Units	Notes
1	ТрС	Input Clock Period	5.0V	48.83		ns	[1]
2	TrC,TfC	Clock Input Rise & Fall Times	5.0V		6	ns	[1]
3	TwC	Input Clock Width	5.0V	16		ns	[1]
4	TwTinL	Timer Input Low Width	5.0V	70		ns	
5	TwTinH	Timer Input High Width	5.0V	3TpC			[1]
6	TpTin	Timer Input Period	5.0V	8TpC			[1]
7	TrTin, TfTin	Timer Input Rise & Fall Timer	5.0V		100	ns	[1]
8A	TwiL	Int. Request Low Time	5.0V	70		ns	[1, 2]
8B	TwiL	Int. Request Low Time	5.0V	3TpC			[1]
9	TwiH	Int. Request Input High Time	5.0V	3TpC			[1]
10	Twsm	STOP-Mode Recovery Width Spec	5.0V	12		ns	[1]
				5TpC			
11	Tost	Oscillator Startup Time	5.0V	5TpC			[3]
12	Twdt	Watch-Dog Timer	5.0V	5		ms	D1 = 0, D0 = 0 [4]
			5.0V	15		ms	D1 = 0, D0 = 1 [4]
			5.0V	25		ms	D1 = 1, D0 = 0 [4]
			5.0V	100		ms	D1 = 1, D0 = 1 [4]

Notes:

 [1] Timing Reference uses 0.9 V_{cc} for a logic 1 and 0.1 V_{cc} for a logic 0.

 [2] Interrupt request via Port 3 (P31-P33).


 [3] SMR-D5 = 0.

 [4] Reg. WDT.

 [5] 5.0V ±0.5V

2ilas

AC ELECTRICAL CHARACTERISTICS Handshake Timing Diagrams

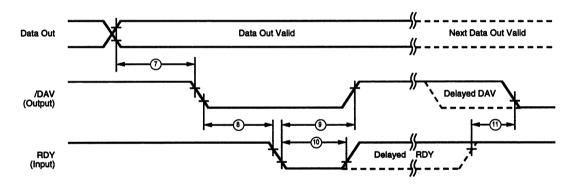


Figure 34. Output Handshake Timing

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameter	V _{cc} Note [1]	T _A = 0°0 Min	C to +70°C Max	Units	Data Direction
1	TsDI(DAV)	Data In Setup Time	5.0 V	0		ns	IN
2	ThDI(DAV)	Data In Hold Time	5.0 V	115		ns	IN
3	TwDAV	Data Available Width	5.0 V	110		ns	IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay	5.0 V		115	ns	IN
5	TdDAVid(RDY)	DAV Rise to RDY Rise Delay	5.0 V		80	ns	IN
6	TdD0(DAV)	RDY Rise to DAV Fall Delay	5.0 V	0		ns	IN
7	TcLDAV0(RDY)	Data Out to DAV Fall Delay	5.0 V	25		ns	OUT
8	TcLDAV0(RDY)	DAV Fall to RDY Fall Delay	5.0 V	0		ns	OUT
9	TdRDY0(DAV)	RDY Fall to DAV Rise Delay	5.0 V		115	ns	OUT
10	TwRDY	RDY Width	5.0 V	80		ns	OUT
11	TdRDY0d(DAV)	RDY Rise to DAV Fall Delay	5.0 V		80	ns	OUT

Note:

[1] 5.0V ±0.5V

Z8 EXPANDED REGISTER FILE REGISTERS

Expanded Register Bank B

Register	Position	Attrib.	Value	Description
Outgoing Reg. to DSP EXT0 (High Byte) (B)%00	76543210	R/W		DSP EXT0, Bits D15-D8
Outgoing Reg. to DSP EXT0 (Low Byte) (B)%01	76543210	R/W		DSP EXT0, Bits D7-D0
Outgoing Reg. to DSP EXT1 (High Byte) (B)%02	76543210	R/W		DSP EXT1, Bits D15-D8
Outgoing Reg. to DSP EXT1 (Low Byte) (B)%03	76543210	R/W		DSP EXT1, Bits D7-D0
Outgoing Reg. to DSP EXT2 (High Byte) (B)%04	76543210	R/W		DSP EXT2, Bits D15-D8
Outgoing Reg. to DSP EXT2 (Low Byte) (B)%05	76543210	R/W		DSP EXT2, Bits D7-D0
Outgoing Reg. to DSP EXT3 (High Byte) (B)%06	76543210	R/W		DSP EXT3, Bits D15-D8
Outgoing Reg. to DSP EXT3 (Low Byte) (B)%07	76543210	R/W		DSP EXT3, Bits D7-D0

Z8 EXPANDED REGISTER FILE REGISTERS

Expanded Register Bank B (Continued)

Register	Position	Attrib.	Value	Description
Incoming Reg. to DSP EXT0 (High Byte) (B)%08	76543210	R		DSP EXT0, Bits D15-D8
Incoming Reg. to DSP EXT0 (Low Byte) (B)%09	76543210	R		DSP EXT0, Bits D7-D0
Incoming Reg. to DSP EXT1 (High Byte) (B)%0A	76543210	R		DSP EXT1, Bits D15-D8
Incoming Reg. to DSP EXT1 (Low Byte) (B)%0B	76543210	R		DSP EXT1, Bits D7-D0
Incoming Reg. to DSP EXT2 (High Byte) (B)%0C	76543210	R		DSP EXT2, Bits D15-D8
Incoming Reg. to DSP EXT2 (Low Byte) (B)%0D	76543210	R		DSP EXT2, Bits D7-D0
Incoming Reg. to DSP EXT3 (High Byte) (B)%0E	76543210	R		DSP EXT3, Bits D15-D8
Incoming Reg. to DSP EXT3 (Low Byte) (B)%0F	76543210	R		DSP EXT3, Bits D7-D0

Expanded Register Bank F

Register	Position	Attrib.	Value	Description
PCON (F)%00				
	76543			Reserved
	2	R	0	Port 1 Open-drain
			1	Port 1 Push-pull Active*
	1-	R	Ó	Port 0 Open-drain
	-		1	Port 0 Push-pull Active*
	0	R	ò	P34, P35 Standard Output*
	Ũ		1	P34, P35 Comparator Output
DSPCON (F)0CH				
Z8_SCLK	76	R/W	00	2.5 MHz (OSC/8)
			01	5 MHz (OSC/4)
			1x	10 MHZ (OSC/2)
DSP_Reset	5	R		Return '0'
	J	Ŵ	0	No effect
		**	1	Reset DSP
DSP_Run	4	R/W	0	Halt_DSP
Dor_hun	4	D/ W		
			1	Run_DSP
Reserved	32		XX	Datum 101
				Return '0'
	_	_		No effect
IntFeedback	1-	R		FB_DSP_INT2
		W	1	Set DSP_INT2
			0	No effect
	0	R		FB_Z8_IRQ3
		W	1	Clear IRQ3
			0	No effect
P4 (F)%02	76543210	R/W	%NN	Port 4 Data Register
P4M (F)%03	76543210	R	%FF	Returns %FF
			W	0 Defines P4X as Output
				1 Defines P4X as Input
P5 (F)%04	76543210	R/W	%NN	Port 5 Data Register
P5M (F)%05	76543210	R	%FF	Returns %FF
			W	0 Defines P5X pin as Outpu
				1 Defines P5X pin as Input
P45CON (F)%06				•
	765-321-			Reserved
	4	W	0	Port 5 Open-drain
			1	Port 5 Push-pull Active*
	0	W	0	Port 4 Open-drain
	́С		1	Port 4 Push-pull Active*

Note:

* Default setting after Reset

.

Z8 EXPANDED REGISTER FILE REGISTERS

Expanded Register Bank F (Continued)

Register	Position	Attrib.	Value	Description
SMR (F)%0B				
	7	R	0	POR*
			1	Stop Recovery
	-6	W	0	Low Stop Recovery Level*
			1	High Stop Recovery Level
	5	W	0	Stop Delay On*
			1	Stop Delay Off
	432	W		STOP-Mode Recovery Source
			000	POR Only*
,			001	Reserved
			010	P31
			011	P32
			100	P33
			101	P27
			110	P2 NOR 0-3
			111	P2 NOR 0-7
	1-			Reserved
	0	W	0	SCLK/TCLK Not Divide-by-16 [†]
			1	SCLK/TCLK Divide-by-16
WDTMR (F)%0F				
	765			Reserved
	4	R/W	0	On-Board RC for WDT*
			1	XTAL for WDT
	3	R/W	0	WDT Off During STOP
			1	WDT On During STOP*
	2	R/W	0	WDT Off During HALT
			1	WDT On During HALT*
	10	R/W		Int RC Osc Ext Clock
			00	5 ms 256 TpC
			01*	15 ms 512 TpC
			10	25 ms 1024 TpC
•			11	100 ms 4096 TpC

Notes:

* Default setting after Reset † Reset after STOP-Mode Recovery

<u> Asiraz</u>

Z8 CONTROL REGISTERS

Register	Position	Attrib.	Value	Description
%F0	76543210			Reserved
TMR %F1				T _{out} Modes
	76	RW	00	Not Used
			01	T0 Out
			10	T1 Out
			11	Internal Clock Out P36
				T _{IN} Modes
	54	RW	00	External Clock Input
			01	Gate Input
	<u>.</u>		10	Trigger Input (Non-Retriggerable)
			11	Trigger Input (Retriggerable)
	3	R/W	0	Disable T1 Count
	Ū	.,	1	Enable T1 Count
	2	R/W	O	No Effect
	-	.,	1	Load T1
	1-	R/W	O	Disable T0 Count
	-	.,	1	Enable T0 Count
	0	R/W	O	No Effect
	Ũ	.,,	1	Load TO
T1 %F2	76543210	R	%NN	T1 Current Value
		W	%NN	T1 Initial Value
PRE1 %F3	765432	W		Prescaler Modulo (1-64 Dec)
	1-			T1 Clock Source
		W	0	External Timing Input (T _{IN}) Mode
			1	Internal Clock
	0			T1 Count Mode
		W	0	Single Pass
			1	Modulo-n
T0 %F4	76543210	R	%NN	T0 Current Value
		W	%NN	T0 Initial Value
PRE0 %F5	765432	W		Prescaler Modulo (1-64 Dec)
	1-			Reserved
	0			T0 Count Mode
		W	0	Single Pass
			1	Modulo-n
P2M %F6	76543210	W	0	Defines P2X pin as Output
			1	Defines P2X pin as Input

٠

Z8 CONTROL REGISTERS (Continued)

Register	Position	Attrib.	Value	Description
P3M %F7				
	7			Reserved
	-6	W	0	P30 = Input; P37 = Output
	5	W	0	P31 = Input (T_{IN}) ; P36 = Output $(T_{OIT})^*$
			1	P31 = /DAV2/RDY2; P36 = RDY2//DAV2
	43	W	00	P33 = Input; P34 = Output*
			01	P33 = Input; P34 = /DM
			10	P33 = Input; P34 = /DM
			11	P33 = /DAV1/RDY1; P34 = RDY1//DAV1
	2	W	0	P32 = Input; P35 = Output*
			1	P32 = /DAV0/RDY0; P35 = RDY0//DAV0
	1-	W	0	P31, P32 Digital Mode
			1	P31, P32 Analog Mode
	0	R/W	0	Port 2 Open-drain*
			1	Port 2 Push-pull Active
P01M %F8				T _{out} Modes
	76	- W		P04-P07 Mode
			00	Output
			01	Input*
			1x	A15-A12
	5	W		External Memory Timing
			0	Normal*
			1	Extended
	43	W		P10-P17 Mode
	•		00	Byte Output
			01	Byte Input*
			10	AD7-AD0
			11	High-Z AD7-AD0, /AS, /DS/ R/W, A11-A8
	2	w		A15-A12, If selected Stack Selection
2	2	vv	0	External
			0 1	Internal*
	10	w	1	P00-P03 Mode
	TO	vv	00	
			00	Output
			01	Input*
			1x	A11-A8

Note:

* Default setting after Reset.

\mathbf{Q}	Zil	Œ
--------------	-----	---

Register	Position	Attrib.	Value	Description
IPR %F9	76			Reserved
	5	W		IRQ3, IRQ5 Priority (Group A)
			0	IRQ5 > IRQ3
			1	IRQ3 > IRQ5
	1	W		IRQ0, IRQ2 Priority (Group B)
			0	IRQ2 > IRQ0
			ĩ	IRQ0 > IRQ2
	2	W	•	IRQ1, IRQ4 Priority (Group C)
	2		0	IRQ1 > IRQ4
			1	IRQ4 > IRQ1
	430	W	· ·	Interrupt Group Priority
	430	vv	000	
				Reserved
			001	C>A>B
			010	A>B>C
			011	A>C>B
			100	B>C>A
			101	C>B>A
			110	B>A>C
			111	Reserved
IRQ %FA	76	R/W		Inter Edge (R = Rising edge; F = Falling edge)
			00	P31 = F; P32 = F
			01	P31 = F; P32 = R
			10	P31 = R; P32 = F
			11	P31 = RF; P32 = RF
	543210	R/W		IRQ5 = T1
	010110	.,		IRQ4 = TO
				IRQ3 = DSP
				IRQ2 = P31 Input
				IRQ1 = P33 Input
				IRQ0 = P32 Input
IMR %FB	7	R/W	0	Disables Interrupts
		-	1	Enables Interrupts
	-6	RW	0	Disables RAM Protect
			1	Enables RAM Protect
	543210	R/W	0	Disables IRQ5-IRQ0 (D0 = IRQ0)
			1	Enables IRQ5-IRQ0
Flags %FC	7	R/W		Carry Flag
-	-6	R/W		Zero Flag
	5	R/W		Sign Flag
	4	R/W		Overflow Flag
	3	R/W		Decimal Adjust Flag
	2	R/W		Half Carry Flag
	1-	R/W		User Flag F2
	0	R/W		User Flag F1
		-	9/ NO	-
RP %FD	7654	R/W	%N0	Working Register Group
	3210	R/W	%0N	Expanded Register File Bank
SPH %FE	76543210	R/W	%NN	Stack Pointer Upper Byte
SPL %FF	76543210	R/W	%NN	Stack Pointer Lower Byte

Z8 INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
х	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
	working-register address
lr	Indirect working-register address only
RR	Register pair or working register pair address

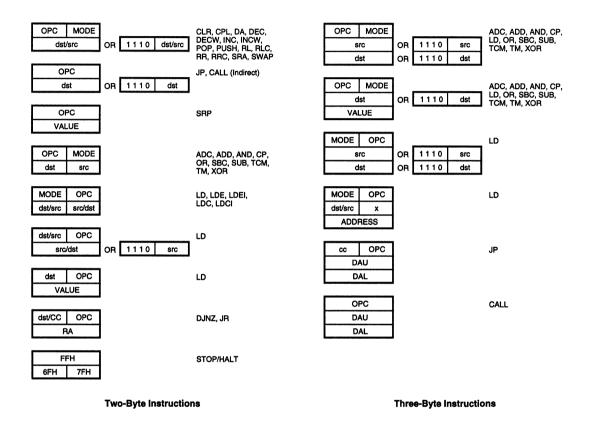
Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
сс	Condition code
Ø	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
С	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
Н	Half-carry flag
Affected flag	gs are indicated by:
0	Clear to zero
1	Set to one
*	Set to clear according to operation
-	Unaffected

CONDITION CODES


Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	С	Carry	C = 1
1111	NC	No Carry	C = 0
0110	Z	Zero	Z = 1
1110	NZ	Not Zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No Overflow	V = 0
0110	EQ	Equal	Z = 1
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	(S XOR V) = 0
0001	LT	Less than	(S XOR V) = 1
1010	GT	Greater Than	[Z OR (S XOR V)] = 0
0010	LE	Less Than or Equal	[Z OR (S XOR V)] = 1
1111	UGE	Unsigned Greater Than or Equal	C = 0
0111	ULT	Unsigned Less Than	C = 1
1011	UGT	Unsigned Greater Than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned Less Than or Equal	(C OR Z) = 1
0000		Never True	

INSTRUCTION FORMATS

CCF, DI, EI, IRET, NOP, RCF, RET, SCF

One-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol " \leftarrow ". For example:

dst ← dst + src

notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:

dst (7)

indicates that the source data is added to the destination data and the result is stored in the destination location. The

refers to bit 7 of the destination operand.

PRELIMINARY

INSTRUCTION SUMMARY (Continued)

.

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Fi C	ags Z	Aff S	ect V	ed D	H	instruction and Operation	Mo	ress ie src	Opcode Byte (Hex)		ags Z				н
ADC dst, src dst←dst + src + C	†	1[]	*	*	*	*	0	*	INC dst dst←dst + 1	r R		rE r = 0 - F 20	-	*	*	*	-	-
ADD dst, src dst←dst + src	†	0[]	*	*	*	*	0	*		IR		21						
AND dst, src dst←dst AND src	†	5[]	-	*	*	0	-	-	INCW dst dst←dst + 1	rr Ir		A0 A1	-	*	*	*	-	-
CALL dst SP←SP – 2 @SP←PC, PC←dst	DA IRR	D6 D4	-	-	-	-	-	-	IRET FLAGS \leftarrow @SP; SP \leftarrow SP + 1 PC \leftarrow @SP; SP \leftarrow SP + 2; HERE + 2;			BF	*	*	*	*	*	*
CCF C←NOT C		EF	*	-	-	-	-	-	IMR(7)←1 	DA		cD	_	-	-	-	-	-
CLR dst dst←0	R IR	B0 B1	-	-	-	-	-	-	if cc is true PC←dst	IRR		c = 0 — F 30						
COM dst dst←NOT dst	R IR	60 61	-	*	*	0	-	-	JR cc, dst if cc is true, $PC \leftarrow PC + dst$	RA		сВ с = 0 — F	-	-	-	-	-	-
CP dst, src dst – src	†	A[]	*	*	*	*	-	-	Range: +127, –128									
DA dst dst←DA dst	R IR	40 41	*	*	*	X	-	-	LD dst, src dst←src	r r	lm R	rC r8	-	-	-	-	-	-
DEC dst dst←dst – 1	R IR	00 01	-	*	*	*	-	-		R	r X	r9 r = 0 - F C7						
DECW dst dst←dst – 1	RR IR	80 81	-	*	*	*	-	-		X r	r Ir	D7 E3 F3						
DI IMR(7)←0		8F	-	•	-	-	-	-		lr R R	r R IR	E4 E5						
DJNZ dst $r \leftarrow r - 1$ if $r \neq 0$	RA	rA r = 0 - F	-	-	-	-	-	-		r Ir Ir	im Im R	E6 E7 F5						
$PC \leftarrow PC + dst$ Range: +127,									LDC dst, src	٢	Irr	C2	-	-	-	-	-	-
–128 EI		9F							LDCI dst, src dst←src	lr	Irr	C3	-	-	-	-	-	-
IMR(7)←1			-	-	-	-	-	-	r←r +1; rr←rr + 1									
HALT		7F	-	-	-	-	-	-										

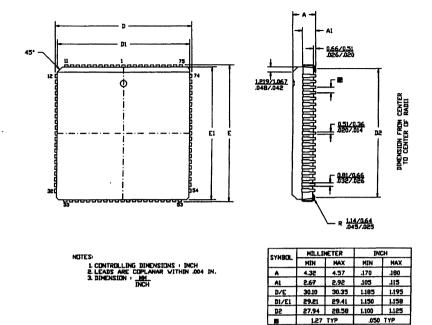
INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Mod	ress le src	Opcode Byte (Hex)			Aff S	ect V		н	Instruction and Operation
NOP			FF	-	-	-	+	-	-	STOP
OR dst, src dst←dst OR src	†		4[]	-	*	*	0	-	-	SUB dst, src dst←dst←src
POP dst dst←@SP; SP←SP + 1	R IR		50 51	-	-	-	-	-	-	SWAP dst
PUSH src SP←SP – 1; @SP←src		R IR	70 71	-	-	-	-	-	-	TCM dst, src (NOT dst) AND src
RCF C←0			CF	0	-	-	-	-	-	TM dst, src dst AND src
RET PC←@SP; SP←SP + 2			AF	-	-	-	-	-	-	WDT XOR dst, src
RL dst	R IR		90 91	*	*	*	*	-	-	dst←dst XOR src
RLC dst	R IR		10 11	*	*	*	*	-	-	† These instruc encoded for bre table above. The
RR dst	R IR		E0 E1	*	*	*	*	-	-	table, and its val addressing mod For example, the
RRC dst	R IR		C0 C1	*	*	*	*	-	-	r (destination) a
SBC dst, src dst←dst←src←C	†		3[]	*	*	*	*	1	*	dst r
SCF C←1			DF	1	-	-	-	-	-	r
SRA dst	R IR		D0 D1	*	*	*	0	-	-	R
	កេ		וט							R
SRP src RP←src	grif ood allot an tar	lm	31	-	-	-	-	-	-	R

C	Z		ぴしし	ed	
		S	V	D	Н
-	-	-	-	-	-
*	*	*	*	1	*
X	*	*	Х	-	-
-	*	*	0	-	-
-	*	*	0	-	-
-	Χ	χ	χ	-	-
-	*	*	0	-	-
	-	X * - * - * - X	X * * - * * - * X X	X * * X - * * 0 - X X X	X * * X - - * * 0 - - * * 0 - - X X X -

† These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.


	ddress Me st		Lower Opcode Nibb	ble
r		r	[2]	
r		lr	[3]	
R	1	R	[4]	
R	1	IR	[5]	
R	1	IM	[6]	
IF	7	IM	[7]	

&2j	LOE
-----	-----

OPCODE MAP

			-					10	wer Nib	bie (He	x)							
		0	1	2	3	4	5	6	7	8	9		A	в	с	D	Е	F
	。	6.5	6.5	6.5	6.5	10.5	10.5	10.5	10.5	6.5	6.5		2/10.5	12/10 0	65	12.10.0	6.5	
		DEC R1	DEC IR1	ADD r1, r2	ADD r1, ir2	ADD R2, R1	ADD IR2, R1	ADD R1, IM	ADD IR1, IM	LD r1, R2	LD r2, R		DJNZ 1, RA	JR cc, RA	LD r1, IM	JP cc, DA	INC r1	
	1	6.5 RLC	6.5 RLC	6.5 ADC	6.5 ADC	10.5 ADC	10.5 ADC	10.5 ADC	10 5 ADC									
		R1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM									
	2	6.5 INC	6.5 INC	6.5 SUB	6.5 SUB	10.5 SUB	10.5 SUB	10.5 SUB	10 5 SUB									
		R1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM									
	3	80 JP	6.1 SRP	65 SBC	6.5 SBC	10.5 SBC	10.5 SBC	10 5 SBC	10 5 SBC									
		IRR1 85	IM 85	r1, r2 65	r1, lr2 6.5	R2, R1 10 5	IR2, R1 105	R1, IM 10 5	IR1, IM 10.5									
	4	DA	DA	OR	OR	OR	OR	OR	OR									
		R1 10.5	IR1 10.5	r1, r2 6.5	r1, lr2 6.5	R2, R1 10 5	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5									6.0
	5	POP	POP	AND	AND	AND	AND	AND	AND									WDT
		R1 6.5	IR1 6.5	r1, r2 65	r1, lr2 6.5	R2, R1 10.5	IR2, R1 10 5	R1, IM 105	IR1, IM 10 5									60
	6	сом	сом	тсм	тсм	тсм	тсм	тсм	тсм									STOP
(Hex		R1 10/12.1	IR1 12/14.1	r1, r2 6.5	r1, lr2 6.5	R2, R1 10.5	IR2, R1 10.5	R1, IM 10.5	IR1, IM 10.5									70
ble	7	PUSH R2	PUSH IR2	TM r1, r2	TM r1, lr2	TM R2, R1	TM IR2, R1	TM R1, IM	TM IR1, IM									HALT
Upper Nibble (Hex)		10.5	10.5	12.0	18.0	n2, n1	inz, n i											61
per	8	DECW RR1	DECW IR1	LDE r1, irr2	LDEI Ir1, Irr2													DI
		6.5	65	12.0	18.0													61
	9	RL R1	RL IR1	LDE r2, lrr1	LDEI Ir2, Irr1													EI
		10.5 INCW	10.5. INCW	6.5 CP	65 CP	10.5 CP	10.5 CP	10.5 CP	10.5 CP									140 RET
,	`	RR1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM									
F	3	6.5 CLR	65 CLR	6.5 XOR	6.5 XOR	10 5 XOR	10 5 XOR	10 5 XOR	10.5 XOR									16.0 IRET
		R1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM									
(65 RRC	6.5 RRC	12.0 LDC	18 0 LDCI				10.5 LD									6.5 RCF
		R1	IR1	r1, Irr2	Ir1, Irr2	00.0		00.0	r1,x,R2									
1	5	6.5 SRA	65 SRA	12.0 LDC	18.0 LDCI	20.0 CALL*		20.0 CALL	10 5 LD									65 SCF
		R1 6.5	IR1 65	r1, lrr2	lr1, lrr2 65	IRR1 10.5	10 5	DA 10 5	r2,x,R1 10 5									6.5
1	=	RR	RR		LD	LD	LD	LD	LD									CCF
		R1 8.5	IR1 85		r1, IR2 65	R2, R1	IR2, R1 10 5	R1, IM	IR1, IM									60
	F	SWAP	SWAP		LD Ir1, r2		LD R2, IR1				₩		¥				ł	NOP
	ļ	R1			1 1,12		1 <u>12, ini</u>			Ľ	<u> </u>		$\overline{}$					
			:	2			:	3					2			3		i
								B)	rtes per	instruc	tion							
						ower boode							egen					
			E	ecution	Ni	ibble	Dine	line						oit Addre it Addre				
				Cycles			Pipe							r1 = Dst		s		
					\mathbf{k}	4						F	R2 or	r2 = Src	Addres	s		
			Upj Opco			10.5	MI	nemonic				5	Seque	nce:				
			Nib			1, R2	IVI	ionionio						e, First (d Opera		d,		
														·				
			O	First ⁴ perand				ond erand				ſ	Note: I	Blank an	eas not	defined.		
			-				- 6					•				ears as		
													a 3-b	/te instri	uction			

PACKAGE INFORMATION

84-Lead PLCC Package Diagram

& Silas

PRELIMINARY

ORDERING INFORMATION

Z89121 Z89921

20 MHz	20 MHz
84-Pin PLCC	84-Pin PLCC
Z8912120VSC	Z8992120VSC

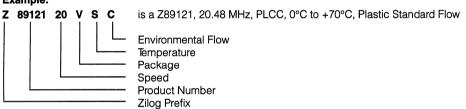
For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Speed

20 = 20.48MHz

Package

V = Plastic Leaded Chip Carrier (PLCC)


Temperature

 $S = 0^{\circ}C$ to + 70°C

Environment

C = Plastic Standard

Example:

·

.

·

Z89320 16-Bit Mixed Signal Processor 6

Z89321 16-Bit Mixed Signal Processor

Zilog Sales Offices Representatives & Distributors

PRELIMINARY PRODUCT SPECIFICATION

Z89320

16-BIT DIGITAL SIGNAL PROCESSOR

FEATURES

- 16-Bit Single Cycle Instructions
- Zero Overhead Hardware Looping
- 16-Bit Data
- Ready Control for Slow Peripherals
- Single Cycle Multiply/Accumulate (100 ns)
- Six-Level Stack
- 512 Words of On-Chip RAM

- 16-Bit I/O Port
- 4K Words of On-Chip Masked ROM
- Three Vectored Interrupts
- Two Conditional Branch Inputs/Two User Outputs
- 24-bit ALU, Accumulator and Shifter
- IBM[®] PC Development Tools
- Cost Effective 40-pin DIP Package

GENERAL DESCRIPTION

The Z89320 is a second generation, 16-bit, fractional, two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate, are accomplished in a single clock cycle. The processor contains 1 Kbyte of on-chip data RAM (two blocks of 256 16-bit words), 4K words of program ROM. Also, the processor features a 24-bit ALU, a 16 x 16 multiplier, a 24-bit Accumulator and a shifter. Additionally, the processor contains a six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of three pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multiplier for a true single cycle multiply.

The device includes a 16-bit I/O bus for transferring data or for mapping peripherals into the processor address space. Additionally, there are two general purpose user inputs and two user outputs. Operation with slow peripherals is accomplished with a ready input pin.

Development tools for the IBM PC include a relocatable assembler, a linker loader, and an ANSI-C compiler. Also, the development tools include a simulator/debugger, a cross assembler for the TMS320 family assembly code and a hardware emulator.

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GŇĎ	V _{ss}

GENERAL DESCRIPTION (Continued)

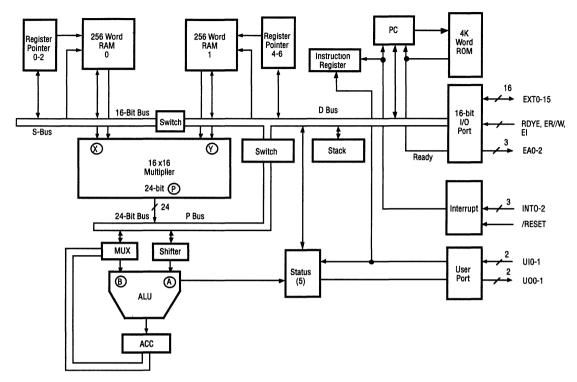


Figure 1. Functional Block Diagram

PIN DESCRIPTION

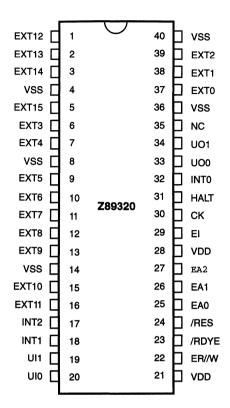
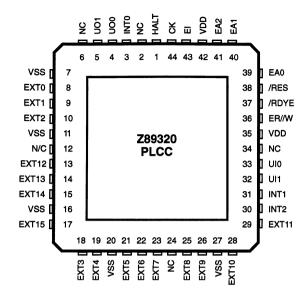



Figure 2. 40-Pin DIP Pin Assignments

PIN DESCRIPTION (Continued)

No.	Symbol	Function	Direction
1-3	EXT12-EXT14	External data bus	Input/Output
4	V _{ss} EXT15	Ground	Input
5	EXT15	External data bus	Input/Output
6-7	EXT3-EXT4	External data bus	Input/Output
8		Ground	Input
9-13	EX15-EX19	External data bus	Input/Output
14	V _{ss} EXT10-EXT11	Ground	Input
15-16	EXT10-EXT11	External data bus	Input/Output
17	INT2	Interrupt	Input
18	INT1	Interrupt	Input
19	UI1	User input	input
20	UIO	User input	Input
21	V _{dd}	Power Supply	Input
22	ER//W	R/W for external bus	Output
23	/RDYE	Data ready	Input
24	, /RES	RESET	Input
25-27	EA0-EA2	External address bus	Output
28	V _{DD} El	Power Supply	Input
29		Data strobe for external bus	Output
30	CK	CLOCK	Input
31	HALT	STOP execution	Input
32	' INTO	Interrupt	Input
33-34	UO0-UO1	User output	Output
35	NC	No Connection	
36	V _{ss} EXT0-EXT2	Ground	Input
37-39		External data bus	Input/Output
40	V _{ss}	Ground	Input

Table 1. 40-Pin DIP Pin Identification

6-5

⊗ZiL05

PIN DESCRIPTION (Continued)

No.	Symbol	Function	Direction
1	HALT	STOP execution	Input
2	NC	No Connection	
3	INTO	Interrupt	Input
4-5	U00-U01	User output	Output
6	NC	No Connection	
7	V _{ss} EXT0-EXT2	Ground	Input
8-10		External data bus	Input/Output
11	V _{ss}	Ground	Input
12	NC	No Connection	
13-15	EXT12-EXT14	External data bus	Input/Output
16	V _{ss} EXT15	Ground	Input
17	EXT15	External data bus	Input/Output
18-19	EXT3-EXT4	External data bus	Input/Output
20	V _{ss} EXT5-EXT7	Ground	Input
21-23		External data bus	Input/Output
24	NC	No Connection	
25-26	EXT8-EXT9	External Data Bus	Input/Output
27	V _{ss}	Ground	Input
28-29	EXT10-EXT11	External data bus	Input/Output
30	INT2	Interrupt	Input
31	INT1	Interrupt	Input
32	UI1	User input	Input
33	UIO	User input	Input
34	NC	No Connection	
35	V _{DD} ER//W	Power Supply	Input
36	EŘ//W	R/W for external bus	Output
37	/RDYE	Data ready	Input
38	/RES	RESET	Input
39-41	EA0-EA2	External address bus	Output
42	V _{DD}	Power Supply	Input
43	EI	Data strobe for external bus	Output
44	CK	CLOCK	Input

Table 2. 44-Pin PLCC Pin Identification

⊗ ZiLŒ

PIN FUNCTIONS

CK Clock (input). External clock.

EXT15-EXT0 External Data Bus (input/output). Data bus for user defined outside registers such as an ADC or DAC. The pins are normally in output mode except when the outside registers are specified as source registers in the instructions. All the control signals exist to allow a read or a write through this bus.

ER//W *External Bus Direction* (output). Data direction signal for EXT-Bus. Data is available from the CPU on EXT15-EXT0 when this signal is Low. EXT-Bus is in input mode (high-impedance) when this signal is High.

EA2-EA0 External Address (output). User-defined register address output. One of eight user-defined external registers is selected by the processor with these address pins for read or write operations. Since the addresses are part of the processor memory map, the processor is simply executing internal reads and writes.

EI *Enable Input* (output). Read/Write timing signal for EXT-Bus. User defined register or the processor can put data on the EXT-Bus during a Low state. Data is read by the external peripheral on the rising edge of EI. Data is read by the processor on the rising edge of CK not EI.

HALT Halt State (input). Stop Execution Control. The CPU continuously executes NOPs and the program counter remains at the same value when this pin is held High. This signal must be synchronized with CK. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

INT2-INT0 *Three Interrupts* (input, active Low). Interrupt request 2-0. Interrupts are generated on the rising edge of the input signal. Interrupt vectors for the interrupt service starting address are stored in the program memory locations OFFFH for INT0, OFFEH for INT1, and OFFDH for INT2. Priority is : INT2 = lowest, INT0 = highest.

/RES *Reset* (input, active Low). Asynchronous reset signal. A Low level on this pin generates an internal reset signal. The /RES signal must be kept Low for at least one clock cycle. The CPU fetches a new Program Counter (PC) value from program memory address 0FFCH after the reset signal is released.

/RDYE Data Ready (input). User-supplied Data Ready signal for data to and from external data bus. This pin stretches the EI and ER//W lines and maintains data on the address bus and data bus. The ready signal is sampled at the rising edge of the clock with appropriate setup and hold times. The normal write cycle will continue from the next rising clock only if ready is active (High state).

UI1-UI0 *Two Input Pins* (input). General purpose input pins. These input pins are directly tested by the conditional branch instructions. These are asynchronous input signals that have no special clock synchronization requirements.

UO1-UO0 *Two Output Pins* (output). General purpose output pins. Their value is determined by the status register bits S5 and S6. If a one is loaded into S5 or S6, a Low output appears at the respective pin. If a zero is used, a High output appears.

ADDRESS SPACE

Program Memory. Programs of up to 4K words can be masked into internal ROM. Four locations are dedicated to the vector address for the three interrupts (0FFDH-0FFFH) and the starting address following a Reset (0FFCH). Internal ROM is mapped from 0000H to 0FFFH, and the highest location for program is 0FFBH.

Internal Data RAM. The Z89320 has an internal 512 x 16bit word data RAM organized as two banks of 256×16 -bit words each, referred to as RAM0 and RAM1. Each data RAM bank is addressed by three pointers, referred to as Pn:0 (n = 0-2) for RAM0 and Pn:1 (n = 0-2) for RAM1. The RAM addresses for RAM0 and RAM1 are arranged from 0-255 and 256-511 respectively. The address pointers, which may be written to or read from, are 8-bit registers connected to the lower byte of the internal 16-bit D-Bus, and are used to perform no overhead looping. Three addressing modes are available to access the Data RAM: register indirect, direct addressing, and short form direct. These modes are discussed in detail later. The contents of the RAM can be read or written in one machine cycle per word without disturbing any internal registers or status other than the RAM address pointer used for each RAM. The contents of each RAM can be loaded simultaneously into the X and Y inputs of the multiplier.

Registers. The Z89320 has 12 internal registers and up to an additional eight external registers. The external registers are user definable for peripherals such as A/D or D/A or to DMA or other addressing peripherals. External registers are accessed in one machine cycle the same as internal registers.

FUNCTIONAL DESCRIPTION

General. The Z89320 is a high-performance Digital Signal Processor with a modified Harvard-type architecture with separate program and data memory. The design has been optimized for processing power and minimizing silicon space.

Instruction Timing. Many instructions are executed in one machine cycle. Long immediate instructions and Jump or Call instructions are executed in two machine cycles. When the program memory is referenced in internal RAM indirect mode, it takes three machine cycles. In addition, one more machine cycle is required if the PC is selected as the destination of a data transfer instruction. This only happens in the case of a register indirect branch instruction.

An Acc + P => Acc; $a(i) * b(j) \rightarrow P$ calculation and modification of the RAM pointers, is done in one machine cycle. Both operands, a(i) and b(j), can be located in two independent RAM (0 and 1) addresses.

Multiply/Accumulate. The multiplier can perform a 16-bit x 16-bit multiply or multiply accumulate in one machine cycle using the Accumulator and/or both the X and Y inputs. The multiplier produces a 32-bit result, however, only the 24 most significant bits are saved for the next instruction or accumulation. For operations on very small numbers where the least significant bits are important, the data should first be scaled by eight bits (or the multiplier and multiplicand by four bits each) to avoid truncation errors. Note that all inputs to the multiplier should be fractional two's complement 16-bit binary numbers. This puts them in the range [-1 to 0.9999695], and the result is in 24 bits so that the range is [-1 to 0.9999999]. In addition, if 8000H is loaded into both X and Y registers, the resulting multiplication is considered an illegal operation as an overflow would result. Positive one cannot be represented in fractional notation, and the multiplier will actually yield the result 8000H x 8000H = $8000H(-1 \times -1 = -1)$.

ALU. The 24-bit ALU has two input ports, one of which is connected to the output of the 24-bit Accumulator. The other input is connected to the 24-bit P-Bus, the upper 16 bits of which are connected to the 16-bit D-Bus. A shifter between the P-Bus and the ALU input port can shift the data by three bits right, one bit right, one bit left or no shift.

Hardware Stack. A six-level hardware stack is connected to the D-Bus to hold subroutine return addresses or data. The CALL instruction pushes PC+2 onto the stack. The RET instruction pops the contents of the stack to the PC.

User Inputs. The Z89320 has two inputs, UI0 and UI1, which may be used by Jump and Call instructions. The Jump or Call tests one of these pins and if appropriate, jumps to a new location. Otherwise, the instruction behaves like a NOP. These inputs are also connected to the status register bits S10 and S11 which may be read by the appropriate instruction (Figure 4).

User Outputs. The status register bits S5 and S6 are connected to UO0 and UO1 pins and may be written to by the appropriate instruction. The status bits are inverted prior to being output to the external pin.

Interrupts. The Z89320 has three positive edge-triggered interrupt inputs. An interrupt is acknowledged at the end of any instruction execution. It takes two machine cycles to enter an interrupt instruction sequence. The PC is pushed onto the stack. A RET instruction transfers the contents of the stack to the PC and decrements the stack pointer by one word. The priority of the interrupts is INT0 = highest, INT2 = lowest.

Registers. The Z89320 has 12 physical internal registers and up to eight user-defined external registers. The EA2-EA0 determines the address of the external registers. The /EI, /RDYE, and ER//W signals are used to read or write from the external registers.

[⊗]ZiL05

PRELIMINARY

REGISTERS

There are 12 internal registers which are defined below:

Register	Register Definition		
P	Output of Multiplier, 24-bit		
X	X Multiplier Input, 16-bit		
Y	Y Multiplier Input, 16-bit		
A	Accumulator, 24-bit		
SR	Status Register, 16-bit		
Pn:b	Six Ram Address Pointers, 8-bit each		
PC	Program Counter, 16-bit		

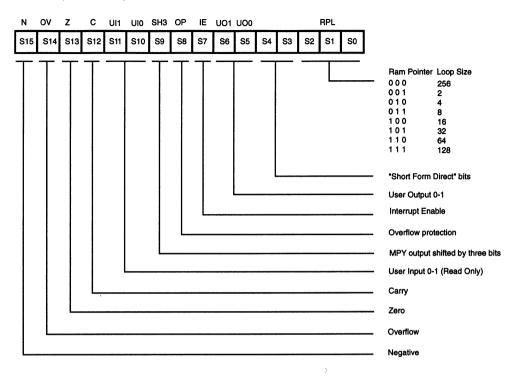
The following are virtual registers as physical RAM does not exist on the chip.

Register	Register Definition		
EXTn BUS	External registers, 16-bit D-Bus		
Dn:b	Eight Data Pointers		

P holds the result of multiplications and is read-only.

X and **Y** are two 16-bit input registers for the multiplier. These registers can be utilized as temporary registers when the multiplier is not being used. Since the multiplier provides a flow through process, any data placed in the X or Y register automatically invokes a multiplication. A is a 24-bit Accumulator. The output of the ALU is sent to this register. When 16-bit data is transferred into this register, it goes into the 16 MSB's and the least significant eight bits are set to zero. Only the upper 16 bits are transferred to the destination register when the Accumulator is selected as a source register in transfer instructions.

Pn:b are the pointer registers for accessing data RAM, (n = 0, 1, 2 refers to the pointer number) (b = 0, 1 refers to RAM Bank 0 or 1). They can be directly read from or written to, and can point to locations in data RAM or Program Memory.


EXTn are external registers (n = 0 to 7). There are eight 16-bit registers here for mapping external devices into the address space of the processor. Note that the actual register RAM does not exist on the chip, but would exist as part of the external device such as an ADC result latch.

bus is a read-only register which, when accessed, returns the contents of the D-Bus.

Dn:b refer to possible locations in RAM that can be used as a pointer to locations in program memory. The programmer decides which location to choose from two bits in the status register and two bits in the operand. Thus, only the lower 16 possible locations in RAM can be specified. At any one time there are eight usable pointers, four per bank, and the four pointers are in consecutive locations in RAM. For example, if S3/S4 = 01 in the status register, then D0:0/D1:0/D2:0/D3:0 refer to locations 4/5/6/7 in RAM Bank 0. Note that when the data pointers are being written to, a number is actually being loaded to Data RAM, so they can be used as a limited method for writing to RAM.

⊗ Zilos

REGISTERS (Continued)

SR is the status register (Figure 4) which contains the ALU status and certain control bits as shown in the following table.

Table 3. Status Register Bit Functions			Table 4. RPL Description		
Status Register Bit	Function	S2	S1	S0	Loop Size
		0	0	0	256
S15 (N)	ALU Negative	Ō	Ō	1	2
S14 (OV)	ALU Overflow	Õ	1	Ó	4
S13 (Z)	ALU Zero	0	1	1	8
S12 (L)	Carry	0	'	1	0
S11 (ÚI1)	User Input 1	1	0	0	16
S10 (UIO)	User Input 0	1	0	1	32
	•	1	1	0	64
S9 (SH3) S8 (OP)	MPY Output Shifted by three bits Overflow Protection	1	1	1	128
S7 (IE) S6 (UO1) S5 (UO0) S4-S3 S2-S0 (RPL)	Interrupt Enable User Output 1 User Output 0 "Short Form Direct" bits RAM Pointer Loop Size		set by the h	ardware ar	ead in its entirety. S15- Id can only be read by oftware.

S15-S12 are set/reset by the ALU after an operation. S11-S10 are set/reset by the user inputs. S6-S0 are control bits described elsewhere. S7 enables interrupts. S8, if 0 (reset), allows the hardware to overflow. If S8 is set, the hardware clamps at maximum positive or negative values instead of overflowing. If S9 is set and the MPYA or MPYS instruction is used, then the shifter to the ALU shifts the result three bits right.

PC is the Program Counter. When this register is assigned as a destination register, one NOP machine cycle is added automatically to adjust the pipeline timing.

RAM ADDRESSING

The address of the RAM is specified in one of three ways (Figure 5):

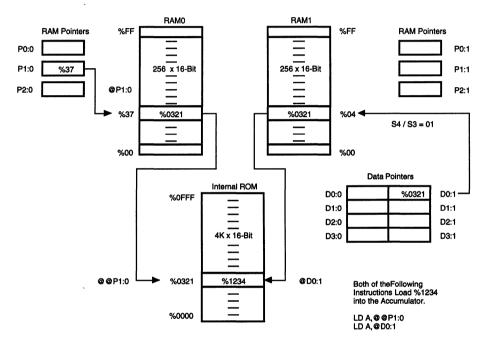


Figure 5. RAM, ROM, and Pointer Architecture

Register Indirect

Pn:b n = 0-2, b = 0-1

The most commonly used method is a register indirect addressing method, where the RAM address is specified by one of the three RAM address pointers (n) for each bank (b). Each source/destination field in Figures 6 and 9 may be used by an indirect instruction to specify a register pointer and its modification after execution of the instruction.

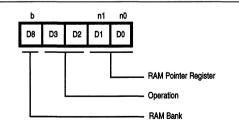


Figure 6. Indirect Register

RAM ADDRESSING (Continued)

The register pointer is specified by the first and second bits in the source/destination field and the modification is specified by the third and fourth bits according to the following table:

D3-D0)	Meaning
00xx 01xx 10xx	NOP +1 -1/LOOP	No Operation Simple Increment Decrement Modulo the Loop Count
11xx	+1/LOOP	Increment Modulo the Loop Count
xx00	P0:0 or P0:1	See Note a.
xx01	P1:0 or P1:1	See Note a.
xx10	P2:0 or P2:1	See Note a.
xx11		See Short Form Direct

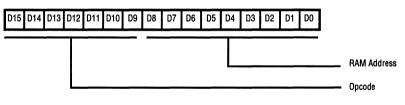
Notes:

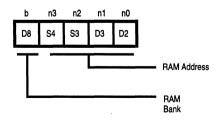
 If bit 8 is zero, P0:0 to P2:0 are selected; if bit 8 is one, P0:1 to P2:1 are selected. When LOOP mode is selected, the pointer to which the loop is referring will cycle up or down, depending on whether a -LOOP or +LOOP is specified. The size of the loop is obtained from the least significant three bits of the Status Register. The increment or decrement of the register is accomplished modulo the loop size. As an example, if the loop size is specified as 32 by entering the value 101 into bits 2-0 of the Status Register (S2-S0) and an increment +LOOP is specified in the address field of the instruction. i.e., the RPi field is 11xx, then the register specified by RPi will increment, but only the least significant five bits will be affected. This means the actual value of the pointer will cycle round in a length 32 loop, and the lowest or highest value of the loop, depending on whether the loop is up or down, is set by the three most significant bits. This allows repeated access to a set of data in RAM without software intervention. To clarify, if the pointer value is 10101001 and if the loop = 32, the pointer increments up to 10111111. then drops down to 10100000 and starts again. The upper three bits remaining unchanged. Note that the original value of the pointer is not retained.

Direct Register

The second method is a direct addressing method. The address of the RAM is directly specified by the address field of the instruction. Because this addressing method consumes nine bits (0-511) of the instruction field, some instructions cannot use this mode (Figure 7).

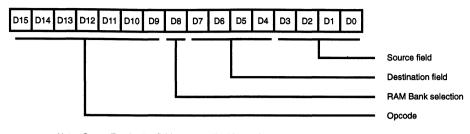
Figures 9 to 14 show the different register instruction formats along with the two tables below Figure 9.




Figure 7. Direct Internal RAM Address Format

Short Form Direct

Dn:b n = 0-3, b = 0-1


The last method is called Short Form Direct Addressing, where one out of 32 addresses in internal RAM can be specified. The 32 addresses are the 16 lower addresses in RAM Bank 0 and the 16 lower addresses in RAM Bank 0 or 1. The 16 addresses are determined by a 4-bit code comprised of bits S3 and S4 of the status register and the third and fourth bits of the Source/Destination field. Because this mode can specify a direct address in a short form, all of the instructions using the register indirect mode can use this mode (Figure 8). This method can access only the lower 16 addresses in the both RAM banks and as such has limited

use. The main purpose is to specify a data register, located in the RAM bank, which can then be used to point to a program memory location. This facilitates down-loading look-up tables etc. from program memory to RAM.

INSTRUCTION FORMAT

Note: Source/Destination fields can specify either register or RAM address in RAM pointer indirect mode.

Figure 9.	General	Instruction	Format
-----------	---------	-------------	--------

Table 5. Registers

	-
Source/Destination	Register
0000	BUS**
0001	х
0010	Y
0011	А
0100	SR
0101	STACK
0110	PC
0111	P**
1000	EXTO
1001	EXT1
1010	EXT2
1011	EXT3
1100	EXT4
1101	EXT5
1110	EXT6
1111	EXT7

Table 6. Register Pointers Field

Source/Destination	Meaning			
00xx	NOP			
01xx	+1			
10xx	-1/LOOP			
11xx	+1/LOOP			
xx00	P0:0 or P0:1*			
xx01	P1:0 or P1:1*			
xx10	P2:0 or P2:1*			
xx11	Short Form Direct Mode***			

Notes:

If RAM Bank bit is 0, then Pn:0 are selected.

If RAM Bank bit is 1, then Pn:1 are selected.

** Read only.

*** When the short form direct mode is selected, 00000-01111 or 10000-11111 are used as RAM addresses.

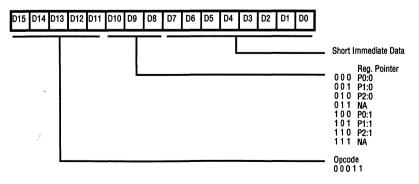
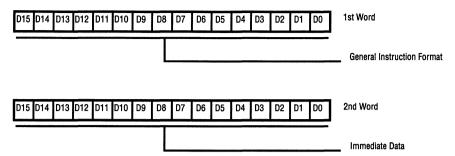



Figure 10. Short Immediate Data Load Format

INSTRUCTION FORMAT (Continued)

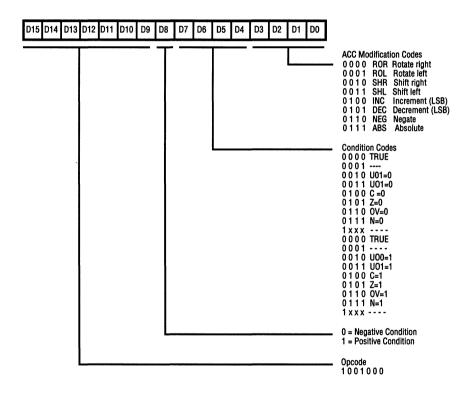


Figure 12. Accumulator Modification Format

.

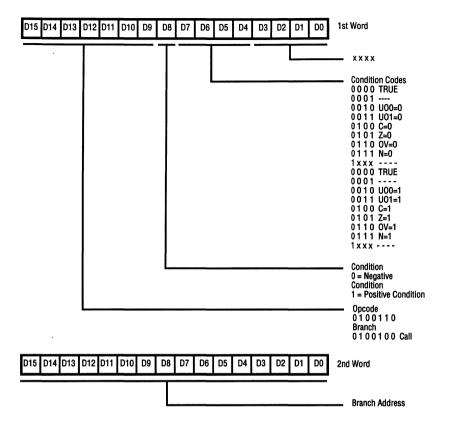
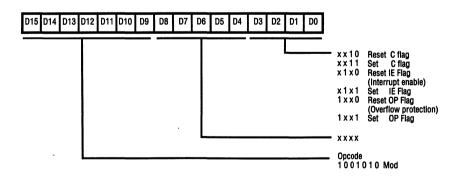



Figure 13. Branching Format

ADDRESSING MODES

This section discusses the syntax of the addressing modes supported by the DSP assembler. The symbolic name is

used in the discussion of instruction syntax in the instruction descriptions.

	Table 7. Ad	dressing Modes
Symbolic Name	Syntax	Description
<pregs></pregs>	Pn:b	Pointer Register
<dregs> (Points to RAM)</dregs>	Dn:b	Data Register
<hwregs></hwregs>	X,Y,PC,SR,P EXTn,A,BUS	Hardware Registers
<accind> (Points to Program Memory)</accind>	@A	Accumulator Memory Indirect
<direct></direct>	<expression></expression>	Direct Address Expression
<limm></limm>	# <const exp=""></const>	Long (16-bit) Immediate Value
<simm></simm>	# <const exp=""></const>	Short (8-bit) Immediate Value
<regind> (Points to RAM)</regind>	@Pn:b @Pn:b+ @Pn:b-LOOP @Pn:b+LOOP	Pointer Register Indirect Pointer Register Indirect with Increment Pointer Register Indirect with Loop Decrement Pointer register Indirect with Loop Increment
<memind> (Points to Program Memory)</memind>	@@Pn:b @Dn:b @@Pn:b–LOOP @@Pn:b+LOOP @@Pn:b+	Pointer Register Memory Indirect Data Register Memory Indirect Pointer Register Memory Indirect with Loop Decremer Pointer Register Memory Indirect with Loop Increment Pointer Register Memory Indirect with Increment

There are eight distinct addressing modes for transfer of data (Figure 5 and Table 7).

<pregs>, <hwregs>. These two modes are used for simple loads to and from registers within the chip such as loading to the Accumulator, or loading from a pointer register. The names of the registers need only be specified in the operand field. (Destination first then source.)

<regind>. This mode is used for indirect accesses to the data RAM. The address of the RAM location is stored in the

pointer. The "@" symbol indicates "indirect" and precedes the pointer, so @P1:1 tells the processor to read or write to a location in RAM1, which is specified by the value in the pointer.

<dregs>. This mode is also used for accesses to the data RAM but only the lower 16 addresses in either bank. The 4-bit address comes from the status register and the operand field of the data pointer. Note that data registers are typically used not for addressing RAM, but loading data from program memory space.

[⊗]ZiLŒ

remind>. This mode is used for indirect, indirect accesses to the programmemory. The address of the memory is located in a RAM location, which is specified by the value in a pointer. So @@P1:1 tells the processor to read (write is not possible) from a location in memory, which is specified by a value in RAM, and the location of the RAM is in turn specified by the value in the pointer. Note that the data pointer can also be used for a memory access in this manner, but only one "@" precedes the pointer. In both cases the memory address stored in RAM is incremented by one each time the addressing mode is used to allow easy transfer of sequential data from program memory.

<a>ccind>. Similar to the previous mode, the address for the program memory read is stored in the Accumulator. @A in the second operand field loads the number in memory specified by the address in A. **direct>.** The direct mode allows read or write to data RAM from the Accumulator by specifying the absolute address of the RAM in the operand of the instruction. A number between 0 and 255 indicates a location in RAM0, and a number between 256 and 511 indicates a location in RAM1.

Imm>. This indicates a long immediate load. A 16-bit word can be copied directly from the operand into the specified register or memory.

<simm>. This can only be used for immediate transfer of 8-bit data in the operand to the specified RAM pointer.

CONDITION CODES

The following defines the condition codes supported by the DSP assembler. If the instruction description refers to the

<cc> (condition code) symbol in one of its addressing modes, the instruction will only execute if the condition is true.

Name	Description	Name	Description
С	Carry		Not User One
EQ	Equal (same as Z)	NZ	Not zero
F	False	OV	Overflow
IE	Interrupts Enabled	PL	Plus (Positive)
MI	Minus	UO	User Zero
NC	No Carry	U1	User One
NE	Not Equal (same as NZ)	UGE	Unsigned Greater Than or
NIE	Not Interrupts Enabled		Equal (Same as NC)
NOV	Not Overflow	ULT	Unsigned Less Than (Same as C)
NUO	Not User Zero	Z	Zero

Table 8. Condition Codes

INSTRUCTION DESCRIPTIONS

inst.	Description	Synopsis	Operands	Words	Cycles	Examples
ABS	Absolute Value	ABS[<cc>,]<src></src></cc>	<cc>,A</cc>	1	1	ABS NC,A
			Α	1	1	ABS A
ADD	Addition	ADD <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	ADD A,P0:0
			A, <dregs></dregs>	1	1	ADD A,D0:0
			A, <limm></limm>	2	2	ADD A,#%1234
			A. <memind></memind>	1	3	ADD A,@@P0:0
			A, <direct></direct>	1	1	ADD A, %F2
			A <regind></regind>	1	1	ADD A.@P1:1
			A, <hwregs></hwregs>	1	1	ADD A,X
ND	Bitwise AND	AND <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	AND A,P2:0
			A <dregs></dregs>	1	1	AND A,DO:1
			A, <limm></limm>	2	2	AND A,#%1234
			A, <memind></memind>	1	3	AND A,@@P1:0
			A. <direct></direct>	1	1	AND A,%2C
			A, <regind></regind>	1	1	AND A.@P1:2+LOOP
			A, <hwregs></hwregs>	1	1	AND A, EXT3
CALL	Subroutine call	CALL [<cc>,]<address></address></cc>	<cc>,<direct></direct></cc>	2	2	CALL Z,sub2
			<direct></direct>	2	2	CALL sub1
CCF	Clear carry flag	CCF	None	1	1	CCF
CIEF	Clear Carry Flag	CIEF	None	1	1	CIEF
COPF	Clear OP flag	COPF	None	1	1	COPF
CP	Comparison	CP <src1>,<src2></src2></src1>	A, <pregs></pregs>	1	1	CP A,P0:0
			A, <dregs></dregs>	1	1	CP A,D3:1
			A, <memind></memind>	1	3	CP A,@@P0:1
			A. <direct></direct>	1	1	CP A, %FF
			A, <regind></regind>	1	1	CP A,@P2:1+
			A, <hwregs></hwregs>	1	1	CP A, STACK
			A <limm></limm>	2	2	CP A,#%FFCF
DEC	Decrement	DEC [<cc>,]<dest></dest></cc>	<cc>A,</cc>	1	1	DEC NZ,A
			Α	- 1	1	DEC A
NC	Increment	INC [<cc>,] <dest></dest></cc>	<cc>,A</cc>	1	1	INC PL,A
			A	1	1	INC A
JP	Jump	JP [<cc>,]<address></address></cc>	<cc>,<direct></direct></cc>	2	2	JP NIE,Label
			<direct></direct>	2	2	JP Label

[⊗]Silas

PRELIMINARY

Description	Synopsis	Operands	Words	Cycles	Examples
Load destination	LD <dest>,<src></src></dest>	A, <hwregs></hwregs>	1	1	LD A,X
with source		A, <dregs></dregs>	1	1	LD A,D0:0
		A, <pregs></pregs>	1	1	LD A.P0:1
			1	1	LD A,@P1:1
			1	3	LD A,@D0:0
			1	1	LD A,124
		•	1	1	LD 124,A
					LD DO:0,EXT7
					LD P1:1,#%FA
					LD P1:1,EXT1
					LD@P1:1,#1234
				-	LD @P1:1+,X
					LD Y,PO:0
					LD SR,D0:0
				2	LD PC,#%1234
					LD X,@A
				-	LD Y,@D0:0
					ld A,@p0:0-loop
		<hwregs>,<hwregs></hwregs></hwregs>	1	1	LD X,EXT6
		Note: When <dest> is <hwreas:< td=""><td><pre>> <dest></dest></pre></td><td>cannot be</td><td>P</td></hwreas:<></dest>	<pre>> <dest></dest></pre>	cannot be	P
		if <src> is SR.</src>			
Multiply	MI D <srcl> <srcl>[<hank switch="">]</hank></srcl></srcl>	<hwreas> <reaind></reaind></hwreas>	1	1	MLD A,@P0:0+L00P
Manipiy					MLD A,@P1:0,0FF
					MLD @P1:1,@P2:0
					MLD @P0:1,@P1:0,0N
		Cicgina, Cicgina, Dank Switch			
		Note: If src1 is <regind> it mus a bank 0 register.</regind>	t be a ba	nk 1 regist	er. Src2's <regind be<="" must="" td=""></regind>
		Note: <hwregs> for src1 cannot</hwregs>	be X.		
				id>the <ba< td=""><td>nd switch> defaults to OFF.</td></ba<>	nd switch> defaults to OFF.
Multiply and add	MPVA zeroly zero?>[zhank ewitch>]		1	1	MPYA A,@P0:0
multiply and due	WILLIN SWILLING SWILLING				
					MPYA A,@P1:0,0FF
					MPYA @P1:1,@P2:0
		<regina>,<regina>,<bank switch:<="" td=""><td>> </td><td>I</td><td>MPYA@P0:1,@P1:0,0N</td></bank></regina></regina>	>	I	MPYA@P0:1,@P1:0,0N
		Note: If src1 is <regind> it must</regind>	be a bar	ık 1 registe	er. Src2's <regind> must be</regind>
		a bank 0 register.			
		a bank 0 register. Note: https://www.egs-forstation.com	be X.		
		a bank 0 register. Note: <hwregs> for src1 cannol Note: For the operands <hwregs< td=""><td>be X.</td><td>id>the ha</td><td>ink switch> defaults to OFF</td></hwregs<></hwregs>	be X.	id>the ha	ink switch> defaults to OFF
		With source Multiply MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	with source A <dregs> A <dregs A <dregs> A <dregs A <d< td=""><td>with source Adregs> 1 -dregs>,-dwregs> 1 -dregs>,-dwregs> 1 -dregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-decind> 1 -dwregs>,-decind> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>, cregind> 1 -dwregs>, cregind> 1 -dwregs>, cregind>,-death switch> 1 -dwregs>, cregind>,-death switch> 1 -dwregs>, cregind>,-death switch> 1</td><td>with source A_cdregs> 1 1 A_creginds 1 1 A_creginds 1 1 A_creginds 1 1 3 A_cdregs> 1 1 A_creginds 1 1 3 A_cdregs> 1 1 A_creginds_three 1 1 3 A_cdregs> 1 1 A_creginds_three 1 1 1 3 A_cdregs> 1 1 A_cdregs>_chwregs> 1 1 1 1 3 1</td></d<></dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs </dregs></dregs </dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs></dregs>	with source Adregs> 1 -dregs>,-dwregs> 1 -dregs>,-dwregs> 1 -dregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-decind> 1 -dwregs>,-decind> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>,-dwregs> 1 -dwregs>, cregind> 1 -dwregs>, cregind> 1 -dwregs>, cregind>,-death switch> 1 -dwregs>, cregind>,-death switch> 1 -dwregs>, cregind>,-death switch> 1	with source A_cdregs> 1 1 A_creginds 1 1 A_creginds 1 1 A_creginds 1 1 3 A_cdregs> 1 1 A_creginds 1 1 3 A_cdregs> 1 1 A_creginds_three 1 1 3 A_cdregs> 1 1 A_creginds_three 1 1 1 3 A_cdregs> 1 1 A_cdregs>_chwregs> 1 1 1 1 3 1

INSTRUCTION DESCRIPTIONS (Continued)

inst.	Description	Synopsis	Operands	Words	Cycles	Examples
MPYS	Multiply and subtract	MPYS <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	<hwregs>,<regind> <hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch:<="" td=""><td>1</td><td>1 1</td><td>MPYS A,@P0:0 MPYS A,@P1:0,0FF MPYS @P1:1,@P2:0 MPYS@P0:1,@P1:0,0N</td></bank></regind></regind></regind></regind></bank></regind></hwregs></regind></hwregs>	1	1 1	MPYS A,@P0:0 MPYS A,@P1:0,0FF MPYS @P1:1,@P2:0 MPYS@P0:1,@P1:0,0N
		N	lote: If src1 is <regind> it must be a bank 0 register. lote: <hwregs> for src1 cannot be lote: For the operands <hwregs>, < For the operands <regind>, <</regind></hwregs></hwregs></regind>	X. regind>	•the <ban< td=""><td>k switch> defaults to OFF</td></ban<>	k switch> defaults to OFF
NEG	Negate	NEG <cc>,A</cc>	<cc>, A</cc>	1		NEG MI,A NEG A
	No operation	NOP	A None	1		NOP
NOP	No operation					
OR	Bitwise OR	OR <dest>,<src></src></dest>	A, <pregs></pregs>	1		OR A,P0:1
	,		A, <dregs></dregs>	1		OR A, D0:1
			A, <limm></limm>	2		OR A,#%2C21
			A, <memind></memind>	1		or A,@@P2:1+
			A, <direct></direct>	1		OR A, %2C
			A, <regind></regind>	1	1	OR A,@P1:0-LOOP
			A, <hwregs></hwregs>	1	1	OR A,EXT6
POP	Pop value	POP <dest></dest>	<pregs></pregs>	1	1	POP PO:0
	from stack		<dregs></dregs>	1	1	POP D0:1
			<regind></regind>	1	1	POP @P0:0
			<hwregs></hwregs>	1	1	POP A
PUSH	Push value	PUSH <src></src>	<pre><pre>cpregs></pre></pre>	1	1	PUSH P0:0
	onto stack		<dregs></dregs>	1	1	PUSH D0:1
			<regind></regind>	1		PUSH @P0:0
			<hwreas></hwreas>	1	1	PUSH BUS
			<limm></limm>	2		PUSH #12345
			<accind></accind>	1		PUSH @A
			<memind></memind>	1	3	PUSH @@P0:0
RET	Return from subroutine	RET	None	1	2	RET
RL	Rotate Left	RL <cc>,A</cc>	<cc>,A</cc>	1	1	RL NZ,A
			Α	1	1	RL A
RR	Rotate Right	RR <cc>,A</cc>	<cc>,A</cc>	1		RR C,A
			Α	1	1	RR A

inst.	Description	Synopsis	Operands	Words	Cycles	Examples
SCF	Set C flag	SCF	None	1	1	SCF
SIEF	Set IE flag	SIEF	None	1	1	SIEF
SLL	Shift left	SLL	[<cc>,]A</cc>	1	1	SLL NZ,A
	logical		Α	1	1	SLL A
SOPF	Set OP flag	SOPF	None	1	1	SOPF
SRA	Shift right	SRA <cc>,A</cc>	<cc>,A</cc>	1	1	SRA NZ,A
	arithmetic		Α	1	1	SRA A
SUB	Subtract	SUB <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	SUB A,P1:1
		·	A, <dregs></dregs>	1	1	SUB A,D0:1
			A, <limm></limm>	2	2	SUB A.#%2C2C
			A, <memind></memind>	1	3	SUB A,@D0:1
			A, <direct></direct>	1	1	SUB A,%15
			A, <regind></regind>	1	1	SUB A,@P2:0-LOOP
			A, <hwregs></hwregs>	1	1	SUB A, STACK
XOR	Bitwise exclusive OR	XOR <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	XOR A,P2:0
			A, <dregs></dregs>	1	1	XOR A,DO:1
			A, <limm></limm>	2	2	XOR A,#13933
			A, <memind></memind>	1	3	XOR A,@@P2:1+
			A, <direct></direct>	1	1	XOR A, %2F
			A, <regind></regind>	1	1	XOR A,@P2:0
			A, <hwregs></hwregs>	1	1	XOR A, BUS

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this two keywords are used (ON and OFF) which state the direction of the switch. These keywords are referred to in the instruction descriptions through the
bank switch> symbol.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min.	Max.	Units
V _{cc}	Supply Voltage (*)	-0.3	+7.0	v
V _{CC} T _{STG} T	Storage Temp	-65°	+150°	С
۲	Oper Ambient Temp		+	С

Notes:

* Voltage on all pins with respect to GND.

+ See Ordering Information.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Figure 15). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

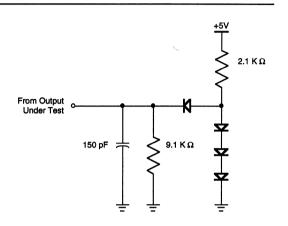
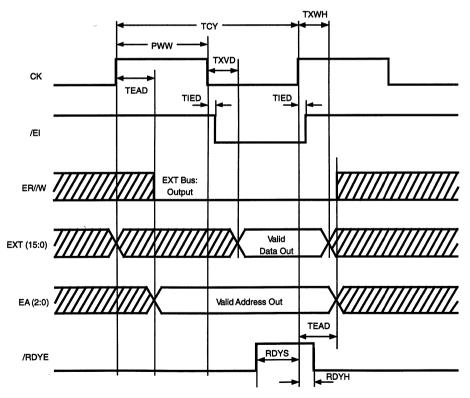


Figure 15. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS


 $(V_{pp} = 5V \pm 5\%, T_{a} = 0^{\circ}C$ to +70°C unless otherwise specified)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{DD}	Supply Current	V _{DD} = 5.25V fclock = 10 MHz		60	mA
I _{DC}	DC Power Consumption	$V_{DD} = 5.25V$	1	5	mA
V _{IH}	Input High Level		0.9 V _{DD}		V
V _n	Input Low Level		60	0.1 V _{DD}	V
IĽ	Input Leakage			1	μA
V _{OH}	Output High Voltage	I _{OH} = -100 μA	V _{DD} -0.2		V
VoL	Output Low Voltage	l _{oн} = −100 μA l _{oi} = 0.5 mA	55	0.5	V
I _{FL}	Output Floating Leakage Current			5	μA

AC ELECTRICAL CHARACTERISTICS (V_{DD} = 5V ±5%, T_A = 0°C to +70°C unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units
ТСҮ	Clock Cycle Time	100	1000	ns
PWW	Clock Pulse Width	45		ns
Tr	Clock Rise Time	2	4	ns
Tf	Clock Fall Time	2	4	ns
TEAD	EA,ER//W Delay from CK	15	25	ns
TXVD	EXT Data Output Valid from CK	5	25	ns
TXWH	EXT Data Output Hold from CK	15		ns
TXRS	EXT Data Input Setup Time	15		ns
TXRH	EXT Data Input Hold from CK	0	15	ns
TIED	/EI Delay Time from CK	0	5	ns
RDYS	Ready Setup Time	10		ns
RDYH	Ready Hold Time	0		ns

AC TIMING DIAGRAM

AC TIMING DIAGRAM (Continued)

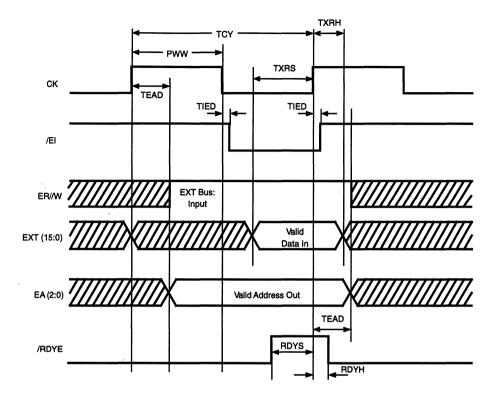
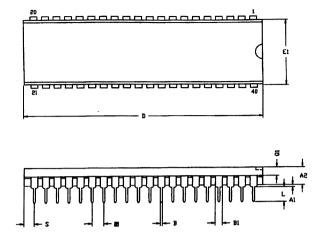
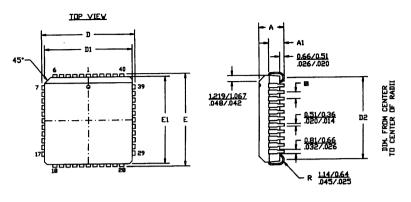



Figure 17. Read From External Device Timing

PACKAGE INFORMATION



SYMBOL	MILLI	METER	IN	СН
STRIDEL	MIN	MAX	MIN	MAX
Al	0.51	0.81	.020	SE0.
SA	3.25	3.43	.128	.135
B	0.38	0.53	.015	.021
Bl	1.02	1.52	.040	.060
C	0:23	0.38	.009	.015
D	52.07	52.58	2.050	2.070
E	15.24	15.75	.600	.620
El	13.59	14.22	.535	.560
	2.54	TYP	.100	TYP
eA	15.49	16.51	.610	.650
L	3.18	3.81	.125	.150
. Q1	1.52	1.91	.060	.075
S	1.52	2.29	.060	.090

CONTROLLING DIMENSIONS . INCH

40-Lead DIP Package Diagram

PACKAGE INFORMATION (Continued)

NOTES	
1. CONTROLLING DIMENSIONS : INCH 2. LEADS ARE COPLANAR WITHIN .004 IN 3. DIMENSION : <u>MM</u> INCH	•

SYMBOL	MILLI	IETER	IN	СН
STADUC	MIN	MAX	MIN	MAX
A	4.27	4.57	.168	.180
A1	2.67	2.92	.105	.115
D/E	17.40	17.65	.685	.695
D1/E1	16.51	16.66	.650	.656
D2	15.24	16.00	.600	.630
	1.27	TYP	.050	TYP

44-Pin PLCC Package Diagram

[⊗]ZiL05

ORDERING INFORMATION

Z89320

10 MHz	10 MHz
40-pin DIP	44-pin PLCC
Z8932010PSC	Z8932010VSC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

P = Plastic DIP V = Plastic Chip Carrier

Temperature $S = 0^{\circ}C$ to $+70^{\circ}C$

Speed

10 = 10 MHz

Environmental C = Plastic Standard

Example:

Ζ	89320	10	Ρ	S	CÌ	
					<u> </u>	
			L	•		
		L				

is a Z89320, 10 MHz, DIP, 0°C to +70°C, Plastic Standard Flow.

Environmental Flow Temperature Package Speed Product Number Zilog Prefix ·

. .

.

Z89320 16-Bit Mixed Signal Processor

Z89321 16-Bit Mixed 7 **Signal Processor**

Zilog Sales Offices Representatives & Distributors

6

72

ADVANCE INFORMATION SPECIFICATION

Z89321

16-BIT DIGITAL SIGNAL PROCESSOR

FEATURES

- 16-Bit Single Cycle Instructions
- Zero Overhead Hardware Looping
- 16-Bit Data
- Ready Control for Slow Peripherals
- Single Cycle Multiply/Accumulate (100 ns)
- Six-Level Stack
- 512 Words of On-Chip RAM
- Programmable Timer

- 16-Bit I/O Port
- 4K Words of On-Chip Masked ROM
- Three Vectored Interrupts
- Two Conditional Branch Inputs/Two User Outputs
- 24-Bit ALU, Accumulator and Shifter
- IBM[®] PC Development Tools
- Cost Effective 44-Pin PLCC Package
- CODEC Interface

GENERAL DESCRIPTION

The Z89321 is a second generation, 16-bit, fractional, two's complement CMOS Digital Signal Processor (DSP). Most instructions, including multiply and accumulate, are accomplished in a single clock cycle. The processor contains 1 Kbyte of on-chip data RAM (two blocks of 256 16-bit words), 4K words of program ROM. Also, the processor features a 24-bit ALU, a 16 x 16 multiplier, a 24-bit Accumulator and a shifter. Additionally, the processor contains a six-level stack, three vectored interrupts and two inputs for conditional program jumps. Each RAM block contains a set of three pointers which may be incremented or decremented automatically to affect hardware looping without software overhead. The data RAMs can be simultaneously addressed and loaded to the multiplier for a true single cycle multiply.

The device includes a 16-bit I/O bus for transferring data or for mapping peripherals into the processor address space. Additionally, there are two general purpose user inputs and two user outputs. Operation with slow peripherals s is accomplished with a ready input pin.

Development tools for the IBM PC include a relocatable assembler, a linker loader, and an ANSI-C compiler. Also, the development tools include a simulator/debugger, a cross assembler for the TMS320 family assembly code and a hardware emulator.

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	Vss

GENERAL DESCRIPTION (Continued)

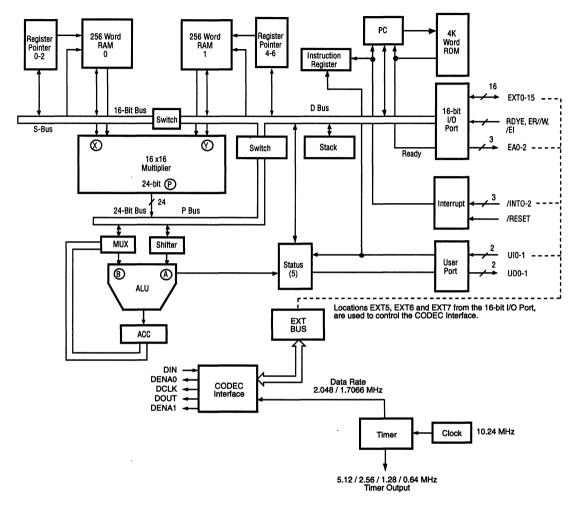


Figure 1. Functional Block Diagram

PIN DESCRIPTION

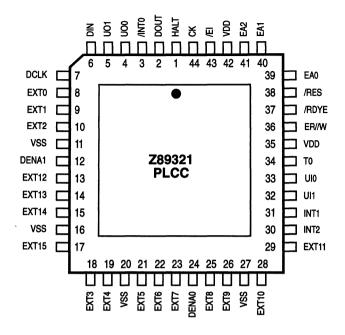


Figure 2. 44-Pin PLCC Pin Assignments

[©]ZiL05

PIN DESCRIPTION (Continued)

No.	Symbol	Function	Direction	
1	HALT	Stop execution	Input	
2	D _{out}	Data Out	Output	
3	/INTO	Interrupt	Input	
4-5	UO0-UO1	User output	Output	
6	D _{IN}	Data In	Input	
7	DCLK	CODEC Lock	Output	
8-10	EXT0-EXT2	External data bus	Input/Output	
11	V _{ss} DENA1	Ground	Input	
12	DĚNA1	Enable 1	Output	
13-15	EXT12-EXT14	External data bus	Input/Output	
16	V _{ss} EXT15	Ground	Input	
17		External data bus	Input/Output	
18-19	EXT3-EXT4	External data bus	Input/Output	
20	V _{ss}	Ground	Input	
21-23	EXT5-EXT7	External data bus	Input/Output	
24	DENA0	Enable 0	Output	
25-26	EXT8-EXT9	External Data Bus	Input/Output	
27	V _{ss}	Ground	Input	
28-29	EXT10-EXT11	External data bus	Input/Output	
30	/INT2	Interrupt	Input	
31	/INT1	Interrupt	Input	
32	UI1	User input	Input	
33	UIO	User input	Input	
34	то	Timer Output	Output	
35	V _{DD}	Power Supply	Input	
36	ER//W	R/W for external bus	Output	
37	/RDYE	Data ready	Input	
38	/RES	Reset	Input	
39-41	EAO-EA2	External address bus	Output	
42	VDD	Power Supply	Input	
43	/ĔĨ	Data strobe for external bus	Output	
44	СК	Clock	Input	

Table 1. 44-Pin PLCC Pin Identification

CODEC INTERFACE CONTROLLER

External DSP registers EXT5 and EXT6 are used by External Codec Interface. The accessibility of these devices is driven by the Codec/Timer Control register (EXT7).

Two different Codecs can be addressed by the Codec/ Timer Control register (EXT7). The data can be loaded to Codec0 or Codec1 by writing to EXT5 or EXT6 correspondingly. In order to receive the data from the Codecs the DSP should read EXT5 and EXT6.

1. Codec Data Registers - EXT5 and EXT6

The DSP writes data to Codecs using the lower eight bits of the EXT5 and EXT6 registers. The eight remaining upper bits of EXT5 and EXT6 are reserved, as shown in Table 2.

2. Codec/Timer Control Register

The DSP can define the status of the Codecs and the frequency of the Timer output by writing data to a Codec/ Timer Control Register (Table 3).

Table 2. Codec Data Registers - EXT5 and EXT6							
Field	Position	Attrib.	Value	Label			
Reserved	fedcba98	R W		Return '0' No effect			
	76543210	R W	%NN %NN	Data from Codec Data to Codec			

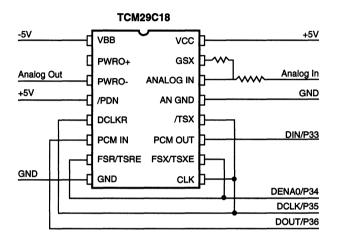
Table 3. Codec/Tim	er Control Register
--------------------	---------------------

Field	Position	Attrib.	Value	Label	
Reserved	fedcba9876	R		Return '0'	
		W		No effect	
Codec_enable	54	R/W	00	Disabled	
			01	C0 enable	
			10	Reserved	
			11	Enabled	
Div_5/6		R/W	0	Divided-by-6	
	,		1	Divided-by-5	
Sampling	2	R/W	0	Normal	
			1	Slow	
Timer_rate	10	R/W	00	Divided-by-2	
			01	Divided-by-4	
			10	Divided-by-8	
			11	Divided-by-16	

Codec_enable. This field enables the Codecs. The options are disable both Codecs, enable both Codecs, or enable Codec0 only. Codec1 can not be enabled alone.

Div5/6. This bit defines the speed of codecs. If the bit is set to a '1' the Codec clock frequency is set to 2.048 MHz and the sampling rate equals to 8 KHz. If the bit is reset to '0' the codec clock frequency is equal to 1.7066 MHz, while the sampling rate is set to 6.66 KHz. Upon a POR the bit is reset to '0'.

Sampling. This field defines the sampling rate of the Codecs. The sampling rate can be selected from 8 KHz ('0') and 6.66 ('1'). The clock frequency of the Codecs is not controlled by this field. Upon POR the bit is set to a '0'.


Timer-rate. This field defines the frequency of the embedded Timer. Upon POR the field is reset to a '00'.

CODEC INTERFACE CONTROLLER (Continued)

3. The Codec Interface Timings

Codec interface provides the customer with all necessary signals to connect two independent Codec chips. The supported effective data rate for each Codec is 8/6.66 Kbytes/sec. The Clock frequency is fixed to 2.048/1.7066 MHz. Figure 4 timing diagrams describe the functionality of Codec interface.

Figure 3 shows the connection of Z89321 to popular TI (TCM29C18) and Motorola's (MC145503) codecs. No additional components are necessary.

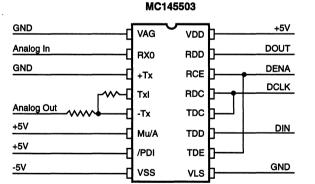
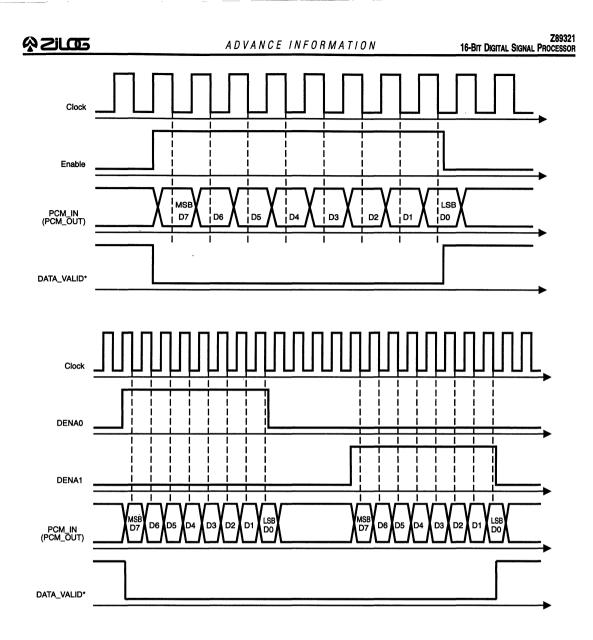



Figure 3. Connection of TCM29C18 and MC145503 To Z89321

* Data Valid is an internal signal generated by the CODEC interface. When the CODEC is enabled, this signal is applied to interrupt 0 and user input 0. In this way, the DSP

can determine when data is valid either by an interrupt on INT0 or by polling UI0. Under these conditions, INT0 and UI0 are disabled.

[©]Silos

PIN FUNCTIONS

CK Clock (input). External clock.

EXT15-EXT0 *External Data Bus* (input/output). Data bus for user defined outside registers such as an ADC or DAC. The pins are normally in output mode except when the outside registers are specified as source registers in the instructions. All the control signals exist to allow a read or a write through this bus.

ER//W *External Bus Direction* (output). Data direction signal for EXT-Bus. Data is available from the CPU on EXT15-EXT0 when this signal is Low. EXT-Bus is in input mode (high-impedance) when this signal is High.

EA2-EA0 *External Address* (output). User-defined register address output. One of eight user-defined external registers is selected by the processor with these address pins for read or write operations. Since the addresses are part of the processor memory map, the processor is simply executing internal reads and writes.

/EI *Enable Input* (output). Read/Write timing signal for EXT-Bus. User defined register or the processor can put data on the EXT-Bus during a Low state. Data is read by the external peripheral on the rising edge of /EI. Data is read by the processor on the rising edge of CK not /EI.

HALT *Halt State (input).* Stop Execution Control. The CPU continuously executes NOPs and the program counter remains at the same value when this pin is held High. This signal must be synchronized with CK. An interrupt request must be executed (enabled) to exit HALT mode. After the interrupt service routine, the program continues from the instruction after the HALT.

/INT2-/INT0 Three Interrupts (input, active Low). Interrupt request 2-0. Interrupts are generated on the rising edge of the input signal. Interrupt vectors for the interrupt service starting address are stored in the program memory locations OFFFH for /INT0, OFFEH for /INT1, and OFFDH for /INT2. Priority is: INT2 = lowest, INT0 = highest.

/RES *Reset*(input, active Low). Asynchronous reset signal. A Low level on this pin generates an internal reset signal. The /RES signal must be kept Low for at least one clock cycle. The CPU pushes the contents of the PC onto the stack and then fetches a new Program Counter (PC) value from program memory address 0FFCH after the reset signal is released.

/RDYE Data Ready (input). User-supplied Data Ready signal for data to and from external data bus. This pin stretches the /EI and ER//W lines and maintains data on the address bus and data bus. The ready signal is sampled from the rising edge of the clock with appropriate setup and hold times. The normal write cycle will continue from the next rising clock only if ready is active.

UI1-UI0 *Two Input Pins* (input). General purpose input pins. These input pins are directly tested by the conditional branch instructions. These are asynchronous input signals that have no special clock synchronization requirements.

UO1-UO0 *Two Output Pins* (output). General purpose output pins. These pins reflect the value of two bits in the status register S5 and S6. These bits have no special significance and may be used to output data by writing to the status register.

ADDRESS SPACE

Program Memory. Programs of up to 4K words can be masked into internal ROM. Four locations are dedicated to the vector address for the three interrupts (0FFDH-0FFFH) and the starting address following a Reset (0FFCH). Internal ROM is mapped from 0000H to 0FFFH, and the highest location for program is 0FFBH.

Internal Data RAM. The Z89321 has an internal 512 x 16-bit word data RAM organized as two banks of 256 x 16-bit words each, referred to as RAM0 and RAM1. Each data RAM bank is addressed by three pointers, referred to as Pn:0 (n = 0-2) for RAM0 and Pn:1 (n = 0-2) for RAM1. The RAM addresses for RAM0 and RAM1 are arranged from 0-255 and 256-511 respectively. The address pointers, which may be written to or read from, are 8-bit registers connected to the lower byte of the internal 16-bit D-Bus

and are used to perform no overhead looping. Three addressing modes are available to access the Data RAM: register indirect, direct addressing, and short form direct. These modes are discussed in detail later. The contents of the RAM can be read or written in one machine cycle per word without disturbing any internal registers or status other than the RAM address pointer used for each RAM. The contents of each RAM can be loaded simultaneously into the X and Y inputs of the multiplier.

Registers. The Z89321 has 12 internal registers and up to an additional eight external registers. The external registers are user definable for peripherals such as A/D or D/A or to DMA or other addressing peripherals. External registers are accessed in one machine cycle the same as internal registers.

FUNCTIONAL DESCRIPTION

General. The Z89321 is a high-performance Digital Signal Processor with a modified Harvard-type architecture with separate program and data memory. The design has been optimized for processing power and minimizing silicon space.

Instruction Timing. Many instructions are executed in one machine cycle. Long immediate instructions and Jump or Call instructions are executed in two machine cycles. When the program memory is referenced in internal RAM indirect mode, it takes three machine cycles. In addition, one more machine cycle is required if the PC is selected as the destination of a data transfer instruction. This only happens in the case of a register indirect branch instruction.

An Acc + P => Acc; $a(i) * b(j) \rightarrow P$ calculation and modification of the RAM pointers, is done in one machine cycle. Both operands, a(i) and b(j), can be located in two independent RAM (0 and 1) addresses.

Multiply/Accumulate. The multiplier can perform a 16-bit x 16-bit multiply or multiply accumulate in one machine cycle using the Accumulator and/or both the X and Y inputs. The multiplier produces a 32-bit result, however, only the 24 most significant bits are saved for the next instruction or accumulation. For operations on very small numbers where the least significant bits are important, the data should first be scaled by eight bits (or the multiplier and multiplicand by four bits each) to avoid truncation errors. Note that all inputs to the multiplier should be fractional two's complement 16-bit binary numbers. This puts them in the range [-1 to 0.9999695], and the result is in 24 bits so that the range is [-1 to 0.9999999]. In addition, if 8000H is loaded into both X and Y registers, the resulting multiplication is considered an illegal operation as an overflow would result. Positive one cannot be represented in fractional notation, and the multiplier will actually yield the result 8000H x 8000H = $8000H(-1 \times -1 = -1)$.

ALU. The 24-bit ALU has two input ports, one of which is connected to the output of the 24-bit Accumulator. The other input is connected to the 24-bit P-Bus, the upper 16 bits of which are connected to the 16-bit D-Bus. A shifter between the P-Bus and the ALU input port can shift the data by three bits right, one bit right, one bit left or no shift.

Hardware Stack. A six-level hardware stack is connected to the D-Bus to hold subroutine return addresses or data. The Call instruction pushes PC+2 onto the stack. The RET instruction pops the contents of the stack to the PC.

User Inputs. The Z89321 has two inputs, UI0 and UI1, which may be used by Jump and Call instructions. The Jump or Call tests one of these pins and if appropriate, jumps to a new location. Otherwise, the instruction behaves like a NOP. These inputs are also connected to the status register bits S10 and S11 which may be read by the appropriate instruction (Figure 5).

User Outputs. The status register bits S5 and S6 connect directly to UO0 and UO1 pins and may be written to by the appropriate instruction.

Interrupts. The Z89321 has three positive edge-triggered interrupt inputs. An interrupt is acknowledged at the end of any instruction execution. It takes two machine cycles to enter an interrupt instruction sequence. The PC is pushed onto the stack. A RET instruction transfers the contents of the stack to the PC and decrements the stack pointer by one word. The priority of the interrupts is INT0 = highest, INT2 = lowest.

Registers. The Z89321 has 12 physical internal registers and up to eight user-defined external registers. The EA2-EA0 determines the address of the external registers. The /EI, /RDYE, and ER//W signals are used to read or write from the external registers.

REGISTERS

There are 12 internal registers which are defined below:

Register	Register Definition
P	Output of Multiplier, 24-bit
X	X Multiplier Input, 16-bit
Y	Y Multiplier Input, 16-bit
A	Accumulator, 24-bit
SR	Status Register, 16-bit
Pn:b	Six Ram Address Pointers, 8-bit each
PC	Program Counter, 16-bit

The following are virtual registers as physical RAM does not exist on the chip.

Register	Register Definition
EXTn	External Registers, 16-bit
BUS	D-Bus
Dn:b	Eight Data Pointers

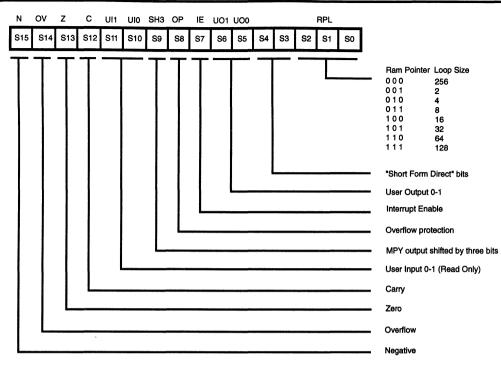
P holds the result of multiplications and is read-only.

X and **Y** are two 16-bit input registers for the multiplier. These registers can be utilized as temporary registers when the multiplier is not being used.

A is a 24-bit Accumulator. The output of the ALU is sent to this register. When 16-bit data is transferred into this register, it goes into the 16 MSB's and the least significant eight bits are set to zero. Only the upper 16 bits are transferred to the destination register when the Accumulator is selected as a source register in transfer instructions.

Pn:b are the pointer registers for accessing data RAM, (n = 0,1,2 refer to the pointer number) (b = 0,1 refers to RAM Bank 0 or 1). They can be directly read from or written to, and can point to locations in data RAM or Program Memory. **EXTn** are external registers (n = 0 to 7). There are eight 16-bit registers here for mapping external devices into the address space of the processor. Note that the actual register RAM does not exist on the chip, but would exist as part of the external device such as an ADC result latch.

BUS is a read-only register which, when accessed, returns the contents of the D-Bus.


Dn:b refer to possible locations in RAM that can be used as a pointer to locations in program memory. The programmer decides which location to choose from two bits in the status register and two bits in the operand. Thus, only the lower 16 possible locations in RAM can be specified. At any one time there are eight usable pointers, four per bank, and the four pointers are in consecutive locations in RAM. For example, if S3/S4 = 01 in the status register, then D0:0/D1:0/D2:0/D3:0 refer to locations 4/5/6/7 in RAM Bank 0. Note that when the data pointers are being written to, a number is actually being loaded to Data RAM, so they can be used as a limited method for writing to RAM.

SR is the status register (Figure 5) which contains the ALU status and certain control bits (Table 4). The status register may always be read in its entirety. S15-S10 are set/reset by the hardware and can only be read by software. S9-S0 can be written by software (Table 5).

S15-S12 are set/reset by the ALU after an operation. S11-S10 are set/reset by the user inputs. S6-S0 are control bits described elsewhere. S7 enables interrupts. S8, if 0 (reset), allows the hardware to overflow. If S8 is set, the hardware clamps at maximum positive or negative values instead of overflowing. If S9 is 0, the shifter shifts data one bit left or right. If S9 is set and a shift is called for on a multiply instruction, then the shifter shifts the result three bits right instead of one bit right.

PC is the Program Counter. When this register is assigned as a destination register, one NOP machine cycle is added automatically to adjust the pipeline timing.

ADVANCE INFORMATION

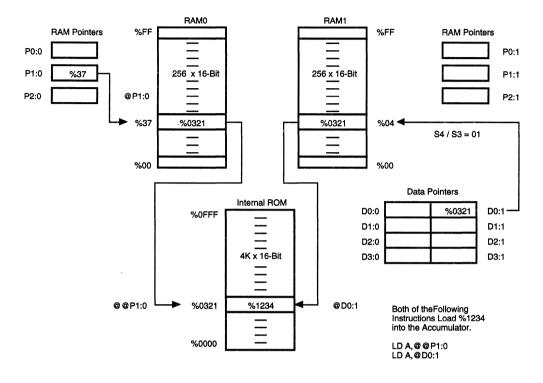
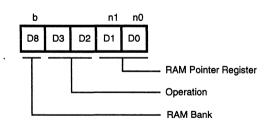


Figure	5. 3	Status	Register
---------------	------	--------	----------

Table 4. Status Register Bit Functions			Table 5. RPL Description			
Function	S2	S1	S0	Loop Size		
ALU Negative	0	0	0	256		
ALU Overflow	0	0	1	2		
ALU Zero	0	1	0	4		
Carry	0	1	1	8		
User Input 1 -	······					
User Input 0	1	0	0	16		
•	1	0	1	32		
MPY Output Shifted by three bits	1	1	0	64		
Overflow Protection	1	1	1	128		
Interrupt Enable						
•						
•						
	Function ALU Negative ALU Overflow ALU Zero Carry User Input 1 User Input 0 MPY Output Shifted by three bits	FunctionS2ALU Negative0ALU Overflow0ALU Zero0Carry0User Input 11User Input 01Input 01MPY Output Shifted by three bits1Overflow Protection1Interrupt Enable1User Output 1User Output 0"Short Form Direct" bits	Function S2 S1 ALU Negative 0 0 ALU Overflow 0 0 ALU Zero 0 1 Carry 0 1 User Input 1 1 0 User Input 0 1 0 MPY Output Shifted by three bits 1 1 Overflow Protection 1 1 Interrupt Enable 1 1 User Output 1 User Output 0 "Short Form Direct" bits	Function S2 S1 S0 ALU Negative 0 0 0 1 ALU Overflow 0 0 1 0 ALU Zero 0 1 0 1 Carry 0 1 1 0 User Input 1 1 0 1 1 User Input 0 1 0 1 1 MPY Output Shifted by three bits 1 1 0 1 Overflow Protection 1 1 1 1 Interrupt Enable User Output 1 User Output 0 "Short Form Direct" bits 1 1		

RAM ADDRESSING

The address of the RAM is specified in one of three ways (Figure 6):



Register Indirect

Pn:b n = 0-2, b = 0-1

The most commonly used method is a register indirect addressing method, where the RAM address is specified by one of the three RAM address pointers (n) for each bank (b). Each source/destination field in Figures 7 and 10 may be used by an indirect instruction to specify a register pointer and its modification after execution of the instruction.

The register pointer is specified by the first and second bits in the source/destination field and the modification is specified by the third and fourth bits according to the following table:

D3-D0)	Meaning
00xx 01xx 10xx 11xx	NOP +1 -1/LOOP +1/LOOP	No Operation Simple Increment Decrement Modulo the Loop Count Increment Modulo the Loop Count
xx00 xx01 xx10 xx11	P0:0 or P0:1 P1:0 or P1:1 P2:0 or P2:1	See Note a. See Note a. See Note a. See Short Form Direct

Notes:

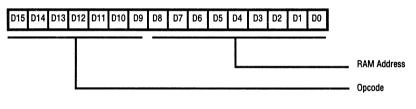
a. If bit 8 is zero, P0:0 to P2:0 are selected; if bit 8 is one, P0:1 to P2:1 are selected.

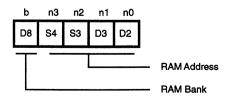
When LOOP mode is selected, the pointer to which the loop is referring will cycle up or down, depending on whether a -LOOP or +LOOP is specified. The size of the loop is obtained from the least significant three bits of the Status Register. The increment or decrement of the register is accomplished modulo the loop size. As an example, if the loop size is specified as 32 by entering the value 101 into bits 2-0 of the Status Register (S2-S0) and an increment +LOOP is specified in the address field of the instruction. i.e., the RPi field is 11xx, then the register specified by RPi will increment, but only the least significant five bits will be affected. This means the actual value of the pointer will ' cycle round in a length 32 loop, and the lowest or highest value of the loop, depending on whether the loop is up or down, is set by the three most significant bits. This allows repeated access to a set of data in RAM without software intervention. To clarify, if the pointer value is 10101001 and if the loop = 32, the pointer increments up to 10111111, then drops down to 10100000 and starts again. The upper three bits remain unchanged. Note that the original value of the pointer is not retained.

Direct Register

The second method is a direct addressing method. The address of the RAM is directly specified by the address field of the instruction. Because this addressing method consumes nine bits (0-511) of the instruction field, some instructions cannot use this mode (Figure 8).

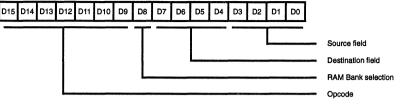
Figures 10 to 15 show the different register instruction formats along with the two tables below Figure 9.



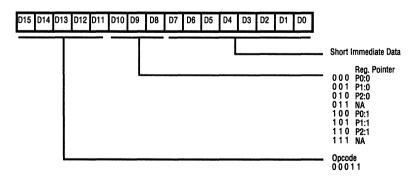

Figure 8. Direct Internal RAM Address Format

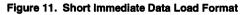
Short Form Direct

Dn:b n = 0-3, b = 0-1


The last method is called Short Form Direct Addressing, where one out of 32 addresses in internal RAM can be specified. The 32 addresses are the 16 lower addresses in RAM Bank 0 and the 16 lower addresses in RAM Bank 1. Bit 8 of the instruction field determines RAM Bank 0 or 1. The 16 addresses are determined by a 4-bit code comprised of bits S3 and S4 of the status register and the third and fourth bits of the Source/Destination field. Because this mode can specify a direct address in a short form, all of the instructions using the register indirect mode can use this mode (Figure 9). This method can access only the lower 16 addresses in the both RAM banks and as such has limited use. The main purpose is to specify a data register, located

in the RAM bank, which can then be used to point to a program memory location. This facilitates down-loading look-up tables etc. from program memory to RAM.


INSTRUCTION FORMAT



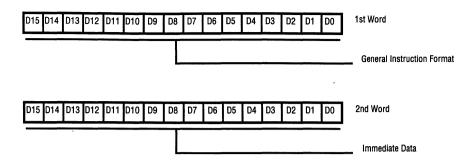

Note: Source/Destination fields can specify either register or RAM address in RAM pointer indirect mode.

Table 6. Re	gisters	Table 7. Reg	ister Pointers Field
Source/Destination	ce/Destination Register		Meaning
0000	BUS**	00xx	NOP
0001	X	01xx	+1
0010	Y	10xx	-1/LOOP
0011	Α	11xx	+1/LOOP
0100	SR	xx00	P0:0 or P0:1*
0101	STACK	xx01	P1:0 or P1:1*
0110	PC	xx10	P2:0 or P2:1*
0111	P**	xx11	Short Form Direct Mode
1000 1001 1010 1011	EXT0 EXT1 EXT2 EXT3	 Notes: If RAM Bank bit is 0, then P If RAM Bank bit is 1, then P Read only. When the short form direct or 10000-11111 are used a 	n:1 are selected. mode is selected, 00000-01111
1100	EXT4		
1101	EXT5		
1110	EXT6		
1111	EXT7		

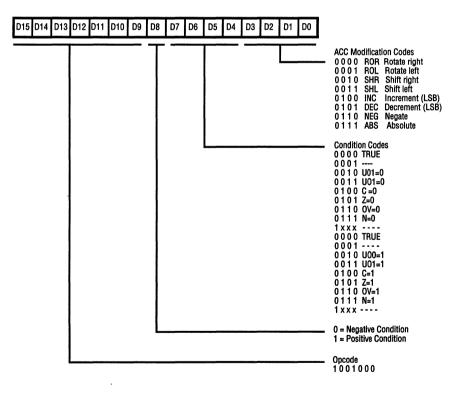


Figure 13. Accumulator Modification Format

INSTRUCTION FORMAT (Continued)

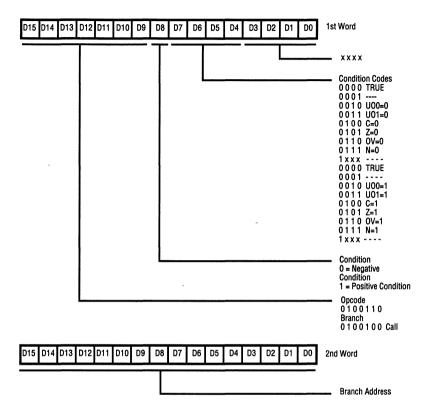


Figure 14. Branching Format

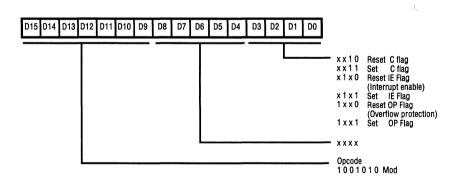


Figure 15. Flag Modification Format

ADDRESSING MODES

This section discusses the syntax of the addressing modes supported by the DSP assembler. The symbolic name is

used in the discussion of instruction syntax in the instruction descriptions.

Table 8. Addressing Modes					
Symbolic Name	Syntax	Description			
<pregs></pregs>	Pn:b	Pointer Register			
<dregs> (Points to RAM)</dregs>	Dn:b	Data Register			
<hwregs></hwregs>	X,Y,PC,SR,P EXTn,A,BUS	Hardware Registers			
<accind> (Points to Program Memory)</accind>	@A	Accumulator Memory Indirect			
<direct></direct>	<expression></expression>	Direct Address Expression			
limm>	# <const exp=""></const>	Long (16-bit) Immediate Value			
<simm></simm>	# <const exp=""></const>	Short (8-bit) Immediate Value			
<regind> (Points to RAM)</regind>	@Pn:b @Pn:b+ @Pn:b-LOOP @Pn:b+LOOP	Pointer Register Indirect Pointer Register Indirect with Increment Pointer Register Indirect with Loop Decrement Pointer register Indirect with Loop Increment			
<memind> (Points to Program Memory)</memind>	@@Pn:b @Dn:b @@Pn:b-LOOP @@Pn:b+LOOP @@Pn:b+	Pointer Register Memory Indirect Data Register Memory Indirect Pointer Register Memory Indirect with Loop Decrement Pointer Register Memory Indirect with Loop Increment Pointer Register Memory Indirect with Increment			

There are eight distinct addressing modes for transfer of data (Figure 6 and Table 8).

<pregs>, <hwregs> These two modes are used for simple loads to and from registers within the chip such as loading to the Accumulator, or loading from a pointer register. The names of the registers need only be specified in the operand field. (Destination first then source.)

<regind> This mode is used for indirect accesses to the data RAM. The address of the RAM location is stored in the

pointer. The "@" symbol indicates "indirect" and precedes the pointer, so @P1:1 tells the processor to read or write to a location in RAM1, which is specified by the value in the pointer.

<dregs> This mode is also used for accesses to the data RAM but only the lower 16 addresses in either bank. The 4-bit address comes from the status register and the operand field of the data pointer. Note that data registers are typically used not for addressing RAM, but loading data from program memory space.

⊗ Zilos

<memind> This mode is used for indirect, indirect accesses to the program memory. The address of the memory is located in a RAM location, which is specified by the value in a pointer. So @@P1:1 tells the processor to read (write is not possible) from a location in memory, which is specified by a value in RAM, and the location of the RAM is in turn specified by the value in the pointer. Note that the data pointer can also be used for a memory access in this manner, but only one "@" precedes the pointer. In both cases the memory address stored in RAM is incremented by one each time the addressing mode is used to allow easy transfer of sequential data from program memory.

<a>ccind> Similar to the previous mode, the address for the program memory read is stored in the Accumulator. @A in the second operand field loads the number in memory specified by the address in A. **(direct)** The direct mode allows read or write to data RAM from the Accumulator by specifying the absolute address of the RAM in the operand of the instruction. A number between 0 and 255 indicates a location in RAM0, and a number between 256 and 511 indicates a location in RAM1.

Imm> This indicates a long immediate load. A 16-bit word can be copied directly from the operand into the specified register or memory.

<simm> This can only be used for immediate transfer of . 8-bit data in the operand to the specified RAM pointer.

CONDITION CODES

The following defines the condition codes supported by the DSP assembler. If the instruction description refers to the

<cc> (condition code) symbol in one of its addressing modes, the instruction will only execute if the condition is true.

Name	Description	Name	Description
С	Carry		Not User One
EQ	Equal (same as Z)	NZ	Not zero
F	False	OV	Overflow
IE	Interrupts Enabled	PL	Plus (Positive)
MI	Minus	UO	User Zero
NC	No Carry	U1	User One
NE	Not Equal (same as NZ)	UGE	Unsigned Greater Than or
NIE	Not Interrupts Enabled		Equal (Same as NC)
NOV	Not Overflow	ULT	Unsigned Less Than (Same as C)
NU0	Not User Zero	Z	Zero

INSTRUCTION DESCRIPTIONS

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
ABS	Absolute Value	ABS[<cc>,]<src></src></cc>	<cc>,A</cc>	1	1	ABS NC,A
			Α	1	1	ABS A
ADD	Addition	ADD <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	ADD A,#128
			A, <dregs></dregs>	1	1	ADD A,D0:1
			A, <limm></limm>	2	2	ADD A,@@LOOP
			A, <memind></memind>	1	3	ADD A,@P2:1+
			A, <direct></direct>	1	1	ADD A,X
			A, <regind></regind>	1	1	
			A, <hwregs></hwregs>	1	1	
AND	Bitwise AND	AND <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	AND A,#128
			A, <dregs></dregs>	1	1	AND A,DO:1
			A, <limm></limm>	2	2	AND A,@@P0:0+LOOP
			A, <memind></memind>	1	3	AND A,@P2:1+
			A, <direct></direct>	1	1	
			A, <regind></regind>	1	1	AND A.X
			A, <hwregs></hwregs>	1	1	
CALL	Subroutine call	CALL [<cc>,]<address></address></cc>	<cc>,<direct></direct></cc>	2	2	CALL sub1
			<direct></direct>	2	2	CALL Z,sub2
CCF	Clear carry flag	CCF	None	1	1	CCF
CIEF	Clear Carry Flag	CIEF	None	1	1	CIEF
COPF	Clear OP flag	COPF	None	1	1	COPF
CP	Comparison	CP <src1>,<src2></src2></src1>	A, <pregs></pregs>	1	1	CP A,P0:0
			A, <dregs></dregs>	1	1	CP A,D3:1
			A, <memind></memind>	1	3	CP A,#512
			A, <direct></direct>	1	1	CP A,@@P0:1
			A, <regind></regind>	1	1	CP A, LABEL
			A. <hwreas></hwreas>	1	1	CP A,@D0:0
						CP A,X
DEC	Decrement	DEC [<cc>,]<dest></dest></cc>	<cc>A,</cc>	1	1	DEC NZ,A
			Α	1	1	DEC A
INC	Increment	INC [<cc>,] <dest></dest></cc>	<cc>,A</cc>	1	1	INC NZ,A
			A	1	1	INC A
JP	Jump	JP [<cc>,]<address></address></cc>	<cc>,<direct></direct></cc>	2	2	JP NIE,Label
			<direct></direct>	2	2	JP Label

INSTRUCTION DESCRIPTIONS (Continued)

	Description	Synopsis	Operands	Words	Cycles	Examples
LD	Load destination	LD <dest>,<src></src></dest>	A, <hwregs></hwregs>	1	1	LD A,X
	with source		A, <dregs></dregs>	1	1	LD A,D0:0
			A, <pregs></pregs>	1	1	LD A,P0:1
			A, <regind></regind>	1	1	LD A,@@P1:1 •
			A, <memind></memind>	1	3	LD A, MEMADDR
			A, <direct></direct>	1	1	LD MEMADDR,A
			<direct>,A</direct>	1	1	LD D0:1,A
			<dregs>,<hwregs></hwregs></dregs>	1	1	LD P1:0#128
			<pregs>,<simm></simm></pregs>	1	1	LDP1:1.X
			<pregs>,<hwregs></hwregs></pregs>	1	1	LD@P0:0+L00P,#1234
			<regind>,<limm></limm></regind>	i	1	LD @P1:1+,X
			<regind>,<hwregs></hwregs></regind>	i	1	LD X,P0:0
			<hwregs>,<pregs></pregs></hwregs>	i	1	LD Y,P0:0
			<hwregs>,<dregs></dregs></hwregs>	1	1	LD SR,#%1023
				2	2	LD PC,(A)
			<hwregs>,<limm></limm></hwregs>		2	
			<hwregs>,<accind></accind></hwregs>	1	3	LD X,@@P0:0
			<hwregs>,<memind></memind></hwregs>	1	3	LD Y,@P1:0-LOOP
			<hwregs>,<regind></regind></hwregs>	1	1	LD SR,X
			<hwregs>,<hwregs></hwregs></hwregs>	1	1	
			Note: When <dest> is <hwregs< td=""><td>s cdests</td><td>cannot be</td><td>• P</td></hwregs<></dest>	s cdests	cannot be	• P
			Note: When <dest> is <hwregs></hwregs></dest>			
						is X, <dest> cannot be SF</dest>
			Note: When <src> is <accind></accind></src>	<dest> c</dest>	annot be A	
MLD	Multiply	MLD <srcl>,<srcl>[,<bank switch="">]</bank></srcl></srcl>	<hwregs>,<regind></regind></hwregs>	1	1	MLD A@P0:0
	manipij			•		
				N 1	1	
			<hwregs>,<regind>,<bank switch<="" td=""><td></td><td>1</td><td>MLD A@P1:0,0FF</td></bank></regind></hwregs>		1	MLD A@P1:0,0FF
			<hwregs>,<regind>,<bank switch<br=""><regind>,<regind></regind></regind></bank></regind></hwregs>	1	1	MLD A@P1:0,0FF MLD @P1:1,@P2:0
			<hwregs>,<regind>,<bank switch<="" td=""><td>1</td><td></td><td>MLD A@P1:0,0FF</td></bank></regind></hwregs>	1		MLD A@P1:0,0FF
			<hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch:<br="">Note: If src1 is <regind> it mus</regind></bank></regind></regind></regind></regind></bank></regind></hwregs>	1 > 1	1 1	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N
			<hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch:<br="">Note: If src1 is <regind> it mus a bank 0 register.</regind></bank></regind></regind></regind></regind></bank></regind></hwregs>	1 > 1 It be a ba	1 1	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N
			<hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch:<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno</hwregs></regind></bank></regind></regind></regind></regind></bank></regind></hwregs>	1 > 1 It be a ba t be X.	1 1 nk 1 regist	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<="" must="" td=""></regind>
			<hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch:<br="">Note: If src1 is <regind> it mus a bank 0 register.</regind></bank></regind></regind></regind></regind></bank></regind></hwregs>	1 > 1 It be a ba t be X.	1 1 nk 1 regist	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<="" must="" td=""></regind>
			<hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch:<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno</hwregs></regind></bank></regind></regind></regind></regind></bank></regind></hwregs>	1 > 1 It be a ba t be X. s>, <regin< td=""><td>1 1 nk 1 regist id> the <ba< td=""><td>MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to OFF.</regind></td></ba<></td></regin<>	1 1 nk 1 regist id> the <ba< td=""><td>MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to OFF.</regind></td></ba<>	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to OFF.</regind>
			<hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno Note: For the operands <hwregs For the operands <regind< td=""><td>1 > 1 t be a ba t be X. s>, <regin d>, the <t< td=""><td>1 1 nk 1 regist id> the <ba bank switcl</ba </td><td>MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to OFF. n> defaults to ON.</regind></td></t<></regin </td></regind<></hwregs </hwregs></regind></bank></regind></regind></regind></regind></bank></regind></hwregs>	1 > 1 t be a ba t be X. s>, <regin d>, the <t< td=""><td>1 1 nk 1 regist id> the <ba bank switcl</ba </td><td>MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to OFF. n> defaults to ON.</regind></td></t<></regin 	1 1 nk 1 regist id> the <ba bank switcl</ba 	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to OFF. n> defaults to ON.</regind>
MPYA	Multiply and add	MPYA <srcl>,<src2>[,<bank switch="">]</bank></src2></srcl>	<pre><hwregs>,<regind>,<bank <regind="" switch="">,<regind>,<regind>,<regind>,<regind>,<regind>,<regind>,<bank <regind="" if="" is="" note:="" src1="" switch:=""> it mus</bank></regind></regind></regind></regind></regind></regind></bank></regind></hwregs></pre>	1 > 1 it be a ba t be X. s>, <regin d>, the <b 1</b </regin 	1 1 nk 1 regist id> the <ba bank switcl</ba 	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0</regind>
MPYA	Multiply and add		<hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno Note: For the operands <hwregs For the operands <regind <hwregs>,<regind>,<bank switch<="" td=""><td>1 > 1 it be a ba t be X. s>, <regin d>, the <b 1</b </regin </td><td>1 1 nk 1 regist id> the <ba bank switcl</ba </td><td>MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to OFF. n> defaults to ON.</regind></td></bank></regind></hwregs></regind </hwregs </hwregs></regind></bank></regind></regind></bank></regind></regind></regind></regind></bank></regind></hwregs>	1 > 1 it be a ba t be X. s>, <regin d>, the <b 1</b </regin 	1 1 nk 1 regist id> the <ba bank switcl</ba 	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to OFF. n> defaults to ON.</regind>
MPYA	Multiply and add		<pre><hwregs>,<regind>,<bank <regind="" switch="">,<regind>,<regind>,<regind>,<regind>,<regind>,<regind>,<bank <regind="" if="" is="" note:="" src1="" switch:=""> it mus</bank></regind></regind></regind></regind></regind></regind></bank></regind></hwregs></pre>	1 > 1 it be a ba t be X. s>, <regin d>, the <b 1</b </regin 	1 1 nk 1 regist id> the <ba bank switcl</ba 	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0</regind>
MPYA	Multiply and add		<hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno Note: For the operands <hwregs For the operands <regind <hwregs>,<regind>,<bank switch<="" td=""><td>1 > 1 to be a basist be X. s>, <regination (s)="" (s),="" (s)<="" <tool="" line="" td="" the=""><td>1 1 nk 1 regist id> the <ba vank switcl - 1 1</ba </td><td>MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0 MPYA A,@P1:0,0FF</regind></td></regination></td></bank></regind></hwregs></regind </hwregs </hwregs></regind></bank></regind></regind></bank></regind></regind></regind></regind></bank></regind></hwregs>	1 > 1 to be a basist be X. s>, <regination (s)="" (s),="" (s)<="" <tool="" line="" td="" the=""><td>1 1 nk 1 regist id> the <ba vank switcl - 1 1</ba </td><td>MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0 MPYA A,@P1:0,0FF</regind></td></regination>	1 1 nk 1 regist id> the <ba vank switcl - 1 1</ba 	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0 MPYA A,@P1:0,0FF</regind>
MPYA	Multiply and add		<hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno Note: For the operands <hwregs For the operands <regind <hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind> it mus</regind></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind </hwregs </hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs>	1 > 1 to be a ba b	1 1 Id> the cba vank switcl - - 1 1 1 1	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0 MPYA A,@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N</regind>
MPYA	Multiply and add		<hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno Note: For the operands <hwregs For the operands <hwregs For the operands <regind <hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">it src1 is <regind> it mus a bank 0 register.</regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind </hwregs </hwregs </hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs>	$\frac{1}{1}$ t be a ba t be X. s>, <regir d>, the <tool 1 1> 1 1 > 1 t be a bar</tool </regir 	1 1 Id> the cba vank switcl - - 1 1 1 1	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0 MPYA A,@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N</regind>
MPYA	Multiply and add		<hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno Note: For the operands <hwregs For the operands <hwregs For the operands <regind> <hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">in substant substant substant substant <hwregs>, regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">in substant substant</bank></regind></regind></bank></hwregs></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind></hwregs </hwregs </hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs>	$1 \\ > 1$ t be a ba t be X. >, < regir $d>, the < t1> 11> 11> 11 > 12 > 11 > 12$	1 1 nk 1 regist nd> the <ba bank switcl 1 1 1 1 1 1 1</ba 	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0 MPYA A@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N er. Src2's <regind> must be</regind></regind>
МРҮА	Multiply and add		<hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">Note: If src1 is <regind> it mus a bank 0 register. Note: <hwregs> for src1 canno Note: For the operands <hwregs For the operands <hwregs For the operands <regind <hwregs>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br=""><regind>,<regind>,<bank switch<br="">it src1 is <regind> it mus a bank 0 register.</regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs></regind </hwregs </hwregs </hwregs></regind></bank></regind></regind></bank></regind></regind></bank></regind></hwregs>	$1 \\ > 1$ t be a bai t be X. s>, <regir d>, the <toology 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 3 4 5 5 5 5 5 5 5 5 5 5</toology </regir 	1 1 nk 1 regist do the oba hank switch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MLD A@P1:0,0FF MLD @P1:1,@P2:0 MLD @P0:1,@P1:0,0N er. Src2's <regind be<br="" must="">nd switch> defaults to 0FF. n> defaults to 0N. MPYA A@P0:0 MPYA A@P1:0,0FF MPYA @P1:1,@P2:0 MPYA@P0:1,@P1:0,0N er. Src2's <regind> must be ank switch> defaults to 0FF</regind></regind>

Silas

Inst.	Description	Synopsis	Operands	Words	Cycles	Examples
MPYS	Multiply and subtract	MPYS <src1>,<src2>[,<bank switch="">]</bank></src2></src1>	<hwregs>,<regind> <hwregs>,<regind>,<bank switch<br=""><regind>,<regind> <regind>,<regind>,<bank switch:<="" td=""><td>1</td><td>1 1</td><td>MPYS A,@P0:0 MPYS A,@P1:0,0FF MPYS @P1:1,@P2:0 MPYS @P0:1,@P1:0,0N</td></bank></regind></regind></regind></regind></bank></regind></hwregs></regind></hwregs>	1	1 1	MPYS A,@P0:0 MPYS A,@P1:0,0FF MPYS @P1:1,@P2:0 MPYS @P0:1,@P1:0,0N
			Note: If src1 is <regind> it must be a bank 0 register. Note: <hwregs> for src1 canno Note: For the operands <hwregs OFF. For the operands <re to ON.</re </hwregs </hwregs></regind>	t be X. S>, <reg< td=""><td>ind> the</td><td><bank switch=""> defaults to</bank></td></reg<>	ind> the	<bank switch=""> defaults to</bank>
NEG	Negate	NEG <cc>,A</cc>	<cc>, A A</cc>	1		NEG NZ,A NEG A
NOP	No operation	NOP	None	1	1	NOP
OR	Bitwise OR	OR <dest>,<src></src></dest>	A, <pregs> A, <dregs> A, <limm> A, <memind> A, <direct> A, <regind> A, <hwregs></hwregs></regind></direct></memind></limm></dregs></pregs>	1 1 2 1 1 1	1 2 3	OR A,#128 OR A, D0:1 OR A,@@P0:0+L00P OR A,@P2:1+ OR A, X
POP	Pop value from stack	POP <dest></dest>	<pregs> <pregs> <regind> <hwregs></hwregs></regind></pregs></pregs>	1 1 1 1	1 1 1 1	POP P0:0 POP D0:1 POP @P0:0 POP A POP BUS
PUSH	Push value onto stack	PUSH <src></src>	<pregs> <dregs> <regind> <hwregs> <limm> <accind> <memind></memind></accind></limm></hwregs></regind></dregs></pregs>	1 1 1 2 1 1	1 1 2 3 3	PUSH P0:0 PUSH D0:1 PUSH @P0:0 PUSH A PUSH BUS PUSH #12345 PUSH @A PUSH @A PUSH @@P0:0
RET	Return from subroutine	RET	None	1	2	RET
RL	Rotate Left	RL <cc>,A</cc>	<cc>,A A</cc>	1 1		RL NZ,A RL A
RR	Rotate Right	RR <cc>,A</cc>	<cc>,A A</cc>	1 1		rr nz,a rr a

INSTRUCTION DESCRIPTIONS (Continued)

Inst.	Description	Synopsis	Operands	Words	Cycles	s Examples
SCF	Set C flag	SCF	None	1	1	SCF
SIEF	Set IE flag	SIEF	None	1	1	SIEF
SLL	Shift left	SLL	[<cc>,]A</cc>	1	1	SLL NZ,A
	logical		Α	1	1	SLL A
SOPF	Set OP flag	SOPF	None	1	1	SOPF
SRA	Shift right	SRA <cc>,A</cc>	<cc>,A</cc>	1	1	SRA NZ,A
	arithmetic		Α	1	1	SRA A
SUB	Subtract	SUB <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	SUB A,#128
			A, <dregs></dregs>	1	1	SUB A.DO:1
			A, <limm></limm>	2	2	SUB A,@@P0:0+L00P
			A, <memind></memind>	1	3	SUB A,@P2:1+
			A, <direct></direct>	1	1	SUB A,X
	•		A, <regind></regind>	1	1	
			A, <hwregs></hwregs>	1	1	7
XOR	Bitwise exclusive OR	XOR <dest>,<src></src></dest>	A, <pregs></pregs>	1	1	XOR A,#128
			A, <dregs></dregs>	1	1	XOR A,D0:1
			A, <limm></limm>	2	2	XOR A,@@P0:0+L00P
			A, <memind></memind>	1	3	XOR A,@P2:1+
			A, <direct></direct>	1	1	XOR A, X
			A, <regind></regind>	1	1	
			A, <hwregs></hwregs>	1	1	

Bank Switch Enumerations. The third (optional) operand of the MLD, MPYA and MPYS instructions represents whether a bank switch is set on or off. To more clearly represent this two keywords are used (ON and OFF) which state the direction of the switch. These keywords are referred to in the instruction descriptions via the
shak switch> symbol.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min.	Max.	Units
V _{cc}	Supply Voltage (*)	-0.3	+7.0	v
V _{CC} T _{STG} T	Storage Temp	-65°	+150°	С
T	Oper Ambient Temp		†	С

Notes:

* Voltage on all pins with respect to GND.

† See Ordering Information.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Figure 16). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

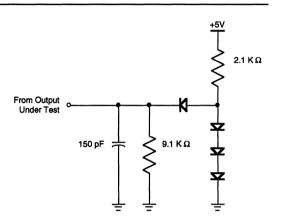


Figure 16. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS

 $(V_{nn} = 5V \pm 10\%, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Condition	Min.	Max.	Units
I _{DD}	Supply Current	V _{DD} = 5.25V fclock = 10 MHz		60	mA
I _{DC}	DC Power Consumption	$V_{DD} = 5.25V$	1	5	mA
V _{IH}	Input High Level		0.9 V _{DD}	·····	V
V	Input Low Level			0.1 V _{DD}	V
IĽ	Input Leakage			1	μA
V _{OH}	Output High Voltage	I _{OH} = -100 μA	V _{DD} -0.2		V
VOL	Output Low Voltage	l _{oн} = −100 μA l _{ot} = 0.5 mA	55	0.5	V
	Output Floating Leakage Current	02		5	μA

AC ELECTRICAL CHARACTERISTICS (V_{DD} = 5V \pm 10%, T_A = -40°C to +105°C unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units
TCY	Clock Cycle Time	100	1000	ns
PWW	Clock Pulse Width	45		ns
Tr	Clock Rise Time	2	4	ns
Tf	Clock Fall Time	2	4	ns
TEAD	EA,ER//W Delay from CK	15	25	ns
TXVD	EXT Data Output Valid from CK	5	25	ns
TXWH	EXT Data Output Hold from CK	15		ns
TXRS	EXT Data Input Setup Time	15		ns
TXRH	EXT Data Input Hold from CK	0	15	ns
TIED	/EI Delay Time from CK	0	5	ns
RDYS	Ready Setup Time	10		ns
RDYH	Ready Hold Time	0		ns

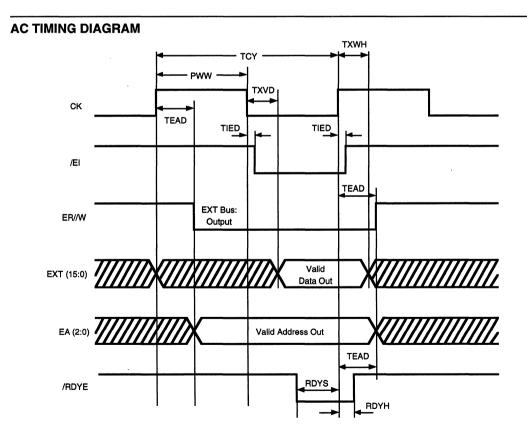


Figure 17. Write To External Device Timing

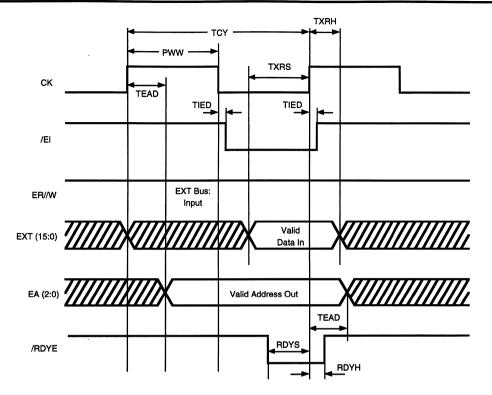
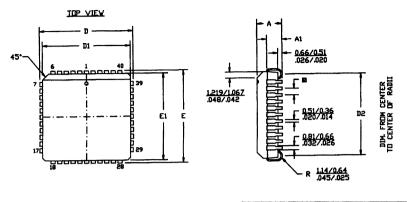



Figure 18. Read From External Device Timing

PACKAGE INFORMATION

NDTES: 1. CONTROLLING DIMENSIONS : INCH 2. LEADS ARE COPLANAR WITHIN .004 IN. 3. DIMENSION : <u>HM.</u> INCH

SYMBOL	MILLI	HETER	INCH		
STADUL	MIN	MAX	MIN	MAX	
A	4.27	4.57	.168	.180	
Al	2.67	2.92	.105	.115	
D/E	17.40	17.65	.685	.695	
D1/E1	16.51	16.66	.650	.656	
D2	15.24	16.00	.600	.630	
E	1.27 TYP		.050	TYP	

44-Lead PLCC Package Diagram

[⊗]ZiL05

ORDERING INFORMATION

Z89321

10 MHz

44-pin PLCC Z8932110VSC Z8932110VEC

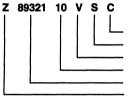
For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

V = Plastic PLCC

Temperature

 $S = 0^{\circ}C \text{ to } +70^{\circ}C$ E = -40°C to +105°C


Speed

10 = 10 MHz

Environmental

C = Plastic Standard

Example:

is a Z89321, 10 MHz, DIP, 0°C to +70°C, Plastic Standard Flow.

Environmental Flow Temperature Package Speed Product Number Zilog Prefix 5

~

Z89320 16-Bit Mixed **Signal Processor**

7/

Z89321 16-Bit Mixed **Signal Processor**

Superintegration™ Products Guide

Literature Guide and Third Party Support

Zilog Sales Offices Representatives & Distributors

. ſ

.

Z86C9500ZCO EVALUATION BOARD PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z86C95

DESCRIPTION

2iLOS

The Z86C9500ZCO Evaluation Board contains an assembled circuit board, software and documentation for use in evaluating the Z86C95 Z8^o/DSP microcontroller. The board comes equipped with a monitor program which provides access to all the Z86C95 registers and on-board memory and assists in using the Z86C95.

SPECIFICATIONS

Power Requirements

 $+3 < V_{cc} < +5 Vdc$

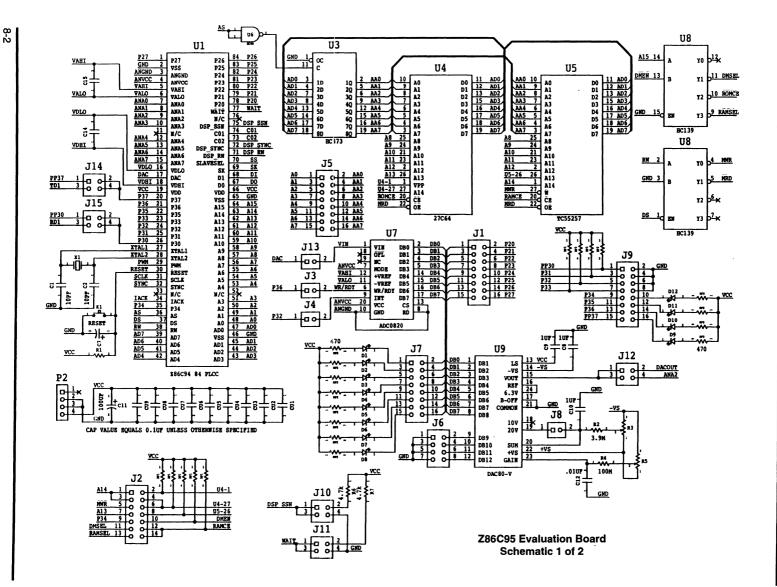
Dimensions

Width:	5.2 in.	(13.2 cm)
Length:	5.0 in.	(12.7 cm)

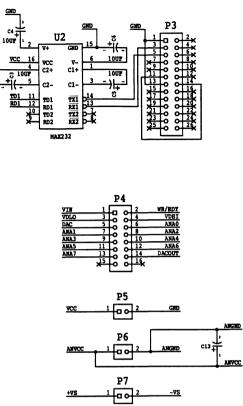
KIT CONTENTS Z86C95 Evaluation Board

Z86C95 CMOS Microcontroller Z8*/DSP Unit 8K X 8 EPROM with Monitor Program 32K X 8 SRAM RS232-C Port Sockets for external DAC80 and ADC0820 12 LEDs Headers for access to all signals Pin-out Header RS232-C Connector Power Connector

Software (IBM®-PC Platform)


Z8[®]/Z80[®]/Z8000[®] Cross Assembler MOBJ Link/Loader

Documentation


Z8 Cross Assembler User's Guide MOBJ Link/Loader User's Guide Z86C95 User's Manual Z86C95 Evaluation Kit User's Guide

ORDERING INFORMATION

Part No: Z86C9500ZC0

Ð

P1					
ANA3	1	_	-	2	A364
ANA5	3	0	2	4	ANAG
AKA7	5	0	언	6	VDLO
DAC	7	õ	얽	8	VDHI
VCC	9	-0	러	10	P37
P36	11	ŏ.	러	12	P35
P33	13	õ	ä	14	P32
P33 P31	15	õ	ы	16	P30
XTAL1	17	-ŏ	ы	18	XTAL2
PWH	19	-õ	ы	20	RESET
SCLK IACK	21	-õ	9	22	SYNC
INCK	23	-õ	9	24	P34
AS	25	ō	õ	26	DS
RW	27	-õ	ы	28	AD7
AD6	29 31	ю	ы	30	AD5
AD4		-0	ы	32	AD3
AD2	33	-0	ъ	34 36	AD1
GND A0	37	ю	ъ	38	AD0
AU A2	39	-0	ы	40	<u>A1</u> A3
A4	41	•	ъ	42	<u></u>
A4 A6	43	0	0	44	<u></u>
A8	45	•	о	46	<u>λ9</u>
A0 A10	47	0	0	48	<u>AJ</u>
A12	49	0	0	50	A13
A14	51	ю	0-	52	A15
GIED	53	0	0-	54	VCC
DO	55	0	0	56	DI
SK	57	00	0	58	SS
DSP RM	59	Po-	0	60	DSP STNC
C02	61	Б	0	62	C01
DSP SSH	63	Po lo	99	64	WAIT
P20	65	Б	6	66	P21
P22	67	Б	5	68	P23 P25
P24	69	Б	5	70	P25
P26	71	Б	õ	72	P27
GHD	73	Б	5	74	ANGID
VIACC	75	ĕ	6	76	THAT
VALO	77	ю	ŏ	78	ANAO
AKA1	79	Ьŏ	õ	80	ANA2
		Ľ.		l	

Z86C95 Evaluation Board Schematic 2 of 2

Z86C9900ZCO DEVELOPMENT BOARD PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z86C99

DESCRIPTION

The kit contains an assembled development board plus software and documentation for the Z86C99 Hard Disk Controller.

The board is designed to evaluate the operation of the Z86C95 with Oak Technology's OTI018 AT disk controller IC. The cores of these two parts together constitute the Z86C99. The board is equipped with both an ESDI interface and an AT bus interface. When the ESDI drive is connected to the ESDI interface it provides a target from which to read or write data. The AT interface provides a path to the host for full evaluation of the AT command set.

When the board is used in this configuration, it provides a simulated AT/IDE drive.

SPECIFICATIONS

Power Requirements

 $+3 < V_{cc} < +5$ Vdc

Operating Temperature

0° to 50°C

Dimensions

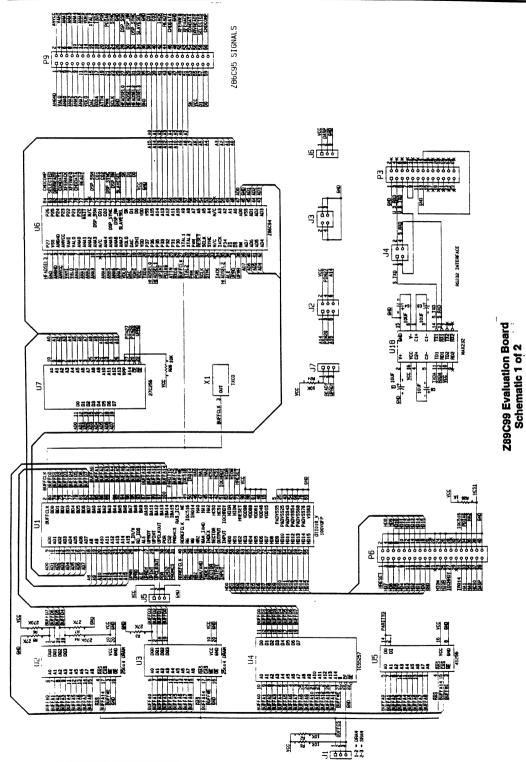
Width:	5.8	in.	(14.7	cm)
Length:	6.5	in.	(16.5)	cm)

KIT CONTENTS

Z86C99 Hard Disk Controller Development Board

CMOS Z86C95 MPU CMOS OTI018 Disk Controller 20 MHz Crystal ESDI/AT IDE Interface

Software (IBM®-PC Platform)


Source code available with factory approval. Z8°/Z80°/Z8000° Cross Assembler MOBJ Link/Loader


Documentation

Z8 Technical Manual Z8 Cross Assembler User's Guide MOBJ Link/Loader User's Guide Z86C95 User's Manual OTI018 Disk Controller Registration Card

ORDERING INFORMATION

Part No: Z86C9900ZCO

8-6

13

Z89C99 Evaluation Board Schematic 2 of 2 DSP DATABOOK Support Products

Z89C0000ZEM IN CIRCUIT EMULATOR - COO PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z89C00

DESCRIPTION

The Z89C0000ZEM is a member of Zilog's ICEBOX[™] product family of in-circuit emulators. The ICEBOX -C00 provides emulation for Zilog's Z89C00 DSP core. This includes all the essential DSP timing and I/O circuitry which simplifies user emulation of the prototype hardware/ software product. The ICEBOX can be connected to a serial port COM 1 through COM 4 of the host computer (IBM[®] 386, 486, or compatible).

The ICEBOX provides basic support of a emulator (program execution, single step, jump, halt, breakpoint, download/upload program code, etc.). In addition, 64 K x 16 program memory in steps of 4K, 8K, 16K, 32K, and 64K (software selectable), 64K breakpoint support, maximum internal clock frequency of up to 16 MHz.

The host software runs under both MS Windows 3.0 and 3.1, it creates the Graphical User Interface (GUI) for the C00 ICEBOX. The software trace and symbolic debugging features give a big advantage for user code debugging.

SPECIFICATIONS

Emulation Specification

Maximum Emulation Speed: 16 MHz

Power Requirements

+5 Vdc @ 1.5 A

Dimensions

Width: 6.0 in. (15.2 cm) Length: 8.8 in. (22.4 cm)

Serial Interface

RS-232C @ 19200 baud

Z89C00 EMULATOR Z8 Emulation Base Board

CMOS Z86C9120PSC 8K X 8 EPROM (Programmed with Debug Monitor) 32K X 8 Static RAM RS-232C Interface Three 64K X 4 Static RAM

Z89C00 Emulation Daughter Board

Z89C00 DSP ICE Chip Five 64K X 4 Static RAM 80/60 Pin Target Connectors 100-Pin HP-16500 Interface Board Connector

Cables

12", 68-Pin PLCC Emulation Cable 15", Power Cable with Banana Plugs 60", DP25 RS-232C Cable

Software (IBM PC platform)

ICEBOX[™] GUI Host Package

Documentation

Z8 ICEBOX[™] User Manual ICEBOX[™] GUI User Manual Registration Card

ORDERING INFORMATION

Part No: Z86C0000ZEM

Z89C0000ZAS Z89C00 ASSEMBLER, LINKER AND LIBRARIAN PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z89C00

DESCRIPTION

The Z89C00 Macro Assembler

The Z89C00 Macro Assembler (Z89ASM) generates relocatable object code modules in IEEE 695 OMF format. The assembler also handles macros and conditional assembly, eliminating the need for a macro preprocessor.

The Z89C00 Linker

The Z89C00 Linker (Z89LINK) links object modules produced by the assembler. The linker produces two files:

- an absolute object file in Motorola S-record format, and
- an optional comprehensive linkmap file.

Linking offers the benefits of:

- smaller, faster-assembling modules,
- use of local and global variables, and
- ease of relocating to a specified address.

Linking lets the user develop commonly-used routines separately, test them, and link them to programs under development.

The Z89C00 Librarian

The Z89C00 Librarian (Z89LIB) is the librarian facility. The librarian can be used to place the re-locatable object files in a library. In this way, the user can collect user-defined modules which allows commonly used routines to be easily included in programs.

The PLC Z89C00 Macro Assembler/Linker/Librarian requires an IBM® PC or true compatible with:

- DOS 3.2 or higher,
- a hard drive, and
- a floppy drive.

The real-mode version requires at least 640K of RAM.

The protected-mode version requires:

- an 80386 or 80486 CPU and
- 2 Mbytes of RAM with at least 1 Mbyte of extended memory free.

KIT CONTENTS

Software (IBM PC platform)

Assembler, linker, librarian

Documentation

Macro Assembler/linker/librarian User's Guide. Registration Card.

ORDERING INFORMATION

Part No: Z89C000ZAS

[⊗]ZiL05

Z89C0000ZCC Z89C00 C CROSS COMPILER PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z89C00

DESCRIPTION

The Z89C0000ZCC produces assembly language code which can be assembled and linked with Z89C0000ZAS. After linking, the code can then be simulated and debugged using the Z89C0000ZDB or Z89C0000ZSM.

The Z89C0000ZCC requires an IBM[®] PC or true compatible with:

- DOS 3.2 or higher
- a hard drive, and
- a floppy drive.

The real-mode version requires at least 640K of RAM.

The protected-mode version requires:

- an 80386 or 80486 CPU and
- 2 Mbytes of RAM with at least 1 Mbyte of extended memory free.

KIT CONTENTS Software (IBM PC platform)

C Cross Compiler

Documentation

ANSI C Cross Compiler User's Manual Registration Card

ORDERING INFORMATION

Part No: Z89C0000ZCC

Z89C0000ZEM IN CIRCUIT EMULATOR -COO PRODUCT SPECIFICATION

SUPPORTED DEVICE: Z89C00

DESCRIPTION

The Z89C0000ZEM is a member of Zilog's ICEBOX[™] product family of in-circuit emulators. The ICEBOX -C00 provides emulation for Zilog's Z89C00 DSP core. This includes all the essential DSP timing and I/O circuitry which simplifies user emulation of the prototype hardware/ software product. The ICEBOX can be connected to a serial port COM 1 through COM 4 of the host computer (IBM[®] 386, 486, or compatible).

The ICEBOX provides basic support of a emulator (program execution, single step, jump, halt, breakpoint, download/upload program code, etc.). In addition, 64 K x 16 program memory in steps of 4K, 8K, 16K, 32K, and 64K (software selectable), 64K breakpoint support, maximum internal clock frequency of up to 16 MHz.

The host software runs under both MS Windows 3.0 and 3.1, it creates the Graphical User Interface (GUI) for the C00 ICEBOX. The software trace and symbolic debugging features give a big advantage for user code debugging.

SPECIFICATIONS Emulation Specification

Maximum Emulation Speed: 16 MHz

Power Requirements

+5 Vdc @ 1.5 A

Dimensions

Width: 6.0 in. (15.2 cm) Length: 8.8 in. (22.4 cm)

Serial Interface

RS-232C @ 19200 baud

KIT CONTENTS Z89C00 Emulator

Z8 Emulation Base Board CMOS Z86C9120PSC 8K X 8 EPROM (Programmed with Debug Monitor) 32K X 8 Static RAM RS-232C Interface Three 64K X 4 Static RAM

Z89C00 Emulation Daughter Board Z89C00 DSP ICE Chip Five 64K x 4 Static RAM 80/60 Pin Target Connectors 100-Pin HP-16500 Interface Board Connector

Cables

12", 68-Pin PLCC Emulation Cable 15", Power Cable with Banana Plugs 60", DP25 RS-232C Cable

Software (IBM PC platform)

ICEBOX[™] GUI Host Package

Documentation

Z8 ICEBOX[™] User Manual ICEBOX[™] GUI User Manual Registration Card

ORDERING INFORMATION

Part No: Z89C0000ZEM

Z89C0000ZHP LOGIC ANALYZER ADAPTER BOARD PRODUCT SPECIFICATION

SUPPORTED DEVICES: L7X, C67/121, C65/120, C00

DESCRIPTION

The ICEBOX/H-P Logic Analyzer Adapter Board provides the owner of a Hewlett-Packard Logic Analyzer (model #16500A) with real-time trace capabilities for the Zilog ICEBOX Emulator. The adapter board interfaces to the H-P Logic Analyzer probes and ICEBOX interface connector. At the touch of a button, the captured code can be disassembled, providing a complete listing of program flow in native assembly language on the analyzer screen. This simple and low-cost setup transforms the logic analyzer into a powerful tool for software debugging.

SPECIFICATIONS Dimensions

Width:	4.9 in. (12.4 cm)			
Length:	5.4 in. (13.7 cm)			

KIT CONTENTS

ICEBOX/H-P Logic Analyzer Adapter Board 10, 18-Pin DIP RC Network ICs 100-Pin ICEBOX Interface Connector 5, H-P 165XX Logic Analyzer Connectors

Cables

2", 100-Pin Cable

Software (IBM-PC Platform)

Z89C00 Disassembler Software Z8® Disassembler Software (future support)

Documentation

H-P Adapter Board User Guide

ORDERING INFORMATION

Part No: Z89C0000ZHP

8-11

Z89C0000ZSD Z89C00 SIMULATOR/DEBUGGER PRODUCT SPECIFICATION

DEVICE SUPPORTED: Z89C00

DESCRIPTION

The Z89C00 Simulator is designed to work with the PLC Z89C00 development tools to simulate code written with those tools.

The simulator interacts with the user through a userdefined, windowed interface. The user has complete control over what each window looks like, where it is located on the screen, when it is displayed, and what information the window contains. Thus, the simulator display may be tailored to a specific application.

The debugger is designed to work with the PLC Z89C00 and Z8[®] development tools to debug code written with these tools. The debugger supports several DSP and Z8 devices and must be used in conjunction with the appropriate simulator and assemblers for a particular device.

The debugger interacts with the user through a userdefined, windowed interface. The user has complete control over what each window looks like, where it is located on the screen, when it is displayed, and what information the window contains. Thus, the debugger display may be tailored to a specific application.

Features include:

- Source code window
- All registers are displayed, and can be modified.
- Single step or operate at full speed.
- Break points can be set.
- Disassembler with line assembler.
- RAM and ROM windows.
- Clock/time count
- Mouse option for user interface

The Simulator (Z89SIM) and Debugger (Z89BUG) requires an IBM[®] PC or true compatible with:

- DOS 3.2 or higher,
- a hard drive, and
- a floppy drive.

The real-mode version requires at least 640K of RAM.

The protected-mode version requires:

- an 80386 or 80486 CPU and
- 2 Mbytes of RAM with at least 1 Mbyte of extended memory free.

KIT CONTENTS

Software (IBM PC platform)

Simulator

Documentation

Z89C00 Simulator User's Guide Z89C00 Debugger User's Guide Registration Card

ORDERING INFORMATION

Part No: Z89C0000ZSD

Z8912000ZEM IN CIRCUIT EMULATOR -120 PRODUCT SPECIFICATION

SUPPORTED DEVICES: Z89120, Z89920

DESCRIPTION

The Z89C6500ZEM is a member of Zilog's ICEBOX™ product family of in circuit emulators. The emulator provides emulation support for Zilog's Z89120 and Z89920 microcontrollers. This includes all the essential MCU timing and I/O circuitry which simplifies user emulation of the prototype hardware and/or software.

Data entering and program debugging are performed by the monitor ROM and the Host Package which communicates via a RS-232C serial interface with a fixed 19200 baud rate. The user program can be downloaded directly from the host computer via the RS-232C connector and may then be executed using various debugging commands in the monitor. The ICEBOX can be connected to a serial port COM1 or COM2 of the host computer (IBM[®] XT, AT, 286, 386 or 486 compatible).

SPECIFICATIONS

Emulation Specification Maximum Emulation Speed: 20.48 MHz

Power Requirements

+5 Vdc @ 1.4 A

Operating Temperature

0° to 50°C

Dimensions

 Width:
 6.25 in.

 Length:
 9.50 in.

 Height:
 2.50 in.

Serial Interface

RS-232 @ 19200 baud

KIT CONTENTS Z89C65 Emulator

Z8[™] Emulation Base Board CMOS Z86C91120PSC 8K X 8 EPROM (Programmed with Debug Monitor) EPM5128 EPLD 32K X 8 Static RAM Three 64 X 4 Static RAM RS-232C Interface Reset Switch

Z89C65 Emulation Daughter Board Z86C5020GSE ICE Chip CD2400 Two EPM5128 EPLD Two EPM5192 EPLD 32K X 8 Static RAM, 16Kx8 Static RFA - 2 each Six HP-16500A Logic Analysis System Interface Connectors 80/60 Pin Target Connectors

Cables

12", 68-Pin PLCC Emulation Cable 15", Power Cable with Banana Plugs 60", DP25 RS-232C Cable

Software (IBM PC platform)

Z8°/Z80°/Z8000° Cross Assembler MOBJ Link/Loader Host Package Includes Windows and non-Windows software for emulation

Documentation

Z8 ICEBOX User Manual Z89120 User Manual Supplement Z8 Cross Assembler User's Guide MOBJ Link/Loader User Guide Registration Card

ORDERING INFORMATION

Part No: Z8912000ZEM

7

Literature Guide and Third Party Support

Zilog Sales Offices Representatives & Distributors

`` .

·

	Data Pump	Single	e Chip		Con	trollers	
Block Diagram	DSP 512 RAM 4K ROM 16-BIT MAC DATA RAM I/O I/O	Z8DSP24K4K WORDROMROM256 BYTES512 WORDRAMRAM8-Bit10-BitA/DD/A	Z8 DSP 4K WORD ROM	PIO CGC WDT SIO CTC Z80 CPU	24 1/0 ESCC 16550 (2 CH) MIMIC S180	ZBO CPU 2 UART 2 C/T C/Ser MMU OSC	ESCC
Part #	Z89C00	Z89120	Z89920	Z84C15	Z80182	Z80180	Z85230
Description	16-Bit Digital Signal Processor	Zilog Modem/Fax Controller (ZMFC)	Zilog Modem/Fax Controller (ZMFC)	IPC/EIPC Controller	Zilog Intelligent Peripheral (ZIP ⁿ)	High-performance Z80® CPU with peripherals	Enhanced Serial Com. Controller
Process/Speed	CMOS 10, 15 MHz	CMOS 20 MHz	CMOS 20 MHz	CMOS 6, 10,16 MHz	CMOS 16, 20 MHz	6, 8, 10, 16*, 20* *Z8S180 only	CMOS 8, 10,16, 20 M
Features	16-bit Mac 75 ns 2 data RAMs (256 words each) 4K word ROM 64Kx16 Ext. ROM 16-bit //O Port 74 instructions Most single cycle Two conditional branch inputs, two user outputs Library of software macros available zero overhead pointers	Z8® controller with 24 Kbyte ROM 16-bit DSP with 4K word ROM 8-bit A/D 10-bit D/A (PWM) Library of software macros available 47 I/O pins Two comparators Independent Z8® and DSP Operations Power-Down Mode	Z8 w/64K external memory DSP w/4K word ROM 8-bit A/D 10-bit D/A Library of macros 47 I/O pins Two comparators Independent Z8* and DSP Operations Power-Down Mode	Z80° CPU, SIO, CTC WDT, CGC The Z80 Family in one device Power-On Reset Two chip selects 32-bit CRC WSG EV mode ¹ 3 and 5 Volt Version	Complete Static Version of Z180 [∞] plus ESCC (2 channels of Z85230) 16550 MIMIC 24 Parallel I/O Ernulation Modes¹	Enhanced Z80® CPU MMU 1 Mbyte 2 DMAs 2 UARTs with BRGs C/Serial I/O Port Oscillator Z8S180 includes; Pwr dwn, Prgmble EMI, divide-by-one clock option	Full dual-channel SCC plus deeper FIFOs: 4 bytes on Tx 8 bytes on Rx DPLL counter per channel Software compatible to SCC
Package	68-pin PLCC 60-pin VQFP	68-pin PLCC	68-pin PLCC	100-pin QFP 100-pin VQFP	100-pin QFP 100-pin VQFP	64-pin DIP 68-pin PLCC 80-pin QFP	40-pin DIP 44-pin PLCC
Other Applications	16-bit General-Purpose DSP TMS 32010/20/25 applications	Multimedia-Audio Voicemail Speech Storage and Transmission Modems FAXes, Sonabouys	Multimedia-Audio Voicemail Speech Storage and Transmission Modems FAXes, Sonabouys	Intelligent peripheral controllers Modems	General-Purpose Embedded Control Modem, Fax, Data Communications	Embedded Control	General-Purpose datacom. High performance SCC software compatible upgrade

Superintegration¹¹ Products Guide

Block Diagram	UART CPU OSC 256 RAM CLOCK P0 P1 P2 P3	8K PROM UART CPU 256 P0 P1 P2 P3	DSP 512 RAM 4K ROM 16-BIT MAC DATA RAM I/O I/O	MULT DIV UART CPU OSC 256 RAM CLOCK P0 P1 P2 P3	MULTDIVUARTCPUDSPDACPWMADCSPIP2P3A15-0	88-BIT SRAM/ R-S DRAM ECC CTRL DISK MCU INTER-INTER-FACE FACE
Part #	Z86C91/Z8691	Z86E21	Z89C00	Z86C93	Z86C95	Z86018
Description	ROMIess Z8®	Z8♥ 8K OTP	16-Bit Digital Signal Processor	Enhanced Z8®	Enhanced Z8® with DSP	Zilog Datapath Controller (ZDPC)
Process/Speed	CMOS 16 MHz (C91) NMOS 12 MHz (91)	CMOS 12, 16 MHz	CMOS 10, 15 MHz	CMOS 20, 25 MHz	CMOS 24 MHz	CMOS 40 MHz
Features	Full duplex UART 2 Standby Modes (STOP and HALT) 2x8 bit Counter/Timer	8K OTP ROM 256 Byte RAM Full-duplex UART 2 Standby Modes (STOP and HALT) 2 Counter/Timers ROM Protect option RAM Protect option Low EMI option	16-bit Mac 75 ns 2 data RAMs (256 words each) 4K word ROM 64Kx16 Ext. ROM 16-bit //O Port 74 instructions Most single cycle Two conditional branch inpuls, two user outputs Library of software macros available zero overhead pointers	16x16 Multiply 1.7 µs 32x16 Divide 2.0 µs Full duplex UART 2 Standby Modes (STOP and HALT) 3 16-bit Counter/Timers Pin compatible to Z86C91 (PDIP)	8 channel 8-bit ADC, 8-bit DAC 16-bit Multiply/Divide Full duplex UART SPI (Serial Peripheral Interface) 3 Standby Modes (STOP/HALT/PAUSE) Pulse Width Modulator 3x16-bit timer 16-bit DSP slave processor 83 ns Mult/Accum	Full track read Automatic data transfer (Point & Go®) 88-bit Reed Solomon ECC *on the fly* Full AT/IDE bus interface 64 KB SRAM buffer 1 MB DRAM buffer Split data field support 100-pin VQFP package JTAG boundary scan option Up to 8 KB buffer RAM reserved for MCU
Package	40-pin DIP 44-pin PLCC 44-pin QFP	40-pin DIP 44-pin PLCC 44-pin QFP	68-pin PLCC 60-pin VQFP	40-pin DIP 44-pin PLCC 44-pin QFP 48-pin VQFP	80-pin QFP 84-pin PLCC 100-pin VQFP	100-pin VQFP 100-pin QFP
Application	Disk Drives Modems Tape Drives	Software Debug 28® prototyping 28® production runs Card Reader	Disk Drives Tape Drives Servo Control Motor Control	Disk Drives Tape Drives Modems	Disk Drives Tape Drives Servo Control Motor Control	Hard Disk Drives

Superintegration¹¹ Products Guide

Block Diagram	ROM UART CPU 8611 CPU COUNTER/ RAM TIMERS P0 P0 P1 P2 P3	4K ROM CPU WDT 236 RAM P1 P2 P3 P0	Z8 DSP 24K* 4K ROM ROM A/D D/A 31*/47 DIGITAL I/O	Z8 DSP 24K ROM* 6K ROM RAM PORT CODEC INTE RAM REFRESH PWM 27*/43 DIGITAL I/O	Z8 DSP 32K ROM 6K ROM RAM PORT CODEC INTF. RAM PREFRESH 43 DIGITAL I/O	Z8 DSP 24K ROM* 8K ROM RAM PORT CODEC INTF. RAM REFRESH 27*/43 DIGITAL I/O	Z8 DSP 32K ROM 8K ROM RAM PORT CODEC INTF. RAM REFRESH 27*/43 DIGITAL I/O
Part #	Z08600/Z08611	Z86C30/E30 Z86C40/E40	Z89C65/C66	Z89C67/C68	Z89C69	Z89167/168	Z89169
Description	Z8* NMOS (CCP**) 8600 = 2K ROM 8611 = 4K ROM	Z8® Consumer Controller Processor (CCP") with 4K ROM C30 = 28-pin C40 = 40-pin E30/E40 = OTP version	Telephone Answering Controller with DSP LPC voice synthesis and DTMF detection, External RAM /RAM Interface (C66)	Telephone Answering Controller with digital voice encode and decode DTMF detection and full memory control interface. Ext. ROM/RAM Intfc. (C68)	Telephone Answering Controller with digital voice encode and decode DTMF detection and full memory control interface	Enhanced telephone answering controller with digital voice encode and decode DTMF detection and full memory controller intfc. ext. ROM/RAM intfc. (168)	Enhanced telephone answering controller with digital voice encode and decode DTMF detection and full memory controller interface
Process/Speed	NMOS 8,12 MHz	CMOS 12 MHz	CMOS 20 MHz	CMOS 20 MHz	CMOS 20 MHz	CMOS 24 MHz	CMOS 24 MHz
Features	2K/4K ROM 128 Bytes RAM 22/32 I/O lines On-chip oscillator 2 Counter/Timers 6 vectored, priority interrupts UART (Z8611)	4K ROM, 236 RAM 2 Standby Modes 2 Counter/Timers ROM Protect RAM Protect 4 Ports (86C40/E40) 3 Ports (86C30/E30) Brown-Out Protection 2 Analog Comparators Low EMI Watch-Dog Timer Auto Power-On Reset Low Power option	Z8* Controller 24K ROM (C65) 16-bit DSP 4K Word ROM 8-bit A/D with AGC DTMF macro available LPC macro available 10-bit PWM D/A Other DSP software options available 47 V/D Pins (C65) * = Note Z89C66 is ROMIess (Z8) with 31 I/O pins.	Z8* Controller 24K ROM (C67) 16-bit DSP 6K Word ROM DTMF macro available LPC macro available 10-bit PWM D/A Other DSP S/W opt. avail. ARAM/DRAM/ROM Controller & Interface Dual Codec Interface 43 I/O (C67) * = Note Z89C68 is ROMIess (Z8) with 27 I/O pins	Z8® Controller 32K ROM 16-bit DSP 6K Word ROM DTMF macro available LPC macro available 10-bit PWM D/A Other DSP software options available ARAM/DRAM/ROM Controller & Interface Dual Codec Interface 43 I/O	Z8* Controller 24K ROM (167) 16-bit DSP 8K Word ROM DTMF Macro available LPC Macro available 10-bit PWM D/A Other DSP software options available ARAM/DRAM/ROM Dual Codec Interface 43 I/O (167) * = Note Z89168 is ROMless (28) with 27 I/O pins	28* Controller 32K ROM 16-bit DSP 8K Word ROM DTMF Macro available LPC Macro available 10-bit PWM D/A Other DSP software options available ARAM/DRAM/ROM Dual Codec Interface 43 I/O
Package	28-pin DIP 40-pin DIP 44-pin PLCC	28-pin DIP 40-pin DIP 44-pin PLCC, QFP	68-pin PLCC	84-pin PLCC	84-pin PLCC	84-pin PLCC 80-pin QFP	84-pin PLCC 80-pin QFP
Application	Low cost tape board TAD	Window Control Wiper Control Sunroof Control Security Systems TAD	Fully featured cassette answering machines with voice prompts and DTMF signaling Digital OGM available	Voice Processing, DSP applications in tapeless TAD and other high-performance voice processors	Voice Processing, DSP applications in tapeless TAD and other high-performance voice processors	Voice Processing, DSP applications in tapeless TAD and other high-performance voice processors	Voice Processing, DSP applications in tapeless TAD and other high-performance voice processors

Video Products

Superintegration¹¹ Products Guide

		TV Controller		IR Coi	ntroller	Cable TV	
Block Diagram	8K ROM 4K CHAR ROM Z8 CPU RAM OSD 13 TIMER 5 PWM WDT PORTS	6K ROM 3K CHAR ROM Z8 CPU RAM OSD 7 TIMER 3 PWM WDT PORTS	CHAR ROM COMMAND INTERPRETER ANALOG SYNC/DATA SLICER CTRL	1K/6K ROM Z8 CPU WDT 124 RAM P2 P3	2K/8K/16K R0M Z8 CPU WDT 128,256, 768 RAM P0 P1 P2 P3	4K ROM CPU WDT 236 RAM P1 P2 P3 P0	16K ROM UART CPU 236 RAM P0 P1 P2 P3 P4 P5 P6
Part #	Z86C27/127/97	Z86227	Z86128	Z86L06/L29	Z86L70/71/72 (Q193)	Z86C40/E40	Z86C61/62
Description	Z8® Digital Television Controller MCU with logic functions needed for Television Controller, VCRs and Cable	Standard DTC features with reduced ROM, RAM, PWM outputs for greater economy	Line 21 Controller (L21C") for Closed Caption Television	18-pin Z8* Consumer Controller Processor (CCP*) low-voltage and low-current battery operation 1K-6K ROM	Z8® (CCP") low-voltage parts that have more ROM, RAM and special Counter/Timers for automated output drive capabilities	Z8® Consumer Controller Processor (CCP [®]) with 4K ROM (C40) E40 = OTP version	Z8® MCU with Expanded I/O's and 16K ROM
Process/Speed	CMOS 4 MHz	CMOS 4 MHz	CMOS 12 MHz	Low Voltage CMOS 8 MHz	Low Voltage CMOS 8 MHz	CMOS 12 MHz	CMOS 16, 20 MHz
Features	Z8/DTC Architecture 8K ROM, 256-byte RAM 160x7-bit video RAM 0n-Screen Display (0SD) video controller Programmable color, size, position attributes 13 PWMs for D/A conversion 128-character set 4Kx6-bit char. Gen. ROM Watch-Dog Timer (WDT) Brown-Out Protection 5 Ponts/36 pins 2 Standby Modes Low EMI Mode	Z8/DTC Architecture 6K ROM, 256-byte RAM 120x7-bit video RAM OSD on board Programmable color, size, position attributes 7 PWMs 96-character set 3Kx6-bit character generator ROM Watch-Dog Timer (WDT) Brown-Out Protection 3 Ports/20 pins 2 Standby Modes Low EMI Mode	Conforms to FCC Line 21 format Parallel or serial modes Stand-alone operation On-board data sync anc slicer On-board character gererator - Color - Blinking - Italic - Underline	28° Architecture 1K ROM & 6K ROM Watch-Dog Timer 2 Analog Comparators with output option 2 Standby Modes 2 Counter/Timers Auto Power-On Reset 2 volt operation RC OSC option Low Noise option Brown-Out Protection High current drivers (2, 4)	28* Architecture 2K/8K/16K ROM Watch-Dog Timer 2 Analog Comparators with output option 2 Standby Modes 2 Enhanced Counter/ Timers, Auto Pulse Reception/Generation Auto Power-On Reset 2 volt operation RC OSC option Brown-Out Protection High current drivers (4)	4K ROM, 236 RAM 2 Standby Modes 2 Counter/Timers ROM Protect RAM Protect 4 Ports Brown-Out Protection 2 Analog Comparators Low EMI Watch-Dog Timer Auto Power-On Reset Low Power option	16K ROM Full duplex UART 2 Standby Modes (STOP and HALT) 2 Counter/Timers ROM Protect option RAM Protect option Pin compatible to Z86C21 C61 = 4 Ports C62 = 7 Ports
Package	64-pin DIP 52-pin active (127)	40-pin DIP	18-pin DIP	18-pin DIP 18-pin SOIC	20-pin DIP (L71), 18-pin DIP, SOIC (L70) 40,44-pin DIP, PLCC, QFP (L72)	40-pin DIP	40-pin DIP (C61) 44-pin PLCC,QFP (C61) 68-pin PLCC (C62)
Application	Low-end Television Cable/Satellite Receiver	Low-end Television Cable/Satellite Receiver	TVs, VCRs, Decoders	I.R. Controller Portable battery operations	I.R. Controller Portable battery operations	Window Control Wiper Control Sunroof Control Security Systems TAD	Cable Television Remote Control Security

S-4

\$2j	E	Datacon	nmunical	ions	Supe	erintegro	ation Pro	oducts Gu	uide
Block Diagram	SCC	ESCC	SCC DMADMADMA BIU	CGC WDT SIO CTC Z80 CPU	CTC 16 I/O (85C30/2) Z180	24 1/0 85230 16550 ESCC (2 CH) MIMIC S180	USC	USC/2 TSA	USC/2 DMA DMA
Part #	Z8030/Z80C30 Z8530/Z85C30	Z85230/Z80230 Z85233*	Z16C35	Z84C15	Z80181	Z80182	Z16C30	Z16C33	Z16C32
Description	Serial Com. Controller	Enhanced Serial Com. Controller	Integrated Serial Com. Controller	Intelligent Peripheral Controller	Smart Access Controller	Zilog Intelligent Peripheral	Universal Serial Controller	Mono-channel Universal Serial Controller	Integrated Universal Serial Controller
Process/ Speed/ Clock Data Rate	NMOS: 4, 6, 8 MHZ CMOS: 8,10 16 MHz 2, 2.5, 4 Mb/s	CMOS: 10, 16 20 MHz 2.5, 4.0, 5.0 Mb/s	CMOS: 10, 16 MHz 2.5, 4.0 Mb/s	CMOS 6, 10,16 MHz	10, 12.5	CMOS 16, 20 MHz	CMOS: 20 MHz CPU Bus 10 Mb/s 20 Mb/s	CMOS: 10 MHz CPU Bus 10 Mb/s	CMOS:20 MHz CPU Bus 16 Mb/s 20 Mb/s
Features	Two independent full-duplex channels Enhanced DMA support: 10x19 status FIFO 14-bit byte counter NRZ/NRZI/FM	Full dual-channel SCC plus deeper FIFOs: 4 bytes on Tx 8 bytes on Rx DPLL counter per channel Software compatible to SCC *One channel of Z85230	Full dual-channel SCC plus 4 DMA controllers and a bus interface unit	Z80° CPU, SIO, CTC WDT, CGC The 280 Family in one device Power-On Reset Two chip selects 32-bit CRC WSG EV mode ¹ 3 and 5 Volt Version	Complete Z180 [™] plus SCC/2 CTC 16 I/O lines Emulation Mode ¹	Complete Static version of Z180 plus ESCC (2 channels of 85230) 16550 MIMIC 24 Parallel I/O Emulation Mode ¹	Two dual-channel 32-byte receive & transmit FIFOs 16-bit bus B/W: 18.2 Mb/s 2 BRGs per channel Flexible 8/16-bit bus interface	Single-channel (half of USC") plus Time Slot Assigner functions for ISDN	Single-channel (half of USC) plus two DMA controllers Array chained and linked-list modes with ring buffer support
Package	40-pin DIP 44-pin CERDIP 44-pin PLCC	40-pin DIP 44-pin PLCC *44-pin QFP (85233)	68-pin PLCC	100-pin QFP 100-pin VQFP	100-pin QFP	100-pin QFP 100-pin VQFP	68-pin PLCC	68-pin PLCC	68-pin PLCC
Application	General-Purpose datacom.	General-Purpose datacom. High performance SCC software	High performance datacom. SCC upgrades	Intelligent peripheral controllers Modems	Intelligent peripheral controllers Printers, Faxes, Moderns, Terminals	General-Purpose Embedded Control Modern, Fax, Data Communica- tions	General-Purpose high-end datacom. Ethernet HDLC X.25 Frame Relay	General-Purpose high-end datacom. Ethernet HDLC X.25 Frame Relay	General-Purpose high-end datacom. Ethernet HDLC X.25 Frame Relay

9-S

Superintegration[™] Products Guide

Block Diagram	84C01* CPU OSC PWR. DOWN 2K BYTES SRAM WSG	SIO DIC DIC PIO PIA	CTC CGC SIO WDT Z80 CPU	PIO CGC WDT SIO CTC Z80 CPU	40 I/O CTC WDT Z80 CPU	ZBO CPU 2 UART 2 C/T C/Ser MMU OSC	16-BIT Z80 CPUOSC 4 DMAZ80/Z-BUS INTERFACEUARTMMU3 C/TCACHEWSG	CTC SCC/2 16 I/0 (85C30/2) Z180	24 1/0 85230 ESCC (2 CH) S180
Part #	Z84C50	Z84C90	Z84013/C13	Z84015/C15	Z84011/C11	Z80180/S180	Z80280	Z80181	Z80182
Description	Z80/84C01 with 2K SRAM	Killer I/O (3 Z80 peripherals)	Intelligent Peripheral Controller	Intelligent Peripheral Controller	Parallel I/O Controller	High-performance Z80® CPU with peripherals	16-bit Z80® code compatible CPU with peripherals	Smart Access Controller	Zilog Intelligent Peripheral
Speed MHz	10	8, 10, 12.5	6, 10	6, 10, 16	6, 10	6, 8, 10, 16*, 20* *Z8S180 only	10, 12	10, 12.5	16, 20
Features	Z80° CPU 2 Kbytes SRAM WSG Oscillator Pin compatible with Z84C00 DIP & PLCC EV mode! *84C01 is available as a separate part	SIO, PIO, CTC plus 8 I/O lines	Z80° CPU, SIO, CTC WDT, CGC, WSG, Power-On Reset 2 chip selects EV mode ¹	Z80* (CPU, SIO, CTC WDT, CGC The Z80 Family in one device Power-On Reset Two chip selects 32-bit CRC WSG EV mcde ¹	Z80* CPU, CTC, WDT 40 I/O lines bit programmable Power-On Reset EV mode'	Enhanced Z80 CPU MMU 1 Mbyte 2 DMAs 2 UARTs with BRGs C/Serial I/O Port Oscillator Z85180 includes; Pwr dwn, Prgmble EMI, divide-by-one clock option	16-bit code com- patible Z80° CPU Three stage pipeline MMU 16 Mbyte CACHE 256 byte Inst. & Data Peripherals 4 DMAs, UART, 3 16-bit C/T, WSG Z80/Z-BUS* interface	Complete Z180 plus SCC/2 CTC 16 I/O lines Emulation Mode ¹	Complete Static Version of Z180 ^m plus ESCC (2 channels of Z85230) 16550 MIMIC 24 Parallel I/O Emulation Modes ¹
Package	40-pin DIP 44-pin PLCC 44-pin QFP	84-pin PLCC	84-pin PLCC	100-pin QFP 100-pin VQFP	100-pin QFP	64-pin DIP 68-pin PLCC 80-pin QFP	68-pin PLCC	100-pin QFP	100-pin QFP 100-pin VQFP
Application	Embedded Controllers	General-purpose peripheral that can be used with Z80 and other CPU's	Intelligent datacom controllers	Intelligent peripheral controllers Modems	Intelligent parallel- I/O controllers Industrial display terminals	Embedded Control	Embedded Control Terminals Printers	Intelligent peripheral controllers Printers, Faxes, Moderns, Terminals	General-Purpose Embedded Control Modem, Fax, Data Communications

1 Allows use of existing development systems

\$2i	Periphero	als Superin	tegration [™] Product	s Guide
	Z8036 Z8536	Z32H00	Z5380 Z53C80	Z85C80
Description	Counter/Timer & parallel I/O Unit (ClO)	Hyperstone Enhanced Fast Instruction Set Computer (EFISC) Embedded (RISC) Processor	Smail Computer System Interface (SCSI)	Serial Communication Controller and Small Computer System Interface
Process/ Speed	NMOS 4,6 MHz	CMOS 25 MHz	CMOS Z5380: 1.5 MB/s Z53C80: 3.0 MB/s	CMOS SCC - 10, 16 MHz SCSI - 3.0 MB/s
Features	Three 16-bit Counter/Timers, Three I/O ports with bit catching, pattern matching interrupts and handshake I/O	32-bit MPU 4 Gbytes address space 19 global and 64 local registers of 32 bits each 128 bytes instruction cache 1.2μ CMOS 42 mm² die	ANSI X3.131-1986 Direct SCSI bus interface On-board 48 mA drivers Normal or Block mode DMA transfers Bus interface, target and initiator	Full dual-channel SCC plus SCSI sharing databus and read/write functions
Package	40-pin PDIP 44-pin PLCC	144-pin PGA 132-pin QFP	Z5380: 40-pin DIP 44-pin PLCC Z53C80: 48-pin DIP 44-pin PLCC	68-pin PLCC
Application	General-Purpose Counter/Timers and I/O system designs	Embedded high-performance industrial controller Workstations	Bus host adapters, formatters, host ports	AppleTalk® networking SCSI disk drives

²Software and hardware compatible with discrete devices

·

• •

.

\$

, C

Z89320 16-Bit Mixed **Signal Processor**

7

Z89321 16-Bit Mixed **Signal Processor**

Support Product Information

Literature Guide and Third Party Support

Zilog Sales Offices Representatives & Distributors

.

[®]ZiLŒ

LITERATURE GUIDE

DC-8275-04

Z8[®]/SUPER8[™] MICROCONTROLLER FAMILY

Databooks

Part No Unit Cost

5.00

Z8 Microcontrollers Databook (includes the following documents)

Z8 CMOS Microcontrollers

Z86C00/C10/C20 MCU OTP Product Specification Z86C06 Z8 CCP[™] Preliminary Product Specification Z86C08 8-Bit MCU Product Specification Z86E08 Z8 OTP MCU Product Specification Z86C09/19 Z8 CCP Product Specification Z86E19 Z8 OTP MCU Advance Information Specification Z86C11 Z8 MCU Product Specification Z86C12 Z8 ICE Product Specification Z86C21 Z8 MCU Product Specification Z86E21/Z86E22 OTP Product Specification Z86C30 Z8 CCP Product Specification Z86E30 Z8 OTP CCP Product Specification Z86C40 Z8 CCP Product Specification Z86E40 Z8 OTP CCP Product Specification Z86C27/97 Z8 DTC™ Product Specification Z86127 Low-Cost Digital Television Controller Adv. Info. Spec. Z86C50 Z8 CCP ICE Advance Information Specification Z86C61 Z8 MCU Advance Information Specification Z86C62 Z8 MCU Advance Information Specification Z86C89/C90 CMOS Z8 CCP Product Specification Z86C91 Z8 ROMIess MCU Product Specification Z86C93 Z8 ROMIess MCU Preliminary Product Specification Z86C94 Z8 ROMIess MCU Product Specification Z86C96 Z8 ROMIess MCU Advance Information Specification Z88C00 CMOS Super8 MCU Advance Information Specification

Z8 NMOS Microcontrollers

28600 Z8 MCU Product Specification 28601/03/11/13 Z8 MCU Product Specification 28602 8-Bit Keyboard Controller Preliminary Product Spec. 28604 8-Bit MCU Product Specification 28612 Z8 ICE Product Specification 28671 Z8 MCU With BASIC/Debug Interpreter Product Spec. 28681/82 Z8 MCU ROMIess Product Specification 28691 Z8 MCU ROMIess Product Specification 28691 Z8 MCU ROMIess Product Specification 28800/01/20/22 Super8 ROMIess/ROM Product Specification

Peripheral Products

286128 Closed-Captioned Controller Adv. Info. Specification 2765A Floppy Disk Controller Product Specification 25380 SCSI Product Specification 253C80 SCSI Advance Information Specification

Z8 Application Notes and Technical Articles

Zilog Family On-Chip Oscillator Design Z86E21 Z8 Low Cost Thermal Printer Z8 Applications for I/O Port Expansions Z86C09/19 Low Cost Z8 MCU Emulator Z8602 Controls A 101/102 PC/Keyboard The Z8 MCU Dual Analog Comparator The Z8 MCU In Telephone Answering Systems Z8 Subroutine Library A Comparison of MCU Units Z86xx Interrupt Request Registers Z8 Family Framing A Programmer's Guide to the Z8 MCU Memory Space and Register Organization

Super8 Application Notes and Technical Articles

Getting Started with the Zilog Super8 Polled Async Serial Operations with the Super8 Using the Super8 Interrupt Driven Communications Using the Super8 Serial Port with DMA Generating Sine Waves with Super8 Generating DTMF Tones with Super8 A Simple Serial Parallel Converter Using the Super8

Additional Information

Z8 Support Products Zilog Quality and Reliability Report Literature List Package Information Ordering Information

⊗ ZiLOS

LITERATURE GUIDE

Z8®/SUPER8™ MICROCONTROLLER FAMILY (Continued)

Databooks By Market Niche	Part No	Unit Cost
Digital Signal Processor Databook (includes the following documents) Z86C95 Z8* Digital Signal Processor Preliminary Product Specification Z89C00 16-Bit Digital Signal Processor Preliminary Product Specification Z89C00 DSP Application Note "Understanding Q15 Two's Complement Fractional Multiplication" Z89120, Z89920 (ROMless) 16-Bit Mixed Signal Processor Preliminary Product Specification Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor Preliminary Product Specification Z89320 16-Bit Digital Signal Processor Preliminary Product Specification Z89321 16-Bit Digital Signal Processor Advance Information Specification	DC-8299-02	3.00
Telephone Answering Device Databook (includes the following documents) Z89C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller Preliminary Product Specification Z89C67, Z89C68/C69 (ROMIess) Dual Processor Tapeless T.A.M. Controller Preliminary Product Specification Z89C65 Software Development Guide Z89C67/C69 Software Development Guide	DC-8300-02	3.00
Infrared Remote (IR) Control Databook (includes the following documents) Z86L06 Low Voltage CMOS Consumer Controller Processor Preliminary Product Specification Z86L29 6K Infrared (IR) Remote (ZIRC [™]) Controller Advance Information Specification Z86L70/L71/L72, Z86E72 Zilog IR (ZIRC [™]) CCP [™] Controller Family Preliminary Product Specification	DC-8301-03	3.00
Z8 Microcontrollers (includes the following documents) Z86C07 CMOS Z8 8-Bit Microcontroller Product Specification Z86C08 CMOS Z8 8-Bit Microcontroller Product Specification Z86C11 CMOS Z8 A-Bit OTP Microcontroller Product Specification Z86C12 CMOS Z8 In-Circuit Microcontroller Emulator Product Specification Z86C21 8K ROM Z8 CMOS Microcontroller Product Specification Z86C21 8K ROM Z8 CMOS Microcontroller Product Specification Z86C21 6X S2 8 & OTP Microcontroller Product Specification Z86C21 62/96 CMOS Z8 Microcontroller Product Specification Z86C61/62/96 CMOS Z8 Microcontroller Product Specification Z86C63/64 32K ROM Z8 CMOS Microcontroller Product Specification Z86C91 CMOS Z8 ROMIess Microcontroller Product Specification Z86C93 CMOS Z8 Multiply/Divide Microcontroller Product Specification	DC-8305-01	3.00
Z8 Microcontrollers (includes the following documents) Z86C04 CM0S Z8 8-Bit Low Cost 1K ROM Microcontroller Product Specification Z86E04 CM0S Z8 OTP 8-Bit Low Cost Microcontroller Product Specification	DC-6018-01	3.00
Mass Storage (includes the following documents) Z86C21 8K ROM Z8 CMOS Microcontroller Product Specification Z86C21 CMOS Z8 8K OTP Microcontroller Product Specification Z86C91 CMOS Z8 ROMless Microcontroller Product Specification Z86C93 ZMOS Z8 Multiply/Divide Microcontroller Product Specification Z86C95 Z8 Digital Signal Processor Product Specification Z89C00 16-Bit Digital Signal Processor Product Specification Z89C00 DSP Application Note - "Understanding Q15 Two's Complement Fractional Multiplication"	DC-8303-00	3.00

[⊗]ZiL05

LITERATURE GUIDE

Z8®/SUPER8™ MICROCONTROLLER FAMILY (Continued)

Databooks By Market Niche	Part No	Unit Cost
Digital Television Controllers (includes the following documents) Z86C27/97 CMOS Z8® Digital Signal Processor Product Specification Z86C61/62/96 CMOS Z8 Microcontroller Product Specification Z86C63/64 32K ROM CMOS Z8 Microcontroller Product Specification Z86127 Low Cost Digital Television Controller Product Specification Z86128 Line 21 Closed-Caption Controller (L21C [®]) Digital Television Controller Product Specification Z86227 40-Pin_Low Cost (4LDTC [®]) Digital Television Controller Product Specification	DC-8308-00	3.00
Keyboard/Mouse/Pointing Devices Databook (includes the following documents) Z8602 NMOS Z8® 8-Bit Keyboard Controller Product Specification Z8614 NMOS Z8® 8-Bit Keyboard Controller Product Specification Z8615 NMOS Z8® 8-Bit Keyboard Controller Product Specification Z86E23 Z8® 8-Bit Keyboard Controller with 8K OTP Product Specification Z86C04 CMOS Z8® 8-Bit Microcontroller Product Specification Z86C08 CMOS Z8® 8-Bit Microcontroller Product Specification Z86C17 CMOS Z8® 8-Bit Microcontroller Product Specification	DC-8304-00	3.00
PC Audio Databook (includes the following documents) Z86321 Digital Audio Processor Preliminary Product Specification Z89320 16-Bit Digital Signal Processor Preliminary Product Specification Z89321/371 16-Bit Digital Signal Processor Preliminary Product Specification Z89331 16-Bit PC ISA Bus Interface Advance Information Specification Z89341/42/43 Wave Synthesis Chip Set Advance Information Specification Z5380 Small Computer System Interface Product Specification	DC-8317-00	3.00
PCMCIA/SCSI Interface Controllers (includes the following documents) Z5380 Small Computer System Interface Product Specification Z53C80 Small Computer System Interface Product Specification Z85C80 SCSCI [™] Serial Communications and Small Computer Interface Product Specification Z86017 PCMCIA Interface Preliminary Product Specification Z86015 PCMCIA Interface with DMA Support Advance Product Specification Z86020 CardBus/PCI Interface Advance Product Specification	DC 8313-00	3.00
Z8 [®] Low End MCU Databook (includes the following documents) Z86C04	DC-8318-00	3.00

[®]ZiLŒ

LITERATURE GUIDE

Z8®/SUPER8™ MICROCONTROLLER FAMILY (Continued)

Z8 Product Specifications, Technical Manuals and Users Guides	Part No	Unit Cost
Z86E23 CMOS Z8 OTP Microcontroller Preliminary Product Specification	DC-2598-00	N/C
Z8614 NMOS Z8 8-Bit MCU Keyboard Controller Preliminary Product Specification	DC-2576-00	N/C
Z8 OTP CMOS One-Time-Programmable Microcontrollers Addendum	DC-2614-AA	N/C
Z8 Microcontrollers Technical Manual	DC-8291-02	5.00
Z86018 Preliminary User's Manual	DC-8296-00	N/C
Digital TV Controller User's Manual	DC-8284-01	3.00
Z89C00 16-Bit Digital Signal Processor User's Manual/DSP Software Manual	DC-8294-02	3.00
PLC Z89C00 Cross Development Tools Brochure	DC-5538-01	N/C
Z86C95 16-Bit Digital Signal Processor User Manual	DC-8595-00	3.00
Z86017 PCMCIA Ădaptor Chip User's Manual	DC-8298-01	3.00
Z89C65/C67/C69 Software Manual	DC-8310-00	3.00

Z8 Application Notes	Part No	Unit Cost
Z8602 Controls A 101/102 PC/Keyboard	DC-2601-01	N/C
The Z8 MCU Dual Analog Comparator	DC-2516-01	N/C
Z8 Applications for I/O Port Expansions	DC-2539-01	N/C
Z86E21 Z8 Low Cost Thermal Printer	DC-2541-01	N/C
Zilog Family On-Chip Oscillator Design	DC-2496-01	N/C
Using the Zilog Z86C06 SPI Bus	DC-2584-01	N/C
Interfacing LCDs to the Z8	DC-2592-01	N/C
X-10 Compatible Infrared (IR) Remote Control	DC-2591-01	N/C
Z86C17 In-Mouse Applications	DC-3001-01	N/C
Z86C40/E40 MCU Applications Evaluation Board	DC-2604-01	N/C
Z86C08/C17 Controls A Scrolling LED Message Display	DC-2605-01	N/C
Z86C95 Hard Disk Controller Flash EPROM Interface	DC-2639-01	N/C
Timekeeping with Z8; DTMF Tone Generation; Serial Communication Using the CCP Software UART	DC-2645-01	N/C

[⊗]ZiLŒ

LITERATURE GUIDE

Z80[®]/Z8000[®] CLASSIC FAMILY OF PRODUCTS

Databooks By Market Niche	Part No	Unit Cos
ligh-Speed Serial Communication Controllers Z16C30 CMOS Universal Serial Controller (USC [™]) Preliminary Product Specification Z16C32 Integrated Universal Serial Controller (IUSC [™]) Preliminary Product Specification Application Notes and Support Products Zilog's Superintegration [™] Products Guide Literature Guide and Third Party Support	DC-8314-00	3.00
Serial Communication Controllers Z8030/Z8530 Z-Bus® SCC Serial Communication Controller Product Specification Z80C30/Z85C30 CMOS Z-Bus® SCC Serial Communication Controller Product Specification Z80C30 Z-Bus® ESCC [™] Enhanced Serial Communication Controller Preliminary Product Specification Z85230 ESCC [™] Enhanced Serial Communication Controller Product Specification Z85233 EMSCC [™] Enhanced Mono Serial Communication Controller Product Specification Z85C80 SCSCI [™] Serial Communications and Small Computer Interface Product Specification Z16C35/Z85C35 CMOS ISCC [™] Integrated Serial Communications Controller Product Specification Application Notes and Support Products Zilog's Superintegration [™] Products Guide Literature Guide and Third Party Support	DC-8316-00	3.00
280/Z180/Z280 Product Specifications, Technical Manuals and Users Guides	Part No	Unit Cost
100 Family Tasksian Manual	DO 0000 00	0.00

Z80 Family Technical Manual	DC-8306-00	3.00
Z80180 Z180 MPU Microprocessor Unit Technical Manual	DC-8276-04	3.00
Z280 MPU Microprocessor Unit Technical Manual	DC-8224-03	3.00
Z80180/Z8S180 Z180 Microprocessor Product Specification	DC-2609-03	N/C
Z80182 Zilog Intelligent Peripheral (ZIP™)	DC-2616-03	N/C
Z380 [™] Preliminary Product Specification	DC-6003-03	N/C
Z380™User's Manual	DC-8297-00	3.00
Z80 Family Programmer's Reference Guide	DC-0012-04	N/C

Z80/Z180/Z280 Application Notes	Part No	Unit Cost
Z180/SCC [™] Serial Communications Controller Interface at 10 MHz	DC-2521-02	N/C
Z80 Using the 84C11/C13/C15 in place of the 84011/013/015	DC-2499-02	N/C
A Fast Z80 Embedded Controller	DC-2578-01	N/C

[©]Silæ

LITERATURE GUIDE

.

Z80%/Z8000% CLASSIC FAMILY OF PRODUCTS (Continued)

Z8000 Product Specifications, Technical Manuals and Users Guides	Part No	Unit Cost
Z8000 CPU Central Processing Unit Technical Manual	DC-2010-06	3.00
SCC Serial Communication Controller User's Manual	DC-8293-02	3.00
Z8036 Z-CI0/Z8536 CIO Counter/Timer and Parallel Input/Output Technical Manual	DC-2091-02	3.00
Z8038 Z8000 Z-FIO FIFO Input/Output Interface Technical Manual	DC-2051-01	3.00
Z8000 CPU Central Processing Unit Programmer's Pocket Guide	DC-0122-03	3.00
285233 EMSCC Enhanced Mono Serial Communication Controller Preliminary Product Specification	DC-2590-00	N/C
Z85C80 SCSCI [™] Serial Communication and Small Computer Interface Preliminary Product Specification	DC-2534-02	N/C
216C30 USC Universal Serial Controller Preliminary Technical Manual	DC-8280-02	3.00
216C32 IUSC Integrated Universal Serial Controller Technical Manual	DC-8292-03	3.00
216C35 ISCC Integrated Serial Communication Controller Technical Manual	DC-8286-01	3.00
216C35 ISCC Integrated Serial Communication Controller Addendum	DC-8286-01A	N/C
Z53C80 Small Computer System Interface (SCSI) Product Specification	DC-2575-01	N/C
Z80230 Z-BUS® ESCC Enhanced Serial Communication Controller Preliminary Product Specification	DC-2603-01	N/C
Z8000 Application Notes	Part No	Unit Cost
Z16C30 Using the USC in Military Applications	DC-2536-01	N/C
Datacom IUSC/MUSC Time Slot Assigner	DC-2497-02	N/C
Datacom Evaluation Board Using The Zilog Family With The 80186 CPU	DC-2560-03	N/C
Boost Your System Performance Using the Zilog ESCC Controller	DC-2555-02	N/C
216C30 USC - Design a Serial Board for Multiple Protocols	DC-2554-01	N/C
Using a SCSI Port for Generalized I/O	DC-2608-01	N/C

[⊗]ZiLŒ

LITERATURE GUIDE

MILITARY COMPONENTS FAMILY

Military Specifications	Part No	Unit Cost
Z8681 ROMIess Microcomputer Military Product Specification	DC-2392-02	N/C
Z8001/8002 Military Z8000 CPU Central Processing Unit Military Product Specification	DC-2342-03	N/C
Z8581 Military CGC Clock Generator and Controller Military Product Specification	DC-2346-01	N/C
28030 Military Z8000 Z-SCC Serial Communications Controller Military Product Specification	DC-2388-02	N/C
28530 Military SCC Serial Communications Controller Military Product Specification	DC-2397-02	N/C
28036 Military Z8000 Z-CIO Counter/Timer Controller and Parallel I/O Military Electrical Specification	DC-2389-01	N/C
28038/8538 Military FIO FIFO Input/Output Interface Unit Military Product Specification	DC-2463-02	N/C
28536 Military CIO Counter/Timer Controller and Parallel I/O Military Electrical Specification	DC-2396-01	N/C
28400 Military Z80 CPU Central Processing Unit Military Electrical Specification	DC-2351-02	N/C
28420 Military PIO Parallel Input/Output Controller Military Product Specification	DC-2384-02	N/C
28430 Military CTC Counter/Timer Circuit Military Electrical Specification	DC-2385-01	N/C
28440/1/2/4 Z80 SIO Serial Input/Output Controller Military Product Specification	DC-2386-02	N/C
280C30/85C30 Military CMOS SCC Serial Communications Controller Military Product Specification	DC-2478-02	N/C
284C00 CMOS Z80 CPU Central Processing Unit Military Product Specification	DC-2441-02	N/C
284C20 CMOS Z80 PIO Parallel Input/Output Military Product Specification	DC-2384-02	N/C
84C30 CMOS Z80 CTC Counter/Timer Circuit Military Product Specification	DC-2481-01	N/C
284C40/1/2/4 CMOS Z80 SIO Serial Input/Output Military Product Specification	DC-2482-01	N/C
16C30 CMOS USC Universal Serial Controller Military Preliminary Product Specification	DC-2531-01	N/C
80180 Z180 MPU Microprocessor Unit Military Product Specification	DC-2538-01	N/C
84C90 CMOS KIO Serial/Parallel/Counter Timer Preliminary Military Product Specification	DC-2502-00	N/C
285230 ESCC Enhanced Serial Communication Controller Military Product Specification	DC-2595-00	N/C

[⊗]ZiLŒ

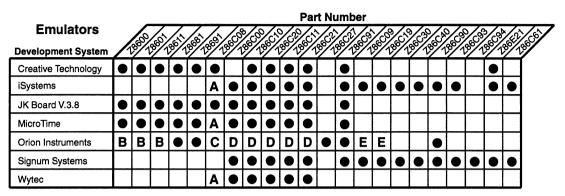
LITERATURE GUIDE

GENERAL LITERATURE

Catalogs, Handbooks, Product Flyers and Users Guides	Part No	Unit Cost
Superintegration Shortform Catalog 1994	DC-5472-12	N/C
Superintegration Products Guide	DC-5499-07	N/C
ZIA™3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet	DC-5556-01	N/C
ZIA ZIA00ZCO Disk Drive Development Kit Datasheet	DC-5593-01	N/C
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet	DC-5560-01	N/C
Zilog Infrared (IR) Controllers - ZIRC [™] Datasheet	DC-5558-01	N/C
Zilog Intelligent Peripheral Controller - ZIP™Z80182 Datasheet	DC-5525-01	N/C
Zilog Digital Signal Processing - Z89320 Datasheet	DC-5547-01	N/C
Zilog Keyboard Controllers Datasheet	DC-5600-01	N/C
Z380 [™] - Next Generation Z80 [®] /Z180 [™] Datasheet	DC-5580-02	N/C
Fault Tolerant Z8® Microcontroller Datasheet	DC-5603-01	N/C
32K ROM Z8® Microcontrollers Datasheet	DC-5601-01	N/C
Zilog Datacommunications Brochure	DC-5519-00	N/C
Zilog Digital Signal Processing Brochure	DC-5536-02	N/C
Zilog PCMCIA Adaptor Chip Z86017 Datasheet	DC-5585-01	N/C
Zilog Television/Video Controllers Datasheet	DC-5567-01	N/C
Zilog TAD Controllers - Z89C65/C67/C69 Datasheet	DC-5561-01	N/C
Zilog ASSPs - Partnering With You Product Flyer	DC-5553-01	N/C
Quality and Reliability Report	DC-2475-11	N/C
The Handling and Storage of Surface Mount Devices User's Guide	DC-5500-02	N/C
Universal Object File Utilities User's Guide	DC-8236-04	3.00
Zilog 1991 Annual Report	DC-1991-AR	N/C
Zilog 1992 Annual Report	DC-1992-AR	N/C
Zilog 1993 First Quarter Financial Report	DC-1993-Q1	N/C
Zilog 1993 Second Quarter Financial Report	DC-1993-Q2	N/C
Microcontroller Quick Reference Folder	DC-5508-01	N/C

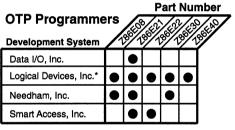
⊗ ZiLOE

Z8® HARDWARE AND SOFTWARE SUPPORT


Z8 Support

Company	Assembler	C Compiler	Simulator	Forth	Operating System	Phone Number
Allen Ashley	X		X		DOS, CP/M	(818) 793-5748
Avocet Systems	X				DOS	(800) 448-8500
Byte Craft		X			DOS	(519) 888-6911
Cybernetic Micro	X				DOS	(415) 726-3000
Laboratory Microsystems				X	DOS	(213) 306-7412
Micro Computer Control	X	X	X		DOS	(609) 466-1751
Micro Dialects	Х				Macintosh	(513) 271-9100
MPE	×			X	DOS	(716) 461-9187
Production Language Corp.	X	X	X		DOS (386+)	(817) 599-8363
Pseudo Corp.	X		X		DOS	(804) 873-1947
Software Development Systems	X				DOS UNIX	(800) 448-7733
Western Wares	x				DOS CP/M-80 ISIS-II	(303) 327-4888
2500AD Software	X	x	X		DOS UNIX CP/M VAX VMS	(719) 345-8683

Super8[®] Support


Company	Assembler	C Compiler	Simulator	Forth	Operating System	Phone Number
Allen Ashley	X		X		Macintosh	(818) 793-5748
Micro Computer Control		X		1	DOS	(609) 466-1751
Pseudo Corp.	X		X		DOS	(804) 873-1947
2500AD Software	X		X		DOS	(719) 345-8683

Z8® HARDWARE AND SOFTWARE SUPPORT

A = Emulate with Z86C0800ZDP Adaptor B = Emulate with Z8612 Board C = Emulate with Z86C0800ZDP and Z8612 Board or Z86C0800ZEM D = Emulate with Z8612 Board

E = Emulate with Z86C90 Board

* Single and Gang Programming Available

Z8® HARDWARE AND SOFTWARE SUPPORT

Company	Product	Company	Product
Allen Ashley 395 Sierra Madre Villa Pasadena, CA 91107-2902 (818) 793-5748	Assembler Disassembler Simulator	Logical Devices, Inc. 1201 NW 65th Place Fort Lauderdale, FL 33309 (800) 331-7766	OTP Programmer (Z86E21, Z86E22)
Avocet Systems 120 Union Street Rockport, ME 04856 (800) 448-8500	Assembler -	Micro Computer Control P.O. Box 275 / 17 Model Ave. Hopewell, NJ 08525 (609) 466-1751	Assembler C Compiler Simulator
Byte Craft Limited 421 King Street North Waterloo, Ontario Canada N2J4E4 (519) 888-6911	C Compiler	Micro Dialects P.O. Box 30014 Cincinnati, OH 45230 (513) 271-9100	Assembler
Creative Technology 5144 Peachtree Road Suite 301 Atlanta, GA 30341	Emulator	MicroTime 10F No. 1180 Chen-De Rd. 11148 Taipei, Taiwan, R O.C. 11-886-2-881-1791	Emulator
(404) 455-8255 Cybernetic Micro Systems P.O. Box 3000	Assembler	MPE 2604 Elmwood Ave. Rochester, NY 14618 (716) 461-9187	Forth Complier
San Gregorio, CA 94074 (415) 726-3000 Dantrol 1910 Rena Ln.	Emulator	Needham Electronics 4539 Orange Grove Ave. Sacramento, CA 95841 (916) 924-8037	OTP Programming
Dalton, GA 30720 (404) 226-3714		Orion Instruments 180 Independence Dr.	Emulator
Data I/O, Inc. 10525 Willows Road N.E. P.O. Box 97046	OTP Programmer (Z86E21)	Menlo Park, CA 94025 (415) 327-8800	
Redmond, WA 98073-9746 (206) 867-6829		Production Languages Corp. P.O. Box 109 Weatherford, TX 76086-0109	Assembler Simulator C Compiler
iSystems GmbH Einsteinstr. 5	Emulator	(817) 599-8363 Pseudo Corp.	Assembler
W8050 Dachau, Germany (49) 8131-25085		716 Thimble Shoals Blvd. Ste. E Newport News, VA 23606	Disassembler Simulator
J K Engineering 37 Kallang Pudding Rd. Blk. B Tong Lee Bldg. #08-03 Singapore 1334 011-65-7448418	Emulator	(804) 873-1947 Signum Systems 171 E. Thousand Oaks Blvd. Thousand Oaks, CA 91360 (805) 371-4608	Emulator
Laboratory Microsystems 12555 West Jefferson Blvd. Los Angeles, CA 90060 (213) 306-7412	Forth Compiler	<u></u>	

Z8® HARDWARE AND SOFTWARE SUPPORT

Company	Product	Company	Product
Smart Access, Inc. 124 Robin Road Altamonte Springs, FL 32701 (407) 331-4724	OTP Programmer (Z86E21, Z86E22)	Western Wares P.O. Box C Norwood, CO 81423 (303) 327-4898	Assembler
Software Development Systems 4248 Belle Aire Lane Downers Grove, IL 60515 (800) 448-7733	Assembler	Wytec 185C East Lake Street Ste. 140 Bloomingdale, IL 60108 (708) 894-1440	Emulator
Software Science 3750 Round Bottom Road Cincinnati, OH 45244 (513) 561-2060	Z8 [®] Prototyping System	2500AD Software, Inc. 109 Brookdale Ave. P.O. Box 480 Buena Vista, CO 81211 (719) 345-8683	Assembler C Compiler Simulator

[©]Silæ

LITERATURE GUIDE

ORDERING INFORMATION

Complete the attached literature order form. Be sure to enclose the proper payment or supply a purchase order. Please reference specific order requirements.

MINIMUM ORDER REQUIREMENTS

Orders under \$300.00 must be prepaid by check, money order or credit card. Canadian and foreign orders must be accompanied by a cashier's check in U.S. dollars, drawn on a correspondent U.S. bank only.

Orders over \$300.00 may be submitted with a Purchase Order.

SHIPMENT

Orders will be shipped after your check is cashed or credit is checked via the most economical method. Please allow four weeks for delivery.

RETURNS ARE NOT ACCEPTED.

									PLEA	SE PRINT OR	ТҮРЕ			
NAME												PHONE ()	-
COMF	PAP	NY										Method of Pay		
ADDR	IES	s										Credit Card DV		 Money Order P.O. (over \$300.00)
CITY									STATE		ZIP	COUNTRY		
	Ρ	AR		UME	BER				DOCU		Ξ	UNIT COST	QTY.	TOTAL
	+	-			-	Ł						\$		\$
	+	-			-	+						\$		\$
	+	-			-	Ł						\$		\$
	+	-			-	+						\$		\$
	+	-			-	+						\$		\$
	+	-			.	+						\$		\$
	4	-			-	Ŧ						\$		\$
	4	-			-	$\overline{+}$, <u>p</u>		\$		\$
	4	-			-	$\overline{+}$						\$		\$
	7	-			-	F						\$		\$
	4	-			-	Ŧ						\$		\$
	4	-			—	+						\$		\$
	-	-			—	F			· · · · · · · · · · · · · · · · · · ·			\$		\$
	7	-			Γ.	Ļ						\$		\$
Mail To: Credit Card or Purchase Order # SUBTOTAL						BTOTAL								
Expiration Date ADD APPLICABLE SALES TAX (CA ONLY)														
210 E.					E. M/	S C1·	-0					HIPPING AND HA		
CAMP	BE	ELL,	CA 9	5008	-660	0		0					TOTAL	

Phone: (408)370-8016 Fax: (408)370-8056

Z89320 16-Bit Mixed **Signal Processor**

Z89321 16-Bit Mixed **Signal Processor**

Support Product Information

Superintegration" Products Guide

Literature Guide and

Third Party Support

Z

Zilog Sales Offices Representatives & Distributors

.

ZILOG DOMESTIC SALES OFFICES AND TECHNICAL CENTERS

CALIFORNIA

Agoura	
Campbell	
Irvine	
San Diego	619-658-0391

COLORADO Reuldor

Douider	•••••••••••••••••••••••••••••••••••••••	
	•	

202 404 2005

000 000 0500

FLURIDA	
Clearwater	

GEORGIA

ILLINOIS	
Schaumburg	

MINNESOTA

TEXAS

Minneapolis612-944-0737	7

NEW HAMPSHIRE

PENNSYLVANIA	
OREGON Portland	
OHIO Independence	216-447-1480
Nashua	

INTERNATIONAL SALES OFFICES

CANADA	
Toronto	905-673-0634
0111114	
CHINA	00 755 0000000
Shenzhen	86-755-2236089
GERMANY	
Munich	49-8967-2045
Sömmerda	
JAPAN	
Tokyo	81-3-3587-0528
•	
HONG KONG	
Kowloon	852-7238979
	852-7238979
KOREA	
KOREA Seoul	
KOREA Seoul	
KOREA Seoul	
KOREA Seoul SINGAPORE Singapore	
KOREA Seoul SINGAPORE Singapore TAIWAN	
KOREA Seoul SINGAPORE Singapore	

© 1993 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056

U.S., CANADIAN & PUERTO RICAN REPRESENTATIVES

ALABAMA

Huntsville	
Electronic Sales, Inc	(205) 533-1735

ARIZONA

Scottsdale	
Thom Luke Sales, Inc.	(602) 451-5400

COLORADO

Englewood Thorson Rocky Mountain(303) 773-6300

CONNECTICUT

Wallingford Advanced Technical Sales(508) 664-0888

FLORIDA

Altamonte Springs		
Semtronic Associates,	Inc	(407) 831-8233
Clearwater		
Semtronic Associates,	Inc	(813) 461-4675
Fort Lauderdale		
Semtronic Associates,	Inc	(305) 731-2484

GEORGIA

ILLINOIS

Hoffman Estates Victory Sales, Inc.(708) 490-0300

IOWA

Cedar Rapids Advanced Technical Sales(319) 393-8280

KANSAS

Olathe Advanced Technical Sales(913) 782-8702

MARYLAND

Pasadena Electronic Engineering & Sales(410) 255-9686

MASSACHUSETTS

North Reading Advanced Technical Sales	(508) 664-0888
MICHIGAN <i>Farmington Hills</i> Rathsburg Associates, Inc	(313) 489-1500
MINNESOTA Minneapolis	

Professional Sales for Industry(612) 944-8545

MISSOURI

Bridgeton Advanced Technical Sales(314) 291-5003

NEW JERSEY

Cherry Hill	
Tritek	

NEW MEXICO

Albuquerque Quatra & Associates(505) 296-6781

NEW YORK

NORTH CAROLINA

Cary	(010) 107 0100
Electronic Sales, Inc.	

OHIO

Centerville	
Q-Mark, Inc.	(513) 438-1129
Independence	
Rathburg Associates, Inc.	(216) 447-8825

OKLAHOMA

Tulsa	
Nova Marketing, Inc	.(918) 660-5105

U.S., CANADIAN & PUERTO RICAN REPRESENTATIVES

TEXAS

Austin	
Nova Marketing, Inc	
Dallas	
Nova Marketing, Inc(214) 265-4630	ł.
Houston	
Nova Marketing, Inc(713) 988-6082	

UTAH

Salt Lake City

Thorson Rocky Mountain	(801) 942-1683
------------------------	----------------

WISCONSIN

Brooktiela	
Victory Sales,	Inc(414) 789-5770

CANADA

British Columbia
3BD Electronics, Inc
Ontario
BBD Electronics, Inc
Ottawa
BBD Electronics, Inc
Quebec
BBD Electronics, Inc

PUERTO RICO

San Juan

U.S. AND CANADIAN DISTRIBUTORS

NATIONWIDE

Newark Electronics	1-800-367-3573

ALABAMA

Inside Alabama	
Outside Alabama	800-633-2918
Huntsville	
Arrow Electronics	(205) 837-6955
Arrow Electronics Hamilton Hallmark Electronics	

ARIZONA

Inside Arizona	
Outside Arizona	800-528-8471
Phoenix	
Hamilton Hallmark Electronics	(602) 437-1200
Tempe	
Anthem Electronics	(602) 966-6600
Anthem Electronics Arrow Electronics	(602) 431-0030

CALIFORNIA

Calabasas Arrow Electronics	396
Chatsworth	00
	000
Anthem Electronics	00
Costa Mesa	
Hamilton Hallmark Electronics(714) 641-41	ΟŲ
Hayward	
Arrow Electronics(510) 487-84	16
Irvine	
Anthem Electronics	144
Arrow Electronics	104
Rocklin	
Anthem Electronics	744
Hamilton Hallmark Electronics	922
San Diego	
Anthem Electronics)05
Arrow Electronics	300
Hamilton Hallmark Electronics	36
San Jose	
Anthem Electronics	200
Arrow Electronics	700
Sunnyvale	
Hamilton Hallmark Electronics	300
Woodland Hills	
Hamilton Hallmark Electronics	404

COLORADO

Colorado Springs Hamilton Hallmark Electronics(719) 6	637-0055
Englewood	
Anthem Electronics	790-4500 799-0258
Hamilton Hallmark Electronics	790-1662

CONNECTICUT

Cheshire	
Hamilton Hallmark Electronics	4
Wallingford	
Arrow Electronics	1
Waterbury	
Anthem Electronics	С

FLORIDA

Deerfield Beach Arrow Electronics(305) 429-8200
Lake Mary
Arrow Electronics(407) 333-9300
Largo
Hamilton Hallmark Electronics
Fort Lauderdale
Hamilton Hallmark Electronics(305) 484-5482
Winter Park
Hamilton Hallmark Electronics(407) 657-3300

GEORGIA

Duluth

Arrow Electronics	(404)	497-1300
Hamilton Hallmark Electronics	404	623-5475
Arrow Electronics Hamilton Hallmark Electronics	404	623-4400

ILLINOIS

Bensonville

Hamilton Hallmark Electronics	. (708) 860-7780
Itasca Arrow Electronics	(708) 250-0500
Schaumburg	.(700)200-0000
Anthem Electronics	.(708) 884-0200

INDIANA

Indianapolis

Arrow Electronics Hamilton Hallmark Electronics	(317) 299-2071 (317) 872-8875
	(800) 829-0146
IOWA ,	
Cedar Rapids	
Arrow Electronics	(319) 395-7230

KANSAS

Lenexa

Arrow Electronics) 541-9542
Arrow Electronics	888-4747
(800)	332-4375

U.S. AND CANADIAN DISTRIBUTORS

KENTUCKY

Lexington

Hamilton Hallmark Electronics	(800) (800)	235-6039 525-0069
	(000)	020 0000

MARYLAND

Columbia		
Anthem Electronics	.(301)	995-6640
Arrow Electronics	.(301)	596-7800
Anthem Electronics Arrow Electronics Hamilton Hallmark Electronics	.(410)	988-9800

MASSACHUSETTS

Hamilton Hallmark Electronics	(508) 532-9808
Wilmington Anthem Electronics Arrow Electronics	(508) 657-5170 (508) 658-0900

MICHIGAN

Livonia	
Arrow Electronics	(313) 462-2290
Nori	
Hamilton Hallmark Electronics	(313) 347-4271
Plymouth	
Hamilton Hallmark Electronics	(313) 416-5800
	(800) 767-9654

MINNESOTA

Bloomington	
Hamilton Hallmark Electronics	(612) 881-2600
Eden Prairie	
Anthem Electronics	(612) 944-5454
Arrow Electronics	

MISSOURI

<i>Earth City</i> Hamilton Hallmark Electronics	(314) 291-5350
St. Louis Arrow Electronics	(314) 567-6888

NEVADA

Sparks	
Arrow Electronics	(702) 331-5000

NEW JERSEY

Cherry Hill Hamilton Hallmark Electronics	(609) 424-0110
Mariton	(000) 500 0000
Arrow Electronics	(609) 596-8000
Pinebrook Anthem Electronics Arrow Electronics	(201) 227-7960 (201) 227-7880
Parsippany Hamilton Hallmark Electronics	

NEW YORK

Commack
Anthem Electronics
Hauppauge
Arrow Electronics
Melville
Arrow Electronics(516) 391-1300
Rochester
Arrow Electronics
Hamilton Hallmark Electronics

Ronkonkoma

NORTH CAROLINA

n -	1_1	
Ra	e	nn

Arrow Electronics	(919	876-3132
Arrow Electronics Hamilton Hallmark Electronics	(919)	872-0712

OHIO

Centerville Arrow Electronics	(513)	435-5563
Dayton Hamilton Hallmark Electronics	(513) (800)	439-6735 423-4688
Solon Arrow Electronics Hamilton Hallmark Electronics		
Worthington Hamilton Hallmark Electronics	(614)	888-3313

U.S. AND CANADIAN DISTRIBUTORS

OKLAHOMA

Tulsa

, u.ou		
Arrow Electronics Hamilton Hallmark Electronics	(918)	252-7537
Hamilton Hallmark Electronics	.(918)	254-6110

OREGON

Beaverton

ALMAC/Arrow Electronics	503)	629-8090
Hamilton Hallmark Electronics	503)	526-6200

PENNSYLVANIA

Horsham	
Anthem Electronics	
Pittsburgh	· ·
Arrow Electronics	

TEXAS

Austin Arrow Electronics
Carroliton
Arrow Electronics(214) 380-6464
Dallas
Hamilton Hallmark Electronics
Houston
Arrow Electronics
Richardson
Anthem Electronics
San Antonio
Hamilton Hallmark Electronics(210) 828-2246

UTAH

Salt Lake City	
Anthem Electronics) 973-8555
Arrow Electronics	973-6913
Hamilton Hallmark Electronics) 266-2022

WASHINGTON

Bellevue		
ALMAC/Arrow Electronics	(206)	643-9992
Bothell		
Anthem Electronics	(206)	483-1700
Redmond		
Hamilton Hallmark Electronics	(206)	881-6697
Spokane	. ,	
ALMAC/Arrow Electronics	(509)	924-9500
-	• •	

WISCONSIN

Brookfield	
Arrow Electronics	(414) 792-0150
New Berlin	
Hamilton Hallmark Electronics	(414) 797-7844

CANADA

Alborta		
Future Electronics	(403) (403)	250-5550 438-2858

British Columbia

Arrow Electronics	4) 421-2333
Arrow Electronics	4) 294-1166

Manitoba

Ontario

Arrow Electronics	(613)	226-6903
Arrow Electronics	(905)	670-7769
Future Electronics	(905)	612-9200
Future Electronics	613	820-8313

Quebec

Arrow Electronics Future Electronics	(514) 421-7411 (514) 694-7710
Burnaby	
Hamilton Hallmark Electronics	(604) 420-4101
Mississauga	
Hamilton Hallmark Electronics	(416) 564-6060
Nepean	
Hamilton Hallmark Electronics	(613) 226-1700
Ville St. Laurent	
Hamilton Hallmark Electronics	(514) 335-1000

CENTRAL AND SOUTH AMERICA

MEXICO

ARGENTINA

Buenos Aires	
YEL SRL	.011-541-440-1532

BRAZIL

Sao Paulo

Digibyte Nishicom	011-55-11-581-4100
Nišhićom	011-55-11-535-1755

ASIA-PACIFIC

AUSTRALIA

R&D Electronics GEC Electronics Division	61-3-558-0444 61-2-638-1888
CHINA Lestina International Ltd China Electronics Appliance Corp TLG Electronics, Ltd	Rm. 20469 86-755-335-4214
HONG KONG Lestina International Ltd Electrocon Products Ltd	852-735-1736 852-481-6022
INDIA <i>Bangalore</i> Zenith Technologies Pvt. Ltd	01 912 596792
Bombay Zenith Technologies Pvt. Ltd	
JAPAN Teksel Co., Ltd Internix Incorporated Kanematsu Electronic Components Corp	
KOREA ENC-Korea	822-579-3330
MALAYSIA Eltee Electronics Ltd	60-3-7038498
NEW ZEALAND GEC Distributors Ltd	64-25-971057
PHILIPPINES Alexan Commercial	63-2-402223
SINGAPORE Eltee Electronics Ltd	
TAIWAN (ROC) Acer Sertek, Inc. Orchard Electronics Co. Weikeng Ind. Co. Ltd.	886-2-504-7083
THAILAND Eltee Electronics Ltd.	66-2-530-1739

EUROPE

GERMANY AUSTRIA Berlin Vienna EBV Elektronik GMBH030-3421041 BELGIUM Burgwedel EBV Elektronik GMBH051-3980870 Antwerp D & D Electronics PVBA010-323-82779 Dortmund Zaventem Duesseldorf DENMARK Erfurt Brondby Ditz Schweitzer AS010-4542-453044 Frankfurt Lynge Delco A/S011-45-35-821200 Future Electronics6126-54020 Hamburg ENGLAND Berkshire Leonberg Future Electronics0753-687000 EBV Elektronik GMBH071-5230090 Gothic Crellon0734-787848 Muenchen Lancastershire EBV Elektronik GMBH089-460960 Complementary Technologies Ltd. 44-942-274731 Nuernbera FINLAND Espoo Neuss OY SW Instruments AB011-358-0-522-122 EBV Elektronik GMBH021-31530072 Stuttgart FRANCE Electronic 2000071-563560 Cedex A2M010-331-46232425

Massv

Reptronic SA010-331-60139300

ISRAEL RDT	010-972-35483737
ITALY	
<i>Milano</i> De Mico S.P.A	
NETHERLANDS Tekelec	010-3179-310100
NORWAY Hefro	010-47-22676800
PORTUGAL Ibertronics	35-1-471-6587
SPAIN	
<i>Madrid</i> Unitronics S.A	
SWEDEN NC Nordcomp Sweden AB	010-46-87646710
SWITZERLAND	
<i>Dietikon</i> EBV Elektronik GMBH	41-1-7401090
Regensdorf Moor elektronik AG	41-1-8433111
<i>Lausanne</i> EBV Elektronik GMBH	

. : |

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 408-370-8000