

Table of Contents

Z8 ${ }^{\circledR}$ Product Family Page
Introduction 1
Product Application Portfolio 3
Product Reference Chart
CMOS Products
Z86C00/C10/C20 CMOS Z8* OTP Microcontroller Product Specification 9
Z86C06 CMOS Z8 CCP ${ }^{\text {T }}$ Preliminary Product Specification 21
Z86C08 CMOS Z8 8-Bit Microcontroller Product Specification 71
Z86E08 CMOS Z8 OTP Microcontroller Product Specification 105
Z86C09/19 CMOS Z8 CCP Product Specification 143
Z86E19 CMOS Z8 OTP Microcontroller Advance Information Specification 187
Z86C11 CMOS Z8 Microcontroller Product Specification 189
Z86C12 CMOS Z8 ICE Product Specification 221
Z86C21 CMOS Z8 Microcontroller Product Specification 257
Z86E21 CMOS Z8 OTP Microcontroller Product Specification 289
Z86C30 CMOS Z8 CCP Product Specification 333
Z86E30 CMOS Z8 OTP CCP Product Specification 383
Z86C40 CMOS Z8 CCP Product Specification 429
Z86E40 CMOS Z8 OTP CCP Product Specification 187
Z86C27/97 CMOS Z8 Digital Television Controller (DTC ${ }^{\text {w }}$) Product Specification 511
Z86127 Low-Cost Digital Television Controller (LDTC) Advance Information Specification 593
Z86C50 CMOS Z8 CCP ICE Advance Information Specification 611
Z86C61 CMOS Z8 Microcontroller Advance Information Specification 657
Z86C62 CMOS Z8 Microcontroller Advance Information Specification 659
Z86C89/C90 CMOS Z8 CCP Product Specification 661
Z86C91 CMOS Z8 ROMless Microcontroller Product Specification 719
Z86C93 CMOS Z8 ROMless Microcontroller Preliminary Product Specification 751
Z86C94 CMOS 78 ROMIess Microcontrolier Advance Product Specification 789
Z86C96 CMOS Z8 ROMless Microcontroller Advance Information Specification 791
Z88C00 CMOS Super8 ${ }^{\text {™ }}$ Microcontroller Advance Information Specification 793
NMOS Products
Z8600 NMOS Z8 Microcontroller Product Specification 799
Z8601/03/11/13 NMOS Z8 Microcontroller Product Specification 811
Z8602 NMOS Z8 8-Bit Keyboard Controller Preliminary Product Specification 829
Z8604 NMOS Z8 8-Bit Microcontroller Product Specification 859
Z8612 NMOS 78 ICE Product Specification 881
Z8671 Z8 NMOS MCU With BASIC/Debug Intrepreter Product Specification 919
Z8681/82 NMOS Z8 ROMless Microcontroller Product Specification 939
Z8691 NMOS Z8 ROMless Microcontroller Product Specification 961
Z8800/01/20/22 Super8 ROMless, ROM Product Specification 979
Peripheral Products
Z86128 Closed-Captioned Controller (CCC) Advance Information Specification 1013
Z7̇65A Floppy Disk Controller (FDC) Product Specification 1025
Z5380 SCSI Product Specification 1053
Z53C80 SCSI Advance Information Specification 1089

Table of Contents

Z8 Application Notes and Technical Articles

Zilog Family On-Chip Oscillator Design 1095
Z86E21 Z8 Low Cost Thermal Printer 1105
Z8 Applications for I/O Port Expansions 1117
Z86C09/19 Low Cost Z8 MCU Emulator 1129
Z8602 Controls A 101/102 PC/Keyboard 1135
The Z8 MCU Dual Analog Comparator 1151
The Z8 MCU In Telephone Answering Systems 1157
Z8 Subroutine Library 1167
A Comparison of MCU Units 1217
Z86xx Interrupt Request Registers 1231
Z8 Family Framing 1232
A Programmer's Guide to the Z8 MCU 1235
Memory Space and Register Organization 1261
Super8 Application Notes and Technical Articles
Getting Started with the Zilog Super8 1265
Polled Async Serial Operations with the Super8 1269
Using the Super8 Interrupt Driven Communications 1275
Using the Super8 Serial Port with DMA 1281
Generating Sine Waves with Super8 1287
Generating DTMF Tones with Super8 1293
A Simple Serial Parallel Converter Using the Super8 1297
Additional Information
Z8 Support Products 1307
Zilog Quality and Reliability Report 1337
Literature List 1339
Package Information 1345
Ordering Information 1361

MICROCONTROLLERS

ZILOG Z8 ${ }^{\circledR}$ FAMILY AN Industry Standard 8-bit SINGLE-CHIP ARCHITECTURE WITH Value Added Integration

The Zilog Z8 Microcontroller Family has long been a recognized leader in single-chip architecture. Today, Zilog continues to expand that leadership with an ever growing array of new high integration Z8-based products including the Close Caption chip, the Z86128 and the Z86C94, a high integration controller with DSP. The expanded family offers Value Added Integration for a wide variety of applications such as consumer products, television control, automotive, mass storage and computer peripherals. This edition of the Z8 Microcontroller Data Book describes this entire family of devices including ROM, ROMless and OTP (One-Time-Programmable) versions, as well as the development support tools available from Zilog.

All of Zilog's high integration family are created using Zilog's Superintegration technology. Zilog pioneered the Superintegration process as the science of creating highly efficient, powerful ICs with fully characterized cores and cells. Zilog's core and cell library is one of the largest proprietary libraries in the semiconductor industry. Zilog uses Superintegration technology to produce a wide variety of ASSPs (Application Specific Standard Products) that offer great cost/performance benefits and the ability to customize in software rather than hardware with minimal cost and the highest possible quality.

Product Application Portfolio

Product	Pin Count	ROM (Kbyte)	1/0	Interrupts	UARTS	Comparators	CTCs	WDT	Package Type	Speed	Temp	Low Noise
CMOS												
Z86C00 MCU	28	2	22	3	-	-	2	-	DIP	8,12	S,E	-
Z86C06 MCU	18	1	14	5	-	2	2	x	DIP, SOIC ${ }^{+1}$	$4^{*}, 8,12$	S,E	x
Z86C08 MCU	18	2	14	5	-	2	2	x	DIP, SOIC ${ }^{+1}$	$4^{*}, 8,12$	S,E	x
Z86E08 MCU	18	2 (OTP)	14	5	-	2	2	X	DIP	$4^{*}, 8,12$	S	X
Z86C09/19	18	2/4	14	5	-	2	2	X	DIP,SOIC ${ }^{+1}$	$4^{*}, 8,12$	S,E	-
Z86C10 MCU	28	4	22	3	-	-	2	-	DIP	8,12	S,E	-
Z86C11 MCU	40,44	4	32	6	1	-	2	-	QFP,DIP,PLCC	12,16	S,E	-
Z86C12 ICE	84	32	16	6	1	-	2	-	PGA	16	S	-
Z86E19 MCU ${ }^{1}$	18	4 (OTP)	14	5	-	2	2	X	DIP	12	S	x
Z86C20 MCU	28	8	22	3	-	-	2	-	DIP	12	S	x
Z86C21 MCU	40,44	8	32	6	1	-	2	-	QFP,DIP,PLCC	$4^{*}, 12,16$	S,E	X
Z86E21/E22* MCU	40,44	8 (OTP)	32	6	1	-	2	-	QFP,DIP,PLCC	$4^{*}, 12,16$	S	X
Z86C91 MCU	40,44		16	6	1	-	2	-	QFP,DIP,PLCC	12,16,20	S,E	-
Z86C30 MCU	28	4	24	6	-	2	2	X	DIP	$4^{*}, 8,12$	S,E	x
Z86E30 MCU	28	4 (OTP)	24	6	-	2	2	X	DIP	12	S	X
Z86C40 MCU	40,44	4	32	6	-	2	2	X	QFP,DIP,PLCC	$4^{*}, 8,12$	S,E	x
Z86E40 MCU	40,44	4 (OTP)	32	6	-	2	2	X	QFP,DIP,PLCC	12	S	X
Z86C61 MCU ${ }^{+1}$	40,44	16	32	6	1	-	2	-	QFP,DIP,PLCC	16	S,E,	-
Z86C62 MCU ${ }^{+1}$	64,68	16	52	6	1	-	2	-	DIP,PLCC	16	S,E	X
Z86C89**/90 MCU	40,44	-	16	6	-	2	2	x	QFP,DIP,PLCC	$4^{*}, 8,12$	S,E	x
Z86C27 TV Controller	64	8	43	6	-	-	2	X	DIP	4	S	X
Z86C96 MCU ${ }^{+1}$	64,68	-	44	6	1	-	2	-	DIP,PLCC	20	S,E	-
Z86C97 TV Controller	64	-	16	6	-	-	2	X	DIP	4	S	X
Z86C93 MCU	44	-	16	6	1	- .	3	-	QFP,PLCC	20	S,E	-
Z86C94 DSP MCU ${ }^{+1}$	80	-	24	6	1	-	3	-	QFP	20	S,E	-
Z88C00 Super8 ${ }^{+1}$	48,68	-	24	27	1	-	2	-	DIP,PLCC	25	S	-

[^0]
${ }^{28}$ MICROCONTROLLERS

Product	Pin Count	$\begin{gathered} \text { ROM } \\ \text { (Kbyte) } \end{gathered}$	I/O	Interrupts	UARTS	Comparators	CTCs	WDT	Package Type	Speed	Temp	Low Noise
NMOS												
Z8600 MCU	28	2	22	3	-	-	2	-	DIP	8	S,E	-
Z8601/02 MCU	40,44	2	32	6	1	-	2	-	DIP,PLCC	4**	S,E	χ^{*}
Z8603 PROTOPACK	40	2	32	6	1	-	2	-	DIP	8,12	S	-
Z8604 MCU	18	1	14	5	-	-	2	X	DIP	8	S	-
Z8610 MCU	28	4	22	3	-	-	2	-	DIP	8,12	S,E	-
Z8611 MCU ${ }^{+}$	40,44	4	32	6	1	-	2	-	DIP,PLCC	8,12.5	S,E,M	-
Z8681 MCU ${ }^{+}$	40,44	-	16	6	1	-	2	-	DIP,PLCC	8,12	S,E,M	-
Z8691 MCU	40,44	-	16	6	1	-	2	-	DIP,PLCC	8,12	S,E	-
Z8612 ICE	64,68	4	32	6	1	-	2	-	PLCC,Ceramic	12	S	-
Z8613 PROTOPACK	40	4	32	6	1	-	2	-	DIP	8,12	S	-
Z8800 SUPER8	48,68	-	24	27	1	-	2	-	DIP,PLCC	20	S	-
Z8801 SUPER8	44	-	17	27	1	-	2	-	PLCC	20	S	-
Z8820 SUPER8	48,68	8	40	27	1	-	2	-	DIP,PLCC	20	S	-
Z8821 SUPER8	44	8	33	27	1	-	2	-	PLCC	20	S	-
Z8884 SUPER8 ICE	84	16	40	27	1	-	2	-	PGA	20	S	-
Z5380 SCSI	40,44	-	-	-	-	-	-	-	-	-	S	
Z765A FDC	40,44	-	-	-	-	-	-	-	-	-	S	-
\dagger Available in Military version * Z8602 Low Noise, 4 MHz, DIP only.			Temperature Range:									
			$\mathrm{S}=$ Standard $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$									
			$\mathrm{E}=$ Extended $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$									
			$\mathrm{M}=$ Military $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$									

CMOS PRODUCTS

Z86C00/C10/C20 CMOS

 Z8 ${ }^{\circledR}$ MCU
FEATURES

- Complete microcomputer, $2 \mathrm{~K}(86 \mathrm{C} 00)$, 4 K (86 C 10), or 8 K (86C20) bytes of ROM, 124 bytes of RAM (256 bytes - Z86C20), and $22 \mathrm{I} / \mathrm{O}$ lines.

■ 144-byte register file, including 124 (238-Z86C20) generalpurpose registers, four l/O port registers, and 14 status and control registers.

- Average instruction execution time of 1.5 us, maximum of 2.8 us.

Vectored, priority interrupts for $1 / 0$ and counter/timers.

- Two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any of nine working-register groups in 1.0 us.

■ On-chip oscillator which accepts crystal, external clock drive, LC, ceramic resonator.

■ Standby modes -- Halt and Stop.
■ Single +5 V power supply - all pins TTLcompatible.

- 8 and 12 MHz
- CMOS process.

GENERAL DESCRIPTION

Z86C10/C20 microcomputer (Figures 1 and 2) introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the

Z86C10/C20 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Figure 1. Pin Functions

Figure 2. Pin Assignments

PIN DESCRIPTIONS

$\overline{\text { DS }}$. Data Strobe (output, active Low). Data Strobe is activated once for each memory transfer.
 (bidirectional, TTL-compatible). These 22 I/O lines are grouped in four ports that can be configured under program control for I/O.

RESET. Reset (input, active Low). $\overline{\text { RESET }}$ initializes the MCU. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel-resonant crystal to the on-chip clock oscillator and buffer.

ARCHITECTURE

The MCU's architecture is characterized by a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are helpful in many applications. (Figure 3).

Microcomputer applications demand powerful I/O capabilities. The MCU fulfills this with 22 pins dedicated to input and output. These lines are grouped in four ports and are configurable under software control to provide timing, status signals, and parallel I/O.

Two basic internal address spaces are available to support this wide range of configurations: program memory and the register file. The 144-byte random-access register file is composed of 124 general-purpose registers, four I/O port registers, and 14 control and status registers.

To unburden the program from coping with real-time problems such as counting/timing, two counter/timers with a large number of user-selectable modes are offered on-chip.

Figure 3. Functional Block Diagram

STANDBY MODE

The Z86C00/C10/C20's standby modes are:

- Stop
- Halt

The Stop instruction stops the internal clock and clock oscillation; the Halt instruction stops the internal clock but not clock oscillation.

A reset input releases the standby mode.
To complete an instruction prior to entering standby mode, use the instructions:

LD TMR, \#00
NOP
STOP or HALT

ADDRESS SPACES

Program Memory. The 16 -bit program counter addresses 4 K or 8 K bytes of program memory space as shown in Figure 4.
The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain three 16 -bit vectors that correspond to the three available interrupts.
Register File. The 144-byte register file includes four I/O port registers ($\mathrm{R}_{0}-\mathrm{R}_{3}$), 124 general-purpose registers ($\mathrm{R}_{4}-\mathrm{R}_{127}$) and 15 control and status registers ($\mathrm{R}_{241}-\mathrm{R}_{255}$). These registers are assigned the address locations shown in Figure 5.

Instructions can access registers directly or indirectly with an 8 -bit address field. The MCU also allows short 4 -bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 6). The Register Pointer addresses the starting location of the active working-register group.
Stacks. An 8-bit Stack Pointer (R_{255}) is used for the internal stack that resides within the 124 general-purpose registers ($\mathrm{R}_{4}-\mathrm{R}_{127}$).

Figure 4. Program Memory Map

Figure 5. Register File

Figure 6. Register Pointer

COUNTER/TIMERS

The MCU contains two 8 -bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6-bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.
The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\operatorname{IRQ}_{5}\left(\mathrm{~T}_{1}\right)$-is generated.
The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass
mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T_{1} is user-definable and can be the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock , a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line P_{6} also serves as a timer output (TOUT) through which T_{0}, T_{1} or the internal clock can be output.

I/O PORTS

The MCU has 22 lines dedicated to input and output grouped in four ports. Under software control, the ports can be programmed to provide address outputs, timing, status signals, and parallel I/O. All ports have active pull-ups and pull-downs compatible with TTL loads.
Port 0 can be programmed as an I/O port.
Port 1 can be programmed as a byte I/O port.

Port 2 can be programmed independently as input or output and is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Port 3 can be configured as $1 / O$ or control lines. P_{3} is a general purpose input or can be used for an external interrupt request signal $\left(\mathrm{IRQ}_{2}\right) . \mathrm{P} 3_{5}$ and $\mathrm{P} 3_{6}$ are general purpose outputs. P_{6} is also used for timer input ($\mathrm{T}_{\text {IN }}$) and output (TOUT) signals.

INTERRUPTS

The MCU allows three different interrupts from three sources, the Port 3 line $\mathrm{P} 3_{1}$ and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the three interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All interrupts are vectored. When an interrupt request is granted, an interrupt machine cycle is entered. This disables
all subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector locations reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.
Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

CLOCK

The on-chip oscillator has a high-gain parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 $=$ Output).

Crystal source is connected across XTAL1 and XTAL2 using the recommended capacitors ($\mathrm{C} 1 \leqslant 15 \mathrm{pf}$) from each pin to ground. The specifications are as follows:

- AT cut, parallel resonant

■ Fundamental type, 16 MHz maximum.

- Series resistance, Rs $\leqslant 100 \mathrm{n}$

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR	Indirect register pair or indirect working-register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect working-register
	address
Ir	Indirect working-register address only
RR	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack poiinter (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " \leftarrow ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n$)$ " is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:

C	Carry flag
Z	Zeroflag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag

Affected flags are indicated by:
$0 \quad$ Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected

X Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always true	-
0111	C	Carry	$C=1$
1111	NC	No carry	$C=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$Z=0$
1101	PL	Plus	$S=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not equal	$Z=0$
1001	GE	Greater than or equal	$(S X O R V)=0$
0001	LT	Less than	$(S$ XOR V $)=1$
1010	GT	Greater than	$[Z O R(S X O R ~ V)]=0$
0010	LE	Less than or equal	$[Z O R(S X O R ~ V)]=1$
1111	UGE	Unsigned greater than or equal	$C=0$
0111	ULT	Unsigned less than	$C=1$
1011	UGT	Unsigned greater than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned less than or equal	$(C O R Z)=1$
0000		Never true	-

INSTRUCTION FORMATS

OPC	
dst	OPC

One-Byte Instructions

Two-Byte Instructions

MODE	OPC
dst/src	x
ADDRESS	

cc	OPC
DA_{U}	
DA_{L}	

JP

CALL

$\mathbf{O P C}$
$\mathbf{D A}_{U}$
$\mathbf{D A}_{\mathrm{L}}$

Three-Byte Instructions

Figure 7. Instruction Formats

INSTRUCTION SUMMARY

Instruction and Operation	Addr Mode	Opcode	Flags Affected
	dst src	(Hex)	C Z SVD H
ADC dst,src $d s t \leftarrow d s t+\operatorname{src}+C$	(Note 1)	$1 \square$	* * * * 0 *
ADD dst,src $\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}$	(Note 1)	$0 \square$	* * * * 0 *
AND dst,src dst \leftarrow dst AND src	(Note 1)	$5 \square$	- * * 0 -
CALL dst $\begin{aligned} & S P \leftarrow S P-2 \\ & @ S P \leftarrow P C ; P C \leftarrow d s t \end{aligned}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - -
$\begin{aligned} & \text { CCF } \\ & \mathrm{C} \leftarrow \mathrm{NOT} \mathrm{C} \end{aligned}$		EF	* - - - -
$\overline{\text { CLR dst }}$ $\text { dst } \leftarrow 0$	$\begin{gathered} R \\ \text { IR } \end{gathered}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	- - - - -
COM dst dst \leftarrow NOT dst	$\begin{aligned} & R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-** 0 - -

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	Flags Affected
	dst src		C Z SVDH
$\begin{aligned} & \mathbf{C P} \text { dst,src } \\ & \mathrm{dst}-\mathrm{src} \end{aligned}$	(Note 1)	$A \square$	* * * * -
DA dst dst \leftarrow DA dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X - -
DEC dst dst \leftarrow dst -1	$\begin{aligned} & R \\ & R \\ & \hline R \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	- * * * - -
DECW dst $d s t \leftarrow d s t-1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	- * * * - -
DI $\operatorname{IMR}(7) \leftarrow 0$		8F	-
$\begin{aligned} & \text { DJNZ } r, d s t \\ & r \leftarrow r-1 \\ & \text { if } r \neq 0 \\ & \quad P C \leftarrow P C+d s t \\ & \text { Range }:+127,-128 \end{aligned}$	RA	$\begin{gathered} r A \\ r=0-F \end{gathered}$	$------$

INSTRUCTION SUMMARY (Continued)

REGISTERS

R244 T0
COUNTER/TIMER 0 REGISTER
(F4H; Read/Write)

R245 PREO PRESCALER 0 REGISTER
(F5H; Write Only)

R242 T1
COUNTER TIMER 1 REGISTER
(F2H: Read/Write)

T_{1} INITIAL VALUE (WHEN WRITTEN)
T_{1} CURRENT VALUE (WHEN READ)

R243 PRE1
PRESCALER 1 REGISTER
(F3H; Write Only) $^{\text {a }}$

R246 P2M

 PORT 2 MODE REGISTER(F6H; Write Only)

$\mathrm{P2}_{0}-\mathrm{P}_{2}, \mathrm{VO}$ DEFINITION
O DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

R247 P3M

PORT 3 MODE REGISTER
(F7H; Write Only)

Figure 11. Control Registers

R248 P01M
PORT 0 AND 1 MODE REGISTER
(F8H; Write Only)

R249 IPR
INTERRUPT PRIORITY REGISTER
(F9 $_{H}$; Write Only)

R250 IRQ
INTERRUPT REQUEST REGISTER
(FAH; Read/Write)

R251 IMR
INTERRUPT MASK REGISTER
(FBH; Read/Write)

R252 FLAGS
FLAG REGISTER
(FC_{H}; Read/Write)

D_{1}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

R253 RP
REGISTER POINTER
(FDH; Read/Write)

R255 SPL
STACK POINTER
(FFH; Read/Write)

\[

\]

Figure 11. Control Registers (Continued)

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect to GND

$$
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Operating Ambient
Temperature \qquad See Ordering Information
Storage Temperature

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended perıods may affect device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin.
Standard conditions are as follows:

- $+4.5 \leq \mathrm{Vcc} \leq+5.5$

Figure 12. Test Load 1

DC CHARACTERISTICS

Symbol	Parameter	Min	Typ	Max	Unit	Condition
V_{CH}	Clock Input High Voltage	3.8		V_{CC}	V	Driven by External Clock Generator
$V_{\text {CL }}$	Clock Input Low Voltage	-0.3		0.8	V	Driven by External Clock Generator
V_{H}	Input High Voltage	2.0		V_{CC}	V	
$V_{\text {IL }}$	Input Low Voltage	-0.3		0.8	V	
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8		$V_{C C}$	V	
$V_{\text {RL }}$	Reset Input Low Voltage	-0.3		0.8	V	
V_{OH}	Output High Voltage	2.4			V	$\mathrm{IOH}^{\prime}=-250 \mu \mathrm{~A}$
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}-100 \mathrm{mV}$			V	$\mathrm{lOH}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			0.4	V	$\mathrm{l}^{\mathrm{OL}}=+2.0 \mathrm{~mA}$
IIL	Input Leakage ,	-10		10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{1 \mathrm{~N}} \leqslant+5.25 \mathrm{~V}$
${ }_{\text {OL }}$	Output Leakage	-10		10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{1 \mathrm{I}} \leqslant+5.25 \mathrm{~V}$
1 IR	Reset Input Current			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
ICC	Supply Current			50	mA	All outputs and I/O pins floating
${ }^{\prime} \mathrm{CC}_{1}$	Standby Current		5		mA	Halt Mode
${ }^{\prime} \mathrm{CC}_{2}$	Standby Current			10	$\mu \mathrm{A}$	Stop Mode

NOTE:
Icc2 low power requires loading TMR (\%F1)
with any value prior to stop execution.
Use sequence:
LD TMR, \#\%00.
NOP
STOP

Figure 14. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

			Z86C10		Max
Number	Symbol	Parameter	Min	Max	Notes*
1	TpC	Input Clock Period	$\mathbf{8 3}$	$\mathbf{1 0 0 , 0 0 0}$	1
2	TrC,TfC	Clock Input Rise and Fall Times		$\mathbf{1 5}$	1
3	TwC	Input Clock Width	$\mathbf{7 0}$		1
4	TwTinL	Timer Input Low Width	$\mathbf{7 0}$	2	
5	TwIL	Interrupt Request Input Low Time	$\mathbf{7 0}$	2,3	

NOTES:

1. Clock timing references use 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port 3.

* Units in nanoseconds (ns).

PRELIMINARY PRODUCT SPECIFICATION

Z86C06
 CMOS Z8 ${ }^{\circledR}$ CCP $^{\text {M }}$ CONSUMER CONTROLLER PROCESSOR

FEATURES

- 8-bit CMOS microcontroller
- 18-pin DIP package
- Low Cost
- 3.0 to 5.5 volt operating range

■ Fast instruction pointer -1.0 microseconds @ 12 MHz

- Two standby modes - STOP and HALT
- 14 input/output lines (two with Comparator inputs)
- 1 Kbyte of ROM
- 124 bytes of RAM
- Four Expanded Register File Control Registers and two SPI Registers

■ Two programmable 8-bit Counter/Timers

- 6-bit programmable prescaler
- Six vectored, priority interrupts from five different sources

■ Clock speeds 4,8 , and 12 MHz

- Brown-Out protection
- Watchdog/Power-On Reset Timer
- TwoComparators with programmable interrupt polarity
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, RC, or external clock drive.
- Serial Peripheral Interface (SPI)
- Low EMI Noise Mode
- Up to $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ operation

GENERAL DESCRIPTION

The Z86C06 CCP (Consumer Controller Processor) is a member of the Z 8 single-chip microcontroller family with 1 Kbyte of ROM, and 124 bytes of General Purpose RAM. The device is housed in an 18-pin DIP, and is manufactured in CMOS technology. Zilog's CMOS microcontroller offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C06 architecture is based on Zilog's 8-bit microcontroller core with the addition of an Expanded Register File which allows access to register mapped peripheral and I/O circuits. The CCP offers a flexible I/O scheme, and a number of ancillary features that are useful in many consumer, industrial, automotive, and advanced scientific applications.

The device applications demand powerfull/O capabilities. The CCP fulfills this with 14 pins dedicated to input and output. These lines are grouped into two ports, and are configurable under software control to provide timing, status signals, or parallel I/O.

Three basic address spaces are available to support this wide range of configurations; Program Memory, Register File, and Expanded Register File. The Register File is composed of 124 bytes of General-Purpose Registers, two I/O Port registers and fifteen Control and Status registers. The Expanded Register File consists of four control registers, SPI Receive Buffer, and the SPI compare register.

GENERAL DESCRIPTION (Continued)

With powerful peripheral features such as on-board comparators, counter/timers, watch dog timer, and serial peripheral interface, the Z86C06 meets the needs for most ‘sophisticated controller applications (Figure 1).

Note: All Signals with a preceding front slash, " $/ "$, are active Low, e.g.: B / W (WORD is active Low); /B/W (BYTE is active Low, only); /N//S (NORMAL and SYSTEM are both active Low).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Table 1. Pin Identification

No	Symbol	Function	Direction
$1-4$	P24-7	Port 2 pin 4, 5, 6, 7	In/Output
5	VCC	Power Supply	Input
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
$8-10$	P31-3	Port 3 pin 1, 2,3	Fixed Input
$11-13$	P34-6	Port 3 pin 4, 5, 6	Fixed Output
14	GND	Ground	Input
$15-18$	P20-3	Port 2 pin 0, 1, 2,3	In/Output

Figure 2. Pin Configuration

PIN FUNCTIONS

XTAL1. Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC or RC network or an external single-phase clock to the on-chip oscillator input.

XTAL2. Crystal 2(time-based output). This pin connects a parallel-resonant crystal, ceramic resonator, LC or RC network to the on-chip oscillator output.

Port 2 P20-P27. Port 2 is an 8-bit, bi-directional, CMOS compatible I/O port. These 8 I/O lines can be configured under software control to be an input or output, independently. Input buffers are Schmitt-triggered and contain Auto-Latches. Bits programmed as outputs may be globally programmed as either push-pull or open drain (Figure 3a and 3b). In addition when the SPI is enabled, P20 functions as data-in (DI), and P27 functions as data-out (DO) for the SPI.

PIN FUNCTIONS (Continued)

Figure 3a. Port 2 Configuration

Figure 3b. Port 2 Configuration

PIN FUNCTIONS (Continued)

Auto-Latch. The Auto-Latch puts valid CMOS levels on all CMOS inputs that are not externally driven. Whether this level is zero or one cannot be determined. A valid CMOS level rather than a floating node reduces excessive supply current flow in the input buffer.

Port 3 P31-P36. Port 3 is a 6-bit, CMOS compatible, port. These six lines consist of three fixed inputs (P31-P33) and three fixed outputs (P34-P36). Pins P31, P32 and P33 are standard CMOS inputs (no auto-latches) and pins P34, P35, and P36 are push-pull outputs. Two on-board com-
parators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming Port 3 Mode Register (bit 1). Pins P31 and P32 are programmable as falling, rising, or both edge triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to Counter/Timer 1 is made through P31 (Tin) and P36 (Tout). Pin P34 can also be configured as SPI clock (SK), input and output, and pin P35 can be configured as Slave select (SS) in slave mode only, when the SPI is enabled (Figures 4a. and 4b.).

Figure 4a. Port 3 Configuration

Figure 4b. Port 3 Configuration

PORT Configuration Register (PCON). The PORT Configuration Register (PCON) configures the port's individually for; comparator output on Port 3, low EMI noise on Port's 2 and 3, and low EMI noise oscillator. The PCON Register is located in the Expanded Register File at bank F, location 00 (Figure 5). Bit0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35 (Figure 4b), and a 0 releases the Port to its
standard I/O configuration. Bits 5 and 6 of this register configure Port's 2 and 3, respectively, for low EMI operation. A 1 in these locations configures the port for standard operation, and a 0 configures the port for low EMI operation. Finally, bit 7 of the PCON Register controls the low EMI noise oscillator. A 1 in this location configures the oscillator with standard drive, while a 0 configures the oscillator with low noise drive.

PIN FUNCTIONS (Continued)

Low EMI Option. The Z86C06 can be programmed to operate in a low EMI emission mode by the PCON register. The oscillator and all I/O ports can be programmed as low EMI emission mode independently. Use of this feature results in:

- Less than 1 mA current consumption during the HALT mode.
- The pre-drivers slew rate reduced to 10 ns typical.
- Low EMI output drivers have resistance of 200 ohms (typical).
- Oscillator divide-by-two circuitry is eliminated.
- Internal SLCK/TCLK operation limited to a maximum of 4 MHz (250 ns cycle time)

Comparator Inputs. Port 3, Pin P31. and Pin P32 each have a comparator front end. The comparator reference voltage, Pin P33, is common to both comparators. In analog mode, the P33 input functions as a reference voltage to the comparators. The internal P33 register and its corresponding IRQ1 is connected to the STOP Mode Recovery source selected by the SMR. In this mode, any of the STOP Mode

Recovery sources are used to toggle the P33 bit or generate IRQ1. In digital mode, Pin P33 can be used as a P33 register input or IRQ1 source (Figure 17).

Figure 5. PORT Configuration Register (PCON)

FUNCTIONAL DESCRIPTION

The Z8CCP incorporates special functions to enhance the Z8's application in consumer, automotive, industrial, scientific research, and advanced technologies applications.

RESET. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP Mode Recovery Source

The device does not re-initialize the WDTMR, SMR, P2M, or P3M registers to their reset values on a STOP Mode Recovery operation.

Program Memory. Z86C06 can address up to 1 Kbytes of internal program memory (Figure 6). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts. Byte 13 to byte 1023 consists of on-chip, mask-programmed ROM.

ROM Protect. The 1 Kbytes of Program Memory is mask programmable. A ROM protect feature will prevent "dumping" of the ROM contents by inhibiting execution of the LDC and LDCI instructions to program memory in all modes.

Expanded Register File. The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices and input/ output ports into the register address area. The $Z 8$ register address space R0 through R15 is implemented as 16 groups of 16 registers per group (Figure 7). These register groups are known as the ERF (Expanded Register File). Bits 3:0 of the Register Pointer (RP) select the active ERF group. Bits 7:4 of register RP select the working register
group (Figure 8). Three system configuration registers reside in the Expanded Register File address space in Bank F, while three SPI registers reside in Bank C. The rest of the Expanded Register addressing space is not physically implemented, and is open for future expansion. To write to the ERF, the upper nibble of the RP must be zero. To write to the rest of the register file, the lower nibble must be zero.

Note:

When using Zilog's cross assembler Version 2.1 or earlier, use the LD RP, \#OX instruction rather than the SRP \#OX instruction to access the ERF.

| | |
| :--- | :--- | :--- |
| Location of
 First Byte of
 Instruction
 Executed | |
| After RESET | |

Figure 6. Program Memory Map

FUNCTIONAL DESCRIPTION (Continued)

Z8 STANDARD CONTROL REGISTERS

Figure 7. Expanded Register File Architecture

R253 RP

Note: Default Setting After Reset $\mathbf{= 0 0 0 0 0 0 0}$

Figure 8. Register Pointer Register

Register File. The Register File consists of two I/O port registers, 124 general purpose registers, 15 control and status registers, and four system configuration registers in
the Expanded Register Group (Figure 7). The instructions can access registers directly or indirectly via an 8-bit address field. This allows a short 4-bit register address using the Register Pointer (Figure 9). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active work-ing-register group.

Note: Register Bank EO-EF is only accessed through working registers and indirect addressing modes.

Caution: D4 of Control Register P01M (R251) must be 0. If the Z86C06 is emulated by Z86C90, D4 of P01M has to change to 0 before submission to ROM code.

GPR. The Z86C06 has one extra General Purpose Register located at \%FE(R254).

Figure 9. Register Pointer

FUNCTIONAL DESCRIPTION (Continued)

Stack. The Z86C06 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 generalpurpose registers.

Counter/Timers. There are two 8-bitprogrammable counter/ timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources, however, the TO prescaler is driven by the internal clock only (Figure 10).

Figure 10. Counter/Timer Block Diagram

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request-IRQ4 (T0) or IRQ5 (T1), is generated.

The counters are programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (singlepass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and can be either the
internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3, line P36 serves as a timer output (Tout) through which T0, T1 or the internal clock can be output. The counter/timers can be cascaded by connecting the TO output to the input of T1.

Interrupts. The Z86C06 has six different interrupts from six different sources. The interrupts are mask-able and prioritized (Figure 11). The six sources are divided as follows; three sources are claimed by Port 3 lines P31-P33, two sources in the counter/timers, and one source for the SPI. The Interrupt Mask Register globally or singularly enables or disables the six interrupt requests (Table 2).

Figure 11. Interrupt Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Table 2. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ 0	IRQ 0	0,1	External (P32), Rising Falling Edge Triggered
IRQ 1	IRQ 1	2,3	External (P33), Falling Edge Triggered
IRQ 2	IRQ 2, T $T_{\mathbb{N}}$	4,5	External (P31), Rising Falling Edge Triggered
IRQ 3		6,7	Software Generated
IRQ 4	T0	8,9	Internal
IRQ 5	TI	10,11	Internal

Note:
When SPI is enabled IRQ3 is an internal interrupt.

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. An interrupt machine cycle is activated when an interrupt request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All Z86C06 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16 -bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs services. When the SPI is disabled, IRQ3 has no hardware source but can be invoked by software (write to IRQ3 Register). When the SPI is enabled, an interrupt will be mapped to IRQ3 after a byte of data has been received by the SPI Shift Register.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQO. Interrupts IRQ2 and IRQ0 may be rising, falling, or both edge triggered, and are programmable by the user. The software can poll to identify the state of the pin.

The programming bits for the INTERRUPT EDGE SELECT are located in the IRQ register (R250), bits D7 and D6. The configuration is shown in Table 3.

Table 3. IRQ Register

	IRQ		Interrupt Edge	
D7		D6	P 31	P 32
0	0	F	F	
0	1	R	R	
1	0	R / F	F	
1	1	R / F		

Notes:
 $F=$ Falling Edge
 $R=$ Rising Edge

Clock. The Z86C06 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, $\mathrm{XTAL2}=$ Output). The crystal should be AT cut, 10 KHz to 12 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal is connected across XTAL1 and XTAL2 using the recommended capacitors ($\mathrm{C} 1=\mathrm{C} 2$ is more than or equal to 22 pF) from each pin to ground. The RC oscillator option is mask-programmable, to be selected by the customer at the time the ROM code is submitted. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL 1 to ground (Figure 12).

Figure 12. Oscillator Configuration

The RC value vs Frequency curves are shown in Figure 54 and 55. (Limitation: The RC option is not available in the 12 MHz part.) In addition, a special feature has been incorporated into the Z86C06; in low EMI noise mode (bit 7 of PCON register $=0$) with the RC option selected, the oscillator is targeted to consume considerately less ICC current at frequencies of 10 KHz or less.

Power-On Reset. A timer circuit clocked by a dedicated on-board RC oscillator or by the XTAL oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{cc} and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of the three conditions:

Power fail to Power OK status

- STOP mode recovery (If D5 of $\mathrm{SMR}=1$)
- WDT timeout

The POR time is a nominal 5 ms . Bit 5 of the STOP Mode Register determines whether the POR timer is bypassed after STOP mode recovery (typical for external clock, and RC/LC oscillators with fast start up time).

HALT. Will turn off the internal CPU clock but not the XTAL oscillation. The counter/timers and external interrupIs IRQO, IRQ1, and IRQ2 remain active. The device is recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. The STOP mode is terminated by a RESET of either WDT timeoul, POR, SPI compare, or SMR recovery. This causes the processor to restart the application program at address 000C (HEX). Note, the crystal remains active in STOP mode if bits 3 and 4 of the WDTMR are enabled. In this mode, only the watch dog timer runs in STOP mode.

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user executes a NOP (opcode =FFH) immediately before the appropriate sleep instruction, i.e.:

FF	NOP; clear the pipeline
$6 F$	STOP; enter STOP mode
or	
FF	NOP; clear the pipeline
7F	HALT; enter HALT mode

FUNCTIONAL DESCRIPTION (Continued)

Serial Peripheral Interface (SPI). The Z86C06 incorporates a serial peripheral interface for communication with other microcontrollers and peripherals. The SPI includes features such as STOP Mode Recovery, Master/Slave selection, and Compare mode. Table 4 contains the pin configuration for the SPI feature when it is enabled. The SPI consists of four registers; SPI Control Register (SCON), SPI Compare Register (SCOMP), SPI Receive/Buffer Register (RxBUF), and SPI Shift Register. SCON is located in bank (C) of the Expanded Register Group at address 02 (Figure 13). This register is a read/write register that controls; Master/Slave selection, interrupts, clock source and phase selection, and error flag. Bit 0 enables/disables the SPI with the default being SPI disabled. A one in this location will enable the SPI, and a 0 will disable the SPI. Bits 1 and 2 of the SCON register in Master mode select the clock rate. The user may choose whether internal clock is divide by 2, 4, 8 or 16 . In slave mode, Bit 1 of this register flags the user if an overrun of the RxBUF Register has occurred. The RxCharOverrun flag is only reset by writing a 0 to this bit. In slave mode, bit 2 of the Control Register disables the data-out I/O function. If a 1 is written to this bit, the data-out pin is released to its original port configuration. If a 0 is written to this bit, the SPI shifts out one bit for each bit received. Bit 3 of the SCON Register enables the compare feature of the SPI, with the default being disabled. When the compare feature is enabled, a comparison of the value in the SCOMP Register is made with the value in the RxBUF Register. Bit 4 signals that a receive character is available in the R×BUF Register. If the associated IRQ3 is enabled, an interrupt is generated. Bit 5 controls the clock phase of the SPI. A 1 in Bit 5 allows for receiving data on the clock's falling edge and transmitting data on the clock's rising edge. A 0 allows receiving data on the clock's rising edge and transmitting on the clock's falling edge. The SPI clock source is defined in bit 6. A 1 uses Timer0 output for the SPI clock, and a 0 uses TCLK for clocking the SPI. Finally bit 7 determines whether the SPI is used as a Master or a Slave. A 1 puts the SPI into Master mode and a 0 puts the SPI into Slave mode.

Table 4. SPI Pin Configuration

Name	Function	Pin Location
DI	Data-In	P20
DO	Data-Out	P27
SS	Slave Select	P35
SK	SPI Clock	P34

SPIOperation. The SPI is used in one of two modes; either as system slave, or a system master. Several of the possible system configurations are shown in Figure 14. In the slave mode, data transfer starts when the slave select (SS) pin goes active. Data is transferred into the slave's SPI

Shift Register, through the DI pin, which has the same address as the RxBUF Register. After a byte of data has been received by the SPI Shift Register, a Receive Character Available (RCA/IRQ3) flag and interrupt is generated. The next byte of data will be received at this lime. The RxBUF Register must be cleared, or a Receive Character Overrun (RxCharOverrun) flag will be set in the SCON Register, and the data in the RxBUF Register will be overwritten. When the communication between the master and slave is complete, the SS goes inactive.

Unless disconnected, for every bit that is transferred into the slave through the DI pin, a bit is transferred out through the DO pin on the opposite clock edge. During slave operation, the SPI clock pin (SK) is an input. In master mode, the CPU must first activate a SS through one of it's I/O ports. Next, data is transferred through the master's DO pin one bit per master clock cycle. Loading data into the shift register initiates the transfer. In master mode, the master's clock will drive the slave's clock. At the conclusion of a transter, a Receive Character Available (RCA/ IRQ3) flag and interrupt is generated. Before data is transferred via the DO pin, the SPI Enable bit in the SCON Register must be enabled.

Figure 13. SPI Control Register (SCON)

Standard Serial Setup

Standard Parallel Setup

Setup For Compare

(1)
(2)
(255)
(256)

Up to 256 slaves per SS line

Multiple slaves may have the same address.

Figure 14. SPI System Configuration

FUNCTIONAL DESCRIPTION (Continued)

SPI Compare. When the SPI Compare Enable bit, D3 of the SCON Register is set to 1 , the SPI Compare feature is enabled. The compare feature is only valid for slave mode. A compare transaction begins when the (SS) line goes active. Data is received as if it were a normal transaction, but there is no data transmitted to avoid bus contention with other slave devices. When the compare byte is received, IRQ3 is not generated. Instead, the data is compared with the contents of the SCOMP Register. If the data does not match, DO remains inactive and the slave ignores all data until the (SS) signal is reset. If the data received matches the data in the SCOMP register, then a SMR signal is generated. DO is activated if it is not tri-stated by D2 in the SCON Register, and data is received the same as any other SPI slave transaction.

When the SPI is activated as a slave, it operates in all system modes; STOP, HALT, and RUN. Slaves' not comparing remain in their current mode, whereas slaves' comparing wake from a STOP or HALT mode by means of an SMR.

SPI Clock. The SPI clock is driven from three sources; with TimerO, a division of the internal system clock, or an external master when in slave mode. Bit D6 of the SCON Register controls what source drives the SPI clock. A 0 in
bit D6 of the SCON Register determines the division of the internal system clock if this is used as the SPI clock source. Divide by $2,4,8$, or 16 is chosen as the scaler.

Receive Character Available and Overrun. When a complete data stream is received, an interrupt is generated and the RxCharAvail bit in the SCON Register is set. Bit 4 in the SCON Register is for enabling or disabling the RxCharAvail interrupt. The RxCharAvail bit is available for interrupt polling purposes and is reset when the RxBUF Register is read. RxCharAvail is generated in both master and slave modes. While in slave mode, if the RxBUF is not read before the next data stream is received and loaded into the RxBUF Register, Receive Character Overrun (RxCharOverrun) occurs. Since there is no need for clock control in slave mode, bit D1 in the SPI Control Register is used to log any RxCharOverrun (Figure 15 and Figure 16).

No	Parameter	Min	Units
1	DI to SK Set-up	10	ns
2	SK to DO Valid	15	ns
3	SS to SK Set-up	.5 Tsk	ns
4	SS to DO Valid	15	ns
5	SK to DI hold time	10	ns

Figure 15. SPI Timing

Figure 16. SPI Timing

STOP Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP mode recovery (Figure 17). All bits are write only except bit 7 , which is read only. Bit 7 is a flag bit that is hardware set on the condition of a STOP recovery and reset on a power-on cycle. Bit 6 controls whether a low level or high level is required from the recovery source. The recovery level must be active LOW to work with SPI. Bit 5 controls the reset delay after recovery. Bits 2,3 , and 4 of the SMR specify the source of the STOP mode recovery signal. Bit 1 determines whether the XTAL is divided by 1 or 2. A 0 in this location uses XTAL divide-by-two, and a 1 uses XIAL. The default for this bit is XTAL divide by two. Bit 0 controls the divide-by-16 prescaler of SCLK/TCLK.

SCLK/TCLK divide-by-16 select (DO). D0 of the SMR controls a divide-by- 16 prescale of SCLK/TCL.K. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources the counter/ timers and interrupt logic).

XTAL Clock divide-by-2 (D1). This bit determines whether the XTAL clock is divided by two or one. When this bit is set to 1 , the SCLK/TCLK is equal to the XTAL clock. This option can work together with the low EMI options in PCON register to reduce the EMI noise. Maximum frequency is 4 MHz when divide-by- 1 selection is active.

Figure 17. STOP Mode Recovery Register

FUNCTIONAL DESCRIPTION (Continued)
STOP Mode Recovery Source (D2,D3,D4). These three bits of the SMR specify the wake-up source of the STOP Mode recovery (Figure 18 and Table 5).

Table 5. STOP Mode Recovery Source

SMR			Operation Description of Action D3
0	0	0	POR recovery only
0	0	1	POR recovery only
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of Port 2 bits 0:3
1	1	1	Logical NOR of Port 2 bits 0:7

P31-P33 cannot wake up from STOP mode if the input lines are configured as analog inputs. When the SPI is enabled and the Compare feature is active, a SMR is generated upon a comparison in the SPI Shift Register and SCOMP Register, regardless of the above SMR Register settings. If SPI Compare is used to wake up the part from STOP mode, it is still possible to have one of the other STOP mode
recovery sources active. Note: These other STOP mode recovery sources have to be active level low (bit D6 in SMR set to 0 if P31, P32, P33, and P27 selected, or bit D6 in SMR set to 1 if logical NOR of Port 2 is selected).

STOP Mode Recovery Delay Select (D5). This bit disables the 5 ms RESET delay after STOP Mode Recovery. The default condition of this bit is 1 .

STOP Mode Recovery Level Select (D6). A 1 in this bit position indicates that a high level on any one of the recovery sources wakes the device from STOP mode. A 0 indicates low level recovery. The default is 0 on POR (Figure 18).

Cold or Warm Start (D7). This bit is set by the device upon entering STOP mode. It is active high, and is 0 (cold) on PORNDTT RESET. This bit is READ only. It is used to distinguish between cold or warm start.

Watch Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the $Z 8$ if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and retriggered on subsequent executions of the WDT instruction. The timer circuit is driven by an on- board RC oscillator or external clock source. The POR clock source is selected with bit 4 of the WDTMR.

Figure 18. STOP Mode Recovery Source

Bits 0 and 1 control a tap circuit that determines the timeout period. Bit 2 determines whether the WDT is active during HALT and bit 3 determines WDT activity during STOP. If bits 3 and 4 of this register are both set to 1 , the WDT is only driven by the external clock during STOP mode. This feature makes it possible to wake up from STOP mode from an internal source. Bits 5 through 7 of the WDTMR are reserved (Figure 19). This register is accessible only during the first 64 processor cycles (128 XTAL clocks) from the execution of the first instruction after Power-OnReset, Watch Dog Reset or a STOP Mode Recovery (Figure 20). After this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in bank F of the Expanded Register Group at address location OFH. It is organized as follows:

Figure 19. Watchdog Timer Mode Register

Figure 20. Resets and WDT

FUNCTIONAL DESCRIPTION (Continued)

WDT Time Select (D1,D0). Selects the WDT time-out period. It is configured as shown in Table 6.

Table 6. WDT Time Select

D1	D0	Timeout of internal RC OSC	Timeout of XTAL clock
0	0	5 ms min	$512 T p C$
0	1	$15 \mathrm{~ms} \min$	1024 TpC
1	0	25 ms min	2048 TpC
1	1	100 ms min	8192 TpC

Notes:

The default on a WDT initiated RESET is 15 ms .
See Figures 50 through 53 for details.
WDT During HALT (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1 .

WDT During STOP (D3). This bit determines whether or not the WDT is active during STOP mode. Since XTAL clock is stopped during STOP mode, unless as specified below, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1 . If bits D3 and D4 are both set to 1, the WDT only, is driven by the external clock during STOP mode.

On-Board, Power-On-Reset RC or External XTAL1 Oscillator Select (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1 , the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 , which selects the RC oscillator.
V_{cc} Voltage Comparator. An on-board Voltage Comparator checks that $V_{c c}$ is at the required level to ensure correct operation of the device. Reset is globally driven if V_{cc} is below the specified voltage (typically 2.1 V).

Brown-Out Protection $\left(\mathrm{V}_{\mathrm{BO}}\right)$. The brown-out trip voltage $\left(\mathrm{V}_{\mathrm{Bo}}\right)$ will be less than 3 volts and above 1.4 volts under the following conditions.

Maximum (V_{Bo}) Conditions:
Case $1 \mathrm{~T}_{\mathrm{A}}=-40^{\circ},+105^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 1 MHz

Case $2 T_{A}=-40^{\circ},+85^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 2 MHz

Note:

The internal clock frequency is one half the external clock frequency, unless the device is in low EMI mode.

The device functions normally at or above 3.0 V under all conditions. Below 3.0 V , the device functions normally until the Brown-Out Protection trip point $\left(V_{\text {BO }}\right)$ is reached, for the temperatures and operating frequencies in cases 1 and 2 above. The device is guaranteed to function normally at supply voltages above the brown-out trip point. The actual brown-out trip point is a function of temperature and process parameters (Figure 21).

ROM Protect. ROM protect is mask-programmable. It is selected by the customer at the time the ROM code is submitted. The selection of ROM protect disables the LDC and LDCl instructions.

Figure 21. Typical $\mathrm{Z86C06} \mathrm{~V}_{\text {Bo }}$ Voltage vs Temperature

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {cC }}$	Supply Voltage *	-0.3	+7.0	V
$\mathrm{~T}_{\text {STG }}$	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp	\dagger		C

Notes:

* Voltage on all pins with respect to GND.
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device al any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Figure 22).

Figure 22. Test Load Configuration

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\begin{gathered} V_{c c} \\ \text { Note [3] } \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 105^{\circ} \mathrm{C} \end{aligned}$		Typical (a) $25^{\circ} \mathrm{C}$	Units	Conditions	Notes
			Min	Max	Min	Max				
	Max Input Voltage	$\begin{aligned} & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{\mathbb{N}} \leq 250 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathbb{N}} \leq 250 \mu \mathrm{~A} \end{aligned}$	
$\mathrm{V}_{\text {ch }}$	Clock Input High Voltage	$\begin{aligned} & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{cc}} \\ & 0.9 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{cc}} \\ & 0.9 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 3.9 \end{aligned}$	v	Driven by External Clock Generator Driven by External Clock Generator	
v_{a}	Clock Input Low Voltage	$\begin{aligned} & \hline 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	Driven by External Clock Generator Driven by External Clock Generator	
$V_{\text {H }}$	Input High Voltage	$\begin{aligned} & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		
Vin	Input Low Voltage	$\begin{aligned} & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{s s}-0.3 \\ & \mathrm{~V}_{s s}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\text {cc }} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		
$\mathrm{V}_{\text {OH }}$	Output High Voltage	$\begin{aligned} & \mathrm{e} 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{-}-0.4}^{V_{c c}-0.4} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}-}-0.4 \\ & \mathrm{~V}_{\mathrm{cc}}-0.4 \end{aligned}$		$\begin{aligned} & 3.1 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	
V_{01}	Output Low Voltage	$\begin{aligned} & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{a}}=+4.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{a}}=+4.0 \mathrm{~mA} \end{aligned}$	
$\mathrm{V}_{\mathrm{OL} 2}$	Output Low Voltage	3.3 V 5.0 V		1.0 1.0		1.0 1.0	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	V V	$\begin{aligned} & \mathrm{I}_{\alpha}=6 \mathrm{~mA}, \\ & 3 \text { Pin } \mathrm{Max} \\ & \mathrm{I}_{\alpha}=+12 \mathrm{~mA}, \\ & 3 \text { Pin Max } \end{aligned}$	
$\mathrm{V}_{\text {OFFSE }}$	Comparator Input Offset Voltage	$\begin{aligned} & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$		
In	Input Leakage (Input bias current of comparator)	$\begin{aligned} & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\mathbb{N}}=0 V, V_{c c} \\ & V_{\mathbb{N}}=0 V, V_{c c} \end{aligned}$	
a	Output Leakage	$\begin{aligned} & \hline 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} -1.0 \\ -1.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\mathbb{N}}=0 V, V_{c c} \\ & V_{\mathbb{N}}=0 V, V_{c c} \end{aligned}$	
$\mathrm{I}_{\text {cc }}$	Supply Current	$\begin{aligned} & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 3.3 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 6 \\ 11.0 \\ 8.0 \\ 15 \end{gathered}$		$\begin{gathered} \hline 6 \\ 11.0 \\ 8.0 \\ 15 \end{gathered}$	$\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	@ 8 MHz @ 8 MHz @ 12 MHz © 12 MHz	$\begin{aligned} & {[4,5]} \\ & {[4,5]} \\ & {[4,5]} \\ & {[4,5]} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS

Figure 23. Additional Timing

AC ELECTRICAL CHARACTERISTICS

No	Symbol	Parameter	V_{cc} Note[3]	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { T0 } 70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} \\ \hline \end{gathered}$				$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} 0 & 105^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} & 12 \mathrm{MHz} \end{array}$				Units	Notes
				Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	3.3 V	125	100,000	83	100,000	125	100,000	83	100,000	ns	[1]
			5.0 V	125	100,000	83	100,000	125	100,000	83	100,000	ns	[1]
2	TrC,TIC	Clock Input Rise and Fall Times	3.3 V		25		15		25		15	ns	[1]
			5.0 V		25		15		25		15	ns	[1]
3	TwC	Input Clock Width	3.3 V	37		26		37		26		ns	[1]
			5.0 V	37		26		37		26		ns	[1]
4	TwTinL	Timer Input Low Width	3.3 V	100		100		100		100		ns	[1]
			5.0 V	70		70		70		70		ns	[1]
5	TwTinH	Timer Input High Width	3.3 V	3 TpC		3 Tp C		3 TpC		3TpC			[1]
			5.0 V	3 TpC		3 TpC		3 TpC		3 TpC			[1]

No	Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { Note[3] } \end{aligned}$	$\begin{array}{ll} \hline \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \mathrm{TO} & 70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} & 12 \mathrm{MHz} \end{array}$				$\begin{aligned} & T_{A}=-40^{\circ} \mathrm{C} \text { TO } 105^{\circ} \mathrm{C} \\ & 8 \mathrm{MHz} \quad 12 \mathrm{MHz} \end{aligned}$				Units	Notes
				Min	Max	Min	Max	Min	Max	Min	Max		
6	TpTin	Timer Input Period	3.3 V	8 TpC		8 Tp C		8TpC		8 TpC			[1]
			5.0 V	8TpC		8 PT C		8 TpC		8TpC			[1]
7	TrTin, TtTin	Timer Input Rise and Fall Timer	3.3 V		100		100		100		100	ns	[1]
			5.0 V		100		100		100		100	ns	[1]
8	TwIL	Int. Request Input Low Time	3.3 V	100		100		100		100		ns	[1,2]
			5.0 V	70		70		70		70		ns	[1,2]
9	TwlH	Int. Request Input High Time	3.3 V	3 TpC		3 TpC		3 TpC		3 TpC			[1,2]
			5.0 V	3 TpC		3TpC		3TpC		3 TpC			[1,2]
10	Twsm	STOP Mode Recovery Width Spec	3.3 V	12		12		12		12		ns	
			5.0 V	12		12		12		12		ns	
11	Tost	Oscillator Startup Time	3.3 V		5 TpC		5 Tp C		5TpC		5 TpC		$\begin{aligned} & \text { Reg. } \\ & {[4]} \end{aligned}$
			5.0 V		5 TpC		5 TpC		5 TpC		5 TpC	ns	
	Twdt	Watchdog Timer Refresh Time	3.3 V	15		15		12		12			[5]
			5.0 V	5		5		3		3		ms	$\begin{aligned} & \mathrm{D} 0=0[6] \\ & \mathrm{D} 1=0[6] \end{aligned}$
			3.3 V	30		30		25		25		ms	D0 $=1$ [6$]$
			5.0 V	16		16		12		12		ms	D1 $=0[6]$
			3.3 V	60		60		50		50		ms	D $0=0$ [6]
			5.0 V	25		25		30		30		ms	D1 $=1$ [6]
			3.3 V	250		250		200		200		ms	D0 $=1$ [6]
	-		5.0 V	120		120		100		100		ms	D1 $=1$ [6]

Notes:

[1] Timing Reference uses $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .
[2] Interrupt request via Port 3 (P31-P33)
[3] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
[4] SMR-D5 = 0
[5] Reg. WDTMR
[6] Internal RC Oscillator only.

EXPANDED REGISTER FILE CONTROL REGISTERS

* Default setting after RESET

Figure 24. STOP Mode Recovery Register

* Default setting after RESET

Figure 25. Watchdog Timer Mode Register

PCON (F) 00

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

Figure 26. PORT Control Register

Figure 27. SPI Control Register

Z8 CONTROL REGISTER DIAGRAMS

Figure 28. Reserved

R241 TMR

Figure 29. Timer Mode Register ($\mathrm{F1}_{\mathrm{H}}$: Read/Write)

Figure 30. Counter Timer 1 Register (F_{H} : Read/Write)

R243 PRE1

Figure 31. Prescaler 1 Register ($\mathrm{F3}_{\mathrm{H}}$: Write Only)

R244 T0
 (When Written)
(Range: 1-256 Decimal $01-00 \mathrm{HEX}$) T_{0} Current Value (When READ)

Figure 32. Counter/Timer 0 Register ($\mathrm{F4}_{\mathrm{H}}$: Read/Write)

Figure 33. Prescaler 0 Register ($\mathrm{F5}_{\mathrm{H}}$: Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

R246 P2M

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

P2 7-P2 $1 / \mathrm{O}$ Definition
0 Deflnes Bit as OUTPUT
1 Defines Bit as INPUT

Figure 34. Port 2 Mode Register
(F_{H} : Write Only)

Figure 35. Port 3 Mode Register ($\mathrm{F7} \mathrm{H}_{\mathrm{H}}$: Write Only)

R248 P01M

Figure 36. Port 0 and 1 Mode Register

Figure 37. Interrupt Priority Register ($\mathrm{F9}_{\mathrm{H}}$: Write Only)

Figure 38. Interrupt Request Register (FA $_{\mathrm{H}}$: Read/Write)

Figure 39. Interrupt Mask Register (FB_{H} : Read/Write)

R252 Flags

Figure 40. Flag Register (FC_{H} : Read/Write)

R253 RP

Figure 41. Register Pointer (FD_{H} : Read/Write)

R254 GPR

D7	D6	D5	D4	D3	D2	D1	D0

Figure 42. General Purpose Register (FE_{H} : Read/Write)

Figure 43. Stack Pointer (FF_{H} : Read/Write)

DEVICE CHARACTERISTICS

Figure 44. Typical I_{cc} vs Frequency

Figure 45. Typical $\mathrm{V}_{\mathrm{ol}}, \mathrm{V}_{\mathbf{u}}$ vs Temperature

Figure 46. Typical $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{HH}}$ vs Temperature

DEVICE CHARACTERISTICS (Continued)

Figure 47. Typical V_{OH} vs I_{OH} Over Temperature

Legend:		
$A=-55^{\circ} \mathrm{C}$		$\mathrm{Vcc}=5.5 \mathrm{~V}$
$\mathrm{~B}=25^{\circ} \mathrm{C}$		$\mathrm{Vcc}=3.0 \mathrm{~V}$
$\mathrm{C}=125^{\circ} \mathrm{C}$		
$\mathrm{D}=-55^{\circ} \mathrm{C}$		
$\mathrm{E}=25^{\circ} \mathrm{C}$		
$\mathrm{F}=125^{\circ} \mathrm{C}$		

Note: STD Mode
(Not Low EMI Mode)

Figure 48. Typical I_{oL} vs V_{OL} Over Temperature

DEVICE CHARACTERISTICS (Continued)

Figure 49. Typical Power-On Reset Time vs Temperature

Figure 50. Typical 5 ms WDT Setting vs Temperature

DEVICE CHARACTERISTICS (Continued)

Note: Using internal RC.
Figure 51. Typical 15 ms WDT Setting vs Temperature

Note: Using internal RC.

Figure 52. Typical 25 ms WDT Setting vs Temperature

Note: Using internal RC.

Figure 53. Typical 100 ms WDT Setting vs Temperature

Legend:

Note: STD Mode
(Not Low EMI Mode)

$$
\begin{aligned}
& A-V c c=5.0 V C=33 \mathrm{pF} \\
& B-V c c=3.3 V C=33 \mathrm{pF}
\end{aligned}
$$

Note: This chart for reference only. Each process will have a different characteristic curve.

Figure 54. Typical Frequency vs RC Resistance

DEVICE CHARACTERISTICS (Continued)

Figure 55. Typical RC Resistance/Capacitance vs Frequency

Figure 56. Auto Latch Characteristics

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
DA	Indexed address
RA	Direct address
IM	Relative address
R	Immediate
r	Register or working-register address
IR	Working-register address only
	Indirect-register or indirect
Ir	working-register address
RR	Indirect working-register address only
	Register pair or working register pair
	address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cC	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flages are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
x	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
. 1111	NC	No Carry	$C=0$
0110	Z	Zero	$Z=1$
$\cdot 1110$	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater Than	$[Z$ OR (S XOR V)] $=0$
0010	LE	Less Than or Equal	$[Z$ OR (S XOR V $)$] $=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C O R Z)=1$
0000		Never True	

One-Byte Instructions

CLR, CPL, DA, DEC,
DECW, INC, INCW,
POP, PUSH, RL, RLC, RR, RRC, SRA, SWAP

ADC, ADD, AND, CP

JP, CALL (Indirect)

OPC
dst

OPC
VALUE

SRP

ADC, ADD, AND, CP, LD, OR, SBC, SUB, TCM, TM, XOR

OPC	MODE
dst	src

MODE	OPC
dst/src	src/dst

dst/src	OPC
src/dst	

ADC, ADD, AND, CP, OR, SBC, SUB, TCM, TM, XOR

MODE	OPC
src	OR
dst	OR 110
1110	src

LD

MODE	OPC
dst/src	x
ADDRESS	

LD
LD, LDE, LDEI, LDC, LDCI

LD

LD

cc	OPC
DAU	
DAL	

JP

dst	OPC
VALUE	

dst/CC	OPC
RA	

DJNZ, JR

OPC
DAU
DAL

CALL

FFH	
$6 F H$	$7 F H$

STOP/HALT

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
d s t \leftarrow d s t+s r c
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

SRP dst RP↔SrC	Im	31	\cdots	\cdots
STOP	$6 F$	$1 \cdots$	\cdots	

OPCODE MAP
Lower Nibble (Hex)

Preliminary Product Specification

Z86C08
 CMOS Z88 8-BIT
 MICROCONTROLLER

FEATURES

- 8-bit CMOS microcontroller
- 18-pin DIP
- Low cost
- 3.0 to 5.5 Volt V_{cc} range
- Low power consumption; 50 mW (typical)
- Brown-Out protection
- Fast instruction pointer; 1 microsecond at 12 MHz
- Two standby modes - STOP and HALT
- 14 Input/Output lines
- All digital inputs at CMOS levels; Schmitt triggered
- 2 Kbytes of ROM
- 124 Bytes of RAM,
- Two programmable 8-bit counter/timers each wilh a 6 -bit programmable prescaler.
- Sixvectored, priority interrupts from six differentsources
- Clock speeds 8 and 12 MHz
- Watchdog/Power-On Reset Timer
- Two Comparators with programmable interrupt polarity.
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, or external clock drive.

GENERAL DESCRIPTION

The Z86C08 Microcontroller Unit (MCU) introduces a new level of sophistication to single-chip architecture. The Z86C08 is a member of the Z8 single-chip microcomputer family with 2 Kbytes of ROM and 124 bytes of generalpurpose RAM. The device is housed in an 18 -pin DIP, and is manufactured in CMOS technology. The Zilog Z86C08 offers all the outstanding features of the Z8 family architecture, and easy software/hardware system expansion along with low cost, low power consumption.

The Z86C08 is characterized by a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in,many consumer, industrial and advanced scientific applications.

The device applications demand powerfull/O capabilities. The Z86C08 fulfills this with 14 pins dedicated to input and output. These lines are grouped into three ports, and are configurable under software control to provide I/O, timing, and status signals.

There are two basic address spaces available to support this wide range of configurations, Program Memory, and 124 bytes of general-purpose registers.

To unburden the program from coping with real-time problems such as counting/timing and I/O data communications, the Z86C08 offers two on-chip counter/timers with a large number of user selectable modes. Also, there are two on-board comparators that can process analog signals with a common reference voltage (Figure 5).

Note: All Signals with a preceding front slash, $" / 7$, are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

PIN DESCRIPTIONS AND SIGNAL FUNCTIONS

This Section describes the pin numbers and respective signals plus their functions (Figure 2 and Table 1).

Table 1. Pin Identification

Pin \#	Symbol	Function	Direction
$1-4$	P24-7	Port 2 pin 4,5,6,7	In/Output
5	V $_{\text {cc }}$	Power Supply, $V_{\text {DD }}$	Input
6	XTAL2	Crystal Oscillator Clock	Input
7	XTALL	Crystal Oscillator Clock	Output
8	P31	Port 3 pin 1, AN1	Input
9	P32	Port 3 pin 2, AN2	Input
10	P33	Port 3 pin 3, REF	Input
$11-13$	P00-2	Port 0 pin 0,1,2	In/Output
14	GND	Ground, V,	Input
$15-18$	P20-3	Port 2 pin 0,1,2,3	In/Output

Figure 2. Pin Configuration

XTAL1, XTAL2. Crystal in, Crystal Out (time-based input and output, respectively). These pins connect a parallelresonant crystal, LC, or an external single-phase clock (12 MHz max) to the on-chip clock oscillator and buffer.

Port 0 (P00-P02). Port 0 is a 3-bit I/O, nibble programmable, bidirectional, CMOS compatible I/O port. These 3 1/O lines can be configured under software control to be an input or output (Figure 3).

Figure 3. Port 0 Configuration

PIN DESCRIPTION AND SIGNAL FUNCTIONS (Continued)

Port 2 (P20-P27). Port 2 is an 8-bit I/O, bit programmable, bidirectional, CMOS compatible I/O port. These 8 I/O lines can be configured under software control to be an input or
output, independently. Bits programmed as outputs may be globally programmed as either push pull or open drain (Figure 4).

Figure 4. Port 2 Configuration

Port 3 (P31-P33). Port 3 is a 3-bit, CMOS compatible port with three fixed input (P32-P33) lines. These three input lines can be configured under software control as digital
inputs or analog inputs. These three input lines can also be used as the interrupt sources IRQ0-IRQ3 and as the timer input signal ($T_{\mathbb{N}}$) (Figure 5).

Figure 5. Port 3 Configuration

Comparator Inputs. Two analog comparators are added to Port 3 inputs for interface flexibility.

Typical applications for the on-board comparators are: Zero crossing detection, A/D conversion, voltage scaling, and threshold detection.

The dual comparator (common inverting terminal) features a single power supply which discontinues power in STOP Mode. The common voltage range is $0-4 \mathrm{~V}$; the power
supply and common mode rejection ratios are 90 dB and 60 dB , respectively.

Interrupts are generated on either edge of comparator 2's output, or on the falling edge of comparator 1's output. The comparator outpul may be used for interrupt generation, Port 3 data inputs, or Tin through P31. Alternatively, the comparators may be disabled, freeing the reference input (P33) for use as IRQ1 and/or P33 input.

FUNCTIONAL DESCRIPTION

The Z8MCU incorporates special functions to enhance the Z8's application in industrial, scientific research, an advanced technologies applications.

Reset. Upon power up the power-on reset circuit waits for 50 msec plus 18 crystal clocks and then starts program execution at address \%000C (HEX) (Figure 6). Reference the $\mathrm{Z86C08}$ control registers' Reset value (Table 2).

Figure 6. Internal Reset Configuration

Table 2. Z86C08 Control Registers

Addr.	Reg.	Reset Condition								Comments
		D7	D6	D5	D4	D3	D2	D1	DO	
F1	TMR	0	0	0	0	0	0	0	0	
F2	T1	U	U	U	U	U	U	U	U	
F3	PRE1	U	U	U	U	U	U	0	0	
F4	T0	U	U	U	U	U	U	U	U	
F5	PREO	U	U	U	U	U	U	U	0	
F6*	P2M	1	1	1	1	1	1	1	1	Inputs after reset
F7*	P3M	U	U	U	U	U	U	0	0	
F8*	P01M	U	U	U	0	U	U	0	1	
F9	IPR	U	U	U	U	U	U	U	U	
FA	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection
PB	IMR	0	U	U	U	U	U	U	U	
PC	FLAGS	U	U	U	U	U	U	U	U	
FD	RP	0	0	0	0	0	0	0	0	
$\overline{\mathrm{FE}}$	SPH	U	U	U	U	U	U	U	U	Not used, stack always internal
FF	SPL	U	U	U	U	U	U	U	U	

Note:

* A reset after a low on P27 to get out of stop mode may affect device reliability.

Program Memory. The Z86C08 can address up to 2 Kbytes of internal program memory (Figure 7). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Bytes 0-2048 are on-chip mask-programmed ROM.

Figure 7. Program Memory Map

Register File. The Register File consists of three I/O port registers, 124 general purpose registers, and 15 control and status registers (RO-R3, R4-R127 and R241-R255, respectively - Figure 8). The Z86C08 instructions can access registers directly or indirectly via an 8 -bit address field. This allows short 4-bit register addressing using the

Register Pointer. In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 9) addresses the starting location of the active workingregister group.

Figure 9. Register File

Figure 8. Register File

FUNCTIONAL DESCRIPTION (Continued)

Stack Pointer. The Z86C08 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 General-Purpose registers.

Counter/Timer. There are two 8-bit programmable counter/ timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources, however the TO can be driven by the internal clock source only (Figure 10).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1) is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P30) as an external clock, a trigger input that is retriggerable or not retriggerable, or as a gate input for the internal clock.

Figure 10. Counter/Timers Block Diagram

Interrupts. The Z86C08 has six interrupts from six different sources. These interrupts are maskable and prioritized (Figure 11). The six sources are divided as follows: the falling edge of P31 (AN1), P32 (AN2), P33 (REF), the rising edge of P32 (AN2), and the two counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 3).

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z86C08 interrupts are vectored through locations in program memory. When an Interrupt machine cycle is activated, an interrupt request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.

Table 3. Interrupt Types, Sources, and Vectors

Source	Name	Vector Location	Comments
AN2(P32)	IRQ0	0,1	External (F)Edge
REF(P33)	IRQ1	2,3	External (F)Edge
AN1(P31)	IRQ2	4,5	External (F)Edge
AN2(P32)	IRQ3	6,7	External (R)Edge
T0	IRQ4	8,9	Internal
T1	IRQ5	10,11	Internal

Notes:
$F=$ Falling edge triggered
$R=$ Rising edge triggered

Figure 11. Interrupt Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Clock. The Z86C08 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 12 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance is between 10 pF to 250 pF which depends on the crystal manufacturer, ceramic resonator and PCB layout) from each pin to ground (Figure 12).

HALT Mode. Turns off the internal CPU clock but not the crystal oscillation. The counter/timers and external interrupts IRQ0, IRQ1, and IRQ2 remain active. The device can be recovered by interrupts, either externally or internally generated. The program execution begins at location 000C (HEX).

STOP Mode. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamps. The STOP Mode can be released by two methods. The first method is a RESET of the device by removing VCC. The secondmethod isifP27 is configured as an input line when the device executes the STOP instruction. A low input condition on P27 releases the STOP Mode.

Program execution under both conditions begins at location 000C (HEX). However, when P27 is used to release the STOP Mode, the $1 / O$ port mode registers are not reconfigured to their default power-on conditions. This prevents any I/O, configured as output when the STOP instruction was executed, from glitching to an unknown state. To use the P27 release approach with STOP Mode, use the following instruction:

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode $=$ FFH) immediately before the appropriate sleep instruction. i.e.:

FF	NOP	; clear the pipeline
6F	STOP	; enter STOP mode
		or
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT mode

Watch Dog Timer (WDT). The Watch Dog Timer is enabled by instruction WDT. When the WDT is enabled, it cannot be stopped by the instruction. With the WDT instruction, the WDT should be refreshed once the WDT is enabled within every 15 msec ; otherwise, the Z 86 C 08 resets itself.

$$
\mathrm{WDT}=5 \mathrm{~F}(\mathrm{HEX})
$$

Opcode WDT (5FH). The first time opcode 5FH is executed, the WDT is enabled, and subsequent execution clears the WDT counter. This has to be done at least every 15 msec . Otherwise, the WDT times out and generates a reset. The generated reset is the same as a power on reset of $50 \mathrm{msec}+18$ XTAL clock cycles.

Opcode WDH (4FH). When this instruction is executed it will enable the WDT during HALT. If not, the WDT will stop when entering HALT. This instruction does not clear the counters, it just makes it possible to have the WDT function running during HALT Mode. A WDH instruction executed without executing WDT $(5 \mathrm{FH})$ has no effect.

Figure 12. Oscillator Configuration

Brown-OutProtection $\left(\mathrm{V}_{\mathrm{BO}}\right)$. The brown-out trip voltage $\left(\mathrm{V}_{\mathrm{BO}}\right)$ is less than 3 volts and above 1.4 volts under the following conditions:

Maximum (V_{BO}) Conditions:
Case $1 \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 1 MHz
Case $2 \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 2 MHz

Note: The internal clock frequency is one half the external clock frequency.

The device will function normally at or above 3.0V under all conditions. Below 3.0V, the device functions normally until the Brown-Out Protection trip point $\left(\mathrm{V}_{\mathrm{BO}}\right)$ is reached. The device is guaranteed to function normally at supply voltages above the brown-out trip point for the temperatures and operating frequencies in Case 1 and Case 2 above. The actual brown-out trip point is a function of temperature and process parameters (Figure 13).

2 MHz (Typical)					
Temp	$-40^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+105^{\circ} \mathrm{C}$
V $_{\text {Bо }}$	2.55	2.4	2.1	1.7	1.6

* Power-on Reset threshold for V_{CC} and $4 \mathrm{MHz} \mathrm{V}_{\mathrm{BO}}$ overlap

Figure 13. Typical $\mathrm{Z}_{86 \mathrm{C}} \mathrm{CO}_{\mathrm{Bo}}$ vs. Temperature

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 14).

Figure 14. Test Load Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage *	-0.3	+7	V
$T_{\text {sTG }}$	Storage Temp	-65°	$+150^{\circ}$	C
T_{A}	Oper Ambient Temp	\dagger	\dagger	C

Notes:

*Voltages on all pins with respect to GND
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAPACITANCE

$T_{A}=G N D=0 V, f=1.0 \mathrm{MHz}$, unmeasured pins to GND

Parameter	Max
Input capacitance	10 pF
Output capacitance	20 pF
I/O capacitance	25 pF

V_{cc} SPECIFICATION

Low V_{cc}	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
High V_{cc}	$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	V_{cc}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+105^{\circ} \mathrm{C} \end{aligned}$		Typical @ $25^{\circ} \mathrm{C}$	Units	Conditions
			Min	Max	Min	Max			
	Max Input Voltage	$\begin{aligned} & 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\mathbb{N M}}=250 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathbb{N}}=250 \mu \mathrm{~A} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{CH}$	Clock Input High Voltage	$\begin{aligned} & \hline 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & \hline 1.7 \\ & 2.75 \end{aligned}$	V	Driven by External Clock Generator Driven by External Clock Generator
V_{a}	Clock Input Low Voltage	$\begin{aligned} & \hline 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$	v	Driven by External Clock Generator Driven by External Clock Generator
$\mathrm{V}_{\text {H }}$	Input High Vollage	$\begin{aligned} & 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\text {cc }} \\ & 0.7 \mathrm{~V}_{\text {cc }} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}+0.3}^{\mathrm{V}_{\mathrm{cc}}+0.3} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\text {cc }} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}+0.3}^{\mathrm{V}_{\mathrm{cc}}+0.3} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Vil	Input Low Vollage	$\begin{aligned} & 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{c c} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
$\mathrm{V}_{\text {OH }}$	Output High Voltge	$\begin{aligned} & \hline 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \\ & 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{c \mathrm{cc}-0.4}-0.4 \\ & \mathrm{~V}_{\mathrm{cc}}-0.4 \\ & \mathrm{~V}_{\mathrm{cc}}-0.4 \\ & \mathrm{cc}^{-0}-0.4 \end{aligned}$		$\begin{aligned} & V_{c \mathrm{cc}-0.4} \\ & V_{c_{c \mathrm{cc}}-0.4}^{V_{c c}-0.4} \\ & V_{c c}-0.4 \end{aligned}$		$\begin{aligned} & \hline 3.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$ Low Noise@ 0.5 mA Low Noise@ 0.5 mA
V_{al}	Output Low Voltage	$\begin{aligned} & \hline 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \\ & 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{a t}=4.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{a}}=+4.0 \mathrm{~mA} \end{aligned}$ Low Noise @ 0.5 mA Low Noise @ 0.5 mA
$\mathrm{V}_{\mathrm{al} 2}$	Output Low Vollage	3.0 V 5.5 V		1.0 0.8		$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.3 \end{aligned}$	V V	$\begin{aligned} & \mathrm{I}_{a .}=+12 \mathrm{~mA}, \\ & 3 \text { Pin Max } \\ & \mathrm{I}_{\mathrm{of}}=+12 \mathrm{~mA}, \\ & 3 \mathrm{Pin} \text { Max } \end{aligned}$
$\mathrm{V}_{\text {OffSt }}$	Comparator Input Oftset Voltage	$\begin{aligned} & 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	mV mV	
$\bar{V}_{\text {B0 }}$	V_{cc} Brown Out Voltage		1.5	2.7	1.0	2.95	2.1	V	© 2 MHz Max, Ext. CLK Frea
$1{ }_{\text {I }}$	Input Leakage (Input Bias Current of Comparator)	$\begin{aligned} & 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} -1.0 \\ -1.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$	$\begin{aligned} & V_{\text {wiw }}=0 \mathrm{~V}, V_{c c} \\ & V_{\mathbb{W}}=0 \mathrm{~V}, V_{c c} \end{aligned}$
la	Output Leakage	$\begin{aligned} & \hline 3.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline-1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$	$\begin{aligned} & V_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathbb{W}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} \end{aligned}$
$\overline{V_{\text {REF }}}$			0	$\mathrm{V}_{\text {cc }}-0.7$	0	$\mathrm{V}_{\text {cc }}-1.0$		V	

DC ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	$V_{c c}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+105^{\circ} \mathrm{C} \end{aligned}$		Typical @ $25^{\circ} \mathrm{C}$	Units	Conditions
			Min	Max	Min	Max			
I_{cc}	Supply Current	$3.0{ }^{\prime}$		3.5		3.5	1.5	mA	All Output and I/O Pins Floating @ 2 MHz
		5.5V		7.0		7.0	3.0	mA	All Output and $1 / 0$ Pins Floating @ 2 MHz
		3.0 V		8.0		8.0	3.0	mA	All Output and $\mathrm{I} / 0$ Pins Floating @ 8 MHz
		5.5V		11.0		11.0	6.0	mA	All Output and $1 / 0$ Pins Floating @ 8 MHz
		3.0 V		10		10	3.6	mA	All Output and $1 / 0$ Pins Floating @ 12 MHz
		5.5V		15		15	9.0	mA	All Output and $1 / 0$ Pins Floating @ 12 MHz
$\mathrm{ICC1}$	Standby Current	3.0 V		2.5		2.5	0.7	mA	$\begin{aligned} & \text { HALTMode } \mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}} @ 2 \mathrm{MHz} \end{aligned}$
		5.5V		4.0		5.0	2.5	mA	HALT Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{cc}} @ 2 \mathrm{MHz}$
		3.0 V		4.0		4.0	1.0	mA	$\begin{aligned} & \text { HALT Mode } V_{\text {w }}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {cc }} @ 8 \mathrm{MHz} \end{aligned}$
		5.5V		5.0		5.0	3.0	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathrm{W}}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{0} \text { © } 8 \mathrm{MHz} \end{aligned}$
		3.0 V		4.5		4.5	1.5	mA	$\begin{aligned} & \text { HALT Mode } V_{\text {wis }}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{cc}} @ 12 \mathrm{MHz} \end{aligned}$
		5.5V		7.0		7.0	4.0	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}} @ 12 \mathrm{MHz} \end{aligned}$
$\mathrm{I}_{\text {cc }}$	Supply Current (Low Noise Mode)	3.0 V		3.5		3.5	1.5	mA	All Output and $1 / 0$ Pins Floating @ 1 MHz
		5.5V		7.0		7.0	4.2	mA	All Output and I/O Pins Floating @ 1 MHz
		3.0 V		5.8		5.8	3.0	mA	All Output and $1 / 0$ Pins Floating @ 2 MHz
		5.5 V		9.0		9.0	6.0	mA	All Output and $1 / 0$ Pins Floating @ 2 MHz
		3.0 V		8.0		8.0	4.4	mA	All Output and $1 / 0$ Pins Floating @ 4 MHz
		5.5V		11.0		11.0	9.0	mA	All Output and I/O Pins Floating @ 4 MHz

Symbol	Parameter	V_{cc}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to }+70^{\circ} \mathrm{C} \\ & \text { Min Max } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+105^{\circ} \mathrm{C} \\ & \text { Min Max } \end{aligned}$	Typical @ $25^{\circ} \mathrm{C}$	Units	Conditions
Icc	Standby Current (Low Noise Mode)	3.0 V	0.8	1.2	0.4	mA	
		5.5V	1	1.6	0.9	mA	
		3.0 V	0.8	1.5	0.5	mA	
		5.5V	1	1.9	1	mA	
		3.0V	TBD	2.0	0.8	mA	
		5.5V	2.0	2.4	0.3	mA	
Icc	Standby Current	3.0 V	10	20	1.0	$\mu \mathrm{A}$	STOP Mode $V_{\text {tI }}=0 \mathrm{~V}$. V_{cc} WDT is not Running STOP Mode $V_{\text {II }}=0 \mathrm{~V}$. $V_{c c}$ WDT is not Running
		5.5 V	10	20	1.0	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {N1 }}$	Auto Latch Low Current	3.0 V	6.0	8.0	3.0	$\mu \mathrm{A}$	$\mathrm{OV}<\mathrm{V}_{\mathrm{W}}<\mathrm{V}_{\text {cc }}$
		5.5 V	22	30	16	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{W}<\mathrm{V}_{\text {cc }}$
$I_{\text {NH }}$	Auto Latch High Current	3.0 V	-4.0	-5.0	-1.5	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathbb{N}}<\mathrm{V}_{\mathrm{cc}}$
		5.5 V	-12.0	-20	-8.0	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathbb{W}}<\mathrm{V}_{\text {cc }}$

Notes:

[1]	Typ	Max	Unit	Freq
Clock Driven on Crystal	3.0	5.0	mA	8 MHz
or XTAL Resonator	0.3	50	mA	8 MHz

[2] $\mathrm{V}_{\mathrm{ss}}=\mathrm{OV}=\mathrm{GND}$
[3] For 2.75 V operating, the device operates down to $\mathrm{V}_{\text {во }}$. The minimum operational V_{cc} is determined on the value of the voltage V_{BO} at the ambient temperature. The $V_{B O}$ increases as the temperature decreases.

DC ELECTRICAL CHARACTERISTICS (Continued)
Timing Diagrams

Figure 15. Electrical Timing Diagram

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode)

No	Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				Units	Notes
				Min	Max	Min	Max		
1	TpC	Input Clock Period	3.0 V	125	100,000	83	100,000	ns	[1]
			5.5V	125	100,000	83	100,000	ns	[1]
2	TrC,TiC	Clock Input Rise and Fall Times	3.0 V		25		15	ns	[1]
			5.5 V		25		15	ns	
3	TwC	Input Clock Width	3.0 V	37		26			[1]
			5.5V	37		26		ns	[1]
4	TwTinL	Timer Input Low Width	3.0 V	100		100		ns	[1]
			5.5 V	70		70		ns	[1]
5	TwTinH	Timer Input High Width	3.0 V	5 TpC		5 TpC			[1]
			5.5V	5 TpC		5 TpC			[1]
6	TpTin	Timer Input Period	3.0 V	8TpC		8 TpC			[1]
			5.5 V	8TpC		8 TpC			[1]
7	TrTin, TtTin	Timer Input Rise	3.0 V		100		100	ns	[1]
		and Fall Timer	5.5 V		100		100	ns	[1]
8	TwIL	Int. Request Input	3.0 V	100		100		ns	[1,2]
		Low Time	5.5 V	70		70		ns	[1,2]
9	TwIH	Int. Request Input	3.0 V	5 TpC		5 TpC			[1]
		High Time	5.5 V	5 TpC		5 TpC			[1,2]
10	Twdt	Watchdog Timer	3.0 V		15		15	ms	[1]
		Delay Time	5.5 V		10		10	ms	[1]
11	Tpor		3.0 V		24		24	ms	[1]
			5.5V		12		12	ms	[1]

Notes:

[1] Timing Reference uses $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .
[2] Interrupt request via Port 3 (P31-P33).

Low Noise Version

Low EMI Emission

The Z86C08 can be programmed to operate in a low EMI emission mode by means of a mask ROM bit option. Use of this feature results in:

- Less than 1 mA consumed during HALT mode, $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
- All pre-driver slew rates reduced to 10 ns typical.
- InternalSLCK/TCLK operation limited to a maximum of 4 MHz - 250 ns cycle time.
- Output drivers have resistances of 200 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI mode is mask-programmable to be selected by the customer at the time the ROM code is submitted.

EMI Characteristics

The Z86C08 operating in the Low EMI mode generates EMI as measured in the following chart:

The measurements weremade while operating the Z86C08 in three states: (1) Idle condition; (2) static output; (3) switched output.

AC ELECTRICAL CHARACTERISTICS

Low Noise Mode

No	Symbol	Parameter	V_{cc}	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 1 \mathrm{MHz} \quad 4 \mathrm{MHz} \end{gathered}$				$\begin{aligned} & \mathrm{T}_{A}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C} \\ & 1 \mathrm{MHz} \quad 4 \mathrm{MHz} \end{aligned}$				Units	Notes
				Min	Max	Min	Max	Min	Max	Min	Max		
5	TwTinH	Timer Input High Width	3.0 V	2.5TpC		2.5 TpC		2.5 TpC		2.5TpC			[1]
			5.5 V	2.5TpC		2.5 TpC		2.5TpC		2.5TpC			[1]
6	TpTin	Timer Input Period	3.0 V	4 TpC		4TpC		4TpC		4TpC			[1]
			5.5 V	4TpC		4TpC		4TpC		4TpC			[1]
7	TrTin, ItTin	Timer Input Rise	3.0 V		100		100		100		100	ns	[1]
		and Fall Timer	5.5 V		100		100		100		100	ns	[1]
8	TwlL	Int. Request Input	3.0V	100		100		100		100		ns	[1,2]
		Low Time	5.5 V	70		70		70		70		ns	[1,2]
9	TwlH	Int. Request Input	3.0 V	2.5 T ¢		2.5 TpC		2.5TpC		2.5 Tp C			[1]
		High Time	5.5 V	2.5TpC		2.5 TpC		2.5TpC		2.5TpC			[1,2]
10	Twdt	Watchdog Timer	3.0 V		25		25		25		25	ms	[1]
		Delay Time	5.5 V		15		15		10		10	ms	[1]

Notes:

[^1]
Z8 CONTROL REGISTER DIAGRAMS

Figure 16. Timer Mode Register (F_{H} : Read/Write)

R242 T1

Figure 17. Counter Time 1 Register ($\mathrm{F2}_{\mathrm{H}}$: Read/Write)

R243 PRE1

Figure 18. Prescaler 1 Register ($_{\mathrm{F}}^{\mathrm{H}} \mathrm{H}$: Write Only)

R244 T0

Figure 19. Counter/Timer 0 Register
(F4 ${ }_{H}$: Read/Write)

R245 PRE0

Figure 20. Prescaler 0 Register
(F5 ${ }_{\mathbf{H}}$: Write Only)

R246 P2M

Figure 21. Port 2 Mode Register (F6; ${ }_{\mathbf{H}}$: Write Only)

Figure 22. Port 3 Mode Register (F7 ${ }_{\mathrm{H}}$: Write Only)

R248 P01M

Figure 23. Port 0 and 1 Mode Register (FB_{H} : Write Only)

R249 IPR

Figure 24. Interrupt Priority Register (F9 $_{\mathrm{H}}$: Write Only)

R250 IRQ

Figure 25. Interrupt Request Register ($\mathrm{FA}_{\mathbf{H}}$: Read/Write)

R251 IMR

Figure 26. Interrupt Mask Register (FB_{H} : Read/Write)

Figure 27. Flag Register (FC_{H} : Read/Write)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 28. Register Pointer $\left(\mathrm{FD}_{\mathbf{H}}\right.$: Read/Write)

Figure 29. Stack Pointer (FF $_{\mathrm{H}}$: Read/Write)

DEVICE CHARACTERISTICS

Figure 30. Maximum I_{cc} vs. Frequency

Figure 31. Typical $I_{c c}$ vs. Frequency

DEVICE CHARACTERISTICS (Continued)

Figure 32. $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{oL}}$ vs. Temperature

Figure 33. $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$ vs. Temperature

Figure 34. Typical I_{OH} vs. V_{OH}

DEVICE CHARACTERISTICS (Continued)

Figure 35. Typical I_{oL} vs. V_{oL}

Figure 36. Typical WDT Time Out Period
vs. V_{cc} Over Temperature

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Ir	Indirect working-register pair only X
Indexed address	
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address r
IR	Indirect-register address only
	register address
Ir	Indirect working-register address only
RR	Register pair or working register pair
	address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
CC	Condition code
@	Indirect address prefix
SP	Stack pointer
PC	Program counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags.

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
X	Unaffected
	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000	---	Always true	---
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	Z=0
1001	GE	Greater than or equal	($\mathrm{S} \times \mathrm{OR} \mathrm{V}$) $=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V})$] $=0$
0010	LE	Less than or equal	$[Z ~ O R ~(S ~ X O R ~ V)]=1 ~$
1111	UGE	Insigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0$) $=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{COR} \mathrm{Z})=1$
0000	---	Never true	---

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol "---". For example:

$$
d s t--d s t+s r c
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst(7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		lags Affec Z		V		H
ADC dst, Src $d s t \leftarrow d s t+\mathrm{src}+\mathrm{C}$	\dagger	1[]		*	*	*		*
$\begin{aligned} & \text { ADD dst, src } \\ & \text { dst } \leftarrow \mathrm{dst}+\mathrm{src} \end{aligned}$	\dagger	O[]		*	*	*	0	*
AND dst, src dst \leftarrow dst AND src	\dagger	5[]	-	*	*	0		-
CALL dst $\begin{aligned} & S P \leftarrow S P-2 \\ & @ S P \leftarrow P C, \\ & P C \leftarrow d s t \end{aligned}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	-	-	-	-		-
$\begin{aligned} & \hline \text { CCF } \\ & \mathrm{C} \leftarrow \mathrm{NOT} \mathrm{C} \end{aligned}$		EF		* -	-	-		-
$\begin{aligned} & \overline{\text { CLR dst }} \\ & \text { dst } \leftarrow 0 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	-	-	-	-		-
COM dst dst \leftarrow NOT dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 61 \end{aligned}$			*	0	-	-
$\begin{aligned} & \hline \text { CP dst, src } \\ & \text { dst - src } \end{aligned}$	\dagger	A []	*		*	*		-
DA dst dst \leftarrow DA dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$		* *	*	X	-	-
DEC dst dst \leftarrow dst - 1	$\begin{aligned} & \hline R \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \hline 00 \\ & 01 \end{aligned}$			*	*		-
DECW dst dst $\leftarrow d s t-1$	$\begin{aligned} & \hline \mathrm{RR} \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 81 \end{aligned}$			*	*	-	-
$\begin{aligned} & \mathrm{DI} \\ & \operatorname{IMR}(7) \leftarrow 0 \end{aligned}$		8 F	-	-	-	-	-	-
$\begin{aligned} & \text { DJNZr, dst } \\ & \mathrm{r} \leftarrow \mathrm{r}-1 \\ & \text { if } \mathrm{r} \neq 0 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst} \\ & \text { Range: }+127 \text {, } \\ & -128 \end{aligned}$	RA	$\begin{aligned} & \mathrm{rA} \\ & \mathrm{r}=0-\mathrm{F} \end{aligned}$	-	- -	-	-	-	-
$\begin{aligned} & \hline \mathrm{EI} \\ & \mathrm{IMR}(7) \leftarrow 1 \end{aligned}$		9 F		-	-	-	-	-
HALT		7F		-	-	-	-	-

OPCODE MAP
Lower Nibble (Hex)

PRODUCT SPECIFICATION

Z86E08

CMOS Z8 ${ }^{\circledR} 8$-BIT
 MICROCONTROLLER

FEATURES

- 8-bit CMOS microcontroller
- 18-pin DIP
- Low cost
- Low noise programmable
- ROM protect programmable
- 4.0 to 5.5 volt V_{cc} range
- Low power consumption - 50 mW (typical)
- Fast instruction pointer-1 microsecond at 12 MHz
- Two standby modes - STOP and HALT
- 14 Input/Output lines

■ All digital inputs, CMOS levels, Schmitt triggered.

- 2 Kbytes of one time PROM
- 144 bytes of RAM
- Two programmable 8 -bit counter/timers each with a 6 -bit programmable prescaler.
- Six vectored, priority interrupts from five different sources.
- Clock speeds - 8 and 12 MHz
- Watchdog Timer
- Power-On Reset
- Two Comparators
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, or external clock drive.

GENERAL DESCRIPTION

The Z86E08 Microcontroller (MCU) introduces a new level of sophistication to single-chip architecture. The Z86E08 is a member of the $Z 8$ single-chip microcontroller family with 2 Kbytes of one-time PROM. The device is housed in an 18-pin DIP, and is manufactured in CMOS technology. The device allows easy software development and debug, prototyping, and small production runs not economically desirable with a masked ROM version.

The Z86E08 has a flexible I/O scheme, an efficient register and address space structure. Also, it has a number of ancillary features that are useful in many consumer, industrial and advanced scientific applications.

The device applications demand powerful//O capabilities. The Z86E08 fulfills this with 14 pins dedicated to input and output. These lines are grouped into three ports, and are
configurable under software control to provide I/O, timing, and status signals.

There are two basic address spaces available to support this wide range of configurations; program memory and 124 bytes of general-purpose registers.

To unburden the program from coping with real-lime problems such as counting/timing and I/O data communications, the Z86E08 offers two on-chip counter/timers with a large number of user selectable modes. Included, are two on-board comparators that process analog signals with a common reference voltage (Figures 1 and 2).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

Figure 2. EPROM Mode Block Diagram

PIN DESCRIPTION

Figure 3. Pin Configuration

Table 1. Pin Identification

OTP Programming Mode			
Pin \#	Symbol	Function	Direction
1-4	D4-7	Data 4,5,6,7	In/Output
5	$\mathrm{V}_{\text {cc }}$	Power Supply	Input
6	N/C	No connection	
7	/CE	Chip Enable	Input
8	/OE	Output Enable	Input
9	EPM	EPROM Prog Mode	Input
10	V_{pp}	Prog Voltage	Input
11	Clear	Clear Clock	Input
12	Clock	Address	Input
13	/PGM	Prog Mode	Input
14	GND	Ground	Input
15-18	D0-3	Data 0,1,2,3	In/Output

Figure 4. Pin Configuration

Table 2. Pin Identification

Z86E08 Standard Mode			
Pin \#	Symbol	Function	Direction
$1-4$	P24-7	Port 2 pin 4,5,6,7	In/Output
5	V Cc 2	Power Supply	Input
6	XTAL2	Crystal Osc. Clock	Output
7	XTAL1	Crystal Osc. Clock	Input
8	P31	Port 3 pin 1	Input
9	P32	Port 3 pin 2	Input
10	P33	Port 3 pin 3	Input
$11-13$	P00-2	Port 0 pin 0,1,2	Input/Output
14	GND	Ground	Input
$15-18$	P20-3	Port 2 pin 0,1,2,3	In/Output

PIN FUNCTIONS

OTP Programming Mode

D7-D0. Data Bus. The data can be read from, or written to the EPROM through this data bus.

VCC. Power Supply. It is 5 V during the EPROM Read mode and 6 V during the other mode.
/CE. Chip Enable (Active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.
/OE. Output Enable (Active Low). This pin drives the Data Bus direction. When this pin is Low, the Data Bus is output. When High, the Data Bus is input.

EPM. EPROM Program Mode. This pin controls the different EPROM Program Modes by applying different voltages.
V_{pp}. Program Voltage. This pin supplies the program voltage.

Clear. Clear (Active High). This pin resets the internal address counter at the High Level.

Clock. Address Clock. This pin is a clock input. The internal address counter increases by one with one clock signal.
/PGM. Program Mode (Active Low). Low Level at this pin programs the data to the EPROM through the Data Bus.

Z86E08 Standard Mode

XTAL1, XTAL2. Crystal In, Crystal Out (time-based input and output, respectively). These pins connect a parallelresonant crystal, LC, or an external single-phase clock (12 MHz max) to the on-chip clock oscillator and buffer.

Port 0 P00-P02. Port 0 is a 3 -bit bi-directional, CMOS compatible I/O port. These 3 I/O lines can be globally configured under software control to be an input or output (Figure 5).

Figure 5. Port 0 Configuration

Z86E08 Standard Mode (Continued)

Port 2 P20-P27. Port 2 is an 8 -bit, bit programmable, bidirectional, CMOS compatible I/O port. These eight I/O lines can be configured under software control to be an
input or output, independently. Bits programmed as outputs can be globally programmed as either push-pull or open-drain (Figure 6).

Figure 6. Port 2 Configuration

Port 3 P31-P33. Port 3 is a 3-bit, CMOS compatible port with three fixed input (P30-P32) lines. These three input lines can be configured under software control as digital
inputs or analog inputs. These three input lines are also used as the interrupt sources IRQ0-IRQ3 and as the timer input signal ($\mathrm{T}_{\text {IN }}$ - Figure 7).

IRQ 0,1,2 = Falling Edge Detection IRQ3 $=$ Rising Edge Detection

Figure 7. Port 3 Configuration

Z86E08 Standard Mode (Continued)

Comparator Inputs. Two analog comparators are added to input of Port 3, P31 and P32, for interface flexibility. The comparators reference voltage P3REF is common to both comparators.

Typical applications for the on-board comparators; Zero crossing detection, A/D conversion, voltage scaling, and threshold detection. In analog mode, P33 input functions serve as a reference voltage to the comparators.

The dual comparator (common inverting terminal) features a single power supply which discontinues power in STOP

Mode. The common voltage range is $0-4 \mathrm{~V}$; the power supply and common mode rejection ratios are 90 dB and 60 dB , respectively.

Interrupts are generated on either edge of comparator 2's output, or on the falling edge of comparator 1's output. The comparator output is used for interrupt generation, Port 3 data inputs, or Tin through P31. Alternatively, the comparators can be disabled, freeing the reference input (P33) for use as IRQ1 and/or P33 input.

SPECIAL FUNCTIONS

The Z8MCUincorporates special functions to enhance the Z8's application in industrial, scientific and advanced technologies applications.

RESET is accomplished through Power On or a watchdog timer RESET. Upon Power Up, the power-on reset
circuit waits for 50 msec plus 18 crystal clocks and then starts program execution at address 000C (HEX). Reference Table 3 for the Z86E08 control registers' reset values (Figure 8).

Figure 8. Internal Reset Configuration

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for a POR timer function. The POR time allows Vcc and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of the four following conditions:

Watch Dog Timer Reset. The WDT is a retriggerable oneshot timer that resets the $Z 8$ if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and is retriggered on subsequent execution of the WDT instruction. The timer circuit is driven by an onboard RC oscillator.

- Power bad to power good status
- STOP Mode recovery
- WDT time out
- WDH time out

Table 3. Z86E08 Control Registers

Addr.	Reg.	Reset Condition								Comments
		D7	D6	D5	D4	D3	D2	D1	D0	
F1	TMR	0	0	0	0	0	0	0	0	
F2	T1	U	U	U	U	U	U	U	U	
F3	PRE1	U	U	U	U	U	U	0	0	
F4	T0	U	U	U	U	U	U	U	U	
F5	PREO	U	U	U	U	U	U	U	0	
F6*	P2M	1	1	1	1	1	1	1	1	Inputs after reset.
F7*	P3M	U	U	U	U	U	U	0	0	
F8*	P01M	U	U	U	0	U	U	0	1	
F9	IPR	U	U	U	U	U	U	U	U	
FA	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection.
PB	IMR	0	U	U	U	U	U	U	U	
PC	FLAGS	U	U	U	U	U	U	U	U	
FD	RP	0	0	0	0	0	0	0	0	
FF	SPL	U	U	U	U	U	U	U	U	

Note:
*Not reset after a low on P27 to get out of STOP Mode

Program Memory. The Z86E08 addresses up to 2 Kbytes of internal program memory (Figure 9). The first 12 bytes of program memory are reserved for the interrupt vectors.

These locations contain six 16 -bit vectors that correspond to the six available interrupts. Bytes 0-2048 are on-chip one-time programmable ROM.

Figure 9. Program Memory Map

SPECIAL FUNCTIONS (Continued)

Register File. The Register File consists of three I/O port registers, 124 general purpose registers, and 14 control and status registers R0-R3, R4-R127 and R241-R255, respectively (Figure 10). General purpose registers occupy the 04 H to 7 FH address space. I/O ports are mapped as per the existing CMOS Z8. The Mode and Configuration Registers are the same as the Z86C08. The Z86E08

Location 255		Identifiers SPL
	Stack Pointer (Bits 7-0)	
254	General Purpose Register	GPRRP
253	Register Pointer	
252	Program Control Flags	FLAGS
251	- Interrupt Mask Register	HMH
250	Interrupt Request Register	IRQ
249	Interrupt Priority Register	IPR
248	Ports 0-1 Mode	P01M
247	Port 3 Mode	P3M
246	Port 2 Mode	P2M
245	To Prescaler	PREO
244	Timer/Counter 0	T0
243	T1 Prescaler	PRE1
242	Timer/Counter 1	T1
241	Timer Mode	TMR
127	Not Implemented	
4	General Purpose Registers	
3	Port 3	P3
2	Port 2	P2
1	Reserved	P1
0	Port 0	Po

Figure 10. Register File
instructions can access registers directly or indirectly via an 8 -bit address field. This allows short 4 -bit register addressing using the Register Pointer. In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 11) addresses the starling location of the active working-register group.

Figure 11. Register Pointer

Stack Pointer. The Z86E08 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.

GPR. (R254) This register is a general-purpose register.
Counter/Timer. There are two 8-bit programmable counter/ timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO can be driven by the internal clock source only (Figure 12).

The 6-bit prescalers divides the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request IRQ4 (TO) or IRQ5 (T1) is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any lime without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by lour, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P30) as an external clock, a trigger input that is retriggerable or not retriggerable, or used as a gate input for the internal clock.

Figure 12. Counter/Timers Block Diagram

SPECIAL FUNCTIONS (Continued)

Interrupts. The Z86E08 has six interrupts from five different sources. These interrupts are maskable and prioritized (Figure 13). The five sources are divided as follows: the falling edge of P31 (AN1), P32 (AN2), P33 (REF), and two counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 4).

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z86E08 interrupts are vectored through locations in program memory. When an Interrupt machine cycle is activated, an interrupt request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.

Table 4. Interrupt Types, Sources, and Vectors

Source	Name	Vector Location	Comments
AN2(P32)	IRQ0	0,1	External (F)Edge
REF(P33)	IRQ1	2,3	External (F)Edge
AN1(P31)	IRQ2	4,5	External (F)Edge
AN2(P32)	IRQ3	6,7	External (R)Edge
T0	IRQ4	8,9	Internal
T1	IRQ5	10,11	Internal

Notes:

$F=$ Falling edge triggered
$R=$ Rising edge triggered

Figure 13. Interrupt Block Diagram

Clock. The Z86E08 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, ceramic resonator,or any suitable external clock source. The crystal should be AT cut, 12 MHz max, with a series resistance (RS) of less than or equal to 100 Ohms.

The crystal is connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance is between 10 pF to 250 pF depending upon the crystal manufacturer, ceramic resonator and PCB layout) from each pin to ground (Figure 14).

Figure 14. Oscillator Configuration

HALT Mode. Turns off the internal CPU clock but not the crystal oscillation. The counter/timers and external interrupts IRQ0, IRQ1, and IRQ2 remain active. The device is recovered by interrupts, either externally or internally generated. The $I_{c c}$ in HALT state is $I_{c c}$ (run mode) divided by 10 .

STOP Mode. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to $10 \mu \mathrm{~A}$. The STOP Mode is released by a RESET via a STOP Mode Recovery (pin P27. Program execution begins at location 000 C (HEX). However, when P27 is used
to release the STOP Mode, the I/O port mode registers are not reconfigured to their default power-on conditions. This prevents any I/O, configured as output when the STOP instruction was executed, from glitching to an unknown state. To use the P27 release approach with STOP Mode, use the following instruction:

```
OR P2M, #80H
NOP
STOP
```

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=FFH) immediately before the appropriate sleep instruction, i.e.:

FF	NOP;	clear the pipeline
$6 F$	STOP;	enter STOP mode
		or
FF	NOP;	clear the pipeline
7F	HALT;	enter HALT mode

Watch Dog Timer (WDT). The Watch Dog Timer is enabled by instruction WDT. When the WDT is enabled, it cannot be stopped by the instruction. With the WDT instruction, the WDT is refreshed when it is enabled within every 15 msec ; otherwise, the Z86E08 resets itself.
WDT=5F (HEX)

Opcode WDT (5FH). The first time opcode 5 FH is executed, the WDT is enabled and subsequent execution clears the WDT counter. This has to be done at least every 15 msec. Otherwise, the WDT times out and generates a reset. The generated reset is the same as a power-on reset of $50 \mathrm{msec}+18$ XTAL clock cycles.

SPECIAL FUNCTIONS (Continued)

Opcode WDH (4FH). When this instruction is executed it enables the WDT during HALT. If not, the WDT stops when entering HALT. This instruction does not clear the counters, it just makes it possible to have the WDT running during HALTMode. A WDH instruction executed without executing WDT (5FH) has no effect.

Auto Reset Voltage ($\mathrm{V}_{\text {RST }}$). The Z86E08 has an auto-reset built-in. The auto-reset circuit resets the Z86E08 when it detects the V_{cc} below $\mathrm{V}_{\text {RsI }}$. Figure 15 shows the Auto Reset Voltage vs temperature.

Figure 15. Typical Auto Reset Voltage ($\mathbf{V}_{\text {nst }}$) vs Temperature

Low EMI Emission

The Z86E08 can be programmed to operate in a low EMI emission mode by means of an EPROM programmable bit option. Use of this feature results in:

- Less than 1 mA consumed during HALT mode.
- All drivers slew rates reduced to 10 ns typical.
- Internal SLCK/TCLK operation limited to a maximum of $4 \mathrm{MHz}-250 \mathrm{~ns}$ cycle time.
- Output drivers have resistances of 200 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

ROM Protect. ROM Protect fully protects the Z86E08 ROM code from being read externally. When ROM protect is selected, the Z86E08 will disable the instructions LDC and LDCI (Z86E08 and Z86C08 do not support the instructions of LDE and LDEI).

User Modes. Table 5 shows the programming voltage of each mode of Z86E08.

Table 5. OTP Programming Table

User Modes	$\begin{aligned} & V_{p p} \\ & (\mathrm{P} 33) \end{aligned}$	EPM (P32)	/CE (XTAL1)	/OE (P31)	$\begin{aligned} & \text { /PGM } \\ & \text { (P02) } \end{aligned}$	ADDR	DATA (Port2)	V_{cc}
EPROM Read	X	V_{H}	V_{IL}	$V_{\text {IL }}$	$V_{1 H}$	Addr	Data Out	5.0 V
Program	$V_{\text {PP }}$	X	$\mathrm{V}_{\text {IL }}$	$V_{\text {IH }}$	$V_{\text {IL }}$	Addr	Data In	6.0 V
Program Verify	$V_{P P}$	X	$V_{1 L}$	$V_{\text {IL }}$	$V_{\text {IH }}$	Addr	Data Out	6.0 V
EPROM Protect	$V_{p P}$	V_{H}	V_{H}	$V_{\text {IH }}$	$V_{1 L}$	X	X	6.0 V
Low Noise	$V_{\text {PP }}$	$V_{\text {IH }}$	$V_{\text {H }}$	$V_{I H}$	$V_{\text {IL }}$	X	X	6.0 V

Notes:
$\mathrm{V}_{\mathrm{pp}}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{H}}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$X=$ TTL Level (irrelevant)
$\mathrm{V}_{\mathrm{H}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{n}}=0 \mathrm{~V}$

Internal Address Counter. The address of Z86E08 is generated internally with a counter clocked through pin P01 (Clock). Each clock signal increases the address by one and the "high" level of pin P00 (Clear) will reset the address to zero. Figure 16 shows the set-up time of the serial address input.

Programming Waveform. Figures 17, 18 and 19 show the programming waveforms of each mode. Table 6 shows the timing of programming waveforms.

Programming Algorithm. Figure 20 shows the flow chart of the Z86E08 programming algorithm.

Table 6. Timing of Programming Waveform

Parameters	Name	Min	Max
1	Address Setup Time	$2 \mu \mathrm{sec}$	
2	Data Setup Time	$2 \mu \mathrm{sec}$	
3	V $_{\text {pp }}$ Setup Time	$2 \mu \mathrm{sec}$	
4	V cc Setup Time	$2 \mu \mathrm{sec}$	
5	Chip Enable SetupTime	$2 \mu \mathrm{sec}$	
6	Program Pulse Width	0.95 msec	1.05 msec

Low EMI Emission (Continued)
Table 6. Timing of Programming Waveform (Continued)

Parameters	Name	Min	Max
7	Data Hold Time	$2 \mu \mathrm{sec}$	
8	OE Setup Time	$2 \mu \mathrm{sec}$	
9	Data Access Time		200 nsec
10	Data Output Float Time		100 nsec
11	Overprogram Pulse Width	2.85 msec	78.75 msec
12	EPM Setup Time	$2 \mu \mathrm{sec}$	
13	OE Setup Time	$2 \mu \mathrm{sec}$	
14	Address to OE Setup Time	$2 \mu \mathrm{sec}$	
15	Option Bit Program Pulse Width	15 msec	78.75 msec

Legend:	
T1 Reset Clock Width	30 ns Min
T2 Input Clock High	30 ns Min
T3 Input Clock Period	70 ns Min
T4 Input Clock Low	30 ns Min
T5 Clock to Address Counter Out Delay	15 ns Max

Figure 16. Z86E08 Address Counter Waveform

Figure 17. Z86E08 Programming Waveform (EPROM Read)

Low EMI Emission (Continued)

Figure 18. Z86E08 Programming Waveform (Program and Verify)

Address	Vih	
	Vil	Address Don't Care
	Vih	
Data	Vil	Data Don't Care

Figure 19. Z86E08 Programming Waveform (EPROM Protect and Low EMI Program)

Low EMI Emission (Continued)

Figure 20. Z86E08 Programming Algorithm

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 19).

Figure 21. Test Load Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Units
$V_{\text {cc }}$	Supply Voltage *	-0.3	+7	V
$\mathrm{T}_{\text {STG }}$	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp	\dagger	\dagger	C

Notes:
*Voltages on all pins with respect to GND.
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAPACITANCE

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cC}}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$, unmeasured pins to GND.

Parameter	Max
Input Capacitance	10 pF
Output Capacitance	20 pF
I/O Capacitance	25 pF

\mathbf{V}_{cc} SPECIFICATION

Low V_{cc}	$4.4 \mathrm{~V} \pm 0.4 \mathrm{~V}$
High V_{cc}	$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\text {c }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & 10+70^{\circ} \mathrm{C} \end{aligned}$		Typical @ $25^{\circ} \mathrm{C}$	Units	Conditions
			Min	Max			
	Max Input Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\mathbb{N}}=250 \mu \mathrm{~A} \\ & V_{\mathbb{N}}=250 \mu \mathrm{~A} \end{aligned}$
$\overline{V_{c H}}$	Clock Input High Voltage	$\begin{aligned} & \hline 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 2.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \cdot \mathrm{~V} \end{gathered}$	Driven by External Clock Generator Driven by External Clock Generator
V_{a}	Clock Input Low Voltage	$\begin{aligned} & \hline 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.3 \end{aligned}$	V	Driven by External Clock Generator Driven by External Clock Generator
$\bar{V}_{\text {H }}$	Input High Voltage	$\begin{aligned} & \hline 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{c c} \\ & 0.7 \mathrm{~V}_{c c} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \hline V \\ & V \end{aligned}$	
VII	Input Low Vollage	$\begin{gathered} 4.0 \mathrm{~V} \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
$\overline{V_{\text {OH }}}$	Output High Voltge	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{c c}-0.4 \\ & V_{c c}-0.4 \end{aligned}$		$\begin{aligned} & 3.9 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$
$\overline{V_{01}}$	Output Low Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{a}}=+4.0 \mathrm{~mA} \\ & \mathrm{a}_{\mathrm{a}}=+4.0 \mathrm{~mA} \end{aligned}$
V_{01}	Output Low Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$		$\begin{gathered} \text { TBD } \\ 0.8 \end{gathered}$	0.7 0.5	V V	$\begin{aligned} & \mathrm{I}_{a}=+12 \mathrm{~mA}, \\ & 3 \text { Pin } \mathrm{Max} \\ & \mathrm{I}_{\mathrm{o}}=+12 \mathrm{~mA}, \\ & 3 \text { Pin Max } \end{aligned}$
$\overline{V_{\text {OFFSE }}}$	Comparator Input Offset Voltage	4.0 V 5.5 V		10 25	6 7	$m V$ $m V$	
$\mathrm{V}_{\text {RST }}$.	Auto Reset Voltage		1.55	2.7	2.4	V	
In	Input Leakage (Input Bias Current of Comparator)	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\mathbb{W}}=0 V, V_{c c} V_{c c} \\ & V_{W}=0 V, V_{c c} \end{aligned}$
${ }_{a}$	Output Leakage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} -1.0 \\ -1.0 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\mathbb{N}}=0 \mathrm{~V}, V_{c c} \\ & V_{\mathbb{N}}=O V, V_{c c} \end{aligned}$

Symbol	Parameter	$\mathrm{V}_{\text {c }}$	$\begin{aligned} & T_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 0+70^{\circ} \mathrm{C} \end{aligned}$		Typical @ $25^{\circ} \mathrm{C}$	Units	Conditions
			Min	Max			
$\mathrm{I}_{\text {cc }}$	Supply Current (Standard Mode)	4.0V		4.0	2.2	mA	All Output and $1 / 0$ Pins Floating @ 2 MHz
		5.5V		7.0	5.0	mA	All Output and $1 / 0$ Pins Floating @ 2 MHz
		4.0V		9.0	4.5	mA	All Output and $1 / 0$ Pins Floating @ 8 MHz
		5.5 V		11.0	8.3	mA	All Output and I/O Pins Floating @ 8 MHz
		4.0V		10	6.1	mA	All Output and $1 / 0$ Pins Floating @ 12 MHz
		5.5V		15	10.8	mA	All Output and $1 / 0$ Pins Floating @ 12 MHz
Icc	Standby Current (Standard Mode)	4.0V		2.5	0.5	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathrm{w}}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{cc}} @ 2 \mathrm{MHz} \end{aligned}$
		5.5V		4.0	1.0	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathrm{W}}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{cc}} @ 2 \mathrm{MHz} \end{aligned}$
		4.0 V		4.0	1.0	mA	$\begin{aligned} & \text { HALT Mode } V_{\text {w }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}} @ 8 \mathrm{MHz} \end{aligned}$
		5.5V		5.0	2.0	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\text {w }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {cG }} @ 8 \mathrm{MHz} \end{aligned}$
		4.0V		5.0	1.3	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathrm{w}}=\mathrm{OV} \text {, } \\ & \mathrm{V}_{\mathrm{cc}} @ 12 \mathrm{MHz}^{(1)} \end{aligned}$
		5.5 V		7.0	2.3	mA	
$\mathrm{I}_{\text {cc }}$	Supply Current (Low Noise Mode)	4.0 V		4.0	2.2	mA	All Output and $1 / 0$ Pins Floating @ 1 MHz
		5.5V		7.0	4.2	mA	All Output and $1 / 0$ Pins Floating @ 1 MHz
		4.0V		6.0	2.9	mA	All Output and $1 / 0$ Pins Floating @ 2 MHz
		5.5V		9.0	5.5	mA	All Output and $1 / 0$ Pins Floating @ 2 MHz
		4.0V		8.0	4.4	mA	All Output and $1 / 0$ Pins Floating @ 4 MHz
		5.5V		11.0	7.9	mA	All Output and $1 / 0$ Pins Floating @ 4 MHz

DC ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	V_{cc}	$\begin{aligned} & T_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		Typical @ $25^{\circ} \mathrm{C}$	Units	Conditions
			Min	Max			
$\mathrm{ICc1}$	Standby Current (Low Noise Mode)	4.0 V		1.2	0.4	mA	$\begin{aligned} & \text { HALT Mode } V_{\mathbb{N}}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{cc}} @ 1 \mathrm{MHz} \end{aligned}$
		5.5V		1.6	0.9	mA	HALT Mode $V_{\mathbb{W}}=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{cc}} @ 1 \mathrm{MHz}$
		4.0 V		1.5	0.5	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathrm{N}}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{cc}} @ 2 \mathrm{MHz} \end{aligned}$
		5.5V		1.9	1	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}} @ 2 \mathrm{MHz} \end{aligned}$
		4.0 V		2.0	0.8	mA	$\begin{aligned} & \text { HĂLT Mode } V_{\mathbb{W}}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{cc}} @ 4 \mathrm{MHz} \end{aligned}$
		5.5V		2.4	1.3	mA	$\begin{aligned} & \text { HALT Mode } V_{\mathbb{W}}=O V, \\ & V_{c c} @ 4 \mathrm{MHz} \end{aligned}$
$\mathrm{ICC2}$	Standby Current	4.0 V		10	1.0	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathrm{N}}=\mathrm{OV}$, $V_{\text {ct }}$ WDT is not Running
		5.5V		10	1.0	$\mu \mathrm{A}$	STOP Mode $V_{\mathbb{N}}=0 V$. $V_{c c}$ WDT is not Running
${ }_{\text {NLL }}$	Auto Latch Low Current	4.0V		-7.0	-3.3	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathbb{W}}<\mathrm{V}_{\text {cc }}$
		5.5 V		-7.0	-6.5	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathbb{W}}<\mathrm{V}_{\text {cc }}$
${ }_{\text {NH }}$	Auto Latch High Current	4.0V		10	-6.0	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{W}}<\mathrm{V}_{\text {cG }}$
		5.5 V		15	11.5	$\mu \mathrm{A}$	$\mathrm{OV}<\mathrm{V}_{\mathbb{W}}<\mathrm{V}_{\text {cc }}$

Notes:

[1]	Icc1	Typ	Max	Unit	Freq
	Clock Driven on Crystal	3.0	5.0	mA	8 MHz
	or XTAL Resonator	0.3	5.0	mA	8 MHz

[2] $\mathrm{V}_{\mathrm{ss}}=\mathrm{OV}=\mathrm{GND}$

AC ELECTRICAL CHARACTERISTICS

Figure 22. Electrical Timing Diagram

AC ELECTRICAL CHARACTERISTICS
Low Noise Mode

No	Symbol	Parameter	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				Units	Notes
				1 MHz		4 MHz			
				Min	Max	Min	Max		
1	TpC	Input Clock Period	4.0 V	500		125	100,000	ns	[1]
			5.5 V	500		125	100,000	ns	[1]
2	TrC,TfC	Clock Input Rise and Fall Times	4.0V		25		25	ns	[1]
			5.5V		25		25	ns	
3	TwC	Input Clock Width	4.0V	225		37		ns	[1]
			5.5 V	225		37		ns	[1]
4	TwTinL	Timer Input Low Width	4.0 V	100		100		ns	[1]
			5.5V	70		70		ns	[1]

AC ELECTRICAL CHARACTERISTICS (Continued)

Low Noise Mode

No	Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				Units	Notes
				1 MHz		4 MHz			
				Min	Max	Min	Max		
5	TwTinH	Timer Input High Width	4.0V	1.5TpC		1.5 T ¢ C			[1]
			5.5 V	1.5TpC		1.5TpC			[1]
6	TpTin	Timer Input Period	4.0 V	4TpC		4TpC			[1]
			5.5 V	4 TpC		4TpC			[1]
7	TrTin, TtTin	Timer Input Rise and Fall Timer	4.0 V		100		100	ns	[1]
			5.5 V		100		100	ns	[1]
8	TwiL	Int. Request Input Low Time	4.0V	100		100		ns	[1,2]
			5.5 V	70		70		ns	[1,2]
9	TwlH	Int. Request Input High Time	4.0 V	1.5TpC		1.5TpC			[1]
			5.5 V	1.5TpC		1.5TpC			[1,2]
10	Twdt	Watchdog Timer Delay Time	4.0 V		20		20	ms	[1]
			5.5 V		15		15	ms	[1]
11	TPOR	Power On	4.0 V		100		100	ms	[1]
		Reset Time	5.5V		90		90	ms	[1]

Notes:
[1] Timing Reference uses $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .
[2] Interrupt request via Port 3 (P31-P33)

AC ELECTRICAL CHARACTERISTICS
Standard Mode, Standard Temperature

No	Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$						Units	Notes
				$\begin{aligned} & 2 \mathrm{MHz} \\ & \mathrm{Min} \end{aligned}$	Max	$\begin{aligned} & 8 \mathrm{MHz} \\ & \mathrm{Min} \end{aligned}$	Max	$\begin{aligned} & 12 \mathrm{MHz} \\ & \text { Min } \end{aligned}$	Max		
1	TpC	Input Clock Period	4.0V	500		125	100,000	83	100,000	ns	[1]
			5.5V	500		125	100,000	83	100,000	ns	[1]
2	TrC,TiC	Clock Input Rise and Fall Times	4.0 V		25		25		15	ns	[1]
			5.5V		25		25		15	ns	
3	TwC	Input Clock Width	4.0 V	225		37		26		ns	[1]
			5.5 V	225		37		26		ns	[1]
4	TwTinL	Timer Input Low Width	4.0 V	100		100		100		ns	[1]
			5.5V	70		70		70		ns	[1]
5	TwTinH	Timer Input High Width	4.0 V	3TpC		3 Tp C		3 TpC			[1]
			5.5V	3 TpC		3 TpC		3 TpC			[1]
6	TpTin	Timer Input Period	4.0 V	8TpC		8 TpC		8 TpC			[1]
			5.5 V	87pC		8 TpC		8TpC			[1]
7	TrTin, TtTin	Timer Input Rise and Fall Timer	4.0 V		100		100		100	ns	[1]
			5.5 V		100		100		100	ns	[1]
8	TwiL	Int. Request Input Low Time	4.0 V	100		100		100		ns	[1,2]
			5.5 V	70		70		70		ns	[1,2]
9	TwIH	Int. Request Input High Time	4.0 V	3TpC		3 TpC		3 TpC			[1]
			5.5 V	3 TpC		3 TpC		3 TpC			[1,2]
10	Twdt	Watchdog Timer Delay Time	4.0 V		50		50		50	ms	[1]
			5.5 V		45		45		45	ms	[1]
11	TPOR	Power On	4.0 V		100		100		100	ms	[1]
		Reset Time	5.5V		90		90		90	ms	[1]

Notes:

[1] Timing Reference uses $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0.
[2] Interrupt request via Port 3 (P31-P33)

Z8 CONTROL REGISTER DIAGRAMS

Figure 23. Timer Mode Register (F1H: Read/Write)

R242 T1

Figure 24. Counter Timer 1 Register (F2H: Read/Write)

Figure 25. Prescaler 1 Register (F3H: Write Only)

Figrue 26. Counter/Timer 0 Register (F4H: Read/Write)

Figure 27. Prescaler 0 Register (F5H: Write Only)

Figure 28. Port 2 Mode Register (F6H: Write Only)

Figure 29. Port 3 Mode Register (F7H: Write Only)

R248 P01M

Figure 30. Port 0 and 1 Mode Register (F8H: Write Only)

Figure 31. Interrupt Priority Register (F9H: Write Only)

Figure 32. Interrupt Request Register (FAH: Read/Write)

Figure 33. Interrupt Mask Register (FBH: Read/Write)

R252 Flags

Figure 34. Flag Register (FCH: Read/Write)

R253 RP

Figure 35. Register Pointer (FDH: Read/Write)

Figure 36. Stack Pointer (FFH: Read/Write)

Figure 37. Maximum $I_{c c}$ and $I_{c c 1}$ vs Frequency in Standard Mode

Figure 38. Typical $I_{c c}$ and $I_{c c 1}$ vs Frequency in Standard Mode

Figure 39. Typical I_{cc} and I_{cc} vs Frequency in Low EMI Mode

Figure 40. Maximum I_{cc} and $\mathrm{I}_{\mathrm{cc} 1}$ vs Frequency in Low EMI Mode

Figure 41. Typical POR Time Out Period vs Temperature

Figure 42. Typical WDT Time Out Period vs Temperature

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Ir	Indirect working-register pair only X
Indexed address	
RA	Direct address
IM	Relative address
R	Immediate
register or working-register address	
IR	Working register address only Indirect-register or indirect working- Ir
register address	
Indirect working-register address only	
	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
$d s t$	Destination location or contents
src	Source location or contents
cc	Condition code
@	Indirect address prefix
SP	Stack pointer
PC	Program counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags.

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
X	Unalfected
	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000	---	Always true	---
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(S \times O R V)=1$
1010	GT	Greater than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V})$] $=0$
0010	LE	Less than or equal	$[Z \bigcirc O R(S \times O R V)]=1$
1111	UGE	Insigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0$) $=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{CORZ})=1$
0000	---	Never true	---

INSTRUCTION FORMATS

One-Byte Instructions

FFH	
6 FH	7 FH

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol "---". For example:
dst --- dst + src
indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:

$$
\operatorname{dst}(7)
$$

refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		ags fect Z		V		
ADC dst, src $\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$	\dagger	1[]	*	*	*	*		
ADD dst, src $d s t \leftarrow d s t+$ src	\dagger	O[]	*	*	*	*		*
AND dst, src dst $\leftarrow d s t$ AND src	\dagger	5[]	-	*	*	0		-
CALL dst $S P \leftarrow S P-2$ @SP $\leftarrow P C$, $\mathrm{PC} \leftarrow d \mathrm{dt}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	-	-	-	-		-
$\begin{aligned} & \overline{\mathrm{CCF}} \\ & \mathrm{C} \leftarrow \mathrm{NOT} \mathrm{C} \end{aligned}$		EF	*	-	-	-		-
CLR dst dst $\leftarrow 0$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	-	-	-	-		-
COM dst dst \leftarrow NOT dst	$\begin{aligned} & \mathrm{R} \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$			*	0		-
$\begin{aligned} & \hline \text { CP dst, src } \\ & \text { dst - src } \end{aligned}$	\dagger	A []	*	*	*	*		
DA dst dst \leftarrow DA dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	*	*	*	X		-
DEC dst dst $\leftarrow d s t-1$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$			*	*		-
DECW dst dst $\leftarrow \mathrm{dst}-1$	$\begin{aligned} & \text { RR } \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 81 \end{aligned}$			*	*	-	-
$\begin{aligned} & \hline \mathrm{DI} \\ & \operatorname{IMR}(7) \leftarrow 0 \end{aligned}$		8F	-	-	-	-	-	-
$\begin{aligned} & \hline \text { DJNZr, dst } \\ & r \leftarrow r-1 \\ & \text { if } r \neq 0 \\ & \text { PC } \leftarrow P C+d s t \\ & \text { Range: }+127 \text {, } \\ & -128 \end{aligned}$	RA	$\begin{aligned} & \mathrm{rA} \\ & \mathrm{r}=0-\mathrm{F} \end{aligned}$	-	-	-	-	-	-
$\begin{aligned} & \mathrm{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$		9 F	-	-	-	-	-	-
HALT		7F	-	-	-	-	-	-

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		Z		V		
INC dst $\mathrm{dst} \leftarrow \mathrm{dst}+1$	r R IR	IE $\mathrm{r}=0-\mathrm{F}$ 20 21	-	*	*	*	-	-
INCW dst dst $\leftarrow \mathrm{dst}+1$	$\begin{aligned} & \hline \text { RR } \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \mathrm{A} 0 \\ & \mathrm{~A} 1 \end{aligned}$	-	*	*	*	-	-
IRET FLAGS $\leftarrow @ S P$; $S P \leftarrow S P+1$ PC↔@SP; $S P \leftarrow S P+2 ;$ $\operatorname{MR}(7) \leftarrow 1$		BF	*	*	*	*	*	*
JP cc, dst if cc is true, $\mathrm{PC} \leftarrow \mathrm{dst}$	DA IRR	$\begin{aligned} & \mathrm{CD} \\ & \mathrm{C}=0-\mathrm{F} \\ & 30 \end{aligned}$	-	-	-	-	-	-
JR cc, dst if cc is true, $P C \leftarrow P C+d s t$ Range: +127 , -128	RA	$\begin{aligned} & \mathrm{CB} \\ & \mathrm{C}=0-\mathrm{F} \end{aligned}$	-	-	-	-	-	-
$\begin{aligned} & \hline \text { LD dst, src } \\ & \text { dst } \leftarrow \mathrm{Src} \end{aligned}$		$\begin{aligned} & \hline \mathrm{rC} \\ & \mathrm{r} 8 \\ & \mathrm{r9} \\ & \mathrm{r}=0-\mathrm{F} \\ & \mathrm{C7} \\ & \text { D7 } \\ & \text { E3 } \\ & \text { F3 } \\ & \text { E4 } \\ & \text { E5 } \\ & \text { E6 } \\ & \text { E7 } \\ & \text { F5 } \end{aligned}$	-	-	-	-	-	-
LDC dst, src dst - Src	r Irr	C2	-	-	-	-	-	-
$\begin{aligned} & \hline \text { LDCI dst, src } \\ & \text { dst } \leftarrow \mathrm{src} \\ & \mathrm{r} \leftarrow \mathrm{r}+1 ; \mathrm{rr} \leftarrow \mathrm{rr}+1 \end{aligned}$		C3	-	-	-	-	-	-
NOP		FF	-	-	-	-	-	-

OPCODE MAP

Lower Nibble (Hex)

0

Legend:

$\mathrm{R}=8$-bit address
$\mathrm{r}=4$-bit address
R_{1} or $\mathrm{r}_{1}=$ Dst address
R_{2} or $\mathrm{r}_{2}=$ Src address
Sequence:
Opcode, First Operand,
Second Operand
Note: Blank areas not defined.

* 2-byte instruction appears as a

3-byte instruction

PRODUCT SPECIFICATION

Z86C09/C19

CMOS Z8® 8-Bit
MICROCONTROLLER

FEATURES

- 8-bit CMOS microcontroller, 18-pin DIP
- Low cost
- 3.0 to 5.5 volt operating range
- Low power consumption-50 mW (typical)
- Fast instruction pointer, 1.0 microseconds @ 12 MHz
- Two standby modes - STOP and HALT
- 14 input/output lines (2 with Comparator inputs)
- All digital inputs areCMOSlevels and Schmitt triggered
- 2K, 4 Kbytes of ROM, Z86C09, Z86C19, respectively
- 124 bytes of RAM
- Two Expanded Register File Control Registers
- Two programmable 8-bit Counter/Timers
- 6-bit programmable prescaler
- 6vectored, priority interrupts from five different sources
- Clock speeds 8 and 12 MHz
- Brown-out protection
- Watchdog/Power-On Reset Timer
- TwoComparators with programmable interrupt polarity
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, RC, or external clock drive.

GENERAL DESCRIPTION

The Z86C09 and Z86C19 Consumer Controller Processors (ССРтм) introduce a new level of sophistication to single-chip architecture. The Z86C09 and Z86C19 are members of the $Z 8$ single-chip microcontroller family with 2 K and 4 K bytes of ROM, respectively, and 124 bytes of RAM. The devices are housed in a 18-pin DIP, and are CMOS compatible. Zilog's CMOS microcontroller offers fast execution, more efficient use of memory, more sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C09/C19 architecture is characterized by Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register mapped peripheral and I/O circuits. The CCP offers a flexible I/O scheme, and a number of ancillary features that are useful in many industrial, automotive, and advanced scientific applications.

The device applications demand powerful I/O capabilities. The CCP fulfills this with 14 pins dedicated to input and output. These lines are grouped into two ports, and are configurable under software control to provide timing, status signals, or parallel I/O.

Three basic address spaces are available to support this wide range of configurations; Program Memory, Register File, and Expanded Register File. The Register File is composed of 124 bytes of General-Purpose Registers, two I/O Port registers and fifteen Control and Status registers. The Expanded RegisterFile consists of two control registers.

To unburden the program from coping with real-time problems such as counting/timing and input/output data communication, the Z86C09/C19 offers two on-chip counter/timers with a large number of user selectable modes, and two on-board comparators that can process analog signals with a common reference voltage (Figure 1).

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

Figure 2. Pin Configuration

PIN DESCRIPTION

Table 1. Pin Identification

No	Symbol	Function	Direction
$1-4$	P24-7	Port 2 pin 4, 5, 6, 7	In/Output
5	V $_{\text {cc }}$	Power Supply	Input
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
$8-10$	P31-3	Port 3 pin 1, 2,3	Fixed Input
$11-13$	P34-6	Port 3 pin 4, 5, 6	Fixed Output
14	GND	Ground	Input
$15-18$	P20-3	Port 2 pin 0,1, 2,3	In/Output

XTAL1. Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC or RC network or an external single-phase clock to the on-chip oscillator input.

XTAL2. Crystal 2(time-based output). This pin connects a parallel-resonant crystal, ceramic resonator, LC or RC network to the on-chip oscillator output.

Port 2 P20-P27. Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These 8 I/O lines can be configured under software control to be an input or output, independently. Input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either push-pull or open drain (Figure 3).

Figure 3. Port 2 Configuration

Auto-Latch. The auto-latch puts valid CMOS levels on all CMOS inputs that are not externally driven. This will reduce excessive supply current flow in the input buffer when it is not been driven by any source.

Port 3 P31-P36. Port 3 is a 6-bit, CMOS compatible port with three fixed input and three fixed output lines. These 6 lines consist of three fixed input (P31-P33) and three fixed output port (P34-P36) lines. Pins P31,P32 and P33 are
standard CMOS inputs and pins P34,P35, and P36 are push-pull outputs. Two on-board comparators can process analog signals on P31 and P32 with reterence to the voltage on P33. The analog function is enabled by programming Port 3 Mode Register (bit 1). Pins P31 and P32 are programmable as falling, rising, or both edge triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to Counter/Timer 1 is made through P31 (Tin) and P36 (Tout), (Figure 4).

Figure 4. Port 3 Configuration

PIN DESCRIPTION (Continued)

Comparator Inputs. Port 3, Pin P31 and Pin P32 each have a comparator front end. The comparator reference voltage Pin P33 is common to both comparators. In analog mode, the P33 input functions as a reference voltage to the comparators. The internal P33 register and its corresponding IRQ1 is connected to the STOP Mode Recovery source selected by the SMR. In this mode, any of the STOP Mode

Recovery sources can be used to toggle the P33 bit or generate IRQ1. In digital mode, Pin P33 can be used as a P33 register input or IRQ1 source (Figure 13).

Auto-Latch. The auto-latch puts valid CMOS levels on all CMOS inputs that are not externally driven. This reduces excessive supply current flow in the input buffer when it is not being driven by any source.

FUNCTIONAL DESCRIPTION

The Z8CCP incorporates special functions to enhance the Z8's application in industrial, scientific research, and advanced technologies applications.

RESET. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP Mode Recovery Source

The device does not re-initialize the WDTMR, SMR, P2M, or P3M registers to their reset values on a STOP Mode Recovery operation.

Program Memory. Z86C09/C19 can address up to 2K/4K bytes of internal program memory respectively (Figure 5). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Byte 13 to byte 2048/4096 consists of on-chip mask-programmed ROM.

The $2 \mathrm{~K} / 4 \mathrm{~K}$ bytes of Program Memory is mask programmable. A ROM protect feature will prevent "dumping" of the ROM contents by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions to program memory in all modes.

Expanded Register File. The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices and input/ output ports into the register address area. The Z 8 register address space R0 through R15 is implemented as 16 groups of 16 registers per group (Figure 6). These register groups are known as the ERF (Expanded Register File). Bits 3:0 of the Register Pointer (RP) select the active ERF group. Bits 7:4 of register RP select the working register group (Figure 7). Two system configuration registers reside in the Expanded Register File address space at bank F. The rest of the Expanded Register addressing space is not physically implemented, and is open for future expansion.

Figure 5. Program Memory Map

FUNCTIONAL DESCRIPTION (Continued)
Z8 STANDARD CONTROL REGISTERS

Figure 6. Expanded Register File Architecture

Note: Default Setting After Reset $\mathbf{= 0 0 0 0 0 0 0 0}$

Figure 7. Register Pointer Register

Register File. The Register File consists of two I/O port registers, 124 general purpose registers, and 15 control
and status registers, and two system configuration registers in the Expanded Register Group (Figure 6). The instructions can access registers directly or indirectly via an 8-bit address field. This allows a short 4-bit register address using the Register Pointer (Figure 8). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Caution: D4 of Control Register P01M (R251) must be "0". If the Z86C09/19 is emulated by Z86C90, D4 of P01M has to change to " 0 " before submission to ROM code.

GPR. The Z86C09/C19 has one extra General Purpose Register located at \%FE(R254).

Figure 8. Register Pointer

FUNCTIONAL DESCRIPTION (Continued)

Stack. The Z86C09/C19 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.

Counter/Timers. There are two 8-bit programmable counter/ timers (TO-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources, however, the TO prescaler is driven by the internal clock only (Figure 9).

Figure 9. Counter/Timer Block Diagram

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt requestIRQ4 (TO) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (singlepass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and can be either the
internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or not-retriggerable, or as a gate input for the internal clock. Port 3 line P36 serves as a timer output (Tout) through which TO, T1 or the internal clock can be output. The counter/timers can be cascaded by connecting the TO output to the input of T1.

Interrupts. The Z86C09/Z86C19 has six different interrupts from five different sources. The interrupts are mask-able and prioritized (Figure 10). The five sources are divided as follows; three sources are claimed by Port 3 lines P31-P33, and two sources in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 2).

Figure 10. Interrupt Block Diagram

FUNCTIONAL DESCRIPTION (Continued)
Table 2. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ 0	IRQ 0	0,1	External (P32), $\neq \varnothing$ Edge Triggered
IRQ 1	IRQ 1	2,3	External (P33), \varnothing Edge Triggered
IRQ 2	IRQ 2, TIN	4,5	External (P31), $\neq \varnothing$ Edge Triggered
IRQ 3		6,7	Software Generated Only
IRQ 4	T0	8,9	Internal
IRQ 5	TI	10,11	Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. An interrupt machine cycle is activated when an interrupt request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All Z86C09/C19 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16 -bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs services. IRQ3has no hardware source but can be invoked by software (write to IRQ3 Register).

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQO. Interrupts IRQ2 and IRQ0 may be rising, falling, or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

The programming bits for the INTERRUPT EDGE SELECT are located in the IRQ register (R250), bits D7 and D6. The configuration is shown in Table 3.

Table 3. IRQ Register

	IRQ		Interrupt Edge	
D7		D6	P31	P32
0	0	F	F	
0		1	F	R
1		0	R	F
1	1	R/F	R/F	

Notes:

$F=$ Falling Edge
$R=$ Rising Edge
Clock. The Z86C09/C 19 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 10 KHz to 12 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal should be connected across XTAL 1 and XTAL2 using the recommended capacitors (C1 is more than or equal to 22 pf) from each pin to ground. The RC oscillator option is mask-programmable, to be selected by the customer at the time the ROM code is submitted. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL 1 to ground (Figure 11). The RC value vs Frequency curves are shown in Figure 48 and 49. (Limitation: The RC option is not avaiable in the 12 MHz part.)

C1 工 $\{_{R}=\underbrace{x t a l 1}_{x t a l 2}$

RC
@ 5V VCC (TYP)
$\mathrm{C1}=33 \mathrm{pf}$
$\mathrm{R}=1 \mathrm{~K}$
$\mathrm{F}=16 \mathrm{MHz}$

External Clock

都
Ex

Ceramic Resonator or
Crystal
$\mathrm{C} 1, \mathrm{C} 2=47 \mathrm{pf}$ TYP *
$\mathrm{F}=8 \mathrm{MHz}$

* Preliminary Value Including Pin Parasitics

$$
\begin{aligned}
& \mathrm{LC} \\
& \mathrm{C} 1, \mathrm{C} 2=22 \mathrm{pf} \\
& \mathrm{~L}=130 \mu \mathrm{H}^{*} \\
& \mathrm{~F}=3 \mathrm{MHz}^{*}
\end{aligned}
$$

Figure 11. Oscillator Configuration

Power-On Reset. A timer circuit clocked by a dedicated on-board RC oscillator or by the XTAL oscillator is used for the Power-On Reset (POR) timer function. The POR time allows Vcc and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of the three conditions:

1. Power fail to Power OK status
2. STOP mode recovery (If $D 5$ of $S M R=1$)
3. WDT timeout

The POR time is a nominal 5 mS . Bit 5 of the Stop Mode Register determines whether the POR timer is bypassed after STOP mode recovery (typical for external clock, and RC/LC oscillators with fast start up time).

HALT. Will turn off the internal CPU clock but not the XTAL oscillation. The counter/timers and external interrupt IRQ0, IRQ1, and IRQ2 remain active. The device is recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamps or less. The Stop mode is terminated by a RESET only, either by WDT timeout, POR, or SMR recovery. This causes the processor to restart the application program at address 000 C (HEX).

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=FFH) immediately before the appropriate sleep instruction, i.e.:

FF NOP; clear the pipeline
6F STOP; enter STOP mode
or
FF NOP; clear the pipeline
7F HALT; enter HALT mode
Stop Mode Register (SMR). This register selects the clock divide value and determines the mode of STOP mode recovery (Figure 12). All bits are write only except Bit 7 which is Read only. Bit 7 is a flag bit that is hardware set on the condition of a STOP recovery and reset by a power-on cycle. Bit 6 controls whether a low level or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2,3 , and 4 of the SMR specify the source of the STOP mode recovery signal. If the XTAL 1 is used as a source to drive the POR counter, then the STOP Mode Recovery time is XTAL/512. The SMR is located in bank F of the Expanded Register Group at address OBH.

FUNCTIONAL DESCRIPTION (Continued)

* Default setting after RESET

Figure 12. STOP Mode Recovery Register

SCLK/TCLK divide-by-16 select (D0). D0 of the SMR controls a divide-by- 16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources the counter/ timers and interrupt logic).

STOP Mode Recovery Source (D2, D3, and D4). These 3 bits of the SMR specify the wake-up source of the STOP Mode recovery (Figure 13 and Table 4).

Table 4. Stop Mode Recovery Source

D4	SMR D3	D2	Operation Description of action
0	0	0	POR recovery only
0	0	1	POR recovery only
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of Port 2 bits $0: 3$
1	1	1	Logical NOR of Port 2 bits 0:7

P31-P33 can not wake up from STOP mode if the input lines are configured as analog input.

STOP Mode Recovery Delay Select (D5). This bit disables the 5 mS RESET delay after STOP Mode Recovery. The default condition of this bit is 1 .

STOP Mode Recovery Level Select (D6). A 1 in this bit position indicates that a high level on any one of the recovery sources wakes the device from STOP mode. A 0 indicates low level recovery. The default is 0 on POR. (See Figure 13).

Figure 13. STOP Mode Recovery Source

Cold or Warm Start (D7). This bit is set by the device upon entering STOP mode. It is active high, and is 0 (cold) on POR/WDT RESET. This bit is a READ only. It is used to distinguish between cold or warm start.

Watch Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that will reset the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and retriggered on subsequent executions of the WDT instruction. The timer circuit is driven by an on-board RC oscillator or external XTAL1 pin.

The POR clock source is selected with bit 4 of the WDT register. Bit 0and 1 control a tap circuit that determines the timeout period. Bit 2 determines whether the WDT is active during HALT and Bit 3 determines WDT activity during STOP. Bits 5 through Bit 7 are reserved (Figure 14). This register is accessible only during the first 64 processor cycles ($128 \times$ TAL clocks) from the execution of the first instruction after Power-On-Reset, Watch Dog Reset or a Stop Mode Recovery (Figure 15). After this point, the register cannot be modified by any means, intentional or
otherwise. The WDTMR cannot be read and is located in bank F of the Expanded Register Group at address location OFH. It is organized as follows:

* Default setting after RESET

Figure 14. Watchdog Timer Mode Register

FUNCTIONAL DESCRIPTION (Continued)

Figure 15. Resets and WDT

WDT Time Select (D1, D0). Selects the WDT time period. It is configured as shown in Table 5.

Table 5. WDT Time Select

D1	D0	Timeout Period (On-board RC) Clock Source	XTAL1 Clock Source
0	0	5 mS min	XTAL $1 / 512$
0	1	15 mS min	XTAL $1 / 1024$
1	0	25 mS min	XTAL $1 / 2048$
1	1	100 mS min	XTAL $1 / 8192$

Notes:

The default on a WDT initiated RESET is 15 mS .
See Figures 44 to 47 for details.

WDT During HALT (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1 .

WDT During STOP (D3). This bit determines whether or not the WDT is active during STOP mode. Since XTAL clock is stopped during STOP mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1 .

On-Board Power-On-Reset RC or External XTAL1 Oscillator Select (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 , which selects the RC oscillator.
$V_{c c}$ Voltage Comparator. An on-board Voltage Comparator checks that $\mathrm{V}_{c c}$ is at the required level to ensure correct operation of the device. Reset is globally driven if V_{cc} is below the specified voltage (typically 2.1V).

Brown Out Protection (V_{BO}). The brown out trip voltage (V_{BO}) will be less than 3 volts and above 1.4 volts under the following conditions.

Maximum $\left(V_{\mathrm{BO}}\right)$ Conditions:
Case $1 T_{A}=-40,+105^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 1 MHz

Case $2 T_{A}=-40,+85^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 2 MHz

Note:

The internal clock frequency is one half the external clock frequency.

The device will function normally at or above 3.0V under all conditions. Below 3.0V, the device will function normally until the Brown Out Protection trip point $\left(V_{B O}\right)$ is reached, for the temperatures and operating frequencies in case 1 and case 2 above. The device is guaranteed to function normally at supply voltages above the brown out trip point. The actual brown out trip point is a function of temperalure and process parameters (Figure 16).

ROM Protect. ROM protect is mask-programmable. It is selected by the customer at the time the ROM code is submitted. The selection of ROM protect will disable the LDC and LDCI instructions.

* Power-on Reset threshold for V_{CC} and $4 \mathrm{MHz} \mathrm{V}_{\mathrm{BO}}$ overlap

Figure 16. Typical $\mathrm{Z86C19} \mathrm{~V}_{\text {во }}$ Voltage Vs Temperature

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage *	-0.3	+7.0	V
TSTG $^{\text {SSTorage Temp }}$	Sto	-65	+150	C
T_{A}	Oper Ambient Temp	\dagger		C

Notes:

* Voltage on all pins with respect to GND.
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Figure 17).

Figure 17. Test Load Configuration

DC ELECTRICAL CHARACTERISTICS

Z86C09/C19

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { Note [3] } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to } 105^{\circ} \mathrm{C} \end{gathered}$		Typical (a) $25^{\circ} \mathrm{C}$	Units	Conditions	Notes
			Min	Max	Min	Max				
	Max Input Voltage	3.3 V		12		12		V	${ }_{1 / 1} \leq 250 \mu \mathrm{~A}$	
		5.0V		12		12		V	${ }_{1 / \mathrm{W}} \leq 250 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {ch }}$	Clock Input High Voltage	3.3 V	$0.9 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\mathrm{cc}}+0.3$	$0.9 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\mathrm{cc}}+0.3$	2.4	V	Driven by External Clock Generator	
		5.0V	$0.9 \mathrm{~V}_{\text {cc }}$	$\mathrm{Vcc}_{\text {cc }}+0.3$	$0.9 \mathrm{~V}_{\text {cc }}$	$\mathrm{Vcc}_{\text {cc }}+0.3$	3.9	V	Driven by External Clock Generator	
$\overline{\mathrm{Va}}$	Clock Input Low Voltage	3.3 V	$\mathrm{V}_{\mathrm{ss}}-0.3$	$0.2 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{ss}}-0.3$	$0.2 \mathrm{~V}_{\mathrm{cc}}$	1.6	V	Driven by External Clock Generator	
		5.0 V	$\mathrm{V}_{\mathrm{ss}}-0.3$	$0.2 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{ss}}-0.3$	$0.2 \mathrm{~V}_{\mathrm{cc}}$	2.7	V	Driven by External Clock Generator	
$V_{\text {H }}$	Input High Voltage	3.3 V	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}+0.3$	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}+0.3$	1.8	V		
		5.0 V	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\text {cc }}+0.3$	$0.7 \mathrm{~V}_{\text {cc }}$	$V_{\text {cc }}+0.3$	2.8	V		
$\overline{\mathrm{V}}$	Input Low Voltage	3.3 V	$\mathrm{V}_{\mathrm{ss}}-0.3$	$0.2 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\mathrm{ss}}-0.3$	0.2 Vcc	1.0	V		
		5.0 V	$\mathrm{V}_{\mathrm{ss}}-0.3$	$0.2 \mathrm{~V}_{\text {cc }}$	$V_{\text {SS }} 0.3$	$0.2 \mathrm{~V}_{\mathrm{cc}}$	1.5	V		
$\mathrm{V}_{\text {OH }}$	Output High Voltage	3.3 V	$\mathrm{V}_{\mathrm{cc}}-0.4$		$\mathrm{V}_{\text {cc }}-0.4$		3.1	V	$\mathrm{I}_{\text {oth }}=-2.0 \mathrm{~mA}$	
		5.0 V	$\mathrm{Vcc}_{\mathrm{cc}}-0.4$		$\mathrm{Vcc}_{\mathrm{cc}}-0.4$		4.8	V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	
$V_{a} 1$	Output Low Voltage	3.3 V		0.8		0.8	0.2	V	$\mathrm{I}_{\mathrm{aL}}=+4.0 \mathrm{~mA}$	
		5.0 V		0.4		0.4	0.1	V	$\mathrm{I}_{\mathrm{a}}=+4.0 \mathrm{~mA}$	
$\overline{V_{0}{ }^{2}}$	Output Low Voltage	3.3 V		1.0		1.0	0.4	V	$\begin{aligned} & \mathrm{I}_{01}=6 \mathrm{~mA}, \\ & 3 \mathrm{Pin} \mathrm{Max} \end{aligned}$	
		5.0V		1.0		1.0	0.5	v	$\begin{aligned} & \mathrm{I}_{o}=+12 \mathrm{~mA}, \\ & \text { 3 Pin Max } \end{aligned}$	
$\overline{V_{\text {Offse }}}$	Comparator Input	3.3 V		25		25	10	mV		
	Offset Voltage	5.0 V		25		25	10	mV		
In	Input Leakage (Input bias current of comparator)	3.3 V	-1.0	1.0	-1.0	1.0		$\mu \mathrm{A}$		
		5.0V	-1.0	1.0	-1.0	1.0		$\mu \mathrm{A}$	$V_{\mathbb{N}}^{N}=O V, V_{c c}^{c l}$	
${ }_{\text {a }}$	Output Leakage	3.3 V	-1.0	1.0	-1.0	1.0		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$	
		5.0 V	-1.0	1.0	-1.0	1.0		$\mu \mathrm{A}$	$V_{\text {WN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$	
$\mathrm{I}_{\text {cc }}$	Supply Current	3.3 V		,		6	3.0	mA	@ 8 MHz	[4,5]
		5.0V		11.0		11.0	6.0	mA	(1)8MHz	[4,5]
		3.3 V		8.0		8.0	4.5	mA	@ 12 MHz	[4,5]
		5.0 V		15		15	9.0	mA	(1) 12 MHz	[4,5]

DC ELECTRICAL CHARACTERISTICS (Continued)
Z86C09/C19

Symbol	Parameter	$V_{c c}$ Note [3]	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & T_{A}=-40^{\circ} \mathrm{C} \\ & \text { to } 1055^{\circ} \mathrm{C} \end{aligned}$		Typical © $25^{\circ} \mathrm{C}$	Units	Conditions	Notes
			Min	Max	Min	Max				
Icc 1	Standby Current	3.3 V		3.0		3.0	1.3	mA	$\begin{aligned} & \text { HALT Mode } V_{\mathrm{m}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}} @ 8 \mathrm{MHZ} \end{aligned}$	[4,5]
		5.0 V		5		5	3.0	mA	$\begin{aligned} & \text { HALT Mode } V_{\mathrm{w}}=0 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{cc}} \text { © } 8 \mathrm{MHz} \end{aligned}$	[4, 5]
		3.3 V		4.5		4.5	2.0	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}} \text { @ } 12 \mathrm{MHz} \end{aligned}$	[4,5]
		5.0 V		7.0		7.0	4.0	mA	$\begin{aligned} & \text { HALT Mode } \mathrm{V}_{\mathrm{w}}=0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{cc}} @ 1212 \mathrm{MHz} \end{aligned}$	[4,5]
		3.3 V		1.4		1.4	0.7	mA	Clock Divide by 16 © 8 MHz	[4,5]
		5.0 V		3.5		3.5	2.0	mA	Clock Divide by 16 (a) 8 MHz	$[4,5]$
		3.3 V		2.0		2.0	1.0	mA	Clock Divide by 16 (a) 12 MHz	[4, 5]
		5.0 V		4.5		4.5	2.5	mA	Clock Divide by 16 (a) 12 MHz	$[4,5]$
$\overline{\mathrm{ccc}^{2}}$	Standby Current	3.3 V		10		20	1.0	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathbb{I}}=\mathrm{OV}$, $V_{\text {cc }}$ WDT is not Running	[6]
		5.0 V		10		20	3.0	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}$, V_{cc} WDT is not Running	[6]
		3.3 V					TBD	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathrm{N}}=\mathrm{OV}$, V_{cc} WDT is Rumning	[6]
		5.0V		TBD		TBD	200	$\mu \mathrm{A}$	$\begin{aligned} & \text { STOP Mode } \mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}} \text { WDT is Running } \end{aligned}$	[6]
$\overline{I_{N L}}$	Auto Latch Low Current	3.3 V		7.0		14.0	4.0	$\mu \mathrm{A}$	$\mathrm{OV}<\mathrm{V}_{\mathbb{W}}<\mathrm{V}_{\text {cc }}$	
		5.0 V		20.0		30.0	10	$\mu \mathrm{A}$	$\mathrm{OV}<\mathrm{V}_{\mathbb{W}}<\mathrm{V}_{\text {cc }}$	
I_{NH}	Auto Latch High Current	$3.3 \mathrm{~V}$		-4.0		-8.0	-2.0	$\mu \mathrm{A}$		
		$5.0 \mathrm{~V}$		-9.0		-16.0	-5.0	$\mu \mathrm{A}$	$0 V<V_{W}^{\prime \prime}<V_{c c}$	
$\mathrm{T}_{\text {Por }}$	Power On Reset	3.3 V	7	24	6	25	13	mS		
		5.0 V	3	13	2	14	7	mS		
$\overline{V_{\text {в }}}$	$\begin{aligned} & V_{\text {ci }} \text { Brown Out } \\ & \text { Vollage } \end{aligned}$		1.50	2.65	1.2	2.95	2.1	V	2 MHz max Ext. CLK Freq	[3]

Notes:

[1] ${ }_{\text {cc }}{ }^{\text {1 }}$	Type	Max	Unit	Freq
Clock Driven on Crystal	3.0	5.0	mA	8 MHz
or XTAL Resonator	0.3	50	mA	8 MHz

[2] $\mathrm{V}_{\mathrm{ss}}=\mathrm{OV}=\mathrm{GND}$
[3] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$. The V_{Bo} increases as the temperature decreases.
[4] All outputs unloaded, I / O pins floating, inputs at rail.
[5] $\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{12}=100 \mathrm{pt}$
[6] Same as note [4] except inputs at $V_{c c}$.

AC ELECTRICAL CHARACTERISTICS

Source

Figure 18. Additional Timing

AC ELECTRICAL CHARACTERISTICS
Z86C09/C19

No	Symbol	Parameter	$\begin{aligned} & V_{c c} \\ & \text { Note[3] } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { TO } 70^{\circ} \mathrm{C} \\ & 8 \mathrm{MHz} \quad 12 \mathrm{MHz} \end{aligned}$				$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { T0 } & 105^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} & 12 \mathrm{MHz} \end{array}$				Units Notes	
				Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	3.3 V	125	100,000	83	100,000	125	100,000	83	100,000	ns	[1]
			5.0 V	125	100,000	83	100,000	125	100,000	83	100,000	ns	[1]
2	TrC,TfC	Clock Input Rise and Fall Times	3.3 V		25		15		25		15	ns	[1]
			5.0 V		25		15		25		15	ns	[1]
3	TwC	Input Clock Width	3.3 V	37		26		37		26		ns	[1]
			5.0 V	37		26		37		26		ns	[1]
4	TwTinL	Timer Input Low Width	3.3 V	100		100		100		100		ns	[1]
			5.0 V	70		70		70		70		ns	[1]
5	TwTinH	Timer Input High Widh	3.3 V	3 Tp C		3 TpC		3TpC		3 TpC			[1]
			5.0 V	3 TpC		3 TpC		3TpC		3 TpC			[1]

AC ELECTRICAL CHARACTERISTICS (Continued)

Z86C09/C19

No	Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { Note[3] } \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { TO } 70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} \\ 12 \mathrm{MHz} \end{gathered}$				$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { T0 } & 105^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} & 12 \mathrm{MHz} \end{array}$				Units Notes	
				Min	Max	Min	Max	Min	Max	Min	Max		
6	TpTin	Timer Input Period	3.3 V	8 TpC		8TpC		8 TpC		8TpC			[1]
			5.0 V	8TpC		8TpC		8TpC		8TpC			[1]
7	TrTin, Titin	Timer Input Rise and Fall Timer	3.3 V		100		100		100		100	ns	[1]
			5.0 V		100		100		100		100	ns	[1]
8	Twil	Int. Request Input Low Time	3.3 V	100		100		100		100		ns	[1,2]
			5.0 V	70		70		70		70		ns	[1,2]
9	TwlH	Int. Request Input High Time	3.3 V	3 TpC		3 TpC		3 TpC		3 TpC			[1,2]
			5.0 V	3 TpC		3 TpC		3 TpC		3 TpC			[1,2]
10	Twsm	STOP Mode Recovery Width Spec	3.3 V	12		12		12		12		ns	
			5.0V	12		12		12		12		ns	
11	Tost	Oscillator Startup Time	3.3 V		5TpC		5TpC		5 TpC		5 TpC		$\begin{aligned} & \text { Reg. } \\ & \text { [4] } \end{aligned}$
			5.0 V		5 TpC		5TpC		5 TpC		5 TpC	ns	
	Twdt	Watchdog Timer Refresh Time	3.3 V	15		15		12		12			[5]
			5.0V	5		5		3		3		ms	$\begin{aligned} & \mathrm{D} 0=0 \\ & \mathrm{D} 1=0 \end{aligned}$
			3.3 V	30		30		25		25		ms	D0 $=0$
			5.0 V	16		16		12		12		ms	D1 $=1$
			3.3 V	60		60		50		50		ms	D $0=0$
			5.0 V	25		25		30		30		ms	D1 $=1$
			3.3 V	250		250		200		200		ms	$\mathrm{D} 0=1$
			5.0 V	120		120		100		100		ms	D1 $=1$

Notes:
[1] Timing Reference uses $0.9 \mathrm{~V}_{c c}$ for a logic "1" and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic " 0 ".
[2] Interrupt request via Port 3 (P31-P33)
[3] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
[4] SMR-D5 = 0
[5] Reg. WDTMR

EXPANDED REGISTER FILE CONTROL REGISTERS

Figure 20. Watchdog Timer Mode Register

Figure 19. STOP Mode Recovery Register

Z8 CONTROL REGISTER DIAGRAMS

Figure 21. Reserved

Figure 22. Timer Mode Register

[^2]
Z8 CONTROL REGISTER DIAGRAMS (Continued)

R242 T1

Figure 23. Counter Timer 1 Register (F2H: Read/Write)

R243 PRE1

Figure 24. Prescaler 1 Register (F3H: Write Only)

Figure 25. Counter/Timer 0 Register (F4H: Read/Write)

Figure 26. Prescaler 0 Register (F5H: Write Only)

R246 P2M

Figure 27. Port 2 Mode Register
(F6H: Write Only)

Figure 28. Port 3 Mode Register
(F7H: Write Only)

Figure 29. Port 0 and 1 Mode Register

R249 IPR

Figure 30. Interrupt Priority Register (F9H: Write Only)

R250 IRQ

R252 Flags

- User Flag F2

Half Carry Flag
Decimal Adjust Flag

Figure 31. Interrupt Req Register
(FAH: Read/Write)

Figure 34. Register Pointer (FDH: Read/Write)
R254 GPR

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

Figure 35. General Purpose Register (FEH: Read/Write)

R255 SPL

Figure 36. Stack Pointer
(FFH: Read/Write)

Figure 32. Interrupt Mask Register
(FBH: Read/Write)

DEVICE CHARACTERISTICS

Graphs Illustrate Device Characteristics

Figure 37. Maximum I_{cc} Vs Frequency

Figure 38. Typical I_{cc} Vs Frequency

Legend:
$\mathrm{A}=\mathrm{Vil}$ at $\mathrm{Vcc}=3.3 \mathrm{~V}$
$\mathrm{B}=\mathrm{Vil}$ at $\mathrm{Vcc}=5.5 \mathrm{~V}$
$\mathrm{C}=\mathrm{Vol}$ at $\mathrm{Vcc}=3.0 \mathrm{~V}$
$\mathrm{D}=$ Voil at $\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 39. Typical $\mathrm{V}_{\mathrm{oL}}, \mathrm{V}_{\mathrm{IL}}$ Vs Temperature

DEVICE CHARACTERISTICS (Continued)
Graphs Illustrate Device Characteristics

Figure 40. Typical $\mathrm{V}_{\mathrm{OH}}, \mathbf{V}_{\mathbf{I H}}$ Vs Temperature

Figure 41. Typical $\mathrm{V}_{\mathrm{OH}} \mathrm{Vs}_{\mathrm{I}} \mathrm{OH}$ Over Temperature

DEVICE CHARACTERISTICS (Continued)
Graphs Illustrate Device Characteristics

Legend:		
$A=-55^{\circ} \mathrm{C}$		$\mathrm{Vcc}=5.5 \mathrm{~V}$
$B=25^{\circ} \mathrm{C}$		$\mathrm{Vcc}=3.0 \mathrm{~V}$
$\mathrm{C}=125^{\circ} \mathrm{C}$		
$\mathrm{D}=-55^{\circ} \mathrm{C}$		
$\mathrm{E}=25^{\circ} \mathrm{C}$		
$\mathrm{F}=125^{\circ} \mathrm{C}$		

Figure 42. Typical $\mathrm{I}_{\mathrm{oL}} \mathrm{Vs}_{\mathrm{S}} \mathrm{V}_{\mathrm{oL}}$ Over Temperature

Figure 43. Typical Power-On Reset Time Vs Temperature

DEVICE CHARACTERISTICS (Continued)
Graphs Illustrate Device Characteristics

Legend:	
$\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=3.5 \mathrm{~V}$	$\mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=4.0 \mathrm{~V}$	$\mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 44. Typical 5 ms WDT Setting Vs Temperature

Figure 45. Typical 15 ms WDT Setting Vs Temperature

DEVICE CHARACTERISTICS (Continued)
Graphs Illustrate Device Characteristics

Figure 46. Typical 25 ms WDT Setting Vs Temperature

Figure 47. Typical 100 ms WDT Setting Vs Temperature

DEVICE CHARACTERISTICS (Continued)
Graphs Illustrate Device Characteristics

Note: This chart for reference only. Each process will have a different characteristc curve.
Figure 48. Typical Frequency Vs RC Resistance

Figure 49. Typical RC Resistance/Capacitance Vs Frequency

DEVICE CHARACTERISTICS (Continued)
Graphs Illustrate Device Characteristics

Figure 50. Auto Latch Characteristic

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
RA	Direct address
IM	Relative address
R	Immediate
r	Register or working-register address
IR	Working-register address only
Ir	Indirect-register or indirect
working-register address	
RR	Indirect working-register address only Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cC	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flages are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
x	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S \times O R V)=0$
0001	LT	Less than	$(S X O R V)=1$
1010	GT	Greater Than	$[Z O R(S \times O R V)]=0$
0010	LE	Less Than or Equal	$[Z O R(S \times O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

FFH	
6 FH	7 FH

STOP/HALT

Two-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		ags ffec Z		V	D	H
ADC dst, src dst $\leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$	\dagger	1[]	*	*	*	*	0	*
ADD dst, src dst \leftarrow dst + src	\dagger	O[]	*	*	*	*	0	*
AND dst, src dst \leftarrow dst AND src	\dagger	5[]	-	*	*	0	-	
CALL dst $S P \leftarrow S P-2$ @SP↔PC, $\mathrm{PC} \leftarrow$ dst	DA IRR	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	-	-	-	-	-	-
$\begin{aligned} & \hline \text { CCF } \\ & \text { C } \leftarrow \text { NOT C } \end{aligned}$		EF	*	-	-	-	-	
CLR dst dst $\leftarrow 0$	$\begin{aligned} & \hline R \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { Bo } \\ & \text { B1 } \end{aligned}$	-	-	-	-	-	-
COM dst dst \leftarrow NOT dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-	*	*	0	-	-
CP dst, src dst - sre	\dagger	A[]	*	*	*	*	-	
DA dst dst \leftarrow DA dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	*	*	*	X	-	
DEC dst dst \leftarrow dst - 1	$\begin{aligned} & \hline R \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	-	*	*	*	-	
DECW dst dst \leftarrow dst - 1	$\begin{aligned} & \text { RR } \\ & \mathbf{I R} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-	*	*	*	-	
DI $\operatorname{IMR}(7) \leftarrow 0$		8F	-	-	-	-	-	-
$\begin{aligned} & \text { DJNZr, dst } \\ & \mathrm{r} \leftarrow \mathrm{r}-1 \\ & \text { if } \mathrm{r} \neq 0 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst} \\ & \text { Range: }+127 \text {, } \\ & -128 \end{aligned}$	RA	$\begin{aligned} & r A \\ & r=0-F \end{aligned}$	-	-	-	-	-	
$\begin{aligned} & \operatorname{El} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$		9F	-	-	-	-	-	
HALT		7F	-	-	-	-	-	

INSTRUCTION SUMMARY (Continued)

OPCODE MAP

CMOS Z8 ONE-TIME-PROGRAMMABLE MICROCONTROLLER Z86E19

GENERAL DESCRIPTION

The Z86E19 is a member of the $Z 8$ single-chip one-time-programmable microcontroller family. The device is housed in an18-pin DIP. Zilog's CMOS microcontroller offers fast execution, efficient use of memory, sophisticated interrupts, bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86E19 architecture is based on Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register mapped peripheral and I/O circuits. The CCP offers a flexible I/O scheme and a number of ancillary features that are useful in many consumer, industrial and automotive applications.

With powerful peripheral features such as on-board comparators, counter/timers, watch dog timer, and serial peripheral interface, the Z86E19 meets the needs of most sophisticated controller applications.

FEATURES

- 8-bit CMOS microcontroller, 18-pin DIP
- Emulates the Z86C06/09/19
- Serial peripheral interface with compare feature
- Clock speeds 8 , and 12 MHz
- "Brown-Out" protection
- Watchdog/Power-On Reset Timer
- Two Comparators with programmable interrupt polarity
- Six vectored, priority interrupts from six different sources

Z86C11
 CMOS Z8 ${ }^{\text {® }}$
 MICROCONTROLLER

FEATURES

- 8-bit CMOS microcontroller, 40- or 44-pin package
- 4.5 to 5.5 Voltage operating range
- Low power Consumption - $220 \mathrm{~mW}(\max)$ @ 16 MHz
- Fast instruction pointer-1.0 microseconds @ 12 MHz
- Two standby modes - STOP and HALT
- 32 input/output lines
- Full-Duplex UART
- All digital inputs are TTL levels
- Auto Latches
- RAM and ROM protect
- Low EMI option
- 4 Kbytes of ROM
- 236 bytes of RAM
- Two programmable 8-bit Counter/Timers each with 6-bit programmable prescaler.
- Six vectored, priority interrupts from eight different sources
- Clock speeds 12 and 16 MHz
- On-Chip oscillator that accepts a crystal, ceramic resonator, LC or external clock drive.

GENERAL DESCRIPTION

The Z86C11 microcontroller (MCU) introduces a new level of sophistication to single-chip architecture. The Z86C11 is a member of the $Z 8$ single-chip microcontroller family with 4 Kbytes of ROM and 236 bytes of RAM.

The MCU is housed in a 40-pin DIP, 44-pin Leaded ChipCarrier, or a 44-pin Quad Flat Pack, and is manufactured in CMOS technology. The ROMless pin option is available on the 44-pin versions only. Having the ROM/ROMless selectivity, the MCU offers both external memory and preprogrammed ROM. This enables the Z8 microcontroller to be used in high volume applications or where code flexibility is required.

Zilog's CMOS microcontroller offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C11 architecture is characterized by Zilog's 8-bit microcontroller core. The device offers a flexible I/O scheme, an efficient register and address space structure. multiplexed capabilities between address/data, I/O, and a number of ancillary features that are useful in many industrial and advanced scientific applications.

The device applications demand powerful I/O capabilities. The Z86C11 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports. Each port consists of eight-lines, and is configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

There are three basic address spaces available to support this wide range of configuration: Program Memory, Data Memory and 236 General-Purpose Registers.

GENERAL DESCRIPTION (Continued)

To unburden the program from coping with the real-time problems such as counting/timing and serial data communication, the Z86C11 offers two on-chip counter/timers with a large number of user selectable modes, and an asynchronous receiver/transmitter (UART - Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 40-Pin Plastic Dual In-Line Pin Assignments

Table 1. 40-Pin Plastic Dual In-Line Pin Identification

Pin \#	Symbol	Function	Direction
1	V $_{\text {cC }}$	Power Supply	Input
2	XTAL2	Crystal, Oscillator Clock	Output
3	XTAL1	Crystal, Oscillator Clock	Input
4	P37	Port 3 pin 7	Output
5	P30	Port 3 pin 0	Input
6	IRESET	Reset	Input
7	R/W	Read/Write	Output
8	IDS	Data Strobe	Output
9	IAS	Address Strobe	Output
10	P35	Port 3 pin 5	Output

Pin \#	Symbol	Function	Direction
11	GND	Ground	Input
12	P32	Port 3pin 2	Input
13-20	P00-P07	Port 0 pin 0, 1,2,3,4,5,6,7	In/Outpul
21-28	P10-P17	Port 1 pin 0, 1,2,3,4,5,6,7	In/Output
29	P34	Port 3 pin 4	Output
30	P33	Port 3 pin 3	Input
31-38	P20-P27	Port 2 pin 0, 1,2,3,4,5,6,7	In/Output
39	P31	Port 3 pin 1	Input
40	P36	Port 3 pin 6	Output

PIN DESCRIPTION (Continued)

Figure 3. 44-Pin Plastic Leaded Chip Carrier Pin Assignments

Table 2. 44-Pin Plastic Leaded Chip Carrier Pin Identification

Pin \#	Symbol	Function	Direction
1	V $_{\text {cc }}$	Power Supply	Input
2	XTAL2	Crystal, Oscillator Clock	Output
3	XTAL1	Crystal, Oscillator Clock	Input
4	P37	Port 3 pin 7	Output
5	P30	Port 3 pin 0	Input
6	N/C	Not Connected	Input
7	IRESET	Reset	Input
8	R/W	Read/Write	Output
9	/DS	Data Strobe	Output
10	IAS	Address Strobe	Output
11	P35	Port 3 pin 5	Output
12	GND	Ground, GND	Input
13	P32	Port 3 pin 2	Input

Pin \#	Symbol	Function	Direction
14-16	POO-P02	Port 0 pin 0,1,2	In/Output
17	R///R	ROM/ROMless control	Input
$18-22$	PO3-P07	Port 0 pin 3,4,5,6,7	In/Oulput
$23-27$	P10-P14	Port 1 pin 0,1,2,3,4	In/Output
28	N/C	Not Connected	Input
$29-31$	P15-P17	Port 1 pin 5,6,7	In/Output
32	P34	Port 3 pin 4	Output
33	P33	Port 3 pin 3	Input
$34-38$	P20-P24	Port 2 pin 0,1,2,3,4	In/Output
39	N/C	Not Connected	Input
$40-42$	P25-P27	Port 2 pin 5,6,7	In/Oulput
43	P31	Port 3 pin 1	Input
44	P36	Port 3 pin 6	Output

Figure 4. 44-Pin Quad Flat Pack Pin Assignments

Table 3. 44-Pin Quad Flat Pack Pin Identification

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1-5	P03-P07	Port 0 pin 3,4,5,6,7	In/Output	31	XTAL1	Crystal, Oscillator Clock	Input
6	GND	Ground	Input	32	P37	Port 3 pin 7	Output
7-14	P10-P17	Port 1 pin 0, 1, 2, 3, 4, 5,6,7	In/Output	33	P30	Port 3 pin 0	Input
15	P34	Port 3 pin 4	Output	34	/RESET	Reset	Input
16	P33	Port 3 pin 3	Input	35	R//W	Read/Write	Output
17-21	P20-P24	Port 2 pin 0, 1,2,3,4	In/Output	36	/DS	Data Strobe	Output
22	GND	Ground	Input	37	/AS	Address Strobe	Output
23-25	P25-P27	Port 2 pin 5,6,7	In/Output	38	P35	Port 3 pin 5	Output
26	P31	Port 3 pin 1	Input	39	GND	Ground	Input
27	P36	Port 3 pin 6	Output	40	P32	Port 3 pin 2	Input
28	GND	Ground	Input	41-43	P00-P02	Port 0 pin 0,1,2	In/Output
29	$V_{\text {cc }}$	Power Supply	Input	44	R//RL	ROM/ROMless control	Input
30	XTAL2	Crystal, Oscillator Clock	Output				

PIN FUNCTIONS

/ROMless. (input, active Low). This pin when connected to GND disables the internal ROM and forces the device to function as a Z86C91 ROMless Z8. (Note that, when left unconnected or pulled high to V_{c}, the part functions as a normal Z86C11 ROM version). This pin is only available on the 44-pin versions of the Z86C11.
/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-based input and output, respectively). These pins connect a parallelresonant crystal, ceramic resonator, LC, or any external single-phase clock to the on-chip oscillator and buffer.

R//W. (output, write Low). The Read/Write signal is low when the MCU is writing to the external program or data memory.
/RESET. (input, active-Low). To avoid asynchronous and noisy reset problems, the $Z 86 C 11$ is equipped with a reset filter of four external clocks ($4 T p C$). If the external /RESET signal is less than 4TpC in duration, no reset occurs. On the 5th clock after the /RESET is detected, an internal RST
signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is held active low while /AS cycles at a rate of TpC/2. When /RESET is deactivated, program execution begins at location 000C (HEX). Power-up reset time must be held low for 50 mS , or until VCC is stable, whichever is longer.

Port 0. (POO-P07). Port 0 is an 8-bit, nibble programmable, bidirectional, TTL compatible port. These eight I/O lines can be configured under software control as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAVO and RDYO (Data available and Ready). Handshake signal assignment is dictated by the I/O direction of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble to be under handshake control. For the ROMless option, Port 0 comes up as A15-A8 Address lines after /RESET.

For external memory references, Port0 can provide address bit A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. In ROMless mode, after a hardware reset, Port 0 lines are defined as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine includes reconfiguration to eliminate this extended timing mode (Figure 5).

Figure 5. Port 0 Configuration

PIN FUNCTION (Continued)

Port 1. (P10-P17). Port 1 is an 8-bit, byte programmable, bidirectional, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports. For Z86C11, these eight I/O lines can be programmed as Input or Output lines or can be configured under software control as an address/ data port for interfacing external memory. When used as an I/O port, Port 1 is placed under handshake control. In this configuration, Port 3 lines P33 and P34 are used as the handshake controls RDY1 and /DAV1.

Memory locations greater than 4096 are referenced through Port 1. Tointerface externalmemory, Port 1 is programmed
for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in high-impedance state along with Port 0, /AS, /DS and R//W, allowing the MCU to share common resource in multiprocessor and DMA applications. Data transfers can be controlled by assigning P33 as a Bus Acknowledge input, and P34 as a Bus request output (Figure 6).

Figure 6. Port 1 Configuration

Port 2. (P20-P27). Port 2 is an 8-bit, bit programmable, bidirectional, TTL compatible port. Each of these eight I/O lines can be independently programmed as an input or output or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port

2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27. (Figure 7).

Figure 7. Port 2 Configuration

PIN FUNCTION (Continued)

Port 3. (P30-P37). Port 3 is an 8-bit, TTL compatible fourfixed input and four-fixed output port. These eight $1 / O$ lines have four-fixed (P30-P33) input and four fixed (P34-P37)
output ports. Porl 3 pins P30 and P37, when used as serial $1 / O$, are programmed as serial in and serial out, respectively (Figure 8).

Figure 8. Port 3 Configuration

Port 3 is configured under software control to provide the following control functions: handshake for Ports 0,1 and 2 (/DAV and RDY); four external interrupt request signals
(IRQ0-IRQ3); timer input and output signals ($\mathrm{T}_{\mathbb{N}}$ and $\mathrm{T}_{\text {out }}$), and Data Memory Select (/DM).

Table 4. Port 3 Pin Assignments

Pin	I/O	CTC1	Int.	P0 HS	P1 HS	P2 HS	UART	Ext
P30	IN		IRQ3				Serial In	
P31	IN	$T_{\text {IN }}$	IRQ2					
P32	IN		IRQ0	D/R				
P33	\mathbb{N}		IRQ1		D/R			
P34	OUT				R/D	R/D		
P35	OUT				R/D		DM	
P36	OUT	$T_{\text {out }}$					Serial Out	
P37	OUT							

Notes:

HS = HANDSHAKE SIGNALS
$D=$ Data Available
R = Ready

Port 3 lines P30 and P37, can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by the Counter/Timer 0.

The Z86C11 automatically adds a start bit and two slop bits to transmitted data (Figure 9). Odd parity is also available as an option. Eight data bits are always trans-

Transmitted Data (No Parity)

mitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupl request.

Received Data (No Parity)

Figure 9. Serial Data Formats

Auto-Latch. The Auto-Latch puts valid CMOS levels on all CMOS inputs that are not externally driven. This will reduce excessive supply current flow in the input buffer when it is not been driven by any source.

Low EMI Option. The Z86C11 is available in a low EMI option. This option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted. Use of this feature results in:

- Less than 1 mA current consumptions during HALT mode.
- The pre-drivers slew rate reduced to 10 ns typical.
- Low EMI output drivers have resistance of 200 ohms typical.
- Oscillator divide-by-two circuitry is eliminated.
- Internal SCL.K/TCLK operation is limited to a maximum of 4 MHz (250 ns cycle time)

FUNCTIONAL DESCRIPTION

Address Space

Program Memory. The Z86C11 can address up to 60 K bytes of external program memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For ROM mode, byte 13 to byte 4095 consists of on-chip ROM. At address 4096 and greater, the Z86C11 executes external program memory fetches. In the ROMless mode, the Z86C11 can address up to 64 Kbytes of external program memory. Program execution begins at external location 000C (HEX) after a reset.

Figure 10. Program Memory Configuration

Data Memory (/DM). The ROM version can address up to 60 Kbytes of external data memory space beginning at location 4096. The ROMless version can address up to 64 Kbytes of external data memory. External data memory may be included with, or separated from, the external program memory space./DM, an optional I/O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 11). The state of the /DM signal is controlled by the type instruction being executed. AnLDCopcode references PROGRAM (/DM inactive) memory, and an LDE instruction references DATA (/DM active low) memory.

Figure 11. Data Memory Configuration

Register File. The Register File consists of four I/O port registers, 236 general-purpose registers and 16 control and status registers (Figure 12). The instructions can access registers directly or indirectly via an 8 -bit address field. The Z86C11 alsoallows short 4-bit register addressing using the Register Pointer (Figure 13). In the 4-bit mode,
the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active workingregister group.

Note: Register Bank EO-EF can only be accessed through working registers and indirect addressing modes.

LOCATION		IDENTIFIERS SPL
255	Stack Pointer (Bits 7-0)	
254	Stack Pointer (Bits 15-8)	SPH
253	Register Pointer	RP
252	Program Control Flags	FLAGS
251	Interrupt Mask Register	IMR
250	Interrupt Request Register	IRQ
249	Interrupt Priority Register	IPR
248	Ports 0-1 Mode	P01M
247	Port 3 Mode	P3M
246	Port 2 Mode	P2M
245	TO Prescaler	PREO
244	Timer/Counter 0	TO
243	T1 Prescaler	PRE1
242	Timer/Counter 1	T1
241	Timer Mode	TMR
240	Serial I/O	SIO
	General-Purpose Registers	
3	Port 3	P3
2	Port 2	P2
1	Port1	P1
0	Port 0	PO

Figure 12. Register File

FUNCTIONAL DESCRIPTION (Continued)

Figure 13. Register Pointer

RAM Protect. The upper portion of the RAM's address spaces 80 H to EFH (excluding the control registers) can be protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user can activate from the internal ROM code to turn off/on the RAM Protect by loading a bit D6 in the IMR register to either a 0 or a 1 , respectively. A 1 in D6 indicates RAM Protect enabled.

ROM Protect. The first 4 Kbytes of program memory is mask programmable. A ROM protect feature prevents dumping of the ROM contents by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions to Program Memory in all modes.

The ROM Protect option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted.

Stack. The Z86C11 has a 16-bit Stack Pointer (R254-R255) used for external stack that resides anywhere in the data memory for the ROMless mode, but only from 4096 to 65535 in the ROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R4-R239). The high byte of the Stack Pointer (SPH-Bit 8-15) is used as a general purpose register when using internal stack only.

Counter/Timers. There are two 8 -bit programmable counter/ limers (TO-T1), each driven by its own 6 -bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 14).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counters and prescaler reach the end of the count, a timer interrupt request, IRQ4 (TO) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can
also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counter, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input via Port 3 . The Timer Mode register configures the external timer input(P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 also serves as a timer output (TOUT) through which T0, T1 or the internal clock can be output. The counter/timers are cascaded by connecting the To output to the input of T 1 .

Figure 14. Counter/Timers Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z86C11 has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The eight sources are divided as follows: four sources are claimed by Port 3 lines P30-P33, one in Serial Out, one in Serial In, and two in the counter/timers (Figure 15). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z86C11 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initialed interrupts are supported by setting the appropriate bit in the Interrupt Request (IRQ) register.

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request must be valid 5 TpC before the falling edge of the last clock cycle of the currently executing instruction.

For the ROMless mode, when the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service rouline is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupt sample point.

Figure 15. Interrupt Block Diagram

Clock. The Z86C11 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL.1=Input, XTAL2 = Output). The crystal should be AT
cut, 1 MHz to 16 MHz max, and series resistance (RS) is less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors ($10 \mathrm{pF}<\mathrm{CL}<300 \mathrm{pF}$) from each pin to ground (Figure 16).

Figure 16. Oscillator Configuration

HALT. Will turn off the internal CPU clock but not the XTAL oscillation. The counter/timers and the external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remains active. The devices are recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. The Stop mode is terminated by a reset, which causes the processor to restart the application program at address 000C (HEX).

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user executes aNOP (opcode $=$ OFFH) immediately before the appropriate sleep instruction,. i.e.:

FF NOP ; clear the pipeline
6 F STOP ; enter STOP mode or
FF NOP ; clear the pipeline
7F HALT ; enter HALT mode

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {cC }}$	Supply Voltage *	-0.3	+7.0	V
$T_{\text {sTG }}$	Storage Temp	-65	+150	${ }^{\circ} \mathrm{C}$
T_{A}	Oper Ambient Temp		\dagger	${ }^{\circ} \mathrm{C}$

Notes:

* Voltages on all pins with respect to GND.
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device al any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 17).

Figure 17. Test Load Diagram

DC CHARACTERISTICS

Sym	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & 010.00^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \text { Typical } \\ \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	Units	Conditions
		Min	Max	Min	Max			
	Max Input Voltage		7		7		V	$1{ }_{\text {w }} 250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {ch }}$	Clock Input High Voltage	3.8	$\mathrm{V}_{\text {cc }}+0.3$	3.8	$\mathrm{V}_{\mathrm{cc}}+0.3$		V	Driven by External Clock Generator
$V_{\text {a }}$	Clock Input Low Vollage	-0.03	0.8	-0.03	0.8		V	Driven by External Clock Generator
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	$\mathrm{V}_{\mathrm{cc}}+0.3$	2.0	$\mathrm{Vcc}_{\text {cc }}+0.3$		V	
V_{11}	Input Low Voltage	-0.3	0.8	-0.3	0.8		V	
$V_{\text {OH }}$	Output High Volige	2.4		2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
$V_{\text {OH }}$	Output High Vollge	$\mathrm{Vcc}_{\text {cc }}-100 \mathrm{mV}$		$\mathrm{Vcc}_{\text {cc }}-100 \mathrm{mV}$			V	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$
V_{a}	Output Low Voltage		0.4		0.4		v	$\mathrm{I}_{\mathrm{a}}=+5.0 \mathrm{~mA}$
$V_{\text {HH }}$	Reset Input High Vollage	3.8	$\mathrm{V}_{\text {cc }}+0.3$	3.8	$\mathrm{V}_{\mathrm{cc}}+0.3$		v	
V_{fI}	Reset Input Low Voltage	-0.03	0.8	-0.03	0.8		V	
11	Input Leakage	-2	2	-2	2		$\mu \mathrm{A}$	$\mathrm{V}_{\text {w }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$
I_{0}	Output Leakage	-2	2	-2	2		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{w}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$
$\stackrel{18}{\text { If }}$	Reset Input Current Supply Current		-80		-80		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{fl}}=0 \mathrm{~V}$
			30		30	20	mA	[1] @ 12 MHz
			35		35	24	mA	[1] © 16 MHz
$\mathrm{ICC1}$	Standby Current		6.5		6.5	4	mA	
			7.0		7.0	4.5	mA	[1] HALT Mode $\mathrm{V}_{\mathbb{W}}=0 \mathrm{~V}_{\mathrm{c}} \mathrm{V}_{\mathrm{cc}} @ 16 \mathrm{MHz}$
	Standby Current		10		20	5	$\mu \mathrm{A}$	$[1,2]$ STOP Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$

Notes:

[1] All inputs driven to either OV or V_{cc}, outputs floating.
[2] $\left.\right|_{c c 2}$ requires loading TMR $(\mathrm{F}-H)$ with any value prior to STOP execution. Use this sequence:

LD TMR,\#00
NOP
STOP

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Diagram

Figure 18. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS
External I/O or Memory Read or Write Timing Table

No	Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				Units	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TdA(AS)	Address Valid to /AS Rise Delay	35		25		35		25		ns	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	45		35		45		35		ns	[2,3]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid		250		180		250		180	ns	[1,2,3]
4	TwAS	/AS Low Width	55		40		55		40		ns	$[2,3]$
5	TdAZ(DS)	Address Float to /DS Fall	0		0				0		ns	
6	TwDSR	/DS (Read) Low Width	185		135		185		135		ns	[1,2,3]
7	TwDSW	/DS (Write) Low Width	110		80		110		80		ns	[1,2,3]
8	TdDSR(DR)	/DS Fall to Read Dala Req'd Valid		130		75		130		75	ns	[1,2,3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	0		0		0		0		ns	[2,3]
10	TdDS(A)	/DS Rise to Address Active Delay	65		50		65		50		ns	[2,3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	45		35		45		35		ns	[2,3]
12	TdR/N(AS)	R//W Valid to /AS Rise Delay	30		20		33		25		ns	[2,3]
13	TdDS(R/W)	/DS Rise to R/W Not Valid	50		35		50		35		ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	35		25		35		25		ns	[2,3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	55		35		55		35		ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid		310		230		310		230	ns	[1,2,3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	65		45		65		45		ns	[2,3]
18	TdDI(DS)	Data Input Setup to /DS Rise	75		60		75		60		ns	[1,2,3]
19	TdDM(AS)	/DM Valid to /AS Rise Delay	50		30		50		30		ns	[2,3]

Notes:

[1] When using extended memory timing add 2 TpC .
[2] Timing numbers given are for minimum TpC.
[3] See clock cycle dependent characteristics table.
Standard Test Load
All timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .

Clock Dependent Formulas

Number	Symbol	Equation
1	TdA(AS)	$0.40 T p C+0.32$
2	TdAS(A)	$0.59 T p C-3.25$
3	TdAS(DR)	$2.38 T p C+6.14$
4	TwAS	$0.66 T p C-1.65$
6	TwDSR	$2.33 T p C-10.56$
7	TwDSW	$1.27 T p C+1.67$
8	TdDSR(DR)	$1.97 T p C-42.5$
10	TdDS(A)	$0.8 T p C$
11	TdDS(AS)	$0.59 T p C-3.14$
12	TdR/W(AS)	$0.4 T p C$
13	TdDS(R/W)	$0.8 T p C-15$
14	TdDW(DSW)	$0.4 T p C$
15	TdDS(DW)	$0.88 T p C-19$
16	TdA(DR)	$4 T p C-20$
17	TdAS(DS)	$0.91 T p C-10.7$
18	TsDI(DS)	$0.8 T p C-10$
19	TdDM(AS)	$0.9 T p C-26.3$

AC CHARACTERISTICS

Additional Timing Diagram

Figure 19. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & 2 \mathrm{MHz} \quad 16 \mathrm{MHz} \end{aligned}$				$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ 12 \mathrm{MHz} \quad 16 \mathrm{MHz} \end{array}$				Units	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	83	1000	62.5	1000	83	1000	62.5	1000	ns	[1]
2	TrC,TfC	Clock Input Rise \& Fall Times		15		10		15		10	ns	[1]
3	TwC	Input Clock Width	35		25		35		25		ns	[1]
4	TwTinL	Timer Input Low Width	75		75		75		75		ns	[2]
5	TwTinH	Timer Input High Width	3TpC		3 TpC		3TpC		3 TpC			[2]
6	TpTin	Timer Input Period	8TpC		8TpC		8TpC		8TpC			[2]
7	TrTin,Tflin	Timer Input Rise \& Fall Times	100		100		100		100		ns	[2]
8A	TwIL	Interrupt Request Input Low Times	70		70		70		50		ns	[2,4]
8B	TwIL	Interrupt Request Input Low Times	$3 T p C$		3 TpC		3 TpC		3 TpC			[2,5]
9	TwIH	Interrupt Request Input High Times	$3 T p C$		3 TpC		3 TpC		3 TpC			[2,3]

Notes:

[1] Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0 .
[2] Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .
[3] Interrupt references request via Port 3.
[4] Interrupt request via Port 3 (P31-P33).
[5] Interrupt request via Port 30.

AC CHARACTERISTICS

Handshake Timing Diagrams

Figure 20. Input Handshake Timing

Figure 21. Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				Notes Data Direction
			12 MHz		16 MHz		${ }^{12} \mathrm{MHz}$		16 MHz		
			Min	Max	Min	Max			Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		0		0		1 N
2	ThDI(DAV)	Data In Hold Time	145		145		145		145		IN
3	TwDAV	Dała Available Width	110		110		110		110		\mathbb{N}
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay		115		115		115		115	IN
5	TdDAVII(RDY)	DAV Rise to RDY Rise Delay		115		115		115		115	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	0		0		0		0		1 N
7	TcLDAVO(RDY)	Data Out to DAV Fall Delay		TpC		TpC		TpC		TpC	OUT
8	TCLDAVO(RDY)	DAV Fall to RDY Fall Delay	0		0		0		0		OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay		115		115		115		115	OUT
10	TwRDY	RDY Width	110		110		110		110		OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay		115		115		115		115	OUT

Z8 CONTROL REGISTER DIAGRAMS

Figure 22. Serial I/O Register (FOH: Read/Write)

Figure 23. Timer Mode Register (F1H: Read/Write)

Figure 25. Prescaler 1 Register (F3H: Write Only)

Figure 26. Counter/Timer 0 Register (F4H: Read/Write)

R245 PREO

Figure 27. Prescaler 0 Register (F5H: Write Only)

Figure 24. Counter/Timer 1 Register (F2H: Read/Write)

P20-P27 I/O Definition
0 Defines Bit as Output
1 Defines Bit as Input

Figure 28. Port 2 Mode Register (F6H: Write Only)

Figure 29. Port 3 Mode Register (F7H: Write Only)

R248 P01M

Figure 30. Port 0 and 1 Mode Register (F8H: Write Only)

Figure 31. Interrupt Priority Register (F9H: Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 32. Interrupt Request Register (FAH: Read/Write)

Figure 33. Interrupt Mask Register (FBH: Read/Write)

R255 SPL

Figure 37. Stack Pointer Register (FFH: Read/Write)

Figure 34. Flag Register (FCH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only IR
Indirect-register or indirect working-register address	
Ir	Indirect working-register address only Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
CC	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overtlow flag
D	Decimal-adjusi flag
H	Half-carry flag
Affected flages are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
X	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S \times O R V)=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V} \mathrm{)}=1$
1010	GT	Greater Than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V})$] $=0$
0010	LE	Less Than or Equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

STOP/HALT

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol
$" \leftarrow$ ". For example:
$d s t \leftarrow d s t+\operatorname{src}$
indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Flags Affect C Z	ed	D	D	H
NOP		FF	- -	- -		-	-
OR dst, src dst \leftarrow dst OR src	\dagger	4[]	- *	* 0		-	-
$\begin{aligned} & \hline \text { POP dst } \\ & \text { dst } \leftarrow \text { QP; } \\ & \mathrm{SP} \leftarrow \mathrm{SP}+1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	- -	- -		-	-
PUSH src SP↔SP-1; @SP $\leftarrow \mathrm{src}$	$\begin{aligned} & \hline R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	- -	- -		-	-
$\begin{aligned} & \overline{R C F} \\ & \mathrm{C} \leftarrow 0 \end{aligned}$		CF	0	- -		-	-
$\begin{aligned} & \text { RET } \\ & \mathrm{PC} \leftarrow \text { @SP; } \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$		AF	- -	- -		-	-
RL dst cc 7	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 90 \\ & 91 \end{aligned}$		*	$*$		-
RLC dst \square	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$		*	*	-	-
RR dst \square $\rightarrow-\mathrm{c}-7 \quad 0$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$		*	*	-	-
$\begin{aligned} & \text { RRC dst } \\ & -\sqrt{-c}-7 \quad 0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \mathrm{C} 0 \\ & \mathrm{C} 1 \end{aligned}$	* *		*	-	-
SBC dst, src dst \leftarrow dst $\leftarrow \mathrm{srC} \leftarrow \mathrm{C}$	\dagger	3[]	* *	*	*	1	*
$\begin{aligned} & \text { SCF } \\ & \mathrm{C} \leftarrow 1 \end{aligned}$		DF	1	- -	-	-	-
SRA dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$		*	0	-	-
$\begin{aligned} & \hline \text { SRP src } \\ & \text { RP } \leftarrow \mathrm{src} \end{aligned}$	Im	31	- -	-		-	-

Instruction and Operation	Address Mode dst sre	Opcode Byte (Hex)	Flag Affe C Z	cted S V	D	H
STOP		6F	- -	- -	-	
SUB dst, src dst \leftarrow dst \leftarrow src	\dagger	2[]	* *	*	1	*
SWAP dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { Fo } \\ & \text { F1 } \end{aligned}$	X *	* * X		
TCM dst, src (NOT dst) AND src	\dagger	6[]	- *	* * 0		
TM dst, src dst AND src	\dagger	7[]	- \%	* *		
XOR dst, src $\mathrm{dst} \leftarrow \mathrm{dst}$ XOR src	\dagger	B[]	-	* *		
\dagger These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.						

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13 .

| $\begin{array}{c}\text { Address Mode } \\ \text { dst }\end{array}$ | | src |
| :--- | :---: | :---: |\(\left.c \begin{array}{c}Lower

Opcode Nibble\end{array}\right]\)

OPCODE MAP

Lower Nibble (Hex)

0

1

2

3

4

5

$\begin{gathered} 6.5 \\ \text { DEC } \\ \text { R1 } \end{gathered}$	6.5 DEC IR1	$\begin{gathered} 6.5 \\ \text { ADD } \\ \text { r1, r2 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.5 \\ \text { ADD } \\ \text { r1, Ir2 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.5 \\ \text { ADD } \\ \text { R2, R1 } \end{gathered}$		10.5 ADD R1, IM	10.5 ADD IR1, IM	6.5 LD r1, R2	6.5 LD r2, R1	$12 / 10.5$ DJNZ r1, RA	(12/10.0 $\begin{gathered}\text { JR } \\ \text { cc. RA }\end{gathered}$	6.5 LD r1. IM	[12.10.0 $\begin{gathered}\text { JP } \\ \text { cc, DA }\end{gathered}$	6.5 INC r1	
6.5	6.5	6.5	6.5	10.5	10.5	10.5	10.5								
$\begin{gathered} \text { RLC } \\ \text { R1 } \end{gathered}$	RLC IR1	$\begin{aligned} & \text { ADC } \\ & \mathrm{r} 1, \mathrm{r} 2 \end{aligned}$	$\underset{\mathrm{r} 1, \mathrm{lr} 2}{\text { ADC }}$	$\begin{gathered} \text { ADC } \\ \text { R2, R1 } \end{gathered}$	$\begin{gathered} \text { ADC } \\ \text { IR2, R1 } \end{gathered}$	ADC R1, IM	ADC IR1, IM					-			
6.5	6.5	6.5	6.5	10.5	10.5	10.5	10.5								
INC	INC	SUB	SUB	SUB	SUB	SUB	SUB								
R1	IR1	r1, r2	r1, Ir2	R2, R1	IR2, R1	R1, IM	IR1, IM								
8.0	6.1	6.5	6.5	10.5	10.5	10.5	10.5								
JP	SRP	SBC	SBC	SBC	SBC	SBC	SBC								
IRR1	IM	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM								
8.5	8.5	6.5	6.5	10.5	10.5	10.5	10.5								
DA	DA	OR	OR	OR	OR	OR	OR								
R1	IR1	r1, r2	r1, Ir2	R2, R1	IR2, R1	R1, IM	IR1, IM								
10.5	10.5	6.5	6.5	10.5	10.5	10.5	10.5								
POP	POP	AND	AND	AND	AND	AND	AND								
R1	IR1	r1, r2	r1, Ir2	R2, R1	IR2, R1	R1, IM	IR1, IM								
6.5	6.5	6.5	6.5	10.5	10.5	10.5	10.5								6.0
COM	COM	TCM	TCM	TCM	TCM	TCM	TCM								STOP
R1	IR1	r1, r2	r1, Ir2	R2, R1	IR2, R1	R1, IM	IR1, IM								
10/12.1	12/14.1	6.5	6.5	10.5	10.5	10.5	10.5								7.0
PUSH	PUSH	TM	TM	TM	TM	TM	TM								HALT
R2	IR2	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM								
10.5	10.5	12.0	18.0												6.1
DECW	DECW	LDE	LDE												DI
RR1	IR1	r1, Irr2	Ir1, Irr2												
6.5	6.5	12.0	18.0												6.1
RL	RL	LDE	LDE												EI
R1	IR1	r2, \|rr1	Ir2, Irr1												
10.5	10.5	6.5	6.5	10.5	10.5	10.5	10.5								14.0
INCW	INCW	CP	CP	CP	CP	CP	CP								RET
RR1	IR1	r1, r2	r1, lr2	R2, R1	IR2, R1	R1, IM	IR1, IM								
6.5	6.5	6.5	6.5	10.5	10.5	10.5	10.5								16.0
CLR	CLR	XOR	XOR	XOR	XOR	XOR	XOR								IRET
R1	IR1	r1, r2	r1, Ir2	R2, R1	IR2, R1	R1, IM	IR1, IM								
6.5	6.5	12.0	18.0												
RRC	RRC	LDC	LDCI				LD								RCF
R1	IR1	r1, Irr2	Ir1, Irr2				r1, \times, R2								
6.5	6.5	12.0	18.0	20.0		20.0	10.5								6.5
SRA	SRA	LDC	LDCI	CALL*		CALL	LD								SCF
R1	IR1	r2, Irr1	Ir2, lrr1	IRR1		DA	r2, x, R1								
6.5	6.5		6.5	10.5	10.5	10.5	10.5								6.5
RR	RR		LD	LD	LD	LD	LD								CCF
R1	IR1		r1, IR2	R2, R1	IR2, R1	R1, IM	IR1, IM								
8.5	8.5		6.5		10.5										
SWAP	SWAP		LD		LD			1	1	1		1	1	1	NOP
R1	IR1		\|r1, r2		R2, IR1			I	1	1			1	1	

Bytes per Instruction

Legend:
$R=8$-bit address
$\mathrm{r}=4$-bit address
R_{1} or $r_{2}=$ Dst address
R_{1} or $\mathrm{r}_{2}=$ Src address
Sequence:
Opcode, First Operand,
Second Operand
Note: The blank are not defined.

* 2-byte instruction appears as a

3-byte instruction

Z86C12 Z8® ${ }^{\text {® }}$ ICE In-CIRCUIT Emulator

FEATURES

- 8-bit CMOS microcontroller emulator, 84-pin package
- 4.5 to 5.5 Volt operating range
- Low power consumption - 275 mW (max)
- Average instruction execution time of 1 s
- Fast instruction pointer-0.6 us @ 16 MHz
- Two standby modes - STOP and HALT
- 32 input/output lines
- Full-Duplex UART
- All digital inputs are TTL levels
- Six Memory emulation modes
- 256 bytes of RAM
- Two programmable 8-bit Counter/Timers each with 6bit programmable prescaler.
- Six vectored, priority interrupt from Eight dilferent sources
- Clock speed 16 MHz
- On-chip oscillator that accepts a crystal, ceramic resonator, LC or external clock drive.

GENERAL DESCRIPTION

The Z86C12 ICE (In-Circuit-Emulator) introduces a new level of sophistication to single-chip architecture.

The ICE is housed in a 84-pin PGA, and is manufactured in CMOS technology.

The ICE development device allows users to prototype a system with an actual hardware device and to develop the code. This code is eventually mask-programmed into the on-chip ROM for any of the Z86CXX devices. Development devices are also useful in emulator applications where the final system configuration, memory configuration, $1 / \mathrm{O}$, interrupt inputs, etc., are unknown. The ICE development device is identical to its equivalent $Z 86 \mathrm{C} 21$ microcomputer with the following exceptions:

- No internal ROM is provided, so that code is developed in off-chip memory. Five size inputs configure the memory boundaries.
- The normally internal ROM address and data lines are buffered and brought out to external pins to interface with the external memory.
- Control lines (/MAS and /DAS) are added to interface with external program memory.
- The Timing and Control, I/O ports, and clock pins on the Z86C12 are identical in function to those on the Z86C21.

GENERAL DESCRIPTION (Continued)

The ICE architecture is characterized by Zilog's 8-bit microcontroller core. The device offers; fast execution, more efficient use of memory, more sophisticated interrupts, input/output bit manipulation capabilities, easy hardware/ software system expansion, a flexible I/O scheme, an efficient register and address space structure, multiplexed capabilities between address/data, and a number of ancillary features that are useful in many industrial and advanced scientific applications.

Industrial applications demand powerful I/O capabilities. The ICE fulfills this with 32-pins dedicated to input and output. These lines are grouped into four ports. Each port consists of eight lines, and is configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

There are three basic address spaces available to support this wide range of configuration: Program Memory, Dala Memory, and 236 General Purpose Registers.

To unburden the program from coping with real-time problems such as counting/timing and serial data communication, the ICE offers two on-chip counter/timers with a large number of user selectable modes, and an asynchronous receiver/transmitter (UART-Figure 1).

Note: All Signals with a preceding front slash, " $/$ ", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. Z86C12 Pin Functions

PIN DESCRIPTION (Continued)
Table 1. Z86C12 Pin Assignments

Name	Pin	Name	Pin	Name	Pin	Name	Pin
IAS	B2	A5	K6	P02	D2	P27	C7
/DS	C4	A6	J6	P03	D1	P30	B4
/MAS	E1	A7	K8	P04	E3	P31	B7
/MDS	G3	A8	J5	P05	G1	P32	C2
/RST	B3	A9	K4	P06	H1	P33	D9
/SIZEO	A3	D0	H3	P07	J1	P34	E10
/SIZE1	C5	D1	K2	P10	G8	P35	B1
/SIZE2	A6	D2	J3	P11	G9	P36	A7
ISIZE3	C6	D3	K3	P12	G10	P37	A5
ISYNC	F1	D4	H8	P13	F8	R/W	A1
AO	J9	D5	J10	P14	D10	SCLK	G2
A1	H7	D6	H9	P15	C10	SIZE4	F10
A10	J4	D7	H10	P16	B10	$\mathrm{V}_{\text {cc }}$	A4
A11	H4	/IACK	F2	P17	E9	$\mathrm{V}_{\text {cc }}$	B6
A12	K9	NC	J2	P20	C9	$\mathrm{V}_{\mathrm{cc} 2}$	F9
A13	K7	NC	C3	P21	A10	GND	F3
A14	K5	NC	D8	P22	B9	GND1	E2
A15	H5	NC	H2	P23	C8	GND2	H6
A2	K10	NC	K1	P24	A9	GND3	E8
A3	J8	POO	C1	P25	B8	XTAL1	B5
A4	J7	P01	D3	P26	A8	XTAL2	A2

Figure 3. Z86C12 Pin Layout

PIN FUNCTIONS

/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is viaPort 1 for all external program. Program or datamemory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the highimpedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-based input and output, respectively). These pins connect a parallelresonant crystal, ceramic resonator, LC, or any external single-phase clock to the on-chip oscillator and buffer.

R/W. (output, write Low). The Read/Write signal is low when the ICE is writing to external program or datamemory.
/RESET. (input, active-Low). To avoid asynchronous and noisy reset problems, the ICE is equipped with a reset filter of four external clocks (4TpC). If the external/RESET signal is less than 4TpC in duration, no reset will occur. On the 5th clock after the /RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is held active low while /AS cycles at a rate of $\mathrm{TpC} / 2$. When /RESET is deactivated, program execution begins at location 000C (HEX). Reset time is held low for 50 ms , or until Vcc is stable, whichever is longer.

D7-D0. (Inputs, TTL compatible) Data bus. These eight lines provide the input data bus to access externalmemory, which is emulating the on-chip ROM. During read cycles in the internal memory space the data on these lines is latched in just prior to the rise of the /MDS data strobe.

A15-A0. (Outputs TTL compatible) Address bus. During T1 these lines output the current memory address. All addresses, whether internal or external, are output.
/MAS. (Output, TTL compatible) Memory Address Strobe. This line is active during every T 1 cycle. The rising edge of this signal is used to latch the current memory address on
the lines A15-A0. This line is always valid. It is not tri-stated when /AS is tri-stated.
/MDS. (Output, TTL compatible) Memory Data Strobe. This is a timing signal used to enable the external memory to emulate the on-chip ROM. It is active only during accesses to the on-chip ROM memory space as selected by the configuration of the SIZEn pins.
/SCLK. (Output, TTL compatible) System Clock. This line is the internal system clock.

ISYNC. (Output, TTL compatible) Sync signal. This signal indicates the last clock cycle of the currently execuling instruction.

IIACK. (Output, TTL compatible) Interrupt acknowledge. This output, when low, indicates that the ICE is an interrupt cycle.

SIZE0, SIZE1, SIZE2, SIZE3, SIZE4. (Inputs, TTL compatible). The SIZEn lines control the emulation mode of the ICE. The functions are defined as shown in Table 2. The ICE need not be RESET when the state of these lines is changed.

Table 2. Memory Size Configuration

SIZE4	SIZE3	SIZE2	SIZE1	SIZE0	Memory
0	1	1	1	1	ROMless
0	1	1	1	0	2K ROM
0	1	1	0	1	4K ROM
0	1	0	1	1	8K ROM
0	0	1	1	1	16K ROM
1	1	1	1	1	32K ROM

Note: The SIZE pins can be configured to make the memory control signals (/MAS, /MDS, R//W, /AS, and /DS) look like the Z86C91 ROMless device. However, on powerup or reset, Ports 0 and 1 are configured as inputs, rather than A15-A8 and AD7-AD0, respectively. This means that if ROMless mode is desired, the device is powered up in ROM mode, and executes a few instructions via the ICE address/data ports. These instructions reconfigure the ports as required, and then the SIZE inputs can be set to ROMless mode - but without a RESET.

PIN FUNCTIONS (Continued)

I/O Ports

Port 0 (P00-P07). Port 0 is an 8-bit, nibble programmable, bidirectional, TTL compatible port. These eight I/O lines can be configured under software control as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAV0 and RDYO (Data available and Ready). Handshake signal assignment is dictated by the I/O direction of the upper nibble P.04-P07. The lower nibble must have the same direction as the upper nibble to be under handshake control. For the ROMIess option, Port 0 appears as A15-A8 Address lines after reset.

For external memory references, Port 0 provides address bit A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O, while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. In ROMless mode, after a hardware reset, Port 0 lines are defined as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode (Figure 4).

Figure 4. Port 0 Configuration

Port 1 (P10-P17). Port 1 is an 8-bit, byte programmable, bidirectional, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0)ports. For the ICE, these eight I/O lines can be programmed as Input or Output lines or the port can be configured, under software control, as an address/data port for interfacing external memory. When used as an I/O port, Port 1 can be placed under handshake control. In this configuration, Port 3 lines P33 and P34 are used as the handshake controls RDY1 and /DAV1, respectively.

Memory locations greater than 8192 are referenced through Port 1. To interface external memory, Port 1 is programmed
for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port $0, / A S, / D S$ and R//W, allowing the ICE to share common resource in multiprocessor and DMA applications. Data transfers can be controlled by assigning P33 as a Bus Acknowledge input, and P34 as a Bus request output (Figure 5).

Figure 5. Port 1 Configuration

PIN FUNCTIONS (Continued)

Port 2 (P20-P27). Port 2 is an 8-bit, bit programmable, bidirectional, CMOS compatible port. Each of these eight I/O lines can be independently programmed as an input or output or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port 2 may be placed under handshake control. In this configu-
ration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines, P31 and P36, is dictated by the direction (input or output) assigned to P27 (Figure 6).

Figure 6. Port 2 Configuration

Port 3 (P30-P37). Port 3 is an 8-bit, CMOS compatible four-fixed-input and four-fixed output port. These eight I/O lines have four-fixed (P30-P33) input and four fixed (P34-P37)
output ports. Port 3, when used as serial I/O, is programmed as serial in and serial out, respectively (Figure 7 and Table 3).

Figure 7. Port 3 Configuration

Port 3 is configured under software control to provide the (IRQO-IRQ3); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {our }}$); following control functions: handshake for Ports 0 and 2 (/DAV and RDY); four external interrupt request signals

Data Memory Select (/DM).

Table 3. Port 3 Pin Assignments

Pin	I/O	CTC1	Int.	P0 HS	P1 HS	P2 HS	UART	Ext
P30	\mathbb{N}		IRQ3				Serial In	
P31	\mathbb{N}	$T_{\text {IN }}$	IRQ2			D/R		
P32	\mathbb{N}		IRQ0	D/R				
P33	\mathbb{N}		IRQ1		D/R			
P34	OUT				R/D			
P35	OUT			R/D		R/D		
P36	OUT	$T_{\text {out }}$				Serial Out		
P37	OUT							

Notes:

HS = HANDSHAKE SIGNALS
D $=$ Data Available
$\mathrm{R}=$ Ready

PIN FUNCTIONS (Continued)

Port 3 lines P30 and P37, can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by the Counter/ Timer 0 .

The ICE automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regard-

Transmitted Data (No Parity)

less of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Received Data (No Parity)

Received Data (With Parity)

Figure 8. Serial Data Formats

PROGRAMMING

Address Space

Program Memory. The ICE can address up to 64 K bytes of external program memory (Figure 9). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. The 5 SIZEn inputs dictate the amount of ROM being emulated, and for an 8 K ROM the input is '01011'. Respectively, 000C to 8191 is the memory map for the emulated ROM , and 8192 to 65535 is the remaining program memory for which the ICE executes external memory fetches.

Figure 9. Program Memory Configuration

Data Memory (/DM). External data memory is included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 10). The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references DATA (/DM active low) memory. The lower unaddressable part of the data memory is in fact addressable with the ICE chip's/MDS line (as/DS is not active for internal ROM reads), but there should be no need for this.

Figure 10. Data Memory Configuration

PROGRAMMING (Continued)

Register File. The Register File consists of four I/O port registers, 236 general-purpose registers and 16 control and status registers (Figure 11). The instructions can access registers directly or indirectly via an 8 -bit address field. The ICE also allows short 4-bit register addressing
using the Register Pointer (Figure 12). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active workingregister group.

Figure 11. Register File

Figure 12. Register Pointer

Stack. The ICE has a 16 -bit Stack Pointer (R254-R255) used for an external stack that resides anywhere in the data memory for the ROMless mode, but only from SIZEn to 65535 in ROM mode. An 8-bit Stack Pointer (R255) is
used for the internal stack that resides within the 236 general-purpose registers (R4-R239). The high byte of the Stack Pointer (SPH-Bit 8-15) can be use as a general purpose register when using internal stack only.

FUNCTIONAL DESCRIPTION

Counter/Timers. There are two 8-bit programmable counter/ timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; the T0 prescaler is driven by the internal clock only (Figure 13).

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counters and prescalers reach the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can
also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counter, but not the prescalers, is read al any time without disturbing its value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided-by-four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or nonretriggerable, or as a gate input for the internal clock. Port 3, line P36, also serves as a timer output (Tout) through which T0, T1 or the internal clock is output. The counter/ timers can be cascaded by connecting the TO output to the input of T 1 .

Figure 13. Counter/Timers Block Diagram

Interrupts. The ICE has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The eight sources are divided as follows: four sources are claimed by Port 3 lines P30-P33, one in Serial Out, one in Serial In, and two in the counter/timers (Figure 14). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All ICE interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, save the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initialed interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request is valid 5 TpC before the falling edge of the last clock cycle of the currently executing instruction.

For the ROMless mode, when the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point. This corresponds to the 63rd TpC cycle following the external interrupt sample point.

Figure 14. Interrupt Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Clock. The ICE on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2=Output). The crystal should be AT cut, 1 MHz to 16 MHz max, and series resistance (RS) is
less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors ($10 \mathrm{pF}<\mathrm{CL}<100 \mathrm{pF}$) from each pin to ground (Figure 15).

Figure 15. Oscillator Configuration

HALT. This turns off the internal CPU clock but not the XTAL oscillation. The counter/timers and the external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. The Stop mode is terminated by a reset, which causes the processor to restart the application program at address 000C (HEX).

To enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in
mid-instruction. To do this, the user must execute a NOP (opcode=OFFH) immediately before the appropriate sleep instruction. i.e.:

$$
\begin{array}{ll}
\text { FF NOP } & \text {; clear the pipeline } \\
\text { 6F STOP } & \text {; enter STOP mode } \\
& \text { or } \\
\text { FF NOP } & \text {; clear the pipeline } \\
\text { 7F HALT } & \text {; enter HALT mode }
\end{array}
$$

Instruction Cycle Timing

Figures 16 and 17 show instruction cycle timing for instructions fetched from external memory.

Figure 16. Instruction Cycle Timing (One-Byte Instructions)

Figure 17. Instruction Cycle Timing (Two- and Three-Byte Instructions)

FUNCTIONAL DESCRIPTION (Continued)

The addresses, Address Strobe (/AS) and Read Write (R//W) are output at the beginning of each machine cycle (Mn). The addresses output via Port 0 (if used) remain stable throughout the machine cycle. Addresses output via Port 1 remain valid only during $\mathrm{MnT1}$. The addresses are guaranteed valid at the rising edge of /AS, which is used to latch the Port 1 output. Port 1 is placed in an input mode at the end of $\mathrm{MnT1}$. The Data Strobe is output during MnT2 allowing data to be placed on the Port 1 bus. The Z8 accepts the data during MnT3 and /DS is terminated.

Instruction synchronization pulse /SYNC is output one clock pulse period prior to the beginning of an opcode fetch machine cycle (M1). This output is directly available on the 64-pin version of the Z8; whereas, on the 40-pin version, the Data Strobe pin outputs /SYNC only if external memory is not used.

Note that all instruction fetch cycles have the same machine timing regardless of whether the memory is internal or not. If configured for external memory, and internal memory is referenced, the addresses are still output via

Ports 0 and 1 ; /DS and R / N W are inactive. If configured for internal memory only, Ports 0 and 1 are used for I/O./DS outputs, /SYNC; R//W is inactive.

The exception to the instruction fetch timing is during the opcode fetch of an instruction following the fetch of a one byte instruction. One-byte instructions require two machine cycles to execute. The pipelining causes the following opcode fetch to begin one machine cycle early.

External Memory or I/O Timing

When external memory is addressed, Ports 0 and 1 are configured to output the required number of address bits. Port 1 is used as a multiplexed address/data bus for AD7ADO and Port 0 outputs address bits A15-A8. The timing relationships for addressing external memory and I/O are illustrated in Figures 18, 19, 20 and 21. The main difference between these figures is that Figures 20 and 21 contain an added timing cycle (Tx) that extends external memory timing to allow for slower memory.

Figure 18. External Instruction Fetch, I/O or Memory Read Cycle

Figure 19. External I/O or Memory Write Cycle

Figure 20. Extended External Instruction Fetch, I/O or Memory Read Cycle

FUNCTIONAL DESCRIPTION (Continued)

Figure 21. Extended External I/O or Memory Write Cycle

Address bits A15-A0 are valid on Ports 0 and 1 at the trailing edge of /AS for both the read and write memory cycles. Because Port 0 is not multiplexed, address bits A15-A8, if used, are present all through the read/write memory cycle.

During the read cycle, the input data must be valid on Port 1 at the trailing edge of the Data Strobe output (/DS). The Data Memory Select output(/DM) is used to select external data memory or external program memory. If selected, /DM is active during the execution of certain instructions.

During the write cycle, the address outputs follow the same timing relationships as for the read cycle. However, the output data is valid for the entire period /DS is active, and R//W is active (Low) during the entire write cycle.

Interrupt requests are sampled before each instruction fetch cycle (Figure 22). First, external interrupt requests are sampled four clock periods prior to the active/AS pulse that corresponds to an instruction fetch cycle. Then, internal interrupt requests are samples one clock period preceding /AS.

Figure 22. Interrupt Cycle Timing

FUNCTIONAL DESCRIPTION (Continued)

If an interrupt request is set, the $Z 8$ spends seven machine cycles (44 clock periods) resolving interrupt priorities, selecting the proper interrupt vector, and saving the program counter and flags on the stack. Although Figure 13 illustrates the timing for an external stack, the same timing is used for an internal stack. The total interrupt response time (including the external interrupt sample time) for an external interrupt is 48 clock periods. The first instruction of the interrupt service routine is fetched at this time. When an interrupt request is detected in the Z8/64 development device, /IACK is activated (Low) and remains active until the first instruction of the interrupt service routine is fetched.

Reset Timing

The internal logic is initialized during reset if the Reset input is held low for at least 18 clock periods (Figure 23). During the time /RESET is Low, /AS is output at the internal clock rate, /DS is forced Low, R//W is inactive and Ports 0,1 and 2 are placed in an input mode. /AS and /DS both low is normally a mulually exclusive condition; therefore, the coincidence of /AS Low and /DS Low can be used as a reset condition for other devices. Zilog Z-Bus® peripherals take advantage of this reset condition.

Figure 23. Reset Cycle Timing

Alternative Control Signal Uses

In addition to their uses in memory transfers, the control signals /AS, /DS and R//W can be used in the following interface applications:

IAS can be modified to provide the /RAS (Row Address Strobe) signal for dynamic memory interface. /RAS can be derived from the trailing edge of /DS to the trailing edge of /AS.
/DS' has several alternative uses: as a /CAS (Column Address Strobe) for dynamic memory interface; as a Chip Enable for memory and other interface devices; as an Enable input for 3-state bus drivers/receivers for memory and interface devices.

R//W can be used as a Write input to memory interfaces, and as an Early Status output to switch the direction of 3-state bus drivers/receivers.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	-0.3	+7.0	V
$\mathrm{~T}_{\text {STG }}$	Storage Temp	-65	+150	${ }^{\circ} \mathrm{C}$
T_{A}	Oper Ambient Temp**		C	

Notes:

* Voltages on all pins with respect to GND.
** See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 24).

Figure 24. Test Load Diagram

DC CHARACTERISTICS

Sym	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		$\begin{gathered} \text { Typical } \\ \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	Units	Conditions
	Max Input Voltage		7		7		V	$\mathrm{I}_{\mathrm{N}} 250 \mu \mathrm{~A}$
V_{CH}	Clock Input High Voltage	3.8	$V_{c c}$	3.8	$V_{c c}$		V	Driven by External Clock Generator
V_{CL}	Clock Input Low Voltage	-0.03	0.8	-0.03	0.8		V	Driven by External Clock Generator
$V_{\text {IH }}$	Input High Voltage	2.0	V_{cc}	2.0	V_{cc}		V	
V_{1}	Input Low Voltage	-0.3	0.8	-0.3	0.8		V	
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4		2.4			V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {o }}$	Output Low Voltage		0.4		0.4		V	$\mathrm{I}_{\mathrm{oL}}=+2.0 \mathrm{~mA}$
$V_{\text {RH }}$	Reset Input High Voltage	3.8	V_{cc}	3.8	V_{cc}		V	
$V_{\text {RI }}$	Reset Input Low Voltage	-0.03	0.8	-0.03	0.8		V	
11.	Input Leakage	-1	1	-10	10		$\mu \mathrm{A}$	$0 \mathrm{~V} \mathrm{~V}_{\text {IN }}+5.25 \mathrm{~V}$
I_{oL}	Output Leakage	-1	1	-10	10		$\mu \mathrm{A}$	OV $\mathrm{V}_{\mathbb{1}}+5.25 \mathrm{~V}$
$\mathrm{I}_{\text {IR }}$	Reset Input Current		-80		-50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
I_{cc}	Supply Current		50		50	25	mA	(1) 12 MHz
			60		60	35	mA	@ 16 MHz
lcC_{1}	Standby Current		15		15	5	mA	HALT Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 12 \mathrm{MHz}$
			20		20	10	mA	HALT Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}(16 \mathrm{MHz}$
$\mathrm{ICC2}$	Standby Current		10		10	5	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathbb{1}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 12 \mathrm{MHz}$
			10		10	5	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}{ }^{@} 16 \mathrm{MHz}$

Notes:

$I_{\mathrm{cc} 2}$ requires loading TMR (\%F1H) with any value prior to STOP execution.
Use this sequence:
LD TMR,\#00
NOP
STOP

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Diagram

Figure 25. External I/O or Memory Read or Write Timing

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Table

No	Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$			$-40^{\circ} \mathrm{C}$ $5^{\circ} \mathrm{C}$ 16 MHz Min Max	Units	Notes
1	TdA(AS)	Address Valid to /AS Rise Delay	35	20	35	25	ns	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	45	30	45	35	ns	[2,3]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid	220	180	250	180	ns	$[1,2,3]$
4	TwAS	/AS Low Width	55	35	55	40	ns	$[2,3]$
5	TdAZ(DS)	Address Float to /DS Fall	0	0	0	0	ns	
6	TwDSR	/DS (Read) Low Width	185	135	185	135	ns	[1,2,3]
7	TwDSW	/DS (Write) Low Width	110	80	110	80	ns	$[1,2,3]$
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid	130	75	130	75	ns	[1,2,3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	0	0	0	0	ns	[2,3]
10	TdDS(A)	/DS Rise to Address Active Delay	45	35	65	50	ns	[2,3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	55	30	45	35	ns	[2,3]
12	TdR/W(AS)	R//W Valid to /AS Rise Delay	30	20	33	25	ns	[2,3]
13	TdDS(R/W)	/DS Rise to R/W Not Valid	35	30	50	35	ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	35	25	35	25	ns	[2,3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	35	30	55	35	ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid	255	200	310	230	ns	[1,2,3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	55	40	65	45	ns	[2,3]
18	TdDI(DS)	Data Input Setup to /DS Rise	75	60	75	60	ns	[1,2,3]
19	TdDM(AS)	/DM Valid to /AS Fall Delay	50	30	50	30	ns	[2,3]

Notes:
[1] When using extended memory timing add 2 TpC .
[2] Timing numbers given are for minimum TpC.
[3] See clock cycle dependent characteristics table.

Standard Test Load
All timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .

Clock Dependent Formulas

Number	Symbol	Equation	Number	Symbol	Equation
1	TdA(AS)	$0.40 \mathrm{TpC}+0.32$	11	TdDS(AS)	0.59TpC - 3.14
2	TdAS(A)	0.59 TpC - 3.25	12	TdR/W(AS)	0.4 TpC
3	TdAS(DR)	$2.38 \mathrm{TpC}+6.14$	13	TdDS(RN)	0.8 TpC - 15
4	TwAS	$0.66 \mathrm{TpC}-1.65$	14	TdDW(DSW)	0.4 TpC
6	TwDSR	2.33TpC - 10.56	15	TdDS(DW)	0.88 TpC - 19
7	TwDSW	$1.27 \mathrm{TpC}+1.67$	16	TdA(DR)	$4 \mathrm{TpC}-20$
8	TdDSR(DR)	$1.97 \mathrm{TpC}-42.5$	17	TdAS(DS)	0.91 TpC - 10.7
10	TdDS(A)	0.8TpC	18	TsDI(DS)	$0.8 \mathrm{TpC}-10$
			19	TdDM(AS)	0.9TpC-26.3

AC CHARACTERISTICS

Additional Timing Diagram

Figure 26. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ \text { to } 70^{\circ} \mathrm{C} \end{array}$				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 105^{\circ} \mathrm{C} \end{aligned}$				Units Notes	
			12 MHz		16 MHz		12 MHz		16 MHz			
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	83	1000	62.5	1000	83	1000	62.5	1000	ns	[1]
2	TrC,TfC	Clock Input Rise \& Fall Times		15		10		15		10	ns	[1]
3	TwC	Input Clock Width	37		21		37		21		ns	[1]
4	TwTinL	Timer Input Low Width	70		50		70		50		ns	[2]
5	TwTinH	Timer Input High Width	3TpC		3TpC		3TpC		$3 T \mathrm{CC}$			[2]
6	TpTin	Timer Input Period	8 TpC		8TpC		8TpC		8TpC			[2]
7	TrTin, TfTin	Timer Input Rise \& Fall Times	100		100		100		100		ns	[2]
8A	TwIL	Interrupt Request Input Low Times	70		50		70		50		ns	[2,4]
8B	TwIL	Interrupt Request Input Low Times	3 TpC		3 TpC		3 TpC		3 TpC			[2,5]
9	TwIH	Interrupt Request Input High Times	3 TpC		$3 T \mathrm{pC}$		3TpC		3 TpC			[2,3]

Notes:

[1] Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0 .
[2] Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .
[3] Interrupt references request via Port 3.
[4] Interrupt request via Port 3 (P31-P33)'.
[5] Interrupt request via Port 30.

AC CHARACTERISTICS
Handshake Timing Diagram

Figure 27. Input Handshake Timing

Figure 28. Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 12^{\mathrm{MHz}} \quad 16 \mathrm{MHz} \end{gathered}$			$\mathrm{T}_{\mathrm{A}}=$ 12 M Min	$-40^{\circ} \mathrm{C}$ MHz Max	to 105 16 M Min		Notes (Data Direction)
1	TsDI(DAV)	Data In Setup Time	0		0	0		0		IN
2	ThDI(DAV)	Data In Hold Time	145		145	145		145		IN
3	TwDAV	Data Available Width	110		110	110		110		IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay		115	115		115		115	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay		115	115		115		115.	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	0		0	0		0		IN
7	TcLDAVO(RDY)	Data Out to DAV Fall Delay		TpC	TpC		TpC		TpC	OUT
8	TcLDAVO(RDY)	DAV Fall to RDY Fall Delay	0		0	0		0		OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay		115	115		115		115	OUT
10	TwRDY	RDY Width	110		110	110		110		OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay		115	. 115		115		115	OUT

Z8 CONTROL REGISTER DIAGRAMS

Figure 29. Serial I/O Register (FOH: Read/Write)

Figure 30. Timer Mode Register (F1H: Read/Write)

R242 T1

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

T_{1} Initial Value
(When Written)
(Range: 1-256 Decimal
$01-00 \mathrm{HEX})$
T_{1} Current Value
(When Read)
Figure 31. Counter/Timer 1 Register (F2H: Read/Write)

Figure 32. Prescaler 1 Register (F3H: Write Only)

Figure 33. Counter/Timer 0 Register (F4H: Read/Write)

Figure 34. Prescaler 0 Register (F5H: Write Only)

Figure 35. Port 2 Mode Register (F6H: Write Only)

Figure 36. Port 3 Mode Register (F7H: Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 37. Ports 0 and 1 Mode Register (F8H: Write Only)
R249 IPR

Figure 38. Interrupt Priority Registe (F9H: Write Only)

R250 IRQ

Figure 39. Interrupt Request Register (FAH: Read/Write)

Figure 40. Interrupt Mask Register (FBH: Read/Write)

R252 FLAGS

Figure 41. Flag Register (FCH: Read/Write)

Figure 42. Register Pointer Register (FDH: Read/Write)

Figure 43. Stack Pointer Register (FEH: Read/Write)

R255 SPL

Figure 44. Stack Pointer Register (FFH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working-
Irr	register pair address I
Indirect working-register pair only	
DA	Indexed address
RA	Direct address
IM	Relative address
R	Immediate
r	Register or working-register address
IR	Working-register address only
	Indirect-register or indirect
Ir	working-register address Indirect working-register address only RR
	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cC	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
	Affected flages are indicated by:
0	Clear to zero
1	Set to one
*	Set to clear according to operation
\times	Unaffected

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$S=0$
0101	MI	Minus	S $=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overtlow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	$(\mathrm{S} \mathrm{XORV})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XORV})=1$
1010	GT	Greater Than	$[Z$ OR (S XOR V $)$] $=0$
0010	LE	Less Than or Equal	$[Z \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	FlagsAffected$C \quad Z \quad S V 10 \quad H$					
NOP		FF	-	-	-	-	-	-
OR dst, src dst \leftarrow dst OR src	\dagger	4[]	-	*	*	0	-	-
POP dst dst \leftarrow @SP; $\mathrm{SP} \leftarrow \mathrm{SP}+1$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	-	-	-	-	-	-
PUSH src SP \leftarrow SP - 1; @SP \leftarrow src	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	-	-	-	-	-	-
$\begin{aligned} & \overline{\mathrm{RCF}} \\ & \mathrm{C} \leftarrow 0 \end{aligned}$		CF	0	-	-	-	-	-
$\begin{aligned} & \text { RET } \\ & \text { PC } \leftarrow S P ; \\ & S P \leftarrow S P+2 \end{aligned}$		AF	-	-	-	-	-	-
$\begin{aligned} & \text { RL dst } \\ & \text { ㄷ. } \begin{array}{l} 7 \quad 0 \end{array} \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	*	*	*	*	-	-
	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	*	*	*	*	-	-
RR dst $\rightarrow-\mathrm{c}-\sqrt{7} \quad 0$ \square	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$	*	*	*	*	-	
$\begin{aligned} & \text { RRC dst } \\ & \square[-7-7 \quad \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \mathrm{Co} \\ & \mathrm{C} 1 \end{aligned}$	*	*	*	*	-	-
SBC dst, src dst \leftarrow dst $\leftarrow \mathrm{src} \leftarrow \mathrm{C}$	\dagger	3[]	*	*	*	*	1	*
$\begin{aligned} & \overline{S C F} \\ & \mathrm{C} \leftarrow 1 \end{aligned}$		DF	1	-	-	-	-	-
SRA dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { Do } \\ & \text { D1 } \end{aligned}$	*	*	*	0	-	-
SRP src $\mathrm{RP} \leftarrow \mathrm{src}$	Im	31	-	-	-	-	-	-

| Instruction
 and Operation | Address
 Mode
 dst src | Opcode
 Byte (Hex) | Flags
 Affected | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C Z S V D H | | | | |

SUB dst, src $\quad \dagger \quad 2[] \quad * * * * 1 *$ dst \leftarrow dst \leftarrow src

TCM dst, src	\dagger	6[]	$*$	$* 0$
(NOT dst)				
AND src				

TM dst, src dst AND src	\dagger	$7[]$		*	0		-	
XOR dst, src dst \leftarrow dst XOR src	\dagger	B[]		*				-

\dagger These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

| Address Mode | |
| :--- | :---: | :---: |
| dst | src |\(\left.c \begin{array}{c}Lower

Opcode Nibble\end{array}\right]\)| r | r | $[3]$ |
| :---: | :---: | :---: |
| R | R | $[4]$ |
| R | IR | $[5]$ |
| R | IM | $[6]$ |
| \mathbb{R} | \mathbb{M} | $[7]$ |
| | | |

Lower Nibble (Hex)

Legend:
$\mathrm{R}=8$-bit address
$r=4$-bit address
R_{1} or $\mathrm{r}_{2}=$ Dst address
R_{1} or $\mathrm{r}_{2}=$ Src address
Sequence:
Opcode, First Operand,
Second Operand
Note: The blank are not defined.

* 2-byte instruction appears as a

3-byte instruction

Product Specification

Z86C21 CMOS Z8® MICROCONTROLLER

FEATURES

■ 8-bit CMOS microcontroller, 40- or 44-pin package
■ 4.5 to 5.5 Voltage operating range

- Low power Consumption-220 mW (max) @ 16 MHz
- Fast instruction pointer - 1.0 microsecond @ 12 MHz
- Two standby modes - STOP and HALT
- 32 input/output lines
- Full-Duplex UART
- All digital inputs are TTL levels
- Auto Latches

RAM and ROM protect

- 8 Kbytes of ROM
- 236 bytes of RAM
- Two programmable 8 -bit Counter/Timers each with 6 -bit programmable prescaler.
- Six vectored, priority interrupts from eight different sources
- Clock speeds 12 and 16 MHz
- On-Chip oscillator that accepts a crystal, ceramic resonator, LC or external clock drive.

GENERAL DESCRIPTION

The Z86C21 microcontroller introduces a new level of sophistication to single-chip architecture. The Z86C21 is a member of the $Z 8$ single-chip microcontroller family with 8 Kbytes of ROM and 236 bytes of RAM.

The MCU is housed in a 40-pin DIP, 44-pin Leaded ChipCarrier, or a 44-pin Quad Flat Pack, and is manufactured in CMOS technology. The ROMless pin option is available on the 44-pin versions only. Having the ROM/ROMless selectively, the MCU offers both external memory and preprogrammed ROM which enables this $\mathrm{Z8}$ microcontroller to be used in high volume applications or where code flexibility is required.

Zilog's CMOSmicrocontroller offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C21 architecture is characterized by Zilog's 8-bil microcontroller core. The device offers a flexible l/O scheme, an efficient register and address space structure, multiplexed capabilities between address/data, I/O, and a number of ancillary features that are useful in many industrial and advanced scientific applications.

The device applications demand powerful I/O capabilities. The Z86C21 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports. Each port consists of eight lines, and is configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

There are three basic address spaces available to support this wide range of configuration: Program Memory, Data Memory and 236 General-Purpose Registers.

GENERAL DESCRIPTION (Continued)

To unburden the program from coping with the real-time problems such as counting/timing and serial data communication, the Z86C21 offers two on-chip counter/timers with a large number of user selectable modes, and a Asynchronous Receiver/Transmitter (UART-Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/M (WORD is active Low); /B/W (BYTE is active Low, only).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 40-Pin Dual In-Line Plastic Pin Assignments

Table 1. 40-Pin Dual In-Line Plastic Pin Identification

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1	$V_{\text {cc }}$	Power Supply	Input	11	GND	Ground	Input
2	XTAL2	Crystal, Oscillator Clock	Output	12	P32	Port 3 pin 2	Input
3	XTAL1	Crystal, Oscillator Clock	Input	13-20	P00-P07	Port 0 pin 0, 1, 2, 3, 4, 5,6,7	In/Output
4	P37	Port 3 pin 7	Output	21-28	P10-P17	Port 1 pin 0, 1, 2,3,4,5,6,7	In/Output
5	P30	Port 3 pin 0	Input	29	P34	Port 3 pin 4	Output
6	/RESET	Reset	Input	30	P33	Port 3 pin 3	Input
7	R//W	Read/Write	Output	31-38	P20-P27	Port 2 pin 0, 1, 2, 3, 4, 5,6,7	In/Output
8	/DS	Data Strobe	Output	39	P31	Port 3 pin 1	Input
9	/AS	Address Strobe	Output	40	P36	Port 3 pin 6	Output
10	P35	Port 3 pin 5	Output				

PIN DESCRIPTION (Continued)

Figure 3. 44-Pin Plastic Leaded Chip Carrier Pin Assignments

Table 2. 44-Pin Plastic Leaded Chip Carrier Pin Identification

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1	$V_{\text {cc }}$	Power Supply	Input	14-16	P00-P02	Port 0 pin 0,1,2	In/Output
2	XTAL2	Crystal, Oscillator Clock	Output	17	R//RL	ROM/ROMless control	Input
3	XTAL1	Crystal, Oscillator Clock	Input	18-22	P03-P07	Port 0 pin 3, 4, 5,6,7	In/Output
4	P37	Port 3 pin 7	Output	23-27	P10-P14	Port 1 pin 0,1,2,3,4	In/Output
5	P30	Port 3 pin 0	Input	28	N/C	Not Connected	Input
6	N/C	Not Connected	Input	29-31	P15-P17	Port 1 pin 5,6,7	In/Output
7	/RESET	Reset	Input	32	P34	Port 3 pin 4	Output
8	R/W	Read/Write	Output	33	P33	Port 3 pin 3	Input
9	/DS	Data Strobe	Output	34-38	P20-P24	Port 2 pin 0, 1, 2, 3, 4	In/Output
10	IAS	Address Strobe	Output	39	N/C	Not Connected	Input
11	P35	Port 3 pin 5	Output	40-42	P25-P27	Port 2 pin 5,6,7	In/Output
12	GND	Ground	Input	43	P31	Port 3 pin 1	Input
13	P32	Port 3 pin 2	Input	44	P36	Port 3 pin 6	Output

Figure 4. 44-Pin Quad Flat Pack Pin Assignments

Table 3. 44-Pin Quad Flat Pack Pin Identification

Pin \#	Symbol	Function	Direction
1-5	P03-P07	Port 0 pin 3,4,5,6,7	In/Output
6	GND	Ground	Input
$7-14$	P10-P17	Port 1 pin 0,1,2,3,4,5,6,7	In/Output
15	P34	Port 3 pin 4	Output
16	P33	Port 3 pin 3	Input
$17-21$	P20-P24	Port 2 pin 0,1,2,3,4	In/Output
22	GND	Ground	Input
23-25	P25-P27	Port 2 pin 5,6,7	In/Output
26	P31	Port 3 pin 1	Input
27	P36	Port 3 pin 6	Output
28	GND	Ground	Input
29	Vcc	Power Supply	Input
30	XTAL2	Crystal, Oscillator Clock	Output

Pin\#	Symbol	Function	Direction
31	XTAL1	Crystal, Oscillator Clock	Input
32	P37	Port 3 pin 7	Output
33	P30	Port 3 pin 0	Input
34	/RESET	Reset	Input
35	R//W	Read/Write	Output
36	/DS	Data Strobe	Output
37	/AS	Address Strobe	Ouput
38	P35	Port 3 pin 5	Output
39	GND	Ground	Input
40	P32	Port 3 pin 2	Input
$41-43$	POO-P02	Port Opin 0,1,2	In/Output
44	R//RL	ROM/ROMless control	Input

PIN FUNCTIONS

/ROMless. (input, active Low). This pin, when connected to GND, disables the internal ROM and forces the device to function as a Z86C91 ROMless Z8. (Note that, when left unconnected or pulled high to V_{cc}, the part functions as a normal Z86C21 ROM version). This pin is only available on the 44-pin versions of the Z 86 C 21 .
/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/ Write.

XTAL1, XTAL2. Crystal 1, Crystal 2(time-based input and output, respectively). These pins connect a parallelresonant crystal, ceramic resonator, LC, or any external single-phase clock to the on-chip oscillator and buffer.

R/W. (output, write Low). The Read/Write signal is low when the MCU is writing to the external program or data memory.
/RESET. (input, active-Low). To avoid asynchronous and noisy reset problems, the Z86C21 is equipped with a reset filter of four external clocks (4 TpC). If the external /RESET signal is less than 4 TpC in duration, no reset occurs. on the 5th clock after the /RESET is detected, an internal RST
signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is held active low while /AS cycles at a rate of TpC/2. When /RESET is deactivated, program execution begins at location 000C (HEX). Reset time must be held low for 50 mS , or until $V_{c c}$ is stable, whichever is longer.

Port 0. (POO-P07). Port 0 is an 8-bit, nibble programmable, bidirectional, TTL compatible port. These eight I/O lines can be configured under software control as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAVO and RDYO (Data Available and Ready). Handshake signal assignment is dictated by the I/O direction of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble to be under handshake control. For the ROMless option, Porl 0 comes up as A15A8 Address lines after /RESET.

For externalmemory references, Port0 can provide address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 is programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. In ROMless mode, alter a hardware reset, Port 0 lines are defined as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode (Figure 5).

Figure 5. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1. (P10-P17). Port 1 is an 8-bit, byte programmable, bidirectional, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports. For Z86C21, these eight I/O lines can be programmed as Input or Output lines or can be configured under software control as an address/ data port for interfacing external memory. When used as an I/O port, Port 1 can be placed under handshake control. In this configuration, Port 3 line P33 and P34 are used as the handshake controls RDY1 and /DAV1.

Memory locations greater than 8192 are referenced through Port 1. To interface externalmemory, Port 1 is programmed
for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in a high-impedance state along with Port $0, / A S, / D S$ and R//W, allowing the MCU to share common resource in multiprocessor and DMA applications. Data transfers are controlled by assigning P33 as a Bus Acknowledge input, and P34 as a Bus request output (Figure 6).

Figure 6. Port 1 Configuration

Port 2. (P20-P27). Port 2 is an 8-bit, bit programmable, bidirectional, CMOS compatible port. Each of these eight I/O lines can be independently programmed as an input or output or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port,

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake control lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27 (Figure 7).

Figure 7. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3. (P30-P37). Port3 is an 8-bit, CMOS compatible four-fixed-input and four-fixed-output port. These eight I/O lines have four-fixed input (P30-P33) and four fixed output
(P34-P37) ports. Port 3, when used as serial I/O, is programmed as serial in and serial out, respectively (Figure 8 and Table 4).

Figure 8. Port 3 Configuration

Port 3 is configured under software control to provide the following control functions: handshake for Ports 0 and 2 (/DAV and RDY); four external interrupt request signals
(IRQ0-IRQ3); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {our }}$), and Data Memory Select (/DM).

Table 4. Port 3 Pin Assignments

Pin	I/O	CTC1	Int.	P0 HS	P1 HS	P2 HS	UART	Ext
P30	IN		IRQ3				Serial In	
P31	IN	$T_{\text {IN }}$	IRQ2			D/R		
P32	IN		IRQ0	D/R				
P33	IN		IRQ1		D/R			
P34	OUT				R/D			
P35	OUT			R/D		DM		
P36	OUT	$T_{\text {out }}$						
P37	OUT						Serial Out	

Notes:

HS = HANDSHAKE SIGNALS
$D=$ Data Available
R = Ready

Port 3 lines P30 and P37, are be programmed as serial I/O lines for full-duplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by the Counter/Timer 0.

The Z86C21 automatically adds a start bit and two stop bits to transmitted data (Figure 9). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received Data (No Parity)

Received data must have a start bit, 8 data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Auto-Latch. The Auto-Latch puts valid CMOS Ievels on all CMOS inputs that are not externally driven. This reduces excessive supply current flow in the input bulfer when it is not been driven by any source.

Figure 9. Serial Data Formats
option. This option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted. Use of this feature results in:

Low EMI Option. The Z 86 C 21 is available in a low EMI

* Less than 1 mA current consumptions during HALT mode.
(0) The pre-drivers slew rate reduced to 10 ns typical.
(0. Low EMI output drivers have resistance of 200 ohms typical.
- Oscillator divide-by-two circuitry is eliminated.
- Internal SCLK/TCLK operation is limited to a maximum of 4 MHz (250 ns cycle time)

FUNCTIONAL DESCRIPTION

Address Space

Program Memory. The Z86C21 can address up to 56K bytes of external program memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For ROM mode, byte 13 to byte 8191 consists of on-chip ROM. At addresses 8192 and greater, the Z86C21 executes external program memory fetches. In the ROMless mode, the Z86C21 can address up to 64K bytes of external program memory. Program execution begins at external location 000C (HEX) after a reset.

Data Memory (/DM). The ROM version can address up to 56 K bytes of external data memory space beginning at location 8192. The ROMless version can address up to 64 K bytes of external data memory. External data memory can be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 11). The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references DATA (/DM active low) memory.

Figure 11. Data Memory Configuration

Register File. The Register File consists of four I/O port registers, 236 general-purpose registers and 16 control and status registers (Figure 12). The instructions can access registers directly or indirectly via an 8 -bit address field. The Z86C21 also allows short 4-bit register addressing using the Register Pointer (Figure 13). In the 4-bit
mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Note: Register Bank EO-EF can only be accessed through working registers and indirect addressing modes.

Figure 12. Register File

Figure 13. Register Pointer

RAM Protect. The upper portion of the RAM's address spaces 80FH to EFH (excluding the control registers) can be protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user activates from the internal ROM code to turn off/on the RAM Protect by loading a bit D6 in the IMR register to either a 0 or a 1, respectively. A 1 in D6 indicates RAM Protect enabled.

ROM Protect. The first 8 Kbytes of program memory is mask programmable. A ROM protect feature prevent dumping of the ROM contents by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions to Program Memory in all modes.

The ROM Protect option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted.

Stack. The Z86C21 has a 16-bit Stack Pointer (R254R255) used for external stack that resides anywhere in the data memory for the ROMless mode, but only from 8192 to 65535 in the ROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R4-R239). The high byte of the Stack Pointer (SPH-Bit 8-15) is used as a general-purpose register when using internal stack only.

Counter/Timers. There are two 8-bit programmable counter/ timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 14).

The 6-bit prescalers divides the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counter and prescaler reach the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can
also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counter, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3, line"P36, also serves as a timer output ($\mathrm{T}_{\text {our }}$) through which T0, T1 or the internal clock is output. The counter/timers are cascaded by connecting the TO output to the input of T1.

Figure 14. Counter/Timers Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z86C21 has six different interrupts from eight different sources. The interrupts are maskable and. prioritized. The eight sources are divided as follow: four sources are claimed by Port 3, lines P30-P33; one in Serial Out, one in Serial In, and two in the counter/timers (Figure 15). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z86C21 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, save the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initialed interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request must be valid 5 TpC before the falling edge of the last clock cycle of the currently executing instruction.

For the ROMless mode, when the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupt sample point.

Figure 15. Interrupt Block Diagram

Clock. The Z86C21 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2=Output). The crystal should be AT
cut, 1 MHz to 16 MHz max, and series resistance (RS) is less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the recommended capacilors ($10 \mathrm{pF}<\mathrm{CL}<300 \mathrm{pF}$) from each pin to ground (Figure 16).

Figure 16. Oscillator Configuration

HALT. Turns off the internal CPU clock but not the XTAL oscillation. The counter/timers and the external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. The Stop mode is terminated by a reset which causes the processor to restart the application program at address 000C (HEX).

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user musl execute a NOP (opcode=0FFH) immediately before the appropriate sleep instruction. i.e.:

$$
\begin{array}{ll}
\text { FF } & \text { NOP } \\
\text { 6F } & \text {; clear the pipeline } \\
& \text {; enter STOP mode } \\
\text { FF NOP } & \text { or clear the pipeline } \\
\text { 7F HALT } & \text {; enter HALT mode }
\end{array}
$$

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage *	-0.3	+7.0	V
$\mathrm{~T}_{\text {sIG }}$	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp		\dagger	C

Notes:
*Voltages on all pins with respect to GND.
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 17).

Figure 17. Test Load Diagram

DC CHARACTERISTICS

Sym	Parameter	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & T_{A}=-40^{\circ} \mathrm{C} \\ & \text { to } 105^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \text { Typical } \\ \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	Units	Conditions
		Min	Max	Min	Max			
	Max Input Voltage		7		7		V	${ }_{1} 250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {ch }}$	Clock Input High Voltage	3.8	$\mathrm{V}_{\text {cc }}+0.3$	3.8	$\mathrm{V}_{\text {cc }}+0.3$		V	Driven by External Clock Generator
V_{c}	Clock Input Low Vollage	-0.03	0.8	-0.03	0.8		V	Driven by External Clock Generator
$\mathrm{V}_{\text {H }}$	Input High Voltage	2.0	$\mathrm{V}_{\mathrm{cc}}+0.3$	2.0	$\mathrm{V}_{\text {cc }}+0.3$		V	
V_{n}	Input Low Vollage	-0.3	0.8	-0.3	0.8		V	
$\mathrm{V}_{\text {OH }}$	Output High Voltge	2.4		2.4			V	$\mathrm{I}_{\text {OH }}=-2.0 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output High Voltge	$\mathrm{V}_{\mathrm{cc}}-100 \mathrm{mV}$		$\mathrm{V}_{\mathrm{cc}}-100 \mathrm{mV}$			V	$\mathrm{I}_{\text {OHH }}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {a }}$	Output Low Voltage		0.4		0.4		V	$\mathrm{IOt}^{\text {Ot }}=+5.0 \mathrm{~mA}$
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	$\mathrm{Vcc}_{\text {ct }}+0.3$	3.8	$\mathrm{Vcc}_{\text {cc }}+0.3$		V	
V_{RI}	Reset Input Low Voltage	-0.03	0.8	-0.03	0.8		V	
${ }_{11}$	Input Leakage	-2	2	-2	2		$\mu \mathrm{A}$	$V_{\text {IW }}=0 V^{\text {, }} \mathrm{V}_{\text {cc }}$
$\mathrm{I}_{\text {a }}$	Output Leakage	-2	2	-2	2		$\mu \mathrm{A}$	$V_{\text {w }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$
$I_{\text {cc }}$	Reset Input Current Supply Current		-80		-80		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$
			30		30	20	mA	[1] @ 12 MHz
			35		35	24	mA	[1]@16 MHz
$\mathrm{Icc1}$	Standby Current		6.5		6.5	4	mA	[1] HALT Mode $\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$ @ 12 MHz
			7.0		7.0	4.5	mA	[1] HALT Mode $\mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$ Q 16 MHz
$\mathrm{I}_{\mathrm{Cc} 2}$	Standby Current		10		20	5	$\mu \mathrm{A}$	$[1,2]$ STOP Mode $\mathrm{V}_{\text {w }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$

Notes:

[1] All inputs driven to either $O V$ or $V_{c c}$, outputs floating.
[2] $\mathrm{I}_{\mathrm{cc} 2}$ requires loading TMR $(\% \mathrm{~F} 1 \mathrm{H})$ with any value prior to STOP execution.
Use this sequence:
LD TMR,\#00
NOP
STOP

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Diagram

Figure 18. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Table

No	Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 12 \mathrm{MHz} \quad 16 \mathrm{MHz} \end{gathered}$				$\begin{array}{ll} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ 12 \mathrm{MHz} \quad 16 \mathrm{MHz} \end{array}$				Units	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TdA(AS)	Address Valid to /AS Rise Delay	35		25		35		25		nS	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	45		35		45		35		ns	$[2,3]$
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid		250		180		250		180	ns	[1,2,3]
4	TwAS	/AS Low Width	55		40		55		40		ns	[2,3]
5	TdAZ(DS)	Address Float to /DS Fall	0		0		0		0		ns	
6	TwDSR	/DS (Read) Low Width	185		135		185		135		ns	[1,2,3]
7	TwDSW	/DS (Write) Low Width	110		80		110		80		ns	[1,2,3]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid		130		75		130		75	ns	[1,2,3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	0		0		0		0		ns	[2,3]
10	TdDS(A)	/DS Rise to Address Active Delay	65		50		65		50		ns	[2,3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	45		35		45		35		nS	[2,3]
12	TdR/W(AS)	R//W Valid to /AS Rise Delay	30		20		33		25		ns	[2,3]
13	TdDS(R/W)	/DS Rise to R//W Not Valid	50		35		50		35		ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	35		25		35		25		ns	[2,3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	55		35		55		35		ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid		310		230		310		230	ns	[1,2,3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	65		45		65		45		ns	[2,3]
18	TdDI(DS)	Data Input Setup to /DS Rise	75		60		75		60		ns	$[1,2,3]$
19	TdDM(AS)	/DM Valid to /AS Rise Delay	50		30		50		30		ns	[2,3]

Notes:

[1] When using extended memory timing add 2 TpC.
[2] Timing numbers given are for minimum TpC.
[3] See clock cycle dependent characteristics table.
Standard Test Load
All timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .

Clock Dependent Formulas

Number	Symbol	Equation
1	TdA(AS)	$0.401 \mathrm{pC}+0.32$
2	TdAS(A)	0.591pC-3.2.5
3	TdAS(DR)	$2.38 \mathrm{TpC}+6.14$
4	TwAS	$0.66 \mathrm{TpC}-1.65$
6	TwDSR	$2.331 \mathrm{pC}-10.56$
7	TwDSW	$1.27 \mathrm{IpC}+1.67$
8	TdDSR(DR)	1.97TpC - 42.5
10	$\operatorname{TdDS}(\mathrm{A})$	0.81pC
11	TdDS(AS)	0.591pC - 3.14
12	TdR/W(AS)	0.4TpC
13	TdDS(R/W)	0.8TpC-15
14	TdDW(DSW)	$0.4 T \mathrm{Tc}$
15	TdDS(DW)	0.88TpC - 19
16	TdA(DR)	$4 \mathrm{TpC}-20$
17	TdAS(DS)	0.91 TpC - 10.7
18	TsDI(DS)	$0.8 \mathrm{TpC}-10$
19	TdDM(AS)	0.9TpC-26.3

AC CHARACTERISTICS

Additional Timing Diagram

Figure 19. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\begin{aligned} & \begin{array}{l} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 12 \mathrm{MHz} \\ 16 \mathrm{MHz} \end{array} \end{aligned}$				$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } & 105^{\circ} \mathrm{C} \\ 12 \mathrm{MHz} & 16 \mathrm{MHz} \end{array}$				Units	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	83	1000	62.5	1000	83	1000	62.5	1000	nS	[1]
2	TrC,TfC	Clock Input Rise \& Fall Times		15		10		15		10	ns	[1]
3	TwC	Input Clock Width	35		25		35		25		ns	[1]
4	TwTinL	Timer Input Low Width	75		75		75		75		ns	[2]
5	TwTinH	Timer Input High Width	3 TpC		3 TpC		3 TpC		3 TpC			[2]
6	TpTin	Timer Input Period	8TpC		8 TpC		8 TpC		8 T ¢C			[2]
7	TrTin,Tftin	Timer Input Rise \& Fall Times	100		100		100		100		ns	[2]
8A	TwIL	Interrupt Request Input Low Times	70		70		70		50		ns	[2,4]
8B	TwIL	Interrupt Request Input Low Times	3TpC		3 TpC		3 TpC		3 TpC			[2,5]
9	TwIH	Interrupt Request Input High Times	3 TpC		3 TpC		3 TpC		3 TpC			[2,3]

Notes:

[1] Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0 .
[2] Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .
[3] Interrupt references request via Port 3.
[4] Interrupt request via Port 3 (P31-P33).
[5] Interrupt request via Port 30.

AC CHARACTERISTICS

Handshake Timing Diagrams

Figure 20. Input Handshake Timing

Figure 21. Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				$\begin{gathered} \text { Notes } \\ \text { Data } \\ \text { Direction } \end{gathered}$
			$\begin{gathered} 121 \\ \operatorname{Min} \end{gathered}$	Max	16 $M i n$	Max	Min	$\begin{array}{ll} 1 H z \\ \text { Max } \end{array}$	16 M	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		0		0		IN
2	ThDI(DAV)	Data In Hold Time	145		145		145		145		IN
3	TwDAV	Data Available Widh	110		110		110		110		\mathbb{N}
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay		115		115		115		115	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay		115		115		115		115	IN
6	TdD0(DAV)	RDY Rise to DAV Fall Delay	0		0		0		0		\mathbb{N}
7	TcLDAVo(RDY)	Data Out to DAV Fall Delay		TpC		TpC		TpC		TpC	OUT
8	TcLDAVo(RDY)	DAV Fall to RDY Fall Delay	0		0		0		0		OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay		115		115		115		115	OUT
10	TwRDY	RDY Width	110		110		110		110		OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay		115		115		115		115	OUT

Z8 CONTROL REGISTER DIAGRAMS

Figure 22. Serial I/O Register (FOH: Read/Write)

Figure 23. Timer Mode Register (F1H: Read/Write)

R243 PRE1

Figure 25. Prescaler 1 Register (F3H: Write Only)

Figure 26. Counter/Timer 0 Register (F4H: Read/Write)

Figure 27. Prescaler 0 Register (F5H: Write Only)

Figure 24. Counter/Timer 1 Register (F2H: Read/Write)

R246 P2M

P20-P27 I/O Definition 0 Defines BIt as Output 1 Defines Bit as Input

Figure 28. Port 2 Mode Register (F6H: Write Only)

R247 P3M

Figure 29. Port 3 Mode Register (F7H: Write Only)

R248 P01M

Figure 30. Port 0 and 1 Mode Register (F8H: Write Only)

R249 IPR

Figure 31. Interrupt Priority Register (F9H: Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 32. Interrupt Request Register (FAH: Read/Write)

Figure 33. Interrupt Mask Register (FBH: Read/Write)

R252 FLAGS

Figure 34. Flag Register (FCH: Read/Write)

R253 RP

Figure 35. Register Pointer Register (FDH: Read/Write)

Figure 36. Stack Pointer Register (FEH: Read/Write)

R255 SPL

Figure 37. Stack Pointer Register (FFH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address r
Wrarking-register address only	
IR	Indirect-register or indirect
Ir	Indirect working-register address only RR
	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
$d s t$	Destination location or contents
src	Source location or contents
cc	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjus flag
H	Half-carry flag
Affected flages are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
\times	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(S \times O R V)=1$
1010	GT	Greater Than	$[Z$ OR (S XOR V $)$] $=0$
0010	LE	Less Than or Equal	$[Z O R(S X O R ~ V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C O R Z)=1$
0000		Never True	

INSTRUCTION FORMATS
CCF, DI, EI, IRET, NOP, RCF, RET, SCF

dst	OPC

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol
$" \leftarrow$ ". For example:
$\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}$
indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

INSTRUCTION SUMMARY (Continued)

Lower Nibble (Hex)

Z86E21 CMOS Z8® OTP MICROCONTROLLER

FEATURES

- 8 -bit CMOS microcontroller, 40 - or 44 -pin package
- 4.5 to 5.5 Voltage operating range

Low Power consumption - 275 mW (max)
■ Fast instruction pointer - 1.0 microseconds @ 12 MHz
■ Two standby modes - STOP and HALT

- 32 input/output lines
- Full-Duplex UART
- All digital inputs are TTL levels
- Auto latches

■ High voltage protection on high voltage inputs

- RAM and EPROM protect
- 8 Kbytes of EPROM
- 256 bytes of RAM (236 for general purpose)
- Two programmable 8 -bit Counter/Timers each with 6 -bit programmable prescaler.
- Six vectored, priority interrupts from eight different sources.
- Clock speeds 12 and 16 MHz
- On-chip oscillator that accepts a crystal, ceramic resonator, LC or external clock drive.

GENERAL DESCRIPTION

The Z86E21 microcontroller (MCU) introduces the next level of sophistication to single-chip architecture. The Z86E21 is a member of the Z8 single-chip microcontroller family with 8 Kbytes of EPROM and 236 bytes of general purpose RAM.

The Z86E21 is a pin compatible, One-Time-Programmable (OTP) version of the Z86C21. The Z86E21 contains 8 Kbytes of EPROM memory in place of the 8 Kbyte of ROM on the Z86C21.

The MCU is housed in a 40-pin DIP, 44-pin Leaded ChipCarrier, or a 44-pin Quad Flat Pack, and is manufactured in CMOS technology. The ROMless pin option is available on the 44-pin versions only. The MCU can address both external memory and preprogrammed ROM which enables this $Z 8$ microcomputer to be used in high volume applications or where code flexibility is required.

Zilog's CMOS microcontroller offers fast execution, efficientuse of memory, sophisticated interrupts, input/output
bit manipulation capabilities, and easy hardware/soflware system expansion along with low cost and low power consumption.

The Z86E21 architecture is based on Zilog's 8-bit microcontroller core. The device offers a flexible I/O scheme, an efficient register and address space structure, multiplexed capabilities between address/data, I/O, and a number of ancillary features that are usefulin many industrial and advanced scientific applications.

The device applications demand powerfull/O capabilities. The Z86E21 fulfills this with 32-pin dedicated to input and output. These lines are grouped into four ports. Each port consists of eight lines, and is configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/dala bus for interfacing external memory.

GENERAL DESCRIPTION (Continued)

There are three basic address spaces available to support this wide range of configuration: Program Memory, Data Memory and 236 General-Purpose registers.

To unburden the program from coping with real-time problems such as counting/timing and serial data communication, the Z86E21 offers two on-chip counter/timers
with a large number of user selectable modes, and an asynchronous receiver/transmitter (UART) (Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B / W (WORD is active Low); /B/W (BYTE is active Low, only); /N//S (NORMAL and SYSTEM are both active Low).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Standard Mode

Figure 2. 40-Pin Dual-In-Line Pin Assignments

Table 1. 40-Pin Dual-In-Line Pin Identification (Standard Mode)

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1	$V_{\text {cc }}$	Power Supply	Input	11	GND	Ground, GND	Input
2	XTAL1	Crystal, Oscillator Clock	Output	12	P32	Port 3 pin 2	Input
3	XTAL2	Crystal, Oscillator Clock	Input	13-20	P00-P07	Port 0 pin 0, 1, , , 3, 4, 5,6,7	In/Oulput
4	P37	Port 3 pin 7	Output	21-28	P10-P17	Port 1 pin 0, 1, 2, 3, 4, 5,6,7	In/Output
5	P30	Port 3 pin 0	Input	29	P34	Port 3 pin 4	Output
6	/RESET	Reset	Input	30	P33	Port 3 pin 3	Input
7	R/W	Read/Write	Output	31-38	P20-P27	Port 2 pin 0, 1, 2, 3, 4, 5,6,7	In/Output
8	/DS	Data Strobe	Output	39	P31	Port 3 pin 1	Input
9	IAS	Address Strobe	Output	40	P36	Port 3 pin 6	Output
10	P35	Port 3 pin 5	Output				

PIN DESCRIPTION (Continued)

Standard Mode

Figure 3. 44-Pin Leaded Chip Carrier Pin Assignments

Table 2. 44-Pin Leaded Chip Carrier Pin Identification (Standard Mode)

Pin \#	Symbol	Function	Direction
1	V $_{\text {cc }}$	Power Supply	Input
2	XTAL1	Crystal, Oscillator Clock	Output
3	XTAL2	Crystal, Oscillator Clock	Input
4	P37	Port 3 pin 7	Output
5	P30	Port 3 pin 0	Input
6	N/C	Not Connected	Input
7	IRESET	Reset	Input
8	R//W	Read/Write	Output
9	IDS	Data Strobe	Output
10	IAS	Address Strobe	Output
11	P35	Port 3 pin 5	Output
12	GND	Ground, GND	Input
13	P32	Port 3 pin 2	Input

Pin \#	Symbol	Function	Direction
$14-16$	PO0-P02	Port 0 pin 0,1,2	In/Output
17	R//RL	ROM/ROMless control	Input
$18-22$	P03-P07	Port 0 pin 3,4,5,6,7	In/Output
$23-27$	P10-P14	Port 1 pin 0,1,2,3,4	In/Output
28	N/C	Not Connected	Input
$29-31$	P15-P17	Port 1 pin 5,6,7	In/Output
32	P34	Port 3 pin 4	Output
33	P33	Port 3 pin 3	Input
$34-38$	P20-P24	Port 2 pin 0,1,2,3,4	In/Output
39	N/C	Not Connected	Input
$40-42$	P25-P27	Port 2 pin 5,6,7	In/Output
43	P31	Port 3 pin 1	Input
44	P36	Port 3 pin 6	Output

Figure 4. 44-Pin Quad Flat Pack Pin Assignments

Table 3. 44-Pin Quad Flat Pack Pin Identification (Standard Mode)

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1-5	P03-P07	Port 0 pin 3,4,5,6,7	In/Output	31	XTAL2	Crystal, Oscillator Clock	Input
6	GND	Ground, GND	Input	32	P37	Port 3 pin 7	Output
7-14	P10-P17	Port 1 pin 0, 1, 2, 3, 4, 5,6,7	In/Output	33	P30	Port 3 pin 0	Input
15	P34	Port 3 pin 4	Output	34	/RESET	Reset	Input
16	P33	Port 3 pin 3	Input	35	R//W	Read/Write	Output
17-21	P20-P24	Port 2 pin 0, 1, 2, 3, 4	In/Output	36	/DS	Data Strobe	Output
22	GND	Ground, GND	Input	37	IAS	Address Strobe	Output
23-25	P25-P27	Port 2 pin 5,6,7	In/Output	38	P35	Port 3 pin 5	Output
26	P31	Port 3 pin 1	Input	39	GND	Ground, GND	Input
27	P36	Port 3 pin 6	Output	40	P32	Port 3 pin 2	Input
28	GND	Ground, GND	Input	41-43	P00-P02	Port 0 pin 0,1,2	In/Output
29	$\mathrm{V}_{\text {cc }}$	Power Supply	Input	44	R//RL	ROM/ROMless control	Input
30	XTAL1	Crystal, Oscillator Clock	Output				

PIN DESCRIPTION (Continued)

EPROM Mode

Figure 5. 40-Pin Dual-In-Line Pin Assignments

Table 4. 40-Pin Dual-In-Line Pin Identification (EPROM Mode)

Pin \#	Symbol	Function	Direction
1	V $_{\text {cC }}$	Power Supply	Input
2	N/C	Not Connected	Input
3	XTAL1	Crystal, Oscillator Clock	Input
4	N/C	Not Connected	Input
5	ICE	Chip Enable	Input
6	IRESET	Reset	Input
$7-10$	N/C	Not Connected	Input
11	GND	Ground, GND	Input
12	EPM	EPROM Prog Mode	Input

Pin \#	Symbol	Function	Direction
$13-20$	AO-A7	Address 0,1,2,3,4,5,6,7	Input
$21-28$	DO-D7	Data 0,1,2,3,4,5,6,7	In/Output
29	N/C	Not Connected	Input
30	$V_{\text {PP }}$	Prog Voltage	Input
$31-35$	A8-A12	Address 8,9,10,11,12	Input
$36-37$	N/C	Not Connected	Input
38	/PGM	Prog Mode	Input
39	IOE	Output Enable	Input
40	N/C	Not Connected	Input

Figure 6. 44-Pin Leaded Chip Carrier Pin Assignments

Table 5. 44-Pin Leaded Chip Carrier Pin Identification (EPROM Mode)

Pin \#	Symbol	Function	Direction
1	V $_{\text {cC }}$	Power Supply	Input
2	N/C	Not Connected	Input
3	XTAL1	Crystal, Oscillator Clock	Input
4	N/C	Not Connected	Input
5	ICE	Chip Enable	Input
6	N/C	Not Connected	Input
7	/RESET	Reset	Input
$8-11$	N/C	Not Connected	Input
12	GND	Ground, GND	Input
13	EPM	EPROM Prog Mode	Input
$14-16$	AO-A2	Address 0,1,2	Input
17	N/C	Not Connected	Input

Pin \#	Symbol	Function	Direction
$18-22$	A3-A7	Address 3,4,5,6,7	Input
$23-27$	DO-D4	Data 0,1,2,3,4	In/Output
28	N/C	Not Connected	Input
$29-31$	D5-D7	Data 5,6,7	In/Output
32	N/C	Not Connected	Input
33	$V_{\text {Pp }}$	Prog Voltage	Input
$34-38$	A8-A12	Address 8,9,10,11,12	Input
$39-41$	N/C	Not Connected	Input
42	/PGM	Prog Mode	Input
43	/OE	Output Enable	Input
44	N/C	Not Connected	Input

PIN DESCRIPTION (Continued)

EPROM Mode

Figure 7. 44-Pin Quad Flat Pack Pin Assignments

Table 6. 44-Pin Quad Flat Pack Pin Identification (EPROM Mode)

Pin \#	Symbol	Function	Direction
$1-5$	A3-A7	Address 3,4,5,6,7	Input
$6-10$	DO-D4	Data 0,1,2,3,4	In/Output
11	N/C	Not Connected	Input
$12-14$	D5-D7	Data 5,6,7	In/Output
15	N/C	Not Connected	Input
16	$\mathrm{~V}_{\text {pp }}$	Prog Voltage	Input
$17-21$	A8-A12	Address 8,9,10,11,12	Input
$22-24$	N/C	Not Connected	Input
25	/PGM	Prog Mode	Input
26	/OE	Output Enable	Input
27	N/C	Not Connected	Input
28	V $_{\text {cc }}$	Power Supply	Input

Pin \#	Symbol	Function	Direction
29	N/C	Not Connected	Input
30	XTAL1	Crystal, Oscillator Clock	Input
31	N/C	Not Connected	Input
32	/CE	Chip Enable	Input
33	N/C	Not Connected	Input
34	IRESET	Reset	Input
$35-38$	N/C	Not Connected	Input
39	GND	Ground, GND	Input
40	EPM	EPROM Prog Mode	Input
$41-43$	AO-A2	Address 0,1,2	Input
44	N/C	Not Connected	Input

PIN FUNCTIONS

ROMless. (input, active Low). This pin when connected to GND disables the internal ROM and forces the device to function as a Z86C91 ROMless Z8 (note that, when left unconnected or pulled high to Vcc , the part will function as a normal Z86E21 EPROM version). This pin is only available on the 44-pin version of the Z86E21.
/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-based input and output, respectively). These pins connect a parallel-resonant crystal, ceramic resonator, LC, or any external singlephase clock to the on-chip oscillator and buffer.

R/W. (output, write Low). The Read/Write signal is low when the MCU is writing to the external program or data memory.
/RESET. (input, active-Low). To avoid asynchronous and noisy reset problems, the Z86E21 is equipped with a reset filter of four external clocks (4TpC). If the external /RESET signal is less than 4 TpC in duration, no reset occurs.

On the 5th clock after the /RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is held active low while /AS cycles at a rate of $\mathrm{TpC} / 2$. When /RESET is deactivated, program execution begins at location 000C (HEX). Reset time must be held low for 50 mS , or until Vcc is stable, whichever is longer.

Port 0 P00-P07. Port 0 is an 8 -bit, nibble programmable, bidirectional, TTL compatible port. These eight I/O lines can be configured under software control as a nibble I/O
port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAV0 and RDYO (Data Available and Ready). Handshake signal assignment is dictated by the I/O direction of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble to be under handshake control. For the ROMless option, Port 0 comes up as A15A8 Address lines after /RESET.

For external memory references, Port 0 can provide address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibbles) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for l/O operation, they must be configured by writing to the Port 0 Mode register. In ROMless mode, after a hardware reset, Port 0 lines are defined as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode (Figure 8).

Port 1 P10-P17. Port 1 is an 8-bit, byte programmable, bidirectional, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports. For Z86E21, these eight I/O lines can be programmed as Input or Output lines or are configured under software control as an address/ data port for interfacing external memory. When used as an I/O port, Port 1 can be placed under handshake control. In this configuration, Port 3 lines, P33 and P34, are used as the handshake controls RDY1 and/DAV1.

Memory locations greater than 8192are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in high-impedance state along with Port 0, /AS, /DS and R//W, allowing the MCU to share common resources in multiprocessor and DMA applications. Data transfers are controlled by assigning P33 as a Bus Acknowledge input, and P34 as a Bus request output (Figure 9).

PIN FUNCTIONS (Continued)

Figure 8. Port 0 Configuration

Figure 9. Port 1 Configuration

PIN FUNCTIONS (Continued)

Port 2 P20-P27. Port 2 is an 8-bit, bit programmable, bidirectional, CMOS compatible port. Each of these eight I/O lines can be independently programmed as an input or output, or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port 2 can be placed under handshake control. In this
configuration, Port 3 lines P31 and P36 are used as the handshake control lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines, P31 and P36, is dictated by the direction (input or output) assigned to P27 (Figure 10 and Table 7).

Figure 10. Port 2 Configuration

Port 3 P30-P37. Port 3 is an 8 -bit, CMOS compatible four fixed input and four fixed output port. These 8 I/O lines have four-fixed (P33-P30) input and four fixed (P37-P34)
output ports. Port 3, when used as serial $1 / O$, is programmed as serial in and serial out, respectively (Figure 11).

Figure 11. Port 3 Configuration

Port 3 is configured under software control to provide the following control functions: handshake for Ports 0 and 2 (/DAV and RDY); four external interrupt request signals
(IRQ0-IRQ3); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {our }}$), Data Memory Select (/DM) and EPROM control signals ($\mathrm{P} 30=/ \mathrm{CE}, \mathrm{P} 31=/ \mathrm{OE}, \mathrm{P} 32=E \mathrm{PM}$ and $\mathrm{P} 33=\mathrm{V}_{\mathrm{Pp}}$).

Table 7. Port 3 Pin Assignments

Pin	I/O	CTC1	Int.	P0 HS	P1 HS	P2 HS	UART	Ext	EPROM
P30	\mathbb{N}		IRQ3				Serial In		CE
P31	\mathbb{N}	$T_{\text {IN }}$	IRQ2			D/R			OE
P32	\mathbb{N}		IRQ0	D/R					EPM
P33	\mathbb{N}		IRQ1		D/R			$V_{\text {PP }}$	
P34	OUT				R/D			DM	
P35	OUT			R/D		R/D			
P36	OUT	$T_{\text {out }}$				R/D		Serial Out	
P37	OUT								

Notes:
HS = Handshake Signals
$D=$ Data Available
$R=$ Ready

PIN FUNCTIONS (Continued)

Port 3 lines P30 and P37, are programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/ Timer 0.

The Z86E21 automatically adds a start bit and two stop bits to transmitted data (Figure 12). Odd parity is also available as an option. Eight data bits are always transmit-
ted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, 8 data bits, and at least one stop bit. If parity is on, bit-7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Received Data (With Parity)

Figure 12. Serial Data Formats

Auto-Latch. The auto-latch puts valid CMOS levels on all CMOS inputs that are not externally driven. This reduces excessive supply current flow in the input buffer when it is not driven by any source.

Note:P30-P33 inputs differ from the Z86C21 because there is no clamping diode to $V_{c c}$ due to the EPROM high voltage detection circuits. Exceeding the $V_{1 H}$ maximum specification during standard operating mode may cause the device to enter EPROM mode

ADDRESS SPACE

Program Memory. The Z86E21 can address 56 Kbytes of external program memory (Figure 13). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For EPROM mode, byte 13
to byte 8191 consists of on-chip EPROM. At addresses 8192 and above, the Z86E21 executes external program memory fetches. In ROMless mode, the Z86E21 can address up to 64 K bytes of program memory. Program execution begins at external location 000C (HEX) after a reset.

Figure 13. Program Memory Configuration

Data Memory (/DM). The EPROM version can address up to 56 Kbytes of external data memory space beginning at location 8192. The ROMless version can address up to 64 Kbytes of external data memory. External data memory may be included with, or separated from, the external program memory space./DM, an optional //O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 14). The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references DATA (/DM active low) memory.

Register File. The Register File consists of four I/O port registers, 236 general-purpose registers and 16 control and status registers (Figure 15). The instructions can
access registers directly or indirectly via an 8-bit address field. The Z86E21 also allows short 4-bit register addressing using the Register Pointer (Figure 16). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Stack. The Z86E21 has a 16 -bit Stack Pointer (R254-R255) used for external stacks that reside anywhere in the data memory for the ROMless mode, but only from 8192 to 65535 in the EPROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R4-R239). The high byte of the Stack Pointer (SPH Bits 8-15) can be use as a general purpose register when using internal stack only.

Figure 14. Data Memory Configuration

ADDRESS SPACE (Continued)

LOCATION		IDENTIFIERSSPL
255	Stack Pointer (Bits 7-0)	
254	Stack Pointer (Bits 15-8)	SPH
253	Register Pointer	RP
252	Program Control Flags	FLAGS
251	Interrupt Mask Register	IMR
250	Interrupt Request Register	IRQ
249	Interrupt Priority Register	IPR
248	Ports 0-1 Mode	P01M
247	Port 3 Mode	P3M
246	Port 2 Mode	P2M
245	TO Prescaler	PREO
244	Timer/Counter 0	T0
243	T1 Prescaler	PRE1
242	Timer/Counter 1	T1
241	Timer Mode	TMR
240	Serial I/O	SIO
239		
	General-Purpose Registers	
4		P3
3	Port 3	
2	Port 2	P2
1	Port1	P1
0	Port 0	PO

Figure 15. Register File

Figure 16. Register Pointer

FUNCTIONAL DESCRIPTION

Counter/Timers. There are two8-bit programmable counter/ timers (TO-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 17).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counters and prescalers reach the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter is programmed to start, stop, restart to continue, or restart from the initial value. The counters can also
be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counter, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 also serves as a timer output ($\mathrm{T}_{\text {our }}$) through which T0, $\mathrm{T1}$, or the internal clock can be output. The counter/timers are cascaded by connecting the TO output to the input of T1.

Figure 17. Counter/Timers Block Diagram

Interrupts. The Z86E21 has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The 8 sources are divided as follows: four sources are claimed by Port 3 lines P30-P33, one in Serial Out, one in Serial In, and two in the counter/timers (Figure 18). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z86E21 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initialed interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request must be valid 5 TpC before the falling edge of the last clock cycle of the currently executing instruction.

For the ROMless mode, when the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupt sample point.

Figure 18. Interrupt Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Clock. The Z86E21 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1=Input, XTAL2=Output). The crystal should be AT cut, 1 MHz to 16 MHz max; series resistance (RS) is less
than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors ($10 \mathrm{pF}<\mathrm{CL}<100 \mathrm{pF}$) from each pin to ground (Figure 19).

Figure 19. Oscillator Configuration

HALT. Turns off the internal CPU clock but not the XTAL oscillation. The counter/timers and external interrupts IRQO, IRQ1, IRQ2 and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation, and reduces the standby current to 10 microamperes or less. The Stop mode is terminated by a reset, which cause the processor to restart the application program at address 000C (HEX).

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=OFFH) immediately before the appropriate sleep instruction. i.e.:
$\begin{array}{ll}\text { FF NOP } & \text {; clear the pipeline } \\ 6 F \text { STOP } & \text {; enter STOP mode } \\ \text { or } & \\ \text { FF NOP } & \text {; clear the pipeline } \\ \text { 7F HALT } & \text {; enter HALT mode }\end{array}$

PROGRAMMING

Z86E21 User Modes

The Z86E21 uses separate AC timing cycles for the different User Modes available. Table 8 shows the Z86E21 User Modes. Table 9 shows the timing of the programming waveforms.

User MODE 1 EPROM Read

The Z86E21EPROM read cycle is provided so that the user may read the Z86E21 as a standard 2764A EPROM. This is accomplished by driving the /EPM pin (P32) to V_{H} and activating /CE and /OE. /PGM remains inactive. This mode is not valid after execution of an EPROM protect cycle. Timing for the EPROM read cycle is shown in Figure 20.

User MODE 2 EPROM Program

The Z86E21 Program function conforms to the Intelligent programming algorithm. The device is programmed with $V_{c c}$ at 6.0 V and $V_{p p}=12.5 \mathrm{~V}$. Programming pulses are applied in 1 msec increments to a maximum of 25 pulses before proper verification. After verification, a programming pulse of three times the duration of the cycles necessary to program the device is issued to insure proper programming. After all addresses are programmed, a final data comparison is executed and the programming cycle is complete. Timing for the Z86E21 programming cycle is shown in Figure 21.

User MODE 3 EPROM Verify

The Program Verify cycle is used as part of the Intelligent programming algorithm to insure data integrity under worst-case conditions. It differs from the EPROM read cycle in that V_{pp} is active and V_{cc} must be driven to 6.0 V . Timing is shown in Figure 21.

User MODES 4 AND 5 EPROM and RAM Protect

To extend program security, EPROM and RAM protect cycles are provided for the Z86E21. Execution of the EPROM protect cycle prohibits proper execution of the EPROM Read, EPROM Verify, and EPROM programming cycles. Execution of the RAM protect cycle disables accesses to the upper 128 bytes of registermemory (excluding mode and configuration registers), but first the user's program must set bit-6 of the IMR (R251). Timing is shown in Figure 22.

User MODE 6 4K/8K Size Selection

The Z86E21 allows the user to select the internal ROM size. This feature is useful in thatonce programmed, the Z86E21 knows at which address boundary to "go external." the Z8 distinguishes internal and external fetches using the data strobe (/DS). If programmed for 4 K ROM, tetch cycles include /DS beginning at location 4096 (indicating an external memory fetch). If programmed for 8K ROM, /DS remains inactive until location 8192 is reached. Once the 4 K ROM size option is selected, the upper 4 K of address space is unusable in the Z86E21.

The timing of the $4 \mathrm{~K} / 8 \mathrm{~K}$ size selection cycle is similar to the EPROM and RAM protect cycles. Note that the $4 \mathrm{~K} / 8 \mathrm{~K}$ size selection cycle requires that address 03 be indicated on the address bus during execution. Timing is shown in Figure 22.

Table 8. OTP Programming Table

Mode	$V_{\text {PP }}$	EPM	CE	OE	PGM	V_{cc}	ADDR	Data
1. EPROM Read	X	V_{H}	$V_{\text {IL }}$	V_{IL}	$\mathrm{V}_{1 H}$	5.0	ADDR	DATA OUT
2. Program	$V_{\text {PP }}$	${ }^{\text {H }}$	V_{IL}	V_{H}	V_{HL}	6.0	ADDR	DATA IN
3. Program Verify	$V_{P P}$	X	$V_{\text {ILI }}$	$V_{\text {IL }}$	V_{IH}	6.0	ADDR	DATA OUI
4. EPROM Protect	$V_{\text {Pp }}$	V_{H}	V_{H}	V_{IH}		6.0	x	x
5. RAM Protect	$V_{p p}$	X	V_{H}	V_{IH}	$\mathrm{V}_{\text {IL }}$	6.0	x	x
6. $4 \mathrm{~K} / 8 \mathrm{~K}$ Size Selection*	$V_{P P}$	V_{H}	V_{H}	V_{H}	$V_{\text {IL }}$	6.0	03	X

Notes:

$V_{\text {PP }}=12.5 \pm 0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{cc}}^{\mathrm{P}}=6.0$ during programming
$V_{H}=12.5 \pm 0.5 \mathrm{~V}$
$\mathrm{X}=\mathrm{irrelevant}$
$\mathrm{V}_{\mathrm{H}}=5.0 \mathrm{~V}$
$V_{\mathrm{n}}=0 \mathrm{~V}$

* If not programmed, the EPROM size is 8 K .

PROGRAMMING (Continued)
Table 9. Timing of Programming Waveforms

Parameters	Name	Min	Max	Units
1	Address Setup Time	2		$\mu \mathrm{S}$
2	Data Setup Time	2.		$\mu \mathrm{s}$
3	$V_{\text {pp }}$ Setup	2		$\mu \mathrm{S}$
4	$V_{\text {cc }}$ Setup Time	2		$\mu \mathrm{S}$
5	Chip Enable Setup Timė	2		$\mu \mathrm{S}$
6	Program Pulse Width	0.95	1.05	ms
7	Data Hold Time	2		$\mu \mathrm{s}$
8	/OE Setup Time	2		$\mu \mathrm{S}$
9	Data Access Time		200	ns
10	Data Output Float Time		100	ns
11	Overprogram Pulse Width	2.85	78.75	ms
12	EPM Setup Time	2		$\mu \mathrm{S}$
13	/OE Setup Time	2		$\mu \mathrm{S}$
14	Address to /OE Setup Time	2		$\mu \mathrm{S}$
15	Option Program Pulse Width		78.75	ms

Figure 20. Programming Waveform (User Mode 1)

Figure 21. Programming Waveform (User Mode 2, 3)

PROGRAMMING (Continued)

Figure 22. Programming Waveform (User Mode 4,5,6)

Figure 23. Z86E21 Z8 OTP Programming Adapter

PROGRAMMING (Continued)

Figure 24. Intelligent Programming Flowchart

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V_{cc}	Supply Voltage *	-0.3	+7.0	V
$\mathrm{~T}_{\text {sTG }}$	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp		+	C

Notes:

* Voltages on all pins with respect to GND. 13.0 V Maximum on P30-P33.
\dagger See Ordering Information

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 25).

Figure 25. Test Load Diagram

DC CHARACTERISTICS

Sym	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \mathrm{t} 0105^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \text { Typical } \\ \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	Units	Conditions
		Min	Max	Min	Max			
$\mathrm{V}_{\text {ch }}$	Max Input Voltage Max Input Voltage Clock Input High Voltage Clock Input Low Voltage		7		7		V	$\mathrm{I}_{\mathrm{m}} 250 \mathrm{\mu} \mathrm{~A}$
			13		13		V	P30-P33 Only
		3.8	V_{cc}	3.8	V_{cc}		V	Driven by External Clock Generator
		-0.03	0.8	-0.03	0.8		V	Driven by External Clock Generator
$\begin{aligned} & V_{\mathrm{H}} \\ & V_{\mathrm{VL}} \\ & V_{\mathrm{oH}} \\ & V_{o d} \end{aligned}$	Input High Voltage Input Low Voltage Output High Voltage Output Low Voltage	2.0	V_{cc}	2.0	V_{cc}		V	
		-0.3	0.8	-0.3	0.8		V	
		2.4		2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
			0.4		0.4		V	$\mathrm{l}_{\text {a }}=+2.0 \mathrm{~mA}$
$\begin{aligned} & \mathrm{V}_{\mathrm{RH}} \\ & \mathrm{~V}_{\mathrm{RI}} \\ & \mathrm{In}_{\mathrm{IL}} \end{aligned}$	Reset Input High Voltage Reset Input Low Voltage Input Leakage Output Leakage	3.8	V_{cc}	3.8	$\mathrm{V}_{\text {cc }}$		V	
		-0.03	0.8	-0.03	0.8		V	
		-10	10	-10	10		$\mu \mathrm{A}$	$0 \mathrm{~V} \mathrm{~V}_{\mathrm{W}}+5.25 \mathrm{~V}$
		-10	10	-10	10		$\mu \mathrm{A}$	$0 \mathrm{~V} \mathrm{~V}_{\mathrm{w}}+5.25 \mathrm{~V}$
$\begin{aligned} & \mathrm{I}_{\mathrm{IR}} \\ & \mathrm{I}_{\mathrm{cc}} \end{aligned}$	Reset Input Current Supply Current		-50		-50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
			50		50	25	mA	@ 12 MHz
			60		60	35	mA	(1) 16 MHz
$\mathrm{I}_{\text {ç }}$	Standby Current		15		15		mA	HALT Mode $\mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 12 \mathrm{MHz}$
			20		20	10	mA	HALT Mode $\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 16 \mathrm{MHz}$
$\mathrm{ICC2}$	Standby Current		20		20	5	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 12 \mathrm{MHz}$
			20		20	5	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 16 \mathrm{MHz}$

Notes:

$I_{\mathrm{cc} 2}$ requires loading TMR (\%F1H) with any value prior to STOP execution. Use this sequence:

LD TMR,\#00
NOP
STOP

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Diagram

Figure 26. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Table

No	Symbol	Parameter	$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 12 \mathrm{MHz} \quad 16 \mathrm{MHz} \end{array}$				$\begin{aligned} & T_{A}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ & 12 \mathrm{MHz} \quad 16 \mathrm{MHz} \end{aligned}$				Units Notes	
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TdA(AS)	Address Valid to /AS Rise Delay	35		20		35		25		ns	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	45		30		45		35		ns	[2,3]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid		220		180		250		180	ns	[1,2,3]
4	TwAS	/AS Low Width	55		35		55		40		ns	[2,3]
5	TdAZ(DS)	Address Float to /DS Fall	0		0		0		0		nS	
6	TwDSR	/DS (Read) Low Width	185		135		185		135		ns	[1,2,3]
7	TwDSW	/DS (Write) Low Width	110		80		110		80		ns	[1,2,3]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid		130		75		130		75	ns	[1,2,3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	0		0		0		0		ns	[2,3]
10	$\operatorname{TdDS}(\mathrm{A})$	/DS Rise to Address Active Delay	45		35		65		50		ns	[2,3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	55		30		45		35		ns	[2,3]
12	TdR/W(AS)	R//W Valid to /AS Rise Delay	30		20		33		25		ns	[2,3]
13	TdDS(R/W)	/DS Rise to R//W Not Valid	35		30		50		35		ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	35		25		35		25		ns	[2,3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	35		30		55		35		ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid		255		200		310		230	ns	[1,2,3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	55		40		65		45		ns	[2,3]
18	TdDI(DS)	Data Input Setup to /DS Rise	75		60		75		60		ns	[1,2,3]
19	TdDM(AS)	/DM Valid to /AS Fall Delay	50		30		50		30		ns	[2,3]

Notes:

[1] When using extended memory timing add 2 TpC .
[2] Timing numbers given are for minimum TpC .
[3] See clock cycle dependent characteristics table.
Standard Test Load

All timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .

Clock Dependent Formulas

Number	Symbol	Equation
1	TdA(AS)	$0.40 \mathrm{TpC}+0.32$
2	TdAS(A)	0.59TpC-3.25
3	TdAS(DR)	$2.38 \mathrm{TpC}+6.14$
4	TwAS	$0.66 \mathrm{TpC}-1.65$
6	TwDSR	2.331pC-10.56
7	TwDSW	$1.27 \mathrm{TpC}+1.67$
8	TdDSR(DR)	$1.97 \mathrm{TpC}-42.5$
10	$\operatorname{TdDS}(\mathrm{A})$	- 0.8TpC
11	TdDS(AS)	$0.59 T p C-3.14$
12	TdR/W(AS)	0.4 TpC
13	TdDS(R/W)	0.8TpC - 15
14	TdDW(DSW)	0.4 TpC
15	TdDS(DW)	0.88 TpC - 19
16	TdA(DR)	4 TpC - 20
17	TdAS(DS)	0.91 TpC - 10.7
18	TsDI(DS)	0.8 TpC - 10
19	TdDM(AS)	0.9TpC-26.3

AC CHARACTERISTICS

Additional Timing Diagram

Figure 27. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & 2 \mathrm{MHz} \quad 16 \mathrm{MHz} \end{aligned}$				$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ 12 \mathrm{MHz} \quad 16 \mathrm{MHz} \end{array}$				Units	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	83	1000	62.5	1000	83	1000	62.5	1000	ns	[1]
2	TrC,TfC	Clock Input Rise \& Fall Times		15		10		15		10	ns	[1]
3	TwC	Input Clock Width	37		21		37		21		ns	[1]
4	TwTinL	Timer Input Low Width	75		50		75		50		ns	[2]
5	TwTinH	Timer Input High Width	3 TpC		3 TpC		3 TpC		3TpC			[2]
6	TpTin	Timer Input Period	8TpC		8TpC		8TpC		8TpC			[2]
7	TrTin, TfTin	Timer Input Rise \& Fall Times	100		100		100		100		ns	[2]
8A	TwIL	Interrupt Request Input Low Times	70		50		70		50		ns	[2,4]
8B	TwIL	Interrupt Request Input Low Times	3 TpC		3 TpC		3 TpC		3 TpC			[2,5]
9	TwiH	Interrupt Request Input High Times	3 TpC		3TpC		3TpC		3TpC			[2,3]

Notes:

[1] Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0 .
[2] Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .
[3] Interrupt references request via Port 3.
[4] Interrupt request via Port 3 (P31-P33).
[5] Interrupt request via Port 30.

AC CHARACTERISTICS

Handshake Timing Diagrams

Figure 28. Input Handshake Timing

Figure 29. Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				
			Min	Max	Min	Max	Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		0		0		IN
2	ThDI(DAV)	Data In Hold Time	145		145		145		145		IN
3	TwDAV	Data Available Width	110		110		110		110		IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay		115		115		115		115	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay		115		115		115		115	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	0		0		0		0		IN
7	TCLDAVO(RDY)	Data Out to DAV Fall Delay		TpC		TpC		TpC		TpC	OUT
8	TcLDAVo(RDY)	DAV Fall to RDY Fall Delay	0		0		0		0		OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay		115		115		115		115	OUT
10	TwRDY	RDY Width	110		110		110		110		OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay		115		115		115		115	OUT

Z8 CONTROL REGISTER DIAGRAMS

Figure 30. Serial I/O Register (FOH: Read/Write)

Figure 31. Timer Mode Register (F1H: Read/Write)

Figure 32. Counter/Timer 1 Register (F2H: Read/Write)

R243 PRE1

Figure 33. Prescaler 1 Register (F3H: Write Only)

R244 T0

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

To Initial Value
(When Written)
(Range: 1-256 Decimal
$01-00 \mathrm{HEX}$)
TO Current Value
(When Read)

Figure 34. Counter/Timer 0 Register
(F4H: Read/Write)

R245 PRE0

Figure 35. Prescaler 0 Register (F5H: Write Only)

Figure 36. Port 2 Mode Register (F6H: Write Only)

Figure 37. Port 3 Mode Register (F7H: Write Only)

Figure 38. Port 0 and 1 Mode Register (F8H: Write Only)

Figure 39. Interrupt Priority Register (F9H: Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 40. Interrupt Request Register (FAH: Read/Write)

Figure 41. Interrupt Mask Register (FBH: Read/Write)

R255 SPL

Stack Pointer Lower
Byte (SP7-SP0)

Figure 45. Stack Pointer Register (FFH: Read/Write)

Figure 42. Flag Register (FCH: Read/Write)

Legend:

$\mathrm{A}-\mathrm{Voc}=5.6 \mathrm{~V}$
$\mathrm{B}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{VCC}=4.4 \mathrm{~V}$

Figure 46. Typical I_{cc} vs Frequency

Z8 CONTROL REGISTER DIAGRAMS (Continued)

ICC1 (mA)

Legend:
$\mathrm{A}-\mathrm{Vcc}=5.6 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=4.4 \mathrm{~V}$

Figure 47. Typical I_{cc} vs Frequency

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
Ir	working-register address RR
	Indirect working-register address only
	Register pair or working register pair
address	

Symbols. The following symbols are used in describing the instrućtion set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cC	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flages are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
\times	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S X O R V)=0$
0001	LT	Less than	$(S \times O R V)=1$
1010	GT	Greater Than	$[Z \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=0$
0010	LE	Less Than or Equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:
dst \leftarrow dst + src
indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

INSTRUCTION SUMMARY (Continued)

@SP↔SrC

$\begin{array}{lll}\text { RCF } & \text { CF } & 0\end{array}$							
RET	AF	-	-	-	-	-	-
PC↔@SP;							
$S P \leftarrow S P+2$							

RLC dst	R	10	* * * *	-
[crar 7	IR	11		
RR dst	R	E0	****	
	IR	E1		

RRC dst	R	Co	*	*	*	*	-	-
$\square \rightarrow$ cr-7 0	IR	C1						
SBC dst, src dst \leftarrow dst $\leftarrow \mathrm{src} \leftarrow \mathrm{C}$	\dagger	3[]	*	*	*	*	1	*
SCF		DF	1	- -	-	-	-	-

$\mathrm{C} \leftarrow 1$

	R		Do	*	*	*	0	-	-
	IR		D1						
SRP src		Im	31	-	-	-	-	-	-

SRP src
RP \leftarrow src

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Flags Affected C Z S V D H		
STOP		$6 F$	-	-	-

 dst AND src
XOR dst, src $\quad \dagger \quad \mathrm{B}[] \quad-\quad * * 0$ -
dst $\leftarrow d s t$
XOR src
\dagger These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

Address Mode dst src	r	Lower Opcode Nibble
r	Ir	$[2]$
r	R	$[3]$
R	IR	$[4]$
R	IM	$[5]$
R	IM	$[6]$
IR		$[7]$

OPCODE MAP

PRODUCT SPECIFICATION

Z86C30

CMOS Z8* 8-BIT MICROCONTROLLER

FEATURES

- 8-bit CMOS microcontroller, 28-pin DIP
- Low cost
- 3.0 to 5.5 volt operating range
- Low power consumption - 50 mW (Typical)
- Fast instruction pointer-1.0 microsecond @ 12 MHz
- Two standby modes (STOP and HALT)
- 24 input/output lines (two with comparator inputs)
- All digital inputs CMOS levels, Schmitt-triggered
- 4 Kbytes of ROM
- 236 bytes of RAM
- Two Expanded Register File control registers
- Two programmable 8-bit Counter/Timers
- 6-bit programmable prescaler on each Counter/Timer
- Sixvectored, priority interrupts from six different sources
- Clock speeds 8 and 12 MHz
- "Brown-Out" protection
- Watchdog/Power-On Reset Timer
- Two comparators with programmable interrupt polarity
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, RC or external clock drive.
- ROM and RAM protect

GENERAL DESCRIPTION

The Z 86 C 30 ССРтм ${ }^{\text {C }}$ Consumer Controller Processor introduces a new level of sophistication to single-chip architecture. The Z86C30 is a member of the $\mathrm{Z8}$ single-chip microcontroller family with 4 Kbytes of ROM and 236 bytes of RAM. The device is housed in a 28-pin DIP, and is manufactured in CMOS technology. Zilog's CMOS microcontroller offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C30 architecture is characterized by Zilog's 8-bit microcontroller core with an Expanded Register File to allow easy access to register mapped peripheral and I/O circuits. The CCP offers a flexible I/O scheme, an efficient register and address space structure, and a number of
ancillary features that are useful in many industrial, automotive, and advanced scientific applications.

The device applications demand powerful I/O capabilities. The CCP fulfills this with 24 pins dedicated to input and output. These lines are grouped into three ports, eight lines per port, and are configurable under software control to provide timing, status signals, and parallel I/O with or without handshake.

There are three basic address spaces available to support this wide range of configurations: Program Memory, Register File, and Expanded Register File. The Register File is composed of 236 bytes of general purpose registers, three I/O port registers and 15 control and status registers. The Expanded Register File consists of two Control registers.

GENERAL DESCRIPTION (Continued)

To unburden the program from coping with the real-time problems such as counting/timing and input/output data communication, the Z86C30 offers two on-çhip counter/ timers with a large number of user selectable modes, and on-board comparators to process analog signals with a common reference voltage (Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/W (WORD is active Low); /BM (BYTE is active Low, only); /N//S (NORMAL and SYSTEM are both active Low).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. Pin Configuration

Table 1. Pin Identification

Pin \#	Symbol	Function	Direction
$1-3$	P25-7	Port 2 pin 5,6,7	In/Output
$4-7$	PO4-7	Port 0 pin 4,5,6,7	In/Output
8	V $_{\text {cc }}$	Power Supply	Input
9	XTAL2	Crystal Oscillator	Outpul
10	XTAL1	Crystal Oscillator	Input
$11-13$	P31-3	Port 3 pin 1,2,3	Fixed Input
$14-15$	P34-5	Port 3 pin 4,5	Fixed Output
16	P37	Port 3 pin 7	Fixed Output
17	P36	Port 3 pin 6	Fixed Output
18	P30	Port 3 pin 0	Fixed Input
19-21	PO0-2	Port 0 pin 0,1,2	In/Output
22	GND	Ground, V	
23	P03	Port 0 pin 3	Input
24-28	P20-4	Port 2 pin 0, 1,2,3,4	In/Output

Note: Power connections follow
Conventional descriptions below

Connection	Circuit	Device
Power	V_{CC}	V_{DD}
Ground	GND	V_{SS}

XTAL1. Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC or RC network or external single-phase clock to the on-chip oscillator input.

XTAL2. Crystal 2 (time-based output). This pin connects a parallel-resonant crystal, ceramic resonator, LC or RC network to the on-chip oscillator output.

Port 0 P00-P07. Port 0 is an 8 -bit, bidirectional, CMOS compatible I/O port. These eight I/O lines can be nibble
programmed as P00-P03 input/output and P04-P07 input/ output, separately. All input buffers are Schmitt-triggered and output drivers are push-pull. It can also be used as a handshake I/O port.

Port 3 lines P32 and P35 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to port 0's upper nibble. The lower nibble must have the same direction as the upper nibble (Figure 3).

PIN DESCRIPTION (Continued)

Figure 3. Port 0 Configuration

Port 2 P20-P27. Port 2 is an 8 -bit, bidirectional, CMOS compatible I/O port. These eight I/O lines can be configured under software control as an input or output, independently. Input buffers are Schmitt-triggered. Bits programmed as outputs may be globally programmed as either push-pull or open drain. When used as an I/O port,

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake control lines. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to bit 7, Port 2 (Figure 4).

Figure 4. Port 2 Configuration

PIN DESCRIPTION (Continued)

Auto-Latch. The Auto-Latch puts valid CMOS levels on all CMOS inputs that are not externally driven. This reduces excessive supply current flow in the input buffer when not being driven by any source (Figure 46).

Port 3 P30-P37. Port 3 is an 8-bit, CMOS compatible port with four fixed input and four fixed output. Port 3 consists of four fixed inputs (P30-P33) and four fixed outputs (P34P37), and can be configured under software for interrupt and port handshake functions. Port 3, pin 0 input is Schmitt-triggered. Pins P31, P32 and P33 are standard CMOS inputs and the outputs are push-pull. Two on-board
comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P30 and P33 are falling edge interrupt inputs. P31 and P32 are programmable as falling, rising, or both edge triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input.

Access to Counter/Timer 1 is made through P31 ($T_{\text {in }}$ and P36 ($\mathrm{T}_{\text {out }}$). Handshake lines for Ports 0 and 2 are available on P3 pin 1 through 6 (Figure 5).

Figure 5. Port 3 Configuration

Table 2. Pin Assignments

Pin	I/O	CTC1	AN In	Int.	P0 HS	P2 HS
P30	IN			IRQ3		
P31	IN	Tin	AN1	IRQ2		D/R
P32	IN		AN2	IRQ0	D/R	
P33	IN		REF	IRQ1		
P34	OUT					
P35	OUT				R/D	
P36	OUT	Tout				R/D
P37	OUT					

Notes:

HS = Handshake Signals
$D=D A V$
$R=R D Y$

Comparator Inputs. Port 3 Pin P31 and P32 each have a comparator front end. The comparator reference voltage Pin P33 is common to both comparators. In analog mode, the P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, pin P33 can be used as a P33 register input or IRQ1 source.

FUNCTIONAL DESCRIPTION

The Z8 CCP incorporates special functions to enhance the Z8's application in industrial, scientific research and advanced technologies applications.

Reset. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP Mode Recovery Source
- Brown-Out Recovery

The Z86C30 does not re-initialize WDTMR, SMR, P2M, and P3M registers to their reset values on a STOP Mode Recovery operation.

Program Memory. The Z86C30 can address up to 4 K bytes of internal program memory (Figure 6). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six, 16-bit vectors that correspond to the six available interrupts. Byte 13 to byte 4095 consists of on-chip mask programmed ROM.

The 4 K bytes of program memory is mask programmable.
A ROM protect feature prevents "dumping" of the ROM contents by inhibiting execution of LDC and LDCI instructions to program memory in ALL modes.

The ROM protect option is mask-programmable, and is selected by the customer when the ROM code is submitted.

Expanded Register File. The register file has been expanded to allow for additional system control registers, mapping of additional peripheral devices and inpul/outpul ports into the register address area. The $\mathrm{Z8}$ register address space R0 through R15 is implemented as 16 groups of 16 registers per group (Figure 7). These register groups are known as the ERF (Expanded Register File).

Bits 3:0 of the Register Pointer (RP) select the active ERF group. Bits 7:4 of register RP select the working register group (Figure 8). Two system configuration registers reside in the Expanded Register File at bank F. The rest of the Expanded Register is not physically implemented and is open for future expansion.

Figure 6. Program Memory Map

Figure 7. Expanded Register File Architecture

FUNCTIONAL DESCRIPTION (Continued)

R253 RP

Default setting after RESET $\mathbf{= 0 0 0 0 0 0 0 0}$

Figure 8. Register Pointer Register

Register File. The register file consists of three I/O port registers, 236 general purpose registers and 15 control and status registers (RO-R3, R4-239 and R240-R255, respectively), and two system configuration registers in the expanded register group (See Figure 7). The instructions can access registers directly or indirectly via an 8 -bil address field. This allows a short 4-bit register address using the Register Pointer (Figure 9). In the 4 -bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

Note: Register Bank E0-EF can only be accessed through working register and indirect addressing modes.

Figure 9. Register Pointer

RAM Protect. The upper portion of the RAM's address spaces \%7F to \%EF (excluding the control registers) can be protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user can activate from the internal ROM code to turn off/on the RAM Protect by loading a bit D6 in the IMR register to either a 0 or a 1, respectively. A 1 in D6 indicates RAM Protect enabled.

Stack. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 256 general purpose registers.

Counter/Timers. There are two 8-bit programmable counter/ timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 10).

Figure 10. Counter/Timer Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt requestIRQ4 (TO) or IRQ5 (T1) is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the
internal microprocessor clock divided-by-four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock; a trigger input that can be retriggerable or not-retriggerable; or as a gate input for the internal clock. Port 3 line P36 serves as a timer output (Tout) through which T0, T1 or the internal clock are output. The counter/timers can be cascaded by connecting the TO output to the input of T1.

Interrupts. The Z86C30 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 11). The six sources are divided as follows; four sources are claimed by Port 3 lines P30-P33 and two in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 3).

Figure 11. Interrupt Block Diagram

Table 3. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ 0	/DAV 0, IRQ 0	0,1	External (P32), Rising/Falling Edge Triggered
IRQ 1,	IRQ 1	2,3	External (P33), Falling Edge Triggered
IRQ 2	/DAV 2, IRQ 2, TIN	4,5	External (P31), Rising/Falling Edge Triggered
IRQ 3	IRQ3	6,7	External (P30), Falling Edge Triggered
IRQ 4	T0	8,9	Internal
IRQ 5	T1	10,11	Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. An interrupt machine cycle is activated when an interrupt request is granted. Thus, disabling all subsequent interrupts saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All Z86C30 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16 -bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is shown in Table 4.

Table 4. IRQ Register

| IRQ | | Interrupt Edge | |
| :--- | :---: | :---: | :---: | :---: |
| D7 | D6 | P31 | P32 |
| 0 | 0 | F | F |
| 0 | 1 | F | R |
| 1 | 0 | R | F |
| 1 | 1 | R / F | R / F |

Notes:

F = Falling Edge
$R=$ Rising Edge

Clock. The Z86C30 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, RC, LC, ceramic resonator, or any suitable external clock source (XTAL1 $=$ Input, XTAL2 $=$ Output). The crystal should be AT cut, 10 KHz to 12 MHz max., with a series resistance (RS) less than, or equal to, 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance is more than or equal to 22 pf) from each pin to ground. The RC oscillator option is mask-programmable, to be selected by the customer at the time ROM code is submitted. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL1 to ground (Figure 12). The RC value vs. Frequency curves are shown in Figures 46 to 48. (Note: The RC option is not available in the 12 MHz part.)

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR timer allows V_{cc} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

1. Power-fail to Power-OK status
2. STOP mode recovery (if D5 of SMR=1)
3. WDT timeout

The POR time is a nominal 5 mS . Bit 5 of the Stop Mode register determines whether the POR timer is bypassed after STOP mode recovery (typical for external clock, and RC/LC oscillators with fast start up time).

HALT. Turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupt IRQ0, IRQ1, and IRQ2, remain active. The device may be recovered by interrupts, either external or internal generated.

FUNCTIONAL DESCRIPTION (Continued)

Figure 12. Oscillator Configuration

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamps or less. The Stop mode is terminated by a RESET only, either by WDT timeout, POR, or SMR recovery. This causes the processor to restart the application program at address 000 C (HEX). In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in midinstruction. To do this, the user must execute a NOP (opcode=FFH) immediately before the appropriate sleep instruction. i.e.:

FF	NOP	; clear the pipeline
6F	STOP	; enter STOP mode
FF	or	NOP
; clear the pipeline		
7F	HALT	; enter HALT mode

Stop Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP mode recovery (Figure 13). All bits are Write only, except Bit 7 which is a Read only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power- on cycle. Bit 6 controls whether a low level or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the source of the STOP Mode Recovery signal. Bits 0 and 1 determine the timeout period of the WDT (Table 6). The SMR is located in bank F of the Expanded Register Group at address OBH.

SCLK/TCLK Divide-by-16 Select (D0). D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose
of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (TCLK sources, counter/timers, and interrupt logic).

STOP Mode Recovery Source (D2, D3, andD4). These three bits of the SMR specify the wake up source of the STOP Mode recovery (Figure 14).

Figure 13. STOP Mode Recovery Register

Figure 14. STOP Mode Recovery Source

Table 5. Stop Mode Recovery Source

	SMR D4 D3	D2	Operation Description of action
0	0	0	POR recovery only
0	0	1	P30 transition
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of Port 2 bits $0: 3$
1	1	1	Logical NOR of Port 2 bits $0: 7$

STOP Mode Recovery Delay Select (D5). This bit disables the 5 mS RESET delay after STOP Mode Recovery. The default condition of this bit is 1 . If the "fast" wake up is selected, the STOP Mode Recovery source needs to be kept active for at least 5 TpC .

STOP Mode Recovery Level Select (D6). A 1 in this bit position indicates that a high level on any one of the
recovery sources wakes the Z86C30 from STOP Mode. A 0 indicates low level recovery. The default is 0 on POR (Figure 14).

Cold or Warm Start (D7). This bit is set by the device upon entering STOP Mode. A0 in this bit (cold) indicates that the device will be reset by POR RESET. A 1 in this bit (warm) indicates that the device awakens by a SMR source.

Watch Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that will reset the $Z 8$ if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT cannot be disabled after it has been initially enabled. The WDT circuit is driven by an on-board RC oscillator or external oscillator from XTAL1 pin. The POR clock source is selected with bit 4 of the WDT register.

WDT Time Select (D0, D1). Bits 0 and 1 control a tap circuit that determines the timeout period. Table 6 shows the different values that can be obtained. The default value of D0 and D1 are 1 and 0 , respectively.

FUNCTIONAL DESCRIPTION (Continued)

Table 6. Timeout Period of the WDT

D1	D0	Timeout of Internal RC OSC	Timeout of XTAL clock
0	0	5 ms min	256 TpC
0	1	15 ms min	512 TpC
1	0	25 ms min	1024 TpC
1	1	100 ms min	4096 TpC

Notes:

TpC = XTAL clock cycle
The default on reset is 15 ms .
See Figures 50 to 53 for details.
WDT During HALT (D2). This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1 .

WDT During STOP (D3). This bit determines whether or not the WDT is active during STOP mode. A 1 indicates active during STOP. A 0 will disable the WDT during STOP mode.

Since the on-board OSC is stopped during STOP mode, the WDT clock source has to select the on-board RC OSC for the WDT to recover from STOP mode. The default is 1 .

Clock source for WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 , which selects the RC oscillator.

Bits 5 through 7 are reserved. The WDTMR register is accessible only during the first 64 processor cycles (128 XTAL clock cycles) from the execution of the first instruction after Power-On Reset, watch dog reset or a STOP mode recovery. After this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in bank F of the Expanded Register Group at address location OFH (Figure 15).

Figure 15. Watchdog Timer Mode Register

Brown Out Protection. An on-board Voltage Comparator checks that V_{cc} is at the required level to ensure correct operation of the device. Reset is globally driven if V_{cc} is below the referenced voltage (Brown Out Voltage). The
minimum operating voltage varies with temperature and operating frequency, while the brownout voltage $\left(\mathrm{V}_{\mathrm{Bo}}\right)$ varies with temperature only.

Figure 16. Resets and WDT

The brown-out trip voltage $\left(V_{B o}\right)$ is less than 3 volts and above 1.4 volts under the following conditions.

Maximum ($\mathrm{V}_{\mathrm{Bо}}$) Conditions:

Case1 $T_{A}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 1 MHz

Case $2 T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 2 MHz

Note: The internal clock frequency runs at half the external clock frequency.

The device functions normally at or above 3.0 V under all conditions. Below3.0V, the device is guaranteed to function normally until the Brown-Out Protection trip point (V_{BO}) is reached for the temperatures and operating frequencies in case 1 and case 2 above. The actual brown-out trip point is a function of temperature and process parameters (Figure 17).

ROM Protect. ROM protect is mask-programmable. It is selected by the customer at the time the ROM code is submitted. The selection of ROM protect will disable the LDC and LDCI instructions in ALL modes.

Figure 17. Typical Z86C30 V_{Bo} Voltage vs Temperature

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions, as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 18).

Figure 18. Test Load Configuration

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
Vcc	Supply Voltage (*)	-0.3	+7.0	V
TSTG	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp		\dagger	C
	Power Dissipation		2.2	W

Notes:

* Voltage on all pins with respect to GND.
\dagger See Ordering Information.

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C}, V_{C C}=G N D=0 V, f=1.0 \mathrm{MHz}$, Unmeasured pins to GND.

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

DC ELECTRICAL CHARACTERISTICS
Z86C30

Symbol	Parameter	$V_{c c}$ Note [3]	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$		Typical at $25^{\circ} \mathrm{C}$	Units	Conditions	Notes
			Min	Max	${ }_{\text {Min }}$	Max				
	Max Input Voltage	3.3 V		7		7		V	$\mathrm{I}_{\mathbb{N}} 250 \mu \mathrm{~A}$	
		5.0 V		7		7		V	$\mathrm{I}_{\mathrm{w}} 250 \mu \mathrm{~A}$	
$\overline{V_{C H}}$	Clock Input High Voltage	3.3 V	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{Vcc}_{\text {ct }}+0.3$	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{Vcc}_{\text {c }}+0.3$	1.3	V	Driven by External	
									Clock Generator	
		5.0 V	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{cc}}+0.3$	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{cc}}+0.3$	2.5	V	Driven by External Clock Generator	
$\overline{\mathrm{V} \text { c. }}$	Clock Input Low Voltage	3.3 V	$\mathrm{V}_{5 s}-0.3$	$0.2 \mathrm{~V}_{\text {cc }}$	$\mathrm{Vss}^{-0.3}$	$0.2 \mathrm{~V}_{\text {cc }}$	0.7	V	Driven by External Clock Generator	
		5.0 V	$\mathrm{V}_{\mathrm{ss}}-0.3$	$0.2 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{Vss}^{-0.3}$	$0.2 \mathrm{~V}_{\text {cc }}$	1.5	V	Driven by External Clock Generator	
$\overline{V_{1 H}}$	Input High Voltage	3.3 V	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}+0.3$	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}+0.3$	1.3	V		
		5.0 V	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{Vcc}_{\text {cc }}+0.3$	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\text {cc }}+0.3$	2.5	V		
VIL	Input Low Voltage	3.3 V	$\mathrm{V}_{\text {ss }}-0.3$	$0.2 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {ss }}-0.3$	$0.2 \mathrm{~V}_{\text {cc }}$		V		
		5.0 V	$\mathrm{V}_{\text {Ss }}-0.3$	$0.2 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {ss }}-0.3$	$0.2 \mathrm{~V}_{\text {c }}$	1.5	V		
$\mathrm{V}_{\text {OH }}$	Output High Voltage	3.3 V	$\mathrm{V}_{\text {cc }}-0.4$		$\mathrm{V}_{\text {cc }}-0.4$		3.1	V	$\mathrm{I}_{\mathrm{ol}}=-2.0 \mathrm{~mA}$	
		5.0 V	$\mathrm{V}_{\text {cc }}-0.4$		$\mathrm{Vcc}_{\text {cc }}-0.4$		4.8	V	$\mathrm{l}_{\mathrm{al}}=-2.0 \mathrm{~mA}$	
Var^{1}	Output Low Voltage	3.3 V		0.6		0.6	0.2	V	$\mathrm{l}_{\mathrm{a}}=+4.0 \mathrm{~mA}$	
		5.0 V		0.4		0.4	0.1	V	$\mathrm{I}_{\mathrm{ol}}=+4.0 \mathrm{~mA}$	
VaL^{2}	Output Low Voltage	3.3 V		1.2		1.2	0.3	V	$\begin{aligned} & \mathrm{I}_{\mathrm{ou}}=+6 \mathrm{~mA}, \\ & 3 \text { Pin Max } \end{aligned}$	
		5.0 V		1.2		1.2	0.3	V	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}=+12 \mathrm{~mA}, \\ & 3 \operatorname{Pin} \operatorname{Max} \end{aligned}$	
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.3 V	. 8 V cc	$\mathrm{V}_{\text {cc }}$. 8 V cc	$V_{\text {cc }}$	1.5			
		5.0 V	. 8 V cc	$V_{c c}$. 8 V cc	V_{cc}	2.1	V		
$\overline{\mathrm{VfI}}$	Reset Input Low Voltage	3.3 V	$\mathrm{V}_{\text {ss }}-0.3$	$0.2 \mathrm{~V}_{\mathrm{cc}}$	$V_{\text {ss }}-0.3$	0.2 V cc	1.1			
		5.0 V	$\mathrm{V}_{55}-0.3$	$0.2 \mathrm{~V}_{\text {cc }}$	$V_{s s}-0.3$	$0.2 \mathrm{~V}_{\text {cc }}$	1.7			
$\overline{V_{\text {OFFSET }}}$	Comparator Input Offset Voltage	3.3 V		25		25	10	mV		
		5.0 V		25		25	10	mV		
IL	Input Leakage	3.3 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$V_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$	
		5.0 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$V_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$	
I_{a}	Output Leakage	3.3 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$V_{\mathbb{I N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$	
		5.0 V *	-1	1	-1	2	<1	$\mu \mathrm{A}$	$V_{\mathbb{N}}^{\mathbb{N}}=O \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$	
$\mathrm{I}_{\text {IR }}$	Reset Input Current	3.3 V		-45		-60	-20	$\mu \mathrm{A}$		
		5.0 V		-55		-70	-30	$\mu \mathrm{A}$		
$\overline{\mathrm{I}} \mathrm{C}$	Supply Current	3.3 V		10		10	4	mA	@ 8 MHz	[4,5]
		5.0 V		15		15	10	mA	@ 8 MHz	[4,5]
		3.3 V		15		15	5	mA	(a) 12 MHz	[4,5]
		5.0 V		20		20	15	mA	(a) 12 MHz	[4,5]

DC ELECTRICAL CHARACTERISTICS (Continued)
Z86C30

Notes:

[1]	ICC1	Type	Max	Unit
Freq				
Clock Driven on Crystal	3.0 mA	5	mA	8 MHz
or XTAL Resonator	0.3 mA	50	mA	8 MHz

[2] $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}=\mathrm{GND}$.
[3] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. The $\mathrm{V}_{\text {во }}$ increases as the temperature decreases.
[4] All outputs unloaded, I/O pins floating, inputs at rail.
[5] $C_{L} 1=C_{L} 2=100 \mathrm{pF}$.
[6] Same as note [4] except inputs at $V_{c c}$.

AC ELECTRICAL CHARACTERISTICS

Additional Timing Diagram

Figure 19. Additional Timing

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table

Notes:

[1] Timing Reference uses $0.9 \mathrm{~V}_{c c}$ for a logic " 1 " and $0.1 \mathrm{~V}_{c c}$ for a logic " 0 ".
[2] Interrupt request via Port 3 (P31-P33).
[3] Interrupt request via Port 3 (P30).
[4] SMR-D5 = 0 .
[5] Reg. WDTMR.
[6] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Table

Figure 20. Input Handshake Timing

Figure 21. Output Handshake Timing

AC ELECTRICAL CHARACTERISTICS (Continued)
Handshake Timing Table

No	Symbol	Parameter	$V_{c c}$ Note[1]	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}$ 8 MHz 12 MHz				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ & 8 \mathrm{MHz} \quad 12 \mathrm{MHz} \end{aligned}$				Notes
				Min	Max	Min	Max	Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	3.3 V	0		0		0		0		IN
			5.0 V	0		0		0		0		IN
2	ThDI(DAV)	Data In Hold Time	3.3 V	160		160		160		160		IN
			5.0 V	115		115		115		115		IN
3	TwDAV	Data Available Width	3.3 V	155		155		155		155		IN
			5.0 V	110		110		110		110		IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay	3.3 V		160		160		160		160	\mathbb{N}
			5.0 V		115		115		115		115	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay	3.3 V		120		120		120.		120	\mathbb{N}
			5.0 V		80		80		80 .		80	\mathbb{N}
6	TdD0(DAV)	RDY Rise to DAV Fall Delay	3.3 V	0		0		0		0		IN
			5.0 V	0		0		0		0		IN
7	TCLDAV0(RDY)	Data Out to	3.3 V	63		42		63		42		OUT
		DAV Fall Delay	5.0 V	63		42		63		42		OUT
8	TcLDAV0(RDY)	DAV Fall to RDY Fall Delay	3.3 V	0		0		0		0		OUT
			5.0 V	0		0		0		0		OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay	3.3 V		160		160		160		160	OUT
			5.0 V		115		115		115		115	OUT
10	TwRDY	RDY Width	3.3 V	110		110		110		110		OUT
			5.0 V	80		80		80		80		OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay	3.3 V		110		110		110		110	OUT
			5.0 V		80		80		80		80	OUT

Note:
[1] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

EXPANDED REGISTER FILE CONTROL REGISTERS

* Default setting after RESET

* Default setting after RESET

Figure 23. Watchdog Timer Mode Register

Figure 22. Stop Mode Recovery Register

Z8 CONTROL REGISTER DIAGRAMS

Figure 24. Reserved

R241 TMR

Figure 25. Timer Mode Register (F1H: Read/Write)

R242 T1

T Initial Value
(When Written) (Range: 1-256 Decimal $01-00 \mathrm{HEX})$
T_{1} Current Value (When Read)

Figure 26. Counter Timer 1 Register (F2H: Read/Write)

R243 PRE

Figure 27. Prescaler 1 Register (F3H: Write Only)

R244 T0

Figure 28. Counter/Timer 0 Register (F4H: Read/Write)

R245 PRE0

Figure 29. Prescaler 0 Register (F5H: Write Only)

Figure 30. Port 2 Mode Register (F6H: Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 31. Port 3 Mode Register (F7H: Write Only)

Figure 32. Port 0 and 1 Mode Register (F8H: Write Only)

R249 IPR

Figure 33. Interrupt Priority Register (F9H: Write Only)

Figure 34. Interrupt Request Register (FAH: Read/Write)

R251 IMR

Figure 35. Interrupt Mask Register (FBH: Read/Write)

R253 RP

Figure 37. Register Pointer (FDH: Read/Write)

Figure 38. Reserved

Figure 39. Stack Pointer (FFH: Read/Write)

Figure 36. Flag Register (FCH: Read/Write)

DEVICE CHARACTERISTICS

Figure 40. Typical I_{cc} vs Frequency

Figure 41. Typical $l_{c c 1}$ vs Frequency

DEVICE CHARACTERISTICS (Continued)

a. $\mathrm{VCC}=5.0 \mathrm{~V}$

b. $\mathrm{VCC}=3.3 \mathrm{~V}$

> | Legend: |
| :--- |
| $\mathrm{A}=-55^{\circ} \mathrm{C}$ |
| $\mathrm{B}=25^{\circ} \mathrm{C}$ |
| $\mathrm{C}=125^{\circ} \mathrm{C}$ |

Figure 42. Typical I_{OH} vs V_{OH} Over Temperature

a. $\mathrm{VCC}=5.0 \mathrm{~V}$

b. $\mathrm{VCC}=3.3 \mathrm{~V}$

Legend:
$A=-55^{\circ} \mathrm{C}$
$B=25^{\circ} \mathrm{C}$
$C=125^{\circ} \mathrm{C}$

Figure 43. Typical I_{oL} vs V_{oL} Over Temperature

DEVICE CHARACTERISTICS (Continued)

Figure 44. Typical $\mathrm{ICc}_{\mathrm{cc}}$ vs Temperature

Figure 45. Typical Power-On Reset Time vs Temperature

DEVICE CHARACTERISTICS (Continued)

a. Typical Auto Latch Low Current vs Temperature

b. Typical Auto Latch High Current vs Temperature

Legend:	
$\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=3.3 \mathrm{~V}$	$\mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=3.6 \mathrm{~V}$	$\mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 46. Typical Auto-Latch Current vs Temperature

Frequency*

Legend:
$\mathrm{A}-\mathrm{Vcc}=5.0 \mathrm{VC}=33 \mathrm{pF}$
$\mathrm{B}-\mathrm{Vcc}=3.3 \mathrm{VC}=33 \mathrm{pF}$

Note: * The internal clock frequency is one half the external clock frequency.
This chart for reference only. Each process will have a different characteristc curve.

Figure 47. Typical Internal Frequency vs RC Resistance

DEVICE CHARACTERISTICS (Continued)

Note: * The internal clock frequency is one half the external clock frequency.
This chart for reference only. Each process will have a different characteristc curve.

Figure 48. Typical Internal Frequency vs Resistance

Note: * The internal clock frequency is one half the extemal clock frequency.
This chart for reference only. Each process will have a different characteristc curve. $R=1$ kohm

Figure 49. Typical Internal Frequency vs RC Capacitance

DEVICE CHARACTERISTICS (Continued)

Figure 50. Typical 5 ms WDT Setting vs Temperature

Figure 51. Typical 15 ms WDT Setting vs Temperature

DEVICE CHARACTERISTICS (Continued)

Figure 52. Typical 25 ms WDT Setting vs Temperature

Figure 53. Typical 100 ms WDT Setting vs Temperature

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
	working-register address
Ir	Indirect working-register address only
RR	Register pair or working register pair
	address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
Src	Source location or contents
CC	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$Z=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overfiow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S \times O R V)=0$
0001	LT	Less than	$(S \times O R V)=1$
1010	GT	Greater Than	
0010	LE	Less Than or Equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

OPC CCF, DI, EI, IRET, NOP, RCF, RET, SCF

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
d s t \leftarrow d s t+\operatorname{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location.

The notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

$\overline{\text { CCF }}$		EF	*	-	-	-	-	-
$\mathrm{C} \leftarrow$ NOT C								
CLR dst	R	B0	-	-	-	-	-	-
dst $\leftarrow 0$	IR	B1						
COM dst	R	60	-	*	*	0	-	-
dst \leftarrow NOT dst	IR	61						
$\begin{aligned} & \text { CP dst, src } \\ & \text { dst - src } \end{aligned}$	\dagger	A[]	*	*	*	*	-	-
DA dst	R	40	*	*	*	X	-	-
dst - DA dst	IR	41						
DEC dst	R	00	-	*	*	*	-	-
dst \leftarrow dst - 1	IR	01						
DECW dst	RR	80	-	*	*	*	-	-
dst \leftarrow dst - 1	IR	81						
DI		8F	-	-	-	-	-	-
$\operatorname{MR}(7) \leftarrow 0$								

DJNZr, dst	RA	rA	-	-	-	-	-	-
$r \leftarrow r-1$		$r=0-F$						
if $r \neq 0$								
$P C \leftarrow P C+d s t$								
$\text { Range: }+127 \text {, }$								
El		9 F	-	-	-	-	-	
$\operatorname{IMR}(7) \leftarrow 1$								

HALT 7F

Instruction and Operation	Address Mode dst sre	Opcode Byte (Hex)	Flags Affected				
INC dst dst $\leftarrow d s t+1$	「	$\begin{aligned} & r E \\ & r=0-F \end{aligned}$	- *	*	*	-	-
	R	20					
	IR	21					
INCW dst dst \leftarrow dst + 1	RR	AO	- *	*	*	-	-
	IR	A1					

FLAGS↔@SP;
$S P \leftarrow S P+1$
$P C \leftarrow @ S P$;
$S P \leftarrow S P+2 ;$
$\operatorname{IMR}(7) \leftarrow 1$

JR cc, dst RA cB
if $c c$ is true, $\quad c=0-F$
$P C \leftarrow P C+d s t$
Range: +127,
-128

LDC dst, src	r	Irr	C 2		-	-	-	-
LDCl dst, src	Ir	Irr	C 3		-	-	-	-

LDCI dst, src Ir Irr C3
dst \leftarrow src
$r \leftarrow r+1$;
$\mathrm{rr} \leftarrow \mathrm{rr}+1$

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst sre	Opcode Byte (Hex)	Flags Affected				
NOP		FF	-	- -	-	-	-
OR dst, src dst \leftarrow dst OR src	\dagger	4[]	-	* *	0		-
$\begin{aligned} & \hline \text { POP dst } \\ & \text { dst @SP; } \\ & \mathrm{SP} \leftarrow \mathrm{SP}+1 \end{aligned}$	$\begin{aligned} & R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	-	- -	-		-
PUSH src $S P \leftarrow S P-1 ;$ $@ S P \leftarrow$ src	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	-	- -	-		-
$\begin{aligned} & \overline{\mathrm{RCF}} \\ & \mathrm{C} \leftarrow 0 \end{aligned}$		CF	0	-	-		-
$\begin{aligned} & \hline \text { RET } \\ & \mathrm{PC} \leftarrow \mathrm{SP} ; \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$		AF	-	- -	-		-
$\begin{aligned} & \text { RL dst } \\ & \text { ㄷ. } \sqrt{7 \quad 0} \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	*	* *	*	-	-
RLC dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	*	* *	*	-	-
$\begin{aligned} & \text { RR dst } \\ & \square-\mathrm{c}-\sqrt{7} \quad 0 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$	*	* *	*	-	-
$\begin{aligned} & \text { RRC dst } \\ & -a-7 \quad 0 \end{aligned}$	$\begin{aligned} & \hline R \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \mathrm{Co} \\ & \mathrm{C} 1 \end{aligned}$	*	* *	*	-	-
SBC dst, src dst \leftarrow dst \leftarrow src $\leftarrow C$	\dagger	3[]	$*$	* *	*	1	
$\begin{aligned} & \overline{S C F} \\ & \mathrm{C} \leftarrow 1 \end{aligned}$		DF	1	-	-	-	-
SRA dst	$\begin{aligned} & \hline R \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \text { Do } \\ & \text { D1 } \end{aligned}$		* *	0	-	
$\begin{aligned} & \text { SRP src } \\ & \text { RP } \leftarrow \mathrm{src} \end{aligned}$	Im	31	-	-	-		

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

\left.	Address Mode	
dst	src	\(\right\left.] \begin{array}{c}Lower

Opcode Nibble\end{array}\right]\)| | | |
| :---: | :---: | :---: |
| r | r | $[3]$ |
| r | Ir | $[4]$ |
| R | R | $[5]$ |
| R | IR | $[6]$ |
| R | IM | $[7]$ |
| IR | IM | |

OPCODE MAP
Lower Nibble (Hex)

Legend:
$\mathrm{R}=8$-bit address
$r=4$-bit address
R_{1} or $\mathrm{r}_{2}=$ Dst address
R_{1} or $\mathrm{r}_{2}=$ Src address

Sequence:

Opcode, First Operand,
Second Operand
Note: The blank are not defined.

* 2-byte instruction appears as a 3-byte instruction

Z86E30
 CMOS Z8® OTP
 CCP ${ }^{m}$ Microcontroller

FEATURES

■ 8-bit CMOS microcomputer, 28-pin DIP
■ Low cost

- 4.0 to 5.5 volt operating range
- Software programmable low EMI mode
- Pull-Up Active/Open Drain programmable on Ports 0 and 2
- EPROM protect programmable
- RAM protect programmable
- RC oscillator programmable
- Low power consumption-60 mW

■ Fast instruction pointer - 0.6 microseconds

- Two standby modes - STOP and HALT
- 24 input/output lines
- All digital inputs, CMOS levels, Schmitt triggered
- 4 Kbytes of one-time PROM
- 236 bytes of RAM
- Three Expanded Register File control registers
- Two programmable 8-bit Counter/Timers each with a 6 -bit programmable prescaler.
- Sixvectored, priority interrupts from sixdifferentsources
- Clock speeds up to 12 MHz
- Watchdog Timer
- Auto Power-On Reset
- Two Comparators
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, RC or external clock drive.

GENERAL DESCRIPTION

The Z86E30 CCP (Consumer Controller Processor) introduces the next level of sophistication to single-chip architecture. The Z86E30 is a member of the Z8 single-chip microcontroller family with 4 Kbytes of EPROM and 236 bytes of RAM. The device is housed in a 28-pin DIP, and is manufactured in CMOS technology. The device offers easy software development and debug, prototyping, and small production runs not economically desirable with a masked ROM version.

The Z86E30 architecture is characterized by Zilog's 8-bit microcontroller core with an expanded register file to allow
easy access to register mapped peripheral and I/O circuits. The CCP offers a flexible I/O scheme, 'an efficient register and address space structure, and a number of ancillary features that are useful in many industrial, high volume, automotive, peripheral types, and advanced scientific applications.

The device applications demand powerful I/O capabilities. The CCP fulfills this with 24 pins dedicated to input and output. These lines are grouped into three ports, eight lines per port, and are configurable under software control to provide timing, status signals, and parallel I/O with or without handshake.

GENERAL DESCRIPTION (Continued)

There are three basic address spaces available to support this wide range of configurations: Program Memory, Register File, and Expanded Register File (ERF). The Register File is composed of 236 bytes of general-purpose registers, three I/O port registers and 15 control and status registers. The Expanded Register File consists of three control resisters.

To unburden the program from coping with the real-time problems such as counting/timing and input/outpul data communication, the Z86E30 offers two on-chip counter/ timers with a large number of user selectable modes, and two on-board comparators to process analog signals with a common reference voltage (Figures 1 and 2).

Note: All Signals with a preceding front slash "/", are active Low, e.g.: B//W (Word is active Low); /B/W (BYTE is active Low, only).

Figure 1. Functional Block Diagram

Figure 2. EPROM Programming Block Diagram

PIN DESCRIPTION

Figure 3. Z86E30 Standard Mode Pin Configuration

Z86E30 EPROM Programming Mode

Figure 4. Z86E30 EPROM Programming Mode Pin Configuration

Table 1. Z86E30 Standard Mode

Pin \#	Symbol	Function	Direction
$1-3$	P25-7	Port 2 pin 5,6,7	In/Output
$4-7$	P04-7	Port 0 pin 4,5,6,7	In/Output
8	V $_{\text {DD }}$	Crystal Oscillator	Output
10	XTAL1	Crystal Oscillator	Input
$11-13$	P31-3	Port 3 pin 1,2,3	Input
$14-15$	P34-5	Port 3 pin 4,5	Oulput
16	P37	Port 3 pin 7	Output
17	P36	Port 3 pin 6	Output
18	P30	Port 3 pin 0	Input
$19-21$	P00-2	Port 0 pin 0, 1,2	In/Output
22	$V_{\text {s5 }}$	Ground	Input
23	P033	Port 0 pin 3	In/Output
$24-28$	P20-4	Port 2 pin 0,1,2,3,4	In/Output

Table 2. EPROM Programming Mode

Pin \#	Symbol	Function	Direction
$1-3$	D5-7	Data 5,6,7	In/Output
$4-7$	A4-7	Address 4,5,6,7	Input
8	$V_{\text {DD }}$	Power Supply	Input
9	N/C	No connection	
10	ICE	Chip Select	Input
11	IOE	Output Enable	Input
12	EPM	EPROM Prog. Mode	Input
13	$\mathrm{~V}_{\text {p }}$	Prog. Voltage	Input
$14-15$	A8-9	Address 8,9	Input
16	A11	Address 11	Input
17	A10	Address 10	Input
18	IPGM	Prog. Mode	Input
$19-21$	AO-2	Address 0,1,2	Input
22	$V_{\text {ss }}$	Ground	Input
23	A3	Address 3	Input
$24-28$	D0-4	Data 0,1,2,3,4	In/Output

Note: Power connections follow Conventional descriptions below

Connection	Circuit	Device
Power	V_{CC}	V_{DD}
Ground	GND	V_{SS}

PIN FUNCTIONS

EPROM Programming Mode

D7-D0. Data Bus. The data can be read from or written to the EPROM through the data bus.

A11-A0. Address Bus. During programming, the EPROM address is written to the address bus.
V_{cc}. Power Supply. This pin has to supply 5 V during the EPROM read mode and 6 V during other modes.
/CE. Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode and Program Verify Mode.
/OE. Output Enable (active Low). This pin drives the direction of the Data Bus. When this pin is low, the Data Bus is output. When high, the Data Bus is input.

EPM. EPROM Program Mode. This pin controls the different EPROM Program Mode by applying different voltages.
V_{pp}. Program Voltage. This pin supplies the program voltage.
/PGM. Program Mode (active Low). When this pin is low, the data is programmed to the EPROM through the Data Bus.

Z86E30 Standard Mode

XTAL1. Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, RC network or external single-phase clock to the on-chip oscillator input.

XTAL2. Crystal 2(time-based output). This pin comnects a parallel-resonant crystal, ceramic resonator, LC or RC network to the on-chip oscillator output.

Port 0 (P00-P07). Port 0 is an 8 -bit, bidirectional, CMOS compatible I/O port. These eight I/O lines can be nibble programmed as P00-P03 input/output and P04-P07 input/ output, separately. The input buffers are Schmitt triggered and nibbles programmed as outputs can be globally programmed as either push-pull or open drain. Low EMI output buffers can be globally programmed by the software. Port 0 can also be used as a handshake I/O port.

In Handshake Mode, Port 3 lines P32 and P35 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to Port0's upper nibble. The lower nibble must have the same direction as the upper nibble (Figure 5).

PIN FUNCTIONS (Continued)

Figure 5. Port 0 Configuration

Port 2 (P20-P27). Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines can be configured under software control as an input or output, independently. All input buffers are Schmitt triggered. Bits programmed as outputs can be globally programmed as either push-pull or open drain. Low EMI output buffers can be globally programmed by the software. When used as an I/O port, Port 2 can be placed under handshake control.

In Handshake Mode, Port 3 lines P31 and P36 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to bit 7 of Port 2 (Figure 6).

Figure 6. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3 (P30-P37). Port 3 is an 8-bit, CMOS compatible port with four fixed inputs and four fixed outputs. Port 3 consists of four fixed inputs (P30-P33) and four fixed outputs (P34P37), and can be configured under software for interrupt and handshake control functions. Port 3, Pin 0 is Schmitt triggered. Pins P31, P32 and P33 are standard CMOS inputs (no Auto-Latches) and Pins P34, P35, P36 and P37 are push-pull output lines. Low EMI output buffers can be globally programmed by software. Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33.

The analog function is enabled by setting the D1 of Port 3 Mode Register (P3M). For the interrupt function, P30 and P33 are falling edge triggered interrupt inputs. P31 and P32 can be programmed as falling, rising or both edge triggered interrupt inputs (Figure 7). Access to Counter/Timer 1 is made through P31 ($\mathrm{T}_{\text {iN }}$) and P36 ($\mathrm{T}_{\text {our }}$). Handshake lines for Ports 0 and 2 are also available on Port 3 (Table 3).

Note: P30-P33 inputs differ from the Z 86 C 30 because there is no clamping diode to V_{cc} due to the EPROM high voltage detection circuits. Exceeding the $\mathrm{V}_{1 \mathrm{H}}$ maximum specification during standard operating mode may cause the device to enter EPROM mode.

Figure 7. Port 3 Configuration

Table 3. Pin Assignments of Port 3

Pin	I/O CTC1	AN IN	Int.	P0 HS	P2 HS
P30	IN			IRQ3	
P31	IN	TIN	AN1	IRQ2	
P32	IN		AN2	IRQ0	D/R
P33	IN		REF	IRQ1	
P34	OUT				
P35	OUT			R/D	
P36	OUT T Tout				R/D
P37	OUT				

Comparator Inputs. Port 3, pins P31 and P32 each have a comparator front end. The comparator reference voltage (PinP33) is common to both comparators. In analog mode, P31 and P32 are the positive inputs of the comparators and P33 is the reference voltage of the comparators.

Auto-Latch. The Auto-Latch puts valid CMOS levels on all CMOS inputs (except P31-P33) that are not externally driven. Whether this is zero or one, cannot be determined.

A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Low EMI Emission. The Z86E30 can be programmed to operate in a low EMI emission mode in the PCON register. The oscillator and all I/O ports can be programmed as low EMI emission mode independently. Use of this feature results in:

- Less than 1.5 mA (typical) current consumption during HALT mode.
- The pre-drivers slew rate reduced to 10 ns typical.
- Low EMI output drivers have resistance of 200 ohms (typical).
- Oscillator divide-by-two circuitry is eliminated.
- Internal SLCK/TCLK operation limited to a maximum of $4 \mathrm{MHz}-250 \mathrm{~ns}$ cycle time.

FUNCTIONAL DESCRIPTION

The Z8CCP incorporates special functions to enhance the Z8's applications in industrial, scientific research, and advanced technologies.

RESET. The device is reset in one of the following conditions:

■ Power-On Reset

- Watch-Dog Timer
- STOP Mode Recovery Source

Having the Auto Power-on Reset circuitry built in, the Z86E30 does not need to be connected to an external
power-on reset circuit. The reset time is 5 ms (typical) plus 18 clock cycles. The Z86E30 does not re-initialize WDTMR, SMR, P2M, and P3M registers to their reset values on a STOP Mode Recovery operation.

Program Memory. The Z86E30 can address up to 4 Kbytes of internal program memory (Figure 8). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Address $12(000 \mathrm{CH})$ to address 4095 (OFFFH) are reserved for the user program. After reset, the program counter points at the address 000 CH which is the starting address of the user program.

FUNCTIONAL DESCRIPTION (Continued)

Figure 8. Program Memory Map

EPROM Protect. The 4 Kbytes program memory is a one time PROM. An EPROM protect feature prevents "dumping" of the ROM contents by inhibiting execution of LDC and LDCI instructions (LDE and LDEl instructions are not available in Z86E30) to program memory in all modes. In EPROM protect mode, the instructions of LDC and LDCI are disabled.

Expanded Register File. The register file has been expanded to allow for additional system control registers, mapping of additional peripheral devices, and input/output ports into the register address area. The Z 8 register address space R0 through R15 is implemented as 16 groups of 16 registers per group (Figure 9). These register groups are known as the ERF (Expanded Register File). The low nibble (D0-D3) of the Register Pointer (RP) selects the active ERF group, and the high nibble (D4-D7) of register RP selects the working register group (Figure 10).

Three system configuration registers reside in the Expanded Register File atbankFH:PCON, SMR, and WDTMR.

The rest of the Expanded Register is not physically implemented and is reserved for future expansion.

Register File. The 256 byte register file consists of 3 I/O port registers, 236 general-purpose registers, and 15 control and status registers (R3 and R240 are reserved), and three system configuration registers in the expanded register group (Figure 9). The instructions can access registers directly or indirectly via an 8 -bit address field. This allows a short 4-bit register address using the Register Pointer (Figures 10, 11). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active workingregister group.

Note: Register Bank EOH-EFH can only be accessed through working registers and indirect addressing modes.

Z8 STANDARD CONTROL REGISTERS

Figure 9. Expanded Register File Architecture

FUNCTIONAL DESCRIPTION (Continued)

Default setting after RESET $\mathbf{= 0 0 0 0 0 0 0 0}$

Figure 10. Register Pointer Register

Figure 11. Register Pointer

RAM Protect. The upper portion of the RAM's address space 80 H to EFH (excluding the control registers) can be protected from reading and writing. This option can be selected in EPROM Programming Mode. D6 of the IMR Control Register (R251) is used to turn on or turn off the RAM protect. The RAM protect is turned on by setting the D6 of the IMR Control Register ($\mathrm{D} 6=1$) and turned off by resetting this bit ($\mathrm{D} 6=0$).

Stack. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 256 general-purpose registers.

Counter/Timers. There are two 8-bit programmable counter/ timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clocksources; however, the TO prescaler is driven by the internal clock only (Figure 12).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each
prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt requestIRQ4 (T0) or IRQ5 (T1) is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and can be either the internal microprocessor clock divided-by-four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P30) as an external clock, a trigger input that can be retriggerable or not-retriggerable, or as a gate input for the internal clock. Port 3 line P36 serves as a timer output ($\mathrm{T}_{\text {out }}$) through which T0, T1 or the internal clock is output. The counter/timers are cascaded by connecting the TO output to the input of T1.

Figure 12. Counter/Timer Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z86E30 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 13). The six sources are divided as follow: four sources are claimed by Port 3 lines P30-P33, and two
in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 4).

Figure 13. Interrupt Block Diagram

Table 4. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ 0	IDAV 0, IRQ 0	0,1	External (P32), Rising/Falling Edge Triggered
IRQ 1	IRQ 1	2,3	External (P33), Falling Edge Triggered
IRQ 2	IDAV 2, IRQ 2, $T_{\text {IN }}$	4,5	External (P31), Rising/Falling Edge Triggered
IRQ 3	IRQ3	6,7	External (P30), Falling Edge Triggered
IRQ 4	T0	8,9	Intèrnal
IRQ 5	T1	10,11	Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. An interrupt machine cycle is activated when an interrupt request is granted. Thus, disabling all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All Z86E30 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in bits D7 and D6 of the IRQ Register (R250). The configuration is shown in Table 5.

Table 5. IRQ Register Configuration

| IRQ | | Interrupt Edge | |
| :---: | :---: | :---: | :---: | :---: |
| D7 | D6 | P 31 | P 32 |
| 0 | 0 | F | F |
| 0 | 1 | F | R |
| 1 | 0 | R | F |
| 1 | 1 | R / F | R / F |

Notes:
$F=$ Falling Edge
$R=$ Rising Edge
Clock. The Z86E30 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 10 kHz to 12 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors (10 pF to 100 pF) from each pin to ground. The RC oscillator option is selected in the programming mode. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL1 to ground (Figure 14).

Note: RC OSC may not reach to 12 MHz

Figure 14. Oscillator Configuration

FUNCTIONAL DESCRIPTION (Continued)

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR timer allows $V_{c c}$ and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

1. Power bad to Power OK status
2. STOP mode recovery (if D 5 of $\mathrm{SMR}=0$)
3. WDT timeout

The POR time is a nominal 5 ms . Bit 5 of the Stop Mode Register (SMR) determines whether the POR timer is bypassed after STOP mode recovery (typical for external clock, and RC/LC oscillators with fast start up time).

HALT. Turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and externalinterrupts IRQO, IRQ1, and IRQ2 remain active. The device is recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby
current to 10 microamperes or less. The Stop mode is terminated by one of the following resets: WDT timeout, POR, or Stop Mode Recovery Source which is defined by SMR register. This causes the processor to restart the application program at address 000C (HEX). In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in midinstruction. To do this, the user must execute a NOP instruction (opcode=FFH) immediately before the appropriate sleep instruction. For example:
FF. NOP ; clear the pipeline
6F STOP ; enter STOP mode
or
FF NOP ; clear the pipeline
7F HALT ; enter HALT mode
Port Configuration Register (PCON). The PORT Configuration Register (PCON) configures the port's individually for comparator output on Port 3, Open Drain on Port 0, low EMI noise on Port's 0,2 , and 3, and lowEMI noise oscillator. The PCON Register is located in the Expanded Register File at bank F, location 00 (Figure 15).

Note: PCON is not available in Z86C30

Figure 15. Port Configuration Register (PCON)

Comparator Output Port 3 (D0). Bit 0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35 and a 0 releases the Port to its standard I/O configuration.

Port 0 Open Drain (D1). Port 0 is configured as an Opendrain by resetting this bit ($\mathrm{D} 1=0$) and configured as Pullup Active by setting $\mathrm{D} 1=1$. The default value is 1 .

Low EMI Port 0 (D3). Port 0 is configured as a Low EMI Port by resetting this bit $(\mathrm{D} 3=0)$ and configured as a Standard Port by setting D3 $=1$. The default value is 1 .

Low EMI Port 2 (D5). Port 2 is configured as a Low EMI Port by resetting this bit ($\mathrm{D} 5=0$) and configured as a Standard Port by setting D5 $=1$. The default value is 1 .

Low EMI OSC (D7). This bit of the PCONRegister controls the low EMI noise oscillator. A1 in this location configures the oscillator with standard drive, while a 0 configures the oscillator with low noise drive.

Stop Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP mode recovery (Figure 16). All bits are Write only except Bit 7 which is a Read only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a poweron cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2,3 , and 4 of the SMR register specify the STOP Mode Recovery Source. (Table 7). The SMR is located in bankF of the Expanded Register Group at address OBH .

Low EMI Port 3 (D6). Port 3 is configured as a Low EMI Port by resetting this bit $(\mathrm{D} 6=0)$ and configured as a Standard Port by setting D6 $=1$. The default value is 1 .

Figure 16. Stop Mode Recovery Register

FUNCTIONAL DESCRIPTION (Continued)

SCLK/TCLK divide-by-16 Select (D0). This bit of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

External Clock Divide By 2 (D1). This bit can eliminate the oscillator divide-by-two circuitry. When this bit is 0 , SCLK (System Clock) and TCLK (Timer Clock) are equal to the
external clock frequency divided by two. The SCLK/TCLK is equal to the external clock frequency when this bit is set (D1 = 1). Using this bit, together with D7 of PCON, further helps lower EMI [i.e., D7 $(\mathrm{PCON})=0, \mathrm{D} 1(\mathrm{SMR})=1$]. The default setting is 0 .

STOP Mode Recovery Source (D2, D3, and D4). These 3 bits of the SMR register specify the wake-up source of the STOP Mode recovery (Figure 17). Table 6 shows the SMR source selected with the setting of D2 to D4. P31-P33 cannot be used to wake up from STOP mode when programmed as analog inputs.

Figure 17. Stop Mode Recovery Source

Table 6. Stop Mode Recovery Source

D4	D3	D2	SMR Source selection
0	0	0	POR recovery only
0	0	1	P30 transition
0	1	0	P31 transition (Not in analog mode)
0	1	1	P32 transition (Not in analog mode)
1	0	0	P33 transition (Not in analog mode)
1	0	1	P27 transition
1	1	0	Logical NOR of Port 2 bits $0: 3$
1	1	1	Logical NOR of Port 2 bits $0: 7$

STOP Mode Recovery Delay Select (D5). The 5 ms RESET delay after STOP Mode Recovery is disabled by
programming this bit to a zero. A1 in this bit causes a 5 ms RESET delay after STOP Mode Recovery. The default condition of this bit is 1 . If the fast wake up mode is selected, the STOP Mode Recovery source must be kept active for at least 5 TpC .

STOP Mode Recovery Level Select (D6). A 1 in this bit defines that a high level on any one of the recovery sources wakes the Z86E30 from STOP Mode. A 0 defines the low level recovery. The default value is 0 .

Cold or Warm Start (D7). This bit is set by the device upon entering STOP Mode. A 0 in this bit indicates that the device has been reset by POR (cold). A 1 in this bit indicates the device was awakened by a SMR source (warm).

Watch Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the $Z 8$ if it reaches terminal count. The WDT is disabled after PowerOn Reset and initially enabled by executing the WDT instruction. It is refreshed on subsequent executions of the WDT instruction. The WDT cannot be disabled when it has been enabled. The WDT is driven either by an on-board RC oscillator or external oscillator from XTAL1 pin. The POR clock source is selected with bit-4 of the WDT register.

WDT Timeout Period (D0 and D1). Bits 0 and 1 control a tap circuit that determines the timeout periods that can be obtained. Table 7 shows the timeout period. The default value of D0 and D1 are 1 and 0 , respectively.

Table 7. Timeout Period of the WDT

D1	D0	Timeout of Internal RC OSC	Timeout of the Crystal Clock
0	0	5 ms	256TpC
0	1	15 ms	512 TpC
1	0	25 ms	1024TpC
1	1	100 ms	4096 TpC

Notes:

TpC = crystal clock cycle
The default setting is 15 ms .

WDT During the HALT Mode (D2). This bit determines whether or not the WDT is active during HALT mode. A1 indicates that the WDT is active during HALT. A 0 disables the WDT in HALT mode. The default value is 1 .

WDT During STOP Mode (D3). This bit determines whether or not the WDT is active during STOP mode. A1 indicates active during STOP. A 0 disables the WDT during STOP mode. Since the on-board OSC is stopped during STOP mode, the WDT clock source has to select the on-board RC OSC for the WDT to recover from STOP mode. The default is 1 .

Clock Source For WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1 , the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of the bit is 0 , which selects the RC oscillator.

Bits 5 through 7 are reserved. The WDTMR register is accessible only during the first 64 processor cycles (128 XTAL clock cycles) from the execution of the first instruction after Power-On Reset, watch dog reset, or a STOP mode recovery. After this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in bank F of the Expanded Register Group at address location OFH.

WDTMR (F) OF

Figure 18. Watchdog Timer Mode Register

FUNCTIONAL DESCRIPTION (Continued)

Figure 19. Resets and WDT

Auto Reset Voltage. An on-board Voltage Comparator checks that V_{cc} is at the required level to ensure correct operation of the device. Reset is globally driven if $V_{c c}$ is below $\mathrm{V}_{\text {RSI }}$ (Auto Reset Voltage - Figure 26).

Figure 20. Typical Z86E30 $\mathrm{V}_{\text {Rst }}$ Voltage vs. Temperature

FUNCTIONAL DESCRIPTION (Continued)

EPROM Programming Mode

Table 8 shows the programming voltages of each programming mode. Table 9, Figures 21, 22, and 23 show the programming timing of each programming mode. Figure 24 shows the flow-chart of an Intelligent Programming Algorithm, which is compatible with a 2764A EPROM (Z86E30 is 4 K EPROM, 2764 A is 8 K EPROM). Figure 25 shows the circuit diagram of the Z86E30 programming
adaptor which adapts from 2764A to Z86E30. Since the EPROM size of Z86E30 differs from 2764A, the programming address range should be set from 0000 H to OFFFH. Otherwise, the upper 4 K of data ($1000 \mathrm{H}-1 \mathrm{FFFH}$) will overwrite the lower 4 K of data.

Table 8. EPROM Programming Table

Programming Modes	$\begin{aligned} & V_{\mathrm{pp}} \\ & (\mathrm{P} 33) \end{aligned}$	$\begin{aligned} & \text { EPM } \\ & \text { (P32) } \end{aligned}$	$\begin{gathered} \text { /CE } \\ \text { (XTAL1) } \end{gathered}$	$\begin{aligned} & \text { IOE } \\ & (\mathrm{P} 31) \end{aligned}$	/PGM (P30)	ADDR	DATA (PORT2)	V_{cc}
EPROM READ	X	V_{H}	V_{l}	V_{LL}	$\mathrm{V}_{1 H}$	Addr	Data Out	5.0 V
PROGRAM	$V_{\text {PP }}$	X	V_{LL}	V_{IH}	V_{H}	Addr	Data In	6.0 V
PROGRAM VERIFY	$V_{\text {PP }}$	X	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	Addr	Data Out	6.0 V
EPROM PROTECT	$V_{\text {pp }}$	V_{H}	V_{H}	V_{IH}	V_{LL}	X	x	6.0 V
RAM PROTECT	$V_{\text {pp }}$	V_{IH}	V_{H}	$\mathrm{V}_{\text {II }}$	V_{IL}	x	x	6.0 V
RC OSCILLATOR	$V_{\text {PP }}$	V_{IL}	V_{H}	V_{IH}	V_{IL}	X	x	6.0 V

Notes:

$V_{P P}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$V_{H}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$X=T T L$ Level (irrelevant)
$\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{it}}=0 \mathrm{~V}$

Table 9. EPROM Programming Timing

Parameters	Name	Min	Max	Units
1	Address Setup Time	2		$\mu \mathrm{S}$
2	Data Setup Time	2		$\mu \mathrm{S}$
3	$V_{\text {pp }}$ Setup Time	2		$\mu \mathrm{S}$
4	$V_{c c}$ Setup Time	2		${ }^{*} \mu \mathrm{~s}$
5	Chip Enable Setup	2		$\mu \mathrm{S}$
6	Program Pulse Width	0.95	1.05	ms
7	Data Hold Time	2		$\mu \mathrm{s}$
8	OE Setup Time	2		$\mu \mathrm{S}$
9	Data Access Time		200	ns
10	Data Output Float Time		100	ns
11	Overprogram Pulse Width	2.85	78.75	ms
12	EPM Setup Time	2		$\mu \mathrm{s}$
13	OE Setup Time	2		$\mu \mathrm{s}$
14	Address to OE Setup Time	2		$\mu \mathrm{S}$
15	Option Bit Program Pulse Width		78.75	ms

Figure 21. EPROM READ Mode Timing Diagram

FUNCTIONAL DESCRIPTION (Continued)

Figure 22. Timing Diagram of EPROM Program and Verify Modes

Figure 23. Timing Diagram of EPROM Protect, RAM Protect, and RC OSC Modes

FUNCTIONAL DESCRIPTION (Continued)

Figure 24. Z86E30 Programming Algorithm

Note: The programming address has to be set to 0000 H -0FFFH (lower 4K byte memory)

Figure 25. Z86E30 Programming Adaptor Circuitry

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 26).

Figure 26. Test Load Configuration

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage (*)	-0.3	+7.0	V
$\mathrm{~T}_{\text {sIG }}$	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp		\dagger	C
	Power Dissipation		2.2	W

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

* Voltage on all pins with respect to GND.
\dagger See Ordering Information.

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{MHz}$; unmeasured pins to GND.

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

[^3]DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\underset{\substack{\mathrm{V}_{\text {c }} \\ \operatorname{Note[3]}}}{ }$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & 10+70^{\circ} \mathrm{C} \end{aligned}$		Typical at $25^{\circ} \mathrm{C}$	Units	Conditions	Notes
				Max				
	Max Input Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}+0.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{w} 250 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{w}} 250 \mu \mathrm{~A} \end{aligned}$	
$\overline{V_{\text {CH }}}$	Clock Input High Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}+}+0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}+}+0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 2.5 \end{aligned}$	V V	Driven by External Clock Generator Driven by External Clock Generator	
V_{a}	Clock Input Low Vollage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$	V V	Driven by External Clock Generator Driven by External Clock Generator	
$\overline{V_{\text {H }}}$	Input High Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		
$\overline{\mathrm{V}} \mathrm{L}$	Input Low Vollage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$		
$\overline{V_{\text {OH }}}$	Output High Voltge	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{c \mathrm{cc}}-0.4 \\ & V_{c c}-0.4 \end{aligned}$		$\begin{aligned} & 3.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OHf}}=-2.0 \mathrm{~mA} \\ & \mathrm{O}_{\text {OHf }}=-2.0 \mathrm{~mA} \end{aligned}$	
V_{011}	Output Low Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OHH}}=+4.0 \mathrm{~mA} \\ & \mathrm{O}_{\mathrm{OL}}=+4.0 \mathrm{~mA} \end{aligned}$	
$\overline{V_{012}}$	Output Low Voitage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{01}=+12 \mathrm{~mA}, \\ & 3 \text { Pin Max } \end{aligned}$	
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}+0.3}^{\mathrm{V}_{\mathrm{cc}}+0.3} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		
$\overline{\mathrm{V}}$	Reset Input Low Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {ss }}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		
$\overline{\mathrm{V}_{\text {Offer }}}$	Comparator Input Offset Vollage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$		
In	Input Leakage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \end{aligned}$	$\begin{aligned} & +10 \\ & +10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\mathrm{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} \\ & V_{\mathrm{WN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	
$\mathrm{I}_{\text {a }}$	Output Leakage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline-10 \\ & -10 \end{aligned}$	$\begin{aligned} & +10 \\ & +10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\mathrm{DH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{w}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	
$\mathrm{Im}_{\text {I }}$	Reset Input Current	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{RV}_{\mathrm{RL}}=0$	
Icc	Supply Current (Standard Mode)	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \\ & 16 \\ & 15 \\ & 20 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 15.0 \\ 11.5 \\ 18.0 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	@ 8 MHz (a) 8 MHz (a) 12 MHz @ 12 MHz	$\begin{aligned} & {[4,5]} \\ & {[4,5]} \\ & {[4,5]} \\ & {[4,5]} \end{aligned}$

DC ELECTRICAL CHARACTERISTICS (Continued)

AC ELECTRICAL CHARACTERISTICS

Additional Timing Diagram (Standard Mode)

Figure 27. Additional Timing

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table (Standard Mode)

No	Symbol	Parameter	$\underset{\text { Note [6] }}{V_{c \infty}}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} \quad 12 \mathrm{MHz} \end{gathered}$				Units	Notes
				Min	Max	Min	Max		
1	TpC	Input Clock Period	4.0 V	125	100000	83	100000	ns	[1]
			5.0 V	125	100000	83	100000	ns	[1]
2	TrC,TIC	Clock Input Rise \& Fall Times	4.0 V		25		15	ns	[1]
			5.0 V		25		15	ns	[1]
3	TwC	Input Clock Width	4.0 V	37		26		ns	[1]
			5.0 V	37		26		ns	[1]
4	TwTinL	Timer Input Low Width	4.0 V	100		100		ns	[1]
			5.0 V	70		70		ns	[1]
5	TwTinH	Timer Input High Width	4.0V	3TpC		3 TpC			[1]
			5.0 V	3 TpC		3 TpC			[1]

AC ELECTRICAL CHARACTERISTICS
Additional Timing Table (Standard Mode - Continued)

	Symbol	Parameter	$\begin{gathered} V_{c c} \\ \text { Note [6] } \end{gathered}$	$\begin{gathered} T_{\mathrm{A}}=0^{\circ} \mathrm{CtO}+70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} \quad 12 \mathrm{MHz} \end{gathered}$				Units	Notes
				Min	Max	Min	Max		
6	TpTin	Timer Input Period	4.0V	8TpC		8TpC			[1]
			5.0 V	8TpC		8TpC			[1]
7	TrTin,	Timer Input Rise	4.0 V		100		100	ns	[1]
	Tfin	\& Fall Timers	5.0 V		100		100	ns	[1]
8 A	TwIL	Int. Request Low Time	4.0 V	100		100		ns	[1,2]
			5.0 V	70		70		ns	[1,2]
8 B	TwIL	Int. Request Low Time	4.0 V	3 TpC		3 TpC			[1,3]
			5.0 V	3 TpC		3 TpC			[1,3]
9	TwiH	Int. Request Input	4.0 V	3TpC		3TpC			[1,2]
		High Time	5.0 V	3 TpC		3 T ¢ C			[1,2]
10	Twsm	STOP Mode	4.0 V	12		12		ns	
		Recovery Width Spec	5.0 V	12		12		ns	
			4.0 V	${ }^{5 T p C}$					Reg. SMR - D5 $=0$
			5.0 V	5 TpC					No Delay
			4.0 V	5TpC					Reg. SM - D5=1
			5.0 V	5 TpC					with Delay
11	Tost	Oscillator Startup Time	4.0 V		5TpC		5 TpC		[4]
			5.0 V		5 TpC		5 TpC		[4]
12	Twdt	Watchdog Timer	4.0 V	10		10		ms	D0 $=0[5][7]$
		Delay Time	5.0 V	5		5		ms	$\mathrm{D} 1=0[5][7]$
			4.0 V	20		20		ms	D0 $=1[5][8]$
			5.0 V	15		15		ms	D1 $=0[5][8]$
			4.0 V	35		35		ms	D0 $=0[5][9]$
			5.0 V	25		25		ms	$\mathrm{D} 1=1[5][9]$
			4.0 V	175		175		ms	D0 $=1$ [5] [10]
			5.0 V	100		100		ms	D1 = 1 [5] [10]

Notes:

[1] Timing Reference uses $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .
[2] Interrupt request via Port 3 (P31-P33).
[3] Interrupt request via Port 3 (P30).
[4] SMR-D5 $=0$.
[5] Reg. WDTMR.
[6] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 4.0 \mathrm{~V}$
[7] Reg.WDTMR D1 $=0, \mathrm{DO}=0$
[8] Reg. WDTMR D $1=0, D 0=1$
[9] Reg. WDTMR $D 1=1, D 0=0$
[10] Reg.WDTMR D1 $=1, \mathrm{DO}=1$

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Diagrams

Figure 28. Input Handshake Timing

Figure 29. Output Handshake Timing

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Table - Standard Mode

No	Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\text {cc }} \\ & \text { Note [1] } \end{aligned}$		dard Mz			Data
				Min	Max	Min	Max	Direction
1	TsDI(DAV)	Data In Setup Time	4.0 V	0	0			IN
			5.0 V	0	0			IN
2	ThDI(DAV)	Data In Hold Time	4.0 V	160	160			IN
			5.0 V	115	115			IN
3	TwDAV	Data Available Width	4.0 V	155	155			IN
			5.0 V	110	110			\mathbb{N}
4	TdDAVI (RDY)	DAV Fall to	4.0V		160		160	IN
			5.0 V		115		115	IN
5	TdDAVId (RDY)	DAV Rise to	4.0 V		120		120	1 N
			5.0 V		80		80	IN
6	TdDO(DAV)	RDY Rise to	4.0 V	0		0		IN
		DAV Fall Delay						
			5.0 V	0		0		1 N
7	TcLDAVO (RDY)	Data Out to	4.0 V	63		42		OUT
		DAV Fall Delay						
			5.0 V	63		42		OUT
8	TcLDAV0 (RDY)	DAV Fall to RDY Fall Delay	4.0 V	0		0		OUT
			5.0 V	0		0		OUT
9	TdRDYO (DAV)	RDY Fall to	4.0 V		160		160	OUT
		DAV Rise Delay						
			5.0 V		115		115	OUT
10	TwRDY	RDY Width	4.0 V	110		110		OUT
			5.0V	80		80		OUT
11	$\begin{aligned} & \text { TdRDYOd } \\ & \text { (DAV) } \end{aligned}$	RDY Rise to	4.0 V	110			110	OUT
		DAV Fall Delay						
			5.0 V	80			80	OUT

Note:

[1] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 4.0 \mathrm{~V}$
Standard operating temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

EXPANDED REGISTER FILE CONTROL REGISTERS

* Default setting after RESET

Figure 30. Port Configuration Register

Figure 31. Stop Mode Recovery Register

WDTMR (F) 0 F

Figure 32. Watchdog Timer Mode Register Z8 Control Register Diagrams

Figure 33. Reserved

Figure 34. Timer Mode Register (F1H: Read/Write)

R242 T1

Figure 35. Counter Timer 1 Register (F2H: Read/Write)

R243 PRE1

Figure 36. Prescaler 1 Register (F3H: Write Only)

Figure 37. Counter/Timer 0 Register (F4H: Read/Write)

R245 PRE0

Figure 38. Prescaler 0 Register (F5H: Write Only)

R246 P2M

Figure 39. Port 2 Mode Register (F6H: Write Only)

Figure 40. Port 3 Mode Register (F7H: Write Only)

EXPANDED REGISTER FILE CONTROL REGISTERS (Continued)

R248 P01M

Figure 41. Port 0 and 1 Mode Register (F8H: Write Only)

R249 IPR

Figure 42. Interrupt Priority Register (F9H: Write Only)

R250 IRQ

Figure 43. Interrupt Request Register (FAH: Read/Write)

Figure 44. Interrupt Mask Register
(FBH: Read/Write)

R252 FLAGS

Figure 45. Flag Register (FCH: Read/Write)

Figure 46. Register Pointer (FDH: Read/Write)

R254 SPH

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

Figure 47. Reserved

R255 SPL
 Byte $\left(\mathrm{SP}_{7}-\mathrm{SP}_{0}\right)$

Figure 48. Stack Pointer (FFH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only IR
Indirect-register or indirect working-register address	
Ir	Indirect working-register address only Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
SrC	Source location or contents
cC	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$Z=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	$(S$ OOR V $)=0$
0001	LT	Less than	$(S X O R V)=1$
1010	GT	Greater Than	$[Z O R(S X O R V)]=0$
0010	LE	Less Than or Equal	$[Z O R(S \times O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0 \mathrm{AND} Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	-

INSTRUCTION FORMATS

CCF, DI, EI, IRET, NOP, RCF, RET, SCF
dst OPC

One-Byte Instructions

FFH	
6 FH	7 FH

ADC, ADD, AND, CP, OR, SBC, SUB, TCM, TM, XOR
LD, LDE, LDEI,
LDC, LDCI

Two-Byte Instructions
Tw-

$A D C, A D D, A N D, C P$, LD, OR, SBC, SUB, TCM, TM, XOR

OPC	MODE
dst	
VALUE	

$A D C, A D D, A N D, C P$, LD, OR, SBC, SUB, TCM, TM, XOR

MODE	OPC
src	OR
dst	1110
	OR

MODE	OPC
dst /src	x
ADDRESS	

LD

cc	OPC
DAU	
DAL	

OPC
DAU
DAL

CALL

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol
$" \leftarrow$ ". For example:

$$
d s t \leftarrow d s t+\operatorname{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:

$$
\text { dst }(7)
$$

refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		ags ffec Z			D	H
ADC dst, src $d s t \leftarrow d s t+\mathrm{src}+\mathrm{C}$	\dagger	1[]	*	*	*	*	0	*
ADD dst, src dst \leftarrow dst + src	\dagger	O[]	*	*	*	*	0	*
AND dst, src dst $\leftarrow d s t$ AND src	\dagger	5[]	-	*	*	0	-	-
CALL dst SP $\leftarrow S P-2$ @SP↔PC, $\mathrm{PC} \leftarrow$ dst	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	-	-	-	-		-
$\begin{aligned} & \overline{\mathrm{CCF}} \\ & \mathrm{C} \leftarrow \text { NOT } \mathrm{C} \end{aligned}$		EF	*	-	-	-		-
CLR dst $\mathrm{dst} \leftarrow 0$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \mathrm{B0} \\ & \mathrm{~B} 1 \end{aligned}$	-	-	-	-		-
COM dst dst \leftarrow NOT dst	$\begin{aligned} & \hline R \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-	*	*	0	-	-
CP dst, src dst - sre	\dagger	A[]	*	*	*	*		-
DA dst dst \leftarrow DA dst	$\begin{aligned} & \hline R \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	*	*	*	X	-	-
DEC dst dst \leftarrow dst - 1	$\begin{aligned} & \hline R \\ & I R \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	-	*	*	*	-	-
DECW dst dst - dst - 1	$\begin{aligned} & \text { RR } \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-	*	*	*	-	-
$\begin{aligned} & \mathrm{DI} \\ & \operatorname{IMR}(7) \leftarrow 0 \end{aligned}$		8F	-	-	-	-	-	-
$\begin{aligned} & \text { DJNZr, dst } \\ & \mathrm{r} \leftarrow \mathrm{r}-1 \\ & \text { if } \mathrm{r} \neq 0 \\ & \mathrm{PC} \leftarrow P \mathrm{P}+\mathrm{dst} \\ & \text { Range: }+127 \text {, } \\ & -128 \end{aligned}$	RA	$\begin{aligned} & r A \\ & r=0-F \end{aligned}$	-	-	-	-	-	-
$\begin{aligned} & \mathrm{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$		9F	-	-	-	-	-	-
HALT		7F	-	-	-	-	-	-

$\mathbf{J P c c}, \mathrm{dst}$	DA	cD	-	-	-	-
if cc is true						
$\mathrm{PC} \leftarrow \mathrm{dst}$		IRR	$\mathrm{c}=0-\mathrm{F}$ 30			

$P C \leftarrow P C+d s t$
Range: +127, -128

dst \leftarrow src
$r \leftarrow r+1$;
$\mathrm{rr} \leftarrow \mathrm{rr}+1$

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Flags Affect C Z	ted s V	
STOP		6F	- -	- -	-
SUB dst, src $\mathrm{dst} \leftarrow \mathrm{dst} \leftarrow \mathrm{src}$	\dagger	2[]	* *	* *	*
	$\begin{array}{r} \mathrm{R} \\ -\quad \mathrm{IR} \\ \hline \quad \end{array}$	$\begin{aligned} & \text { Fo } \\ & \text { F1 } \end{aligned}$		* X	-
TCM dst, src (NOT dst) AND src	\dagger	6[]	*	* 0	
TM dst, src dst AND src	\dagger	7[]	*	* 0	
WDT		5 F	- -	- -	
XOR dst, src dst \leftarrow dst XOR src	\dagger	B[]	- *	* 0	
\dagger These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[] in this table, and its value is found in the following table to the left of the applicable addressing mode pair. For example, the opcode of an ADC instruction using the addressing modes r (destination) and lr (source) is 13 .					
Address M dst			Lower Opcode Nibble		
r	r		[2]		
r r	Ir		[3]		
R	R		[4]		
R	IR		[5]		
R	IM		[6]		
IR	IM		[7]		

OPCODE MAP

PRODUCT SPECIFICATION

Z86C40
 CMOS Z8 ${ }^{\text {® }}$ CCP $^{\text {m }}$
 CONSUMER CONTROLLER PROCESSOR

FEATURES

- 8-bit CMOS microcntroller, 40- or 44-pin package
- Low cost
- 3.0 to 5.5 volt operating range
- Low power consumption - 50 mW (Typical)
- Fast instruction pointer-1.0 microsecond @ 12 MHz
- Two standby modes - STOP and HALT
- 32 input/output lines (two with comparator inputs)
- All digital inputs are CMOS levels, Schmitt triggered
- 4 Kbytes of ROM
- 256 bytes of RAM (236 for general purpose)
- Two Expanded Register File control registers
- Two programmable 8-bit Counter/Timers
- 6-bit programmable prescaler
- Six vectored, priority interrupts from six different sources.
- Clock speeds 8 and 12 MHz
- Brown-Out protection
- Watch Dog/Power-On Reset Timer
. Two Comparators with programmable interrupt polarity
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, RC or external clock drive.
- RAM and ROM Protect

GENERAL DESCRIPTION

The Z86C40 CCP (Consumer Controller Processor) introduces a new level of sophistication to single-chip architecture. The Z86C40 is a member of the $Z 8$ single-chip microcontroller family with 4 Kbytes of ROM (Z86C40) and 236 bytes of general purpose RAM. The CCP is housed in a 40-pin DIP, 44-pin Leaded Chip Carrier, and a 44-pin Quad Flat Pack, and is CMOS compatible. Having the ROM/ROMless selectively, the CCP offers both external memory and pre-programmed ROM which enables this Z8 microcomputer to be used in high volume applications or where code flexibility is required. Zilog's CMOS microcomputer offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C40 architecture is characterized by Zilog's 8-bit microcontroller core with an Expanded Register File to allow access to register mapped peripheral and I/O circuits. The CCP offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many industrial, automotive, computer peripherals, and advanced scientific applications.

The CCP applications demand powerful I/O capabilities. The Z86C40 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports. Each port consists of eight lines, and is configurable under software control to provide timing, status signals, parallel I/O with or without handshake, and address/data bus for interfacing external memory.

GENERAL DESCRIPTION (Continued)

There are four basic address spaces available to support this wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Register File is composed of 236 bytes of general purpose registers, four I/O port registers, and 15 control and status registers. The Expanded Register File consists of two control registers.

To unburden the program from coping with the real-time problems, such as counting/timing and data communica-
tion, the Z86C40 offers two on-chip counter/timers with a large number of user selectable modes. Also, two onboard comparators which process analog signals with a common reference voltage (Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 40-Pin Dual In Line, Pin Assignments

Table 1. 40-Pin Dual-In-Line Package, Pin Identification

Pin \#	Symbol	Function	Direction
1	R//W	Read/Write	Output
2-4	P25-7	Port 2 pins 5,6,7	In/Output
$5-7$	PO4-6	Port 0 pins 4,5,6	In/Output
$8-9$	P14-5	Port 1 pins 4,5	In/Output
10	P07	Port 0 pin 7	In/Output
11	V $_{\text {cC }}$	Power Supply	Input
12-13	P16-7	Port 1 pins 6,7	In/Output
14	XTAL2	Crystal, Oscillator Clock	Output
15	XTAL1	Crystal, Oscillator Clock	Input
16-18	P31-3	Port 3 pins 1,2,3	Input
19	P34	Port 3 pin 4	Output
20	IAS	Address Strobe	Output
21	IRESET	Reset	Input

Pin \#	Symbol	Function	Direction
22	P35	Port 3 pin 5	Output
23	P37	Port 3 pin 7	Output
24	P36	Port 3 pin 6	Output
25	P30	Port 3 pin 0	Input
$26-27$	P00-1	Port 0 pin 0,1	In/Output
28-29	P10-1	Port 1 pin 0,1	In/Output
30	P02	Port 0 pin 2	In/Output
31	GND	Ground, GND	Input
$32-33$	P12-3	Port 1 pin 2,3	In/Output
34	P03	Port 0 pin 3	In/Output
$35-39$	P20-4	Port 2 pin 0,1,2,3,4	In/Output
40	IDS	Data Strobe	Output

PIN DESCRIPTION (Continued)

Figure 3. 44-Pin Leaded Chip Carrier, Pin Assignments

Table 2. 44-pin Leaded Chip Carrier, Pin Identification

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1-2	GND	Ground, GND	Input	28	XTAL1	Crystal, Oscillator Clock	Input
3-4	P12-3	Port 1 pins 2,3	In/Output	29-31	P31-3	Port 3 pins 1,2,3	Input
5	P03	Port 0 pin 3	In/Output	32	P34	Port 3 pin 4	Output
6-10	P20-4	Port 2 pins 0,1,2,3,4	In/Output	33	/AS	Address Strobe	Output
11	/DS	Data Strobe	Output	34	R//RL	ROM/ROMless Control	Input
12	NC	Not Connected		35	/RESET	Reset	Input
13	R/TW	Read/Write	Output	36	P35	Port 3 pin 5	Output
14-16	P25-7	Port 2 pins 5,6,7	In/Output	37	P37	Port 3 pin 7	Output
17-19	P04-6	Port 0 pins 4,5,6	In/Output	38	P36	Port 3 pin 6	Output
20-21	P14-5	Port 1 pins 4,5	In/Output	39	P30	Port 3 pin 0	Input
22	P07	Port 0 pin 7	In/Output	40-41	P00-1	Port 0 pins 0,1	In/Output
23-24	V_{cc}	Power Supply	Input	42-43	P10-1	Port 1 pins 0,1	In/Output
25-26	P16-7	Port 1 pins 6,7	In/Output	44	P02	Port 0 pin 2	In/Output
27	XTAL2	Crystal, Oscillator Clock	Output				

Figure 4. 44-Pin Quad Flat Pack, Pin Assignments

Table 3. 44-Pin Quad Flat Pack, Pin Identification

Pin \#	Symbol	Function	Direction
1-2	P05-6	Port 0 pins 5,6	In/Output
3-4	P14-5	Port 1 pins 4,5	In/Output
5	P07	Port 0 pin 7	In/Output
6-7	V	cc	Power Supply
8-9	P16-7	Port 1 pins 6,7	Input
10	XTAL2	Crystal, Oscillator Clock	Output
11	XTAL1	Crystal, Oscillator Clock	Input
12-14	P31-3	Port 3 pins 1,2,3	Input
15	P34	Port 3 pin 4	Output
16	IAS	Address Strobe	Output
17	R//RL	ROM/ROMless Control	Input
18	/RESET	Reset	Input
19	P35	Port 3 pin 5	Output
20	P37	Port 3 pin 7	Output

Pin \#	Symbol	Function	Direction
21	P36	Port 3 pin 6	Output
22	P30	Port 3 pin 0	Innut
23-24	P00-1	Port 0 pins 0,1	In/Output
25-26	P10-1	Port 1 pins 0,1	In/Output
27	P02	Port 0 pin 2	In/Output
28-29	GND	Ground, GND	Input
30-31	P12-3	Port 1 pins 2,3	In/Output
32	P03	Port 0 pin 3	In/Output
33-37	P20-4	Port 2 pins 0,1,2,3,4	In/Output
38	/DS	Data Strobe	Output
39	NC	Not Connected	
40	R/W	Read/Write	Output
$41-43$	P25-7	Port 2 pins 5,6,7	In/Output
44	P04	Port 0 pin 4	In/Output

PIN FUNCTIONS

/ROMless. (input, active Low). This pin, when connected to GND, disables the internal ROM and forces the device to function as a Z86C90/C89 ROMless Z8. (Note that, when left unconnected or pulled high to V_{cc} the part functions normally as a Z 8 ROM version).
/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/ Write.

XTAL1. Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, or RC network, or an external single-phase clock to the on-chip oscillator input.

XTAL2. Crystal 2(time-based output). This pin connects a parallel-resonant, crystal, ceramic resonant, LC, or RC network to the on-chip oscillator output.

R/W. (output, write Low). Read/Write, the R//W signal is low when the CCP is writing to the external program or data memory.

Port 0. (P00-P07). Port 0 is an 8-bit, bidirectional, CMOS compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt triggered and output drivers are pushpull. Port 0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAVO and RDYO. Handshake signal direction is dictated by the I/O direction to Port 0 of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they are configured by writing to the Port 0 mode register. In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. (In ROM mode, Port 0 is defined as input after reset.)

Port 0 is set in the high-impedance mode if selected as an address output state along with Port 1 and the control signals /AS, /DS and R//W (Figure 5).

Figure 5. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1. (P10-P17). Port 1 is an 8-bit, bidirectional, CMOS compatible port (Figure 6). It has multiplexed Address (A7-A0) and Data (D7-D0) ports. For the Z86C40 ROM device, these eight I/O lines are programmed as inputs or outputs, or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitt triggered and the output drivers are push-pull.

Port 1 may be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the
handshake controls RDY1 and /DAV1 (Ready and Data Available). Memory locations greater than 4096 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port 0, /AS, /DS and R//W, allowing the Z86C40 to share common resources in multiprocessor and DMA applications.

Figure 6. Port 1 Configuration

Port 2. (P20-P27). Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines are configured under software control as an input or output, independently. Port 2 is always available for I/O operation. The input buffers are Schmitt triggered. Bits programmed as outputs may be globally programmed as either push-pull or open-drain.

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to bit 7 , Port 2 (Figure 7).

Figure 7. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3. (P30-P37). Port 3 is an 8-bit, CMOS compatible four fixed input and four fixed output. Port 3 consists of four fixed inputs (P30-P33) and four fixed outputs (P34-P37). It is configured under software control for Inpul/Output, Counter/Timers, interrupt, port handshake and Data Memory functions. Port 3, pin 0 input is Schmitt triggered, and pins P31, P32, and P33 are standard CMOS inputs; outputs are push-pull.

Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming Port 3 Mode Register (bit 1). Port 3 pin 0 and pin 3 are falling edge interrupt inputs. P31 and P32 are programmable as rising, falling or both edge triggered interrupts (IRQ register bits 6 and bit 7). P33 is the comparator reference voltage input.

Access to Counter/Timers 1 is made through P31 ($T_{I N}$) and P36 ($\mathrm{T}_{\text {out }}$). Handshake lines for ports 0, 1 and 2 are available on P31 through P36.

Port 3 also provides the following control functions: handshake for Ports 0,1 and 2 (/DAV and RDY); four external interrupt request signals (IRQ0-IRQ3); timer input and output signals ($\mathrm{T}_{\mathbb{N}}$ and $\mathrm{T}_{\text {out }}$); Data Memory Select (/DM - Figure 8).

Auto-Latch. The Auto-Latch puts valid CMOS levels on all CMOS inputs (except P31-P33) that are not externally driven. Whether this level is zero or one, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Table 4. Pin Assignments

Pin	I/O	CTC1	AN IN	Int.	PO HS	P1 HS	P2 HS	Ext
P30	IN			IRQ3				
P31	IN	Tin	AN1	IRQ2			D/R	
P32	IN		AN2	IRQ0	D/R			
P33	IN		REF	IRQ1		D/R		
P34	OUT					R/D		
P35	OUT					DM		
P36	OUT	Tout					R/D	
P37	OUT							

Notes:

HS = Handshake Signals
$\mathrm{D}=\mathrm{DAV}$
$\mathrm{R}=\mathrm{RDY}$

Comparator Inputs. Port 3, Pins P31 and P32 each have a comparator front end. The comparator reference voltage, Pin P33, is common to both comparators. In analog mode, the P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, pin P33 can be used as a P33 register input or IRQ1 source.
/RESET. (input, active-Low). Initializes the MCU. Reset is accomplished either through Power-On, Watch Dog Timer reset, STOP Mode Recovery, or external reset. During Power-On Reset and Watch Dog Reset, the internally generated reset is driving the reset pin low for the POR time. Any devices driving the reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

After the POR time, /RESET is a Schmitt triggered input. To avoid asynchronous and noisy reset problems, the Z86C40 is equipped with a reset filter of four external clocks ($4 T p C$). If the external reset signal is less than $4 T p C$ in duration, no reset occurs. On the fifth clock after the reset is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. During the reset cycle, /DS is held active low while /AS cycles at a rate of $\mathrm{TpC} / 2$. Program execution begins at location 000 C (HEX), $5-10 \mathrm{TpC}$ cycles after the RST is released. For Power-On Reset, the reset output time is 5 ms . The Z86C40 does not reset WDTMR, SMR, P2M, and P3M registers on a STOP Mode Recovery operation.

Figure 8. Port 3 Configuration

FUNCTIONAL DESCRIPTION

The Z8CCP incorporates special functions to enhance the Z8's application in industrial, scientific research and advanced technologies applications.

Reset. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP Mode Recovery Source
- Brown-out Recovery
- External Reset

Program Memory. The Z86C40 addresses up to 4 Kbytes internal program memory and 60 Kbytes external memory (Figure 9). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts. For ROM mode, byte 13 to byte 4095 consists of on-chip mask-programmed ROM. At addresses 4096 and greater, the Z86C40 executes external program memory fetches.

Figure 9. Program Memory Map

Figure 10. Data Memory Map

The 4 Kbyte program memory is mask programmable. A ROM protect feature prevents "dumping" of the ROM contents by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions to Program Memory in all modes.

The ROM Protect option is mask-programmable, to be selected by the customer at the time when the ROM code is submitted.

Data Memory (/DM). The Z86C40 ROM version can address up to 60 Kbytes of external data memory beginning at location 4096 (Figure 10). External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 8). The state of the /DM signal is controlled by the type of instruc-
tion being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references data (/DM active Low) memory.

Expanded Register File. The register file has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices along with I/O ports into the register address area. The Z8 register address space R0 through R15 has now been implemented as 16 groups of 16 registers per group (Figure 11). These register groups are known as the ERF (Expanded Register File). Bits $7-4$ of register RP select the working register group. Bits 3-0 of register RP select the expanded register group (Figure 12). Two system configuration registers reside in the Expanded Register File at BankF. The rest of the Expanded Register is not physically implemented and is open for future expansion.

FUNCTIONAL DESCRIPTION (Continued)

Z8 STANDARD CONTROL REGISTERS

Figure 11. Expanded Register File Architecture

Register File. The register file consists of four I/O port registers, 236 general purpose registers and 15 control and status registers (R0-R3, R4-239 and R240-R255, respectively), plus two system configuration registers in the expanded register group. The instructions access registers directly or indirectly via an 8-bit address field. This allows a short, 4-bit register address using the Register Pointer (Figure 13). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

Note: Register Bank EO-EF is only accessed through working register and indirect addressing modes.

Figure 13. Register Pointer

FUNCTIONAL DESCRIPTION (Continued)

RAM Protect. The upper portion of the RAM's address spaces \%80F to \%EF (excluding the control registers) are protected from reading and writing. The RAM Protect bit option is mask-programmable and is selected by the customer when the ROM code is submitted. After the mask option is selected, the user activates from the internal ROM code to turn off/on the RAM Protect by loading a bit D6 in the IMR register to either a 0 or a 1, respectively. A 1 in D6 indicates RAM Protect enabled.

Stack. The Z86C40 external data memory or the internal register file is used for the stack. The 16-bit Stack Pointer (R254-R255) is used for the external stack which can reside anywhere in the data memory for ROMless mode, but only from 4096 to 65535 in ROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general purpose registers (R4-R239). SPH is used as a general purpose register when using internal stack only.

Counter/Timers. There are two 8-bit programmable counter/ timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 14).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the TO output to the input of T1.

Figure 14. Counter/Timer Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z86C40 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 15). The six sources are divided as follows; four sources are claimed by Port 3 lines P30-P33, and two
in counter/timers (Table 5). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.

Figure 15. Interrupt Block Diagram

Table 5. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ 0	IDAV 0, IRQ 0	0,1	External (P32), Rise Fall Edge Triggered
IRQ 1,	IRQ 1	2,3	External (P33), Fall Edge Triggered
IRQ 2	IDAV 2, IRQ 2, TIN	4,5	External (P31), Rise Fall Edge Triggered
IRQ 3	IRQ3	6,7	External (P30), Fall Edge Triggered
IRQ 4	T0	8,9	Internal
IRQ 5	TI	10,11	Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the InterruptPriority register. An interruptmachine cycle is activated when an interrupt request is granted. Thus, this disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt.

All Z86C40 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select is located in the IRQRegister (R250), bits D7 and D6. The configuration is shown in Table 6.

Table 6. IRQ Register

IRQ			Interrupt Edge	
D7	D6	P 31	P 32	
0	0	F	F	
0	1	F	R	
1	0	R	F	
1	1	R / F	R / F	

Notes:
$F=$ Falling Edge
R=Rising Edge
Clock. The Z86C40 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 $=$ Input, XTAL2 $=$ Output). The crystal should be AT cut, 12 MHz max., with a series resistance (RS) less than or equal to 100 Ohms.

The crystal is connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance is more than or equal to 22 pF) from each pin to ground. The RC oscillator option is mask-programmable on the Z86C40 and is selected by the customer at the time when the ROM code is submitted. (Note that the RC option is not available on the 12 MHz part). The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL1 to ground (Figure 16). See Figures 52-54 for typical characteristics.

RC
External Clock
@ 5V VCC (TYP)

$$
\begin{aligned}
& \mathrm{C} 1=33 \mathrm{pF} \text { * } \\
& \mathrm{R}=1 \mathrm{~K}^{*} \\
& \mathrm{f}=6 \mathrm{MHz}
\end{aligned}
$$

Figure 16. Oscillator Configuration

FUNCTIONAL DESCRIPTION (Continued)

Power-On-Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR time allows $V_{c c}$ and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

1. Power fail to Power OK status.
2. STOP mode recovery (if D 5 of $\mathrm{SMR}=1$).
3. WDT timeout.

The POR time is a nominal 5 ms . Bit 5 of the Stop Mode Register determines whether the POR timer is bypassed after STOP mode recovery (typical for external clock, RC/ LC oscillators).

HALT. HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation. It reduces the standby current to 10 microamperes or less. The Stop mode is terminated
by a reset only, either by WDT timeout, POR, SMR recovery or external reset. This causes the processor to restart the application program at address 000 C (HEX). In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in midinstruction. To do this, the user must execute a NOP (opcode $=\mathrm{FFH}$) immediately before the appropriate sleep instruction, i.e.:

```
FF NOP ; clear the pipeline
6F STOP ; enter STOP mode
                or
FF NOP ; clear the pipeline
7F HALT ; enter HALT mode
```

Stop Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP Mode Recovery (Figure 17). All bits are write only, except Bit 7 which is read only. Bit-7 is a flag bit that is hardware set on the condition of STOP recovery and reset by a power-on cycle. Bit-6 controls whether a low level or a high level is required from the recovery source. Bit-5 controls the reset delay after recovery. Bits 2, 3, and 4, or the SMR register, specify the source of the STOP Mode Recovery signal. Bits 0 and 1 determine the timeout period of the WDT. The SMR is located in Bank F of the Expanded Register Group at address OBH.

SMR (F) OB

Figure 17. STOP Mode Recovery Register

SCLK/TCLK divide-by-16 Select (D0). DO of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

STOP Mode Recovery Source (D2, D3, and D4). These three bits of the SMR specify the wake-up source of the STOP recovery (Figure 18 and Table 7).

Figure 18. STOP Mode Recovery Source

Table 7. STOP Mode Recovery Source

SMR:432			Operation D4
D3	D2	Description of Action	
0	0	0	POR and/or external reset recovery
0	0	1	P30 transition
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of P20 through P23
1	1	1	Logical NOR of P20 through P27

STOP Mode Recovery Delay Select (D5). This bit, if high, disables the $5 \mathrm{~ms} /$ RESET delay after STOP Mode Recovery. The default configuration of this bit is one. If the "fast" wake up is selected the STOP Mode Recovery source is kept active for at least 5 TpC .

STOP Mode Recovery Edge Select (D6). A 1 in this bit position indicates that a high level on any one of the recovery sources wakes the Z86C40 from STOP Mode. A 0 indicates low level recovery. The default is 0 on POR (Figure 18).

Cold or Warm Start (D7). This bit is set by the device upon entering STOP Mode. A O in this bit (cold) indicates that the device resets by POR/WDT RESET. A 1 in this bit (warm) indicates that the device awakens by a SMR source.

Watch-Dog-Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the $Z 8$ if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT circuit is driven by an on-board RC oscillator or external oscillator from the XTAL1 pin. The POR clock source is selected with bit-4 of the WDT register (Figure 19).

FUNCTIONAL DESCRIPTION (Continued)

Figure 19. Watch-Dog Timer Mode Register

Figure 20. Resets and WDT

WDT Time Select. (D0,D1). Selects the WDT time period. It is configured as shown in Table 8.

Table 8. WDT Time Select

D1	D0	Timeout of Internal RC OSC	Timeout of XTAL clock
0	0	5 ms min	256 TpC
0	1	$15 \mathrm{~ms} \min$	512 TpC
1	0	25 ms min	1024 TpC
1	1	100 ms min	4096 TpC

Notes:
TpC = XTAL clock cycle
The default on reset is 15 ms .
See Figures 55 to 58 for details.
WDTMR During HALT (D2). This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1 .

WDTMR During STOP (D3). This bit determines whether or not the WDT is active during STOP Mode. Since XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1 .

Clock Source for WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1 , the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 which selects the RC oscillator.

Brown Out Protection. An on-board Voltage Comparator checks that $V_{c c}$ is at the required level to ensure correct operation of the device. Reset is globally driven if $V_{C C}$ is below the specified voltage (Brown Out Voltage). The minimum operating voltage is varying with the temperature and operating frequency, while the brown out voltage $\left(\mathrm{V}_{\mathrm{Bo}}\right)$ varies with temperature only.

The brown out trip voltage $\left(\mathrm{V}_{\mathrm{BO}}\right)$ is less then 3 volts and above 1.4 volts under the following conditions.

Maximum (V_{BO}) Conditions:
Case 1: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 1 MHz

Case 2: $T_{A}=-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 2 MHz

Note: The internal clock frequency is one-half the external clock frequency.

The device functions normally at or above 3.0 V under all conditions. Below 3.0V, the device functions normally until the Brown Out Protection trip point $\left(V_{B O}\right)$ is reached, for the temperatures and operating frequencies in case 1 and case 2, above. The device is guaranteed to function normally at supply voltages above the brown out trip point. The actual brown out trip point is a function of temperature and process parameters (Figure 21).

Figure 21. Typical Z86C40 Brown Out Voltage vs Temperature At 4 MHz

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage (${ }^{*}$)	-0.3	+7.0	V
$\mathrm{~T}_{\text {sTG }}$	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp			C
	Power Dissipation		2.2	W

Notes:

* Voltage on all pins with respect to GND.

See Ordering Information.

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 22).

Figure 22. Test Load Diagram

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=G N D=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$, Unmeasured pins to GND

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

DC ELECTRICAL CHARACTERISTICS

Sym	Parameter	$V_{c c}$ Note [3]	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to } 105^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { Typical } \\ \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	Units	Conditions	Notes
			Min	Max	Min	Max				
$V_{\text {ch }}$	Max Input Voltage	3.3 V		7		7		V	$\mathrm{I}_{\mathrm{N}} 250 \mathrm{uA}$	
		5.0V		7		7		V	$\left.\right\|_{\text {m }} 250 \mathrm{uA}$	
	Clock Input High Vollage	3.3 V	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}+0.3$	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{Vcc}_{\text {cc }}+0.3$	1.3	v	Driven by External Clock Generator	
		5.0 V	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cct }}+0.3$	0.7 Vcc	$V_{c c}^{c}+0.3$	2.5	V	Driven by External Clock Generator	
$\overline{\mathrm{V}}$	Clock Input Low Vollage	3.3 V	GND-0.3	0.2 Vc	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	0.7	V	Driven by External Clock Generator	
		5.0 V	GND-0.3	$0.2 \mathrm{Vcc}_{\text {cc }}$	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	1.5	V	Driven by External Clock Generator	
V_{H}	Input High Vollage	3.3 V	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{Vcc}_{\text {ct }}+0.3$	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{Vcc}_{\text {cc }}+0.3$	1.3	V		
		5.0 V	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$V_{\text {cc }}+0.3$	$0.7 \mathrm{Vcc}_{\mathrm{cc}}$	$\mathrm{Vcc}_{\text {cc }}+0.3$	2.5	V		
$\mathrm{V}_{\text {II }}$	Input Low Vollage	3.3 V	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	0.7	V		
		5.0 V	GND-0.3	$0.2 \mathrm{~V}_{\mathrm{cc}}$	GND-0.3	$0.2 \mathrm{Vcc}_{\text {cc }}$	1.5	V		
$V_{\text {OH }}$	Output High Voltge	3.3 V	$\mathrm{V}_{\text {cc }}-0.4$		$\mathrm{Vcc}_{\text {cc }}-0.4$		3.1	V	$\mathrm{I}_{\text {OHI }}=-2.0 \mathrm{~mA}$	
		5.0 V	$\mathrm{Vcc}_{\text {cc }}$-0.4		$\mathrm{V}_{\mathrm{cc}}-0.4$		4.8	V	$\mathrm{I}_{\text {OH }}=-2.0 \mathrm{~mA}$	
$\mathrm{V}_{\mathrm{at1}}$	Output Low Vollage	3.3 V		0.6		0.6	0.2	V		
		$5.0 \mathrm{~V}$		0.4		0.4	0.1	V	$\mathrm{I}_{a t}^{\prime \prime}=+4.0 \mathrm{~mA}$	
$\mathrm{V}_{\mathrm{OL} 2}$	Oufput Low Voltage	3.3 V		1.2		1.2	0.3	v	$\mathrm{I}_{\mathrm{ol}}=+6 \mathrm{~mA}, 3 \mathrm{Pin} \mathrm{Max}$	
		5.0 V		1.2		1.2	0.3	V	$\mathrm{I}_{\mathrm{ot}}=+12 \mathrm{~mA}, 3$ Pin Max	
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.3 V	8 V cc	$\mathrm{V}_{\text {cc }}$. 8 V cc	$\mathrm{V}_{\text {cc }}$	1.5	V		
		5.0 V	. 8 V cc	$\mathrm{V}_{\text {cc }}$. 8 V cc	$V_{\text {cc }}$	2.1	V		
$V_{\text {fi }}$	Reset Input Low Voltage	3.3 V	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	1.1			
		5.0 V	GND-0.3	$0.2 \mathrm{~V}_{\mathrm{cc}}$	GND-0.3	$0.2 \mathrm{Vcc}_{\text {c }}$	1.7			
$V_{\text {OFFSEI }}$	Comparator Input Offset	3.3 V		25		25	10	mV		
	Voltage	5.0 V		25		25	10	mV		
In	Input Leakage	3.3 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$V_{\text {w }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$	
		5.0 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$	
$\mathrm{I}_{\text {a }}$	Output Leakage	3.3 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {w }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$	
		5.0 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$V_{\text {w }}=0 V, V_{c c}$	
$I_{\text {R }}$	Reset Input Current	3.3 V		-45		-60	-20	$\mu \mathrm{A}$		
		5.0 V		-55		-70	-30	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {cc }}$	Supply Current	3.3 V		10		10	4		@ 8 MHz	[4,5]
		5.0 V		15		15	10	mA	(a)8MHz	[4,5]
		3.3 V		15		15	5	mA	© 12 MHz	[4,5]
		5.0 V		20		20	15	mA	@ 12 MHz	[4,5]
Icc	Standby Current	3.3 V		3		3	1	mA	HALT Mode $\mathrm{V}_{\mathrm{w}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 8 \mathrm{MHz}$	[4,5]
		5.0 V		5		5	2.4	mA	HALT Mode $\mathrm{V}_{\text {IW }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 8 \mathrm{MHz}$	[4,5]
		3.3 V		4		4	1.5	mA	HALT Mode $\mathrm{V}_{\mathbb{W}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$ @ 12 MHz	[4,5]
		5.0 V		6		6	3.2	mA	HALT Mode $\mathrm{V}_{\mathrm{w}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$ @ 12 MHz	[4,5]
		3.3 V		2		2	0.8	mA	Clock Divide by 16 @ 8 MHz	[4,5]
		5.0 V		4		4	1.8	mA	Clock Divide by 16 @ 8 MHz	[4,5]
		3.3 V		3		3	1.2	mA	Clock Divide by 16 @ 12 MHz	[4,5]
		5.0 V		5		5	2.5	mA	Clock Divide by 16 @ 12 MHz	[4,5]
$\mathrm{ICC2}$	Standby Current	3.3 V		8		15	1	$\mu \mathrm{A}$	STOP Mode $V_{\mathbb{N}}=0 \mathrm{~V}$, V_{cc} WDT is not Running	[6]
		5.0 V		10		20	2	$\mu \mathrm{A}$	STOP Mode $V_{\text {w }}=0 \mathrm{~V}$, $V_{\text {cs }}$ WDT is not Running	[6]

DC ELECTRICAL CHARACTERISTICS (Continued)

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Diagram

Figure 23. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS
External I/O or Memory Read and Write Timing Table

No Symbol		Parameter	$\begin{aligned} & \mathrm{V}_{\text {c }} \\ & {[3]} \end{aligned}$	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 105^{\circ} \mathrm{C} \end{aligned}$				Units	Notes	
		8 MHz		12 MHz		8 MHz		12 MHz						
		Min		Max	Min	Max	Min	Max	Min	Max				
1	TdA(AS)		Address Valid to /AS Rise Delay	3.3	55		35		55		35		ns	[2]
				5.0	55		35		55		35			
	TdAS(A)	/AS Rise to Address Float Delay	3.3	70		45		70		45		ns	[2]	
			5.0	70		45		70		45		ns		
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid	3.3		400		250		400		250	ns	[1,2]	
			5.0		400		250		400		250	ns		
	TwAS	/AS Low Width	3.3	80		55		80		55		ns	[2]	
			5.0	80		55		80		55		ns		
56	Td	Address Float to /DS Fall	3.3	0		0		0		0		ns		
			5.0	0		0		0		0		ns		
	TwDSR	/DS (Read) Low Width	3.3	300		200		300		200		ns	[1,2]	
			5.0	300		200		300		200		ns		
78	TwDSW	/DS (Write) Low Width	3.3	165		110		165		110		ns	[1,2]	
			5.0	165		110		165		110		ns		
	TdDSR(DR)	/DS Fall to Read Data Req'd Valid	3.3		260		150		260		150	ns	[1,2]	
			5.0		260		160		260		160	ns		
910	ThDR(DS)	Read Data to /DS Rise Hold Time	3.3	0		0		0		0		ns	[2]	
			5.0	0		0		0		0		ns		
	TdDS(A)	/DS Rise to Address Active Delay	3.3	85		45		85		45		ns	[2]	
			5.0	95		55		95		55		ns		
1112	TdDS(AS)	/DS Rise to /AS Fall Delay	3.3	60		30		60		30		ns	[2]	
			5.0	70		45		70		45		ns		
	TdR/W(AS)	R/W Valid to /AS Rise Delay	3.3	70		45		70		45		ns	[2]	
			5.0	70		45		70		45		ns		
1314	TdDS(R/W)	/DS Rise to R/W Not Valid	3.3	70		45		70		45		ns	[2]	
			5.0	70		45		70		45		ns		
	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	3.3	80		55		80		55		ns	[2]	
			5.0	80		55		80		55		ns		
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	3.3	70		45		70		45		ns	[2]	
			5.0	80		55		80		55		ns		
16	TdA(DR)	Address Valid to Read Data Req'd Valid	3.3		475		310		475		310	ns	[1,2]	
			5.0		475		310		475		310	ns		
	TdAS(DS)	/AS Rise to /DS Fall Delay	3.3	100		65		100		65		ns	[2]	
			5.0	100		65		100		65		ns		
	TdDI(DS)	Data Input Setup to /DS Rise	0.0	115		115	,	115		115		ns	[1,2]	
			5.0	75		75		75		75		ns		

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Table (Continued)

No Symbol	Parameter	$\begin{aligned} & V_{c c} \\ & {[3]} \end{aligned}$	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to } 105^{\circ} \mathrm{C} \end{gathered}$				Units	Notes
			8 MHz		12 MHz		8 MHz		12 MHz			
			Min	Max	Min	Max	Min	Max	Min	Max		
19 TdDM(AS)	/DM Valid to /AS Fall Delay	3.3	55		35		55		35		nS	[2]
		5.0	55		35		55		35		ns	

Notes:
[1] When using extended memory timing add 2 TpC.
[2] Timing numbers given are for minimum TpC.
$[3] 5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
Standard Test Load
All timing references use $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logico.

AC ELECTRICAL CHARACTERISTICS

Additional Timing Diagram

Figure 24. Additional Timing

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table

Notes:

[1] Timing Reference uses $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .
[2] Interrupt request via Port 3 (P31-P33).
[3] Interrupt request via Port 3 (P30).
[4] SMR-D5 $=0$.
[5] Reg. WDTMR.
[6] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Diagrams

Figure 25. Input Handshake Timing

Figure 26. Output Handshake Timing

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameter	$\underset{V_{c c}}{V_{c}} \begin{gathered} \text { Note[1] } \end{gathered}$	$\begin{gathered} T_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} \quad 12 \mathrm{MHz} \end{gathered}$				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ & 8 \mathrm{MHz} \quad 12 \mathrm{MHz} \end{aligned}$				$\begin{gathered} \text { Notes } \\ \text { Data } \\ \text { Direction } \end{gathered}$
				Min	Max	Min	Max	Min	Max	Min	Max	
1	TsDİ(DAV)	Data In Setup Time	3.3 V	0		0		0		0		IN
			5.0 V	0		0		0		0		IN
2	ThDI(DAV)	Data In Hold Time	3.3 V	160		160		160		160		IN
			5.0 V	115		115		115		115		IN
3	TwDAV	Data Available Width	3.3 V	155		155		155		155		IN
			5.0 V	110		110		110		110		in
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay	3.3 V		160		160		160		160	IN
			5.0 V		115		115		115		115	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay	3.3 V		120		120		120		120	IN
			5.0 V		80		80		80		80	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	3.3 V	0		0		0		0		IN
			5.0 V	0		0		0		0		IN
7	TcLDAVO(RDY)	Data Out to DAV Fall Delay	3.3 V	63		42		63		42		OUT
			5.0 V	63		42		63		42		OUT
8	TcLDAVO(RDY)	DAV Fall to RDY Fall Delay	3.3 V	0		0		0		0		OUT
			5.0 V	0		0		0		0		OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay	3.3 V		160		160		160		160	OUT
			5.0 V		115		115		115		115	OUT
10	TwRDY	RDY Width	3.3 V	110		110		110		110		OUT
			5.0 V	80		80		80		80		OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay	3.3 V		110		110		110		110	OUT
			5.0 V		80		80		80		80	OUT

Notes:

[1] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

EXPANDED REGISTER FILE CONTROL REGISTERS

Figure 27. Stop Mode Recovery Register

* Default setting after RESET

Figure 28. Watchdog Timer Mode Register

Z8 CONTROL REGISTERS

Figure 29. Reserved

Figure 30. Timer Mode Register (F_{H} :Read/Write)

Figure 31. Counter/Timer 1 Register (F_{H} :Read/Write)

R243 PRE1

Figure 32. Prescaler 1 Register ($\mathrm{F3}_{\mathrm{H}}$:Write Only)

Figure 33. Counter/Timer 0 Register ($\mathrm{F4}_{\mathrm{H}}$:Read/Write)

Figure 34. Prescaler 0 Register ($\mathrm{F5}_{\mathrm{H}}$:Write Only)

Z8 CONTROL REGISTERS (Continued)

Figure 35. Port 2 Mode Register (F6 ${ }_{H}$: Write Only)

Figure 36. Port 3 Mode Register ($\mathrm{F7}_{\mathrm{H}}$:Write Only)

R248 P01M

Figure 38. Interrupt Priority Register ($\mathrm{F9}_{\mathrm{H}}$:Write Only)

R250 IRQ

Figure 39. Interrupt Request Register (FA_{H} :Read/Write)

R251 IMR

Figure 40. Interrupt Mask Register (FB $\mathbf{H}_{\mathbf{H}}$:Read/Write)

Figure 37. Port 0 and 1 Mode Register (FB_{H} :Write Only)

Figure 41. Flag Register (FC_{H} :Read/Write)

R254 SPH

Stack Pointer Upper Byte (SPg - SP15)

Figure 43. Stack Pointer High (FE $_{\mathrm{H}}$:Read/Write)

R255 SPL

Stack Pointer Lower Byte (SP0 - SP7)

Figure 44. Stack Pointer Low (FF_{H} :Read/Write)

Figure 42. Register Pointer (FD_{H} :Read/Write)

DEVICE CHARACTERISTICS

Figure 45. Typical I_{cc} vs Frequency

Figure 46. Typical $\mathrm{l}_{\mathrm{cc} 1}$ vs Frequency

DEVICE CHARACTERISTICS (Continued)

Figure 47. Typical $\mathrm{I}_{\mathrm{cc} 2}$ vs Frequency

a. $V C C=5.0 \mathrm{~V}$

b. $\mathrm{VCC}=3.3 \mathrm{~V}$

Legend:
$A=-55^{\circ} \mathrm{C}$
$\mathrm{B}=25^{\circ} \mathrm{C}$
$\mathrm{C}=125^{\circ} \mathrm{C}$

Figure 48. Typical I_{OH} vs V_{OH} Over Temperature

DEVICE CHARACTERISTICS (Continued)

a. $\mathrm{VCC}=5.0 \mathrm{~V}$

Legend:
$\mathrm{A}=-55^{\circ} \mathrm{C}$
$\mathrm{B}=25^{\circ} \mathrm{C}$
$\mathrm{C}=125^{\circ} \mathrm{C}$

Figure 49. Typical I_{oL} vs V_{oL} Over Temperature

Figure 50. Typical Power-On Reset Time vs Temperature

DEVICE CHARACTERISTICS (Continued)

a. Typical Auto Latch Low Current vs Temperature

b. Typical Auto Latch High Current vs Temperature

Legend:	
$\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=3.3 \mathrm{~V}$	$\mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=3.6 \mathrm{~V}$	$\mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 51. Typical Auto-Latch Current vs Temperature

Frequency*

Legend:
$\mathrm{A}-\mathrm{Vcc}=5.0 \mathrm{~V} \mathrm{C}=33 \mathrm{pF}$
$B-V c c=3.3 V C=33 \mathrm{pF}$

Note: * The internal clock frequency is one half the external clock frequency.
This chart for reference only. Each process will have a different characteristc curve.

Figure 52. Typical Internal Frequency vs RC Resistance

DEVICE CHARACTERISTICS (Continued)

Note: * The internal clock frequency is one half the external clock frequency.
This chart for reference only. Each process will have a different characteristc curve.

Figure 53. Typical Internal Frequency vs Resistance

Note: * The internal clock frequency is one half the external clock frequency. This chart for reference only. Each process will have a different characteristc curve.
$R=1$ kohm

Figure 54. Typical Internal Frequency vs RC Capacitance

DEVICE CHARACTERISTICS (Continued)

Legend:	
$\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=3.5 \mathrm{~V}$	$\mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=4.0 \mathrm{~V}$	$\mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 55. Typical 5 ms WDT Setting vs Temperature

Figure 56. Typical 15 ms WDT Setting vs Temperature

DEVICE CHARACTERISTICS (Continued)

Figure 57. Typical 25 ms WDT Setting vs Temperature

Legend:	
$\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=3.5 \mathrm{~V}$	$\mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=4.0 \mathrm{~V}$	$\mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 58. Typical 100 ms WDT Setting vs Temperature

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
Ir	working-register address RR
	Indirect working-register address only
	Register pair or working register pair
address	

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
	Affected flages are indicated by:
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
X	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S \times O R V)=0$
0001	LT	Less than	$(S \times O R V)=1$
1010	GT	Greater Than	$[Z O R(S X O R V)]=0$
0010	LE	Less Than or Equal	$[Z \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Flags Affected					Instruction and Operation	Address Mode dst src		Opcode Byte (Hex)	Flags Affected					
ADC dst, src $d s t \leftarrow d s t+\operatorname{src}+C$	\dagger	1[]		* *	*	0	*	INC dst dst \leftarrow dst + 1	r		$\begin{aligned} & r E \\ & r=0-F \end{aligned}$	-	*	*	*	-	-
									R		20						
ADD dst, src dst - dst + src	\dagger	O[]		* *	*	0	*		IR		21						
								INCW dst	RR		AO	-	*	*	*	-	-
AND dst, src dst \leftarrow dst AND src	\dagger	5[]		* *	0	-	-	dst - dst + 1	IR		A1						
								IRET			BF	*	*	*	*	*	*
CALL dst	DA	D6	-	- -	-	-	-	FLAGS $\leftarrow @ S P$;									
SP↔SP-2	IRR	D4						$\mathrm{SP} \leftarrow \mathrm{SP}+1$									
@SP↔PC,								$\mathrm{PC} \leftarrow @ \mathrm{SP}$;									
$\mathrm{PC} \leftarrow \mathrm{dst}$								$\mathrm{SP} \leftarrow \mathrm{SP}+2$									
$\begin{aligned} & \text { CCF } \\ & \mathrm{C} \leftarrow \mathrm{NOT} \mathrm{C} \end{aligned}$		EF	*	- -	-	-	-										
								JP cc, dst if $c c$ is true	DA		$\begin{aligned} & c D \\ & c=0-F \end{aligned}$	-	-	-	-	-	-
CLR dst dst $\leftarrow 0$	R	B0	-	-	-	-	-	$\mathrm{PC} \leftarrow$ dst	IRR		30						
	IR	B1															
								JR cc, dst	RA		cB	-	-	-	-	-	
COM dst dst \leftarrow NOT dst	R	60	-	* *	0	-	-	if cc is true,			$\mathrm{c}=0-\mathrm{F}$						
	IR	61						$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst}$									
								Range: +127,									
CP dst, src dst - src	\dagger	A[]	*	* *	*	-	-	-128									
								LD dst, src	r	Im	rC	-	-	-	-	-	
DA dst dst \leftarrow DA dst	R	40	*	* *	X	-	-	$\mathrm{dst} \leftarrow \mathrm{src}$	r	R	r8						
	IR	41							R	r	r9						
											$\mathrm{r}=0-\mathrm{F}$						
DEC dst dst \leftarrow dst - 1	R	00	-	* *	*	-	-		r	X	C7						
	IR	01							X	r	D7						
									r	Ir	E3						
DECW dst dst \leftarrow dst - 1	RR	80	-	* *	*	-	-		Ir	r	F3						
	IR	81							R	R	E4						
									R	IR	E5						
DI$\operatorname{lMR}(7) \leftarrow 0$		8F	-	-	-	-	-		R	IM	E6						
									IR	IM	E7						
									IR	R	F5						
$\begin{aligned} & \text { DJNZr, dst } \\ & \mathrm{r} \leftarrow \mathrm{r}-1 \\ & \text { if } \mathrm{r} \neq 0 \\ & \text { PC } \leftarrow P C+d s t \\ & \text { Range: }+127 \text {, } \\ & -128 \end{aligned}$	RA	rA	-	- -	-	-	-						1				
		$r=0-F$						LDC dst, src	r	Irr	C2	-	-	-	-	-	-
					.			LDCI dst, src	Ir	Irr	C3	-	-	-	-	-	
								dst \leftarrow src									
								$r \leftarrow r+1$;									
								$\mathrm{rr} \leftarrow \mathrm{rr}+1$									
$\begin{aligned} & \hline \mathrm{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$		9 F	-	- -	-	-	-										
HALT		7F	-	- -	-	-	-										

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Flags Affected C Z S V D	
STOP		$6 F$	-	-

TCM dst, src	\dagger	6[]	-	$*$	$*$	0	-
(NOT dst)							
AND src							

\dagger These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13 .

| $\begin{array}{c}\text { Address Mode } \\ \text { dst }\end{array}$ | | src |
| :--- | :---: | :---: |\(\left.c \begin{array}{c}Lower

Opcode Nibble\end{array}\right]\)

OPCODE MAP

PRODUCT SPECIFICATION

Z86E40
 CMOS Z8® 0 TP
 CCP ${ }^{\text {m }}$ MICROCONTROLLER

FEATURES

- 8-bit CMOS microcontroller
- 40- or 44-pin package
- Low cost
- 4.0 to 5.5 volt operating range
- Software programmable low EMI mode.
- Pull-up Active/Open Drain programmable on Port 0 , Port 1 and Port 2
- EPROM protect programmable
- RAM protect programmable
- RC oscillator programmable
- Low power consumption - 60 mW
- Fast instruction pointer-0.6 microseconds
- Two standby modes - STOP and HALT
- 32 input/output lines
- Digital inputs CMOS levels, Schmitt triggered
- 4 Kbytes of one-time PROM
- 236 bytes of RAM
- Three Expanded Register File control Registers
- Two programmable 8-bit Counter/Timers each with a 6 -bit programmable prescaler
- Sixvectored, priority interrupts from six different sources
- Clock speeds up to 12 MHz
- Watchdog Timer
- Auto Power On Reset
- Two Comparators
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, RC or external clock drive.

GENERAL DESCRIPTION

The Z86E40 Consumer Controller Processor (CCP) introduces a new level of sophistication to single-chip architecture. The Z86E40 is a member of the Z8 single-chip microcontroller family with 4 Kbytes of EPROM and 236 bytes of RAM. The device is housed in a 40-pin DIP, 44-pin Plastic Leaded Chip Carrier, and a 44-pin Quad Flat Pack, and is manufactured in CMOS technology. The device offers easy software development and debug, prototyping, and small production runs not economically desirable with a masked ROM version.

The Z86E40 architecture is characterized by Zilog's 8-bit microcontroller core with an expanded register file to allow easy access to register mapped peripheral and I/O cir-
cuits. The CCP offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many industrial, consumer, automotive, peripheral types, and advanced scientitic applications.

The device applications demand powerful I/O capabilities. The CCP fulfills this with 32-pins dedicated to input and output. These lines are grouped into four ports, eight lines per port, and are configurable under software control to provide timing, status signals, and parallel $1 / O$ with or without handshake, and address/data bus for interfacing external memory.

GENERAL DESCRIPTION (Continued)

There are four basic address spaces available to support this wide range of configurations: Program Memory, Data Memory, Register File, and Expanded Register File (ERF). The Register File is composed of 236 bytes of generalpurpose registers, four I/O port registers and 15 control and status registers. The Expanded Register File consists of three control resisters.

To unburden the program from coping with the real-time problems such as counting/timing and input/output data
communication, the Z86E40 offers two on-chip counter/ timers with a large number of user selectable modes, and two on-board comparators to process analog signals with a common reference voltage (Figures1 and 2).

Note: All Signals with a preceding front slash, ${ }^{n} / \bar{n}$, are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Figure 1. Functional Block Diagram

Figure 2. EPROM Programming Block Diagram

PIN IDENTIFICATION

Figure 3. 40-Pin Dual In-Line, Pin Assignments (Standard Mode)

Table 1. 40-Pin Dual In-Line Package Pin Identification (Standard Mode)

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1	R/W	Read/Write	Output	22	P35	Port 3 pin 5	Output
2-4	P25-7	Port 2 pin 5,6,7	In/Output	23	P37	Port 3 pin 7	Output
5-7	P04-6	Port 0 pin 4,5,6	In/Output	24	P36	Port 3 pin 6	Output
8-9	P14-5	Port 1 pin 4,5	In/Output	25	P30	Port 3 pin 0	Input
10	P07	Port 0 pin 7	In/Output	26-27	P00-1	Port 0 pin 0,1	In/Output
11	V_{cc}	Power Supply	Input	28-29	P10-1	Port 1 pin 0,1	In/Output
12-13	P16-7	Port 1 pin 6,7	In/Output	30	P02	Port 0 pin 2	In/Output
14	XTAL2	Crystal Oscillator	Output	31	GND	Ground, $\mathrm{V}_{\text {ss }}$	Input
15	XTAL1	Crystal Oscillator	Input	32-33	P12-3	Port 1 pin 2,3	In/Output
16-18	P31-3	Port 3 pin 1,2,3	Input	34	P03	Port 0 pin 3	In/Output
19	P34	Port 3 pin 4	Output	35-39	P20-4	Port 2 pin 0, 1, 2, 3, 4	In/Output
20	/AS	Address Strobe	Output	40	/DS	Data Strobe	Output
21	/RESET	Reset	Input				

Figure 4. 44-Pin PLCC Pin Assignments (Standard Mode)

Table 2. 44-Pin Plastic Leaded Chip Carrier Pin Identification (Standard Mode)

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1-2	GND	Ground , $\mathrm{V}_{\text {ss }}$	Input	28	XTAL1	Crystal Oscillator	Input
3-4	P12-3	Port 1 pin 2,3	In/Output	29-31	P31-3	Port 3 pin 1,2,3	Input
5	P03	Port 0 pin 3	In/Output	32	P34	Port 3 pin 4	Output
6-10	P20-4	Port 2 pin 0, 1,2,3,4	In/Output	33	IAS	Address Strobe	Output
11	/DS	Data Strobe	Output	34	R//RL	ROM/ROMless select	Input
12	N/C	No Connection		35	/RESET	Reset	Input
13	R//W	Read/Write	Output	36	P35	Port 3 pin 5	Output
14-16	P25-7	Port 2 pin 5,6,7	In/Output	37	P37	Port 3 pin 7	Output
17-19	P04-6	Port 0 pin 4,5,6	In/Output	38	P36	Port 3 pin 6	Output
20-21	P14-5	Port 1 pin 4,5	In/Output	39	P30	Port 3 pin 0	Input
22	P07	Port 0 pin 7	In/Output	40-41	P00-1	Port 0 pin 0,1	In/Output
23-24	V_{cc}	Power Supply	Input	42-43	P10-1	Port 1 pin 0,1	In/Output
25-26	P16-7	Port 1 pin 6,7	In/Output	44	P02	Port 0 pin 2	In/Output
27	XTAL2	Crystal Oscillator	Output				

PIN IDENTIFICATION (Continued)

Figure 5. 44-Pin QFP Pin Assignments (Standard Mode)

Table 3. 44-Pin Quad Flat Pack Pin Identification (Standard Mode)

Pin \#	Symbol	Function	Direction
$1-2$	P05-6	Port 0 pin 5,6	In/Output
$3-4$	P14-5	Port 1 pin 4,5	In/Output
5	P07	Port 0 pin 7	In/Output
6-7	V $_{\text {cc }}$	Power Supply	Input
$8-9$	P16-7	Port 1 pin 6,7	In/Output
10	XTAL2	Crystal Oscillator	Output
11	XTAL1	Crystal Oscillator	Input
12-14	P31-3	Port 3 pin 1,2,3	Input
15	P34	Port 3 pin 4	Output
16	IAS	Address Strobe	Output
17	R//RL	ROM/ROMless select	Input
18	IRESET	Reset	Input
19	P35	Port 3 pin 5	Output
20	P37	Port 3 pin 7	Output

Pin \#	Symbol	Function	Direction
21	P36	Port 3 pin 6	Output
22	P30	Port 3 pin 0	Input
23-24	P00-1	Port 0 pin 0,1	In/Output
$25-26$	P10-1	Port 1 pin 0,1	In/Output
27	PO2	Port 0 pin 2	In/Output
$28-29$	GND	Ground, V	ss
$30-31$	P12-3	Port 1 pin 2,3	Input
32	P03	Port 0 pin 3	In/Output
$33-37$	P20-4	Port 2 pin 0,1,2,3,4	In/Output
38	IDS	Data Strobe	Output
39	N/C	No Connection	
40	R//W	Read/Write	Output
$41-43$	P25-7	Port 2 pin 5,6,7	In/Output
44	P04	Port 0 pin 4	In/Output

Figure 6. 40-Pin DIP Pin Assignments (EPROM Programming Mode)

Table 4. 40-Pin Dual In-Line Package Pin Identification (EPROM Programming Mode)

Pin \#	Symbol	Function	Direction
1	N/C	No Connection	
$2-4$	D5-7	Data 5,6,7	In/Output
$5-7$	A4-6	Address 4,5,6	Input
$8-9$	N/C	No Connection	
10	A7	Address 7	Input
11	V $_{\text {cc }}$	Power Supply	Input
$12-14$	N/C	No Connection	
15	/CE	Chip Select	Input
16	/OE	Output Enable	Input
17	EPM	EPROM Prog. Mode	Input
18	V $_{\text {pp }}$	Prog. Voltage	Input
19	A8	Address 8	Input
$20-21$	N/C	No Connection	

Pin \#	Symbol	Function	Direction
22	A9	Address 9	Input
23	A11	Address 11	Input
24	A10	Address 10	Input
25	/PGM	Prog. Mode	Input
$26-27$	AO-1	Address 0,1	Input
$28-29$	N/C	No connection	
30	A2	Address 2	Input
31	GND	Ground	Input
$32-33$	N/C	No connection	
34	A3	Address 3	Input
$35-39$	DO-4	Data 0,1,2,3,4	In/Output
40	N/C	No connection	

PIN IDENTIFICATION (Continued)

Figure 7. 44-Pin PLCC Pin Assignments (EPROM programming mode)

Table 5. 44-Pin Leaded Chip Carrier Pin Identification (EPROM Programming Mode)

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1	N/C	No Connection		22	A9	Address 9	Input
2-4	D5-7	Data 5,6,7	In/Output	23	A11	Address 11	Input
5-7	A4-6	Address 4,5,6	Input	24	A10	Address 10	Input
8-9	N/C	No Connection		25	/PGM	Prog. Mode	Input
10	A7	Address 7	Input	26-27	A0-1	Address 0,1	Input
11	V_{cc}	Power Supply	Input	28-29	N/C	No connection	
12-14	N/C	No Connection		30	A2	Address 2	Input
15	/CE	Chip Select	Input	31	GND	Ground	Input
16	/OE	Output Enable	Input	32-33	N/C	No connection	
17	EPM	EPROM Prog. Mode	Input	34	A3	Address 3	Input
18	V_{Pp}	Prog. Voltage	Input	35-39	D0-4	Data 0,1,2,3,4	in/Output
19	A8	Address 8	Input	40	N/C	No connection	
20-21	N/C	No Connection					

Figure 8. 44-Pin QFP Pin Assignments (EPROM programming mode)

Table 6. 44-pin Quad Fiat Pack (EPROM Programming Mode)

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1	N/C	No Connection		22	A9	Address 9	Input
2-4	D5-7	Data 5,6,7	In/Output	23	A11	Address 11	Input
5-7	A4-6	Address 4,5,6	Input	24	A10	Address 10	Input
8-9	N/C	No Connection		25	/PGM	Prog. Mode	Input
10	A7	Address 7	Input	26-27	AO-1	Address 0,1	Input
11	$\mathrm{V}_{\text {cc }}$	Power Supply	Input	28-29	N/C	No connection	
12-14	N/C	No Connection		30	A2	Address 2	Input
15	/CE	Chip Select	Input	31	GND	Ground	Input
16	/OE	Output Enable	Input	32-33	N/C	No connection	
17	EPM	EPROM Prog. Mode	Input	34	A3	Address 3	Input
18	$V_{\text {pp }}$	Prog. Voltage	Input	35-39	D0-4	Data 0, 1, 2, 3, 4	In/Output
19	A8	Address 8	Input	40	N/C	No connection	
20-21	N/C	No Connection					

PIN FUNCTIONS

EPROM Programming Mode

D7-D0. Data Bus. The data can be read from or written to external memory through the data bus.

A11-A0. Address Bus. During programming, the EPROM address is written to the address bus.
V_{cc}. Power Supply. This pin has to supply 5V during the EPROM read mode and 6 V during other modes.
/CE. Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode and Program Verify Mode.

Z86E40 Standard Mode

XTAL. Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, RC network or external single-phase clock to the on-chip oscillator input.

XTAL2. Crystal 2(time-based output). This pin connects a parallel-resonant crystal, ceramic resonator, LC or RC network to the on-chip oscillator output.

R/W. Read/Write (output, write Low). The R/N signal is low when the CCP is writing to the external program or data memory.
/RESET. Reset (input, active-Low). Reset will initialize the MCU. Reset is accomplished either through Power-On, Watch Dog Timer reset, STOP Mode Recovery, or external reset. During Power-On Reset and Watch Dog Timer Reset, the internally generated reset drives the reset pin low for the POR time. Any devices driving the reset line must be open-drain in order to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally. After the POR time,/RESET is a Schmitt triggered input.

To avoid asynchronous and noisy reset problems, the Z86E40 is equipped with a reset filter of four external clocks (4 TpC). If the external reset signal is less than 4TpC in duration, no reset occurs. On the fifth clock after the reset is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. During the reset cycle, /DS is held active low while /AS cycles at a rate of $\mathrm{TpC} / 2$. Program execution begins at location $000 \mathrm{CH}, 5-10 \mathrm{TpC}$ cycles after /RESET is released. For
/OE. Output Enable (active Low). This pin drives the direction of the Data Bus. When this pin is low, the Data Bus is output. When high, the Data Bus is input.

EPM. EPROM Program Mode. This pin controls the different EPROM Program Mode by applying different voltages.
V_{pp}. Program Voltage. This pin supplies the program voltage.
/PGM. Program Mode (active Low). When this pin is low, the data is programmed to the EPROM through the Data Bus.

Power-On Reset, the reset output time is 5 ms . The Z86E40 does not reset WDTMR, SMR, P2M, and P3M registers on a STOP Mode Recovery operation.

Port 0 (P00-P07). Port 0 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines can be configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt triggered and nibble programmed. Either nibble output that can be globally programmed as push-pull or open drain. Low EMI output buffers can be globally programmed by the software. Port 0 can be placed under handshake control. In Handshake Mode, Port 3 lines P32 and P35 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to Port O's upper nibble. The lower nibble must have the same direction as the upper nibble.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. In ROM mode, Port 0 is defined as input after reset.

Port 0 can be set in the high-impedance mode if selected as an address output state, along with Port 1 and the control signals /AS, /DS and R//W (Figure 9).

Figure 9. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1 (P10-P17). Port 1 is an 8 -bit, bidirectional, CMOS compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports. These eight I/O lines can be programmed as inputs or outputs or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitt triggered and the output buffers can be globally programmed as either push-pull or open drain. Low EMI output buffers can be globally programmed by the software. Port 1 can be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake
controls RDY1 and /DAV1 (Ready and Data Available). To interface externalmemory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines (Figure 10).

Port 1 can be placed in the high-impedance state along with Port 0 , /AS, /DS and R/M, allowing the Z86E40 to share common resources in multiprocessor and DMA applications.

Figure 10. Port 1 Configuration

Port 2 (P20-P27). Port 2 is an 8-bit, bidirectional, CMOS compatible I/O port. These eight I/O lines can be configured under software control as an input or output, independently. All input buffers are Schmitt triggered. Bits programmed as outputs can be globally programmed as either push-pull or open drain. Low EMI output buffers can be globally programmed by the software. When used as an I/O port, Port 2 can be placed under handshake control.

In Handshake Mode, Port 3 lines P31 and P36 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to bit 7 of Port 2 (Figure 11).

Figure 11. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3(P30-P37). Port 3 is an 8-bit, CMOS compatible port with four fixed input and four fixed output. Port 3 consists of four fixed input (P30-P33) and four fixed output (P34P37), and can be configured by software for interrupt and handshake control functions. Port 3, Pin 0 is Schmitt triggered. Pins P31, P32 and P33 are standard CMOS inputs (no Auto-Latches) and Pins P34, P35, P36 and P37 are push-pull output lines. Low EMI output buffers can be globally programmed by the software. Two on-board comparators can process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by setting the D1 of Port 3 Mode Register.(P3M).

For the interrupt function, P30 and P33 are falling edge triggered interrupt inputs. P31 and P32 can be programmed as falling, rising or both edges triggered interrupt inputs (Figure 12). Access to Counter/Timer 1 is made through P31 ($T_{\text {IN }}$) and P36 ($T_{\text {out }}$). Handshake lines for Port 0, Port 1 , and Port 2 are also available on Port 3 (Table 7).

Note: P30-P33 differs from the Z86C40 because there is no clamping diode to $V_{c c}$ due to the EPROM high voltage circuits. Exceeding the $V_{\mathbb{H}}$ maximum specification during standard operating mode may cause the device to enter EPROM mode.

Figure 12. Port 3 Configuration

Table 7. Pin Assignments of Port 3

Pin	I/O	CTC1	AN IN	Interrupt	P0 HS	P1 HS	P2 HS	Ext
P30	\mathbb{N}			IRQ3				
P31	\mathbb{N}	$T_{\text {IN }}$	AN1	IRQ2		D/R		
P32	\mathbb{N}		AN2	IRQ0	D/R			
P33	\mathbb{N}		REF	IRQ1		D/R		
P34	OUT					R/D		
P35	OUT				R/D		DM	
P36	OUT	$T_{\text {out }}$				R/D		
P37	OUT							

Comparator Inputs. Port 3 pins P31 and P32 each has a comparator front end. The comparator reference voltage Pin P33 is common to both comparators. In analog mode, P31 and P32 are the positive input of the comparators and P33 is the reference voltage of the comparators.

Auto-Latch. The Auto-Latch puts valid CMOS levels on all CMOS inputs (except P31-P33) that are not externally driven. Whether this level is zero or one, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. Auto-Latches are available on Port 0, Port 2 and P30. There are no Auto-Latches on P31, P32, and P33.

Low EMI Emission. The Z86E40 can be programmed to operate in a low EMI emission mode in the PCON register.

The oscillator and all I/O ports can be programmed as low EMI emission mode independently. Use of this feature results in:

- Less than 1.5 mA typical consumption during HALT mode.
- The pre-drivers slew rate is reduced to 10 ns typical.
- Low EMI output drivers have resistance of 200 ohms (typical).
- Oscillator divide-by-two circuitry is eliminated.
- Internal SLCK/TCLK operation limited to a maximum of $4 \mathrm{MHz}-250 \mathrm{~ns}$ cycle time.

FUNCTIONAL DESCRIPTION

The 28 CCP incorporates special functions to enhance the Z8's applications in industrial, scientific research, and advanced technologies applications.

RESET. The device is reset in one of the following conditions:

- Power-On Reset
- Watch-Dog Timer
- STOP Mode Recovery Source

Having the Auto Power-on Reset circuitry built-in, the Z86E40 does not need to be connected to an external power-on reset circuit. The reset time is 5 ms (typical) plus

18 clock cycles. The Z86E40 does not re-initialize WDTMR, SMR, P2M, and P3M registers to their reset values on a STOP Mode Recovery operation.

Program Memory. The Z86E40 can address up to 4 Kbytes of internal program memory (Figure 13). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For EPROM mode, byte 12 (000 CH) to address 4095 (0FFFH) consists of programmable EPROM. After reset, the program counter points at the address 000 CH which is the starting address of the user program. In ROMIess mode, the Z86E40 can address up to 64 Kbytes of external program memory. The ROivi/ ROMless option is only available on the 44-pin devices.

Figure 13. Program Memory Map

EPROM Protect. The 4 Kbytes of program memory is a one-time PROM. An EPROM protect feature prevents dumping of the ROM contents by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions to program memory in all modes.

Data Memory (/DM). In EPROM mode, the Z86E40 can address up to 60 Kbytes of external data memory beginning at location 4096. In ROMless mode, the Z86E40 can
address up to 64 Kbytes of data memory. External data memory may be included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 14). The state of the /DM signat is controlled by the type of instruction being executed. An L.DC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references data(/DM active Low) memory.

Figure 14. Data Memory Map

Expanded Register File. The register file has been expanded to allow for additional system control registers, mapping of additional peripheral devices and input/output ports into the register address area. The $Z 8$ register address space R0 through R15 is implemented as 16 groups of 16 registers per group (Figure 15). These register groups are known as the Expanded Register File (ERF).

The low nibble (D3-D0) of the Register Pointer (RP) select the active ERF group, and the high nibble (D7-D4) of register RP select the working register group (Figure 16). Three system configuration registers reside in the Expanded RegisterFile atbank FH: PCON, SMR, and WDTMR. The rest of the Expanded Register is not physically implemented and is reserved for future expansion.

FUNCTIONAL DESCRIPTION (Continued)

Z8 STANDARD CONTROL REGISTERS

Figure 15. Expanded Register File Architecture

R253 RP

Default setting after RESET $=0000000$

Register File. The 256 byte register file consists of 4 I/O port registers, 236 general-purpose registers and 15 control and status registers (R240 is reserved). The instructions can access registers direclly or indireclly via an 8-bit address field. This allows short 4-bit register addresses using the Register Pointer (Figures 16 and 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Note: Register Bank EOH-EFH can only be accessed through working registers and indirect addressing modes.

Figure 16. Register Pointer Register

Figure 17. Register Pointer

FUNCTIONAL DESCRIPTION (Continued)

RAM Protect. The upper portion of the RAM's address spaces 80 H to EFH (excluding the control registers) can be protected from reading and writing. This option can be selected during the EPROM Programming Mode. After this option is selected, the user can activate this feature from the internal EPROM. D6 of the IMR control register (R251) is used to turn off/on the RAM protect by loading a 0 or 1 , respectively. A 1 in D6 indicates RAM Protect enabled.

Stack. The Z86E40 external data memory or the internal register file can be used for the stack. The 16-bit Stack Pointer (R254-R255) is used for the external stack which can reside anywhere in the data memory for ROMless mode, but only from 4096 to 65535 in ROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general purpose registers (R4R239). SPH can be used as a general purpose register when using internal stack only.

Counter/Timers. There are two 8-bit programmable counter/ timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 18).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided-by-four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. Port 3 line P36 serves as a timer output ($T_{\text {out }}$) through which T0, T1 or the internal clock can be output. The counter/timers can be cascaded by connecting the TO output to the input of T 1 .

Figure 18. Counter/Timer Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z86E40 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 19). The six sources are divided as follows: four sources are claimed by Port 3 lines P30-P33, and two
in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 8).

Figure 19. Interrupt Block Diagram

Table 8. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ 0	IDAV 0, IRQ 0	0,1	External (P32), Rising/Falling Edge Triggered
IRQ 1	IRQ 1	2,3	External (P33), Falling Edge Triggered
IRQ 2	IDAV 2, IRQ 2, T	Ex	4,5
IRQ 3	IRQ3	6,7	External (P31), Rising/Falling Edge Triggered
IRQ 4	T0	8,9	Internal
IRQ 5 Falling Edge Triggered			
	TI	10,11	Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register (IPR). An interrupt machine cycle is activated when an interrupt request is granted. Thus, disabling all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All Z86E40 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16 -bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQO. Interrupts IRQ2 and IRQ0may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the InterruptEdge Select are located in bits D7 and D6 of the IRQ Register (R250). The configuration is shown in Table 9.

Ceramic Resonator or
Crystal
LC
$\mathrm{C} 1, \mathrm{C} 2=22 \mathrm{pF}$
C1, C2 = 47 pF TYP *
$\mathrm{F}=8 \mathrm{MHz}$

$$
\begin{aligned}
& \mathrm{L}=130 \mu \mathrm{H}^{*} \\
& \mathrm{~F}=3 \mathrm{MHz}
\end{aligned}
$$

RC
External Clock
@ 5V Vcc (TYP)
$\mathrm{C} 1=33 \mathrm{pF}$ *
$\mathrm{R}=1 \mathrm{~K}$ *
$\mathrm{F}=6.6 \mathrm{MHz}$ *
Table 9. IRQ Register Configuration

IRQ		Interrupt Edge	
D7	D6	P31	P32
0	0	F	F
0	1	F	R
1	0	R	F
1	1	R / F	R / F

Notes:
$F=$ Falling Edge
$R=$ Rising Edge
Clock. The Z86E40 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a cryslal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 10 kHz to 12 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance is from 10 pF to 100 pF) from each pin to ground. The RC oscillator option can be selected in the programming mode. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL1 to ground (Figure 20).

Note: RC OSC may not reach to 12 MHz

$$
\mathrm{F}=6.6 \mathrm{MHz} \text { * }
$$

* Typical value including pin parasitics

Figure 20. Oscillator Configuration

FUNCTIONAL DESCRIPTION (Continued)

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR timer allows V_{cc} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

1. Power fail to Power OK status
2. STOP mode recovery (if D5 of $\mathrm{SMR}=0$)
3. WDT timeout

The POR time is a nominal 5 ms . Bit 5 of the Stop Moude Register (SMR) determines whether the POR timer is bypassed after STOP mode recovery (typical for an external clock and RC/LC oscillators with fast start up times).

HALT. Turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupt IRQ0, IRQ1, and IRQ2 remain active. The device is recovered by interrupts, either externally or internally generated.
by one of the following resets: either by WDT timeout, POR, a Stop Mode Recovery Source which is defined by the SMR register or external reset.. This causes the processor to restart the application program at address 000 CH . In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user executes a NOP instruction (opcode=FFH) immediately before the appropriate sleep instruction. For example:

| FF | NOP | clear the pipeline |
| :--- | :--- | :--- | :--- |
| 6F | STOP | enter STOP mode |
| or | | |
| FF | NOP | clear the pipeline |
| 7F | HALT | nter HALT mode |

Port Configuration Register (PCON). The PCON register configures the ports individually; comparator output on Port 3, Open Drain on Port 0 and Port 1, low EMI on Port's $0,1,2$ and 3 , and low EMI oscillator. The PCON register is located in the expanded register file at bank F, location 00 (Figure 21).

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. STOP mode is terminated

Figure 21. Port Configuration Register (PCON)

Comparator Output Port 3(DO). Bit0 controls the comparator use in Port 3. A 1 in this location brings the comparator outputs to P34 and P35, and a 0 releases the Port to its standard I/O configuration.

Port 0 Open Drain (D1). Port 0 can be configured as an Open-drain by resetting this bit ($\mathrm{D} 1=0$) or configured as Push-pull Active by setting this bit ($\mathrm{D} 1=1$). The default value is 1 .

Port 1 Open Drain (D2). Port 1 can be configured as an Open-drain by resetting this bit ($\mathrm{D} 2=0$) or configured as Push-pull Active by setting this bit (D2=1). The default value is 1 .

Low EMIPort 0 (D3). Port0 can be configured as a Low EMI Port by resetting this bit ($\mathrm{D} 3=0$) or configured as a Standard Port by setting this bit (D3=1). The default value is 1 .

Low EMIPort 1 (D4). Port 1 can be configured as a LowEMI Port by resetting this bit (D4=0) or configured as a Standard Port by setting this bit ($\mathrm{D} 4=1$). The default value is 1 .

Low EMIPort2 (D5). Port 2 can be configured as a Low EMI Port by resetting this bit ($\mathrm{D} 5=0$) or configured as a Standard Port by setting this bit ($\mathrm{D} 5=1$). The default value is 1 .

Low EMIPort3 (D6). Port 3 can be configured as a LowEMI Port by resetting this bit (D6=0) or configured as a Standard Port by setting this bit ($\mathrm{D6}=1$). The default value is 1 .

Low EMI OSC (D7). This bit of the PCON Register controls the low EMI noise oscillator. A 1 in this location configures the oscillator with standard drive, while a 0 configures the oscillator with low noise drive. The low EMI mode will reduce the drive of the oscillator (OSC).

Stop Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP mode recovery (Figure 22). All bits are Write only except Bit 7 which is a Read only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power on cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the STOP Mode Recovery Source. The SMR is located in bank F of the Expanded Register Group at address OBH .

Figure 22. Stop Mode Recovery Register

FUNCTIONAL DESCRIPTION (Continued)

SCLK/TCLK divide-by-16 Select (DO). This bit of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

External Clock Divide By 2 (D1). This bit can eliminate the oscillator divide-by-two circuitry. When this bit is 0 , the System Clock (SCLK) and Timer Clock (TCLK) are equal to the external clock frequency divided by two. The SCLK/

TCLK is equal to the external clock frequency when this bit is set ($\mathrm{D} 1=1$). Using this bit together with D7 of PCON further helps lowerEMI (i.e.D7 $(P C O N)=0, D 1(S M R)=1)$. The default setting is zero.

STOP Mode Recovery Source (D2, D3, and D4). These three bits of the SMR register specify the wake up source of the STOP Mode recovery (Figure 23). Table 10 shows the SMR source selected with the setting of D2 to D4. P31P33 cannot be used to wake up from STOP mode when programmed as analog inputs.

Figure 23. Stop Mode Recovery Source

Table 10. Stop Mode Recovery Source

D4	D3	D2	SMR Source selection
0	0	0	POR recovery only
0	0	1	P30 transition
0	1	0	P31 transition (Not in analog mode)
0	1	1	P32 transition (Not in analog mode)
1	0	0	P33 transition (Not in analog mode)
1	0	1	P27 transition
1	1	0	Logical NOR of Port 2 bits 0:3
1	1	1	Logical NOR of Port 2 bits 0:7

STOP Mode Recovery Delay Select (D5). The 5 ms RESET delay after STOP Mode Recovery is disabled by programming this bit to a zero. A 1 in this bit will cause a 5 ms RESET delay after STOP Mode Recovery. The default condition of this bit is 1 . If the fast wake up mode is selected, the STOP Mode Recovery source needs to be kept active for at least 5 TpC .

STOP Mode Recovery Level Select (D6). A 1 in this bit defines that a high level on any one of the recovery sources wakes the Z86E40 from STOP Mode. A 0 defines low level recovery. The default value is 0 .

Cold or Warm Start (D7). This bit is set by the device upon entering STOP Mode. A 0 in this bit indicates that the device has been reset by POR (cold). A 1 in this bit indicates the device was awakened by a SMR source (warm).

Watch Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the Z 8 if it reaches its terminal count. The WDT is disabled after Power On Reset and initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT cannot be disabled when it has been enabled. The WDT is driven either by an on-board RC oscillator or an external oscillator from XTAL 1 pin. ThePOR clock source is selected with bit 4 of the WDT register.

WDT Timeout Period (D0 and D1). Bits0 and 1 control a tap circuit that determines the timeout periods that can be obtained (Table 11). The default value of D0 and D1 are 1 and 0 , respectively.

Table 11. Timeout Period of the WDT

D1	D0	Timeout of the internal RC OSC	Timeout of the external clock
0	0	5 ms	256 TpC
0	1	15 ms	512 TpC
1	0	25 ms	1024 TpC
1	1	100 ms	4096 TpC

Notes:

TpC = External clock cycle.
The default setting is 15 ms .

WDT During HALT Mode (D2). This bit determines whether or not the WDT is active during HALT mode. A 1 indicates that the WDT is active during HALT. A 0 disables the WDT in HALT mode. The default value is 1 .

WDT During STOP Mode (D3). This bit determines whether or not the WDT is active during STOP mode. A 1 indicates active during STOP. A 0 disables the WDT during STOP mode.

Clock Source For WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1 , the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 , which selects the RC oscillator.

Bit 5 through Bit 7 are reserved. The WDTMR register is accessible only during the first 64 processor cycles (128 external XTAL clock cycles) from the execution of the first instruction after Power-On Reset, Watch Dog reset or a STOP Mode Recovery (Figures 24 and 25). Alter this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in bank F of the Expanded Register Group at address location OFH.

WDTMR (F) OF

Figure 24. Watchdog Timer Mode Register

FUNCTIONAL DESCRIPTION (Continued)

Figure 25. Resets and WDT

Auto Reset Voltage. An on-board Voltage Comparator checks that V_{cc} is at the required level to ensure correct operation of the device. Reset is globally driven if V_{cc} is below $\mathrm{V}_{\text {RST }}$ (Auto Reset Voltage - Figure 26).

Figure 26. Typical Z86E40 $\mathbf{V}_{\text {Rst }}$ Voltage vs Temperature

EPROM Programming Mode

Table 12 shows the programming voltages of each programming mode. Table 13, Figures 27, 28 and 29 show the programming timing of each programming mode. Figure 30 shows the circuit diagram of a Z86E40 programming adaptor which adapts from 2764A to Z86E40. Figure 31, shows the flow-chart of an Intelligent Programming

Algorithm, which is compatible with 2764A EPROM (Z86E40 is 4 K EPROM, 2764 A is 8 K EPROM). Since the EPROM size of Z86E40 differs from 2764A, the programming address range has to be set from 0000 H to 0 FFFH . Otherwise, the upper 4 K of data ($1000 \mathrm{H}-1 \mathrm{FFFH}$) will overwrite the lower 4 K of data.

Table 12. EPROM Programming Table

PROGRAMMING MODES	$\begin{aligned} & \mathrm{V}_{\mathrm{pp}} \\ & (\mathrm{P} 33) \end{aligned}$	$\begin{aligned} & \text { EPM } \\ & \text { (P32) } \end{aligned}$	$\begin{aligned} & \text { ICE } \\ & \text { (XTAL1) } \end{aligned}$	$\begin{aligned} & \text { /OE } \\ & \text { (P31) } \end{aligned}$	/PGM (P30)	ADDR (PORT 2)	DATA	V_{cc}
EPROM READ PROGRAM	$\begin{aligned} & x_{p p} \\ & \end{aligned}$	V_{H} \times	$\begin{aligned} & V_{11} \\ & v_{n} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{HH}} \end{aligned}$	$\begin{aligned} & V_{1 H} \\ & V_{1 L} \end{aligned}$	Addr Addr	Data Out Data In	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$
PROGRAM VERIFY	$\mathrm{V}_{\text {pp }}$	X	V_{11}	V_{1}	V_{H}	Addr	Data Out	6.0 V
EPROM PROTECT	$V_{\text {pp }}$	V_{H}	V_{H}	$V_{\text {VH }}$	V_{11}	X	X	6.0 V
RAM PROTECT	V_{pp}	$V_{\text {IH }}$	V_{H}	$V_{\text {II }}$	V_{12}	x	x	6.0 V
RC OSCILLATOR	$V_{\text {Pp }}$	$V_{\text {ILI }}$	V_{H}	$V_{1 H}$	$V_{1 L}$	X	X	6.0 V

Notes:
$\mathrm{V}_{\mathrm{pp}}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{H}}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$X=$ TTL Level (irrelevant)
$\mathrm{V}_{\mathrm{H}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{n}}=\mathrm{oV}$

Table 13. EPROM Programming Timing

Parameters	Name	Min	Max	Units
1	Address Setup Time	2		$\mu \mathrm{~s}$
2	Data Setup Time			
3	V Sp Setup Time	2		$\mu \mathrm{~s}$
4	Vcc Setup Time	2		$\mu \mathrm{~s}$
5	Chip Enable Setup Time	2		$\mu \mathrm{~s}$
6	Program Pulse Width	2		ms
7	Data Hold Time	0.95	1.05	$\mu \mathrm{~s}$
8	OE Setup Time	2		$\mu \mathrm{~s}$
9	Data Access Time	2	200	ns
10	Data Output Float Time		100	ns
11	Overprogram Pulse Width			
12	EPM Setup Time	2.85		
13	OE Setup Time	2		$\mu \mathrm{~s}$
14	Address to OE Setup Time	2		$\mu \mathrm{~s}$
15	Option Bit Program Pulse Width	2		ms

Note:
Vpp is Irrelevant
PGM is at VIH

Figure 27. EPROM READ Mode Timing Diagram

Figure 28. Timing Diagram of EPROM Program and Verify Modes

Figure 29. Timing Diagram of EPROM Protect, RAM Protect and RC OSC Modes

FUNCTIONAL DESCRIPTION (Continued)

Note: The programming address has to be set to 0000H -0FFFH (lower 4 Kbyte memory)

Figure 30. Z86E40 Z8 OTP Programming Adapter

Figure 31. Z86E40 Programming Algorithm

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V_{cc}	Supply Voltage (*)	-0.3	+7.0	V
$\mathrm{~T}_{\text {STG }}$	Storage Temp	-65°	$+150^{\circ}$	C
T_{A}	Oper Ambient Temp	\dagger	\dagger	C
	Power Dissipation		2.2	W

Notes:

* Voltage on all pins with respect to GND.
\dagger See Ordering Information.

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 32).

Figure 32. Test Load Diagram

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cC}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{MHz}$; unmeasured pins to $G N D$.

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

V_{cc} SPECIFICATION

Low $V_{c c}$	$4.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
High V_{cc}	$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS

Sym	Parameter	$\underset{\substack{V_{c c} \\ \text { Note [3] }}}{ }$	$\begin{aligned} & T_{A}=0 \\ & \text { Min } \end{aligned}$	$\begin{gathered} 0+70^{\circ} \mathrm{C} \\ \text { Max } \end{gathered}$	Typical at $25^{\circ} \mathrm{C}$	Units	Conditions	Notes
	Max Input Vollage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.5 \\ & \mathrm{~V}_{\mathrm{cc}}+0.5 \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{m}} 250 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{N}} 250 \mu \mathrm{~A} \end{aligned}$	
$\mathrm{V}_{\text {ch }}$	Clock Input High Vollage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.5 \end{aligned}$	V V	Driven by External Clock Generator Driven by External Clock Generator	
V_{a}	Clock Input Low Vollage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$	V V	Driven by External Clock Generator Driven by External Clock Generator	
$\overline{\mathrm{V}_{\text {H }}}$	Input High Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V} \mathrm{cc} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}+0.3 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.5 \end{aligned}$	V		
VII	Input Low Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{s \mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{c c} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$		
$\mathrm{V}_{\text {OH }}$	Output High Voltge	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ccc}-0.4}^{\mathrm{V}_{\mathrm{cc}}-0.4} \end{aligned}$		$\begin{aligned} & 3.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline V \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	
V_{01}	Output Low Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{otH}}=+4.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{ol}}=+4.0 \mathrm{~mA} \end{aligned}$	
$\mathrm{V}_{\mathrm{OL} 2}$	Output Low Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \hline V \\ & V \end{aligned}$	$\mathrm{I}_{\mathrm{dL}}=+12 \mathrm{~mA}, 3$ Pin Max	
$V_{\text {RH }}$	Reset Input High Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & .7 V_{\text {cc }} \\ & .7 V_{c c} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}+0.3} \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.1 \end{aligned}$	V		
$\mathrm{V}_{\text {RI }}$	Reset Input Low Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}-0.3 \\ & \mathrm{~V}_{\mathrm{ss}}-0.3 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{cc}} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.7 \end{aligned}$			
$V_{\text {OrFSEI }}$	Comparator Input Offset Voltage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$		
In	Input Leakage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\mathbb{N W}}=0 \mathrm{~V}, V_{\mathrm{cc}} \\ & V_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	
l_{a}	Output Leakage	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline-10 \\ & -10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{V_{1 N}}=0 \mathrm{~V}, V_{\mathrm{cc}} \\ & V_{\mathrm{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	
$I_{\text {R }}$	Reset Input Current	$\begin{aligned} & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RH}}=0 \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \end{aligned}$	
I_{cc}	Supply Current (Standard Mode)	$\begin{aligned} & \hline 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 4.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \\ & 16 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 15.0 \\ & 11.5 \\ & 18.0 \end{aligned}$	mA mA mA mA	@ 8 MHz @ 8 MHz @ 12 MHz @ 12 MHz	[4,5] [4,5] $[4,5]$ $[4,5]$

DC ELECTRICAL CHARACTERISTICS (Continued)

Sym	Parameter	$\begin{gathered} V_{c c} \\ \text { Note [3] } \end{gathered}$	$\underset{\text { Min }}{T_{A}=0^{\circ} \mathrm{C} t 0}+70^{\circ} \mathrm{C}$	Typical at $25^{\circ} \mathrm{C}$	Units	Conditions	Notes
ICl	Standby Current (Standard Mode)	4.0 V	4.0	2	mA	HALT Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 8 \mathrm{MHz}$	[4,5]
		5.0 V	6.0	3.5	mA	HALT Mode $\mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$ @ 8 MHz	[4,5]
		4.0 V	5.0	2.5	mA	HALT Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 12 \mathrm{MHz}$	[4,5]
		5.0 V	7.5	4.5	mA	HALT Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$ @ 12 MHz	[4,5]
		4.0 V	2.0	1.25	mA	Clock Divide by 16 @ 8 MHz	[4,5]
		5.0 V	3.0	1.50	mA	Clock Divide by 16 @ 8 MHz	[4,5]
		4.0 V	2.0	1.35	mA	Clock Divide by 16 @ 12 MHz	[4,5]
		5.0 V	3.0	1.70	mA	Clock Divide by 16 @ 12 MHz	[4,5]
i_{cc}	Supply Curreni (Low EMI Mode)	4.0 V	6.0	4.0	mȦ	@ 2 2 iviitiz	[4,5]
		5.0 V	7.5	5.0	mA	@ 2 MHz	[4,5]
		4.0 V	9.5	6.0	mA	(1) 4 MHz	[4,5]
		5.0 V	12	8.0	mA	(1) 4 MHz	[4,5]
lccl	Standby Current (Low EMI Mode)	4.0 V	1.6	0.8	mA	@ 2 MHz	[4,5]
		5.0 V	2.0	1.0	mA	(1)2MHz	[4,5]
		4.0V	2.4	1.2	mA	(1) 4 MHz	[4,5]
		5.0 V	3.0	1.5	mA	(1) 4 MHz	[4,5]
		4.0 V	1.0	0.5	mA	Clock Divide by 16 @ 2 MHz	[4,5]
		5.0 V	2.0	. 75	mA	Clock Divide by 16 @ 2 MHz	[4,5]
		4.0V	1.0	. 75	mA	Clock Divide by 16 @ 4 MHz	[4,5]
		5.0 V	2.0	1.0	mA	Clock Divide by 16 @ 4 MHz	[4,5]
$\overline{\mathrm{ICc} 2}$	Standby Current	4.0 V	10	2	$\mu \mathrm{A}$	$\begin{aligned} & \text { STOP Mode } \mathrm{V}_{\mathrm{w}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}} \text { WDT is not Running } \end{aligned}$	[6]
		5.0 V	10	2	$\mu \mathrm{A}$	STOP Mode $V_{\mathbb{W}}=0 \mathrm{~V}$, $\mathrm{V}_{\text {ct }}$ WDT is not Running	[6]
		4.0 V	400	250	$\mu \mathrm{A}$	SIOP Mode $V_{\mathbb{N}}=0 \mathrm{~V}$, V_{cc} WDT is Running	[6]
		5.0 V	800	450	$\mu \mathrm{A}$	STOP Mode $V_{\text {N }}=0 \mathrm{~V}$, $V_{c c}$ WDT is Running	[6]
$\mathrm{INL}^{\text {a }}$	Auto Latch Low Current	4.0 V	-10	-5	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{W}}<\mathrm{V}_{\text {cc }}$	
		5.0 V	-10	-5	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathbb{W}}<\mathrm{V}_{\text {cc }}$	
$\mathrm{I}_{\text {NH }}$	Auto Latch High Current	4.0 V	20	10	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\text {W }}<\mathrm{V}_{\text {cc }}$	
		5.0 V	20	10	$\mu \mathrm{A}$	$O V<V_{W}<V_{c c}^{c c}$	
$\mathrm{l}_{\text {Pon }}$	Power On Reset	4.0 V	4.0	7.5	ms		
		5.0 V	2.5	4.5	ms		
$V_{\text {RST }}$	Auto Reset Voltage		3.0	2.5	V	2 MHz Max Ext. CLK Freq.	

Notes:

[1]	Typ	Max	Unit	Freq
Clock Driven on Crystal	3.0	5.0	mA	8 MHz
Clo XTAL Resonator	0.3	5.0	mA	8 MHz

[2] $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}=\mathrm{GND}$
[3] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 4.0 \mathrm{~V}$
[4] All outputs unloaded, I/O pins floating, inputs at rail.
[5] CL1 $=\mathrm{CL} 2=100 \mathrm{pF}$
[6] Same as note [4] except inputs at V_{cc}.

AC ELECTRICAL CHARACTERISTICS

External I/O or Memory Read/Write Timing Diagrams (Standard Mode)

Figure 33. External I/O or Memory Read/Write Timing

AC ELECTRICAL CHARACTERISTICS

External I/O or Memory Read/Write Timing (Standard Mode)

No	Sym	Parameter	$\underset{\text { Note[3] }}{V_{\text {ce }}}$	Standard Mode				Units	Notes
				8 MHz		12 MHz			
				Min	Max	Min	Max		
1	TdA(AS)	Address Valid to /AS Rise Delay	4.0 V	55		35		ns	[2]
			5.0 V	35		35		ns	[2]
2	TdAS(A)	/AS Rise to Address Float Delay	4.0 V	70		45		ns	[2]
			5.0 V	70		45		ns	[2]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid	4.0 V		400		250	ns	[1,2]
			5.0 V		400		250	ns	[1,2]
4	TwAS	/AS Low Width	4.0 V	80		55		ns	[2]
			5.0V	80		55		ns	[2]
5	TdAS(DS)	Address Float to /DS Fall	4.0 V	0		0		ns	
			5.0 V	0		0		ns	
6	TwDSR	/DS (Read) Low Width	4.0 V	300		200		ns	[1,2]
			5.0 V	300		200		ns	[1,2].
7	TwDSW	/DS (Write) Low Width	4.0 V	165		110		ns	[1,2]
			5.0 V	165		110		ns.	[1,2]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid	4.0 V		260		150	ns	[1,2]
			5.0 V		260		160	ns	[1,2]
9	ThDR(DS)	Read Data /DS Rise Hold Time	4.0 V	0		0		ns	[2]
			5.0 V	0		0		ns	[2]
10	TḋDS(A)	/DS Rise to Address Active Delay	4.0 V	85		45		ns	[2]
			5.0 V	95		55		ns	[2]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	4.0 V	60		30		ns	[2]
			5.0 V	70		45		ns	[2]
12	TdRN(AS)	R/W Valid to /AS Rise Delay	4.0 V	70		45		ns	[2]
			5.0 V	70		45		ns	[2]
13	TdDS(RW)	/DS Rise to R/W Not Valid	4.0 V	70		45		ns	[2]
			5.0 V	70		45		ns	[2]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	4.0 V	80		55		ns	[2]
			5.0 V	80		55		ns	[2]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	4.0 V	70		45		ns	[2]
			5.0 V	80		55		ns	[2]
16	TdA(DR)	Address Valid to Read Data							
		Req'd Valid	4.0 V		475		310	ns	[1,2]
			5.0 V		475		310	ns	[1,2]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	4.0 V	100		65		ns	[2]
			5.0 V	100		65		ns	[2]
18	TdDI(DS)	Data Output Setup to /DS Rise	4.0 V	115		115		ns	[1,2]
			5.0 V	75		75		ns	[1,2]
19	TdDM(AS)	/DM Valid to /AS Fall Delay	4.0 V	55		35		ns	[2]
			5.0 V	55		35		ns.	[2]

Notes:

[1] When using extended memory timing add $2 T p C$.
[2] Timing numbers given are for minimum TpC.
[3] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 4.0 \mathrm{~V}$
Standard Test Load
All timining references use $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .
Standard operating temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS

Additional Timing Diagrams (Standard Mode)

Figure 34. Additional Timing

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table (Standard Mode)

No	Symbol	Parameter		Standard Mode				Units	Notes
				8 MHz		12 MHz			
				Min	Max	Min	Max		
1	TpC	Input Clock Period	4.0V	125	100000	83	100000	ns	[1]
			5.0 V	125	100000	83	100000	ns	[1]
2	TrC,TfC	Clock Input Rise \& Fall Times	4.0 V		25		15	ns	[1]
			5.0 V		25		15	ns	[1]
3	TwC	Input Clock Width	4.0V	37		26		ns	[1]
			5.0 V	37		26		ns	[1]
4	TwTinL	Timer Input Low Width	4.0 V	100		100		ns	[1]
			5.0 V	70		70		ns	[1]
5	TwTinH	Timer Input High Width	4.0 V	3 TpC		3TpC			[1]
			5.0 V	3TpC		3 TpC			[1]
6	TpTin	Timer Input Period	4.0 V	8TpC		8TpC			[1]
			5.0 V	8TpC		8TpC			[1]
7	TrTin, TfTin	Timer Input Rise \& Fall Timers	4.0 V		100		100	ns	[1]
			5.0 V		100		100	ns	[1]
8A	TwIL	Int. Request Low Time	4.0 V	100		100		nS	[1,2]
			5.0 V	70		70		nS	[1,2]
8B	TwiL	Int. Request Low Time	4.0V	3 TpC		3 TpC			[1,3]
			5.0 V	3 TpC		3 TpC			[1,3]
9	TwlH	Int. Request Input High Time	4.0 V	3 TpC		3 TpC			[1,2]
			5.0 V	3 TpC		3 TpC			[1,2]
10	Twsm	STOP Mode Recovery Width Spec	4.0V	12		12		ns	
			5.0 V	12		12		ns	
			4.0 V	5 TpC		5 TpC			[10]
			5.0 V	5 TpC		5 TpC			[11]
11	Tost	Oscillator Startup Time	4.0 V		5 TpC		5TpC		[4]
			5.0 V		5 TpC		5 TpC		[4]
12	Twdt	Watchdog Timer Delay Time	4.0 V	10		10		ms	[6]
			5.0 V	5		5		ms	[6]
			4.0 V	20		20		ms	[7]
			5.0 V	15		15		ms	[7]
			4.0 V	35		35		ms	[8]
			5.0 V	25		25		ms	[8]
			4.0 V	175		175		ms	[9]
			5.0 V	100		100		ms	[9]

Notes:

[1] Timing Reference uses $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0.
[2] Interrupt request via Port 3 (P31-P33)
[3] Interrupt request via Port 3 (P30)
[4] SMR-D5 $=0$
[5] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 4.0 \mathrm{~V}$
[6] Reg. WDTMR D1 $=0, \mathrm{DO}=0$
[7] Reg. WDTMR D $1=0, \mathrm{DO}=1$
[8] Reg. WDTMR D1 $=1, \mathrm{DO}=0$
[9] Reg. WDTMR $D 1=1, D 0=1$
[10] Reg. SMR-D5=0. No Delay
[11]Reg. SMR-D5=1. With Delay

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Diagrams

Figure 34. Input Handshake Timing

Figure 35. Output Handshake Timing

AC ELECTRICAL CHARACTERISTICS
Handshake Timing Table - (Standard Modes)

No	Sym	Parameter	$\underset{\substack{v_{c} \\ \text { Note[1] }}}{ }$	Standard Mode				Data Direction
				8 MHz		12 MHz		
				Min	Max	Min	Max	
1	TsDI(DAV)	Data In Selup Time	4.0 V	0		0		IN
			5.0 V	0		0		IN
2	ThDI(DAV)	Data In Hold Time	4.0 V	160		160		IN
			5.0 V	115		115		IN
3	TwDAV	Data Available Width	4.0 V	155		155		IN
			5.0 V	110		110		\mathbb{N}
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay	4.0 V		160		160	\mathbb{N}
			5.0 V		115		115	N
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay	4.0 V		120		120	IN
			5.0 V		80		80	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	4.0 V	0		0		\underline{N}
			5.0V	0		0		\mathbb{N}
7	TcLDAVO(RDY)	Data Out to DAV Fall Delay	4.0 V	63		42		OUT
			5.0 V	63		42		OUT
8	TcLDAVO(RDY)	DAV Fall to RDY Fall Delay	4.0 V	0		0		OUT
			5.0 V	0		0		OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay	4.0 V		160		160	OUT
			5.0 V		115		115	OUT
10	TwRDY	RDY Width	4.0 V	110		110		OUT
			5.0 V	80		80		OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay	4.0 V		110		110	OUT
			5.0V		80		80	OUT

Notes:

[1] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 4.0 \mathrm{~V}$
Standard operating temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

EXPANDED REGISTER FILE CONTROL REGISTERS

Figure 36. Port Configuration Register

* Default setting after RESET

Figure 37. Stop Mode Recovery Register

* Default setting after RESET

Figure 38. Watchdog Timer Mode Register

Z8 CONTROL REGISTER DIAGRAMS

Figure 39. Reserved

Figure 40. Timer Mode Register ($\mathrm{F1}_{\mathrm{H}}$:Read/Write)

Figure 41. Counter/Timer 1 Register (F_{H} :Read/Write) -

Figure 42. Prescaler 1 Register ($\mathrm{F3}_{\mathrm{H}}$:Write Only)

Figure 43. Counter/Timer 0 Register ($\mathrm{F4}_{\mathrm{H}}$:Read/Write)

R243 PREO

Figure 44. Prescaler 0 Register ($\mathrm{F5}_{\mathrm{H}}$:Write Only)

Figure 45. Port 2 Mode Register (FG_{H} : Write Only)

R247 P3M

Figure 46. Port 3 Mode Register (F7 ${ }_{H}$:Write Only)

Figure 47. Port 0 and 1 Mode Register ($\mathrm{F8}_{\mathbf{H}}$:Write Only)

Figure 48. Interrupt Priority Register ($\mathrm{F9}_{\mathrm{H}}$:Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 49. Interrupt Request Register (FA_{H} :Read/Write)

R251 IMR

Figure 50. Interrupt Mask Register (FB_{H} :Read/Write)

R252 FLAGS

R253 RP

Figure 52. Register Pointer (FD $_{\mathrm{H}}$:Read/Write)

R254 SPH

D7	D6	D5	D4	D3	D2	D1	D0

Figure 53. Stack Pointer High
(FE_{H} :Read/Write)

R255 SPL
 Byte (SP0-SP7)

Figure 54. Stack Pointer Low (FF_{H} :Read/Write)

Figure 51. Flag Register (FC_{H} :Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only IR
Indirect-register or indirect working-register address	
Ir	Indirect working-register address only Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cC	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
x	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S \times O R V)=0$
0001	LT	Less than	$(S X O R V)=1$
1010	GT	Greater Than	$[Z O R(S X O R V)]=0$
0010	LE	Less Than or Equal	$[Z O R(S X O R ~ V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

FFH	
6 FH	7 FH

STOP/HALT

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:
$\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}$
indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Flags Affect C Z		V		
ADC dst, src $\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$	\dagger	1[]	**	*	*	0	*
ADD dst, src $\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{s} \mathrm{C} \mathrm{C}$	\dagger	O[]	* *	*	*	0	*
AND dst, src dst $\leftarrow d s t$ AND src	\dagger	5[]	- *	*	0	-	-
CALL dst $S P \leftarrow S P-2$ @SP $\leftarrow P C$, $\mathrm{PC} \leftarrow \mathrm{dst}$	$\begin{aligned} & \text { DA } \\ & \text { inn } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- -	-	-		-
$\begin{aligned} & \text { CCF } \\ & \text { C } \leftarrow \text { NOT C } \end{aligned}$		EF	* -	-	-		-
CLR dst dst $\leftarrow 0$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	- -	-	-	-	-
COM dst dst \leftarrow NOT dst	$\begin{aligned} & \hline R \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 61 \end{aligned}$	$-*$	*	0	-	-
$\begin{aligned} & \overline{\mathrm{CP} \text { dst, src }} \\ & \text { dst - src } \end{aligned}$	\dagger	A[]	* *	*	*		-
DAdst $d s t \leftarrow$ DA dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* *	*	X	-	-
DEC dst dst \leftarrow dst -1	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	- *	*	*	-	-
DECW dst dst \leftarrow dst - 1	$\begin{aligned} & \mathrm{RR} \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	$-*$	*	*	-	-
$\begin{aligned} & \hline \mathrm{DI} \\ & \operatorname{IMR}(7) \leftarrow 0 \end{aligned}$		8 F	- -	-	-	-	-
$\begin{aligned} & \hline \text { DJNZr, dst } \\ & \mathrm{r} \leftarrow \mathrm{r}-1 \\ & \text { if } \mathrm{r} \neq 0 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst} \\ & \text { Range: + } 127 \text {, } \\ & -128 \end{aligned}$	RA	$\begin{aligned} & r A \\ & r=0-F \end{aligned}$	- -	-	-	-	-
EI $\operatorname{IMR}(7) \leftarrow 1$		9 F	-	-	-	-	-
HALT		7F	- -	-	-		-

INSTRUCTION SUMMARY (Continued)

Z86C27-ROM Z86C97-R0MLESS
 CMOS Z88 8-BIT
 MICROCONTROLLER

FEATURES

- 8-bit CMOS microcontroller for consumer television applications, 64-pin DIP package.
- Low cost
- Low power consumption
- Fast instruction pointer-1.5 microseconds @ 4 MHz

■ Two standby modes-STOP and HALT

- Low voltage detection/voltage sensitive reset
- 35 input/output lines
- On Screen Display Controller
- All digital CMOS levels Schmitt triggered
- 8 Kbytes of ROM
- 236 bytes of RAM
- Two programmable 8 -bit Counter/Timers each with 6-bit programmable prescaler.
- Sixvectored, priority interrupts from sixdifferentsources
- Clock speed up to 4 MHz
- Watch Dog/Power-On Reset Timer
- 4K x 6-bit character generator ROM
- 160×7-bit video RAM
- On-chip oscillator that accepts a crystal, ceramic resonator, LC or external clock drive.
- Mask programmable 128 character set displayed in an 8 -row by 20 -column format, 12 by 15 pixel character cell, capable of supporting English, Korean, Chinese and Japanese high resolution characters.
- Fully programmable color attributes including row character, row background/fringes, frame background/position, bar graph color change, and character size.
- Programmable display position and character size control.
- One Pulse Width Modulator (14-bit resolution) for voltage synthesis tuner control.
- FivePulse Width Modulators(8-bitresolution)for picture control.
- Seven Pulse Width Modulators (6-bit resolution) for audio control.
- Port 2 (8-bit programmable I/O) and Port 3 (2-bit input, 3 -bit oulput) register mapped ports.
- Port 4 (8-bit output), Port 5 (8-bit LED drive output) and Port 6 (6-bit input and tri-state comparator AFC input) memory mapped I/O ports.

GENERAL DESCRIPTION

The Z86C27 and Z86C97 Digital Television Controller (DTC) introduce a new level of sophistication to single-chip architecture. The Z86C27/C97 are members of the Z8 single-chip microcontroller family with 8 Kbytes of ROM (Z86C27), ROMless (Z86C97) and 236 bytes of RAM. Both devices are housed in a 64-pin DIP package, and are CMOS compatible. Having the ROM/ROMless selectivity,
the DTC offers both external memory and pre-programmed ROM which enables the $Z 8$ microcontroller to be used in a high volume production application device embedded with a custom program (customer supplied program). The Z86C97 ROMless offers the use of external memory rather

GENERAL DESCRIPTION (Continued)

than a preprogrammed ROM. This enables the Z8 microcontroller to be used in prototyping, low volume applications or where code flexibility is required. Zilog's DTC offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption. The device provides an ideal performance and reliability solution for consumer and industrial television applications.

The Z86C27/C97 architecture is characterized by utilizing Zilog's advanced Superintegration ${ }^{\text {™ }}$ design methodology. The devices have an 8-bit internal data path controlled by a Z8 microcontroller, and On Screen Display (OSD) logic circuits/Pulse Width Modulators (PWM). On-chip peripherals include two register mapped I/O ports (Ports 2 and Port 3), Interrupt control logic (1 software, 2 external and 3 internal interrupts) and a standby mode recovery input port (Port 3, pin P30).

The OSD control circuits support 8 rows by 20 columns for 128 kinds of characters. The character color is specified by row. One of the 8 rows is assigned to show two kinds of colors for bar type displays such as volume control. The OSD is capable of displaying either low resolution (5×7 dot pattern) or high resolution (11×15 dot pattern) characters. The Z86C97 currently supports high resolution characters only.

A 14-bit PWM port provides enough voltage resolution for a voltage synthesizer tuning system. Seven 6-bit PWM ports are used for controlling audio signal level. Five 8-bit PWM ports are used to vary picture levels.

The DTC applications demand powerful I/O capabilities. The Z86C27/C97 fulfills this with 35 I/O pins dedicated to input and output. These lines are grouped into five ports, and are configurable under software control to provide timing, status signals, parallel I/O and an address/data bus for interfacing to external memory.

There are three basic address spaces available to support this wide range of configurations: Program Memory, Register File and Data Memory. The Register File is composed of 236 bytes of general purpose register, two I/O Port registers and 15 control and status registers.

To unburden the program from coping with the real-time problems such as counting/timing and data communication, the DTC's offer two on-chip counter/timers with a large number of user selectable modes (Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B / W (WORD is active Low); /B/W (BYTE is active Low, only).

* () Denotes Z86C97 signal differences.

Figure 1. Functional Block Diagram

PIN CONFIGURATION

PWM5	1		64	\square	PWM6
PWM4 \square	2		63	\square	PWM7
PWM3	3		62	\square	PWM8
PWM2 4	4		61	\square	PWM9
PWM1	5		60	\square	PWM10
P35	6		59	\square	PWM11
P36	7		58	\square	PWM12
P34 \square	8		57	\square	PWM13
P31	9		56	\square	P27
P30 \square	10		55	\square	P26
XTAL1	11		54	口	P25
Xtal2 ${ }^{\text {Cl}}$	12		53	\square	P24
／RESET \square	13		52	\square	P23
P60	14		51	\square	GND
GND \square	15	Z86C27	50	\square	P22
P61	16		49	\square	P21
P62	17		48	\square	Vcc
VCC 5	18		47	口	P20
P63	19		46	\square	P47
P64	20		45	\square	P46
P65	21		44	口	P45
AFCIN	22		43	\square	P44
P50	23		42	\square	P43
P51	24		41	\square	P42
P52－	25		40	\square	P41
P53	26		39	\square	P40
P54	27		38	\square	VBLANK
P55	28		37	\square	Vblue
P56	29		36	\square	VGREEN
P57	30		35	\square	VRED
OSCIN	31		34	\square	VSYNC
OSCOUT－	32		33	］	HSYNC

Figure 2．Z86C27 Mask－ROM Plastic DIP

PWM5	1		64	\square	PWM6
PWM4	2		63	\square	PWM7
PWM3	3		62	\square	PWM8
PWM2	4		61	\square	PWM9
PWM1	5		60	\square	PWM10
P35	6		59	\square	PWM11
P36	7		58	\square	PWM12
P34	8		57	\square	PWM13
P31	9		56	\square	P27
P30	10		55	\square	P26
XTAL1	11		54	\square	P25
XTAL2［	12		53	－	P24
／RESET \square	13		52	\square	P23
IAS \square	14		51	\square	GND
GND \square	15		50	\square	P22
IDS	16	Z86C97	49	\square	P21
R／W \square	17		48	\square	VCC
VCC \square	18		47	\square	P20
SCLK \square	19		46	\square	P17
P66 딘	20		45	\square	P16
P67	21		44	\square	P15
AFCIN	22		43	\square	P14
POO \square	23		42	\square	P13
P01 5	24		41	\square	P12
P02 \square	25		40	\square	P11
P03	26		39	\square	P10
P04	27		38	\square	VBLANK
P05 $[$	28		37	\square	Vblue
P06 4	29		36	\square	VGREEN
P07	30		35	－	VRED
OSCIN	31		34		VSYNC
OSCOUT－	32		33	\square	HSYNC

Figure 3．Z86C97 ROMless Plastic DIP

PIN IDENTIFICATION
64-pin DIP Z86C27

Pin	Name	Function	Direction
1	PWM5	Pulse Width Modulator 5	Output
2	PWM4	Pulse Width Modulator 4	Output
3	PWM3	Pulse Width Modulator 3	Output
4	PWM2	Pulse Width Modulator 2	Output
5	PWM1	Pulse Width Modulator 1	Output
6, 7	P35-6	Port 3 pin 5, 6	Output
8	P34	Port 3 pin 4	Output
9	P31	Port 3 pin 1	Input
10	P30	Port 3 pin 0	Input
11	XTAL1	Crystal Oscillator	Input
12	XTAL2	Crystal Oscillator	Output
13	/RESET	System Reset	Input
14	P60	Port 6 pin 0	Input
15	GND	Ground, GND	Input
16	P61	Port 6 pin 1	Input
17	P62	Port 6 pin 2	Input
18	$\mathrm{V}_{\text {cc }}$	Power Supply	Input
19-21	P63-5	Port 6 pin 3, 4, 5	Input
22	AFCIN	AFC Voltage Level	Input
23-30	P50-7	Port 5 pin 0, 1, 2, 3, 4, 5, 6, 7	Output
31	OSCIN	Video Dot Clock Osc	
32	OSCOUT	Video Dot Clock Osc	Output
33	HSYNC	Horizontal Sync	Input
34	VSYNC	Vertical Sync	Input
35	Vred	Video Red	Output
36	Vgreen	Video Green	Output
37	Vblue	Video Blue	Output
38	Vblank	Video Blank	Outpul
39-46	P40-7	Port 4 pin 0, 1, 2, 3, 4, 5, 6, 7	Output
47	P20	Port 2 pin 0	In/Output
48	V_{cc}	Power Supply	Input
49,50	P21-2	Port 2 pin 1, 2	In/Output
51	GND	Ground, GND	Input
52-56	P23-7	Port 2 pin 3, 4, 5, 6, 7	In/Output
57	PWM13	Pulse Width Modulator 13	Output
58	PWM12	Pulse Width Modulator 12	Output
59	PWM11	Pulse Width Modulator 11	Oulput
60	PWM10	Pulse Width Modulator 10	Output
61	PWM9	Pulse Width Modulator 9	Output
62	PWM8	Pulse Width Modulator 8	Output
63	PWM7	Pulse Width Modulator 7	Output
64	PWM6	Pulse Width Modulator 6	Output

PIN IDENTIFICATION (Continued)

64-pin DIP Z86C97

Pin	Name	Function	Direction
1	PWM5	Pulse Width Modulator 5	Output
2	PWM4	Pulse Width Modulator 4	Output
3	PWM3	Pulse Width Modulator 3	Output
4	PWM2	Pulse Width Modulator 2	Output
5	PWM1	Pulse Width Modulator 1	Output
6,7	P35-6	Port 3 pin 5, 6	Output
8	P34	Port 3 pin 4	Output
9	P31	Port 3 pin 1	Input
10	P30	Port 3 pin 0	Input
ii	Xtalit	Crystal Oscillator	Input
12	XTAL2	Crystal Oscillator	Output
13	/RESET	System Reset	Input
14	IAS	Address Strobe	Output
15	GND	Ground, GND	Input
16	/DS	Data Strobe	Output
17	R//W	Read/Write	Output
18	V_{cc}	Power Supply	Input
19	SCLK	System Clock	Output
20-21	P66-7	Port 6 pin 6, 7	Output
22	AFCIN	AFC Analog	Input
23-30	P00-7	Port 0 pin 0,1, 2, 3, 4, 5, 6, 7	Output
31	OSCIN	Video Dot Clock Oscillator	Input
32	OSCOUT	Video Dot Clock Oscillator	Output
33	Hsync	Horizontal Sync	Input
34	Vsync	Vertical Sync	Input
35	Vred	Video Red	Output
36	Vgreen	Video Green	Output
37	Vblue	Video Blue	Output
38	Vblank	Video Blank	Output
39-46	P10-7	Port 1 pin 0, 1, 2, 3, 4, 5, 6, 7	Output
47	P20	Port 2 pin 0	In/Output
48	V_{cc}	Power Supply	Inpul
49-50	P21-2	Port 2 pin 1, 2	In/Output
51	GND	Ground,GND	Input
52-56	P23-7	Port 2 pin 3, 4, 5, 6, 7	In/Output
57	PWM13	Pulse Width Modulator 13	Output
58	PWM12	Pulse Width Modulator 12	Output
59	PWM11	Pulse Width Modulator 11	Output
60	PWM10	Pulse Width Modulator 10	Output
61	PWM9	Pulse Width Modulator 9	Output
62	PWM8	Pulse Width Modulator 8	Output
63	PWM7	Pulse Width Modulator 7	Output
64	PWM6	Pulse Width Modulator 6	Output

PIN DESCRIPTION

XTAL1, XTAL2. (Time-based input, output, respectively). These pins connect to the internal parallel-resonant clock crystal (4 MHz max) oscillator circuit with 2 capacitors to GND. XTAL1 is also used as an external clock input.

IAS. Address Strobe (output, active Low) is pulsed once at the beginning of each machine cycle. Address output is via Port 0 and Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the high impedance state along with Port 0 and Port 1, Data Strobe and Read/Write.
/DS. Data Strobe (output, active Low) is active once for each external memory transfer. ForREAD operations, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates the output data is valid.

R/W. Read/Write (output, Write active Low) signal is low when the DTC is writing to the external program or data memory.

SCLK. System Clock. SCLK is the internal system clock. It can be used to clock external glue logic.

HSYNC. (input Schmitt triggered, CMOS level). Horizontal Sync is an input pin that accepts an externally generated Horizontal Sync signal of either negative or positive polarity.

VSYNC. (input Schmitt triggered, CMOS level). Vertical Sync is an input pin that accepts an externally generated Vertical Sync signal of either negative or positive polarity.

OSCIN, OSCOUT. (Video Oscillator input, output, respectively). Oscillator input and output pins for on-screen display circuits. These pins connect to an inductor and two capacitors to generate the character dot clock (typically around 6 MHz). The dot clock frequency determines the character pixel width and phase synchronized to HISYNC.

Vblank. Video Blank (output). CMOS output, programmable polarity. Used as a superimpose control port to display characters from video RAM. The signal controls Y signal output of the CRT and turns off the incoming video display while the characters in video RAM are superimposed on the screen. The red, green, and blue outputs drive the three electron guns on the CRT directly, while the blank output turns off the Y signal.

Vblue. Video Blue (output). CMOS Output of the Blue video signal (B-Y) and is programmable for either polarity.

Vgreen. Video Green (output). CMOS Output of the Green video signal (G-Y) and is programmable for either polarity.

Vred. Video Red (output). CMOS Output of the Red video signal ($R-Y$) and is programmable for either polarity.

PIN DESCRIPTION (Continued)
Port 0 (P00-P07). Port 0 is an 8-bit, CMOS compatible, High Address Bus (A15-A8). In the ROMless mode this port is used to output the high order address (A15-A8) during an external memory cycle (Figure 4).

Note: Z86C97 Only

Figure 4. Port 0 Configuration

Port 1 (P10-P17). Port 1 is an 8-bit, CMOS compatible, Multiplexed Address/Data Bus (A7-A0)/(D7-D0). In the ROMless mode this port multiplexes the low order address
(A7-A0 during/AS) and data (D7-D0 during /DS) for an external memory cycle (Figure 5).

Note: Z86C97 Only

Figure 5. Port 1 Configuration

PIN DESCRIPTION (Continued)

Port2 (P20-P27). Port 2 is an 8-bit port, CMOS compatible, bit programmable for either input or output. Input buffers are Schmitt triggered. Bits programmed as outputs may be
globally programmed as either push-pull or open-drain (Figure 6).

Note: Input/Output, 3-State, Open Drain, Pad Type 5

Figure 6. Port 2 Configuration

Port 3 (P30-1, P34-5 and P36). Port 3 Pin P30 input, is read directly. A negative edge event is latched in IRQ3 to initiate an IRQ3 vectored interrupt if appropriately enabled. An application could place the device in STOP mode when P30 goes low (in the IRQ3 interrupt routine). P30 initiates a STOP mode recovery when it subsequently goes high. Port 3 , PinP31 is read directly. A negative edge event is latched
in IRQ2 to initiate an IRQ2 vectored interrupt if appropriately enabled. P31 high is signified as the $T_{\mathbb{N}}$ signal to Timer1. Port 3, Pin P34 and Pin P35 are general purpose output lines. Port 3, Pin P36 can be used as a general purpose output or as an output for $\mathrm{T}_{\text {out }}$ (from Timer 1 or Timer2) or SCLK (Figure 7).

Note: Input Only, Schmitt-triggered, Pad Type 2

Note: Output Only, Pad Type 3

Figure 7. Port 3 Configuration

PIN DESCRIPTION (Continued)
Port 4 (P40-P47). Port 4 is an 8-bit, CMOS compatible,
Output Port (Figure 8).

Note: Z86C27 Only

Figure 8. Port 4 Configuration

Port 5 (P50-P57). Port 5 is an 8-bit, CMOS compatible, Output Port. The output ports can directly' sink 10 mA at 1.5 Volt V_{o}. They are typically used to drive multiplexed LED displays (Figure 9).

Note: Z86C27 Only

Figure 9. Port 5 Configuration

PIN DESCRIPTION (Continued)

Port 6 (P60-P65). Port 6 is a 6-bit, Schmitt triggered CMOS compatible, input port. The outputs of the AFC comparators internally feed into the Port 6, bit-6 and bit-7 inputs in

ROM mode. In ROMless mode, pins 20 and 21 bring out the internal comparator outputs for Port 6, bit-6 and bit-7 emulation (Figure 10).

Note: Z86C97 Only

Figure 10. Port 6 Configuration

AFCIN. (Comparator input port, memory mapped). The input signal is supplied to two comparators with $\mathrm{VTH} 1=2 /$ $5 \mathrm{~V}_{\mathrm{cc}}$ and $\mathrm{VTH} 2=3 / 5 \mathrm{~V}_{c c}$ typical threshold voltage. The comparator outputs are internally connected to Port 6, bit-

6 and bit-7. AFCIN is typically used to detect AFC voltage level to accommodate digital automatic fine tuning functions. For Z86C97 Port 6, bit-6 and bit-7 are external outputs through pin 20 and pin 21 (Figure 11).

Figure 11. AFCIN Comparator Circuits

PIN DESCRIPTION (Continued)

Pulse Width Modulator 1 (PWM). PWM1 is typically used as theD/A converter for Voltage Synthesis Tuning systems.

Pulse Width Modulator 2-8 (PWM). PWM2-PWM8 are Pulse Width Modulators with 6-bit resolution.

Pulse Width Modulator 9-13 (PWM). PWM9-PWM13 are Pulse Width Modulator circuits with 8 -bit resolution or individually programmed as general purpose outputs.

In either case, the output drivers are 12-volt open-drain circuits.
/RESET. System Reset. Code is executed from memory address 000 C (HEX) after the /RESET pin is set to a high level. The reset function is also carried out by detecting a V_{cc} transition state (automatic power on reset) so that the external reset pin can be permanently tied to V_{cc}. A low level on /RESET forces a restart of the device.

SPECTAAL FÜÑCTIONSS

The Z8 DTC incorporates special functions to enhance the Z8's application in consumer, industrial and television control applications.

Pulse Width Modulator (PWM). The DTC has thirteen PWM channels (Figure 12). There are three types of PWM circuits: PWM1 (1 channel of 14-bit resolution) typically used for Voltage Synthesis Tuning, PWM2-PWM8 (7 channels of 6 -bit resolution) typically used for audio level
control, and PWM9-PWM13 (5 channels of 8-bit resolution) typically used for picture level control. The PWM control registers are mapped into external memory and are accessed via LDE and LDEI instructions.

On Screen Display (OSD). The OSD has a capability of displaying 8 rows by 20 columns of 128 kinds of characters for either high resolution (11×15 dots) or low resolution (5×7 dots) pattern (Figure 13).

Figure 12. Pulse Width Modulator Block Diagram

Figure 13. On-Screen-Display Block Diagram

The OSD features are as follows:

- Character Color: Seven kinds of color are specified on a row basis.
- Character Pixel Size: Four character pixel sizes are selected for a low resolution ($2 \mathrm{HL}, 4 \mathrm{HL}, 6 \mathrm{HL}$ and 8 HL) and high resolution ($1 \mathrm{HL}, 2 \mathrm{HL}, 3 \mathrm{HL}$ and 4 HL) Horizontal Line (HL).
- Polarity Selections: Can select active low or high for horizontal/vertical sync input and RGB outputs.
- Display Position: Can display 64 verlical positions by 4 HL units and 64 horizontal positions by a 4 dot clock.
- Inter Row Spacing: Inter row vertical line spacing is set from 2 HL to 25 HL (17 HL for high resolution).
- Fade In/Out Control: Fade position can be determined in vertical direction.
- Bar Line Type Display: One of the rows is selected to display an analog bar line every hall column by setting second color with proper character set.
- Fringe Function: Fringe off/on and the color selected.
- Background Color: Eight kinds of color including black background color.
- ON/OFF Control: Character display, backgrounds are turned on and off.
- Number of Display Characters: 8 rows $\times 20$ columns.
- Character Set: 128 (5×7 dots or 11×15 dots).

Character Generator ROM. The character generator ROM is organized as 4 Kbytes of 6 bits. The ROM defines either 11×15 dot (high resolution) or 5×7 (Iow resolution) characters (Figure 14).

Figure 14a. High and Low Resolution Character ROM Configuration

Figure 14b. High and Low Resolution Character ROM Configuration

SPECIAL FUNCTIONS (Continued)

Program Memory. The program ROM size is 8 K bytes (Figure 15). The IRQ vector table is located in the lower address space. The vector address is fetched after the corresponding interrupt and program control is passed to
the specified vector address. $\operatorname{IRQ} 1$ vector is fixed to VSYNC interrupt request and occurs at the leading edge of the filtered VSYNC inpul. Program memory start at address 000C (HEX) after reset.

Figure 15. Program Memory

Memory Mapped Register. All control registers and I/O ports (except Port 2 and Port 3) are assigned to program memory space. Address space FCOO (HEX) contains OSD control registers, PWM output registers and Ports 4, 5 and 6 I/O registers. Two bits of the decoded AFCIN port are assigned to Port 6 input port. LDE and LDEI instructions are required to transfer data between the Register File and the Memory Mapped Registers.

Data Memory (/DM). The Z86C27/C97 can address up to 64 K bytes of program memory, and 56 K bytes of external data memory. External data memory may be included with or separated from the external program memory space. /DM, an optional I/O signal that can be programmed to appear on Port 3 Pin P34, distinguishes between data and program memory space.

Register File. A total of 253 byte registers are implemented in the Z8 core. Address 00 (HEX), 01 (HEX) and FO (HEX) are reserved. The register file consists of $21 / O$ Port registers, 236 general-purpose registers and 15 control and status registers (Figure 16). The instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer. In the 4-bit mode, the register file is divided into sixteen working-register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group (Figure 17).

Note: Register Bank EO-EF is only accessed through a working register and indirect addressing modes.

Hex Addres	
00	Port 0 (Internal)
01	Port 1 (Internal)
02	Port 2 (P2)
03	Port 3 (P3)
04	General - Purpose Registers
EF	
F0	Reserved
F1	Timer Mode (TMR)
F2	Timer/Counter1(T1)
F3	T1 Prescaler (PRE1)
F4	Timer/Counter0 (T0)
F5	T0 Prescaler (PRE0)
F6	Port 2 Mode (P2M)
F7	Port 3 Mode (P3M)
F8	Port 0-1 Mode (P01M)
F9	Interrupt Priority Reg (IPR)
FA	Interrupt Request Reg (IRQ)
FB	Interrupt Mask Reg (IMR)
FC	Condition Flag (FLAGS)
FD	Register Pointer (RP)
FE	Stack Pointer High (SPH)
FF	Stack Pointer Low (SPL)

Figure 16. Register File Configuration

SPECIAL FUNCTIONS (Continued)

Figure 17. Register Pointer

Stack. Either the internal register file or the external data memory is used for the stack. A 16-bit Stack Pointer is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer is used for the internal stack that resides within the 236 general-purpose registers.

Counter/Timers. There are two 8-bit programmable counter/ timers (TO-T1), each driven by its own 6-bit programmable prescaler (PREO and PRE1). The T1 prescaler can be
driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 18).

The counter, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is the internal microprocessor clock (XTAL clock/4), or an external signal input via Port 3, P31. The counter/timers are programmably cascaded by connecting the T 0 output to the input of T 1 .

Figure 18. Counter/Timer Block Diagram

SPECIAL FUNCTIONS (Continued)

Interrupts. The DTC has six different interrupts from six different sources. These interrupts are maskable and prioritized (Figure 19). The six sources are divided as
follows: two sources are claimed by Port 3 (P30, P31), one by VSYNC, two by the counter/timers, and one is software triggered only.

Figure 19. Interrupt Block Diagram

HALT Mode. The Z86C27/C97 is driven by two internal clocks, TCLK and SCLK, They both oscillate at the crystal frequency. TCLK provides the clock signal for the countertimers and the interrupt block. SCLK provides the clock signal for all other CPU blocks. Halt mode turns off the internal CPU clock (SCLK), but not the XTAL oscillation. The counter/timers and external interrupts remain active. The device may be recovered by interrupts, either external or internally generated.

STOP Mode. The STOP instruction stops crystal oscillation, thereby stopping both SCLK and TCLK. The device ceases to operate. The STOP mode can be released by two methods. The first method is to reset the device. A high input condition on Port 3 Pin P30 is the second method. After releasing the STOP mode by using either one of the two methods, program execution begins at location \%000C (HEX). To complete an instruction prior to entering the standby modes, a NOP instruction has to be placed before the HALT or STOP instructions. This is required because of instruction pipelining. i.e.:

FF NOP	; clear the pipeline
$6 F$ STOP	; enter STOP mode
	or
FF NOP	; clear the pipeline
7F HALT	; enter HALT mode

Notes:

In STOP mode, XTAL2 pin has an internal pull-up on it and OSCOUT has an internal pull-down.

Clock. The Z86C27/C97 on-chip oscillator has ahigh-gain, parallel-resonant amplifier for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal is an AT cut, parallel resonant, 4 MHz max with a series resistance (RS) less than or equal to 100 Ohms.

The crystal source is connected across XTAL 1 AND XTAL2 using the recommended capacitors ($10 \mathrm{pF}<\mathrm{CL}<300 \mathrm{pF}$, where $\mathrm{C} 1=\mathrm{C} 2=\mathrm{CL}$) from each pin to ground (Figure 20).

External Clock

Ceramic Resonator
or Crystal

LC Oscillator Circuits

Figure 20. Oscillator Configuration

SPECIAL FUNCTIONS (Continued)

Watch Dog Timer (WDT). The Z86C27/C97 is equipped with a watch dog timer which should be refreshed within 12 ms . Failure to refresh the timer results in a reset of the device. The WDT is enabled the first time that a WDT 5F (HEX) instruction is executed. Every subsequent WDT instruction retriggers the timer. The watch dog timer may
or may not be enabled during the HALT mode. The instruction WDH 4F (HEX) enables the timer during HALT mode. If the HALT mode is not released and the watch dog timer is not retriggered (by the WDT instruction) within 12 ms , a device reset occurs.
V_{cc} Voltage Sensitive Reset(VSR). Reset is globally driven if $\mathrm{V}_{c c}$ is below the specified voltage (Figure 21).

Figure 21. Voltage Sensitive Reset Vs Temperature

ABSOLUTE MAXIMUM RATINGS

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sec-
tions of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameters	Min	Max	Units	Notes
$\mathrm{V}_{\text {cc }}$	Power Supply Voltage \dagger	-0.3	+7	V	
V_{1}	Input Voltage	-0.3	$\mathrm{V}_{\mathrm{cc}}+0.3$	v	
V_{1}	Input Voltage	-0.3	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	[1]
V_{0}	Output Voltage	-0.3	$\mathrm{V}_{\mathrm{cc}}+8.0$	\checkmark	[2]
I_{OH}	Output Current High		-10	mA	1 pin
I_{OH}	Output Current High		-100	mA	all total
I_{OL}	Output Current Low		20	mA	1 pin
1 l	Output Current Low		40	mA	[3] (1 pin)
I_{ol}	Output Current Low, all total		200	mA	
$\mathrm{T}_{\text {A }}$	Operating Temperature	†			
$\mathrm{T}_{\text {sta }}$	Storage Temperature	-65	+150	C	

Notes:

[1] Port 2 open-drain
\dagger Voltage on all pins with respect to GND.
[2] PWM open drain outputs
$\dagger \dagger$ See Ordering Information
[3] Port 5

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 22).

Figure 22. Test Load Diagram

CAPACITANCE

$T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathrm{GND}=0 \mathrm{~V}$, Freq $=1.0 \mathrm{MHz}$, unmeasured pins to GND.

Parameter	Max	Units
Input capacitance	10	pF
Output capacitance	20	pF
I/O capacitance	25	pF
AFCin input capacitance	10	pF

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{F}_{\mathrm{osc}}=4 \mathrm{MHz}$

Notes:

[1] Port 5
[2] PWM Open Drain

AC CHARACTERISTICS

Timing Diagrams

Figure 23. External Clock

Figure 24. Counter Timer

Figure 25. Interrupt Request

Internal /RESET

External /RESET

Figure 26. Power On Reset

Figure 27. On Screen Display

AC CHARACTERISTICS
$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{F}_{\mathrm{OSC}}=4 \mathrm{MHz}$,

No	Symbol	Parameter	Min	Max	Unit
1	TpC	Input clock period	250	1000	ns
2	TrC, TfC	Clock input raise and fall		15	ns
3	TwC	Input clock width	70		ns
4	TwTinL	Timer input low width	70		ns
5	TwTinH	Timer input high width	3 TpC		
6	TpTin	Timer input period	8TpC		
7	TrTin, TfTin	Timer input raise and fall		100	ns
8A	TwIL	Int req input low	70		ns
8B	TwiL		3 TpC		
9	TwiH	Int request input high	3 TpC		
10	TdPOR	Power On Reset delay	25	100	ms
11	TdLVIRES	Low voltage detect to InInternal RESET condition	200		ns
12	TwRES	Reset minimum width	5 TpC		
13	TdHsOI	Hsync start to Vosc stop	2 TpV	3 TpV	
14	TdHsOh	Hsync end to Vosc start		1 TpV	
15	TdWDT	WDT Refresh Time		12	ms

Notes:

[1] Refer to DC Characteristics for details on switching levels.

* Units in nanoseconds

AC CHARACTERISTICS

Unique to Z86C97 External Memory Read/Write Timing Diagram

Figure 28. Z86C97 External Memory Read/Write Timing

AC CHARACTERISTICS
Unique to $\mathrm{Z} 86 \mathrm{C} 97, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{F}_{\mathrm{osc}}=4 \mathrm{MHz}$

No	Symbol	Parameter	Min	Max	Unit	Notes
1	TdA(AS)	Address Valid to /AS High Delay	35		ns	[2]
2	TdAS(AS)	/AS High to Address Float Delay	45		ns	[2]
3	TdAS(DR)	IAS High to Read Data Required Valid		250	ns	[1,2]
4	TwAS	/AS Low Width	55		ns	[2]
5	TdAZ(DS)	Address Float to /DS Low	0		ns	[2]
6	TwDSR	/DS (Read) Low Width	185		ns	[1,2]
7	TwDSW	DS (Write) Low Width	110		ns	[1,2]
8	TdDSR(DR)	/DS Low to Read Data Required Valid		130	ns	[1,2]
9	ThDR(DS)	Read Data to /DS High Hold		5	ns	
10	TdDS(A)	/DS High to Address Active Delay	55		ns	[2]
11	TdDS(AS)	/DS High to /AS Low Delay	55		ns	[2]
12	TdR/W(AS)	R/W Valid to /AS High Delay	35		ns	[2]
13	TdDS(R/W)	/DS High to R//W Not Valid	55		ns	[2]
14	TdDW(DSW)	Write Data Valid to /DS Low Delay	35		ns	[2]
15	TdDS(DW)	/DS High to Write Data Not Valid	55		ns	[2]
16	TdA(DR)	Address Valid to Read Data Required Valid		330	ns	[1,2]
17	TdAS(DS)	/AS High to /DS Low Delay	65		ns	[2]
18	TdDI(DS)	Data Input Setup to /DS High	75		ns	[1]

Notes:
[1] When using extended memory timing, for parameters 3, 6, 7, 8, and 16, add $2 \operatorname{TpC}(250 \mathrm{~ns} @ 4.0 \mathrm{MHz}$).
[2] Min and Max times are in nanoseconds unless otherwise noted.

STANDARD CHARACTER SETS

ENGLISH/KOREAN

SUMMARY

Input/Output Circuits

Figure 29. Input Only (Pad Type 1)

Figure 30. Input Only, Schmitt Triggered (Pad Type 2)

Figure 31. Output Only
(Pad Type 3)

SUMMARY (Continued)

Input/Output Circuits

Figure 32. Input/Output 3-State
(Pad Type 4)

Figure 33. Input/Output, 3-state, Open Drain (Pad Type 5)

Figure 34. Output Only, 3-State (Pad Type 6)

Figure 35. Output Only, 12-Volt Open Drain (Pad Type 7)

Figure 36. Reset Input Circuit (Pad Type 8)

SUMMARY (Continued)
Input/Output Circuits

Figure 37. AFC Input Circuit (Pad Type 9)

Mapping of Symbolic Pad Types to Pin Functions

Pin Name	Pad Type	Notes
XTAL1, OSC $_{\text {IN }}$	1	
XTAL2, OSC $_{\text {out }}$		High gain start, low gain run amplifier circuit
/RESET	8	
P00-07	6	Z86C97 only
P10-17	4	Z86C97 only
P20-P27	5	
P30-P31	2	
P34-P36	3	
P40-P47	3	
P50-P57	3	Z86C27 only
P60-P65	2	Z86C27 only
P66-P67	3	Z866C97 only
IAS, /DS, R/W, SCLK	3	Z86C97 only
AFCIN	9	
PWM1-PWM13	7	
HSYNC, VSYNC	2	
VRED, VBLUE, VGREEN,	3	
VBLANK		

DTC CONTROL REGISTER DIAGRAMS

Port Registers

Figure 38. Port 2 Register

Input/Output Mode 0 Output Mode 1 Input Mode

Figure 41. Port 4 Register

Figure 42. Port 5 Register

Figure 39. Port 2 Mode Register

Port 6 Input 0 Logic Level 0 1 Logic Level 1

Port 6 Comparator Input 00 GND thru V1 01 V1 thru V2 11 V2 thru Vcc

Figure 43. Port 6 Register

Figure 40. Port 3 Register

DTC CONTROL REGISTER DIAGRAMS PWM Registers

PWM1 UPPER

PWM1 High Byte

Figure 44. PWM 1 High Value

Figure 45. PWM 1 Low Value

Figure 46. PWM 2 Value

Figure 47. PWM 3 Value

Figure 48. PWM 4 Value

Figure 49. PWM 5 Value

Figure 50. PWM 6 Value

Figure 51. PWM 7 Value

Figure 52. PWM 8 Value

Figure 53. PWM 9 Value

Figure 54. PWM 10 Value

Figure 55. PWM 11 Value

PWM12 Value

Figure 56. PWM 12 Value

Figure 57. PWM 13 Value Register

PWM MODE
7 6 5 4 3 2 1 0 T T T T T T T T
Mode Control 8

Figure 58. PWM Mode Register

Figure 59. PWM Port Output Register

DTC CONTROL REGISTER DIAGRAMS

OSD Registers

Figure 60. OSD Control Register

Figure 61. OSD Vertical Position Register

Figure 62. OSD Horizontal Position Register

Figure 63. OSD Display Attribute Register

DTC CONTROL REGISTER DIAGRAMS OSD Registers (Continued)

Figure 64. OSD Row Space Register

Figure 66. OSD Bar Control Register

Figure 67. OSD Bar Position Register

Figure 65. OSD Fade Position Register

DTC CONTROL REGISTER DIAGRAMS
Z8 Microcomputer Control Register Diagrams

Figure 68. Reserved (FOH)

Figure 69. Timer Mode Register (F1H; Read/Write)

Figure 70. Counter Timer 1 Register (F1H; Read/Write)

Figure 71. Prescaler 1 Register (F3H; Write Only)

Figure 72. Counter/Timer 0 Register (F4H; Read/Write)

Figure 73 Prescaler 0 Register (F5H; Write Only)

DTC CONTROL REGISTER DIAGRAMS

Z8 Microcomputer Control Register Diagrams (Continued)
R246 P2M

			F6h				
7	6	5	4	3	2	1	0

P27-P20 I/O Definition Defines Bit as Output
1 Defines Bit as Input

Figure 74. Port 2 Mode Register (F6H; Write Only)

Figure 75. Port 3 Mode Register (F7H; Write Only)

Figure 76. Port 0 and 1 Mode Register (F8H; Write Only)

Figure 77. Interrupt Priority Register (F9H; Write Only)

DTC CONTROL REGISTER DIAGRAMS

Z8 Microcomputer Control Register Diagrams (Continued)

Figure 78. Interrupt Request Register (FAH; Read/Write)

Figure 82. Stack Pointer (FEH; Read/Write)

Figure 79. Interrupt Mask Register (FBH; Read/Write)

Stack Pointer Lower Byte (SP7-SPO)

Figure 83. Stack Pointer (FFH; Read/Write)

Figure 80. Flag Register (FCH; Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address Irr
Indirect working-register pair only	
DA	Indexed address
RA	Direct address
IM	Relative address
R	Immediate
I	Register or working-register address IR
	Indirect-register or indirect working-register address
Ir	Indirect working-register address only
RR	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
CC	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flages are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
\times	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S X O R V)=0$
0001	LT	Less than	$(S$ XOR V) $=1$
1010	GT	Greater Than	
0010	LE	Less Than or Equal	$[Z$ OR (S XOR V $)$] $=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0 \mathrm{AND} \mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(\mathrm{CORZ})=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

OPC	MODE	OR	1110	dst/src	CLR, CPL, DA, DEC, DECW, INC, INCW, POP, PUSH, RL, RLC, RR, RRC, SRA, SWAP	OPC	MODE	$\begin{aligned} & \text { OR } \\ & \text { OR } \end{aligned}$			ADC, ADD, AND, CP, LD, OR, SBC, SUB, TCM, TM, XOR					
dst/src						src			1110	src						
						dst			1110	dst						
OPC		OR			JP, CALL (Indirect)			OR			ADC, ADD, AND, CP, LD, OR, SBC, SUB, TCM, TM, XOR					
dst			1110	dst		OPC	MODE									
					SRP	dst			1110	dst						
						VALUE										
VALUE											LD					
					ADC, ADD, AND, CP, OR, SBC, SUB, TCM, TM, XOR	MODE	OPC									
OPC	MODE					src			1110	src						
dst	src					dst			1110	dst						
MODE	OPC	OR			LD, LDE, LDEI, LDC, LDCI	MODE	OPC				LD					
dst/src	src/dst					dst/src	x									
						ADDRESS										
dst/src	OPC				LD						JP					
src/dst			1110	src		cc	OPC									
						DAU										
dst	OPC				10	DAL										
VALUE											CALL					
					DJNZ, JR	OPC										
dst/CC	OPC					DAU										
RA						DAL										
FFH		STOP/HALT				,										
6FH	7FH															

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:
$\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}$
indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

INSTRUCTION SUMMARY (Continued)

OPCODE MAP

Lower Nibble (Hex)

Operand
Operand

Legend:
R $=8$-bit address
= 4-bit address
R_{1} or $r_{2}=$ Dst address
R_{1} or $r_{2}=$ Src address

Sequence:

Opcode, First Operand,
Second Operand
Note: The blank are not defined.

* 2-byte instruction appears as a

3-byte instruction

Z86127
 LOW-COST DIGITAL TELEVISION CONTROLLER (LDTC)

FEATURES

8-bit CMOS microcontroller for consumer television applications, 64-pin DIP package.

- Low cost
- Low power consumption
- Fast instruction pointer - 1.5 microseconds @ 4 MHz
- Two standby modes - STOP and HALT
- Low voltage detection/voltage sensitive reset
- 35 input/output lines
- Port 2 (8-bit programmable I/O) and Port 3 (2-bit input, 3-bit output) register mapped ports.
- Port 5 (8-bit LED drive output) and Port 6 (6-bit input and tri-state comparator AFC input) memory mapped l/O ports.
- All digital CMOS levels Schmitt triggered
- 8 Kbytes of ROM
- 236 bytes of RAM
- Two programmable 8-bit Counter/Timers each with 6-bit programmable prescaler.
- Sixvectored, priority interrupts from sixdifferent sources
- Clock speed up to 4 MHz
- On-chip oscillator that accepts a crystal, ceramic resonator, LC or external clock drive.
- Watch Dog/Power-On Reset Timer

On Screen Display Controller

- $4 \mathrm{~K} \times 6$-bit character generator ROM
- 160×7-bit video RAM
- Mask programmable 128 character set displayed in an 8 -row by 20 -column format, 12 by 15 pixel character cell, capable of supporting English, Korean, Chinese and Japanese high resolution characters.
- Fully programmable color attributes including row character, row background/fringes, frame background/position, bar graph color change, and character size.

■ Programmable display position and character size control.

- One Pulse Width Modulator (14-bit resolution) for voltage synthesis tuner control.
- FivePulse Width Modulators (8-bit resolution)for picture control.
- Three Pulse Width Modulators (6-bit resolution) for audio control.

GENERAL DESCRIPTION

The Z86127 Low-Cost Digital Television Controller (LDTC) introduce a new level of sophistication to single-chip architecture. The $Z 86127$ is a member of the Z $^{\boldsymbol{*}}$ singlechip microcontroller family with 8 Kbytes of ROM and 236 bytes of RAM. The device is housed in a 64-pin DIP
package, in which only 52 are active, and are CMOS compatible. The LDTC offers mask programmed ROM which enables the Z 8 microcontroller to be used in a high volume production application device embedded with a custom program (customer supplied program).

GENERAL DESCRIPTION (Continued)

Zilog's LDTC offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption. The device provides an ideal performance and reliability solution for consumer and industrial television applications.

The Z86127 architecture is characterized by utilizing Zilog's advanced Superintegration ${ }^{\text {M }}$ design methodology. The devices have an 8-bit internal data path controlled by a Z8 microcontroller, and On Screen Display (OSD) logic circuits/Pulse Width Modulators (PWM). On-chip peripherals include two register mapped I/O ports (Ports 2 and Port 3), Interrupt control logic (1 software, 2 external and 3 internal interrupts) and a standby mode recovery input port (Port3, pin P30).

The OSD control circuits support 8 rows by 20 columns of characters. The character color is specified by row. One of the 8 rows is assigned to show two kinds of colors for bar type displays such as volume control. The OSD is capable of displaying either low resolution (5×7 dot pattern) or high resolution (11×15 dot pattern) characters. The Z86C97 currently supports high resolution characters only.

A 14-bit PWM port provides enough voltage resolution for a voltage synthesizer tuning system. Three 6-bit PWM
ports are used for controlling audio signal level. Five 8-bit PWM ports are used to vary picture levels.

The LDTC applications demand powerful I/O capabilities. The Z86127 fulfills this with 27 I/O pins dedicated to input and output. These lines are grouped into four ports, and are configurable under software control to provide timing, status signals, parallel I/O and an address/data bus for interfacing to external memory.

There are three basic address spaces available to support this wide range of configurations: Program Memory, Video RAM, and Register File. The Register File is composed of 236 byies of general purpose registers, two I/O Port registers, 15 control and status registers and 3 reserved registers.

To unburden the program from coping with the real-time problems such as counting/timing and data communication, the LDTC's offer's two on-chip counter/timers with a large number of user selectable modes (Figure 1).

Note: All Signals with a preceding front slash, " $/$ ", are active Low, e.g.: B/M (WORD is active Low); /B/W (BYTE is active Low, only)

Figure 1. Functional Block Diagram

Figure 2. Z86127 Mask-ROM Plastic DIP

PIN IDENTIFICATION
64-pin DIP Z86127

Pin	Name	Function	Direction
1	N/C	No Connection	
2	N/C	No Connection	
3	N/C	No Connection	
4	N/C	No Connection	
5	PWM1	Pulse Width Modulator 1	Outpul
6,7	P35-6	Port 3 pin 5, 6	Output
8	P34	Port 3 pin 4	Output
9	P31	Port 3 pin 1	Input
10	P30	Port 3 pin 0	Input
11	XTAL1	Crystal Oscillator	Input
12	XTAL2	Crystal Oscillator	Output
13	/RESET	System Reset	Input
14	P60	Port 6 pin 0	Input
15	GND	Ground	Input
16	P61	Port 6 pin 1	Input
17	P62	Port 6 pin 2	Input
18	$\mathrm{V}_{\text {cc }}$	Power Supply	Input
19-21	P63-5	Port 6 pin 3, 4, 5	Input
22	$\mathrm{AFC}_{\mathbb{N}}$	AFC Voltage Level	Input
23-30	P50-7	Port 5 pin 0, 1, 2, 3, 4, 5, 6, 7	Output
31	$\mathrm{OSC}_{\text {N }}$	Video Dot Clock Osc	Input
32	OSC ${ }_{\text {out }}$	Video Dot Clock Osc	Output
33	HSYNC	Horizontal Sync	Input
34	VSYNC	Vertical Sync	Input
35	Vred	Video Red	Output
36	Vgreen	Video Green	Output
37	Vblue	Video Blue	Output
38	Vblank	Video Blank	Output
39-46	$\mathrm{V}_{\text {ss }}$	Pull high to Vcc	In
47	P20	Port 2 pin 0	In/Output
48	V_{cc}	Power Supply	Input
49,50	P21-2	Port 2 pin 1, 2	In/Output
51	GND	Ground	Input
52-56	P23-7	Port 2 pin 3, 4, 5, 6, 7	In/Output
57	PWM13	Pulse Width Modulator 13	Output
58	PWM12	Pulse Width Modulator 12	Output
59	PWM11	Pulse Width Modulator 11	Output
60	PWM10	Pulse Width Modulator 10	Output
61	PWM9	Pulse Width Modulator 9	Output
62	PWM8	Pulse Width Modulator 8	Output
63	PWM7	Pulse Width Modulator 7	Output
64	PWM6	Pulse Width Modulator 6	Output

PIN DESCRIPTION

XTAL1, XTAL2. (Time-based input, output, respectively). These pins connect to the internal parallel-resonant clock crystal (4 MHz max) oscillator circuit with 2 capacitors to GND. XTAL1 is also used as an external clock input.

IAS. Address Strobe (output, active Low) is pulsed once at the beginning of each machine cycle. Address output is via Port 0 and Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the high impedance state along with Port 0 and Port 1, Data Strobe and Read/Write.

IDS. Data Strobe (ouipui, active Low) is active once for each external memory transfer. For READ operations, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates the output data is valid.

R/W. Read/Write (output, Write active Low) signal is low when the DTC is writing to the external program or data memory.

SCLK. System Clock. SCLK is the internal system clock. It can be used to clock external glue logic.

HSYNC. (input Schmitt triggered, CMOS level). Horizontal Sync is an input pin that accepts an externally generated Horizontal Sync signal of either negative or positive polarity.

VSYNC. (input Schmitt triggered, CMOS level). Vertical Sync is an input pin that accepts an externally generated Vertical Sync signal of either negative or positive polarity.

OSC $_{\text {IN }}$ OSC $_{\text {our. }}$ (Video Oscillator input, output, respectively). Oscillator input and output pins for on-screen display circuits. These pins connect to an inductor and two capacitors to generate the character dot clock (typically around 6 MHz). The dot clock frequency determines the character pixel width and phase synchronized to HSYNC.

Vblank. Video Blank (output). CMOS output, programmable polarity. Used as a superimpose control port to display characters from video RAM. The signal controls Y signal output of the CRT and turns off the incoming video display while the characters in video RAM are superimposed on the screen. The red, green, and blue outputs drive the three electron guns on the CRT directly, while the blank output turns off the Y signal.

Vblue. VideoBlue(output). CMOS Output of the Blue video signal (B-Y) and is programmable for either polarity.

Vgreen. Video Green (output). CMOS Output of the Green video signal (G-Y) and is programmable for either polarity.

Vred. Video Red (output). CMOS Output of the Red video signal (R-Y) and is programmable for either polarity.

Port2 (P20-P27). Port 2 is an 8-bit port, CMOS compatible, bit programmable for either input or output. Input buffers are Schmitt triggered. Bits programmed as outputs may be globally programmed as either push-pull or open-drain (Figure 3).

Note: Input/Output, 3-State, Open Drain, Pad Type 5
Figure 3. Port 2 Configuration

PIN DESCRIPTION (Continued)

Port 3 (P30-1, P34-5 and P36). Port 3 Pin P30 input, is read directly. A negative edge event is latched in IRQ3 to initiate an IRQ3 vectored interrupt if appropriately enabled. An application could place the device in STOP mode when P30 goes low (in the IRQ3 interrupt routine). P30 initiates a STOP mode recovery when it subsequently goes high. Port 3 , Pin P31 is read directly. A negative edge event is latched
in IRQ2 to initiate an IRQ2 vectored interrupt if appropriately enabled. P31 high is signified as the T_{IN} signal to Timer1. Port 3, Pin P34 and Pin P35 are general purpose output lines. Port 3, Pin P36 can be used as a general purpose output or as an output for $\mathrm{T}_{\text {out }}$ (from Timer 1 or Timer2) or SCLK (Figure 4).

Figure 4. Port 3 Configuration

Port 5 (P50-P57). Port 5 is an 8-bit, CMOS compatible, Output Port. The output ports can directly sink 10 mA at 1.5 Volt V_{oL}. They are typically used to drive multiplexed LED displays (Figure 5).

Figure 5. Port 5 Configuration

PIN DESCRIPTION (Continued)
Port 6 (P60-P65). Port 6 is a 6-bit, Schmitt triggered CMOS compatible, input port. The outputs of the AFC comparators internally feed into the Port 6, bit-6 and bit-7 inputs (Figure 6).

Figure 6. Port 6 Configuration

AFCIN. (Comparator input port, memory mapped). The input signal is supplied to two comparators with VTH1 = $2 / 5 \mathrm{~V}_{\mathrm{cc}}$ and $\mathrm{VTH} 2=3 / 5 \mathrm{~V}_{\mathrm{cc}}$ typical threshold voltage. The
comparator outputs are internally connected to Port 6, bit6 and bit-7. $\mathrm{AFC}_{\text {IN }}$ is typically used to detect AFC voltage level to accommodate digital automatic fine tuning functions (Figure 7).

Figure 7. $\mathrm{AFC}_{\mathbb{N}}$ Comparator Circuits

PIN DESCRIPTION (Continued)

Pulse Width Modulator 1 (PWM). PWM1 is typically used as the D/A converter for Voltage Synthesis Tuning systems.

Pulse Width Modulator 6-8 (PWM). PWM6-PWM8 are Pulse Width Modulators with 6-bit resolution.

Pulse Width Modulator 9-13 (PWM). PWM9-PWM13 are Pulse Width Modulator circuits with 8-bit resolution or individually programmed as general purpose outputs.

In either case, the output drivers are 12-volt open-drain circuits.
/RESET. System Reset. Code is execuled from memory address 000C (HEX) after the /RESET pin is set to a high level. The reset function is also carried out by detecting a $V_{c c}$ transition state (automatic power on reset) so that the external reset pin can be permanently tied to $V_{C C}$. A low level on /RESET forces a restart of the device.

SPECIAL FUNCTIONS

The Z8 LDTC incorporates special functions to enhance the Z8's application in consumer, industrial and television control applications.

Pulse Width Modulator (PWM). The LDTC has nine PWM channels (Figure 12). There are three types of PWM circuits: PWM1 (1 channel of 14-bit resolution) typically used for Voltage Synthesis Tuning, PWM6-PWM8 (3 channels of 6-bit resolution) typically used for audio level
control, and PWM9-PWM 13 (5 channels of 8-bit resolution) typically used for picture level control. The PWM control registers are mapped into external memory and are accessed via LDE and LDEI instructions.

On Screen Display (OSD). The OSD has a capability of displaying 8 rows by 20 columns of 128 kinds of characters for either high resolution (11×15 dots) or low resolution (5×7 dots) pattern (Figures 8 and 9).

Figure 8. Pulse Width Modulator Block Diagram

The OSD features are as follows:

- Character Color: Seven kinds of color are specified on a row basis.
- Character Pixel Size: Four character pixel sizes are selected for a low resolution ($2 \mathrm{HL}, 4 \mathrm{HL}, 6 \mathrm{HL}$. and 8 HL) and high resolution ($1 \mathrm{HL}, 2 \mathrm{HL}, 3 \mathrm{HL}$ and 4 HL) Horizontal Line (HL).
- Polarity Selections: Can select active low or high for horizontal/vertical sync input and RGB outputs.
- Display Position: Can display 64 vertical positions by 4HL units and 64 horizontal positions by a 4 dot clock.

■ Inter Row Spacing: Inter row vertical line spacing is set from 2 HL to 25 HL (17 HL for high resolution).

- Fade In/Out Control: Fade position can be determined in vertical direction.
- Bar Line Type Display: One of the rows is selected to display an analog bar line every half column by setting second color with proper character set.
- Fringe Function: Fringe off/on and the color selected.
- Background Color: Eight kinds of color including black background color.
- ON/OFF Control: Character display, backgrounds are turned on and off.
- Number of Display Characters: 8 rows $\times 20$ columns.

■ Character Set: 128 (5×7 dots or 11×15 dots).

Character Generator ROM. The character generator ROM is organized as 4 Kbytes of 6 bits. The ROM defines either 11×15 dot (high resolution) or 5×7 (low resolution) characters (Figure 10).

SPECIAL FUNCTIONS (Continued)

Figure 10a: High and Low Resolution Character ROM Configuration

Figure 10b. High and Low Resolution Character ROM Configuration

SPECIAL FUNCTIONS (Continued)

Program Memory. The program ROM size is 8 . Kbytes (Figure 11). The IRQ vector table is located in the lower address space. The vector address is fetched after the corresponding interrupt and program control is passed to
the specified vector address. IRQ1 vector is fixed to VSYNC interrupt request and occurs at the leading edge of the filtered VSYNC input. Program memory start at address 000C (HEX) after reset.

Hex Address			Hex Address
0000	IRQ0 (High Byte)	OSD Control (OSD_CNTRL)	FC00
0001	IRQ0 (Low Byte)	Vertical Position (VERT_POS)	FC01
0002	VSYNC IRQ1 (High Byte)	Horizontal Position (HOR_POS)	FC02
0003	VSYNC IRQ1 (Low Byte)	Display Attribute (DISP_ATTR)	FC03
0004	P31 IRQ2 (High Byte)	Row Space (ROW_SPACE)	FC04
0005	P31 IRQ2 (Low Byte)	Fade Position (FADE_POS)	FC05
0006	P30 IRQ3 (High Byte)	Bar Line Control (BAR_CNTRL)	FC06
0007	P30 IRQ3 (Low Byte)	Bar Position (BAR_POS)	FC07
0008	T0 IRQ4 (High Byte)		
0009	T0 IRQ4 (Low Byte)		
000A	T1 IRQ5 (High Byte)	PWM Mode (PWM_MODE)	FC10
000B	T1 IRQ5 (Low Byte)	PWM Output Port (PWM_OUT)	FC11
000C	Reset Start Address	PWM1 High 6-Bit (PWM1_HI)	FC12
\downarrow	On-chip Program ROM	PWM1 Low 8-Bit (PWM_LO)	FC13
1FFF	(8K Byte)		FC14
2000			FC15
	Reserved		FC16
FBFF			FC17
FCOO	Memory Mapped I/O	PWM6 6-Bit Register (PWM6)	FC18
		PWM7 6-Bit Register (PWM7)	FC19
FC32		PWM8 6-Bit Register (PWM8)	FC1A
FC33	Reserved	PWM9 8-Bit Register (PWM9)	FC1B
		PWM10 8-Bit Register (PWM10)	FC10
CFF		PWM11 8-Bit Register (PWM11)	FC1D
FD00		PWM12 8-Bit Register (PWM12)	FC1E
	Video Refresh RAM	PWM13 8-Bit Register (PWM13)	FC1F
FDF4			
FDF5			FC30
	Reserved	Port 5 LED Output Port (PORT5)	FC31
FFFF		Port 6 Input Port (PORT6)	FC32

Figure 11. Program Memory

Memory Mapped Register. All control registers and I/O ports (except Port 2 and Port 3) are assigned to program memory space. Address space FCOO (HEX) contains OSD control registers, PWM output registers and Ports 5 and 6 I/O registers. Two bits of the decoded AFCIN port are assigned to Port 6 input port. LDE and LDEI instructions are required to transfer data between the Register File and the Memory Mapped Registers.

Register File. A total of 253 byte registers are implemented in the Z 8 core. Address 00 (HEX), 01 (HEX) and FO (HEX) are reserved. The register file consists of 2 I/O Port
registers, 236 general-purpose registers and 15 conltrol and status registers (Figure 12). The instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer. In the 4 -bit mode, the register file is divided into sixteen working-register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group (Figure 13).

Note: Register Bank EO-EF is only accessed through a working register and indirect addressing modes.

Hex Addres	
02	Port 2 (P2)
03	Port 3 (P3)
04	General - Purpose Registers
EF	
F0	Reserved
F1	Timer Mode (TMR)
F2	Timer/Counter1(T1)
F3	T1 Prescaler (PRE1)
F4	Timer/Counter0 (T0)
F5	T0 Prescaler (PREO)
F6	Port 2 Mode (P2M)
F7	Port 3 Mode (P3M)
F8	Port 0-1 Mode (P01M)
F9	Interrupt Priority Reg (IPR)
FA	Interrupt Request Reg (IRQ)
FB	Interrupt Mask Reg (IMR)
FC	Condition Flag (FLAGS)
FD	Register Pointer (RP)
FE	Stack Pointer High (SPH)
FF	Stack Pointer Low (SPL)

Figure 12. Register File Configuration

Figure 13. Register Pointer

Stack. Either the internal register file or the external data memory is used for the stack. A 16-bit Stack Pointer is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer is used for the internal stack that resides within the 236 general-purpose registers.

Counter/Timers. There are two 8-bit programmable counter/ timers (T0-T1), each driven by its own 6-bit programmable prescaler (PREO and PRE1). The T1 prescaler can be
driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 14).

The counter, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and is the internal microprocessor clock (XTAL clock/4), or an external signal inpul via Port 3, P31. The counter/timers are programmably cascaded by connecting the T0 output to the input of T1.

Figure 14. Counter/Timer Block Diagram

SPECIAL FUNCTIONS (Continued)

Interrupts. The LDTC has six different interrupts from six different sources. These interrupts are maskable and prioritized (Figure 15). The six sources are divided as
follows: two sources are claimed by Port 3 (P30, P31), one by VSYNC, two by the counter/timers, and one is software triggered only.

Figure 15. Interrupt Block Diagram

HALT Mode. The Z86127 is driven by two internal clocks, TCLK and SCLK, They both oscillate at the crystal frequency. TCLK provides the clock signal for the countertimers and the interrupt block. SCLK provides the clock signal for all other CPU blocks. Halt mode turns off the internal CPU clock (SCLK), but not the XTAL oscillation. The counter/timers and external interrupts remain active. The device may be recovered by interrupts, either external or internally generated.

STOP Mode. The STOP instruction stops crystal oscillation, thereby stopping both SCLK and TCLK. The device ceases to operate. The STOP mode can be released by two methods. The first method is to reset the device. A high input condition on Port 3 Pin P30 is the second method. After releasing the STOP mode by using either one of the two methods, program execution begins at location 000C (HEX). To complete an instruction prior to entering the standby modes, a NOP instruction has to be placed before the HALT or STOP instructions. This is required because of instruction pipelining. i.e.:

FF NOP	; clear the pipeline
6F STOP	; enter STOP mode
	or
FF NOP	; clear the pipeline
7F HALT	; enter HALT mode

Note:

In STOP mode, XTAL2 pin has an internal pull-up on it and OSCOUT has an internal pull-down.

Clock. The Z86127 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 $=$ input, XTAL2 $=$ Output). The crystal is an AT cut, parallel resonant, 4 MHz max with a series resistance (RS) less than or equal to 100 Ohms.

The crystal source is connected across XTAL 1 AND XIAL. 2 using the recommended capacitors ($10 \mathrm{pF}<\mathrm{CL}<300 \mathrm{pF}$, where $\mathrm{C} 1=\mathrm{C} 2=\mathrm{CL}$) from each pin to ground (Figure 16).

Ceramic Resonator
or Crystal

External Clock

LC Oscillator Circuits

Figure 16. Oscillator Configuration

SPECIAL FUNCTIONS (Continued)

Watch Dog Timer (WDT). The Z86127 is equipped with a watch dog timer which should be refreshed within 12 ms . Failure to refresh the timer results in a reset of the device. The WDT is permanently enabled.
V_{cc} Voltage Sensitive Reset (VSR). Reset is globally driven
if $\mathrm{V}_{c c}$ is below the specified voltage (Figure 17).

Figure 17. Voltage Sensitive Reset vs Temperature

ABSOLUTE MAXIMUM RATINGS

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational
sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameters	Min	Max	Units	Notes
V_{cc}	Power Supply Voltage \dagger	-0.3	+7	V	
V_{1}	Input Voltage	-0.3	$\mathrm{V}_{\text {cc }}+0.3$	V	
V_{1}	Input Voltage	-0.3	$\mathrm{V}_{\text {cc }}+0.3$	V	[1]
V_{0}	Output Voltage	-0.3	$\mathrm{V}_{\mathrm{cc}}+8.0$	V	
I_{OH}	Output Current High		-10	mA	1 pin
I_{OH}	Output Current High		-100	mA	all total
I_{oL}	Output Current Low		20	mA	1 pin
I_{OL}	Output Current Low		40	mA	[3] (1 pin)
I_{OL}	Output Current Low, all total		200	mA	
T_{A}	Operating Temperature	\dagger			
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65	+150	C	

Notes:
[1] Port 2 open-drain
[2] PWM open drain outputs
[3] Port 5
\dagger Voltage on all pins with respect to GND.
†† See Ordering Information

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 18).

Figure 18. Test Load Diagram

CAPACITANCE
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$; Freq $=1.0 \mathrm{MHz}$; unmeasured pins to GND .

Parameter	Max	Units
Input capacitance	10	pF
Output capacitance	20	pF
I/O capacitance	25	pF
AFCin input capacitance	10	pF

DC CHARACTERISTICS
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{F}_{\mathrm{osc}}=4 \mathrm{MHz}$

Sym	Parameter	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { Min } \quad \text { Max } \end{aligned}$		Typical @ $25^{\circ} \mathrm{C}$	Units	Conditions
V_{l}	Input Voltage Low Input XTAL/Osc In Low Input Voltage XTAL/Osc In High	0	$\begin{gathered} 0.2 \mathrm{~V}_{\mathrm{cc}} \\ 0.07 \mathrm{~V}_{\mathrm{cc}} \\ \mathrm{~V}_{\mathrm{cc}} \end{gathered}$	1.48	V	
$V_{\text {ucc }}$				0.98	V	External Clock Generator Driven
V_{1+}		$0.7 \mathrm{~V}_{\mathrm{cc}}$		3.2	V	External Clock Generator Driven
$\begin{aligned} & \hline V_{\text {Hic }} \\ & V_{H H} \\ & V_{P U} \end{aligned}$	Input XTAL/Osc in High Schmitt Hysteresis Maximum Pull-up Voltage	$\begin{aligned} & 0.8 \mathrm{~V}_{\mathrm{cc}} \\ & 0.1 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\mathrm{V}_{\text {cc }}$	3.0	V	External Clock Generator Driven
				0.8	V	
			12		V	[2]
$\mathrm{V}_{\text {oL }}$	Output Voltage Low		0.4	0.16	V	$\mathrm{I}_{\mathrm{oL}}=1.00 \mathrm{~mA}$
			0.4	0.19	V	$\mathrm{I}_{\mathrm{ol}}=3.2 \mathrm{~mA},[1]$
			0.4	0.19	v	$\mathrm{l}_{\mathrm{ol}}=0.75 \mathrm{~mA}[2]$
			1.5	1.00	V	$\mathrm{l}_{\mathrm{ol}}=10 \mathrm{~mA} \mathrm{[1]}$
	AFC Level 01 In				V	
$V_{01-11}^{00.01}$	AFC Level 11 In	$\begin{aligned} & 0.5 \mathrm{~V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{cc}}-0.4 \end{aligned}$	$0.75 \mathrm{~V}_{\text {cc }}$	3.12	v	
$\mathrm{V}_{\mathrm{OH}}^{\mathrm{OH}}$				4.75	V	$\mathrm{I}_{\mathrm{OH}}=-0.75 \mathrm{~mA}$
$\begin{aligned} & \mathrm{I}_{\mathbb{1 R}} \\ & I_{1 /} \\ & \mathrm{I}_{\mathrm{O}} \end{aligned}$	Reset Input Current Input Leakage Tri-State Leakage	$\begin{aligned} & -3.0 \\ & -3.0 \end{aligned}$	-80	-46	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$
			3.0	0.01	$\mu \mathrm{A}$	$\bigcirc \mathrm{V}, \mathrm{V}_{\mathrm{cc}}$
			3.0	0.02	$\mu \mathrm{A}$	$\mathrm{OV}, \mathrm{V}_{\mathrm{cc}}$
	Supply Current		20	13.2	mA	All inputs at rail
${ }_{\text {cci }}$			6	3.2	mA	All inputs at rail
${ }_{\text {cca } 2}$			10	0	$\mu \mathrm{A}$	All inputs at rail

Notes:

[1] Port 5
[2] PWM Open Drain

AC CHARACTERISTICS

Timing Diagrams (Figures 19-23)

Figure 19. External Clock

Figure 20. Counter Timer

IRQn

Figure 21. Interrupt Request

AC CHARACTERISTICS

Timing Diagrams (Continued)

Figure 22. Power On Reset

Figure 23. On Screen Display

AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{F}_{\mathrm{osc}}=4 \mathrm{MHz}$,

No	Symbol	Parameter	Min	Max	Unit
1	TpC	Input clock period	250	1000	ns
2	TrC, TfC	Clock input raise and fall		15	ns
3	TwC	Input clock width	70		ns
4	TwTinL	Timer input low width	70		ns
5	TwTinH	Timer input high width	3 TpC		
6	TpTin	Timer input period	8TpC		
7	TrTin, TfTin	Timer input raise and fall		100	ns
8A	TwlL	Int req input low	70		ns
8B	TwIL		3 TpC		
9	TwlH	Int request input high	3 TpC		
10	TdPOR	Power On Reset delay	25	100	ms
11	TdLVIRES	Low voltage detect to inInternal RESET condition	200		ns
12	TwRES	Reset minimum width	5 TpC		
13	TdHsOl	Hsync start to Vosc stop	2 TpV	3 TpV	
14	TdHsOh	Hsync end to Vosc start		1 TpV	
15	TdWDT	WDT Refresh Time		12	ms

Notes:

[1] Refer to DC Characteristics for details on switching levels.

* Units in nanoseconds

ENGLISH/KOREAN

	MSD							
LSD	0	1	2	3	4	5	6	7

SUMMARY

Input/Output Circuits (Figures 24-32)

Figure 24. Input Only
(Pad Type 1)

Figure 25. Input Only, Schmitt Triggered (Pad Type 2)

Figure 26. Output Only (Pad Type 3)

Figure 27. Input/Output 3-State
(Pad Type 4)

Figure 28. Input/Output, 3-state, Open Drain (Pad Type 5)

Figure 29. Output Only, 3-State
(Pad Type 6)

SUMMARY (Continued)
Input/Output Circuits

Figure 30. Output Only, 12-Volt Open Drain (Pad Type 7)

Figure 31. Reset Input Circuit
(Pad Type 8)

Figure 32. AFC Input Circuit (Pad Type 9)

Mapping of Symbolic Pad Types to Pin Functions

Pin Name	Pad Type	Notes
XTAL1, OSC $_{\mathbb{N}}$	1	
XTAL2, OSC		
out		High gain start, low gain run amplifier circuit
/RESET	8	
P20-P27	5	
P30-P31	2	
P34-P36	3	
P50-P57	3	
P60-P65	2	
AFCIN	9	
HSYNC, VSYNC	2	
VRED, VBLUE, VGREEN,	3	
VBLANK	3	
PWM1	3	
PWM [2, 6-13]	7	

DTC CONTROL REGISTER DIAGRAMS
Port Registers (Figures 33-49)

Figure 36. Port 5 Register

Figure 33. Port 2 Register

Figure 34. Port 2 Mode Register
Figure 37. Port 6 Register

Figure 35. Port 3 Register

DTC CONTROL REGISTER DIAGRAMS

PWM Registers

Figure 38. PWM 1 High Value

Figure 39. PWM 1 Low Value

Figure 40. PWM 6 Value

Figure 41. PWM 7 Value

Figure 42. PWM 8 Value

Figure 43. PWM 9 Value

Figure 44. PWM 10 Value

Figure 45. PWM 11 Value

Figure 46. PWM 12 Value

Figure 47. PWM 13 Value Register

DTC CONTROL REGISTER DIAGRAMS PWM Registers (Continued)

	M	OD			\%FC10			Mode Control
7	6	5	4	3	2	1	0	
T	T	T	T	T	T	T		0 PWM 1 Output Port
8	7	6	5	4	3	2	1	

Figure 48. PWM Mode Register

Figure 49. PWM Port Output Register

DTC CONTROL REGISTER DIAGRAMS OSD Registers (Figures 50-57)

Figure 50. OSD Control Register

Figure 51. OSD Vertical Position Register

Figure 52. OSD Horizontal Position Register

Figure 53. OSD Display Attribute Register

Figure 54. OSD Row Space Register

Figure 55. OSD Fade Position Register

Figure 56. OSD Bar Control Register

Figure 57. OSD Bar Position Register

DTC CONTROL REGISTER DIAGRAMS

Z8 Microcomputer Control Register Diagrams (Figures 58-72)

Figure 58. Reserved (FOH)

R243 PRE1

Count Mode
0 T1 Single Pass
1 T1 Modulo N
Clock Source
1 T1 Internal
0 T1 External Timing Input ($T_{\text {IN }}$) Mode

Prescaler Modulo (Range: 1-64 Decimal 01-00 Hex)

Figure 61. Prescaler 1 Register (F3H; Write Only)

Figure 62. Counter/Timer 0 Register
(F4H; Read/Write)

Figure 63 Prescaler 0 Register (F5H; Write Only)

Figure 60. Counter Timer 1 Register (F1H; Read/Write)

Figure 64. Port 2 Mode Register (F6H; Write Only)

Figure 65. Port 3 Mode Register (F7H; Write Only)

DTC CONTROL REGISTER DIAGRAMS

Z8 Microcomputer Control Register Diagrams (Continued)

Figure 66. Interrupt Priority Register
(F9H; Write Only)

Figure 67. Interrupt Request Register (FAH; Read/Write)

Figure 68. Interrupt Mask Register (FBH; Read/Write)

Figure 69. Flag Register (FCH; Read/Write)

Figure 72. Stack Pointer (FFH; Read/Write)

Figure 70. Register Pointer (FDH; Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
RA	Direct address
IM	Relative address
R	Immediate
r	Register or working-register address
IR	Working-register address only
	Indirect-register or indirect Ir
WR	Indirect working-register address only Register pair or working register pair
	Regdress

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
SrC	Source location or contents
CC	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$Z=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(\mathrm{S} \times$ OR V $)=0$
0001	LT	Less than	$(\mathrm{SXORV})=1$
1010	GT	Greater Than	$[Z$ OR (S XOR V $)$] $=0$
0010	LE	Less Than or Equal	$[Z$ OR (S XOR V $)$] $=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$C=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(\mathrm{COR} Z)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
d s t \leftarrow d s t+\operatorname{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex) $)$Flags Affected c Z S V D			
NOP			FF	-	-

OR dst, src dst \leftarrow dst OR src	\dagger		4[]	-	*	*	0	-	-
POP dst	R		50	-	-	-	-	-	-
dst↔@SP;	IR		51						
$\mathrm{SP} \leftarrow \mathrm{SP}+1$									
PUSH src		R	70	-	-	-	-	-	-
SP↔SP - 1;		IR	71						
@SP↔src									
RCF			CF	0	-	-	-	-	-
$\mathrm{C} \leftarrow 0$									

RET		AF	-	-	-	-	-		-
$\mathrm{PC} \leftarrow$ @SP;									
$\mathrm{SP} \leftarrow \mathrm{SP}+2$									
RL dst	R	90	*	*	*	*	-		-
c. 7 \%	IR	91							
RLC dst	R	10	*	*	*	*	-		-
[c]-7	IR	11							
RR dst	R	EO	*	*	*	*	*		-
- $6 \rightarrow 7$	IR	E1							

 $\mathrm{dst} \leftarrow \mathrm{dst} \leftarrow \mathrm{src} \leftarrow \mathrm{C}$

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Flags Affec C Z	ted S	\checkmark	D	H

 dst AND src
XOR dst, src $\quad \dagger \quad \mathrm{B}[] \quad-* * 0-\cdots$
dst \leftarrow dst
XOR sre
\dagger These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

| Address Mode | |
| :--- | :---: | :---: |
| dst | src |\(\left.c \begin{array}{c}Lower

Opcode Nibble\end{array}\right]\left[$$
\begin{array}{ccc}\text { r } & \text { r } & {[3]} \\
\text { r } & \text { Ir } & {[4]} \\
\text { R } & \text { R } & {[5]} \\
\text { R } & \text { IR } & {[6]} \\
\text { R } & \text { IM } & {[7]} \\
\mathbb{R} & \mathbb{M} & \end{array}
$$\right.\)

OPCODE MAP

-

Z86C50
 CMOS Z8 ${ }^{\text {C }}$ CCP $^{\text {mu }}$ ICE In-CIRCUIT EMULATOR

FEATURES

- 8-bit CMOS Z8 CCP base In-Circuit Emulation chip
- 124-pin PGA package
- Full Z8 CCP family instruction set
- 3.0 to 5.5 volt operation range
- Clock speed 20 MHz
- 236-byte general-purpose register
- Low EMI mode programmable
- Internal register read bus and write bus interface
- Register file bank pointer and register file address bus interface for accessing the Expanded Register File (ERF) externally.
- Expanded Register control signals (/REGRD, /REGWR and /CE_ERF) interface
- All internal control signals interface (i.e., /SYNC, /IACK, /MAS, MDS, etc.)
- Disable Timers control signal
- Hold internal clock control signal
- Wait control signal
- STOP and HALT modes signal status outputs
- Two on-board analog comparators
- Two programmable 8 -bit Counter/Timers, each with a 6-bit programmable prescaler
- Sixvectored, priority interrupts from sixdifferentsources
- Internal program memory size select interface

GENERAL DESCRIPTION

The Z86C50 CCP In-Circuit Emulation (ICE) chip introduces a new level of sophistication to ICE architecture. The Z86C50 not only provides all the control signal interfaces, but also the internal register bus interface. The Expanded Register File (ERF) can be external and interface with the internal register bus and ERF control signals.

The Z86C50 allows users to prototype a system with an actual hardware device and to develop the code. Also, this device is very useful in emulator applications.

Figure 1 is the functional block diagram of Z86C50. This device is housed in a 124-pin PGA package (Figure 2). Table 1 is the pin identification of the 286 C 50 .

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

OOOOOOOOOOOOO	N
O OOOOOOOOOOOO	M
OOOOOOOOOOOOO	L
OOOO OOOO	K
OOO 000	J
OOO 0 O O	H
$\bigcirc \bigcirc \bigcirc$	G
$\bigcirc \bigcirc 00$	F
OOO 000	E
OOOO OOOO	D
OOOOOOOOOOOOO	c
OOOOOOOOOOOOO	B
○ OOOOOOOOOOOO	A

Figure 2. 124-Pin Grid Array Pin Assignments (Top View)

PIN DESCRIPTION
Table 1. Pin Identification

Pin \#	Symbol	Function	Direction
C3	P30	Port 3 pin 0	Input
B2	P31	Port 3 pin 1	Input
B1	P32	Port 3 pin 2	Input
D3	P33	Port 3 pin 3	Input
C2	P34	Port 3 pin 4	Output
C1	P35	Port 3 pin 5	Output
D2	P36	Port 3 pin 6	Output
E3	$\mathrm{V}_{\text {cc }}$	Power Supply	Input
D1	P37	Port 3 pin 7	Output
E2	P10	Port 1 pin 0	In/Output
E1	P11	Port 1 pin 1	In/Outpul
F3	P12	Port 1 pin 2	In/Output
F2	P13	Port 1 pin 3	In/Output
F1	GND	Ground, $\mathrm{V}_{\text {ss }}$	Inpul
G2	P14	Port 1 pin 4	In/Output
G3	P15	Port 1 pin 5	in/Output
G1	P16	Port 1 pin 6	In/Output
H1	P17	Port 1 pin 7	In/Output
H2	/DM	Data Memory Strobe	Output
H3	GND	Ground	Input
J1	/RESET	Reset	Input
J2	/DTIMERS	Disable Timers	Input
K1	/HOLD	Hold Control	Input
J3	R//W	Read/Write	Output
K2	IDS	Data Strobe	Output
L1	IAS	Address Strobe	Output
M1	SCLK	System Clock	Output
K3	ISYNC	Instruction Sync. Signal	Output
L2	/IACK	Interrupt Acknowledge	Output
N1	/MAS	Interrupt Memory Address strobe	Output
K4	/WAIT	Wait Control	Input
L3	/MDS	Interrupt Memory Data Strobe	Output
M2	A15	Internal Address Line 15	Output
N2	A14	Internal Address Line 14	Output
L4	A13	Internal Address Line 13	Output
M3	A12	Internal Address Line 12	Output
N3	A11	Internal Address Line 11	Output
M4	A10	Internal Address Line 10	Output
L5	/SMR	Stop mode recovery	Input
N4	A9	Internal Address Line 9	Output
M5	A8	Internal Address Line 8	Output
N5	A7	Internal Address Line 7	Output
L6	A6	Internal Address Line 6	Output
M6	A5	Internal Address Line 5	Oulput
N6	A4	Internal Address Line 4	Output
M7	A3	Internal Address Line 3	Output

Pin \#	Symbol	Function	Direction
L7	A2	Internal Address Line 2	Output
N7	GND	Ground, $\mathrm{V}_{\text {ss }}$	Input
N8	A	Internal Address Line 1	Output
M8	AO	Internal Address Line 0	Output
L8	/ADMUX	Address/Data Bus Multiplex	Input
N9	GND	Ground	Input
M9	XTAL2	Oscillator Output	Output
N10	$V_{\text {cc }}$	Power Supply	Input
L9	/IRQ4	Interrupt Request 4	Input
M10	/IRQ3	Interrupt Request 3	Input
N11	XTAL1	Oscillator Input	Input
N12	RBPO	Reg. Bank Pointer bit 0	Output
L10	RBP1	Reg. Bank Pointer bit 1	Output
M11	RBP2	Reg. Bank Pointer bit 2	Output
N13	RBP3	Reg. Bank Pointer bit 3	Output
K10	/SCLK	System Clock (inverted)	Output
L11	IWDO	Internal Reg. Write Bus D0	Output
M12	IWD1	Internal Reg. Write Bus D1	Output
M13	IWD2	Internal Reg. Write Bus D2	Output
L12	IWD4	Internal Reg. Write Bus D4	Output
L13	IWD5	Internal Reg. Write Bus D5	Oulput
K12	IWD6	Internal Reg. Write Bus D6	Output
J11	IWD7	Internal Reg. Write Bus D7	Output
K13	/REGWR	Register Write	Output
J12	/REGRD	Register Read	Oulput
J13	GND	Ground, $\mathrm{V}_{\text {ss }}$	Input
H11.	RAO	Register Address Line 0	Output
H12	RA1	Register Address Line 1	Output
H13	RA2	Register Address Line 2	Output
G12	RA3	Register Address Line 3	Output
G11	RA4	Register Address Line 4	Output
G13	RA5	Register Address Line 5	Output
F13	RA6	Register Address Line 6	Output
F12	RA7	Register Address Line 7	Output
F11	CTO	Counter/Timer 0 Output	Output
E13	IRD0	Internal Reg. Read Bus D0	Input
E12	IRD1	Internal Reg. Read Bus D1	Input
D13	$V_{c c}$	Power Supply	Input
E11	1RD2	Internal Reg. Read Bus D2	Input
D12	IRD3	Internal Reg. Read Bus D3	Input
C13	IRD4	Internal Reg. Read Bus D4	Input
B13	IRD5	Internal Reg. Read Bus D5	Input
D11	IRD6	Internal Reg. Read Bus D6	Input
C12	IRD7	Internal Reg. Read Bus D7	Input
A13	TCLK	Timer Clock Output	Output
D10	/STOP	STOP Signal	Output
C11	/CE_ERF	ERF Chip Select	Output
B12	D0	Internal Memory Data Line 0	In/Output

PIN DESCRIPTION
Table 1. Pin Identification (Continued)

Pin \#	Symbol	Function	Direction
A12	D1	Internal Memory Data Line 1	In/Output
C10	D2	Internal Memory Data Line 2	In/Output
B11	D3	Internal Memory Data Line 3	In/Output
A11	D4	Internal Memory Data Line 4	in/Output
B10	D5	Internal Memory Data Line 5	in/Output
C9	D6	Internal Memory Data Line 6	In/Output
A10	D7	Internal Memory Data Line 7	In/Output
B9	SIZEO	Size Select 0	Input
A9	SIZE1	Size Select 1	Input
C8	SIZE2	Size Select 2	Input
B8	POO	Port 0 Pin 0	In/Output
A8	PO	Port 0 Pin 1	In/Output
B7	PO	Port 0 Pin 2	In/Output
C7	P0	Port 0 Pin 3	In/Output
A7	GND	Ground, $\mathrm{V}_{\text {ss }}$	Input
A6	PO	Port 0 Pin 4	In/Output
B6	PO	Port 0 Pin 5	in/Output
C6	PO	Port 0 Pin 6	In/Output
B5	P2	Port 2 Pin 0	In/Output
A4	V_{cc}	Power Supply	Input
C5	P2	Port 2 Pin 1	In/Output
B4	P2	Port 2 Pin 2	In/Output
A3	P2	Port 2 Pin 3	In/Output
A2	P2	Port 2 Pin 4	In/Output
C4	P2	Port 2 Pin 5	In/Output
B3	P2	Port 2 Pin 6	In/Output
A1	P2	Port 2 Pin 7	In/Output
D4	/HALT	HALT Signal	Output

PIN FUNCTIONS

P00-P07. Port 0, nibble programmable. Port 0 can be configured as input, output or address lines.

P10-P17. Port 1, byte programmable. Port 1 can be configured as input, output or multiplexed address/data lines.

P20-P27. Port 2, bit programmable. Port 2 can be configured as input or output lines.

P30-P33. Port 3 input lines, P31-P33 can be configured as analog input.

P34-P37. Port 3 output lines.
A0-A15. Internal Memory Address Bus (Output). The internal memory can address up to 32 Kbyte.
/ADMUX. Address/DataBus Multiplexed(Input). When this pin is low, $A 7-A 0$ is address and data bus multiplexing (AD7-AD0). When this pin is high, A15-A0 outputs the address only. This pin has an internal pull-up resistor.

D7-D0 (In/Output). Internal Memory Data Bus.
R/W. Read/Write Signal output line.
SIZE0-SIZE2. Internal Memory Size (Input). These three pins select the internal memory size (Table 2).

Table 2. Memory Size Table

SIZE2	SIZE1	SIZE0	Memory Size
0	0	0	0 Kbyte
0	0	1	2 Kbytes
0	1	0	4 Kbytes
0	1	1	8 Kbytes
1	0	0	16 Kbytes
1	0	1	32 Kbytes

RBP0-RBP3. Register Bank Pointer (Output). The RBP points to the current register bank. The ERF is located in bank \%1 to bank \%F.

RA7-RA0. Register Address Bus(Output). This bus is used to access each of 256 byte registers of the current register bank.

IWD7-IWD0. Register Write Bus (Output). This bus is used to write the data to the register.
/REGWR. Register Write signal(Output). This pin goes low during each register write cycle.

IRD7-IRD0. Register Read Bus(Input). This bus is used to read the data from the register.
/REGRD. RegisterRead signal(Output). This pin goes low during each register read cycle.

ICE_ERF. ERF Chip Enable (Output). This pin goes active when the ERF is accessed and inactive when the on-board register file is accessed.
/DM. Data Memory Strobe (Output). This pin goes low during data memory access.
/MDS. Internal Memory Data Strobe(Output). This pin goes low during each internal memory fetch cycle.
/MAS. Internal Memory Address Strobe (Output). This pin goes low during each T1 cycle.
/DS. Data Strobe (Output). This pin goes low during each external memory fetch cycle.

IAS. Address Strobe (Output). This pin goes low during each T1 cycle.

PIN FUNCTIONS (Continued)

SCLK. System Clock output pin.
/SCLK. Inverse System Clock output pin.
ISYNC. Instruction Sync Signal (Output). This signal indicates the last clock of the current executing instruction.
/IACK. Interrupt Acknowledge (Output). This pin goes low during an interrupt cycle.
/IRQ3. Interrupt Request 3 input line.
/IRQ4. Interrupt Request 4 input line.
/DTIMERS. Disable Timers (Input). All timers (including the WDT) are stopped by the low level at this pin. This pin has an internal pull-up resistor.
/HOLD. Hold (Input). The internal clock is stopped by the low level at this pin. The on-board oscillator keeps on oscillating. This pin has an internal pull-up resistor.
/WAIT. Wait (Input). The code execution is stopped after completion of the currently executing instruction by the low level at this pin. The address of the fetching byte is latched. /AS goes high and /DS goes low. The high level at this pin releases from WAIT. This pin has an internal pull-up resistor.
/HALT. HALT Mode Indication (Output). The low level of this pin indicates the ICE chip in HALT mode.

ISTOP. STOP Mode Indication (Output). The low level of this pin indicates the ICE chip in STOP mode.

ISMR. STOP Mode Recovery (Input). Low level at this pin wakes up the ICE chip from STOP mode.

TCLK. Timer Clock Output lines. The frequency of TCLK is the same as SCLK. TCLK drives the timer and interrupt logic.

CTO. Counter/Timer 0 output line.

TIMING DIAGRAMS

Figure 3 shows the configuration of ICE Control Register (ICECON) which selects the access timing of the Expanded Register File.

Figures 4 through 9 are the preliminary access timing diagrams of the register file.

Figure 3. ICE Control Register

Figure 4. Internal Register File Read Cycle For Indirect Addressing

TIMING DIAGRAMS (Continued)

Figure 5. Internal Register File Read Cycle For Indirect Addressing (Extended Timing)

Figure 6. Internal Register File Write Cycle

Figure 7. Internal Register File Write Cycle (Extended Timing)

TIMING DIAGRAMS (Continued)

Figure 8. External Read And Write Timing (Normal Timing)

Figure 9. External Read And Write Timing (Extended Timing)

Notes:

1. SCLK, TCLK go HIGH
2. IAS, /MAS go LOW

Figure 10. HOLD Timing Diagram

Figure 11. WAIT Timing Diagram

Figure 12. DTIMERS Timing Diagram

CMOS Z8 MICROCONTROLLER
 Z86C61

GENERAL DESCRIPTION

The Z86C61 is a member of the Z8 single-chip microcontroller family. It is pin compatible with the Z86C21 but has twice the on-board memory with 16 K bytes of ROM. The device is housed in a 40-pin DIP, 44-pin Leaded Chip Carrier, or a 44-pin Quad Flat Pack. It offers all the outstanding features of the $Z 8$ family architecture.

The Z86C61 provides up to 16 output address lines permitting an address space of up to 48 K bytes of external program and data memory each. The 256-byte Register File consists of 236 general purpose registers, four I/O port registers, and 16 status and control registers.

The Z86C61 architecture is based on Zilog's 8-bit microcontroller core. The device has instruction compatibility with the entire Z8 family for easy software/hardware system expansion.

FEATURES

- Complete microcomputer with 40-pin
- RAM/ROM protect option DIP, 44-pin PLCC, or 44-pin QFP, 32 I/O lines and 16 K bytes of on-chip ROM.
- The register file is composed of 236 General Purpose registers, four I/O port registers and 16 control and status registers.

Full duplex UART and two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler.

On-chip oscillator which accepts crystal, ceramic resonator, LC or extemal clock drive.

- Fast instruction pointer 1 microsecond at 12 MHz
- Standby modes: STOP and HALT
- Clock speed 16 MHz
- 1.2 micron CMOS technology
- 3.0 to 5.5 volts operating range
- Six vectored, priority interrupts from eight different sources

GENERAL DESCRIPTION

The Z86C62 is a member of the Z8 single-chip microcontroller family with 16 K bytes of ROM. The device is housed in a 64-pin DIP or a 68-pin Leaded Chip Carrier. It offers all the outstanding features of the $Z 8$ family architecture.

The Z86C62 provides up to 16 output address lines permitting an address space of up to 48 K bytes of external program and data memory each. The 256-byte Register File consists of 236 general purpose registers, four I/O port registers, and 16 status and control registers. Three additional I/O port registers and five status and control registers reside in the Expanded Register File.

The Z86C62 architecture is based on Zilog's 8 -bit microcontroller core. The device has instruction compatibility with the entire Z8 family for easy software/hardware system expansion. The Z86C62 is similar to the Z86C61, but with three additional I/O ports.

FEATURES

- Complete microcontroller with 68-pin PLCC, or 64-pin DIP, 56 I/O lines and 16 K bytes of on-chip ROM.
- The register file is composed of 236 General Purpose registers, four $1 / 0$ port registers and 16 control and status registers.
- Three Expanded Register File I/O port registers and five control registers.
- Full duplex UART and two programmable 8-bit countertitimers, each with a 6 -bit programmable prescaler.
- On-chip oscillator which accepts crystal, ceramic resonator, LC or extemal clock drive.
- Six vectored, priority interrupts from eight different sources
- RAM/ROM protect option
- Standby modes: STOP and HALT
- Clock speeds 16 MHz
- 1.2 micron CMOS technology
- 3.0 to 5.5 volts operating range
- All pins TTL compatible

Z86C90/C89 ROMLESS CMOS Z8® ${ }^{8}$-BIT MICROCONTROLLER

FEATURES

- 8-bit CMOS microcomputer
- 40- or 44-pin package
- Low cost

■ 3.0 to 5.5 volt operating range
■ Low power consumption - 50 mW (Typical)
■ Fast instruction pointer - 1.0 microsecond @ 12 MHz

- Two standby modes - STOP and HALT
- 32 input/output lines (two with comparator inputs)

■ All digital inputs are CMOS levels, Schmitt triggered

- ROMIess
- 256 bytes of RAM (236 for general purpose)
- Two Expanded Register File control registers
- Two programmable 8-bit Counter/Timers
- 6-bit programmable prescaler
- Sixvectored, priority interrupts from six different sources
- Clock speeds 8 and 12 MHz for Z86C90, 8 Mhz only for Z86C89
- Brown-Out protection
- Programmable Watch Dog/Power-On Reset Timer
- Two Comparators with programmable interrupt polarity
- On-chip oscillator that accepts a crystal, ceramic resonator, LC, or external clock drive (Z86C90).
- On-chip oscillator that accepts an RC network or external clock drive (Z86C89).

GENERAL DESCRIPTION

The Z86C90/C89 CCP™ (Consumer Controller Processor) introduces a new level of sophistication to single-chip architecture. The Z86C90/C89 are ROMless members of the $Z 8$ single-chip microcontroller family with 236 bytes of general purpose RAM. The only difference that exists between the Z86C89 and the Z86C90 is that the on-chip oscillator of the Z86C89 can acceptan external RC network or other external clock source, while the Z86C90's on-chip oscillator accepts a crystal, ceramic resonator, LC, or external clocksource drive. The CCP controllers are housed in a 40 -pin DIP, 44 -pin Leaded Chip Carrier, or a 44 -pin Quad Flat Pack, and are CMOS compatible. The CCP offers the use of external memory which enables this $Z 8$ microcomputer to be used where code flexibility is required. Zilog's CMOS microcomputer offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C90/C89 architecture is based on Zilog's 8-bit microcontrollèr core with an Expanded Register File to allow access to register mapped peripheral and I/O circuits. The CCP offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many industrial, automotive, computer peripherals, and advanced scientific applications.

The CCP applications demand powerful I/O capabilities. The Z86C90/C89 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports. Each port consists of eight lines, and is configurable under software control to provide timing, status signals, parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

GENERAL DESCRIPTION (Continued)

There are four basic address spaces available to support this wide range of configurations: Program Memory, Register File, Data Memory, and Expanded Register File. The Register File is composed of 236 bytes of general purpose registers, four I/O port registers, and fifteen control and status registers. The Expanded Register File consists of two control registers.

To unburden the program from coping with the real-time problems, such as counting/timing and data communication, the Z86C90/C89 offers two on-chip counter/timers.

Included are a large number of user selectable modes, and two on-board comparators to process analog signals with a common reference voltage (Figure 1).

Note: All Signals with a preceding front slash, ${ }^{n / n}$, are active Low, e.g.: $B / / W$ (WORD is active Low); /B/W (BYTE is active Low, only); /N//S (NORMAL and SYSTEM are both active Low).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 40-Pin Dual-In-Line Pin Assignments

PIN DESCRIPTION (Continued)

Figure 3. 44-Pin Leaded Chip Carrier Pin Assignments

Figure 4. 44-Pin Quad Flat Pack Pin Assignments

PIN DESCRIPTION (Continued)
Table 1. 40-Pin Dual-In-Line Pin Identification

Pin \#	Symbol	Function	Direction
1	R//W	Read/Write	Output
2-4	P25-27	Port 2 pin 5,6,7	In/Output
5-7	P04-P06	Port 0 pin 4,5,6	In/Output
8-9	P14-P15	Port 1 pin 4,5	In/Output
10	P07	Port 0 pin 7	In/Output
11	V_{cc}	Power Supply	Input
12-13	P16-P17	Port 1 pin 6,7	In/Output
14	XTAL2	Crystal, Oscillator Clock	Output
15	XTAL1	Crystal, Oscillator Clock	Input
16-18	P31-P33	Port 3 pin 1,2,3	Input
19	P34	Port 3 pin 4	Output
20	IAS	Address Strobe	Output
21	/RESET	Reset	Input
22	P35	Port 3 pin 5	Output
23	P37	Port 3 pin 7	Output
24	P36	Port 3 pin 6	Output
25	P30	Port 3 pin 0	Input
26-27	P00-P01	Port 0 pin 0,1	In/Output
28-29	P10-P11	Port 1 pin 0,1	In/Output
30	P02	Port 0 pin 2	In/Output
	GND	Ground	
32-33	P12-P13	Port 1 pin 2,3	In/Output
34	P03	Port 0 pin 3	In/Output
35-39	P20-P24	Port 2 pin 0, 1, 2, 3, 4	In/Output
40	IDS	Data Strobe	Output

Table 2. 44-Pin Leaded Chip Carrier Pin Identification

Pin \#	Symbol	Function	Direction
1-2	GND	Ground	Input
3-4	P12-P13	Port 1 pin 2,3	In/Output
5	P03	Port 0 pin 3	In/Output
6-10	P20-P24	Port 2 pin 0, 1, 2, 3, 4	In/Output
11	/DS	Data Strobe	Output
12	N/C	Not Connected	Input
13	R//W	Read/Write	Output
14-16	P25-27	Port 2 pin 5,6,7	In/Output
17-19	P04-P06	Port 0 pin 4,5,6	In/Output
20-21	P14-P15	Port 1 pin 4,5	In/Output
22	P07	Port 0 pin 7	In/Output
23-24	$\mathrm{V}_{\text {c }}$	Power Supply	Input
25-26	P16-P17	Port 1 pin 6,7	In/Output
27	XTAL2	Crystal, Oscillator Clock	Output
28	XTAL1	Crystal, Oscillator Clock	Input
29-31	P31-P33	Port 3 pin 1,2,3	Input
32	P34	Port 3 pin 4	Output
33	/AS	Address Strobe	Output
34	GND	Ground	Input
35	/RESET	Reset	Input
36	P35	Port 3 pin 5	Output
37	P37	Port 3 pin 7	Output
38	P36	Port 3 pin 6	Output
39	P30	Port 3 pin 0	Input
40-41	P00-P01	Port 0 pin 0,1	In/Output
42-43	P10-P11	Port 1 pin 0,1	In/Output
44	P02	Port 0 pin 2	In/Output

PIN DESCRIPTION (Continued)
Table 3. 44-Pin Quad Flat Pack Pin Identification

Pin \#	Symbol	Function	Direction
1-2	P05-P06	Port 0 pin 5,6	In/Output
3-4	P14-P15	Port 1 pin 4,5	In/Output
5	P07	Port 0 pin 7	In/Output
6-7	$\mathrm{V}_{\text {c }}$	Power Supply	Input
8-9	P16-P17	Port 1 pin 6,7	In/Output
10	XTAL2	Crystal, Oscillator Clock	Output
11	XTAL1	Crystal, Oscillator Clock	Input
12-14	P31-P33	Port 3 pin 1,2,3	Input
15	P34	Port 3 pin 4	Output
16	IAS	Address Strobe	Output
17	GND	Ground	Input
18	/RESET	Reset	Input
19	P35	Port 3 pin 5	Output
20	P37	Port 3 pin 7	Output
21	P36	Port 3 pin 6	Output
22	P30	Port 3 pin 0	Input
23-24	P00-P01	Port 0 pin 0,1	In/Output
25-26	P10-P11	Port 1 pin 0,1	In/Output
27	P02	Port 0 pin 2	- In/Output
28-29	GND	Ground	Input
30-31	P12-P13	Port 1 pin 2,3	In/Output
32	P03	Port 0 pin 3	In/Output
33-37	P20-P24	Port 2 pin 0, 1, 2, 3, 4	In/Output
38	IDS	Data Strobe	Output
39	N/C	Not Connected	Input
40	R/W	Read/Write	Output
41-43	P25-27	Port 2 pin 5,6,7	In/Output
44	P04	Port 0 pin 4	In/Output

PIN FUNCTIONS

/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/ Write.

XTAL1. Crystal 1 (time-based input). This pin connects a parallel-resonant crystal, ceramic resonator, LC, or RC network or an external single-phase clock to the on-chip oscillator input.

XTAL2. Crystal 2(time-based output). This pin connects a parallel-resonant, crystal, ceramic resonant, LC, or RC network to the on-chip oscillator output.

R/W. (output, write Low). Read/Write, the R//W signal is low when the CCP is writing to the external program or data memory.

Port 0 (P00-P07). Port 0 is an 8-bit, bidirectional, CMOS compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt triggered and the output drivers are push-pull. Port 0 is placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAVO and RDYO. Handshake signal direction is dictated by the I/O direction to Port 0 of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble.

For externalmemory references, Port0 can provide address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the
address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware resel, Port 0 is configured as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode.

Port 0 is set in the high-impedance mode if selected as an address output state along with Port 1 and the control signals /AS, /DS and R//W (Figure 5).

Figure 5. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1 (P10-P17). Port 1 is a multiplexed Address (A7-A0) and Data (D7-D0), CMOS compatible port. Port 1 is dedicated to the Zilog ZBUS*-compatible memory interface. The operations of Port 1 are supported by the Address Strobe (/AS) and Data Strobe (/DS) lines, and by the Read/ Write (R//W) and Data Memory (/DM) control lines. Data memory read/write operations are done through this port (Figure 6). If more than 256 external locations are required, Port 0 outputs the additional lines.

Port 1 can be placed in the high-impedance state along with Port 0, /AS, /DS and R//W, allowing the Z86C90/C89 to share common resources in multiprocessor and DMA applications.

The CCP wakes up with the 8 bits of Port 1 configured as address outputs for external memory.

Figure 6. Port 1 Configuration

Port 2 (P20-P27). Port 2 is an 8 -bit, bidirectional, CMOS compatible I/O port. These eight I/O lines can be configured under software control as an input or output, independently. Port 2 is always available for I/O operation. The input buffers are Schmitt triggered. Bits programmed as outputs are globally programmed as either push-pull or
open-drain. Port 2 may be placed under handshake control. In this configuration, Port 3 lines, P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The handshake signal assignment for Port 3 , lines P31 and P36 is dictated by the direction (input or output) assigned to bit-7 Port 2 (Figure 7).

Figure 7. Port 2 Configuration

Port 3 (P30-P37). Port 3 is an 8-bit, CMOS compatible fourfixed input and four-fixed output. Port 3 consists of fourfixed input (P30-P33) and four-fixed output (P34-P37), and can be configured under software control for Input/Output,

Counter/Timers, interrupt, Port handshake and Data Memory functions. Port 3, Pin-0 input is Schmitt triggered, and pins P31, P32, and P33 are standard CMOS inputs; outputs are push-pull.

PIN FUNCTIONS (Continued)

Two on-board comparators process analog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by programming the Port 3 Mode Register (bit-1). Port 3, pins 0 and 3 are falling edge interrupt inputs. P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input. Access to Counter/Timer 1 is made through P31 ($\mathrm{T}_{\mathbb{I N}}$) and P36 ($T_{\text {our }}$). Handshake lines Ports 0, 1 and 2 are available on P31 through P36.

Port 3 also provides the following control functions: handshake for Ports 0, 1 and 2 (/DAV and RDY); four external interrupt request signals (IRQ0-IRQ3); timer input and output signals ($\mathrm{T}_{\mathbb{N}}$ and $\mathrm{T}_{\text {out }}$) and Data Memory Select [(/DM) (Figure 8)].

Auto-Latch. The Auto-Latch puts valid CMOS levels on all CMOS inputs (except P31-P33) that are not externally driven. Whether this level is zero or one, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Figure 8. Port 3 Configuration

Table 4. Pin Assignments

Pin	I/O	CTC1	AN IN	Int.	P0 HS	P1 HS	P2 HS	Ext
P30	\mathbb{N}			IRQ3				
P31	\mathbb{N}	$T_{\text {IN }}$	AN1	IRQ2				
P32	IN		AN2	IRQ0	D/R			
P33	\mathbb{N}		REF	IRQ1		D/R		
P34	OUT				R/D	R/D		DM
P35	OUT						R/D	
P36	OUT	$T_{\text {out }}$						
P37	OUT							

Notes:

HS = Handshake Signals
$D=D A V$
$\mathrm{R}=\mathrm{RDY}$

Comparator Inputs. Port 3, Pins P31 and P32 each have a comparator front end. The comparator reference voltage (Pin P33) is common to both comparators. In analog mode, P31 and P32 are the positive inputs to the comparators and P33 is the reference voltage supplied to both comparators. In digital mode, Pin P33 can be used as a P33 register input or IRQ1 source.
/RESET. (input, active-Low). Initializes the MCU. Reset is accomplished either through Power-On, Watch Dog Timer reset, STOP Mode Recovery, or external reset. During Power-On Reset and Watch Dog Reset, the internally generated reset drives the reset pin low for the POR time. Any devices driving the reset line should be open-drain in order to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

After the POR time, /RESET is a Schmitt triggered input. To avoid asynchronous and noisy reset problems, the Z86C90/ C89 is equipped with a reset filter of four external clocks $(4 \mathrm{TpC})$. If the external reset signal is less than 4 TpC in duration, no reset occurs. On the tifth clock after the reset is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer.

During the reset cycle, /DS is held active low while /AS cycles at a rate of TpC/2. Program execution begins at location 000C (HEX), 5-10 TpC cycles after the RST is released. For Power-On Reset, the typical reset output time is 5 ms . The Z86C90/C89 does not reset WDTMR, SMR, P2M, or P3M registers on a STOP Mode Recovery operation.

FUNCTIONAL DESCRIPTION

The Z8CCP incorporates special functions to enhance the Z8's functionality in industrial, scientific research and advanced technologies applications.

Reset. The device is reset in one of the following conditions:

[^4]Program Memory. The Z86C90/C89 addresses up to 64K external program memory (Figure 9). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts. Program execution begins at location 000 C (HEX) after a reset.

FUNCTIONAL DESCRIPTION

Address Space

The following subsections define Program Memory, Data Memory, Register Files, and Stack Pointers.

Program Memory. The Z86C91 can address up to 64 Kbytes of external program memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Program execution begins at external location 000 CH after a reset.

Figure 10. Program Memory Configuration

Data Memory (/DM). The Z86C91 addresses up to 64 Kbytes of external data memory space. External data memory is included with, or separated from, the external program memory space./DM, an optional I/O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 11). The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references DATA (/DM active low) memory.

Figure 11. Data Memory Configuration

Figure 11. Expanded Register File Architecture

FUNCTIONAL DESCRIPTION (Continued)

R253 RP

Default setting after RESET $\mathbf{= 0 0 0 0 0 0 0 0}$

Figure 12. Register Pointer Register

Register File. The register file consists of four I/O port registers, 236 general purpose registers and 15 control and status registers (R0-R3, R4-239 and R240-R255, respectively), plus two system configuration registers in the expanded register group. The instructions can access registers directly or indirectly via an 8 -bit address field. This allows a short, 4-bit register address using the Register Pointer (Figure 13). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

Note: Register Bank EO-EF is only accessed through working registers and indirect addressing modes.

Stack. The Z86C90/C89 external data memory or the internal register file is used for the stack. The 16 -bit Stack Pointer (R254-R255) is used for the external stack residing anywhere in the data memory for ROMless mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general purpose registers (R4R239). SPH is used as a general purpose register only when using internal stacks.

Counter/Timers. There are two 8-bit programmable counter/ timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 14).

The 6-bit prescaler divides the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable ornon-retriggerable, or as a gate input for the internal clock. The counter/limers can be cascaded by connecting the TO oulput to the input of T 1 .

Figure 13. Register Pointer

Figure 14. Counter/Timer Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z86C90/C89 has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 15). The six sources are divided as follows; four sources are claimed by Port 3 lines P30-P33,
and two in counter/timers (Table 5). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.

Figure 15. Interrupt Block Diagram

Table 5. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ 0	IDAV 0, IRQ 0	0,1	External (P32), Rising Falling Edge Triggered
IRQ 1,	IRQ 1	2,3	External (P33), Falling Edge Triggered
IRQ 2	IDAV 2, IRQ 2, $T_{I N}$	4,5	External (P31), Rising Falling Edge Triggered
IRQ 3	IRQ3	6,7	External (P30), Falling Edge Triggered
IRQ 4	T0	8,9	Internal
IRQ 5	TI	10,11	Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. An interrupt machine cycle is activated when an interrupt request is granted. Thus, this disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All Z86C90/C89 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into $\operatorname{IRQ} 2$, and an interrupt from AN2 is mapped into IRQO. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQRegister (R250), bits D7 and D6. The configuration is shown in Table 6.

Table 6. IRQ Register

IRQ		Interrupt Edge	
D7	D6	P31	P32
0	0	F	F
0	1	F	R
1	0	R	F
1	1	R/F	R/F

Notes:

$F=$ Falling Edge
R=Rising Edge
Clock. The Z86C90 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source
(XTAL1 = Input, $\mathrm{XTAL} 2=$ Output $)$. The crystal should be AT cut, 1 MHz to 12 MHz max., with a series resistance (RS) less than or equal to 100 Ohms. The Z86C89 on-chip oscillator may be driven with a low cost RC network or other suitable external clock source. (Note: The RC option is not available in the 12 MHz part).

The crystal should be connected across XTAL 1 and XTAL. 2 using the recommended capacitors (capacitance is more than or equal to 22 pF) from each pin to ground. The RC oscillator configuration is an external resistor connected from XTAL 1 to XTAL2, with a frequency-selting capacitor from XTAL 1 to ground (Figure 16). See Figures $52-54$ for typical characteristics.

Power-On-Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR time allows $V_{c c}$ and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three condilions:

1. Power fail to Power OK status.
2. STOP mode recovery (if D5 of SMR=1).
3. WDT timeout.

The POR time is a nominal 5 ms . Bit-5 of the Stop Mode Register determines whether the POR timer is bypassed after STOP mode recovery (typical for external clock, RC/ LC oscillators).

HALT. HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/limers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3, remain active. The devices are recovered by interrupts, either externally or internally generated.

FUNCTIONAL DESCRIPTION (Continued)

Ceramic Resonator or Crystal C1, C2 = 47 pF TYP * $\mathrm{f}=\mathbf{8} \mathrm{MHz}$

* Preliminary value including pin parasitics

RC
Extemal Clock
@ 5V VCC (TYP)
$\mathrm{C} 1=33 \mathrm{pF}$ *
$R=1 \mathrm{~K}$ *
$\mathrm{f}=6 \mathrm{MHz}$ *

Figure 16. Oscillator Configuration

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. The STOP Mode is terminated by a reset only, either by WDT timeout, POR, SMR recovery or external reset. This causes the processor to restart the application program at address 000 C (HEX). In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=FFH) immediately before the appropriate sleep instruction, i.e.:

FF	NOP	; clear the pipeline
6F	STOP	enter STOP mode or
FF	NOP	; clear the pipeline 7F
HALT	; enter HALT mode	

Stop Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of STOP Mode Recovery (Figure 17). All bits are write only, except Bit 7 which is read only. Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2,3 , and 4 , or the SMR register, specify the source of the STOP Mode Recovery
signal. Bits 0 and 1 determine the timeout period of the WDT. The SMR is located in Bank F of the Expanded Register Group at address OBH.

Figure 17. STOP Mode Recovery Register

SCLK/TCLK divide-by-16 Select (D0). D0 of the SMR control a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution(SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

STOP Mode Recovery Source (D2, D3, and D4). These three bits of the SMR specify the wake up source of the STOP recovery (Figure 18 and Table 7).

Figure 18. STOP Mode Recovery Source

Table 7. STOP Mode Recovery Source

SMR:432			Operation
D4	D3	D2	Description of Action
0	0	0	POR and/or external reset recovery
0	0	1	P30 transition
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of P20 through P23
1	1	1	Logical NOR of P20 through P27

STOP Mode Recovery Delay Select (D5). This bit, if high, disables the $5 \mathrm{~ms} /$ RESET delay after STOP Mode Recovery. The default configuration of this bit is one. If the "fast" wake up is selected, the STOP Mode Recovery source needs to be kept active for at least 5 TpC .

STOP Mode Recovery Edge Select (D6). A 1 in this bit position indicates that a high level on any one of the recovery sources wakes the Z86C90/C89 from STOP Mode. A 0 indicates low level recovery. The default is 0 on POR (Figure 18).

FUNCTIONAL DESCRIPTION (Continued)

Cold or Warm Start (D7). This bit is set by the device upon entering STOP Mode. A 0 in this bit (cold) indicates that the device will be reset by POR/WDT RESET. A 1 in this bit (warm) indicates that the device awakens by a SMR source.

Watch-Dog-Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the $Z 8$ if it reaches
its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT circuit is driven by an on-board RC oscillator or external oscillator from the XTAL 1 pin. The POR clock source is selected with bit 4 of the WDT register (Figures 19 and 20).

Figure 19. Watch-Dog Timer Mode Register

WDT Time Select (D0,D1). Selects the WDT time period. It is configured as shown in Table 8.

Table 8. WDT Time Select

D1	D0	Timeout of internal RC OSC	Timeout of XTAL clock
0	0	5 ms min	$256 T p C$
0	1	15 ms min	$512 T p C$
1	0	25 ms min	$1024 T \mathrm{TCC}$
1	1	100 ms min	$4096 T \mathrm{pC}$

Notes:

$\mathrm{TpC}=\mathrm{XTAL}$ clock cycle
The default on reset is 15 ms .
See Figures 55 to 58 for details.

WDTMR During HALT (D2). This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1 .

WDTMR DuringSTOP (D3). This bit determines whether or not the WDT is active during STOP Mode. Since XIAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the POR counter. A 1 indicates active during STOP. The default is 1 .

Clock source for WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1 , the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0 , which selects the RC oscillator.

Figure 20. Resets and WDT

Brown-Out Protection. An on-board Voltage Comparator checks that V_{cc} is at the required level to ensure correct operation of the device. Reset is globally driven if $V_{c c}$ is below V_{Bo} (Brown-Out Voltage). The minimum operating voltage varies with the temperature and operating frequency, while $V_{B O}$ varies with temperature only.

The brown-out trip voltage $\left(\mathrm{V}_{\mathrm{BO}}\right)$ is less than 3 volts and above 1.4 volts under the following conditions.

Maximum ($\mathrm{V}_{\mathrm{Bо}}$) Conditions:
Case $1 \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 1 MHz

Case $2 \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$, Internal Clock Frequency equal or less than 2 MHz

Note: The internal clock frequency is one-half the external clock frequency.

FUNCTIONAL DESCRIPTION (Continued)

The device functions normally at or above 3.0 V under all conditions. Below 3.0 V , the device functions normally until the Brown-Out Protection trip point is reached, below which reset is globally driven. The device is guaranteed to function normally at supply voltages above the brown out
trip point for the temperatures and operating frequencies in cases 1 and 2. The actual brown out trip point is a function of temperature and process parameters (Figure 21).

* Power-on Reset threshold for V_{CC} and $4 \mathrm{MHz} \mathrm{V}_{\mathrm{BO}}$ overlap

Figure 21. Typical Z86C90/C89 Brown-Out Voltage vs Temperature at 4 MHz

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 22).

Figure 22. Test Load Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V_{cc}	Supply Voltage (*)	-0.3	+7.0	V
$\mathrm{~T}_{\text {STG }}$	Storage Temp	-65°	$+150^{\circ}$	C
T_{A}	Oper Ambient Temp		\dagger	C
	Power Dissipation		2.2	W

Notes:

*Voltage on all pins with respect to GND.
\dagger See Ordering Information.

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

CAPACITANCE
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$, unmeasured pins to GND

Parameter	Max
Input capacitance	12 pF
Output capacitance	12 pF
I/O capacitance	12 pF

DC CHARACTERISTICS

Sym	Parameter	$\underset{\substack{v_{c c} \\ \text { Note [3] }}}{ }$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & T_{A}=-40^{\circ} \mathrm{C} \\ & \text { to } 105^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \text { Typ @ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Units	Conditions	Notes
			Min	Max	Min	Max				
V_{CH}	Max Input Voltage	3.3 V		7		7		V	$I_{\mathbb{N}} 250 \mu \mathrm{~A}$ $I_{\mathbb{N}} 250 \mu \mathrm{~A}$ Driven by External Clock Generator Driven by External Clock Generator	
		5.0 V		7		7		V		
	Clock Input High Voltage	3.3 V	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}+0.3$	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\text {cc }}+0.3$	1.3	V		
		5.0 V	$0.7 \mathrm{~V}_{\text {c }}$	$\mathrm{Vcc}_{\text {ct }}+0.3$	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{Vcc}_{\text {c }}+0.3$	2.5	v		
									Driven by External Clock Generator Driven by External Clock Generator	
$\overline{\mathrm{V} \text { c }}$	Clock Input Low Vollage	3.3 V	GND -0.3	$0.2 \mathrm{~V}_{\mathrm{cc}}$	GND-0.3	$0.2 \mathrm{~V}_{\mathrm{cc}}$	0.7	V		
		5.0 V	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	1.5	V		
$\mathrm{V}_{\text {H }}$	Input High Vollage	3.3 V	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{Vcc}_{\text {cc }}+0.3$	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{Vcc}_{\text {cc }}+0.3$	1.3	V		
		5.0V	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\text {cc }}+0.3$	$0.7 \mathrm{~V}_{\text {cc }}$	$\mathrm{V}_{\mathrm{cc}}+0.3$	2.5	V		
V_{11}	Input Low Vollage	3.3 V	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	0.7	v		
		5.0 V	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	1.5	V		
$\overline{V_{\text {OH }}}$	Output High Voltge	3.3 V	$\mathrm{Vcc}_{\text {cc }}-0.4$		$\mathrm{V}_{\text {cc }}-0.4$		3.1	V	$\mathrm{I}_{\text {OHf }}=-2.0 \mathrm{~mA}$	
		5.0 V	$V_{c c}-0.4$		$\mathrm{Vcc}_{\text {cc }}-0.4$		4.8	V	$\mathrm{I}_{\text {Of1 }}=-2.0 \mathrm{~mA}$	
V_{01}	Output Low Voltage	3.3V		0.6		0.6	0.2	V	$\mathrm{l}_{\text {OHI }}=+4.0 \mathrm{~mA}$	
		5.0 V		0.4		0.4	0.1	V	$\mathrm{l}_{\mathrm{OL}}=+4.0 \mathrm{~mA}$	
V_{012}	Output Low Voltage	3.3 V		1.2		1.2	0.3	V	$\mathrm{I}_{\mathrm{a}}=+6 \mathrm{~mA}$,	
									3 Pin Max	
		5.0 V		1.2		1.2	0.3	V	$\mathrm{I}_{01}=+12 \mathrm{IIA}$,	
									${ }_{3}$ Pin Max	
$V_{\text {RH }}$	Reset Input High Voltage	3.3 V	. 8 V cc	V_{cc}	. 8 V cc	$\mathrm{V}_{\text {cc }}$	1.5	V		
		5.0 V	. 8 V cc	V_{cc}	. $8 \mathrm{~V} \mathrm{cc}^{\text {c }}$	$V_{c c}$	2.1	V		
$V_{\text {RI }}$	Reset Input	3.3 V	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	1.1			
	Low Voltage	5.0 V	GND-0.3	$0.2 \mathrm{~V}_{\text {cc }}$	GND-0.3	0.2 Vcc	1.7			
$\mathrm{V}_{\text {OFFSEI }}$	Comparator Input Offset Voltage	3.3 V		25		25	10	mV		
		5.0 V		25		25	10	mV		
IL	Input Leakage	3.3 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {W }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$	
		5.0 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$V_{\text {w }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$	
l_{a}	Ouput Leakage	3.3 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$V_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$	
		5.0 V	-1	1	-1	2	<1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{W}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$	
${ }_{\text {m }}$	Reset Input Current	3.3 V		-45		-60	-20	$\mu \mathrm{A}$		
		5.0 V		-55		-70	-30	$\mu \mathrm{A}$		
$\mathrm{l}_{\text {cc }}$	Supply Current	3.3 V		10		10	4	mA	(1) 8 MHz	[4,5]
		5.0 V		15		15	10	mA	(a) 8 MHz	[4,5]
		3.3 V		15		15	5	mA	(1) 12 MHz	[4,5]
		5.0 V		20		20	15	mA	@ 12 MHz	[4,5]

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Diagram

Figure 23. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS
External I/O or Memory Read and Write Timing Table

N	Symbol	Parameter	$\begin{gathered} v_{c c} \\ \text { Note[3] } \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				Units	Notes
				Min	Max	Min	Max	Min	Max	Min	Max		
1	TdA(AS)	Address Valid to	3.3	55		35		55		35		ns	[2]
		/AS Rising Delay	5.0	55		35		55		35		ns	
2	TdAS(A)	/AS Rising to Address	3.3	70		45		70		45		ns	[2]
		Float Delay	5.0	70		45		70		45		ns	
3	TdAS(DR)	/AS Rising to Read	3.3		400		250		400		250	ns	[1,2]
		Data Required Valid	5.0		400		250		400		250	ns	
4	TwAS	/AS Low Width	3.3	80		55		80		55		ns	[2]
			5.0	80		55		80		55		ns	
5	Td	Address Float to	3.3	0		0		0		0		ns	
		/DS Falling	5.0	0		0		0		0		ns	
6	TwDSR	/DS (Read) Low Width	3.3	300		200		300		200		ns	[1,2]
			5.0	300		200		300		200		ns	
7	TwDSW	/DS (Write) Low Width	3.3	165		110		165		110		ns	[1,2]
			5.0	165		110		165		. 110		ns	
8	TdDSR(DR)	/DS Falling to Read	3.3		260		150		260		150	ns	[1,2]
		Data Required Valid	5.0		260		160		260		160	ns	
9	ThDR(DS)	Read Data to	3.3	0		0		0		0		ns	[2]
		/DS Rising Hold Time	5.0	0		0		0		0		ns	
10	TdDS(A)	/DS Rising to Address	3.3	85		45		85		45		ns	[2]
		Active Delay	5.0	95		55		95		55		ns	
11	TdDS(AS)	/DS Rising to /AS	3.3	60		30		60		30		ns	[2]
		Falling Delay	5.0	70		45		70		45		ns	
12	TdRW(AS)	R//W Valid to /AS	3.3	70		45		70		45		ns	[2]
		Rising Delay	5.0	70		45		70		45		ns	
13	TdDS(R/W)	/DS Rising to	3.3	70		45		70		45		ns	[2]
		R/W Not Valid	5.0	70		45		70		45		ns	
14	TdDW(DSW)	Write Data Valid to /DS	3.3	80		55		80		55		ns	[2]
		Falling (Write) Delay	5.0	80		55		80		55		ns	
15	TdDS(DW)	/DS Rising to Write	3.3	70		45		70		45		ns	[2]
		Data Not Valid Delay	5.0	80		55		80		55		ns	
16	TdA(DR)	Address Valid to Read	3.3		475		310		475		310	ns	[1,2]
		Data Required Valid	5.0		475		310		475		310	ns	
17	TdAS(DS)	/AS Rising to	3.3	100		65		100		65		ns	[2]
		/DS Falling Delay	5.0	100		65		100		65		ns	
18	TdDI(DS)	Data Input Setup to	0.0	115		115		115		115		ns	[1,2]
		/DS Rising	5.0	75		75		75		75		ns	
19	TdDM(AS)	/DM Valid to /AS	3.3	55		35		55		35		ns	[2]
		Falling Delay	5.0	55		35		55		35		ns	

Notes:

[1] When using extended memory timing add 2 TpC.
[2] Timing numbers given are for minimum TpC .
[3] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
\dagger Standard Test Load
$\dagger \dagger$ All timing references use $0.9 \mathrm{~V}_{\mathrm{cc}}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .

AC CHARACTERISTICS
Additional Timing Diagram

Figure 24. Additional Timing

AC CHARACTERISTICS
Additional Timing Table

No	Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { Note[6] } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				Units	Notes
				8 MHz		12 MHz		8 MHz		12 MHz			
				Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	3.3 V	125	100000	83	100000	125	100000	83	100000	ns	[1]
			5.0 V	125	100000	83	100000	125	100000	83	100000	ns	[1]
2	TrC,TfC	Clock Input Rise	3.3 V		25		15		25		15	ns	[1]
		and Fall Times	5.0 V		25		15		25		15	ns	[1]
3	TwC	Input Clock Width	3.3 V	37		26		37		26		ns	[1]
			5.0 V	37		26		37		26		ns	[1]
4	TwTinL	Timer Input	3.3 V	100		100		100		100		ns	[1]
		Low Width	5.0 V	70		70		70		70		ns	[1]
5	TwTinH	Timer Input High Width Timer Input Period	3.3 V	3TpC		${ }^{3 T p C}$		3 TpC		3 TpC			[1]
			5.0 V	3 TpC		3 TpC		3 TpC		3 TpC			[1]
6	TpTin		3.3 V	8 TpC		8 TpC		8TpC		${ }^{81 p C}$			[1]
			5.0 V	8TpC		8TpC		8TpC		8TpC			[1]
7	TrTin, Tffin	Timer Input Rise	3.3 V		100		100		100		100	ns	[1]
		and Fall Timers	5.0 V		100		100		100		100	ns	[1]
8A	TwIL	Interrupt Request	3.3 V	100		100		100		100		ns	[1,2]
		Low Time	5.0 V	70		70		70		70		ns	[1,2]
8B	TwIL	Int. Request	3.3 V	3TpC		3 TpC		3 T ¢		3 TpC			[1,3]
		Low Time	5.0 V	3 TpC		3 TpC		3TpC		3 TpC			[1,3]
9	TwlH	Interrupt Request	3.3 V	3 TpC		3 TpC		3TpC		3 TpC			[1,2]
		Input High Time	5.0 V	3 TpC		3 TpC		3TpC		3 TpC			[1,2]
10	Twsm	STOP Mode	3.3 V	12		12		12		12		ns	
		Recovery Width Spec	5.0 V	12		12		12		12		ns	
			3.3 V	5 TpC									[7]
			5.0 V	5 TpC									[8]

AC CHARACTERISTICS
Additional Timing Table (Continued)

No	Symbol	Parameter	$\underset{\substack{V_{c} \\ \text { Note[6] }}}{ }$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				Units	Notes
				Min	Max	Min	Max	Min	Max	Min	Max		
11	Tost	0scillator	3.3 V		5TpC		5 TpC		5 TpC		5 TpC		[4]
		Startup Time	5.0 V		5 TpC		5 TpC		5 TpC		5 Tp C		[4]
12	Twdt	Watchdog Timer	3.3 V	10		10		10		10		ms	$\mathrm{D} 0=0[5]$
		Delay Time	5.0 V	5		5		5		5		ms	D1 $=0[5]$
			3.3 V	30	,	30		30		30		ms	D0 $=1$ [5]
			5.0 V	15		15		15		15		ms	$\mathrm{D} 1=0[5]$
			3.3 V	50		50		50		50		ms	$\mathrm{D} 0=0$ [5]
			5.0 V	25		25		25		25		ms	$D 1=1[5]$
			3.3 V	200		200		200		200		ms	$\mathrm{D} 0=1[5]$
			5.0V	100		100		100		100		ms	$D 1=1$ [5]

Notes:
[1] Timing Reference uses $0.9 \mathrm{~V}_{c c}$ for a logic 1 and $0.1 \mathrm{~V}_{c c}$ for a logic 0 .
[2] Interrupt request via Port 3 (P31-P33).
[3] Interrupt request via Port 3 (P30).
[4] SMR-D5 = 0
[5] Reg. WDTMR
[6] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
[7] Reg. SMR - D5 $=0$
[8] Reg. SMR - D5 $=1$

AC CHARACTERISTICS

Handshake Timing Diagrams

Figure 25. Input Handshake Timing

Figure 26. Output Handshake Timing

AC CHARACTERISTICS
Handshake Timing Table

No	Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ \text { Note[1] } \end{gathered}$	$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { To } 70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} & 12 \mathrm{MHz} \end{array}$				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { To } 105^{\circ} \mathrm{C} \\ & 8 \mathrm{MHz} \\ & 12 \mathrm{MHz} \end{aligned}$				Data Direction
				Min	Max	Min	Max	Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	3.3 V	0		0		0		0		1 N
			5.0 V	0		0		0		0		IN
2	ThDI(DAV)	Data In Hold Time	3.3 V	160		160		160		160		\mathbb{N}
			5.0 V	115		115		115		115		in
3	TwDAV	Data Available Width	3.3 V	155		155		155		155		\mathbb{N}
			5.0 V	110		110		110		110		\mathfrak{N}
4	TdDAVI(RDY)	DAV Falling to RDY	3.3 V		160		160		160		160	1 N
		Falling Delay	5.0 V		115		115		115		115	1 N
5	TdDAVId(RDY)	DAV Rising to RDY	3.3 V		120		120		120		120	IN
		Falling Delay	5.0 V		80		80		80		80	1 N
6	TdDO(DAV)	RDY Rising to DAV	3.3 V	0		0		0		0		IN
		Falling Delay	5.0 V	0		0		0		0		IN
7	TcLDAVO(RDY)	Data Out to DAV	3.3 V	63		42		63		42		OUT
		Falling Delay	5.0 V	63		42		63		42		OUT
8	TcLDAVO(RDY)	DAV Falling to RDY	3.3 V	0		0		0		0		OUT
		Falling Delay	5.0 V	0		0		0		0		OUT
9	TdRDYO(DAV)	RDY Falling to DAV	3.3 V		160		160		160		160	OUT
		Rising Delay	5.0 V		115		115		115		115	OUT
10	TwRoy	Rör Wiouih	3.3 V	110		iió		iiô		1i0		OUT
			5.0 V	80		80		80		80		OUT
11	TdRDYOd(DAV)	RDY Rising to DAV	3.3 V		110		110		110		110	OUT
		Falling Delay	5.0 V		80		80		80		80	OUT

Note:
[1] $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

EXPANDED REGISTER FILE CONTROL REGISTERS

* Default setting after RESET

Figure 27. Stop Mode Recovery Register

Figure 28. Watchdog Timer Mode Register

Z8 CONTROL REGISTER DIAGRAMS

Figure 29. Reserved

Figure 30. Timer Mode Register (F1 $_{H}$:Read/Write)

Figure 31. Counter/Timer 1 Register (F2 $_{H}$:Read/Write)

R243 PRE1

Figure 32. Prescaler 1 Register ($\mathrm{F3}_{\mathrm{H}}$:Write Only)

R244 T0

(When Written)
(Range: 1-256 Decimal
01-00 HEX)
TO Current Value
(When Read)
Figure 33. Counter/Timer 0 Register
($\mathrm{F4}_{\mathrm{H}}$:Read/Write)

R245 PRE0

Figure 34. Prescaler 0 Register
(FF_{H} :Write Only)

R246 P2M

Figure 35. Port 2 Mode Register (F6 ${ }_{\mathbf{H}}$: Write Only)

Figure 36. Port 3 Mode Register ($\mathrm{F7} \mathrm{H}_{\mathrm{H}}$:Write Only)

R249 IPR

Figure 38. Interrupt Priority Register ($\mathrm{F9}_{\mathrm{H}}$: Write Only)

R250 IRQ

Figure 39. Interrupt Request Register $\left(\mathrm{FA}_{\boldsymbol{H}}\right.$:Read/Write)

Figure 37. Ports 0 and 1 Mode Registers (FB_{H} :Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

R251 IMR

Figure 40. Interrupt Mask Register (FB $_{H}$:Read/Write)

R252 FLAGS

Figure 41. Flag Register (FC $_{H}$:Read/Write)

Figure 42. Register Pointer (FD_{H} :Read/Write)

R254 SPH

Figure 43. Stack Pointer High (FE_{H} :Read/Write)
 Byte (SP7 - SP0)

Figure 44. Stack Pointer Low (FF_{H} :Read/Write)

DEVICE CHARACTERISTICS

Figure 45. Typical I_{cc} vs Frequency

DEVICE CHARACTERISTICS (Continued)

Figure 46. Typical $\mathrm{I}_{\mathrm{cc} 1}$ vs Frequency

Figure 47. Typical $\mathrm{l}_{\mathrm{Cc} 2}$ vs Frequency

DEVICE CHARACTERISTICS (Continued)

Figure 48. Typical I_{OH} vs V_{OH} Over Temperature

$\begin{array}{l}\text { I OL } \\ \text { (mA) }\end{array}$

Figure 49. Typical I_{oL} vs V_{oL} Over Temperature

DEVICE CHARACTERISTICS (Continued)

Figure 50. Typical Power-On Reset Time vs Temperature

a. Typical Auto Latch Low Current vs Temperature

b. Typical Auto Latch High Current vs Temperature

Legend:	
$\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=3.3 \mathrm{~V}$	$\mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=3.6 \mathrm{~V}$	$\mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 51. Typical Auto-Latch Current vs Temperature

DEVICE CHARACTERISTICS (Continued)

Legend:
$\mathrm{A}-\mathrm{Vcc}=5.0 \mathrm{~V} \quad \mathrm{C}=33 \mathrm{pF}$
$\mathrm{B}-\mathrm{Vcc}=3.3 \mathrm{~V} \quad \mathrm{C}=33 \mathrm{pF}$

Note: * The internal clock frequency is one half the external clock frequency.
This chart for reference only. Each process will have a different characteristic curve.

Figure 52. Typical Internal Frequency vs RC Resistance

Note: * The internal clock frequency is one half the external clock frequency.
This chart for reference only. Each process will have a different characteristc curve.

Figure 53. Typical Internal Frequency vs Resistance

DEVICE CHARACTERISTICS (Continued)

Note: *The internal clock frequency is one half the external clock frequency. This chart for reference only. Each process will have a different characteristc curve. $R=1$ kohm

Figure 54. Typical Internal Frequency vs RC Capacitance

Legend:

$$
\begin{array}{ll}
\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V} & \mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V} \\
\mathrm{~B}-\mathrm{Vcc}=3.5 \mathrm{~V} & \mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V} \\
\mathrm{C}-\mathrm{Vcc}=4.0 \mathrm{~V} & \mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}
\end{array}
$$

Figure 55. Typical 5 ms WDT Setting vs Temperature

DEVICE CHARACTERISTICS (Continued)

Legend:	
$\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=3.5 \mathrm{~V}$	$\mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=4.0 \mathrm{~V}$	$\mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 56. Typical 15 ms WDT Setting vs Temperature

Figure 57. Typical 25 ms WDT Setting vs Temperature

DEVICE CHARACTERISTICS (Continued)

Legend:	
$\mathrm{A}-\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{D}-\mathrm{Vcc}=4.5 \mathrm{~V}$
$\mathrm{~B}-\mathrm{Vcc}=3.5 \mathrm{~V}$	$\mathrm{E}-\mathrm{Vcc}=5.0 \mathrm{~V}$
$\mathrm{C}-\mathrm{Vcc}=4.0 \mathrm{~V}$	$\mathrm{~F}-\mathrm{Vcc}=5.5 \mathrm{~V}$

Figure 58. Typical 100 ms WDT Setting vs Temperature

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
I	Working-register address only IR
Indirect-register or indirect working-register address	
Ir	Indirect working-register address only RR
	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
SrC	Source location or contents
CC	Condition code.
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
	Affected flages are indicated by:
0	Clear to zero
1	Set to one
x	Set to clear according to operation
-	Unaffected
x	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater Than	[Z OR (S XOR V)] $=0$
0010	LE	Less Than or Equal	$[Z \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
d s t \leftarrow d s t+s r c
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		ags fected Z	S V	V	
INCW dst $d s t \leftarrow d s t+1$	$\begin{aligned} & \mathrm{RR} \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	-	*	*	*	
IRET FLAGS $\leftarrow @ S P$; $\mathrm{SP} \leftarrow \mathrm{SP}+1$ PC $@ S P$; $S P \leftarrow S P+2 ;$ $\operatorname{lMR}(7) \leftarrow 1$		BF	*	*	*	*	
JP cc, dst if cc is true, $\mathrm{PC} \leftarrow d \mathrm{dt}$	DA IRR	$\begin{aligned} & C D \\ & C=0-F \\ & 30 \end{aligned}$	-	- -	- -	-	-
JR cc, dst if cc is true, $P C \leftarrow P C+d s t$ Range: +127, -128	RA	$\begin{aligned} & C B \\ & C=0-F \end{aligned}$		- -	- -	-	
$\begin{aligned} & \text { LD dst, src } \\ & \text { dst } \leftarrow \mathrm{Src} \end{aligned}$	$\begin{array}{ll} \hline r & \mathbb{I m} \\ r & R \\ R & r \\ & \\ r & X \\ X & r \\ r & I r \\ I r & r \\ R & R \\ R & \mathbb{R} \\ R & \mathbb{M} \\ \mathbb{R} & \mathbb{M} \\ \mathbb{R} & R \end{array}$	IC r8 「9 $r=0-F$ C7 D7 E3 F3 E4 E5 E6 E7 F5	-	-	- -	-	- -
LDC dst, src dst -SrC	$\begin{array}{lll} \hline \text { r } & \text { Irr } \\ \text { Irr } & 1 \end{array}$	$\begin{aligned} & \hline \text { C2 } \\ & \text { D2 } \end{aligned}$	-	-	-	-	- -
$\begin{aligned} & \text { LDCI dst, src } \\ & \text { dst } \leftarrow \mathrm{src} \\ & r \leftarrow \leftarrow+1 ; \pi \leftarrow \leftarrow r+1 \end{aligned}$	$\begin{array}{ll} \hline \text { Ir } & \text { Ir } \\ \text { Irr } & \text { Ir } \end{array}$	$\begin{aligned} & \text { C3 } \\ & \text { D3 } \end{aligned}$	-	-	-	-	- -
LDE dst, src dst<-SrC	$\begin{array}{ll} \hline \text { r } & \text { Irr } \\ \text { Irr } & \text { Ir } \end{array}$	$\begin{aligned} & 82 \\ & 92 \end{aligned}$	-	-	-	-	- -
$\begin{aligned} & \text { LDEI dst, src } \\ & \text { dst } \leftarrow \text { SCC } \\ & \mathrm{r} \leftarrow+1 ; \mathrm{rr} \leftarrow \mathrm{rr}+1 \end{aligned}$	$\begin{array}{ll} \hline \text { Ir } & \text { Irr } \\ \text { Irr } & \text { Ir } \\ \hline \end{array}$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	-	-	-	-	- -
NOP		FF	-	-	-	-	- -

INSTRUCTION SUMMARY (Continued)

OPCODE MAP

Z86C91 CMOS Z8® ROMLESS
 MICROCONTROLLER

FEATURES

- 8-bit CMOS microcontroller, 40-pin DIP or 44-pin PLCC and QFP package
- 4.5 to 5.5 Voltage operating range
- Low power Consumption - $275 \mathrm{~mW}(\max) @ 20 \mathrm{MHz}$
- Fast instruction pointer - 1.0 microsecond @ 12 MHz
- Two standby modes - STOP and HALT
- 32 input/output lines
* Full-Duplex UART
- All digital inputs are TTL levels
- Auto Latches
- ROMless
- 236 bytes of RAM
- Two programmable 8-bit Counter/Timers each with 6 -bit programmable prescaler.
- Six vectored, priority interrupts from eight different sources

줍 Clock speeds 12,16 and 20 MHz
(On-chip oscillator that accepts a crystal, ceramic resonator, LC or external clock drive.

GENERAL DESCRIPTION

The Z86C91 microcontroller (MCU) introduces a new level of sophistication to single-chip architecture. The Z86C91 is a member of the ROMless $Z 8$ single-chip microcontroller family with 236 bytes of RAM.

The MCU is housed in a 40-pin DIP, 44-pin Leaded ChipCarrier, or a 44-pin Quad Flat Pack, and is manufactured in CMOS technology. The Z86C91 is a ROMless part and offers the use of external memory which enables this $Z 8$ microcontroller to be used where code flexibility is required.

Zilog's CMOS microcontroller offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C91 architecture is characterized by Zilog's 8-bit microcontroller core. The device offers a flexible I/O scheme, an efficient register and address space structure, multiplexed capabilities between address/data, I/O, and a number of ancillary features that are useful in many industrial and advanced scientific applications.

The device applications demand powerful I/O capabilities. The Z86C91 fulfills this with 24-pin dedicated to input and output. These lines are grouped into four ports. Each port consists of eightlines, and is configurable under sottware control to provided timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

There are three basic address spaces available to support this wide range of configuration: Program Memory, Data Memory and 236 General-Purpose Registers.

To unburden the program from coping with the real-time problems such as counting/timing and serial data communication, the Z86C91 offers two on-chip counter/timers with a large number of user selectable modes, and an asynchronous receiver/transmitter (UART-Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/N (WORD is active Low); /B/W (BYTE is active Low, only)

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 40-Pin Dual In-Line Plastic Pin Assignments

Table 1. 40-Pin Dual In-Line Plastic Pin Identification

Pin \#	Symbol	Function	Direction
1	V cc	Power Supply	Input
2	XTAL2	Crystal, Oscillator Clock	Output
3	XTAL1	Crystal, Oscillator Clock	Input
4	P37	Port 3 pin 7	Output
5	P30	Port 3 pin 0	Input
6	IRESET	Reset	Input
7	R/W	Read/Write	Output
8	/DS	Data Strobe	Output
9	IAS	Address Strobe	Output
10	P35	Port 3 pin 5	Output

Pin \#	Symbol	Function	Direction
11	GND	Ground, GND	Input
12	P32	Port 3 pin 2	Input
13-20	P00-P07	Port 0 pin 0,1,2,3,4,5,6,7	In/Output
21-28	P10-P17	Port 1 pin 0.1,2,3,4,5,6,7	In/Output
29	P34	Port 3 pin 4	Output
30	P33	Port 3 pin 3	Input
31-38	P20-P27	Port 2 pin 0,1,2,3,4,5,6,7	In/Output
39	P31	Port 3 pin 1	Input
40	P36	Port 3 pin 6	Output

PIN DESCRIPTION (Continued)

Figure 3. 44-Pin Plastic Leaded Chip Carrier Pin Assignments

Table 2. 44-Pin Plastic Leaded Chip Carrier Pin Identification

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1	$V_{\text {cc }}$	Power Supply	Input	14-16	P00-P02	Port 0 pin 0,1,2	In/Output
2	XTAL2	Crystal, Oscillator Clock	Output	17	GND	Ground	Input
3	XTAL1	Crystal, Oscillator Clock	Input	18-22	P03-P07	Port 0 pin 3,4,5,6,7	In/Output
4	P37	Port 3 pin 7	Output	23-27	P10-P14	Port 1 pin 0,1,2,3,4	In/Output
5	P30	Port 3 pin 0	Input	28	N/C	Not Connected	Input
6	N/C	Not Connected	Input	29-31	P15-P17	Port 1 pin 5,6,7	In/Output
7	/RESET	Reset	Input	32	P34	Port 3 pin 4	Output
8	R//W	Read/Write	Output	33	P33	Port 3 pin 3	Input
9	/DS	Data Strobe	Output	34-38	P20-P24	Port 2 pin 0, 1,2,3,4	In/Output
10	IAS	Address Strobe	Output	39	N/C	Not Connected	Input
11	P35	Port 3 pin 5	Output	40-42	P25-P27	Port 2 pin 5,6,7	In/Output
12	GND	Ground	Input	43	P31	Port 3 pin 1	Input
13	P32	Port 3 pin 2	Input	44	P36	Port 3 pin 6	Output

Figure 4. 44-Pin Quad Flat Pack Pin Assignments

Table 3. 44-Pin Quad Flat Pack Pin Identification

Pin \#	Symbol	Function	Direction	Pin \#	Symbol	Function	Direction
1-5	P03-P07	Port 0 pin 3,4,5,6,7	In/Output	31	XTAL1	Crystal, Oscillator Clock	Inpul
6	GND	Ground	Input	32	P37	Port 3 pin 7	Output
7-14	P10-P17	Port 1 pin 0, 1, 2, 3, 4, 5,6,7	In/Output	33	P30	Port 3 pin 0	Input
15	P34	Port 3 pin 4	Output	34	/RESET	Reset	Input
16	P33	Port 3 pin 3	Input	35	R//W	Read/Write	Output
17-21	P20-P24	Port 2 pin 0, 1,2,3,4	In/Output	36	IDS	Data Strobe	Output
22	GND	Ground	Input	37	IAS	Address Strobe	Output
23-25	P25-P27	Port 2 pin 5,6,7	In/Output	38	P35	Port 3 pin 5	Output
26	P31	Port 3 pin 1	Input	39	GND	Ground	Inpul
27	P36	Port 3 pin 6	Output	40	P32	Port 3 pin 2	Input
28	GND	Ground	Input	41-43	P00-P02	Port 0 pin 0, 1,2	In/Output
29	$\mathrm{V}_{\text {cc }}$	Power Supply	Input	44	GND	Ground	Inpul
30	XTAL2	Crystal, Oscillator Clock	Output				

PIN FUNCTIONS

/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 1 for all external program. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-based input and output, respectively). These pins connect a parallel-resonant crystal, ceramic resonator, LC, or any external singlephase clock to the on-chip oscillator and buffer.

R//W. (output, write Low). The Read//Write signal is low when the MCU is writing to the external program or data memory.
/RESET. (input, active-Low). To avoid asynchronous and noisy reset problems, the Z86C91 is equipped with a reset filter of four external clocks (4TpC). If the external /RESET signal is less than 4 TpC in duration, no reset occurs.

On the 5th clock after the /RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is
held active low while /AS cycles at a rate of $\mathrm{TpC} / 2$. When /RESET is deactivated program execution begins at location 000C. Power-up reset time is held low for 50 mS , or until VCC is stable, whichever is longer.

Port 0. P00-P07. Port 0 is an 8-bit, nibble programmable, bidirectional, TTL compatible port. These eight I/O lines are configured under software control as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAV0 and RDYO (Data available and Ready). Handshake signal assignment is dictated by the I/O direction of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble to be under handshake control.

For external memory references, Port 0 provides Address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. After a hardware reset, Port 0 lines are defined as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine includes reconfiguration to eliminate this extended timing mode (Figure 5).

Figure 5. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1. (P10-P17). Port 1 is an 8-bit, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports for interfacing external memory.

If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in a high-impedance state along with Port 0, /AS, /DS and R//W, allowing the MCU to share common resources in multiprocessor and DMA applications. Data transfers are controlled by assigning P33 as a Bus Acknowledge input, and P34 as a Bus request output (Figure 6).

Figure 6. Port 1 Configuration

Port 2. (P20-P27). Port 2 is an 8-bit, bit programmable, bidirectional, TTL compatible port. Each of these eight I/O lines are independently programmed as an input or output or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port

2 is placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake control lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27 (Figure 7).

Figure 7. Port 2 Configuration

PIN FUNCTION (Continued)

Port 3. (P30-P37). Port 3 is an 8 -bit, TTL compatible four fixed input and four fixed output port. These eight $1 / O$ lines have four-fixed (P33-P30) input and four fixed (P37-P34)
output ports. Port 3, when used as serial I/O. are programmed as serial in and serial out, respectively (Figure 8).

Figure 8. Port 3 Configuration

Port 3 is configured under software control to provide the following control functions: handshake for Ports 0 and 2 (IDAV and RDY); four external interrupt request signals
(IRQ0-IRQ3); timer input and output signals ($\mathrm{T}_{\mathbb{N}}$ and $\mathrm{T}_{\text {our }}$), and Data Memory Select (/DM).

Table 4. Port 3 Pin Assignments

Pin	I/O	CTC1	Int.	P0 HS	P1 HS	P2 HS	UART	Ext
P30	IN		IRQ3				Serial In	
P31	IN	$T_{\text {IN }}$	IRQ2					
P32	IN		IRQ0	D/R				
P33	IN		IRQ1		D/R			
P34	OUT				R/D	R/D		
P35	OUT				R/D			
P36	OUT	$T_{\text {out }}$					Serial Out	
P37	OUT							

Notes:
HS = HANDSHAKKE SIGINALS
$D=$ Data Available
$R=$ Ready

Port 3 lines P30 and P37, are programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by the Counter/ Timer 0.

The Z86C91 automatically adds a start bit and two stop bits to transmitted data (Figure 9). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Transmitted Data (No Parity)

Received data must have a start bit, 8 data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Auto-Latch. The Auto-Latch puts valid CMOS levels on all CMOS inputs that are not externally driven. This reduces excessive supply current flow in the input buffer when it is not driven by any source.

Received Data (No Parity)

Received Data (With Parity)

Figure 9. Serial Data Formats

FUNCTIONAL DESCRIPTION

Address Space

The following subsections define Program Memory, Data Memory, Register Files, and Stack Pointers.

Program Memory. The Z86C91 can address up to 64 Kbytes of external program memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Program execution begins at external location 000 CH after a reset.

Figure 10. Program Memory Configuration

Data Memory (/DM). The Z86C91 addresses up to 64 Kbytes of external data memory space. External data memory is included with, or separated from, the external program memory space. /DM, an optional I/O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 11). The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references DATA (/DM active low) memory.

Figure 11. Data Memory Configuration

Register File. The Register File consists of three I/O port registers, 236 general-purpose registers and 16 control and status registers (Figure 12). The instructions can access registers directly or indirectly via an 8 -bit address field. The Z86C91 also allows short 4-bit register addressing using the Register Pointer (Figure 13). In the 4-bit
mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Note: Register Bank EO-EF is only accessed through working register and indirect addressing modes.

LOCATION		IDENTIFIERS SPL
255	Stack Pointer (Bits 7-0)	
254	Stack Pointer (Bits 15-8)	SPH
253	Register Pointer	RP
252	Program Control Flags	FLAGS
251	Interrupt Mask Register	IMR
250	Interrupt Request Register	IRQ
249	Interrupt Priority Register	IPR
248	Ports 0-1 Mode	P01M
247	Port 3 Mode	P3M
246	Port 2 Mode	P2M
245	TO Prescaler	PREO
244	Timer/Counter 0	T0
243	T1 Prescaler	PRE1
242	Timer/Counter 1	T1
241	Timer Mode	TMR
240	Serial VO	SIO
239	General-Purpose Registers	
3	Port 3	P3
21	Port 2	P2
		Reserved
0	Port 0	P0

Figure 12. Register File

FUNCTIONAL DESCRIPTION (Continued)

Figure 13. Register Pointer

Stack. The Z86C91 has a 16-bitStack Pointer (R254-R255) used for external stack that resides anywhere in the data memory. An 8 -bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose
registers (R4-R239). The high byte of the Stack Pointer (SPH-Bit 8-15) is used as a general purpose register when using internal stack only.

Counter/Timers. There are two 8-bit programmable counter/ timers (TO-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 14).

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counter and prescaler reach the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can
also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counter, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 also serves as a timer output ($\mathrm{T}_{\text {out }}$) through which T0, T1 or sub the internal clock is output. The counter/timers are cascaded by connecting the T0 output to the input of T1

Figure 14. Counter/Timers Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z86C91 has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The eight sources are divided as follow: four sources are claimed by Port 3 lines P30-P33, one in Serial Out, one in Serial In, and two in the counter/timers (Figure 15). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z86C91 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, save the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupl inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initialed interrupts are supported by setting the appropriate bit in the interrupt Request register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request must be valid 5 TpC before the falling edge of the last clock cycle of the currently executing instruction.

When the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupt sample point.

Figure 15. Interrupt Block Diagram

Clock. The Z86C91 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2=Output). The crystal should be AT cut, 1 MHz to 20 MHz max, and series resistance (RS) less
than or equal to 100 Ohms. The crystal should be connected across XTAL 1 and XTAL2 using the recommended capacitors ($10 \mathrm{pF}<\mathrm{CL}<300 \mathrm{pF}$) from each pin to ground (Figure 16).

Figure 16. Oscillator Configuration

HALT. Turns off the internal CPU clock but not the XTAL oscillation. The counter/timers and the external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. The Stop mode is terminated by a reset, which cause the processor to restart the application program at address 000 CH .

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode=OFFH) immediately before the appropriate sleep instruction, i.e.:

FF NOP ; clear the pipeline
6F STOP ; enter STOP mode
or
FF NOP ; clear the pipeline
7F HALT ; enter HALT mode

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage*	-0.3	+7.0	V
$\mathrm{~T}_{\text {sTG }}$	Storage Temp	-65	+150	C
T_{A}	Oper Ambient Temp		\dagger	C

Notes:
*Voltages on all pins with respect to GND.
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 17).

Figure 17. Test Load Diagram

DC CHARACTERISTICS

Sym	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & T_{A}=-40^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \text { Typical } \\ \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	Units	Conditions
		Min	Max	Min	Max			
	Max Input Voltage		7		7		V	$\mathrm{I}_{\text {w }} 250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {ch }}$	Clock Input High Voltage	3.8	$\mathrm{V}_{\text {cc }}$	3.8	V_{cc}		V	Driven by External Clock Generator
$\mathrm{V}_{\text {a }}$	Clock Input Low Voltage	-0.03	0.8	-0.03	0.8		V	Driven by External Clock Generator
$V_{\text {H }}$	Input High Voltage	2.0	V_{cc}	2.0	V_{cc}		V	
V_{1}	Input Low Vollage	-0.3	0.8	-0.3	0.8		V	
$V_{\text {OH }}$	Output High Voltge	2.4		2.4			V	$\mathrm{I}_{\text {OH1 }}=-2.0 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output High Voltge	$\mathrm{V}_{\mathrm{cc}}-100 \mathrm{mV}$		$\mathrm{V}_{\mathrm{cc}}-100 \mathrm{mV}$			V	$\mathrm{I}_{\text {OHf }}=-100 \mu \mathrm{~A}$
V_{a}	Output Low Voltage		0.4		0.4		V	$\mathrm{I}_{\mathrm{OH}}=+2.0 \mathrm{~mA}$
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	V_{cc}	3.8	V_{cc}		V	
$V_{\text {RI }}$	Reset Input Low Voltage	-0.03	0.8	-0.03	0.8		\checkmark	
II'	Input Leakage	-2	2	-2	2		$\mu \mathrm{A}$	Test at $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}$
$\mathrm{l}_{\text {a }}$	Output Leakage	-2	2	-2	2		$\mu \mathrm{A}$	Test at $\mathrm{OV}, \mathrm{V}_{\text {cc }}$
$\mathrm{I}_{\text {cc }}$	Reset Input Current Supply Current		-80		-80		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$
			30		30	20	mA	@ 12 MHz [1]
			35		35	24	mA	(1) 16 MHz [1]
			50		50		mA	© 20 MHz [1]
$\overline{\mathrm{ICC}}$	Standby Current		6.5		6.5	4	mA	HALT Mode $\mathrm{V}_{\mathbb{W}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$ @ 12 MHz [1]
			7		7	4.5	mA	HALT Mode $\mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 16 \mathrm{MHz}$ [1]
			8.5		8.5		mA	HALT Mode $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}} @ 20 \mathrm{MHz}$ [1]
	Standby Current		10		10	1	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathbb{W}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}[1]$
$\mathrm{I}_{\text {NL }}$	Auto Latch Low Current	-10	10	-14	14	5	$\mu \mathrm{A}$	

Note:

[1] All inputs driven to $\mathrm{OV}, \mathrm{V}_{\mathrm{cc}}$ and outputs floating.

AC CHARACTERISTICS

External I/O or Memory Read/Write Timing Diagram

Figure 18. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Table

No	Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$			Units	Notes
			12 MHz Min Max	16 MHz Min Max	20 MHz Min Max	12 MHz Min Max	16 MHz Min Max	20 MHz Min Max		
1	TdA(AS)	Address Valid to /AS Rise Delay	35	25	20	35	25	20	ns	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	45	35	25	45	35	25	ns	[2,3]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid	250	180	150	250	180	150	ns	[1,2,3]
4	TwAS	/AS Low Width	55	40	30	55	40	30	ns	[2,3]
5	TdAZ(DS)	Address Float to /DS Fall	0	0	0	0	0	0	ns	
6	TwDSR	/DS (Read) Low Width	185	135	105	185	135	105	ns	[1,2,3]
7	TwDSW	/DS (Write) Low Widh	110	80	65	110	80	65	ns	[1,2,3]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid	130	75	55	130	75	55	ns	[1,2,3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	0	0	0	0	0	0	ns	[2,3]
10	TdDS(A)	/DS Rise to Address Active Delay	65	50	40	65	50	40	ns	[2,3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	45	35	25	45	35	25	ns	[2,3]
12	TdR/N(AS)	R/W V valid to /AS Rise Delay	30	25	20	33	25	20	ns	[2,3]
13	TdDS(R/W)	/DS Rise to R/W Not Valid	50	35	25	50	35	25	ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	35	25	20	35	25	20	ns	[2,3]
15.	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	55	35	25	55	35	25	ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid	310	230	180	310	230	180	ns	[1,2,3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	65	45	35	65	45	35	ns	[2,3]
18	TdDI(DS)	Data Input Setup to /DS Rise	75	60	50	75	60	50	ns	[1,2,3]
19	TdDM(AS)	/DM Valid to /AS Rise Delay	50	30	20	50	30	20	ns	[2,3]

Notes:

[1] When using extended memory timing add 2 TpC.
[2] Timing numbers given are for minimum $T p C$.
[3] See clock cycle dependent characteristics table.
Standard Test Load
All timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .

Clock Dependent Formulas

Number	Symbol	Equation
1	TdA(AS)	0.40 「pC + 0.32
2	TdAS(A)	0.59 1pC-3.25
3	TdAS(DR)	$2.38 \mathrm{TpC}+6.14$
4	TwAS	$0.66 \mathrm{TpC}-1.65$
6	TwDSR	2.33 TpC - 10.56
7	TwDSW	$1.27 \mathrm{TpC}+1.67$
8	TdDSR(DR)	1.97 TpC - 42.5
10	$\operatorname{TdDS}(\mathrm{A})$	0.8TpC
11	TdDS(AS)	0.59TpC - 3.14
12	TdR/W(AS)	0.4TpC
13	TdDS(RM)	0.8TpC - 15
14	TdDW(DSW)	0.4 TpC
15	TdDS(DW)	0.88TpC-19
16	TdA(DR)	4TpC-20
17	TdAS(DS)	$0.91 \mathrm{TpC}-10.7$
18	TsDİ(DS)	0.8 TpC - 10
19	TdDM(AS)	0.9TpC-26.3

AC CHARACTERISTICS

Additional Timing Diagram

Figure 19. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\mathrm{T}_{4}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$						$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$						Units	Notes
			$12 \mathrm{MHz}{ }^{\text {A }}$		16 MHz		20 MHz		$12 \mathrm{MHz}{ }^{\text {A }}$		16 MHz		20 MHz			
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	83	1000	62.5	1000	50	1000	83	1000	62.5	1000	50	1000	ns	[1]
2	TrC,THC	Clock Imput Rise \& Fall Times		15		10		10		15		10		10	ns	[1]
3	TwC	Input Clock Width	35		25		15		35		25		15		ns	[1]
4	TwTinL	Timer Input Low Width	75		75		75		75		75		75		ns	[2]
5	TwTinH	Timer Input High Width	3 TpC		3 TpC		3 TpC		3 TpC		3 Tp C		3TpC			[2]
6	TpTin	Timer Input Period	8TpC		8TpC		8 TpC		8TpC		8 TpC		8TpC			[2]
7	TrTin,Tflin	Timer Input Rise \& Fall Times	100		100		100		100		100		100		ns	[2]
8 A	TwlL	Interrupt Request Input Low Times	70		70		70		70		70		70		ns	[2,4]
8B	TwIL	Interrupt Request Input Low Times	3 TpC		3 TpC		3 TpC		3 TpG		3 TpC		3 TpC			[2,5]
9	TwiH	Interrupt Request Input High Times	3TpC		3 TpC			[2,3]								

Notes:

[1] Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0 .
[2] Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0.
[3] Interrupt references request via Port 3.
[4] Interrupt request via Port 3 (P31-P33).
[5] Interrupt request via Port 30.

AC CHARACTERISTICS

Handshake Timing Diagrams

Figure 20. Input Handshake Timing

Figure 21. Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { TO } 70^{\circ} \mathrm{C} \\ 12,16 \text {, and } 20 \mathrm{MHz} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { TO } 105^{\circ} \mathrm{C} \\ & 12,16, \text { and } 20 \mathrm{MHz} \end{aligned}$		Notes (Data Direction)
			Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		IN
2	ThDI(DAV)	Data In Hold Time	145		145		IN
3	TwDAV	Data Available Width	110		110		IN
4	TdDAVI(RDY)	DAV fall to RDY fall Delay		115		115	IN
5	TdDAVId(RDY)	DAV rise to RDY rise Delay		115		115	IN
6	TdDO(DAV)	RDY rise to DAV fall Delay	0		0		\mathbb{N}
7	TcLDAVO(RDY)	Data Out to DAV fall Delay		TpC		TpC	OUT
8	TcLDAVo(RDY)	DAV fall to RDY fall Delay	0		0		OUT
9	TdRDYO(DAV)	RDY fall to DAV rise Delay		115		115	OUT
10	TwRDY	RDY Width	110		110		OUT
11	TdRDYOd(DAV)	RDY rise to DAV fall Delay		115		115	OUT

Z8 CONTROL REGISTER DIAGRAMS

Figure 22. Serial I/O Register (FOH: Read/Write)

Figure 23. Timer Mode Register (F1H: Read/Write)

Figure 25. Prescaler 1 Register (F3H: Write Only)

R244 T0

(When Written)
(Range: 1-256 Decimal
01-00 HEX)
TO Current Value (When Read)

Figure 26. Counter/Timer 0 Register (F4H: Read/Write)

R245 PRE0

Figure 27. Prescaler 0 Register (F5H: Write Only)

Figure 24. Counter/Timer 1 Register (F2h: Read/Vvirie)

Figure 28. Port 2 Mode Register (F6H: Write Only)

```
R247 P3M
```


Figure 29. Port 3 Mode Register (F7H: Write Only)

R248 P01M

Figure 30. Port 0 and 1 Mode Register (F8H: Write Only)

Figure 31. Interrupt Priority Register (F9H: Write Only)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 32. Interrupt Request Register (FAH: Read/Write)

R251 IMR

Figure 33. Interrupt Mask Register (FBH: Read/Write)

R252 FLAGS

Figure 34. Flag Register (FCH: Read/Write)

Figure 35. Register Pointer Register (FDH: Read/Write)

Figure 36. Stack Pointer Register (FEH: Read/Write)

Figure 37. Stack Pointer Register (FFH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
RA	Direct address
IM	Relative address
R	Immediate
r	Register or working-register address
IR	Working-register address only
	Indirect-register or indirect
Ir	working-register address Indirect working-register address only RR
	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flages are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
x	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overilow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(S \times O R V)=1$
1010	GT	Greater Than	$[Z$ OR (S XOR V $)$] $=0$
0010	LE	Less Than or Equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z) $=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

FFH	
6 FH	7 FH

STOP/HALT

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Flags Affected						Instruction and Operation	Address Mode dst src		Opcode Byte (Hex)	Flags Affected					
ADC dst, src dst $\leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$	\dagger	1[]	*	*	*	*	0	*	INC dst $\mathrm{dst} \leftarrow \mathrm{dst}+1$	r		$\begin{aligned} & \mathrm{rE} \\ & r=0-F \end{aligned}$	-	*	*	*	-	-
										R		20						
ADD dst, src dst \leftarrow dst + src	\dagger	O[]	*	*	*	*	0	*		IR		21						
									INCW dst	RR		AO	-	*	*	*	-	-
AND dst, src dst \leftarrow dst AND src	\dagger	5[]		*	*	0	-	-	dst \leftarrow dst + 1	IR		A1						
									IRET			BF	*	*	*	*	*	*
CALL dst	DA	D6	-	-	- -	-	-	-	FLAGS @ @SP;									
SP \leftarrow SP-2	IRR	D4							$\mathrm{SP} \leftarrow \mathrm{SP}+1$									
@SP↔PC,									$\mathrm{PC} \leftarrow$ QSP;									
$\mathrm{PC} \leftarrow \mathrm{dst}$									$S P \leftarrow S P+2 ;$ $\operatorname{lMR}(7) \leftarrow 1$									
$\begin{aligned} & \overline{\text { CCF }} \\ & \text { C } \leftarrow \text { NOT C } \end{aligned}$		EF	*	-	- -	-	-	-										
									JP cc, dst if Cc is true	DA		$\begin{aligned} & c D \\ & c=0-F \end{aligned}$	-	-	-	-	-	-
CLR dst dst $\leftarrow 0$	R	Bo	-	-	- -	-	-	-	$\mathrm{PC} \leftarrow \mathrm{dst}$	IRR		30						
	IR	B1																
									JR cc, dst	RA		cB	-	-	-	-	-	
COM dst dst \leftarrow NOT dst	R	60		*	*	0	-	-	if cc is true,			$c=0-F$						
	IR	61							$P C \leftarrow P C+d s t$									
CP dst, src dst - src	\dagger	A[]		*		*	-	-										
									LD dst, src	r	Im	rC	-	-	-	-	-	
DA dst dst \leftarrow DA dst	R	40	*	*	*	X	-	-	$\mathrm{dst} \leftarrow \mathrm{src}$	r	R	r8						
	IR	41								R	r	r9						
												$r=0-F$						
DEC dst dst \leftarrow dst - 1	R	00		*	*	*	-	-		r	X	C7						
	IR	01								X	r	D7						
										r	Ir	E3						
DECW dst dst \leftarrow dst - 1	RR	80		*	*	*	-	-		Ir	r	F3						
	IR	81								R	R	E4						
										R	IR	E5						
$\begin{aligned} & \text { DI } \\ & \text { IMR(7) }-0 \end{aligned}$		8F	-	-	-	-	-	-		R	IM	E6						
										IR	IM	E7						
										IR	R	F5						
$\begin{aligned} & \hline \text { DJNZr, dst } \\ & r \leftarrow r-1 \\ & \text { if } r \neq 0 \\ & P C \leftarrow P C+d s t \\ & \text { Range: }+127 \text {, } \\ & -128 \end{aligned}$	RA	rA	-	-	-	-	-	-										
		$r=0-F$							LDC dst, src	r	Irr	C2	-	-	-	-	-	
									$\overline{\text { LDCI dst, src }}$	Ir	Irr	C3	-	-	-	-	-	
									dst \leftarrow src									
									$r \leftarrow r+1$;									
		9F	-	-	-	-	-	-	$\mathrm{rr} \leftarrow \mathrm{rr}+1$									
$\begin{aligned} & \mathrm{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$																		
HALT		7F	-	-	-	-	-	-										

INSTRUCTION SUMMARY (Continued)

$\mathrm{RP} \leftarrow \mathrm{src}$

OPCODE MAP

Preliminary Product Specification

Z86C93
 CMOS Z8® Mult/Div
 MICROCONTROLLER

FEATURES

- Complete microcontroller, 24 I/O lines, and up to 64 Kbytes of addressable external space each for program and data memory.
- 16 -bit $\times 16$-bit hardwired multiplier with 32 -bit product in 17 clock cycles.
- 32 -bit by 16 -bit hardwired divider with 16 -bit quotient and 16 -bit remainder in 20 clock cycles.
- 256-byte register file, including 236 general registers, four I/O port registers and 16 status and control registers.
- 17-byte ExpandedRegister File, including two generalpurpose registers and 15 status and control registers.
- Vectored, priority interrupts for I/O, counter/timers and UART.
- On-chip oscillator that accepts crystal or external clock drive.
- Full-duplex UART and two 16-bit counter timers with 6 -bit prescalers.
- Third 16-bit counter/timer with 4 -bit prescaler, one capture register and a fast decrement mode.
- Register Pointer so that short, fast instructions can access any one of the sixteen working register groups.
- Additional emulation signals SCLK, IACK, and /SYNC are made available.
- Single +5 V power supply, all I/O pins TTL compatible
- 1.2 micron CMOS technology

■ Clock speed - 20 MHz

- Two low power standby modes, STOP and HALT

GENERAL DESCRIPTION

The Z86C93 is a CMOS ROMless Z8 microcontroller enhanced with a hardwired 16 -bit $\times 16$-bit multiplier and 32 -bit/16-bit divider and three 16-bit counter timers (Figure 1). A capture register and a fast decrement mode is also provided. It is fabricated using 1.2 micron CMOS technology. It is offered in 40-pin Plastic Dual-In-Line, 44pinLeaded Chip Carrier and 44-pin Plastic Quad Flat Pack (Figures 2,3, 4, and 5). Besides the three additional emulation signals (SCLK, IACK, and /SYNC), the Z86C93 is fully pin compatible with Z86C91, yet it offers a much more powerful mathematical capability.

The Z 86 C 93 provides up to 16 output address lines thus permitting an address space of up to 64 K bytes of data and program memory each. Eight address outputs (AD7ADO) are provided by a multiplexed, 8 -bit, Address/Data bus. The remaining 8 -bits can be provided by the software configuration of Port 0 to output address bits A15-A8.

There are 256 registers located on-chip organized as 236 general purpose registers, 16 control and status registers, and four I/O port registers. The register file can be divided into sixteen groups of 16 working registers each. Configuration of the registers in this manner allows the use of short format instructions; in addition, any of the individual registers can be accessed directly. There are an additional 17 registers implemented in the Expanded Register File in Banks D and E. Two of the registers may be used as general purpose registers, while 15 registers supply the data and control functions for the Multiply/Divide Unit and Counter/Timer blocks.

Note: All Signals with a preceding front slash, " $/$ ", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only); /N//S (NORMAL and SYSTEM are both active Low).

GENERAL DESCRIPTION (Continued)

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. Pin Functions

Table 1. 40-Pin Dual-In-Line Pin Identification

Pin \#	Symbol	Function	Direction
1	V $_{\text {cc }}$	Power Supply	Input
2	XTAL1	Crystal, Oscillator Clock	Input
3	XTAL2	Crystal, Oscillator Clock	Output
4	P37	Port 3 pin 7	Output
5	P30	Port 3 pin 0	Input
6	RESET	Reset	Input
7	R//W	Read/Write	Output
8	ISS	Data Strobe	Output
9	IAS	Address Strobe	Output
10	P35	Port 3 pin 5	Output
11	GND	Ground, GND	Input
12	P32	Port 3 pin 2	Input
$13-20$	P00-P07	Port 0 pin 0,1,2,3,4,5,6,7	In/Output
$21-28$	P10-P17	Port 1 pin 0,1,2,3,4,5,6,7	In/Output
29	P34	Port 3 pin 4	Output
30	P33	Port 3 pin 3	Input
$31-38$	P20-P27	Port 2 pin 0,1,2,3,4,5,6,7	In/Output
39	P31	Port 3 pin 1	Input
40	P36	Port 3 pin 6	Output

Figure 3. 40-Pin Dual-In-Line Package

PIN DESCRIPTION (Continued)

Figure 4. 44-Pin Leaded Chip Carrier

Table 2. 44-Pin Leaded Chip Carrier Pin Identification

No	Symbol	Function	Direction
1	V $_{\text {cC }}$	Power Supply	Input
2	XTAL2	Crystal, Osc. Clock	Output
3	XTAL1	Crystal, Osc. Clock	Input
4	P37	Port 3 pin 7	Output
5	P30	Port 3 pin 0	Input
6	SCLK	System Clock	Output
7	IRESET	Reset	Input
8	R//W	Read/Write	Output
9	IDS	Data Strobe	Output
10	IAS	Address Strobe	Output
11	P35	Port 3 pin 5	Output
12	GND	Ground GND	Input
13	P32	Port 3 pin 2	Input

No	Symbol	Function	Direction
14-16	PO0-P02	Port 0 pin 0,1,2	In/Output
17	IACK	Int. Acknowledge	Output
18-22	PO3-P07	Port 0 pin 3,4,5,6,7	In/Output
$23-27$	P10-P14	Port 1 pin 0,1,2,3,4	In/Output
28	SYNC	Synchronize Pin	Output
$29-31$	P15-P17	Port 1 pin 5,6,7	In/Output
32	P34	Port 3 pin 4	Output
33	P33	Port 3 pin 3	Input
$34-38$	P20-P24	Port 2 pin 0,1,2,3,4	In/Output
39	N/C	Not Connected	Input
$40-42$	P25-P27	Port 2 pin 5,6,7	In/Output
43	P31	Port 3 pin 1	Input
44	P36	Port 3 pin 6	Output

Figure 5. 44-Pin Quad Flat Pack

Table 3. 44-Pin Quad Flat Pack Pin Identification

No	Symbol	Function	Direction
1	/RESET	Reset	Input
2	R/W	Read/Write	Output
3	/DS	Data Strobe	Output
4	IAS	Address Strobe	Output
5	P35	Port 3 pin 5	Input
6	GND	Ground GND	Input
7	P32	Port 3 pin 2	Input
8-10	PO0-P02	Port 0 pin 0, 1,2	In/Output
11	IACK	Int. Acknowledge	Output
12-16	PO3-P07	Port 0 pin 3,4,5,6,7	In/Output
17-21	P10-P14	Port 1 pin 0, 1,2,3,4	In/Output
22	ISYNC	Synchronize Pin	Output
$23-25$	P15-P17	Port 1 pin 5,6,7	In/Output

No	Symbol	Function	Direction
26	P34	Port 3 pin 4	Oulput
27	P33	Port 3 pin 3	Input
$28-32$	P20-P24	Port 2 pin 0, 1,2,3,4	In/Output
33	N/C	Not Connected	Input
34 -36	P25-P27	Port 2 pin 5,6,7	In/Output
37	P31	Port 3 pin 1	Input
38	P36	Port 3 pin 6	Output
39	$V_{\text {cC }}$	Power Supply	Input
40	XTAL2	Crystal, Osc. Clock	Output
41	XTAL1	Crystal, Osc. Clock	Input
42	P37	Port 3 pin 7	Output
43	P30	Port 3 pin 0	Input
44	SCLK	System Clock	Output

PIN FUNCTIONS

/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 1 for all external programs. When /RESET is asserted, /AS toggles. Memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read//Write.

XTAL1, XTAL2. Crystal 1, Crystal 2(time-based input and output, respectively). These pins connect a parallel-resonant crystal, ceramic resonator, LC, or any external singlephase clock to the on-chip oscillator and buffer.

R/W. (output, read High/write Low). The Read/Write signal is low when the MCU is writing to the external program or data memory. It is high when the MCU is reading from the external program or data memory.
/RESET. (input, active-Low). To avoid asynchronous and noisy reset problems, the Z86C93 is equipped with a reset filter of four external clocks (4TpC). If the external /RESET signal is less than 4 TpC in duration, no reset occurs.

On the 5th clock after the /RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is held active low while /AS cycles at a rate of $\mathrm{TpC} / 2$. When /RESET is deactivated, program execution begins at location 000C (HEX). Reset time must be held low for 50 ms or until VCC is stable, whichever is longer.

SCLK. System Clock (output). The internal system clock is available at this pin.

IACK. Interrupt Acknowledge (output, active-High). This output, when high, indicates that the Z86C93 is in an interrupt cycle.

ISYNC. (output, active-Low). This signal indicates the last clock cycle of the currently executing instruction.

Port 0 P00-P07. Port 0 is an 8 -bit, nibble programmable, bidirectional, TTL compatible port. These eight I/O lines can be configured under software control as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAVO and RDYO (Data Available and Ready). Handshake signal assignment is dictated by the I / O direction of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble to be under handshake control. Port 0 comes up as A15-A8 Address lines after /RESET.

For external memory references, Port 0 can provide address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. After a hardware reset, Port 0 lines are defined as address lines A15A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode (Figure 6). The /OEN (Output Enable) signal in Figure 6 is an internal signal.

Port 1 P10-P17. Port 1 is an 8-bit, byte programmable, bidirectional, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-DO) ports.

To interface externalmemory, Port 1 is programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines (Figure 7).

Port 2 P20-P27. Port 2 is an 8-bit, bit programmable, bidirectional, CMOS compatible port. Each of these eight I/O lines are independently programmed as an input or output, or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port 2 is placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27 (Figure 8).

Figure 6. Port 0 Configuration

Figure 7. Port 1 Configuration

PIN FUNCTIONS (Continued)

Figure 8. Port 2 Configuration

Port 3 P30-P37. Port 3 is an 8-bit, CMOS compatible four fixed input and four fixed output port. These $81 / O$ lines have four-fixed (P30-P33) input and four fixed (P34-P37)
output ports. Port 3 pins P30 and P37, when used as serial I/O, are programmed as serial in and serial out, respectively (Figure 9 and Table 4).

Figure 9. Port 3 Configuration

Table 4. Port 3 Pin Assignments

Pin \#	I/O	CTC1	Int.	POHS	P1HS	P2HS	UART	Ext.
P30	In		IRQ3				Serial In	
P31	In	Tin	IRQ2					
P32	In		IRQ0	D/R		D/R		
P33	In		IRQ1		D/R			
P34	Out					R/D		
P35	Out			R/D		R/D		
P36	Out	Tout					DM	
P37	Out							

Port 3 is configured under software control to provide the following control functions: handshake for Ports 0 and 2 (/DAV and RDY); four external interrupt request signals (IRQ0-IRQ3); timer input and output signals (Tin and Tout), and Data Memory Select (/DM).

Port 3 lines P30 and P37, can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by the Counter/Timer 0.

The Z86C93 automatically adds a start bit and two stop bits to transmitted data (Figure 10). Odd parity is also available as an option. Eight data bits are always transmitted,
regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, 8 data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Auto-Latch. The auto-latch puts a valid CMOS level on all CMOS inputs that are not externally driven. Whether this level is zero or one, cannot be determined. A valid CMOS level rather than a floating node reduces excessive supply current flow in the input buffer.

PIN FUNCTIONS (Continued)

Figure 10. Serial Data Formats

ADDRESS SPACE

Program Memory. The Z86C93 can address up to 64 Kbytes of external program memory. Program execution begins at external location 000C (HEX) after a reset.

Data Memory. The Z96C93 can address up to 64 Kbytes of external datamemory. External datamemory is included with, or separated from, the external program memory
space. /DM, an optional I/O function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 11). The state of the /DM signal is controlled by the type instruction being executed. An "LDC" opcode references PROGRAM (/DM inactive) memory, and an "LDE" instruction references DATA (/DM active low) memory.

Figure 11. Program and Data Memory Configuration

Expanded Register File. The register file has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices along with I/O ports into the register address area (Figure 12). The Z 8 register address space R0 through R15 has now been implemented as 16 groups of 16 registers per group. These register groups are known as the ERF (Expanded Register File). Bits 7-4 of register RP select the working register group. Bits 3-0 of register RP select the expanded register group (Figure 13). The registers that are used in the multiply/divide unit reside in the Expanded Register File at Bank E and those for the additional timer control words reside in Bank D. The rest of the Expanded Register is not physically implemented and is open for future expansion.

Register File. The Register File consists of four I/O port registers, 236 general-purpose registers and 16 control
and status registers. The instructions can access registers directly or indirectly via an 8-bit address field. The Z86C93 also allows short 4-bit register addressing using the Register Pointer (Figure 14). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Note: Register Bank EO-EF can only be accessed through working register and indirect addressing modes.

Stack. The Z86C93 has a 16-bit Stack Pointer (R254R255), used for external stack, that resides anywhere in the data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 generalpurpose registers (R4-R239). The high byte of the Slack Pointer (SPH, Bits 8-15) can be used as a general purpose register when using internal stack only.

ADDRESS SPACE (Continued)

Z8 STANDARD CONTROL REGISTERS

Figure 12. Register File

R253 RP

Default setting after RESET $\mathbf{= 0 0 0 0 0 0 0 0}$

Figure 13. Register Pointer Register

Figure 14. Register Pointer

FUNCTIONAL DESCRIPTION

This section breaks down the $\mathrm{Z86C} 93$ into its main functional parts.

Multiply/Divide Unit

This section describes the basic features, implementation details of the interface between the Z8 and the multiply/ divide unit.

Basic features:

- 16-bit by 16 -bit multiply with 32 -bit product
- 32-bit by 16 -bit divide with 16-bit quotient and 16-bit remainder
- Unsigned integer data format
- Simple interface to Z8

Interface to Z8. The following is a brief description of the register mapping in the multiply/divide unit and its interface to Z8 (Figure 15).

The multiply/divide unit is interfaced like a peripheral. The only addressing mode available with the peripheral interface is register addressing. In other words, all of the operands are in the respective registers before a multiplication/division can start.

Register mapping. The registers used in the multiply/divide unit are mapped onto the expanded register file in Bank E. The exact register locations used are shown below.

REGISTER	ADDRESS
MREG0	\% (E) 00
MREG1	\% (E) 01
MREG2	\% (E) 02
MREG3	\% (E) 03
MREG4	\% (E) 04
MREG5	\% (E) 05
MDCON	\% (E) 06
GPR	\% (E) 14
GPR	\% (E) 15

Figure 15. Multiply/Divide Unit Block Diagram

Register allocation. The following is the register allocation during multiplication.

Multiplier high byte	MREG2
Multiplier low byte	MREG3
Multiplicand high byte	MREG4
Multiplicand low byte	MREG5
Result high byte of high word	MREG0
Result low byte of high word	MREG1
Result high byte of low word	MREG2
Result low byte of low word	MREG3
Multiply/Divide Control register	MDCON

The following is the register allocation during division.

High byte of high word of dividend	MREGO
Low byte of high word of dividend	MREG1
High byte of low word of dividend	MREG2
Low byte of low word of dividend	MREG3
High byte of divisor	MREG4
Low byte of divisor	MREG5
High byte of remainder	MREG0
Low byte of remainder	MREG1
High byte of quotient	MREG2
Low byte of quotient	MREG3
Multiply/Divide Control register	MDCON

Control register. The MDCON (Multiply/Divide Control Register) is used to interface with the multiply/divide unil (Figure 16). Specific functions of various bits in the control register are given below.

Figure 16. Multiply/Divide Control Register (MDCON)

DONE bit (D7). This bit is a handshake bit between the math unit and the external world. On power up, this bit is set to one to indicate that the math unit has completed the previous operation and is ready to perform the next operation.

Before starting a new multiply/divide operation, this bit should be reset to zero by the processor/programmer. This indicates that all the data registers have been loaded and the math unit can now begin a multiply/divide operation. During the process of multiplication or division, this bit is write-protected. Once the math unit completes its operation it sets this bit to indicate the completion of operation. The processor/programmer can then read the result.

MULSL. Multiply Select (D6). If this bit is set to one, it indicates a multiply operation directive. Like the DONE bit,
this bit is also write-protected during math unit operation and is reset to zero by the math unit upon starting of the multiply/divide operation.

DIVSL. Division Select (D5). Similar to D6, D5 starts a division operation.

D4-D2. Reserved.
DIVOVF. Division Overflow (D1). This bit indicated an overflow during the division process. Division overflow occurs when the high word of the dividend is greater than or equal to the divisor. This bit is read only. When set to one, it indicates overflow error.

FUNCTIONAL DESCRIPTION (Continued)

DIVZR. Division by Zero (DO). When set to one, this indicates an error of division by zero. This bit is read only.

Example:

Upon reset, the status of the MDCON register is 100 uuu00b (D7 to D0).
$\mathrm{u}=$ Undefined
$x=$ Irrelevant
$b=$ Binary
If multiplication operation is desired, the MDCON register is set to 010xxxxxb.

If the MDCON register is READ during multiplication, it would have a value of 000uuu00b.

On completion of multiplication, the result of the MDCON register is 100uuu00b.

If division operation is desired, the MDCON register is set to 001xxxxxb.

During division operation, the register would contain 000uu??b (? - value depends on the DIVIDEND, DIVISOR).

Upon completion of division operation, the MDCON register contains 100uuu??b.

Note that once the multiplication/division operation starts, all data registers (MREG5 thru MREG0) are write-protected and so are the writable bits of the MDCON register. The write protection is released once the math unit operation is complete. However, the registers may be read at any time.

A multiplication sequence would look like:

1. Load multiplier and multiplicand.
2. Load MDCON register to start multiply operation.
3. Wait for the DONE bit of the MDCON register to be set to ONE and then read results.

Note that while the multiply/divide operation is in progress, the programmer can use the $Z 8$ to do other things. Also, since the multiplication/division takes a fixed number of cycles, he can start reading the results before the DONE bit is set.

During a division operation, the error flag bits are set at the beginning of the division operation which means the flag bits can be checked by the $Z 8$ while the division operation is being done.

The two General Purpose Registers (GPR) can be used as scratch pad registers or as external data memory address pointers during an LDE instruction. MREGO thru MREG5, if not used for multiplication or division, can be used as general purpose registers.

Performance of multiplication. The actual multiplication takes 17 internal clock cycles. It is expected that the chip would run at a 10 MHz internal clock frequency (external clock divided by two). This results in an actual multiplication time (16-bit x 16 -bit) of 1.7 us. If the time to load operands and read results is included:

No. of internal clock cycles to load 5 registers: 30
No. of internal clock cycles to read 4 registers: 24
The total internal clock cycles to perform a multiplication is 71. This results in a net multiplication time of 7.1 us. Note that this would be the worst case. This assumes that all of the operands are loaded from the external world as opposed to some of the operands being already in place as a result of a previous operation whose destination register is one of the math unit registers.

Performance of division. The actual division needs 20 internal clock cycles. This translates to 2.0 us for the aclual division at 10 Mhz (internal clock speed). If the time to load operands and read results is included:

Number of internal clock cycles to load operands: 42
Number of internal clock cycles to read results: 24
The total internal clock cycles to perform a division is 86 . This translates to 8.6 us at 10 Mhz .

Counter/Timers

Thissection describes the enhanced feature of the counter/ timers (CTC) on the Z86C93. It contains the register mapping of CTC registers and the bit functions of the newly added Timer2 control register.

In a standard $Z 8$, there are two 8-bit programmable counter/ timers (T0 and T1), each driven by its own 6-bil programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only.

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1), is generated.

The counters are programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers are cascaded by connecting the TOoutput to the input of T1. Either TO or T1 can be outputted via P36.

The following are the enhancements made to the counter/ timer block on the Z86C93 (Figure 17):

- TO counter length is extended to 16 -bits. For example, T0 now has a 6 -bit prescaler and 16 -bit down counter.

T1 counter length is extended to 16 -bits. For example, T1 now has a 6 -bit prescaler and 16 -bit down counter.

- A new counter/timer T 2 is added. T2 has a 4-bit prescaler and a 16-bit down counter with capture register.

These three counters are cascadable as shown in Table 5. The result is that T2 may be extendable to 32 bits and T1 extendable to 24 bits. Bits 1 and 0 (CAS1 ANDCASO) of the T2Prescaler Register (PRE2) determine the counter length.

Table 5. Counter Length Configurations

CAS 1	CAS0	T0	T1	T2
0	0	8	8	32
0	1	16	16	16
1	0	8	24	16
1	1	8	16	24

The controlling clock input to T 2 is programmed to $\mathrm{XTAL} /$ 2 or XTAL/8 (only when T2 counter length is 16 bits), which results in a resolution of 100 ns at an external XTAL clock speed of 20 Mhz .

T2 has a 16-bit capture register associated with T2 HIGH BYTE and T2 LOW BYTE registers. The negative going transition on pin P33 enables the latching of the current T2 value (16 bits) into the capture register. The register mapping of the capture register is in Bank D (Figure 12). Note that the negative transition on P33 is capable of generating an interrupt. Also, the negative transition on P33 always latches the current T2 value into the capture register. There is no need for a control bit to enable/disable the latching; the capture register is read only.

Figure 17. Counter/Timer Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Observations

Except for the programmable down counter length and clock input, T 2 is identical to TO .

T0 and T1 retain all their features except that now they are extendable interims of the down counter length.

The output of T2, under program control, goes to an output pin (P35). Also, the interrupt generated by T2 is ORed with the interrupt request generated by P32. Note that the service routine then has to poll the T2 flag bit and also clear it (Bit 7 of T2 Timer Mode Register).

On power up, T0 and T1 are configured in the 8-bit down counter length mode (to be compatible with Z86C91) and T2 is in the 32 -bit mode with its output disabled (no interrupt is generated and T2 output does NOT go to port pin P35).

The UART uses TO for generating the bit clock. This means, while using UART, TO should be in 8-bit mode. So, while using the UART there are only two independent timer/ counters.

The counters are configured in the following manner:

Timer	Mode	Byte
T0	8-bit	low byte (T0)
T0	16-bit	high byte (T0) + low byte (T0)
T1	8-bit	low byte (T1)
T1	16-bit	high byte (T1) + low byte (T1)
T1	24-bit	high byte (T0) + high byte (T1) + low byte (T1)
T2	16-bit	high byte (T2) + low byte (T2) high byte (T0) + high byte (T2) + T2
24-bit	low byte (T2) high byte (T0) + high byte (T1) + high byte (T2) + low byte (T2)	

Note that the T2 interrupt is logically ORed with P32 to generate IRQ0.

The T2 Timer Mode register is shown in Figure 18. Upon reaching end of count, bit 7 of this register is set to one. This bit is NOT reset in hardware and it has to be cleared by the interrupt service routine.

The register map of the new CTC registers is shown in Figure 12. T0 high byte and T1 high byte are at the same relative locations as their respective low bytes, but in a different register bank.

The T2 prescaler register is shown in Figure 19. Bits 1 and 0 of this register control the various cascade modes of the counters.

Figure 18. T2 Timer Mode Register (T2)

Figure 19. T2 Prescaler Register (PRE2)

Interrupts

The Z86C93 has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The eight sources are divided as follow: four sources are claimed by Port 3 lines P30-P33, one in Serial Out, one in

Serial In, and two in the counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z86C93 interrupls are vectored through locations in the program memory. When an interrupt machine cycle is activated an interrupt request is granted. Thus, this disables all of the subsequent interrupts, save the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initiated interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt
request must be valid 5 TpC before the falling edge of the last clock cycle of the currently executing instruction.

When the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 581h TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupt sample point.

Clock

The Z86C93 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, \times TAL2 $=$ Output $)$. The external clock levels are not TTL. The crystal should be AT cut, 1 MHz to 20 MHz max, and series resistance (RS) is less than or equal to 100 Ohms. The crystal should be connected across XTAL_1 and XTAL2 using the recommended capacitors (10 $\mathrm{pF}<\mathrm{CL}<100 \mathrm{pF}$) from each pin to ground (Figure 20).

Figure 20. Oscillator Configuration

Power Down Modes

Halt. 'Turns off the internal CPU clock but not the XTAL oscillation. The counter/timers and the external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. The Stop mode is terminated by a /RESET, which causes the processor to restart the application program at address 000C (HEX).

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user execules a NOP (opcode=OFFH) immediately before the appropriate sleep instruction, i.e.:

FF NOP ; clear the pipeline
6F STOP ; enter STOP mode
or
FF NOP ; clear the pipeline
7F HALT ; enter HALT mode

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage *	\cdot	-0.3	+7.0
$\mathrm{~T}_{\text {STG }}$	Storage Temp	V		
T_{A}	Oper Ambient Temp	-65	+150	C

* Voltages on all pins with respect to GND.
\dagger See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 21).

Figure 21. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS

Sym	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \text { Min } \quad \text { Max } \end{gathered}$		$T_{A}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C}$		Typical at $25^{\circ} \mathrm{C}$	Units	Conditions
	Max Input Voltage		7		7		V	$\mathrm{I}_{\mathbb{N}} 250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {ch }}$	Clock Input High Voltage	3.8	$\mathrm{V}_{\text {cc }}$	3.8	$\mathrm{V}_{\text {cc }}$		V	Driven by External Clock Generator
V_{c}	Clock Input Low Voltage	-0.03	0.8	-0.03	0.8		V	Driven by External Clock Generator
$\mathrm{V}_{\text {H }}$	Input High Voltage	2.0	$\mathrm{V}_{\text {cc }}$	2.0	$\mathrm{V}_{\text {cc }}$		V	
V_{LI}	Input Low Voltage	-0.3	0.8	-0.3	0.8		V	
$\mathrm{V}_{\text {OH }}$	Output High Voltge	$\mathrm{Vcc}{ }^{2.4} 100 \mathrm{mV}$		2.4			V	$\mathrm{I}_{\text {OH }}=-2.0 \mathrm{~mA}$
$V_{\text {or }}$	Output High Voltge			$\mathrm{Vcc}-100 \mathrm{mV}$			V	$\mathrm{I}_{\text {OHH }}=-100 \mu \mathrm{~A}$
V_{a}	Output Low Voltage		0.4		0.4		V	$\mathrm{I}_{\mathrm{OH}}=+2.0 \mathrm{~mA}$
$V_{\text {RH }}$	Reset Input High Vollage	3.8	$\mathrm{V}_{\text {cc }}$	3.8	$\mathrm{V}_{\text {cc }}$		v	
V_{RI}	Reset Input Low Voltage	-0.03	0.8	-0.03	0.8		V	
	Input Leakage	-2	2	-2	2		$\mu \mathrm{A}$	Test at $0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$
	Output Leakage	-2	2	-2	2		$\mu \mathrm{A}$	Testat $\mathrm{OV}, \mathrm{V}_{\mathrm{cc}}$
	Reset Input Current		-80		-80		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{fL}}=0 \mathrm{~V}$
	Supply Current		25		25	16	mA	@ 16 MHz [1]
			30		30	20	mA	(a) 20 MHz [1]
$\mathrm{l}_{\text {cct }}$	Standby Current		10		10	8	mA	HALT Mode $\mathrm{V}_{\text {IW }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }} @ 16 \mathrm{MHz}$ [1]
			12		12	9	mA	HALT Mode $\mathrm{V}_{\text {w }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}$ @ 20 MHz [1]
$\begin{aligned} & \mathrm{I}_{\mathrm{cc}}{ }^{2} \mathrm{I}_{\mathrm{AL}} \end{aligned}$	Standby Current		10		20	1	$\mu \mathrm{A}$	STOP Mode $\mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}[1]$
	Auto Latch Low Current	-10	10	-14	14	5	$\mu \mathrm{A}$	

Note:

[1] All inputs driven to $\mathrm{OV}, \mathrm{V}_{\mathrm{cc}}$ and outputs floating.

AC CHARACTERISTICS

External I/O or Memory Read/Write Timing Diagram

Figure 22. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS
External I/O or Memory Read and Write Timing Table

No	Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				Units	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TdA(AS)	Address Valid to /AS Rise Delay	25		20		25		20		ns	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	35		25		35		25		ns	[2,3]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid		180		150		180		150	ns	[1,2,3]
4	TwAS	/AS Low Width	40		30		40		30		ns	[2,3]
5	TdAZ(DS)	Address Float to /DS Fall	0		0		0		0		ns	
6	TwDSR	/DS (Read) Low Width	135		105		135		105		ns	[1,2,3]
7	TwDSW	/DS (Write) Low Widh	80		65		80		65		ns	[1,2,3]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid		75		55		75		55	ns	[1,2,3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	0		0		0		0		ns	[2,3]
10	TdDS(A)	/DS Rise to Address Active Delay	50		40		50		40		ns	[2,3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	35		25		35		25		ns	[2,3]
12	TdR/N(AS)	R/W Valid to /AS Rise Delay	25		20		25		20		ns	[2,3]
13	TdDS(R/W)	/DS Rise to R//W Not Valid	35		25		35		25		ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	25		20		25		20		ns	[2,3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	35		25		35		25		ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid		230		180		230		180	ns	[1,2,3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	45		35		45		35		ns	[2,3]
18	TdDI(DS)	Data Input Setup to /DS Rise	60		50		60		50		ns	[1,2,3]
19	TdDM(AS)	/DM Valid to /AS Rise Delay	30		20		30		20		ns	[2,3]

Notes:
[1] When using extended memory timing add 2 TpC .
[2] Timing numbers given are for minimum TpC.
[3] See clock cycle dependent characteristics table 5.

Standard Test Load
All timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .

Clock Dependent Equations

No	Symbol	Equation
1	TdA(AS)	$0.40 T p C+0.32$
2	TdAS(A)	$0.59 T p C-3.25$
3	TdAS(DR)	$2.38 T p C+6.14$
4	TwAS	$0.66 T p C-1.65$
6	TwDSR	$2.33 T p C-10.56$
7	TwDSW	$1.27 T p C+1.67$
8	TdDSR(DR)	$1.97 T p C-42.5$
10	TdDS(A)	$0.8 T p C$
11	TdDS(AS)	$0.59 T p C-3.14$

No	Symbol	Equation
12	TdR/W(AS)	$0.4 T \mathrm{TpC}$
13	TdDS(R/W)	$0.8 T p C-15$
14	TdDW(DSW)	$0.4 T p C$
15	TdDS(DW)	$0.88 T p C-19$
16	TdA(DR)	$4 T p C-20$
17	TdAS(DS)	$0.91 \mathrm{TpC}-10.7$
18	TSDI(DS)	$0.8 T p C-10$
19	TdDM(AS)	$0.9 T p C-26.3$

Note:
Equation units are in nanoseconds

AC CHARACTERISTICS

Additional Timing Diagram

Figure 23. Additional Timing

AC CHARACTERISTICS
Additional Timing Table

No	Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{MHz} \quad 20 \mathrm{MHz} \end{aligned}$				$\begin{array}{cc} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ 16 \mathrm{MHz} \quad 20 \mathrm{MHz} \end{array}$				Units	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TpC	Input Clock Period	62.5	1000	50	1000	62.5	1000	50	1000	ns	[1]
2	TrC,TfC	Clock Imput Rise \& Fall Times		10		10		10		10	ns	[1]
3	TwC	Input Clock Width	25		15		25		15		ns	[1]
4	TwTinL	Timer Input Low Width	75		75		75		75		ns	[2]
5	TwTinH	Timer Input High Width	3 TpC		3TpC		3TpC		$3 T \mathrm{PC}$			[2]
6	TpTin	Timer Input Period	8 TpC		8TpC		8 TpC		8 TpC			[2]
7	TrTin, Iftin	Timer Input Rise \& Fall Times	100		100		100		100		ns	[2]
8A	TwIL	Interrupt Request Input Low Times	70		70		70		70		ns	[2,4]
8B	TwIL	Interrupt Request Input Low Times	5TpC		5 TpC		5TpC		5 TpC			[2,5]
9	TwlH	Interrupt Request Input High Times	3 TpC		3 TpC		3 TpC		3 TpC			[2,3]

Notes:
[1] Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0 .
[2] Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .
[3] Interrupt references request via Port 3.
[4] Interrupt request via Port 3 (P31-P33):
[5] Interrupt request via Port 30.

AC CHARACTERISTICS
Handshake Timing Diagrams

Figure 24. Input Handshake Timing

Figure 25. Output Handshake Timing

AC CHARACTERISTICS
Handshake Timing Table

No	Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$				Units	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
1	TsDI(DAV)	Data In Setup Time	0		0		0		0		ns	\underline{N}
2	ThDI(DAV $^{\text {a }}$	Data In Hold Time	145		145		145		145		ns	IN
3	TwDAV	Data Available Width	110		110		110		110		ns	IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay		115		115		115		115	ns	1 N
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay		115		115		115		115	ns	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	0		0		0		0		ns	IN
7	TcLDAV0(RDY)	Data Out to DAV Fall Delay		TpC		TpC		TpC		TpC		OUT
8	TcLDAVO(RDY)	DAV Fall to RDY Fall Delay	0		0		0		0		ns	OUT
9	TdRDYO(DAV)	RDY Fall to DAV Rise Delay		115		115		115		115	ns	OUT
10	TwRDY	RDY Width	110		110		110		110		ns	OUT
11	TdRDYOd(DAV)	RDY Rise to DAV Fall Delay		115		115		115		115	ns	OUT

EXPANDED REGISTER FILE CONTROL REGISTERS

Figure 26. Timer 2 Mode Register [\%(D) 01: Read/Write]

T1H (D) 02

Figure 27. Counter Timer 1 Register High Byte [\%(D) 02: Read/Write]

TOH (D) 04

Figure 29. Counter Timer 0 Register High Byte [\%(D) 04: Read/Write]

T2H (D) 06

Figure 30. Counter Timer 2 Register High Byte [\%(D) 06: Read/Write]

T2L (D) 07

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

T2 Low Byte Initial Value (When Written)

T2 Low Byte Current Value (When Read)

Figure 31. Counter Timer 2 Register Low Byte [\%(D) 07: Read/Write]

Figure 28. Prescaler 2 Register High Byte [\%(D) 03: Write Only]

Z8 CONTROL REGISTERS

Figure 32. Serial I/O Register (FOH: Read/Write)

Figure 33. Timer Mode Register (F1H:Read/Write)

R242 T1

Figure 34. Counter/Timer 1 Register (F2H:Read/Write)

Figure 35. Prescaler 1 Register (F3H:Write Only)

R244 T0

Figure 36. Counter/Timer 0 Register (F4H:Read/Write)

R245 PRE0

Figure 37. Prescaler 0 Register (F5H:Write Only)

R246 P2M

Figure 38. Port 2 Mode Register (F6H: Write Only)

Z8 CONTROL REGISTERS (Continued)

Figure 39. Port 3 Mode Register (F7H:Write Only)

Figure 40. Ports 0 and 1 Mode Registers (F8H:Write Only)

Figure 41. Intemupt Pitionity Register (F9H:Write Only)

R250 IRQ

Figure 42. Interrupt Request Register (FAH:Read/Write)

R251 IMR

Figure 43. Interrupt Mask Register (FBH:Read/Write)

R252 FLAGS

R253 RP

Figure 45. Register Pointer (FDH:Read/Write)

R254 SPH

Figure 46. Stack Pointer High (FEH:Read/Write)

R255 SPL

Stack Pointer Lower Byte (SP0 - SP7)

Figure 47. Stack Pointer Low (FFH:Read/Write)

Figure 44. Flag Register (FCH:Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed address	
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect working-register address
Ir	Indirect working-register address only Register pair or working register pair RR
	address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(\mathrm{S} \times$ OR V $)=0$
0001	LT	Less than	$(S$ XOR V $)=1$
1010	GT	Greater Than	$[Z$ OR (S XOR V)] $=0$
0010	LE	Less Than or Equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

CCF, DI, EI, IRET, NOP, RCF, RET, SCF

dst	OPC

One-Byte Instructions

FFH	
6 FH	7 FH

STOP/HALT

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol $" \leftarrow$ ". For example:

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst sre	Opcode Byte (Hex)		$\begin{gathered} \text { ags } \\ \text { fect } \\ Z \end{gathered}$	S	V	D		H
ADC dst, src $\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$	\dagger	1[]	*	*	*	*	0		*
ADD dst, src dst \leftarrow dst + src	\dagger	O[]	$*$	*	*	*	0		*
AND dst, src dst \leftarrow dst AND src	\dagger	5[]	-	*	*	0	-		-
CALL dst $S P \leftarrow S P-2$ @SP $\leftarrow P C$, $\mathrm{PC} \leftarrow \mathrm{dst}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	-	-	-		-		
$\begin{aligned} & \overline{\text { CCF }} \\ & \text { C } \leftarrow \text { NOT C } \end{aligned}$		EF	*	-	-	-	-		-
CLR dst dst $\leftarrow 0$	$\begin{aligned} & \hline R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	-	-	-	-	-		-
COM dst dst \leftarrow NOT dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-	*	*	0	-		-
CP dst, src dst - src	\dagger	A []	*	*	*	*	-		-
DA dst dst:-DA dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	*	*	*	X	-		-
DEC dst dst \leftarrow dst - 1	$\begin{aligned} & \hline R \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	-	*	*	*	-		-
DECW dst dst \leftarrow dst - 1	$\begin{aligned} & \text { RR } \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-	*	*	*	-		-
DI $\operatorname{IMR}(7) \leftarrow 0$		8F	-	-	-	-	-		-
$\begin{aligned} & \text { DJNZr, dst } \\ & r \leftarrow r-1 \\ & \text { if } r \neq 0 \\ & P C \leftarrow P C+d s t \\ & \text { Range: }+127 \text {, } \\ & -128 \end{aligned}$	RA	$\begin{aligned} & r A \\ & r=0-F \end{aligned}$	-	-	-	-	-		-
$\begin{aligned} & \hline \mathrm{El} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$			-	-	-	-	-		-
HALT		7F	-		-	-	-		-

INSTRUCTION SUMMARY (Continued)

$\mathrm{RP} \leftarrow \mathrm{src}$

OPCODE MAP
Lower Nibble (Hex)

GENERAL DESCRIPTION

The Z86C94 is a CMOS ROMless $Z 8$ microcon－ troller integrated with a digital signal processor as a slave processor．With the DSP slave processor，a 16 －bit $\times 16$－bit multiplication and accumu－ lation can be accomplished in one clock cycle．In addition，it is further enhanced with a hardwired 16－bit x 16 －bit multiplier and 32 －bit／16－bit divider，three 16 －bit counter timers with capture and compare registers，a fast 8 －bit A／D converter，an 8 －bit DAC with $4 x$ programmable gain stage，UART and a PWM output channel．It is fabricated using 1.2 micron CMOS technology and offered in a 80－pin Plastic Quad Flat Pack．

The Z86C94 provides up to 16 output address lines permitting an address space of up to 64 K bytes of data and program memory each．Eight address outputs（AD7－ ADO）are provided by a multiplexed，8－bit，Address／Data bus．The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits A8－A15．

There are 256 registers located on－chip organized as 236 general purpose registers， 16 control and status registers，and three I／O port registers．Register file can be divided into sixteen groups of 16 working registers each． Configuring the registers in this manner allows the use of short format instructions；in addition，any of the individual registers can be accessed directly．

FEATURES

－Complete microcomputer， 24 I／O lines，and up to 64 K bytes of addressable external space each for program and data memory．
－DSP slave processor capable of 16－bit x 16 －bit multiplication and accumulation in one clock cycle．
－16－bit x 16 －bit hardwired divider with 16－bit quotient and 16－bit remainder in 20 clock cycles．

圆 An 8－channel 8－bit A／D converter with sample and hold．The maximum single conversion time is $2 \mu \mathrm{~s}$ ．

图．An 8－bit D／A converter with $4 x$ programmable gain stage．

图 A pulse width modulator output at $40-80 \mathrm{KHz}$

XIAL IAS IDS RIN IRESET
－256－byte register file，including 236 general purpose registers，three 1／0 port registers and 16 status and control registers．
－Vectored，priority interrupts for $1 / 0$ ， counter／timers and UART．
＊On－chip oscillator that accepts crystal or external clock drive
［ Full－duplex UART
圈 Three 16－bit counter timers with capture and compare registers

图 Register Pointer so that short，fast instructions can access any one of the sixteen working register groups．

图 Single +5 V power supply，all I／0 pins TIL compatible

图 1.2 micron CMOS technology
膡 Clock speed－ 20 MHz
眕 Two low power standby modes， STOP and HALT

CMOS ROMLESS Z8 MICROCONTROLLER
 Z86C96

GENERAL DESCRIPTION

The Z86C96 is a CMOS ROMless version of the $Z 8$ single－chip micro－ computer．It offers all the outstanding features of the $Z 8$ family architecture except an on－chip program ROM．Use of external memory rather than a preprogrammed ROM enables this Z8 microcomputer to be used in applications where code flexibility is required．

The Z86C96 can provide up to 16 output address lines，thus permitting an address space of up to 64 K bytes of data or pro－ gram memory．Eight address outputs（AD7－ ADO）are provided by a multiplexed，8－bit， Address／Data bus．The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits A15－A8．

There are 256 registers located on－chip organized as 236 general purpose regis－ ters， 16 control and status registers，and six I／O port registers．Register file can be divided into sixteen groups of 16 working registers each．Configuring the register file in this manner allows the use of short format instructions；in addition，any of the indi－ vidual registers can be accessed directly．

The Z86C96 is the ROMless version of the Z86C62．

FEATURES

－Complete microcomputer， 56 I／O lines，and up to 64 K bytes of addressable extemal space each for program and data memory．
－256－byte register file，including 236 general purpose registers，six l／0 port registers，and 16 status and control registers．
－Three Expanded Register File I／O port registers and five control registers
－Vectored，priority interrupts for $1 / 0$ ， counter／timers，and UART．

疁 On－chip oscillator that accepts crystal，ceramic resonator，LC or extemal clock drive．
－Full－duplex UART and two program－ mable 8－bit counter／timers，each with a 6 －bit programmable prescaler．
․ㅜㅁ Register Pointer so that short，fast instructions can access any one of the sixteen working－register groups．
3.0 to 5.5 volts operating range

Clock speed 20 MHz
（圈 1.2 micron CMOS technology
图 Two low－power standby modes， STOP and HALT

Z－BUS When Used As Address／Data Bus

Advance information Specification

288C00

FEATURES

囫 Full Super8 Instruction Set
■ CMOS Technology
■ Available in 48－and 68－pin packages
（1）Multiply and Divide instructions，Boolean and $B C D$ operations

圈 325 byte registers，including 272 general－purpose registers，and 53 mode and control registers

Addresses up to 128 Kbytes of external program and data memory
．Two register pointers allow 600 nsec access time
［．Direct Memory Access（DMA）

圈 Up to 32 bit－programmable and byte－programmable I／O lines，with two handshake channels
․ Interrupt structure supports：
－ 27 interrupt sources
－ 16 interrupt vectors
－ 8 interrupt levels
－Servicing capabilities in 600 nsec
＊Full－Duplex UART with special features
（1）On－Chip oscillator
（⿴囗⿱一兀⿱夂⺀大
图 STOP Mode

囲 HALT Mode with the use of WFI instruction
（a）TEST word feature
（2）Low power consumption
（40）Full pin－for－pin compatibility with NMOS Super8

GENERAL DESCRIPTION

The CMOS Super8 offers new flexibility and sophistication in 8－bit microcontrollers．The Super8 offers all the features necessary for industrial，consumer，and automotive ap－ plications with an enhanced feature set in CMOS technol－ ogy．At the same time，the CMOS Super8 retains full pin－ for－pin compatibility with the NMOS Super8．Available in 48－pin Dual In－line Plastic（DIP）and 64－pin Plastic Leaded Chip Carrier（PLCC），the CMOS Super8 is the last word in general purpose controllers．

The Super8 features a full－duplex，Universal Asynchro－ nous Receiver／Transmitter（UART）with on－chip baud rate generator，on－chip oscillator， 2 16－bit counter／timers each with an 8－bit prescaler，a Direct Memory Access controller （DMA），Watch Dog Timer（WDT），and STOP mode．

Incorporated in the new CMOS Super8 is also a bonding option for a de－multiplexed external memory interface bus． In de－muxed mode，PORTs 0 and 4 function as address ports，with PORT 1 as data bus．PORT 4 drives the lower address bits and PORT 0 drives the upper address bits， when both ports are configured as external memory inter－ face．This gives the user more addressing flexibility．

Finally，by adding the enhanced features of WDT，STOP and HALT modes，and more versatile counter／timers，the CMOS Super8 can fit easily into more complex function applications where a general－purpose microcontroller is a necessity．

GENERAL DESCRIPTION (Continued)

Figure 1 is the functional block diagram of $Z 88 \mathrm{C} 00$. The device is housed in a 48-pin DIP (Figure 2), and a 68-pin PLCC package (Figure 3). The pin functions of the Z88C00 are shown in Figure 4.

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only); /N//S (NORMAL and SYSTEM are both active Low).

Figure 1. Functional Block Diagram

P10 \square	1	\circlearrowleft	48	\square	P00
P11	2		47	\square	P01
P12	3		46	\square	P02
P13	4		45	\square	P03
P14	5		44	\square	P04
P15	6		43	\square	P05
P16 \square	7		42	\square	P06
P17	8		41	\square	P07
P24	9		40	\square	P34
P25	10		39	\square	P35
+5V \square	11		38	\square	/AS
XTAL2 \square	12	$\begin{gathered} \text { Z88C00 } \\ \text { חIP } \end{gathered}$	37	\square	/DS
XTAL1 \square	13		36	\square	P40
P44 \square	14		35	\square	P41
P45 \square	15		34	\square	GND
P46	16		33	\square	P42
P47 \square	17		32	\square	P43
P22 \square	18		31	\square	R/W
P32 \square	19		30	\square	/RESET
P33 \square	20		29	\square	P36
P23 \square	21		28	\square	P37
P20 \square	22		27	\square	P27
P21	23		26	\square	P26
P31	24		25	\square	P30

Figure 2. 48-Pin Plastic Dual In-Line (PDIP) Package

Figure 3. 68-Pin Plastic Leaded Chip Carrier (PLCC) Package

PIN FUNCTIONS

Figure 4. Pin Functions

NMOS PRODUCTS

Z8600 ${ }^{28}{ }^{\text {® }}$
 Microcomputer

FEATURES

- Complete microcomputer, 2K bytes of ROM, 128 bytes of RAM, and 22 I/O lines.
(0) 144-byte register file, including 124 general-purpose registers, four $1 / \mathrm{O}$ port registers, and 14 status and control registers.
(Vectored, priority interrupts for I/O and counter/timers.
(Two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler.
(1) Register Pointer so that short, fast instructions can access any one of the nine working register groups.
(2n-chip oscillator that accepts crystal or external clock drive.
■ 8 MHz
■ Single +5 power supply-all pins TTL-compatible.
类 Average instruction execution time of $2.2 \mu \mathrm{~s}$, maximum $1.5 \mu \mathrm{~s}$.

GENERAL DESCRIPTION

The Z8600 microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z8600 offers:

- faster execution

■ more efficient use of memory
(1) more sophisticated interrupt, input/output, and bit manipulation capabilities

© easier system expansion

Under program control, the MCU can be tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 2 K bytes of internal ROM. In all configurations, a large number of pins remain available for I/O.
The MCU is offered in a 28 pin Dual-In-Line-Package (DIP) (Figures 1 and 2).

Figure 1. Pin Functions

Figure 2. Pin Assignments

PIN DESCRIPTIONS

$\overline{\mathbf{D S}}$. Data Strobe (output, active Low). Data Strobe is activated once for each memory transfer.
$\mathbf{P 0}_{0}-\mathbf{P 0}_{5}, \mathrm{P1}_{\mathbf{0}}-\mathbf{P 1} \mathbf{1}_{\mathbf{7}}, \mathrm{P}_{1}-\mathbf{P 2}_{5}, \mathrm{P3}_{1}, \mathrm{P3}_{5}, \mathrm{P3}_{6}$. //O Port lines (bidirectional, TTL-compatible). These 22 I/O lines are grouped in four ports that can be configured under program control for I/O.
$\overline{\operatorname{RESET}}$. Reset (input, active Low). $\overline{\operatorname{RESET}}$ initializes the MCU. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel-resonant 8 MHz crystal to the on-chip clock oscillator and buffer.

ARCHITECTURE

The MCU's architecture is characterized by a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are helpful in many applications. (Figure 3).

Microcomputer applications demand powerful I/O capabilities. The MCU fulfills this with 22 pins dedicated to input and output. These lines are grouped in four ports and are configurable under software control to provide timing, status signals, and parallel I/O.

Two basic internal address spaces are available to support this wide range of configurations: program memory and the register file. The 144-byte random-access register file is composed of 124 general-purpose registers, four I/O port registers, and 14 control and status registers.

To unburden the program from coping with real-time problems such as counting/timing, two counter/timers with a large number of user-selectable modes are offered on-chip.

Figure 3. Functional Block Diagram

ADDRESS SPACES

Program Memory. The 16 -bit program counter addresses 2 K bytes of program memory space as shown in Figure 4.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain three 16 -bit vectors that correspond to the three available interrupts.
Register File. The 144-byte register file includes four I/O port registers ($R_{0}-R_{3}$), 124 general-purpose registers ($R_{4}-R_{127}$) and 14 control and status registers ($R_{241}-R_{255}$). These registers are assigned the address locations shown in Figure 5.

Instructions can access registers directly or indirectly with an 8 -bit address field. The MCU also allows short 4 -bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 6). The Register Pointer addresses the starting location of the active working-register group.

Stacks. An 8-bit Stack Pointer (R_{255}) is used for the internal stack that resides within the 124 general-purpose registers ($\mathrm{R}_{4}-\mathrm{R}_{127}$).

Figure 4. Program Memory Map

Figure 5. Register File

Figure 6. Register Pointer

COUNTER/TIMERS

The MCU contains two 8-bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6-bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}\left(\mathrm{~T}_{1}\right)$-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass
mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T_{1} is user-definable and can be the internal microprocessor clock (4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line P_{6} also serves as a timer output (TOUT) through which T_{0}, T_{1} or the internal clock can be output.

I/O PORTS

The MCU has 22 lines dedicated to input and output grouped in four ports. Under software control, the ports can be programmed to provide address outputs, timing, status signals, and parallel I/O. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 0 can be programmed as an I/O port.
Port 1 can be programmed as a byte I/O port.

Port 2 can be programmed independently as input or output and is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.
Port 3 can be configured as I/O or control lines. P_{1} is a general purpose input or can be used for an external interrupt request signal (IRQ_{2}). P_{5} and P_{6} are general purpose outputs. P_{6} is also used for timer input (T_{IN}) and output (TOUT) signals.

INTERRUPTS

The MCU allows three different interrupts from three sources, the Port 3 line $\mathrm{P} 3_{1}$ and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the three interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.
All interrupts are vectored. When an interrupt request is granted, an interrupt machine cycle is entered. This disables
all subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector locations reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

CLOCK

The on-chip oscillator has a high-gain parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 $=$ Input, XTAL2 $=$ Output).
Crystal source is connected across XTAL1 and XTAL2 using the recommended capacitors ($\mathrm{C} 1 \leqslant 15 \mathrm{pf}$) from each pin to ground. The specifications are as follows:

- AT cut, parallel resonant
- Fundamental type, 8 MHz maximum

■ Series resistance, Rs $\leqslant 100 \Omega$

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.
IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
$\mathbf{r} \quad$ Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.

dst	Destination location or contents
src	Source location or contents
cc	Condition code (see list)
@	Indirect address prefix
SP	Stack pointer (control registers 254-255)
PC	Program counter
FLAGS	Flag register (control register 252)
RP	Register pointer (control register 253)
IMR	Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " \leftarrow ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n$)$ " is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:

C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag

Affected flags are indicated by:

$\mathbf{0}$	Cleared to zero
$\mathbf{1}$	Set to one
*	Set or cleared according to operation
$\mathbf{-}$	Unaffected
\mathbf{X}	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always true	-
0111	C	Carry	$C=1$
1111	NC	No carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not zero	$Z=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(S X O R V)=0$
0001	LT	Less than	$(S X O R V)=1$
1010	GT	Greater than	$[Z O R(S X O R V)]=0$
0010	LE	Less than or equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$C=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0 \mathrm{AND} Z=0)=1$
0011	ULE	Unsigned less than or equal	$(C O R Z)=1$
0000		Never true	-

Two-Byte Instructions
Three-Byte Instructions

Figure 7. Instruction Formats

INSTRUCTION SUMMARY

Instruction and Operation	Addr Mode dst \quad src	$\begin{aligned} & \text { Opcode } \\ & \text { Byte } \\ & \text { (Hex) } \end{aligned}$	Flags Affected C Z S V D H	Instruction and Operation	Addr Mode	Opcode Byte (Hex)	Flags Affected
					dst src		C Z SVD H
ADC dst,src $\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$	(Note 1)	$1 \square$	* * * * 0 *	$\begin{aligned} & \text { CP dst,src } \\ & \text { dst - src } \end{aligned}$	(Note 1)	A \square	* * * * - -
ADD dst,src $d s t \leftarrow d s t+$ src	(Note 1)	$0 \square$	* * * * 0 *	DA dst dst \leftarrow DA dst	$\begin{gathered} R \\ \text { IR } \end{gathered}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * \times - -
AND dst,src dst \leftarrow dst AND src	(Note 1)	$5 \square$	- $* * 0-$	$\begin{aligned} & \text { DEC } d s t \\ & \mathrm{dst} \leftarrow \mathrm{dst}-1 \end{aligned}$	$\begin{aligned} & R \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$-* * *$
CALL dst $S P \leftarrow S P-2$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - - -	DECW dst $d s t \leftarrow d s t-1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-***--
$@ \mathrm{SP} \leftarrow \mathrm{PC} ; \mathrm{PC} \leftarrow$ dst				DI			
CCF		EF	* - - - -	$\mathrm{MR}(7) \leftarrow 0$		8F	- - -
C \leftarrow NOT C				DJNZ r,dst	RA	rA	- - - - -
$\begin{aligned} & \text { CLR dst } \\ & \text { dst } \leftarrow 0 \end{aligned}$	$\begin{aligned} & R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{B0} \\ & \mathrm{~B} 1 \end{aligned}$	- - - - -	$\begin{aligned} & r \leftarrow r-1 \\ & \text { if } r \neq 0 \end{aligned}$		$r=0-F$	
COM dst dst \leftarrow NOT dst	$\begin{gathered} R \\ \mathbb{R} \end{gathered}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-** $0--$	$\begin{gathered} \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst} \\ \text { Range: }+127,-128 \end{gathered}$			

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Addr Mode		Opcode Byte (Hex)	Flags Affected CZSVDH
	dst	SrC		
$\begin{aligned} & \operatorname{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$			9 F	------
$\begin{aligned} & \text { INC dst } \\ & \mathrm{dst} \leftarrow \mathrm{dst}+1 \end{aligned}$	R IR		$\begin{gathered} r \mathrm{E} \\ \mathrm{r}=0-\mathrm{F} \\ 20 \\ 21 \end{gathered}$	$-* * *--$
INCW dst dst $\leftarrow d s t+1$	$\begin{aligned} & \text { RR } \end{aligned}$		$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	$-* * *--$
IRET FLAGS $\leftarrow @ S P ; S P \leftarrow$ $P C \leftarrow @ S P ; S P \leftarrow S P$	$\begin{aligned} & -S P+ \\ & +2 ; \end{aligned}$	$\{(7)$	BF	* * * * * *
JP cc, dst if cc is true $\mathrm{PC} \leftarrow \mathrm{dst}$	DA IRR		$\begin{gathered} c D \\ c=0-F \\ 30 \end{gathered}$	
JR cc, dst if cc is true, $P C \leftarrow P C+d s t$ Range: + 127, -128	RA		$\begin{gathered} c B \\ c=0-F \end{gathered}$	
LD dst,src dst \leftarrow src	r r R r X r Ir R R R IR IR	Im R r X r Ir r R IR IM IM R	$\begin{gathered} \mathrm{rC} \\ \mathrm{r} 8 \\ \mathrm{r} 9 \\ \mathrm{r}= \\ 0-\mathrm{F} \\ \mathrm{C} 7 \\ \mathrm{D} 7 \\ \mathrm{E} 3 \\ \text { F3 } \\ \mathrm{E} 4 \\ \mathrm{E} 5 \\ \mathrm{E} 6 \\ \mathrm{E} 7 \\ \mathrm{~F} 5 \end{gathered}$	- - - - -
LDC dst,src dst \leftarrow src	$\begin{gathered} r \\ \mid r r \end{gathered}$	Irr	$\begin{aligned} & \text { C2 } \\ & \text { D2 } \end{aligned}$	- - - - -
LDCI dst,src dst \leftarrow src $r \leftarrow r+1 ; r r \leftarrow r+1$	$\begin{aligned} & \text { Ir } \\ & \text { Irr } \end{aligned}$	$\begin{aligned} & \mathrm{Irr} \\ & \mathrm{Ir} \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & \text { D3 } \end{aligned}$	------
NOP			FF	-----
$\begin{aligned} & \text { OR dst,src } \\ & \text { dst } \leftarrow \text { dst OR src } \end{aligned}$	$(\mathrm{No}$		$4 \square$	-** $0-$
$\begin{aligned} & \text { POP dst } \\ & \text { dst } \leftarrow \text { SP; } \\ & S P \leftarrow S P+1 \end{aligned}$		$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	50	-----
PUSH src $S P \leftarrow S P-1 ; @ S P \leftarrow$		$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	$------$
$\begin{aligned} & \mathrm{RCF} \\ & \mathrm{C} \leftarrow 0 \end{aligned}$			CF	$0----$
$\begin{aligned} & \text { RET } \\ & \mathrm{PC} \leftarrow @ S P ; S P \leftarrow \mathrm{SP} \end{aligned}$			AF	------

Instruction and Operation	Opcode	Flags Affected
	Byte (Hex)	CZSVDH
$\mathrm{RL} \text { dst } \begin{array}{lll} \mathrm{a}, ~ & \mathrm{r} & \mathrm{R} \\ \mathrm{R} \end{array}$	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	* * * * - -
	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	* * * * - -
	$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$	* * * * -
	$\begin{aligned} & \mathrm{C} 0 \\ & \mathrm{C} 1 \end{aligned}$	* * * * -
SBC dst,src (Note 1) dst \leftarrow dst $\leftarrow \operatorname{src} \leftarrow C$	$3 \square$	* * * * 1 *
$\begin{aligned} & \text { SCF } \\ & C \leftarrow 1 \end{aligned}$	DF	$1----$
SRA dst	$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$	* * * 0 -
SRP src RP \leftarrow src	31	- - - -
SUB dst,src (Note 1) dst \leftarrow dst \leftarrow src	$2 \square$	* * * * 1 *
	$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	$X * * \times-$
TCM dst,src (Note 1) (NOT dst) AND src	$6 \square$	-**0--
TM dst,src dst AND src \quad (Note 1)	$7 \square$	- * $* 0--$
XOR dst,src (Note 1) dst \leftarrow dst XOR src	$B \square$	- * * $0--$

NOTE 1: These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \square in this table, and its value is found in the following table to the right of the applicable addressing mode pair.
For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

Addr Mode		Lower Opcode Nibble
dst	src	2
r	r	3
r	Ir	4
R	R	5
R	IR	6
R	IM	7
IR	IM	

REGISTERS (Continued)

R248 P01M

PORT 0 AND 1 MODE REGISTER
(F8H; Write Only)

R249 IPR
INTERRUPT PRIORITY REGISTER
(F9H; Write Only)

R250 IRQ
INTERRUPT REQUEST REGISTER
(FAH; Read/Write)

R25i livir
INTERRUPT MASK REGISTER
(FBH; Read/Write)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

R252 FLAGS FLAG REGISTER ($\mathrm{FCH}_{\mathrm{H}}$; Read/Write)

R253 RP
REGISTER POINTER
(FDH; Read/Write)

R255 SPL
STACK POINTER
(FFH; Read/Write)

Figure 8. Control Registers (Continued)

OPCODE MAP

[^5]
REGISTERS

R241 TMR
TIMER MODE REGISTER
($\mathrm{F} 1_{\mathrm{H}}$; Read/Write)

$0=$ NO FUNCTION $1=$ LOAD To TRIGGER INPUT
N-RETRIGGERABLE) TRIGGER INPUT $=$ (RETRIGGERABLE)

R245 PRE0

PRESCALER 0 REGISTER
(F5H; Write Only)

D_{1}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

COUNT MODE
$0=T_{0}$ SINGLE.PASS
$1=T_{0}$ MODULO.N
RESERVED

PRESCALER MODULO
(RANGE. 1 -64 DECIMAL
$01-00 \mathrm{HEX}$)
01-00 HEX)

R242 T1
COUNTER TIMER 1 REGISTER
(F2H; Read/Write)

 T_{1} CURRENT VALUE (WHEN READ)

R244 T0
COUNTER/TIMER 0 REGISTER
(F4H; Read/Write)

R246 P2M

PORT 2 MODE REGISTER
(F6н; Write Only)

P2 1_{1} - 2_{5} DEFINITION O DEFINES BIT AS OUTPUT 0 DEFINES BIT AS OUTPU
1 DEFINES BIT AS INPUT

R247 P3M

PORT 3 MODE REGISTER
(F7H; Write Only)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Figure 8. Control Registers

Figure 9. Timing

AC CHARACTERISTICS

Timing Table

			$\mathbf{Z 8 6 0 0}$		
Number	Symbol	Parameter	Min	Max	Notes*
1	TpC	Input Clock Period	125	1000	1
2	TrC,TfC	Clock Input Rise and Fall Times		25	1
3	TwC	Input Clock Width	37		1
4	TwTinL	Timer Input Low Width	100	2	
5	TwTinH	Timer Input High Width	$3 T p C$	2	
6	TpTin	Timer Input Period	$3 T p C$	2	
7	TrTin,TfTin	Timer Input Rise and Fall Times		100	2
8	TwIL	Interrupt Request Input Low Time	100		2,3
9	TwIH	Interrupt Request Input High Time	$3 T p C$	2.3	

NOTES:

1. Clock timing references use 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port $3\left(\mathrm{P3}_{1}-\mathrm{PB}_{3}\right)$.

* Units in nanoseconds (ns).

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

$$
\text { to GND . - } 0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Operating Ambient
Temperature See Ordering Information
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin.

Standard conditions are:
■ $+4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.25 \mathrm{~V}$

- GND $=0 \mathrm{~V}$
- $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$

Figure 10. Test Load 1

DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Unit	Condition
V_{CH}	Clock Input High Voltage	3.8	V_{CC}	V	Driven by External Clock Generator
V_{CL}	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	V_{CC}	V	
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V	
$V_{\text {RH }}$	Reset Input High Voltage	3.8	$V_{C C}$	V	
$V_{\text {RL }}$	Reset Input Low Voltage	-0.3	0.8	V	
V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{l}^{\mathrm{OL}}=+2.0 \mathrm{~mA}$
IIL	Input Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant+5.25 \mathrm{~V}$
${ }^{1} \mathrm{OH}$	Output Drive Current		$\begin{aligned} & 1.5 \\ & 2.50 \end{aligned}$	$\begin{array}{r} \mathrm{mA} \\ \mu \mathrm{~A} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=+2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=+4.0 \mathrm{~V} \end{aligned}$
IOL	Output Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant+5.25 \mathrm{~V}$
I_{R}	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
ICC	VCC Supply Current		150	mA	

		Z8601 Single-Chip MCU with 2K ROM 28603 Prototyping Device with 2 K EPROM Interface z8611 Single-Chip MCU with 4K ROM Z8613 Prototyping Device with 4 K EPROM Interface
Features	Complete microcomputer, $2 \mathrm{~K}(8601)$ or 4 K (8611) bytes of ROM, 128 bytes of RAM, 32 I/O lines, and up to 62 K (8601) or 60 K (8611) bytes addressable external space each for program and data memory.	■ Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
		(1) Register Pointer so that short, fast instructions can access any of nine working register groups in $1 \mu \mathrm{~s}$.
	purpose registers, four I/O port registers, and 16 status and control registers.	(On-chip oscillator which accepts crystal or external clock drive.
	■ Average instruction execution time of $1.5 \mu \mathrm{~s}$, maximum of $1 \mu \mathrm{~s}$.	- Single +5 V power supply-all pins TTL compatible.
	- Vectored, priority interrupts for I/O, counter/timers, and UART.	(1) 12.5 MHz .

General

 DescriptionThe Z8 microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z8 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Under program control, the Z8 can be tailored to the needs of its user. It can be configured as a

stand-alone microcomputer with 2 K or 4 K bytes of internal ROM, a traditional microprocessor that manages up to 124 K bytes of external memory, or a parallel-processing element in a system with other processors and peripheral controllers linked by the Z-BUS® ${ }^{\circledR}$ bus. In all configurations, a large number of pins remain available for I/O.

Figure 2a. 40-pin Dual-In-Line Package (DIP), Pin Assignments

Pin
Description
$\overline{\text { AS }}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and l, Data Strobe and Read/Write.
$\overline{\mathrm{DS}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{Pl}_{0}-\mathrm{Pl}_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P}_{3}-\mathrm{P3}_{7} . I / O$ Port Lines (input/outputs, TTL-compatible). These 32 lines are divided into four 8 -bit I/O ports that can be configured under program control for I/O or external memory interface.
$\overline{\text { RESET. Reset (input, active Low). } \overline{\mathrm{RESET}} \text { ini- }}$ tializes the Z8. When RESET is deactivated,
program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
ROMIess. (input, active LOW). This pin is only available on the 44 pin version of the Z8611. When connected to GND disables the internal ROM and forces the part to function as a Z8681 ROMless Z8. When left unconnected or pulled high to V_{cc} the part will function normally as a Z8611.
$\mathbf{R} / \overline{\mathrm{W}}$. Read/Write (output). $\mathrm{R} / \overline{\mathrm{W}}$ is Low when the $\mathrm{Z8}$ is writing to external program or data memory.
XTALL, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel resonant 12.5 MHz crystal or an external singlephase 12.5 MHz clock to the on-chip clock oscillator and buffer.

Figure 2b. 44-pin Chip Carrier, Pin Assignments

Architecture

Z8 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z8 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/ data bus for interfacing external memory.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z 8 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a microprocessor that can address 124 K (Z8601) or 120 K (Z8611) bytes of external memory.

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144 -byte random-access register file is composed of 124 general-purpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of userselectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

Figure 3. Functional Block Diagram

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 2048 (Z8601) or 4096 (Z8611) bytes consist of on-chip mask-programmed ROM. At addresses 2048 (Z8601) or 4096 (Z8611) and greater, the Z 8 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.

Data Memory. The Z8 can address 62K (Z8601) or 60 K (Z861l) bytes of external data memory beginning at location 2048 (Z8601) or 4096 (Z8611) (Figure 5). External data memory may

Figure 4. Program Memory Map
be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P} 3_{4}$, is used to distinguish between data and program memory space.

Register File. The 144-byte register file includes four I/O port registers (R0-R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

Z8 instructions can access registers directly or indirectly with an 8-bit address field. The Z8 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is

Figure 5. Data Memory Map

Figure 6. The Register File

Figure 7. The Register Pointer
divided into nine working-register groups, each occupying 16 continguous locations (Figure 6). The Register Pointer addresses the starting location of the active working-register group.
Stacks. Either the internal register file or the external data memory can be used for the stack.

A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 2048 (8601) or 4096 (8611) and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

Serial Input/ Output

Port 3 lines P_{0} and P_{7} can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, at 12 MHz .

The Z 8 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity
selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request $\left(\operatorname{IRQ}_{4}\right)$ is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ_{3} interrupt request.

Transmitted Data

(No Parity)

Transmitted Data
(With Parity)

Received Data

(No Parity)

Received Data
(With Parity)

Figure 8. Serial Data Formats

Counter/ Timers

The Z 8 contains two 8 -bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6-bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request-IRQ ${ }_{4}\left(\mathrm{t}_{0}\right)$ or $\operatorname{IRQ}_{5}\left(\mathrm{~T}_{1}\right)$-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the . initial value. The counters can also be programmed to stop upon reaching zero (single-
pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T_{1} is user-definable and can be the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line P_{6} also serves as a timer output (TOUT) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

The Z 8 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address
outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as abyte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port l may be placed under handshake control. In this configuration, Port 3 lines P_{3} and P_{4} are used as the handshake controls RDY 1 and $\overline{D A V}_{1}$ (Ready and Data Available).

Memory locations greater than 2048 (Z8601) or 4096 (Z8611) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port l can be placed in the high-impedance state along with Port 0, $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$,
allowing the Z 8 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P_{3} as a Bus Acknowledge input and P_{4} as a Bus Request output.

Figure 9a. Port 1

Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines P_{2} and P_{5} are used as the handshake controls $\overline{\mathrm{DAV}}_{0}$ and $R D Y_{0}$. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}-A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while
the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the highimpedance state along with Port l and the control signals $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.

Figure 9b. Port 0

Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines P_{1} and P_{6} are used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and RDY_{2}. The handshake signal assignment for Port 3 lines $P 3_{1}$ and $P 3_{6}$ is. dictated by the direction (input or output) assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines P_{0} and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0,1 and 2 ($\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals ($I R Q_{0}-I R Q_{3}$); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\mathrm{OUT}}$) and Data Memory Select ($\overline{\mathrm{DM}}$).

Interrupts	The Z8 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All $\mathrm{Z8}$ interrupts are vectored. When an interrupt request is granted, an interrupt machine	cycle is entered. This disables all subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.
Clock	The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 $=$ Input, XTAL2 $=$ Output). The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitors	($\mathrm{C}_{1} \leq 15 \mathrm{pF}$) from each pin to ground. The specifications for the crystal are as follows: - AT cut, parallel resonant - Fundamental type, 12.5 MHz maximum - Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$

Z8603/13 Protopack Emulator

The Z8 Protopack is used for prototype development and preproduction of maskprogrammed applications. The Protopack is a ROMless version of the standard Z8601 or Z8611 housed in a pin-compatible 40-pin package (Figure 11).
To provide pin compatibility and interchangeability with the standard maskprogrammed device, the Protopack carries piggy-back a 24 pin socket for a direct interface to program memory (Figure 1). The Z8603 24 -pin socket is equipped with 11 ROM address lines, 8 ROM data lines and necessary control lines for interface to 2716 EPROM for the first 2 K bytes of program memory. The Z8613 24 -pin socket is

Figure 11. The Z8 Microcomputer Protopack Emulator

Instruction

Set
Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
(1) Indirect address prefix

SP Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)
equipped with 12 ROM address lines, 8 ROM data lines and necessary control lines for interface to 2732 EPROM for the first 4 K bytes of program memory.
Pin compatibility allows the user to design the pc board for a final 40-pin maskprogrammed Z8, and, at the same time, allows the use of the Protopack to build the prototype and pilot production units. When the final program is established, the user can then switch over to the 40-pin mask-programmed Z 8 for large volume production. The Protopack is also useful in small volume applica tions where masked ROM setup time, mask charges, etc., are prohibitive and program flexibility is desired.
Compared to the conventional EPROM versions of the single-chip microcomputers, the Protopack approach offers two main advantages:

Ease of developing various programs during the prototyping stage. For instance, in applications where the same hardware configuration is used with more than one program, the Protopack allows economical program storage in separate EPROMs (or PROMs), whereas the use of separate EPROM-based single-chip microcomputers is more costly.
Elimination of long lead time in procuring EPROM-based microcomputers.

Assignment of a value is indicated by the symbol "-". For example,

$$
\mathrm{dst}-\mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n) " is used to refer to bit " n " of a given location. For example, dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:

C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
$\mathbf{0}$	Cleared to zero $\mathbf{1}$
Set to one *	Set or cleared according to operätion
$\mathbf{-}$	Unaffected
\mathbf{x}	Undefined

Condition	Value	Mnemonic	Meaning	Flags Set
	1000		Always true	\cdots
	0111	C	Carry	$\mathrm{C}=1$
	1111	NC	No carry	$\mathrm{C}=0$
	0110	2	Zero	$\mathrm{Z}=1$
	1110	NZ	Not zero	$\mathrm{Z}=0$
	1101	PL	Plus	$\mathrm{S}=0$
	0101	MI	Minus	$\mathrm{S}=1$
	0100	OV	Overflow	$\mathrm{V}=1$
	1100	NOV	No overflow	$\mathrm{V}=0$
	0110	EQ	Equal	$\mathrm{Z}=1$
	1110	NE	Not equal	$\mathrm{Z}=0$
	1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
	0001	LT	Less than	(S XOR V) $=1$
	1010	GT	Greater than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V})$] $=0$
	0010	LE	Less than or equal	$[\mathrm{Z} O R(S \mathrm{XOR} V)]=1$
	1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
	0111	ULT	Unsigned less than	$\mathrm{C}=1$
	1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
	0011	ULE	Unsigned less than or equal	$(\mathrm{CORZ})=1$
	0000		Never true	---

Instruction
 Formats

OPC dSt OPC	CCF, DI, EI, IRET, NOP, RCF, RET, SCF

One-Byte Instructions

Figure 12. Instruction Formats

R240 SIO
Serial I/O Register
(FO_{H}; Read/Write)

| D_{7} | D_{6} |
| :--- | :--- | $\mathrm{D}_{5} \mathrm{D}_{4}\left|\mathrm{D}_{3}\right| \mathrm{D}_{2}\left|\mathrm{D}_{1}\right| \mathrm{D}_{0}$

R241 TMR
Timer Mode Register
($\mathrm{Fl}_{\mathrm{H}} ;$ Read/Write)

R242 Tl
Counter Timer 1 Register
($\mathrm{F} 2_{\mathrm{H}}$; Read/Write)

R243 PRE1
Prescaler 1 Register
(F_{3}; Write Only)

$\mathrm{D}_{7}\left|\mathrm{D}_{6}\right| \mathrm{D}_{5}\left|\mathrm{D}_{4}\right| \mathrm{D}_{3}\left|\mathrm{D}_{2}\right| \mathrm{D}_{1} \mid \mathrm{D}_{0}$

R245 PREO
Prescaler 0 Register
(FS_{H}; Write Only)

R246 P2M

Port 2 Mode Register
(F_{H}; Write Only)

R247 P3M
Port 3 Mode Register
(FF_{H}; Write Only)

R250 IRQ
Interrupt Request Register
(FA_{H}; Read/Write)

R251 IMR
Interrupt Mask Register
(FB_{H}; Read/Write)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

R254 SPH
Stack Pointer
($\mathrm{FE}_{\mathrm{H}} ;$ Read/Write)

$D_{7} D_{6}$	$D_{5}\left\|D_{4}\right\| D_{3}\left\|D_{2}\right\| D_{1} \mid D_{0}$

R255 SPL
Stack Pointer
(FF_{H}; Read/Write)

Opcode
Map

Lower Nibble (Hex)

Absolute	Voltages on all pins
Maximum	with respect to GND.........-0.3 V to +7.0 V
Ratings	Operating Ambient
	Temperature...........ee Ordering Information
	Storage Temperature........ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin.

Standard conditions are:
$\square+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$
\square GND $=0 \mathrm{~V}$
$\square 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Figure 14. Test Load 1

DC Characteristics	Symbol	- Parameter	Min	Max	Unit	Condition
	v_{CH}	Clock Input High Voltage	3.8	V_{CC}	V	Driven by External Clock Generator
	v_{CL}	Clock Input Low Voltage	-0.3	0.8	v	Driven by External Clock Generator
	$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	V_{CC}	V	
	$\mathrm{V}_{\text {IL }}$	Input Low Voltage ${ }^{\text {c }}$	-0.3	0.8	v	
	$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	v_{CC}	v	,
	$\mathrm{V}_{\text {RL }}$	Reset Input Low Voltage	-0.3	0.8	V	
	V_{OH}	Output High Voltage	2.4		v	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
	V_{LL}	Output Low Voltage		0.4	v	$\mathrm{IOL}=+2.0 \mathrm{~mA}$
	$\mathrm{I}_{\text {IL }}$	Input Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
	$\mathrm{IOL}^{\text {L }}$	Output Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
	$\mathrm{I}_{\text {IR }}$	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
	I_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Current		150	mA	

External I/O or Memory Read and Write Timing

Figure 15. External I/O or Memory Read/Write

No.	Symbol	Parameter	8 MHz		12.5 MHz		Notes* ${ }^{\circ}$
			Min	Max	Min	Max	
1	$\operatorname{TdA} A(A S)$	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50		35		2,3
2	$\operatorname{TdAS}(A)$	$\overline{\overline{A S}} \uparrow$ to Address Float Delay	60		45		2,3
3	TdAS(DR)	$\overline{\mathrm{AS}} \uparrow$ to Read Data Required Valid		320		220	1,2,3
4	TwAS	$\overline{\text { AS Low Width }}$	80		55		1,2,3
5	TdAz(DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		0		
6 -TwDSR —— $\overline{\mathrm{DS}}$ (Read) Low Width —_ $250 \ldots 185$ — \longrightarrow _ 2,3							
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3
8	TdDSR(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		200		130	1,2,3
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		
10	$\operatorname{TdDS}(\mathrm{A})$	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	80		45		2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		2.3
12 - TdR/W $(\mathrm{AS}) \longrightarrow \mathrm{R} / \overline{\mathrm{W}}$ Valid to $\overline{\mathrm{AS}} \uparrow$ Delay $\longrightarrow 30-30$ -							
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to R/W \bar{W} Not Valid	60		35		2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) \downarrow Delay	50		35		2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	80		45		2,3
16	$\mathrm{Td} A(\mathrm{DR})$	Address Valid to Read Data Required Valid		410		255	1,2,3
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		55		2,3

NOTES:

1. When using extended memory timing add 2 TpC .
2. Timing numbers given are for minimum TpC .
3. See clock cycle time dependent characteristics table.
\dagger Test Load 1.
${ }^{\circ}$ All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* All units in nanoseconds (ns).

Additional Timing Table

Figure 16. Additional Timing

No.	Symbol	Parameter	8 MHz		12.5 MHz		Notes*
			Min	Max	Min	Max	
1	TpC	Input Clock Period	125	1000	80	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25.		15	1
3	TwC	Input Clock Width	37		26		1
4	TwTinL	Time Input Low Width	100		70		2
5 - TwTinH —— Timer Input High Width $\quad 3 \mathrm{TpC}$ - ${ }^{\text {- }} 2$							
6	TpTin	Timer Input Period	8TpC		8TpC		2
7	TrTin,TfTin	Timer Input Rise And Fall Times		100		100	2
8 a	TwIL	Interrupt Request Input Low Time	100		70		2,3
8b	TwIL	Interrupt Request Input Low Time		3 TpC	3 TpC		2,4
9	TwIH	Interrupt Request Input High Time		3TpC	3 TpC		2,3

NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V for \quad 3. Interrupt request via $\mathrm{Port} 3\left(\mathrm{P}_{1}-\mathrm{P} 3_{3}\right)$.
a logic "0".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for

* Units in nanoseconds (ns).
a logic " 0 ".

Memory Port

 Timing

Figure 17. Memory Port Timing

No.	Symbol	Parameter	Min	Max	Notes*
1	TdA $(D I)$	Address Valid to Data Input Delay		320	1,2
2	ThDI (A)	Data In Hold time	0		1

NOTES:

1. Test Load 2.
*Units are nanoseconds unless otherwise specified.
2. This is a Clock-Cycle-Dependent parameter. For clock frequencies other than the maximum, use the following formula: $5 \mathrm{TpC}-95$

Figure 18a. Input Handshake

Figure 18b. Output Handshake

	Symbol		Parameter		Min	Max	Notes*
	TsDI(DAV)		Data In Setup Time		0		
2	ThDI(DAV)		Data In Hold time		160		
3	TwDAV		Data Available Width		120		
	TdDAVIf(RD	DY)	$\overline{\text { DAV }} \downarrow$ Input to RDY \downarrow Delay			120	1,2
5 -TdDAVOf(RDY) - - $\overline{\mathrm{DAV}} \downarrow$ Output to RDY \downarrow Delay					0		1,3
6	TdDAVIr(R	DY)	$\overline{\text { DAV }} \uparrow$ Input to RDY \uparrow Delay			120	1,2
7	TdDAVOr(R	DY)	$\overline{\text { DAV }} \uparrow$ Output to RDY \uparrow Delay		0		1,3
8	TdDO(DAV)		Data Out to $\overline{\text { DAV }} \downarrow$ Delay		30		1
9	TdRDY(DAV)		Rdy \downarrow Input to $\overline{\text { DAV }} \uparrow$ Delay		0	140	1
NOTES: 1. Test load 1 2. Input handshake 3. Output handshake \dagger All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic "0".				* Units in nanoseconds (ns).			
Cloc Cyc Dep Cha	k- e-Time-	Number	Symbol	Equation			
	endent acteristics	1	TdA(AS)	TpC-50			
		2	TdAS(A)	TpC-40			
		3	TdAS(DR)	$4 \mathrm{TpC}-110^{*}$			
		4	TwAS	TpC-30			
			TwDSR	- 3TpC-65*			
		7	TwDSW	2TpC-55*			
		8	TdDSR(DR)	$3 \mathrm{TpC}-120^{*}$			
		10	Td(DS)A	TpC-40			
		11	TdDS(AS)	TpC-30			
		12	TdR/W(AS)	- TpC-55			
		13	TdDS(R/W)	TpC-50			
		14	TdDW(DSW)	TpC-50			
		15	TdDS(DW)	TpC-40			
		16	TdA(DR)	5TpC-160*			
		17	TdAS(DS)	TpC-30			

[^6]
Z8602

NMOS Z8 ${ }^{\circledR}$ 8-BIT
MCU Keyboard Controller

FEATURES

- 8 -bit microcontroller, 40-pin DIP package
- Low cost
- +4.75 to +5.25 Vcc range
- Low power consumption - 750 mW
- Fast instruction pointer - 1.5 microsecond @ 4 MHz
- 32 input/output lines
- All digital inputs NMOS levels
- 2 K bytes ROM
- 124 bytes of RAM
- Full Duplex Serial/Parallel Port
- Two programmable 8 -bit Counter/Timers each with 6 -bit programmable prescaler
- Six vectored, priority interrupts from eight different sources
- Clock speed up to 4 MHz
- On-chip oscillator that accepts a crystal, ceramic resonator or external clock drive
- Low EMI emission

DESCRIPTION

The 78602 Keyboard Controller (KBC) introduces a new level of sophistication to single-chip architecture. The Z8602 is a member of the Z 8 single-chip microcomputer family with 2 K bytes of ROM.

The Z8602 KBC is housed in a 40-pin DIP, and is manufactured in NMOS technology. Zilog's microcontroller offers fastexecution, more efficientuse of memory, more sophisticated interrupt, input/output bit-manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The KBC architecture is characterized by a flexible I/O scheme, an efficient register, $1 / O$, and a number of ancillary features that are useful in many industrial and advanced scientific applications.

The device applications demand powerfull/O capabilities. The KBC fulfills this with 32-pins dedicated to input and output. These lines are grouped into four ports, each port
consists of 8 lines, and are configurable under software control to provide timing, status signals, and serial or parallel I/O ports.

The Z8602 offers Low EMI emission and is achieved by means of several modifications in the output drivers and clock circuitry of the device.

There are two basic address spaces which are available to support this wide range of configurations: Program Memory and 124 General-Purpose Registers.

The KBC offers two on-chip counter/timers with a large number of user selectable modes, and an asynchronous receiver/transmitter (UART). This unburdens the program from coping with real-time problems such as counting/ timing and serial data communications. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate (Figure 1).

Figure 1. Functional Block Diagram

Figure 2. Pin Configuration

PIN IDENTIFICATION

Pin \#	Symbol	Function	Direction
1	VCC	Power Supply	Input
2	XTAL2	Crystal Oscillator Clock	Output
3	XTAL1	Crystal Oscillator Clock	Input
4	P37	Port 3 pin 7	Output
5	P30	Port 3 pin 0	Input
6	IRESET	Reset	Input
7	NC	Not Connecting	
8	NC	Not Connecting	
9	NC	Not Connecting	
10	P35	Port 3 pin 5	Output
11	GND	Ground, V	
12	P32	Port 3 pin 2	Input
$13-20$	PO0-7	Port 0 pin 0,1,2,3,4,5,6,7	Input
$21-28$	P10-7	Port 1 pin 0,1,2,3,4,5,6,7	In/Output
29			Port 3 pin 4
30	P34	Port 3 pin 3	Output
$31-38$	P33	Port 2 pin 0, 1,2,3,4,5,6,7	Input
39	P31	Port 3 pin 1	In/Output
40	P36	Port 3 pin 6	Input
		Output	

PIN FUNCTIONS

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-based input and output, respectively). These pins connect a parallel-resonant crystal or an external single-phase clock to the onchip clock oscillator and buffer.

Port 0 P07-P00. Port 0 is an 8-bit, nibble programmable, bidirectional, NMOS compatible I/O port. These $8 \mathrm{I} / \mathrm{O}$ lines can be configured under software control as a nibble input port, or as a nibble open drain output port. When used as an I/O port, inputs are standard NMOS and outputs are open drain (Figure 3).

Figure 3. Port 0 Configuration

Port 1 P17-P10. Port 1 is an 8-bit, byte programmable, bidirectional, NMOS compatible I/O port. These 8 I/O lines are configured under software control program as byte
input port or as an open drain output port. When used as an I/O port, inputs are standard NMOS and outputs are open drain (Figure 4).

Figure 4. Port 1 Configuration

Port 2 P27-P20. Port 2 is an 8-bit, bit programmable, bidirectional, NMOS compatible I/O port. These 8 I/O lines are configured under the software control program for I/O.

Port 2 can be programmed as bit-by-bit independently, as input or output, or configured to provide open-drain outputs (Figure 5).

Figure 5. Port 2 Configuration

Port 3 P37-P30. Port 3 is an 8 -bit, NMOS compatible four-fixed-input and four-fixed-output I/O port. These $81 / O$ lines have four-fixed-input (P33P30) and four-fixed-output (P37P34) ports. Port 3, when used as serial I/O, are programmed as serial in and serial out, respectively. Port 3 outputs have the capability of driving LED's directly with a pull-up resistor (output voltage or port 3 is $0.8 \mathrm{~V} @ 10 \mathrm{~mA}$).

Port 3 is configured under software control to provide the following control functions: four external interrupt request signals (IRQ3-IRQ0); timer input and output signals (Tin and Tout - Figure 6).

(a) Port 3 P34-P37

(b) Port 3 P30-P33

Figure 6. Port 3 Configuration

Port 3 lines, P30 and P37, are programmed as.serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0 , with a maximum rate of 60 K bits/second at 4 MHz .

(a) Transmitted Data (No Parity)

(b) Transmitted Data (With Parity)

The KBC automatically adds a start bit and two stop bits to transmitted data (Figure 7). Odd parity is also available as an option. 8 data bits are always transmitted, regardless of parity selection. If parity is enabled, the 8th bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

(c) Received Data (No Parity)

(d) Received Data (With Parity)

Figure 7. Serial Data Formats

Receive data must have a start bit, 8 data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.
/RESET (input, active Low). When activated, /RESET initializes the 8602. When /RESET is deactivated, program execution begins from the internal program location at 000C (HEX).

SPECIAL FUNCTIONS

The device incorporates special functions to enhance Zilog's $Z 8$ applications as a keyboard controller, scientific research and advanced technologies applications.

Program Memory. The 16 -bit program counter address 64 K bytes of program memory space at internal locations (Figure 8).

Figure 8. Program Memory Map

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations have six 16-bit vectors that correspond to the six available interrupts.

Byte 13 to byte 2047 consists of on-chip, mask-programmed ROM. Addresses 2048 and greater are reserved.

Register File. The register file (Figure 9) consists of 4 I/O port registers, 124 general-purpose registers and 16 con-
trol and status registers (R3-R0, R127-R4, and R255-R240 respectively). The instructions can access registers directly or indirectly via an 8-bit address field. This allows short, 4-bit register addressing using the Register Pointer (Figure 10). In the 4-bit mode, the register file is divided into 9 working-register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

LOCATION		IDENTIFIERS
255	Stack Pointer (Bits 7-0)	SPL
254	General Purpose Register (Bits 15-8)	GPR
253	Register Pointer	RP
252	Program Control Flags	FLAGS
251	Interrupt Mask Register	IMR
250	Interrupt Request Register	IRQ
249	Interrupt Priority Register	IPR
248	Ports 0-1 Mode	P01M
247	Port 3 Mode	P3M
246	Port 2 Mode	P2M
245	T0 Prescaler	PREQ
244	Timer/Counter 0	T0
243	T1 Prescaler	PRE1
242	Timer/Counter 1	T1
241	Timer Mode	TMR
240	Serial I/O	SIO
	Not Implemented	
4	General-Purpose Registers	
3	Port 3	P3
2	Port 2	P2
1	Port1	P1
0	Port 0	PO

Figure 9. Register File Configuration

Figure 10. Register Pointer Configuration

Stack. The KBC internal register files are used for the stack. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers.

Counter/Timers. There are two 8-bitprogrammable counter/ timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources however, the TO prescaler is driven by the internal clock only (Figure 11).

Figure 11. Counter/Timers Block Diagram

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its own counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counter and prescaler reach the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and are either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or non-retrigerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the TO output to the input of T1. Port 3 line P36 also serves as a timer output (Tout) through which T0, T1 or the internal clock are output.

Interrupts. The KBC have six different interrupts from eight different sources. These interrupts are maskable and prioritized (Figure 12). The 8 sources are divided as follow: 4 sources are claimed by Port 3 lines P33-P30, one in Serial Out, one in Serial In, and 2 in counter/timers. The Interrupt Masked Register globally or individually enables or disables the six interrupts requests.

Figure 12. Interrupt Block Diagram

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All interrupts are vectored through locations in the program memory. When an interruptmachine cycle is activated an interrupt request is granted. Thus, this disables all of the subsequent interrupts, saves the Program Counter and status flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interruptservice routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.

Clock. The KBC on-chip oscillator has a high-gain, paral-lel-resonant amplifier for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2= Out Put). The internal clock oscillates at the crystal frequency. The crystal should be AT cut, 4 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.

The crystal should be connected across XTAL 1 and XTAL2 using the recommended capacitors from each pin to ground (Figure 13). Capacitance is between 15 pF to 40 pF depending upon the manufacturer of crystal, ceramic resonator and PCB layout.

EMI. The Z8602 offers low EMI emission due to circuit modifications to improve EMI performance. The internal divide-by-two circuit has been removed to improve LMI performance.

The EMI measurements for the KBC are done in a closed field environment (e.g., indoor, at room temperature) wilh 5.1 V applied to the Vcc , where the EMI probe is positioned direclly above the Z8602. Far field EMI measurements should be conducted at an enclosed, shielded facility.

Figures 14 through 17 show the EMI plots for the Z8602 running at 2 and 4 MHz crystals with 40 and 100 MHz frequency span.

Figure 13. Oscillator Configuration

Figure 14. Zilog PC Board W/2 MHz Crystal

Figure 15. Z8602 PC Board W/2 Mhz Crystal

Figure 16. Z8602 PC Board W/4 MHz Crystal

Figure 17. $\mathbf{Z 8 6 0 2}$ W/4 MHz Crystal

STANDARD TEST CONDITIONS

Standard Test Conditions. The characteristics listed here apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 18).

Figure 18. Test Load Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V $_{\text {cc }}$	Supply Voltage $\left(^{*}\right)$	-0.3	+7.0	V
TSTG	Storage Temp	-65	+150	C
TA	Oper Ambient Temp	See ordering information		

(*) Voltage on all pins with respect to GND.

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sec-
tions of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS
$\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V} @ 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

\dagger Typical@ $25^{\circ} \mathrm{C}$

CONTROL REGISTERS

Figure 19. Serial I/O Register
(FOH; Read/Write)

Figure 20. Timer Mode Register
(F1H; Read/Write)

R242 T1

Figure 21. Counter Timer 1 Register (F2H; Read/Write)

R245 PRE0

Figure 24. Prescaler 0 Register (F5H; Write Only)

Figure 25. Port 2 Mode Register
(F6H; Write Only)

Figure 22. Prescaler 1 Register
(F3H; Write Only)

Figure 23. Counter/Timer 0 Register (F4H; Read/Write)

Figure 26. Port 3 Mode Register
(F7H; Write Only)

R248 P01M

Figure 27. Port 0 and 1 Mode Register (F8H; Write Only)

R249 IPR

Figure 28. Interrupt Priority Register
(F9H; Write Only)

R250 IRQ

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

IRQ0 = P32 Input ($D 0=I R Q 0$)
IRQ1 $=$ P33 Input
IRQ2 $=$ P31 Input
IRQ3 = P30 Input, Serial Input
IRQ4 = T0 Serlal Output
IRQ5 = $\mathbf{T 1}$
Reserved

R251 IMR

Figure 30. Interrupt Mask Register (FBH; Read/Write)

R252 Flags

Figure 31. Flag Register (FCH; Read/Write)

R253 RP

Figure 32. Register Pointer (FDH; Read/Write)

Figure 29. Interrupt Request Register
(FAH; Read/Write)

R254 GPR

Figure 33. General Purpose Register
(FEH; Read/Write)

R255 SPL

Figure 34. Stack Pointer
(FFH; Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
Ir	working-register address Indirect working-register address only RR
	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cC	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
*	Set to clear according to operation
-	Unaffected
x	Undefined

Condition Codes

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Egual	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	(S XOR V) $=1$
1010	GT	Greater Than	$[Z \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=0$
0010	LE	Less Than or Equal	$[Z O R(S \times O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS
OPC
CCF, DI, EI, IRET, NOP. RCF, RET, SCF
dst \quad OPC

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol
"--". For example:
$d s t-d s t+s r c$
indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n)" is used to refer to bit (n) of a given operand location.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation ADC dst, src $d s t \leftarrow d s t+s r c+C$	Address Mode dst src \dagger	Opcode Byte (Hex) \qquad 1[]	Flags Affected C Z S V				D	
			*	*	*	*	0	
ADD dst, src $\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}$	\dagger	O[]	*	*	*	*		
AND dst, src dst \leftarrow dst AND src	\dagger	5[]	-	*	*	0		
CALL dst $S P \leftarrow S P-2$ @SP $\leftarrow P C$, $\mathrm{PC} \leftarrow$ dst	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	-	-	-	-		
$\begin{aligned} & \hline \text { CCF } \\ & \text { C } \leftarrow \text { NOT C } \end{aligned}$		EF	*	-	-	-	-	
$\begin{aligned} & \text { CLR dst } \\ & \text { dst } \leftarrow 0 \end{aligned}$	$\begin{aligned} & \hline R \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	-	-	-	-		
COM dst dst \leftarrow NOT dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-	*	*	0		
CP dst, src dst - src	\dagger	A[]	*	*	*	*	-	
DA dst dst \leftarrow DA dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	*	*	*	X	-	
DEC dst dst \leftarrow dst - 1	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	-		*	*	-	
DECW dst dst \leftarrow dst - 1	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-	*	*	*	-	
DI $\operatorname{IMR}(7) \leftarrow 0$		8F	-	-	-	-	-	
$\begin{aligned} & \text { DJNZr, dst } \\ & r \leftarrow r-1 \\ & \text { if } r \neq 0 \\ & P C \leftarrow P C+d s t \\ & \text { Range: }+127 \text {, } \\ & -128 \end{aligned}$	RA	$\begin{aligned} & r A \\ & r=0-F \end{aligned}$	-	-	-	-	-	
$\begin{aligned} & \hline \operatorname{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$		9F	-	-	-	-	-	

INSTRUCTION SUMMARY (Continued)

OPCODE MAP
Lower Nibble (Hex)

PRELIMINARY PRODUCT SPECIFICATION

Z8604
 NMOS Z8 ${ }^{\text {8 }}$-BIT
 Microcontroller

FEATURES

- 8-bit NMOS Microcomputer, 18-pin DIP
- Low Cost
- 4.5 to 5.5 Volt Operating Range
- Low Power Consumption-600 mW (typical)
- Fast instruction pointer- 1.5 microseconds at 8 MHz
(a 14 input/output lines
a All inputs are Schmitt triggered
(1) 1 K byte of ROM
- Two programmable 8-bit Counter/Timers each with 6 bit programmable prescaler
- 6 vectored, priority interrupts from 5 different sources
- Clock speed 1 to 8 MHz
- Watchdog/Power-On Reset Timer
- Bit Programmable RC Oscillator

■ On-chip oscillator that accepts a crystal, ceramic resonator, RC or external clock drive.

GENERAL DESCRIPTION

The Z8604 microcontroller (MCU) introduces a newlevel of sophistication to single-chip architecture. The $Z 8604$ is a member of the $\mathrm{Z8}$ single-chip microcontroller family with 1 K of ROM. The device is housed in a 18-pin DIP, and is NMOS compatible. Zilog's NMOS microcontroller offers fast execution, more efficient use of memory, more sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z8604 architecture is characterized by Zilog's 8-bit microcontroller core. The MCU offers a flexible I/O scheme, an efficient register, $1 / \mathrm{O}$, and a number of ancillary features that are useful in many industrial, high volume, peripheral types, and advanced scientific applications.

The device applications demand powerful I/O capabilities. The MCU fulfills this with 14 pins dedicated to input and output. These lines are grouped into two ports, and are configurable under software control to provide timing, status signals, or parallel I/O.

There are two basic address spaces available to support the wide range of configurations: Program Memory and 76 bytes of General Purpose Registers.

To unburden the program from coping with the real-time problems such as counting/timing and input/output data communication, the Z8604 offers two on-chip counter/ timers with a large number of user selectable modes (Figure 1).

(Bit Programmable)

Figure 1. Functional Block Diagram

Figure 2. Pin Configuration

PIN DESCRIPTION

Table 1. Pin Description

Pin \#	Symbol	Function	Direction
$1-4$	P24-7	Port 2 pin 4,5,6,7	In/Output
5	VCC	Power Supply	Input
6	XTAL2	Crystal Oscillator Clock	Oulput
7	XTAL1	Crystal Oscillator Clock	Input
$8-10$	P31-3	Port 3 pin $1,2,3$	Fixed Input
$11-13$	P34-6	Port 3 pin $4,5,6$	Fixed Output
14	GND	Ground, $V_{S S}$	Input
$15-18$	P20-3	Port 2 pin 0,1,2,3	In/Output

PIN FUNCTIONS

XTAL1. Crystal 1 (time-based input).
This pin connects a parallel-resonant crystal, ceramic resonator or an external single-phase clock to the on-chip oscillator input.

XTAL2. Crystal 2 (time-based output).
This pin connects a parallel-resonant crystal, ceramic resonator to the on-chip oscillator output.

Port 2 P20-P27. Port 2 is an 8-bit, bidirectional, NMOS compatible I/O port. These 8 I/O lines can be configured under software control to be an input or output, independently. Input buffers are Schmitt triggered. Bits programmed as outputs are globally programmed as either push-pull or open drain (Figure 3).

Figure 3. Port 2 Configuration

Port 3 P31-P36. Port 3 is a 6-bit port, NMOS compatible with three fixed input and three fixed output lines. These six lines consist of three fixed input (P31-P33) and three fixed output port (P34-P36) lines. Pins P31, P32 and P33 are
standardSchmitt triggered NMOS inputs. PinsP34,P35, and P36 are push-pull outputs. Access to counter/timer 1 is made through P31 (Tin) and P36 (Tout) (Figure 4).

Figure 4. Port 3 Configuration

FUNCTIONAL DESCRIPTION

The Z8MCU incorporates special functions to enhance the Z8's application in industrial, scientific research and advanced technologies applications.

Reset
The device resets in one of the following conditions:
Power-On Reset
Watch-Dog Timer

Program Memory
The Z8604 can address up to 1 K byte of internal program memory (Figure 5). This 1 K byte Program Memory is mask programmable. The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts. Byte 13 to byte 1024 consists of on-chip maskprogrammed ROM.

Figure 5. Program Memory Map

Register File
The Register File consists of two I/O port registers, 76 general-purpose registers and 15 control and status registers (Figure 6). The instructions can access registers directly or indirectly via an 8-bit address field. This allows a short 4-bit register address using the Register Pointer
(Figure 7). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Location		Indentifiers
255	Stack Pointer (Bits 7-0)	SPL
254	General Purpose Register (3 bits)	GPR
253	Register Pointer	RP
252	Program Control Flags	Flags
251	Interrupt Mask Register	IMR
250	Interrupt Request Register	IRQ
249	Interrupt Priority Register	IPR
248	Ports 0-1 Mode	P01M
247	Port 3 Mode	P3M
246	Port 2 Mode	P2M
245	T0 Prescaler	PRE0
244	Timer/Counter 0	T0
243	T1 Prescaler	PRE1
242	Timer/Counter 1	T1
241	Timer Mode	TMR
240		Reserved
	Not Implemented	
4	General Purpose Registers	
3	Port 3	P3
2	Port 2	P2
1		P1
0		P0

Figure 6. Register File

The upper nibble of the register file address provided by the register pointer specifies the active working-register group

Figure 7. Register Pointer

Stack

The Z8604 has an 8-bit Stack Pointer (R255) that is used for the internal stack that resides within the 76 general purpose registers.

Table 1. Control Registers

Addr	Register	Reset Condition		D6							Comments
FO		Not Implemented									
F1	TMR	Unchanged		0	0	0	0	0	0	0	
F2	Timer/CNTR1	Unchanged		U	U	U	U	U	U	U	
F3	PRE1	Unchanged	U	U	U	U	U	U	0	0	
F4	Timer/CNTRO	Unchanged	U	U	U	U	U	U	U	U	
F5	PREO.	Unchanged	U	U	U	U	U	\cup	U	0	
F6	Port 2 MDE	Unchanged	1	1	1	1	1	1	1	1	
F7	Port 3 MDE	X $\times \times \times \times \times \times 0$	U	U	U	U	U	U	U	0	
		D0: 0=P2 Open drain, $1=$ Push pull									
F8	Port 01 MDE	XXX4X2XX	U	U	U	0	U	1	U	U	Reserved
F9	IR Priority	Unchanged	U	U	U	U	U	U	U	U	
FA	IR Request		U	U	0	0	0	0	0	0	
		$\mathrm{DO}=\mathrm{IRQO}=\mathrm{P} 32 \text { Input }$									
		D1=IRQ1=P33 Input D2=IRQ2=P31 Input									
		D3=IRQ3 $=$ P32 Input Inverted									IRQ3 is used for
		D4 $=$ T0									positive edge
		$\mathrm{D} 5=\mathrm{T} 1$									detection.
FB	IR Mask	Unchanged	0	U	U	U	U	U	U	U	
FC	Flags	Unchanged	U	U	U	U	U	U	U	U	
FD	RP	RP Bank	\cup	U	U	U	U	U	U	U	
FE	SPH	$x \times x \times \times 210$	U	U	U	U	U	U	U	U	
FF	SPL	Unchanged	U	U	U	U	U	U	U	U	

Counter/Timers

There are two 8-bit programmable counter/timers (TO-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources,
however, the TO prescaler is driven by the internal clock only (Figure 8).

Figure 8. Counter/Timer Block Diagram

The 6-bit prescaler divides the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counter and prescaler reach the end of count, a timer interrupt request-IRQ4 (T0) or IRQ5 (T1) is generated.

The counters are programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T 1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or not-retriggerable, or as a gate input for the internal clock. Port 3 line P36 serves as a timer output (Tout) through which TO, T1 or the internal clock are output. The counter/timers can be cascaded by connecting the T0 output to the input of T1.

Interrupts

The Z8604 has six different interrupts from five different sources. The interrupts are maskable and prioritized (Figure 9). The five sources are divided as follow: three
sources are claimed by Port 3 lines P31-P33, and two in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests, (Table 2).

Table 2. Interrupt Types, Sources and Vectors

Name	Source	Vector Location	Edge triggered	Comment
IRQ0	IRQ0	0,1	Falling	Ext (P32)
IRQ1	IRQ1	2,3	Falling	Ext (P33)
IRQ2	IRQ2, Tin	4,5	Falling	Ext (P31)
IRQ3		6,7	Rising	Ext (P32)
IRQ4	T0	8,9		Internal
IRQ5	$\mathrm{T1}$	10,11		Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register. All Z8604 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location
and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled. This determines which of the interrupt requests needs services.

Figure 9. Interrupt Block Diagram

Clock

The Z8604 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 1 to 8 MHzmax , with a series resistance (RS) less than or equal to 100 Ohms (Figure 10a).

The Z8604 has an on-chip bit programmable RC Oscillator. The RC oscillator uses an internal capacitor and an external resistor to determine its operation frequency. The
external resisitor is connected between VCC and XTAL1. Resistor values range from 0 to 100K. By connecting XTAL 1 to VCC the maximum frequency is obtained (Figure 10b).

The crystal should be connected across XTAL. 1 and XTAL2 using the recommended capacitors (capacitance is between 15 pf to 25pf which depends on the manufacturer of crystal, ceramic resonator and PCB layout) from each pin to ground.

Figure 10a. Crystal Oscillator Configuration

Figure 10b. RC Oscillator Configuration

Power-On Reset

A timer circuit clocked by a dedicated on-board RC oscillator and by the XTAL oscillator is used for the PowerOn Reset (POR) timer function. The POR time allows Vcc and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by WDT timeout. The POR time is a nominal 40 mS .

Watch Dog Timer (WDT). The WDT is enabled by instruction WDT. When the WDT is enabled, it cannot be stopped, and must be refreshed by executing the WDT
instruction every 10 ms ; otherwise the Z8604 will reset itself.

$$
W D T=5 F(H E X)
$$

Opcode WDT (5F\%). The first time opcode \%5F is executed, the WDT is enabled, subsequent execution clears the WDT counter. This has to be done at least every 10 ms . Otherwise, the WDT will time out and generate a reset. The generated reset is the same as a power on reset of 40 ms +18 XTALK clock cycles.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Figure 11).

Figure 11. Test Load Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
$V_{\text {CC }}$	Supply Voltage *	-0.3	+7.0	V
TSTG	Storage Temp	-65	+150	C
TA	Oper Ambient Temp	\dagger		C

\dagger See Ordering Information

Note (*). Voltage on all pins with respect to GND Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

$V_{C C}=+4.5$ to +5.5 V

Sym	TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$					
	Parameter	Min	Max	Typ	Unit	Condition
$\mathrm{V}_{\text {ch }}$	Clock Input High Voltage	3.8	$V_{c c}$		V	Driven by External Clock Generator
V_{CL}	Clock Input Low Voltage	$\mathrm{V}_{\mathrm{ss}}-0.3$	8.0		V	Driven by External Clock Generator
V_{H}	Input High Voltage	2.75	V_{cc}		V	
$V_{\text {II }}$	Input Low Voltage	0.3	1.5		V	
V_{OH}	Output High Voltage	2.4			V	$\mathrm{I}_{\text {OH }}=-250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {oL }}$	Output Low Voltage	0.4			v	$\mathrm{l}_{\mathrm{oL}}=+2.0 \mathrm{~mA}$
11	Input Leakage	-10	10		$\mu \mathrm{A}$	$V_{I N}=0 V, V_{c c}$
${ }_{\text {ol }}$	Output Leakage	-10	10		$\mu \mathrm{A}$	$V_{1 N}=0 \mathrm{~V}, V_{c c}$
${ }_{\text {cc }}$	Supply Current		120		mA	

REGISTER DIAGRAMS

Figure 12. Reserved

Figure 13. Timer Mode Register
(F1H; Read/Write)

R242 T1

Figure 14. Counter Timer 1 Register (F2H; Read/Write)

R243 PRE1

Figure 15. Prescaler 1 Register
(F3H; Write Only)

R244 T0

(Range: 1-256 Decimal 01-00 HEX)
To Current Value (When READ)

Figure 16. Counter/Timer 0 Register
(F4H; Read/Write)

R245 PRE0

Figure 17. Prescaler 0 Register (F5H; Write Only)

R246 P2M

Figure 18. Port 2 Mode Register
(F6H; Write Only)

R247 P3M

Figure 19. Port 3 Mode Register
(F7H; Write Only)

R248 P01M

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

Reserved

Figure 20. Port 0 and 1 Mode Register

Figure 21. Interrupt Priority Register (F9H; Write Only)

R250 IRQ

Figure 22. Interrupt Req Register (FAH; Read/Write)

Figure 23. Interrupt Mask Register
(FBH; Read/Write)

R252 Flags

Figure 24. Flag Register
(FCH; Read/Write)

Figure 25. Register Pointer
(FDH; Read/Write)

Figure 26. General Purpose Register (FEH; Read/Write)

Figure 27. Stack Pointer
(FFH; Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only X
Indexed Address	
DA	Direct Address
RA	Relative Address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-Register or indirect
Ir	working-egister address Indirect working-register address only RR
	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition Code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt Mask Register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
x	Undefined

Table 3. Condition Codes

Value	Mnemonic	Meaning	Flags Set
1000		Always True	
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(S \times O R V)=1$
1010	GT	Greater Than	$[Z O R(S X O R V)]=0$
0010	LE	Less Than or Equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C$ OR Z $)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol "-". For example:
$d s t-d s t+s r c$
indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n)" is used to refer to bit (n) of a given operand location.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation ADC dst, src $\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$	Address Mode dst src	Opcode Byte (Hex)	Flags Affected					
	\dagger	1[]	*	*	*	*	0	$*$
ADD dst, src dst \leftarrow dst +src	\dagger	O[]	*	*	*	*	0	
AND dst, src dst \leftarrow dst AND src	\dagger	5[]	-		$*$	0	-	
CALL dst $S P \leftarrow S P-2$ @SP↔PC, $\mathrm{PC} \leftarrow \mathrm{dst}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \hline \text { D6 } \\ & \text { D4 } \end{aligned}$	-	-	-	-	-	
$\begin{aligned} & \overline{\mathrm{CCF}} \\ & \mathrm{C} \leftarrow \mathrm{NOT} \mathrm{C} \end{aligned}$		EF	*	-	-	-	-	
CLR dst dst $\leftarrow 0$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { Bo } \\ & \text { B1 } \end{aligned}$	-	-	-	-	-	
COM dst dst \leftarrow NOT dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-	*	*	0	-	
CP dst, src dst - src	\dagger	A[]	*	*	*	*	-	-
DA dst dst \leftarrow DA dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	*		*	X	-	-
DEC dst dst \leftarrow dst - 1	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	-		*	*	-	-
DECW dst dst \leftarrow dst - 1	$\begin{aligned} & \text { RR } \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-		*	*	-	-
DI $\operatorname{IMR}(7) \leftarrow 0$		8F	-	-	-	-	-	-
$\begin{aligned} & \text { DJNZr, dst } \\ & r \leftarrow r-1 \\ & \text { if } r \neq 0 \\ & P C \leftarrow P C+\text { dst } \\ & \text { Range: }+127, \\ & -128 \end{aligned}$	RA	$\begin{aligned} & r A \\ & r=0-F \end{aligned}$	-	-	-	-	-	-
$\begin{aligned} & \hline \mathrm{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$		9 F	-	-	-	-	-	-
WDT		5F		-	-	-	-	-

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)		$\begin{gathered} \text { fec } \\ Z \end{gathered}$	ted S		D	H
NOP		FF	-	-	-		-	-
OR dst, src dst \leftarrow dst OR src	\dagger	4[]	-	*	* 0		-	-
POP dst dst \leftarrow @SP; $S P \leftarrow S P+1$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	-	-	- -		-	-
PUSH src SP↔SP-1; @SP \leftarrow src	$\begin{aligned} & \hline R \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	-	-	- -		-	-
$\begin{aligned} & \overline{\mathrm{RCF}} \\ & \mathrm{C} \leftarrow 0 \end{aligned}$		CF	0	-	- -		-	-
RET PC ↔@SP; $\mathrm{SP} \leftarrow \mathrm{SP}+2$		AF	-	-	- -		-	-
RL dst $0 . \longdiv { 7 }$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	*	*			-	-
$\begin{aligned} & \text { RLC dst } \\ & \text { yor- } 7 \text { or } \end{aligned}$	$\begin{aligned} & \hline R \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	*	*	*	*	-	-
$\overline{\text { RR dst }}$ $\rightarrow 0-\sqrt{7} \quad 0$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$	*	*		*	-	-
$\begin{aligned} & \text { RRC dst } \\ & -6-\sqrt{7} 0 \end{aligned}$	$\begin{aligned} & \hline R \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \mathrm{Co} \\ & \mathrm{C} 1 \end{aligned}$	*	*		*	-	\cdots
SBC dst, src dst \leftarrow dst \leftarrow src $\leftarrow \mathrm{C}$	\dagger	3[]	*	*	*	*	1	*
$\begin{aligned} & \overline{S C F} \\ & \mathrm{C} \leftarrow 1 \end{aligned}$		DF	1	-	- -		-	-
SRA dst	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { Do } \\ & \text { D1 } \end{aligned}$	*	*		0	-	-

\qquad

PRODUCT SPECIFICATION

Z8612
NMOS Z8® ICE
In－CIRCUIT EMULATOR

FEATURES

（ 8－bit microcontroller emulator，64－pin shrink DIP or 68－pin PLCC package
－ 4.5 to 5.5 Voltage operating range

㽧 Average instruction execution time of $1.5 \mu \mathrm{~s}$
氷 Fast instruction pointer－1 $\mu \mathrm{s}$＠ 12 MHz
图 32 input／output lines
＊Full－duplex UART
4K Internal Program Emulation
－All digital inputs are TTL levels
－ 124 bytes of RAM
．Two programmable 8－bit Counter／Timers each with 6 －bit programmable prescaler

图 Six vectored，priority interrupt from eight diflerent sources
（1 Clock speeds 8 and 12 MHz
四 On－chip oscillator that accepts a crystal，ceramic resonator，LC or external clock drive

GENERAL DESCRIPTION

The Z8612 ICE（In－CircuitEmulator）introduces anew level of sophistication to single－chip architecture．

The ICE is housed in a 64－pin shrink DIP or 68－pin PLCC package，and is manufactured in NMOS technology．

The ICE development device allows users to prototype a system with an actual hardware device and to develop the code．This code is eventually mask－programmed into the on－chip ROM for any of the Z86XX devices．Development devices are also useful in emulator applications where the final system configuration，I／O，interrupt inputs，etc．are unknown．The ICE development device is identical to its equivalent Z8611 microcontroller with the following excep－ tions：
（1）No internal ROM is provided，so that code is developed in off－chip memory．

图 The normally internal ROM address and data lines are buffered and brought out to external pins to interface with the external memory．

눈 Control line（／DAS）is added to interface with external program memory．
［4 The Timing and Control，I／O ports，and clock pins on the Z8612 are identical in function to those on the Z8611．

The ICE architecture is characterized by Zilog＇s 8－bit microcontroller core．The device offers；fast execution， more efficient use ofmemory，more sophisticated interrupls， input／output bit manipulation capabilities，easy hardware／ software system expansion，a flexible 1／O scheme，an efficient register and address space structure，multiplexed capabilities between address／data，and a number of an－ cillary features that are useful in many industrial and advanced scientific applications．

Industrial applications demand powerful I／O capabilities． The ICE fulfills this with 32 pins dedicated to input and output．These lines are grouped into four ports．Each port consists of eight lines and is configurable under software control to provide timing，status signals，serial or parallel I／O with or without handshake，and an address／data bus for interfacing external memory．

GENERAL DESCRIPTION (Continued)

There are three basic address spaces available to support this wide range of configuration: Program Memory, Data Memory, and 124 General-Purpose Registers.

To unburden the program from coping with the real-time problems such as counting/timing and serial data communication, the ICE offers two on-chip counter/timers with a
large number of user selectable modes, and an asynchronous receiver/transmitter (UART - Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Figure 1. Functional Block Diagram

PIN DESCRIPTION

Figure 2. 64-Pin Dual In-Line Plastic (DIP) Pin Assignments

PIN DESCRIPTION (Continued)

Figure 3. 68-Pin Plastic Chip Carrier Pin Assignments
/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

IAS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 1 for all external programs. Program or data memory address transfers are valid at the trailing edge of /AS. Under program control, /AS can be placed in the highimpedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-based input and output, respectively). These pins connect a parallelresonant crystal, ceramic resonator, LC, or any external single-phase clock to the on-chip oscillator and buffer.

R/W. (output, write Low): The Read/Write signal is low when the ICE is writing to external program or datamemory.
/RESET. (input, active-Low). To avoid asynchronous and noisy reset problems, the ICE is equipped with a reset filter
of four external clocks (4 TpC). If the external /RESET signal is less than 4TpC in duration, no resetoccurs. On the 5 th clock after/RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external/RESET, whichever is longer. During the reset cycle, /DS is held active low while /AS cycles at a rate of $\mathrm{TpC} / 2$. When /RESET is deactivated, program execution begins at location 000C (HEX). Reset lime must be held low for 50 ms , or until Vcc is stable, whichever is longer.

D7 - D0. (I/O, TTL compatible) Internal Data bus. These eight lines provide the data bus to access external memory emulating the on-chip ROM. During read cycles in the internal memory space, the data on these lines is latched in just prior to the rise of the /MDS data strobe.

A11 - A0. (outputs TTL compatible) Internal Address bus. During T 1 these lines output the current memory address. All addresses, whether internal or external, are output.
/MDS. (output, TTL compatible) Memory Data Strobe. This is a timing signal used to enable the external memory to emulate the on-chip ROM. It is active only
during accesses to the on-chip ROM memory space (the bottom 4 K of program memory).
/SCLK. (output, TTL compatible) System Clock. This line is the internal system clock.
/SYNC. (output, TTL compatible) Sync signal. This signal indicates the last clock cycle of the currently executing instruction.

IIACK. (output, TTL compatible) Interrupt Acknowledge. This output, when low, indicates that the ICE is an interrupt cycle.

I/O PORTS

Port 0 P00-P07. Port 0 is an 8 -bit, nibble programmable, bidirectional, TTL compatible port. These eight I/O lines can be configured under software control as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32
and P35 are used as the handshake control /DAVO and RDYO (Data available and Ready). Handshake signal assignment is dictated by the I/O direction of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble to be under handshake control. For the ROMless option, Port0 appears as A 15-A8 Address lines after reset.

For external memory references, Port 0 can provide address bits A11-A8 (lower nibble) or A15-^8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they are configured by writing to the Port 0 Mode register. In ROMless mode, after a hardware reset, Port 0 lines are defined as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode (Figure 4).

Figure 4. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1 P10-P17. Port 1 is an 8-bit, byte programmable, bidirectional, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports. For the ICE, these eight I/O lines are programmed as Input or Output lines or the port can be configured, under software control, as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and /DAV1.
programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in high-impedance state along with Port 0, /AS, /DS and R//W, allowing the ICE to share common resource in multiprocessor and DMA applications. Data transfers can be controlled by assigning P33 as a Bus Acknowledge input, and P34 as a Bus Request output (Figure 5).

Memory locations greater than 4096 are referenced through Port 1. To interface external memory, Port 1 must be

Figure 5. Port 1 Configuration

Port 2 P20-P27. Port 2 is an 8-bit, bit programmable, bidirectional, CMOS compatible port. Each of these eight I/O lines can be independently programmed as an input or output or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port,

Port2 may be placed under handshake control. In this configuration, Port 3, lines P31 and P36 are used as the handshake controls lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27 (Figure 6).

Figure 6. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3 P30-P37. Port 3 is an 8 -bit, CMOS compatible fourfixed input and four-fixed output port. These eight I/O lines have four-fixed (P33-P30) input and four fixed (P37-P34) output ports. Port 3, when used as serial I/O, are programmed as serial in and serial out, respectively (Figure 7 and Table 1).

Port 3 is configured under software control to provide the following control functions: handshake for Ports 0 and 2 (/DAV and RDY); four external interrupt request signals (IRQO-IRQ3); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {OUT }}$); Data Memory Select (/DM).

Figure 7. Port 3 Configuration

Table 1. Port 3 Pin Assignments

Pin	I/O	CTC1	Int.	P0 HS	P1 HS	P2 HS	UART	Ext
P30	IN		IRQ3				Serial In	
P31	IN	$T_{1 N}$	IRQ2			D/R		
P32	IN		IRQ0	D/R				
P33	IN		IRQ1		D/R			
P34	OUT			R/D			DM	
P35	OUT			R/D		R/D		
P36	OUT	$T_{\text {out }}$						Serial Out
P37	OUT							

Notes

HS = Handshake Signal
D = Data Available
$R=$ Ready

Port 3, lines P30 and P37, can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by the Counter/ Timer 0.

The ICE automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regard
less of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Figure 8. Serial Data Formats

PROGRAMMING

Address Space

Program Memory. The ICE can address up to 64 Kbytes of external program memory (Figure 9). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. 000C to 4095 is the memory map for the internal ROM to be emulated, and 4096 to 65535 , the remaining program memory for which the ICE executes external memory fetches.

Data Memory (/DM). External data memory is included with, or separated from, the external program memory space. /DM, an optional I/O function that can be
programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 10). The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an L DE instruction references DATA (/DM active low) memory. The lower unaddressable part of the data memory is in fact addressable with the ICE chip's /MDS line (as /DS is not active for internal ROM reads), but there is no need for this.

Figure 10. Data Memory Configuration

Register File. The Register File consists of four I/O port registers, 144 general-purpose registers and 16 control and status registers (Figure 11). The instructions can access registers directly or indirectly via an 8 -bit address field. The ICE also allows short 4-bit register addressing
using the Register Pointer (Figure 12). In the 4 -bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active work-ing-register group.

LOCATION		IDENTIFIERS SPL
255	Stack Pointer (Bits 7-0)	
254	Stack Pointer (Bits 15-8)	SPH
253	Register Pointer	RP
252	Program Control Flags	FLAGS
251	Interrupt Mask Register	IMR
250	Interrupt Request Register	IRQ
249	Interrupt Priority Register	IPR
248	Ports 0-1 Mode	P01M
247	Port 3 Mode	P3M
246	Port 2 Mode	P2M
245	To Prescaler	PREO
244	Timer/Counter 0	T0
243	T1 Prescaler	PRE1
242	Timer/Counter 1	T1
241	Timer Mode	TMR
240	Serial I/O	SIO
127	Not Implemented	
	General-Purpose Registers	P3
3	Port 3	
2	Port 2	P2
1	Port1	P1
0	Port 0	PO

Figure 11. Register File

PROGRAMMING (Continued)

Figure 12. Register Pointer

Stack. The ICE has a 16 -bit Stack Pointer (R254-R255) used for external stack that resides anywhere in the data memory for the ROMless mode, but only from 4096 to 65535 in ROM mode.

An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4R127). The high byte of the Stack Pointer (SPH-Bit 8-15) can be used as a general purpose register when using internal stack only.

FUNCTIONAL DESCRIPTION

Counter/Timers. There are two 8-bit programmable counter/ timers (TO-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (Figure 13).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counters and prescaler reach the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can
also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counter, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-delinable and can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that 'can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 also serves as a timer output (Tout) through which 10, T1 or the internal clock can be output. The counter/timers can be cascaded by connecting the TO output to the input of T 1

Figure 13. Counter/Timers Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The ICE has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The eight sources are divided as follows: four sources are claimed by Port 3 lines P30-P33, one in Serial Out, one in Serial In, and two in the counter/timers (Figure 14). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All ICE interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service rouline for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need
service. Software initialed interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request must be valid 5 TpC before the falling edge of the last clock cycle of the currently executing instruction.

For the ROMless mode, when the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupt sample point.

Figure 14. Interrupt Block Diagram

Clock. The ICE on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2=Output). The crystal should be AT cut, 1 MHz to 12 MHz max, and series resistance (RS) is

Iess than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors ($10 \mathrm{pF}<\mathrm{CL}<100 \mathrm{pF}$) from each pin to ground (Figure 15).

Ceramic Resonator or Crystal

LC Clock

External Clock

Figure 15. Oscillator Configuration

INSTRUCTION CYCLE TIMING

Figures 16 and 17 show instruction cycle timing for instruc-
tion fetched from external memory.

Figure 16. Instruction Cycle Timing (One-Byte Instructions)

Figure 17. Instruction Cycle Timing (Two- and Three-Byte Instructions)

The addresses. Address Strobe (/AS) and Read Write (R/W) are output at the beginning of each machine cycle (Mn). The addresses output via Port) (if used) remain stable throughout the machine cycle, whereas addresses output via Port 1 remain valid only during MnT1. The addresses are guaranteed valid at the rising edge of /AS, which is used to latch the Port 1 output. Port 1 is placed in an input mode at the end of MnT1. The Data Strobe is output during MnT2, allowing data to be placed on the Port 1 bus. The $\mathrm{Z8}$ accepts the data during MnT3 and /DS is terminated.

An instruction synchronization pulse /SYNC is output one clock pulse period prior to the beginning of an opcode fetch matching cycle (M1). This output is directly available on the 64-pin version of the $\mathrm{Z8}$; whereas, on the 40 -pin version, the Data Strobe pin outputs /SYNC only if external memory is not used.

Note that all instruction fetch cycles have the same machine timing regardless of whether the memory is internal or not. If configured for external memory and internal memory is referenced, the addresses are still output via

Ports 0 and 1 ; however, /DS and R / W are inactive. If configured for internal memory only, Ports 0 and 1 are used for I/O, /DS outputs, and /SYNC; R//W is inactive.

The exception to the instruction fetch timing is during the opcode fetch of an instruction following the fetch of a one byte instruction. One-byte instructions require two machine cycles of execute. The pipeline causes the following opcode fetch to begin one machine cycle early.

External Memory or I/O Timing

When external memory is addressed, Porls 0 and 1 are configured to output the required number of address bits. Port 1 is used as a multiplexed address/data bus for AD7ADO and Port 0 outputs address bits A15-A8. The timing relationships for addressing external memory and I/O are illustrated in Figures 18, 19, 20 and 21. The main difference between these figures is that Figures 20/21 contain an added timing cycle (Tx) that extends external memory timing to allow for slower memory.

Figure 18. External Instruction Fetch, I/O, or Memory Read Cycle

FUNCTIONAL DESCRIPTION (Continued)

Figure 19. External I/O or Memory Write Cycle

Figure 20. Extended External Instruction Fetch, I/O, or Memory Read Cycle

Figure 21. Extended External I/O or Memory Write Cycle

Address bits A15-A0 are valid on Ports 0 and 1 at the trailing edge of /AS for both the read and write memory cycles. Because Port 0 is not multiplexed, address bits A15-A8, if used, are present all through the read/write memory cycles.

During the read cycle, the input data must be valid on Port 1 at the trailing edge of the Data Strobe output (/DS). The DataMemory Select output (/DM) is used to select external data memory or external program memory. If selected, /DM is active during the execution of certain instructions.

During the write cycle, the address outputs follow the same timing relationships as for the read cycle. However, the output data is valid for the entire period /DS is active, and R / W is active (low) during the entire write cycle.

Interrupt requests are sampled before each instruction fetch cycle (Figure 22). First, external interrupt requests are sampled four clock periods prior to the active/AS pulse that corresponds to an instruction felch cycle. Then, internal interrupt requests are samples one clock period preceding /AS.

Figure 22. Interrupt Cycle Timing

If an interrupt request is set, the $Z 8$ spends seven machine cycles (44 clock periods) resolving interrupt priorities, selecting the proper interrupt vector, and saving the program counter and flags on the stack. Although Figures 113 illustrate the timing for an external stack, the same timing is used for an internal stack. The total interrupt response time (including the external interrupt sample time) for an external interrupt is 48 clock periods, at which the first instruction of the interrupt service routine is fetched. When an interrupt request is detected in the $Z 8 / 64$ development device, IIACK is activated (Low) and remains active until the first instruction of the interrupt service routine is fetched.

Reset Timing

The internal logic is initialized during reset if the Reset input is held low for at least 18 clock periods (Figure 23). During the time /RESET is Low, /AS is output at the internal clock rate, /DS is forced Low, R//W is inactive and Ports 0,1 and 2 are placed in an input mode. IAS and /DS both low is normally a mulually exclusive condition; therefore, the coincidence of /AS Low and /DS Low can be used as a reset condition for other devices. Zilog Z-Bus® peripherals take advantage of this reset condition.

Figure 23. Reset Cycle Timing

Alternative Control Signal Uses

In addition to their uses in memory transfers, the control signals /AS, /DS and R//W are used, in the following interface applications.
/AS can be modified to provide the /RAS (Row Address Strobe) signal for dynamic memory interface. /RAS can be derived from the trailing edge of /DS to the trailing edge of /AS.
/DS has several alternative uses: as a /CAS (Column Address Strobe) for dynamic memory interface, as a Chip Enable for memory and other interface devices, and as an Enable input for 3-state bus drivers/receivers for memory and interface devices.

R//W is used as a Write input to memory interfaces, and as an Early Status output to switch the direction of 3-state bus drivers/receivers.

ABSOLUTE MAXIMUM RATINGS

| Symbol | | Description | Min | Max |
| :--- | :--- | :--- | :--- | :--- | Units

Notes:

* Voltages on all pins with respect to GND.
** See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 24).

Figure 24. Test Load Diagrams

DC CHARACTERISTICS

Symbol	Parameter	$\begin{aligned} & \mathrm{TA}=0^{\circ} \mathrm{C} \text { TO }+70^{\circ} \mathrm{C} \\ & \text { Min } \quad \text { Max } \end{aligned}$		Units	Notes
	Max Input Voltage		7	V	$\mathrm{I}_{\text {IN }} 250 \mu \mathrm{~A}$
V_{CH}	Clock Input High Voltage	3.8 Vcc		v	Driven by External Clock Generator
	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$V_{I H}^{c L}$	Input High Voltage	$2.0 \mathrm{~V}_{\text {cc }}$		v	
V_{l}	Input Low Voltage	-0.3	0.8	V	
V_{OH}	Output High Voltge	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mathrm{uA}$
$\mathrm{V}_{\text {oL }}$	Output Low Voltage		0.4	v	$\mathrm{O}_{\mathrm{OH}}^{\mathrm{OH}}=+2.0 \mathrm{~mA}$
$V_{\text {RH }}$	Reset Input High Voltage	$3.8 \mathrm{~V}_{\text {cc }}$		V	
	Reset Input Low Voltage	-0.3	0.8	V	
$I_{\text {IL }}^{\text {RI }}$	Input Leakage	-10	10	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {ol }}$	Output Leakage		10	$\mu \mathrm{A}$	$0 \mathrm{~V} \mathrm{~V}_{\mathbb{I N}}^{\mathbb{N}}+5.25 \mathrm{~V}$
${ }_{\text {IR }}$	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
${ }_{\text {cc }}$	Supply Current		180	mA	@ 12 MHz

Note:
For A11-AO, /MDS, $/$ SYNC, /IACK and SCLK, $I O H=-100 \mu A$ and $I_{\alpha}=1 \mathrm{~mA}$

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Diagram

Figure 25. External I/O or Memory Read or Write Timing

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Table

No	Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				Units	Notes	
			Min	Max	Min	Max			
1	TdA(AS)	Address Valid to /AS rise Delay	50		35		ns	[2,3]	
2	TdAS(A)	/AS rise to Address Float Delay	70		45		ns	[2,3]	
3	TdAS(DR)	/AS rise to Read Data Req'd Valid		360		220	ns	[1,2,3]	
4	TwAS	IAS Low Width	80		55		ns	[2,3]	
5	TdAZ(DS)	Address Float to /DS fall	0		0		ns		
6	TwDSR	/DS (Read) Low Width	250		186		ns	[$11,2,3]$	
7	TwDSW	/DS (Write) Low Width	160		110		ns	[1,2,3]	
8	TdDSR(DR)	/DS fall to Read Data Req'd Valid		200		130	ns	[1,2,3]	
9	ThDR(DS)	Read Data to /DS rise Hold Time	0		0		ns	[2,3]	
10	TdDS(A)	/DS rise to Address Active Delay	70		45		ns	\|2,3	
11	TdDS(AS)	/DS rise to /AS fall Delay	70		55		ns	[2,3]	
12	TdR/W(AS)	R/W Valid to /AS rise Delay	50		30		ns	$[2,3]$	
13	TdDS(R/W)	/DS rise to R//W Not Valid	60		35		ns	[2,3]	
14	TdDW(DSW)	Write Data Valid to /DS fall (Write) Delay	50		35		ns	[2,3]	
15	TdDS(DW)	/DS rise to Write Data Not Valid Delay	50		35		ns	[2,3]	
16	TdA(DR)	Address Valid to Read Data Req'd Valid		410		255	ns	[1,2,3]	
17	TdAS(DS)	/AS rise to /DS fall Delay	80		55		ns	$[2,3]$	

Notes:

[1] When using extended memory timing add 2 TpC .
[2] Timing numbers given are for minimum TpC.
[3] See clock cycle dependent characteristics table.
Standard Test Load
All timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0 .

AC CHARACTERISTICS

Additonal Timing Diagram

Figure 26. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

No	Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				Units	Notes
			Min	Max	Min	Max		
1	TpC	Input Clock Period	125	1000	83	1000	ns	[1]
2	TrC, TfC	Clock Imput Rise \& Fall Times		25		15	ns	[1]
3	TwC	Input Clock Width	37		26		ns	[1]
4	TwTinL	Timer Input Low Width	100		70		ns	[2]
5	TwTinH	Timer Input High Width	3 TpC		3 TpC			121
6	TpTin	Timer Input Period	8 TpC		8 TpC			[2]
7	TrTin, Tftin	Timer Input Rise \& Fall Times		100		100	ns	[2]
8A	TwIL	Interrupt Request Input Low Times		100		70	ns	[2,4]
8B	TwIL	Interrupt Request Input Low Times	3 TpC		3 TpC			[2,5]
9	TwIH	Interrupt Request Input High Times	3 TpC		3 TpC			$[2,3]$

Notes:

[1] Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0 .
[2] Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0.
[3] Interrupt references request via Port 3.
[4] Interrupt request via Port 3 (P31-P33).
[5] Interrupt request via Port 30.

AC CHARACTERISTICS

Memory Port Timing Table

No	Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \mathrm{TO}+70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} \quad 12 \mathrm{MHz} \end{gathered}$				Units	Notes
			Min	Max	Min	Max		
1	TdA(DI)	Address Valid to Data Input Delay		460		320	ns	1,2
2	ThDI(A)	Data In Hold Time	0		0		ns	1

Notes:

1. Test load 2
2. This is a clock cycle dependent parameter. For frequencies other than the maximum, use the following formula: 5 TpC - 95.

AC CHARACTERISTICS

Memory Port Timing Diagram

Figure 27. Memory Port Timing

AC CHARACTERISTICS

Handshake Timing Diagram

Figure 28. Input Handshake Timing

Figure 29. Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing Table

No	Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { TO }+70^{\circ} \mathrm{C} \\ 8 \mathrm{MHz} \end{gathered}$				Notes
			Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVI(RDY)	DAV fall to RDY fall Delay		175		120	1,2
5	TcLDAVO(RDY)	DAV fall to RDY fall Delay	0		0		1,3
6	TdDAVIr(RDY)	DAV rise to RDY rise Delay		175		120	1,2
7	TdDAVOr(RDY)	DAV rise to RDY rise Delay	0		0		1,3
8	TdDO(DAV)	Data Out to DAV fall Delay	50		30		,
9	TdRDYI(DAV)	RDY fall to DAV rise Delay	0	200	0	140	1

Notes:

1. Test load 1
2. Input handshake
3. Output handshake

All timing references use 2.0 V for a logic 1 and 0.8 V for logic 0 .
Units in nanoseconds

CLOCK DEPENDENT

AC Characteristics

No	Symbol	Equation
1	TdA(AS)	$0.40 T p C+0.32$
2	TdAS(A)	$0.59 T p C-3.25$
3	TdAS(DR)	$2.38 T p C+6.14$
4	TwAS	$0.66 T p C-1.65$
6	TwDSR	$2.33 T p C-10.56$
7	TwDSW	$1.27 \mathrm{TpC}+1.67$
8	TdDSR(DR)	$1.97 \mathrm{TpC}-42.5$
10	TdDS(A)	$0.8 T p C$
11	TdDS(AS)	$0.59 T p C-3.14$
12	TdR/W(AS)	$0.4 T p C$
13	TdDS(R/W)	$0.8 T p C-15$
14	TdDWW(DSW)	$0.4 T p C$
15	TdDS(DW)	$0.88 T p C-19$
16	TdA(DR)	$4 T p C-20$
17	TdAS(DS)	$0.91 T p C-10.7$
18	TsDI(DS)	$0.8 T p C-10$
19	TdDM(AS)	$0.9 T p C-26.3$

Z8 CONTROL REGISTER DIAGRAMS

Figure 30. Serial I/O Register (FOH: Read/Write)

R241 TMR

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

1 Load TO
. Disable T0 Coun
1 Enable T0 Count
0 No Function
1 Load T1
0 Disable T1 Count
1 Enable T1 Count
tin Modes
00 External Clock Input
01 Gato Input
10 Trigger Input (Non-retriggerable)
1 Trigger Input (Retriggerable)
tout Modes
00 Not Used
01 To Out
10 Tl Out
11 Internal Clock Out

Figure 31. Timer Mode Register (F1H: Read/Write)

R242 T1

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

T_{1} Initial Value (When Written) (Range: 1-256 Decimal 01-00 HEX) T1 Current Value (When Read)

Figure 32. Counter/Timer 1 Register (F2H: Read/Write)

R243 PRE1

Figure 33. Prescaler 1 Register (F3H: Write Only)

R244 T0

Figure 34. Counter/Timer 0 Register (F4H: Read/Write)
R245 PRE0

Figure 35. Prescaler 0 Register (F5H: Write Only)

R246 P2M

Figure 36. Port 2 Mode Register (F6H: Write Only)

Figure 37. Port 3 Mode Register (F7H: Write Only)

R248 P01M

Figure 38. Port 0 and 1 Mode Register (F8H: Write Only)

Figure 39. Interrupt Priority Register (F9H: Write Only)

Figure 40. Interrupt Request Register
(FAH: Read/Write)

R251 IMR

Figure 41. Interrupt Mask Register (FBH: Read/Write)

R252 FLAGS

Figure 42. Flag Register
(FCH: Read/Write)

Figure 43. Register Pointer Register (FDH: Read/Write)

Z8 CONTROL REGISTER DIAGRAMS (Continued)

Figure 44. Stack Pointer Register (FEH: Read/Write)

R255 SPL

Figure 45. Stack Pointer Register (FFH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.
\(\left.$$
\begin{array}{ll}\hline \text { Symbol } & \text { Meaning } \\
\hline \text { IRR } & \begin{array}{l}\text { Indirect register pair or indirect working- } \\
\text { register pair address }\end{array} \\
\text { Irr } & \begin{array}{l}\text { Indirect working-register pair only } \\
\text { X }\end{array} \\
\text { Indexed address } \\
\text { DA } & \text { Direct address } \\
\text { RA } & \text { Relative address } \\
\text { IM } & \text { Immediate } \\
\text { R } & \text { Register or working-register address } \\
\text { r } & \begin{array}{l}\text { Working-register address only } \\
\text { IR }\end{array} \\
\begin{array}{l}\text { Indirect-register or indirect }\end{array}
$$

working-register address\end{array}\right\}\)| Indirect working-register address only |
| :--- |
| RR |\quad| Register pair or working register pair |
| :--- |
| address |

Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cC	Condition code
$@$	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R233)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adiust flag
H	Half-carry flag
Affected flags are indicated by:	
0	Clear to zero
1	Set to one
$*$	Set to clear according to operation
-	Unaffected
X	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
- 1000		Always True	
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not Zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No Overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not Equal	$\mathrm{Z}=0$
1001	GE	Greater Than or Equal	$(S \times O R V)=0$
0001	LT	Less than	$(S \times O R V)=1$
1010	GT	Greater Than	$[Z O R(S \times O R V)]=0$
0010	LE	Less Than or Equal	$[Z \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned Greater Than or Equal	$\mathrm{C}=0$
0111	ULT	Unsigned Less Than	$\mathrm{C}=1$
1011	UGT	Unsigned Greater Than	$(\mathrm{C}=0 \mathrm{AND} \mathrm{Z}=0)=1$
0011	ULE	Unsigned Less Than or Equal	$(C O R Z)=1$
0000		Never True	

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol
$" \leftarrow$ ". For example:

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The
notation "addr (n) " is used to refer to bit (n) of a given operand location. For example:
dst (7)
refers to bit 7 of the destination operand

INSTRUCTION SUMMARY

INSTRUCTION SUMMARY (Continued)

OPCODE MAP

Z8671 Z8 ${ }^{\text {® }}$ MCU
 with BASIC/Debug
 Interpreter

FEATURES

- The Z8671 MCU is a complete microcomputer preprogrammed with a BASIC/Debug interpreter. Interaction between the interpreter and its user is provided through an on-board UART.
- BASIC/Debug can directly address the Z8671's internal registers and all external memory. It provides quick examination and modification of any external memory location or I/O port.
- The BASIC/Debug interpreter can call machine language subroutines to increase execution speed.
- The Z8671's auto start-up capability allows a program to be executed on power-up or Reset without operator intervention.
- Single +5 V power supply-all I/O pins TTL-compatible.
. 8 MHz

GENERAL DESCRIPTION

The $Z 8671$ Single-Chip Microcomputer (MCU) is one of a line of preprogrammed chips-in this case with a BASIC/Debug interpreter in ROM-offered by Zilog. As a member of the Z8 Family of microcomputers, it offers the same abundance of resources as the other Z8 microcomputers.

Because the BASIC/Debug interpreter is already part of the chip circuit, programming is made much easier. The Z8671 MCU thus offers a combination of software and hardware that is ideal for many industrial control applications. The Z8671 MCU allows fast hardware tests and bit-by-bit examination and modification of memory location, I/O ports,

Figure 2a. 40-pin Dual-In-Line Package (DIP), Pin Assignments
or registers. It also allows bit manipulation and logical operations. A self-contained line editor supports interactive debugging, further speeding up program development.

The BASIC/Debug interpreter, a subset of Dartmouth BASIC, operates with three kinds of memory: on-chip registers and external ROM or RAM. The BASIC/Debug interpreter is located in the 2 K bytes of on-chip ROM.

Additional features of the Z 8671 MCU include the ability to call machine language subroutines to increase execution speed and the ability to have a program execute on power-up or Reset, without operator intervention.

Maximum memory addressing capabilities include 62 K bytes of external program memory and 62 K bytes of data memory with program storage beginning at location 800_{H}. This provides up to 124 K bytes of useable memory space. Very few 8 -bit microcomputers can directly access this amount of memory.

Each Z8671 Microcomputer has 32 I/O lines, a 144-byte register file, an on-board UART, and two counter/timers.

Figure 2b. 44-pin Chip Carrier, Pin Assignments

Figure 3. Functional Block Diagram

ARCHITECTURE

Z8671 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are helpful in many applications.
Microcomputer applications demand powerful I/O capabilities. The $Z 8671$ fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.
Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z8671 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer
to a microprocessor that can address 124 K bytes of external memory.

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144 -byte random-access register file is composed of 124 general-purpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of userselectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

PIN DESCRIPTION

$\overline{\mathbf{A S}}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.
$\overline{\mathbf{D S}}$. Data Strobe (output, active, Low). Data Strobe is activated once for each external memory transfer.
 (input/outputs, TTL-compatible). These 32 lines are divided into four 8 -bit I/O ports that can be configured under
program control for I/O or external memory interface.
RESET. Reset (input, active Low). $\overline{R E S E T}$ initializes the Z8671. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathrm{W}}$. Read/Write (output). R/W is Low when the Z8671 is writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel-resonant crystal (8 MHz maximum) or an external single-phase clock (8 MHz maximum) to the on-chip clock oscillator and buffer.

ADDRESS SPACES

Program Memory. The Z8671's 16-bit program counter can address 64 K bytes of program memory space. Program memory consists of 2 K bytes of internal ROM and up to 62 K bytes of external ROM, EPROM, or RAM. The first 12 bytes of program memory are reserved for interrupt vectors (Figure 4). These locations contain six 16-bit vectors that correspond to the six available interrupts. The BASIC/Debug interpreter is located in the 2 K bytes of internal ROM. The interpreter begins at address 12 and extends to 2047.

Figure 4. Program Memory Map

Data Memory. The $Z 8671$ can address up to 62 K bytes of external data memory beginning at location 2048 (Figure 5). External data memory may be included with, or separated from, the external program memory space. DM, an optional I/O function that can be programmed to appear on pin P_{4}, is used to distinguish data and program memory space.
Register File. The 144-byte register file may be accessed by BASIC programs as memory locations $0-127$ and 240-255. The register file includes four I/O port registers (R0-R3), 124 general-purpose registers (R4-R127), and 16 control and status registers (Figure 6).

The BASIC/Debug Interpreter uses many of the generalpurpose registers as pointers, scratch workspace, and internal variables. Consequently, these registers cannot be used by a machine language subroutine or other user programs. On power-up/Reset, BASIC/Debug searches for external RAM memory and checks for an auto start-up program. In a non-destructive method, memory is tested at relative location xxFD ${ }_{H}$. When BASIC/Debug discovers RAM in the system, it initializes the pointer registers to mark the boundaries between areas of memory that are assigned specific uses. The top page of RAM is allocated for the line buffer, variable storage, and the GOSUB stack. Figure 7a
illustrates the contents of the general-purpose registers in the Z8671 system with external RAM. When BASIC/Debug tests memory and finds no RAM, it uses an internal stack and shares register space with the input line buffer and variables. Figure 7 b illustrates the contents of the general-purpose registers in the Z8671 system without external RAM.

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between location 2048 and 65535. An 8 -bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).
Register Addressing. Z8671 instructions can directly or indirectly access registers with an 8 -bit address field. The Z8671 also allows short 4-bit register addressing using the Register Pointer, which is one of the control registers. In the 4-bit mode, the register file is divided into nine working-register groups, each group consisting of 16 contiguous registers (Figure 8). The Register Pointer addresses the starting location of the active working-register group.

Figure 5. Data Memory Map

Figure 6. Control and Status Registers

127 104	SHARED BY EXPRESSION STACK AND LINE BUFFER
103 86	GOSUB STACK
85 64	SHARED BY GOSUB AND VARIABLES
6	VARIABLES
33	FREE, AVAILABLE FOR USR ROUTINES
32	COUNTER
31	USED INTERNALLY
30	SCRATCH
29 28	POINTER TO CONSTANT BLOCK
	USED INTERNALLY
23	LINE NUMBER
21 20	ARGUMENT FOR SUBROUTINE CALL
19 18	ARGUMENT/RESULT FOR SUBROUTINE CALL
	SCRATCH
15 14	POINTER TO NEXT CHARACTER
13 12	POINTER TO LINE BUFFER
	POINTER TO GOSUB
9 8	POINTER TO BASIC PROGRAM
	POINTER TO GOSUB
	FREE
	//O PORTS

Figure 7a. General-Purpose Registers with External RAM

Figure 7b. General-Purpose Registers without External RAM

Figure 8. The Register Pointer

PROGRAM EXECUTION

Automatic Start-up. The Z8671 has an automatic start-up capability which allows a program stored in ROM to be executed without operator intervention. Automatic execution occurs on power-on or Reset when the program is stored at address 1020_{H}.

Execution Modes. The Z8671's BASIC/Debug Interpreter operates in two execution modes: Run and Immediate.

Programs are edited and interactively debugged in the Immediate mode. Some BASIC/Debug commands are used almost exclusively in this mode. The Run mode is entered from the Immediate mode by entering the command RUN. If there is a program in RAM, it is executed. The system returns to the Immediate mode when program execution is complete or interrupted by an error.

INTERACTIVE DEBUGGING

Interactive debugging is accomplished with the selfcontained line editor which operates in the Immediate mode. In addition to changing program lines, the editor can correct an immediate command before it is executed. It also allows the correction of typing and other errors as a program is entered.

BASIC/Debug allows interruptions and changes during a
program run to correct errors and add new instructions without disturbing the sequential execution of the program. A program run is interrupted with the use of the escape key. The run is restarted with a GOTO command, followed by the appropriate line number, after the desired changes are entered. The same procedure is used to enter corrections after BASIC/Debug returns an error.

COMMANDS

BASIC/Debug recognizes 15 command keywords. For detailed instructions of command usage, refer to the BASIC/Debug Software Reference Manual (\#03-3149-02).
FO The GO command unconditionally branches to a machine language subroutine. This statement is similar to the USR function except that no value is returned by the assembly language routine.
GOSUB GOSUB unconditionally branches to a subroutine at a line number specified by the user.

GOTO GOTO unconditionally changes the sequence of program execution (branches to a line number).

IF/THEN This command is used for conditional operations and branches.

INPUT/IN These commands request information from the user with the prompt "?", then read the input values (which must be separated by commas) from the keyboard, and store them in the indicated variables. INPUT discards any values remaining in the buffer from previous IN, INPUT, or RUN statements, and requests new data from the operator. IN uses
any values left in the buffer first, then requests new data.

LET LET assigns the value of an expression to a variable or memory location.
LIST This command is used in the interactive mode to generate a listing of program lines stored in memory on the terminal device.

NEW The NEW command resets pointer R10-11 to the beginning of user memory, thereby marking the space as empty and ready to store a new program.
PRINT PRINT lists its arguments, which may be text messages or numerical values, on the output terminal.

REM This command is used to insert explanatory messages into the program.
RETURN This command returns control to the line following a GOSUB statement.

RUN RUN initiates sequential execution of all instructions in the current program.

STOP STOP ends program execution and clears the GOSUB stack.

FUNCTIONS

BASIC/Debug supports two functions: AND and USR.
The AND function performs a logical AND. It can be used to mask, turn off, or isolate bits. This function is used in the following format:

AND (expression, expression)

The two expressions are evaluated, and their bit patterns are ANDed together. If only one value is included in the parentheses, it is ANDed with itself. A logical OR can also be performed by complementing the AND function. This is accomplished by subtracting each expression from -1 . For example, the function below is equivalent to the $O R$ of A and B.

$$
-1-\mathrm{AND}(-1-\mathrm{A},-1-\mathrm{B})
$$

The USR function calls a machine language subroutine and returns a value. This is useful for applications in which a subroutine can be performed more quickly and efficiently in machine language than in BASIC/Debug.

The address of the first instruction of the subroutine is the first argument of the USR function. The address can be followed by one or two values to be processed by the subroutine. In the following example, BASIC/Debug executes the subroutine located at address 2000 using values literal 256 and variable C.
USR(\%2000,256,C)

The resulting value is stored in Registers 18-19.

SERIAL INPUT/OUTPUT

Port 3 lines P_{0} and P_{3} can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0 , with a maximum rate of 62.5 K bits $/$ second.

The Z8671 automatically adds a start bit and two stop bits to transmitted data (Figure 9). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of
parity selection. If parity is enabled, the eighth data bit is used as the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits, and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

TRANSMITTED DATA (With Parity)

RECEIVED DATA (With Parity)

Figure 9. Serial Data Formats

I/O PORTS

The Z8671 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines P_{3} and P_{4} are used as the handshake controls RDY1 and $\overline{\mathrm{DAV} 1}$ (Ready and Data Available).

Memory locations greater than 2048 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in the high-impedance state along with Port $0, \overline{A S}, \overline{D S}$ and R / \bar{W}, allowing the $Z 8671$ to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P_{3} as a Bus Acknowledge input and P_{4} as a Bus Request output.

Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines P_{2} and P_{3} are used as the handshake controls $\overline{\mathrm{DAVO}}$ and RDYO. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $\mathrm{A}_{8}-\mathrm{A}_{11}$ (lower nibble) or $\mathrm{A}_{8}-\mathrm{A}_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{A S}, \overline{D S}$ and R / \bar{W}.

Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{1}$ and $P 3_{6}$ are used as the handshake controls lines $\overline{\mathrm{DAV2}}$ and RDY2. The handshake signal assignment for Port 3 lines P_{1} and $\mathrm{P} 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{0}-\mathrm{P} 3_{3}\right)$ and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines P_{3} and P_{7} are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0,1 and 2 ($\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals (IRQO-IRQ3); timer input and output signals ($T_{\text {IN }}$ and TOUT) and Data Memory Select ($\overline{\mathrm{DM}}$).

Figure 10a. Port 1

Figure 10b. Port 0

Figure 10c. Port 2

Figure 10d. Port 3

COUNTER/TIMERS

The Z8671 contains two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The $T 1$ prescaler can be driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only.

The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request-IRQ4 (T_{0}) or IRQ5 (T_{1})-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass
mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The

- counters, but not the prescalers, can be read any time without disturbing their value or count mode.
The clock source for T1 is user-definable; it can be either the internal microprocessor clock (4 MHz máximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the TO output to the input of T 1 . Port 3 line P_{6} also serves as a timer output (TOUT) through which $\mathrm{T0}, \mathrm{~T} 1$ or the internal clock can be output.

INTERRUPTS

The Z8671 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P} 3_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.
All Z8671 interrupts are vectored; however, the internal UART operates in a polling fashion. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

The BASIC/Debug Interpreter does not process interrupts. Interrupts are vectored through locations in internal ROM which point to addresses $1000-1011_{\mathrm{H}}$. To process
interrupts, jump instructions can be entered to the interrupt handling routines at the appropriate addresses as shown in Table 1

Table 1. Interrupt Jump Instructions

Hex Address	Contains Jump Instruction and Subroutine Address for:
$1000-1002$	IRQ0
$1003-1005$	IRQ1
$1006-1008$	IRQ2
$1009-100 B$	IRQ3
$100 \mathrm{C}-100 \mathrm{E}$	IRQ4
$100 \mathrm{~F}-1011$	IRQ5

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitance ($C_{L}=15 \mathrm{pf}$ maximum) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, parallel resonant
- Fundamental type, 8 maximum

■ Series resistance, $R \leqslant 100 \Omega$

- 8 MHz maximum

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.

dst	Destination location or contents
src	Source location or contents
cc	Condition code (see list)
@	Indirect address prefix
SP	Stack pointer (control registers 254-255)
PC	Program counter
FLAGS	Flag register (control register 252)
RP	Register pointer (control register 253)
IMR	Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " 9 ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n) " is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:

C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag

Affected flags are indicated by:
$0 \quad$ Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected

X Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always true	-
0111	C	Carry	$C=1$
1111	NC	No carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not zero	$Z=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	S $=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not equal	$Z=0$
1001	GE	Greater than or equal	$(S X O R V)=0$
0001	LT	Less than	$(S X O R V)=1$
1010	GT	Greater than	$[Z O R(S X O R V)]=0$
0010	LE	Less than or equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$C=1$
1011	UGT	Unsigned greater than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned less than or equal	$(C O R Z)=1$
0000		Never true	-

INSTRUCTION FORMATS

ONE-BYTE INSTRUCTION

LD

MSt/sre	x
ADDRESS	

LD

JP

CALL

INSTRUCTION SUMMARY

Instruction and Operation	Addr Mode	Opcode	Flags Affected
	dst sre	(Hex)	C Z SVDH
$\begin{aligned} & \text { ADC dst,.src } \\ & \text { dst } \leftarrow d s t+\operatorname{src}+\mathbf{C} \end{aligned}$	(Note 1)	$1 \square$	* * * * 0 *
ADD dst.src dst \leftarrow dst + src	(Note 1)	$0 \square$	* * * * 0 *
AND dst.src dst \leftarrow dst AND src	(Note 1)	$5 \square$	-** $0-$
CALL dst $\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-2 \\ & @ \mathrm{SP} \leftarrow \mathrm{PC}: \mathrm{PC} \leftarrow \mathrm{dst} \end{aligned}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - - - -
$\begin{aligned} & \text { CCF } \\ & \mathrm{C} \leftarrow \mathrm{NOT} \mathrm{C} \end{aligned}$		EF	* - - - -
CLR dst $d s t \leftarrow 0$	$\begin{gathered} \hline R \\ \text { IR } \end{gathered}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	- - - -
COM dst dst \leftarrow NOT dst	$\begin{aligned} & R \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	- * $0--$
CP dst.src dst - src	(Note 1)	A■	* * * * -
DA dst dst \leftarrow DA dst	$\begin{aligned} & \hline R \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X - -
DEC dst $d s t \leftarrow d s t-1$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	-***--
DECW dst $d s t \leftarrow d s t-1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	$-* * *--$
$\begin{aligned} & \mathrm{DI} \\ & \operatorname{IMR}(7) \leftarrow 0 \end{aligned}$		8F	-
$\begin{aligned} & \hline \text { DJNZ } r \text { rdst } \\ & r \leftarrow r-1 \\ & \text { If } r \neq 0 \\ & P C \leftarrow P C+d s t \\ & \text { Range }:+127,-128 \end{aligned}$	RA	$\begin{gathered} r A \\ r=0-F \end{gathered}$	
$\begin{aligned} & \hline \operatorname{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$		9 F	- - - - -
INC dst $d s t \leftarrow d s t+1$	r R IR	$\begin{aligned} & r \mathrm{E} \\ & \mathrm{r}= 0-\mathrm{F} \\ & 20 \\ & 21 \end{aligned}$	$-* * *--$
INCW dst $d s t \leftarrow d s t+1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	$-* * *--$
IRET $\begin{aligned} & \text { FLAGS } \leftarrow @ S P ; S P \\ & P C \leftarrow @ S P ; S P \leftarrow S P \end{aligned}$	$\begin{aligned} & -S P+1 \\ & +2 ; \operatorname{IMR}(7) \end{aligned}$	$\begin{array}{r} \mathrm{BF} \\ \leftarrow 1 \\ \hline \end{array}$	* * * * * *
JP cc, dst If CC is true $P C \leftarrow d s t$	DA IRR	$\begin{gathered} c D \\ c=0-F \\ 30 \end{gathered}$	

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	Flags Affected C Z S V D H
	dst src		
RRC dst $- \text { 다 }-7 \quad 0$ \square		$\begin{aligned} & \mathrm{CO} \\ & \mathrm{C} 1 \end{aligned}$	* * * * -
$\begin{aligned} & \text { SBC dst,src } \\ & \mathrm{dst} \leftarrow \mathrm{dst} \leftarrow \mathrm{src} \leftarrow \mathrm{C} \end{aligned}$	(Note 1)	$3 \square$	* * * * 1 *
$\begin{aligned} & \text { SCF } \\ & C \leftarrow 1 \end{aligned}$		DF	1---- -
SRA dst \square		$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$	* * * 0 - -
SRP src RP $\leftarrow \mathrm{src}$	Im	31	- - - -
$\begin{aligned} & \text { SUB dst, src } \\ & \text { dst } \leftarrow \mathrm{dst} \leftarrow \mathrm{src} \end{aligned}$	(Note 1)	$2 \square$	* * * * 1 *
		$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	X** $\times-$
TCM dst,src (NOT dst) AND src	(Note 1)	$6 \square$	-** $0-$
TM dst,src dst AND src	(Note 1)	$7 \square$	-** $0-$

Instruction and Operation	Addr Mode	Opcode	Flags Af
	dst src	(Hex)	C Z S
XOR dst,src dst \leftarrow dst XOR src	(Note 1)	$B \square$	- * *
NOTE- These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \square in this table, and its value is found in the following table to the left of the applicable addressing mode par.			
For example, the opcode of an ADC instruction using the addressing modes r (destination) and lr (source) is 13 .			
Addr Mode			Lower Opcode Nibble
dst	src		
r	r		2
r	Ir		3
R	R		4
R	IR		5
R	IM		6
IR	IM		7

REGISTERS

R240 SIO
Serial I/O Register
(FOH; Read/Write)

\section*{| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

SERIAL DATA $\left(D_{0}=\right.$ LSB $)$

R241 TMR
Time Mode Register
(F1H; Read/Write)

R242 T1
Counter Timer 1 Register
(F2H; Read/Write)

R243 PRE1

Prescaler 1 Register
(F3H; Write Only)

R244 TO

Counter/Timer 0 Register
(F4H; Read/Write)

 CURRENT VALUE (WHEN READ)

R245 PRE0 Prescaler 0 Register
(F5h; Write Only)

R246 P2M Port 2 Mode Register
(F6н; Write Only)

P_{2} - P 2 , HO DEFINITION 1 DEINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
(F7H; Write Only)

Figure 12. Control Registers

R248 P01M
Port 0 Register
(F8H; Write Only)

- ALWAYS EXTENDED TIMING AFTER RESET

R252 FLAGS
Flag Register
(FC_{H}; Read/Write)

R253 RP Register Pointer (FDH; Read/Write)

R251 IMR
Interrupt Mask Register
(FBH; Read/Write)

R254 SPH
Stack Pointer
(FEH; Read/Write)

STACK POINTER
BYTE $\left(S_{8}-\right.$ SP $\left._{15}\right)$

R250 IRQ
Interrupt Request Register
(FAH; Read/Write)

(F9H; Write Only)

R255 SPL Stack Pointer (FFH; Read/Write)

Figure 12. Control Registers (Continued)

OPCODE MAP

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect
to GND . -0.3 V to +7.0 V
Operating Ambient
Temperature See Ordering Information
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliablity.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin.

The Ordering Information section lists package temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation.

Standard conditions are:
(1) $+4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.25 \mathrm{~V}$

- $\mathrm{AND}=0 \mathrm{~V}$
- $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$

Figure 13. Test Load 1

DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Unit	Condition
V_{CH}	Clock Input High Voltage	3.8	$V_{C C}$	V	Driven by External Clock Generator
$V_{C L}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
V_{IH}	Input High Voltage	2.0	$V_{\text {CC }}$	V	
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	$V_{C C}$	V	
$V_{\text {RL }}$	Reset Input Low Voltage	-0.3	0.8	V	
V_{OH}	Output High Voltage	2.4		V	$1 \mathrm{OH}=-250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{OL}=+2.0 \mathrm{~mA}$
IIL	Input Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant+5.25 \mathrm{~V}$
$\mathrm{IOL}^{\text {L }}$	Output Leakage	- 10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant+5.25 \mathrm{~V}$
I_{R}	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
ICC	$V_{\text {CC }}$ Supply Current		180	mA	

Figure 16. External I/O or Memory Read/Write
AC CHARACTERISTICS
External I/O or Memory Read/Write Timing

No.	Symbol	Parameter	Min	Max	Notes* \dagger°
1	$\mathrm{Td} A(A S)$	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	35		2,3
2	$\operatorname{Td} A S(A)$	$\overline{\mathrm{AS}} \uparrow$ to Address Float Delay	45		2,3
3	TdAS(DR)	$\overline{\mathrm{AS}} \uparrow$ to Read Data Required Valid		220	1,2,3
4	TwAS	$\overline{\overline{A S}}$ Low Width	55		1,2,3
5	TdAz (DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		
6 - TwDSR —— $\overline{\mathrm{DS}}$ (Read) Low Width $\longrightarrow 185 \ldots 1,2,3$					
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	110		1,2,3
8	TdDSR(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		130	1,2,3
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		
10	$\operatorname{TdDS}(\mathrm{A})$	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	45		2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	55		2.3
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to R//W Not Valid	35		2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) \downarrow Delay	35		2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	45		2,3
16	$\mathrm{Td} A(\mathrm{DR})$	Address Valid to Read Data Required Valid		255	1,2,3
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	55		2,3

NOTES:

1. When using extended memory timing add 2 TpC . \uparrow Test Load 1.
2. Timing numbers given are for minimum TpC .
" All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

- All units in nanoseconds (ns).

Figure 17. Additional Timing

AC CHARACTERISTICS

Additional Timing

No.	Symbol	Parameter		Min	Max

NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 ", and 0.8 V for a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P}_{3}\right)$.
4. Interrupt request via Port $3\left(\mathrm{P}_{\mathrm{O}}\right)$.
*Units in nanoseconds (ns).

Figure 18. Memory Port Timing

AC CHARACTERISTICS

Memory Port Timing

No.	Symbol	Parameter	Min	Max	Notes*
1	TdA(DI)	Address Valid to Data Input Delay		320	1,2
2	ThDI(A)	Data In Hold time	0		1
NOTES: 1. Test Load 2 2. This is a Clock.Cycle-Dependent parameter. For clock frequencies other than the maximum, use the following formula: 5 TPC - 95			\bullet - Units are nanoseconds unless otherwise specified.		

Figure 18a. Input Handshake

Figure 18b. Output Handshake

AC CHARACTERISTICS

Handshake Timing

No.	Symbol	Parameter	Min	Max	Notes*
1	TsDI(DAV)	Data In Setup Time	0		
2	ThDI(DAV)	Data In Hold time	160		
3	TwDAV	Data Available Width	120		
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY \downarrow Delay		120	1,2
5 -TdDAVOf(RDY) - $\overline{\text { DAV }} \downarrow$ Output to RDY \downarrow Delay $\longrightarrow 1,3$					
6	TdDAVIr(RDY)	$\overline{\mathrm{DAV}} \uparrow$ Input to RDY \uparrow Delay		120	1,2
7	TdDAVOr(RDY)	$\overline{\text { DAV }} \uparrow$ Output to RDY \uparrow Delay	0		1,3
8	TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}} \downarrow$ Delay	30		1
9	TdRDY(DAV)	Rdy \downarrow Input to $\overline{\text { DAV }} \uparrow$ Delay	0	140	1

NOTES:

1. Test load 1
2. Input handshake
3. Output handshake
\dagger All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic "0".

CLOCK CYCLE TIME-DEPENDENT CHARACTERISTICS

$\left.\begin{array}{clllclcc}\text { Number } & \text { Symbol } & \begin{array}{c}\text { Z8671-8 } \\ \text { Equation }\end{array} & & & \text { Number } & & \text { Symbol }\end{array} \begin{array}{c}\text { Z8671-8 } \\ \text { Equation }\end{array}\right]$

[^7]
Z8681/82 $28{ }^{\text {® }}$ ROMless MCU

FEATURES

- Complete microcomputer, 24 I/O lines, and up to 64 K bytes of addressable external space each for program and data memory.

■ 143-byte register file, including 124 general-purpose registers, 3 I/O port registers, and 16 status and control registers.

- Vectored, priority interrupts for I/O, counter/timers, and UART.
- On-chip oscillator that accepts crystal or external clock drive.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6-bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any one of the nine working-register groups.
- Single +5 V power supply-all I/O pins TTL compatible.

■ Z8681/82 available in $8 \mathbf{M H z}$. $\mathbf{Z 8 6 8 1}$ also available in 12 MHz .

GENERAL DESCRIPTION

The Z8681 and Z8682 are ROMless versions of the Z8 single-chip microcomputer. The Z8682 is usually more cost effective. These products differ only slightly and can be used interchangeably with proper system design to provide maximum flexibility in meeting price and delivery needs.

Figure 1. Pin Functions

The Z8681/82 offers all the outstanding features of the $\mathrm{Z8}$ family architecture except an on-chip program ROM. Use of external memory rather than a preprogrammed ROM enables this Z8 microcomputer to be used in low volume applications or where code flexibility is required.

Figure 2a. 40-pin Dual-In-Line Package (DIP), Pin Assignments

The Z8681/82 can provide up to 16 output address lines, thus permitting an address space of up to 64 K bytes of data or program memory. Eight address outputs $\left(\mathrm{AD}_{0}-\mathrm{AD}_{7}\right)$ are provided by a multiplexed, 8-bit, Address/Data bus. The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$.

Available address space can be doubled (up to 128 K bytes for the Z8681 and 124 K bytes for the Z8682) by programming bit 4 of Port $3\left(\mathrm{P}_{4}\right)$ to act as a data memory select output ($\overline{\mathrm{DM}}$). The two states of $\overline{\mathrm{DM}}$ together with the 16 address outputs can define separate data and memory address spaces of up to $64 \mathrm{~K} / 62 \mathrm{~K}$ bytes each.

There are 143 bytes of RAM located on-chip and organized as a register file of 124 general-purpose registers, 16 control and status registers, and three I/O port registers. This register file can be divided into nine groups of 16 working registers each. Configuring the register file in this manner allows the use of short format instructions; in addition, any of the individual registers can be accessed directly.

The pin functions and the pin assignments of the Z8681/82 40- and 44-pin packages are illustrated in Figures 1 and 2, respectively.

Figure 2b. 44-pin Chip Carrier, Pin Assignments

Figure 3. Functional Block Diagram

ARCHITECTURE

Z8681/82 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z8681/82 fulfills this with 24 pins available for input and output. These lines are grouped into three ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an Address bus for interfacing external memory.

Three basic address spaces are available: program
memory, data memory and the register file (internal). The 143 -byte random-access register file is composed of 124 general-purpose registers, three I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate. Figure 3 shows the Z8681/82 block diagram.

PIN DESCRIPTION

$\overline{\mathbf{A S}}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$.
$\overline{\mathbf{D S}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{P 0}_{\mathbf{0}}-\mathbf{P} 0_{7}, \mathrm{P2}_{\mathbf{0}}-\mathbf{P} 2_{7}, \mathrm{P3}_{\mathbf{0}}-\mathbf{P} 3_{7}$. I/O Port Lines (input/outputs, TTL-compatible). These 24 lines are divided into three 8-bit I/O ports that can be configured under program control for I/O or external memory interface (Figure 3)
$\mathbf{P 1}_{\mathbf{0}} \mathbf{- P 1 7}$. Address/Data Port (bidirectional). Multiplexed address $\left(A_{0}-A_{7}\right)$ and data ($\left.D_{0}-D_{7}\right)$ lines used to interface with
program and data memory.
$\overline{\text { RESET }}$. Reset (input, active Low). $\overline{\text { RESET }}$ initializes the Z8681/82. After RESET the Z8681 is in the extended memory mode. When $\overline{\text { RESET. is deactivated, program }}$ execution begins from program location $000 \mathrm{C}_{\mathrm{H}}$ for the Z8681 and 0812H for the Z8682.
R/W. Read/Write (output). R/W is Low when the Z8681/82 is writing to external program or data memory.
XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel-resonant crystal to the on-chip clock oscillator and buffer.

SUMMARY OF Z8681 AND Z8682 DIFFERENCES

Feature	Z8681	Z8682
Address of first instruction executed after Reset	12	2066
Addressable memory space	$0-64 \mathrm{~K}$	$2 \mathrm{~K}-64 \mathrm{~K}$
Address of interrupt vectors	$0-11$	$2048-2065$
Reset input high voltage	TTL levels*	$7.35-8.0 \mathrm{~V}$
Port 0 configuration after Reset	Input, float after reset. Can be	Output, configured as Address bit
Exogrammed as Address bits.	${\text { A } 8-\mathrm{A}_{15} .}^{\text {External memory timing start-up configurations }}$	Extended Timing.
Interrupt vectors	2 byte vectors point directly to service	2 byte vectors in internal ROM point to 3
	routines.	byte Jump instructions, which point to service routines.
Interrupt response time	26 clocks	36 clocks

[^8]
ADDRESS SPACES

Program Memory*. The Z8681/82 addresses 64K/62K bytes of external program memory space (Figure 4).
For the Z8681, the first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts. Program execution begins at location $000 \mathrm{C}_{\mathrm{H}}$ after a reset.

The Z8682 has six 24 -bit interrupt vectors beginning at address 0800_{H}. The vectors consist of Jump Absolute instructions. After a reset, program execution begins at location 0812_{H} for the Z 8682.
Data Memory*. The Z8681/82 can address 64K/62K bytes of external data memory. External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin P_{4}, is used to distinguish between data and program memory space.
Register File. The 143-byte register file includes three I/O
port registers (R0, R2, R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 5.
Z8681/82 instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4-bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 5). The Register Pointer addresses the starting location of the active working-register group (Figure 6).
Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

Figure 4. Z8681/82 Program Memory Map

Figure 5. The Register File

SERIAL INPUT/OUTPUT

Port 3 lines P_{0} and $\mathrm{P} 3_{7}$ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0.

The Z8681/82 automatically adds a start bit and two stop bits to transmitted data (Figure 7). Odd parity is also available as an option. Eight data bits are always

Transmitted Data (No Parity)

Transmitted Data

(With Parity)
transmitted, regardless of parity selection. If parity is enabled, the eighth data bit is used as the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits, and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Received Data
(With Parity)

Figure 7. Serial Data Formats

COUNTER/TIMERS

The Z8681/82 contains two 8 -bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6-bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request-IRQ4 (T_{0}) or IRQ5 $\left(T_{1}\right)$-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass
mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T_{1} is user-definable; it can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line $P 3_{6}$ also serves as a timer output (TOUT) through which T_{0}, T_{1} or the internal clock can be output.

I/O PORTS

The Z8681/82 has 24 lines available for input and output. These lines are grouped into three ports of eight lines each and are configurable as input, output or address. Under software control, the ports can be programmed to provide
address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1 is a dedicated Z-BUS compatible memory interface. The operations of Port 1 are supported by the Address Strobe ($\overline{\mathrm{AS}}$) and Data Strobe ($\overline{\mathrm{DS}}$) lines, and by the Read/Write (R/W) and Data Memory ($\overline{\mathrm{DM}}$) control lines. The low-order program and data memory addresses $\left(A_{0}-A_{7}\right)$ are output through Port 1 (Figure 8) and are multiplexed with data in/out $\left(\mathrm{D}_{0}-\mathrm{D}_{7}\right)$. Instruction fetch and data memory read/write operations are done through this port.
Port 1 cannot be used as a register nor can a handshake mode be used with this port.

Both the Z8681 and Z8682 wake up with the 8 bits of Port 1 configured as address outputs for external memory. If more than eight address lines are required with the Z8681, additional lines can be obtained by programming Port 0 bits as address bits. The least-significant four bits of Port 0 can
be configured to supply address bits $A_{8}-A_{11}$ for 4 K byte addressing or both nibbles of Port 0 can be configured to supply address bits $A_{8}-A_{15}$ for 64 K byte addressing.

Figure 8. Port 1

Such an initialization routine must reside within the first 256 bytes of executable code and must be physically mapped into memory by forcing the Port 0 address lines to a known state (Figure 10). The proper port initialization sequence is:

1. Write initial address $\left(A_{8}-A_{15}\right)$ of initialization routine to Port 0 address lines.
2. Configure Port 0 Mode register to output $A_{8}-A_{15}$ (or $A_{8}-A_{11}$).

To permit the use of slow memory, an automatic wait mode of two oscillator clock cycles is configured for the bus timing of the Z8681 after each reset. The initialization routine could include reconfiguration to eliminate this extended timing mode.

In the Z8681 *, Port 0 lines float after reset; their logic state is unknown until the execution of an initialization routine that configures Port 0.
*This feature differs in the Z8681 and Z8682.

The following example illustrates the manner in which an initialization routine can be mapped in a Z8681 system with 4 K of memory.
Example. In Figure 10, the initialization routine is mapped to the first 256 bytes of program memory. Pull-down resistors maintain the address lines at a logic 0 level when these lines are floating. The leakage current caused by fanout must be taken into consideration when selecting the value of the pulldown resistors. The resistor value must be large enough to allow the Port 0 output driver to pull the line to a logic 1. Generally, pulldown resistors are incompatible with TTL loads. If Port 0 drives into TTL input loads (low $=1.6 \mathrm{~mA}$) the external resistors should be tied to $V_{C C}$ and the initialization routine put in address space $\mathrm{FFOO}_{\mathrm{H}}-\mathrm{FFFF}_{\mathrm{H}}$.

In the Z8682*, Port 0 lines are configured as address lines $A_{8}-A_{15}$ after a Reset. If one or both nibbles are needed for

I/O operation, they must be configured by writing to the Port 0 Mode register. The $Z 8682$ is in the fast memory timing mode after Reset, so the initialization routine must be in fast memory.

Figure 9. Port 0

Figure 10. Port 0 Address Lines Tied to Logic 0

Port 2 bits can be programmed independently as input or output (Figure 11). This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Port 0, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines P_{1} and P_{6} are used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and RDY_{2}. The handshake signal assignment for Port 3 lines $\mathrm{P3}_{1}$ and P_{6} is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Figure 11. Port 2

Port 3 lines can be configured as I/O or control lines (Figure 12). In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{3}-\mathrm{P}_{3}\right)$ and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines P_{0} and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out, respectively.

Port 3 can also provide the following control functions: handshake for Ports 0 and 2 ($\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals (IRQ0-IRQ3); timer input and output signals ($T_{I N}$ and $T_{O U T}$) and Data Memory Select ($\overline{\mathrm{DM}}$).

Figure 12. Port 3

[^9]
INTERRUPTS*

The Z8681/82 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z8681 and Z8682 interrupts are vectored through locations in program memory. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all subsequent interrupts, saves the Program Counter and status flags, and accesses the program memory vector location reserved for that interrupt. In the Z8681, this memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request. The $Z 8681$ takes 63 crystal cycles to enter an interrupt subroutine.

The Z8682 has a small internal ROM that contains six 2-byte interrupt vectors pointing to addresses 2048-2065, where 3-byte jump absolute instructions are located (Figure 4 and Table 1). These jump instructions each contain a 1-byte
opcode and a 2-byte starting address for the interrupt service routine.

Table 1. 28682 Interrupt Processing

Hex Address	Contains Jump Instruction and Subroutine Address For
$800-802$	IRQ0
$803-805$	IRQ1
$806-808$	IRQ2
$809-80 \mathrm{~B}$	IRQ3
$80 \mathrm{C}-80 \mathrm{E}$	IRQ4
$80 \mathrm{~F}-811$	IRQ5

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output).
The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitance ($\mathrm{C}_{\mathrm{L}}=15 \mathrm{pf}$ maximum) from each pin to ground. The specifications for the crystal are as follows:

■ AT cut, parallel-resonant

- Fundamental type
- Series resistance, $R_{S} \leqslant 100 \Omega$
- For $\mathrm{Z} 8682,8 \mathrm{MHz}$ maximum
- For Z8681-12, 16 MHz maximum

Z8681/Z8682 INTERCHANGEABILITY

Although the Z8681 and Z8682 have minor differences, a system can be designed for compatibility with both ROMless versions. To achieve interchangeability, the design must take into account the special requirements of each device in the external interface, initialization, and memory mapping.

Figure 13. Z8682 RESET Pin Input Waveform

[^10]External Interface. The Z 8682 requires a 7.5 V positive logic level on the $\overline{\text { RESET }}$ pin for at least 6 clock periods immediately following reset, as shown in Figure 13. The Z8681 requires a 3.8 V or higher positive logic level, but is compatible with the Z8682 RESET waveform. Figure 14 shows a simple circuit for generating the 7.5 V level.

Figure 14. RESET Circuit

Initialization. The Z8681 wakes up after reset with Port 0 configured as an input, which means Port 0 lines are floating in a high-impedance state. Because of this pullup or pulldown, resistors must be attached to Port 0 lines to force them to a valid logic level until Port 0 is configured as an address port.
Port 0 initialization is discussed in the section on ports. An example of an initialization routine for $\mathbf{Z 8 6 8 1 / Z 8 6 8 2}$ compatibility is shown in Table 2. Only the Z8681 need execute this program.

Table 2. Initialization Routine

Address	Opcodes	Instruction	Comments
000 C	E60000	LDPO \#\%00	Set $\mathrm{A}_{8}-\mathrm{A}_{15}$ to 0.
000 F	E6 F896	LDP01M \#\%96	Configure Port 0 as $A_{8}-A_{15}$. Eliminate extended memory
		timing.	
0012	$8 D 0812$	JP START ADDRESS	Execute application program.

Figure 15. Z8681/82 Logical Program Memory Mapping

Memory Mapping. The Z8681 and Z8682 lower memory boundaries are located at 0 and 2048 , respectively. A single program ROM can be used with either product if the logical program memory map shown in Figure 15 is followed. The Z8681 vectors and initialization routine must be starting at
address 0 and the $Z 86823$-byte vectors (jump instructions) must be at address 2048 and higher. Addresses in the range 21-2047 are not used. Figure 16 shows practical schemes for implementing this memory map using 4 K and 2 K ROMs.

a. Logical to Physical Memory Mapping for 4K ROM

b. Logical to Physical Memory Mapping for 2K ROM

Figure 16. Practical Schemes for Implementing Z8681 and Z8682 Compatible Memory Map

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR	Indirect register pair or indirect working-register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
\mathbf{R}	Register or working-register address
\mathbf{r}	Working-register address only
IR	Indirect-register or indirect working-register Ir address RR
	Indirect working-register address only
Register pair or working register pair address	

Symbols. The following symbols are used in describing the instruction set.

dst	Destination location or contents
src	Source location or contents
cc	Condition code (see list)
$@$	Indirect address prefix
SP	Stack pointer (control registers 254-255)
PC	Program counter
FLAGS	Flag register (control register 252)
RP	Register pointer (control register 253)
IMR	Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " \leftarrow ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:

C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag

Affected flags are indicated by:

$\mathbf{0}$	Cleared to zero
$\mathbf{1}$	Set to one
$\boldsymbol{*}$	Set or cleared according to operation
\mathbf{x}	Unaffected
\mathbf{x}	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always true	-
0111	C	Carry	$C=1$
1111	NC	No carry	$C=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not equal	$Z=0$
1001	GE	Greater than or equal	$(\mathrm{SXOR} V)=0$
0001	LT	Less than	$(S$ XOR V $)=1$
1010	GT	Greater than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V})$] $=0$
0010	LE	Less than or equal	$[\mathrm{Z} \mathrm{OR}(\mathrm{S} \mathrm{XOR} V)]=1$
1111	UGE	Unsigned greater than or equal	$C=0$
0111	ULT	Unsigned less than	$C=1$
1011	UGT	Unsigned greater than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned less than or equal	$(C O R Z)=1$
0000		Never true	-

INSTRUCTION FORMATS

CCF, DI, EI, IRET, NOP,
dst OPC
CLR, CPL, DA, DEC,
DECW, INC, INCW, POP, PUSH, RL, RLC, RR, RRC, SRA, SWAP

OPC
dst

OPC
VALUE

OPC	MODE
dst	src

MODE	OPC
dst/src	src/dst

$\mathrm{dst} / \mathrm{src}$	OPC						
$\mathrm{src} / \mathrm{dst}$		OR	1	1	1	0	src
:---	:---	:---	:---	:---			

dst	OPC

VALUE

dst/CC	OPC

dstice	OPC
RA	

OR | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |

JP, CALL (Indirect)

SRP

ADC, ADD, AND,
CP, OR, SBC, SUB TCM, TM, XOR

LD, LDE, LDEI LDC, LDCI

LD

LD

OPC	MODE
dst	
ORALUE	1 1 1 0

ADC, ADD, AND, CP, D, OR, SBC, SUB, TCM, TM, XOR

MODE	OPC	OR				
src				11		src
d		OR	1	11	0	dst

LD

MODE	OPC
dst/src	x
ADDRESS	

$\mathbf{C C}$	OPC
DA_{U}	
DA_{L}	

$\mathbf{O P C}$
DA_{U}
DA_{L}

JP

CALL

Figure 17. Instruction Formats

INSTRUCTION SUMMARY

Instruction and Operation	Addr Mode	Opcode	Flags Affected
	dst src	(Hex)	C Z SVDH
ADC dst,src $\mathrm{dst} t \leftarrow d s t+\mathrm{src}+\mathrm{C}$	(Note 1)	$1 \square$	* * * * 0 *
ADD dst,src dst \leftarrow dst + src	(Note 1)	$0 \square$	* * * * 0 *
AND dst,src dst \leftarrow dst AND src	(Note 1)	5■	- * * 0 --
CALL dst $\begin{aligned} & S P \leftarrow S P-2 \\ & @ S P \leftarrow P C ; P C \leftarrow d s t \end{aligned}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - -
$\begin{aligned} & \text { CCF } \\ & \mathrm{C} \leftarrow \mathrm{NOT} \mathrm{C} \end{aligned}$		EF	* - - - -
CLR dst $d s t \leftarrow 0$	$\begin{gathered} R \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	- - - - -
$\begin{aligned} & \text { COM dst } \\ & \text { dst } \leftarrow \text { NOT dst } \end{aligned}$	$\begin{gathered} \hline R \\ \mathbb{R} \end{gathered}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-** 0 - -
$\begin{aligned} & \mathbf{C P} \text { dst, src } \\ & \mathrm{dst}-\mathrm{src} \end{aligned}$	(Note 1)	A \square	* * * * - -
DA dst dst \leftarrow DA dst	$\begin{gathered} R \\ \mathbb{R} \end{gathered}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X - -

Instruction and Operation	Addr Mode		Flags Affected
	dst src	(Hex)	C Z S V D H
$\begin{aligned} & \text { DEC } d s t \\ & d s t \leftarrow d s t-1 \end{aligned}$	$\begin{gathered} R \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	- ***- -
DECW dst dst \leftarrow dst -1	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	- * * * - -
DI $\operatorname{IMR}(7) \leftarrow 0$		8F	- - - - -
$\begin{aligned} & \text { DJNZ } r \text {,dst } \\ & r \leftarrow r-1 \\ & \text { if } r \neq 0 \\ & \quad P C \leftarrow P C+d s t \\ & \text { Range }:+127,-128 \end{aligned}$	RA	$\begin{gathered} r A \\ r=0-F \end{gathered}$	- - - - - -
EI $\operatorname{IMR}(7) \leftarrow 1$		9 F	------
$\begin{aligned} & \text { INC dst } \\ & \text { dst } \leftarrow d s t+1 \end{aligned}$	r R IR	$\begin{aligned} & r= \\ & r= \\ & 0-F \\ & 20 \\ & 21 \end{aligned}$	$-* * *--$
INCW dst $d s t \leftarrow d s t+1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	- * * * -

INSTRUCTION SUMMARY (Continued)

$P C \leftarrow P C+d s t$
Range: + 127, - 128

LD dst,src		Im	rC	- - - - - -
dst \leftarrow src	r	R	r8	
	R	r	r9	
			$r=0-F$	
	r	X	C7	
	X	r	D7	
	r	Ir	E3	
	Ir	r	F3	
	R	R	E4	
	R	IR	E5	
	R	IM	E6	
	IR	IM	E7	
	IR	R	F5	
LDC dst,src	r	Irr	C2	- - - - -
dst \leftarrow src	Irr	r	D2	
LDCI dst, src		trr	C3	------
dst \leftarrow src	1 rr	Ir	D3	
$r \leftarrow r+1 ; r r$ rr +1				
LDE dst,src	r	Irr	82	- - -
dst \leftarrow src	Irr	r	92	
LDEI dst,src		Irr	83	- - - - -
dst \leftarrow src	Irr	Ir	93	
$r \leftarrow r+1 ; r r \leftarrow r r+1$				
NOP			FF	------
OR dst, src (Note 1) dst \leftarrow dst OR src			$4 \square$	- * * 0 - -
$\begin{aligned} & \text { POP dst } \\ & \text { dst } \leftarrow \text { @SP; } \\ & \text { SP } \leftarrow S P+1 \end{aligned}$	$\begin{gathered} \mathrm{R} \end{gathered}$		50	- - - - -
			51	
PUSH src		R	70	- - - - -
SP \leftarrow SP - 1; @SP ¢ Src		IR	71	
RCF			CF	$0----$
$\mathrm{C} \leftarrow 0$				
RET			AF	------
$\mathrm{PC} \leftarrow @ S P ; \mathrm{SP} \leftarrow \mathrm{SP}+2$				
RL dst C. $\sqrt{7}$			90	* * * * - -
			91	

NOTE: These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \square in this table, and its value is found in the following table to the left of the applicable addressing mode pair
For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13

Addr Mode		Lower Opcode Nibble
dst	src	
r	r	2
r	Ir	3
R	R	4
R	$\mid R$	5
R	IM	6
$\mid R$	$\mid M$	7

REGISTERS
R240 SIO
Serial I/O Register (FOH; Read/Write)

\square SERIAL DATA $\left(D_{0}=L S B\right)$

R241 TMR
Time Mode Register
($\mathrm{F}_{\mathrm{H}} \mathrm{H}$; Read/Write)

R242 T1
Counter Timer 1 Register
(F2H; Read/Write)

R243 PRE1
Prescaler 1 Register
($\mathrm{F}_{3} \mathrm{H}$; Write Only)

R244 TO

Counter/Timer 0 Register

(F4H; Read/Write)

To INITIAL VALUE (WHEN WRITTEN) (RANGE: ${ }_{0}$ CURRENT VALUE (WHEN READ)

R245 PRE0

Prescaler 0 Register
(F5H; Write Only)

PRESCALER MODULO
RANGE: 1-64 DECIMAL
$01-00 \mathrm{HEX}$)

R246 P2M
Port 2 Mode Register
(F6H; Write Only)

$\mathrm{P}_{0}-\mathrm{P} 2, \mathrm{HO}$ DEFINITION O DEFINES BIT AS OUTPUT 1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
(F7H; Write Only)

Figure 18. Control Registers

REGISTERS
(Continued)

R248 P01M
Port 0 Register
($\mathrm{F}_{8} \mathrm{H}$; Write Only)

-always extended timing after reset

R252 FLAGS
Flag Register
($\mathrm{FCH}_{\mathrm{H}}$; Read/Write)

R253 RP

Register Pointer (FDH, Read/Write)

R250 IRQ Interrupt Request Register
(FAH; Read/Write)

R251 IMR
Interrupt Mask Register
(FBH; Read/Write)
R254 SPH Stack Pointer
(FEH; Read/Write)

pt Priority Register
(F9h; Write Only)

$0=I R Q 1>I R Q$
-

R255 SPL Stack Pointer (FFH; Read/Write)

Figure 18. Control Registers (Continued)

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins except $\overline{\text { RESET }}$
with respect to GND -0.3 V to +7.0 V
Operating Ambient
Temperature See Ordering Information
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin.
Standard conditions are as follows:
■ $+4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.25 \mathrm{~V}$

- $\mathrm{GND}=0 \mathrm{~V}$
- $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ for S (Standard temperature)
- $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+100^{\circ} \mathrm{C}$ for E (Extended temperature)

Figure 19. Test Load 1

DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Unit	Condition
V_{CH}	Clock Input High Voltage	3.8	V_{CC}	V	Driven by External Clock Generator
$V_{C L}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
V_{H}	Input High Voltage	2.0	V_{CC}	V	
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	V_{CC}	V	See Note
$V_{\text {RL }}$	Reset Input Low Voltage	-0.3	0.8	V	
V OH	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{l}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
IIL	Input Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant+5.25 \mathrm{~V}$
IOL	Output Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant+5.25 \mathrm{~V}$
IIR	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
Icc	$V_{\text {CC }}$ Supply Current		150	mA	All outputs and I/O pins floating

*The Reset line (pin 6) is used to place the Z8682 in external memory mode. This is accomplished as shown in Figure 13.

Figure 20. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing

NumberSymbol		Parameter	$\begin{gathered} 28681 / 82 \\ 8 \mathrm{MHz} \end{gathered}$		$\begin{gathered} Z 8681 \\ 12 \mathrm{MHz} \end{gathered}$		$\begin{gathered} 28681 \\ 16 \mathrm{MHz} \end{gathered}$		Notes	
		Min	Max	Min	Max	Min	Max			
1	TdA(AS)		Address Valid to AS \uparrow Delay	50		35		20		2,3
2	TdAS(A)	AS \uparrow to Address Float Delay	70		45		30		2,3	
3	TdAS(DR)	AS \uparrow to Read Data Required Valid		360		220		180	1,2,3	
4	TwAS	AS Low Width	80		55		35		2,3	
5	TdAz(DS)	Address Float to DS \downarrow	0		0		0			
6	TwDSR	$\overline{\text { DS (Read) Low Width }}$	250		185		135		1,2,3	
7	TwDSW	DS (Write) Low Width	160		110		80		1,2,3	
8	TdDSR(DR)	DS \downarrow to Read Data Required Valid		200		130		75	1,2,3	
9	ThDR(DS)	Read Data to DS \uparrow Hold Time	0		0		0		2,3	
10	$\operatorname{TdDS}(\mathrm{A})$	DS \uparrow to Address Active Delay	70		45		-		2,3	
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		30		2,3	
12	TdR/W(AS)	R/W Valid to $\overline{A S} \uparrow$ Delay	50		30		20		2,3	
13	TdDS(R/W)	DS \uparrow to R/W Not Valid	60		35		30		2,3	
14	TdDW(DSW)	Write Data Valid to DS (Write) \downarrow Delay	50		35		25		2,3	
15	TdDS(DW)	DS \uparrow to Write Data Not Valid Delay	60		35		30		2,3	
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255		200	1,2,3	
17	TdAS(DS)	AS \uparrow to $\mathrm{DS} \downarrow$ Delay	80		55		40		2,3	

NOTES:

[^11]

Figure 21. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

							$\begin{gathered} Z 8 \\ 16 \end{gathered}$	$\begin{aligned} & \hline 681 \\ & \text { MHz } \end{aligned}$	
Numbe	S Symbol	Parameter		Max	Min	Max	Min	Max	Notes
1	TpC	Input Clock Period	125	1000	83	1000	62.5	1000	1
2	TrC, TfC	Clock Input Rise and Fall Times		25		15		10	1
3	TwC	Input Clock Width	37		70		21		1
4	TwTinL	Timer Input Low Width	100		70		50		2
5	TwTinH	Timer Input High Width	3 TpC		3 TpC		3 TpC		2
6	TpTin	Timer Input Period	8TpC		8 TpC		8 TpC		2
7	TrTin, TfTin	Timer Input Rise and Fall Times		100		100		100	2
8A	TwIL	Interrupt Request Input Low Time	100		70		50		2,4
8B	TwIL	Interrupt Request Input Low Time	3 TpC		3 TpC		3 TpC		2,5
9	TwIH	Interrupt Request Input High Time	3 TpC		3 TpC		3 TpC		2,3

NOTES:

1. Clock timing references use 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port 3.
4. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P}_{3}\right)$
5. Interrupt request via Port $3\left(\mathrm{P}_{0}\right)$
6. 16 MHz timing is preliminary and subject to change.

* Units in nanoseconds (ns).

Figure 22a. Input Handshake Timing

Figure 22b. Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing

Number Symbol		Parameter	$\begin{gathered} \mathrm{Z} 8681 / 82 \\ 8 \mathrm{MHz} \end{gathered}$		$\begin{gathered} \mathrm{Z8681} \\ 12 \mathrm{MHz} \end{gathered}$		$\begin{gathered} Z 8681 \\ 16 \mathrm{MHz} \end{gathered}$		Notes	
		Min	Max	Min	Max	Min	Max			
1	TsDİ(DAV)		Data In Setup Time	0		0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		145			
3	TwDAV	Data Available Width	175		120		110			
4	TdDAVIf(RDY)	DAV \downarrow Input to RDY \downarrow Delay		175		120		115	1,2	
5	TdDAVOf(RDY)	DAV \downarrow Output to RDY \downarrow Delay	0		0		0		1,3	
6	TdDAVIr(RDY)	DAV \uparrow Input to RDY \uparrow Delay		175		120		115	1,2	
7	TdDAVOr(RDY)	DAV \uparrow Output to RDY \uparrow Delay	0		0		0		1,3	
8	TdDO(DAV)	Data Out to DAV \downarrow Delay	50		30		30		1	
9	TdRDY(DAV)	Rdy \downarrow Input to DAV \uparrow Delay	0	200	0	140	0	130	1	

NOTES:

1. Test load 1
2. Input handshake
3. Output handshake
4. 16 MHz timing is preliminary and subject to change.
\dagger All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* Units in nanoseconds (ns).

CLOCK CYCLE TIME-DEPENDENT
 CHARACTERISTICS

Number	Symbol	$\begin{aligned} & \text { Z8681/82 } \\ & 8 \mathrm{MHz} \\ & \text { Equation } \end{aligned}$	$\begin{gathered} \text { Z8681/82 } \\ 12 \mathrm{MHz} \\ \text { Equation } \end{gathered}$
1	TdA(AS)	TpC-75	TpC-50
2	TdAS(A)	TpC-55	TpC-40
3	TdAS(DR)	4TpC-140*	4TpC-110*
4	TwAS	TpC-45	TpC-30
6	TwDSR	3TpC-125*	3TpC-65*
7	TwDSW	$2 \mathrm{TpC}-90$ *	$2 \mathrm{TpC}-55$ *
8	TdDSR(DR)	$3 \mathrm{TpC}-175$ *	$3 \mathrm{TpC-120}$ *
10	Td(DS)A	TpC-55	TpC-40
11	TdDS(AS)	TpC-55	TpC-30
12	TdR/W(AS)	TpC-75	TpC-55
13	TdDS(R/W)	TpC-65	TpC-50
14	TdDW(DSW)	TpC-75	TpC-50
15	TdDS(DW)	TpC-55	TpC-40
16	TdA(DR)	5TpC-215*	5TpC-160*
17	TdAS(DS)	TpC-45	TpC-30

* Add 2 TpC when using extended memory timing

Z8691 $\mathbf{Z 8}^{\text {® }}$
 ROMLESS MICROCONTROLLER

FEATURES

- Complete microcomputer, 24 I/O lines, and up to 64 K bytes of addressable external space each for program and data memory.
■ 143-byte register file, including 124 general-purpose registers, 3 I/O port registers, and 16 status and control registers.
- Vectored, priority interrupts for I/O, counter/timers, and UART.
- On-chip oscillator that accepts crystal or external clock drive.
- Full-duplex UART and two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any one of the nine working-register groups.
. Single +5 V power supply-all I/O pins TTL compatible.
($8 \mathrm{MHz} / 12 \mathrm{MHz}$ versions.

GENERAL DESCRIPTION

The Z8691 is a ROMless version of the Z8 single-chip microcomputer. The Z8691 offers all the outstanding features of the Z8 family architecture except an on-chip program ROM. Use of external memory rather than a

Figure 1. Pin Functions
preprogrammed ROM enables this $\mathrm{Z8}$ microcomputer to be used in low volume applications or where code flexibility is required.

Figure 2a. 40-pin Dual-In-Line Package (DIP), Pin Assignments

The Z8691 can provide up to 16 output address lines, thus permitting an address space of up to 64 K bytes of data or program memory. Eight address outputs $\left(A D_{0}-A D_{7}\right)$ are provided by a multiplexed, 8 -bit, Address/Data bus. The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$.

Available address space can be doubled (up to 128 K bytes) by programming bit 4 of Port $3\left(\mathrm{P}_{4}\right)$ to act as a data memory select output ($\overline{\mathrm{DM}}$). The two states of $\overline{\mathrm{DM}}$ together with the 16 address outputs can define separate data and memory address spaces of up to 64 K bytes each.

There are 143 bytes of RAM located on-chip and organized as a register file of 124 general-purpose registers, 16 control and status registers, and three I/O port registers. This register file can be divided into nine groups of 16 working registers each. Configuring the register file in this manner allows the use of short format instructions; in addition, any of the individual registers can be accessed directly.

The pin functions and the pin assignments of the Z8691 40-pin and 44-pin packages are illustrated in Figures 1 and 2, respectively.

Figure 2b. 44-pin Chip Carrier, Pin Assignments

Figure 3. Functional Block Diagram

ARCHITECTURE

Z8691 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z8691 fulfills this with 24 pins available for input and output. These lines are grouped into three ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an Address bus for interfacing external memory.

Three basic address spaces are available: program memory,
data memory and the register file (internal). The 143-byte random-access register file is composed of 124 general-purpose registers, three I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate. Figure 3 shows the Z8691 block diagram.

PIN DESCRIPTION

$\overline{\mathbf{A S}}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$.
$\overline{\mathrm{DS}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathrm{PO}_{0} \cdot \mathrm{PO}_{7}, \mathrm{P}_{2} \cdot \mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7} . / / O$ Port Lines (input/outputs, TTL-compatible). These 24 lines are divided into three 8 -bit I/O ports that can be configured under program control for 1/O or external memory interface (Figure 3).
$\mathrm{P1}_{\mathbf{0}} \cdot \mathbf{P 1}$. Address/Data Port (bidirectional). Multiplexed
address $\left(A_{0}-A_{7}\right)$ and data $\left(D_{0}-D_{7}\right)$ lines used to interface with program and data memory.

RESET. Reset (input, active Low). $\overline{\text { RESET }}$ initializes the Z8691. After RESET the Z8691 is in the extended memory mode. When RESET is deactivated, program execution begins from program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathbf{W}}$. Read/Write (output). R/W is Low when the Z8691 is writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel-resonant crystal to the on-chip clock oscillator and buffer.

ADDRESS SPACES

Program Memory. The Z8691 addresses 64K/62K bytes of external program memory space (Figure 4).

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts. Program execution begins at location $000 \mathrm{C}_{H}$ after a reset.
Data Memory. The Z8691 can address 64 K bytes of external data memory. External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P3}_{4}$, is used to distinguish between data and program memory space.
Register File. The 143-byte register file includes three I/O port registers (R0, R2, R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 5.

Z8691 instructions can access registers directly or indirectly with an 8 -bit address field. This also allows short 4 -bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 5). The Register Pointer addresses the starting location of the active working-register group (Figure 6).

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

Figure 4. Program Memory Map

DEC		HEX	IDENTIFIERS
255	STACK POINTER (BITS 7-0)	FF	SPL
254	STACK POINTER (BITS 15-8)	FE	SPH
253	REGISTER POINTER	FD	R P
252	PROGRAM CONTROL FLAGS	FC	FLAGS
251	INTERRUPT MASK REGISTER	FB	IMR
250	INTERRUPT REQUEST REGISTER	FA	IRQ
249	INTERRUPT PRIORITY REGISTER	F9	IPR
248	PORTS 0-1 MODE	F8	P01M
247	PORT 3 MODE	F7	P3M
246	PORT 2 MODE	F6	P2M
245	TO PRESCALER	F5	PRE0
244	TIMERICOUNTER 0	F4	TO
243	T1 PRESCALER	F3	PRE1
242	TIMERICOUNTER 1	F2	T1
241	TIMER MODE	F1	TMR
240	SERIAL I/O	F0	SIO
	$\begin{gathered} \text { NOT } \\ \text { IMPLEMENTED } \end{gathered}$		
127		7F	
	GENERAL.PURPOSE REGISTERS		
4		04	
3	PORT 3	03	P3
2	PORT 2	02	P2
1	PORT 1	01	P1
0	PORT 0	00	PO

Figure 5. The Register File

Figure 6. The Register Pointer

SERIAL INPUTIOUTPUT

Port 3 lines P_{3} and P_{3} can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0 , with a maximum rate of 62.5 K bits/second at 8 MHz or 93.75 K bits/second at 12 MHz on the Z 8691 .
The Z8691 automatically adds a start bit and two stop bits to transmitted data (Figure 7). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of
parity selection. If parity is enabled, the eighth data bit is used as the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits, and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Transmitted Data
(No Parity)

Transmitted Data
(With Parity)

Received Data

(With Parity)
Figure 7. Serial Data Formats

COUNTER/TIMERS

The Z8691 contains two 8-bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6-bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request - IRQ4 (T_{0}) or IRQ5 $\left(T_{1}\right)$ - is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode)
or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T_{1} is user-definable; it can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line P_{6} also serves as a timer output (TOUT) through which T_{0}, T_{1} or the internal clock can be output.

I/O PORTS

The Z8691 has 24 lines available for input and output. These lines are grouped into three ports of eight lines each and are configurable as input, output or address. Under software control, the ports can be programmed to provide address
outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1 is a dedicated Z-BUS compatible memory interface. The operations of Port 1 are supported by the Address Strobe $(\overline{\mathrm{AS}})$ and Data Strobe ($\overline{\mathrm{DS}}$) lines, and by the Read/Write (R/W) and Data Memory ($\overline{\mathrm{DM}}$) control lines. The low-order program and data memory addresses ($\mathrm{A}_{0}-\mathrm{A}_{7}$) are output through Port 1 (Figure 8) and are multiplexed with data in/out ($\mathrm{D}_{0}-\mathrm{D}_{7}$). Instruction fetch and data memory read/write operations are done through this port.

Port 1 cannot be used as a register nor can a handshake mode be used with this port.

The Z8691 wakes up with the 8 bits of Port 1 configured as address outputs for external memory. If more than eight address lines are required, additional lines can be obtained by programming Port 0 bits as address bits. The
least-significant four bits of Port 0 can be configured to supply address bits $A_{8}-A_{11}$ for 4 K byte addressing or both nibbles of Port 0 can be configured to supply address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$ for 64 K byte addressing.

Figure 8. Port 1

Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory (Figure 9). When used as an I/O port, Port 0 can be placed under handshake control. In this configuration, Port 3 lines P_{2} and P_{5} are used as the handshake controls DAV_{0} and $R D Y_{0}$. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.
For external memory references, Port 0 can provide address bits $\mathrm{A}_{8}-\mathrm{A}_{11}$ (lower nibble) or $\mathrm{A}_{8}-\mathrm{A}_{15}$ (lower and upper nibbles) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing.

Port 0 lines are configured as address lines $A_{8}-A_{15}$ after a reset. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register.

To permit the use of slow memory, an automatic wait mode of two oscillator clock cycles is configured for the bus timing of the Z8691 after each reset. The initialization routine could include reconfiguration to eliminate this extended timing mode.

Figure 9. Port 0

Port 2 bits can be programmed independently as input or output (Figure 10). This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.
Port 2 may also be placed under handshake control. In this configuration, Port 3 lines P_{1} and $\mathrm{P} 3_{6}$ are used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and RDY_{2}. The handshake signal assignment for Port 3 lines P_{3} and P_{6} is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Figure 10. Port 2

Port 3 lines can be configured as I/O or control lines (Figure 11). In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{3}-\mathrm{P3}_{3}\right)$ and four output $\left(\mathrm{P3}_{4}-\mathrm{P}_{7}\right)$. For serial I/O, lines P_{3} and P_{7} are programmed as serial in and serial out, respectively.

Port 3 can also provide the following control functions: handshake for Ports 0 and 2 ($\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals (IRQO-IRQ3); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {OUT }}$) and Data Memory Select ($\overline{\mathrm{DM}}$).

Figure 11. Port 3

INTERRUPTS

The Z8691 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All interrupts are vectored through locations in program memory. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all subsequent
interrupts, saves the Program Counter and status flags, and accesses the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. The Z8691 takes 63 crystal cycles to enter an interrupt subroutine.
Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 $=$ Input, XTAL2 $=$ Output).
The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitance $\left(C_{L}=15 \mathrm{pf}\right.$ maximum) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, parallel-resonant
- Fundamental type
- Series resistance, $R_{S} \leqslant 100 Q$

■ 8 or 12 MHz maximum

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR	Indirect register pair or indirect working-register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address r
Working-register address only	
IR	Indirect-register or indirect working-register
	address
Ir	Indirect working-register address only
RR	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.

dst	Destination location or contents
src	Source location or contents
cc	Condition code (see list)
$@$	Indirect address prefix
SP	Stack pointer (control registers 254-255)
PC	Program counter
FLAGS	Flag register (control register 252)
RP	Register pointer (control register 253)
IMR	Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " \leftarrow ". For example,

$$
d s t \leftarrow d s t+s r c
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six flags:

C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag
Affected flags are indicated by:
$0 \quad$ Cleared to zero
1 . Set to one

* Set or cleared according to operation
- Unaffected

X Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set
1000		Always true	-
0111	C	Carry	$C=1$
1111	NC	No carry	$C=0$
0110	Z	Zero	$Z=1$
1110	NZ	Not zero	$Z=0$
1101	PL	Plus	$S=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$Z=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{SXOR} V)=0$
0001	LT	Less than	$(\mathrm{SXOR} V)=1$
1010	GT	Greater than	$[\mathrm{Z} \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=0$
0010	LE	Less than or equal	$[\mathrm{ZOR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned greater than or equal	$C=0$
0111	ULT	Unsigned less than	$C=1$
1011	UGT	Unsigned greater than	$(C=0$ AND $Z=0)=1$
0011	ULE	Unsigned less than or equal	$(C O R Z)=1$
0000		Never true	-

One-Byte Instruction

Two-Byte Instruction
Three-Byte Instruction
Figure 12. Instruction Formats

INSTRUCTION SUMMARY

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	Flags Affected
	dst src		CZSVDH
$\begin{aligned} & \text { ADC dst,src } \\ & d s t \leftarrow d s t+\operatorname{src}+C \end{aligned}$	(Note 1)	$1 \square$	* * * * 0 *
ADD dst,src $d s t \leftarrow d s t+$ src	(Note 1)	O[:	* * * * 0 *
AND dst,src dst \leftarrow dst AND src	(Note 1)	5Γ	- * * $0-$
CALL dst $\begin{aligned} & S P \leftarrow S P-2 \\ & @ S P \leftarrow P C: P C \leftarrow d s t \end{aligned}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - - -
$\begin{aligned} & \text { CCF } \\ & \mathrm{C} \leftarrow \mathrm{NOTC} \end{aligned}$		EF	* - - - -
$\begin{aligned} & \text { CLR dst } \\ & \mathrm{dst} \leftarrow 0 \end{aligned}$	$\begin{aligned} & R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{B0} \\ & \mathrm{~B} 1 \end{aligned}$	- - - -
$\begin{aligned} & \text { COM dst } \\ & \text { dst } \leftarrow \text { NOT dst } \end{aligned}$	$\begin{gathered} R \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-** $0-$
$\begin{aligned} & \text { CP dst,src } \\ & \text { dst - src } \end{aligned}$	(Note 1)	ATI	* * * * - -
DA dst dst \leftarrow DA dst	$\begin{gathered} R \\ \mathbb{R} \end{gathered}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X - -

Instruction and Operation	Addr Mode		Opcode Byte (Hex)	Flags Affected C ZSVDH
	dst	src		
DEC dst $d s t \leftarrow d s t-1$	$\begin{gathered} R \\ R \\ \hline R \end{gathered}$		$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$-* * *--$
DECW dst dst $\leftarrow d s t-1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$		$\begin{aligned} & 80 \\ & 81 \end{aligned}$	- * * * - -
DI $\operatorname{IMR}(7) \leftarrow 0$			8F	-
$\begin{aligned} & \text { DJNZ } r, d s t \\ & r \leftarrow r-1 \\ & \text { if } r \neq 0 \\ & \quad P C \leftarrow P C+d s t \\ & \text { Range. }+127,-128 \end{aligned}$	RA		$r=\begin{gathered} r A \\ r \end{gathered}$	$------$
EI $\operatorname{IMR}(7) \leftarrow 1$			9 F	- ------
$\begin{aligned} & \text { INC dst } \\ & \text { dst } \leftarrow d s t+1 \end{aligned}$	r R \mathbb{R}		$\begin{aligned} & r= \\ & r= \\ & \\ & 20 \\ & 21 \end{aligned}$	$-* * *-\cdots$
INCW dst $d s t \leftarrow d s t+1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$		$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	- * * * - -

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Addr Mode		Opcode Byte (Hex)	Flags Affected C Z SVDH
	dst	src		
IRET FLAGS $\leftarrow @ S P ; S P \leftarrow S P+1$ $\mathrm{PC} \leftarrow @ S P ; S P \leftarrow S P+2 ; \operatorname{IMR}(7) \leftarrow 1$				
JP cc, dst If cc is true $P C \leftarrow d s t$	DA IRR		$\begin{gathered} C D \\ c=0-F \\ 30 \end{gathered}$	- - - - -
JR cc, dst if cc is true, $\begin{array}{r} \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{ds} \\ \text { Range: }+127,- \end{array}$	RA		$\begin{gathered} c B \\ c=0-F \end{gathered}$	- - - - -
LD dst,src dst \leftarrow src		$\begin{gathered} \mathrm{Im} \\ \mathrm{R} \\ \mathrm{r} \\ \mathrm{X} \\ \mathrm{X} \\ \mathrm{r} \\ \mathrm{I} \\ \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \\ \mathrm{IM} \\ \mathrm{IM} \\ \mathrm{R} \end{gathered}$	$\begin{gathered} \text { rC } \\ r 8 \\ r 9 \\ r= \\ 0-F \\ \text { C7 } \\ \text { D7 } \\ \text { E3 } \\ \text { F3 } \\ \text { E4 } \\ \text { E5 } \\ \text { E6 } \\ \text { E7 } \\ \text { F5 } \end{gathered}$	- - - - -
LDC dst,src dst \leftarrow src	$\begin{gathered} \text { r } \\ \text { \|rr } \end{gathered}$	$\begin{gathered} \mathrm{Irr} \\ \mathrm{r} \end{gathered}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{D} 2 \end{aligned}$	-
LDCI dst,src dst $\leftarrow \mathrm{src}$ $r \leftarrow r+1 ; r \leftarrow r$	$\begin{aligned} & \mathrm{Ir} \\ & \mathrm{Irr} \end{aligned}$	Irr	$\begin{aligned} & \text { C3 } \\ & \text { D3 } \end{aligned}$	- - - -
LDE dst, src dst \leftarrow src	$\begin{gathered} \text { r } \\ \text { Irr } \end{gathered}$	$\begin{gathered} \mathrm{Irr} \\ \mathrm{r} \end{gathered}$	$\begin{aligned} & 82 \\ & 92 \end{aligned}$	- - - - -
LDEI dst,src dst \leftarrow src $r \leftarrow r+1 ; r \leftarrow r$	$\begin{aligned} & \mathrm{Ir} \\ & \mathrm{lrr} \end{aligned}$	$\begin{aligned} & \mathrm{Irr} \\ & \mathrm{Ir} \end{aligned}$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	- - - - -
NOP			FF	- - - - -
OR dst,src dst \leftarrow dst OR src			$4 \square$	- * * 0 - -
$\begin{aligned} & \text { POP dst } \\ & \mathrm{dst} \leftarrow @ S P ; \\ & \mathrm{SP} \leftarrow \mathrm{SP}+1 \end{aligned}$	$\begin{aligned} & R \\ & \mathbb{R} \end{aligned}$		$\begin{aligned} & 50 \\ & 51 \end{aligned}$	-
PUSH src $S P \leftarrow S P-1 ; @$		$\begin{aligned} & R \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	-
$\begin{aligned} & \text { RCF } \\ & \mathrm{C} \leftarrow 0 \end{aligned}$			CF	$0----$
$P C \leftarrow @ S P ; S P<-S P+2$				
RL dst [c. $\sqrt{7}$	$\int_{\mathbb{R}}^{R}$		$\begin{aligned} & 90 \\ & 91 \end{aligned}$	* * * * - -

REGISTERS

R240 SIO

Serial I/O Register

(FOH, Read/Write)

\section*{| D_{7} | D_{6} | $\mathrm{~S}_{5}$ | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 }

R241 TMR
Time Mode Register
($\mathrm{F} 1_{\mathrm{H}}$; Read/Write)

D_{1}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

EXTERNAL CLOCK ITPNT MODES
$\begin{aligned} & \text { GATE NPUT }=01 \\ & \text { GAP } \\ & \text { THER }\end{aligned}$ TRIGGER INPUT
N.RETRIGGERABLE $\underset{(\text { RETRIGGERABLE }}{\substack{\text { TRIGGE }}}$ (RETRIGGERABLE)

R244 TO

Counter/Timer 0 Register

(F4H: Read/Write)

R245 PRE0
Prescaler 0 Register
(F5H; Write Only)

R246 P2M
Port 2 Mode Register
(F6H; Write Only)

P2 2_{0} - P2, llO DEFINITION
O DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

R247 P3M

Port 3 Mode Register
(F7H; Write Only)

Figure 13. Control Registers

REGISTERS

R248 P01M
Port 0 Mode Register
(F8H; Write Only)

-ALWAYS EXTENDED TIMING AFTER RESET

R249 IPR Interrupt Priority Register
(F9H; Write Only)

R250 IRQ
Interrupt Request Register
(FAH; Read/Write)

R251 IMR
Interrupt Mask Register
(FBH; Read/Write)

R253 RP
Register Pointer
(FDH; Read/Write)

R254 SPH
Stack Pointer
(FEH; Read/Write)

STACK POINTER UPPER BYTE ($\mathrm{SP}_{\mathrm{g}}-\mathrm{SP}_{15}$)

R255 SPL
Stack Pointer
(FFH; Read/Write) $^{\text {F }}$

Figure 13. Control Registers (Continued)

OPCODE MAP

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins except RESE with respect to GND.	$-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
Operating Ambient	
Temperature.	dering Information
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin.
Standard conditions are as follows:

- $+4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.25 \mathrm{~V}$
- GND $=0 \mathrm{~V}$
- $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ for S (Standard temperature)
- $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+100^{\circ} \mathrm{C}$ for E (Extended temperature)

Figure 14. Test Load 1

DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Unit	Condition
V_{CH}	Clock Input High Voltage	3.8	V_{CC}	V	Driven by External Clock Generator
$V_{C L}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
V_{IH}	Input High Voltage	2.0	V_{CC}	V	
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V	.
$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	V_{CC}	V	
V_{RL}	Reset Input Low Voltage	-0.3	0.8	V	
V_{OH}	Output High Voltage	2.4		V	$\mathrm{IOH}^{\text {O }}=-250 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	\checkmark	$\mathrm{IOL}^{\text {O }}=+2.0 \mathrm{~mA}$
IIL	Input Leakage	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 5.25 \mathrm{~V}$
lol	Output Leakage	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 5.25 \mathrm{~V}$
IR	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Current		180	mA	All outputs and I/O pins floating

Figure 15. External I/O or Memory Read/Write Timing

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing

Number	Symbol	Parameter	8 MHz		12 MHz		Notes* \dagger°
			Min	Max	Min	Max	
1	TdA(AS)	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50		35		2,3
2	TdAS(A)	$\overline{\text { AS } \uparrow \text { to Address Float Delay }}$	70		45		2,3
3	TdAS(DR)	$\overline{\mathrm{AS}} \uparrow$ to Read Data Required Valid		360		220	1,2,3
4	TwAS	$\overline{\text { AS Low Width }}$	80		55		2,3
5	TdAz(DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		0		
6	TwDSR	$\overline{\mathrm{DS}}$ (Read) Low Width	250		185		1,2,3
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3
8	TdDSR(DR)	$\overline{\overline{D S}} \downarrow$ to Read Data Required Valid		200		130	1,2,3
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		
10	TdDS(A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		45		2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		2,3
12	TdR/W(AS)	R / \bar{W} Valid to $\overline{A S} \uparrow$ Delay	50		30		2,3
13	TdDS(R/W)		60		35		2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) \downarrow Delay	50		35		2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	60		35		2,3
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255	1,2,3
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		55		2,3

NOTES:

1. When using extended memory timing add 2 TpC .
2. Timing numbers given are for minimum $T p C$.
3. See clock cycle time dependent characteristics table.

* All units in nanoseconds (ns).
\dagger Test Load 1
${ }^{\circ}$ All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

Figure 16. Additional Timing

AC CHARACTERISTICS

Additional Timing Table

Number	Symbol	Parameter	8 MHz		12 MHz		Notes*
			Min	Max	Min	Max	
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC,TfC	Clock Input Rise and Fall Times		25		15	1
3	TwC	Input Clock Width	37		70		1
4	TwTinL	Timer Input Low Width	100		70		2
5	TwTinH	Timer Input High Width	3 TpC		3 TpC		2
6	TpTin	Timer Input Period	8 TpC		8TpC		2
7	TrTin, TfTin	Timer Input Rise and Fall Times		100		100	2
8A	TwIL	Interrupt Request Input Low Time	100		70		2,4
8B	TwIL	Interrupt Request Input Low Time	3 TpC		3 TpC		2,5
9	TwIH	Interrupt Request Input High Time	3 TpC		3 TpC		2,3

NOTES:

1. Clock timing references use 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port 3.
4. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P}_{3}\right)$
5. Interrupt request via Port $3\left(\mathrm{P}_{0}\right)$

* Units in nanoseconds (ns).

Figure 17a. Input Handshake Timing

Figure 17b. Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing

Number	Symbol	Parameter	$\operatorname{Min}^{8 \mathrm{MHz}} \operatorname{Max}$		$\operatorname{Min}^{12 \mathrm{MHz}} \mathrm{Max}^{2}$		Notes $\dagger *$
1	TsDI(DAV)	Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVIIf(RDY)	$\overline{\text { DAV }} \downarrow$ input to RDY \downarrow Delay		175		120	1,2
5	TdDAVOf(RDY)	$\overline{\text { DAV }} \downarrow$ Output to RDY \downarrow Delay	0		0		1,3
6	TdDAVIIr(RDY)			175		120	1,2
7	TdDAVOr(RDY)	$\overline{\text { DAV }} \uparrow$ Output to RDY \uparrow Delay	0		0		1,3
8	TdDO(DAV)	Data Out to $\overline{\text { DAV }} \downarrow$ Delay	50		30		1
9	TdRDY(DAV)	Rdy \downarrow Input to $\overline{\text { DAV }} \uparrow$ Delay	0	200	0	140	1

NOTES:

1. Test load 1
2. Input handshake
3. Output handshake
\dagger All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* Units in nanoseconds (ns).

CLOCK CYCLE TIME-DEPENDENT

CHARACTERISTICS

Number	Symbol	8 MHz Equation	$12 \mathrm{MHz}$ Equation
1	TdA(AS)	TpC-75	TpC-50
2	TdAS(A)	TpC-55	TpC-40
3	TdAS(DR)	4TpC-140*	4TpC-110*
4	TwAS	TpC-45	TpC-30
6	TwDSR	3TpC-125*	3TpC-65*
7	TwDSW	$2 T p \mathrm{C}-90$ *	2TpC-55*
8	TdDSR(DR)	$3 \mathrm{TpC}-175$ *	$3 \mathrm{TpC}-120$ *
10	Td(DS)A	TpC-55	TpC-40
11	TdDS(AS)	TpC-55	TpC-30
12	TdR/W(AS)	TpC-75	TpC-55
13	TdDS(R/W)	TpC-65	TpC-50
14	TdDW(DSW)	TpC-75	TpC-50
15	TdDS(DW)	TpC-55	TpC-40
16	TdA(DR)	5TpC-215*	$5 \mathrm{TpC}-160$ *
17	TdAS(DS)	TpC-45	TpC-30

*Add 2 TpC when using extended memory timing

Super8 ${ }^{\text {TM }}$ MCU ROMless, ROM, and Prototyping Device with EPROM Interface

Z8800, Z8801, Z8820, Z8822

FEATURES

- Improved ZB° instruction set includes multiply and divide instructions, Boolean and BCD operations.
- Additional instructions support threaded-code languages, such as "Forth."
- 325 byte registers, including 272 general-purpose registers, and 53 mode and control registers.
- Addressing of up to 128 K bytes of memory.
- Two register pointers allow use of short and fast instructions to access register groups within 600 nsec .
- Direct Memory Access controller (DMA).
- Two 16-bit counter/timers.
- Up to 32 bit-programmable and 8 byte-programmable I/O lines, with 2 handshake channels.
- Interrupt structure supports:
- 27 interrupt sources
- 16 interrupt vectors (2 reserved for future versions)
$\square 8$ interrupt levels
- Servicing in 600 nsec. (1 level only)
- Full-duplex UART with special features.
- On-chip oscillator.
(20 MHz clock.
@ 8 K byte ROM for $\mathrm{Z8820}$

GENERAL DESCRIPTION

The Zilog Super8 single-chip MCU can be used for development and production. It can be used as $1 / \mathrm{O}$ - or memory-intensive computers, or configured to address external memory while still supporting many $1 / O$ lines.

Figure 1a. Pin Assignments - 68-pin PLCC

The Super8 features a full-duplex universal asynchronous receiver/transmitter (UART) with on-chip baud rate generator, two programmable counter/timers, a direct memory access (DMA) controller, and an on-chip oscillator.

The Super8 is also available as a 48-pin and 68-pin ROMIess microcomputer with four byte-wide $1 / O$ ports plus a byte-wide address/data bus. Additional address bits can be configured, up to a total of 16 .

Figure 1b. Pin Assignments - 48-pin DIP

Figure 3. Pin Assignments-28-Pin Piggyback Socket

Figure 2. Pin Functions

Figure 4. Pin Functions-28-Pin Piggyback Socket

Protopack

This part functions as an emulator for the basic microcomputer. It uses the same package and pin-out as the basic microcomputer but also has a 28-pin "piggy back" socket on the top into which a ROM or EPROM can be installed. The socket is designed to accept a type 2764 EPROM.

This package permits the protopack to be used in prototype and final PC boards while still permitting user program
development. When a final program is developed, it can be mask-programmed into the production microcomputer device, directly replacing the emulator. The protopack part is also useful in situations where the cost of maskprogramming is prohibitive or where program flexibility is desired.

Figure 5. Functional Block Diagram

ARCHITECTURE

The Super8 architecture includes 325 byte-wide internal registers. 272 of these are available for general purpose use; the remaining 53 provide control and mode functions.

The instruction set is specially designed to deal with this large register set. It includes a full complement of 8 -bit arithmetic and logical operations, including multiply and divide instructions and provisions for BCD operations. Addresses and counters can be incremented and decremented as 16 -bit quantities. Rotate, shift, and bit manipulation instructions are provided. Three new instructions support threaded-code languages.

The UART is a full-function multipurpose asynchronous serial channel with many premium features.
The 16 -bit counters can operate independently or be cascaded to perform 32 -bit counting and timing operations. The DMA controller handles transfers to and from the register file or memory. DMA can use the UART or one of two ports with handshake capability.
The architecture appears in the block diagram (Figure 5).

PIN DESCRIPTIONS

The Super8 connects to external devices via the following TTL-compatible pins:
 Low once at the beginning of each machine cycle. The rising edge indicates that addresses $R \bar{W}$ and $\overline{D M}$, when used, are valid.
$\overline{\mathrm{DS}}$. Data Strobe (output, active Low). $\overline{\mathrm{DS}}$ provides timing for data movement between the address/data bus and external memory. During write cycles, data output is valid at the leading edge of $\overline{\mathrm{DS}}$. During read cycles, data input must be valid prior to the trailing edge of $\overline{\mathrm{DS}}$.
$\mathrm{PO}_{0} \cdot \mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{\mathbf{0}}-\mathrm{P} 4_{7}$. Port $/ / \mathrm{O}$ Lines (input/output). These 40 lines are divided into five 8 -bit I/O ports that can be configured under program control for I/O or external memory interface.
In the ROMless devices, Port 1 is dedicated as a multiplexed address/data port, and Port 0 pins can be assigned as additional address lines; Port 0 non-address pins may be assigned as I/O. In the ROM and protopack, Port 1 can be assigned as input or output, and Port 0 can be assigned as input or output on a bit by bit basis.

Ports 2 and 3 can be assigned on a bit-for-bit basis as general I/O or interrupt lines. They can also be used as special-purpose I/O lines to support the UART, counter/timers, or handshake channels.

Port 4 is used for general I/O.
During reset, all port pins are configured as inputs (high impedance) except for Port 1 and Port 0 in the ROMless devices. In these, Port 1 is configured as a multiplexed address/data bus, and Port 0 pins $\mathrm{PO}_{0} \cdot \mathrm{PO}_{4}$ are configured as address out, while pins $\mathrm{PO}_{5}-\mathrm{PO}_{7}$ are configured as inputs.

RESET. Reset (input, active Low). Reset initializes and starts the Super8. When it is activated, it halts all processing; when
it is deactivated, the Super8 begins processing at address 0020_{H}.

ROMless. (input, active High). This input controls the operation mode of a 68-pin Super8. When connected to V_{CC}, the part will function as a ROMless Z8800. When connected to GND, the part will function as a Z8820 ROM part.
R/ $\overline{\mathbf{W}}$. Read/Write (output). R/ \bar{W} determines the direction of data transfer for external memory transactions. It is Low when writing to program memory or data memory, and High for everything else.

XTAL1, XTAL2. (Crystal oscillator input.) These pins connect a parallel resonant crystal or an external clock source to the on-board clock oscillator and buffer.

REGISTERS

The Super8 contains a 256-byte internal register space. However, by using the upper 64 bytes of the register space more than once, a total of 325 registers are available.

Registers from 00 to BF are used only once. They can be accessed by any register command. Register addresses C0 to FF contain two separate sets of 64 registers. One set, called control registers, can only be accessed by register direct commands. The other set can only be addressed by register indirect, indexed, stack, and DMA commands.

The uppermost 32 register direct registers (E0 to FF) are further divided into two banks (0 and 1), selected by the Bank Select bit in the Flag register. When a Register Direct command accesses a register between E0 and FF, it looks at the Bank Select bit in the Flag register to select one of the banks.

The register space is shown in Figure 6.

Figure 6. Super8 Registers

Working Register Window

Control registers R214 and R215 are the register pointers, RPO and RP1. They each define a moveable, 8 -register section of the register space. The registers within these spaces are called working registers.

Working registers can be accessed using short 4 -bit addresses. The process, shown in section a of Figure 4, works as follows:

- The high-order bit of the 4 -bit address selects one of the two register pointers (0 selects RP0; 1 selects RP1).
- The five high-order bits in the register pointer select an 8 -register (contiguous) slice of the register space.
- The three low-order bits of the 4 -bit address select orre of the eight registers in the slice.

The net effect is to concatenate the five bits from the register pointer to the three bits from the address to form an 8 -bit address. As long as the address in the register pointer remains unchanged, the three bits from the address will always point to an address within the same eight registers.

The register pointers can be moved by changing the five high bits in control registers R214 for RPO and R215 for RP1.

The working registers can also be accessed by using full 8 -bit addressing. When an 8 -bit logical address in the range 192 to 207 (C0 to CF) is specified, the lower nibble is used similarly to the 4 -bit addressing described above. This is shown in section b of Figure 7.

b. 8-Bit Addressing

Figure 7. Working Register Window

Since any direct access to logical addresses 192 to 207 involves the register pointers, the physical registers 192 to 207 can be accessed only when selected by a register pointer. After a reset, RP0 points to R192 and RP1 points to R200.

Register List

Table 1 lists the Super8 registers. For more details, see Figure 8.

Table 1. Super-8 Registers

Address			
Decimal	Hexadecimal	Mnemonic	Function
General-Purpose Registers			
$000-192$	O0-BF	-	General purpose (all address modes)
$192-207$	C0-CF	-	Working register (direct only)
$192-255$	C0-FF	-	General purpose (indirect only)
Mode and Control Registers			
208	D0		
209	D1	Port 0 I/O bits	
210	D2	P1	Port 1 (//O only)
211	D3	P2	Port 2
212	D4	P3	Port 4
213	D5		S4
214	D6		Register Pointer 0
215	D7		RPAGS
216	D8		RP1

Table 1. Super-8 Registers (Continued)

Address			Mnemonic	Function
Decimal	Hexadecimal			
Mode and Control Registers (Continued)				
249	F9	Bank 0	P2BM	Port 2/3 B Mode
		Bank 1	UBGL	UART Baud Rate Generator, bits 0-7
250	FA	Bank 0	P2CM	Port 2/3 C Mode
		Bank 1	UMA	UART Mode A
251	FB	Bank 0	P2DM	Port 2/3 D Mode
		Bank 1	UMB	UART Mode B
252	FC	Bank 0	P2AIP	Port 2/3 A Interrupt Pending
253	FD	Bank 0	P2BIP	Port 2/3 B Interrupt Pending
254	FE	Bank 0	EMT	External Memory Timing
		Bank 1	WUMCH	Wakeup Match Register
255	FF	Bank 0	IPR	Interrupt Priority Register
		Bank 1	WUMSK	Wakeup Mask Register

MODE AND CONTROL REGISTERS

R214 (D6) RPO REGISTER POINTER 0

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Figure 8. Mode and Control Registers

INPUT PIN ASSIGNMENTS:

	D_{6}			$\mathrm{P} 27^{7}$	P26
0	0	0	0	I/O	I/O
0	0	0	1	I/O	TRIGGER
0	0	1	0	GATE	I/O
0	0	1	1	GATE	TRIGGER
0	1	0	0	1/O	COINPUT
0	1	0	1	TRIGGER	COINPUT
0	1	1	0	GATE	CO INPUT
0	1	1	1	GATE/ TRIGGER	CO INPUT
1	0	0	0	CO OUTPUT	I/O
1	0	0	1	CO OUTPUT	TRIGGER
1	0	1	0	CO OUTPUT	GATE
1	0	1	1	CO OUTPUT	GATE/TRIGGER
1	1	0	0	CO OUTPUT	CO INPUT
1	1	0	1	- UND	EFINED
1	1	1	0	- UND	EFINED
1	1	1	1	- CASCAD	COUNTERS

Figure 8. Mode and Control Registers (Continued)

MODE AND CONTROL REGISTERS (Continued)

0	1	1	CO OUTPUT	GATE/TRIGGER
1	0	0	CO OUTPUT	GO INPUT 1
1	1	1		
1	1	0	UNDEFINED	
1	1	1		

1 UNDEFINED
$\begin{array}{llll}1 & 1 & 0 \\ 1 & 1 & 1\end{array}$ U UNDEFINED -
= NO CAPTURE
CAPTURE ON RISING
$10=$ BI-VALUE MODE
= CAPTURE ON BOTH

UP/DOWN CONTROL P37
UP/DOWN CONTRO

1 = ENABLE RETRIGGER

= WAKE-UP ENABLE
I

Figure 8. Mode and Control Registers (Continued)

MODE AND CONTROL REGISTERS (Continued)

Figure 8. Mode and Control Registers (Continued)

MODE AND CONTROL REGISTERS (Continued)

Figure 8. Mode and Control Registers (Continued)

MODE AND CONTROL REGISTERS (Continued)

R253 BANK 0 (FD) P2 BIP

R254 BANKO (FE) EMT
EXTERNAL MEMORY TIMING REGISTER

Figure 8. Mode and Control Registers (Continued)

I/O PORTS

The Super8 has 40 I/O lines arranged into five 8 -bit ports. These lines are all TTL-compatible, and can be configured as inputs or outputs. Some can also be configured as address/data lines.
Each port has an input register, an output register, and a register address. Data coming into the port is stored in the input register, and data to be written to a port is stored in the output register. Reading a port's register address returns the value in the input register; writing a port's register address loads the value in the output register. If the port is configured for an output, this value will appear on the external pins.
When the CPU reads the bits configured as outputs, the data on the external pins is returned. Under normal output loading, this has the same effect as reading the output register, unless the bits are configured as open-drain outputs.
The ports can be configured as shown in Table 2.
Table 2. Port Configuration

Port	Configuration Choices
0	Address outputs and/or general I/O 1 Multiplexed address/data(or I/O, only for ROM and Protopack)
2 and 3	Control I/O for UART, handshake channels, and counter/timers; also general I/O and external interrupts
4	General I/O

Port 0

Port 0 can be configured as an I/O port or an output for addressing external memory, or it can be divided and used as both. The bits configured as I/O can be either all outputs or all inputs; they cannot be mixed. If configured for outputs, they can be push-pull or open-drain type.
Any bits configured for I/O can be accessed via R208. To write to the port, specify R208 as the destination (dst) of an instruction; to read the port, specify R208 as the source (src).
Port 0 bits configured as I/O can be placed under handshake control of handshake channel 1 .
Port 0 bits configured as address outputs cannot be accessed via the register.
In ROMless devices, initially the four lower bits are configured as address eight through twelve.

Port 1

In the ROMless device, Port 1 is configured as a byte-wide address/data port. It provides a byte-wide multiplexed address/data path. Additional address lines can be added by configuring Port 0 .
The ROM and Protopack Port 1 can be configured as above or as an I/O port; it can be a byte-wide input, open-drain output, or push-pull output. It can be placed under handshake control or handshake channel 0 .

Ports 2 and 3

Ports 2 and 3 provide external control inputs and outputs for the UART, handshake channels, and counter/timers. The pin assignments appear in Table 3.
Bits not used for control I/O can be configured as general-purpose I/O lines and/or external interrupt inputs.
Those bits configured for general I/O can be configured individually for input or output. Those configured for output can be individually configured for open-drain or push-pull output.
All Port 2 and 3 input pins are Schmitt-triggered.
The port address for Port 2 is R210, and for Port 3 is R211.
Table 3. Pin Assignments for Ports 2 and 3

Port 2 Bit	Function	Port 3	
Bit	Function		
0	UART receive clock	0	UART receive data
1	UART transmit clock	1	UART transmit data
2	Reserved	2	Reserved
3	Reserved	3	Reserved
4	Handshake 0 input	4	Handshake 1 input//WAIT
5	Handshake 0 output	5	Handshake 1 output//DM
6	Counter 0 input	6	Counter 1 input
7	Counter 0 I/O	7	Counter 1 I/O

Port 4

Port 4 can be configured as I/O only. Each bit can be configured individually as input or output, with either push-pull or open-drain outputs. All Port 4 inputs are Schmitt-triggered.
Port 4 can be placed under handshake control of handshake channel 0 . Its register address is R212.

UART

The UART is a full-duplex asynchronous channel. It transmits and receives independently with 5 to 8 bits per character, has options for even or odd bit parity, and a wake-up feature.
Data can be read into or out of the UART via R239, Bank 0 . This single address is able to serve a full-duplex channel because it contains two complete 8 -bit registers-one for the transmitter and the other for the receiver.

Pins

The UART uses the following Port 2 and 3 pins:

Port/Pin	UART Function
$2 / 0$	Receive Clock
$3 / 0$	Receive Data
$2 / 1$	Transmit Clock
$3 / 1$	Transmit Data

Transmitter

When the UART's register address is specified as the destination (dst) of an operation, the data is output on the UART, which automatically adds the start bit, the programmed parity bit, and the programmed number of stop bits. It can also add a wake-up bit if that option is selected.

If the UART is programmed for a 5 -, 6 -, or 7 -bit character, the extra bits in R239 are ignored.
Serial data is transmitted at a rate equal to $1,1 / 16,1 / 32$ or $1 / 64$ of the transmitter clock rate, depending on the programmed data rate. All data is sent out on the falling edge of the clock input.
When the UART has no data to send, it holds the output marking (High). It may be programmed with the Send Break command to hold the output Low (Spacing), which it continues until the command is cleared.

Receiver

The UART begins receive operation when Receive Enable (URC, bit 0) is set High. After this, a Low on the receive input pin for longer than half a bit time is interpreted as a start bit. The UART samples the data on the input pin in the middle of each clock cycle until a complete byte is assembled. This is placed in the Receive Data register.
If the 1 X clock mode is selected, external bit synchronization must be provided, and the input data is sampled on the rising edge of the clock.

For character lengths of less than eight bits, the UART inserts ones into the unused bits, and, if parity is enabled, the parity bit is not stripped. The data bits, extra ones, and the parity bit are placed in the UART Data register (UIO).

While the UART is assembling a byte in its input shift register, the CPU has time to service an interrupt and manipulate the data character in UIO.

Once a complete character is assembled, the UART checks it and performs the following:

- If it is an•ASCII control character, the UART sets the Control Character status bit.
- It checks the wake-up settings and completes any indicated action.
- If parity is enabled, the UART checks to see if the calculated parity matches the programmed parity bit. If they do not match, it sets the Parity Error bit in URC (R236 Bank 0), which remains set until reset by software.
- It sets the Framing Error bit (URC, bit 4) if the character is assembled without any stop bits. This bit remains set until cleared by software.

Overrun errors occur when characters are received faster than they are read. That is, when the UART has assembled a complete character before the CPU has read the current character, the UART sets the Overrun Error bit (URC, bit 3), and the character currently in the receive buffer is lost.

The overrun bit remains set until cleared by software.

ADDRESS SPACE

The Super8 can access 64 K bytes of program memory and 64 K bytes of data memory. These spaces can be either combined or separate. If separate, they are controlled by the $\overline{\mathrm{DM}}$ line (Port P_{5}), which selects data memory when Low and program memory when High.

Figure 9 shows the system memory space.

CPU Program Memory

Program memory occupies addresses 0 to 64 K . External program memory, if present, is accessed by configuring Ports 0 and 1 as a memory interface.
The address/data lines are controlled by $\overline{A S}, \overline{D S}$ and R / \bar{W}.
The first 32 program memory bytes are reserved for interrupt vectors; the lowest address available for user programs is 32 (decimal). This value is automatically loaded into the program counter after a hardware reset.

ROMIess

Port 0 can be configured to provide from 0 to 8 additional address lines. Port 1 is always used as an 8 -bit multiplexed address/data port.

ROM and Protopack

Port 1 is configured as multiplexed address/data or as I/O. When Port 1 is configured as address/data, Port 0 lines can be used as additional address lines, up to address 15. External program memory is mapped above internal program memory; that is, external program memory can occupy any space beginning at the top of the internal ROM space up to the 64 K (16 -bit address) limit.

CPU Data Memory

The external CPU data memory space, if separated from program memory by the $\overline{\mathrm{DM}}$ optional output, can be mapped anywhere from 0 to 64 K (full 16-bit address space). Data memory uses the same address/data bus (Port 1) and additional addresses (chosen from Port 0) as program memory. Data memory is distinguished from program memory by the DM pin $\left(\mathrm{P3}_{5}\right)$, and by the fact that data memory can begin at address 0000_{H}. This feature differs from the Z 8 .

Figure 9. Program and Data Memory Address Spaces

INSTRUCTION SET

The Super8 instruction set is designed to handle its large register set. The instruction set provides a full complement of 8-bit arithmetic and logical operations, including multiply and divide. It supports BCD operations using a decimal adjustment of binary values, and it supports incrementing and decrementing 16-bit quantities for addresses and counters.

It provides extensive bit manipulation, and rotate and shift operations, and it requires no special I/O instructions-the I/O ports are mapped into the register file.

Instruction Pointer

A special register called the Instruction Pointer (IP) provides hardware support for threaded-code languages. It consists of register-pair R218 and R219, and it contains memory addresses. The MSB is R218.

Threaded-code languages deal with an imaginary higher-level machine within the existing hardware machine. The IP acts like the PC for that machine. The command NEXT passes control to or from the hardware machine to the imaginary machine, and the commands ENTER and EXIT are imaginary machine equivalents of (real machine) CALLS and RETURNS.

If the commands NEXT, ENTER, and EXIT are not used, the IP can be used by the fast interrupt processing, as described in the Interrupts section.

Flag Register

The Flag register (FLAGS) contains eight bits that describe the current status of the Super8. Four of these can be tested and used with conditional jump instructions; two others are used for BCD-arithmetic. FLAGS also contains the Bank Address bit and the Fast Interrupt Status bit.

The flag bits can be set and reset by instructions.

CAUTION

Do not specify FLAGS as the destination of an instruction that normally affects the flag bits or the result will be unspecified.

The following paragraphs describe each flag bit:
Bank Address. This bit is used to select one of the register banks (0 or 1) between (decimal) addresses 224 and 255. It is cleared by the SB0 instruction and set by the SB1 instruction.

Fast Interrupt Status. This bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing. When set, this bit inhibits all interrupts and causes the fast interrupt return to be executed when the IRET instruction is fetched.

Half-Carry. This bit is set to 1 whenever an addition generates a carry out of bit 3 , or when a subtraction borrows out of bit 4. This bit is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous addition or subtraction into the correct decimal (BCD) result. This flag, and the Decimal Adjust flag, are not usually accessed by users.

Decimal Adjust. This bit is used to specify what type of instruction was executed last during BCD operations, so a subsequent Decimal Adjust operation can function correctly. This bit is not usually accessible to programmers, and cannot be used as a test condition.

Overflow Flag. This flag is set to 1 when the result of a twos-complement operation was greater than 127 or less than -128 . It is also cleared to 0 during logical operations.

Sign Flag. Following arithmetic, logical, rotate, or shift operations, this bit identifies the state of the MSB of the result. A 0 indicates a positive number and a 1 indicates a negative number.

Zero Flag. For arithmetic and logical operations, this flag is set to 1 if the result of the operation is zero.

For operations that test bits in a register, the zero bit is set to 1 if the result is zero.

For rotate and shift operations, this bit is set to 1 if the result is zero.

Carry Flag. This flag is set to 1 if the result from an arithmetic operation generates a carry out of, or a borrow into, bit 7.
After rotate and shift operations, it contains the last value shifted out of the specified register.

It can be set, cleared, or complemented by instructions.

Condition Codes

The flags C, Z, S, and V are used to control the operation of conditional jump instructions.
The opcode of a conditional jump contains a 4-bit field called the condition code (cc). This specifies under which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after a compare operation only jumps if the two operands are equal.

The condition codes and their meanings are given in Table 4.

Addressing Modes

All operands except for immediate data and condition codes are expressed as register addresses, program memory addresses, or data memory addresses. The addressing modes and their designations are:

```
Register (R)
Indirect Register (IR)
Indexed (X)
Direct (DA)
Relative (RA)
Immediate (IM)
Indirect (IA)
```

Table 4. Condition Codes and Meanings

Binary	Mnemonic	Flags	Meaning
0000	F	-	Always false
1000	-	-	Always true
0111**	C	$C=1$	Carry
1111*	NC	$\mathrm{C}=0$	No carry
0110*	Z	$\mathrm{Z}=1$	Zero
1110*	NZ	$\mathrm{Z}=0$	Not zero
1101	PL	$\mathrm{S}=0$	Plus
0101	MI	$S=1$	Minus
0100	OV	$V=1$	Overflow
1100	NOV	$V=0$	No overflow
0110*	EQ	$\mathrm{Z}=1$	Equal
1110*	NE	$\mathrm{Z}=0$	Not equal
1001	GE	$(S X O R V)=0$	Greater than or equal
0001	LT	$(S X O R V)=1$	Less than
1010	GT	$(Z$ OR $(S X O R V))=0$	Greater than
0010	LE	$(\mathrm{Z} \mathrm{OR}(\mathrm{SXOR} V))=1$	Less than or equal
1111**	UGE	$\mathrm{C}=0$	Unsigned greater than or equal
0111**	ULT	$C=1$	Unsigned less than
1011	UGT	$(\mathrm{C}=0 \mathrm{AND} Z=0)=1$	Unsigned greater than
0011	ULE	$(C O R Z)=1$	Unsigned less than or equal

 Zero flag is set, but after an ADD instruction, Z would probably be used, while after a CP instruction, EQ would probably be used.

Registers can be addressed by an 8 -bit address in the range of 0 to 255 . Working registers can also be addressed using 4-bit addresses, where five bits contained in a register pointer (R218 or R219) are concatenated with three bits from the 4 -bit address to form an 8 -bit address.

Registers can be used in pairs to generate 16 -bit program or data memory addresses.

Notation and Encoding

The instruction set notations are described in Table 5.

Functional Summary of Commands

Figure 10 shows the formats followed by a quick reference guide to the commands.

Table 5. Instruction Set Notations

Notation	Meaning	Notation	Meaning
cc	Condition code (see Table 4)	DA	Direct address (between 0 and 65535)
r	Working register (between 0 and 15)	RA	Relative address
rb	Bit of working register	IM	Immediate
r0	Bit 0 of working register	IML	Immediate long
R	Register or working register	dst	Destination operand
RR	Register pair or working register pair (Register pairs al'ways start on an even-number boundary)	src @	Source operand Indirect address prefix
IA	Indirect address	SP	Stack pointer
Ir	Indirect working register	PC	Program counter
IR	Indirect register or indirect working register	IP	Instruction pointer
Irr	Indirect working register pair	FLAGS	Flags register
IRR	Indirect register pair or indirect working register pair	RP	Register pointer
X	Indexed	\#	Immediate operand prefix
XS	Indexed, short offset	\%	Hexadecimal number prefix
XL	Indexed, long offset	OPC	Opcode

One-Byte Instructions

Figure 10. Instruction Formats

Four-Byte Instructions

Figure 10. Instruction Formats (Continued)

INSTRUCTION SUMMARY

Instruction and Operation	Addr Mode		Flags Affected
	dst src	(Hex)	C Z SVD H
ADC dst,src $d s t \leftarrow d s t+\mathrm{src}+\mathrm{C}$	(Note 1)	$1 \square$	* * * 0 *
$\begin{aligned} & \text { ADD dst,src } \\ & \text { dst } \leftarrow d s t+\mathrm{src} \end{aligned}$	(Note 1)	$0 \square$	* * * * 0 *
AND dst,src $\mathrm{dst} \leftarrow$ dst AND src	(Note 1)	$5 \square$	- * * $0-$
BAND dst,src dst \leftarrow dst AND src	$\begin{array}{ll} \mathrm{rO} & \mathrm{Rb} \\ \mathrm{Rb} & \mathrm{rO} \end{array}$	$\begin{aligned} & 67 \\ & 67 \end{aligned}$	-* $0 \cup-$
$\begin{aligned} & \text { BCP dst, src } \\ & \text { dst - src } \end{aligned}$	r0 Rb	17	-* $0 \cup--$
BITC dst dst \leftarrow NOT dst	rb	57	-* $0 \cup-$
BITR dst dst $\leftarrow 0$	rb	77	- - - - -
BITS dst dst $\leftarrow 1$	rb	77	- - - - -

Instruction and Operation	Addr Mode		$\begin{aligned} & \text { Opcode } \\ & \text { Byte } \\ & \text { (Hex) } \end{aligned}$	Flags Affected CZSVDH
	dst	src		
BOR dst, src dst \leftarrow dst OR src	$\begin{aligned} & \text { r0 } \\ & \text { Rb } \end{aligned}$	$\begin{aligned} & \mathrm{rB} \\ & \mathrm{rO} \end{aligned}$	07	-* $0 \cup--$
BTJRF $\text { if src }=0, P C=P C$	RA dst	rb	37	- - - - -
BTJRT if src $={ }^{1} 1, \mathrm{PC}=\mathrm{PC}$	RA dst	rb	37	- - - -
BXOR dst, src dst \leftarrow dst XOR src	$\begin{aligned} & \text { r0 } \\ & \text { Rb } \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{rO} \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	-* $0 \cup-$
CALL dst $\begin{aligned} & S P \leftarrow S P-2 \\ & @ S P \leftarrow P C \\ & P C \leftarrow d s t \end{aligned}$	$\begin{gathered} \hline \mathrm{DA} \\ \text { IRR } \\ \text { IA } \end{gathered}$		$\begin{aligned} & \text { F6 } \\ & \text { F4 } \\ & \text { D4 } \end{aligned}$	- - - - -
$\begin{aligned} & \text { CCF } \\ & \text { C }=\text { NOTC } \end{aligned}$			EF	* - - - -
CLR dst dst $\leftarrow 0$	$\begin{gathered} R \\ \text { IR } \end{gathered}$		$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	- - - - -

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Addr Mode		Flags Affected
	dst src		C Z SVDH
COM dst dst \leftarrow NOT dst	$\begin{aligned} & R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	$-* * 0--$
CP dst, src dst - src	(Note 1)	A \square	* * * * - -
CPIJE $\begin{aligned} & \text { if dst }-\mathrm{srC}=0 \text {, then } \\ & \mathrm{PC} \leftarrow P C+R A \\ & \mathrm{Ir} \leftarrow \mathrm{Ir}+1 \end{aligned}$	r Ir	C2	- - - - -
CPIJNE $\begin{aligned} & \text { if dst }-\mathrm{srC}=0 \text {, then } \\ & P C \leftarrow P C+R A \\ & \mathrm{Ir} \leftarrow \mathrm{Ir}+1 \end{aligned}$	Ir	D2	- - - - -
DA dst dst \leftarrow DA dst	$\begin{gathered} R \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * U - -
DEC dst dst \leftarrow dst -1	$\begin{aligned} & R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$-* * *--$
DECW dst dst \leftarrow dst -1	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-***--
DI $\operatorname{SMR}(0) \leftarrow 0$		8F	- - - - -
DIV dst, src dst \div src dst (Upper) \leftarrow Quotient dst (Lower) \leftarrow Remainder	$R R$ R $R R$ $I R$ $R R$ $I M$	$\begin{aligned} & 94 \\ & 95 \\ & 96 \end{aligned}$	* * * * - -
$\begin{aligned} & \text { DJNZ } r, d s t \\ & r \leftarrow r-1 \\ & \text { if } r=0 \\ & P C \leftarrow P C+d s t \end{aligned}$	RA	$\begin{gathered} r A \\ (r=0 \text { to } F) \end{gathered}$	
El $\operatorname{SMR}(0) \leftarrow 1$		9 F	- - - - -
ENTER $\begin{aligned} & S P \leftarrow S P-2 \\ & @ S P \leftarrow I P \\ & I P \leftarrow P C \\ & P C \leftarrow @ I P \\ & I P \leftarrow I P+2 \end{aligned}$		1F	- - - - -
$\begin{aligned} & \hline \text { EXIT } \\ & I P \leftarrow @ S P \\ & S P \leftarrow S P+2 \\ & P C \leftarrow @ \mid P \\ & I P \leftarrow \mathbb{P}+2 \end{aligned}$		2 F	- - - - -
$\begin{aligned} & \text { INC dst } \\ & \mathrm{dst} \leftarrow d s t+1 \end{aligned}$	$\begin{gathered} r \\ R \\ R \\ \text { IR } \end{gathered}$	$\begin{gathered} r \mathrm{E} \\ (\mathrm{r}=0 \text { to } \mathrm{F}) \\ 20 \\ 21 \end{gathered}$	- * * * ——

Instruction and Operation	Addr Mode		Opcode Byte (Hex)	Flags Affected C Z SVDH
	dst	src		
INCW dst dst $\leftarrow 1+$ dst	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$		$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	- * * * - -
$\begin{aligned} & \text { IRET (Fast) } \\ & \text { PC } \leftrightarrow \mathbb{I P} \\ & \text { FLAG } \leftarrow \text { FLAG } \\ & \text { FIS } \leftarrow 0 \end{aligned}$			BF	Restored to before interrupt
IRET (Normal) FLAGS $\leftarrow @ S P ; S P \leftarrow$ $\mathrm{PC} \leftarrow @ \mathrm{SP} ; \mathrm{SP} \leftarrow \mathrm{SP}$	$\begin{aligned} & -S P+ \\ & +2 ; S \end{aligned}$		$\begin{array}{r} \text { BF } \\ 0) \leftarrow 1 \\ \hline \end{array}$	Restored to before interrupt
JP cc, dst if cc is true, $\mathrm{PC} \leftarrow \mathrm{dst}$	DA IRR		$\begin{gathered} \mathrm{ccD} \\ (\mathrm{cc}=0 \text { to } \mathrm{F}) \\ 30 \end{gathered}$	
JR cc, dst if cc is true, $P C \leftarrow P C+d$	RA		$\begin{gathered} \mathrm{ccB} \\ (\mathrm{cc}=0 \text { to } F) \end{gathered}$	
LD dst,src	r	IM	rC	- - - - -
dst \leftarrow src	r	R	r8	
	R	r	r9	
			$(r=0 \text { to } F)$	
	r	IR	C7	
	IR	r	D7	
	R	R	E4	
	R	IR	E5	
	R	IM	E6	
	IR	IM	D6	
	IR	R	F5	
	r	x	87	
	\times	r	97	
LDB dst, src dst \leftarrow src	$\begin{aligned} & \mathrm{rO} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{rO} \end{aligned}$	$\begin{aligned} & 47 \\ & 47 \end{aligned}$	- - - - -
LDC/LDE dst \leftarrow src	r	Irr	C3	- - - - -
	Irr	r	D3	
	r	xs	E7	
	xs	r	F7	
	r	$\times 1$	A7	
	x1	r	B7	
	r	DA	A7	
	DA	r	B7	
LDCD/LDED dst, src dst \leftarrow src $r r \leftarrow r-1$	r	Irr	E2	- - - - -
LDEI/LDCI dst, src dst \leftarrow src $r r \leftarrow r r+1$	r	Irr	E3	- - - - -
LDCPD/LDEPD dst,s $\begin{aligned} & \mathrm{rr} \leftarrow \mathrm{rr}-1 \\ & \mathrm{dst} \leftarrow \mathrm{src} \end{aligned}$	Irr	r	F2	- - - - -

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Addr Mode		Flags Affected
	dst src	(Hex)	C Z SVDH
$\begin{aligned} & \text { RLC dst } \\ & \text { dst }(0) \leftarrow C \\ & C \leftarrow \operatorname{dst}(7) \\ & \operatorname{dst}(N+1) \leftarrow \operatorname{dst}(N) \\ & N=0 \text { to } 6 \end{aligned}$	$\begin{gathered} R \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	* * * * - -
RR dst $\begin{aligned} & C \leftarrow d s t(0) \\ & d s t(7) \leftarrow d s t(0) \\ & d s t(N) \leftarrow d s t(N+1) \\ & N=0 \text { to } 6 \end{aligned}$	$\begin{gathered} R \\ \mathbb{R} \end{gathered}$	$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$	* * * * - -
RRC dst $\begin{aligned} & C \leftarrow d s t(0) \\ & d s t(7) \leftarrow C \\ & d s t(N) \leftarrow d s t(N+1) \\ & N=0 \text { to } 6 \end{aligned}$	$\begin{aligned} & R \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \mathrm{C} 0 \\ & \mathrm{C} 1 \end{aligned}$	* * * * - -
SBO BANK $\leftarrow 0$		4F	- - - - -
SB1 BANK $\leftarrow 1$		5F	- - - - -
$\begin{aligned} & \text { SBC dst,src } \\ & \text { dst } \leftarrow \mathrm{dst}-\mathrm{src}-\mathrm{C} \end{aligned}$	(Note 1)	3口	* * * * 1 *
$\begin{aligned} & \text { SCF } \\ & C \leftarrow 1 \end{aligned}$		DF	$1----$
$\begin{aligned} & \text { SRA dst } \\ & \text { dst }(7) \leftarrow \operatorname{dst}(7) \\ & C \leftarrow \operatorname{dst}(0) \\ & \text { dst }(N) \leftarrow \operatorname{dst}(N+1) \\ & N=0 \text { to } 6 \end{aligned}$	$\begin{aligned} & R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \hline \text { D0 } \\ & \text { D1 } \end{aligned}$	* * * 0--
$\begin{aligned} & \text { SRP src } \\ & \text { RPO } \leftarrow M M \\ & \text { RP1 } \leftarrow M+8 \end{aligned}$	IM	31	- - - - -
SRPO RPO \leftarrow IM	IM	31	- - - - -
SRP1 RP1 $\leftarrow I M$	IM	31	- - - - -
SUB dst,src dst \leftarrow dst - src	(Note 1)	$2 \square$	* * * * 1 *

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	Flags Affected	Table 6. Second Nibble		
	dst src		C Z SVDH	Addr Mode		Lower Opcode Nibble
SWAP dst	R	F0	-** U - -	dst	src	
dst (0-3) ↔ dst (4-7)	IR	F1		r	r	2
TCM dst,src (NOT dst) AND src	(Note 1)	$6 \square$	-** $0-$	r	Ir	3
TM dst,src dst AND src	(Note 1)	$7 \square$	-** $0-$	R	IR	5
WFI		3F	- - -	R	IM	6
XOR dst,src dst \leftarrow dst XOR src	(Note 1)	B \square	- * * 0 - -		use an e, us	as $x \square$ with an "RR"
NOTE 1: These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble identifies the command, and is found in the table above. The second nibble, represented by a \square, defines the addressing mode as shown in Table 6.:				$\begin{aligned} & =\text { Cle } \\ & =\text { Set } \\ & =\text { Un } \\ & =\text { Set } \\ & =\text { Un } \end{aligned}$	ro depen	eration.

SUPER-8 OPCODE MAP

Lower Nibble (Hex)

		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	$\begin{gathered} 6 \\ \text { DEC } \\ R_{1} \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{DEC} \\ \mathrm{IR}_{1} \end{gathered}$	$\begin{gathered} 6 \\ \text { ADD } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 6 \\ \text { ADD } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 10 \\ A D D \\ R_{2} \cdot R_{1} \end{gathered}$	$\begin{gathered} 10 \\ A D D \\ \mid R_{2}, R_{1} \end{gathered}$	$\begin{gathered} 10 \\ A D D \\ R_{1}, I M \end{gathered}$	$\begin{gathered} 10 \\ \text { BOR* } \\ r_{0} \cdot R_{b}^{*} \end{gathered}$		6 LD $\mathrm{L}_{2} \mathrm{R}_{1}$ ${ }^{12}, R_{1}$,	12/10 DJNZ r_{1},RA1			$\begin{gathered} 12 / 10 \\ \mathrm{JP} \\ \mathrm{cc}, \mathrm{DA} \end{gathered}$		$\begin{gathered} 14 \\ \text { NEXT } \end{gathered}$
	1	$\begin{gathered} 6 \\ \text { RLC }_{1} \\ R_{1} \end{gathered}$	$\begin{gathered} 6 \\ \text { RLC }^{6} \mathrm{IR}_{1} \end{gathered}$	$\begin{gathered} 6 \\ \text { ADC } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 6 \\ \text { ADC } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 10 \\ A D C \\ R_{2}, R_{1} \end{gathered}$	$\begin{gathered} 10 \\ A D C \\ \mid R_{2}, R_{1} \end{gathered}$	$\begin{gathered} 10 \\ \text { ADC } \\ R_{1}, I M \end{gathered}$									$\stackrel{20}{\text { ENTER }}$
	2	$\begin{gathered} 6 \\ \text { INC } \\ R_{1} \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{N N C}^{\prime} \\ \mathbb{R}_{1} \end{gathered}$	$\begin{gathered} 6 \\ \text { SUB } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 6 \\ \text { SUB } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 10 \\ \text { SUB } \\ \mathrm{R}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10 \\ \text { suB } \\ \mathbb{R}_{2}, \mathrm{R}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \text { SUB } \\ \mathrm{R}_{1}, \mathrm{IM} \end{gathered}$	10 BXOR* $r_{0} \cdot R_{b}$								$\begin{gathered} 22 \\ \text { EXIT } \end{gathered}$
	3	$\begin{gathered} 10 \\ \mathrm{JP}^{2} \\ \text { IRR }_{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { NOTE } \\ \text { C } \end{gathered}$	$\begin{gathered} 6 \\ \text { SBC } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 6 \\ \text { SBC } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 10 \\ S B C \\ R_{2}, R_{1} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{SBC} \\ \mathrm{R}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{SBC} \\ \mathrm{R}_{1}, \mathrm{IM} \end{gathered}$	$\begin{gathered} \text { NOTE } \\ \text { A } \end{gathered}$								$\begin{gathered} 6 \\ \text { WFI } \end{gathered}$
	4	$\begin{gathered} 6 \\ D_{A} \\ R_{1} \end{gathered}$	$\begin{gathered} 6 \\ \text { DA } \\ \text { IR }_{1} \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { OR } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { OR } \\ r_{1}, r_{2} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \text { OR } \\ \mathrm{R}_{2}, \mathrm{R}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{OR} \\ \mathrm{IR}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{array}{r} 10 \\ \text { OR } \\ \mathrm{R}_{1}, \mathrm{IM} \\ \hline \end{array}$	$\begin{gathered} 10 \\ \text { LDB** } \\ r_{0}-R_{b} \end{gathered}$								$\begin{gathered} 6 \\ \text { SBO } \end{gathered}$
	5	$\begin{gathered} \hline 10 \\ \text { POP } \\ R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \text { POP } \\ \text { IR }_{1} \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { AND } \\ \mathrm{r}_{1}, \mathrm{r}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \text { AND } \\ r_{1}, I_{2} \end{gathered}$	$\begin{gathered} 10 \\ \text { AND } \\ \mathrm{R}_{2}, \mathrm{R}_{1} \end{gathered}$		$\begin{gathered} 10 \\ \text { AND } \\ \mathrm{R}_{1}, \mathrm{IM} \end{gathered}$	$\begin{gathered} 8 \\ \text { BITC } \\ r_{1}, \mathrm{~b} \end{gathered}$								$\begin{gathered} 6 \\ \text { SBI } \end{gathered}$
$\begin{aligned} & \underset{X}{X} \\ & \underset{I}{\prime} \end{aligned}$	6	$\begin{gathered} \hline 6 \\ \text { COM } \\ R_{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { COM } \\ \mathrm{IR}_{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { TCM } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 6 \\ \text { TCM } \\ \mathrm{r}_{1}, \cdot \mathrm{r}_{2} \end{gathered}$	$\begin{gathered} 10 \\ \text { TCM } \\ \mathrm{R}_{2}, \mathrm{R}_{1} \\ \hline \end{gathered}$		$\begin{gathered} 10 \\ \text { TCM } \\ R_{1}, I M \\ \hline \end{gathered}$									
응	7	$10 / 12$ PUSH R_{2}	$\begin{gathered} 12 / 14 \\ \text { PUSH } \\ \mathrm{IR}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ T M \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 6 \\ \text { TM } \\ \mathrm{r}_{1}, \mathrm{Ir}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{TM} \\ \mathrm{R}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{T M} \\ \mathrm{IR}_{2}, \mathrm{R}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ T M \\ R_{1}, I M \end{gathered}$	$\begin{gathered} \text { NOTE } \\ \text { B } \end{gathered}$								
$\begin{aligned} & \text { 닣 } \\ & \text { 을 } \end{aligned}$	8	$\begin{gathered} 10 \\ \mathrm{DECW}^{R_{1}} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{DECW} \\ \mathrm{IR}_{1} \end{gathered}$	10 PUSHUD I_{1}, R_{2}	PUSHUI $\mathrm{IR}_{1}, \mathrm{R}_{2}$				$\begin{gathered} 10 \\ \text { LD } \\ r_{1}, \times, r_{2} \\ \hline \end{gathered}$								$\begin{gathered} 6 \\ \text { D } \end{gathered}$
	9	$\begin{gathered} 6 \\ \mathbf{R L}^{2} \\ \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{RL}^{2} \\ \mathrm{R}_{1} \end{gathered}$	10 POPUD ${ }^{\prime} R_{2}, R_{1}$			$\begin{gathered} 28 / 12 \\ \text { DIV } \\ \mathrm{IR}_{2}, \mathrm{RR}_{1} \end{gathered}$		$\begin{gathered} 10 \\ \text { LD } \\ r_{2}, \times, r_{1} \\ \hline \end{gathered}$								$\begin{aligned} & \hline 6 \\ & \text { EI } \end{aligned}$
	A	10 NCW R_{1}	$\begin{gathered} 10 \\ I_{N C W} \\ \mathbb{R}_{1} \end{gathered}$	$\begin{gathered} 6 \\ C P \\ r_{1}, r_{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { CP } \\ r_{1}, I_{2} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{C P} \\ \mathrm{R}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{CP} \\ \mid \mathrm{R}_{2}, \mathrm{R}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{CP} \\ \mathrm{R}_{1}, \mathrm{IM} \\ \hline \end{gathered}$	$\begin{gathered} \text { NOTE } \\ \text { D } \end{gathered}$								$\begin{gathered} 14 \\ \text { RET } \end{gathered}$
	B	$\begin{gathered} 6 \\ \text { CLR } \\ R_{1} \end{gathered}$	$\begin{gathered} 6 \\ \text { CLR } \\ \text { R }_{1} \end{gathered}$	$\begin{gathered} 6 \\ \text { XOR } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 6 \\ \text { XOR } \\ r_{1}, r_{2} \end{gathered}$	$\begin{gathered} 10 \\ \text { XOR } \\ R_{2}, R_{1} \end{gathered}$	$\begin{gathered} 10 \\ \text { XOR } \\ I_{2}, R_{1} \end{gathered}$	$\begin{gathered} 10 \\ \text { XOR } \\ \mathrm{R}_{1}, \mathrm{IM} \\ \hline \end{gathered}$	NOTE E								16/6 IRET
	C	6 RRC R_{1}	$\begin{gathered} 6 \\ \text { RRC } \\ \text { IR }_{1} \\ \hline \end{gathered}$	16/18 CPIJE Ir, r2, RA	$\begin{gathered} 12 \\ \text { LDC* } \\ r_{1}, l_{2}, \end{gathered}$		$\begin{gathered} 10 \\ \mathrm{LDW} \\ \mathrm{IR}_{2}, \mathrm{RR}_{1} \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{LDW}^{2} \\ \mathrm{RR}_{1}, \mathrm{ML} \end{gathered}$	$\begin{gathered} 6 \\ \text { LD } \\ \mathrm{r}_{1}, \mathrm{r}_{2} \end{gathered}$								$\begin{gathered} 6 \\ \text { RCF } \end{gathered}$
	D	$\begin{gathered} 6 \\ \text { SRA } \\ R_{1} \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { SRA } \\ \hline \mathrm{IR}_{1} \\ \hline \end{gathered}$	16/18 CPINNE Ir $_{1}, \mathrm{r}_{2}, R A$	$\begin{gathered} 12 \\ \text { LDC. } \\ \mathrm{r}_{2}, \mathrm{lr}_{1} \end{gathered}$	20 CALL IA 1		$\begin{gathered} 10 \\ \text { LD } \\ \mathrm{IR}_{1}, \mathrm{IM} \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { LD } \\ \mathrm{Ir}_{1}, \mathrm{r}_{2} \\ \hline \end{gathered}$								$\begin{gathered} 6 \\ \mathrm{SCF} \end{gathered}$
	E	$\begin{gathered} \hline 6 \\ R_{R} \\ R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{RR}^{6} \\ \mathrm{IR}_{1} \end{gathered}$		$\begin{gathered} 16 \\ \text { LDCl }^{*} \\ \mathrm{r}_{1}, \mathrm{Irr}_{2} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{LD} \\ \mathrm{R}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{LD} \\ \mathrm{IR}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{LD} \\ \mathrm{R}_{1}, \mathrm{IM} \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ \text { LDC* } \\ r_{1}, r_{2}, \times s \end{gathered}$								$\stackrel{6}{C C F}$
	F				LDCPI* $\mathrm{r}_{2}, \mathrm{Ir}_{1}$	$\begin{gathered} 18 \\ \text { CALL }^{I_{1 R R}^{1}} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{LD} \\ \mathrm{R}_{2}, \stackrel{\mathrm{R}_{1}}{ } \end{gathered}$	$\begin{gathered} 18 \\ \text { CALL } \\ \mathrm{DA}_{1} \end{gathered}$	$\begin{gathered} 18 \\ \text { LDC }^{*}, \mathrm{lr}_{1}, \mathrm{xs} \end{gathered}$								$\begin{gathered} 6 \\ \text { NOP } \end{gathered}$

Sequence:

Opcode, first, second, third operands

Figure 11. Opcode Map

Table 7. Super8 Instructions

Mnemonic	Operands	Instruction	Mnemonic	Operands	Instruction
Load Instructions			Program Control Instructions		
CLR	dst	Clear	BTJRT	dst, src	Bit test jump relative on True
LD	dst, src	Load	BTJRF	dst, src	Bit test jump relative on False
LDB	dst, src	Load bit	CALL	dst	Call procedure
LDC	dst, src	Load program memory	CPIJE	dst, src	Compare, increment and jump on
LDE	dst, src	Load data memory			equal
LDCD	dst, src	Load program memory and decrement	CPIJNE	dst, src	Compare, increment and jump on non-equal
LDED	dst, src	Load data memory and decrement	DJNZ ENTER	r, dst	Decrement and jump on non-zero Enter
LDCI	dst, src	Load program memory and increment	EXIT IRET		Exit Return from interrupt
LDEI	dst, src	Load data memory and increment	JP	cc, dst	Jump on condition code
LDCPD	dst, src	Load program memory with pre-decrement	JP JR	dst $\mathrm{cc}, \mathrm{dst}$	Jump unconditional Jump relative on condition code
LDEPD	dst, src	Load data memory with pre-decrement	JR NEXT	dst	Jump relative unconditional Next
LDCPI	dst, src	Load program memory with pre-increment	$\begin{aligned} & \text { RET } \\ & \text { WFI } \end{aligned}$		Return Wait for interrupt
LDEPI	dst, src	Load data memory with	Bit Manipulation Instructions		
		pre-increment	BAND	dst, src	Bit AND
LDW	dst, src	Load word	BCP	dst, src	Bit compare
POP	dst	Pop stack	BITC	dst	Bit complement
POPUD	dst, src	Pop user stack (decrement)	BITR	dst	Bit reset
POPUI	dst, src	Pop user stack (increment)	BITS	dst	Bit set
PUSH	src	Push stack	BOR	dst, src	Bit OR
PUSHUD	dst, src	Push user stack (decrement)	BXOR	dst, src	Bit exclusive OR
PUSHUI	dst, src	Push user stack (increment)	TCM	dst, src	Test complement under mask
			TM	dst, src	Test under mask
Arithmetic Instructions			Rotate and Shift Instructions		
ADC	dst, src	Add with carry	RL	dst	Rotate left
ADD	dst, src	Add	RLC	dst	Rotate left through carry
CP	dst, src	Compare	RR	dst	Rotate right
DA	dst	Decimal adjust	RRC	dst	Rotate right through carry
DEC	dst	Decrement	SRA	dst	Shift right arithmetic
DECW	dst	Decrement word	SWAP	dst	Swap nibbles
DIV	dst, src	Divide			
INC	dst	Increment	CPU Control Instructions		
INCW	dst	Increment word	CCF		Complement carry flag
MULT	dst, src	Multiply	DI		Disable interrupts
SBC	dst, src.	Subtract with carry	El		Enable interrupts
SUB	dst, src	Subtract	NOP		Do nothing
			RCF		Reset carry flag
Logical Instructions			SB0		Set bank 0
			SB1		'Set bank 1
AND	dst, src	Logical AND	SCF		Set carry flag
COM	dst	Complement	SRP	SrC	Set register pointers
OR	dst, src	Logical OR	SRPO	SrC	Set register pointer zero
XOR	dst, src	Logical exclusive	SRP1	src	Set register pointer one

INTERRUPTS

The Super8 interrupt structure contains 8 levels of interrupt, 16 vectors, and 27 sources.
Interrupt priority is assigned by level, controlled by the Interrupt Priority register (IPR). Each level is masked (or enabled) according to the bits in the Interrupt Mask register (IMR), and the entire interrupt structure can be disabled by clearing a bit in the System Mode register (R222).

The three major components of the interrupt structure are sources, vectors, and levels. These are shown in Figure 10 and discussed in the following paragraphs.

Sources

A source is anything that generates an interrupt. This can be internal or external to the Super8 MCU. Internal sources are hardwired to a particular vector and level, while external sources can be assigned to various external events.
Extemal interrupts are falling-edge triggered.

Vectors

The 16 vectors are divided unequally among the eight levels. For example, vector 12 belongs to level 2, while level 3 contains vectors $0,2,4$, and 6.

The vector number is used to generate the address of a particular interrupt servicing routine; therefore all interrupts using the same vector must use the same interrupt handling routine.

Levels

Levels provide the top level of priority assignment. While the sources and vectors are hardwired within each level, the priorities of the levels can be changed by using the Interrupt Priority register (see Figure 8 for bit details).
If more than one interrupt source is active, the source from the highest priority level will be serviced first. If both sources are from the same level, the source with the lowest vector will have priority. For example, if the UART Receive Data bit and UART Parity Error bit are both active, the UART Parity Error bit will be serviced first because it is vector 16, and UART receive data is vector 20.

The levels are shown in Figure 12.

Figure 12. Interrupt Levels and Vectors

Enables

Interrupts can be enabled or disabled as follows:

- Interrupt enable/disable. The entire interrupt structure can be enabled or disabled by setting bit 0 in the System Mode register (R222).
- Level enable. Each level can be enabled or disabled by setting the appropriate bit in the Interrupt Mask register (R221).
- Level priority. The priority of each level can be controlled by the values in the Interrupt Priority register (R255, Bank $0)$.
- Source enable/disable. Each interrupt source can be enabled or disabled in the sources' Mode and Control register.

Service Routines

Before an interrupt request can be granted, a) interrupts must be enabled, b) the level must be enabled, c) it must be the highest priority interrupting level, d) it must be enabled at the interrupting source, and e) it must have the highest priority within the level.
If all this occurs, an interrupt request is granted.
The Super8 then enters an interrupt machine cycle that completes the following sequence:

- It resets the Interrupt Enable bit to disable all subsequent interrupts.
- It saves the Program Counter and status flags on the stack.
- It branches to the address contained within the vector location for the interrupt.
- It passes control to the interrupt servicing routine.

When the interrupt servicing routine has serviced the interrupt, it should issue an interrupt return (IRET) instruction. This restores the Program Counter and status flags and sets the Interrupt Enable bit in the System Mode register.

Fast Interrupt Processing

The Super8 provides a feature called fast interrupt processing, which completes the interrupt servicing in 6 clock periods instead of the usual 22.

Two hardware registers support fast interrupts. The Instruction Pointer (IP) holds the starting address of the service routine, and saves the PC value when a fast interrupt occurs. A dedicated register, FLAG', saves the contents of the FLAGS register when a fast interrupt occurs.

To use this feature, load the address of the service routine in the Instruction Pointer, load the level number into the Fast Interrupt Select field, and turn on the Fast Interrupt Enable bit in the System Mode register.
When an interrupt occurs in the level selected for fast interrupt processing, the following occurs:

- The contents of the Instruction Pointer and Program Counter are swapped.
- The contents of the Flag register are copied into FLAG'.
- The Fast Interrupt Status Bit in FLAGS is set.
- The interrupt is serviced.
- When IRET is issued after the interrupt service outline is completed, the Instruction Pointer and Program Counter are swapped again.
- The contents of FLAG' are copied back into the Flag register.
- The Fast Interrupt Status bit in FLAGS is cleared.

The interrupt servicing routine selected for fast processing should be written so that the location after the IRET instruction is the entry point the next time the (same) routine is used.

Level or Edge Triggered

Because internal interrupt requests are levels and interrupt requests from the outside are (usually) edges, the hardware for external interrupts uses edge-triggered flip-flops to convert the edges to levels.

The level-activated system requires that interrupt-serving software perform some action to remove the interrupting source. The action involved in serving the interrupt may remove the source, or the software may have to actually reset the flip-flops by writing to the corresponding Interrupt Pending register.

STACK OPERATION

The Super8 architecture supports stack operations in the register file or in data memory. Bit 1 in the external Memory Timing register (R254 bank 0) selects between the two.

Register pair 216-217 forms the Stack Pointer used for all stack operations. R216 is the MSB and R217 is the LSB.

The Stack Pointer always points to data stored on the top of the stack. The address is decremented prior to a PUSH and incremented after a POP.

The stack is also used as a return stack for CALLs and interrupts. During a CALL, the contents of the PC are saved on the stack, to be restored later. Interrupts cause the contents of the PC and FLAGS to be saved on the stack, for recovery by IRET when the interrupt is finished.

When the Super8 is configured for an internal stack (using the register file), R217 contains the Stack Pointer. R216 may
be used as a general-purpose register, but its contents will be changed if an overflow or underflow occurs as the result of incrementing or decrementing the stack address during normal stack operations.

User-Defined Stacks

The Super8 provides for user-defined stacks in both the register file and program or data memory. These can be made to increment or decrement on a push by the choice of opcodes. For example, to implement a stack that grows from low addresses to high addresses in the register file, use PUSHUI and POPUD. For a stack that grows from high addresses to low addresses in data memory, use LDEI for pop and LDEPD for push.

COUNTER/TIMERS

The Super8 has two identical independently programmable 16-bit counter/timers that can be cascaded to produce a single 32 -bit counter. They can be used to count external events, or they can obtain their input internally. The internal input is obtained by dividing the crystal frequency by four.

The counter/timers can be set to count up or down, by software or external events. They can be set for single or continuous cycle counting, and they can be set with a bi-value option, where two preset time constants alternate in loading the counter each time it reaches zero. This can be used to produce an output pulse train with a variable duty cycle.

The counter/timers can also be programmed to capture the count value at an external event or generate an interrupt whenever the count reaches zero. They can be turned on and off in response to external events by using a gate and/or a trigger option. The gate option enables counts only when the gate line is Low; the trigger option turns on the counter after a transient High. The gate and trigger options used together cause the counter/timer to work in gate mode after initially being triggered.
The control and status register bits for the counter/timers are shown in Figure 5.

DMA

The Super8 features an on-chip Direct Memory Access (DMA) channel to provide high bandwidth data transmission capabilities. The DMA channel can be used by the UART receiver, UART transmitter, or handshake channel 0 . Data can be transferred between the peripheral and contiguous locations in either the register file or external
data memory. A 16-bit count register determines the number of transactions to be performed; an interrupt can be generated when the count is exhausted. DMA transfers to or from the register file require six CPU clock cycles; DMA transfers to or from external memory take ten CPU clock cycles, excluding wait states.

ABSOLUTE MAXIMUM RATINGS

Voltage on all pins with respect
to ground . -0.3 V to +7.0 V
Ambient Operating
Temperature See Ordering Information
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than these may cause permanent damage to the device This is a stress rating only; operation of the device under conditions more severe than those listed for operating conditions may cause permanent damage to the device. Exposure to absolute maximum ratings for extended periods may also cause permanent damage.

STANDARD TEST CONDITIONS

Figure 14 shows the setup for standard test conditions. All voltages are referenced to ground, and positive current flows into the reference pin.

Standard conditions are:
■ $+4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.25 \mathrm{~V}$

- GND $=0 \mathrm{~V}$
- $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$

TEST LOAD (FOR ALL PINS)

Standard Test Load

DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Unit	Condition
V_{CH}	Clock Input High Voltage	3.8	V_{CC}	V	Driven by External Clock Generator
$V_{C L}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$V_{\text {IH }}$	Input High Voltage	2.2	V_{CC}	V	
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V	
$V_{\text {RH }}$	Reset Input High Voltage	3.8	V_{CC}	V	-
$V_{\text {RL }}$	Reset Input Low Voltage	-0.3	0.8	V	
V_{OH}	Output High Voltage	2.4		V	$\mathrm{IOH}^{\text {O }}=-400 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{IOL}=+4.0 \mathrm{~mA}$
IIL	Input Leakage	- 10	10	$\mu \mathrm{A}$	
IOL	Output Leakage	-10	10	$\mu \mathrm{A}$	
1 IR	Reset Input Current		-50	$\mu \mathrm{A}$	
Icc	$V_{\text {CC }}$ Supply Current		- 320	mA	

INPUT HANDSHAKE TIMING

Fully Interlocked Mode

Strobed Mode
AC CHARACTERISTICS (20 MHz)
Input Handshake

Number	Symbol	Parameter	Min	Max	Notes* \ddagger
1	TsDI(DAV)	Data In to Setup Time	0		
2	TdDAVIf(RDY)	$\overline{\text { DAV } ~} \downarrow$ Input to RDY \downarrow Delay		200	1
3	ThDI(RDY)	Data In Hold Time from RDY \downarrow	0		
4	TwDAV	$\overline{\text { DAV }} \ln$ Width	45		
5	ThDI(DAV)	Data In Hold Time from $\overline{\text { DAV }} \downarrow$	130		
6	TdDAV(RDY)			100	2
7	TdRDYf(DAV)	RDY \downarrow Output to $\overline{\mathrm{DAV}} \uparrow$ Delay	0		

NOTES:

1. Standard Test Load
2. This time assumes user program reads data before $\overline{\operatorname{DAV}}$ Input goes high. RDY will not go high before data is read.
\ddagger Times given are in ns.
*Times are preliminary and subject to change.

OUTPUT HANDSHAKE TIMING

Fully Interlocked Mode

AC CHARACTERISTICS ($12 \mathrm{MHz}, 20 \mathrm{MHz}$)

Output Handshake

Number	Symbol	Parameter	Min	Max	Notes* \ddagger
1	TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}} \downarrow$ Delay	90		1,2
2	TdRDYr(DAV)	RDY \uparrow Input to $\overline{\text { DAV }} \downarrow$ Delay	0	110	1
3	TdDAVOf(RDY)	$\overline{\mathrm{DAV}} \downarrow$ Output to RDY \downarrow Delay	0		
4	TdRDYf(DAV)	RDY \downarrow Input to $\overline{\text { DAV }} \uparrow$ Delay	0	110	1
5	TdDAVOr(RDY)	$\overline{\mathrm{DAV}} \uparrow$ Output to RDY \uparrow Delay	0		
6	TwDAVO	$\overline{\text { DAV Output Width }}$	150		2

NOTES:

1. Standard Test Load
2. Time given is for zero value in Deskew Counter. For nonzero value of n where $n=1,2, \ldots 15$ add $2 \times n \times \operatorname{TpC}$ to the given time.
\ddagger Times given are in ns.
*Times are preliminary and subject to change.

AC CHARACTERISTICS (12 MHz)

Read/Write

Number	Symbol	Parameter	Normal Timing		Extended Timing		Notes \ddagger *
			Min	Max	Min	Max	
1	TdA(AS)	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	35		115		
2	TdAS(A)	$\overline{\mathrm{AS}} \uparrow$ to Address Float Delay	65		150		
3	TdAS(DR)	$\overline{\mathrm{AS}} \uparrow$ to Read Data Required Valid		270		600	1
4	TWAS	$\overline{\text { AS Low Width }}$	65		150		
5	TdA(DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	20		20		
6 a	TwDS(Read)	$\overline{\mathrm{DS}}$ (Read) Low Width	225		470		1
6 b	TwDS(Write)	$\overline{\text { DS }}$ (Write) Low Width	130		295		1
7	TdDS(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		180		420	1
8	ThDS(DR)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		
9	TdDS(A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	50		135		
10	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	60		145		
11	TdDO(DS)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) \downarrow Delay	35		115		
12	TdAS(W)	$\overline{\mathrm{AS}} \uparrow$ to Wait Delay		220		600	2
13	ThDS(W)	$\overline{\mathrm{DS}} \uparrow$ to Wait Hold Time	0		0		
14	TdRW(AS)	R/产 Valid to $\overline{\text { AS }} \uparrow$ Delay	50		135		

[^12]
AC CHARACTERISTICS (20 MHz)

Read/Write

Number	Symbol	Parameter	Normal Timing		Extended Timing		Notes \ddagger^{*}
			Min	Max	Min	Max	
1	TdA(AS)	Address Valid to $\overline{A S} \uparrow$ Delay	10		50		
2	TdAS(A)	$\overline{\text { AS }} \uparrow$ to Address Float Delay	35		85		
3	TdAS(DR)	$\overline{\text { AS }} \uparrow$ to Read Data Required Valid		140		335	1
4	TwAS	$\overline{\text { AS Low Width }}$	35		85		
5	TdA(DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		0		
6 a	TwDS(Read)	$\overline{\text { DS }}$ (Read) Low Width	125		275		1
6 b	TwDS(Write)	$\overline{\mathrm{DS}}$ (Write) Low Width	65		165		1
7	TdDS(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		80		225	1
8	ThDS(DR)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		
9	TdDS(A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	20		70		
10	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	30		80		
11	TdDO(DS)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) \downarrow Delay	10		50		
12	TdAS(W)	$\overline{\text { AS }} \uparrow$ to Wait Delay		90		335	2
13	ThDS(W)	$\overline{\overline{D S}} \uparrow$ to Wait Hold Time	0		0		
14	TdRW(AS)	R/W Valid to $\overline{A S} \uparrow$ Delay	20		70		
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	20		70		

NOTES:

1. WAIT states add 100 ns to these times.
2. Auto-wait states add 100 ns to this time.
\ddagger All times are in ns and are for 20 MHz input frequency.

* Timings are preliminary and subject to change.

External Memory Read and Write Timing

EPROM Read Timing

AC CHARACTERISTICS (20 MHz)

EPROM Read Cycle

Number	Symbol	Parameter	Min	Max	Notes¥*
1	TdA(DR)	Address Valid to Read Data Required			
		Valid		170	1

NOTES:

1. WAIT states add 167 ns to these times.
\ddagger All times are in ns and are for 12 MHz input frequency.
*Timings are preliminary and subject to change.

PERIPHERAL PRODUCTS

.

286128
 Closed-Captioned Controller

FEATURES

- Complete stand-alone Line 21 Closed-Caption Controller
-Conforms to FCC Line 21 Closed-Caption Specifications
- Simple system interface
- Requires only two inputs to operate
- Composite video
- H flyback
- On-board Analog Sync and Data Slicer
- CMOS VLSI design for low power and low cost
- On-board Display RAM
- On-board character font ROM - 6×9 character in 8×13 cell
- Character rounding - 12×18 actual character cell
- Visual Attributes

Color
Underline
Italic
Blink

- Smooth scrolling

囫 Automatic screen blanking after 1.5 sec with no input.
困 Automatic erase after 16 sec wilh no input

- 18-pin package

GENERAL DESCRIPTION

The Z86128 Line 21 Closed-Caption Controller is a single IC, designed to provide the functional performance of a Line 21 Closed-Caption depicted in the Figure 1 Decoder module. This Super Integration ${ }^{\mathrm{TM}} \mathrm{VLSI}$ device is completely self contained, requiring only composite video, H Flyback inputs and an external keyer* to produce captioned video. The Z86128 uses a wired logic approach to perform the functions selected through its input control signals. It is fabricated using standard CMOS technology and designed to achieve the lowest possible cost.

The Z86128 is intended for use in a set-top decoder or in any television receiver conforming to the NTSC standard. It is capable of processing all standard Line 21 closed-caption format transmissions. If and when PAL and SECAM TV standards define a protocol using the Line 21 format, this design will be readily convertible to that standard.
*External keyer = video switch between TV video and ClosedCaption video.

The Line 21 Closed Captioning System

The Line 21 Closed-Caption system provides for the transmission of CAPTION information and other TEXT material as an encoded composite data signal this is during the unblanked portion of Line 21, field 1 of the standard NTSC video signal. In addition, a framing code is transmitted during the first half of Line 21, field 2. The encoded composite video signal for Line 21 , field 1 and 2 is shown in Figure 2. The video signal conforms to the Standard Synchronizing Waveform for Color Transmission given in Sub-part E, Part 73 of the FCC Rules and Regulations.

*Scan Line 21 is the last scan Line of the vertical retrace blank interval

Figure 1. Closed-Caption TV Display Format

Figure 2. Encoded Composite Video Signal
Fifteen additional displayable characters are sent by transmitting a two-byte code. The byte pair has a non-printing

PIN DESCRIPTION (Actual pinout to be defined)

Pin number assignments subject to change.
For an 18 -pin package the additional two pins will be another set of power pins.

Pin 1	Composite Video Input Composite NTSC video, nominally 1.OV p-p,. band limited to Circuit operates with signal variations between 0.5-2.0V p-p. this signal pin be driven by an emitter follower through a 0.1
Pin 2	Sync Slice Level Capacitor ($0.1 \mu \mathrm{~F}$) to store sync slice level voltage.
Pin 3	H Flyback Input Horizontal sync input at CMOS levels, polarity independent. Typically derived from the HI Flyback pulse.

Pin 4	H Loop Filter
	Value to be specified

Pin $5 \quad V_{s s}$

IC ground. Connect to system ground
Pin 6 Decoder On/Off Input (control)
Decoder display control. CMOS input with HIGH = ON, LOW = OFF
Pin $7 \quad$ CAPTIONS/TEXT Input (control)
Selects Data Channel to be processed (along with Captions/Text).
CMOS input with HIGH = CAPTIONS, LOW = TEXT.
Pin $8 \quad$ LANGUAGE I/II Input (control)
Selects Data Channel to be processed (along with Captions/Text).
CMOS input HIGH = LANGUAGE I, LOW = LANGUAGE II.
Pin $9 \quad$ Box Output
CMOS level "black box" keying signal for Caption/Text display area.
Pin 10 Luminance Output
CMOS level signal.
Character video luminance signal.
Pins 11,12,13 Color signals, RGB Outputs
CMOS level color character video for color receiver use.
Pins 14,15 Test Pins For use in IC test.
Pin $16 \quad V_{\text {DD }}$ ID Power pin. Connect to +5 V source.
Pin 17 Analog V_{DD}
Pin $18 \quad$ Analog V_{ss}

FUNCTIONAL DESCRIPTION

Data Transmission Format

The composite data signal contained within the active portion of Line 21 consists of a seven cycle sine-wave clock run-in burst, a start bit and 16 bits of data. These 16 bits consist of two 8-bit alphanumeric characters formulated according to the USA Standard Code for Information Interchange (USASCII; x 3.4-1967) with odd parity. The clock rate is 0.5035 MHz which is 32 fH . The clock burst and data packet are 50 IRE units peak-to-peak and are filtered to a " 2 T " response. Data is sent with the least significant bit(bitD1) being sent first and the most significant bit (bit D8, the parity bit) sent last.

Multiplexed Data Channels

The Line 21 closed-captioned system defines four different data channels which can be time multiplexed within the Line 21 data stream. They are Captions - LANGUAGE I (C1), Captions - LANGUAGE II (C2), Text - LANGUAGE I (T1) and Text - LANGUAGE II (T2). Both languages can be English in either case.

TEXT is defined as non-video related information therefore its display can fill the screen. TEXT mode displays a black box 15 rows high by 34 columns wide. Text appears starting at the top with a maximum of 32 characters per row (the first and last character locations are always blank and used for asserting visual attributes). When all 15 rows have been used, the display scrolls up as additional information is received.

Captions are video related information so they are not permitted to overwrite the entire screen. Captions may only be displayed in the top four rows and/or the bottom four rows, in any combination. Eight rows may be displayed at one time. All the rows in each caption appear at once in Pop-on Captions mode.

A secondary Caption display mode, called Rollup Captions, is also provided. In this mode, caption information is displayed on the bottom two, three or four rows. Data appears in the bottom row and scrolls up as new information is received. The data scrolls off the top row selected as in the TEXT mode. This mode is usually used for captioning unscripted and fast turn around programming such as talk shows and news.

Data Format

The four data channels are transmitted in Line 21 as a time multiplexed data stream. The start of a particular channel's data stream is identified by the occurrence of one of its unique command codes. Once a unique command code is received, all subsequent data are considered to belong
to that data channel until a unique command code is received for another data channel. The Alarm On and Alarm Off codes are an exception to this rule. Alarm codes are ignored by everything except the Alarm output control circuits.

The 7-bit ASCII table defines two types of information, printing and non-printing. Printable data are data bytes having values between $x 0100000(20 \mathrm{H})$ and $\times 111111$ $(7 \mathrm{FH})$, where \times represents the parity bit. Data bytes having values between $x 0000000(00 H)$ and $\times 0011111(1 \mathrm{FH})$ are called non-printing characters since they have no displayable font character in the standard ASCII table.

Displayable Character Set

The specifications* define a modified ASCII table character set where eight of the alphanumeric characters have been changed to provide some foreign characters.

In addition, 15 additional characters are defined by special character commands. The changes from the standard ASCII table characters are shown in Table 1.

* - The PBS 1979 specifications are slightly different than the NCl 1985 specifications. The information presented here essentially conforms to the NCl specifications with the exception of the response to "space" characters.

Table 1. Different ASCII Characters

Hex Code	ASCII Value	Line 21 Value
2 A	*	ä
5C	\backslash	ë
5E	\wedge	i
5 F	-	Ö
60	,	ü
7B	\{	Ç
7D)	\tilde{N}
7E	\sim	ก

Fifteen additional displayable characters are sent by transmitting a two-byte code. The byte pair has a non-printing character followed by a printing character, where the nonprinting character is 11 H for LANGUAGE I and 19 H for LANGUAGE II. The printing character determines the special font character that will be displayed according to Table 2.

Table 2. Print Character Font Determination

Print	Character
30	$1 / 4$
31	$\#$
32	$1 / 2$
33	\grave{c}
34	$3 / 4$
35	\varnothing
36	$£$
37	k
38	\grave{A}
$3 A$	E
$3 B$	a
$3 C$	e
$3 D$	$\hat{\imath}$
$3 E$	0
$3 F$	0

The byte pair $11 \mathrm{H}, 39 \mathrm{H}$ (or $19 \mathrm{H}, 39 \mathrm{H}$) is defined as a transparent space in the 1985 NCl specification. The Z86128 uses the spacing rule defined in the 1979 PBS specification. In Text mode all spaces are treated as nontransparent characters and always appear within the full box. InCaption mode all spaces are treated as transparent i.e., box is dropped. However, every character must have another character or a black box before and after it.

Commands and Special Information

Data channel commands and special information are transmitted as two byte pairs consisting of a non-printing character followed by a printing character. The two bytes of the pair must be transmitted in the same field and the pair is transmitted twice in successive frames. This redundancy provides some immunity for errors due to noise.

Throughout the Line 21, system bit 4 of the non-printing character identifies the Language. Bit D4 $=0$ signifies LANGUAGE 1 commands and D4 $=1$ signities LANGUAGE II. Only eight of the available 32 non-printing characters are used in the Line 21 system, $11 \mathrm{H}-14 \mathrm{H}$ for LANGUAGE I and 19H-1CH for LANGUAGE II.

Data Channel Commands. All the data channel command codes use the non-printing character 14 H for L_ANGUAGE I and 1 CH for LANGUAGE II. The printing character determines the particular command function. The commands are shown in Table 3. The printing character's value is given in Hex.

Table 3. Data Channel Commands
(Command $=14 \mathrm{H}+$ Hex code below)
Data Channel = Captions (C1 or C2) Hex

Print	Function
20	Resume Caption Loading (off screen)
25	Resume 2 Line Roll-up
26	Resume 3 Line Roll-up
27	Resume 4 Line Roll-up
29	Resume Direct Loading (on screen)
2 C	Erase Displayed Memory
2E	Erase Non-displayed Memory
2F	Show Caption (tlip memories)

Data Channel $=$ Text (T1 or T2)

Print	Function
$2 A$	Start Text
$2 B$	Resume Text

The following commands are shared by all of the data channels:

Print	Function
21	Backspace
28	Flash On/Off
2D	New Line (carriage return)

The Alarm circuit command codes are:

Print	Function
22	Alarm Off
23	Alarm On

FUNCTIONAL DESCRIPTION (Continued)

Data Location and Attribute Codes. Additional codes are used for positioning the data on the screen and for controlling the character attributes. There are two location attributes, row and column (indent) position and three character attributes, color, italics and underline. All attribute information is contained in the Preamble Codes (Precodes) and Midrow Codes (Midcodes).

The Precodes identify the display row and character attributes for the caption data that follows it. These attributes hold for the entire line unless changed by a Midcode or Indent code. All the non-printing characters, $11 \mathrm{H}-14 \mathrm{H}$ for LANGUAGE I and $19 \mathrm{H}-1 \mathrm{CH}$ for LANGUAGE $\|$ are used. The code pair assignments for the location and character attributes are given in Table 4. The grid represents LANGUAGE I only. To use the grid for LANGUAGE II simply replace the non-printcodes (IIH-14H) with $19 \mathrm{H}-\mathrm{ICH}$.

Table 4. Code Pair Assignments for Location and Character Attributes

Non-print	$1-11 \mathrm{H}-\mathrm{l}$		$1-12 \mathrm{H}-1$		$1-13 \mathrm{H}-1$		$14 \mathrm{H}-\mathrm{l}$	
Caption Row	1	2	3	4	12	13	14	15
ATTRIBUTE								
Monochrome	40	60	40	60	40	60	40	60
Mono Underline	41	61	41	61	41	61	41	61
Green	42	62	42	62	42	62	42	62
Green Underline	43	63	43	63	43	63	43	63
Blue	44	64	44	64	44	64	44	64
Blue Underline	45	65	45	65	45	65	45	65
Cyan	46	66	46	66	46	66	46	66
Cyan Underline	47	67	47	67	47	67	47	67
Red	48	68	48	68	48	68	48	68
Red Underline	49	69	49	69	49	69	49	69
Yellow	4A	6A	4A	6 A	4A	6 A	4A	6 A
Yellow Underline	4B	6B	4B	6B	4B	6B	4B	6B
Magenta	4 C	6C	4 C	6C	4 C	6C	4 C	6C
Magenta Underline	4D	6D	4D	6D	4D	6D	4D	6 D
Italics (mono)	4 E	6 E	4 E	6 E	4 E	6 E	4 E	6 E
Italics Underline	4F	6F	4F	6 F	4F	6 F	4F	6 F
Indent 0 (mono)	50	70	50	70	50	70	50	70
Indent 0 Underline	51	71	51	71	51	71	51	71
Indent 4	52	72	52	72	52	72	52	72
Indent 4 Underline	53	73	53	73	53	73	53	73
Indent 8	54	74	54	74	54	74	54	74
Indent 8 Underline	55	75	55	75	55	75	55	75
Indent 12	56	76	56	76	56	76	56	76
Indent 12 Underline	57	77	57	77	57	77	57	77
Indent 16	58	78	58	78	58	78	58	78
Indent 16 Underline	59	79	59	79	59	79	59	79
Indent 20	5A	7A	5A	7A	5A	7A	5A	7A
Indent 20 Underline	5B	7B	5B	7B	5B	7B	5B	7B
Indent 24	5C	7C	5C	7C	5C	7 C	5C	7C
Indent 24 Underline	5D	7D	5D	7D	5D	7D	5D	7 D
Indent 28	5E	7E	5E	7E	5E	7E	5E	7E
Indent 28 Underline	5 F	7F	5 F	7F	5F	7F	5F	7F

The Midcodes are used to change the character attributes in the middle of a caption row. The Midcode occupies a space in the display and causes a black box to appear just as if the space character 20 H had been sent. The characters following the Midcode are displayed with the attributes
assigned by the Midcode. These hold until the end of the row unless changed by another Midcode. The Indent codes listed above in the Precode table actually perform in the same manner as a Midcode. Indent commands move the pointer in increments of 4 across the screen.

The Midcodes use the non-printing characters 11 H and 19 H , respectively, for the two Languages. The printing character of the two byte pair contains the character attributes as shown in Table 5.

Table 5. Print Character Attributes

Print	Character Attribute
20	Monochrome
21	Monochrome Underline
22	Green
23	Green Underlined
24	Blue
25	Blue Underlined
26	Cyan
27	Cyan Underlined
28	Red
29	Red Underlined
$2 A$	Yellow
$2 B$	Yellow Underlined
2 C	Magenta
$2 D$	Magenta Underlined
$2 E$	Italics
$2 F$	Italics Underlined

DECODER OPERATION

The Z86128 provides full function Line 21 performance. Switch selection inputs are included to enable the decoder to process and display any of the four data channels (C 1, C2, T1 or T2) transmitted in Line 21 of the incoming video. An additional input, Decoder ON/OFF, controls the display. When switched to the decoder off (TV) state, incoming data in the selected channel is still processed but not displayed. An internal pad is also provided to select field 1 or field 2 operation which is present for field 1 operation at this time.

Display Format

Characters are displayed as white or colored; dot matrix character on a black background. The characters are described by 6×9 dot patterns within a character cell which is 8 dots wide by 13 dots high. This leaves a one dot border of black around each character and provision for one scanline for underline, offset by one scanline of black, between the character and the bottom edge of the cell. Character luminance is 90 IRE units and the black box surround, 10 IRE units.

The character ROM consists of 12×18 dot matrix pattern per character. Alternate rows and columns are read out of each field to produce an interleaved and rounded charater.

A display row contains a maximum of 32 characters plus a leading and trailing blank box, each a character cell in width, making the overall width of a display row $34 \times 8=272$ dots. Successive display rows are butted together so that the total display occupies 195 dots high. The black box is 34 character cells wide by 195 dots high resulting in a box size of 45.018 usec in width by 195 tv scan lines in height. When centered in the video display, this box will start 13 usec after the leading edge of H in-scan line 43 and extend-to-scan line 237. This places the display within the safe title area for NTSC receivers. Character width is 42.37 usec also centered on the screen, resulting in a leading and trailing 1.32 usec black border.

Text Mode Display

When TEXT mode, in either language, has been selected (and valid Line 21 code has been detected in the incoming video) the 15 row by 34 character black box appears. Received TEXT characters are displayed as they are received starting in the top row. Successive carriage returns (new line command) moves the display row/column pointer down successive rows until all 15 display rows have been used. Thereafter, the text scrolls up as new characters are added to the bottom row.

If the data for the selected channel is interrupted by a command for another channel, data processing stops but the display remains. When a Resume Text command is received, data processing will resume and the new characters are added starting at the position that the display row/column pointer was prior to the interruption of data processing. If a Start Text command is received, the display is cleared and new characters are displayed starting in row 1 (top) column 1 (left side)

When scrolling, the display will shift one scan line per frame until a complete row has been scrolled. If a carriage return is received before scrolling is complete, the display immediately completes the "scroll" by jumping up the remaining scan lines and starts displaying the new text.

There will never be any transparent boxes in the TEXT display.

Caption Mode Display

When Caption mode, in either language, has been selected, the screen is transparent (display box disappears). Caption data only appears in the top four rows; rows 1-4, and/or in the bottom four rows, rows 12-15, in any combination. The form of the caption display depends on the caption mode indicated by the transmitted caption command, Pop-on, Paint-on or Roll-up.

Pop-on captions work with two caption memories. One of them is always being displayed while the other is being used to accumulate new caption data. A new caption is popped-on by swapping the two memories (the show caption command). When theon-screenmemory is erased, the screen is blank (transparent) and the memory defaults to the row/column pointer at row 1 , column 1 and monochrome non-underlined.

When caption mode is selected, the decoder processes any data following the Resume Caption Loading (RCL) command (or the Show Caption command). Normally, this command is followed by a Precode to indicate the row, column and character attributes to be used with the following data. If no Precode is received the data is added to the location last indicated by the row/column pointer prior to the receipt of the RCL command and with the character attributes previously assigned.

Paint-on caption mode is essentially equivalent to the Pop-on mode except that the data received after the Resume Direct Loading (RDL) command is written to the on-screen memory rather than the off-screen memory. All the rules for Precodes, Midcodes, etc., are otherwise the same.

Roll-up caption mode presents a "text" like display that is limited to the bottom 2, 3 or 4 rows depending on the Resume Roll-up (RRn) command used. In this case, a black box does not appear until characters are being displayed and the box is only wide enough to provide a leading and trailing box in each line. The new data appears in the bottom row and as each carriage return is received, the row scrolls up and the new data added to the bottom. When the number of rows indicated by the Resume command has been reached, the data in the top row scrolls off as new data is added to the bottom.

In all the caption display modes "black box" is dropped whenever there are three or more consecutive spaces. The number of boxes dropped are two less than the total number of consecutive spaces so that the two characters that are separated by the transparent space will both have adjoining boxes.

Display Erase and Autoblanking

The display is erased in the TEXT mode by the Start Text command (but box is maintained) and in the Caption mode by the Erase Displayed Memory command. The non-displayed memory is erased by the Erase Non-displayed Memory command.

Three other events can also cause the display to be erased. First, changing the data channel for processing by switching between CAPTIONs and TEXT, or between LANGUAGEs I and II, clears the memory and hence the display. Secondly, if the autoblanking circuit is activated
by the loss of valid code, then the display is turned off and the memory cleared. Lastly, in the Caption mode, if no valid caption command in the selected language is received for a 16 second period, the on-screen memory is erased.

The autoblanking circuit maintains the status of the presence of valid data. The decoder is held in the Decoder off (TV) state until data is continuously delected for a period of 0.5 seconds. Once the valid data decision has been made, and assuming that the user has selected the Decoder on state, the normal display for the data channel selected is presented.

The autoblanking circuit will not be activated again until valid data has been lost for 1.5 seconds. Any valid data received during the 1.5 second period resets the counter so that the autoblanking will only be activated on continuous loss of data for 1.5 seconds.

BLOCK DIAGRAM DESCRIPTION

The Z86128 is designed to provide the functional performance of a Line 21 Closed-Caption decoder with only two input signals being required, Composite Video and H Flyback. The Decoder performs two basic functions, namely extracting the Line 21 code from the incoming video and converting the recovered code, for the channel selected, into displayable information. Figure 3 shows the Z86128's block diagram.

The Z 86128 generates its own H and V sync signals so that all internal processing is performed with noise immune signals. The decoder design has been formulated to achieve the best performance at the lowest possible cost.

Input Signals

The Composite Video input should be a signal which is nominally 1 Vp -p with sync tips negative and band limited to 600 KHz . The Z86128 operates with in an input level variation of 0.5 to 2.0 vp -p.

H Flyback is a TTL level input signal which provides horizontal sync information for the Phase/Frequency detector. It maintains a coarse lock of the VCO whether composite video is present of not. This signal can also be used in future applications to provide horizontal timing information in the absence of video. It can be positive or negative polarity.

Video Input Signal Processing

The Comp Video input is AC coupled to the IC and the sync tip is internally clamped to a fixed reference voltage. Initially, the signal is clamped using a simple clamp, but improved impulse noise performance is achieved once the internal sync circuits lock to the incoming signal. Noise rejection is obtained by making the clamp operative only during the sync tip. The clamped composite video signal is fed to both the Data Slicer and Sync Slicer blocks.

The Data Slicer generates a clean TTL level data signal by slicing the signal at its midpoint. The slice level is established on an adaptive basis during Line 21 of the odd field. The resultant value is stored until the next odd field Line 21 begins. A high level of noise immunity is achieved by using this process.

The Data Clock Recovery circuit produces a 32 H clock signal (DCLK) that is locked in phase to the sliced clock run-in burst obtained from the Data Slicer. The Dot Clock is locked in phase with H sync but the DCLK phase is not determined until occurrence of Line 21 data. When Line 21 code appears, DCLK phase lock is achieved during the clock run-in burst and used to reclock the sliced data. Once phase lock is established it is maintained until a change in video signal occurs.

The Sync Slicer processes the clamped Comp Video signal to extract Comp Sync, which is then used to lock the internally generated sync to the incoming video. Sync slicing is performed in two steps. Initially, the sync is sliced at a fixed offset level from the sync tip. When the internal vertical counter locks, the slice level reference switches from a fixed to an adaptive basis. An external capacitor stores the slice level.

Timing and Synchronizing Circuits

All internal timing and synchronizing signals are derived from the on-board 12 MHz VCO. Its output is the Dot Clk signal used to drive the Horizontal and Vertical counter chains and for display timing. No external components are required to bring it within the pull-in range of the Phase/ Frequency detector.

The Horizontal Counter is a divide by 768 circuit with intermediate outputs needed to generate the timing logic signals used in data recovery and data output (display). It produces pulse signals at $1 \mathrm{H}, 2 \mathrm{H}, 32 \mathrm{H}$ and 48 H rates as well as the horizontal square wave, Q768, that is used to phase lock the VCO.

The Vertical Counter and Control circuits produce a noise free vertical pulse by dividing the horizontal signal in a 525 counter. The internal synchronizing signals are phased up with the incoming video by comparing the internally generated vertical pulse to an input vertical pulse derived from the Comp Sync signal provided by the Sync Slicer. When proper phasing has been established, this circuit outputs the LOCK signal which is used to provide additional noise immunity to the slicing circuits.

The LOCKed state is established only after several successive fields have occurred in which these two vertical pulses remain in sync. Once LOCKed, the internal timing will flywheel until such time as the two vertical pulses lose coincidence for a number of consecutive fields. Until LOCK is established, the decoder operates on a pulse for pulse basis.

Data Recovery

The Data Recovery circuits perform the initial processing of the data in Line 21. The sliced data is relocked using DCLK and the relocked data stream is checked for the presence of valid data. When data is present the two bytes are clocked into the Serial/Parallel register and output in parallel form.

This block checks the bytes for valid (odd) parity. It also determines whether the recovered byte pair is a repeat of the previously received byte pair. That information is used with the redundancy flag in the Command Processor to determine whether the command should be executed or not.

Command Processor

The Command Processor circuits control the manipulation of the data for storage and display. It decodes the control inputs (Decoder ON/OFF, Captions/Text, LANGUAGE I/II) to determine the display status desired and the data channel selected. This information is then used to perform its most important function, the control of the loading, addressing and clearing of the Display RAM.

During data recovery time (TV lines 21-42), the Command Processor transfers only the data received for the data channel selected, to the RAM for storage and display. In those cases such as special characters, midcodes, parity errors etc., where the data stored or action to be taken is different than the specific bytes received, the Command Processor converts the input data to the appropriate form.

During the display time (line 43-237), the Command Processor controls the operations of the Display RAM, Character ROM and output Logic circuits.

Memory and Display Circuits

These circuits operate together to generate the output color signals R, G, B and the monochrome signals Luminance and Box. The character ROM contains the dot pattern for all the characters but not the underline characteristic. The output logic provides the hardware underline control circuits and the Italics slant generator. The smooth scroll display control is also performed in the output logic block.

Z765A FDC Floppy Disk Controller

October 1988

FEATURES

Address Mark detection circuitry internal to the FDC simplifies the phase locked loop and read electronics. The track stepping rate, head load time, and head unload time are user-programmable.
Z765A features are:
(1BM-compatible format, Single and Double Density

* Multisector and multitrack transfer capability
(0) Data scan capability-scans a single sector or an entire cylinder comparing byte-for-byte host memory and disk data
- Drives up to 4 floppy-disk drives (FDD)
- Data transfers in DMA or non-DMA mode
- Parallel seek operations on up to four drives
- Compatible with most general-purpose microprocessors
- Single phase 8 MHz clock
- 5 V Only
- 40-Pin Dual-In-Line (DIP) package, 44-Pin plastic chip carrier (PLCC) package.

GENERAL DESCRIPTION

The Z765A is an LSI Floppy Disk Controller (FDC) chip which contains the circuitry and control functions for interfacing a processor to four floppy-disk drives. It supports IBM System 3740 Single Density format (FM) and IBM System 34 Double Density format (MFM) including double-sided recording. The Z765A provides control signals which simplify the design of an external phase locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy-disk interface. (Figure 1).

Handshaking signals make DMA operation easily incorporated with the aid of an external DMA Controller chip, such as the Z80 DMA. The FDC operates in either the DMA or non-DMA mode. In the non-DMA mode the FDC generates interrupts to the processor every time a data byte is to be transferred. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the FDC and DMA controllers.

The Z765A executes 15 commands; each command requires multiple 8 -bit bytes to fully specify the operation which the processor wishes the FDC to perform. The commands are:

- READ DATA
- WRITE DATA

■ WRITE DELETED DATA

- READ DELETED DATA
- READ TRACK
- READID
- FORMAT TRACK
- SCAN EQUAL
- SCAN HIGH OR EQUAL
- SCAN LOW OR EQUAL
- SEEK
- RECALIBRATE
- SENSE INTERRUPT STATUS
- SPECIFY
- SENSE DRIVE STATUS

Figure 1. Z765A FDC Block Diagram

Figure 3a. Pin Assignments

Figure 2. Pin Functions

Figure 3b. Pin Assignments

PIN DESCRIPTIONS (Figures 2 and 3)

CLK. Clock (input). Single phase 8 MHz square wave clock.
$\overline{\mathbf{C S}}$. Chip Select (input). IC selected when 0 (Low), allowing $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ to be enabled.
D_{0}-D7. Data Bus. Bidirectional 8-bit Data Bus. Disabled when $\overline{C S}=1$.
DACK. DMA Acknowledge (input). DMA cycle is active when 0 , and controller is performing DMA transfer.
DRQ. Data DMA Request (output). DMA Request is being made by $F D C$ when $D R Q=1$.
D/S․ Data/Status Register Select (input). Selects Data Register $(D / \bar{S}=1)$ or Status Register $(D / \bar{S}=0)$ contents of the FDC to be sent to Data Bus. Disabled when $\overline{C S}=1$.
FR/STP. Fault Reset/Step (output). Resets fault FF in FDD in Read/Write mode, contains step pulses to move head to another cylinder in Seek mode.
$\mathbf{F L T}^{\mathbf{T}} \mathbf{T R}_{\mathbf{0}}$. Faul//Track 0 (input). Senses FDD fault condition in Read/Write mode and Track 0 condition in Seek mode.

HD. Head Select (output). Head 1 selected when 1 (High); Head 0 selected when 0 (Low).
HDL. Head Load (output). Command which causes read/write head in FDD to contact diskette.
IDX. Index (input). Indicates the beginning of a disk track.
INT. Interrupt (output). Interrupt Request generated by FDC.
LCT/DIR. Low Current/Direction (output). Lowers Write current on inner tracks in Read/Write mode; determines direction head will step in Seek mode. A fault reset pulse is issued at the beginning of each Read or Write command prior to the occurrence of the Head Load signal.
MFM. MFM Mode (output). MFM mode when 1; FM mode when 0.
$\mathbf{P S}_{\mathbf{1}}, \mathbf{P S}_{\mathbf{0}}$. Precompensation (preshift) (output). Write precompensation status during MFM mode. Determines early, late, and normal times.
$\overline{\mathrm{RD}}$. Read (input). When 0, control signal for transfer of data from FDC to Data Bus. Disabled when $\overline{C S}=1$.
RDD. Read Data (input). Read data from FDD, containing clock and data bits.
RDW. Read Data Window (input). Generated by PLL, and used to sample data from FDD.
RDY. Ready (input). Indicates FDD is ready to send or receive data.
RESET. Reset (input). Places FDC in idle state. Resets output lines to FDD to 0 . Does not affect SRT, HUT or HLT in Specify command. If RDY pin is held High during Reset, FDC generates an interrupt within 1.024 msec . To clear this interrupt use Sense Interrupt Status command.
$\overline{\text { RW} / S E E K . ~ R e a d ~ W r i t e / S e e k ~(o u t p u t) . ~ W h e n ~} 1$ (High) Seek mode selected; when 0 (Low) Read/Write mode selected.

TC. Terminal Count (input). Indicates the termination of a DMA transfer when 1 (High). It terminates data transfer during Read/Write/Scan command in DMA or Interrupt mode.
$\mathbf{U S}_{\mathbf{1}}, \mathbf{U S}_{\mathbf{0}}$. Unit Select (output). FDD Unit selected.
VCO/SYNC. (output). Inhibits VCO in PLL when 0 (Low); enables VCO when 1.
WCK. Write Clock (input). Write data rate to FDD. FM $=500$ $\mathrm{KHz}, \mathrm{MFM}=1 \mathrm{MHz}$ with a pulse width of 250 ns for both FM and MFM.
WDA. Write Data (output). Serial clock and data bits to FDD.
WE. Write Enable (output). Enables write data into FDD.
WP/TS. Write Protect/Two Side (input). Senses Write Protect status in Read/Write mode and Two-Side Media in Seek mode.
$\overline{\text { WR }}$. Write (input). When 0 , control signal for transfer of data to FDC via Data Bus. Disabled when $\overline{\mathrm{CS}}=1$.

Table 1. Internal Registers

The bits in the Main Status Register are defined as follows:

Bit			Description
No.	Name	Symbol	
D_{0}	FDD 0 Busy	$\mathrm{D}_{0} \mathrm{~B}$	FDD number 0 is in the Seek mode. If any bit is set, FDC will not accept read or write command.
D_{1}	FDD 1 Busy	$D_{1} B$	FDD number 1 is in the Seek mode. If any bit is set, FDC will not accept read or write command.
D_{2}	FDD 2 Busy	$D_{2} B$	FDD number 2 is in the Seek mode. If any bit is set, FDC will not accept read or write command.
D_{3}	FDD 3 Busy	$\mathrm{D}_{3} \mathrm{~B}$	FDD number 3 is in the Seek mode. If any bit is set, FDC will not accept read or write command.
D_{4}	FDC Busy	CB	A read or write command is in process. FDC will not accept any other command.
D_{5}	Execution Mode	EXM	This bit is set only during execution phase in non-DMA mode. When D_{5} goes low, execution phase has ended and result phase has started. It operates only during non-DMA mode of operation.
D_{6}	Data Input/Output	DIO	Indicates direction of data transfer between FDC and Data Register. If DIO = 1, then transfer is from Data Register to the processor. If $\mathrm{DIO}=0$, transfer is from the processor to Data Register.
D_{7}	Request for Master	RQM	Indicates Data Register is ready to send or receive data to or from the processor. Both bits DIO and RQM should be used to perform the handshaking functions of "ready" and "direction" to the processor.

INTERNAL REGISTERS

The Z765A contains two registers which may be accessed by the main system processor: a Status register and a Data register. The 8 -bit Main Status register (Table 1) contains the FDC status information and may be accessed at any time. The 8 -bit Data register is several registers in a stack; one register at a time is presented to the data bus. The Data register stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data register in order to program or obtain the results after a particular command. Only the Status register may be read and used to facilitate the transfer of data between the processor and Z765A.

The relationship between the Status/Data registers and the signals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\mathrm{D} / \overline{\mathrm{S}}$ is shown in Table 2.

The Data Input/Output (DIO) and Request for Master (RQM) bits in the Status register indicate when data is ready and the direction transfer on the data bus (Figure 4). The maximum time between the last $\overline{R D}$ or $\overline{W R}$ during a command or result
phase and the set or reset DIO and RQM is $12 \mu \mathrm{~s}$; every time the Main Status register is read the CPU should wait $12 \mu \mathrm{~s}$. The maximum time from the trailing edge of the last $\overline{R D}$ in the result phase to when D_{4} (FDC busy) goes Low is $12 \mu \mathrm{~s}$.

Table 2. Relationships Between Status/Data Registers and $\overline{R D}, \overline{W R}$, and D / \bar{S}

$\mathbf{D} / \overline{\mathbf{S}}$	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	Function
0	0	1	Read Main Status Register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from Data Register
1	1	0	Write into Data Register

STATUS REGISTER IDENTIFICATION

	Bit		
		Symbol	

STATUS REGISTER IDENTIFICATION (Continued)

Bit			Description
No.	Name	Symbol	
Status Register 1 (Continued)			
D_{1}	Not Writeable	NW	During execution of WRITE DATA, WRITE DELETED DATA or Format A cylinder command, if the FDC detects a write protect signal from the FDD, then this flag is set.
D_{0}	Missing Address Mark	MA	If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.
			If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in data field) of Status register 2 is set.
			Status Register 2
D_{7}			Not used. This bit is always 0 (Low).
D_{6}	Control Mark	CM	During execution of the READ DATA or SCAN command, if the FDC encounters a sector which contains a Deleted Data Address Mark, this flag is set.
D_{5}	Data Error in Data Field	DD	If the FDC detects a CRC error in the data field then this flag is set.
D_{4}	Wrong Cylinder	WC	This bit is related to the ND bit, and when the contents of Cylinder (C) on the medium is different from that stored in IDR, this flag is set.
D_{3}	Scan Equal Hit	SH	During execution of the SCAN command, if the condition of "equal" is satisfied, this flag is set.
D_{2}	Scan Not Satisfied	SN	During execution of the SCAN command, if the FDC cannot find a sector on the cylinder which meets the condition, then this flag is set.
D_{1}	Bad Cylinder	BC	This bit is related to the ND bit, and when the contents of C on the medium is different from that stored in the IDR and the contents of C is FF_{H}, then this flag is set.
D_{0}	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.
			Status Register 3
D_{7}	Fault	FT	This bit is used to indicate the status of the Fault signal from the FDD.
D_{6}	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
D_{5}	Ready	RY	This bit is used to indicate the status of the Ready signal from the FDD.
D_{4}	Track 0	TO	This bit is used to indicate the status of the Track 0 signal from the FDD.
D_{3}	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
D_{2}	Head Address	HD	This bit is used to indicate the status of the Side Select signal to the FDD.
D_{1}	Unit Select 1	U^{\prime}	This bit is used to indicate the status of the Unt Select 1 signal to the FDD.
D_{0}	Unit Select 0	US_{0}	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

Figure 4. Data Transfer

COMMAND SEQUENCE

The Z765A is capable of performing 15 different commands. Each command is initiated by a multibyte transfer from the processor; the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the Z765A and the processor, each command consists of three phases:

Command Phase. The FDC receives all information required to perform a particular operation form the processor.

Execution Phase. The FDC performs the operation it was instructed to do.

Result Phase. After completion of the operation, status and other housekeeping information are made available to the processor.

The Instruction set shows the required preset parameters and results for each command. Most commands require 9 command bytes and return 7 bytes during the result phase. The W to the left of each byte indicates a command phase byte to be written; an R indicates a result byte.

PROCESSOR INTERFACE

During Command or Result phases the Main Status register must be read by the processor before each byte of information is written into, or read from, the Data register. Then the CPU should wait for 12μ s before reading the Main Status register. Bits D_{6} and D_{7} in the Main Status register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the Z765A. Many of the commands require multiple bytes and, as a result, the Main Status register must be read prior to each byte transfer to the 2765 A. During the Result phase, D_{6} and D_{7} in the Main Status register must both be 1's before reading each byte from the Data Register. Reading the Main Status register before each byte transfer to the Z765A is required only in the Command and Result phases, not during the Execution phase.

If the 2765 A is in the non-DMA mode and reading data from FDD, then the receipt of each data byte is indicated by an interrupt signal on pin 18(INT $=1$). The generation of a Read signal ($\overline{\mathrm{RD}}=0$) or Write signal $(\overline{\mathrm{WR}}=0)$ will clear the interrupt and output the data onto the data bus. If the processor cannot handle interrupts fast enough (every $13 \mu \mathrm{~s}$ for the MFM mode and 27μ s for the FM mode), then it may poll the Main Status register and bit D_{7} (RQM) functions as the interrupt signal. If a Write command is in process, the $\overline{W R}$ signal negates the reset to the interrupt signal.

In the non-DMA mode it is necessary to examine the Main Status register to determine the cause of the interrupt, since it could be a data interrupt or a command termination interrupt, either normal or abnormal. If the Z765A is in the

COMMAND SYMBOL DESCRIPTION

Symbol	Name	
D/S	Data/Status Select	D/S controls selection of Main Status register (D/S $=0)$ or Data register (D/S $=1)$
C	Cylinder Number	C stands for the current/selected cylinder (track) numbers 0 through 76 of the medium.
D	Data	D stands for the data pattern which is going to be written into a sector.
$D_{7}-D_{0}$	Data Bus	8-bit Data Bus, where D_{7} stands for a most significant bit, and D_{0} stands for a least significant bit.
DTL	Data Length	When N is defined as 00, DTL stands for the data length which users are going to read out or write into the sector.
EOT	End of Track	EOT stands for the final sector number on a cylinder. During Read or Write operations,
	Gap Length	FDC will stop data transfer after a sector number equal to EOT.

INSTRUCTION SET1, 2

[^13]INSTRUCTION SET1, 2 (Continued)

Phase	R/W	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	Remarks
Write Data										
Command	W	MT	MF	0	0	0	1	0	1	Command Codes
	W	X	X	X	X	X	HD	US ${ }_{1}$	USo	
	W	\qquad Sector IC information prior to command execution. The 4 bytes are commanded against header on Floppy Disk.								Sector IC information prior to command execution. The 4 bytes are commanded against header on Floppy Disk.
	W									
	W									
	W									
	w									
	W									
	W									
Execution										Data transfer between the main system and FDD
Result	R									Status information after command execution
	R									
	R									Sector ID information after command execution.
	R									
	R									
	R									

Write Deleted Data										
Command	W	MT	MF	0	0	1	0	0	1	Command Codes
	W	X	X	X	X	X	HD	US ${ }_{1}$	US 0	
	W									Sector ID information prior to
	W									command execution. The 4 bytes
	W									are commanded against header
	W									on Floppy disk.
	W									
	W				-					
	W									
Execution										Data transfer between the FDD and main system
Result	R									Status information after command
	R									execution
	R									
	R									Sector ID information after
	R									command execution
	R									
	R									

[^14]INSTRUCTION SET1, 2 (Continued)

NOTES: 1. Symbols used in this table are described at the end of this section.
2. D / \bar{S} should equal binary 1 for all operations.
3. $X=$ Don't care, usually made to equal binary 0 .

INSTRUCTION SET1, 2 (Continued)

Phase	R/W	Data Bus								Remarks
		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
Format A Track										
Command	W	0	MF	0	0	1	1	0	1	Command Codes
	W	X	X	X	X	X	HD	US ${ }_{1}$	USo	
	W									Bytes Sector
	W				-					Sectors/Track
	W				-	-				Gap 3
	W									Filler byte
Execution										FDC formats an entire track.
Result	R									Status information after command execution
	R									
	R					-				
	R									In this case, the ID information has no meaning.
	R									
	R					-				
Scan Equal										
Command	W	MT	MF	SK	1	0	0	0	1	Command Codes
	W	X	X	X	X	X	HD	US ${ }_{1}$	USo	
	W									Sector ID information prior to command execution
	W									
	W									
	W					-				
	W					-				
	W									
	W									
Execution										Data compared between the FDD and the main system.
Result	R									Status information after command execution
	R					-				
	R									
	R									Sector ID information after command execution
	R									
	R									
	R									

NOTES: 1. Symbols used in this table are described at the end of this section.
2. D / \bar{S} should equal binary 1 for all operations.
3. $X=$ Don't care, usually made to equal binary 0 .

INSTRUCTION SET1, 2 (Continued)

Phase	R/W	Data Bus								Remarks
		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
Scan Low or Equal										
Command	W	MT	MF	SK	1	1	0	0	1	Command Codes
	W	X	X	X	X	X	HD	US ${ }_{1}$	US ${ }_{0}$	
	w									Sector ID information prior to command execution
	W									
	W									
	W									
	W					-				
	w					-				
	w									
Execution										Data compared between the FDD and main system
Result	R				-					Status information after command execution
	R									
	R									
	R									Sector ID information after command execution
	R									
	R					-				
	R					-				
Scan High or Equal										
Command	W	MT	MF	SK		1	1	0	1	Command Codes
	W	X	X	X	X	X	HD	US 1	US 0	
	W									Sector ID information prior to command execution.
	W									
	W									
	W									
	W									
	W									
	W									
Execution										Data compared between the FDD and main system.
Result	R									Status information after command execution Sector ID information after command execution.
	R					-				
	R									
	R									
	R									
	R									
	R					-				
					Recalibrate					
Command	W	0	0	0	0	0	1	1	1	Command Codes
	W	X	X	X	X	X	0	US ${ }_{1}$	US 0	
Execution										Head retracted to Track 0

NOTES: 1. Symbols used in this table are described at the end of this section.
2. D / \bar{S} should equal binary 1 for all operations.
3. $X=$ Don't care, usually made to equal binary 0 .

INSTRUCTION SET1, 2 (Continued)

Phase	R/W	Data Bus								Remarks	
		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		
Sense Interrupt Status											
Command	W	0	0	0	0	1	0	0	0	Command Codes	
Result	R				-					Status information about the FDC at the end of seek operation	
	R					-					
Specify											
Command	W	0	0	0	0	0	0	1		Command Codes	
	W								HUT -		
	W	\longrightarrow HLT \longrightarrow ND									
Sense Drive Status											
Command	W	0	0	0	0	0	1	0	0		Command Codes
	W	X	X	X	X	X	HD	US ${ }_{1}$	USo		
Result	R	T3								Status information about FDD	
Seek											
Command	W	0	0	0	0	1	1	1	1	Command Codes	
	W	X	\times	X	X		HD	$U S_{1}$	$U S_{0}$		
	W										
Execution		,								Head is positioned over proper cylinder on diskette.	
Invalid											
Command	W				Inval	odes				Invalid Command Codes (NoOp-FDC goes into Standby state.)	
Result	R				-	-			-	STO $=80{ }_{(H)}$	

NOTES: 1. Symbols used in this table are described at the end of this section.
2. D / \bar{S} should equal binary 1 for all operations.
3. $X=$ Don't care, usually made to equal binary 0 .

DMA mode, no interrupts are generated during the Execution phase. The Z765A generates DRQs (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a DACK (DMA Acknowledge) $=0$ and an $\overline{\mathrm{RD}}$ (Read signal) $=0$. When the DMA Acknowledge signal goes Low ($\overline{\mathrm{DACK}}=0$), then the DMA request is cleared ($\mathrm{DRQ}=0$). If a Write command has been issued, a $\overline{W R}$ signal appears instead of $\overline{\mathrm{RD}}$. After the Execution phase has been completed [Terminal Count (TC) has occurred] or the last sector on the cylinder (EOT) read/written, then an interrupt occurs (INT $=1$) which signifies the beginning of the Result phase. When the first byte of data is read during the Result phase, the interrupt is automatically cleared ($\mathrm{INT}=0$).
The $\overline{R D}$ or $\overline{W R}$ signals should be asserted while $\overline{D A C K}$ is true. The $\overline{\mathrm{CS}}$ signal is used in conjunction with $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ as a gating function during programmed I/O operations. $\overline{C S}$ has no effect during DMA operations. If the non-DMA mode is chosen, the $\overline{\mathrm{DACK}}$ signal should be pulled up to V_{CC}.
During the Result phase all bytes shown in the Command Table must be read. For example, the Read Data command
has seven bytes of data in the Result phase; all seven bytes must be read to successfully complete the Read Data command and allow the Z765A to accept a new command.

The Z765A contains five Status registers. The Main Status register can be read at any time by the processor. The other four Status registers (ST0, ST1, ST2, and ST3) are available only during the Result phase and can be read only after completing a command. The particular command that has been executed determines how many of the Status registers are read.

The bytes of data which are sent to the Z765A to form the Command phase and are read out of the Z765A in the Result phase must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result phases is allowed. After the last byte of data in the Command phase is sent to the Z765A, the Execution phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result phase, the command is automatically ended and the Z765A is ready for a new command.

POLLING FEATURE OF THE Z765A

After Reset is sent to the Z765A, the Unit Select lines US 0 and US_{1} automatically go into a polling mode (Figure 5). Between commands (and between step pulses in the Seek command) the Z765A polls all four FDDs looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing), then the Z765A generates an interrupt. When Status register 0 (STO) is read (after Sense Interrupt Status is
issued), Not Ready (NR) is indicated. The polling of the Ready line by the Z765A occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands. When used with a 4 MHz clock for interfacing to minifloppies, the polling rate is 2.048 ms.

Figure 5. Polling Features

COMMANDS

Read Data

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command is issued, the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify command), and begins reading ID Address Marks and ID fields. When the current sector number (R) stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC, via the data bus, outputs data byte-to-byte from the data field to the main system.
After completion of the read operation from the current sector, the Sector Number is incremented by one, and the
data from the next sector is read and output on the data bus. This continuous read function is called a Multi-Sector Read Operation. The Read Data command can be terminated by the receipt of a TC signal which should be issued when the DACK for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but continues to read data from the current sector, checks Cyclic Redundancy Count (CRC), and at the end of the sector, terminates the Read Data command. The amount of data which can be handled with a single command to the FDC depends upon multitrack (MT), MFM/FM (MF), and Number of Bytes/Sector (N). Table 3 shows the Transfer Capacity.

Table 3. Transfer Capacity

Multi-Track MT	MFM/FM MF	Bytes/Sector N	Maximum Transfer Capacity (Bytes/Sector) (Number of Sectors)	Final Sector Read from Diskettes
0	0	00	$(128)(26)=3,328$	26 at Side 0
0	1	01	$(256)(26)=6,656$	or 26 at Side 1
1	0	00	$(128)(52)=6,656$	26 at Side 1
1	1	01	$(256)(52)=13,312$	
0	0	01	$(256)(15)=3,840$	15 at Side 0
0	1	02	$(512)(15)=7,680$	or 15 at Side 1
1	0	01	$(256)(30)=7,680$	15 at Side 1
1	1	02	$(512)(30)=15,360$	
0	0	02	$(512)(8)=4,096$	8 at Side 0
0	1	03	$(1024)(8)=8,192$	or 8 at Side 1
1	0	02	$(512)(16)=8,192$	8 at Side 1
1	1	03	$(1024)(16)=16,384$	

MT allows the FDC to read data from both sides of the diskette. For a particular cylinder, data is transferred starting at Sector 1 , Side 0 and completing at the last sector, Sector L, Side 1. This function pertains to only one cylinder (the same track) on each side of the diskette.

When $N=0$, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL in the Sector is not sent to the Data Bus. The FDC internally reads the complete sector performing the CRC check and, depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When N is non-zero, then DTL has no meaning and should be set to FF_{H}.
At the completion of the Read Data Command the head is unloaded, after the Head Unload Time Interval specified in the Specify Command has elapsed. If the processor issues another command before the head unloads, there is no head settling time between subsequent reads. This time saved is particularly valuable when a diskette is copied.

If the FDC twice detects the index hole without finding the right sector (R), then the FDC sets Status register 1's No Data (ND) flag to 1 , and terminates the Read Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

After reading the ID and Data fields in each sector, the FDC checks the CRC bytes. If a read error is detected indicating incorrect CRC in the ID field, the FDC sets Status register 1's Data Error (DE) flag to 1, and if a CRC error occurs in the Data Field, the FDC also sets Status register 2's Data Error in Data Field (DD) flag to 1, and terminates the Read Data command. (Status register 0 , bit $7=0$, bit $6=1$.)

If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit D in the first Command Word $=0$, then the FDC sets Status register 2's Control Mark (CM) flag to 1 , and after reading all the data in the sector, terminates the Read Data command. If $\mathrm{SK}=1$, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector. When SK $=1$, the CRC bits in the deleted data field are not checked.

During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every 27μ s in the FM Mode, and every 13μ s in the MFM Mode, or the FDC sets Status register 1's Overrun (OR) flag to 1, and terminates the Read Data command.

If the processor terminates a read or write operation in the FDC, then the ID information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 4 shows the values for C, H, R, and N when the processor terminates the command.

Table 4. C, H, R, and N Values When Processor Terminates Commands

MT	HD	Final Sector Transferred to Processor	ID Information at Result Phase			
			C	H	R	N
0	0	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	0	Equal to EOT	$C+1$	NC	$\mathrm{R}=01$	NC
	1	Less than EOT	NC	NC	$R+1$	NC
	1	Equal to EOT	$C+1$	NC	$\mathrm{R}=01$	NC
1	0	Less than EOT	NC	NC	$R+1$	NC
	0	Equal to EOT	NC	LSB	$\mathrm{R}=01$	NC
	1	Less than EOT	NC	NC	$R+1$	NC
	1	Equal to EOT	$C+1$	LSB	$\mathrm{R}=01$	NC

NOTES: NC (No Change): The same value as the one at the beginning of command execution.
LSB (Least Significant Bit): The least significant bit of H is complemented.

Write Data

A set of nine (9) bytes is required to set the FDC in the Write Data mode. After the Write Data command is issued, the FDC loads the head, waits the specified head setting time, and begins reading ID fields. When all four bytes ($\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N) loaded during the command match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-by-byte via the data bus and outputs it to the FDD.

After writing data into the current sector, the sector number stored in the R register is incremented by one, and new data is written into the next data field. The FDC continues this Multisector Write Operation until a Terminal Count signal is issued. If a Terminal Count signal is sent to the FDC, it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written, the remainder of the data field is filled with zeros.

The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (CRC error) in one of the ID fields, it sets Status register 1's DE flag to 1, and terminates the Write Data command. (Status register 0, bit $7=0$, bit $6=1$.)
The Write command operates in the same manner as the Read command for the following items:

- Transfer capacity
- End of cylinder (EN) flag
- No data (ND) flag
- Head unload time interval

■ ID information when the proceșsor terminates command

- Definition of DTL when $N=0$ and when $N \neq 0$

Refer to the Read Data command for details.
In the Write Data mode, data transfers between the processor and FDC via the data bus, must occur every $27 \mu \mathrm{~s}$ in the FM mode and every 13μ s in the MFM mode. If the time interval between data transfers is longer, then the FDC sets Status register 1's Overrun (OR) flag to 1, and terminates the Write Data command. (Status register 0, bit $7=0$, bit $6=1$.)

Write Deleted Data

This command is the same as the Write Data command except a Deleted Data Address mark, instead of the normal Data Address mark, is written at the beginning of the data field.

Read Deleted Data

This command is the same as the Read Data command except that when the FDC detects a Data Address mark at the beginning of a data field and $\mathrm{SK}=0$, the FDC reads all the data in the sector and sets Status register 2's CM flag to 1 , and terminates the command. If $\mathrm{SK}=1$, then the FDC skips the sector with the Data Address mark and reads the next sector.

Read Track

This command is similar to the Read Data command except that this is a continuous Read operation where the entire data field from each of the sectors is read. Immediately after
sensing the index hole, the FDC starts reading all data fields on the track as continuous blocks of data. If the FDC finds an error in the ID or Data CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR and, if there is no comparison, sets Status register 1's ND flag to 1. Multitrack or skip operations are not allowed with this command.

This command terminates when the number of sectors read is equal to EOT. If the FDC does not find an ID Address mark on the diskette after it senses the index hole for the second time, it sets Status register 1's Missing Address mark (MA) flag to 1 and terminates the command. (Status Register 0, bit $7=0$, bit $6=1$.)

Read ID

The Read ID command gives the present position of the recording head. The FDC stores the values from the first ID field it can read. If no proper ID Address mark is found on the diskette before the index hole is encountered for the second time, Status register 1's MA flag is set to 1 ; if no data is found, Status register 1's No Data (ND) flag is set to 1. The command is then terminated with STO bit $7=0$ and bit $6=1$. During this command, data transfer between FDC and the CPU occurs only during the result phase.

Format Track

The Format command allows an entire track to be formatted. After the index hole is detected, data is written on the diskette; Gaps, Address marks, ID fields and data fields, all per the IBM 3740 Single Density format or IBM System 34 Double Density format, are recorded. The processor, during the command phase, supplies values i.e., Number of bytes/sector (N), Sectors Cylinder (SC), Gap Length (GPL), and Data Pattern (D) which determine the particular format to be written.

The data field is filled with the byte of data stored in D. The ID field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for Cylinder number (C), Head number (H), Sector number (R), and Number of bytes/sector (N). This allows diskette formatting with nonsequential sector numbers.

The processor must send new values for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N to the Z765A for each sector on the track. If FDC is set for the DMA mode, it issues four DMA requests per sector. If it is set for the Interrupt mode, it issues four interrupts per sector and the processor must supply $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N loads for each sector. The contents of the R register are incremented by 1 after each sector is formatted; thus, the R register contains a value of R when it is read during the Result phase. This incrementing and formatting continues for the whole track until the FDC detects the index hole for the second time, whereupon it terminates the command.

If the Fault signal is received from the FDD at the end of a Write operation, the FDC sets Status register O's EC flag to 1
and terminates the command after setting Status register 0, bit 7 to 0 and bit 6 to 1 . Also the loss of a Ready signal at the beginning of a command execution phase causes Status register 0 , bit 7 and 6 to be set to 0 and 1 respectively.
Table 5 shows the sector size relationship between N, SC, and GPL.

Table 5. Functional Description of Commands

Format	Sector Size	N	SC	GPL ${ }^{1}$	GPL², ${ }^{\text {a }}$
8" Standard Floppy					
FM Mode	128 bytes sector	00	1A	07	1B
	256	01	OF	OE	2 A
	512	02	08	1B	3A
	1024	03	04	47	8A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM Mode ${ }^{4}$	256	01	1A	OE	36
	512	02	OF	1B	54
	1024	03	08	35	74
	2048	04	04	99	FF
	4096	05	02	C8	FF
	8192	06	01	C8	FF
51/4" Minifloppy					
FM Mode	128 bytes/sector	00	12	07	09
	128	00	10	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	C8	FF
	2048	04	01	C8	FF
MFM Mode ${ }^{4}$	256	01	12	OA	OC
	256	01	10	20	32
	512	02	08	2A	50
	1024	03	04	80	F0
	2048	04	02	C8	FF
	4096	05	01	C8	FF

NOTES: 1. Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sections.
2. Suggested values of GPL in format command.
3. All values except sector size are hexidecimal.
4. In MFM mode FDC cannot perform a Read/Write format operation with 128 bytes sector. $(\mathrm{N}=00)$

Scan Commands

The Scan commands allow comparison of data read from the diskette and data supplied from the main system. The FDC compares the data on a byte-by-byte basis and looks for a sector of data which meets the conditions of $D_{F D D}=$ $D_{\text {Processor }} D_{\text {FDD }} \leqslant D_{\text {Processor }}$ or $D_{F D D} \geqslant D_{\text {Processor }}$ The hexadecimal byte of FF from memory or from FDD can be used as a mask byte because it always meets the condition of the comparison. One's complement arithmetic is used for comparison ($\mathrm{FF}=$ largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented ($R+S T P \rightarrow$ R) and the scan operation continues until one of the following conditions occur: the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count (TC) signal is received.

If the conditions for scan are met, the FDC sets the Status register 2's Scan Hit (SH) flag to 1 and terminates the Scan command. If the conditions for scan are not met between the starting sector number (R) and the last sector on the cylinder (EOT), then the FDC sets Status register 2's Scan Not Satisfied (SN) flag to 1, and terminates the Scan command. During the scan operation, the receipt of a signal from the processor or DMA controller causes the FDC to complete the comparison of the particular byte in process and then to terminate the command. Table 6 shows the status of bits SH and SN under various conditions of Scan.

Table 6.

Command	Status Register 2		Comments
	Bit $2=S N$	Bit $3=S H$	
Scan Equal	0	1	$\mathrm{D}_{\text {FDD }}=\mathrm{DProcessor}$
	1	0	$\mathrm{DFDD} \neq$ D $_{\text {Processor }}$
Scan Low or Equal	0	1	DFDD $=$ DProcessor
	0	0	$\mathrm{D}_{\text {FDD }}<\mathrm{DProcessor}$
	1	0	DFDD $>$ DProcessor
Scan High or Equal	0	1	$\mathrm{D}_{\text {FDD }}=$ DProcessor
	0	0	$\mathrm{D}_{\text {FDD }}>$ D $_{\text {Processor }}$
	1	0	$\mathrm{DFDD}^{\text {< }}$ D $\mathrm{P}_{\text {rocessor }}$

If the FDC encounters a Deleted Data Address mark on one of the sectors and $\mathrm{SK}=0$, then it regards the sector as the last sector on the cylinder, sets Status register 2's Control Mark (CM) flag to 1 and terminates the command. If $\mathrm{SK}=1$, the FDC skips the sector with the Deleted Address mark, reads the next sector, and sets Status register 2's Control Mark (CM) flag to 1 to show that a Deleted sector has been encountered.
When either the Step (STP) (contiguous sectors = 01 or alternate sectors $=02$) sectors are read or the Multitrack
(MT) is programmed, the last sector on the track must be read. For example, if STP $=02, M T=0$, the sectors are numbered sequentially 1 through 26 and the Scan command is started at sector 21, the following happens. Sectors 21,23 , and 25 are read, then the next sector, 26 , is skipped and the index hole is encountered before the EOT value of 26 can be read resulting in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20 , then the Scan command would be completed in a normal manner.
During the Scan command, data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having Status register 1's Overrun (OR) flag set, it is necessary to have the data available in less than $27 \mu \mathrm{~s}$ (FM mode) or $13 \mu \mathrm{~s}$ (MFM mode). If an Overrun occurs, the FDC ends the command with Status register 0 , bit 7 cleared to 0 and bit 6 set to 1 .

Seek

The Read/Write head within the FDD is moved from cylinder to cylinder under control of the Seek command. The FDC has four independent Present Cylinder registers for each drive which are cleared only after the Recalibrate command. The FDC compares the Present Cylinder Number (PCN) which is the current head position with the New Cylinder Number (NCN), and if there is a difference, performs the following operations:
PCN < NCN: Direction signal to FDD set to 1 , and Step Pulses are issued. (Step In)
PCN $>$ NCN: Direction signal to FDD cleared to 0 , and Step Pulses are issued. (Step Out)
The rate at which Step pulses are issued is controlled by Stepping Rate Time (SRT) in the Specify command. After each Step pulse is issued NCN is compared against PCN, and when NCN = PCN, Status register O's Seek End (SE) flag is set to 1 , and the command is terminated. At this point FDC interrupt goes High. Bits $D_{0}-D_{3}$ in the Main Status register are set during the Seek operation and are cleared by the Sense Interrupt Status command.
During the command phase of the Seek operation the FDC is in the FDC Busy state, but during the execution phase it is in the Nonbusy state. While the FDC is in the Nonbusy state, another Seek command may be issued, and in this manner parallel Seek operations may be done on up to four drives at once. No other command can be issued for as long as the FDC is in the process of sending step pulses to any drive.
If an FDD is in a Not Ready state at the beginning of the command execution phase or during the Seek operation, then Status register 0's Not Ready (NR) flag is set to 1, and the command is terminated after bit 7 is set to 1 and bit 6 to 0 .
If writing three bytes of Seek command exceeds $150 \mu \mathrm{~s}$, the timing between the first two step pulses may be 1 ms shorter than that set in the Specify command.

Recalibrate

The function of this command is to retract the Read/Write head within the FDD to the Track 0 position. The FDC clears the contents of the PCN counter and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is Low, the Direction signal remains 0 and step pulses are issued. When the Track 0 signal goes High, the Status register O's SE flag is set to 1 and the command is terminated. If the Track 0 signal is still Low after 77 step pulses have been issued, the FDC sets Status register 0's SE and Equipment Check (EC) flags to 1 s and terminates the command after Status register 0 , bit 7 is cleared to 0 and bit 6 is set to 1 .

The ability to do overlap Recalibrate commands to multiple FDDs and the loss of the Ready signal, as described in the Seek command, also applies to the Recalibrate command. If the Diskette has more than 77 tracks, the Recalibrate command should be issued twice, in order to position the Read/Write head to Track 0.

Sense Interrupt Status

An interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result phase of command:

- Read Data
\square Read Track
- Write Data
\square Read ID
- Write Deleted Data
- Format Track
\square Read Deleted Data
- Scan

2. Ready Line of FDD changes state
3. End of Seek or Recalibrate command

4. During Execution phase in the non-DMA mode

Interrupts caused by reasons 1 and 4 occur during normal command operations and are easily discernible by the processor. During an execution phase in non-DMA mode, D_{5} in the Main Status Register is High. Upon entering the Result phase this bit is cleared. Reasons 1 and 4 do not require Sense Interrupt Status commands. The interrupt is cleared by Reading/Writing data to the FDC. Interrupts caused by reasons 2 and 3 may be uniquely identified with the aid of the Sense Interrupt Status command which resets the Interrupt signal and, via bits 5, 6, and 7 of Status register 0 , identifies the cause of the interrupt (Table 7).

Table 7. Interrupt Identification

Seek End Bit 5	Interrupt Code		
	Bit 6	Bit 7	Cause
0	1	1	Ready Line changed state, either polarity
1	0	0	Normal Termination of Seek or Recalibrate command
1	1	0	Abnormal Termination of Seek or Recalibrate command

The Sense Interrupt Status command is used in conjunction with the Seek and Recalibrate commands which have no result phase. When the disk has reached the desired head position, the Z765A sets the interrupt line true. The host CPU must then issue a Sense Interrupt Status command to determine the actual cause of the interrupt, which could be Seek End or a change in ready status from one of the drives. Figure 6 is a graphic example.

Specify

The Specify command sets the initial values for each of the three internal timers. The Head Unload Time (HUT) defines the time from the end of the execution phase of one of the Read/Write commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of 16 ms ($01=16 \mathrm{~ms}, 02=32 \mathrm{~ms} . . . \mathrm{OF}_{16}=240 \mathrm{~ms}$). The Step Rate Time (SRT) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of $1 \mathrm{~ms}(F=1 \mathrm{~ms}, E=2 \mathrm{~ms}$, and $D=3 \mathrm{~ms}$). The Head Load Time (HLT) defines the time between the Head Load signal's going High and the start of the Read/Write operation. This timer is programmable from 2 to 254 ms in increments of $2 \mathrm{~ms}(01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=6 \mathrm{~ms} . .7 \mathrm{~F}=$ 254 ms).
The time intervals mentioned are a direct function of the 8 MHz clock; if the clock were reduced to 4 MHz (minifloppy application), all time intervals would be increased by a factor of 2 .
The choice of a DMA or non-DMA operation is made by the Non-DMA (ND) bit. When this bit is High ($N D=1$), the Non-DMA mode is selected; when ND $=0$, the DMA mode is selected.

Sense Drive Status

The processor uses this command to obtain the status of the FDDs. Status register 3 contains the Drive Status information stored internally in FDC registers.

Invalid

If an Invalid command (not defined above) is sent to the FDC, then the FDC terminates the command after Status Register 0 bit 7 is set to 1 and bit 6 to 0 . No interrupt is generated by the Z765A during this condition. Bits 6 and 7 (DIO and RQM) in the Main Status register are both High, indicating to the processor that the Z765A is in the Result phase and the contents of Status register 0 (STO) must be read. When the processor reads Status register 0, it finds an 80_{H} indicating the receipt of an Invalid command.
A Sense Interrupt Status command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC considers the next command as an Invalid command.
This command may be used as a No-Op command to place the FDC in a standby or No Operation state.

Figure 6. Seek, Recalibrate, and Sense Interrupt Status

Figure 7. Data Format, FM Mode

Figure 8. Data Format, MFM Mode

Figure 9. Data Timing Relationships

AC CHARACTERISTICS

$T_{A}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Number	Symbol	Parameter	Min	Typ ${ }^{1}$	Max	Unit	Test Condition
1	TcC	Clock Cycle Time	120	125	500	ns	
				125		ns	$8^{\prime \prime}$ FDD
				250		ns	51/4" FDD
2	TwCh	Clock Width (High)	40			ns	
2a	TwCl	Clock Width (Low)	40			ns	
3	TrC	Clock Rise Time			20	ns	
4	TfC	Clock Fall Time			20	ns	
5	TsAR	DIS $\bar{C}, \overline{C S}, \overline{\mathrm{DACK}}$ to $\overline{\mathrm{RD}} \downarrow$ Setup Time	0			ns	
6	ThRA	$D / \bar{S}, \overline{C S}, \overline{D A C K}$ from $\overline{R D} \uparrow$ Hold Time	0			ns	
7	TwRD	$\overline{\mathrm{RD}}$ Width	250			ns	
8	TdRDf (Do)	$\overline{\mathrm{RD}} \downarrow$ to Data Output Delay			200	ns	$C_{L}=100 \mathrm{pf}$
9	TdRDr (Dz)	$\overline{R D} \uparrow$ to Data Float Delay	20		100	ns	$C_{L}=100 \mathrm{pf}$
10	TsCS(WRf)	Control Signal (D/S, $\overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$) to $\overline{W R} \downarrow$ Setup Time	0			ns	
11	ThCS(WRr)	Control Signal (D/S, $\overline{C S}, \overline{D A C K}$) from $\overline{\mathrm{WR}} \uparrow$ Hold Time	0			ns	
12	TwWR	$\overline{\text { WR Width }}$	250		.	ns	
13	TsD(WRr)	Data to $\overline{W R} \uparrow$ Setup Time	150			ns	
14	ThD(WRr)	Data from $\overline{W R} \uparrow$ Hold Time	5			ns	
15	TdRDr(INT)	$\overline{\mathrm{RD}} \uparrow$ to INT Delay Time			500	ns	
16	TdWRr(INT)	$\overline{\mathrm{WR}} \uparrow$ to INT Delay Time			500	ns	
17	TcDRQ	DRQ Cycle Time	13			$\mu \mathrm{s}$	
18	TdDRQ(DACK)	$\overline{\text { DACK }} \downarrow$ to DRQ \downarrow Delay			200	ns	
19	TdDACK(DRQ)	DRQ \uparrow to $\overline{\text { DACK }} \downarrow$ Delay	200			ns	$\mathrm{TcC}=125 \mathrm{~ns}$
20	TwDACK	$\overline{\text { DACK Width }}$	2			TCC	
21	TwTC.	TC Width	1			TcC	
22	TwRST	Reset Width	14			TcC	
				4		$\mu \mathrm{s}$	MFM $=051 / 4^{\prime \prime}$
23	TcWCK	WCK Cycle Time		2		$\mu \mathrm{S}$	MFM $=151 / 4^{\prime \prime}$
				2		$\mu \mathrm{S}$	MFM $=08^{\prime \prime}$
				1		$\mu \mathrm{s}$	MFM $=18^{\prime \prime}$
24	TwWCKh	WCK Width (High)	80	250	350	ns	
25	TrWCK	WCK Rise Time			20	ns	
26	TfWCK	WCK Fall Time			20	ns	
27	TdWCKr(PS)	WCK \uparrow to Preshift Delay Time	20		100	ns	
28	TdWCKr(WEr)	WCK \uparrow to WE \uparrow Delay Time	20		100	ns	
29	TaWCKr(WDA)	WCK \uparrow to WDA Delay Time	20		100	ns	
30	TwRDDh	RDD Width (High)	40			ns	
				4		$\mu \mathrm{s}$	MFM $=051 / 4^{\prime \prime}$
31	TWCY	Window Cycle Time		2		$\mu \mathrm{s}$	MFM $=151 / 4^{\prime \prime}$
				2		$\mu \mathrm{s}$	MFM $=08^{\prime \prime}$
				1		$\mu \mathrm{s}$	$M F M=18^{\prime \prime}$
32	TsW(RDDh)	Window to RDD \uparrow Setup Time	15			ns	
	ThW(RDDI)	Window from RDD \downarrow Hold Time					
33	TsUS(RWh)	Unit Select to $\overline{\mathrm{RW}} /$ SEEK \uparrow Setup Time	12			$\mu \mathrm{S}$	
34	TsRWr(DIR)	$\overline{\text { RW/SEEK } \uparrow \text { to LCT/DIR Setup Time }}$	7			$\mu \mathrm{S}$	
35	TsDIR(STEPr)	LCT/DIR to STEP \uparrow Setup Time	1			$\mu \mathrm{S}$	
36	ThUS(STEPI)	Unit Select from STEP \downarrow Hold Time	5			$\mu \mathrm{S}$	

NOTES: 1 . Typical values for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage
2. Under software control, the range is from 1 ms to 16 ms at 8 MHz clock period.

AC CHARACTERISTICS (Continued)
$T_{A}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Number	Symbol	Parameter	Min	Typ ${ }^{1}$	Max	Unit	Test Condition
37	TwSTEPh	STEP Width (High)	6	7	8	$\mu \mathrm{S}$	
38	TcSTEP	STEP Cycle Time	16	Note 2	Note 2	$\mu \mathrm{S}$	
39	TwFRh	FAULT RESET Width (High)	8		10	$\mu \mathrm{S}$	
40	TwWDAh	Write Data (WDA) Width (High)	$\mathrm{T}_{0}-50$			ns	
41	ThUS(SEEKf)	Unit Select from $\overline{\text { RW/SEEK } \downarrow \text { Hold Time }}$	15			$\mu \mathrm{S}$	
42	ThSEEK(DIR)	$\overline{\mathrm{RW}} / \mathrm{SEEK}$ from LCT/DIR Hold Time	30			$\mu \mathrm{S}$	
43	ThDIR(STEPf)	LCT/DIR from STEP \downarrow Hold Time	24			$\mu \mathrm{S}$	
44	TwIDX	INDEX Width (High and Low)	4			TcC	.
45	TdDRQh(RDI)	DRQ \uparrow to $\overline{\mathrm{RD}} \downarrow$ Delay Time	800			ns	
46	TdDRQh(WRI)	DRQ \uparrow to $\overline{W R} \downarrow$ Delay Time	250			ns	
47	TdDRQh(RWh)	DRQ \uparrow to $\overline{\mathrm{RD}} \uparrow$ or $\overline{\mathrm{WR}} \uparrow$ Delay Time			12	$\mu \mathrm{s}$	

NOTES: 1. Typical values for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. Under software control, the range is from 1 ms to 16 ms at 8 MHz clock period.

Processor Read Operation

Processor Write Operation

DMA Operation

FDD Write Operation

	Preshift 0	Preshift 1
Normal	0	0
Late	0	1
Early	1	0

Seek Operation

FLT Reset

INDEX

FDD Read Operation

Terminal Count

RESET

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Operating Temperature	C to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages	-.5 V to +7 V
All Input Voltages .	-3 V to +7 V
Supply Voltage $\mathrm{V}_{\text {CC }}$	-.5 V to +7 V
Power Dissipation	1W

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above these indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

| Symbol | Parameter | Min | Typ* | Max | Unit |
| :--- | :--- | ---: | ---: | ---: | :---: | Test Condition

${ }^{*}$ Typical values for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit
$C_{\text {CLOCK }}$	Clock Input Capacitance	20	pF	All pins except pin under
$\mathrm{C}_{\text {IN }}$	Input Capacitance	10	pF	test tied to AC Ground
COUT $^{\text {Output Capacitance }}$		20	pF	

25380 SCSI Small COMPuTER SYSTEM INTERFACE

FEATURES

- Compatible 5380 pinout
- Low power CMOS

■ Asynchronous interface, supports $1.5 \mathrm{MB} / \mathrm{s}$

- Direct SCSI Bus interface with on-board 48 mA drivers
- Arbitration support
- DMA or programmed I/O data transfers
- Supports Normal or Block Mode DMA
- Memory or I/O Mapped CPU interface
- Supports Target and Initiator roles

GENERAL DESCRIPTION

The Z5380 SCSI (Small Computer System Interface) controller is a 40 -pin DIP or 44 -pin PLCC CMOS device (Figure 1). It is designed to implement the SCSI protocol as defined by the ANSI X3.131-1986 standard, and is fully compatible with the industry standard 5380 . It is capable of operating both as a Target and as an Initiator. Special high-current open-drain outputs enable it to directly interface to, and drive, the SCSI bus. The $Z 5380$ has the necessary interface hook-ups so the system CPU can communicate with it like with any other peripheral device. The CPU can read from, or write to, the SCSI registers which are addressed as standard or memorymapped I/Os.

The Z5380 increases the system performance by minimizing the CPU intervention in DMA operations which the SCSI controls. The CPU is interrupted by the SCSI when it detects a bus condition that requires attention. It also supports arbitration and reselection. The $Z 5380$ has the proper hand-shake signals to support normal and block mode DMA operations with most DMA controllers available (Figure 2).

Note: All Signals with a preceding front slash, " $/ 7$, are active Low, e.g.: B/W (WORD is active Low); /B/W (BYTE is active Low, only); /N//S (NORMAL and SYSTEM are both active Low).

Figure 1. Block Diagram

Figure 2. Logic Symbol

Figure 3. Pin Diagrams

PIN DESCRIPTION

Microprocessor Bus

Figure 3 shows the pins and their respective functions for both the DIP and PLCC.

A2-A0. Address Lines (Input). Address lines are used with /CS, /IOR, or /IOW to address all internal registers.
/CS. Chip Select (Input, Active Low). This signal, in conjunction with /IOR or /IOW, enables the internal register selected by A2-A0, to be read from or written to.
/DACK. DMA Acknowledge (Input, Active Low). /DACK resets $D R Q$ and selects the data register for input or output data transfers. /DACK is used by DMA controller instead of /CS.

DRQ. DMA Request (Output, Active High). DRQ indicates that the data register is ready to be read or written. DRQ is asserted only if DMA mode is set in the Command Register. DRQ is cleared by /DACK.

D7-D0. DataLines(Bidirectional, three-state, Active High). Bidirectional microprocessor data bus lines. DO is the Least Significant Bit of the bus. Data bus lines carry data and commands to and from the SCSI.
/EOP. End of Process (Input, Active Low). /EOP is used to terminate a DMA transfer. If asserted during a DMA cycle, the current byte will be transferred, but no additional bytes will be requested.
/IOR. I/O Read (Input, Active Low). /IOR is used in conjunction with /CS and A2-A0 to read an internal register. It also selects the Input Data Register when used with /DACK.
/IOW. I/O Write (Input, Active Low). /IOW is used in conjunction with /CS and A2-A0 to write an internal register. It also selects the Output Data Register when used with /DACK.

PIN DESCRIPTION (Continued)

IRQ. Interrupt Request (Output, Active High). IRQ alerts a microprocessor of an error condition or an event completion.

READY. Ready (Output, Active High). Ready is used to control the speed of Block Mode DMA transfers. This signal goes active to indicate the chip is ready to send/ receive data and remains Low after a transfer until the last byte is sent or until the DMA Mode bit is reset.
/RESET. Reset (Input, Active Low). /RESET clears all registers. It has no effect upon the SCSI /RST signal.

SCSI Bus

The following signals are all bidirectional, active Low, open-drain, with 48 mA sink capability. All pins interface directly with the SCSI bus.

IACK. Acknowledge (Bidirectional, Open-drain, Active Low). Driven by an Initiator, /ACK indicates an acknowledgement for a /REQ//ACK data-transfer handshake. In the Target role, /ACK is received as a response to the /REQ signal.

IATN. Attention (Bidirectional, Open-drain, Active Low)., Driven by an Initiator, received by the Target, /ATN indicates an Attention condition.
/BSY. Busy (Bidirectional, Open-drain, Active Low). This signal indicates that the SCSI bus is being used and can be driven by both the Initiator and the Target device.

C//D. Control/Data (Bidirectional, Open-drain). Driven by the Target and received by the Initiator, C//D indicates whether Control or Data information is on the Data Bus. True indicates Control.
/DB7-/DB0, /DBP. Data Bus Bits, Data Bus Parity Bit (Bidirectional, Open-drain). These eight data bits (/DB7-/DB0), plus a parity bit (/DBP) form the data bus. /DB7 is the most significant bit (MSB) and has the highest priority during the Arbitration phase. Data parity is odd. Parity is always generated and optionally checked. Parity is not valid during Arbitration.

I//O. Input/Output(Bidirectional, Open-drain). I/O is a signal driven by a Target which controls the direction of data movement on the SCSI bus. True indicates input to the Initiator. This signal is also used to distinguish between Selection and Reselection phases.
/MSG. Message (Bidirectional, Open-drain, Active Low). This signal is driven by the Target during the Message phase. This signal is received by the Initiator.
/REQ. Request (Bidirectional, Open-drain, Active Low). Driven by the Target and received by the Initiator, this signal indicates a request for a /REQ//ACK data-transfer handshake.
/RST. SCSI Bus Reset (Bidirectional, Open-drain, Active Low). This signal indicates a SCSI bus Reset condition.
/SEL. Select (Bidirectional, Open-drain, Active Low). This signal is used by an Initiator to select a Target, or by a Target to reselect an Initiator.

Power Signals:
GND. Ground (OV)
VDD. VDD Supply (+5 V)

FUNCTIONAL DESCRIPTION

The Z5380 Small Computer System Interface (SCSI) has a set of eight registers that are controlled by the CPU. By reading and writing the appropriate registers, the CPU may initiate any SCSI Bus activity or may sample and assert any signal on the SCSI Bus. This allows the user to
implement all or any of the SCSI protocol in software. These registers are read (written) by activating /CS with an address on A2-A0 and then issuing an /IOR (/IOW) pulse. This section describes the operation of the internal registers (Table 1).

Table 1. Register Summary

Address				
A2	A1	A0	R/W	Register Name
0	0	0	R	Current SCSI Data
0	0	0	W	Output Data
0	0	1	RW	Initiator Command
0	1	0	RW	Mode
0	1	1	RW	Target Command
1	0	0	R	Current SCSI Bus Status
1	0	0	W	Select Enable
1	0	1	R	Bus and Status
1	0	1	W	Start DMA Send
1	1	0	R	Input Data
1	1	0	W	Start DMA Target Receive
1	1	1	R	Reset Parity/Interrupt
1	1	1	W	Start DMA Initiator Receive

Data Registers

The data registers are used to transfer SCSI commands, data, status, and message bytes between the microprocessor Data' Bus and the SCSI Bus. The 25380 does not interpret any information that passes through the data registers. The data registers consist of the transparent Current SCSI Data Register, the Output Data Register, and the Input Data Register.

Current SCSI Data Register. Address O (Read Only). The Current SCSI Data Register (Figure 4) is a read-only register which allows the microprocessor to read the active SCSI Data Bus. This is accomplished by activating /CS with an address on A2-A0 of 000 and issuing an/IOR pulse. If parity checking is enabled, the SCSI Bus parity is checked at the beginning of the read cycle. This register is used during a programmed I/O data read or during Arbitration to check for higher priority arbitrating devices. Parity is not guaranteed valid during Arbitration.

Output Data Register. Address O(Write Only). The Output DataRegister (Figure 5) is a write-only register that is used to send data to the SCSI Bus. This is accomplished by either using a normal CPU write, or under DMA control, by using /IOW and /DACK. This register also asserts the proper ID bits on the SCSI Bus during the Arbitration and Selection phases.

Figure 4. Current SCSI Data Register

Figure 5. Output Data Register

Initiator Command Register. Address 1 (Read/Write). The Initiator Command Register (Figures 6 and 7) are read and write registers which assert certain SCSI Bus signals, monitors those signals, and monitors the progress of bus arbitration. Many of these bits are significant only when being used as an Initiator; however, most can be used during Target role operation.

FUNCTIONAL DESCRIPTION (Continued)

Figure 6. Initiator Command Register

Figure 7. Initiator Command Register

The following describes the operation of all bits in the Initiator Command Register:

Bit 0. Assert Data Bus. This bit, when set, allows the contents of the Output Data Register to be enabled as chip outputs on the signals /DB7-DB0. Parity is also generated and asserted on /DBP.

When connected as an Initiator, the outputs are only enabled if the Target Mode bit (Mode Register, bit 6) is 0 , the received signal $1 / / O$ is False, and the phase signals (C//D, I//O, and /MSG) match the contents of the Assert C//D, Assert I//O, and Assert/MSG in the Target Command Register.

This bit should also be set during DMA send operations.

Bit 1. Assert/ATN. /ATN may be asserted on the SCSI Bus by setting this bit to a one (1) if the Target Mode bit (Mode Register, bit 6) is False. /ATN is normally asserted by the initiator to request a Message Out bus phase. Note that since Assert/SEL and Assert/ATN are in the same register, a select with /ATN may be implemented with one CPU write. /ATN may be deasserted by resetting this bit to zero. A read of this register simply reflects the status of this bit.

Bit 2. Assert /SEL. Writing a one (1) into this bit position asserts /SEL onto the SCSI Bus. /SEL is normally asserted after Arbitration has been successfully completed. /SEL may be disabled by resetting bit 2 to a zero. A read of this register reflects the status of this bit.

Bit 3. Assert /BSY. Writing a one (1) into this bit position asserts /BSY onto the SCSI Bus. Conversely, a zero resels the /BSY signal. Asserting /BSY indicates a successful selection or reselection. Resetting this bit creates a BusDisconnect condition. Reading this register reflects bit status.

Bit 4. Assert/ACK. Bit 4 is used by the bus initiator to assert /ACK on the SCSI Bus. In order to assert /ACK, the Target Mode bit (Mode Register, bit 6) must be False. Writing a zero to this bit deasserts /ACK. Reading this register reflects bit status.

Bit 5. " 0 " (Write Bit). Bit 5 should be written with a zero for proper operation.

Bit 5. LA (Lost Arbitration - Read Bit). Bit 5, when active, indicates that the SCSI detected a Bus-Free condition, arbitrated for use of the bus by asserting /BSY and ils ID on the Data Bus, and lost Arbitration due to /SEL being asserted by another bus device. This bit is active only when the Arbitrate bit (Mode Register, bit 0) is active.

Bit 6. Test Mode (Write Bit). Bit 6 is written during a test environment to disable all output drivers, effectively removing the Z5380 from the circuit. Resetting this bit returns the part to normal operation.

Bit 6. AIP (Arbitration in Process - Read Bit). Bit 6 is used to determine if Arbitration is in progress. For this bit to be active, the Arbitrate bit (Mode Register, bit 0) must have been set previously. It indicates that a Bus-Free condition has been detected and that the chip has asserted /BSY and put the contents of the Output Data Register onto the SCSI Bus. AIP will remain active until the Arbitrate bit is reset.

Bit 7. Assert /RST. Whenever a one is written to bit 7 of the Initiator Command Register, the /RST signal is asserted on the SCSI Bus. The /RST signal will remain asserted until this bit is reset or until an external /RESET occurs. After this bit
is set (1), IRQ goes active and all internal logic and control registers are reset (except for the interrupt latch and the Assert /RST bit). Writing a zero to bit 7 of the Initiator Command Register deasserts the /RST signal. The status of this bit is monitored by reading the Initiator Command Register.

Mode Register. Address 2(Read/Write). The Mode Register controls the operation of the chip. This register determines whether the Z5380 operates as an Initiator or a Target, whether DMA transfers are being used, whether parity is checked, and whether interrupts are generated on various external conditions. This register is read to check the value of these internal control bits (Figure 8).

Figure 8. Mode Register

The following describes the operation of all bits in the Initiator Command Register:

Bit 0. Arbitrate. The Arbitrate bit is set (1) to start the Arbitration process. Prior to setting this bit, the Output Data Register should contain the proper SCSI device ID value. Only one data bit should be active for SCSI Bus Arbitration. The Z5380 waits for a Bus-Free condition before entering the Arbitration phase. The results of the Arbitration phase is determined by reading the status bits LA and AIP (Initiator Command Register, bits 5 and 6, respectively).

Bit 1. DMA Mode. The DMA Mode bit is normally used to enable a DMA transfer and must be set (1) prior to writing Start DMA Send Register, Start DMA Target Register, and Start DMA Initiator Receiver Register. These three registers are used to start DMA transfers. The Target Mode bit (Mode Register, bit 6) must be consistent with writes to Start DMA Target Receive and Start DMA Initiator Receive Registers; i.e., set (1) for a write to Start DMA Target Receive Register and set (0) for Start DMA Initiator Receive

Register. The control bit Assert Data Bus (Initiator Command Register, bit 0) must be True (1) for all DMA send operations. In the DMA mode, /REQ and /ACK are automatically controlled.

The DMA Mode bit is not reset upon the receipt of an /EOP signal. Any DMA transfer is stopped by writing a zero into this bit location; however, care must be taken not to cause /CS and /DACK to be active simultaneously.

Bit 2. Monitor Busy. The Monitor Busy bit, when True (1), causes an interrupt to be generated for an unexpected loss of /BSY. When the interrupt is generated due to loss of /BSY, the lower six bits of the Initiator Command Register are reset (0) and all signals are removed from the SCSI Bus.

Bit 3. Enable /EOP interrupt. The enable /EOP interrupt bit, when set (1), causes an interrupt to occur when the /EOP (End Of Process) signal is received from the DMA controller logic.

Bit 4. Enable Parity Interrupt. The Enable Parity Interrupt bit, when set (1), will cause an interrupt (IRQ) to occur if a parity error is detected. A parity interrupt will only be generated if the Enable Parity Checking bit (bit 5) is also enabled (1).

Bit 5. Enable Parity Checking. The Enable Parity Checking bit determines whether parity errors are ignored or saved in the parity error latch. If this bit is reset (0), parity is ignored. Conversely, if this bit is set (1), parity errors are saved.

Bit 6. Target Mode. The Target Mode bit allows the $Z 5380$ to operate as a SCSI Bus Initiator or Target. With this bit reset (0), the $Z 5380$ operates as a SCSI Bus Initiator. Setting Target Mode bit to 1 programs the $Z 5380$ to ope ate as a SCSI Bus Target device. If the signals /ATN and /ACK are to be asserted on the SCSI Bus, the Target Mode bit must be reset (0). If the signals $\mathrm{C} / / \mathrm{D}, \mathrm{I} / / \mathrm{O}$, /MSG, and /REQ are to be asserted on the SCSI Bus, the Target Mode bit must be set (1).

Bit 7. Block Mode DMA. The Block Mode DMA bit controls the characteristics of the DMA DRQ-/DACK handshake. When this bit is reset (0) and the DMA Mode bit is active (1), the DMA handshake uses the normal interlocked handshake, and the rising edge of /DACK indicates the end of each byte being transferred. In Block Mode operation, when the Block Mode DMA bit is set (1) and DMA Mode bit is active (1), the end of /IOR or /IOW signifies the end of each byte transferred and /DACK is allowed to remain active throughout the DMA operation. Ready can then be used to request the next transfer.

FUNCTIONAL DESCRIPTION (Continued)

Target Command Register. Address 3(Read/Write). When connected as a target device, the Target Command Register (Figure 9) allows the CPU to control the SCSI Bus Information Transfer phase and/or to assert /REQ by writing this register. The Target Mode bit (Mode Register, bit 6) must be True (1) for bus assertion to occur. The SCSI Bus phases are described in Table 2.

Figure 9. Target Command Register

Table 2. SCSI Information Transfer Phases

Bus Phase	Assert I//O	Assert C//D	Assert IMSG
Data Out	0	0	0
Unspecified	0	0	1
Command	0	1	0
Message Out	0	1	1
Data In	1	0	0
Unspecified	1	0	1
Status	1	1	0
Message In	1	1	1

When connected as an Initiator with DMA Mode bit True, if the phase lines ($/ / / \mathrm{O}, \mathrm{C} / / \mathrm{D}$, and $/ \mathrm{MSG}$) do not match the phase bits in the Target Command Register, a phase mismatch interrupt is generated when /REQ goes active. To send data as an Initiator, the Assert I//O, Assert C//D, and Assert/MSG bits must match the corresponding bits in the Current SCSI Bus Status Register. The Assert /REQ bit (bit 3) has no meaning when operating as an Initiator.

Bits 4,5,6, and 7 are not used.
Current SCSI Bus Status Register. Address 4 (Read Only). The Current SCSI Bus Register is a read-only register which is used to monitor seven SCSI Bus control signals, plus the Data Bus parity bit. For example, an Initiator
device can use this register to determine the current bus phase and to poll /REQ for pending data transfers. This register may also be used to determine why a particular interrupt occurred. Figure 10 describes the Current SCSI Bus Status Register.

Figure 10. Current SCSI Bus Status Register

Select Enable Register. Address 4(Write Only). The Select Enable Register (Figure 11) is a write-only register which is used as a mask to monitor a signal ID during a selection attempt. The simultaneous occurrence of the correctID bit, /BSY False, and /SEL True causes an interrupt. This interrupt can be disabled by resetting all bits in this register. If the Enable Parity Checking bit (Mode Register, bit 5) is active (1), parity is checked during selection.

Figure 11. Select Enable Register

Bus and Status Register. Address 5 (Read Only). The Bus and Status Register (Figure 12) is a read-only register which can be used to monitor the remaining SCSI control signals not found in the Current SCSI Bus Status Registers (/ATN and /ACK), as well as six other status bits. The following describes each bitof the Bus and Status Register individually.

Figure 12. Bus and Status Register

Bit 0. /ACK. Bit 0 reflects the condition of the SCSI Bus control signal /ACK. This signal is normally monitored by the Target device.

Bit 1. /ATN. Bit 1 reflects the condition of the SCSI Bus control signal /ATN. This signal is normally monitored by the Target device.

Bit 2. Busy Error. The Busy Error bit is active if an unexpected loss of the /BSY signal has occurred. This latch is set whenever the Monitor Busy bit (Mode Register, bit 2) is True and /BSY is False. An unexpected loss of /BSY disables any SCSI outputs and resets the DMA Mode bit (Mode Register, bit 1).

Bit 3. Phase Match. The SCSI signals /MSG, C//D, and I//O, represent the current information Transfer phase. The Phase Match bit indicates whether the current SCSI Bus phase matches the lower 3 bits of the Target Command Register. Phase Match is continuously updated and is only significant when operating as a Bus Initiator. A phase match is required for data transfers to occur on the SCSI Bus.

Bit 4.Interrupt Request ACTIVE. Bit 4 is set if an enabled interrupt condition occurs. It reflects the current state of the IRQ output and can be cleared by reading the Reset Parity/ Interrupt Register.

Bit 5. Parity Error. Bit 5 is set if a parity error occurs during a data receive or a device selection. The Parity Error bitcan only be set (1) if the Enable Parity Check bit (Mode Register, bit 5) is active (1). This bit may be cleared by reading the Reset Parity/Interrupt Register.

Bit 6. DMA Request. The DMA Request bit allows the CPU to sample the output pin DRQ. DRQ can be cleared by asserting /DACK or by resetting the DMA Mode bit (bit 1) in the Mode Register. The DRQ signal does not reset when a phase-mismatch interrupt occurs.

Bit 7. End of DMA Transfer. The End of DMA Transfer bit is set if /EOP, /DACK, and either /IOR or /IOW are simultaneously active for at least 100 ns . Since the /EOP signal can occur during the last byte sent to the OutputDala Register, the/REQ and /ACK signals should be monitored to ensure that the last byte has been transferred. This bit is reset when the DMA Mode bit is reset (0) in the Mode Register.

Input Data Register. Address 6 (Read Only). The input Data Register (Figure 13) is a read-only register that is used to read latched data from the SCSI Bus. Data is latched either during a DMA Target receive operation when /ACK goes active or during a DMA Initiator receive when /REQ goes active. The DMA Mode bit (bit 1) must be set before data can be latched in the Input Data Register. This register is read under DMA control using /IOR and /DACK. Parily is optionally checked when the Input Data Register is loaded.

Figure 13. Input Data Register

FUNCTIONAL DESCRIPTION (Continued)

DMA Registers

Three write-only registers are used to initiate all DMA activity. They are: Start DMA Send, Start DMA Target Receive, and Start DMA Initiator Receive. Performing a write operation into one of these registers starts the desired type of DMA transfer. Data presented to the Z5380 on signals D7-D0 during the register write is meaningless and has no effect on the operation. Prior to writing these registers, the Block Mode DMA bit (bit 7), the DMA Mode bit (bit 1), and the Target Mode bit (bit 6) in the Mode Register must be appropriately set. The individual registers are briefly described as follows:

Start DMA Send. Address 5 (Write Only). This register is written to initiate a DMA send, from the DMA to the SCSI Bus, for either Initiator or Target role operations. The DMA Mode bit (Mode Register, bit 1) is set prior to writing this register.

Start DMA Target Receive. Address 6 (Write Only). This register is written to initiate a DMA receive - from the SCSI Bus to the DMA, for Target operation only. The DMA Mode bit (bit 1) and the Target Mode bit (bit 6) in the Mode Register must both be set (1) prior to writing this register.

Start DMA Initiator Receive. Address 7 (Write Only). This register is written to initiate a DMA receive - from the SCSI Bus to the DMA, for Initiator operation only. The DMA Mode bit (bit 6) must be False (0) in the Mode Register prior to writing this register.

Reset Parity/Interrupt. Address 7 (Read Only). Reading this register resets the Parity Error bit (bit 5), the Interrupt Request bit (bit 4), and the Busy Error bit (bit 2) in the Bus and Status Register.

On-Chip SCSI Hardware Support

The $\mathbf{Z 5 3 8 0}$ is easy to use because of its simple architecture. The chip allows direct control and monitoring of the SCSI Bus by providing a latch for each signal. However, portions of the protocol define timings which are much too quick for traditional microprocessors to control. Therefore, hardware support has been provided for DMA transfers, bus arbitration, phase change monitoring, bus disconnection, bus reset, parity generation, parity checking, and device selection/reselection.

Arbitration is accomplished using a bus-free filter to continuously monitor /BSY. If /BSY remains inactive for at least 1.2 us , the SCSI Bus is considered free and Arbitration may begin. Arbitration will begin if the bus is free, /SEL is inactive, and the Arbitrate bit (Mode Register, bit 0) is
active. Once arbitration has begun (/BSY asserted), an arbitration delay of 2.2us must elapse before the Data Bus can be examined to determine if Arbitration is enabled. This delay is implemented in the controlling software driver.

The $Z 5380$ is a clockwise device. Delays such as bus-free delay, bus-set delay, and bus-settle delay are implemented using gate delays. These delays may differ between devices because of inherent process variations, but are well within the proposed ANSI X3.131-1986 specitication.

Interrupts

The $Z 5380$ provides an interrupt output (IRQ) to indicate a task completion or an abnormal bus occurrence. The use of interrupts is optional and may be disabled by reselting the appropriate bits in the Mode Register or the Select Enable Register.

When an interrupt occurs, the Bus and Status Register and the Current SCSI Bus Status Register (Figures 12 and 10) must be read to determine which condition created the interrupt. IRQ can be reset simply by reading the Reset Parity/Interrupt Register or by an external chip reset /RESET active for 200ns.

Assuming the $Z 5380$ has been properly initialized, an interrupt is generated if the chip is selected or reselected; if an /EOP signal occurs during a DMA transler; if a SCȘI Bus reset occurs; if a parity error occurs during a data transfer; if a bus phase mismatch occurs; or if a SCSI Bus disconnection occurs.

Selection/Reselection Interrupt

The Z5380 generates a select interrupt if /SEL is active (0), its device ID is True and /BSY is False for at least a bussettle delay. If I//O is active, this is considered a reselect interrupt. The correct ID bit is determined by a match in the Select Enable Register. Only a single bit match is required to generate an interrupt. This interrupt may be disabled by writing zeros into all bits of the Select Enable Register.

If parity is supported, parity should be good during the selection phase. Therefore, if the Enable Parity bit (Mode Register, bit 5) is active, the Parity Error bit is checked to ensure that a proper selection has occurred. The Enable Parity Interrupt bit need not be set for this interrupt to be generated.

The proposed SCSI specification also requires that no more than two device ID's be active during the selection process. To ensure this, the Current SCSI Data Register is read.

The proper values for the Bus and Status Register and the Current SCSI Bus Status Register are displayed in Figures 14 and 15, respectively.

Figure 14. Bus and Status Register

Figure 15. Current SCSI Bus Status Register

End Of Process (EOP) Interrupt

An End Of Process signal (EOP) which occurs during a DMA transfer (DMA Mode True) will set the End of DMA Status bit (bit 7) and will optionally generate an interrupt if Enable EOP Interrupt bit (Mode Register, bit 3) is True. The /EOP pulse will not be recognized (End of DMA bit set) unless /EOP, /DACK, and either /IOR or /IOW are concurrently active for at least 100 ns . DMA transfers can still occur if /EOP was not asserted at the correct time. This
interrupt is disabled by resetting the Enable EOP Interrupt bit.

The proper values for the Bus and Status Register and the Current SCSI Bus Status Register for this interrupt are shown in Figures 16 and 17.

Figure 16. Bus and Status Register

Figure 17. Current SCSI Bus Status Register

The End of DMA bit is used to determine when a block transfer is complete. Receive operations are complete when there is no data left in the chip and no additional handshakes occurring. The only exception to this is receiving data as an Initiator and the Target opts to send additional data for the same phase. In this /REQ goes active and the new data is present in the Inpul Data Register. Since a phase-mismatch interrupt will not occur, /REQ and /ACK need to be sampled to determine that the Target is attempting to send more data.

FUNCTIONAL DESCRIPTION (Continued)

For send operations, the End of DMA bit is set when the DMA finishes its transfers, but the SCSI transfer may still be in progress. If connected as a Target, /REQ and /ACK should be sampled until both are False. If connected as an Initiator, a phase change interrupt is used to signal the completion of the previous phase. It is possible for the Target to request additional data for the same phase. In this case, a phase change will not occur and both /REQ and /ACK are sampled to determine when the last byte was transferred.

SCSI Bus Reset Interrupt

The Z5380 generates an interrupt when the /RST signal transitions to True. The device releases all bus signals within a bus-clear delay of this transition. This interrupt also occurs after setting the Assert/RST bit (Initiator Command Register, bit 7). This interrupt cannot be disabled. (Note: /RST is not latched in bit 7 of the Current SCSI Bus Status Register and is not active when this port is read. For this case, the Bus Reset interrupt is determined by default.)

The proper values for the Bus and Status Register and the Current SCSI Bus Status Register are displayed in Figures 18 and 19, respectively.

Figure 18. Bus and Status Register

Figure 19. Current SCSI Bus Status Register

Parity Error Interrupt

An Interrupt is generated for a received parity error if the Enable Parity Check (bit 5) and the Enable Parity Interrupt (bit 4) bits are set (1) in the Mode Register. Parity is checked during a read of the Current SCSI Data Register and during a DMA receive operation. A parity error can be detected without generating an interrupt by disabling the Enable Parity Interrupt bit and checking the Parity Error flag (Bus and Status Register, bit 5).

The proper values for the Bus and Status Register and the Current SCSI Bus Status Register are displayed in Figures 20 and 21 , respectively.

Figure 20. Bus and Status Register

Figure 21. Current SCSI Bus Status Register

Bus Phase Mismatch Interrupt

The SCSI phase lines are comprised of the signals I//O, C//D, and /MSG. These signals are compared with the corresponding bits in the Target Command Register: Assert I//O (bit 0), Assert C//D (bit 1), and Assert /MSG (bit2). The comparison occurs continually and is reflected in the Phase Match bit (bit 3) of the Bus and Status Register. If the DMA Mode bit (Mode Register, bit 1) is active and a phase mismatch occurs when/REQ transitions from False to True, an interrupt (IRQ) is generated.

A phase mismatch prevents the recognition of /REQ and removes the chip from the bus during an Initiator send operation (/DB7-/DB0 and /DBP will not be driven even through the Assert Data Bus bit (Initiator Command Register, bit 0) is active). This may be disabled by resetting the DMA Mode bit (Note: It is possible for this interrupt to occur when connected as a Target if another device is driving the phase lines to a different state).

The proper values for the Bus and Status Register and the Current SCSI Bus Status Register are displayed in Figures 22 and 23 , respectively.

Figure 22. Bus and Status Register

Figure 23. Current SCSI Bus Status Register

Loss of BSY Interrupt

If the Monitor Busy bit (bit 2) in the Mode Register is active, an interrupt is generated if the BSY signal goes False for at least a bus-settle delay. This interrupt is disabled by resetting the Monitor Busy bit. Register values are displayed in Figures 24 and 25.

FUNCTIONAL DESCRIPTION (Continued)

Figure 24. Bus and Status Register

Figure 25. Current SCSI Bus Status Register

Reset Conditions

Three possible reset situations exist with the Z5380, as follows:

Hardware Chip Reset

When the signal/RST is active for at least 200 ns , the $Z 5380$ device is re-initialized and all internal logic and control registers are cleared. This is a chip reset only and does not create a SCSI Bus-Reset condition.

SCSI Bus Reset (/RST) Received

When a SCSI /RST signal is received, an IRQ interrupt is generated and a chip reset is performed. All internal logic and registers are cleared, except for the IRQ interruptlatch and the Assert /RST bit (bit 7) in the Initiator Command Register. (Note: The /RST signal may be sampled by
reading the Current SCSI Bus Status Register; however, this signal is not latched and may not be present when this port is read).

SCSI Bus Reset (/RST) Issued

If the CPU sets the Assert /RST bit (bit 7) in the Initiator Command Register, the /RST signal goes active on the SCSI Bus and an internal reset is performed. Again, all internal logic and registers are cleared except for the IRQ interrupt latch and the Assert /RST bit (bit 7) in the Initiator Command Register. The /RST signal will conlinue to be active until the Assert /RST bit is reset or until a hardware reset occurs.

Data Transfers

Data is transferred between SCSI Bus devices in one of four modes (Reference Figures 26-41):

1. Programmed I / O
2. Normal DMA
3. Block Mode DMA
4. Pseudo DMA

The following sections describe these modes in detail (Note: For all data transter operations, /DACK and /CS should never be active simultaneously).

Programmed I/O Transfers

Programmed I/O is the most primitive form of data transfer. The /REQ and /ACK handshake signals are individually monitored and asserted by reading and writing the appropriate register bits. This type of transfer is normally used when transferring small blocks of data such as command blocks or message and status bytes. An Initiator send operation would begin by setting the C//D, I//O, and /MSG bits in the Target Command Register to the correct state so that a phase match exists. In addition to the phase match condition, it is necessary for the Assert Data Bus bit (Initiator Command Register, bit 0) to be True and the received I/O signal to be False for the $Z 5380$ to send data. For,each transfer, the data is loaded into the Output Data Register. The CPU then waits for the/REQbit (Current SCSI Bus Status Register, bit 5) to become active. Once /REQ goes active, the Phase Match bit (Bus and Status Register, bit 3) is checked and the Assert /ACK bit (Initiator Command Register, bit 4) is set. The /REQ bit is sampled until it becomes False and the CPU resets the Assert /ACK bit to complete the transfer.

Normal DMA Mode

DMA transfers are normally used for large block transfers. The SCSI chip outputs a DMA request (DRQ) whenever it is ready for a byte transfer. External DMA logic uses this

DRQ signal to generate /DACK and an /IOR or an /IOW pulse to the Z5380. DRQ goes inactive when /DACK is asserted and /DACK goes inactive some time after the minimum read or write pulse width. This process is repeated for every byle. For this mode, /DACK should not be allowed to cycle unless a transfer is taking place.

Block Mode DMA

Some popular DMA Controllers, such as the 9517A, provide a Block Mode DMA transfer. This type of transfer allows the DMA controller to transfer blocks of data without relinquishing the use of the Data Bus to the CPU after each byte is transferred; thus, faster transfer rates are achieved by eliminating the repetitive access and release of the CPU Bus. If the Block Mode DMA bit (Mode Register, bit 7) is active, the $Z 5380$ begins the transfer by asserting DRQ. The DMA controller then asserts /DACK for the remainder of the block transfer. DRQ goes inactive for the duration of the transfer. The Ready output is used to control the transfer rate. Non-Block Mode DMA transfers end when /DACK goes False, whereas Block Mode DMA transfers end when /IOR or /IOW becomes inactive. Since this is the case, DMA transfers may be started sooner in a Block Mode transfer. To obtain optimum performance in Block Mode operation, the DMA logic optionally uses the normal DMA mode interlocking handshake. Ready is still available to throttle the "DMA transfer, but DRQ is 30 to 40 ns faster than Ready and is used to start the cycle sooner. The methods described under "Halting a DMA Operation" apply for all DMA operations.

Pseudo DMA Mode

To avoid the tedium of monitoring and asserting the request/acknowledgement handshake signals for programmed I/O transfers, the system can be designed to implement a pseudo DMA mode. This mode is implemented by programming the $Z 5380$ to operate in the DMA mode, but using the CPU to emulate the DMA handshake. DRQ may be detected by polling the DMA Request bit (bit 6) in the Bus and Status.Register, by sampling the signal through an external port, or by using it to generate a CPU interrupt. Once DRQ is detected, the CPU can perform a read or write data transfer. This CPU read/write is externally decoded to generate the appropriate /DACK and /IOR or /IOW signals.

Often, external decoding logic is necessary to generate the $Z 5380$ /CS signal. This same logic may be used to generate/DACK at no extra cost and provide an increased performance in programmed I/O transfers.

Halting a DMA Operation
The /EOP signal is not the only way to halt a DMA transfer. A bus phase mismatch or a reset of the DMA Mode bit (Mode Register, bit 1) can also terminate a DMA cycle for the current bus phase.

Using the /EOP Signal

If /EOP is used, it should be asserted for at least 100 ns while /DACK and /IOR or /IOW are simultaneously active. Note, however, that if/IOR or /IOW is not active, an interrupt is generated, but the DMA activity continues. The /EOP signal does not reset the DMA Mode bit. Since the /EOP signal can occur during the last byte sent to the Output Data Register, the/REQ and /ACK signals are monitored to ensure that the last byte has transferred.

Bus Phase Mismatch Interrupt

A bus phase mismatch interrupt is used to halt the transfer if operating as an Initiator. Using this method frees the host from maintaining a data length counter and frees the DMA logic from providing the /EOP signal. If performing an Initiator send operation, the $Z 5380$ requires /DACK to cycle before /ACK goes inactive. Since phase changes cannot occur if /ACK is active, either /DACK must be cycled after the last byte is sent or the DMA Mode bit must be reset in order to receive the phase mismatch interrupt.

Resetting the DMA Mode Bit

A DMA operation may be halted at any time șimply by resetting the DMA Mode bit. It is recommended that the DMA Mode bit be reset after receiving an /EOP or bus phase-mismatch interrupt. The DMA Mode bit must then be set before writing any of the start DMA registers for subsequent bus phases.

If resetting the DMA Mode bit is used instead of /EOP for Target role operation, then care must be taken to reset this bit at the proper time. If receiving data as a Target device, the DMA Mode bit must be reset once the last DRQ is received and before /DACK is asserted to prevent an additional /REQ from occurring. Resetting this bit causes DRQ to go inactive. However, the last byte received remains in the Input Data Register and may be obtained either by performing a normal CPU read or by cycling /DACK and /IOR. In most cases,/EOP is easier to use when operating as a Target device.

READ REGISTERS

Figure 26. Current SCSI Data Register

Figure 27. Initiator Command Register

Figure 29. Target Command Register

Figure 30. Current SCSI Bus Status Register

Figure 31. Bus and Status Register

Figure 28. Mode Register

Address: 6											
	(Read Only)										
D7	DG			D7	D6	D5	D4	D3	D2	D1	D0
:---	:---	:---	:---	:---	:---	:---	:---				

Figure 32. Input Data Register

WRITE REGISTERS

Figure 34. Output Data Register

Figure 36. Mode Register

Figure 37. Target Command Register

Figure 35. Initiator Command Register

WRITE REGISTERS (Continued)

Figure 38. Select Enable Register

Figure 40. Start DMA Target Receive

Figure 41. Start DMA Initiator Receive

Figure 39. Start DMA Send

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins
with respect to GND-0.3V to +7.0 V
Operating Ambient Temperature \dagger
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note:

\dagger See Ordering Information

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The DC Characteristics section below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin. Standard conditions are as follows (Figures 42 and 43):

■ $+4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<+5.5 \mathrm{~V}$

- GND $=0 \mathrm{~V}$
- T_{A} as specified in Ordering Information

Figure 42. Switching Test Circuit

Figure 43. Standard Test Load

DC CHARACTERISTICS

Z5380

Symbol	Parameter	Conditions	Min	Max	Units
$V_{\text {D }}$	Supply Voltage		4.75	5.25	V
$\mathrm{V}_{1 H}$	High-Level Input Voltage		2.0	5.25	V
$V_{\text {LI }}$	Low-Level Input Voltage		-0.3	0.8	V
$\mathrm{IH1}^{1}$	High-Level Input Current	$\mathrm{V}_{\mathrm{HH}}=5.25 \mathrm{~V}$			
	SCSI Bus Pins	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$		50	$\mu \mathrm{A}$
IHH^{2}	High-Level Input Current	$\mathrm{V}_{\mathrm{VH}}=5.25 \mathrm{~V}$			
	All Other Pins	$\mathrm{V}_{\mathrm{LL}}=0 \mathrm{~V}$		10	$\mu \mathrm{A}$
$1 / 1$	Low-Level Input Current	$\mathrm{V}_{\mathrm{VH}}=5.25 \mathrm{~V}$			
	SCSI Bus Pins	$\mathrm{V}_{\mathrm{tL}}=0 \mathrm{~V}$	-50		$\mu \mathrm{A}$
$I_{12}{ }^{2}$	Low-Level Input Current	$V_{1 H}=5.25 \mathrm{~V}$			
	All Other Pins	$V_{\text {IL }}=0 \mathrm{~V}$	$-10 \mu \mathrm{~A}$		
$\mathrm{V}_{\text {OH }}$	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4		V
		$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$			
$V_{\text {oL }}{ }^{1}$	Low-Level Output Voltage	$\mathrm{I}_{\text {OL }}=48 \mathrm{~mA}$	0.5		V
	SCSI Bus Pins	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$			
$\mathrm{V}_{\mathrm{oL}}{ }^{2}$	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{oL}}=7 \mathrm{~mA}$	0.5		V
	All Other Pins	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$			
$\frac{\mathrm{I}_{\mathrm{DD}}}{\mathrm{~T}_{\mathrm{A}}}$	Supply Current	15 mA			
	Operating Free-Air		0	70	C

AC CHARACTERISTICS

CPU Write Cycle Timing Diagram

Figure 44. CPU Write Cycle

AC CHARACTERISTICS

CPU Write Cycle Timing Table

No	Description	Min	Max
1	Address Setup to Write Enable[1]	20	Units
2	Address Hold from End Write Enable[1]	20	ns
3	Write Enable Width[1]	70	ns
4	Chip Select Hold from End of /IOW	0	ns
5	Data Setup to end of Write Enable[1]	50	ns
6	Data Hold Time form End of /IOW	30	ns
			ns

Note:
[1] Write Enable is the occurrence of /IOW and /CS

AC CHARACTERISTICS

CPU Read Cycle Timing Diagram

Figure 45. CPU Read Cycle

AC CHARACTERISTICS

CPU Read Cycle Timing Table

No	Description	Min	Max
1	Address Setup to Read Enable[1]	Units	
2	Address Hold from End Read Enable[1]	20	ns
3	Chip Select Hold from End of /IOR	20	ns
4	Data Access Time from Read Enable[1]	0	ns
5	Data Hold Time from End of Read Enable[1]	20	ns
			ns

Note:
[1] Read Enable is the occurrence of /IOR and /CS.

AC CHARACTERISTICS

DMA Write (Non-Block Mode) Target Send Cycle Timing Diagram

Figure 46. DMA Write (Non-Block Mode) Target Send Cycle

AC CHARACTERISTICS

DMA Write (Non-Block Mode) Target Send Cycle Table

No	Description	Min	Max	Units
1	DRQ Low from /DACK Low	130		ns
2	/DACK High to DRQ High	30		ns
3	Write Enable Width[1]	100		ns
4	/DACK Hold from /IOW High	0		
5	Data Setup to End of Write Enable[1]	50		ns
6	Data Hold Time from End of /IOW	40		ns
7	Width of /EOP Pulse[2]	100		ns
8	IACK Low to /REQ High	25	125	ns
9	/REQ from End of /DACK (/ACK High)	30	150	ns
10	/ACK Low to DRQ High (Target)	15	110	ns
11	/ACK High to /REQ Low (/DACK High)	20	150	ns
12	Data Hold from Write Enable	15		ns
13	Data Setup to/REQ Low (Target)	60		ns

Notes:

[1] Write Enable is the occurrence of /IOW and /DACK.
[2] /EOP, /IOW, and /DACK must be concurrently Low for at least T7 for proper recognition of the /EOP pulse.

AC CHARACTERISTICS
DMA Write (Non-Block Mode) Initiator Send Cycle Timing Diagram

Figure 47. DMA Write (Non-Block Mode) Initiator Send Cycle

AC CHARACTERISTICS

DMA Write (Non-Block Mode) Initiator Send Cycle Table

No	Description	Min	Max	Units
1	DRQ Low from /DACK Low	130		ns
2	/DACK High to DRQ High	30		ns
3	Write Enable Width[1]	100		ns
4	/DACK Hold from End of /IOW	0	ns	
5	Data Setup to End of Write Enable[1]	50		ns
6	Data Hold Time from End of /IOW	40	ns	
7	Width of /EOP Pulse[2]	100	160	ns
8	IREQ Low to /ACK Low	20	ns	
9	/REQ High to DRQ High	20	110	ns
10	/DACK High to /ACK High	25	150	ns
11	/IOW High to Valid SCSI Data	100		ns
12	Data Hold from Write Enable[1]	15		ns

Notes:

[1] Write Enable is the occurrence of /IOW and /DACK.
[2] /EOP, /IOW, and /DACK must be concurrently Low for at least $T 7$ for proper recognition of the /EOP pulse.

AC CHARACTERISTICS

DMA Read (Non-Block Mode) Target Receive Cycle Timing Diagram

Figure 48. DMA Read (Non-Block Mode) Target Receive Cycle

AC CHARACTERISTICS

DMA Read (Non-Block Mode) Target Receive Cycle Table

No	Description	Min	Max
1	DRQ Low from /DACK Low	130	Units
2	/DACK High to DRQ High	30	ns
3	/DACK Hold Time from End of /IOR	0	ns
4	Data Access Time from Read Enable[1]	115	ns
5	Data Hold Time from End of /IOR	20	ns
6	Width of /EOP Pulse[2]	100	ns
7	IACK Low to DRQ High	15	110
8	/DACK High to /REQ Low (/ACK High)	30	150
9	IACK Low to /REQ High	25	ns
10	/ACK High to /REQ Low (/DACK High)	20	125
11	Data Setup Time to /ACK	20	ns
12	Data Hold Time from /ACK	50	ns

Notes:

[1] Read Enable is the occurrence of /IOR and /DACK.
[2] /EOP, /IOR, and /DACK must be concurrently Low for at least T6 for proper recognition of the /EOP pulse.

AC CHARACTERISTICS

DMA Read (Non-Block Mode) Initiator Receive Cycle Timing Diagram

Figure 49. DMA Read (Non-Block Mode) Initiator Receive Cycle

AC CHARACTERISTICS

DMA Read (Non-Block Mode) Initiator Receive Cycle Table

No	Description	Min	Max
1	DRQ Low from /DACK Low	Units	
2	/DACK High to DRQ High	130	ns
3	/DACK Hold Time from End of /IOR	30	ns
4	Data Access Time from Read Enable[1]	0	ns
5	Data Hold Time from End of /IOR	115	ns
6	Width of /EOP Pulse[2]	20	ns
7	/REQ Low to DRQ High	100	ns
8	/DACK High to /ACK High (/REQ High)	20	ns
9	/REQ Low to /ACK Low	25	160
10	/REQ High to /ACK High (/DACK High)	20	160
11	Data Setup Time to /REQ	15	140
12	Data Hold Time from /REQ	20	ns

Notes:

[1] Read Enable is the occurrence of /IOR and /DACK.
[2] /EOP, /IOR, and /DACK must be concurrently Low for at least T6 for proper recognition of the /EOP pulse.

AC CHARACTERISTICS

DMA Write (Block Mode) Target Send Cycle Timing Diagram

Figure 50. DMA Write (Block Mode) Target Send Cycle

AC CHARACTERISTICS

DMA Write (Block Mode) Target Send Cycle Table

No	Description	Min	Max
1	DRQ Low from /DACK Low	Units	
2	Write Enable Width[1]	130	ns
3	Write Recovery Time	100	ns
4	Data Setup to End of Write Enable[1]	120	ns
		50	ns
5	Data Hold Time from End of /IOW	40	ns
6	Width of /EOP Pulse[2]	100	ns
7	IACK Low to /REQ High	25	125
8	/REQ from End of /IOW (/ACK High)	40	180
9	/REQ from End of /ACK (/IOW High)	20	ns
10	/ACK Low to READY High	20	170
11	READY High to /IOW High	70	ns
12	/IOW High to READY Low	20	ns
13	Data Hold from /ACK Low	40	ns
14	Data Setup to /REQ Low	60	ns

Notes:

[1] Write Enable is the occurrence of /IOW and /DACK.
[2] /EOP, /IOW, and /DACK must be concurrently Low for at least T6 for proper recognition of the /EOP pulse.

AC CHARACTERISTICS
DMA Read (Block Mode) Target Receive Cycle Timing Diagram

Figure 51. DMA Read (Block Mode) Target Receive Cycle

AC CHARACTERISTICS

DMA Read (Block Mode) Target Receive Cycle Table

No	Description	Min	Max	Units
1	DRQ Low from /DACK Low	130	ns	
2	/IOR Recovery Time	120	ns	
3	Data Access Time from Read Enable[1]	110	ns	
4	Data Hold Time from End of /IOR	20	ns	
5	Width of /EOP Pulse[2]	100	ns	
6	IOR High to /REQ Low	30	190	ns
7	IACK Low to /REQ High	25	125	ns
8	IACK High to /REQ Low (IOR High)	20	170	ns
9	IACK Low to READY High	20	140	ns
10	READY High to Valid Data	50	ns	
11	/IOR High to READY Low	20	140	ns
12	Data Setup Time to /ACK	20	ns	
13	Data Hold Time from /ACK	50	ns	

Notes:

[1] Read Enable is the occurrence of /IOR and /DACK.
[2] /EOP, /IOR, and /DACK must be concurrently Low for at least T5 for proper recognition of the /EOP pulse.

AC CHARACTERISTICS

Arbitration
/RST

arbitrate

Figure 52. Arbitration

No	Description	Min	Max	Units
1	Bus Clear from /SEL Low		600	ns
2	Arbitrate Start from /BSY High	1200	2200	ns

AC CHARACTERISTICS

Reset

Figure 53. Reset

No	Description	Min	Max	Units
1	Minimum Width of /RESET	200	ns	

Z5380 NOTES

1. Edge-triggered /RST Interrupt - If the SCSI Bus is not terminated, the /RST interrupt is continually generated.
2. True End of DMA Interrupt - The $Z 5380$ generates an interrupt when it receives the last byte from the DMA, not when the last byte is transferred to the SCSI Bus.
3. Return to Ready after /EOP Interrupt - When operating in Block Mode DMA, the Z5380 does not return the Ready signal to a Ready condition. This locks up the bus and prevents the CPU from executing.
4. SCSI handshake after /EOP occurs - If an EOP occurs when receiving data, a subsequent request will cause IACK to be asserted even though no DRQ is issued.
5. Reselection Interrupt - During reselection, if the Target Command Register does not reflect the current bus phase (most likely Data Out), the reselection interrupt may get reset.
6. Phase Mismatch Interrupt - A phase mismatch interrupt is not guaranteed after a reselection for the following reasons:

DMA Mode bit must be set in order to receive a phase mismatch interrupt.

DMA Mode bit can not be set unless /BSY is active.
/BSY can not be asserted until after the reselection has occurred.

Once/BSY is asserted, the Target may assert/REQ in less than 500ns.

The phase mismatch interrupt is generated on the active edge of /REQ. If the DMA Mode bit is not set before the /REQ goes active, the phase mismatch interrupt will not occur.

Z53C80 SMALL COMPUTER SYSTEM INTERFACE (SCSI)

FEATURES

- Supports 53C80 pinout
- Low power CMOS
- Asynchronous Interface, supports data transfers up to 3 Mbytes/sec
- Direct SCSI Bus Interface with On-Board 48 mA drivers
- Supports Target and Initiator roles
- Arbitration Support
- DMA or Programmed I/O Data Transfers

Supports Normal or Block Mode DMA

- Memory or I/O Mapped CPU Interface

GENERAL DESCRIPTION

The Z53C80 SCSI (Small Computer System Interface) controller is a 44 -pin PLCC or 48 -pin DIP CMOS device. It is designed to implement the SCSI protocol as defined by the ANSI X3.131-1986 standard, and is fully compatible with the industry standard 53C80. It is capable of operating both as a Target and as an Initiator. Special highcurrent open-drain outputs enable it to directly interface to the SCSI bus. The Z53C80 has the necessary interface hook-ups so the system CPU can communicate with it like with any other peripheral device. The CPU can read from, or write to, the SCSI registers which are addressed as standard or memory-mapped I/Os.

The Z53C80 increases the system performance by minimizing the CPU intervention in DMA operations which the SCSI controls. The CPU is interrupted when it detects a bus
condition that requires attention. It also supports arbitration and reselection. The Z 53 C 80 has the proper handshake signals to support normal and block mode DMA operations with most DMA controllers available.

Figure 1 is the functional block diagram of the Z53C80. The pin functions of the $\mathrm{Z53C80}$ are shown in Figure 2. The device is housed in a 48 -pin DIP (Figure 3) and a 44-pin PLCC package (Figure 4).*

Note: All Signals with a preceding front slash, ${ }^{7 / ",}$, are active Low, e.g.: B / W (WORD is active Low); /B/W (BYTE is active Low, only).
*Note: Power connections follow
Conventional descriptions below

Connection	Circuit	Device
Power	V_{CC}	V_{DD}
Ground	GND	V_{SS}

GENERAL DESCRIPTION (Continued)

Figure 1. Block Diagram

Figure 2. Pin Functions

Figure 3. 40-Pin DIP Assignments

Figure 4. 44-Pin PLCC Pin Assignments

PIN DESCRIPTIONS

Microprocessor Bus

A2-A0. Address Lines (Input). Address lines are used with /CS, /IOR, and /IOW to address all internal registers.
/CS. Chip Select (Input, Active Low). This signal, in conjuction with /IOR or /IOW, enables the internal registers selected by A2-A0, to be read from or written to.
/DACK. DMA Acknowledge (Input, Active Low). /DACK resets $D R Q$ and selects the data register for input or output data transfers. /DACK is used by DMA controller instead of /CS.

DRQ. DMA Request (Output, Active High). DRQ indicates that the data request is ready to be read or written. DRQ is asserted only if DMA mode is set in the Command Register. DRQ is cleared by /DACK.

D7-D0. DataLines(Bidirectional, three-state, ActiveHigh). Bidirectional microprocessor data bus lines.
/EOP. End of Process (Input, Active Low). /EOP is used to terminate a DMA transfer. If asserted during a DMA cycle, the current byte will be transferred, but no additional bytes will be requested.
/IOR. I/ORead(Input, Active Low). /IOR is used in conjunction with /CS and A2-A0 to read an internal register. It also selects the Input Data Register when used with /DACK.
/IOW. I/O Write (Input, Active Low). /IOW is used in conjunction with /CS and A2-A0 to write to an internal register. It also selects the Output Data Register when used with /DACK.

IRQ. Interrupt Request (Output, Active High). IRQ alerts a microprocessor of an error condition or an event completion.

READY. Ready (Output, Active High). READY is used to control the speed of Block Mode DMA transfers. This signal goes active to indicate that the chip is ready to send/ receive data and remains Low after a transfer until the last byte is sent or until the DMA Mode bit is reset.
/RESET. Reset (Input, Active Low). /RESET clears all registers. It has no effect upon the SCSI /RST signal.

SCSI Interface Signals

The following signals are all bi-directional, active low, open-drain signals with 48 mA sink capability. All pins interface directly with the SCSI.Bus.

IACK. Acknowledge (Bidirectional, Open-drain, Active Low). Driven by an Initiator, /ACK indicates an acknowledgment for a/REQ//ACK data-transfer handshake. In the Target role, /ACK is received as a response to the /REQ Signal.

IATN. Attention (Bidirectional, Open-drain, Aclive Low). Driven by an Initiator, received by the Target, /ATN indicates an Attention condition.
/BSY. Busy (Bidirectional, Open-drain, Active Low). This signal indicates that the SCSI Bus is being used and can be driven by both the Initiator and the Target device.

C//D. Control//Data. (Bidirectional, Open-drain). Driven by the Target and received by the Initiator, C//D indicates whether Control or Data information is on the Data Bus. True indicates Control.
/DB7-/DB0, /DBP. Data Bus Bits, Data Bus Parity Bit (Bidirectional, Open-drain). These eight data bits (/DB7-/ DB0), plus a parity bit (/DBP) form the data bus. /DB7 is the most significant bit (MSB) and has the highest priority during the Arbitration phase. Data parity is odd. Parity is always generated and optionally checked. Parity is not valid during Arbitration.

I//O. Input//Output (Bidirectional, Open-drain). I//O is a signal driven by a Target which controls the direction of data movement on the SCSI bus. True indicates input to the Initiator. This signal is also used to distinguish between Selection and Reselection phases.
/MSG. Message (Bidirectional, Open-drain, Active Low). This signal is driven by the Target during the Message phase. The signal is received by the Initiator.
/REQ. Request (Bidirectional, Open-drain, Active I. ow). Driven by a Target and received by the Initiator, this signal indicates a request for a /REQ//ACK data-transfer handshake.
/RST. SCSI Bus Reset (Bidirectional, Open-drain, Aclive Low). This signal indicates a SCSI Bus Reset condition.
/SEL. Select (Bidirectional, Open-drain, Active Low). This signal is used by an Initiator to select a Target, or by a Target to reselect an Initiator.

APPLICATION NOTES AND TECHNICAL ARTICLES

Q Zill
 ON-CHIP OSCILLATOR DESIGN

0ESIGN AND BUILD RELIABLE, COST-EFFECTIVE,ON-CHIP OSCILLATOR CIRCUITS THAT ARE TROUBLE FREE. PUTTING OSCILLATOR THEORY INTO A PRACTICAL DESIGN MAKES FOR A MORE DEPENDABLE CHIP.

INTRODUCTION

This Application Note (App Note) is written for designers using Zilog Integrated Circuits with on-chip oscillators; circuits in which the amplifier portion of a feedback oscillator is contained on the IC. This App Note covers common theory of oscillators, and requirements of the circuitry (both internal and external to the IC) which comes from the theory for crystal and ceramic resonator based circuits.

Purpose and Benefits

The purposes and benefits of this App Note include:

1. Providing designers with greater understanding of how oscillators work and how to design them to avoid problems.
2. To eliminate field failures and other complications resulting from an unawareness of critical on-chip oscillator design constraints and requirements.

Problem Background

Inadequate understanding of the theory and practice of oscillator circuit design, especially concerning oscillator startup, has resulted in an unreliable design and subsequent field problems (See on page 10 for reference materials and acknowledgements).

OSCILLATOR THEORY OF OPERATION

The circuit under discussion is called the Pierce Oscillator (Figures 1, 2). The configuration used is in all Zilog on-chip oscillators. Advantages of this circuit are low power consumption, low cost, large output signal, low power level in
the crystal, stability with respect to V_{cc} and temperature, and low impedances (not disturbed by stray effects). One drawback is the need for high gain in the amplifier to compensate for feedback path losses.

Figure 1. Basic Circuit and Loop Gain

Figure 2. Zilog Pierce Oscillator

OSCILLATOR THEORY OF OPERATION (Continued)

Pierce Oscillator (Feedback Type)

The basic circuit and loop gain is shown in Figure 1. The concept is straightforward; gain of the amplifier is $A=\mathrm{Vo} / \mathrm{Ni}$. The gain of the passive feedback element is $\mathrm{B}=\mathrm{Vi}$ No. Combining these equations gives the equality $A B=1$. Therefore, the total gain around the loop is unity. Also, since the gain factors A and B are complex numbers, they have phase characteristics. It is clear that the total phase shift around the loop is forced to zero (i.e., 360 degrees), since $V_{\text {IN }}$ must be in phase with itself. In this circuit, the amplifier ideally provides 180 degrees of phase shift (since it is an inverter). Hence, the feedback element is forced to provide the other 180 degrees of phase shift.

Additionally, these gain and phase characteristics of both the amplifier and the feedback element vary with frequency. Thus, the above relationships must apply at the frequency of interest. Also, in this circuit the amplifier is an active element and the feedback element is passive. Thus, by definition, the gain of the amplifier at frequency must be greater than unity, if the loop gain is to be unity.

The described oscillator amplifies its own noise at startup until it settles at the frequency which satisfies the gain/ phase requirement $A B=1$. This means loop gain equals one, and loop phase equals zero(360 degrees). To do this,
the loop gain at points around the frequency of oscillation must be greater than one. This achieves an average loop gain of one at the operating frequency.

The amplifier portion of the oscillator provides gain >1 plus 180 degrees of phase shift. The feedback element provides the additional 180 degrees of phase shift without attenuating the loop gain to <1. To do this the feedback element is inductive, i.e., it must have a positive reactance at the frequency of operation. The feedback elements discussed are quartz crystals and ceramic resonators.

Quartz Crystals

A quartz crystal is a piezoelectric device; one which transforms electrical energy to mechanical energy and vice versa. The transformation occurs at the resonant frequency of the crystal. This happens when the applied AC electric field is sympathetic in frequency with the mechanical resonance of the slice of quartz. Since this characteristic can be made very accurate, quartz crystals are normally used where frequency stability is critical. Typical frequency tolerance is .005 to 0.3%.

The advantage of a quartz crystal in this application is its wide range of positive reactance values (i.e., it looks inductive) over a narrow range of frequencies (Figure 3).

* fs - fp is very small (approximately 300 parts per million)

Figure 3. Series vs. Parallel Resonance

However, there are several ranges of frequencies where the reactance is positive; these are the fundamental (desired frequency of operation), and the third and fifth mechanical overtones (approximately 3 and 5 times the fundamental frequency). Since the desired frequency range in this application is always the fundamental, the overtones must be suppressed. This is done by reducing the loop gain at these frequencies. Usually, the amplifier's gain roll off, in combination with the crystal parasitics and load capacitors, is sufficient to reduce gain and prevent oscillation at the overtone frequencies.

The following parameters are for an equivalent circuit of a quartz crystal (Figure 4):

L - motional inductance (typ $120 \mathrm{mH} @ 4 \mathrm{MHz}$)
C - motional capacitance (typ . 01 pf @ 4 MHz)
R - motional resistance (typ 36 ohm @ 4 MHz)
Cs - shunt capacitance resulting from the sum of the capacitor formed by the electrodes (with the quartz as a dielectric) and the parasitics of the contact wires and holder (typ 3 pf @ 4 MHz).

The series resonant frequency is given by:
$F s=1 /(2 \pi \times$ sqrt of $L C)$,
where Xc and XI are equal.
Thus, they cancel each other and the crystal is then R shunted by Cs with zero phase shift.

The parallel resonant frequency is given by:
$\mathrm{Fp}=1 /[2 \pi \times$ sqrt of $L(\mathrm{C} \mathrm{Ct} / \mathrm{C}+\mathrm{Ct})]$,
where: $\mathrm{Ct}=\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{s}}$

Quartz Equivalent Circuit

Symbolic Representation

Figure 4. Quartz Oscillator

Series vs. Parallel Resonance. There is very little difference between series and parallel resonance frequencies (Figure 3). A series resonant crystal (operating at zero phase shift) is desired for non-inverting amplifiers. A parallel resonant crystal (operating at or near 180 degrees of phase shift) is desired for inverting amps. Figure 3 shows that the difference between these two operating modes is small. Actually, all crystals have operating points in both serial and parallel modes. A series resonant circuit will NOT have load caps C1 and C2. A data sheet for a crystal designed for series operation does not have a load cap spec. A parallel resonant crystal data sheet specifies a load cap value which is the series combination of C1 and C2. For this App Note discussion, since all the circuits of interest are inverting amplifier based, only the parallel mode of operation is considered.

OSCILLATOR THEORY OF OPERATION

Ceramic Resonators

Ceramic resonators are similar to quartz crystals, but are used where frequency stability is less critical and low cost is desired. They operate on the same basic principle as quartz crystals as they are piezoelectric devices and have a similar equivalent circuit. The frequency tolerance is wider (0.3 to 3%), but the ceramic costs less than quartz.

Figure 5 shows reactance vs. frequency and Figure 6 shows the equivalent circuit.

Typical values of parameters are $\mathrm{L}=.092 \mathrm{mH}, \mathrm{C}=4.6 \mathrm{pf}$, $\mathrm{R}=7$ ohms and $\mathrm{Cs}=40 \mathrm{pf}$, all at 8 MHz . Generally, ceramic resonators tend to start up faster but have looser frequency tolerance than quartz. This means that external circuit parameters are more critical with resonators.

Figure 5. Ceramic Resonator Reactance

Figure 6. Gain Measurement

Load Capacitors

The effects/purposes of the load caps are:
Cap C2 combined with the amp output resistance provides a small phase shift. It also provides some attenuation of overtones.

Cap C1 combined with the crystal resistance provides additional phase shift.

These two phase shifts place the crystal in the parallel resonant region of Figure 3.

Crystal manufacturers specify a load capacitance number. This number is the load seen by the crystal which is the series combination of C1 and C2, including all parasitics (PCB and holder). This load is specitied for crystals meant to be used in a parallel resonant configuration. The effect on startup time; if C 1 and C 2 increase, startup time increases to the point at which the oscillator will not start. Hence, for fast and reliable startup, over manufacture of large quantities, the load caps should be sized as low as possible without resulting in overtone operation.

Amplifier Characteristics

The following text discusses open loop gain vs. frequency, open loop phase vs. frequency, and internal bias.

Open Loop Gain vs. Frequency over lot, vcc, Processs Split, and Temp. Closed loop gain must be adequate to start the oscillator and keep it running at the desired frequency. This means that the amplifier open loop gain must be equal to one plus the gain required to overcome the losses in the feedback path, across the frequency band and up to the - frequency of operation. This is over full process, lot, V_{cc}, and temperature ranges. Therefore, measuring the open loop gain is not sufficient; the losses in the feedback path (crystal and load caps) must be factored in.

Open Loop Phase vs. Frequency. Amplifier phase shift at and near the frequency of interest must be 180 degrees plus some, minus zero. The parallel configuration allows for some phase delay in the amplifier. The crystal adjusts to this by moving slightly down the reactance curve (Figure 3).

Internal Bias. Internal to the IC, there is a resistor placed from output to input of the amplifier. The purpose of this feedback is to bias the amplifier in its linear region and to provide the startup transition. Typical values are 1 M to 20 M ohms.

PRACTICE: CIRCUIT ELEMENT AND LAY OUT CONSIDERATIONS

The discussion now applies prior theory to the practical application.

Amplifier and Feedback Resistor

The elements of the circuit, internal to the IC, include the amplifier, feedback resistor, and output resistance. The amplifier is modeled as a transconductance amplifier with a gain specified as $I_{\text {our }} / V_{\mathbb{I N}}$ (amps per volt).

Transconductance/Gain. The loop gain $\mathrm{AB}=\mathrm{gm} \times \mathrm{Z} 1$, where gm is amplifier transconductance (gain) in amps/ volt and $Z 1$ is the load seen by the output. $A B$ must be greater than unity at and about the frequency of operation to sustain oscillation.

Gain Measurement Circuit. The gain of the amplifier can be measured using the circuits of Figures $6 \& 7$. This may be necessary to verify adequate gain at the frequency of interest and in determining design margin.

Gain Requirement vs. Temperature, Frequency and Supply Voltage. The gain to start and sustain oscillation (Figure 8) must comply with:
$g m>4 \pi^{2} f^{2} R q \quad C_{\text {in }} C_{\text {out }} t \times M$
where: M is a quartz form factor $=\left(1+C_{\text {out }} / C_{\text {in }}+C_{\text {ouI }} / C_{\text {out }}\right)^{2}$
Output Impedance. The output impedance limits power to the XTAL and provides small phase shift with load cap C2.

Figure 7. Transconductance (gm) Measurement

* Inside chip, feedback resistor biases the amplifier in the high gm region.
** External components typically: $\mathrm{CIN}=\mathrm{COUT}=30$ to 50 pf (add 10 pf pin cap).

Figure 8. Quartz Oscillator Configuration

Load Capacitors

In the selection of load caps it is understood that parasitics are always included.

Upper Limits. If the load caps are too large, the oscillator will not start because the loop gain is too low at the operating frequency. This is due to the impedance of the load capacitors. Larger load caps produce a longer startup.

Lower Lirnits. If the load caps are too small, either the oscillator will not start (due to inadequate phase shift around the loop), or it will run at a 3rd, 5 th, or 7 th overtone frequency (due to inadequate suppression of higher overtones).

Capacitor Type and Tolerance. Ceramic caps of $\pm 10 \%$ tolerance should be adequate for most applications.

Ceramic vs. Quartz. Manufacturers of ceramic resonators generally specify larger load cap values than quartz crystals. Quartz C is typically 15 to 30 pf and ceramic typically 100pf.

Summary. For reliable and fast startup, capacitors should be as small as possible without resulting in overtone operation. The selection of these capacitors is critical and all of the factors covered in this note should be considered.

Feedback Element

The following text describes the specific parameters of a typical crystal:

Drive Level. There is no problem at frequencies greater than 1 MHz and $V_{c c}=5 \mathrm{~V}$ since high frequency $A T$ cut crystals are designed for relatively high drive levels (5-10 mw max).

A typical calculation for the approximate power dissipated in a crystal is:

$$
P=2 R\left(\pi \times f \times C \times V_{c C}\right)^{2}
$$

Where. $\mathrm{R}=$ crystal resistance of 40 ohms, $\mathrm{C}=\mathrm{C} 1+\mathrm{Co}=$ 20 pf . The calculation gives a power dissipation of 2 mW at 16 MHz .

Series Resistance. Lower series resistance gives better performance but costs more. Higher R results in more power dissipation and longer startup, but can be compensated by reduced C1 and C2. This value ranges from 200 ohms at 1 MHz down to 15 ohms at 20 MHz .

Frequency. The frequency of oscillation in parallel resonant circuits is mostly determined by the crystal (99.5\%).

The external components have a negligible effect (0.5%) on frequency. The external components ($\mathrm{C} 1, \mathrm{C} 2$) and layout are chosen primarily for good startup and reliability reasons.

Frequency Tolerance (initial temperature and aging). Inilial tolerance is typically $\pm .01 \%$. Temperature tolerance is typically $\pm .005 \%$ over the temp range (-30 to +100 degrees C). Aging tolerance is also given, typically $\pm .005 \%$.

Holder. Typical holder part numbers are HC6, 18, 25, 33, 44.

Shunt Capacitance. (Cs) typically $<7 \mathrm{pf}$.
Mode. Typically the mode (fundamental, 3rd or 5 th overtone) is specified as well as the loading configuration (series vs. parallel).

The ceramic resonator equivalent circuit is the same as shown in Figure 4. The values differ from those specified in the theory section. Note that the ratio of L / C is much lower than with quartz crystals. This gives a lower Q which allows a faster startup and looser frequency tolerance (typically $\pm 0.9 \%$ over time and temperature) than quartz.

Layout

The following text explains trace layout as it affects the various stray capacitance parameters (Figure 9).

Traces and Placement. Traces connecting crystal,caps, and the IC oscillator pins should be as short and wide as possible (this helps reduce parasitic inductance and resistance). Therefore, the components (caps and crystal) should be placed as close to the oscillator pins of the IC as possible.

Grounding/Guarding. The traces from the oscillator pins of the IC should be guarded from all other traces (clock, V_{CC}, address/data lines) to reduce crosstalk. This is usually accomplished by keeping other traces away from the oscillator circuit and by placing a ground ring around the traces/components (Figure 9).

Measurement and Observation

Connection of a scope to either of the circuit nodes is likely to affect operation because the scope adds $3-30 \mathrm{pf}$ of capacitance and $1 \mathrm{M}-10 \mathrm{Mohms}$ of resistance to the circuit.

PRACTICE: CIRCUIT ELEMENT AND LAY OUT CONSIDERATIONS (continued)

Indications of an Unreliable Design

There are two major indicators which are used in working designs to determine their reliability over full lot and temperature variations. They are:

Start Up Time. If start up time is excessive, or varies widely from unit to unit, there is probably a gain problem. $\mathrm{C} 1 / \mathrm{C} 2$ needs to be reduced; the amplifier gain is not adequate at frequency, or crystal Rs is too large.

Output Level. The signal at the amplifier output should swing from ground to V_{cc}. This indicates there is adequate gain in the amplifier. As the oscillator starts up, the signal amplitude grows until clipping occurs, at which point, the loop gain is effectively reduced to unity and constant oscillation is achieved. A signal of less than $2.5 \mathrm{Vp}-\mathrm{p}$ is an indication that low gain may be a problem. Either C1/C2 should be made smaller or a low R crystal should be used.

Board Design Example (Top View)

- To prevent induced noice, the crystal and load capacitors should be physically located as close to the LSI as possible.
- Signal lines should not run parallel to the clock oscillator inputs. In particullar, the clock input circuitry and the system clock output (pin 64) should be separated as much as possible.
- $V_{c c}$ power lines should be separated from the clock oscillator input circuitry.
- Resistivity between XTAL or EXTAL and the other pin should be greater than $10 \mathrm{M} \Omega$

Figure 9. Circuit Board Design Rules

SUMMARY

Understanding the Theory of Operation of oscillators, combined with practical applications, should give designers enough information to design reliable oscillator circuits. Proper selection of crystals and load capacitors,
along with good layout practices, results in a cost effective, trouble free design. Reference the following text for Zilog products with on-chip oscillators and their general/ specific requirements.

ZILOG PRODUCT USING ON-CHIP OSCILLATORS

Zilog products that have on-chip oscillators:
Z8 ${ }^{\otimes}$ Family: All
Z80*: C01, C11, C13, C15, C50, C90, 180, 181, 280
Z8000*: 8581
Communications Products: SCC ${ }^{\text {u }}$, ISCC $^{\text {ru }}$, ESCC ${ }^{\text {n }}$

ZILOG CHIP PARAMETERS

The following are some recommendations on values/parameters of components for use with Zilog on-chip oscillators: These are only recommendations; no guarantees are made by performance of components outside of Zilog ICs. Finally, the values/parameters chosen depend on the application. This App Note is meant as a guideline to making these decisions. Selection of optimal components is always a function of desired cost/performance tradeoffs.

Note: All load capacitance specs include stray capacitance.

Z8 Family

General Requirements:
Crystal Cut: AT cut, parallel resonant, fundamental mode.
Crystal Co: <7 pf for all frequencies.
Crystal Rs: < 100 ohms for all frequencies.
Load Capacitance: 10 to $22 \mathrm{pf}, 15 \mathrm{pf}$ typical.
Specific Requirements:
8604: xtal or ceramic, $f=1-8 \mathrm{MHz}$.
8600/10: $\mathrm{f}=8 \mathrm{MHz}$.
$8601 / 03 / 11 / 13: f=12.5 \mathrm{MHz}$.
8602: xtal or ceramic, $f=4 \mathrm{MHz}$.
$8680 / 81 / 82 / 84 / 91: f=8,12,16, \mathrm{MHz}$.
8671: $\mathrm{f}=8 \mathrm{MHz}$.
8612: $\mathrm{f}=12,16 \mathrm{MHz}$.
86C08/E08: $\mathrm{f}=8,12 \mathrm{MHz}$.
86C09/19: xtal/resonator, $\mathrm{f}=8 \mathrm{MHz}, \mathrm{C}=47 \mathrm{pf}$ max.
$86 \mathrm{COO} / 10 / 20 / 30: \mathrm{f}=8,12,16 \mathrm{MHz}$.
$86 \mathrm{C} 11 / 21 / 91 / 40 / 90: f=12,16,20 \mathrm{MHz}$.
86C27/97: $\mathrm{f}=4,8 \mathrm{MHz}$.
$86 \mathrm{C} 12: \mathrm{f}=12,16 \mathrm{MHz}$.
Super8 (all): $f=1-20 \mathrm{MHz}$.

Z8000 Family (8581 only)

General Requirements:
Crystal cut: AT cut, parallel resonant, fundamental mode.
Crystal Co: $<7 \mathrm{pf}$ for all frequencies.
Crystal Rs: < 150 ohms for all frequencies.
Load capacitance: 10 to 33 pf.

Z80 Family

General Requirements:
Crystal cut: AT cut, parallel resonant, fundamental mode. Crystal Co: < 7 pf for all frequencies.
Crystal Rs: < 60 ohms for all frequencies.
Load capacitance: 10 to 22 pf.
Specific Requirements:
84C01: $\mathrm{C} 1=22 \mathrm{pf}, \mathrm{C} 2=33 \mathrm{pf}(\mathrm{typ}) ; \mathrm{f}=\mathrm{DC}$ to 10 MHz . 84C90: DC to 8 MHz . 84C50: same as 84C01. $84 \mathrm{C} 11 / 13 / 15: \mathrm{C} 1=\mathrm{C} 2=20-33 \mathrm{pf} ; \mathrm{f}=6-10 \mathrm{MHz}$ 80180: $\mathrm{f}=12,16,20 \mathrm{MHz}$ (Fxtal $=2 \times$ sys. clock). 80280: $\mathrm{f}=20 \mathrm{MHz}$ (Fxtal $=2 \times$ Fsysclk). 80181: TBD.

ZILOG CHIP PARAMETERS (Continued)

Communications Family

General Requirements:
Crystal cut: AT cut, parallel resonant, fundamental mode. Crystal Co: <7 pf for all frequencies.
Crystal Rs: < 150 ohms for all frequencies.
Load capacitance: 20 to 33 pf.
Frequency: cannot exceed PCLK.

Specific Requirements:
$8530 / 85 \mathrm{C} 30 / \mathrm{SCC}: \mathrm{f}=1-6 \mathrm{MHz}(10 \mathrm{MHz}$ SCC $), 1-8.5 \mathrm{MH} \mathrm{lz}$ (8 MHz SCC).
85130/ESCC ($16 / 20 \mathrm{MHz}$), $\mathrm{f}=1-16.384 \mathrm{MHz}$. 16C35/ISCC: $f=1-10 \mathrm{MHz}$.

REFERENCES MATERIALS AND ACKNOWLEDGEMENTS

Intel Corp., Application Note AP-155, "Oscillators for Micro Controllers", order \#230659-001, by Tom Williamson, Dec. 1986.

Motorola 68HC11 Reference Manual.
National Semiconductor Corp., App Notes 326 and 400.

Zilog, Inc., Steve German; Figures 4 and 8.
Zilog, Inc., Application Note, "Design Considerations Using Quartz Crystals with Zilog Components" - Oct. 1988.

Data Sheets; CTS Corp. Knights Div., Crystal Oscillators.

Z8 Low Cost Thermal Printer

> Using the Z8 microcontroller to control thermal printers offers flexibility and performance at low cost

Introduction

Compact and low cost thermal printers are popular for many applications: point of sale equipment; medical and industrial instrumentation; micro-fax and microprinters for the consumer markets, and other applications. Each application is unique with different operating environments, operator skill levels and performance requirements. The Z8 microcontroller (Z86E21) is used as a common controller in this application example. It provides wide flexibility and performance potential in both hardware and software. This Application Note provides design engineers with a window to view how the Z8 interfaces with thermal printers, providing a platform from which they can customize their designs.

Mechanical Considerations

Thermal printers have several common, yet important, attributes. Most important, is a thermal print head which has a number of resistive heating elements. When heated, these elements produce an image on heat sensitive paper. Secondly, thermal printers must advance the print head across the paper media. It must make provisions to advance the paper after the head has traversed the width of the paper. Depending upon the cost and complexity of the thermal printer used, the mechanism for paper advance can be an independent motor and gear drive assembly, or simply a ratchet driven line feed for every printhead carriage return. One disadvantage of the latter is that it will not print bidirectionally.

Additionally, there are mechanical features which enable interconnect to the controller circuit. Also, provisions for securing the assembly to a case and paper cutter. The printer must supply sufficient pressure on the paper, sandwiched between the platen and roller. Then, the paper must be torn across a fixed, serrated cutter bar. Figure 1 shows a typical thermal printer. Note the threaded, head feed screw attached via a gear
system to stepper motor \#1. Motor \#2 advances the paper as required by rotating the platen through a gear drive.

Electrical Considerations

The key elements to controlling thermal printers are in properly synchronizing the movement of the print head and paper to the required application. Also, as in any closed loop control system, the printer must deliver a status signal back to the controller. Since paper movement is continuous, it has no electronic analog of "begin and end", except for "paper out" or "paper jammed" conditions. To close the loop, thermal printers define a position for the print head as "home", and give an active low feedback status when "home." Normally, this is at the far left of the carriage span.

Four-phase stepper motors are commonly used to transport the print head. If the printer is to print bidirectionally, a second stepper motor is used for paper advance. The equivalent circuit for the four-phase stepper motor, and the required support components are shown in Figure 2. The four diodes are used to discharge the inductive kick which is generated when the transistors are switched off. The Zener diode provides threshold for this action. Table 1 shows typical phase drive sequences for clockwise and counter clockwise rotational motion of a four-phase stepper motor (note equivalent Hex code values).

Table 1. Typical Phase Drive Sequences				
Clockwise		Counter Clockwise		
Step	Phases	Hex Code	Step	Phases
			Hex Code	
1	1101	C	1	
2	0110	6	2	011
3	0011	3	3	3
4	1001	9	4	1100

Thermal print heads are arranged in a typical column of 7,8 , or 9 elements. Each element is called a dot. Figure 3 shows the arrangement of an eight dot head.

Figure 1. Thermal Printer

Since the print head traverses the width of the paper on the head feed screw, the electronic signals required to operate the head are delivered via a flexible printed circuit (typically copper traces sandwiched between mylar). Each dot has a closely controlled value of resistance. This resistance ranges between 14 and 18 ohms in compact thermal printers. Heat is generated by a given dot through I ${ }^{2} R$ dissipation.

A dot has a maximum applied energy specification and a recommended or rated specification. Printer manufacturers describe this energy in Joules, or more closely, milli-joules (mj). One joule per second is one watt. Energy is usually expressed with a time base. Understanding this concept is essential in thermal printer design. The print circuit must not exceed the energy rating of a dot. Simultaneously, it must control the duration (dissipation) to ensure proper print quality and protection of the print head elements (dots).

For example, a dot has a resistance of 16 ohms , a rated energy spec of 2.10 mj , and a maximum energy spec of 2.52 mj , at 5 Volts. The pulse width (time) required to apply the rated energy in milliseconds is given by the equation in Figure 4.

$$
t=R^{*} E / V 2
$$

Where: R = Head Resistance (Ohms)
$\mathrm{E}=$ Applied Energy (mj)
$\mathrm{V}=\mathrm{Voltage}$ (Volts)
$\mathrm{t}=$ Pulse Width (ms)
Figure 4. Thermal Energy Equation
The Thermal Energy Equation yields a required pulse width of 1.34 ms to apply the rated energy of the head. The value of E, the applied energy in the equation, needs to reflect the effects that ambient temperature fluctuations induce. The equation to compensate the applied energy used in deriving pulse width is given by Figure 5.

$$
\begin{aligned}
\mathrm{E} & =\mathrm{E}_{0}\left(1+\mathrm{T}_{0}-\mathrm{T} / 100\right) \\
\text { Where: } & \mathrm{E}=\text { Applied Energy }(\mathrm{mj}) \\
\mathrm{E}_{0} & =\text { Rated Energy }(\mathrm{mj}) \\
\mathrm{T}_{0} & =24^{\circ} \mathrm{C} \\
\mathrm{~T} & =\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Figure 5. Ambient Temp Compensation Equation

Figure 2. Equivalent Circuit for Four Phase Stepper Motor

Units $=\mathbf{m m}$.
Figure 3. Head Arrangement - Eight Dot

Clearly from Figure 5, as ambient temperature decreases, supplied energy must be increased. Thus, the pulse width is increased to maintain print quality

Printing a Character

Again, the key element to controlling a thermal printer is synchronizing the head movement to the print appli-
cation. Figure 6 is a timing chart that shows the combination of the head feed motor steps with the the applied energy pulses in printing the character two (2).

Using Figure 6 and starting from the left (Step 1), no print elements are activated. In Step 2, the print head advances from its previous position and dots two and eight are activated. This "step then print...step then print...etc." process is repeated until the character is

Figure 6. Printing the Character " 2 "
complete. If each step took 4 ms , this character would be complete in five steps, or 20 ms .

Z8 Controller Application

Using the Z8 microcontroller (Z86E21) for control of low cost thermal printers offers the user good flexibility and performance potential. The Schematic for an 8-dot, dual stepper motor control interface to an Z86E21 is shown in Figure 7.

Ports 0 and 1 are used on the Z86E21. Low cost 18-pin, bipolar, octal peripheral array drivers (ULN2801A) are used to interface TTL logic signals from the Z86E21 to the printer. The outputs from the ULN2801As are capable of sinking the 500 mA currents that the stepper motor windings source. Additionally, an active dot can typically source 300 to 400 mA of current. The equivalent circuit of the ULN2801A is shown in Figure 8. Note the inclusion of discharge diodes and the use of Zener diodes discussed in the earlier section (Figure 7).

When the print head reaches the far left position of the carriage travel, it is in the home position. The home pin is actively low when this status is present (Figure 7). The 0.1 uf capacitor (C1) debounces the event. The 2.2K resistor provides an RC time constant and current limit. The 1 K resistor is a pull-up for the Z86E21 input. In this example, a home status produces a falling edge interrupt. The 5 K port pull-ups provide sufficient bias current to the bipolar inverters of the ULN2801As.

Print Head Protection

Depending upon the application environment and operating conditions, the designer must consider to what degree he provides print head protection. Bad resets, power fails, ESD jolts, and printing errors can produce potential conditions whereby the headis left on too long. Depending on the maximum energy rating, the heads can be permanently damaged after only seconds of carrying current continuously. The designer should consider these different potentially dangerous scenarios and make arrangements to avoid/manage them. One helpful design is to install a MOSFET in the ULN2801A to VCC path. Then, a Watchdog chip can be used to switch off the MOSFET in the event that the Z86E21 has lost its way due to upset. This then removes power from the print circuit.

Initializing and Print Coding Flowcharts

The coding necessary to make this interface operate is shown in the Flowchart of Figure 9A. First, the Z86E21 is initialized and ports 0 and 1 are set to zero. Counter/ Timer one of the Z 8 is used to provide a main task interrupt clock of 100 us. This task clock yields the millisecond order signals for incrementing stepper motors and activating thermal printer heads with the proper accuracy. Continuing the flow, the print head carriage is "homed." To do this, the home status is first polled for a low. Then, actions are taken to move the head in order to generate a falling edge interrupt for IRQ2, Pin 32.

Once home status is secure, Figure 9B shows typical print coding flow. A character is available once it has reached an internal FIFO stack in the $Z 8$ register file. This FIFO stack is maintained by the interrupts which handle the received characters on the serial or parallel interface. The ASCII character is then converted to an index address in the ROM where the bit map for that particular character is located. This bit map is then printed one column at a time, sequentially incrementing the head position one step.

Z86E21 Flexibility

The Z86E21 further complements this application when considering the host interface possibilities available to the designer. The Z8 has UART on board to easily implement an RS232 style serial interface to a host.
Note that the $\mathrm{Z8}$ is only required to receive data, thus RxD is the only active UART pin. Flow control comes from P31, where an active high condition flags printer not ready (Figure 10).

Another possible parallel interface is the Centronics. With 32 potential I/O signals on the Z8, 17 of which are used for the printer interface, only a subset of the Centronics interface can be adapted directly to the Z8. The designer could adapt full interfaces if required by the application, through addition al logic (Table 2).

The $Z 8$ has two-wire handshake logic built-in, greatly simplifying data flow. The stars in Table 2 show the boundary between a simple parallel interface, and a complex one.

Figure 7. Z86E21 to 8-Dot Dual Stepper Motor Control Interface

Figure 8. ULN2801A Equivalent Circuit

Table 2. The Parallel Interface			
\#	Name	Transmitter	Function
1	ISTB	Host	Active Low () indicates valid data
2	D0	Host	Parallel data byte
3	D1	Host	
4	D2	Host	
5	D3	Host	
6	D4	Host	
7	D5	Host	
8	D6	Host	
9	D7	Host	1
10	IACK	Printer	Active Low ($)$ indicates data received
11	BSY	Printer	off line, error, or handling data
12	PE	Printer	Printer out of paper
13	SLCT	Printer	Active high, printer is on, and selected
14	/ALF	Host	Auto Line Feed
15	/INT	Host	Reset
16	/ERR	Printer	General Machine Error
17	/SLN	Host	Select-in, from from host

Figure 9A. Initialized Coding Flowchart

Figure 9B. Print Coding Flowchart

Figure 10. Z8 Implementation of a RS232 Interface.

Figure 10 shows the parallel interface. Data lines are pulled up to improve drive characteristics on the bus. The /STB signal easily maps into the Z8 /DAV2 function, where a falling edge generates a service interrupt for the current valid data byte. The BSY strobe output from the Z8 closely matches the RDY2 function. Refer to the Z 8 input handshake functions for further details (Z8 Family Design Handbook - 03- 8275). The /ACK strobe can be implemented via software in the character interrupt subroutine. Figure 11 shows the ideal handshake timing that the software implements.

Conclusion

Hopefully, this Application Note has been helpful in the area of thermal printer design. It condenses a lot of information into a fast format package. It is recommended that if you pursue a $Z 8$ design with a thermal printer, use this document to complement the OEM printer spec. If there are questions, please refer to the back of this document for your local Zilog Sales office. A resident Field Application Engineer is available to further discuss your application.

Figure 11. Parallel Handshake Timing

EXPAND THE I/O PORTS IN YOUR Z8 APPLICATIONS

A dd Extra 10 Ports to Your Z8 Applications - Cost Effect ively

INTRODUCTION

Certain Z8 applications require extra l/O ports. Some engineers use the 74LS374 for expanded output ports and the 74LS244 for expanded input ports. The advantage of using these TTLs is low cost. The disadvantage is inflexibility (for example: you have to configure the port direction by hardware). This Application Note explains the use of the Z80 PIO to expand the I/O ports in your Z8 applications.

HARDWARE

The Z8691 circuit diagram interface with the Z80 PIO is shown in Figure 2. In this application, the Z80 PIO interrupts and handshakes are not used. Also, because the Z8 does not provide M1 signals to the PIO, PIO pin 37 is pulled high. The /RD (Read Cycle Status) and / IORQ (Input/Output Request) signals are composed of /CE and R/W by using U5 (74LS04) and U6 (74LS32).

The address of the PIO in this application is \%1000\%1FFF (HEX). Ports A and B of the PIO are selected by $A 0$ (Address line) $=$ " 0 " and $A 0=1$, respectively. The Data Mode or Control Mode of the PIO can be selected by A1 = " 0 " or A1 = " 1 ", respectively. Table 1 shows the relationship between $A 0, A 1, A / / B$ and $C / / D$.

Table 1. Address/Port Relationships

A1	A0	STATUS
0	0	Port A Data Mode
1	0	Port A Control Mode
0	1	Port B Data Mode
1	0	Port B Control Mode

The clock source is taken from the Z8's 8 MHz crystal out signal. Pin 6 of U6 provides the /IORQ signal which is about 50 ns behind/CE. Pin 11 of U6 provides/RD which is about 61 ns behind /CE (Figure 1).

Figure 1. Interrupt/Read Timing

SOFTWARE

The Z80 PIO ports can be programmed to operate in four modes: Output (Mode 0), Input (Mode 1), Bidirectional (Mode 2) and Bit Control (Mode 3). These four modes have different program sequencing (Page 85 of the Z80 Family Data Book January, 1989 describe the details). This document uses Mode 3 as an example. Program 1 (Figure 3) shows the initialization of Mode 3.

DEVELOPMENT TOOL APPLICATIONS

The following text and illustrations show hardware/ software parameter applications as a development tool for expandable ports.

Hardware Applications

Since the ICE (In Circuit Emulation) chip of the CCP family is not available, it is very difficult to emulate the Z86C30/40 by using the Z86C90. Because the Z86C90 is configured with Port 1 as an Address/Data Bus and Port 0 as an Address Bus, the chip still needs two ports (Port 0 and Port 1) for Z86C40 emulation. Figure 6 illustrates the PIO application for the Z86C90 to emulate the missing ports (Port $\mathrm{A}=$ Port 0 and Port $\mathrm{B}=$ Port 1).

Four methods are proposed to emulate the Z86C30/ C40 by using this PIO application:

1. EPROM debugging method

Build a PIO board like Figure 6. Burn the application program into an EPROM. Plug in the U3 socket of the PIO board and test the application program.
2. Z86C1900ZEM method

Build a PIO board like Figure 7. Disconnect the

SOFTWARE

MODE3:		EQU	11001111B	;define Mode 3
PA_CTRL:		EQU	\%1002	;address of Port A control
PA_DATA:		EQU	\%1000	;address of Port A Data
PB_CTRL:		EQU	\%1003	; address of Port B Control
PB_DATA:		EQU	\%1001	;address of Port B Data
REGA_CTRL:	EQU	?????	???B	$; ?=0 / 1,0=$ OUTPUT $; 1=$ INPUT
REGB_CTRL:	EQU	?????	$? ? ? B$	$; ?=0 / 1,0=$ OUTPUT; $1=$ INPUT
INT_VECT:		EQU	XXXXXXXXB	;int vector; $\mathrm{X}=$ don't care
INT_CTRL:		EQU	01110111B	;int control;
M_CTRL:		EQU	11111111B	;no interrupt
INT_DIS:		EQU	XXXX0011B	;int disable; X=don't care
pio_init: Id	r4,\#>P	A_CTR	;config Port A	
	Id	r5,\#<P	A_CTRL	
	Id	r6,\#M	ODE3	;step 1: load Mode 3
	Idc	@rr4,		
	Id	r6,\#R	GA_CTRL	;step 2: load Reg Ctrl Word
	Idc	@rr4,		
	Id	r6,\#IN	T_VECT	;step 3: load Interrupt Vector
	Idc	@rr4,		
	Id	r6,\#IN	T_CTRL	;step 4:Ioad Interrupt Ctrl
	Id	@rr4,		
	Id	r6,\#M	CTRL	;step 5: load Mask Contrl
	Id	@rr4,		
	, Id	r6,\#IN	T_DIS	;step 6: load Int Disable
	Id	@rr4,		
	Id	r4,\#>P	B_CTRL ;confi	Port B
	Id	r5,\#<P	B_CTRL	
	Id	r6,\#M	DE3	;step 1: load Mode 3
	Idc	@rr4,		
	Id	r6,\#R	GA_CTRL	;step 2: load Reg Ctrl Word
	Idc	@rr4,		
	Id	r6,\#IN	T_VECT	;step 3: load Interrupt Vector
	Idc	@rr4,		
	Id	r6,\#IN	T_CTRL	;step 4: load Interrupt Ctrl
	Id	@rr4,		
	Id	r6,\#M	CTRL	;step 5: load Mask Contrl
	Id	@rr4,		
	Id	r6,\#IN	T_DIS	;step 6: load Int Disable
	Id	@rr4,		

Figure 3. Initialization of PIO
2. Z86C1900ZEM method

Build a PIO board like Figure 7. Disconnect the /CSRAM signal (Pin3 of U6 to Pin 20 of U3) of the Z86C1900ZEM board (contact Zilog Sales Offices for details). Make the following signal connections:
PIO Board to Z86C1900ZEM Board

ADO - AD7	ADO - AD7
A0	A0
A1	A1
A14	A14
A15	A15
DS	IDS
XTAL2	XTAL2
R/W	R/W

Pin 10 of U3B (PIO board) connects to Pin 20 (/CE) of U3 (Z86C1900ZEM board). After this modification, the address map is changed as follows:

\%0000-\%7FFF	32K Byte Z86C1900ZEM
Monitor EPROM	
\%8000-\%BFFF	16K Byte User RAM
\%C000	PIO Port A Data Mode
\%C002	PIO Port A Control Mode
\%C001	PIO Port B Data Mode
\%C003	PIO Port B Control Mode

The user program can now be downloaded into the user RAM for emulation.
3. ROM Emulator Method

Build a PIO board like Figure 6. ConnectPortA, Port B, Port 2, Port 3 and all control signals of the PIO board to the target board (or group all these I/O lines and control signals into a 40 line emulation cable). Plug the emulator cable from the ROM emulator to U3 socket of the PIO board. Debug your application program by using the ROM emulator. •
4. Z86C90 In Circuit Emulator Method

Build a PIO board like Figure 8. Connect PortA, Port B, Port 2, Port 3 and all control signals of the PIO board to the target board. Plug the $40-$ pin emulator cable from the emulator to the Z86C90 socket (U1) of the PIO board. Now, the application program can be downloaded into the RAM (6264) of the PIO board for debug.

SOFTWARE APPLICATION

Actually, the user has to change his debug program when using this application to emulate the Z86C40/30. However, the final program is similar to the debug program. First, the user has to put the PIO initialization routine after the $\mathrm{Z8}$ initialization routine. The PIO initialization routine has to execute on each I/O Port direction change. Figure 4 shows the Flow-Chart of the initialization routine.

Figure 4. Initialization Routine
Secondly, the I/O port changes to memory accessable instead of register accessable. For example: with the real $\mathrm{Z8}$ I/O port, use the instruction "Id 1,\#data" to load the data to Port 1. But, for this application, use the instructions of "ld rn',\#data" and "Idc @rrn,rn"' (where rrn will store the address of PIO Port 1).

In the software application, the simple way to access the PIO is using the "MACRO" in the program. Having finished the debugging program, change the definition of the "MACRO". Figure 5 illustrates the "MACRO" application program.

;THIS APPLICATION USES REGISTER GROUP \%00

;Define the registers

r4:	reg	h_pioa
r5:	reg	l_pioa
rr4:	reg	pioa
r6:	reg	pio_data
r8:	reg	h_piob
r9:	reg	l_piob
rr8:	reg	piob

;Define the PIO address pa_data:equ\%1000 pa_ctrl: equ \%1002 pb_data:equ \%1001 pb_ctrl: equ \%1003
;Define the Variables for the PIO init. rega_ctrl: equ ????????b
regb_ctrl: equ ????????b
int_vect: equ \%00
int_ctrl: equ \%77
m_ctrl: equ \%ff
int_dis: equ \%03
mode3: equ \%cf
;Define the MACRO for PIO accessing init_add: MACRO

Id h_pioa,\#>pa_data
Id I_pioa,\#<pa_data
Id h_piob,\#>pb_data
IdI_piob,\#<pb_data
MACEND
r0_rd: MACRO
Idc pio_data,@pioa MACEND
po_rd: MACRO
push rp
srp \#\%0
Idc pio_data,@pioa
pop rp
MACEND
ro_wt: MACRO
Idc @pioa,pio_data
MACEND
po_wt: MACRO
push rp
srp \#\%0
Idc @pioa,pio_data
pop rp
MACEND
;r4 for PIO A high-byte address ;r5 for PIO A low-byte address ;register pair ;r6 for PIO R/W data ;r8 for PIO B high-byte address ;r9 for PIO B low-byte address ;register pair
;address of port A data mode ;address of port A control mode ;address of port B data mode ;address of port B control mode
;configure Port A. ? = 0 or 1
;0 = output, 1 = input ;configure Port B .
;Interrupt Vector Word ;Interrupt Control Word ;Mask Control Word ;Interrupt Disable Word ;Mode Control Word - Mode 3
;This macro sets the PIO PA/PB address ;put PIO PA address to r4
;put PIO PB address to r5
;working register mode = Id pio_data,r0 ;load data from PA to r6
;register mode = ld pio_data, 0
;save the register pointer
;point to group \%00
;load data from PA to r6 ;install the register pointer
;working register mode = ld r0,pio_data ;load data from r6 to PA
;register mode = Id 0,pio_data ;save the register pointer ;point to group \%00
;load data from r6 to PA ;install the register pointer

Figure 5. Application of MACRO

Figure 5. Application of MACRO (continued)

```
    Idc @rr0.r6 ;load Interrupt Control Word
    Idc @rr0,r7 ;load Mask Control Word
    Idc @rr0,r8 ;load Interrupt Disable Word
    Id r1,#<pb_ctrl ;init PB
    Idc @rr0,r2 ;load Mode 3
    Idc @rr0,r4 ;load PB Register Control Word
    Idc @rr0,r5 ;load Interrupt Vector Word
    Idc @rr0.r6 ;load Interrupt Control Word
    Idc @rr0,r7 ;load Mask Control Word
    Idc @rr0,r8 ;load Interrupt Disable Word
ret
;Main Program
next_job:
    init_add ;use the MACRO to init PIO's address
;
;an example of load the data to Port A
;
    Id pio_data,#data ;load the data to the buffer
    rO_wt ;use the MACRO to load the data to PIO
;
;an example of reading the data from Port A
;
    rO_rd ;The data will read from PA to r6
;
;an example of AND the data at Port A
;
    rO_rd ;read data from PA to r6
    and pio_data,#data ;AND data with r6
    rO_wt ;writ data back to PIO PA
```

Figure 5. Application of MACRO (continued)
Now, change the MACRO when you finish the debugging (Table 2)

Table 2. Comparison of System Clocks (CLK).

PIO MACRO	CLK *	Z8 instructions	CLK *
[WRITE DATA TO PIO PA] Id pio_data,\#data ro_wt	$\begin{array}{r} 6 \\ 12 \end{array}$	[WRITE DATA TO Z8 PORT 0] ld ro,\#data	6
[WRITE DATA TO PIO PA] Id 6,\#data p0_wt	$\begin{aligned} & 10 \\ & 38 \end{aligned}$	[WRIT DATA TO Z8 PORT 0] ld 0,\#data	10
[READ DATA FROM PIO PA] ro_rd	12	[READ DATA FROM Z8 PORT 0) Id pio_data,r	10
[READ DATA FROM PIO PA] p0_rd	38	[READ DATA FROM Z8 PORT 0] Id pio_data, 0	10
[AND DATA AT PIO PA] ro_rd and pio_data,\#data ro_wt	$\begin{aligned} & 12 \\ & 10 \\ & 12 \end{aligned}$	[AND DATA AT Z8 PORT 0] and ro,\#data	10
[AND DATA AT PIO PA] p0_rd and p0 wt	$\begin{aligned} & 38 \\ & 10 \\ & 38 \end{aligned}$	[AND DATA AT Z8 PORT 0] and 0,\#data	10
* Number of System Clock cycles			

APPLICATION LIMITATIONS

1. The P0 and P1 emulations are not real time.
2. Driving capability.

9211

LOW COST Z8 MCU EMULATOR

A
 powerful emulation tool in a small, low-cost, 18-pin package ... and this is only one aspect of this versatile CCP

INTRODUCTION

The Z86C09 and Z86C19 are low cost powerful microcontrollers that embody the full core of the Consumer Control Processor (CCP) in a small 18-pin package. In addition to its small size, dual analog comparators, and low power modes of operation, the watchdog timers make these products useful in many applications.

An emulator is an excellent development tool for economical code development, for reducing the expense of using One Time Programmable (OTP) parts during early development, and primarily for reducing risk before going to a maskable ROM part. Commercial emulators have their applications, but in many instances are not required. One case where the investment in a commercial emulator is unwanted, is during part evaluation and parameter testing before initial application development actually begins. The simple emulator outlined in this Application Note is also a sufficient development tool for applications requiring only small amounts of code.

CCP EMULATOR DETAILED DESCRIPTION

The basic 18-pin CCP Emulator is very simple to build and use. Its major parts are the Z86C90 ROMless CCP microcontroller, an EEPROM, and some Address/Data demultiplexing logic. An EEPROM serves as an excellent development device with the ROMless CCP microcontroller as it allows endless versions of code checking and modification with little effort.

The complete schematic for the basic Low Cost Z8 MCU Emulator is shown in Figure 1. The pin-outs of the components shown are for Dual In-Line Package (DIP) parts. This circuit configuration provides the user with the most basic real-time hardware emulation capability. To maximize the ease of use, a Zero Insertion Force (ZIF) socket should be used for the EEPROM. The core building block can be enhanced in a number of different ways to provide the user with an emulator that can be tailored to the specific needs of the user.

Oscillator and Power Considerations

The schematic diagram shown in Figure 1 assumes that a ceramic resonator or crystal is being used as a clocking source for the microcontroller. Note, the source should be directly applied to the Z86C90. This provides a more accurate representation of the oscillator performance than the alternative method of pumping the clocking signals through a cable, via the socketing connector, to the Z86C90. There are two significant reasons for this. First, the cable adds a significant capacitive load to these signals. Secondly, because the clock is the highest frequency signal, it is more susceptible to distortion and noise.

The emulator consumes more power than the target microcontroller. As a result, basic power distribution and filtering rules apply to the emulator power source. It is recommended that the same power source use both the targeted microcontroller and the emulator rather than using aseparate isolated supply. The schematic (Figure 1) accounts for 0.1 uf capacitors placed near the VCC pins of each of the active devices. A 10uf capacitor is placed near the emulator input power source.

Multiplexed Address/Data Logic

For this emulator application, Port 1 of the Z86C90 is configured as a multiplexed Address/Data bus, and Port 0 is configured as the upper portion of the Address Bus. This gives the emulator the capability of addressing more than the 4 K of ROM memory limit imposed by the Z86C19. The EEPROM (Xicor X2864B-18) is an $8 \mathrm{Kx8}$ device that allows twice the program storage memory of the Z86C19 and four times the storage of the Z86C09. This extra memory is useful for patching the code under development. Extra memory allows the programmerto concentrate on code development as a primary concern, and then code optimization and "squeezing" can be a secondary concern.

Because the Address and Data buses of the Z86C90 are multiplexed, they are separated for accessing program memory. The Z86C90 makes this task easy by supplying the /AS (Address Strobe - active low) and the /DS (Data Strobe - active low) signals. An inverted /AS signal is used by the transparent latches to hold the Address/Data for the EEPROM. The /DS signal is used as on Output Enable (/OE - active low) for the EEPROM to place the program data on the multiplexed Address/ Data bus. A timing diagram of the program memory
access is shown in Figure 2. Note that the usage of program memory is always a read operation by the Z86C90 when emulating the Z86C09/19.

Table 1. Emulator EEPROM Timing Parameters

No. Parameter	Min	Max
1	Address valid to /AS high delay	35
2	Address float to /DS active delay	0
3	65	
3	IAS inactive to /DS active	100
4	/DS active to EEPROM data valid delay	
5 MCU address valid to EEPROM		
\quad address valid	44	
$6 \quad$ EEPROM address valid to EEPROM		
\quad valid data	180	
7	IAS inactive to Data input required	
8	/DS active to Data input required	
9	Data input setup time to /DS inactive	75
10	Data input hold time to /DS inactive	0
11	/DS inactive to EEPROM data float	0
12	/DS inactive to MCU address valid	65

SPECIAL PROGRAMMING

There are a few programming considerations when using the Z86C90 to emulate the Z86C09/19. First, the Z86C90 has 236 General Purpose registers (R4-R239) while the Z86C09/19 is limited to 124 General Purpose registers (R4-R127).

In addition to the number of general purpose registers available to the user, there are also some differences in the control and status registers (R240-R255) between the devices. The first of these differences occurs in the Watchdog Timer Mode Register [WTMR - Extended Register \%(F)0F]. The differences occur if you program bit D4 of this register to select the XTAL option as the watchdog timer driving source (D4=1). By using the onchip RC circuit (the default condition) there are no differences in the watchdog timer activation periods. The differences in the watchdog timer activation periods between the devices when the crystal option is selected is outlined in Table 2.

Table 2. WDTMR XTAL Differences

	XTAL1 Timeout	
D1 D0	Z86C09/19	Z86C90
0	0	XTAL1/512

Take care when programming the Port 3 Mode Register (R247 P3M). To properly emulate the Z86C09/19, bits D7:D2 must be programmed as all zeros. This sets P31, P32 and P33 as inputs; P34, P35 and P36 as outputs. Bits D7:D2 are reserved in the Z86C09/19, so setting these bits to 0 will have no effect.

The Port 0 and Port 1 Mode Register (R248 P01M) is one register that must be programmed differently between the devices. To properly emulate the Z86C09/19, the P01M register of the Z86C90 is set to 96 h . However, bit D4 of the Z86C09/19 register must be set to 0 . The remaining bits of the P01M register in the Z86C09/19 are reserved, and should be programmed as all zeros. It is important that these differences are remembered when converting the code from one processor to the other.

The RAM protect option of the Z86C90 (R251 - IMR, Bit D6) should not be enabled. This bit should be programmed as a 0 for both types of devices.

ADDITIONAL ENHANCEMENTS

Additional EEPROM (or other) memory is supported by using the unused latched address lines, a 3:8 demultiplexer, and the /CE inputs of the EEPROMS. A full 64 K of memory is accessed using the schematic shown in Figure 3. Because additional circuitry is being added, there is an additional time delay in data availability. The maximum specified value, from /DS going active to data required by the Z 86 C 9012 , is 130 ns . A fasterEEPROM (Xicor X2864B-12) may be required. This depends on the clock speeds being used in the application.

By adding some RAM, and setting bit D2 of register 248 to a one, an external stack can be added. This is useful for debugging applications that are interrupt intensive. Registers 254 and 255 are programmed to map into the appropriate RAM space.

Additional memory is not the only useful enhancement. Other useful features include single stepping, breakpoints, real time traces, and adding a direct computer link. Unfortunately the Z86C90 is not the perfect In Circuit Emulator (ICE) chip, and adding single stepping and breakpoints is not done easily. This is where the commercial emulators come in. However, adding real time trace capability and an external computer link are possible.

A real time trace is achieved by storing the latched address information and EEPROM data. These values are stored at the rising edges of /AS and/DS. The user
then designs circuitry control of the trace (turn on, turn off, stop when full, overwrite, etc.).

Adding a computer link is probably the most challenging task, and for those who do not like removing the EEPROM and placing it in a programmer device, it is a useful enhancement. Also, it controls other enhancements like the trace function and can report the contents of an external stack. A logical candidate for this application is the Z86C91. The UART on this microcontroller can be used to execute an RS-232 interface. The design rules for the Z86C91 are the same as those outlined for the Z86C90, so half of the design is already complete!

CONCLUSION

The Z8 microcontroller family is very powerful. The CCP series offers very cost effective solutions for consumer
and automotive applications. Emulating these devices is simple and cost effective plus it provides keen insight into their specific uses.

REFERENCES

The following Zilog publications contain specific information on the use and programming of the Z8 CCP microcontroller:

o Z8 Family Design Handbook	$03-8725-03$
o Z86C09/19 Product Specification	$00-2506-01$
o Z86C40/90 Product Specification	$00-2510-01$

o Z86C09/19 Product Specification 00-2506-01
Z86C40/90 Product Specification 00-2510-01

OfDO
ssapppy

$$
\begin{array}{ll}
\text { 가 } \\
\stackrel{\circ}{\sim} & \stackrel{0}{ } \\
& \\
&
\end{array}
$$

$$
\begin{aligned}
& \text { ㅇ } \\
& \text { 구 } \\
& 0
\end{aligned}
$$

Figure 2. Emulator EEPROM Memory Timing

Z8602 Controls a 101/102 PC/Keyboard

s can codes, line status modes, key bounce, make/break status, scan timing...
 the Z8602 Microcontroller does all this and much more.

Keyboard Configuration and Functions

The Z8602 Microcontroller is designed into a PC keyboard to control all scan codes, line status modes, scan timing and communications between the keyboard and PC. This Application Note depicts a typical method of interfacing a standard keyboard to an XT/AT PC.

The Keyboard includes: 101/102 keypads, three LED indicators for lock status, a cable wire between PC and Keyboard, a selection switch for PC/XT and PC/AT Scan Codes, and a Z8602 microcontroller for the control (Figure 1).

The three indicators are Num Lock, Caps Lock and Scroll Lock. The lock status transfers back from the PC soon after the Key Scan Code transmits.

The keyboard has three Key Scan Code Sets. Scan Code Set 1 uses PC/XTs and Scan Code Set 2 uses

PC/ATs. Scan Code Set 3 is similar to Scan Code Set 2 except for the different typematic, make, and make/ break defaults (Table 1). It is enabled by software. The initial status of the Scan Code Set is specified by the selection switch. Scan Code Set 1 activates when the switch closes. Scan Code Set 2 is selected if it is open (switch shown at bottom of Figure 4).

5 Volt power supply and common ground are supplied by the cable from the PC with bidirectional Data and Clock lines for serial data communication (Figure 2).

Keyboard Scanning and the Keyboard Buffer

The keyboard contains 101/102 keypads. All keypads are scanned every 4.17 milliseconds by the Z8602. The microcontroller handles a maximum of six keys concurrently by means of the key bouncethe key bounce process and case conditions. Quick multiple key pressing for the first six keys generate the Scan Codes. If more than six keys are pressed concurrently they are ignored.

Each keypad sends multiple data bytes to the PC under the control of the Z86C02. This is a scan code. There are two kinds of Scan Codes called Make Code and Break Code. The Make Scan Code is sent to the PC when the key is pressed. When the key releases, its Break Scan Code is sent. Additionally, these keys are Typematic which means when a key is pressed and held down, the keyboard sends the Make Code with a particular delay and rate. The typematic delay and rate are specified by the F3 (Hex) command sent by the PC.

Figure 1. PC Keyboard 101/102 Overview

DIN Pins	Signal Name	Signal Type
1	+KBD CLK	Input/Output
2	+KBD DATA	Input/Output
3		
4	Ground	Power
5	+5.0 Vdc	Power
SHIELD	Frame GND	

Figure 2. PC Cable Connector

Keyboard Code Generation

There are three program modules to implement keyboard code generation; keyboard scanning, Make/ Break/Typematic timing control and Scan Code generation. The modules are serviced by the Timer 1 interrupt.

The keyboard scanning module cuts key bounce for both press and release. It also configures the FIFO buffer for a maximum of six keys and allows time to generate both Make code and Break code.

The Make/Break/Typematic timing control module checks the current key status for up to six keys. It also sets up the timing for Make Code, Break Code and typematic delay and rate.

The Make/Break Scan Code generation module transfers Make code and Break code into the FIFObuffer via several ROM tables.

Keyboard Scanning

The keyboard scanning repeats every 4.17 milliseconds for all keypads. The key scanning is done from column output 15 toward column output 0 by keeping one of the column outputs to a low level and the remaining outputs at a high level. Whenever a low level output sets on one of the column ports, eight row inputs test 20 microseconds later. The timing chart of keyboard scanning is illustrated in Figure 3.

Figure 3. Keyboard Scan Timing
The key bounce ends by detecting the key pressing two times using the scanning method. Once a key is detected, it converts to a key matrix number (the key matrix number is the index address of the Scan Code in Table 1) through the row and column data appearing in Figures 4 and 5. This process repeats until all six keys fill the buffer. When the key is detected twice, Make code status sets. When the key releases twice, Break code status sets. The state diagram of the Make code and Break code process for one particular key is illustrated in Figure 6.

Table 1. Scan Code Set Table

The following table shows three scan code sets used in the keyboard.

Key Number	Scan Code Set 1		Scan Code Set 2	
	$\begin{array}{\|lll\|} \hline M \text { a } & k & e \\ C o d \theta \end{array}$	$\begin{aligned} & B \text { re a k } \\ & \text { Code } \end{aligned}$	$\left.\begin{array}{\|lll\|} M & a & k \end{array} \right\rvert\,$	$\begin{array}{\|l\|l\|} \hline \text { Break } \\ \text { Code } \end{array}$
1	29	A9	OE	FO OE
2	02	82	16	F0 16
3	03	83	1E	F0 1E
4	04	84	26	F0 26
5	05	85	25	F0 25
6	06	86	2 E	F0 2E
7	07	87	36	F0 36
8	08	88	3D	F0 3D
9	09	89	3E	FO 3E
10	OA	BA	46	FO 4E
11	OB	8B	45	F0 45
12	OC	8C	4E	FO 4E
13	00	8D	55	F0 55
15	OE	BE	66	F0 66
16	OF	8 F	OD	FO OD
17	10	90	15	FO 15
18	11	91	1D	F0 1D
19	12	92	24	FO 24
20	13	93	2D	F0 2D
21	14	94	2C	F0 2C
22	15	95	35	FO 35
23	16	96	3C	F0 3C
24	17	97	43	F0 43
25	18	98	44	F0 44
26	19	99	4D	FO 4D
27	1 A	9A	54	F0 54
28	1B	9B	5B	F0 5B
29	2B	$A B$	5D	F0 5D
30	3A	BA	58	F058
31	1 E	9 E	1C	F0 1C
32	1 F	9F	1B	F0 1B
33	20	AD	23	F0 23
34	21	A1	2B	F0 2B
35	22	A2	34	F0 34
36	23	A3	33	F0 33
37	24	A4	3 B	F0 3B
38	25	A5	42	FO 42
39	26	A6	4B	FO 4B
40	27	A7	4C	FO 4C
41	28	A8	52	F0 52
42	2 B	AB	5D	F0 5D
43	1 C	9C	5A	F0 5A
44	2A	AA	12	FO 12
45	56	D6	61	F0 61
46	2C	AC	1A	F0 1A
47	2D	AD	22	F0 22
48	2E	AE	21	F021
49	2F	AF	2A	F02A
50	30	B0	32	F0 32
51	31	B1	31	F031
52	32	B2	3A	FO 3A
53	33	B3	41	F041
54	34	B4	49	F049
55	35	B5	4A	F0 4A
57	36	B6	59	F059
58	1D	9D	14	FO 14
60	38	B8	11	F0 11
61	39	B9	29	F0 29
62	E0 38	E0 B8	E0 11	E0 FO 11

64	E0 1D	E0 9D	E0 14	EOFO 14
90	45	C5	77	F077
91	47	C7	6 C	F0 6C
92	4B	CB	6 B	F0 6B
93	4F	CF	69	F069
96	48	C8	75	F075
97	4C	CC	73	F073
98	50	DO	72	F072
99	52	D2	70	F070
100	37	87	7C	F07C
101	49	C9	7D	F07D
102	4D	CD	74	F074
103	51	D1	7A	F07A
104	53	D3	71	F071
105	4A	CA	7B	F07B
106	4E	CE	79	F0 79
108	E0 1C	E0 9C	E0 5A	EOFO 5A
110	01	81	76	F076
112	3 B	BB	05	F005
113	3C	BC	06	F006
114	3 D	BD	04	F004
115	3E	BE	OC	FO OC
116	3 F	BF	03	F003
117	40	C0	OB	FOOB
118	41	C1	83	F0 83
119	42	C2	OA	FOOA
120	43	C3	01	F001
121	44	C4	09	F009
122	57	D7	78	F0 78
123	58	D8	07	F007
125	46	C6	7E	F07E

Key Number	Scan Code Set 1		
	Base Case, Shift + Num L o cren Make/Break	$\begin{aligned} & \text { Shift Case * } \\ & \text { Make/Break } \end{aligned}$	Num Lock On Make/Break
75	E0 52 / E0 D2	$\begin{aligned} & \text { EO AA E0 } 52 \\ & \text { /EO D2 E0 2A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E02AE052/EO } \\ & \text { D2 EO AA } \end{aligned}$
76	E0 $53 / \mathrm{EOD3}$	$\begin{aligned} & \text { EO AA EO } 53 \\ & \text { /EO D3 E0 2A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E02A E053/E0 } \\ & \text { D3 E0 AA } \\ & \hline \end{aligned}$
79	E0 4B / E0 CB	$\begin{array}{llll} \text { EO AA } & E O & 4 B \\ / E O & C B & E O & 2 A \end{array}$	$\begin{array}{\|lll\|} \hline E O & 2 A & E O \\ \hline & 4 B \\ \hline \end{array}$
80	E0 47 / E0 C7	$\begin{aligned} & \text { EO AA E0 } 47 \\ & \text { /EO C7 E0 } 2 A \end{aligned}$	$\begin{aligned} & \text { E02AE047/EO } \\ & \text { C7 EO AA } \\ & \hline \end{aligned}$
81	E0 4F / E0 CF	$\begin{aligned} & \text { EO AA EO 4F } \\ & / \text { EO CF EO } 2 A \end{aligned}$	$\begin{aligned} & \text { EO 2A EO 4F } \\ & \text { /EO CF EO AA } \end{aligned}$
83	E0 48 / E0 C8	$\begin{aligned} & \text { EO AA EO 48 } \\ & \text { IEO C8 EO } 2 A \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E02AE0 } 48 / E 0 \\ & \text { C8 EO AA } \end{aligned}$
84	E0 50/EODO	$\begin{aligned} & \text { EO AA EO } 50 \\ & \text { /EO DO EO 2A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EO2A E050/EO } \\ & \text { DO EO AA } \end{aligned}$
85	E0 49 / E0 C9	$\begin{aligned} & \text { EO AA EO } 49 \\ & \text { /EO C9 EO } 2 A \end{aligned}$	$\begin{aligned} & \text { EO2A E0 } 49 / E 0 \\ & \text { C9 EO AA } \end{aligned}$
86	E051 / E0D1	$\begin{aligned} & \text { EO AA E0 } 51 \\ & \text { /EO D1 E0 2A } \end{aligned}$	$\begin{aligned} & \text { E02AE051/E0 } \\ & \text { D1 EO AA } \end{aligned}$
89	E0 4D / E0 CD	$\begin{aligned} & \text { EO AA EO 4D } \\ & \text { /EO CD EO } 2 \mathrm{~A} \\ & \hline \end{aligned}$	EO 2A E0 4D IEO CD EO AA
* If the left shift Key is held down, the AA/2A shift make and break is sent with the other scan codes. If the right Shift key is held down, B6/36 is sent. If both Shift keys are down, both sets of codes are sent with the other scan code.			

Table 1. Scan Code Set Table (Continued)

Scan Code Sot 2

Key No.	Make Code	Carl Kay Pressed
126	$\begin{aligned} & \text { E1 } 14 \text { E17 F0 } 14 \text { F0 } \\ & 77 \end{aligned}$	E0 7E E0 F0 7E

Scan Code Set 3							
T=Typematic, $M / B=$ Make/Break, $M=$ Make only							
$K \theta y$ No.	$\begin{aligned} & \text { Make } \\ & \text { Code } \end{aligned}$	Braak Code	Default Stratus	$\begin{aligned} & \text { Key } \\ & \text { No. } \end{aligned}$	Make Code	$\begin{aligned} & \text { Break } \\ & \text { Code } \end{aligned}$	Default Status
1	OE	FOOE	T	51	31	F0 31	T
2	16	F0 16	T	52	3A	F0 3A	T
3	1 E	F0'1E	T	53	41	FO 41	T
4	26	F0 26	T	54	49	F0 49	T
5	25	F0 25	T	55	4A	FO 4A	T
6	2 E	F02E	T	57	59	F0 59	M/B
7	36	F0 36	T	58	11	FO 11	M/B
8	3D	F03D	T	60	19	FO 19	M/B
9	3 E	F0 3E	T	61	29	F0 29	T
10	46	F0 46	T	62	39	F0 39	M
11	45	F0 45	T	64	58	F0 58	M
12	4 E	F04E	T	75	67	F067	M
13	55	F0 55	T	76	64	F064	T
15	66	F0 66	T	79	61	F061	T
16	OD	FOOD	T	80	6 E	FO6E	M
17	15	FO 15	T	81	65	F0 65	M
18	1 D	F0 10	T	83	63	F063	T
19	24	F024	T	84	60	F060	T
20	2 D	F02D	T	85	6 F	F06F	M
21	2 C	F02C	T	86	6 D	F06D	M
22	35	F0 35	T	89	6A	F0 6A	T
23	3 C	F0 3C	T	90	76	F0 76	M
24	43	FO 43	T	91	6 C	F06C	M
25	44	FO 44	T	92	6B	F06B	M
26	4D	F0 4D	T	93	69	F069	M
27	54	F0 54	T	95	77	F077	M
28	5B	F0 5B	T	96	75	F0 75	M
29	5 C	FO 5C	T	97	73	F073	M
30	14	FO 14	M/B	98	72	F072	M
31	1 C	FO1C	T	99	70	F070	M
32	18	F01B	T	100	7E	F07E	M
33	23	F0 23	T	101	7D	F07D	M
34	28	F02B	T	102	74	F074	M
35	34	F0 34	T	103	7A	FO7A	M
36	33	F0 33	T	104	71	F071	M
37	38	F0 3B	T	105	84	FO 84	M
38	42	F0 42	T	106	7C	F07C	T
39	4B	F0 4B	T	108	79	F079	M
40	4C	FO4C	T	110	08	F0 08	M
41	52	FO 52	T	112	07	F007	M
42	53	FO 53	T	113	OF	FO OF	M
43	5A	F0 5A	T	114	17	F0 17	M
44	12	F0 12	M/B	115	1 F	FO 1F	M
45	13	F0 13	T	116	27	F027	M
46	1 A	FO 1A	T	117	2 F	F0 2 F	M
47	22	FO22	T	118	37	FO 37	M
48	21	F021	T	119	3 F	F0 3F	M
49	2A	F02A	T	120	47	F0 47	M
50	32	F0 32	T	121	4 F	F0 4F	M
				122	56	F0 56	M
				123	5 E	F05E	M
				124	57	F0 57	M
				125	5F	F0 5F	M
				126	62	F062	M

Figure 4. $\mathbf{Z 8 6 0 2}$ Schematic Diagram for the Keyboard

Figure 5. 101/102 Keyboard Matrix

Figure 6. Make/Break Code Generation State Diagram

Six pairs of working registers are manipulated in the keyboard scanning program. They are KEY_STATUS and KEY_DATA. The key bounce is handled in the bounce counter of KEY_STATUS (Figure 7).

Figure 7. Six Pairs of Key Buffers

State Diagram Explanation (Figure 6):

The converted key matrix number and the initial bounce data store in one of the empty KEY_DATA and KEY_STATUS registers, respectively, just after detecting the key. When the key is detected once (bounce $=2$), it is decremented at Make Detection to establish one bounce detection (bounce=1). The loop continues until the key is detected twice. When detected twice, the bounce bit is three (bounce $=3$) until generation of the Make code. Then the bounce bits change to six (bounce $=6$) in the Make/Break code generation module.

The key detection loop continues (loop from bounce=5, bounce=7, bounce=6) until two key release detections (from bounce $=6$ to bounce $=5$). The bounce bit is set to four (bounce=4) when the key release is detected two times. The number is stored until generation of the Break code. Then, it is reset to zero in the Make/Break module. The first six keys generate the Make Code and Break Code when multiple keys are pressed. Concurrently, the rest of the keys are ignored.

Make/Break/Typematic Timing Control

The make code is generated when the bounce bits of KEY_STATUS is three. Then, the delay timer is calculated by using the TYPEMATIC_RATE register (Figure 8.) and sets to one of the periods which are 250 milliseconds, $500 \mathrm{msec}, 750 \mathrm{msec}$ or 1 second . The keys for the left/right shift case, control case and alternate case test to hold the current key configuration case. The Num lock, Caps lock, and Scroll lock status cases are stored in three of the six KEY_STATUS registers to keep the same pair of Make and Break codes for each key. The Make code is stored in the FIFO keyboard buffer.

Figure 8. Key Control Registers

The current pointer of KEY_DATA stores in the TYPEMATIC pointer register to generate Make Scan Code when typematic timeout occurs. When the Make Code is generated, two flag bits in the KEY_TYPE register are set to determine the key attributes: Make-type-matic-break (00), Make-typematic (01), Make-break (10) and Make only (11).

Break Code Timing Control:

Code is generated when the bounce bits of KEY_STATUS are set to four. This means the key is released. The TYPEMATIC pointer register is reset when the current typematickey releases. The case key tests and the case flag is reset when released. Then, Break Code is stored in the FIFO keyboard buffer and KEY_DATA plus KEY_STATUS reset to show an empty key. This procedure repeats for the six KEY_STATUS registers (Figure 7).

Figure 9. Flow Chart for Make/Break/Typematic Timing

Typematic Code Timing Control:

To generate typematic code, the key attribute tests to be sure the key is typematic. If the current TYPEMATIC pointer is not zero, the typematic process is carried out. The delay timer decrements every 4.17 msec and when it reaches 0 , there is Make Code generation. Once the delay timer sets to 0 , the rate timer takes over the typematic code generation which continues whenever the rate timer decrements to 0 . The rate timer then reloads from the TYPEMATIC_RATE register.

Make/Break Scan Code Generation

The system has one macro command to expand one byte of Make Code to multiple Scan Codes. The macro is data_gen. The macro structure appears in Figure 10.

Macro Description:

After getting one byte of Make code, this is expanded to multiple scan codes by the data_gen macro command. The data_gen macro contains a total number of bytes generated (lower four bits) minus the offset value. This offset value addresses a byte that is XORed with a byte-make code and other generated data bytes.

The previously kept "index address" indicates the entry point of the data gen macro command when the data is generated for Break Code. If it is generated for Make Code, then the index address is decremented by one and the ROM data at the address is read to specify the entry pointer for the Make Code generation.

Figure 10. Macro Structure of Data_Attr and Data_Gen

Four steps for generating multiple scan codes are the following:

1. Get data for the total number of bytes generated (lower four bits of first byte).
2. Temporarily store the offset address which shows the position to be XORed with a byte-make code.
3. Store all the bytes from the ROM table to the FIFO buffer while incrementing the FIFO_SIZE and the ROM address pointer.
4. Subtract the offset address from the temporary register containing the same value of FIFO_SIZE. Change the FIFO data by taking the XOR with the byte-make code.

Scan Code Organization:

The multiple scan code generation starts from conversion of a key matrix number which points at the Key Matrix Table. The Key Matrix Table has the index address offset of the Scan Code Table. The Scan Code Set Table contains all Make Code keys. The Scan Code Table Map organization is shown in Table 2.

Typematic Attribute:

The Scan Code Set 3 is similar to Scan Code Set 2. It is the scan_code set flag ($1=$ Scan Code Set $1,2=$ Scan Code Set 2, and $3=$ Scan Code Set 3) which specifies the Scan Code Table to use. If the scan_code_set flag is 3 (Scan Code Set 3), its data checks for typematic *attributes. The typematic attribute for scan codes (addresses $7-83 \mathrm{~h}$) store in the scratchpad RAM. The four typematic attributes include; Typematic, Make/Break, Make, and Typematic/ Make/Break. To select one of the attributes, two bits decode to determine which one of the four attributes to use.

Phantom Keys:

If the key matrix number is none of the valid keys, it is the Phantom key. The Phantom key happens when multiple keypads depress concurrently. The Phantom key is zero in the Keyboard Matrix (Figure 5). If the microcontroller sees a zero from the Key Matrix Table it sends any code to the PC (data conversion for Phantom key is ignored).

Z8602 Microcontroller Control andinterface

The following subsections define the Z8602 parameters and explain the control and interfacing of the Z8602 microcontroller (located in the keyboard) to the PC.

Z8602 Pin Descriptions and Assignments

Figure 11 and Table 3 show the $Z 8602$ pin assignments and pin descriptions, respectively. Figure 12 shows the communications format between the PC and the keyboard.

Communication Between the PC and Keyboard

Before the keyboard microcontroller (hereinafter referred to as Z8602) drives the keyboard clock and data lines, it sets both lines to a high level to check the current line status. The three line status modes between the PC and the keyboard are the following:

- Communication Inhibit by PC (PC forces clock line low).
- Request to send a data packet from PC to*keyboard (PC forces data line low).
- Scan Code transmission by Keyboard (both•data and clock lines are high).
The keyboard clock line is always driven by the keyboard's Z8602, except when the PC inhibits the communication. This happens by forcing the clock line to a low level (inactive level). This keeps the keyboard from sending any data packet and from generating clock pulses during this stage.

Once the clock line releases high (active level), the keyboard has to check the dataline. When the dataline is inactive, the PC requests to send the serial data to the keyboard. The keyboard has to send serial clock streams to receive the data packet from the PC. The data output of the Z8602 is high at this stage. When both data and clock lines are active, the keyboard sends the Scan Codes to the PC at any time.

The serial data bit stream consists of 11 bits which include a start bit, 8 data bits, an odd parity bit and a stop bit. When the bit stream sends data to the PC, all the data bits are guaranteed while the clock line is low. The data changes during a high level of the clock line. When the bit stream arrives from the PC, the data
fetches at the leading edge of the clock. After the stop bit detects high, the Z8602 forces the data line to a low level for one bit period. The start bit is always low and the stop bit is high. The 8 -bit data transmits from the LSB (the least significant bit). The odd parity bit means that the number of 1 's for the data bit and the parity bit must be odd all the time.

Command Communication Between the Keyboard and PC

This subsection shows how the following three kinds of data are handled between the keyboard and the PC:

- Command and Acknowledge
- Optional Data

Key Scan Code from the Keyboard FIFO Buffer

Table 2. Scan Code Table Map

+5V	$1 \bigcirc 40$	PP36
XTAL2	239	P31
XTAL1	$3 \quad 38$	P27
P37	437	PP26
P30	$5 \quad 36$	$\square \mathrm{P} 25$
RESET -	$6 \quad 35$	$\square \mathrm{P} 24$
RW	34	$\square \mathrm{P} 23$
$\overline{\text { DS }}$	$8 \quad 33$	$\square \mathrm{P} 22$
$\overline{\text { AS }}$	932	P21
P35	${ }_{10} \mathbf{Z 8 6 0 2} 31$	$\square \mathrm{P} 20$
GND \square	$11 \quad 30$	$\square \mathrm{P} 33$
ROMLESS	$12 \quad 29$	$\square \mathrm{P} 34$
P00	$13 \quad 28$	$\square \mathrm{P} 17$
P01	$14 \quad 27$	$\square \mathrm{P} 16$
P02	$15 \quad 26$	P15
P03	$16 \quad 25$	$\square \mathrm{P} 14$
P04 5	$17 \quad 24$	$\square \mathrm{P} 13$
P05 -	$18 \quad 23$	$\square \mathrm{P} 12$
P06	$19 \quad 22$	P11
P07	2021	$\square \mathrm{P} 10$

Figure 11. Z8602 Pin Assignments

Table 3. Z8602 Pin Assignments
$\mathbb{I N}=$ INput port, PUR = Pull-Up Resistor, OUT = OUTput port, $O D=$ Open-Drain output, $\mathrm{NC}=$ Non Connection

Pin	No.	I/O	Pin Description
+5V	1	IN	+5V Power Supply
GND	11	IN	Common Ground
XTAL2	2	OUT	8 MHZ Ceramic Resonator
XTAL1	3	IN	8 MHZ Ceramic Resonator
RESET	6	IN	Reset Input (active low)
R/W	7	OUT,NC	Read/Write Strobe
DS	8	OUT,NC	Data Strobe
AS	9	OUT,NC	Address Strobe
ROMless	12	IN, PUR	ROMless Selection (=GND)
P00	13	OUT,OD	Column 8 Low Output Scan Line
P01	14	OUT,OD	Column 9 Low Output Scan Line
P02	15	OUT,OD	Column 10 Low Output Scan Line
P03	16	OUT,OD	Column 11 Low Output Scan Line
P04	17	OUT,OD	Column 12 Low Output Scan Line
P05	18	OUT,OD	Column 13 Low Output Scan Line
P06	19	OUT,OD	Column 14 Low Output Scan Line
P07	20	OUT,OD	Column 15 Low Output Scan Line
P10	21	OUT,OD	Column 0 Low Output Scan Line
P11	22	OUT,OD	Column 1 Low Output Scan Line
P12	23	OUT,OD	Column 2 Low Output Scan Line
P13	24	OUT,OD	Column 3 Low Output Scan Line
P14	25	OUT,OD	Column 4 Low Output Scan Line
P15	26	OUT,OD	Column 5 Low Output Scan Line
P16	27	OUT,OD	Column 6 Low Output Scan Line
P17	28	OUT,OD	Column 7 Low Output Scan Line
P20	31	$\begin{aligned} & \text { IN/OUT, } \\ & \text { OD } \end{aligned}$	DATA line for IBM Communication
P21	32	$\begin{aligned} & \text { IN/OUT, } \\ & \text { OD } \end{aligned}$	CLOCK line for IBM Communication
P22	33	IN	Row 2 Input Scan Line
P23	34	IN	PC/XT or AT(=high) Selection
P24	35	IN	Row 4 Input Scan Line
P25	36	IN	Row 5 Input Scan Line
P26	37	IN	Row 6 Input Scan Line
P27	38	IN	Row 7 Input Scan Line
P30	5	IN	Row 0 Input Scan Line
P31	39	IN	Row 1 Input Scan Line
P33	30	IN	Row 3 Input Scan Line
P34	29	OUT	Scroll Lock Indicator
P35	10	OUT	Num Lock Indicator
P36	40	OUT	Caps Lock Indicator
P37	4	NC	No Connection

The keyboard clock line is always driven by the keyboard's Z8602, except when the PC inhibits the communication. This happens by forcing the clock line to a low level (inactive level). This keeps the keyboard from sending any data packet and from generating clock pulses during this stage.

Once the clock line releases high (active level), the keyboard has to check the dataline. When the dataline is inactive, the PC requests to send the serial data to the keyboard. The keyboard has to send serial clock streams to receive the data packet from the PC. The data output of the Z8602 is high at this stage. When both data and clock lines are active, the keyboard
sends the Scan Codes to the PC at any time.
The serial data bit stream consists of 11 bits which include a start bit, 8 data bits, an odd parity bit and a stop bit. When the bit stream sends data to the PC, all the data bits are guaranteed while the clock line is low. The data changes during a high level of the clock line. When the bit stream arrives from the PC, the data fetches at the leading edge of the clock. After the stop bit detects high, the Z8602 forces the data line to a low level for one bit period. The start bit is always low and the stop bit is high. The 8 -bit data transmits from the LSB (the least significant bit). The odd parity bit means that the number of 1 's for the data bit and the parity bit must be odd all the time.

Figure 12. Data Communication Format Timing Between Z8602/PC

Command Communication Between the Keyboard and PC

This subsection shows how the following three kinds of data are handled between the keyboard and the PC:

- Command and Acknowledge

- Optional Data
- Key Scan Code from the Keyboard FIFO Buffer

The command reception has the highest priority of the data communication. A new command always overrides to the old command even during communication. The PC starts the command transfer by lowering the DATA line. Then, the Z8602 sends eleven clock pulses to receive the serial data packetfrom the PC. When the data arrives, the Z8602 sends an acknowledge (0FAh) and accepts an echo command (OEEh). The optional data arrives or departs after sending the acknowledge. The key scan code only sends from the keyboard FIFO buffer when no data is coming from the PC.

Table 4 shows the commands used in the PC^{\star}.
*Table 4 term definitions
ACK = Acknowledge Data to PC (OFAh)
XX = Received Data from PC.
YY = Result of Basic Assurance Test
AB $83=$ ID Number

Table 4. Commands Between the Keyboard and the PC

Name	Hex values	Function
STATUS_IND	ED,ACK,XX,ACK	Set / Reset Lock Status In- dicators
ECHO	EE,EE $=$ ACK)	Echo Command
ALT_SCAN	F0,ACK,XX,ACK	Select Alternate Scan Codes
TYPE_RATE DELAY	F3,ACK,XX,ACK	Set Typematic Rate/Delay
ENABLE	F4,ACK	Enable Key Scanning
DISABLE	F5,ACK	Default Disable
SET_DEFAU LT	F6,ACK	Set Defualt Value
ALL_MAKE_ TYPE	F7,ACK	Set All Keys - Typematic
ALL_MAKE_ BREAK	F8,ACK	Sert All Keys - Make/Break
ALL_MAKE	F9,ACK	Set All Keys - Make
ALL_M_T_B	FA,ACK	Set All Keys Typematic/MAke/Break
KEY_MAKE_ TYPE	FB,ACK,XX,ACK	Set Key Type - Typematic
KEY_MAKE_ BREAK	FC,ACK,XX,ACK	Set Key Type - Make/Break
KEY MAKE	FD,ACK,XX,ACK	Set Key Type - Make
RESEND	FE	Resend Command
RESET -ACK,YY	Reset Command	
READ_ID	F3,ACK,AB,83	Read ID Command

Figure 13. Stacking and Sending Status of Keyboard FIFO Buffer

To do the command communication, use the macro command com_gen. The com_gen macro contains three parameters which ensures the number of bytes handled after command reception, command data, and Jump address at the end of the communication (Figure 14).

Whenever DATA line goes low (from PC), the Z8602 receives the data by driving the CLOCK line eleven times. The received datais always checked whether or
not it is a new command. The command compares to the Command data defined in com_gen macro.

If it is a new command, then it is stored in a Z8602 COMMAND register. The first parameter of com_gen saves to the COM_STATUS register (Figure 14). The COM_STATUS shows how many bytes are handled in the current command. The acknowledge data ($O F A h$) sets to COMMAND_BUFFER and departs in the next Timer 0 interrupt.

After that transmission, COM_STATUS decrements by one and tests for zero. If it is zero, the communication is over and the program executes by getting ajump address from the com_gen macro table.

If it is not zero, the communication remains active. The new command buffer sets to 0 unless the current command is READ_ID. The command buffer at 0 means data receive; non-zero means a data transmission to the PC. After the proper data transfer, the acknowledge data is sent. Now, each command is executable.

Basic Serial Data Input and Output Drivers

This module includes a parity generation for data transmission; 11 bits of data transmission with detection of line contention and 11 bits of data reception with an 11th bit acknowledge pulse.

Table 5 shows working registers specifying the initial values used to handle serial data transfers.

Table 5. Serial Data Transfer Working Registers

Register	Function
Serial Data Output	
CF(carry flag)	0 to set low start bit
serial data hi	bit7-1 = 1 and bit 0 =odd parity bit
serial data lo	8 bits data to be transmitted
bit count	$11=$ number of bits transmitted
serial bit	temporary register for P2 I/O port
transmit	Offh to specify transmit mode
com delay	to set up 80 usec/bit timing
P2	P2.1 =CLOCK to make pulse, P2.0=DATA to transmit data
Serial Data Input	
CF (carry flag)	1 to set low high output for input mode
serial data ni	Offh to receive 8 bits data
serial data lo	Offh to receive 3 bits data
bit count	$11=$ number of bits received
serial bit	temporary register for P2 I/O port
transmit	0 to specify receive mode
com delay	to set up 80 usec/bit timing
P2	$\mathrm{P} 2.1=$ CLOCK to make pulse, $\mathrm{P} 2.0=$ DATA to receive

Figure 14. Register Manipulation in Command Communication

After receiving all 11 bits, the serial_data_hi and serial_data_lo shift right five times to set up 8 bits of data into serial_data_lo. Now, parity is in bit 0 of serial_data_hi and is checked by the subroutine of parity_gen (Figure 15).

Figure 15. Register Manipulation of the Serial Data Buffer

The period of one data bit is 80 microseconds; the data must change when the CLOCK pulse is high. In fact, the switching is done 20 microseconds after the leading edge of the CLOCK pulse.

Transmit Mode:

In the send mode, line contention is always detected by the CLOCK line during a high level. If the CLOCK line goes low, the PC drives the line. If line contention appears before the 10th bit transmission, the system immediately quits the process and sets both DATA and CLOCK lines to high. If detection occurs after the 10th bit, sending continues until complete.

Receive Mode:

In the receive mode, the 10th bit tests for high. If high, the PC sends a low level for the 11th bit period to show an acknowledge. This means successful data reception from the PC. Otherwise, the PC sends multiple CLOCK pulses until it receives the correct stop bit.

Keyboard/Z8602 Hardware/Software Details

The following subsections explain and illustrate the Keyboard/Z8602 hardware details and program parameters. These involve multiple scan code working registers, FIFO dynamics, a scratchpad RAM map, and overall flow chart.

Multiple Scan Codes:

The multiple scan codes are stored into a 16-byte First-In-First-Out (FIFO) buffer until the PC is ready to receive them. A buffer-overrun condition occurs when more than 16 bytes remain in the FIFO buffer. This FIFO uses 16 general purpose registers in the Z86C02.

FIFO Dynamics:

The overrun code appears at the last position of the buffer. When the full 16 bytes of scan code are in the FIFO buffer and a further scan code appears, the overrun code goes into the 17th byte of the last occupied buffer register. This produces an audible "beep" warning. The FIFO buffer pointer points to the working register plus one. Therefore, If there are no scan codes available in the buffer, the pointer is the same address as the top of the FIFO buffer. The keyboardbuffer only contains the scan codes and does not include any commands from the PC or acknowledges any data.

Scratchpad RAM Map

Table 6 describes the Z8602 RAM map. The table shows the function name, RAM address, bit position, bit name, and descriptions for all map functions.

PC/Keyboard Overall Flow Chart

The overall flow chart in Figure 16 shows three different diagrams involving the main program loop, keyboard scan and make/break code generation, and the PC/Keyboard communication. The following text explains the basic program flow

Table 6. Z8602 Scratchpad RAM Map

Name	$\begin{array}{\|lll\|} \hline R & A & M \\ \text { Address } \end{array}$	$\begin{array}{\|l\|} \text { Bit posi- } \\ \text { tion } \end{array}$	Bit Name	Function	
P0	0			Port 0 Keyboard Column 8-15 Scan Output Ports	
P1	1			Port 1 Keyboard Column 0-7 Scan Output Ports	
P2	2	Bito		Data line for serial data communication with IBM PC	
		Bit1		Clock line for serial data communication with IBM PC	
		Bit3		PC/XT or PC AT mode selection switch (high =PC AT mode)	
		Bit2,4-7		Keybord Row 2, 4-7 Scan Input Ports	
P3	3	Bito, 1, 3		Keybord Row 0, 1,3 Scan Input Ports	
		Bit 4		Scroll Lock Indicator output ($10 \mathrm{~W}=$ turn on LED)	
		Bit5		Num Lock Indicator output ($10 \mathrm{~W}=$ tum on LED)	
		Bit6		Caps Lock Indicator output (low =turn on LED)	
KEY_STATUS1	4	Btoo-2	bounce	3 Bth bounce counter (MAKE CODE $=3$, BREAK CODE $=4$)	
		Bit3	RIGHT SHIFT	Right Shift key is pressed when the key is detected	
		Bit4	LEFT SHIFT	Left Shitt key is pressed when the key is detected	
		BH5	CTRL CASE	Comtrol key is pressed when the key is detected	
		Bit6	ALT CASE	Alternate key is pressed when the key is detected	
		Bil7	NUM LOCK2	Num Lock status is kept in this bit when the key is detected	
KEY DATA1	5	Bit0-7		1 1st Key Number in the schematic is kept when a key is detected	
KEY STATUS2	6			Same kind of data as KEY STATUS1	
KEY DATA2	7			2nd Key Number in the schematic is kept when a key is detected	
KEY STATUS3	8			Same kind of data as KEY STATUS1	
KEY DATA3	9			3rd Key Number in the schematic is kept when a key is detected	
KEY STATUS4	Ah			Same kind of data as KEY STATUS1	
KEY DATA4	Bh			4th Key Number in the schematic is kept hwhen a key is detected	
KEY STATUS5	Ch			Same kind of data as KEY STATUS1	
KEY DATAS	Dh			5 th Key Number in the schematic is kept when a key is detected	
KEY STATUS6	En			Same kind of data as KEY STATUS1	
KEY DATA6 \quad Fh					
WORK GRP	10h-17h			WORK GRP working registers	
TYPEMATIC_RATE	19h	Bito-4	RATE BITS	Typematic rate bits recelved from IBM PC	
		Bit5-6	DELAY BITS	Typematic delay bits received from IBM PC	
SCAN CODE SET	1Ah	Bito-1		Current Scan Code Set (1 =scan code set 1, 2=scs 2, 3=scs 3)	
LOCK_STATUS	1Bh	Bito	$\begin{aligned} & \text { SCROL_LO } \\ & \text { CK } \end{aligned}$	Current Scroll Lock status (1 = Scroll lock)	
		BH1	NUM LOCK	Current Num Lock status (1 = Num lock)	
		Bit2	CAPS LOCK	Current Caps Lock status (1 = Caps lock)	
		BH3-4	SHIFT CASE	Current right and left shift status (1 = pressed)	
		Bin5	CTRL CASE	Current Control key status (1 = pressed)	
		Bit6	ALT CASE	Current Alternate key status ($1=$ pressed)	
		B177	MAKE CASE	Temporany flag to inform either Make($=1$) or Break code generation	
DELAY	1Ch			Delay timer ($60=250 \mathrm{~ms}, 120=500 \mathrm{~ms}, 180=750 \mathrm{~ms}, 240=1000 \mathrm{~ms}$)	
RATE	1Dh			Typematic rate timer ($30.0 / \mathrm{sec}$ to $2.0 / \mathrm{sec}$)	
TYPEMATIC	1Eh			Current typematic key pointer to address one of KEY DATA ($0=$ no typematic key, KEY DATA1, $2,3,4,5,6$)	
FIFO SIZE	1Fh			FIFO Buffer size (if no buffer valid, FIFO SIZE=FIFO GRP)	
COM GRP	20h-27h			COM GRP working registers	
COM_STATUS	28h	BH0-6		Communication status ($0=$ no communication, 1 to X)	
		Bit 7	resend flag	Resend flag ($=1$)	
COMMAND	29h			Current command received from IBM PC	
OPTION BYTE	2Ah			Current option byte recelved fro IBM PC	
\qquad	2Bh			Communication data includes Acknowledge byte, transmitting data. (if It is 0 , then recaive mode)	
KEY TYPE	2 Ch	Bito-1		Current key type (make type break, make type, make break, make)	
CURRENT_BUFF ER	2Dh			Curren Communication output buffer	
MAIN CONTROL	2 En	Bit 7	enable scan	Keyboard enable scan fiag	
FIFO GRP	2Fh-3Fh		17 bytes buffer	16 byte Keyboard FIFO buffer +1 byte overrun data buffer	
CODE3_GRP	40h-5Fh		$\begin{aligned} & 32 \text { bytes at- } \\ & \text { tribute } \end{aligned}$	Scan Code Set 3 Attribute Data (2bits attribute $\times 128$ keys, scan code $=$ minimum 07, maximum 86h)	
Stack Area	60h-7Fh		32 byte	32 byte Stack Area	

(1) Main Program Loop

Figure 16. PC/Keyboard Program Flow Chart

Main Program Loop:

Upon reset, a Basic Assurance Test on the RAM, Keyboard, and ROM is enabled. The Z8602 parameters start, and test data transfers between the Z8602's CPU and the RAM, Keyboard and ROM. If no error detection, RAM receives the default values and the initialization testing is complete.

Keyboard Scan and Make/Break Code Generation:

 This program executes every 4.17 milliseconds. If there is a current communication, the flow bypasses and returns to the main program. If there is no current communication and the Key Scan (KEY_IRQ) is enabled, the main process for six key buffering bounce elimination in make or break setup, goes active.Now, Lock Status indicators are monitored and then make/break cases examined. A decision determines which case is active. The active case tests for six keys. If it is the make case and is Typematic, the Make Code Generation parameters execute. If it is a break case, the flow returns to the main program.

PC/Keyboard Communication:
Communication between the PC and the keyboard executes every 250 microseconds. When there is an
active COM_IRQbut a positive Communication Inhibit, the flow returns to the main program. If there is an active COM_IRQ and no Communication Inhibit and there is a request from the PC, the Receive Data/ Command activates. Depending upon whether it is a new command, optional data, or send Resend, the pertinent logic goes active and the flow returns to the main program.

When there is no request from the PC, but there is current communication, the flow jumps to the Resend Mode. If the Resendmode is active, the last datais sent and then flow returns to the main. program. If the Resend mode is inactive, the flow jumps to Transmit Data/Ack. If there is no more communication, the flow returns to the main program. If there is more communication, the remaining commands execute and the flow returns to the main program.

When there is a COM_IRQ but no communication inhibit or request from the PC, and not during communication, the FIFO Key Buffer is checked. If it is empty, the flow returns to the main program. If not empty, one byte is sent from the FIFO Key Buffer and one byte shifts. The flow then returns to the main program.

Three Facets of a Many Faceted Microcontroller

> f you need D/A conversion, or a zero crossing detector, or a current sensing device... Use the Z86C08's dual comparator.

Dual Analog Comparator

Using the dual analog comparators on the Z86C08 in conjunction with several on-chip features, provides a cost effective way to monitor power failures and frequency excursions (comparator used as a zero crossing detector), as a blood pressure tester and digital readout (comparator used as a A/D converter), or as a current sensing device in automotive design to detect and subsequently shutoff any short circuiting of relays, lights, monitors, etc.
In many microcontroller applications, the digital designer is often concerned with sampling and controlling nondigital elements within his system. However, when the designer is forced to deviate from the precise world of TLL logic and regulated 5 volt supplies, frequently, microcontroller architectures and specifications fall short in the areas of cost sensitivity and consumer orientation. Therefore, using the analog comparators in these specific areas are a few of the reliable, inexpensive design applications for the Z86C08.

Comparator Basics

The dual comparators share a common inverting terminal with non-inverting terminals bonded directly to extemal I/O ports (Figure 1). The comparators are enabled by a bit in the I/O port mode/control register. If bit D1 of R247 is zero, then the comparators are in digital mode. If D1 is one, then they are in analog mode. With the comparators disabled, the I/O ports are available for normal activities. These particular I/O ports can be used to generate external interupt requests to the Z 8 . With the comparators enabled, interrupts can also be generated.
The ideal comparator is a three terminal device (Figure 2). V1 is a non-inverting terminal. Signals entering at V2, the inverting terminal, exit Vout 180o out of phase. Since a comparator is essentially an operational amplifier, it has an associated gain. The open loop gain (no feedback) of a comparator is defined as the Voltage Out (Vout) over the Differential Input Voltage. The Differential Input Voltage is the voltage at the non-inverting input with respect to the inverting input. Thus, gain is:

[^15]The Input Offset Voltage, the difference between V1 and V2, forces Vout to a specified level. The Input Offset Voltage is typically below 50 mV .

Zero Crossing Detect Applications

The dual comparator can be used as a zero crossing detector to monitor 110 VAC (or other power line parameters) and its frequency (Figure 3). Each time the voltage passes through zero an interrupt is generated. The outputs of the comparators on the Z86C08 connect directly to the on-chip CPU. When using the comparators to detect zero crossing of a signal, interrupts are generated at every crossing. Interrupt subroutines can then calculate period and phase angle relationships between any two analog signals. The phase angle being critical when calculating power factor in power line circuits.
In the case of $110 \mathrm{VAC}, 60 \mathrm{~Hz}$ power line, an interrupt is generated every $1 / 120$ of a second. This means that whenever the monitor stops (no interrupts), there is a power fail or other problem which can be translated by a control device for quick recovery action (Figure 4). Frequency checks can also be made by zero crossing detection. Whenever frequençy drifts from the normal monitoring zero points, interrupts are either increased (higher frequency) or decreased (lower frequency) from the norm. If necessary, appropriate action is then taken. Another application is threshold detection for low voltage battery operated devices. Whenever the VBB drops below the Zener reference voltage level, an interrupt is generated to alert a control device or alarm.
The addition of two on-chip counter/timers further complement the above mentioned applications. Crystal precision timing is done on the period of zero crossings. The sum or difference of two separate analog signals then can be calculated. For example, negative or positive feedback is returned from the Z86C08 in closed loop calculations. In power circuits, atime-of-day clock could be implemented with a timer. Then, date and time of power failures and frequency excursions can be recorded. CMOS technology allows for battery backup.

Analog to Digital (A/D) Conversion

Accurate low speed A/D conversion is implemented with the Z86C08 using the dual slope or ratiometric method. With this method, a dv/dt is applied to the inverting terminal of a comparator. The analog input (Vinput) signal is applied to the non-inverting terminal. The charge rate of the RC circuit is a dv/dt (Figure 5). As Vref ramps upward from zero volts during time T1, Vref will exceed Vinput. This causes the comparator to
change state and produce an interrupt. By using the onchip timer, time T1 can be quickly determined.
The RC circuit is immediately discharged over fixed time T2 (Figure 6), where T2 is determined by the time constant Tc = RCn. Since the product of RC is only an approximate indicator of discharge time, a value of n should be multiplied to improve accuracy. A general guideline should equate n to 1.4. Then, $T 2=1.4 \mathrm{RC}$. The dual slope A/D converter measures voltage by converting voltage into time intervals. Or,
$\mathrm{T} 2 / \mathrm{T} 1=$ VinputVref, then, Vinput $=$ Vref $\mathrm{T} 2 / \mathrm{T} 1$
By using an I/O port on the Z86C08 as the Vref input, interrupts generated by the comparators can altemately switch Vref ON or OFF to perform the conversions.

Example: Blood Pressure Tester

A pressure transducer in a blood pressure tester is a good example of the dual slope A/D conversion method. A minimum system consists of display logic, Z86C08 circuitry and a transducer signal input (Figure 7). P00 outputs the appropriate signal to the RC ramp circuit of the Vref input. The output from the pressure transducer (Figure 8) is a linear voltage response to the applied pressure. This signal is input to An2, the non-inverting terminal of the comparator.
In this configuration, the sampling cycle for the A/D conversion begins when a logical 1 is output on POO and atimer is enabled. When the comparator transitions, an interrupt is generated, the timer is stopped and POO is
toggled to discharge the RC circuit. By storing the count T1 and resetting the timer, the converter is now ready to take another sample. The value of Vin is mathematically determined later and software algorithms are used to determine corresponding pressure.
The display is driven from a simple multiplexer circuit. The Z86C08 can sink large loc currents which reduces or eliminates buffering.

Current Sensing

The dual comparator is used as a current sensing device in many application areas, e.g., in automotive relays, lights, monitors, etc. In the automotive arena, current sensing is used in a typical case as shown in Figure 9. If the functional block shorts, then current (I) surges causing voltage (V) to fall. When V reaches 2.5 V , the comparator triggers an interrupt which allows software to enable an emergency shutoff.

Figure 1. Dual Analog Comparator

Figure 2. Ideal Comparator

Figure 3. Zero Crossing Detector

110 VAC

Figure 4. Interrupt After Power Failure

Figure 5. A/D Converter

Figure 6. Voltage vs. Time

Figure 7. A/DBlood Pressure Test and Readout

Figure 8. Silicon Pressure Transducer
Motorola ${ }^{\circ}$

R is large compared to the equivalent impedance of the Functional Block input. R1 and R2 are user selectable and are generally in a 10 K to 100 K range for power dissipation considerations. R1 and R2 are determined from the following formula:

Vref

R2
R1 + R2

The Z8 MCU in Telephone Answering Systems

T here are telephone and answering machine combinations and answering machines only. This App Note deals with answering machines.

Basic Functions

The following subsections describe the way messages are handled, playback features, ring control, remote operation and other features.

Out-Going Message

Most high-end machines do not use a cassette tape for the out-going message (called OGM). Out-going messages (up to 16 seconds duration) are digitized and stored in RAM, and played back on demand.

Incoming Message

Incoming messages are recorded on a cassette. The length of the message can be either unlimited (recording continues as long as the caller is speaking), or limited (exactly 30 seconds, for example).

Playback Features

Typical playback features are:

- One-touch playback.
- A display showing the number of calls received.
- Dial tone elimination (after the caller hangsup, the tape rewinds to eliminate the dial tone).
- Playback automatically stops after the last message.

Ring Control

Answering systems can be configured to respond after 2 or 4 rings. Some machines can be programmed to respond after between 1 and 7 rings.

Remote Operation

The owner of an answering machine can access the machine from another telephone to playback mes-
sages. This is done by dialing the telephone number, followed by a secret code. Rewind, fast-forward, system on, changing the OGM, and other functions can also be carried out thru remote control.

Other Features

Some machines allow phone conversations to be recorded and also personal messages to be recorded.
Several machines can be configured in the Toll Saver mode. In this mode, the machine responds after 2 rings only if messages have been left. If no messages have been left, the machine responds after 4 rings.
Voice Menu is a feature which uses speech synthesis circuitry to generate speech. This replaces displays, beeps and tones found in lower-end systems.

Operation of a Telephone Answering System

Figure 1 shows the entire block diagram of an answering system. This is divided into four major blocks. The four blocks are:

- Ring Detection and Attenuation block.
- Mux/De-Mux block.
- User Interface block (display, keypad, and mode selection switches).
- Remote Control Mechanism

The Ring Detection and Attenuation block.
The telephone line (out of the wall socket) plugs into the PHONE LINE IN jack (Figure 2). The telephone plugs into the TO PHONE jack, and is essentially in parallel with the answering machine. The phone ring is caused by a large AC voltage across the PHONE LINE IN jack. This is passed thru the ring detector circuitry which is comprised of a diode rectifier and transformer followed by an analog comparator. The output of the ring detector is a square wave as shown in Figure 2. Each burst is one ring of the telephone. These are monitored by the microcontroller.
After a preset number of rings (usually 2 or 4) the microcontroller closes the relay. This simulates the telephone off-hook condition, and the circuit is closed.

The Mux/De-Mux block

This is the main section of an answering system (Figure 3). After the phone rings and the relay is closed, the

Figure 1. Answering System Block Diagram
caller hears the Out Going Message. In other words, the microcontroller selects the OGM line as the MUX input. The MUX output is fed to the DE-MUX block. The microcontroller selects the SPEAKER and PHONE lines as the outputs of the DE-MUX block. In effect, the caller hears the OGM and it is also heard from the speaker of the answering machine.
When the OGM is over, the caller hears a tone. This tone (usually 1 KHz) is generated by the microcontroller. At this point, the MPU line is selected as the MUX input, while the DE-MUX outputs are the same as before. Following the tone, the PHONE is selected as the MUX input, and the caller can leave a message. The TAPE (which records the message) and SPEAKER lines are now selected by the microcontroller as the outputs of the DE-MUX block. When the caller hangs up, the relay is opened and the outputs of the DE-MUX block are not connected to the input.
For message playback, the TAPE line is selected as the MUX input and the SPEAKER line as the DE-MUX output. A common feature of several answering machines is the Personal Memo function. The speaker speaks into the microphone and the machine acts as a cassette recorder. The message is recorded on the cassette. In this case, the input to the MUX is the MIC line, and the output of the DE-MUX is the TAPE line.
Figure 4 shows the Audio Signal Detection block. This block is comprised of analog circuitry which detects the presence of an audio signal. When a caller is leaving a message on the answering machine, and pauses for a long period of time, the microcontroller automatically stops recording and goes on-hook.
A typical analog signal is shown in Figure 4. This is the input to the audio signal detection circuitry. The output of this circuit is a square wave. If it is continuously low for a preset length of time (4 seconds, for example), the answering machine goes on-hook.

Figure 2. Ring Detector Block

Figure 3. Mux/De-Mux Block

1209, 1336, and 1477 Hz .
The PLLs have very narrow detection bands since the 7 tones are within a few hertz of one another. If a key is pressed at the remote telephone, and either of the two tones of the DTMF signal match the center frequency of a PLL, the output of that PLL will drive a load (i.e., go low). This is detected by an input line of the microcontroller. If the outputs of several PLLs go low in the correct sequence (corresponding to the correct secret code), the microcontroller allows subsequent keys to control functions such as Playback, Rewind and Stop.

Miscellaneous Circuitry

The microcontroller drives a motor controller which drives the cassette player motor. The basic signals to the motor consist of speed and direction information. The microcontroller receives a signal from the motor position encoder circuitry. This signal is used to keep track of the length of the tape that has elapsed.

Microcontroller Suitability for Answering Systems

The Intel 8049 (40 -pin HMOS, 2K ROM) is a microcontroller often used in answering systems. A Zilog 40-pin NMOS Z8 MCU would be an excellent replacement for

Figure 4. Audio Signal Detection Block

Figure 5. User Interface Block

Figure 6. Remote Control Block
the 8049. The block diagrams for functionally identical systems using an 8049 and a 40-pin Z8 microcontroller are shown in Figure 7.
This $Z 8$ part comes in $2 K$ and $4 K$ ROM versions, whereas the 8049 is available with 2 K ROM only. CMOS versions of the $40-\mathrm{pin} \mathrm{Z8}$ are available with 8 K ROM.
Ease of programming in Z8 assembly language is a major advantage, especially since the JUMP instruction is not limited to only locations within the current page. The 40-pin Z8 offers 2 counter/timers and 144 bytes of on-chip RAM, whereas the 8049 offers only 1 counter/ timer and 128 bytes of on-chip RAM. Further, the 40-pin Z8 has 5 more I/O lines (32 in all) than the 8049 ($27 \mathrm{I/}$ O lines). Availability of a 28-pin Z8 and a64-pin Z8 allow future simplification/upgrade options for systems based on the $40-\mathrm{pin} \mathrm{Z}$.

Orion Emulatoranalyzer

The Z8 In-Circuit Emulator target board and an XT/AT compatible computer provide an excellent development system at a reasonable price. A full bus analyzer and indepth debug facility allows efficient software development.
The Z8 pin functionality for an answering machine application is shown in Figure 8.

Figure 7. Intel 8049 MCU vs. Zilog Z8 MCU

Z8 MICROCONTROLLER

Figure 8. Z8 Pin Functions for Answering Machines

Software Implementation

Refer to the listing of the $\mathbf{Z 8}$ applications software for a medium-end answering machine. The Z8 port functions are shown in Figure 9 and the registers referred to as

FLAG, TAPE_FLAG, and REMOTE_FLAG are shown in Figure 10.
The remaining illustrations are block flow diagrams showing the various functional modes.

Figure 9. $\mathbf{Z 8}$ Port Functions

Figure 10. Flag, Tape-Flag and Remote Flag Registers

Figure 11. Answering Machine Main Block Flow

Z8 ${ }^{\circledR}$ Subroutine Library

Application Note

INTRODUCTION

This application note describes a preprogrammed Z8601 MCU that contains a bootstrap to external program memory and a collection of general-purpose subroutines. Routines in this application note can be implemented with a $Z 8$ Protopack and a 2716 EPROM programmed with the bootstrap and subroutine library.

In a system, the user's software resides in external memory beginning at hexidecimal address 0800. This software can use any of the
subroutines in the library wherever appropriate for a given application. This application example makes certain assumptions about the environment; the reader should exercise caution when copying these programs for other cases.

Following RESET, software within the subroutine library is executed to initialize the control registers (Table 1). The control register selections can be subsequently modified by the user's program (for example, to use only 12 bits of Ports 0 and 1 for addressing external memory). Following control register initialization, an EI

Table 1. Control Register Initialization

Control Register		Initial Value	Meaning
Name	Address		
TMR	F 1 H	OOH	T0 and T1 disabled
P2M	F6H	FFH	$\mathrm{P}_{2} \mathrm{O}^{-P} 2_{7}$: inputs
P3M	F7H	10H	P2 pull-ups open drain; $\mathrm{P3}_{0}-\mathrm{P}_{3}$: inputs; $P 3_{5}-P 3_{7}$: outputs; $\mathrm{P3}_{4}$: DM
P01M	F 8 H	D7H	$\begin{array}{ll} \mathrm{P1}_{0}-\mathrm{P} 1_{7}: & \mathrm{AD}_{0}-\mathrm{AD}_{7} ; \\ \mathrm{PO}_{0}-\mathrm{PO} & : \\ \mathrm{A}_{7}-\mathrm{A}_{15} ; \end{array}$ normal memory timing; internal stack
IRQ	FAH	OOH	no interrupt requests
IMR	FBH	OOH	no interrupts enabled
RP	FDH	OOH	working register file OOH-OFH
SPL	FFH	65 H	1st byte of stack is register 64 H

instruction is executed to enable interrupt processing, and a jump instruction is executed to transfer control to the user's program at location 0812_{H}. The interrupt vectors for $I R Q_{0}$ through IRQ_{5} are rerouted to locations 0800_{H} through $080 F_{H}$, respectively, in three-byte increments, allowing enough room for a jump instruction to the appropriate interrupt service routine. That is, $I R Q_{0}$ is routed to location $0800_{H}, I R Q_{1}$ to $0803_{\mathrm{H}}, \quad \mathrm{IRQ} Q_{2}$ to $0806_{\mathrm{H}}, \quad \mathrm{IRQ}_{3}$ to $0809_{\mathrm{H}}, I \mathrm{IQ}_{4}$ to ${ }^{080} C_{H}$, and IRQ_{5} to $080 F_{H}$. Figure 1 illustrates the allocation of $\mathrm{Z8}$ memory as defined by this application note.

The subroutines available to the user are referenced by a jump table beginning at location 001BH. Entry to a subroutine is made via the jump table. The 32 subroutines provided in the library are grouped into six functional classifications. These classifications are described below, each with a brief overview of the functions provided by each category. Table 2 defines one set of entry addresses for each subroutine in the library.

- Binary Arithmetic: Multiplication and division of unsigned 8- and 16-bit quantities.
- BCD Arithmetic: Addition and subtraction of variable-precision floating-point BCD values.
- Conversion Algorithms: $B C D$ to and from decimal ASCII, binary to and from decimal ASCII, binary to and from hex ASCII.
- Bit Manipulations: Packs selected bits into the low-order bits of a byte, and optionally uses the result as an index into a jump table.
- Serial I/0: Inputs bytes under vectored interrupt control, outputs bytes under polled interrupt control. Options provided include:
odd or even parity
BREAK detection
echo
input editing (backspace, delete)
auto line feed
- Timer/Counter: Maintains a time-of-day clock with a variable number of ticks per second, generates an interrupt after a specified delay, generates variable width, variable frequency pulse output.

The listings in the "Canned Subroutine Library" provide a specification block prior to each subroutine, explain the subroutine's purpose, lists the input and output parameters, and gives pertinent notes concerning the subroutines. The following notes provide additional information on data formats and algorithms used by the subroutines.

Figure 1. "ROMess Z8" Subroutine Library Memory Usage Map

1. Although the user is free to modify the conditions selected in the Port 3 Mode register (P3M, $F 7{ }_{H}$), P3M is a write-only register. This subroutine library maintains an image of P3M in its register P3M__save ($7 F_{H}$). If software outside of the subroutine package is to modify P3M, it should reference and modify P3M_save prior to modification of P3M. For example, to select P32/P35 for handshake, the following instruction sequence could be used:

OR P3M_save, $\begin{aligned} & \text { \#O } \\ & \text { LD } \\ & \text { P3M, P3M save }\end{aligned}$
2. For many of the subroutines in this library, the location of the operands (source/destination) is flexible between register memory, external memory (code/data), and the serial channel (if enabled). The description of each parameter in the specification blocks tells what the location options are.

- The location designation "in reg/ext memory" implies that the subroutine allows the operand to exist in register or in external data memory. The address of such an operand is contained in the designated register pair. If the high byte of that pair is 0 , the operand is in register memory at the address held in the low byte of the register pair. Otherwise, the operand is in external data memory (accessed via LDE).
- The location designation "in reg/ext/ser memory" implies the same considerations as above with one enhancement: if both bytes of the register pair are 0 , the operand exists in the serial channel. In this case, the register pair is not modified (updated). For example, rather than storing a destination ASCII string in memory, it might be desirable to output the string to the serial line.

3. The BCD format supported by the following arithmetic and conversion routines allows representation of signed variable-precision $B C D$ numbers. A BCD number of $2 n$ digits is represented in $n+1$ consecutive bytes, where the byte at the lowest memory address (byte 0) represents the sign and post-decimal digit count, and the bytes in the n higher memory locations (bytes 1 through n) represent the magnitude of the BCD number. The address of byte 0 and the value n are passed to the subroutines in specified working registers.

Digits are packed two per byte with the mostsignificant digit in the high-order nibble of byte 1 and the least-significant digit in the low-order nibble of byte n. Byte 0 is organized as two fields:

Bit 7 represents sign:
$1=$ negative
$0=$ positive.

Bits 0-6 represent post-decimal digit count.
For example:

$$
\begin{aligned}
\text { byte } 0 & =05_{\mathrm{H}}=\text { positive, with five post- } \\
& =80_{\mathrm{H}}^{\text {decimal digits }}=\text { negative, with no post- } \\
& =90_{\mathrm{H}} \begin{array}{c}
\text { decimal digits } \\
\text { decimal digits }
\end{array}
\end{aligned}
$$

4. The format of the decimal ASCII character string expected as input to the conversion routines "dascbed" and "dascwrd" is defined as:
(+ 1 -) (〈digit>) [(〈digit>)]
in which
() Parentheses mean that the enclosed times or can be omitted.
[] Brackets denote that the enclosed element is optional.

Table 3 illustrates how various input strings are interpreted by the conversion routines.
5. The format of the decimal ASCII character string output from the conversion routine "bcddasc" operating on an input BCD string of $2 n$ digits is

```
    1 sign of character ( + 1 - )
    \(2 \mathrm{n}-\mathrm{x}\) pre-decimal digits
    1 decimal point if \(x\) does not equal 0
    \(\times\) post-decimal digits
```

6. The format of the decimal ASCII character string output from the conversion routine "wrddassc" is
```
1 sign character (determined by bit 15 of input word)
6 pre-decimal digits
no decimal point
no post-decimal digits
```

Table 2. Subroutine Entry Points

0048	clb	Collect bits in a byte
0048	tmj	Table jump under mask

Serial Routines

004E	ser_init	Initialize serial I/O
0051	ser_input	IRQ $_{3}$ (receive) service
0054	ser_rlin	Read line
0057	ser_rabs	Read absolute
$005 A$	ser_break	Transmit BREAK
0050	ser_flush	Flush (clear) input buffer
0060	ser_wlin	Write line
0063	ser_wabs	Write absolute
0066	ser_wbyt	Write byte
0069	ser_disable	Disable serial I/0

Timer/Counter Routines

006C	tod_i	Initialize for time-of-day clock
$006 F$	tod $^{-}$	Time-of-day IRQ service
0072	delay	Initialize for delay interval
0075	pulse_i	Initialize for pulse output
0078	pulse	Pulse IRQ service

7. Procedure name: ser__input

The conclusion of the algorithm for BREAK detection requires the Serial Receive Shift register to be cleared of the character currently being collected (if any). This requires a software wait loop of a one-character duration. The following explains the algorithm used (code lines 464 through 472, Part II):

$$
\begin{aligned}
1 \text { character time } & =\frac{(128 \times P R E 0 \times T O)}{\text { XTAL }} \frac{\mathrm{sec}}{\text { bit }} \times 10 \frac{\text { bit }}{\text { char }} \\
& =\frac{1280 \times P R E 0 \times 10}{\text { XTAL }} \frac{\text { sec }}{\text { char }}
\end{aligned}
$$

A software loop equal to one character time is needed:

1 character time $=\frac{2}{\text { XTAL }} \frac{\text { sec }}{\text { cycle }} \times n \frac{\text { cycle }}{\text { loop }}$

$$
=\frac{2 n}{\text { XTAL }} \quad \frac{\text { sec }}{\text { loop }}
$$

Solve for n :
$\frac{(1280 \times \text { PREO } \times T 0)}{\text { XTAL }}=\frac{2 n}{\text { XTAL }}$
$n=640 \times$ PREO $\times T O$

The register pair SERhtime, SER1time was initialized during ser init to equal the product of the prescaler and the counter selected for the baud rate clock. That is,

SERhtime, SER1time $=$ PREO \times TO
The instruction sequence

inlop: ld \quad rSERtmpl, \#53	(6 cycles)	
lpl: djnz	rSERtmpl, lpl	$(12 / 10$ cycles taken/not taken)

executes in

$$
6+(52 \times 12)+10 \text { cycles }=640 \text { cycles }
$$

8. BREAK detection on the serial input line requires that the receive interrupt service routine be entered within a half-a-bit time, since the routine reads the input line to detect a true $(=1)$ or false $(=0)$ stop bit. Since the interrupt request is generated halfway through reception of the stop bit, half-a-bit time remains in which to read the stop bit level. Interrupt priorities and interrupt nesting should be established appropriately to ensure this requirement.
$1 / 2$ bit time $=\frac{(128 \times \text { PREO } \times 10)}{\text { XTAL } \times 2} \mathrm{sec}$

Table 3. Decimal ASCII Character String Interpretation

Input String	Sign	Pre-Decimal Digits	Post-Decimal Digits	Terminator
+1234.567,	+	1234	567	,
$+\ldots-+.789+$	-	1234	789	+
$1234 .$.	+	4976	-	
$4976-$	+			

NOTE: The terminator can be any ASCII character that is not a valid ASCII string character.

ROMLESS Z8 SUBROUTINE LIBRARY PART I

45	! Access to GLOBAL subroutines in this library should be made via a CALL to the corresponding entry in the
46	jump table which begins at address \%000F. The jump
47	table should be referenced rather than a CALL to the
48	actual entry point of the subroutine to avoid future
49	conflict in the event such entry points change in
50	potential future revisions.
52	Each GLOBAL subroutine in this listing is headed by
53	comment block specifying its PURPOSE and calling
54	sequence (INPUT and OUTPUT parameters). For many of
55	the subroutines in this library, the location of the
56	operands (sources/destinations) is quite flexible
57	between register memory, external memory (code/data),
58	and the serial channel (if enabled). The description
59	of each parameter specifies what the location choices
60	are
61	
62	- The location designation 'in reg/ext memory'
63	implies that the subroutine allows that the operand
64	exist in either register or external data memory
65	The address of such an operand is contained
66	in the designated register pair. If the high byte of
67	that pair is zero, the operand is in register memory
68	at the address given by the low byte of the register
69	pair. Otherwise, the operand is in external data
70	memory (accessed via LDE).
71	
72	The location designation
73	'in reg/ext/ser memory' implies the same
74	considerations as above with one enhancement: if both
75	bytes of the reg. pair are zero, the operand exists
76	in the serial channel. In this case, the register
77	pair is not modified (updated). For example, rather
78	than storing a destination ASCII string in memory, it
79	might be desirable to output such to the serial line.
80	

P	0051	8D	0000*	$\begin{aligned} & 305 \\ & 306 \\ & 307 \end{aligned}$		JP	ser_input	!IRQ3 (receive) service!
P	0054	8D	0000*	$\begin{aligned} & 308 \\ & 309 \end{aligned}$		JP	ser_rlin	!read line!
P	0057	8D	0000*	$\begin{aligned} & 310 \\ & 311 \end{aligned}$		JP	ser_rabs	! read absolute!
P	005A	8D	0000*	$\begin{aligned} & 312 \\ & 313 \end{aligned}$		JP	ser_break	!transmit BREAK!
P	005D	8D	0000*	$\begin{aligned} & 314 \\ & 315 \end{aligned}$		JP	ser_flush	!flush (clear) input buffer!
P	0060	8D	0000*	$\begin{aligned} & 316 \\ & 317 \end{aligned}$		JP	ser_wlin	!write line!
P	0063	8D	0000*	$\begin{aligned} & 318 \\ & 319 \end{aligned}$		JP	ser_wabs	!write absolute!
P	0066	8D	0000*	$\begin{aligned} & 320 \\ & 321 \end{aligned}$		JP	ser_wbyt	!write byte!
P	0069	8D	0000*	$\begin{aligned} & 322 \\ & 323 \\ & 324 \\ & 325 \end{aligned}$	$!$ Time	JP	ser_disable Routines!	!disable serial I/O!
P	006C	8D	0000*	$\begin{aligned} & 326 \\ & 327 \end{aligned}$		JP	tod_i	! init for time of day!
P	006F	8D	0000*	328 329		JP	tod	! tod IRQ service!
P	0072	8D	0000*	$\begin{array}{r} 330 \\ 331 \end{array}$		JP	delay	!init for delay interval
P	0075	8D	0000*	$\begin{aligned} & 332 \\ & 333 \end{aligned}$		JP	pulse_i	!init for pulse output!
P	0078	8D	0000*	$\begin{array}{r} 334 \\ 335 \\ \hline \end{array}$		JP	pulse	!pulse IRQ service!
P	007B			336	END	JUMP		
?	007B			$\begin{aligned} & 338 \\ & 339 \\ & 340 \\ & 341 \end{aligned}$	$\begin{aligned} & \text { !Init } \\ & \text { INIT } \\ & \text { ENTRY } \end{aligned}$	izat		
P	007B	E6	F8 D7	$\begin{aligned} & 342 \\ & 343 \\ & 344 \\ & 345 \\ & 346 \end{aligned}$		LD	$\text { PO1M, \#\% (2) } 11$	```1 1 !internal stack; ADO-A 15; normal memory timing !```
P	007E	E6	7F 10	$\begin{aligned} & 347 \\ & 348 \\ & 349 \\ & 350 \\ & 351 \end{aligned}$		LD	P3M_save, 非 (2)	010000 !P3M is write-only, so keep a copy in RAM for later reference !
P	0081	E 4	$\begin{array}{ll}7 \mathrm{~F} & \mathrm{F7} \\ \mathrm{FF} & 65\end{array}$	352		LD	P3M, P3M save SPL,\#STACK	!set up Port 3 ! !stack pointer !
P	0084	E6	$\begin{array}{ll}\text { FF } \\ \mathrm{F} 1 & \end{array}$	$\begin{array}{r}353 \\ 354 \\ \hline\end{array}$		${ }_{\text {LD }}$ LD	SPL, \#STACK	!stack pointer ! !reset timers!
P	0089	E6	F6 FF	355		LD	P2M, \#\%FF	!all inputs!
P	008 C	B0	FA	356 357		CLR	IRQ	!reset int requests!
P	008E	B0	FB	357		CLR	IMR	!disable interrupts !
P	0090	B0	FD	358		CLR	RP ${ }_{\text {RER }}$!register pointer!
P	0092	E6	$70 \quad 80$	359		LD	SER_flg, \#\%80	!serial disabled!
P	0095	9 F		360 361		EI		interrupts !
P	0096	8D	0812	$\begin{aligned} & 362 \\ & 363 \end{aligned}$		JP	\%0812	
P	0099			364	END	INI		

Binary Arithmetic Routines

Conversion Routines

P	03 B 1		ED		1198		inc	edab_DST	linc post dec ent!			
P	03B3	8B	C2	80	1199		jr	das $\overline{\mathrm{g}} 2$!get next input!			
P	03B5	46	7B		1200	das_g7:	or	TEM ${ }^{\text {P }}$-4, \#\%80	! set overflow!			
P	03B8	8B	BD		$\begin{aligned} & 1201 \\ & 1202 \end{aligned}$		jr	das_̄̆2	!get next input!			
	$\begin{aligned} & 03 B A \text { E4 } \\ & 03 B D A F \\ & 03 B E \end{aligned}$		7B	FC	1203	dab_ex:	1d	FLAGS, TEMP_4	! carry $=0$ or 1!			
			1204		dab-ex1:	ret						
			1205		END ${ }^{-}$	dascb						
			1207		GLOBAL							
P	03BE				1208	wrddasc PROCEDURE$!* ~$						
					1209				************************			
					$\begin{aligned} & 1210 \\ & 1211 \end{aligned}$	Purpose $=$		To convert a signed binary word to decimal ASCII				
					1212							
					1213	Input $=$		RR12 = source binary word. RR14 = address of dest (in reg/ext/ser memory).				
					1214							
					1215 1216							
					1217	Output $=$		Decimal ASCII in dest buffer. R8,R9,R10,R11 holds the packed BCD version of the result. R12, R13, R14, R15 modified. **************************************!				
					1218							
					1219							
					1220							
					1221	**! ENTRY						
					1222							
P	03BE	70		EE		1223				push	R14	
P	03 CO	70		EF		1224		push	R15	!save dest addr!		
P	03 C 2	EC		08		1225		1 d	R14, \#18			
P	$03 C 4$	04	FD	EE	1226		add	R14, RP	! R8,9,10 \& 11 temp!			
P	$03 C 7$	FC	03		1227		1 d	R15, \#3	!temp byte length!			
P	$03 C 9$	D6	02CD'		1228		call	wrdbcd	! convert input word!			
P	03 CC	50	EF		1229		pop	R15				
P	03CE	50	EE		1230		pop	R14	!restore dest addr!			
P	03D0	CC	03		1231		1 d	R12, \#3	llength of temp!			
P	03D2	DC	08		1232		1 d	R13, \#8				
P	03D4	04			1233		add	R13, RP	!addr of temp!			
P	03 D 7	8D			1234		jp	bcddasc	! convert to ASCII!			
P	03DA		0205 ${ }^{\prime}$		1235	END	wrdda					

Bit Manipulation Routines

ROMLESS Z8 SUBROUTINE LIBRARY PART II

```
Z8ASM 3.02
LOC OBJ CODE
```

STMT SOURCE STATEMENT

Serial Routines

Timer/Counter Routines

A Comparison of Microcomputer Units

Benchmark Report

INTRODUCTION

The microcomputer industry has recently developed single-chip microcomputers that incorporate on one chip functions previously performed by peripherals. These microcomputer units (MCUs) are aimed
at markets requiring a dedicated computer. This report describes and compares the most powerful MCUs in today.s market: the Zilog Z8611, the Intel 8051, and the Motorola MC6801. Table 1 lists facts that should be considered when comparing these MCUs.

Table 1. MCU Comparison

FEATURES	$\begin{aligned} & \text { Zilog } \\ & \text { Z8611 } \end{aligned}$	$\begin{aligned} & \text { Intel } \\ & 8051 \end{aligned}$	Motorola MC6801
On-Chip ROM	$4 \mathrm{~K} \times 8$	4K×8	2Kx8
General-Purpose Registers	124	128	128
```Special-Function Registers Status/Control I/0 ports```	$\begin{aligned} & 16 \\ & 4 \end{aligned}$	$\begin{aligned} & 16 \\ & 4 \end{aligned}$	$\begin{aligned} & 17 \\ & 4 \end{aligned}$
I/0   Parallel lines   Ports   Handshake	32   Four 8-bit Hardware on three ports	32   Four 8-bit   None	29   Three 8-bit,one 5-bit Hardware on one port
Interrupts   Source   External source   Vector   Priority   Maskable	$\begin{aligned} & 8 \\ & 4 \\ & 6 \\ & 48 \\ & \text { Programmable } \\ & \text { orders } \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 5 \\ & 2 \text { Programmable } \\ & 5 \text { orders } \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \\ & 7 \end{aligned}$   Nonprogrammable $6$
External Memory	120K bytes	124K bytes	64K bytes
Stack   Stack pointer Internal stack   External stack	```16-Bit Yes, uses 8-bits Yes```	8-Bit   Yes   No	$\begin{aligned} & 16-\text { Bit } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$

Table 1. MCU Comparison
(Contimued)

FEATURES	$\begin{aligned} & \text { Zilog } \\ & \text { Z8611 } \end{aligned}$	$\begin{aligned} & \text { Intel } \\ & 8051 \end{aligned}$	Motorola MC6801
Counter/ Timers Counters   Prescalers	Two 8-bit   Two 6-bit	Two 16-bit   or two 8-bit   No prescale with 16-bits; 5-bit prescale with 8-bits	One 16-bit   None
Addressing   Modes   Register   Indirect Register   Indexed   Direct   Relative   Immediate   Implied	Yes   Yes   Yes   Yes   Yes   Yes   Yes	Yes   Yes   Yes   Yes   Yes   Yes   Yes	No   No   Yes   Yes   Yes   Yes   Yes
Index Registers	124, Any generalpurpose register	1, Uses the accumulator for 8-bit off set	1, Uses 16-bit index register
Serial Communication Interface   Full duplex UART   Interrupts for transmit and receive Registers Double buffer Serial Data Rate	Yes   One for each   Receiver   $62.5 \mathrm{~K} \mathrm{~b} / \mathrm{s}$   @ MHz   $93.5 \mathrm{~K} \mathrm{~b} / \mathrm{s}$   @12 MHz	Yes   One for both   Receiver   187.5 K b/s   @12 MHz	Yes   One for both   Transmitter/Receiver   $62.5 \mathrm{~K} \mathrm{~b} / \mathrm{s}$   @4 MHz
Speed   Instruction execution average   Longest instruction	2.2 Usec   1.5 Usec @12 MHz   4.25 Usec   2.8 Usec @12 MHz	1.5 Usec   4 Usec	3.9 Usec   10 Usec
Clock Frequency	8 and 12 MHz	12 MHz	4 MHz
Power Down Mode	Saves first 1.24 registers	Saves first 128 registers	Saves first 64 registers
Context Switching	$\begin{aligned} & \text { Saves PC } \\ & \text { and flag̣s } \end{aligned}$	Saves PC;   progr ammer must save all registers	Saves PC, PSW, accumulators, and Index register

Table 1. MCU Comparison (Continued)

FEATURES	Zilog   Z8611	Intel   8051	Motorola   MC6801
Development	40-Pin   Protopack (8613)   64-Pin (8612)   40-Pin ROMless   (Z8681)	40 -Pin (8751)	40-Pin (68701)
Eprom	4K bytes (2732)   2K bytes (2716)	$4 K$ bytes	2K bytes
Availability	Now	TBA	Now

## ARCHITECTURAL DVERVIEW

This section examines three chips: the on-chip functions and data areas manipulated by the Zilog, Intel and Motorola MCUs. The three chips have somewhat similar architectures. There are, however, fundamental differences in design criteria. The 8051 and the MC6801 were designed to maintain compatability with older products, whereas the 28611 design was free from such restrictions and could experiment with new ideas. Because of this, the accumulator architectures of the MC6801 and the 8051 are not as flexible as that of the Z8611, which allows any register to be used as an accumulator.

## Memory Spaces

The 28611 CPU manipulates data in four memory spaces:

- 60 K bytes of external data memory
- 60K bytes of external program memory
- 4 K bytes of internal program memory (ROM)
- 144-byte register file

The 8051 CPU manipulates data in four memory spaces:

- 64 K bytes of external data memory
- 60K bytes of external program memory
- 4 K bytes of internal program memory
- 148-byte register file

The MC6801 manipulates data in three memory spaces:

- 62 K bytes of external memory
- 2K bytes of internal program memory
- 149-byte register file

On-Chip ROM. All three chips have internal ROM for program memory. The 28611 and the 8051 have 4 K bytes of internal ROM, and the MC6801 has 2 K bytes. In some cases, external memory may be
required with the MC6801 that is not necessary with the 28611 or the 8051 .

On Chip RAM. All three chips use internal RAM as registers. These registers are divided into two catagories: general-purpose registers and special function registers (SFRs).

The 124 general-purpose registers in the 28611 are divided into eight groups of 16 registers each. In the first group, the lowest four registers are the $1 / 0$ port registers. The other registers are general purpose and can be accessed with an 8-bit address or a short 4 -bit address. Using the 4 -bit address saves bytes and execution time. Four-bit short addresses. are discussed later. The generalpurpose registers can be used as accumulators, address pointers, or Index registers.

The 128 general-purpose registers in the 8051 are grouped into two sets. The lower 32 bytes are allocated as four 8 -register banks, and the upper registers are used for the stack or for general purpose. The registers cannot be used for indexing or as address pointers.

The MC6801 also has a 128-byte, general-purpose register bank, which can be used as a stack or as address pointers, but not as Index registers.

As pointed out in Table 1, any of the 28611 general-purpose registers can be used for indexing; the MC6801 and the 8051 cannot use registers this way. The 28611 can use any register as an accumulator; the MC6801 and the 8051 have fixed accumulators. The use of registers as memory pointers is very valuable, and only the $Z 8611$ can use its registers in this way.

The number of general-purpose registers on each chip is comparable. However, because of its flexible design, the 28611 clearly has a more powerful register architecture.

The $Z 8611$ has 20 special function registers used for status, control, and $I / 0$. These registers include:

- Two registers for a 16-bit Stack Pointer (SPH, SPL)
- One register used as Register Pointer for working registers (RP)
- One register for the status flags (FLAGS)
- One register for interrupt priority (IPR)
- One register for interrupt mask (IMR)
- One register for interrupt request (IRQ)
- Three mode registers for the four ports (P01M, P2M, P3M)
- Serial communications port used like a register (SIO)
- Two counter/timer registers (TO, T1)
- One Timer Mode Register (TMR)
- Two prescaler registers (PREO, PRE1)
- Four I/O ports accessed as registers (PORTO, PORT1, PORT2, PORT3)

The 8051 also has 20 special function registers used for status, control, and I/O. They include:

- One register for the Stack Pointer (SP)
- Two accumulators ( $\mathrm{A}, \mathrm{B}$ )
- One register for the Program Status Word (PSW)
- Two registers for pointing to data memory (DPH, DPL)
- Four registers that serve as two 16-bit counter/timers (THO, TH1, TLO, TL1)
- One mode register for the counter/timers (TMOD)
- One control register for the counter/timers (ICON)
- One register for interrupt enable (IEC)
- One register for interrupt priority (IPC)
- One register for serial communications buffer (SBUF)
- One register for serial communications control (SCON)
- Four registers used as the four $I / O$ ports ( $P O$, P1, P2, P3)

The MC6801 has 21 special function registers used for status, control, and I/O. These include:

- One register for RAM/EROM control
- One serial receive register
- One serial transmit register
- One register for serial control and status
- One serial rate and mode register
- One register for status and control of port 3
- One register for status and control of the timer
- Two registers for the 16 -bit timer
- Two registers for 16 -bit input capture used with timer
- Two registers for 16 -bit output compare used with timer
- Four data direction registers associated with the four I/0 ports
- Four I/O ports

The special function registers in the three chips seem comparable in number and function. However, upon closer examination, the SFRs of the MC6801 prove less efficient than those of the 28611. The MC6801 has five registers associated with the I/O ports, whereas the $Z 8611$ uses only three registers for the same functions. The MC6801 uses four registers to perform the serial communication function, whereas the 28611 uses only one register and part of another.

The 8051 uses two registers for the accumulators; the 28611 is not limited by this restriction. The 8051 also uses two registers for the serial communication interface, whereas the 28611 accomplishes the same job with one register. Another two registers in the 8051 are used for data pointers; these are not necessary in the 28611 since any register can be used as an address pointer.

The 28611 uses registers more efficiently than either the MC6801 or the 8051. The registers saved by this optimal design are used to perform the functions needed for enhanced interrupt handling and for register pointing with short addresses. The $Z 8611$ also supplies the extra register required for the external stack. These features are not available on the 8051 or the MC6801.

External Memory. All three chips can access external memory. The 28611 and the 8051 can generate signals used for selecting either program or data memory. The Data Memory strobe (the signal used for selecting data or program memory) gives the 28611 access to 120 K bytes of external memory ( 60 K bytes in both program and data memory). The 8051 can use 124 K bytes of external memory ( 64 K bytes of external data memory and 60 K bytes of external program memory). The MC6801 can access only 62 K bytes of external memory and does not distinguish between program and data memory. Thus, the 28611 and the 8051 are clearly able to access more external memory than the MC6801.

## On-Chip Peripheral Functions

In addition to the CPU and memory spaces, all chips provide an interrupt system and extensive I/O facilities including I/O pins, parallel I/O ports, a bidirectional address/ data bus, and a serial port for I/O expansion.

Interrupts. The 28611 acknowledges interrupts from eight sources, four are external from pins $I R Q_{0}-I R Q_{3}$, and four are internal from serial-in, serial-out, and the two counter/timers. All interrupts are maskable, and a wide variety of priorities are realized with the Interrupt Mask Register and the Interrupt Priority Registers (see Table 1). All 28611 interrupts are vectored, with six vectors located in the on-chip ROM. The vectors are fixed locations, two bytes long, that contain the memory address of the service routine.

The 8051 acknowledges interrupts from five sources: two external sources (from INTO and INT1) and three internal sources (one from each of. the internal counters and one from the serial I/O port). All interrupts can be disabled individually or globally. Each of the five sources can be assigned one of two priorities: high or low. All 8051 interrupts are vectored. There are five fixed locations in memory, each eight bytes long, allocated to servicing the interrupt.

The MC6801 has one external interrupt, one nonmaskable interrupt, an internal interrupt request, and a software inter rupt. The internal interrupts are caused by the serial I/O port, timer overflow, timer output compare, and timer input capture. The priority of each interrupt is preset and cannot be changed. The external interrupt can be masked in the Condition Code register. The MC6801 vectors the interrupts to seven fixed addresses in ROM where the 16-bit address of the service routine is located.

When an interrupt occurs in the 8051, only the Program Counter is saved; the user must save the flags, accumulator, and any registers that the interrupt service routine might affect. The MC6801 saves the Program Counter, acumulators, Index register, and the PSW; the user must save all registers that the interrupt service routine might affect. The 28611 saves the Program Counter and the Flags register. To save the 16 working registers, only the Register Pointer register need be pushed onto the stack and another set of working registers is used for the service routine. For more detail on working registers and interrupt context switching, see the Z8 Technical Manual (03-3047-02).

With regard to interrupts, the 28611 is clearly superior. The $Z 8611$ requires only one command to save all the working registers, which greatly increases the efficiency of context switching.

I/O Facilities. The 28611 has 32 lines dedicated to $I / 0$ functions. These lines are grouped into four ports with eight lines per port. The ports can be configured individually under software control to provide input, output, multiplexed address/data lines, timing, and status. Input and output can be serial or parallel, with or without handshake. One port can be configured for serial transmission and four ports can be configured for parallel transmission. With parallel transmission, ports 0,1 , and 2 can transmit data with the handshake provided by port 3.

The 8051 also has $32 \mathrm{I} / 0$ lines grouped together into four ports of eight lines each. The ports can be configured under program control for parallel or serial I/O. The ports can also be configured for multiplexed address/data lines, timing, and status. Handshake is provided by user software.

The MC6801 has 29 lines for I/0 (three 8-bit ports and one 5-bit port). One port has two lines for
handshake. The ports provide all the signals needed to control input and output either serially or in parallel, with or without multiplexed address/data lines. They can be used to interface with external memory.

The main differences in $1 / 0$ facilities are the number of 8-bit ports and the hardware handshake. The 28611 and the 8051 have four 8-bit ports, whereas the MC6801 has three 8-bit ports and an additional 5-bit port. The 28611 has hardware handshake on three ports, the MC6801 has hardware handshake on only one port, and the 8051 has no hardware handshake.

Counter/timers. The 28611 has two 8-bit counters and two 6-bit programmable prescalers. One prescaler can be driven internally or externally; the other prescaler is driven internally only. Both timers can interrupt the CPU when counting is completed. The counters can operate in one of two modes: they can count down until interrupted, or they can count down, reload the initial value, and start counting down again (continuously). The counters for the 28611 can be used for measuring time intervals and pulse widths, generating variable pulse widths, counting events, or generating periodic interrupts.

The 8051 has two 16-bit counter/timers for measuring time intervals and pulse widths, generating pulse widths, counting events, and generating periodic interrupts. The counter/timers have several modes of operation. They can be used as 8-bit counters or timers with two 5-bit programmable prescalers. They can also be used as 16 -bit counter/timers. Finally, they can be set as 8-bit modulo-n counters with the reload value held in the high byte of the 16 -bit register. An interrupt is generated when the counter/timer has completed counting.

The MC6801 has one 16 -bit counter which can be used for pulse-width measurement and generation. The counter/timer actually consists of three 16-bit registers and an 8-bit control/status register. The timer has an input capture register, an output compare register, and a free-running counter. All three 16-bit registers can generate interrupts.

Serial Communications Interface. The 28611 has a programmable serial communication interface. The chip contains a UART for full-duplex, asynchronous, serial receiver/ transmitter operation. The bit rate is controlled by counter/timer 0 and has a maximum bit rate of $93.500 \mathrm{~b} / \mathrm{s}$. An interrupt is generated when an assembled character is transferred to the receive buffer. The transmitted character generates a separate interrupt. The receive register is double-buffered. A hardware parity generator and detector are optional.

The 8051 handles serial $1 / 0$ using one of its parallel ports. The 8051 bit rate is controlled
by counter/timer 1 and has a maximum bit rate of $187,500 \mathrm{~b} / \mathrm{s}$. The 8051 generates one interrupt for both transmission and receipt. The receive register is double-buffered.

The MC6801 contains a full-duplex, asynchronous, serial communication interface. The bit rate is controlled by a rate register and by the MCU's clock or an external clock. The maximum bit rate is $62,500 \mathrm{~b} / \mathrm{s}$. Both the transmit and the receive registers are double-buffered. The MC6801 generates only one interrupt for both transmit and receive operations. No hardware parity generation or detection is available, although it does have automatic detection of framing errors and overrun conditions.

The 8051 and the MC6801 generate only one interrupt for both transmit and receive, whereas the Z8611 has a separate interrupt for each. The ability to generate separate interrupts greatly enhances the use of serial communications, since separate service routines are often required for transmitting and receiving.

Other differences between the Z8611, MC6801, and the 8051 occur in the hardware parity detector, the double-buffering of registers, framing error detectors and overrun conditions. The 8051 has a faster data rate than either the 28611 or the MC6801. The MC6801 has the advantage of a hardware framing error detector and automatic detection of overrun conditions. The MC6801 also has both its transmit and receive registers double-buffered. The 28611 has a hardware parity detector. For detection of framing errors and overrun conditions, a simple, low-overhead software check is available that uses only two instructions. See 28600 Software Framing Error Detection Application Brief (document \#617-18810004).

## INSTRUCTION ARCHITECTURE

The architecture of the $Z 8611$ is designed specifically for microcomputer applications. This fact is manifest in the instruction composition. The arduous task of programming the MC6801 and the 8051 starkly contrasts that of programming the 28611.

## Addressing Modes

The 28611 and the 8051 both have six addressing modes: Register, Indirect Register, Indexed, Direct, Relative, and Immediate. The MC6801 has five addressing modes: Accumulator, Indexed, Direct, Relative, and Immediate. A quick comparison of these addressing modes reveals the versatility of the $Z 8611$ and the 8051. The addressing modes of the MC6801 have several restrictions, as shown in Table 1. While the 8051 has all the addressing modes of the Z8611, its use of them is restricted. The 28611 allows many more combina-
tions of addressing modes per instruction, because any of its registers can be used as an accumulator. For example, the instructions to clear, complement, rotate, and swap nibbles are all accumulator oriented in the 8051 and operate on the accumulator only. These same commands in the Z8611 can use any register and access it either directly, with register addressing, or with indirect register addressing.

Indexed Addressing. All three chips differ in their handling of indexing. The 28611 can use any register for indexing. The 8051 can use only the accumulator as an Index register in conjunction with the data pointer or the Program Counter. The MC6801 has one 16-bit Index register. The address located in the second byte of an instruction is added to the lower byte of the Index register. The carry is added to the upper byte for the complete address. The MC6801 requires the index value to be an immediate value.

The MC6801 has only one 16-bit Index register and an immediate 8-bit value from the second byte of the instruction. Hence, the Indexed mode of the MC6801 is much more restrictive than that of the Z8611. The 8051 must use the accumulator as its only Index register, loading the accumulator with the register address each time a reference is made. Then, using indexing, the data is moved into the accumulator, eradicating the previous index. This forces a stream of data through the accumulator and requires a reload of the index before access can be made again. The $Z 8611$ is clearly superior to both the MC6801 and the 8051 in the flexibility of its indexed addressing mode.

Short and Long Addressing. Short addressing helps to optimize memory space and execution speed. In sample applications of short register addressing, an eight percent decrease in the number of bytes used was recorded.

All three chips have short addressing modes, but the $Z 8611$ has short addressing for both external memory and register memory. The 8051 has short addressing for the lowest 32 registers only.

The Z 8611 has two different modes for register addressing. The full-byte address can be used to provide the address, or a 4-bit address can be used with the Register Pointer. To use the working registers, the Register Pointer is set for a particular bank of 16 registers, and then one of the 16 registers is addressed with four bits. Another feature for addressing external memory is the use of a 12-bit address in place of a full 16 -bit address. To use the 12-bit address, one port supplies the eight multiplexed address/data lines and another port supplies four bits for the address. The remaining four bits of the second port can be used for $1 / 0$. This feature allows access to a maximum of 10 K bytes of memory.

The 8051 uses short addresses by organizing its lowest 32 registers into four banks. The bank select is located in a 2-bit field in the PSW, with three bits addressing the register in the bank.

The MC6801 uses extended addressing for addressing external memory. With a special, nonmultiplexed expansion mode, 256 bytes of external memory can be accessed without the need for an external address latch. The MC6801 uses one 8-bit port for the address and another port for the data.

## Stacks

The 28611 and the MC6801 provide for external stacks, which require a 16-bit Stack Pointer. Internal stacks use only an 8-bit Stack Pointer. The 8051 uses only a limited internal stack requiring an 8-bit Stack Pointer. Using an external stack saves the internal RAM registers for general-purpose use.

## Summary

The stack structure of the 28611 and the MC6801 is better than that of the 8051. In most applications, the 8051 is more flexible and easier to program than the MC6801. The 28611 is easier to use than either the 8051 or the MC6801 because of its register flexibility and its numerous combinations of addressing modes. The 8051 features a unique $4 \mu n$ multiply and divide command. The MC6801 has a multiply, but it takes $10 \mu \mathrm{~s}$ to perform it.

In summary, the $Z 8611$ has the most flexible addressing modes, the most advanced indexing capabilities, and superior space- and time-saving abilities with respect to short addressing.

## DEVELOPMENT SUPPORT

All three vendors provide development support for their products. This section discusses the different support features, including development chips, software, and modules.

## Chips

Zilog offers an entire family of microcomputer chips for product development and final product. The 28611 is a single-chip microcomputer with 4 K bytes of mask-programmed ROM. For development, two other chips are offered. The 28612 is a $64-\mathrm{pin}$, development version with full interface to external memory. The 28613 is a prototype version that uses a functional, piggy-back, EPROM protopak. The 28613 can use either a 4 K EPROM (2732) or a 2 K EPROM (2716). Zilog also offers a ROMless version in a 40-pin package that has all the features of the 28611 except on-board ROM (Z8681).

Intel offers a similar line of development chips
with its 8051 family. The 8031 has no internal ROM and the 8751 has 4 K of internal EPROM.

Motorola offers the MC6801, MC6803, MC6803NR, and MC68701. These are all similar except the MC68701 has 2 K bytes of EPROM and the MC6801 has 2 K bytes of ROM. The MC6803 has no internal ROM and the MC6803NR has neither ROM nor RAM on board.

The Z8613 and the MC68701 are both available now, but the 8751 is still unavailable (as of April 1981).

## Software

Development software includes assemblers, and conversion programs. All manufacturers of fer some or all of these features.

Since the MC6801 is compatible with the 6800 , there is no need for a new assembler. The $Z 8611$ and the 8051 both offer assemblers for their products. The Zilog PLZ/ASM assembler generates relocatable and absolute object code. PLZ/ASM also supports high-level control and data statements, such as IF... THEN...ELSE. Intel offers an absolute macroassembler, ASM51, with their product. They also offer a program for converting 8048 code to 8051 code.

## Modules

The 28611 development module has two 64-pin development versions of the $40-\mathrm{pin}$, ROM-masked 28611. Intel offers the EM-51 emulation board, which contains a modified 8051 and PROM or EPROM in place of memory. Motorola has the MEX6801EVM evaluation board for program development. All three development boards are available now.

## ADDITIONAL FEATURES

Additional features include Power Down mode, selftesting, and family-compatibility.

## Power Down Mode

All three microcomputers offer a Power Down mode. The 28611 and the 8051 save all of their registers with an auxilary power supply. The MC6801 uses an auxiliary power supply to save only the first 64 bytes of its register file.

The 28611 uses one of the crystal input pins for the external power supply to power the registers in Power Down mode. Since the XTAL2 input must be used, an external clock generator is necessary and is input via XTAL1. The 8051 and the MC6801 both have an input reserved for this function. The MC6801 uses the $V_{c c}$ standby pin, and the 8051 uses the $V_{\text {pd }}$ pin.

## Family Compatibility

Another strength of the $Z 8611$ is its expansion bus, which is completely compatible with the Zilog Z-BUSTM. This means that all Z-BUS peripherals can be used directly with the 28611.

The MC6801 is fully compatible with all MC6800 family products. The 8051 is software compatible with the older 8048 series and all others in that family.

## BENCHMARKS

The following benchmark tests were used in this report to compare the Z8611, 8051, and MC6801:

- Generate CRC check for 16-bit word.
- Search for a character in a block of memory.
- Execute a computed GOTO - jump to one of eight locations depending on which of the eight bits is set.
- Shift a 16 -word five places to the right.
- Move a 64-byte block of data from external memory to the register file.
- Toggle a single bit on a port.
- Measure the subroutine overhead time.

These programs were selected because of their importance in microcomputer applications. Algorithms that reflect a unique function or feature were excluded for the sake of comparison. Although programs can be optimized for a particular chip and for a particular attribute (code density or speed) these programs were not.

The figures cited in this text are taken directly from the vendor's documentation. Therefore, the cycles given below for the MC6801 and the 8051 are in machine cycles and the 28611 figures are given in clock cycles. The $Z 8611$ clock cycles should be divided by six to give the instruction time in microseconds. The 8051 and MC6801 machine cycle is $1 \mu_{\mathrm{s}}$, and the 28611 clock cycle is $.166 \mu \mathrm{~s}$ at 12 MHz .

Because of the lack of availability of the MC6801 and the 8051, the benchmark programs listed here have not yet been run. When these products are readily available, the programs will be run and later editions of this document will reflect any changes in the findings.

## Program Listings

CRC Generation

8051			Machine Cycles	Bytes
	MOV	INDEX, 非	1	2
LOOP:	MOV	A, DATA	1	2
	XRL	A, HCHECK	1	2
	RLC	A	1	1
	MOV	A, LCHECK	1	2
	XRL	A, LPOLY	1	2
	RLC	A	1	1
	MOV	LCHECK, A	1	2
	MOV	A, HCHECK	1	2
	XRL	A, HPOLY	1	2
	RLC	A	1	1
	MOV	HCHECK, A	1	2
	CLR	C	1	1
	MOV	A, DATA	1	2
	RLC	A	1	1
	MOV	DATA, A	1	2
	DJNZ	INDEX, LOOP	2	3
	RET		2	1
	$\begin{gathered} N=3+17 \times 8=139 \text { cycles } \\ \text { @12 MHz }=139 \mu_{\mathrm{s}} \end{gathered}$			
		tructions =		
		es $=31$		


MC6801	Machine   Cycles	Bytes	
LDAA	\#\$08	2	2
LOOP: STAA	OUNT	3	2
LDAA	HCHECK	3	2
EORA	DATA	3	2
ROLA	2	1	
LDAD	POLY	4	2
EORA	HCHECK	3	2
EORB	LCHECK	3	2
ROLB		2	1
ROLA	LCHECK	2	1
STAD	4	2	
ASL	DATA	6	3
DEC	COUNT	6	3
BNE	LOOP	4	2
RTS		5	1

$N=45 \times 8+7=367$ cycles
@4 MHz $=367 \mu \mathrm{~s}$
Instructions $=15$
Bytes $=28$


Character Search Through Block of 40 Bytes


Shift 16-Bit Word to Right 5-Bits
$N=1+9 \times 5=46$ Cycles @12 MHz $=46 \mu \mathrm{~s}$
Instructions $=9$ Bytes $=15$
$N=10 \times 5+11=61$ Cycles
@4 MHz $=61 \mu_{6}$
Instructions $=6$
Bytes $=11$

28611 Clock


## Toggle a Port Bit



Table 2. Benchmark Program Results


Note: All times are given in microseconds.

Table 3. Byte/Instruction/Time Comparison

	Bytes			Instructions			Time (microseconds)		
	MC6801	8051	28611	MC6801	8051	Z8611	MC6801	8051	28611
CRC Generation	28	31	22	15	18	12	367	139	91
Character Search	15	15	11	8	7	5	687	280	254
Shift Right 5 Bits	11	15	9	6	9	5	61	46	26
Computed GOTO	17	21	15	8	12	7	110	75	38
Move Block	21	10	6	11	7	3	2306	577	321
Toggle Port Bit	6	3	2	3	1	1	8	2	1.7
Subroutine Call	3	4	3	2	2	2	14	4	5.7

## SUMMARY

The hardware of the three chips compared is very similar. The Z8611, however, has several advantages, the most important of which is its interrupt structure. It is more advanced than the interrupt structures of both the 8051 and the MC6801. Other advantages of the 28611 over either the MC6801 or the 8051 include I/0 facilities with parity detection and hardware handshake and a larger amount of internal ROM (the MC6801 has only 2K bytes).

Substantial differences are apparent with regard to software architecture. The addressing modes of
the 28611 are more flexible than those of either the MC6801 or the 8051. The 28611 can use bytesaving addressing with working registers, and it has short external addresses for saving $I / 0$ lines. It can also provide for an external stack. The register architecture (as opposed to the accumulator architecture) of the 28611 saves execution time and enhances programming speed by reducing the byte count.

The $Z 8611$ microcomputer stands out as the most powerful chip of the three, and concurrently, it is the easiest to program and configure.

## Application Brief

The Interrupt Request Register (IRQ, R250) stores requests from the six possible interrupt sources ( $I R Q^{0}-I R Q^{5}$ ) in the $Z 8600$ series microcomputer. In addition to other functions, a hardware reset to the $Z 8600$ disables the IRQ register and resets its request bits. Before the IRQ will register requests, it must first be enabled by executing an Enable Interrupts (EI) instruction. Setting the Enable Interrupt bit in the Interrupt Mask Register (IMR, R251) is not an equivalent operation for this purpose; to enable the IRQ, an El instruction is required. The function of this El instruction is distinct from its task of globally enabling the interrupt system. Even in a polled system where IRQ bits are tested in software, it is necessary to execute the El.

The designer must ensure that unexpected and undesirable interrupt requests will not occur after the El is executed. One method of doing this is to reset all interrupt enable bits in the IMR for levels that are possible interrupt sources; the El instruction may then be safely executed. Once El is executed, the program may immediately execute a Disable Interrupts (DI) instruction. The code necessary to perform these operations is as follows:

RESET: LD IMR, \#\%XX !SET INTERRUPT MASK! !ENABLE GLOBAL INTERRUPT, ENABLE IRQ!
where $X X$ has a $\varnothing$ in each bit position corresponding to the interrupt level to be disabled. If all IMR bits are to be reset, a CLR IMR instruction may be used.


Figure 1 - IRQ Reset Functional Logic Dlagram

# Z8 Family Software <br> Framing Error Detection 

## Application Brief

The Zilog Z8600 UART microcomputer is a highperformance, single-chip device that incorporates on-chip ROM, RAM, parallel I/O, serial 1/O, and a baud rate generator. The UART is capable of full-duplex, asynchronous serial communication at $n$ ine standard software-selectable baud rates from 110 to 19. 2 K baud; other nonstandard rates can also be obtained under software control. Odd parity generation and checking can also be selected.

Three possible error conditions can occur during reception of serial data: framing error, parity error, and overrun error. A framing error condition occurs when a stop bit is not received at the proper time (Figure 1). This can result from nolse in the data channel, causing erroneous detection of the previous start bit or lack of detection of a properly transmitted stop bit. The Z8600 UART does not incorporate hardware framing error detection but does facilitate a simple, low-overhead software detection method.


Fig. 1 - Asynchronous Data Format

In the middle of the stop bit time, the $\mathrm{Z8} 600$ UART automatically posts a serial input interrupt request on $\mathrm{IRQ}_{3}$. The serial input can also be tested by reading Port 3 bit 0 $\left(\mathrm{P}_{0}\right)$ as shown in Figure 2. Thus, within the interrupt service routine or polling loop, it is only necessary to test $P 3_{0}$ in order to identify a framing error. If $\mathrm{PB}_{0}$ is Low when $\mathbb{R Q Q}_{3}$ goes High, a framing error con-
dition exists and the following code is used to test this:

$$
\begin{aligned}
& \text { TM P3, \#\%01 ! TEST FOR P30 }=1! \\
& \text { JR } \mathrm{Z}, \text { FERR } \quad \text { ! ELSE FRAMING ERROR ! }
\end{aligned}
$$

The execution time of this framing error test is only $5.5 \mu \mathrm{~s}$ at 8 MHz . In the worst case (19.2K baud), this would result in $1 \%$ overhead. Only five program bytes are required.
SERIAL
DATA IN
$\mathrm{P}_{0}$

$\mathrm{Z8600}$

Fig. 2 - Z8600 Serial Input Connection

CONCLI: While the Z8600 UART does not incorporate hardware framing error detection, this feature can be implemented in software with a
maximum penalty of $1 \%$ at 19.2 K baud using no additional hardware and only five bytes of program memory.

# A Programmer's Guide to the $\mathbf{Z 8}^{\text {M }}$ Microcomputer 

Application<br>Note

Doll Freund

## SECTION

## Introduction

The Z8 is the first microcomputer to offer both a highly integrated microcomputer on a single chip and a fully expandable microprocessor for I/O-and memory-intensive applications. The Z 8 has two timer/counters, a UART, 2 K bytes internal ROM, and a 144 -byte internal register file including 124 bytes of RAM, 32 bits of I/O, and 16 control and status registers. In addition, the $Z 8$ can address up to 124 K bytes of external program and data memory, which can provide full, memorymapped I/O capability.

This application note describes the important features of the Z8, with software examples that illustrate its power and ease of use. It is divided into sections by topic; the reader need not read each section sequentially, but may skip around to the sections of current interest.

It is assumed that the reader is familiar with the Z 8 and its assembly language, as described in the following documents:

- Z8 Technical Manual (03-3047-02)
- 28 PLZ/ASM Assembly Language Programming Manual (03-3023-02)


## Accessing Register Memory

The Z8 register space consists of four I/O ports, 16 control and status registers, and 124 general-purpose registers. The generalpurpose registers are RAM areas typically used for accumulators, pointers, and stack area. This section describes these registers and how they are used. Bit manipulation and stack operations affecting the register space are discussed in Sections 4 and 5, respectively.
2.1 Registers and Register Pairs. The Z8 supports 8 -bit registers and 16 -bit register pairs. A register pair consists of an even-numbered register concatenated with the next higher numbered register (\%00 and \%01, \%02 and $\% 03, \ldots \% 7 \mathrm{E}$ and $\% 7 \mathrm{~F}, \% \mathrm{~F} 0$ and $\% \mathrm{Fl}, \ldots$ $\% \mathrm{FE}$ and $\% \mathrm{FF}$ ). A register pair must be addressed by reference to the even-numbered register. For example,
$\% \mathrm{~F} 1$ and $\% \mathrm{~F} 2$ is not a valid register pair; $\% \mathrm{FO}$ and $\% \mathrm{Fl}$ is a valid register pair, addressed by reference to \%F0.
Register pairs may be incremented (INCW) and decremented (DECW) and are useful as pointers for accessing program and external data memory. Section 3 discusses the use of register pairs for this purpose.

Any instruction which can reference or modify an 8 -bit register can do so to any of the 144 registers in the $Z 8$, regardless of the inherent nature of that register. Thus, I/O ports, control, status, and general-purpose registers may all be accessed and manipulated without the need for special-purpose instructions. Similarly, instructions which reference or modify a 16 -bit register pair can do so to any of the valid 72 register pairs. The only exceptions to this rule are:

- The DJNZ (decrement and jump if non-zero) instruction may successfully operate on the general-purpose RAM registers (\%04-\%7F) only.
- Six control registers are write-only registers and therefore, may be modified only by such instructions as LOAD, POP, and CLEAR. Instructions such as OR and AND require that the current contents of the operand be readable and therefore will not function properly on the write-only registers. These registers are the following: the timer/counter prescaler registers PREO and PRE1, the port mode registers P01M, P2M, and P3M, the interrupt priority register IPR.

2. Accessing Register Memory (Continued)
2.2 Register Pointer. Within the register addressing modes provided by the Z 8 , a register may be specified by its full 8-bit address ( $0-\% 7 \mathrm{~F}, \% \mathrm{~F} 0-\% \mathrm{FF}$ ) or by a short 4 -bit address. In the latter case, the register is viewed as one of 16 working registers within a working register group. Such a group must be aligned on a 16-byte boundary and is addressed by Register Pointer RP (\%FD). As an example, assume the Register Pointer contains $\% 70$, thus pointing to the working register group from $\% 70$ to $\% 7 \mathrm{~F}$. The LD instruction may be used to initialize register $\% 76$ to an immediate value in one of two ways:

LD \%76,\#l !8-bit register address is given by instruction (3 byte instruction)!
or
LD R6,\#1
!4-bit working register address is given by instruction; 4-bit working register group address is given by Register Pointer ( 2 byte instruction)!

The address calculation for the latter case is illustrated in Figure 1. Notice that 4-bit working-register addressing offers code compactness and fast execution compared to its 8 -bit counterpart.

To modify the contents of the Register Pointer, the Z 8 provides the instruction

## SRP \#value

Execution of this instruction will load the upper four bits of the Register Pointer; the lower four bits are always set to zero. Although a load instruction such as

## - LD RP,\#value

could be used to perform the same function, SRP provides execution speed (six vs. ten cycles) and code space (two vs. three bytes) advantages over the LD instruction. The instruction

SRP \#\%70
is used to set the Register Pointer for the above example.


Figure 1. Address Calculation Using the Register Pointer
2.3 Context Switching. A typical function performed during an interrupt service routine is context switching. Context switching refers to the saving and subsequent restoring of the program counter, status, and registers of the interrupted task. During an interrupt machine cycle, the Z8 automatically saves the Program Counter and status flags on the stack. It is the responsibility of the interrupt service routine to preserve the register space. The recommended means to this end is to allocate a specific portion of the register file for use by the service routine. The service routine thus preserves the register space of the interrupted task by avoiding modification of registers not allocated as its own. The most efficient scheme with which to implement this function in the Z 8 is to allocate a working register group (or portion thereof) to the interrupt service routine. In this way, the preservation of the interrupted task's registers is solely a matter of saving the Register Pointer on entry to the service routine, setting the Register Pointer to its own working register group, and restoring the Register Pointer prior to exiting the service routine. For example,
assume such a register allocation scheme has been implemented in which the interrupt service routine for IRQ0 may access only working register Group 4 (registers \%40-\%4F). The service routine for $\operatorname{IRQ0}$ should be headed by the code sequence:

PUSH RP | !preserve Register Pointer of |
| :---: |
| interrupted task! |

SRP \#\%40 | !address working register |
| :---: |
| group 4! |

Before exiting, the service routine should execute the instruction

POP RP
to restore the Register Pointer to its entry value.

It should be noted that the technique described above need not be restricted to interrupt service routines. Such a technique might prove efficient for use by a subroutine requiring intermediate registers to produce its outputs. In this way, the calling task can assume that its environment is intact upon return from the subroutine.

## 2. Accessing <br> Register Memory <br> (Continued)

2.4 Addressing Mode. The Z 8 provides three addressing modes for accessing the register space: Direct Register, Indirect Register, and Indexed.
2.4.1 Direct Register Addressing. This addressing mode is used when the target register address is known at assembly time. Both long (8-bit) register addressing and short (4-bit) working register addressing are supported in this mode. Most instructions supporting this mode provide access to single 8-bit registers. For example:
LD \%FE, \#HI STACK
!load register \%FE (SPH) with
the upper 8-bits of the label
STACK!

Increment word (INCW) and decrement word (DECW) are the only two Z8 instructions which access 16 -bit operands. These instructions are illustrated below for the direct register addressing mode.

INCW RRO !increment working register pair R0, Rl:
$\mathrm{Rl} \leftarrow \mathrm{Rl}+\mathrm{l}$
RO $\leftarrow$ RO + carry!
DECW \%7E
!decrement working register pair $\% 7 \mathrm{E}, ~ \% 7 \mathrm{~F}$ : $\% 7 \mathrm{~F} \leftarrow \% 7 \mathrm{~F}-1$ $\% 7 \mathrm{E} \leftarrow \% 7 \mathrm{E}-\mathrm{carry}!$
Note that the instruction

## INCW RR5

will be flagged as an error by the assembler (RR5 not even-numbered).
2.4.2 Indirect Register Addressing. In this addressing mode, the operand is pointed to by the register whose 8-bit register address or 4 -bit working register address is given by the instruction. This mode is used when the target register address is not known at assembly time and must be calculated during program execution. For example, assume registers \%60-\%7F contain a buffer for output to the serial line via repetitive calls to procedure SERIAL__OUT. SERIAL__OUT expects working register 0 to hold the output character. The following instructions illustrate the use of the indirect addressing mode to accomplish this task:

$$
\begin{gathered}
\text { LD Rl,\#\%20 } \\
\text { !working register } 1 \text { is the byte } \\
\text { counter: output } \% 20 \text { bytes! }
\end{gathered}
$$

LD	R2,\#\%60   !working register 2 is the buffer pointer register!
out__again:	
LD	R0,@R2
	!load into working register 0 the byte pointed to by working register 2!
INC	R2 !increment pointer!
CALL SERIAL_OUT	
	!output the byte!
DJNZ	Rl,out __again
	!loop till done!

Indirect addressing may also be used for accessing a 16 -bit register pair via the INCW and DECW instructions. For example,

INCW @R0 !increment the register pair whose address is contained in working register 0!
DECW @ \%7F !decrement the register pair whose address is contained in register \%7F!
The contents of registers R0 and \%7F should be even numbers for proper access; when referencing a register pair, the least significant address bit is forced to the appropriate value by the Z8. However, the register used to point to the register pair need not be an evennumbered register.

Since the indirect addressing mode permits calculation of a target address prior to the desired register access, this mode may be used to simulate other, more complex addressing modes. For example, the instruction

```
SUB 4,BASE(R5)
```

requires the indexed addressing mode which is not directly supported by the Z8 SUBtract instruction. This instruction can be simulated as follows:

$$
\begin{aligned}
& \text { LD } \quad \text { R6,\#BASE } \\
& \text { !working register } 6 \text { has the } \\
& \text { base address! }
\end{aligned}
$$

Any available register or working register may be used in place of R6 in the above example.
2.4.3 Indexed Addressing. The indexed addressing mode is supported by the load instruction (LD) for the transference of bytes between a working register and another register. The effective address of the latter register is given by the instruction which is offset by the contents of a designated working (index)
2. Accessing

Register Memory
(Continued)
register. This addressing mode provides efficient memory usage when addressing consecutive bytes in a block of register memory, such as a table or a buffer. The working register used as the index in the effective address calculation can serve the additional role of counter for control of a loop's duration.

For example, assume an ASCII character buffer exists in register memory starting at address BUF for LENGTH bytes. In order to determine the logical length of the character string, the buffer should be scanned backward until the first nonoccurrence of a blank character. The following code sequence may be used to accomplish this task:
LD RO,\#LENGTH
!length of buffer!
!starting at buffer end, look for
lst non-blank!

## SECTION

3

## Accessing Program and External Data Memory

In a single instruction, the $Z 8$ can transfer a byte between register memory and either program or external data memory. Load Constant (LDC) and Load Constant and Increment (LDCI) reference program memory; Load External (LDE) and Load External and Increment (LDEI) reference external data memory. These instructions require that a working register pair contain the address of the byte in either program or external data memory to be accessed by the instruction (indirect working register pair addressing mode). The register byte operand is specified by using the direct working register addressing mode in LDC and

```
LD Rl,\#BUF + LENGTH - 1
LD RO,\#LENGTH
 !starting at buffer end, look for
 lst non-blank!
loopl:
 CP @R1,\#'
 JR ne,foundl
 !found non-blank!
 DEC R1 !dec pointer!
 DJNZ R0,loopl
 !are we done?!
all__blanksl: !length \(=0\) !
foundl:
 6 instructions
 13 bytes
 \(3 \mu\) s overhead
 \(9.5 \mu\) (average) per character tested
```

The latter method requires one more byte of program memory than the former, but is faster by four execution cycles ( $1 \mu \mathrm{~s}$ ) per character tested.

As an alternate example, assume a buffer exists as described above, but it is desired to ${ }^{*}$ scan this buffer forward for the first occurrence of an ASCII carriage return. The following illustrates the code to do this:

LD RO,\#-LENGTH
!starting at buffer start, look for lst carriage return ( $=\% 0 \mathrm{D}$ )!
next:
LD rl,BUF + LENGTH(R0)
CP R1,\#\%0D
JR eq,or !found it!
INC R0 !update counter/index!
JR nz, next
!try again!
cr:
ADD RO,\#LENGTH !RO has length to CR!
7 instructions
16 bytes
$1.5 \mu$ s overhead
$12 \mu \mathrm{~s}$ (average) per character tested

LDE or the indirect working register addressing mode in LDCI and LDEI. In addition to performing the designated byte transfer, LDC̄I and LDEI automatically increment both the indirect registers specified by the instruction. These instructions are therefore efficient for performing block moves between register and either program or external data memory. Since the indirect addressing mode is used to specify the operand address within program or external data memory, more complex addressing modes may be simulated as discussed earlier in Section 2.4.2. For example, the instruction LDC R3,BASE(R2)
requires the indexed addressing mode, where

## 3. Accessing Program and External Data Memory

(Continued)

BASE is the base address of a table in program memory and R2 contains the offset from table start to the desired table entry. The following code sequence simulates this instruction with the use of two additional registers ( RO and Rl in this example).

LD	R0,\#HI BASE
LD	R1,\#LO BASE
	!RRO has table start address!
ADD	R1,R2
ADC	R0,\#0
	!RR0 has table entry address!
LDC	R3,@RR0
	!R3 has the table entry!

### 3.1 Configuring the Z 8 for I/O Applications

vs. Memory Intensive Applications. The Z8 offers a high degree of flexibility in memory and I/O intensive applications. Thirty-two port bits are provided of which 16,12 , eight, or zero may be configured as address bits to external memory. This allows for addressing of $62 \mathrm{~K}, 4 \mathrm{~K}$ or 256 bytes of external memory, which can be expanded to $124 \mathrm{~K}, 8 \mathrm{~K}$, or 512 bytes if the Data Memory Select output ( $\overline{\mathrm{DM}}$ ) is used to distinguish between program and data memory accesses. The following instructions illustrate the code sequence required to configure the Z 8 with 12 external addressing lines and to enable the Data Memory Select output.

```
LD P01M,#%(2)00010010
 !bit 3-4: enable }A\mp@subsup{D}{0}{}-A\mp@subsup{D}{7}{}\mathrm{ ;
 bit 0-1: enable A8}\mp@subsup{A}{8}{}-\mp@subsup{A}{11}{}\mathrm{ !
LD P3M,#%(2)00001000
 !bit 3-4: enable \overline{DM}
```

The two bytes following the mode selection of ports 0 and 1 should not reference external memory due to pipelining of instructions within the Z8. Note that the load instruction to P3M satisfies this requirement (providing that it resides within the internal 2 K bytes of memory).
3.2 LDC and LDE. To illustrate the use of the Load Constant (LDC) and Load External (LDE) instructions, assume there exists a hardware configuration with external memory and Data Memory Select enabled. The following module illustrates a program for tokenizing an ASCII input buffer. The program assumes there is a list of delimiters (space, comma, tab, etc.) in program memory at address DELIM for COUNT bytes (accessed via LDC) and that an ASCII input buffer exists in external data memory (accessed via LDE). The program scans the input buffer from the current location and returns the start address of the next token (i.e. the address of the first nondelimiter found) and the length of that token (number of characters from token start to next delimiter).



27 instructions
58 bytes
Execution time is a function of the number of leading delimiters
before token start ( $x$ ) and the number of characters in the
token (y): $123 \mu s$ overhead $+59 x \mu s+102 y \mu s$
(average) per token
3.3 LDCI. A common function performed in Z 8 applications is the initialization of the register space. The most obvious approach to this function is the coding of a sequence of "load register with immediate value" instructions (each occupying three program bytes for a
register or two program bytes for a working register). This approach is also the most efficient technique for initializing less than eight consecutive registers or 14 consecutive working registers. For a larger register block, the
3. Accessing LDCI instruction provides an economical

Program and means of initializing consecutive registers from
External Data an initialization table in program memory. The Memory following code excerpt illustrates this tech-
(Continued) nique of initializing control registers $\%$ F2 through $\%$ FF from a 14-byte array (INIT__tab) in program memory:

$$
\begin{array}{cc}
\text { SRP } & \# \% 00 \\
& \text { !RP not \%F0! } \\
\text { LD } & \text { R6,\#HI INIT__tab } \\
\text { LD } & \text { R7,\#LO INIT__tab } \\
\text { LD } & \text { R8,\#\%F2 } \\
\text { !lst reg to be initialized! } \\
\text { LD } & \text { R9,\#14 } \\
\text { !length of register block! } \\
\text { loop: } & \text { LDCI @R8,@RR6 } \\
\text { !load a register from the } \\
\text { init table! } \\
\text { DJNZ R9,loop } \\
\text { !continue till done! } \\
7 \text { instructions } \\
14 \text { bytes } \\
7.5 \mu \text { s overhead } \\
7.5 \mu \text { per register initialized }
\end{array}
$$

3.4 LDEI. The LDEI instruction is useful for moving blocks of data between external and register memory since auto-increment is performed on both indirect registers designated by the instruction. The following code excerpt illustrates a register buffer being saved at address \%40 through \%60 into external memory at address SAVE:

## LD R10,\#HI SAVE

!external memory!
LD Rll,\#LO SAVE
!address!
LD R8,\#\%40
!starting register!
LD R9,\#\%21
!number of registers to save in
external data memory!
loop:
LDEI @RR10,@R8
!init a register!
DJNZ R9,loop
!until done!
6 instructions
12 bytes
$6 \mu$ s overhead
$7.5 \mu$ s per register saved

## SECTION



## Bit Manipulations

Support of the test and modification of an individual bit or group of bits is required by most software applications suited to the Z8 microcomputer. Initializing and modifying the Z8 control registers, polling interrupt requests, manipulating port bits for control of or communication with attached devices, and manipulation of software flags for internal control purposes are all examples of the heavy use of bit manipulation functions. These examples illustrate the need for such functions in all areas of the Z 8 register space. These functions are supported in the Z 8 primarily by six instructions:

- Test under Mask (TM)
- Test Complement under Mask (TCM)
- AND
- OR
- XOR
- Complement (COM)

These instructions may access any Z8 register, regardless of its inherent type (control, I/O, or general purpose), with the exception of the six write-only control registers (PREO, PRE1, P01M, P2M, P3M, IPR) mentioned earlier in Section 2.1. Table 1 summarizes the function performed on the destination byte by each of the above instructions. All of these instructions, with the exception of COM, require a mask operand. The "selected" bits referenced in Table 1 are those bits in the destination operand for which the corresponding mask bit is a logic 1 .

Opcode	Use
TM	To test selected bits for logıc 0
TCM	To test selected bits for logıc 1
AND	To reset all but selected bits to logıc 0
OR	To set selected bits to logıc 1
XOR	To complement selected bits
COM	To complement all bits

Table 1. Bit Manipulation Instruction Usage
The instructions AND, OR, XOR, and COM have functions common to today's microprocessors and therefore are not described in depth here. However, examples of the use of these instructions are laced throughout the remainder of this document, thus giving an integrated view of their uses in common functions. Since they are unique to the $\mathrm{Z8}$, the functions of Test under Mask and Test Complement under Mask, are discussed in more detail next.
4.1 Test under Mask (TM). The Test under Mask instruction is used to test selected bits for logic 0 . The logical operation performed is

## destination AND source

Neither source nor destination operand is modified; the FLAGS control register is the only register affected by this instruction. The zero flag ( $Z$ ) is set if all selected bits are logic 0 ; it is reset otherwise. Thus, if the selected destination bits are either all logic 1 or a combination of $1 s$ and $0 s$, the zero flag would be cleared by this instruction. The sign flag ( $S$ ) is either set or reset to reflect the result of the
4. Bit

Manipulations
(Continued)

AND operation; the overflow flag (V) is always reset. All other flags are unaffected. Table 2 illustrates the flag settings which result from the TM instruction on a variety of source and destination operand combinations. Note that a given TM instruction will never result in both the Z and S flags being set.
4.2 Test Complement under Mask. The Test Complement under Mask instruction is used to test selected bits for logic 1. The logical operation performed is
(NOT destination) AND source.

Destination	Source	Flags		
(binary)	(binary)	Z	S	V
10001100	01110000	1	0	0
01111100	01110000	0	0	0
10001100	11110000	0	1	0
11111100	11110000	0	1	0
00011000	10100001	1	0	0
01000000	10100001	1	0	0

Table 2. Effects of the TM Instruction

## Stack Operations

The Z 8 stack resides within an area of data memory (internal or external). The current address in the stack is contained in the stack pointer, which decrements as bytes are pushed onto the stack, and increments as bytes are popped from it. The stack pointer occupies two control register bytes (\%FE and $\% \mathrm{FF}$ ) in the Z8 register space and may be manipulated like any other register. The stack is useful for subroutine calls, interrupt service routines, and parameter passing and saving. Figure 2 illustrates the downward growth of a stack as bytes are pushed onto it.
5.1 Internal vs. External Stack. The location of the stack in data memory may be selected to be either internal register memory or external data memory. Bit 2 of control register PO1M (\%F8) controls this selection. Register pair SPH ( $\% \mathrm{FE}$ ), SPL ( $\% \mathrm{FF}$ ) serves as the stack pointer for an external stack. Register SPL is the stack pointer for an internal stack. In the


Figure 2. Growth of a Stack

As in Test under Mask, the FLAGS control register is the only register affected by this operation. The zero flag ( Z ) is set if all selected destination bits are 1; it is reset otherwise. The sign flag ( S ) is set or reset to reflect the result of the AND operation; the overflow flag (V) is always reset. Table 3 illustrates the flag settings which result from the TCM instruction on a variety of source and destination operand combinations. As with the TM instruction, a given TCM instruction will never result in both the Z and S flags being set.

Destination	Source	Flags		
(binary)	(binary)	Z	S	V
10001100	01110000	0	0	0
01111100	01110000	1	0	0
10001100	11110000	0	0	0
1111100	11110000	1	0	0
00011000	10100001	0	1	0
01000000	10100001	0	1	0

Table 3. Effects of the TCM Instruction
latter configuration, SPH is available for use as a data register. The following illustrates a code sequence that initializes external stack operations:

LD P01M,\#\%(2)00000000
!bit 2: select external stack!
LD SPH,\#HI STACK
LD SPL,\#LO STACK
5.2 CALL. A subroutine call causes the current Program Counter (the address of the byte following the CALL instruction) to be pushed onto the stack. The Program Counter is loaded with the address specified by the CALL instruction. This address may be a direct address or an indirect register pair reference. For example,

LABEL 1: CALL \%4F98
!direct addressing: PC is loaded with the hex value 4F98; address LABEL $1+3$ is pushed onto the stack!
LABEL 2: CALL @RR4
!indirect addressing: PC is loaded with the contents of working register pair R4, R5; address LABEL $2+2$ is pushed onto the stack!

## 5. Stack Operations (Continued)

LABEL 3: CALL @\%7E
!indirect addressing: PC is loaded with the contents of register pair \%7E, \%7F; address ${ }^{`}$ LABEL $3+2$ is pushed onto the stack!
5.3 RET. The return (RET) instruction causes the top two bytes to be popped from the stack and loaded into the Program Counter. Typically, this is the last instruction of a subroutine and thus restores the PC to the address following the CALL to that subroutine.
5.4 Interrupt Machine Cycle. During an interrupt machine cycle, the PC followed by the status flags is pushed onto the stack. (A more detailed discussion of interrupt processing is provided in Section 6.)
5.5 IRET. The interrupt return (IRET) instruction causes the top byte to be popped from the stack and loaded into the status flag register, FLAGS (\%FC); the next two bytes are then popped and loaded into the Program Counter. In this way, status is restored and program execution continues where it had left off when the interrupt was recognized.
5.6 PUSH and POP. The PUSH and POP instructions allow the transfer of bytes between
the stack and register memory, thus providing program access to the stack for saving and restoring needed values and passing parameters to subroutines.

Execution of a PUSH instruction causes the stack pointer to be decremented by 1 ; the operand byte is then loaded into the location pointed to by the decremented stack pointer. Execution of a POP instruction causes the byte addressed by the stack pointer to be loaded into the operand byte; the stack pointer is then incremented by l. In both cases, the operand byte is designated by either a direct register address or an indirect register reference. For example:

PUSH Rl !direct address: push working register l onto the stack!

POP 5 !direct address: pop the top stack byte into register 5 !
PUSH @R4 !indirect address: pop the top stack byte into the byte pointed to by working register 4!
PUSH @17 !indirect address: push onto the stack the byte pointed to by register 17 !

## SECTION

6

## Interrupts

The Z8 recognizes six different interrupts from four internal and four external sources, including internal timer/counters, serial I/O, and four Port 3 lines. Interrupts may be individually or globally enabled/disabled via Interrupt Mask Register IMR ( $\% \mathrm{FB}$ ) and may be prioritized for simultaneous interrupt resolution via Interrupt Priority Register IPR (\%F9). When enabled, interrupt request processing automatically vectors to the designated service routine. When disabled, an interrupt request may be polled to determine when processing is needed.
6.1 Interrupt Initialization. Before the Z 8 can recognize interrupts following RESET, some initialization tasks must be performed. The initialization routine should configure the Z 8 interrupt requests to be enabled/disabled, as required by the target application and assigned a priority (via IPR) for simultaneous enabled-interrupt resolution. An interrupt request is enabled if the corresponding bit in the IMR is set ( $=1$ ) and interrupts are globally enabled (bit 7 of IMR $=1$ ). An interrupt request is disabled if the corresponding bit in the IMR is reset $(=0)$ or interrupts are globally disabled (bit 7 of IMR $=0$ ).

A RESET of the $\mathrm{Z8}$ causes the contents of the Interrupt Request Register IRQ (\%FA) to be held to zero until the execution of an EI
instruction. Interrupts that occur while the $\mathrm{Z8}$ is in this initial state will not be recognized, since the corresponding IRQ bit cannot be set. The EI instruction is specially decoded by the Z8 to enable the IRQ; simply setting bit 7 of IMR is therefore not sufficient to enable interrupt processing following RESET. However, subsequent to this initial EI instruction, interrupts may be globally enabled either by the instruction

EI !enable interrupts!
or by a register manipulation instruction such as

OR IMR,\#\%80
To globally disable interrupts, execute the instruction

DI !disable interrupts!
This will cause bit 7 of IMR to be reset.
Interrupts must be globally disabled prior to any modification of the IMR, IPR or enabled bits of the IRQ (those corresponding to enabled interrupt requests), unless it can be guaranteed that an enabled interrupt will not occur during the processing of such instructions. Since interrupts represent the occurrence of events asynchronous to program execution, it is highly unlikely that such a guarantee can be made reliably.
6.2 Vectored Interrupt Processing. Enabled interrupt requests are processed in an automatic vectored mode in which the interrupt service routine address is retrieved from within the first 12 bytes of program memory. When an enabled interrupt request is recognized by the Z 8 , the Program Counter is pushed onto the stack (low order 8 bits first, then high-order 8 bits) followed by the FLAGS register (\#\%FC). The corresponding interrupt request bit is reset in $I R Q$, interrupts are globally disabled (bit 7 of IMR is reset), and an indirect jump is taken on the word in location $2 \mathrm{x}, 2 \mathrm{x}+1$ ( $\mathrm{x}=$ interrupt request number, $0 \leq x \leq 5$ ). For example, if the bytes at addresses $\% 0004$ and $\% 0005$ contain $\% 05$ and $\% 78$ respectively, the interrupt machine cycle for IRQ2 will cause program execution to continue at address \%0578.

When interrupts are sampled, more than one interrupt may be pending. The Interrupt Priority Register (IPR) controls the selection of the pending interrupt with highest priority. While this interrupt is being serviced, a higherpriority interrupt may occur. Such interrupts
may be allowed service within the current interrupt service routine (nested) or may be held until the current service routine is complete (non-nested).

To allow nested interrupt processing, interrupts must be selectively enabled upon entry to an interrupt service routine. Typically, only higher-priority interrupts would be allowed to nest within the current interrupt service. To do this, an interrupt routine must "know" which interrupts have a higher priority than the current interrupt request. Selection of such nesting priorities is usually a reflection of the priorities established in the Interrupt Priority Register (IPR). Given this data, the first instructions executed in the service routine should be to save the current Interrupt Mask Register, mask off all interrupts of lower and equal priority, and globally enable interrupts (EI). For example, assume that service of interrupt requests 4 and 5 are nested within the service of interrupt request 3. The following illustrates the code required to enable IRQ4 and IRQ5:

CONSTANT


Note that IRQ4 and IRQ5 are enabled by the above sequence only if their respective IMR bits $=1$ on entry to IRQ3__service.
The service routine for an interrupt whose processing is to be completed without interruption should not allow interrupts to be nested within it. Therefore, it need not modify the IMR, since interrupts are disabled automatically during the interrupt machine cycle.
The service routine for an enabled interrupt is typically concluded with an IRET instruction, which restores the FLAGS register and Program Counter from the top of the stack and globally enables interrupts. To return from an interrupt service routine without re-enabling
interrupts, the following code sequence could be used:

```
POP FLAGS
 !FLAGS < @SP!
 RET !PC <- @SP!
```

This accomplishes all the functions of IRET, except that IMR is not affected.

### 6.3 Polled Interrupt Processing Disabled

 interrupt requests may be processed in a polled mode, in which the corresponding bits of the Interrupt Request Register (IRQ) are examined by the software. When an interrupt request bit is found to be a logic 1 , the interrupt should be processed by the appropriateservice routine. During such processing, the interrupt request bit in the IRQ must be cleared by the software in order for subsequent interrupts on that line to be distinguished from the current one. If more than one interrupt request is to be processed in a polled mode, polling should occur in the order of estab-
lished priorities. For example, assume that IRQ0, IRQ1, and IRQ4 are to be polled and that established priorities are, from high to low, IRQ4, IRQ0, IRQ1. An instruction sequence like the following should be used to poll and service the interrupts:
!...!
!poll interrupt inputs here!

TCM	IRQ, \#\%(2)00010000		!IRQ4 need service?!
JR	NZ, TEST0		!no!
CALL	IRQ4__service		!yes!
TEST0: TCM	IRQ, \#\%(2)00000001		!IRQ0 need service?!
JR	NZ, TEST1		!no!
CALL	IRQ0__service		!yes!
TESTI: TCM	IRQ, \#\%(2)00000010		!IRQ1 need service?!
JR	NZ, DONE		!no!
CALL	IRQl__service		!yes!
DONE: ! ...!			
IRQ4__service	PROCEDURE	ENTRY	
!...!			
AND	IRQ, \#\%(2)11101111		!clear IRQ4!
!...!		,	
RET			
END IRQ4__service			
IRQ0__service	PROCEDURE	ENTRY	
!...!			
AND	IRQ, \#\%(2)11111110		!clear IRQ0!
!...!			
RET			
END IRQ0__service			
IRQ1__service	PROCEDURE	ENTRY	
!...!			
AND	IRQ, \#\%(2)11111101		!clear IRQ1!
!...!			
RET			
END IRQl__service			
!...!			

## SECTION Timer/Counter Functions

7
The Z 8 provides two 8 -bit timer/counters, $\mathrm{T}_{0}$ and $T_{1}$, which are adaptable to a variety of application needs and thus allow the software (and external hardware) to be relieved of the bulk of such tasks. Included in the set of such uses are:

- Interval delay timer
- Maintenance of a time-of-day clock
- Watch-dog timer
- External event counting
- Variable pulse train output
- Duration measurement of external event
- Automatic delay following external event detection

Each timer/counter is driven by its own 6-bit prescaler, which is in turn driven by the internal Z 8 clock divided by four. For $\mathrm{T}_{1}$, the internal clock may be gated or triggered by an external event or may be replaced by an external clock input. Each timer/counter may operate in either single-pass or continuous mode where, at end-of-count, either counting stops or the counter reloads and continues counting. The counter and prescaler registers may be altered individually while the timer/ counter is running; the software controls whether the new values are loaded immediately or when end-of-count (EOC) is reached.

Although the timer/counter prescaler registers (PREO and PRE1) are write-only, there is a technique by which the timer/
counters may simulate a readable prescaler. This capability is a requirement for high resolution measurement of an event's duration. The basic approach requires that one timer/ counter be initialized with the desired counter and prescaler values. The second timer/ counter is initialized with a counter equal to the prescaler of the first timer/counter and a prescaler of 1 . The second timer/counter must be programmed for continuous mode. With both timer/counters driven by the internal clock and started and stopped simultaneously, they will run synchronous to one another; thus, the value read from the second counter will always be equivalent to the prescaler of the first.

### 7.1 Time/Count Interval Calculation To

 determine the time interval (i) until EOC, the equation$$
\mathrm{i}=\mathrm{t} \times \mathrm{p} \times \mathrm{v}
$$

characterizes the relation between the prescaler (p), counter (v), and clock input period ( t ); t is given by

## 1/(XTAL/8)

where XTAL is the $\mathrm{Z8}$ input clock frequency; $p$ is in the range $1-64 ; v$ is in the range $1-256$. When programming the prescaler and counter registers, the maximum load value is truncated to six and eight bits, respectively, and is therefore programmed as zero. For an input clock frequency of 8 MHz , the prescaler and counter register values may be programmed to time an interval in the range

$$
\begin{aligned}
& 1 \mu \mathrm{~s} \times 1 \times 1 \leq \mathrm{i} \leq 1 \mu \mathrm{~s} \times 64 \times 256 \\
& 1 \mu \mathrm{~s} \leq \mathrm{i} \leq 16.384 \mathrm{~ms}
\end{aligned}
$$

To determine the count (c) until EOC for $\mathrm{T}_{1}$ with external clock input, the equation

$$
\mathrm{c}=\mathrm{p} \times \mathrm{v}
$$

characterizes the relation between the $T_{1}$ prescaler ( p ) and the $\mathrm{T}_{1}$ counter (v). The divide-by- 8 on the input frequency is bypassed in this mode. The count range is

$$
\begin{aligned}
& 1 \times 1 \leq c \leq 64 \times 256 \\
& 1 \leq c \leq 16,384
\end{aligned}
$$

7.2 Tout Modes. Port 3, bit $6\left(\mathrm{P}_{6}\right)$ may be configured as an output (TOUT) which is dynamically controlled by one of the following:

- $\mathrm{T}_{0}$
- $\mathrm{T}_{1}$
- Internal clock

When driven by $T_{0}$ or $T_{1}, T_{\text {OUT }}$ is reset to a logic 1 when the corresonding load bit is set in timer control register TMR ( $\% \mathrm{Fl}$ ) and toggles on EOC from the corresponding counter.

When Tout is driven by the internal clock, that clock is directly output on $\mathrm{P3}_{6}$.
While programmed as TOUT, $\mathrm{P} 3_{6}$ is disabled from being modified by a write to port register \%03; however, its current output may be examined by the Z 8 software by a read to port register \%03.
7.3 $\mathrm{T}_{\text {IN }}$ Modes. Port 3, bit $1\left(\mathrm{P}_{1}\right)$ may be configured as an input ( $\mathrm{T}_{\text {IN }}$ ) which is used in conjunction with $\mathrm{T}_{1}$ in one of four modes:

- External clock input
- Gate input for internal clock
- Nonretriggerrable input for internal clock
- Retriggerable input for internal clock

For the latter two modes, it should be noted that the existence of a synchronizing circuit within the Z 8 causes a delay of two to three internal clock periods following an external trigger before clocking of the counter actually begins.
Each High-to-Low transition on $T_{I N}$ will generate interrupt request $I R Q 2$, regardless of the selected $T_{\text {IN }}$ mode or the enabled/disabled state of $T_{1}$. IRQ2 must therefore be masked or enabled according to the needs of the application.
The "external clock input" $T_{\text {IN }}$ mode supports the counting of external events, where an event is seen as a High-to-Low transition on $\mathrm{T}_{\text {IN }}$. Interrupt request IRQ5 is generated on the $n^{\text {th }}$ occurrence (single-pass mode) or on every $n^{\text {th }}$ occurrence (continuous mode) of that event.
The "gate input for internal clock" $\mathrm{T}_{\text {IN }}$ mode provides for duration measurement of an external event. In this mode, the $T_{1}$ prescaler is driven by the Z 8 internal clock, gated by a High level on $\mathrm{T}_{\text {IN }}$. In other words, $\mathrm{T}_{1}$ will count while $\mathrm{T}_{\text {IN }}$ is High and stop counting while $\mathrm{T}_{\text {IN }}$ is Low. Interrupt request IRQ2 is generated on the High-to-Low transition on $\mathrm{T}_{\text {IN }}$. Interrupt request IRQ5 is generated on $\mathrm{T}_{1}$ EOC. This mode may be used when the width of a High-going pulse needs to be measured. In this mode, IRQ2 is typically the interrupt request of most importance, since it signals the end of the pulse being measured. If IRQ5 is generated prior to $\operatorname{IRQ} 2$ in this mode, the pulse width on $T_{\text {IN }}$ is too large for $T_{1}$ to measure in a single pass.

The "nonretriggerable input" $\mathrm{T}_{\text {IN }}$ mode provides for automatic delay timing following an external event. In this mode, $\mathrm{T}_{1}$ is loaded and clocked by the Z 8 internal clock following the first High-to-Low transition on $\mathrm{T}_{\text {IN }}$ after $\mathrm{T}_{1}$ is enabled. $\mathrm{T}_{\text {IN }}$ transitions that occur after this point do not affect $T_{1}$. In single-pass mode, the
7. Timer/ Counter Functions
(Continued)
enable bit is reset on EOC; further $\mathrm{T}_{\text {IN }}$ transitions will not cause $T_{1}$ to load and begin counting until the software sets the enable bit again. In continuous mode, EOC does not modify the enable bit, but the counter is reloaded and counting continues immediately; IRQ5 is generated every EOC until software resets the enable bit. This $\mathrm{T}_{\text {IN }}$ mode may be used, for example, to time the line feed delay following end of line detection on a printer or to delay data sampling for some length of time following a sample strobe.

The "retriggerable input" $\mathrm{T}_{\text {IN }}$ mode will load and clock $\mathrm{T}_{1}$ with the Z 8 internal clock on every occurrence of a High-to-Low transition on $\mathrm{T}_{\text {IN }}$. $\mathrm{T}_{1}$ will time-out and generate interrupt request $I R Q 5$ when the programmed time interval (determined by $\mathrm{T}_{1}$ prescaler and load register values) has elapsed since the last High-to-Low transition on $\mathrm{T}_{\text {IN }}$. In single-pass mode, the enable bit is reset on EOC; further $\mathrm{T}_{\text {IN }}$ transitions will not cause $\mathrm{T}_{1}$ to load and begin counting until the software sets the enable bit again. In continuous mode, EOC does not modify the enable bit, but the counter is reloaded and counting continues immedi-
ately; IRQ5 is generated at every EOC until the software resets the enable bit. This $\mathrm{T}_{\text {IN }}$ mode may provide such functions as watch-dog timer (e.g., interrupt if conveyor belt stopped or clock pulse missed), or keyboard time-out (e.g., interrupt if no input in $x \mathrm{~ms}$ ).
7.4 Examples. Several possible uses of the timer/counters are given in the following four examples.

### 7.4.1 Time of Day Clock. The following

 module illustrates the use of $T_{1}$ for maintenance of a time of day clock, which is kept in binary format in terms of hours, minutes, seconds, and hundredths of a second. It is desired that the clock be updated once every hundredth of a second; therefore, $\mathrm{T}_{1}$ is programmed in continuous mode to interrupt 100 times a second. Although $\mathrm{T}_{1}$ is used for this example, $\mathrm{T}_{0}$ is equally suited for the task.The procedure for initializing the timer (TOD__INIT), the interrupt service routine (TOD) which updates the clock, and the interrupt vector for $\mathrm{T}_{1}$ end-of-count ( IRQ _ 5 ) are illustrated below. XTAL $=7.3728 \mathrm{MHz}$ is assumed.



TOD_INIT:
7 instructions 15 bytes $16 \mu \mathrm{~s}$

TOD:
17 instruction
32 bytes
$19.5 \mu$ (average) including interrupt response time
7.4.2 Variable Frequency, Variable Pulse Width Output. The following module illustrates one possible use of TOUT. Assume it is necessary to generate a pulse train with a $10 \%$ duty cycle, where the output is repetitively high for 1.6 ms and then low for 14.4 ms . To do this, TOUT is controlled by end-of-count from $T_{1}$, although $T_{0}$ could alternately be chosen. This example makes use of the Z 8 feature that allows a timer's counter register to be modified without disturbing the count in progress. In continuous mode, the new value is loaded when $T_{1}$ reaches EOC. $T_{1}$ is first loaded and enabled with values to generate the short interval. The counter register is then immediately modified with the value to generate the long interval; this value is loaded into the counter automatically on $\mathrm{T}_{1}$ EOC. The prescaler selected value must be the same for both long and short intervals. Note that the
initial loading of the $T_{1}$ counter register is followed by setting the $T_{1}$ load bit of timer control register TMR ( $\% \mathrm{Fl}$ ); this action causes TOUT to be reset to a logic l output. Each subsequent modification of the $\mathrm{T}_{1}$ counter register does not affect the current TOUT level, since the $T_{1}$ load bit is NOT altered by the software. The new value is loaded on EOC, and $\mathrm{T}_{\text {OUT }}$ will toggle at that time. The $\mathrm{T}_{1}$ interrupt service routine should simply modify the $\mathrm{T}_{1}$ counter register with the new value, alternating between the long and short interval values.

In the example which follows, bit 0 of register $\% 04$ is used as a software flag to indicate which value was loaded last. This module illustrates the procedure for $T_{1} / T_{\text {OUT }}$ initialization (PULSE_INIT), the $\mathrm{T}_{1}$ interrupt service routine (PULSE), and the interrupt vector for $\mathrm{T}_{1} \mathrm{EOC}$ (IRQ_5). XTAL $=8 \mathrm{MHz}$ is assumed.



```
PULSE_INIT:
 10 instructions
 23 bytes
 23 \mus
```

PULSE:

PULSE:
5 instructions
12 bytes
$25 \mu s$ (average) including interrupt response time
7.4.3 Cascaded Timer/Counters. For some applications it may be necessary to measure a greater time interval than a single timer/ counter can measure ( 16.384 ms ). In this case, $\mathrm{T}_{\text {IN }}$ and TOUT may be used to cascade $\mathrm{T}_{0}$ and


Figure 3. Cascaded Timer/Counters
$T_{1}$ to function as a single unit. TOUT, programmed to toggle on $T_{0}$ end-of-count, should be wired back to $\mathrm{T}_{\mathrm{IN}}$, which is selected as the external clock input for $T_{1}$. With $T_{0}$ programmed for continuous mode, TOUT (and therefore $\mathrm{T}_{\text {IN }}$ ) goes through a High-to-Low transition (causing $T_{1}$ to count) on every other $T_{0} E O C$. Interrupt request $I R Q 5$ is generated when the programmed time interval has elapsed. Interrupt requests $I R Q 2$ (generated on every $T_{\text {IN }}$ High-to-Low transition) and IRQ4 (generated on $T_{0} E O C$ ) are of no importance in this application and are therefore disabled.
To determine the time interval (i) until EOC, the equation

$$
\mathrm{i}=\mathrm{t} \times \mathrm{p} 0 \times \mathrm{v} 0 \times(2 \times \mathrm{pl} \times \mathrm{vl}-1)
$$

characterizes the relation between the $\mathrm{T}_{0}$ prescaler ( p 0 ) and counter ( v 0 ), the $\mathrm{T}_{1}$ prescaler (pl) and counter (vl), and the clock input period ( t ); t is defined in Section 7.1. Assuming XTAL $=8 \mathrm{MHz}$, the measurable time interval range is

$$
\begin{aligned}
& 1 \mu \mathrm{~s} \times 1 \times 1 \times(2 \times 1-1) \leq \mathrm{i} \leq \\
& 1 \mu \mathrm{~s} \times 64 \times 256 \times(2 \times 64 \times 256-1) \\
& 1 \mu \mathrm{~s} \leq \mathrm{i} \leq 536.854528 \mathrm{~s}
\end{aligned}
$$

Figure 3 illustrates the interconnection between $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$. The following module illustrates the procedure required to initialize the timers for a 1.998 second delay interval:

7.4.4 Clock Monitor. $\mathrm{T}_{1}$ and $\mathrm{T}_{\text {IN }}$ may be used to monitor a clock line (in a diskette drive, for example) and generate an interrupt request when a clock pulse is missed. To accomplish this, the clock line to be monitored is wired to $\mathrm{P}_{1}\left(\mathrm{~T}_{\text {IN }}\right)$. $\mathrm{T}_{\text {IN }}$ should be programmed as a retriggerable input to $T_{1}$, such that each falling edge on $T_{\text {IN }}$ will cause $T_{1}$ to reload and continue counting. If $T_{1}$ is programmed to time-out after an interval of one-and-a-half times the clock period being monitored, $\mathrm{T}_{1}$ will time-out and generate interrupt request IRQ5 only if a clock pulse is missed.

The following module illustrates the procedure for initializing $T_{1}$ and $T_{I N}$ (MONITOR__INIT) to monitor a clock with a period of $2 \mu \mathrm{~s}$. XTAL $=8 \mathrm{MHz}$ is assumed. Note that this example selects single-pass rather than continuous mode for $\mathrm{T}_{1}$. This is to prevent a continuous stream of IRQ5 interrupt requests in the event that the monitored clock fails completely. Rather, the interrupt service routine (CLK_ERR) is left with the choice of whether or not to re-enable the monitoring. Also shown is the $T_{1}$ interrupt vector (IRQ _ 5).


MONITOR_INIT
9 instructions
21 bytes
21.5 us

$$
\begin{aligned}
& C L K_{\ldots} \text { ERR: } \\
& 2+\text { instructions } \\
& 4+\text { bytes } \\
& 18.5+\mu \text { including interrupt response time }
\end{aligned}
$$

## SECTION

8

## I/O Functions

The Z8 provides 32 I/O lines mapped into registers $0-3$ of the internal register file. Each nibble of port 0 is individually programmable as input, output, or address/data lines ( $A_{15}-A_{12}, A_{11}-A_{8}$ ). Port 1 is programmable as a single entity to provide input, output, or address/data lines $\left(A D_{7}-A D_{0}\right)$. The operating modes for the bits of Ports 0 and 1 are selected by control register P01M (\%F8). Selection of I/O lines as address/data lines supports access to external program and data memory; this is discussed in Section 3. Each bit of Port 2 is individually programmable as an input or an

Function	Bit	Signal
Handshake	$\mathrm{P}_{1}$	DAVV 2 RDY2
	$\mathrm{P}_{2}$	DAV0/RDY0
	$\mathrm{P}_{3}$	DAV 1/RDY1
	$\mathrm{P}_{4}$	RDY1/ $\overline{\mathrm{DAV}} 1$
	$\mathrm{P}_{3} 5$	RDY0/DAV0
	$\mathrm{P} 3_{6}$	RDY2/DAV2
Interrupt Request	$\mathrm{P}^{\mathrm{P}}{ }_{0}$	IRQ3
	P31	IRQ2
	$\mathrm{P}_{2}{ }_{2}$	IRQ0
	$\mathrm{P}_{3}$	IRQ1
Counter/	$\left\{\mathrm{P}_{3}\right.$	$\mathrm{T}_{\text {IN }}$
Timer	$\mathrm{P}_{3}{ }_{6}$	TOUT
Data Memory Select	$\left\{\mathrm{P}_{4}\right.$	DM
Status Out		
Serial I/O	$\left\{\begin{array}{l}\text { P3 }{ }_{0} \\ \text { P3 }\end{array}\right.$	Serial In   Serial Out

Table 4. Port 3 Special Functions
output bit. Port 2 bits programmed as outputs may also be programmed (via bit 0 of P3M) to all have active pull-ups or all be open-drain (active pull-ups inhibited). In Port 3, four bits $\left(\mathrm{P}_{0}-\mathrm{P} 3_{3}\right)$ are fixed as inputs, and four bits $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$ are fixed as outputs, but their functions are programmable. Special functions provided by Port 3 bits are listed in Table 4. Use of the Data Memory select output is discussed in Section 3; uses of $\mathrm{T}_{\text {IN }}$ and TOUT are discussed in Section 7.

### 8.1 Asynchronous Receiver/Transmitter

Operation. Full-duplex, serial asynchronous receiver/transmitter operation is provided by the Z 8 via $\mathrm{P}_{7}$ (output) and $\mathrm{P} 3_{0}$ (input) in conjunction with control register SIO (\%FO), which is actually two registers: receiver buffer and transmitter buffer. Counter/Timer $\mathrm{T}_{0}$ provides the clock for control of the bit rate.
The Z8 always receives and transmits eight bits between start and stop bits. However, if parity is enabled, the eighth bit $\left(D_{7}\right)$ is replaced by the odd-parity bit when transmitted and a parity-error flag ( $=1$ if error) when received. Table 5 illustrates the state of the parity bit/parity error flag during serial I/O with parity enabled.
Although the $\mathrm{Z8}$ directly supports either odd parity or no parity for serial I/O operation, even parity may also be provided with additional software support. To receive and transmit with even parity, the Z 8 should be configured for serial I/O with odd parity disabled. The Z 8 software must calculate parity

| 8. I/O | Character Loaded <br> Into SIO | Transmitted To <br> Sunctions <br> (Continued) | Rerial Line | Received From <br> Serial Line | Character <br> Transferred To SIO | Note* |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

and modify the eighth bit prior to the load of a character into SIO and then modify a parity error flag following the load of a character from SIO. All other processing required for serial I/O (e.g. buffer management, error handling, etc.) is the same as that for odd parity operations.
To configure the Z for Serial I/O, it is necessary to:
■ Enable $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ for serial I/O and select parity,

- Set up $T_{0}$ for the desired bit rate,
- Configure IRQ3 and IRQ4 for polled or automatic interrupt mode,
- Load and enable $\mathrm{T}_{0}$.

To enable $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ for serial I/O, bit 6 of P3M (R247) is set. To enable odd parity, bit 7 of P3M is set; to disable it, the bit is reset. For example, the instruction

## LD P3M,\#\%40

will enable serial I/O, but disable parity. The instruction

## LD P3M,\#\%C0

will enable serial I/O, and enable odd parity.
In the following discussions, bit rate refers to all transmitted bits, including start, stop; and parity (if enabled). The serial bit rate is given by the equation:

$$
\text { bit rate }=\frac{\text { input clock frequency }}{\left(2 \times 4 \times \mathrm{T}_{0} \text { prescaler } \times \mathrm{T}_{0} \text { counter } \times 16\right)}
$$

The final divide-by-16 is incurred for serial communications, since in this mode $\mathrm{T}_{0}$ runs at 16 times the bit rate in order to synchronize the data stream. To configure the $\mathrm{Z8}$ for a specific bit rate, appropriate values must first be selected for $T_{0}$ prescaler and $T_{0}$ counter by the above equation; these values are then programmed into registers $\mathrm{T}_{0}(\% \mathrm{~F} 4)$ and PRE0 (\%F5) respectively. Note that PREO also controls the continuous vs. single-pass mode for $\mathrm{T}_{0}$; continuous mode should be selected for serial I/O. For example, given an input clock frequency of 7.3728 MHz and a selected bit rate of 9600 bits per second, the equation is
satisfied by $\mathrm{T}_{0}$ counter $=2$ and prescaler $=3$. The following code sequence will configure the $T_{0}$ counter and $T_{0}$ prescaler registers:

\[

\]

Interrupt request 3 (IRQ3) is generated whenever a character is transferred into the receive buffer; interrupt request 4 (IRQ4) is generated whenever a character is transferred out of the transmit buffer. Before accepting such interrupt requests, the Interrupt Mask, Request, and Priority Registers (IMR, IRQ, and IPR) must be programmed to configure the mode of interrupt response. The section on Interrupt Processing provides a discussion of interrupt configurations.

To load and enable $T_{0}$, set bits 0 and 1 of the timer mode register (TMR) via an instruction such as

OR TMR,\#\%03
This will cause the $\mathrm{T}_{0}$ prescaler and counter registers (PREO and $\mathrm{T}_{0}$ ) to be transferred to the $T_{0}$ prescaler and counter. In addition, $T_{0}$ is enabled to count, and serial I/O operations will commence.
Characters to be output to the serial line should be written to serial I/O register SIO (\%F0). IRQ4 will be generated when all bits have been transferred out.
Characters input from the serial line may be read from SIO. IRQ3 will be generated when a full character has been transferred into SIO.
The following module illustrates the receipt of a character and its immediate echo back to the serial line. It is assumed that the $\mathrm{Z8}$ has been configured for serial I/O as described above, with IRQ3 (receive) enabled to interrupt, and IRQ4 (transmit) configured to be polled. The received character is stored in a circular buffer in register memory from address $\% 42$ to $\% 5 \mathrm{~F}$. Register $\% 41$ contains the address of the next available buffer position and should have been initialized by some earlier routine to \#\%42.

\$SECTION PROGRAM
GLOBAL
!IRQ3 vector! 6
IRQ_3 ARRAY [ 1 WORD] $:=$ [GET_CHARACTER]
GET_CHARACTER PROCEDURE ENTRY
erial $1 / 0$ receive interrupt service
!Echo received character and wait for
echo completion! !echo!
!save it in circular buffer!
ld @next_addr,SIO !save in buffer!
inc next_addr !point to next position!
cp next_addr, 非start+length
!wrap-around yet?!
!now, wait for echo complete!
tcm IRQ, 非10 !transmitted yet?!
and IRQ, 非EF !clear IRQ4!
IRET !return from interrupt!
END GET_CHARACTER
P 001556 FA EF
P 0018 BF
0 ERRORS
ASSEMBLY COMPLETE

10 instructions
25 bytes
$35.5 \mu \mathrm{~s}+5.5 \mu \mathrm{~s}$ for each additional pass through the echo＿wait loop， including interrupt response time

8．2 Automatic Bit Rate Detection．In a typical system，where serial communication is required（e．g．system with a terminal），the desired bit rate is either user－selectable via a switch bank or nonvariable and＂hard－coded＂ in the software．As an alternate method of bit－ rate detection，it is possible to automatically determine the bit rate of serial data received by measuring the length of a start bit．The advantage of this method is that it places no requirements on the hardware design for this function and provides a convenient（automatic） operator interface．
In the technique described here，the serial channel of the $\mathrm{Z8}$ is initialized to expect a bit rate of 19,200 bits per second．The number of bits（n）received through Port pin P30 for each bit transmitted is expressed by

$$
\mathrm{n}=19,200 / \mathrm{b}
$$

where $\mathrm{b}=$ transmission bit rate．For example， if the transmission bit rate were 1200 bits per second，each incoming bit would appear to the receiving serial line as $19,200 / 1200$ or 16 bits．
The following example is capable of disting－
uishing between the bit rates shown in Table 6 and assumes an input clock frequency of 7.3728 MHz ，a $\mathrm{T}_{0}$ prescaler of 3 ，and serial $\mathrm{I} / \mathrm{O}$ enabled with parity disabled．This example requires that a character with its low order bit $=1$（such as a carriage return）be sent to the serial channel．The start bit of this character can be measured by counting the number of zero bits collected before the low order 1 bit．The number of zero bits actually collected into data bits by the serial channel is less than $n$（as given in the above equation）， due to the detection of start and stop bits． Figure 4 illustrates the collection（at 19，200


Figure 4．Collection of a Start Bit Transmitted at at $19,200 \mathrm{BPS}$

8. $1 / O$ Functions (Continued)	Bit Rate	Number of Bits Received Per Bit Transmitted	Number of 0 Bits Collected as Data Bits		T0 Counter	
			dec	binary	dec.	binary
	19200	1	0	00000000	1	00000001
	9600	2	1	00000001	2	00000010
	4800	4	3	00000011	4	00000100
	2400	8	7	00000111	8	00001000
	1200	16	13	00001101	16	00010000
	600	32	25	00011001	32	00100000
	300	64	49	00110001	64	01000000
	150	128	97	01100001	128	10000000

## Table 6. Inputs to the Automatic Bit Rate Detection Algorithm

bits per second) of a zero bit transmitted to the Z8 at l,200 bits per second. Notice that only 13 of the 16 zero bits received are collected as data bits.

Once the number of zero bits in the start bit has been collected and counted, it remains to translate this count into the appropriate $\mathrm{T}_{0}$ counter value and program that value into $\mathrm{T}_{0}$ (\%F4). The patterns shown in the two binary columns of Table 6 are utilized in the algorithm for this translation.

As a final step, if incoming data is to commence immediately, it is advisable to wait until the remainder of the current "elongated"
character has been received, thus "flushing" the serial line. This can be accomplished either via a software loop, or by programming $\mathrm{T}_{1}$ to generate an interrupt request after the appropriate amount of time has elapsed. Since a character is composed of eight bits plus a minimum of one stop bit following the start bit, the length of time to delay may be expressed as

$$
(9 \times n) / b
$$

where $n$ and $b$ are as defined above. The following module illustrates a sample program for automatic bit rate detection.



30 instructions
68 bytes
Execution time is variable based on transmission bit rate.
8.3 Port Handshake. Each of Ports 0,1 and 2 may be programmed to function under input or output handshake control. Table 7 defines the port bits used for the handshaking and the mode bit settings required to select handshaking. To input data under handshake control, the Z 8 should read the input port when the DAV input goes Low (signifying that data is available from the attached device). To output data under handshake control, the Z8 should write the output port when the RDY input goes Low (signifying that the previously output data has been accepted by the attached device). Interrupt requests $\operatorname{IRQ} 0, \mathrm{IRQ1}$, and $\mathrm{IRQ2}$ are generated by the falling edge of the handshake signal input to the $\mathrm{Z8}$ for Port 0, Port 1, and Port 2 respectively. Port handshake operations may therefore be processed under interrupt control.
Consider a system that requires communication of eight parallel bits of data under handshake control from the $\mathrm{Z8}$ to a peripheral device and that Port 2 is selected as the output port. The following assembly code illustrates the proper sequence for initializing Port 2 for output handshake.

## CLR P2M !Port 2 mode register: all Port 2 bits are outputs!

OR \%03,\#\%40
!set DAV2: data not available!
LD P3M,\#\%20
!Port 3 mode register: enable Port 2 handshake!
LD \%02,DATA
!output first data byte; $\overline{\mathrm{DAV}} 2$ will be cleared by the Z 8 to indicate data available to the peripheral device!
Note that following the initialization of the output sequence, the software outputs the first data byte without regard to the state of the RDY2 input; the Z8 will automatically hold DAV2 High until the RDY2 input is High. The peripheral device should force the Z8 RDY2 input line Low after it has latched the data in response to a Low on DAV2. The Low on RDY2 will cause the Z to automatically force DAV2 High until the next byte is output. Subsequent bytes should be output in response to interrupt request IRQ2 (caused by the High-to-Low transition on RDY2) in either a polled or an enabled interrupt mode.

	Port 0	Port 1	Port 2
Input handshake lines	$\left\{\begin{array}{l} \mathrm{P3}_{2}=\overline{\mathrm{DAV}} \\ \mathrm{P}_{5}=\mathrm{RDY} \end{array}\right.$	$\begin{aligned} & \mathrm{P}_{3}=\overline{\mathrm{DAV}} \\ & \mathrm{P}_{4}=\mathrm{RDY} \end{aligned}$	$\begin{aligned} & \mathrm{P3}_{1}=\mathrm{DAV} \\ & \mathrm{P}_{6}=\mathrm{RDY} \end{aligned}$
Output handshake lines	$\left\{\begin{array}{l} \mathrm{P3}_{2}=\mathrm{RDY} \\ \mathrm{P}_{5}=\mathrm{DAV} \end{array}\right.$	$\begin{aligned} & \mathrm{P}_{3}=\mathrm{RDY} \\ & \mathrm{P}_{4}=\mathrm{DAV} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{1}=\mathrm{RDY} \\ & \mathrm{P3}_{6}=\mathrm{DAV} \end{aligned}$
To select input handshake:	$\left\{\begin{array}{l} \text { set bit } 6 \& \text { reset bit } 7 \text { of } \\ \text { P01M (program high } \\ \text { nibble as input) } \end{array}\right.$	set bit 3 \& reset bit 4 of P01M (program byte as input)	set bit 7 of P2M   (program high bit as input)
To select output handshake:	$\left\{\begin{array}{l} \text { reset bits 6, } 7 \text { of P01M } \\ \text { (program high nibble as } \\ \text { output) } \end{array}\right.$	reset bits 3, 4 of P01M (program byte as output)	reset bit 7 of P2M   (program high bit as output)
To enable handshake:	$\left\{\begin{array}{l} \text { set bit } 5 \text { of Port } 3\left(\mathrm{P}_{5}\right) ; \\ \text { set bit } 2 \text { of P3M } \end{array}\right.$	set bit 4 of Port $3\left(\mathrm{P}_{4}\right)$; set bits 3, 4 of P3M	set bit 6 of Port $3\left(\mathrm{P}_{6}\right)$; set bit 5 of P3M

Table 7. Port Handshake Selection

## Arithmetic Routines

This section gives examples of the arithmetic and rotate instructions for use in multiplication, division, conversion, and BCD arithmetic algorithms.
9.1 Binary to Hex ASCII. The following module illustrates the use of the ADD and SWAP arithmetic instructions in the conversion of a 16 -bit binary number to its hexadecimal ASCII representation. The 16 -bit number is viewed as a string of four nibbles and is pro-
cessed one nibble at a time from left to right, beginning with the high-order nibble of the lower memory address. $\% 30$ is added to each nibble if it is in the range 0 to 9 ; otherwise $\% 37$ is added. In this way, $\% 0$ is converted to
 $\% 46$. Figure 5 illustrates the conversion of RRO (contents $=\%$ F2BE) to its hex ASCII equivalent; the destination buffer is pointed to by RR4.


Figure 5. Conversion of (RRO) to Hex ASCII

9. Arithmetic 9.2 BCD Addition. The following module illusRoutines
(Continued) trates the use of the add with carry (ADC) and decimal adjust (DA) instructions for the addi-
tion of two unsigned $B C D$ strings of equal length. Within a BCD string, each nibble represents a decimal digit (0-9). Two such digits are packed per byte with the most
significant digit in bits 7-4. Bytes within a $B C D$ string are arranged in memory with the most significant digits stored in the lowest memory location. Figure 6 illustrates the representation of 5970 in a 6 -digit BCD string, starting in register \%33.


Figure 6. Unsigned BCD Representation


11 instructions
20 bytes
Execution time is a function of the number of bytes $(n)$ in input $B C D$ string:
$20 \mu \mathrm{~s}+12.5(n-1) \mu \mathrm{s}$
9. Arithmetic 9.3 Multiply. The following module illustrates Routines
(Continued) an efficient algorithm for the multiplication of two unsigned 8 -bit values, resulting in a 16 -bit
product. The algorithm repetitively shifts the multiplicand right (using RRC), with the loworder bit being shifted out (into the carry flag). If a one is shifted out, the multiplier is added
to the high-order byte of the partial product. As the high-order bits of the multiplicand are vacated by the shift, the resulting partialproduct bits are rotated in. Thus, the multiplicand and the low byte of the product occupy the same byte, which saves register space, code, and execution time.

9.4 Divide. The following module illustrates an efficient algorithm for the division of a 16-bit unsigned value by an 8 -bit unsigned value, resulting in an 8-bit unsigned quotient. The algorithm repetitively shifts the dividend left (via RLC). If the high-order bit shifted out is a one or if the resulting high-order dividend byte is greater than or equal to the divisor, the
divisor is subtracted from the high byte of the dividend. As the low-order bits of the dividend are vacated by the shift left, the resulting partial-quotient bits are rotated in. Thus, the quotient and the low byte of the dividend occupy the same byte, which saves register space, code, and execution time.


15 instructions
26 bytes
$124.5 \mu \mathrm{~s}$ (average)

## SECTION

10

## Conclusion

This Application Note has focused on ways in which the Z microcomputer can easily yet effectively solve various application problems. In particular, the many sample routines
illustrated in this document should aid the reader in using the $\mathrm{Z8}$ to greater advantage. The major features of the Z 8 have been described so that the user can continue to expand and explore the $\mathrm{Z8}$ 's repertoire of uses.

## MEMORY SPACE AND REGISTER ORGANIZATION

## Memory Space

The 28 can address up to 126 K bytes of program and data memory separately from the on chip registers. The 16-bit program counter provides for 64 K bytes of program memory, the first 2 K bytes of which are internal to the 28 . The remaining 62 K bytes of program memory are located externally and can be implemented with ROM, EPROM, or RAM.

The 62 K bytes of data memory are also located external to the $Z 8$ and begin with location 2048. The two address spaces, program memory and data memory, are individually selected by the Data Memory Select output ( $\overline{\mathrm{LM}}$ ) which is available from Port 3.

The Program Memory Map and the Data Memory map are shown in Figure 2.


Figure 2 Program Memory Map And Data Memory Map

External memory access is accomplished by the 28 through its I/O Ports. When less than 256 bytes of external memory are required, Port 1 is programmed for the multiplexed address/data mode (ADD-AD7). In this configuration 8 -bits of address and 8 -bits of data are time multiplexed on the 8 I/ 0 lines for memory transfers. The memory "handshake" control lines are provided by the Address Strobe (AS), Data Strobe (DS), and the Read/Write ( $R / W$ ) pins on the Z8. If program and data are included in the external memory space, the Data Memory Select (IM) function may be programmed into the Port 3 Mode register. When this is done, the IM signal is available on
line 4 of the Port 3 (P34) to select between program and data memory for external memory operations.

Port 0 is used to provide the additional address bits for external memory beyond the first 256 locations up to a full 16 -bits of external memory address. It becomes immediately obvious that the first 8 -bits of external memory address from Port 1 must be latched externally to the 28 so that program or data may be transferred over the same 8 lines during the external memory transaction machine cycle. The AS, DS, and $R / W$ control lines simplify the required interface logic. The timing for external memory transactions is given in Figure 3.

## Registers

The 28 has 1448 -bit registers including four Port registers (RO-R3), 124 general purpose registers (R4-R127), and 16 control and status register ( $240-\mathrm{R} 255$ ). The 144 registers are all located in the same 8 -bit address space to allow any 28 instruction to operate on them. The 124 general purpose registers can function as accumulators, address pointers, or index registers. The registers are read when they are referenced as source registers, and written when they are referenced as destination registers. Registers may be addressed directly with an 8 -bit address, or indirectly through another register with an 8 -bit address, or with a 4 -bit address and Register Pointer.

The entire 28 register space may be divided into 16 contiguous Working Register Areas, each having 16 registers. A control register, called the Register Pointer, may be loaded with the most significant nibble of a Working Register Area address. The Register Pointer provides for the selection of the Working Register Area, and allows registers within that area to be selected with a 4-bit address.

The $\mathbf{z 8}$ register organization is shown in Figure 4.

## Stacks

The 28 provides for stack operations through the use of a stack pointer, and the stack may be located in the internal register space or in the external data memory space. The "stack selection" bit (D2) in the Port 0-1 Mode control register selects an internal or external stack. When the stack is located internally, regıster 255 contains an 8 -bit stack pointer and register 254 is available as a general purpose register. If an external stack is used, register 255 or registers 254 and 255 may be used as the stack pointer depending on the anticipated "depth" of the stack. When registers 254 and 255 are both used, the stack pointer is a full 16 -bits wide. The CALL, IRET, RET, PUSH, and

POP instructions are 28 instructions which include inplicit stack operations.

## I/O STRUCTURE

## Paralle1 I/O

The 28 microcomputer has 32 lines of I/O arranged as four 8 -bit ports. All of the I/O ports are TTL compatible and are configurable as input, output, input/output, or address/data. The handshake control lines for Ports 0,1 , and 2 are bits from Port 3 that have been programmed through a Mode control register, except for AS, DS, and R/W which are available as separate 28 pins. The I/O ports are accessed as separate internal registers by the 28 . Ports 0 and 1 share one Mode control register, and Ports 2 and 3 each have a Mode control register for configuring the port.

Port 0 can be programmed to be an I/O port or as an address output port. More specifically Port 0 can be configured to be an 8 -bit I/O port, or a 4 -bit address output port (A8-All) for external memory and one 4-bit I/O port, or an 8 -bit address output port (A8-A15) for external memory.

Port 1 can be programmed as an I/O port (with or without handshake), or an address/data port (ADA-AD7) for interfacing with external memory. If Port 1 is progranmed to be an address/data port, it cannot be accessed as a register.

Port 2 can be configured as individual input or output bits, and Port 3 can be programmed to be parallel I/O bits, and/or serial I/O bits, and/or handshake control lines for the other ports. Figure 5 shows the port Mode registers.

The off chip expansion capability using Ports 0 and 1 offers the added feature of being Z-Bus compatible. All Z-Bus compatible peripheral chips, that are available now, and will be available in the future, will interface directly with the 28 multiplexed address/data bus.

## Serial I/0

As memtioned in the last section, Port 3 can be programmed to be a serial I/O port with bits 0 and 7, the serial input and serial output lines respectively. The serial I/O capability provides for full duplex asynchronous serial data at rates up to 62.5 K bits per second. The transmitted format is one start bit, eight data bits including odd parity (if parity is enabled), and two stop bits. The received data format is one start bit, eight data bits and at least one stop bit. If parity is enabled, the eighth data bit received (bit 7) is replaced by
a parity error flag which indicates a parity error if it is set to a ONE.

Timer/Counter $\mathrm{T}_{0}$ is the baud rate generator and rums at 10 times the serial data bit rate. The receiver is double duffered and an internal interrupt (IRQ3) is generated when a character is loaded into the receive buffer register. A different internal interrupt (IRQ4) is generated when a character is transmitted.

## COUNTER/TIMERS

The 28 has two 8 -bit programmable counter/ timers, each of which is driven by a programmable 6 -bit prescaler. The $T$ prescaler can be driven by internal or external clock sources, and the $T$ prescaler is driven by the internal clock only. The two prescalers and the two counters are loaded through four control registers (see Figure 4) and when a counter/timer reaches the "end of count" a timer interrupt is generated (IRQ4 for $T_{0}$, and IRQ5 for $T_{1}$ ). The counter/timers can be progranmed to stop upon reaching the end of count, or to reload and continue counting. Since either counter (one at a time) can have its output available external to the 28, and Counter/Timer $\mathrm{T}_{1}$ can have an external input, the two counters can be cascaded.

Port 3 can be programed to provide timer outputs for external time base generation or trigger pulses.

## INTERRUPT STRUCTURE

The 28 provides for six interrupts from eight different sources including four Port 3 lines ( $\mathrm{P} 30-\mathrm{P} 33$ ), serial in, serial out, and two counter/timers. These interrupts can be masked and prioritized using the Interrupt Mask Register (register 251) and the Interrupt Priority Register (register 249). All interrupts can be disabled with the master interrupt enable bit in the Interrupt Mask Kegister.

Each of the six interrupts has a 16-bit interrupt vector that points to its interrupt service routine. These six 2-byte vectors are placed in the first twelve locations in the program memory space (see Figure 2).

When simultaneous interrupts occur for enabled interrupt sources, the Interrupt Priority Reǵnster determines which interrupt is serviced first. The priority is progranmable in a way that is described by Figure 6.

When an interrupt is recognized by the 28 , all other interrupts are disabled, the program counter and program control flags are saved, and the program counter is loaded with the corresponding interrupt vector. Interrupts must be re-enabled by the user upon entering the service

## SUPER8 APPLICATION NOTES AND TECHNICAL ARTICLES

.

# GETTING STARTED <br> WITH THE ZILOG SUPER8 

by Charles M. Link, II

Any time an engineer switches to a new processor, he usually begins the time consuming process of learning the quirks of the new part. This article is the first of a series of articles written to speed that transition time from any other processor to the Zilog Super8.

Getting started is the most difficult part of switching to a strange new processor and development tools. Weeks can be spent just getting the first lines of initialization code written and successfully assembled. Testing the code becomes another problem. The soft ${ }^{\text {a }}$ are from this article series has been tested and it should be possible to copy most of the software directly to a user's application. All of the software is available in machine readable form as noted at the end of the article.

This first article demonstrates the proper initialization of the Zilog Super8 microcontroller. It sets up a $Z 8800$ ROMLESS for 64 K bytes of external program memory, although most typical applications probably do not require more than maybe 4 K or 8 K bytes. Ports 2 and 3, which are bit mappable as inputs or outputs, are set into the output mode. Port 4, also bit mappable, is set into the input mode. A hardware schematic has been included as an example.

The hardware schematic shown defines a simple Super8 implementation that was used to test the code in this series of articles. This example defines a simple evaluation board that contains 32 K bytes of programable EPROM, and up to 32 K bytes of RAM. The design contains a simple RS-232 interface that is used in future articles of the series. The entire board, including the RS-232 interface, is powered from 5 volts. The RAM battery option allows the software to be downloaded into the RAM and saved if power fails. Additional logic on the design allows a user to protect the lower half of RAM with a simple jumper change. This prevents the processor from destroying executable code if it goes off into space on a power failure.

Specifically, the ROMLESS Super8 is used as the core. The Super8 requires a latch to demultiplex the address from the data bus. A 74LS373 fits nicely here, requiring only an inverter to correct for the address strobe. The 'LS373 with inverter is preferred here rather than a single 'LS374 because the 'LS373 is a transparent latch and
will present the address earlier than the 'LS374. JU1 selects the EPROM size, correcting for the /PGM pin on 2764 and 27128 EPROMs. It is necessary to use pull down resistors on the upper 4 bits of the address bus be-
cause on reset, the ROMLESS Super8 defines only 12 bits for address; the other 4 are set as inputs. Since LSTTL devices require more current to pull down the inputs, this pull down trick will only work for MOS and CMOS inputs, hence the requirement for the logic chips in this design to be HCT type devices.

The remaining logic is required to select the EPROM or RAM. JU2 selects the half-RAM protect mode. JU3 is set to determine what size ram to protect. This circuit allows the lower half of CMOS battery backed RAM to be read only, and removes chip select on any writes to that address space. Of course, that exact circuitry and the battery is optional, and might be replaced by a power threshold detector. On the other front, a Maxim MAX 232 provides the RS-232 interface requiring only 5 volts.

To make the software initialization more interesting, a few other typical initialization tasks are demonstrated. The entire block of registers (user ram) is cleared to zero, and one of the counter timer units is initialized to provide a periodic interrupt to form the heart of a real time clock function.

The program shows the typical pseudo-op usage demonstrated. This article series uses a cross assembler available from Zilog for either an IBM PC or a VAX operating under VMS. The program begins by defining the registers used as general purpose storage. This is done so the user does not have to refer to register numbers, but may refer to a name equated to the register.

The first 32 bytes of every program (beginning at 0000H) always contain the interrupt vectors for the different sources. Using the Zilog assembler, the .WORD pseudo-op defines a pair of bytes for each of the 16 sources. Program execution begins at location 0020 H . Since copyright requirements usually require the notice as close to the beginning as possible, it becomes necessary to jump around an ASCII string. The .ASCII pseudo-op generates the necessary string for this notice.

The source code describes almost completely, without further explaination, the entire initialization. Once initialized, the processor loops in a WAIT loop waiting on the periodic interrupt generated by the counter/timer. The counter timer interrupts 60 times per second, and the interrupt bumps ram storage locations representing seconds, minutes, and hours. Each time a location is bumped, an external port line is toggled so that those without emulators can see some activity with an oscilloscope.

One point of notice, is the interrupt service routine for the timer. One must reset the end of count interrupt bit (the source of interrupt) before exiting the interrupt service routine.

In the next article of this series, we will take the same basic initialization routine and modify it to support the serial UART. That article will demonstrate polled serial communications using the Zilog Super 8.
[Editors note: The sofware for this series is available on an IBM PC diskette and is included with the Super 8 Emulator package available from Creative Technology Corporation, 5144 Peachtree Road, Suite 301, Atlanta, GA 30341. (404) 455-8255. Any Zilog Field Application engineer should also be able to provide copies of the software on a user provided diskette.]




# POLLED ASYNCHRONOUS SERIAL OPERATION WITH THE ZILOG SUPER8 

by Charles M. Link, II

The transition from one processor to another often involves many hours of trial-and-error software development to determine the quirks (manufacturers call it features) of the part. Once the real features are discovered, programming the processor to perform as described can be hazardous to one's health. This article, the second in a series of eight, attempts to introduce the Zilog Super8 user to the serial communications port, and its initialization in a polled serial environment.

The universal asynchronous receiver/transmitter (UART) on the Super8 is a fairly unique implementation among single chip microcomputers in that it supports all of the functions generally available only on chip level UARTs. The UART is a close approximation of the Z80 DART device in one channel. It supports independent receiver/transmitter clocking, 5 to 8 bits per character, plus optional odd or even parity, and even an optional wake-up bit. The UART can serve full duplex communications via polled, interrupt, or DMA modes of operation. Auto-echo and internal loopback can be programmed as options. The most unique of the UART features is the character match and interrupt option.

The following article describes the initialization and use of the UART in a polled environment. This software has been tested and provides several routines that may be copied into a user's software. Although the demonstration software does not do much, it is fully functional as a stand-alone program, and may be "burned" into eprom as a test.

The basic software is almost the same general purpose initialization software from the first article in the series. Routines set-up counter/timer 0 for a real time clock option. Note, however, the change to configuration register P2AM. It is necessary to configure port 30 as input for receive data and p31 as output for transmit data.

The UART initialization sequence begins by setting the functions in the UART MODE A register. Since the UMA register is in the alternate bank, the instruction SB1 must be executed to gain access to the following registers. The loaded data selects a X16 clock, 8 bits per character, no parity, and no wake up values. Note that the clock options are X1, X16, X32, and X64. For true asynchronous operation, a clock multiplier option of at least X16 is required. The X1 mode could be used for externally syncing the received data to the UART. The transmitter is not affected.

Next, the baud rate generator must be loaded. The formula for determining the baud rate is shown below:

TIME CONSTANT $=(X T A L$ FREQ $/ 8 /$ CLOCK MULT / DESIRED RATE) - 1
where TIME CONSTANT is a 16 bit value, XTAL FREQ is the crystal ifrequency in hertz, CLOCK MULT is the clock rate loaded into UART MODE A register (as above $\mathrm{X} 1, \mathrm{X} 16, \mathrm{X} 32$, and X 64 ), and DESIRED rate is the desired bit rate in bits per second. Note that the baud rate generator may be used as an additional counter, and may be loaded with any value permitting just about any crystal frequency to operate the Super8.

The cross-assembler permitted a single 16-bit decimal number to be loaded into the UART BAUD RATE GENERATOR, high and low byte, without unnecessary figuring using the high/low byte pseudo-op.

The initialization sequence continues, with the UART MODE B register next. This example sends port 21 data to the port 21 pin. An option allows different clocks to be sent out from this pin. It could be used for clocking external logic, or for diagnostic purposes to make sure the baud rate generator is running. Auto-echo is not selected in this application, as that is primarily what the example software does. The receive and transmit clock input is the baud rate generator and the generator source is the internal clock; the crystal divided by four. Since the baud rate generator has been loaded, it is enabled, and the UART is set for normal operation (without loopback). Loopback operation permits transmitting and receiving data without any external logic in front of the Super8.

The UART TRANSMIT CONTROL register is initialized next in the sequence. Select transmit data out on port 31 and transmit enable. The stop bits are optional, and the DMA and WAKE-UP enables are for features discussed in future application articles. At this point, the transmitter is operational, and except for housekeeping, is usable. The housekeeping is in reference to selecting the bank 0 by executing the SB0 instruction.

Since polled mode communications are desired, all of the UART interrupts are disabled by loading the UART INTERRUPT ENABLE with all zeros. Lastly, the receiver must be enabled by setting bit 0 of the UART RECEIVE CONTROL register.

This program primarily sends a message to the console and then accepts input from the console and echos it upon receiving a carriage return. It is necessary to delay sending data to the console after initialization because the transmit data line is in the SPACE state when idle. Alternately, add a pull-up resistor to the output, and while idle and before initialized, it would exibit the MARK state.

The transmit character routine "SENDC" monitors the TRANSMIT BUFFER EMPTY bit of the UART TRANSMIT CONTROL register. When this bit is a " 1 ", the transmit buffer is empty and may be loaded with a new character for transmission. To transmit a character, load the character into the UART data register (UIO).

The receive character routine "GETC" monitors the RECEIVE CHARACTER AVAILABLE bit of the UART RECEIVE CONTROL register. When this bit is a "1", a new character has been received by the UART.

The polled mode of UART operation is simple. Making the UART operate in an interrupt mode requires a few minor modifications, and DMA mode requires a few more modifications. Those modes are the subject of future application articles in this series.



	$\begin{aligned} & \text { sbo } \\ & \text { ld } \end{aligned}$	С0СT,\#10100101B	; select bank 0   ; continuous, count down, load counter,   ;zero count interrupt enable, enable counter				
```;'timer is set, now lets initialize the UART for polled operation```							
; sbl ;bank 1							
ld		UMA, \#01110000B					
		; time constant $=(12,000,000 / 4 / 16 / 9600 / 2)-1=$;8.76 rounded to 9 . ; note that a 12 Mhz does not make a very ;accurate baud rate source. error is large					
	1 d		UBGH, \#^HB (00009)	; high byte of time constant			
	ld	UBGL, \#^LB(00009)	; low byte of time constant				
	ld	UMB, \#00011110B	;p21=p21data, auto-echo is off, transmit and				
			;receive clock is baud rate generator output,				
			;baud rate generator input is system clock / 2 ,				
			;baud rate generator is enabled, loopback ; is disabled				
	sbo		; select bank 0				
	1d	UTC,\#10001000B	;select p31 as transmit data out, 1 stop bit ;and transmit enable				
	ld	UIE, \#00000000B	;disable all interrupts, no DMA				
	ld	URC, \#00000010B	; enable receive				
;UART is initialized, enable interrupts for real time clock							
			;enable interrupts				
		; wait 1 full second for serial line to mark before sending anything					
WAIT:	cp	second,\#1	;wait 1 second				
	jr	ne, WAIT					
;display the logon message							
;			;load the address of MSG into word reg MPTR				
	call	SENDM	;send the message				
; ${ }^{\text {logon }}$ message displayed, get response from console							
; logon message displayed, get response from console;and move to upper register memory							
GET:	1d	r1,\#80	; maximum character count				
	1d	r2,\#80H	; point to first location in upper register bank				
GETN:	call	GETC	; get input from console				
	and	ro, \#7fH	; remove upper parity bit				
	call	SENDC	;echo to console				
	1d	Or2,ro	; move to upper internal ram in Super8				
	cp	ro,\#CR	; was the received character a carriage return				
	jr	eq, ECHO	;if so, echo it to console				
	inc	r2	;bump pointer				
	djnz	r1, GETN	; get next character if not done				
;if carriage return typed, or 80 characters exceeded, echo message							
ECHO:	ldw	MPTR, \#MSG1	; load the address of MSG1 in word reg MPTR				
	call	SENDM	; send the message				
	1d	r1,\#80	; maximum character count				
	1d	r2, \#80H	; first location of character buffer				
ECHO1:	ld	ro, er2	; get character from buffer				
	call	SENDC	;send the character to console				
	cp	r0,\#CR	; carriage return?				
	jr	eq, LOGON	;if so, end message display				
	inc	r2	; bump pointer				
	djnz	rl, ECHO1	; display next character if not done				
	jr	LOGON					
; send message at MPTR until '\$' character found							
SENDM:	ldci	ro, emptr	; get the character				
	call	SENDC	; otherwise send character				
	cp	ro,\#'\$'	;last character?				
	jr	ne, SENDM	;and loop back to send next one				

USING THE ZILOG SUPER8 IN INTERRUPT DRIVEN COMMUNICATIONS
 by Charles M. Link, II

The power of the Super8 microcomputer lies in its on board peripherals. One of those peripherals is the full duplex UART. The UART can operate under program control in polled mode, or under interrupt control, and in a DMA mode. This article, the third in a series, discusses using the UART in a fully interrupt driven system. Since it is assumed that the reader has access to the eariler article discussing the UART and the polled mode of operation, this article will only discuss the differences.

The Zilog Super8 contains an on board interrupt controller that is tightly linked to the other on-board peripherals. The UART, being on-board, can be operated in an interrupt mode permitting very little execution overhead time while monitoring the UART for incomming characters and waiting for the UART to send outgoing characters.

Operation of an interrupt driven system demands more software logic to control the interrupt. Although more software is present, less time is spent executing it, because most of the overhead is in the setup for interrupt transfers. Generally, interrupt driven serial I/O overlaps some other process or processes, and therefore enhances total system speed and operation. Interrupt driven I/O has no advantages in a system that must wait on the serial port. In the example program, no real advantage has been gained by interrupt operation. The program displays a simple message to the console, and accepts input responses and echos them. For program simplicity, the main program waits on the interrupt to complete before starting the next phase of the program.

In any interrupt driven system, the central processor must know what to do when an interrupt occurs. The Super8 is no exeception. An interrupt vector table directs the processor to begin execution at certain addresses for particular interrupt inputs. The UART can be the source for up to five different interrupts and therefore up to five of the sixteen vectors can be designated for it. This sample program ignores errors and special condition interrupts, and therefore only two vectors are used; one for transmit buffer empty and one for receive character available. These vectors are programmed into the vector table by setting interrupt vector 10 (zero reference) to the address for the receive data service routine, and setting interrupt vector' 13 to the address for the transmit data service routine.

The setup of the Super8 is essentially the same as that of the serial port in a polled mode of operation. The
proper priority for the interrupts are assigned arbitrarily. The real time clock as highest priority, the receive character available as second priority, and transmit character buffer empty as the lowest priority. Generally, the transmit interrupt should be the lowest in an asynchronous system because if it does not get serviced iimmediately, no major problems occur. If the real time interrupt took more time in relationship to the time required to transmit a single character, then maybe the receive should be put higher. If the receiver is not serviced, that character would be lost.

Enabling the interrupts is a two stage process. First the mask in the INTERRUPT MASK REGISTER must be enabled for each level of the interrupts used. Next, it is necessary to enable the individual transmit and receive interrupts. In the example program, a character is loaded into the transmit buffer and then the interrupt is enabled by setting bit 2 in the UART INTERRUPT ENABLE (UIE) register. Each successive transmit interrupt indicates an empty buffer, and the next character is loaded into the buffer. When the last character is loaded into the buffer, the transmit interrupt is disabled to prevent further interruptions by clearing bit 2 of the UIE register.

The receiver interrupt is enabled to allow the processor to accept incoming characters by setting bit 0 of the UIE register. Once set, any received character will cause the processor to transfer control to the "RXDATI" routine. In this example, the receive service routine reads, echos, and stores each received character until a carriage routine is received. The input is then repeated.

The example program does not fully utilize the interrupt system, as it waits for each routine to complete before moving to the next. However, it does however work, and demonstrates interrupt service routines. Serial interrupt software is not complex, and could lead to very powerful user programs. With the addition of the on board DMA to automaticlly transfer characters, the Super8 can complete many tasks that previously would require complex hardware and software. The next article in the series demonstrates using the DMA controller with the serial port.

```
; .TITLE Sample zilog Super 8 Serial Interrupt Mode Operation
;
;
```



```
i= TITLE: UART2.S =
;= DATE: JULY 17, 1986 =
;= PURPOSE: TO DEMONSTRATE INTERRUPT =
i= DRIVEN SERIAL PORT =
;= COMMUNICATIONS =
i= ASSEMBLER: 亚 CRLOG ASMS8 ASSEMBLER =
================================================================
;
;
* .PAGE 55 met maximum page size to 55 lines
;****************************************************************
;***********************************************************
;
CR: 
;
;***********************************************************
;*
;* REGISTER EQUATE TABLE *
;* *
;***********************************************************
;
period: .equ 0 ;period timer
second: .equ 1 ;seconds timer
minute: .equ 2 ;minutes timer
hours: .equ 3 ;hours timer
;working register equates ;message pointer for external memory
;
;***********************************************************
**
;* INTERRUPT VECTOR TABLE *
;*************************************************************
;
INTRO: .WORD INTRET ;this area should always be defined
INTR1: .WORD INTRET ; as it reserves the lower 32 bytes
INTR2: .WORD INTRET ; for the interrupt table. the name
INTR3: .WORD INTRET ;of the subroutine for each particular
INTR4: .WORD INTRET ;interrupt service would normally be
INTR5: .WORD INTRET ;named here.
INTR6: .WORD TIMERO
INTR8: .WORD INTRET
INTR9: .WORD INTRET
INTR10: .WORD RXDATI
INTR11: .WORD INTRET
INTR12: .WORD INTRET
INTR14: .WORD INTRET
INTR15: .WORD INTRET
;
;***********************************************************
;*
;* START OF PROGRAM EXECUTION *
;*************************************************************
;*
START: jr START1 ;program execution unconditionally
                                    ;begins at this location after reset
                                    ;and power up.
    .ASCII 'REL 0 7/17/86' ;jump around optional ascii string
                        ;containing release info, copyright, etc.
START1: di
    ;begin
    sbo ;
```

```
    ld EMT,#00000000B ;external memory timing=no wait input, normal
    ;memory timing, no wait states, stack internal,
    ;and DMA internal
    ;address begins at 0000h, set upper byte
    ;select all lines as address
    ;enable port 0 as upper 8 bits address
    ;handshake not enabled port 0
    ;
    ;port 1 is defined in romless part as address/data. it is not necessary
    ;here to initialize that port
;
    Id P2,#OOH ;port 2 outputs low
    1d P3,#OOH ;port 3 outputs low
    ld P2AM,#10001010B ;p31,20,21 as output,p30 input
    iit is necessary here to configure p30 as input
    ;for the receive data, and p31 as output for
    ;transmit data for UART
    ld P2BM,#10101010B ;p32,33,22,23 as output
    ld P2CM,#10101010B ;p34,35,24,25 as output
    ld P2DM,#10101010B;p36,37,26,27 as output
; ld P4,#00000000B ;clear port 4 register
    ld P4D,#11111111B ;set all bits of P4 as inputs
    ld P4OD,#00000000B ;active push/pull [not necessary since all
    ; bits are inputs
;
;basic Super 8 I/O is initialized, now internal registers
;
\begin{tabular}{lll} 
ld & RPO, \#OCOH & iset working register low to lower 8 bytes \\
ld & RP1,\#0C8H & iset working register high to upper 8 bytes \\
ld & SPL,\#0FFH & iset stack pointer to start at top of set two \\
& & inote here that only lower 8 bits are used \\
& & ifor stack pointer. location oFFH is wasted \\
& & ias stack operation. SPH is general purpose \\
& & istorage.
\end{tabular}
;now clear the internal memory and stack area
;
\begin{tabular}{llll} 
& \(l d\) & \(S P H, \# O F F H\) & ;point to top of general purpose register \\
Zlr & eSPH & ;zero it \\
dec & SPH & \\
& \(j r\) & \(n z, Z E R O\) & ;do it until register set is all cleared \\
& \(c l r\) & eSPH & izero last register
\end{tabular}
; now everything except working registers is cleared
;
;cpu and memory now initialized, set up timer for real time clock
;
    ld SYM,#00000000B ; disable fast interrupt response
    ld IPR,#00000010B ;interrupt priority
    ;IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ 7 > IRQ0>IRQ1
    ld IMR,#01000110B ;enable counter, rx and tx interrupts
    sb1 ;select bank 1
    ld COTCH,#^HB(50000) ;high byte of time constant
    ld COTCL,#^LB(50000) ;low byte of time constant
    ;12,000,000 hertz / 4/50,000 = 60 hertz
    ;12 Mhz is xtal freq, 4 is internal divider
    ld COM,#OOOOO100B ;p27,37 is I/O, programmed up/down, no capture
    bo ;timer mode is selected
    sb0 iselect bank 0
    ld COCT,#10100101B ; continuous, count down, load counter,
    ;zero count interrupt enable, enable counter
;
;timer is set, now lets initialize the UART for polled operation
;
    sbl UMA,#01110000B
    ld
    ld
        UBGH,#^HB(00009)
        UBGL,#^LB(00009) ;low byte of time constant
        UMB,#00011110B ;p21=p21data,auto-echo is off, transmit and
    ;receive clock is baud rate generator output,
    ;baud rate generator input is system clock / 2,
    ;baud rate generator is enabled, loopback
    ;is disabled
```

```
sb0 ;select bank 0
ld UTC,#10001000B ;select p31 as transmit data out, 1 stop bit
;and transmit enable
ld UIE,#00000000B ;no interrupts, no DMA
ld URC,#00000010B ;enable receive
;UART is initialized, enable interrupts for real time clock
;
ei ;enable interrupts
;
;wait l full second of serial line mark before sending anything
;
WAIT: cp second,#1 ;wait l second
;
;display the logon message
;
LOGON: ldw MPTR,#MSG ;load the address of MSG into word reg MPTR
    call SENDM ;send the message
    call TXWAT ;wait for transmitter to complete
;
;logon message displayed, get response from console
; and move to upper register memory
;
```



```
;if carriage return typed, or }80\mathrm{ characters exceeded, echo message
;
ECHO: ldw MPTR,#MSG1 ;load the address of MSG1 in word reg MPTR
    call SENDM ;send the message
;
;since messages are interrupt driven, we must wait for message to
;complete before transmitting next message
;
\begin{tabular}{|c|c|c|c|}
\hline & call & TXWAT & ;wait on transmitter \\
\hline & ld & r1,\#80 & ; maximum character count \\
\hline & 1d & r2, \#80H & ; first location of character buffer \\
\hline ECHOI: & ld & r0, er2 & ; get character from buffer \\
\hline & call & SENDC & ; send the character to console \\
\hline & cp & ro, \#CR & ;carriage return? \\
\hline & jr & eq,LOGON & ;if so, end message display \\
\hline & inc & r2 & ; bump pointer \\
\hline & djnz & r1, ECHO1 & ; display next character if not done \\
\hline
\end{tabular}
;
;subroutines
;
;send message at MPTR until '$' character found
SENDM: ldci ro, @MPTR ;get the character
    call SENDC istart UART transmitting
    di ;no interrupts
    or UIE,#00000100B ;enable transmit interrupts
    ei
    ret
;send character in ro
SENDC: tm UTC,#00000010B ;transmit buffer empty yet
    jr z,SENDC iif not, wait until it is
    ld UIO,r0 ;load the character into the transmitter
;transmit buffer available interrupt
TXDATI: ldci r0, QMPTR ;get next character to transmit
    Id UIO,rO iload the character in transmitter
    cp ro,#'$' ilast character
    jr eq,LASTT ;if last transmit character
LASTT: iret and UIE,#11111011B ;disable transmit interrupts
    iret ;ignore it if no character to transmit
;transmitter wait routine
TXWAT: tm UIE,#00000100B ;wait until interrupts disabled
    jr. nz,TXWAT ;wait if bit set
```

;receive character available interrupt					
	and	$\begin{aligned} & r 0,010 \\ & \text { ro, \#7 fH } \end{aligned}$; remove upper parity bit		
	call	SENDC	;echo to console		
	ld	er2,ro	;move to upper internal ram in Super8		
	cp	r0, \#CR	; was the received character a carriage return		
	jr	eq, LASTR	;if so, disable interrupts		
	inc	r2	; bump pointer		
	djnz	r1, RXR	;exit if not last		
LASTR:	and	UIE,\#11111110B	; disable the receive interrupts		
RXR:	iret				
;real time interrupt running in background					
TIMERO:	inc	period	;bump periodic counter (60 hertz)		
	cp	period, \#60	; one second yet?		
	jr	ne, NOROLL	;no rollover		
	xor	P2, \#00000001B	; complement the second bit		
	clr	period	;start it over again		
	inc	second	;bump the seconds timer		
	cp	second,\#60	; reached maximum		
	jr	ne, NOROLL	; no rollover		
	xor	P2, \#00000010B	; complement the minute bit		
	clr	second	;start it over again		
	inc	minute	; bump the minutes timer		
	cp	minute,\#60	; reached maximum		
	jr	ne, NOROLL	; no rollover		
	xor	P2,\#00000100B	; complement the hour bit		
	clr	minute	;start it over again		
\cdots	inc	hours	;bump the hours timer		
	cp	hours,\#24	;reached maximum		
	jr	ne, NOROLL	;no rollover		
	clr	hours	;start it over again		
NOROLL:	or	COCT, \#00000010B	ireset end of count		
	nop				
	nop				
INTRET: iret			; and return from interrupt		
		;			
;					
MSG :	. ASCII	CR,LF,'Super8 Uart test program. ', CR, LF			
	. ASCII	' Enter up to on	full line followed by return', CR, LF, '\$'		
MSG1 :	. ASCII	CR, LF, 'Echoed b	ck, your line was...' ${ }^{\prime}$ CR,LF, '\$'		
. END					

USING THE SUPER8
 SERIAL PORT WITH DMA
 by Charles M. Link, II

With the increasing integration available today, microprocessor manufacturers are incorporating new peripherals that typically were off board in previous products, and sometimes required a large amount of external logic to utilize. The direct memory access function is a good example. Zilog has incorporated a very powerful DMA in the new Super8 microcontroller. It has the capability of linking to several on board peripherals, including the serial port, and can control data transfers to the different memory mediums.

The Super8, with its on-board DMA can reduce processor overhead in data transfer tasks. It allows direct transfer of serial input characters to either intemal register memory (256 bytes) or external ram memory. For example, this transfer can be set to transfer a specific number of input characters, then interrupt the processor. Processor program service overhead is minimal. Serial output characters can be transfered from external EPROM or ram memory, or the internal register memory.

The required setup for the DMA transfers are much the same as that of interrupt or polled operation. This program example uses the DMA to interrupt upon termination of data transfers so that approopriate vectors and routines are required. Since the program links to the serial port, the DMA uses the serial port receive and transmit interrupt vectors 10 and 13 , respectively. Upon completion of a receive DMA transfer, the service routine defined by the receive vector is executed. Upon completion of the transmit DMA transfer, service routine defined by the transmit vector is executed.

It is necessary to define the memory source/destination by setting the appropriate state of bit 0 in the EXTERNAL MEMORY TIMING (EMT) register. Initially, the example program selects external memory as the source/destination. A special note: read the fine print in the technical manual. Many hours were spent debugging the DMA mode of operation, with the final realization that intemal rom does not qualify as external memory. Only that memory that would be selected if the /DM line was true would be a valid source/destination. Since this article uses the hardware defined from the first of the series, and uses a $Z 8800$ with external EPROM, it will work perfectly. ROM and PIGGYBACK or prototype type parts will not work. Neither will emulators.

This sample uses the DMA mode to transmit a few lines of ASCII data to a console. The DMA requires a total
byte count to properly transfer the data and terminate. Be careful to recognize that the ASCIL pseudo-op in the Zilog assembler, or many other assemblers, is not an easy way to generate the byte count. Warning! The Zilog assembler generates a length for each subgroup, e.g., "MSG" generates a separate length for each group separated by commas, not one total length.

Initially, the DMA transfers from EPROM. The address from which to transfer is C0 and C1 as defined by the working register pointers. It is necessary to set RPO to C0 to access the register, and it is accessed as R0 and R1 or RR0. The count for the transfer is taken from DMA COUNT HIGH and DMA COUNT LOW. For each transfer, initialize the address and count values. Upon completion of the DMA transmit process, when the count goes to -1 , a transmit interrupt is generated. The example program disables transmit interrupts and DMA, and returns. The main line program was polling the interrupt enable bit for completion.

Next, the DMA is set up to transfer 25 characters into the internal register memory. One must select intemal memory in the EMT register by clearing bit 0 . The address for transfer requires only one byte, so that working register 1 (R 1), when RP0 equals C 0 , is the address pointer. The DMA count must also be loaded, in this case with 25. For demonstration purposes, the autoecho bit of the UART MODE B register is selected. This causes any characters received to be automatically looped back to the transmit port. Finally, the receive interrupt and DMA enable bits (BITS 0 and 1) are set to enable and begin DMA operation. When 25 characters have been input to the Super8, a receive interrupt will be generated, and control will be transfered to the "RXDATI" routine, where interrupts and DMA are disabled.

The last routine in the example software sends another message from EPROM to the console and then sends the characters from the internal memory buffer that were previously entered. The prime consideration is to remember to select the source/destination memory in the EMT register.

In this DMA example, the code is simple for DMA operation. It is important to note that this example does not
fully utilize the functionality of the DMA transfer. The example purposely waits in a software loop while the DMA transfer occurs. This prevents the supporting code from becoming too complex to follow for an example. Normal operation might have the UART receiving characters
under DMA controls and transmitting characters under interrupt control with processing occurring somewhere in the middle.


```
        ld UBGH,#^HB(00009) ;high byte of time constant
        ld UBGL,#^LB(00009) ;low byte of time constant
        ld UMB,#00011110B ;p21=p21data,auto-echo is off, transmit and
        ;receive clock is baud rate generator output,
        ;baud rate generator input is system clock / 2,
        ;baud rate generator is enabled, loopback
        ;is disabled
        sb0 ;select bank 0
        ld UTC,#10001000B ;select p31 as transmit data out, 1 stop bit
        ; and transmit enable
    1d UIE,#00000000B ino interrupts, no DMA
    ld URC,#00000010B ;enable receive
    ;UART is initialized, enable interrupts for real time clock
    i ei ;enable interrupts
    ;because uart was just enabled, allow data line to mark for at least 1 second
;
WAIT: cp ll
    jr ne,WAIT ;wait 1 second
    ; display the logon message
    ;
LOGON: ldw MPTR,#MSG ;load the address of MSG into word reg MPTR
    call SENDM ;send the message
    call TXWAT ;wait for transmitter to complete
;
;logon message displayed, get response from console
;and move to upper register memory
;
GET: di ;no interrupts while setting up for DMA
    ldw MPTR,#0080H ;first character receive location
    and EMT,#11111110B ;select register file for receiving character
    sb1 ;select bank one
    ld DCH,#0 ;DMA count high byte
    1d DCL,#25 ;DMA count low byte
    or UMB,#00100000B ;auto echo enable
    sb0 ;restore to bank zero
    or UIE,#00000011B ;receive character DMA link, interrupt enable
    ei pXwAT
;
;receive characters in buffer, restore Super8 non DMA state
;
        di ;no interrupts while cleaning up
        sb1 ;bank 1
        and UMB,#11011111B ;disable auto echo
        sb0 ;restore bank 0
        or EMT,#00000001B ;select data memory for DMA transfers
        ei
;
;25 characters received via DMA, now display "ECHO" message
;
ECHO: ldw MPTR,#MSG1 ;load the address of MSG1 in word reg MPTR
    call SENDM ;send the message
    call TXWAT ;wait on transmitter
;
;message sent, now replay typed input
i
    di
    ldw MPTR,#0080H ;point to beginning of buffer
    and EMT,#11111110B ;select register bank for DMA transfer
    sb1 ;select bank 1
    ld DCH,#O ;DMA count high byte
    ld DCL,#25 ;DMA count low byte
    sb0 ;select bank 0
    or UIE,#00000100B ; enable transmit interrupts
    or UTC,#00000001B ;transmit DMA enable
    ei ;enable interrupts
    call TXWAT ;wait on transmitter
    di EMT,#00000001B ;select external data memory for DMA transfer
    ei
;
;replay complete, loop back and do it again
    jr LOGON
```

```
;
;subroutines
;
;send message at MPTR for length in first byte
SENDM: ldci r7,@MPTR ;get the character
    dec r7 ;count actually should be n-1 for n bytes
    di ;no interrupts while setting up
    or EMT,#00000001B ; select external data memory for DMA transfer
    sb1 iselect bank 1
    ld DCH,#O ;DMA count high byte is 0
    ld DCL,r7 ;move the count DMA count low byte
    sb0 ;select bank 0
    or UIE,#00000100B ;enable transmit interrupts
    or UTC,#00000001B ;transmit DMA enable
    ei
    ret
;transmit DMA complete
TXDATI: and UIE,#11111011B ; disable transmit interrupts,
    and UTC,#11111110B ;disable transmit DMA
    iret (
;transmitter wait routine
TXWAT: tm UIE,#00000100B ;wait until interrupts disabled
    jr nz,TXWAT ;wait if bit set
    ret
;receive character available interrupt
RXDATI: and UIE,#11111100B ; disable the receive interrupts
    iret
;receive wait routine
RXWAT: tm UIE,#00000001B ; ;wait until interrupts disabled
    jr nz,RXWAT ;wait if bit still set
    ret
;
;real time interrupt running in background
;
TIMERO: inc period ;bump periodic counter (60 hertz)
    cp period,#60 ;one second yet?
    jr ne,NOROLL ;no rollover
    xor P2,#00000001B ;complement the second bit
    clr period ;start it over again
    inc second ;bump the seconds timer
    cp second,#60 ;reached maximum
    jr ne,NOROLL ;no rollover
    xor P2,#00000010B ; complement the minute bit
    clr second istart it over again
    inc minute ;bump the minutes timer
    cp minute,#60 ;reached maximum
    jr ne,NOROLL ;no rollover
    xor P2,#00000100B ;complement the hour bit
    clr minute ;start it over again
    inc hours ;bump the hours timer
    cp hours,#24 ;reached maximum
    jr ne,NOROLL ;no rollover
    clr hours istart it over again
NOROLL: or COCT,#00000010B ;reset end of count
    nop
    nop
INTRET: iret ;and return from interrupt
;
;
MSG: .BYTE 56
    .ASCII CR,LF,'Super8 Uart DMA test program.',CR,LF
    .ASCII 'Enter 25 characters',CR,LF,'$'
MSG1: .BYTE 34
    .ASCII CR,LF,'Echoed back, your line was...',CR,LF,'$'.
```

 . END

GENERATING SINE WAVES WITH THE ZILOG SUPER8

by Charles M. Link, II

Generally digital microprocessors are thought of as only being able to generate digital signals...that is either on or off. With the simple addition of a digital-to-analog converter (DAC), more complex waveforms may be generated. Since the advent of the microprocessor and the DAC, many methods have been used by hardware and software designers to generate sine waves, including some that involve precise instruction and clock cycle calculations. This example is different.

The Zilog Super8 microcomputer is a single chip device requiring only a latch and EPROM to operate in its ROMLESS state. Leaving 24 I/O lines for user configuration, it is extremely easy to interface with peripherals, including, in this case, the DAC- 08. The hardware in this application example is essentially the same base hardware as the previous application articles. Since it is assumed that the reader has access to those articles, detailed explaination of the base will not be made here. Only the additions to the base will be explained.

The base Super8 microprocessor has ports 2, 3 and 4 available for user connection. For this example, the DAC-08 is connected to port 4 (P4). The DAC-08 is tied, with the least significant bit tied to P40 and the most significant bit tied to P47. The other connections to the DAC-08 are mostly out of the test circuit description shown in the data manuals associated with it. The DAC requires -12 volts for proper operation. The output for this example is tied to a simple op- amp filter with a sharp roll off at about 3500 hertz. This type filter might be quite suitable for telecommunications applications, but may not be so good for many others. An oscilloscope displays the resultant waveform.

The software to operate the Super8 is in the original initialization software from eariler in this article series. Initialization is essentially the same. Port 4 must be set up as output, with active push-pull drivers. The main consideration for this program is the software "sample" rate. For this example, 8000 samples per second was chosen. Any other rate may be chosen, and the author has successfully used values up to 16000 samples per second without timing problems. Higher base clock rates are possible with the recently introducecd 20 megahertz Super8 chips available. With the sample method used, the sample rate does not vary with the different sine wave frequencies generated.

The sample method requires a sine wave table stored in ROM or EPROM. This example uses 256 values, al-
though 64, 128 or more values are quite acceptable. The BASICA program that generated the sine table is included for user modification. Once the values were generated, they were manually typed into the program. Using the Zilog macro assembler would have signigicantly slowed assembling. Note that the comments in the BASICA program ìmust be removed before the PC can execute.

The values generated by the BASICA program are values ranging from 01 H to 0 FEH . Since the DAC represents 00 H as zero volts and 0FFH as 5 volts, this table will product sine outputs from almost zero to almost five volts.

The principle of operation requires that a sixteen bit frequency increment be maintained. This increment is generated by the simple formula

FREQUENCY INCREMENT $=$ (TABLESTEP X $256 \times$ FREQUENCY) / SAMPLE
where FREQUENCY INCREMENT is a sixteen bit value saved in an increment register, TABLESTEP is the number of values in the sine wave table, FREQUENCY is the desired frequency of generation in hertz, and SAMPLE is the number of samples per second. In the example program, this increment is stored in "FINCR".

A current offset into the sine table is maintained in the register pair labeled "INCR". At each periodic interrupt, FINCR must be added to INCR and saved in INCR. This sixteen bit value remains the offset into the table. The upper byte of the offset is used to point to the value in the 256 byte sine table that is loaded into the DAC. In the sample program, the value loaded into the DAC is generated in the previous interrupt and saved until the first instruction of the next interrupt. This allows the interrupt to perform some other varying length transactions, without introducing bit jitter into the sine wave.

Changing the "FINCR" by program control causes different frequencies to be generated. In this case, the sine wave may be turned off by disabling the counter 0 interrupt. Depending upon the number of steps in the sine
table and the sample frequency, very accurate sine frequencies may be generated. Calculate the actual error by using the following formula:
[ABS (REAL FREQI - INTEGER FREQI) / REAL FREQI] X $100=\%$ ERROR
where REAL FREQI is the actual calculated frequency increment, INTEGER FREQI is the nearest rounded integer of the calculated frequency increment, and the result is the actual percent error form the desired value.

With the addition of a filter with sharp cutoff just above the highest desired frequency, the Super8 serves quite well as a programmable sine wave generator. In addition to sine waves, complex waveforms may be easily generated by the Super8 with the addition of the low-cost DAC. The next article in this series will describe how to generate some of these more complex waveforms.

;zero count interrupt enable, enable counter
;

imer	is in	lized, now l	enable inte
	ldw	INCR,\#1	;start at t
	ldw	FINCR, \#FREQI	; load frequ
	ldw	POINT,\#SINTAB	;pointer po
	ld	CVAL, \#080H	;initial va
	ei		;enable int
WAIT:	nop		
	nop		
	nop		
	nop		
	jr	WAIT	; loop back

; \boldsymbol{i} imer interrupt. occurs SAMPLE times per second
;interrupt outputs value to DAC-08 and then determines value for next
;interrupt. This assures no bit jitter.
;
TIMERO: ld p4,CVAL iwrite new value to DAC-08
ref
add INCRL,FINCRL
adc INCRH,FINCR ; clear carry flag
; find next position in sine table
;by adding frequency offset to last position
;set new pointer into sine table
; upper byte ok since on boundary
$\begin{array}{ll}\text { ldc CVAL, QPOINT } & \text { iget value from sine table } \\ \text { or } & \text { COCT, \#OOOOOO10B } \\ \text {;reset end of count interrup }\end{array}$
$\begin{array}{ll}\text { or } \\ \text { iret } & \text { COCT, \#OOOOOO10B }\end{array}$
INTRET: iret
;

;* *
;* SINE WAVE LOOKUP *

;
;sine table for sine wave generation using DAC-08. Table based upon
;case of waveform with minumum amplititude $=0$ volts and maximum
;amplititude $=5$ volts. DAC-08 input for 0 volts $=00 \mathrm{H}$
; 5 volts $=0$ FFH. Table generated using following BASICA program,
; then typed into program.

.byte
.byte
.byte
.byte
-byte
.byte
-byte
.byte
.byte
.byte
-byte
.byte
$099 \mathrm{H}, 096 \mathrm{H}, 093 \mathrm{H}, 090 \mathrm{H}, 08 \mathrm{CH}, 089 \mathrm{H}, 086 \mathrm{H}, 083 \mathrm{H}, 080 \mathrm{H}, 07 \mathrm{DH}, 07 \mathrm{AH}, 077 \mathrm{H}$ $074 \mathrm{H}, 070 \mathrm{H}, 06 \mathrm{DH}, 06 \mathrm{AH}, 067 \mathrm{H}, 064 \mathrm{H}, 061 \mathrm{H}, 05 \mathrm{EH}, 05 \mathrm{BH}, 058 \mathrm{H}, 055 \mathrm{H}, 052 \mathrm{H}$ $04 \mathrm{FH}, 04 \mathrm{DH}, 04 \mathrm{AH}, 047 \mathrm{H}, 044 \mathrm{H}, 041 \mathrm{H}, 03 \mathrm{FH}, 03 \mathrm{CH}, 039 \mathrm{H}, 037 \mathrm{H}, 034 \mathrm{H}, 032 \mathrm{H}$ $02 \mathrm{FH}, 02 \mathrm{DH}, 02 \mathrm{BH}, 028 \mathrm{H}, 026 \mathrm{H}, 024 \mathrm{H}, 022 \mathrm{H}, 020 \mathrm{H}, 01 \mathrm{EH}, 01 \mathrm{CH}, 01 \mathrm{AH}, 018 \mathrm{H}$ $016 \mathrm{H}, 015 \mathrm{H}, 013 \mathrm{H}, 011 \mathrm{H}, 010 \mathrm{H}, 00 \mathrm{FH}, 00 \mathrm{DH}, 00 \mathrm{CH}, 00 \mathrm{BH}, 00 \mathrm{AH}, 008 \mathrm{H}, 007 \mathrm{H}$ $006 \mathrm{H}, 006 \mathrm{H}, 005 \mathrm{H}, 004 \mathrm{H}, 003 \mathrm{H}, 003 \mathrm{H}, 002 \mathrm{H}, 002 \mathrm{H}, 002 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}$ $001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 002 \mathrm{H}, 002 \mathrm{H}, 002 \mathrm{H}, 003 \mathrm{H}, 003 \mathrm{H}, 004 \mathrm{H}, 005 \mathrm{H}, 006 \mathrm{H}$ $006 \mathrm{H}, 007 \mathrm{H}, 008 \mathrm{H}, 00 \mathrm{AH}, 00 \mathrm{BH}, 00 \mathrm{CH}, 00 \mathrm{DH}, 00 \mathrm{FH}, 010 \mathrm{H}, 011 \mathrm{H}, 013 \mathrm{H}, 015 \mathrm{H}$ $016 \mathrm{H}, 018 \mathrm{H}, 01 \mathrm{AH}, 01 \mathrm{CH}, 01 \mathrm{EH}, 020 \mathrm{H}, 022 \mathrm{H}, 024 \mathrm{H}, 026 \mathrm{H}, 028 \mathrm{H}, 02 \mathrm{BH}, 02 \mathrm{DH}$ $02 \mathrm{FH}, 032 \mathrm{H}, 034 \mathrm{H}, 037 \mathrm{H}, 039 \mathrm{H}, 03 \mathrm{CH}, 03 \mathrm{FH}, 041 \mathrm{H}, 044 \mathrm{H}, 047 \mathrm{H}, 04 \mathrm{AH}, 04 \mathrm{DH}$ $04 \mathrm{FH}, 052 \mathrm{H}, 055 \mathrm{H}, 058 \mathrm{H}, 05 \mathrm{BH}, 05 \mathrm{EH}, 061 \mathrm{H}, 064 \mathrm{H}, 067 \mathrm{H}, 06 \mathrm{AH}, 06 \mathrm{DH}, 070 \mathrm{H}$ $074 \mathrm{H}, 077 \mathrm{H}, 07 \mathrm{AH}, 07 \mathrm{DH}$
. END

GENERATING DTMF TONES WITH THE ZILOG SUPER8

by Charles M. Link, II

In the previous article, a sine wave generation example was demonstrated. Sine waves are great, but, sometimes, more complex waveforms must be generated. One of the most widely used complex waveforms is the DTMF tone. The DTMF tone is used on millions of telephones under the AT\&T registered name "TOUCH TONE". Generally, telecommunications designers purchase one of the many DTMF encoder chips and hang it beside a microprocessor. This application article contains an example of a DTMF generation scheme that produces nearly as pure and probably as accurate a tone as the external chip method.

Generating sine waves requires some type of digital-toanalog converter to interface to the microprocessor. For this application, a DAC-08 is used. This DAC-08 is tied to port 4 of the Super8. Since it is assumed that the reader has access to the previous article, a detailed description of the hardware will be left to that article. Why not use the DTMF generator chip, when it might be just as inexpensive as the DAC- 08? The answer is that the DTMF generator chip requires an external crystal or clock, and it might not be convenient to pick a processor frequency that is a direct multiple of the one required by the generator. The second and more important reason is that the DAC-08 can be used to generate other call progress tones such as ringback and busy, or any other complex waveform.

Since the previous article discussed the method for generating sine wave tones, this article will only discuss how to turn that into the DTMF tone. The DTMF tone is actually a combination of two tones, hence, the name DUAL TONE MULTI-FREQUENCY. The tones are arranged such that each row and each column has a corresponding single frequency tone assigned. An additional, normally unseen column, contains an eighth tone frequency. A simple diagram below shows the arrangement.

DTMF TONE ASSIGNMENT

	1209	1336	1477	1633
697	1	2	3	A
770	4	5	6	B
852	7	8	9	C
941	$*$	0	$\#$	D

The method used to combine the two tones into one single complex waveform is simple: add the two individual tones together. Adding the tones together is
usually what happens when analog circuitry produces the DTMF tone. In fact, most of the DTMF encoder chips usually add the tones together either internally or externally to produce the single waveform.

Generating the two tones is no task for the Super8 microcomputer. Just set up two current table offset values and two different frequency increments. At each periodic interrupt the 16 bit frequency increment is added to the current table offset producing a new current table offset. The upper byte of each current table offset (one for the row frequency and one for the column) is used as a pointer into a 256 byte table. The sine values retrieved from the table are then added together and loaded into the DAC-08.

Since the DAC input of 00 H corresponds to an output of 0 volts and the input of OFFH corresponds to an output of 5 volts, adding two values that could possibly be 0FFH presents a problem. Since two sines must add to no more 5 volts, the maximum for one single sine value must be one half of 5 volts, or 80 H . The sine table has been adjusted so that the 2.5 volt value is mid-range. The maximum or mimumum for the sine wave is plus or minus 1.25 volts.

The interrupt service routine is almost exactly the same as the interrupt routine for the sine wave, except that two sine waves are calculated. The final values are added together and stored for the first instruction of the next interrupt. In order to change tones, or disable the tone generation, additional software logic could enable or disable the interrupt, and modify the two values "CINCR", and "RINCR".

It is clear from the example, that ringback, busy, MF, and other signaling tones can be easily generated without additional hardware. Increased sampling rates could be used to generate tones of much higher frequencies and accuracies. The accuracy, using the above method and sampling frequencies, is much less than one percent, totally suitable for telecommunications needs.


```
;
```

this example loads the tones for digit '1'
;user software would, of course have to manipulate these registers for ;proper tone control
;

	1dw	CFINCR, \#CFREQI	; load column frequency increment
	1 dw	RFINCR, \#RFREQI	;load row frequency increment
	ldw	POINT, \#SINTAB	; pointer points to sine table
	ld	CVAL, \#080H	;initial value to prevent glitch at start ;enable interrupts
WAIT:	nop		
	nop		
	nop		
	nop		
	jr	WAIT	; loop back
;			

;Timer interrupt. Occurs SAMPLE times per second
;interrupt outputs value to $D A C-08$ and then determines value for next
;interrupt. This assures no bit jitter.
;


```
IN
```


;
;sine table for DTMF generation using DAC-08. Table based upon
; case of waveform consisting of two sine waves summed to provide a single
; complex waveform with minumum amplititude $=0$ volts and maximum
;amplititude $=5$ volts. DAC-08 input for 0 volts $=00 \mathrm{H}$
; 5 volts $=0$ OFH. Both waves must total no more than OFFH, therefore
imaximum for one wave must be $1 / 25$ volts or 080 H .
; Table generated using following BASICA program,
; then typed into program.
;

10 CLS
$20 \mathrm{PI}=3.141593$
30 FOR I=0 TO 255
$40 \mathrm{C}=360 / 256$
$50 \mathrm{D}=\mathrm{C}$ * I
$60 \mathrm{E}=\mathrm{D} * \mathrm{PI} / 180$
$70 \mathrm{~F}=\operatorname{SIN}(\mathrm{E})$
$80 \mathrm{G}=\mathrm{F} * 63$
$90 \mathrm{H}=64+\mathrm{G}$
100 J=CINT (H)
110 AS=HEX\$ (J)
120 PRINT AS
130 LPRINT A\$
140 NEXT
150 END
clear screen
; define PI
;256 total values
; define basic interval value
;value from zero on sine wave
; figure sine for interval from 0
sine range should be from -63 to 63
;make result from 0 to 127
round to nearest integer
;convert to hex
;on screen
; on printer
do next inverval
; note-remove comments, BASICA will not accept ; as comment delimiter
.byte
.byte
.byte
.byte
.byte
.byte
. byte
. byte
.byte
.byte
.byte
.byte
-byte
.byte
.byte
.byte
.byte
. END
$07 \mathrm{FH}, 07 \mathrm{EH}, 07 \mathrm{EH}$
$07 \mathrm{EH}, 07 \mathrm{DH}, 07 \mathrm{DH}, 07 \mathrm{DH}, 07 \mathrm{CH}, 07 \mathrm{CH}, 07 \mathrm{BH}, 07 \mathrm{BH}, 07 \mathrm{AH}, 07 \mathrm{AH}, 079 \mathrm{H}, 078 \mathrm{H}$
$078 \mathrm{H}, 077 \mathrm{H}, 076 \mathrm{H}, 075 \mathrm{H}, 074 \mathrm{H}, 074 \mathrm{H}, 073 \mathrm{H}, 072 \mathrm{H}, 071 \mathrm{H}, 070 \mathrm{H}, 06 \mathrm{FH}, 06 \mathrm{EH}$ $06 \mathrm{DH}, 06 \mathrm{BH}, 06 \mathrm{AH}, 069 \mathrm{H}, 068 \mathrm{H}, 067 \mathrm{H}, 066 \mathrm{H}, 064 \mathrm{H}, 063 \mathrm{H}, 062 \mathrm{H}, 060 \mathrm{H}, 05 \mathrm{FH}$
$05 \mathrm{EH}, 05 \mathrm{CH}, 05 \mathrm{BH}, 05 \mathrm{AH}, 058 \mathrm{H}, 057 \mathrm{H}, 055 \mathrm{H}, 054 \mathrm{H}, 052 \mathrm{H}, 051 \mathrm{H}, 04 \mathrm{FH}, 04 \mathrm{EH}$
$04 \mathrm{CH}, 04 \mathrm{BH}, 049 \mathrm{H}, 048 \mathrm{H}, 046 \mathrm{H}, 045 \mathrm{H}, 043 \mathrm{H}, 042 \mathrm{H}, 040 \mathrm{H}, 03 \mathrm{EH}, 03 \mathrm{DH}, 03 \mathrm{BH}$
$03 \mathrm{AH}, 038 \mathrm{H}, 037 \mathrm{H}, 035 \mathrm{H}, 034 \mathrm{H}, 032 \mathrm{H}, 031 \mathrm{H}, 02 \mathrm{FH}, 02 \mathrm{EH}, 02 \mathrm{CH}, 02 \mathrm{BH}, 029 \mathrm{H}$
$028 \mathrm{H}, 026 \mathrm{H}, 025 \mathrm{H}, 024 \mathrm{H}, 022 \mathrm{H}, 021 \mathrm{H}, 020 \mathrm{H}, 01 \mathrm{EH}, 01 \mathrm{DH}, 01 \mathrm{CH}, 01 \mathrm{AH}, 019 \mathrm{H}$
$018 \mathrm{H}, 017 \mathrm{H}, 016 \mathrm{H}, 015 \mathrm{H}, 013 \mathrm{H}, 012 \mathrm{H}, 011 \mathrm{H}, 010 \mathrm{H}, 00 \mathrm{FH}, 00 \mathrm{EH}, 00 \mathrm{DH}, 00 \mathrm{CH}$
$00 \mathrm{CH}, 00 \mathrm{BH}, 00 \mathrm{AH}, 009 \mathrm{H}, 008 \mathrm{H}, 008 \mathrm{H}, 007 \mathrm{H}, 006 \mathrm{H}, 006 \mathrm{H}, 005 \mathrm{H}, 005 \mathrm{H}, 004 \mathrm{H}$ $004 \mathrm{H}, 003 \mathrm{H}, 003 \mathrm{H}, 003 \mathrm{H}, 002 \mathrm{H}, 002 \mathrm{H}, 002 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}$ $001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 001 \mathrm{H}, 002 \mathrm{H}, 002 \mathrm{H}, 002 \mathrm{H}, 003 \mathrm{H}, 003 \mathrm{H}, 003 \mathrm{H}$ $004 \mathrm{H}, 004 \mathrm{H}, 005 \mathrm{H}, 005 \mathrm{H}, 006 \mathrm{H}, 006 \mathrm{H}, 007 \mathrm{H}, 008 \mathrm{H}, 008 \mathrm{H}, 009 \mathrm{H}, 00 \mathrm{AH}, 00 \mathrm{BH}$ $00 \mathrm{CH}, 00 \mathrm{CH}, 00 \mathrm{DH}, 00 \mathrm{EH}, 00 \mathrm{FH}, 010 \mathrm{H}, 011 \mathrm{H}, 012 \mathrm{H}, 013 \mathrm{H}, 015 \mathrm{H}, 016 \mathrm{H}, 017 \mathrm{H}$ $018 \mathrm{H}, 019 \mathrm{H}, 01 \mathrm{AH}, 01 \mathrm{CH}, 01 \mathrm{DH}, 01 \mathrm{EH}, 020 \mathrm{H}, 021 \mathrm{H}, 022 \mathrm{H}, 024 \mathrm{H}, 025 \mathrm{H}, 026 \mathrm{H}$ $028 \mathrm{H}, 029 \mathrm{H}, 02 \mathrm{BH}, 02 \mathrm{CH}, 02 \mathrm{EH}, 02 \mathrm{FH}, 031 \mathrm{H}, 032 \mathrm{H}, 034 \mathrm{H}, 035 \mathrm{H}, 037 \mathrm{H}, 038 \mathrm{H}$ 03AH, 03BH, 03DH, 03EH

A SIMPLE SERIAL TO PARALLEL CONVERTER USING THE ZILOG SUPER8
 by Charles M. Link, II

The Zilog Super8 has many on-board peripherals that provide multiple user applications. Earlier articles have demonstrated simple application "stubs" or short test programs. This article and the next article demonstrate a useful application for the Super8. Although it underutilizes the Super8's power, the simple serial to parallel converter in this application and the print buffer in the next application demonstrate the ease at which applications are developed with the Super8.

The Zilog Super8 has several features that enhance its use as a communication controller. The interrupt or DMA driven serial port are helpful, but the handshaking parallel prots finish the job. In the serial to parallel converter, the 256 byte internal register memory is used as a small circular queue.

Hardware for this application is fairly simple. Port 4 is buffered and hooked to the data lines, as shown, to interface to a centronics type printer connector. The strobe from P25 provides the strobe (pin 1) to the printer. The acknowledge line from the printer is inverted and tied to P24 of the Super8. The busy signal from the printer is buffered and tied to P23 of the Super8. The design was tested on an Okidata printer and is not guaranteed to work on all printers.

Software is fairly straightforward. The serial port is initialized just like it was in the application article on the interrupt driven serial port. Port 4 must be set-up as outputs with active push-pull drivers. Port 2, bits 3 and 4, are set up as input with P24 set to enable interrupts. P25 is set as output and handshake 0 is set in HOC to provide a strobe of 16 clock periods in length.


```
;
;timer is initialized, now lets enable interrupts and wait
    ldw CINCR,#l ;start column at beginning of sine table
    ldw RINCR,#1 ;start row at beginning of sine table
```



```
;user software would, of course have to manipulate these registers for
;proper tone control
;
    ldw CFINCR,#CFREQI
    ldw RFINCR,#RFREQI
    ldw POINT,#SINTAB
    ld CVAL,#080H
    ei
WAIT: nop
            nop
            nop
            nop
            jr WAIT ;loop back
;
;Timer interrupt. Occurs SAMPLE times per second
;interrupt outputs value to DAC-08 and then determines value for next
;interrupt. This assures no bit jitter.
;
```



```
    ;by adding frequency offset to last position
```



```
    ;by adding frequencty offset to last position
```



```
    ; form a complex waveform from two sine values
```



```
;
; sine table for DTMF generation using DAC-08. Table based upon
; case of waveform consisting of two sine waves summed to provide a single
; complex waveform with minumum amplititude = 0 volts and maximum
;amplititude = 5 volts. DAC-08 input for 0 volts =00H
;5 volts = OFFH. Both waves must total no more than OFFH, therefore
;maximum for one wave must be 1/2 5 volts or 080H.
;Table generated using following BASICA program,
;then typed into program.
; llol
; ll lo CLS 
;clear screen
                    ;define PI
; 
;256 total values
40 C=360/256
;define basic interval value
50 D=C*I
< 50 D=C*I
70 F=SIN(E) ; figure sine for interval from 0
70 F=SIN(E) ; figure sine for interval from 0
80 G=F*63
;sine range should be from -63 to 63
90 H=64+G
;make result from 0 to }12
100 J=CINT (H) ;round to nearest integer
110 AS=HEX$(J) ;convert to hex
120 PRINT AS ;on screen
130 LPRINT A$ ;on printer
140 NEXT ; do next inverval
150 END
;load column frequency increment
;load row frequency increment
;pointer points to sine table
;initial value to prevent glitch at start
    ;enable interrupts
\begin{tabular}{ll} 
ldw & CFINCR,\#CFREQI \\
ldw & RFINCR,\#RFREQI \\
ldw & POINT,\#SINTAB \\
ld & CVAL,\#08OH \\
ei &
\end{tabular}
```

;load column frequency increment
;load row frequency increment
;initial value to prevent glitch at start ;enable interrupts

```
nop
nop

nop

jr
HAIT , loop back
;Timer interrupt. Occurs SAMPLE times per second
```



```
- }10\mathrm{ CIS
;value from zero on sine wave
```



```
40 C=360/256
                2 5 5
        oop back
```



```
                                    C
```

```*
*
```

```五
```

\qquad

```
                                    *
                                    s
```

\qquad

ADDITIONAL INFORMATION

Support Products Summary

KIT-TO-PART CROSS REFERENCE MATRIX

SUPPORTED DEVICES

Z86C91, Z86C21, Z8600, Z8601, Z8611

DESCRIPTION

The Z8 Development Kit can be used for several purposes. As an evaluation tool, one can learn the $Z 8$ instruction set plus the manipulation of the $Z 8$'s interrupt vectors and register set. Secondly, the Z8 Development Kit is designed to aid the user in constructing specific applications using the Z8 microcontroller.

SPECIFICATIONS

Power Requirements

+5 Vdc @ 50 mA

Dimensions

Width: $4.0 \mathrm{in} .(10.2 \mathrm{~cm})$
Length: $8.0 \mathrm{in} .(20.3 \mathrm{~cm})$

Serial Interface

RS-232C @ 9600 baud

KIT CONTENTS

28 Development Board
CMOS Z86C91 MPU
12 MHz Crystal
$(32 \mathrm{~K}) / 8 \mathrm{~K} \times 8$ EPROM
(32K)/8K x 8 STATIC RAM
RS-232C PC Interface
Z86C91 Expansion Header

Cables

25-Pin RS-232 Cable

Software (IB ${ }^{10 \% *}$-PC Platform)

Z8/Super8 Assembler and Utilities
Host Communication Package
Monitor Instructions
Tutorial
Sample Z86C91 Application Software

Documentation

Z8 Family Data Book
Z8 Cross Assembler User Guide MOBJ Link/Loader User Guide

ORDERING IAFORMATION
Part (10: Z0860000ZCO

SUPPORTED DEVICES

28600

DESCRIPTION

The Z8600 Adapter Kit allows a standard Z8 emulator to emulate a Z 8600 microcontroller by converting a 40-pin $Z 8$ pinout to a 28 -pin Z8 pinout.

SPECIFICATIONS

Power Requirements

Not Applicable

Dimensions

Width: $0.9 \mathrm{in} .(2.3 \mathrm{~cm})$
Length: 2.2 in. (5.4 cm)

KIT CONTENTS
Z8600 Adapter Board
PC Board
ORDERING INFORMATION
Part No: Z0860000ZDP

SUPPORTED DEVICES
 208602

DESCRIPTION

The kit contains an assembled circuit board, Z08602 with keyboard, ROM-code, and documentation to help the user become familiar with the features of the Z08602 keyboard controller.

The Z08602 microcontroller is designed into a 101/102 PC keyboard circuit to control all scan codes, line status modes, scan timing and communication between the keyboard and PC.

SPECIFICATIONS

Power Requirements

+5 Vdc @ . 2 A (Supplied By PC)

Dimensions

Width: $4.6 \mathrm{in} .(11.7 \mathrm{~cm})$
Length: $9.3 \mathrm{in} .(23.6 \mathrm{~cm})$

KIT CONTENTS
Z08602 101/102 Keyboard
NMOS Z08602 MPU
2 MHz Crystal
101/102 Keyboard Option
3 LEDs
Two 8-Position Dip Switches
6-Pin Communication Header

Software (IBM-PC Platform)

Z8/Z80/Z8000 Cross Assembler
MOBJ Link/Loader
Application Source Code

Documentation

Z08602 Application Kit User Guide Z8 Family Data Book
Z8 Cross Assembler User Guide MOBJ Link/Loader User Guide

ORDERING INFORMATION
Part Ho: Z0860200ZCO

Z0860200ZDP PRODUCT SPECIFICATION

SUPPORTED DEVICES

208602

DESCRIPTION

The Z08602 adapter board is a tool used to adapt a standard Z8601 type device or emulation system to a Z8602 target socket.

SPECIFICATIONS

Power Requirements

Not Applicable

Dimensions

Width: $1.3 \mathrm{in} .(3.3 \mathrm{~cm})$
Length: $2.3 \mathrm{in} .(5.8 \mathrm{~cm})$

KIT CONTENTS
z08602 Adapter Board
40-pin Z08601/Z08611 MPU Socket
40-pin Z08602 Connecter
Documentation
Z08602 Adapter Kit User Guide
ORDERING INFORMATION
Part Mo: Z0860200ZDP

Z86C0800ZCO PRODUCT SPECIFICATION

SUPPORTED DEVICES

Z86C08

DESCRIPTION

The kit contains an assembled circuit board, software and documentation to help the user become familiar with the features of the Z86C08 microcontroller.

The Applications Board is used to demonstrate the advantages and versatility of the 18-pin Z8 device. Included is simple hardware and software that demonstrates the implementation of WDT, HALT, and STOP MODE, low cost D to A and A to D conversion techniques.

SPECIFICATIONS

Power Requirements
+5 Vdc @ 50 mA

Dimensions

Width: $4.4 \mathrm{in} .(11.2 \mathrm{~cm})$
Length: 4.8 in . (12.2 cm)

KIT CONTENTS

Z86C08 Application Board
CMOS Z86C08 MPU
4 MHz Crystal
Four 7-segment LED Displays
17 Key Keypad

Software (IBM-PC Platform)

Application Source Code
Z8/Z80/Z8000 Cross Assembler
MOBJ Link/Loader

Documentation

Z8 Family Data Book
Z8 Cross Assembler User Guide
MOBJ Link/Loader User Guide
Z86C08 Application Kit User Guide
ORDERING INFORMATION
Part No: Z86C0800ZCO

SUPPORTED DEVICES
 Z86C08

DESCRIPTION

The Z86C08 adapter board converts the Z8 40 -pin pinout to a $Z 818$-pin part. This adapter board allows a standard $Z 8$ emulation device to emulate the Z86C08. The Z86C08 Adapter Board is placed between the $Z 8$ emulator and the user's target socket. The board does not emulate the watchdog timer function.

SPECIFICATIONS

Power Requirements

Not Applicable

Dimensions

Width: 2.5 in. $(6.4 \mathrm{~cm})$
Length: $2.9 \mathrm{in} .(7.4 \mathrm{~cm})$

KIT CONTENTS

Z86C08 Adapter Board
40-pin Z8 MPU Socket
18-pin Z86C08 Socket
12 MHz Crystal

Cables

18-Pin Z86C08 Emulation Cable

Documentation

Z86C08 Adapter Kit User Guide
ORDERING INFORMATION
Part No: Z86C0800ZDP

为

SUPPORTED DEVICES

Z86C08

DESCRIPTION

The Z86C08 Emulation Board allows the user to plug a programmed EPROM into the board to verify operation of code before submitting for Mask ROM. The board will emulate the watchdog timer function, but does not allow the development of $Z 8$ code. To fully emulate the $\mathrm{Z86C08}$, the code must be developed using a standard $Z 8$ emulator along with the Z86C08 Adapter Board. The code can then be verified in the user's application with the Z86C08 Emulator Board.

SPECIFICATIONS

Power Requirements
+5 Vdc @ 100 mA from target board

Dimensions

Width: $3.0 \mathrm{in} .(7.6 \mathrm{~cm}$)
Length: $3.6 \mathrm{in} .(9.1 \mathrm{~cm}$)

KIT CONTENTS
286C08 Emulation Board
CMOS Z86C12 ICE
4 MHz Crystal
EP900LC-3 EPLD
(32K)/8K $\times 8$ EPROM Socket
Z86E08 Socket
8-Position Dip Switch

Cables

18-Pin Z86C19 Emulation Cable
Software (IBM-PC Platform)
Z8/Z80/Z8000 Cross Assembler MOBJ Link/Loader

Documentation

Z8 Family Data Book
Z86C08ZEM Kit User Guide
Z8 Cross Assembler User Guide MOBJ Link/Loader User Guide

ORDERING INFORMATION
Part No: Z86C0800ZEM

Z86E0800ZPR PRODUCT SPECIFICATION

SUPPORTED DEVICES
 Z86E08

DESCRIPTION

The Kit contains an assembled circuit board, software, and documentation to program the Z86E08 OTP.
The Z86E08 is an OTP version of the Z86C08 single chip microcomputer housed in an 18-pin DIP. It offers the same architecture and all the features of the Z 86 C 08 . The Z86E08 also offers "LOW NOISE" and "ROM PROTECT" options, which can be programmed by the programmer.

SPECIFICATIONS

Power Requirements
$+15 \mathrm{Vdc} @ 1 \mathrm{~A}$
Or 12-15 Vac@1A

Dimensions

Width: $4.9 \mathrm{in} .(12.4 \mathrm{~cm})$
Length: 5.4 in . $(13.7 \mathrm{~cm})$

KIT CONTENTS

Z86E08 Programmer Board
CMOS Z86C91 MPU
7.3728 MHz Crystal
$8 \mathrm{~K} \times 8$ EPROM
(32K)/8K x 8 ZIF Socket (for user EPROM)
Z86E08 ZIF Socket
Two 7805 Voltage Regulators
7812 Voltage Regulator
Bridge Rectifier
2 LEDs
2 Key Switches

Software (IBM-PC Platform)

Programming source code

Documentation

Z86E08 Product Specification
Z86E08 Kit User Guide
ORDERING INFORMATION
Part No: Z86E0800ZPR

Z86C1200ZDP

 PRODUCT SPECIFICATION

SUPPORTED DEVICES

 Z86C12
DESCRIPTION

The Z86C12 adapter board is a simple adapter which converts the 64-pin footprint of the Zilog Z8612 ICE chip to the 84-pin PGA configuration of the CMOS Z86C12 ICE chip.

The Z86C12 Adapter Kit allows a standard $Z 8$ emulator to emulate $Z 8$ CMOS microcontrollers.

SPECIFICATIONS

Power Requirements
Not Applicable

Dimensions

Width: $2.4 \mathrm{in} .(6.1 \mathrm{~cm})$
Length: 4.3 in . $(10.9 \mathrm{~cm})$

KIT CONTENTS
Z86C12 Adapter Board
CMOS Z86C12 ICE
64-Pin Z8612 Connector
5-Position Dip Switch
Documentation
Z86C12 Adapter Kit User Guide
ORDERING INFORMATION
Part Ho: Z86C1200ZDP
Price:

Z86C1900ZCO PRODUCT SPECIFICATION

SUPPORTED DEVICES

Z86C09, Z86C19

DESCRIPTION

The kit contains an assembled circuit board, software and documentation for the Universal I.R. Transmitter Application. The transmitter can be set up to operate most models of remote-controlled TVs, VCRs and Cable TV Decoders even if they are in different brands.

With the set-up feature and the easy operation capability, the Universal I.R. Transmitter can be used to replace several remote controllers. The documentation contains the look up codes of each corresponding brand.

SPECIFICATIONS

Power Requirements

$+3<\mathrm{Vcc}<+5 \mathrm{Vdc}$

Dimensions

Width: $2.3 \mathrm{in} .(5.8 \mathrm{~cm})$
Length: $5.5 \mathrm{in} .(14.0 \mathrm{~cm})$

KIT CONTENTS
Z86C19 Universal I.R. Remote Control Board
CMOS Z86C19 MPU (With Mask ROM)
8 MHz Crystal
29 Key Switches
Software (IBM-PC Platform)
I.R. Application Source Code

Z8/Z80/Z8000 Cross Assembler
MOBJ Link/Loader

Documentation

Z8 Family Data Book
Z8 Cross Assembler User Guide
MOBJ Link/Loader User Guide Z86C09/19 Product Specification Z86C19 I.R. Application Kit User Guide

ORDERING INFORMATION
Part No: Z86C1900ZCO

SUPPORTED DEVICES
 Z86C09, Z86C19, 286C90

DESCRIPTION

The kit contains an assembled circuit board, software and documentation to support software and hardware development for the maskROM Z86C09/19 and ROMless Z86C90 devices.

The supplied cross assembler and link/ loader package allows full assembly language programming support. A board resident debug monitor program allows object code to be down-loaded and subsequently debugged.

Code targeted for the Z86C09/19 device may be verified in the target application before submitting to Zilog for production masking.

SPECIFICATIONS

Power Requirements

+5 Vdc @ .5 A

Dimensions

Width: $3.5 \mathrm{in} .(8.9 \mathrm{~cm})$
Length: 4.0 in . (10.2 cm)

Serial Interface

RS-232C @ 9600 baud

KIT CONTENTS

Z86C19 Evaluation Board
CMOS Z86C90 MPU
8 MHz Crystal
(32K)/8K $\times 8$ ZIF Socket (supplied with
Debug Monitor EPROM)
(32K)/8K $\times 8$ STATIC RAM
RS-232C PC Interface
Z86C90 Expansion Header
Z86C09/19 Emulation Header

Cables

25-Pin RS-232 Cable
18-Pin Z86C19 Emulation Cable

Software (IBM-PC Platform)

Z8/Z80/Z8000 Cross Assembler MOBJ Link/Loader
Resident Debug Monitor Source Code Z86C09 Example Software

Documentation

Z8 Family Data Book Z86C09/19 Product Specification Z86C30/40/90 Product Specification Z86C19ZEM Kit User Guide Z8 Cross Assembler User Guide MOBJ Link/Loader User Guide

ORDERING INFORMATION
Part No: Z86C19ZEM

SUPPORTED DEVICES
 286E06/09/19

DESCRIPTION

The Z86E06 converter board is a simple adapter which converts the 28 -pin footprint of the Zilog Z86E30 OTP chip to the 18 -pin DIP configuration of the Z86E06/09/19 OTP chip. The converter supports all the functions of the Z86E06/09/19 except for SPI function.

SPECIFICATIONS

Power Requirements

Not applicable

Dimensions

Width: 0.8 in. $(2.0 \mathrm{~cm})$
Length: $1.5 \mathrm{in} .(3.8 \mathrm{~cm})$

KIT CONTENTS

Z86E06 Converter Board
28-Pin Z86E30 MCU Socket
18-Pin Z86E06/09/19 Connector
Cables
25-Pin RS-232 Cable
18-Pin Z86C19 Emulation Cable

Documentation

Z86E06 OTP Converter Kit User Guide
ORDERING INFORMATION
Part No: Z86E0600ZDP

SUPPORTED DEVICES

Z86E21

DESCRIPTION

The Z86E21 QFP OTP Adapter Kit allows the 2764A standard EPROM programmer to program the Z86E21 One Time Programmable microcontroller.

SPECIFICATIONS

Power Requirements
+12.5 Vdc @ .5 A

Dimensions

Width: $1.75 \mathrm{in} .(4.4 \mathrm{~cm})$
Length: $2.20 \mathrm{in} .(5.6 \mathrm{~cm})$

KIT CONTENTS

Z86E21 QFP OTP Program Adapter Board
44-Pin QFP ZIF Socket
28-Pin Connector

Documentation

Z86E2100ZDF Adapter User Guide
ORDERING INFORMATION
Part No: Z86E2100ZDF

Z86E2100ZDP PRODUCT SPECIFICATION

SUPPORTED DEVICES

Z86E21

DESCRIPTION

The Z86E21 DIP OTP Adapter Kit allows the 2764A standard EPROM programmer to program the Z86E21 One Time Programmable microcontroller.

SPECIFICATIONS

Power Requirements
+12.5 Vdc @ .5 A

Dimensions

Width: $1.4 \mathrm{in} .(3.6 \mathrm{~cm})$
Length: $2.6 \mathrm{in} .(6.6 \mathrm{~cm})$

KIT CONTENTS
Z86E21 OTP Program Adapter Board
40-Pin DIP ZIF Socket
28-Pin Connector
Documentation
Z86E21ZDP Adapter User Guide
ORDERING INFORMATION

Part No: Z86E2100ZDP

Z86E2100ZDV PRODUCT SPECIFICATION

SUPPORTED DEVICES

$286 E 21$

DESCRIPTION

The Z86E21 PLCC OTP Adapter Kit allows the 2764A standard EPROM programmer to program the Z86E21 One Time Programmable microcontroller.

SPECIFICATIONS

Power Requirements
+12.5 Vdc @ .5 A

Dimensions

Width: 1.75 in. $(4.4 \mathrm{~cm})$
Length: $2.20 \mathrm{in} .(5.6 \mathrm{~cm})$

KIT CONTENTS
Z86E21 PLCC OTP Program Adapter Board
44-Pin PLCC ZIF Socket
28-Pin Connector
Documentation
Z86E2100ZDV Adapter User Guide
ORDERING INFORMATION

Part Ro: Z86E2100ZDV

SUPPORTED DEVICES

Z86C27, Z86C97

DESCRIPTION

The Z86C2700ZCO Application Kit is specifically designed for users to evaluate the Hardware and Software of Zilog's Z86C27 Digital Television Controller (DTC). The Z86C2700ZCO Application Kit can be used with an Z86C2700ZEM Emulation Adapter Board to develop application code.

SPECIFICATIONS

Power Requirements

Supplied By TV Set

Dimensions

Width: $6.2 \mathrm{in} .(15.7 \mathrm{~cm})$
Length: 8.6 in. (21.8 cm)

KIT CONTENTS

Z86C27 Application Board
CMOS Z86C27 MPU Socket
4 MHz Crystal
24 Key Multiplexed Keypad
Two 7-segment LED Displays
8 LEDs
13 PWMs
Low Pass Filter Interface
PLL Interface

Documentation

Z8 Family Data Book
Z86C27 Application Kit User Guide
ORDERING INFORMATION
Part No: Z86C2700ZCO

SUPPORTED DEVICES

Z86C27, Z86C97

DESCRIPTION

The Z86C2700ZEM Emulation Board allows the user to plug a programmed EPROM into the board to test out code or to connect with the Orion ROM emulator to emulate code. The board comes with Z86C97 (ROMLESS of Z86C27) and Altera EP1810JEPLD to emulate I/O Ports.

SPECIFICATIONS

Power Requirements

+5Vdc@.1A

Dimensions

Width: $3.0 \mathrm{in} .(7.6 \mathrm{~cm})$
Length: $6.8 \mathrm{in} .(17.3 \mathrm{~cm})$

KIt CONTENTS
286C27 Emulation Board
CMOS Z86C97 MPU
EP1800LC-2 EPLD
(32K)/8K $\times 8$ ZIF Socket
4 MHz Crystal
Z86C97 Adapter Board
Z86C97 Expansion Header
Unilab 8620 or 8420 Analyzer-
Emulator Headers

Cables

Unilab 8620 or 8420 Analyzer Cable Unilab 8620 or 8420 Emulator Cable

Software (IBM-PC Platform)
Z8/Z80/Z8000 Cross Assembler MOBJ Link/Loader

Documentation

Z8 Family Data Book
Z8 Cross Assembler User Guide MOBJ Link/Loader User Guide

ORDERING INFORMATION

Part Ho: Z86C2700ZEM

Z86E3000ZDP PRODUCT SPECIFICATION

SUPPORTED DEVICES

Z86E30

DESCRIPTION

The Z86E30 OTP DIP Adapter Kit allows a standard EPROM programmer to program the Z86E30 One-Time-Programmable microcontroller.

SPECIFICATIONS

Power Requirements
+12.5 Vdc @ .5A

Dimensions

Width: $1.45 \mathrm{in} .(3.68 \mathrm{~cm})$
Length: $2.0 \mathrm{in} .(5.08 \mathrm{~cm})$

KIT CONTENTS
Z86E30 OTP Program Adapter Board
28-Pin DIP ZIF Socket
28-Pin Connector
Documentation
Z86E30ZDP Adapter User Guide
ORDERING INFORMATION
Part No: Z86E3000ZDP

SUPPORTED DEVICES

Z86E40

DESCRIPTION

The Z86E40 QFP OTP Adapter Kit allows a standard EPROM programmer to program the Z86E40 One-Time-Programmable microcontroller.

SPECIFICATIONS

Power Requirements

+12.5 Vdc @ .5 A

Dimensions

Width: $1.75 \mathrm{in} .(4.4 \mathrm{~cm})$
Length: $2.20 \mathrm{in} .(5.6 \mathrm{~cm})$

KIT CONTENTS
Z86E40 QFP OTP Program Adapter Board
44-Pin QFP ZIF Socket
28-Pin Connector
Documentation
Z86E4000ZDF Adapter User Guide
ORDERING INFORMATION
Part No: Z86E4000ZDF

Z86E4000ZDP PRODUCT SPECIFICATION

SUPPORTED DEVICES Z86E40

DESCRIPTION

The Z86E40 OTP DIP Adapter Kit allows a standard EPROM programmer to program the Z86E40 One-Time-Programmable microcontroller.

SPECIFICATIONS

Power Requirements

+12.5 Vdc @ .5 A

Dimensions

Width: $1.4 \mathrm{in} .(3.6 \mathrm{~cm})$
Length: 2.6 in . $(6.6 \mathrm{~cm})$

KIT CONTENTS
Z86E40 OTP Program Adapter Board 40-Pin DIP ZIF Socket 28-Pin Connector
Documentation
Z86E40ZDP Adapter User Guide
ORDERING INFORMATION
Part No: Z86E4000ZDP

Z86E4000ZDV PRODUCT SPECIFICATION

SUPPORTED DEVICES

Z86E40

DESCRIPTION

The Z86E40 PLCC OTP DIP Adapter Kit allows a standard EPROM programmer to program the Z86E40 One-Time-Programmable microcontroller.

SPECIFICATIONS

Power Requirements
+12.5 Vdc @ .5 A

Dimensions

Width: $1.6 \mathrm{in} .(4.1 \mathrm{~cm})$
Length: 2.0 in . $(5.1 \mathrm{~cm})$

KIT CONTENTS
Z86E40 PLCC OTP Program Adapter Board
40-Pin ZIF Socket
28-Pin Connector
Documentation
Z86E4000ZDV Adapter User Guide
ORDERING INFORMATION
Part No: Z86E4000ZDV

Z0880000ZCO PRODUCT SPECIFICATION

SUPPORTED DEVICES
 Z08800

DESCRIPTION

The Super8 Development Kit can be used for several purposes. As an evaluation tool, the user can learn the Super8's instruction set plus the manipulation of the Super8's interrupt vectors and register set. Secondly, The Super8 Development Kit is designed to aid the user in constructing specific applications using the Super8 microcontroller. Lastly, application prototypes may be run using the Super8 Development Kit.

SPECIFICATIONS

Power Requirements

+5 Vdc @.4 A

Dimensions

Width: 4.0 in. (10.2 cm)
Length: 4.5 in . (11.4 cm)

Serial Interface

RS-232C @ 9600 baud

KIT CONTENTS

Super8 Development Board
NMOS Z08800 Super8 MPU
20 MHz Crystal
(32K)/8K x 8 EPROM (32K)/8K $\times 8$ STATIC RAM
RS-232C PC Interface
Software (IBM-PC Platiorm)
Z8/Super8 Assembler/Utilities
Host Communication Package
Monitor Instructions
Tutorial
Sample Z08802 Application Software

Documentation

Z8 Family Data Book
Z8 Cross Assembler User Guide MOBJ Link/Loader User Guide

ORDERING INFORMATION
Part No: Z0880000ZCO

SUPPORTED DEVICES

Z86C08, Z86E08, Z86C00, Z86C10, Z86C11
Z86C20, Z86C21, Z86E21, 286C91

DESCRIPTION

The Z86C1200ZEM is a member of Zilog's ICE BOX product family of in-circuit emulators. The ICE BOX -C12 provides emulation and OTP programming support for Zilog's Z8 microcontroller. The Emulator provides all the essential MCU timing and I/O circuitry which simplifies user emulation of the prototype hardware/software product. The Emulator can be connected to a serial port COM 1 or COM 2 of the host computer (IBM* XT, AT Compatible).

SPECIFICATIONS

Emulation Specification
Maximum Emulation Speed 16 MHz

Power Requirements

+5 Vdc @ 1.0 A

Dimensions

Width: $6.0 \mathrm{in} .(15.2 \mathrm{~cm})$
Length: $8.8 \mathrm{in} .(22.4 \mathrm{~cm})$

Serial Interface

RS-232C @ 19200 baud

KIT CONTENTS

Z86C12 Emulator
Z8 Emulation Base Board CMOS Z86C9120PSC $8 \mathrm{~K} \times 8$ EPROM (Programmed with Debug Monitor)
EPM5128 EPLD
$32 \mathrm{~K} \times 8$ STATIC RAM $364 \mathrm{~K} \times 4$ STATIC RAM RS-232C Interface Reset Switch
Z86C12 Emulation Daughter Board EPM5032 EPLD 16 MHz CMOS Z86C1216GSE ICE Chip 40/18 Pin ZIF OTP Sockets 80/60/40 Pin Target Connectors

Components

Z86E2112PSC
Z86E0812PSC

Cables

12", 40-Pin DIP Emulation Cable
12", 28-Pin DIP Emulation Cable
12", 18-Pin DIP Emulation Cable 48" Power Cable
15" Power Cable with Banana Plugs
60" DB 25 RS-232C Cable

Software (IBM-PC Platform)

Z8/Z80/Z8000 Cross Assembler
MOBJ Link/Loader
Host Package

Documentation

Emulator User Guide
Support Products Catalog
Z8 Cross Assembler User Guide
MOBJ Link/Loader User Guide
Registration Card

ORDERING INFORMATION

PART NO: Z86C1200ZEM

SUPPORTED DEVICES

Z86C06, Z86C09/19, Z86E19, Z86C30, Z86E30,
Z86C40, Z86E40, Z86C89, Z86C90

DESCRIPTION

The Z86C5000ZEM is a member of Zilog's ICE BOX product family of in-circuit emulators. The ICE BOX -C50 provides emulation and OTP programming support for Zilog's Consumer Controller Processor (CCP) microcontroller. The Emulator provides all the essential MCU timing and I/O circuitry which simplifies user emulation of the prototype hardware/software product. The Emulator can be connected to a serial port COM 1 or COM 2 of the host computer (IBM* XT, AT Compatible).

SPECIFICATIONS

Emulation Specification

Maximum Emulation Speed 16 MHz

Power Requirements

+5 Vdc @ 1.0 A

Dimenslons

Width: $6.0 \mathrm{in} .(15.2 \mathrm{~cm})$
Length: 8.8 in . (22.4 cm)

Serial Interface

RS-232C @ 19200 baud

KIT CONTENTS

Z86C50 Emulator
Z8 Emulation Base Board CMOS Z86C9120PSC $8 \mathrm{~K} \times 8$ EPROM
(Programmed with Debug Monitor) EPM5128 EPLD
32K $\times 8$ STATIC RAM
$364 \mathrm{~K} \times 4$ STATIC RAMs
RS-232C Interface
Reset Switch
Z86C50 Emulation Daughter Board 20 MHz CMOS Z86C5020GSE ICE Chip
EPM5128 EPLD
$2 \mathrm{~K} \times 8$ STATIC RAM
40/28/18 Pin ZIF OTP Sockets
6 HP-16500A Logic Analysis
System interface Connectors
80/60/40 Pin Target Connectors

Components

Z86E4012PSC
Z86E3012PSC

Cables

12", 40-Pin DIP Emulation Cable 12", 28-Pin DIP Emulation Cable 12", 18-Pin DIP Emulation Cable 48" Power Cable
15" Power Cable with Banana Plugs
60" DB 25 RS-232C Cable

Software (IBM-PC Platform)

Z8/Z80/Z8000 Cross Assembler MOBJ Link/Loader
Host Package

Documentation

Emulator User Guide
Support Products Catalog
Z8 Cross Assembler User Guide
MOBJ Link/Loader User Guide
Registration Card

ORDERING INFORMATION

Part No: Z86C5000ZEM

SUPPORTED DEVICES

Z86C93

DESCRIPTION

The Z86C9300ZEM is a member of Zilog's ICE BOX product family of in-circuit emulators. The ICE BOX -C93 provides emulation for Zilog's Z86C93 microcontroller. This includes all the essential MCU timing and I/ O circuitry which simplifies user emulation of the prototype hardware/software product. The Emulator can be connected to a serial port COM 1 or COM 2 of the host computer (IBM* XT, AT, 386, 486 Compatible).

SPECIFICATIONS

Emulation Specification

Maximum Emulation Speed 16 MHz

Power Requirements

+5 Vdc @ .5A

Dimensions

Width: $6.0 \mathrm{in} .(15.2 \mathrm{~cm})$
Length: $8.8 \mathrm{in} .(22.4 \mathrm{~cm})$

Serial Interface

RS-232C @ 19200 baud

KIT CONTENTS

Z86C93 Emulator
Z8 Emulation Base Board CMOS Z86C9120PSC
$8 \mathrm{~K} \times 8$ EPROM
(Programmed with Debug Monitor)
EPM5128 EPLD
$32 \mathrm{~K} \times 8$ STATIC RAM
3 64K x 4 STATIC RAMs
RS-232C Interface
Reset Switch
Z86C93 Emulation Daughter Board 20 MHz CMOS Z86C5020GSE ICE Chip
EPM5128 EPLD
3 HP-16500A Logic Analysis
System Interface Connectors
80-Pin Target Connector

Cables

12", 44-Pin DIP Emulation Cable
12", 40-Pin DIP Emulation Cable
12", 18-Pin DIP Emulation Cable
48" Power Cable
15" Power Cable with Banana Plugs
60" DB 25 RS-232C Cable

Software (IBM-PC Platform)

Z8/Z80/Z8000 Cross Assembler
MOBJ Link/Loader
Host Package

Documentation

Emulator User Guide
Support Products Catalog
Z8 Cross Assembler User Guide
MOBJ Link/Loader User Guide
Registration Card

ORDERING INFORMATION

Part No: Z86C9300ZEM

DESCRIPTION

The system comprises three base unit options, ($64 \mathrm{~K}, 128 \mathrm{~K}$, or 256 K of emulation program ROM), and three pod options which allow the emulation of various $\mathrm{Z8}$ microcontrollers. Features include real-time transparent emulation up to 20 MHz , in-line symbolic assembler and disassembler, realtime hardware breakpoints, eight channel user logic analyser, external trigger input and outputs, trace display and memory display/edit during execution, and window or command driven user interface.

SPECIFICATIONS

Microcontrollers Emulated:
Z86C1200ZPD Z86C00, Z86C10, Z86C20, Z86C11, Z86C21, Z86E21, Z86C91

Z86C5000ZPD Z86C09, Z86C19, Z86C30, Z86C40, Z86C90

Z86C9300ZPD Z86C93

Maximum Emulation Speed:

Up to 20 MHz (microcontroller dependent)

Stze:

260 mm wide, 260 mm deep, 64 mm high

Operating Temperature:

$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage Temperature:

$-10^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Operating Humidily:
0 to 90\%

Maximum Emulation Program Memory:

64 Kbytes with Z86C0000ZUSP064
128 Kbytes with Z86C0000ZUSSP128
256 Kbytes with Z86C0000ZUSP256

Maximum Emulation Data Memory:

64 Kbytes

Program Memory Mapping:

1K blocks

Pass Counters:

Two, 16-bit each

Trace Buffer:

32K-80 bits

Sequencer:

Hardware, 8 levels

User Probe:

Eight channel logic input
One trigger input
Sever trigger outputs (Events, Pass
Counters, Sequencer)

Host Interface:

Asynchronous RS-232C
9600/115 KBaud
XON/XOFF support
File Upward/Downward Format:
Zilog MUFOM (EEE 695-1985)
Intel HEX
Intel AOMF
2500AD Software

MINIMUM HOST REQUIREMENTS

- IBM compatible PC/XT/AT/386 or PS-2
- 640 Kbyte memory
- 20 Mbyte hard disk
- RS-232 serial port (COM1 or COM2)
- Mouse (serial or bus)
- MDA, CGA, EGA, or VGA video adaptor

MINIMUM EMULATION SUPPORT

One base unit and one emulation pod is required.

Part Numbers

Base Systems
Z86C0000ZUSP064
Z86C0000ZUSP128
Z86C0000ZUSP256

Pod Systems

Z86C9300ZPD
Z86C1200ZPD
Z86C5000ZPD

Zilog's Quality and Reliability Program

Introduction

Zilog has an excellent reputation for the quality and reliability of its products.
Zilog's Quality and Reliability
Program is based on careful study of the principles laid down by such pioneers as W.E. Deming and J.M. Juran and, perhaps even more important, observation of the practical implementation of those principles in Japanese, European and American manufacturing facilities.
The Zilog program begins with employee involvement. Whether the judgement of our performance is based on perfection in incoming inspection, trouble free service in the field or timely and accurate customer service, we recognize that our employees ultimately control these factors. Hence, our Quality Program is broadly shared throughout the organization.

1. Harmony Between Design and Process

High product quality and reliability in VLSI products is possible only if there is structural harmony between product design and the manufacturing process. Great care is taken to assure that the statistical process control limits observed within the manufacturing plants properly guardband the design technology used to configure the circuit and layout in Zilog's automated design methodology.

Through use of a technique which we call Process Templating, the technology file in the automated design system is periodically updated to assure that product design parameters fall within the statistical control limits with which the process is actually operated. in simple terms, the

Process Template is the profile displayed by the process evaluation parameters which are automatically recorded from the test patterns on wafers as they proceed through the production line. These parameters are translated into the design technology file attributes such that every product design bears a key and lock relationship to the process.

2. Training

Product Design and Processing are people dependent. Zilog training emphasizes the fundamentals involved in design for quality and reliability.
Customer Service, an important aspect of Zilog's quality performance as a vendor, also depends upon our people clearly understanding their jobs, and our obligations to our customers. This too is part of the training curriculum administered by Zilog.

3. Order Acknowledgement Policy

One definition of vendor quality performance is that the vendor "does what he promises or acknowledges." Reliability and quality warranties can be met only if Zilog and the customer are in agreement on product and delivery specifications. Zilog makes an extra effort to assure that the customer is fully informed by providing documents with its purchase order acknowledgements that clearly state what Zilog understands the specifications to be.

4. Test Guardbanding

No physical attribute is absolute. Customers' test methods may differ from Zilog's due to variations in test equipment, temperature or specification interpretation. To assure that every Zilog product performs to full customer expectations, Zilog uses a
"waterfall" methodology in its testing. The first electrical lests made on the circuit, at the water probe operations, are guardbanded to the final lest specifications. The final test specifications, in turn, are guardbanded to the quality control outgoing sample. The quality control outgoing sample is guardbanded to the customer procurement or data sheet specilications. This technique of "watertall" guardbanding assures that circuits which may be marginal to the customer's expectations are eliminated in the manufacturing process long before they get to the shipping container.

5. Probe at Temperature

Semiconductor devices tend to exhibit their most limited performance at the highest operating temperalure. Therefore, it is Zilog's policy that all chips are tested at high temperalure the very first time they are electrically screened, at the wafer probe station. The circuits are tested again at their upper operating temperature limit in the 100% final lest operation.

6. Process Characterization

Before release to production, every process is thoroughly characterized by an exhaustive series of pilol production runs and tests which identify the statistical, electrical, and mechanical limits of which that particular process regime is capable. This documentation, which fills a large loose leaf binder for each process, is maintained as the historical record or "footprint" for that particular regime.

Process recharacterization is done any time there is a major process or manufacturing site change, and the resulting documentation is then added to the characlerization history. Once the process is fully characterized, the frequent test site evaluation and process template data demonstrates that the process remains in specification.

7. Product Characterization

Every Zilog product design is evaluated over extremes of operating temperature, supply voltage and clock frequencies, prior to release to production. This information permits the proper guardbanding of the test program waterfall and identification of many marginal "corners" in design tolerances.
A product characterization report, which summarizes the more important tolerances identified in the process of this exhaustive product design evaluation, is available to Zilog's customers.

8. Process Qualification

Zilog also qualifies every process prior to production by an exhaustive stress sequence performed on test chips and on representative products. Once a process regime is qualified, a process requalification is performed any time there is a major process change, or whenever the process template statistical quality limits are significantly exceeded or adjusted.

9. Product Qualification

In addition to characterization, every new Zilog product design is fully qualified by a comprehensive series of life, electrical, and environmental tests before release to production. Again, a qualification report is available to our customers which summarizes certain key life and environmental data taken in the course of these evaluations. Whenever possible, industry standard environmental and life tests are employed.

10. PPM Measurement, Direct and Indirect

It is frequently said that if you want to improve something, you need to put a measure on it. Therefore, Zilog measures its outgoing quality "parts per million" by the maintenance of careful records on the statistical
sampling of production lots prepared for shipment. This information is then translated by our statisticians to a statement of our parts per million (or parts per billion) outgoing quality performance.

Of course, it is one thing for Zilog to think it is doing a good job in outgoing product quality and it is another for a customer to agree. Therefore, we ask certain key customers to provide us with their incoming inspection data which helps us calibrate our outgoing performance in terms of the actual results in the field. The fact that Zilog has been awarded "ship to stock" status by many customers testifies to our success in this area.

11. FIT Measurement Direct and Indirect

Just as Zilog records its outgoing quality in terms of parts per million, it also measures its outgoing product reliability in terms of "FITS" or failures per billion device hours, using the results of weekly operating life test measurements on the circuits, performed in accordance with the standard specifications.

12. Field Quality Engineers

It is frequently said that, "the customer is always right." If the customer has an application quality or reliability problem while using a Zilog product, whether it is Zilog's responsibility or not, we believe that we have a responsibility to resolve it. Therefore, Zilog maintains a force of skilled Applications Engineers who are also trained as field quality engineers and are available on immediate call to consult at the customer's locations on any problems they may be experiencing with Zilog product performance.

13. Product Analysis

As noted earlier, we feel that a customer problem is a Zilog problem. Accordingly, Product Analysis facili-
ties, staffed by experienced professionals, exist at each Zilog site to provide rapid evaluation of in-process and in-field rejects to determine the cause and provide corrective action through a feedback loop into the production, design, and applications process. Zilog is pleased to share product analysis reports on specific products with the customer upon request.

14. Test Site Step-Stress

The process evaluation test sites on the wafer are packaged and subjected to step-stress testing. Any drift in parameters under severe conditions of stress outside the norm is taken as an indication of possible process contamination or variation.

15. Statistical Process Control

Zilog employs Statistical Process Control at all critical process steps. Deviations from norms must be evaluated by a Q / R review board.

16. Perfection Plus Program

Zilog employees actively parlicipale in meetings in which methods which will enable a department to do its job more perfectly are proposed, reviewed, and adopted. Employees who have made suggestions proudly wear the Zilog Perfection Plus pin.

17. Zilog Vendor of the Year Award

Zilog is proud of the many quality and performance awards it has received from its customers. In turn, Zilog makes an annual award to the vendor who has done the best overall job for Zilog.

Zilog's Quality and Reliability Summary

Zilog is proud of its Quality and Reliability programs and is pleased to share this data with its customers. For further information, contact Zilog's Director of R/QA.

Z8*SUPER8N MICROCONTROLLER FAMILY

Handbook	Part No	Unit Cost
Microcontrollers Data Book (includes the following documents)	DC-8275-04	5.00

Z8 CMOS Microcontrollers

Z86C00/C10/C20 MCU 0TP Product Specification
Z86C06 Z8 CCP ${ }^{\text {mu }}$ Preliminary Product Specification
Z86C08 8-Bit MCU Product Specification
Z86E08 Z8 OTPMCU Product Specification
Z86C09/19 Z8 CCP Product Specification
Z86E19 Z8 0TP MCU Advance Information Specification
Z86C11 Z8 MCU Product Specification
Z86C12 28 ICE Product Specification
Z86C21 Z8 MCU Product Specification
Z86E21/Z86E22 0TP Product Specification
Z86C30 Z8 CCP Product Specification
Z86E30 Z8 0TP CCP Product Specification
Z86C40 28 CCP Product Specification
Z86E40 28 OTP CCP Product Specification
Z86C27/97 Z8 DTC ${ }^{\text {¹ }}$ Product Specification
Z86127 Low-Cost Digital Television Controller Adv. Info. Spec.
Z86C50 28 CCP ICE Advance Information Specification
Z86C61 Z8 MCU Advance Information Specification
Z86C62 28 MCU Advance Information Specification
Z86C89/C90 CMOS Z8 CCP Product Specification
Z86C91 28 ROMless MCU Product Specification
Z86C93 78 ROMless MCU Preliminary Product Specification
Z86C94 Z8 ROMless MCU Product Specification
Z86C96 Z8 ROMless MCU Advance Information Specification
Z88C00 CMOS Super8 MCU Advance Information Specification

Z8 NMOS Microcontrollers

Z8600 Z8 MCU Product Specification
Z8601/03/11/13 Z8 MCU Product Specification
Z8602 8-Bit Keyboard Controller Preliminary Product Spec.
Z8604 8-Bit MCU Product Specification
Z8612 Z8 ICE Product Specification
Z8671 28 MCU With BASIC/Debug Intrepreter Product Spec.
Z8681/82 28 MCU ROMIess Product Specification
Z8691 28 MCU ROMless Product Specification
Z8800/01/20/22 Super8 ROMless/ROM Product Specification

Peripheral Products

Z86128 Closed-Captioned Controller Adv. Info. Specification
Z765A Floppy Disk Controller Product Specification
Z5380 SCSI Product Specification
Z53C80 SCSI Advance Information Specification

Z8 Application Notes and Technical Articles

Zilog Family On-Chip Oscillator Design
Z86E21 Z8 Low Cost Themal Printer
Z8 Applications for I/O Port Expansions
Z86C09/19 Low Cost Z8 MCU Emulator
Z8602 Controls A 101/102 PC/Keyboard
The $Z 8$ MCU Dual Analog Comparator
The Z8 MCU In Telephone Answering Systems
Z8 Subroutine Library
A Comparison of MCU Units
Z86xx Interrupt Request Registers
Z8 Family Framing
A Programmer's Guide to the Z8 MCU
Memory Space and Register Organization

Super8 Application Notes and Technical Articles

Getting Started with the Zilog Super8
Polled Async Serial Operations with the Super8
Using the Super8 Interrupt Driven Communications
Using the Super8 Serial Port with DMA
Generating Sine Waves with Super8
Generating DTMF Tones with Super8
A Simple Serial Parallel Converter Using the Super8

Additional Information

Z8 Support Products
Zilog Quality and Reliability Report
Literatüre List
Package Information
Ordering Information Literature Guide

Z8®/SUPER8 ${ }^{\text {m }}$ MICROCONTROLLER FAMILY (Continued)

Z8 Product Specifications, Technical Manuals and Users Guides	Part No	Unit Cost
asm S8 Super8/Z8 Cross Assembler Users Guide	DC-8267-05	3.00
Z86C06 CMOS Z8 CCP Preliminary Product Specification	DC-2563-00	N/C
Z86C08 CMOS 78 8-Bit Microcontroller Product Specification	DC-2527-02	N/C
Z86E08 CM0S 78 8-Bit Microcontroller Product Specification	DC-2542-02	N/C
Z86C09/C19 CM0S 78 8-Bit Microcontroller Product Specification	DC-2506-02	N/C
Z86C11 CM0S 78 Microcontroller Product Specification	DC-2572-01	N/C
Z86C12 Z8 ICE Product Specification	DC-2553-01	N/C
Z86C21 CMOS 28 Microcontroller	DC-2568-01	N/C
Z86E21 CM0S 0TP Microcontroller Product Specification	DC-2514-01	N/C
Z86C27/97 78 DTC.4 Product Specification	DC-2561-01	N/C
Z86127 Low-Cost Digital Television Controller Advance Information Specification	DC-2574-0A	N/C
Z86C30 CM0S Z8 8-Bit Microcontroller Product Specification	DC-2509-03	N/C
Z86E30 CM0S 78 OTP CCP Product Specification	DC-2573-01	N/C
Z86C40 CMOS CCP Product Specification	DC-2550-01	N/C
Z86E40 CM0S 0TP CCP Product Specification	DC-2571-01	N/C
Z86C50 CM0S 78 CCP ICE Advance Information Specification	DC-2559-0A	N/C
Z86C89/C90 R0Mless CM0S Z8 8-Bit Microcontroller Product Specification	DC-2506-01	N/C
Z86C91 78 CMOS ROMless Microcontroller Product Specification	DC-2566-01	N/C
Z86C93 CMOS 78 R0Mless Microcontroller Preliminary Product Specification	DC-2508-01	N/C
Z88C00 CMOS Super8 ROMless Microcontroller Advance Information Specification	DC-2551-0A	N/C
Z8602 NMOS Z8 8-Bit Microcomputer Keyboard Controller Preliminary Product Spec.	DC-2525-01	N/C
Z8604 NMOS Z8 8-Bit Microcontroller Preliminary Product Specification	DC-2524-02	N/C
Z86128 Closed-Captioned Controller Advance Information Specification	DC-2570-0A	N/C
Z8671 Single Chip Basic Interpreter Basic Debug Software Reference Manual	DC-3149-03	3.00

Z8 Application Notes	Part No	Unit Cost
The Z8 MCU In Telephone Answering Systems	DC-2514-01	N / C
Z8602 Controls A 101/102 PC/Keyboard	$\mathrm{DC}-2521-01$	$\mathrm{~N} / \mathrm{C}$
The Z8 MCU Dual Analog Comparator	$\mathrm{DC}-2516-01$	$\mathrm{~N} / \mathrm{C}$
Z86C09/19 Low Cost Z8 MCU Emulator	$\mathrm{DC}-2537-01$	$\mathrm{~N} / \mathrm{C}$
Z8 Applications for I/O Port Expansions	$\mathrm{DC}-2539-01$	$\mathrm{~N} / \mathrm{C}$
Z86E21 Z8 Low Cost Thermal Printer	$\mathrm{DC}-2541-01$	$\mathrm{~N} / \mathrm{C}$
Zilog Family On-Chip Oscillator Design	$\mathrm{DC}-2496-01$	$\mathrm{~N} / \mathrm{C}$

(Additional Application Notes are contained in the above Design Handbook)

| Data Book | | Part No |
| :--- | :--- | :--- | Unit Cost

Z80/Z180/Z280 Product Specifications, Technical Manuals and Users Guides	Part No	Unit Cost
Z80 CPU Central Processing Unit Technical Manual	DC-0029-03	3.00
Z80 Family Programmer's Reference Guide	DC-0012-04	3.00
Z80 DMA Direct Memory Access Technical Manual	DC-2013-A0	3.00
Z80 PIO Parallel Input/Output Technical Manual	DC-0008-03	3.00
Z80 CTC Counter/Timer Circuit Technical Manual	DC-0036-02	3.00
Z80 SIO Serial I/O Technical Manual	DC-3033-01	3.00
Z80181 2180 MPU Microprocessor Unit Technical Manual	DC-8276-03	3.00
Z280 MPU Microprocessor Unit Technical Manual	DC-8224-03	3.00
Z80181 2181 SAC ${ }^{\text {T }}$ Smart Access Controller Preliminary Product Specification	DC-2519-02	N/C
Z84013/15, Z84C13/C15 CM0S IPC ${ }^{\text {ru }}$ Intelligent Peripheral Controller Preliminary Product Specification	DC-2507-02	N/C
Z84011/C11 PIO Parallel I/O Controller Product Specification	DC-2526-04	N/C
Z84C00 20 MHz Z80 CPU Central Processing Unit Preliminary Product Specification	DC-2523-02	N/C
Z84C50 280 RAM80 Z80 CPU/2K SRAM Preliminary Product Specification	DC-2498-01	N/C
Z80/Z180/Z280 Application Notes	Part No	Unit Cost
Z180/SCC ${ }^{\text {ru }}$ Serial Communications Controller Interface at 10 MHz	DC-2521-02	N/C
Z80 Using the 84C11/C13/C15 in place of the 84011/013/015	DC-2499-02	N/C

(Additional Application Notes are contained in the above Databook)

Z8000 ${ }^{*}$ MICROPROCESSOR FAMILY

Data Book	Part No	Unit Cost
Datacom Family Data Book (includes the following documents)	DC-2503-02	5.00
Z8000/80,000 NMOS/CMOS Microprocessors	Application Notes and Technical Articles	
Z16C30 CM0S USC ${ }^{\text {T }}$ Product Specification	Design a Serial Board to Handle Multiple Protocols Using the Z16C30 USC Universal Serial Controller	
Z16C31 IUSC ${ }^{\text {u }}$ Product Specification		
Z16C33 CMOS MUSC ${ }^{\text {a }}$ Product Specification	Using the Z16C30 USC Universal Serial Controller with MIL-STD-1553B	
Z16C35 CM0S ISCC ${ }^{\text {a }}$ Product Specification	Datacommunications IUSC/MUSC Time Slot Assigner ISCC Interiace to the 68000° and 8086^{*}	
Z16C50 DDPLL ${ }^{\text {³ }}$ Product Specification		
Z5380 CMOS SCSI Product Specification	The Z180 SCC Interfaced with the SCC at 10 MHz	
Z85230 CMOS ESCC ${ }^{\text {4 }}$ Product Specification	Using SCC with $\mathrm{Z} 8000{ }^{\text {® }}$ in SDLC Protocol	
Z80C30/Z85C30 CMOS Z-BUS ${ }^{\text {® }}$ SCC ${ }^{\text {u }}$ Product Specification	SCC In Binary Synchronous Communications	
Z8030/Z8530 Z-BUS SCC Product Specification	On-Chip Oscillator Design	
Z80181 CMOS SAC Product Specification	Interfacing the Z8500 Peripherals to the 68000	
Z84013/015 Z84C13/C15 IPC ${ }^{\text {¹ P Product Specification }}$	Interfacing Z80 CPUs to the Z8500 Peripheral Family	
Z8440/Z84C40 SIO Product Specification	Zilog Quality and Reliability Report	
Z85C80 SCSCI ${ }^{\text {T }}$ Product Specification	Literature List	
	Package Information	
	Ordering Information	

Z8000 Product Specifications, Technical Manuals and Users Guides	Part No	Unit Cost
Z8000 CPU Central Processing Unit Technical Manual	DC-2010-06	3.00
Z8010 MMU Memory Management Unit Technical Manual	DC-2015-A0	3.00
Z8030/Z8530 SCC Serial Communications Controller Technical Manual	DC-2057-06	3.00
Z8036 Z-CI0/Z8536 CIO Counter/Timer and Parallel Input/Output Technical Manual	DC-2091-02	3.00
Z8038 Z8000 Z-FI0 FIFO Input/Output Interface Technical Manual	DC-2051-01	3.00
Z8000 CPU Central Processing Unit Programmer's Pocket Guide	DC-0122-03	3.00
Z5380 SCSI Small Computer System Interface Preliminary Product Specification	DC-2477-01	N/C
Z80C30/Z85C30 CM0S SCC Serial Communications Controller Product Specification	DC-2442-05	N/C
Z85C80 SCSCI ${ }^{\text {ru }}$ Serial Communications and Small Computer Interface Preliminary Product Specification	DC-2534-02	N/C
Z16C01/2/3 CPU Central Processing Unit Preliminary Product Specification	DC-2504-02	N/C
Z16C30 CMOS USC ${ }^{\text {™ }}$ Universal Serial Controller Preliminary Product Specification	DC-2492-03	N/C
Z16C30/Z16C33 CM0S USC/MUSCTUniversal Serial Controller Technical Manual	DC-8285-01	3.00
Z16C30/Z16C33 CMOS USC/MUSC Universal Serial Controller Addendum	DC-8285-01A	N/C
Z16C31 IUSC Integrated Universal Serial Controller Advanced Information Specification	DC-2544-01	N/C
Z16C33 CMOS MUSC Mono-Universal Serial Controller Preliminary Product Specification	DC-2517-03	N/C
Z16C35 CMOS ISCC ${ }^{\text {¹ }}$ Integrated Serial Communications Controller Product Specification	DC-2515-03	N/C
Z16C35 ISCC Integrated Serial Communications Controller Technical Manual	DC-8286-01	3.00
Z16C35 ISCC Integrated Serial Communications Controller Addendum	DC-8286-01A	N/C
Z16C50 DDPLL Dual Digital Phase-Locked Loop Preliminary Product Specification	DC-2540-01	N/C
Z85130 ESCC Enhanced Serial Communications Controller Preliminary Product Specification	DC-2543-01	N/C
Z85230/Z80230 ESCC Enhanced Serial Communications Controller Technical Manual	DC-8288-01	3.00
Z8000 Application Notes	Part No	Unit Cost
Z16C30 Using the USC in Military Applications	DC-2536-01	N/C
Z16C35 ISCC Interface to Intel and Motorola Microprocessors	DC-2522-01	N/C
Datacom IUSC/MUSC Time Slot Assigner	DC-2497-02	N/C
Datacom Evaluation Board Using The Zilog Family With The 80186 CPU	DC-2560-01	N/C
ESCC Enhancements Over The SCC	DC-2555-01	N/C
Z16C30 USC - Design a Serial Board for Multiple Protocols	DC-2554-01	N/C

MILITARY COMPONENTS FAMILY

Military Specifications	Part No	Unit Cost
Z8681 ROMless Microcomputer Military Product Specification	DC-2392-02	N/C
Z8001/8002 Military Z8000 CPU Central Processing Unit Military Product Specification	DC-2342-03	N/C
Z8581 Military CGC Clock Generator and Controller Military Product Specification	DC-2346-01	N/C
Z8030 Military Z8000 Z-SCC Serial Communications Controller Military Product Specification	DC-2388-02	N/C
Z8530 Military SCC Serial Communications Controller Mililary Product Specification	DC-2397-02	N/C
Z8036 Military Z8000 Z-CIO Counter/Timer Controller and Parallel I/0 Military Electrical Specification	DC-2389-01	N/C
Z8038/8538 Military FIO FIFO Input/Output Interface Unit Military Product Specification	DC-2463-02	N/C
Z8536 Military CIO Counter/Timer Controller and Parallel I/0 Military Electrical Specification	DC-2396-01	N/C
Z8400 Military Z 80 CPU Central Processing Unit Military Electrical Specification	DC-2351-02	N/C
Z8420 Military PIO Paralle Input/Output Controller Military Product Specification	DC-2384-02	N/C
Z8430 Military CTC Counter/Timer Circuit Military Electrical Specification	DC-2385-01	N/C
Z8440/1/2/4 280 SIO Serial Input/Output Controller Military Product Speciitication	DC-2386-02	N/C
Z80C30/85C30 Military CMOS SCC Serial Communications Controller Military Product Specification	DC-2478-02	N/C
Z84C00 CM0S 280 CPU Central Processing Unit Military Product Specification	DC-2441-02	N/C
Z84C20 CM0S 280 PI0 Parallel Input/Output Military Product Specification	DC-2384-02	N/C
Z84C30 CM0S Z80 CTC Counter/Timer Circuit Military Product Specification	DC-2481-01	N/C
Z84C40/1/2/4 CMOS Z80 S10 Serial Input/Output Military Product Specification	DC-2482-01	N/C
Z16C30 CMOS USC Universal Serial Controller Military Preliminary Product Speciication	DC-2531-01	N/C
Z16C01/2 CPU Central Processing Unit Military Product Specification	DC-2532-01	N/C
Z80180 Z180 MPU Microprocessor Unit Mililary Product Specification	DC-2538-01	N/C
Z84C90 CMOS KI0 Seria/Parallel/Counter Timer	DC-2502-00	N/C

GENERAL LITERATURE

Catalogs, Handbooks and Users Guides	Part No	Unit Cost
Superintegration Short Form Catalog 1991	DC-5472-07	N / C
Quality and Reliability Report	$\mathrm{DC}-2475-07$	$\mathrm{~N} / \mathrm{C}$
Superintegration Products Guide	$\mathrm{DC}-5499-03$	$\mathrm{~N} / \mathrm{C}$
The Handling and Storage of Surface Mount Device's User Guide	$\mathrm{DC}-5500-02$	$\mathrm{~N} / \mathrm{C}$
Support Products Summary	$\mathrm{DC}-2545-03$	$\mathrm{~N} / \mathrm{C}$
Universal Object File Utilities User's Guide	$\mathrm{DC}-8236-04$	3.00
Zilog 1990 Annual Report	DC-1990-AR	N / C

18-Lead Plastic Dual-In-Line Package (DIP)

28-Lead Plastic Dual-In-Line Package (DIP)

PACKAGE INFORMATION (Continued)

40-Lead Plastic Dual-In-Line Package (DIP)

PACKAGE INFORMATION (Continued)

48-Lead Plastic Dual-In-Line Package (DIP)

64-Lead Plastic Dual-In-Line Package (DIP) with 0.070" Lead Centers

PACKAGE INFORMATION (Continued)

40-Pin Cerdip, Window

28-Pin Cerdip, Window

PACKAGE INFORMATION (Continued)

48-Lead Ceramic Sidebrazed Dual-In-Line Package

PACKAGE INFORMATION (Continued)

44-Lead Plastic Quad Flatpack (QFP).

PACKAGE INFORMATION (Continued)

80-Lead Plastic Quad Flatpack (QFP)

PACKAGE INFORMATION (Continued)

44-Lead Plastic Leaded Chip Carrier (PLCC)

PACKAGE INFORMATION (Continued)

IUP VIEW

DIMENSIDN FRIM CENTER TI
CENTER OF RADII

BOTTIM VIEW

nates: 1. ALL DIMENSIONS IN TNCH. 2. ALL LEADS ARE COPLANAR WITHIN . 004 INCH

68-Lead Plastic Leaded Chip Carrier (PLCC)

PACKAGE INFORMATION (Continued)

PACKAGE INFORMATION (Continued)

18-Lead Small Outline Integrated Circuit (SOIC)

PACKAGE INFORMATION (Continued)

84-Lead Ceramic Pin Grid Array (10x10) (PGA) Device Z86C12

124-Lead Ceramic Pin Grid Array (PGA)

PACKAGE INFORMATION (Continued)

40-Lead Protopak

PACKAGE INFORMATION (Continued)

TOLERANCE : . 005

40/24-Lead Low Profile Protopak

PACKAGE INFORMATION (Continued)

48/28-Lead Low Profile Protopak

ORDERING INFORMATION

Support Products

Tool Box

Z0860000ZCO
Z0860000ZDP
Z0860200ZCO
Z0860200ZDP
Z86C0800ZCO
Z86C0800ZDP
Z86C0800ZEM
Z86E0800ZPR
Z86C1200ZDP.
Z86C1900ZCO
Z86C1900ZEM

Ice Box
Z86C1200ZEM
Z86C5000ZEM Z86C9300ZEM Z86C0000ZUSP064 Z86C0000ZUSP128 Z86C0000ZUSP256 Z86C1200ZPD
Z86C5000ZPD
Z86C9300ZPD

Z8 MCU, ICE Chip
Z0861212VSC Z0861212CSE Z86C1216GSE Z86C5020GSE Z0888420GSE

Z8 MCU, Protopak
Z0860312RSE
Z0861312RSE
Z0861312TSC
Z0882220TSF

Z8 MCU, NMOS, ROM
Z08600
28-pin DIP
Z0860008PSCRXXX
Z0860008PECRXXX
Z08601
40-pin DIP
Z0860108PSCRXXX
Z0860108PECRXXX
Z08601
44-pin PLCC
Z0860108VSCRXXX
Z0860108VECRXXX
$Z 08602$
40-pin DIP
Z0860204PSCLXXX
Z08604
18-pin DIP
Z0860408PSCRXXX

Z08610
40-pin DIP
Z0861008PSCRXXX Z0861008PECRXXX Z0861012PSCRXXX

Z08611
40-pin DIP
Z0861108PSCRXXX Z0861108PECRXXX Z0861112PSCRXXX Z0861112PECRXXX

Z08611
44-pin PLCC
Z0861108VSCRXXX Z0861108VECRXXX Z0861112VSCRXXX Z0861112VECRXXX

ORDERING INFORMATION (Continued)

Z8 MCU, SUPER8	
Z08800	Z08801
48-pin DIP	44-pin PLCC
Z0880020PSC	Z0880120VSC
Z0882020PSCRXXX	Z0882120VSCRXXX
Z08800	Z88C00
68-pin PLCC	48-pin DIP
Z0880020VSC	Z88C0020PSC
Z0882020VSCRXXX	Z88C0020PEC

Z8 MCU, SUPER8 FORTH

48-pin DIP Z0887520PSC

68-pin PLCC
Z0887520VSC

Z8 MCU, CMOS, ROM

Z86C00
28-pin DIP
Z86C0008PSCRXXX Z86C0008PECRXXX Z86C0012PSCRXXX Z86C0012PECRXXX

Z86C06

18-pin DIP
Z86C0608PSCRXXX Z86C0608PECRXXX Z86C0612PSCRXXX Z86C0612PECRXXX

Z86C06
18-pin SOIC
Z86C0612SSCRXXX
Z86C0612SECRXXX
Z86C08
18-pin DIP
Z86C0808PSCRXXX
Z86C0808PECRXXX Z86C0812PSCRXXX Z86C0812PECRXXX

Z86C08
18-pin SOIC
Z86C0812SSCRXXX
Z86C0812SECRXXX
Z86C09
18-pin DIP
Z86C0908PSCRXXX
Z86C0908PECRXXX
Z86C0912PSCRXXX
Z86C0912PECRXXX

Z86C09

18-pin SOIC
Z86C0912SSCRXXX
Z86C0912SECRXXX

Z86C10
28-pin DIP
Z86C1008PSCRXXX Z86C1008PECRXXX Z86C1012PSCRXXX Z86C1012PECRXXX

Z86C11
40-pin DIP
Z86C1112PSCRXXX Z86C1112PECRXXX Z86C1116PSCRXXX

Z86C11

44-pin PLCC
Z86C1112VSCRXXX Z86C1112VECRXXX

Z86C11
44-pin QFP
Z86C1112FSCRXXX
Z86C1112FECRXXX
Z86C1116FSCRXXX

Z86C19
18-pin DIP
Z86C1908PSCRXXX Z86C1908PECRXXX Z86C1912PSCRXXX Z86C1912PECRXXX

Z86C19
18-pin SOIC Z86C1912SSCRXXX Z86C1912SECRXXX

Z86C20
40-pin DIP Z86C2012PSCRXXX

Z86C21
40-pin DIP
Z86C2112PSCRXXX Z86C2112PECRXXX Z86C2116PSCRXXX

Z86C21

44-pin PLCC
Z86C2112VSCRXXX
Z86C2112VECRXXX

Z86C21
44-pin QFP
Z86C2112FSCRXXX
Z86C2112FECRXXX Z86C2116FSCRXXX

Z86C30
28-pin DIP
Z86C3008PSCRXXX
Z86C3008PECRXXX
Z86C3012PSCRXXX
Z86C3012PECRXXX

Z86C40
40-pin DIP
Z86C4008PSCRXXX Z86C4008PECRXXX Z86C4012PSCRXXX Z86C4012PECRXXX

Z86C40
44-pin PLCC
Z86C4008VSCRXXX Z86C4008VECRXXX Z86C4012VSCRXXX Z86C4012VECRXXX

Z86C40
44-pin QFP
Z86C4008FSCRXXX Z86C4012FSCRXXX Z86C4012FECRXXX

Z86C61
40-pin DIP
Z86C6116PSCRXXX Z86C6116PECRXXX

Z86C61
44-pin PLCC
Z86C6116VSCRXXX Z86C6116VECRXXX

Z86C62
64-pin DIP
Z86C6216PSCRXXX Z86C6216PECRXXX

Z86C62
68-pin PLCC
Z86C6216VSCRXXX Z86C6216VECRXXX

Z05380
40-pin DIP
Z0538010PSC

44-pin PLCC
Z0538010VSC

Z53C80
48-pin DIP
Z53C8003PSC

44-pin PLCC
Z53C8003VSC

Z8 MCU, CMOS, ROMIess

Z86C89
40-pin DIP
Z86C8908PSC
Z86C8908PEC

Z86C89
44-pin PLCC
Z86C8908VSC
Z86C8908VEC
Z86C89
44-pin QFP
Z86C8908FSC
Z86C8908FEC

Z86C90
40-pin DIP
Z86C9008PSC
Z86C9008PEC
Z86C9012PSC
Z86C9012PEC

Z86C90
44-pin PLCC
Z86C9008VSC
Z86C9008VEC
Z86C9012VSC
Z86C9012VEC
Z86C90
44-pin QFP
Z86C9008FSC
Z86C9008FEC
Z86C9012FSC
Z86C9012FEC
Z86C91
40-pin DIP
Z86C9112PSC
Z86C9112PEC
Z86C9116PSC

Z86C91
44-pin PLCC
Z86C9112VSC
Z86C9112VEC
Z86C9116VSC

Z86C91
44-pin QFP
Z86C9112FSC
Z86C9112FEC
Z86C9116FSC
Z86C93
40-pin DIP
Z86C9320PSC
Z86C93
44-pin PLCC
Z86C9320VSC

Z86C93
44-pin QFP
Z86C9320FSC
Z86C94
80-pin QFP
Z86C9425FSC
Z86C94
84-pin PLCC Z86C9425VSC

Z86C96
64-pin DIP
Z86C9620PSC
Z86C96
68-pin PLCC
Z86C9620VSC

Z8 MCU, CMOS, DTC
Z86C27, ROM
64-pin DIP
Z86C2704PSCRXXX
Z86C97, ROMLESS
64-pin DIP
Z86C9704PSCXXXX
Z86127
64-pin DIP
Z8612704PSCRXXX

Z86128
18-pin DIP
Z8612812PSC

Z8 MCU, OTP
Z86E08
18-pin DIP
Z86E0812PSC

Z86E30
28-pin DIP
Z86E3012PSC Z86E3012KSE

Z86E21
40-pin DIP
Z86E2112PSC
Z86E2116PSC
Z86E2116KSE

Z86E21
44-pin PLCC
Z86E2112VSC
Z86E2116VSC

Z86E21
44-pin QFP
Z86E2112FSC
Z86E2116FSC

Z86E22
40-pin DIP
Z86E2204PSC

Z86E40
40-pin DIP
Z86E4012PSC
Z86E4012KSE

Z86E40
44-pin PLCC
Z86E4012VSC
Z86E40
44-pin QFP
Z86E4012FSC

PACKAGE

PREFERRED

D = Cerdip
P = Plastic DIP
$\mathrm{V}=$ Plastic Leaded Chip Carrier
LONGER LEAD TIME
C = Ceramic Sidebrazed
$\mathrm{E}=$ Ceramic Window Lid
F = Plastic Quad Flatpack
G = Ceramic PGA (Pin Grid Array)
$K=$ Cerdip Window Lid
L = Ceramic LCC (Leadless Chip Carrier)
R = Ceramic Protopak
$\mathrm{S}=\mathrm{SOIC}$ (Small Outline Integrated Circuit)
T = Low Profile Protopack

ENVIRONMENTAL

PREFERRED

C = Plastic Standard
$E=$ Hermetic Standard
F = Protopack Standard

TEMPERATURE

PREFERRED

$\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LONGER LEAD TIME
$\mathrm{E}=-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

EXAMPLE

Z86C1216GSE is a CMOS $86 \mathrm{C} 12,16 \mathrm{MHz}, \mathrm{PGA}$, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Hermetic Standard Flow.

LONGER LEAD TIME

A = Hermetic Stressed
$B=883$ Class B Military
D = Plastic Stressed
$\mathrm{J}=\mathrm{JAN} 38510$ Military

ZILOG DOMESTIC SALES OFFICES AND TECHNICAL CENTERS

CALIFORNIA

Agoura

818-707-2160
Campbell 408-370-8120
Tustin 714-838-7800
COLORADO
Boulder 303-494-2905
FLORIDA
Largo 813-585-2533
GEORGIA
Norcross 404-448-9370
ILLINOIS
Schaumburg 708-517-8080
NEW HAMPSHIRE
Nashua 603-888-8590
NEW JERSEY
Clark 201-382-5700
NORTH CAROLINA
919-790-7706
OHIO
Independence 216-447-1480
PENNSYLVANIA
Ambler 215-653-0230
TEXAS
Dallas 214-987-9987
WASHINGTON
Seattle 206-523-3591
© 1991 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing inZilog, Inc. Terms and Conditions of Sale only. Zilog. Inc. makes no warranty, express, statutory, implied or by

INTERNATIONAL SALES OFFICES

CANADA

Toronto416-673-0634

GERMANY

Munich 49-89-672-045
Sömmerda 37-626-23906
JAPAN
Tokyo 81-3-3587-0528
HONG KONG
Kowloon $.852-7238979$
KOREA
Seoul $82-2-552-5401$
SINGAPORE
Singapore $.65-2357155$
TAIWAN
Taipei886-2-741-3125
UNITED KINGDOM
Maidenhead 44-628-392-00
description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog, Inc. 210 E. Hacienda Ave., Campbell, CA 95008-6600, TeI: (408) 370-8000, FAX: 408-370-8056/8027

[^0]: * Low EMI version
 ** RC Oscillator Option
 \dagger Estimate Release Date
 Temperature Range: $\mathrm{S}=$ Standard $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
 $E=$ Extended $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
 $\mathrm{M}=$ Military $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 1 Q3/91

[^1]: [1] Timing Reference uses $0.9 \mathrm{~V}_{\text {cc }}$ for a logic 1 and $0.1 \mathrm{~V}_{\mathrm{cc}}$ for a logic 0 .
 [2] Interrupt request via Port 3 (P31-P33)

[^2]: (F1H: Read/Write)

[^3]: \mathbf{V}_{cc} SPECIFICATION
 $\begin{array}{ll}\text { Low } \mathrm{V}_{\mathrm{cc}} & 4.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \text { High } \mathrm{V}_{\mathrm{cc}} & 5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}\end{array}$

[^4]: - Power-On Reset
 - Watch-Dog Timer
 - STOP Mode Recovery Source
 - Brown-out Recovery
 - External Reset

[^5]: *2-byte instruction, fetch cycle appears as a 3-byte instruction

[^6]: *Add 2 TpC when using extended memory timing.

[^7]: * Add 2 TpC when using extended memory timing

[^8]: * 8.0V V $\mathbb{I N}$ max.

[^9]: *This feature differs in the Z8681 and Z8682.

[^10]: *This feature differs in the Z8681 and Z8682.

[^11]: 1. When using extended memory timing add 2 TpC .

 * All units in nanoseconds (ns).

 2. Timing numbers given are for minimum TpC .
 \dagger Test Load 1
 3. See clock cycle time dependent characteristics table.
 " All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
 4. 16 MHz timing is preliminary and subject to change.
[^12]: NOTES:

 1. WAIT states add 167 ns to these times.
 2. Auto-wait states add 167 ns to this time.
 \ddagger All times are in ns and are for 12 MHz input frequency.

 * Timings are preliminary and subject to change.

[^13]: NOTES: 1. Symbols used in this table are described at the end of this section.
 2. D / \bar{S} should equal binary 1 for all operations.
 3. $X=$ Don't care, usually made to equal binary 0 .

[^14]: NOTES: 1. Symbols used in this table are described at the end of this section.
 2. D / \bar{S} should equal binary 1 for all operations.
 3. $X=$ Don't care, usually made to equal binary 0 .

[^15]: GAIN = Vout/V1 - (V2) = Voltage Out/Differential Input Volt

