
PROGRAMMER'S 
LANGUAGE MANUAL 

9002 
MICROCOMPUTER TERMINAL SYSTEM 

\ 

Zentec Corporation 



Zentec Part No. 88-403-01 
REVB 

PROGRAMMER'S LANGUAGE MANUAL 

9002 
MICROCOMPUTER TERMINAL SYSTEM 

Zentec Corporation 
2390 Walsh Avenue 
Santa Clara, California 95050 

© Zentec Corporation 1975 Issued: April 1975 





1.0 Introduction 

2.0 System and Software Organization 

2.1 Memory Organization 
2.2 The Basic ROM 
2.3 List Structure 
2.4 Device Operation 

3.0 Hardware and Software Register 

3.1 Hardware Registers 
3.2 Software Registers 

4.0 System List Structures 

5.0 System Basic Sub-Routines 

5.1 Cursor Move Routines 
5.2 Viewable Screen Functions 
5.3 Microcomputer Routines 
5.4 Two-Page Option Routines 

6.0 Device Oriented Routine 

6.1 ZENTEC 9002 Keyboard 

7.0 System Support Routines 

7.1 ZENTEC Assembler 
7.2 ZIM 

8.0 Appendix 

Table of Contents 
Page 

2 

4 

5 

6 

8 

11 
15 
22 

23 

24 

35 

List of Illustrations 

Figure 2-1 

Figure 4-1 

Table 7-1 

FIGURES 

System Memory Organization 

Branch & List Geographical 
Descriptions 

TABLES 

Operation Codes 

Page 

3 

7 

25-32 





1.0 INTRODUCTION 

The intent of this document is to give the Assembly Language programmer the information necessary 
to program the Zentec 9002 Display System. 

The Zentec 9002 Display System uses the Intel 8008 microcomputer. The information presented in 
this document may not be meaningful unless the reader is familiar with the Intel 8008. The instruc­
tion set of the Intel 8008, as described in the MCS-8 Users Manual is OCTAL oriented. The Zentec 
9002 is oriented to hexadecimal representation. Appendix 7-A contains a cross-reference from the 
9002 Assembler Language to the I NTE L instruction set. Machine codes are included, in both binary 
(OCTAL form) and in hexadecimal form. 

The purpose for hexadecimal code is to relate programmers to other hexadecimal systems as all IBM 
systems and Interdata machines. No attempt has been made to relate to OCTAL representation ex­
cept that which appears in Appendix 7-A. 

The Intel machine uses RAM which is data destructive when power is removed. In order to protect 
the code that is necessary for system operation, Read Only Memory (ROM) and Programmable Read 
Only Memory (PROM) are used. In Section 2.0 the memory organization is described. It is described 
in terms of decimal addresses but in fact we use hexadecimal addresses internally. The system is essen­
tially arranged in 4 sections of 4,096 decimal bytes each. The first section is devoted to ROM code. 
The sec,and section is devoted to the refresh RAM that is displayed on the screen. The last two sec­
tions are optional RAM space for use by customers for their own application code or for use with the 
disk option or as telecommunication buffers. Figure 2-1 graphically describes the memory organiza­
tion. 

Hardware and software registers are described in Section 3.0. They are described in some detail and 
should be carefully studied by the application programmer so that he is aware of the precise meanings 
of the registers and their locations. 

Section 4.0 describes the system list structures. List structures are a convenient mechanism to reduce 
the amount of code and the amount of space necessary to not only perform functions but to easily 
change functions. This technique is used throughout Zentec 9002 system code. Appendix 4-0-A 
graphically describes a list path. 

Section 5 describes all the Basic Systems Sub-routines. These routines have been built to support the 
system package already developed and have been designed to be used by the application programmer 
in developing his own modules. Each routine acts as a closed sub-routine and is described separately. 
The term "registers affected" describes all the registers that are modified by the specific function. Any 
registers not modified can be used to store data during the function operation without expectation of 
that data being destroyed. The term "example" indicates the Zentec assembler mnemonic to perform 
that function. The term "results" describes the values that can be expected in the registers at the com­
pletion of that function operation. Where relevant, software registers that have been modified, with 
identifiable results, are depicted. 

Section 6.0 describes Device Oriented Routines. It is our intent to describe code sequences, in Zentec 
assembler format, for all supported devices. This will include key-board handling, disk operation, tele­
communications and printer use. The routines described will not necessarily be the ones used by the 
system but will be tested and can be used directly by the application programmer. 

Section 7.0 System Support Routines will describe in detail each of the Zentec packages designed to 
support the application programmer. 



2.0 SYSTEM AND SOFTWARE ORGANIZATION 

2.1 Memory Organization 

Three forms of memory exist in the 9002: ROM, PROM and RAM. The first 4096 bytes are commit­
ted to ROM or PROM. The basic ROM, a set of sub-routines designed for both system and user use is 
located from decimal address 2048 to 4095. The Tele-Communications package (GT1) is also a ROM, 
and is located at decimal address 0 to 2047. Locations 0 through 511 decimal hold the 9002 execu­
tive, the branch list, and five offset lists. 

The space from 4096 thru 16383 is system structured as RAM, although parts of that space can be 
used as additional ROM or PROM area for customer optioned routines. Hardware and programming 
registers and system RAM work space is located at 4096 to 4143. The display control line, always the 
bottom line on the screen, is located in the next eighty bytes from 4144 to 4223. The first page of the 
display, 1920 bytes, or 24 lines of 80 characters each, is located at 4224 to 6143. The optional second 
page of 1920 bytes is located at 6144 to 8063. The next 48 bytes, from 8064 to 8111 are reserved for 
additional hardware and software registers to support optional devices. The space from 8112 thru 
8191 is available for user use and is a part of the second page option. The space from 8192 through 
16383 is available as additional user RAM space, however the Super Text option will reside from 
14,336 through 16,383. 

2.2 The Basic ROM 

The Basic ROM is a set of forty odd sub-routines designed to reduce programming effort in handling 
data on the screen and in performing terminal oriented functions. The ROM takes up precisely 2048 
bytes. The routines were intended for use by the system, but are in fact easily used by application 
programmers. Section 5 .. 0 describes these routines and how they are entered. 

2.3 List Structure 

The 9002 system list structures were designed to reduce programming effort by providing an easily 
changed, easily added to mechanism to perform desired system functions. A new routine can be inser­
ted at any available location. To insert the routine in the list structure requires two bytes to specify 
the entry point of the new routine, as well as a single byte offset for each offset list the function is to 
be related. The current list structures are keyboard RS-232 or merely byte oriented. The advantage to 
the list approach is the ease of maintenance and ease of entry of new routines within the system. See 
Section 4.0 for more detailed list information. 

2.4 Device Operation 

The 9002 system does not use the Intel 8008 family input/output instructions. Devices are instead tied 
to RAM registers which are interrogated by the system program, and where appropriate by the user 
program, as necessary. As an example, all keyboard entered characters appear at a single byte location 
in the memory (X'1002'). It is the programmer's responsibility to see that his programs are written to 
access the keyboard input byte often enough to guarantee no loss of keyboard information. 

As mentioned previously, the hardware takes a passive role in system operation in that the program 
has almost complete control of system operation, exclusive of RAM and screen refresh. This philosophy 
gives the programmer significant freedom in performing operations, but added responsibility in accom­
plishing tasks. 

2 



0-2047 
Hex (0000-01 FF) 

2048-4095 
Hex (0800-0FFF) 

4096-6143 
Hex (1000-17 F F) 

6144-8191 
Hex (1800-1 FFF) 

8192-10239 
Hex (2000-27Ff) 

10240-12287 
Hex (2800-2F FF) 

12288-14335 
Hex (3000-37FF) 

14336-1 6383 
Hex (3800-3FFFl 

Figure 2-1 

System Executive and Lists 
GT1 - Tele-Communications 

Basic ROM 

Hardware and Software Registers 
Display Page One 

Display Page Two 
Optional Device Registers 

Additional RAM 

Additional RAM 

Additional RAM 

Additional RAM 
or Optional ROM 

SYSTEM MEMORY ORGANIZATION 

3 



3.0 HARDWARE AND SOFTWARE REGISTERS 

All system registers are located in RAM. The reason: To allow programs, both system and application, 
to be able to control system supported devices such as the display, the keyboard, the RS-232 inter­
face, and certain optional interfaces. 

3.1 HARDWARE REGISTERS 

3.1.1 Cursor - The cursor register is a two byte register. The first byte establishes the row or 
line member, and the second byte refers to the column. In the standard machine, the row num­
ber can range from X'OO' to X'18'. Row number X'OO' is reserved for the control line. With the 
two-page option, the row value range is X'OO' to X'4F', or eighty bytes. The cursor register is 
located at X'1000' and X'1001'. Values in these registers are generated by programming. 

3.1.2 Keyboard Input - The keyboard input register is located at X'1 002'. I t is theoretically 
possible to get 255 different codes through this register. One code, X'FF', is used as the normal 
quiesced state for this register and cannot be used as an input code. The standard keyboard, using 
upper and lower case with control characters generates 128 codes. By depressing the control 
key and any alpha key (and a few special characters), an additional 32 characters can be genera­
ted. The eleven key numeric pad generates an additional eleven codes. Thus the standard key­
board provides 171 out of the possible 255 acceptable codes. The keyboard input register has 
no overrun protection. That is, if multiple characters are keyed and the program in control does 
not use them, the succeeding keystroked characters overlay one another. No indication of over­
run exists. After each character is accepted by the/a program, an X'FF' value should be loaded 
into the register by the program. Characters can be inserted through the keyboard at a maximum 
rate of sixty characters per second. 

3.1.3 Function Register - The function register currently has but one use: an error beep. When 
the high-order or left-most bit of this register is 'changed', an error tone is produced for apwox­
imately two seconds. The bit transition, from off to on or on to off triggers the error tone. All 
other bits in the function register are reserved. The function register is located at X'1003'. 

3.1.4 Prior Condition Register - The prior condition register is used to establish the initial 
screen polarity and blinking characteristics for the line scans. Special control characters placed 
within the refresh RAM area wili vary the screen polarity, tone and blinking characteristics, but 
it is necessary to establish 'initial' conditions or the first refresh RAM location of each line of 
the screen would be committed to establishing 'current' screen characteristics. The high-order 
3 bits, bits numbered 7, 6 and 5 are reserved and must be zero. Bit 4 is used to establish an un­
derscore; Bit 3 is used to make data appear as blanks; Bit 2 reverses screen polarity from dark 
background to light background; Bit 0 provides a half-tone value for dark background polarity; 
and Bit 1 provides blinking characters. The prior condition register is located at X'1004'. 

3.1.5 Page Register - The page register is used to adjust the screen window of 24 lines to any 
contiguous set of 24 lines within the range of 48 lines available when the double-page option is 
in the system. The lowest value acceptable in this register is X'OO', but under system operating 
conditions should not be less than X'01 '. The high value should be held at X'19'. Any value 
above X'19' will give unexpected, unacceptable results. The page register is changed from value 
X'01' for page one to X'19' for page two. It is varied by the value at location X'1010' to perform 
scrolling. 

4 



3.1.6 RS-232 - The RS-232 interface is made up of six byte registers: a one byte input buffer; 
a one byte output buffer; a one byte input flag register; a one byte output flag register; a one 
byte input sense register; and a one byte output sense register. The RS-232 interface operates 
one byte at a time, and ranges in speed from 110 baud to 9600 baud. One RS-232 is standard, 
and a second dual RS-232 is optional. The standard RS-232 is located at X'100C' thru X'100F' 
and X'102E' and X'102F'. 

3.2 SOFTWARE REGISTERS 

3.2.1 Branch Area - The branch area is used by the system executive to cause branches into 
the various function routines in the system. It is located at X'100B' thru X'100A'. Location 
X'100B' must always contain a X'44'. 

3.2.2 T AS - The third address (T AS) is a two byte field used as a temporary work area for 16 
bit values. Two of the basic routines use T AS. T AS overlays the value portion of the Branch Area. 
It is located at X'1009' and X'100A'. 

3.2.3 Scroll Value - The scroll value is the amount added to or subtracted from the value in 
the Page Register to vary the starting line of data on the screen. This value is X'02' unless modi­
fied by the user. The scroll value is located at X'1010'. 

3.2.4 I nput Buffer Pointer - The system executive supports a five position buffer to smooth 
keyboard input. The input buffer pointer holds the next available buffer address. The input buf­
fer pointer is located at X'1011'. 

3.2.5 Protected Cursor Flag - The protected cursor flag is used to allow the cursor to be posi­
tioned under a protected character. The flag is tested as zero or non-zero. The protected cursor 
flag is located at X'1 012'. 

3.2.6 Line Space Count - The line space count is used to speed character inserts. This value 
defines the number of available spaces from the last character, on the line holding the cursor, to 
the end of the line. This value is used exclusively in 'insert' sub-mode. The line space count is 
located at X'1014'. 

3.2.7 Local Mode Save - The local mode save location holds the code representing the mode 
and sub-mode that was in control prior to entering 'Control' mode. It is used to reestablish the 
proper mode and sub-mode at return from 'Control' mode. The local mode save is located at 
X'1015'. 

3.2.B Current Mode - The current mode code is maintained for program control and list con­
trol purposes. It is located at X'1016'. 

3.2.9 Character Previous Hold - The character previous hold maintains the value of the last 
keyboard character acted upon. It is used for special double-character sequences. It is located at 
X'1017'. 

3.2.10 Character Current Hold - The character current hold maintains the value of the key­
board character currently being processed. It is located at X'101B'. 

3.2.11 Keyboard I nput Buffer - The keyboard input buffer is a five byte buffer used by the 
system to support keyboard input at its maximum rate, while allowing functions of various 
speeds to be performed. The keyboard buffer is located at X'1 019' thru X'1 01 E'. 

5 



3.2.12 FAS - The first address (FAS) is a two byte field used to hold the 16 bit binary value of 
the current cursor address. All cursor manipulation programs operate with FAS, and the value 
then converted into Rowand Column values which are then inserted into the cursor hardware 
registers. FAS is located at X'1020' and X'1021'. 

3.2.13 SAS - The second address (SAS) is a two byte field used as a temporary work area for 
16 bit values. A number of the basic routines use SAS. SAS is located at X'1022' and X'1023'. 

3.2.14 Open work areas - Locations X'1 024' thru X'1 02D' are used by various basic routines 
as unnamed temporary work spaces. All unspecified locations in the area from X'1000' thru 
X'1 02F' are reserved for future hardware options and for programming enhancements. 

4.0 SYSTEM LIST STRUCTURES 

The Intel 8008 family use a two byte address for all calls and branches. The two byte address is, of 
course, the starting point of a programmed routine. The 9002 system strings all function or routine 
addresses together in one contiguous list, two bytes per entry. This list is the branch list and is the 
backbone of the 9002 list structure. Whenever a new routine is created, its initial entry point address 
is attached to the branch list. To acquire any specific address, one would need only the offset in bytes 
from the start of the branch list and the address of the start of the branch list. The value generated 
by summing these two values is the address of the pointer to the routine desired. To get to any desired 
routine then one merely needs a list of offsets because the system branch list address is known. In the 
9002 standard system, five offset lists exist; one for each mode and sub-mode REP and INS FORM, 
REP and INS TEXT and one for the Control Mode. The 9002 offset lists are each 33 bytes in length. 
The first 32 offsets (one byte each) are directly related to the value of the 32 function codes genera­
ted from the keyboard. The function code keys generate hexadecimal numbers from X'OO' to X'1 F'. 
As an example, the 'HOME' key generates a code of X'OB'. Therefore it would be appropriate to place 
the 'HOME' routine branch table offset into the twelfth or 'OB'th entry of the desired offset list. When 
the 'HOME' key is depressed, and the desired offset list is entered, the 'HOME' routine address offset 
is found. Summing that offset value with the start of the branch table generates the address of the two 
byte field whose value is the address of the start of the 'HOME' routine. By picking up that address 
and inserting it properly in a branch instruction, that branch can be executed to enter (and perform) 
the 'HOME' routine function. As stated, the first 32 bytes of each offset list are associated with the 
codes generated by pressing the 32 keyboard function keys. The 33rd entry is the offset to the address 
in the branch table of all other keyboard keys. The branch list, and each of the offset lists must in and 
of themselves be contiguous but they may be separated from each other. See Figure 4-1 for graphi­
cal description. 

6 



Offset List 

00 
01 
02 
03 

1E8 1F 
20 

one byte offset 
to branch list. 

Figure 4-1 

Branch List 

Home key, when depressed creates 
a 'OB' code as keyboard input character. 
That code is used to address into the 
desired offset list. 

two byte address 
points to HOME 
Routine entry 
point 

Home Routine 

BRANCH & LIST GEOGRAPHICAL DESCRIPTION 

7 



5.0 SYSTEM BASIC SUB-ROUTINES 

5.1 CURSOR MOVE ROUTINES 

CRIGHT 

CLEFT 

Moves Cursor One Position to Right. 

Moves cursor (on screen) one position to right. If cursor is at last column to right, 
cursor is moved to first position to left of the next line. If cursor is on last available 
line at last column, cursor is moved to first position of first line. Cursor will auto­
matically bypass any 'protected' byte locations, unless location X'1 012' is non-zero. 

Registers affected - All. 

Example - Call CRIGHT. 

Results - All registers indeterminate. Both actual, terminal cursor registers and bi­
nary cursor location (FAS) are properly up dated. Where double-page 
option exists, page adjustment to cursor position is also up dated. 

5.1-1 

Moves Cursor One Position to Left. 

Moves cursor (on screen) one position to left. If cursor is at first column to left, cur­
sor is moved to last column on right of next preceding line. If cursor is on first line, 
first column to left (true HOME) it will not be moved. Unless location X'1012' is 
non-zero, cursor will not stop at a 'protected' byte location, but will continue going 
left. If True Home is found to be protected, cursor will search right and stop at first 
available not protected byte location. 

Registers affected - All. 

Example - Call CLEFT. 

Results - All registers indeterminate. Both actual, terminal cursor registers and bi­
nary cursor location (FAS) are up dated. Where double-page option exists, 
page adjust is also made. 

8 



5.1-2 

CUP Moves Cursor One Line Up. 

CDOWN 

Moves cursor (on screen) one line up. If cursor is already at top-most line, it will not 
be moved. Cursor will not stop at a protected byte unless location X'1012' is non­
zero. Attempt to move cursor to top-line, if it is protected, and location X'1012' is 
zero, will result in cursor moving to right on top line until a non-protected byte lo­
cation is found. 

Registers affected - All 

Example - Call CUP 

Results - All registers indeterminate. Hardware cursor registers (X'1 000-1 001 ') and 
software cursor register (F AS) are up dated. Where double-page option 
exists, adjustment is made automatically. 

5.1-3 

Moves Cursor One Line Down 

Moves cursor (on screen) one line down. If cursor is at bottom-most line, it is moved 
to top-most line. Cursor will not stop at a protected byte, unless location X'1012' 
is non-zero. 

Registers affected - All. 

Example - Call CDOWN. 

Results - All registers indeterminate. Hardware cursor registers (X'1 000-1 001 ') and 
software cursor register (FAS) are up dated. Where double-page option exists, page 
adjustment is made automatically. 

5.1-4 

RETURN Moves Cursor to first position next line. 

Moves cursor from current position to the left-most position of next line. If current 
cursor position is on last displayable line, cursor is moved to true HOME. Cursor 
will not stop at protected byte but will scan right to first non-protected location. 

Registers affected - All. 

Example - Call RETURN. 

Result - All registers indeterminate. Hardware and software cursor registers up 
dated. Where necessary, page is adjusted. 

9 



HOME 

5.1-5 

Cursor is moved to HOME location. 

Cursor is moved from current location to left-most position, top-line of current 
screen image. If that position is protected, cursor will scan right until first unprotec­
ted byte is found. 

Registers affected - All. 

Example - Call HOME. 

Result - All registers indeterminate. Hardware and software cursor registers up 
dated. 

5.1-6 

TAB Move Cursor to Next Tab Stop. 

BTAB 

Cursor is moved from current location to next tab stop to right. If there are no more 
stops on the line, or if no stops exist, the cursor is moved to the left-most position. 
of the next line. In this case it always acts precisely like RETURN. 

Registers affected - All. 

Example - Call TAB. 

Result - All registers indeterminate. Hardware and software cursor registers are 
up dated. 

5.1-7 

Move Cursor to Next Previous Tab Stop. 

Cursor is moved from current location to next previous tab stop. I f the next pre· 
vious tab stop on this line is a protected byte, the cursor will scan right to the first 
available non-protected byte.* If there is no next previous tab stop on this line, 
or no tab stops at all, the cursor will move to the left-most position of the current 
line. If already at the left-most position, the cursor will move to the last position 
of the next preceding line and scan left. In no case will the cursor move past true 
HOME in its backward scan. 

Registers affected - All. 

Example - Call BTAB. 

Result - All registers indeterminate. Hardware and software cursor registers are 
updated. 

* The cursor cannot ever move left past a protected byte at the tab stop location, 
by using this function. 

10 



ATAB 

ABTAB 

5.1-8 

Auto Tab Forward. 

Moves the cursor to the right to the first unprotected byte beyond the next set of 
protected byte (s). If the right scan searches beyond the last displayable character, 
the cursor is set at true HOME. 

Registers affected - All. 

Example - Call ATAB. 

Result - All registers indeterminate. Hardware and software cursor registers are up­
dated. 

5.1-9 

Auto Tab Backward. 

Moves the cu rsor to the left past the next precedi ng set of protected byte (s), and 
past all the unprotected bytes until it reaches the left-most byte of that unprotected 
set. If at initial cursor scan, the next preceding byte is not protected, the scan ends 
at the left-most byte of the current unprotected set. 

Registers affected - All. 

Example - Call ABTAB. 

Result - All registers indeterminate. Hardware and software cursor registers are up­
dated. 

5.2 VIEWABLE SCREEN FUNCTIONS 

CLEAR Clears all viewable memory. 

Clears all viewable memory to blanks. No exceptions. 

Registers affected - All. 

Example - Call CLEAR. 

Result - All registers indeterminate. Cursor is repositioned to true Home location. 
Where necessary first page is set. All cursor registers are up dated. 

11 



5.2-1 

NEWFRM Clears viewable memory of all unprotected data. 

All viewable memory with exception of Control line and protected bytes is cleared 
to blanks. 

Registers affected - All 

Example"- Call NEWFRM. 

Result - All registers indeterminate. Cursor is repositioned to true Home. Where 
necessary, first page is set. All cursor registers are up dated. 

5.2-2 

EOS Erase to End of Screen. 

Blanks screen from current cursor location to last screen displayable position. Pro­
tected bytes are not blanked unless the value at X'1016' is X'80' or greater. 

Registers affected - All. 

Example - Call EOS 

Result - All registers indeterminate. Cursor remains at same position. 

5.2-3 

EOl Erase to End of Line. 

Blanks screen from current cursor location to end of line. Protected bytes are not 
blanked unless the value at X'1016' is X'80' or greater. 

Registers affected - All. 

Example - Call EOl. 

Result - All registers indeterminate. Cursor remains at same location. 

12 



BLANK 

5.2-4 

Screen Blanking, Protected and Unprotected. 

That portion of the screen ranged from the value (binary address) in FAS up to but 
not including the value in SAS is blanked. Both protected and unprotected areas 
are blanked. I ndeterminate results can be expected if the value in FAS is not less 
than that in SAS. 

Registers affected - All. 

Example - After establishing FAS and SAS, 
Call BLANK. 

Result - All bytes in the area specified ar.e changed blanks (X'20'). Register values 
at completion are indeterminate. 

5.2-5 

CMESSA Control Label Insertion. 

The control label at the extreme lower right of the visible screen is loaded by this 
routine. Any new label can be loaded to that area by specifying the address of the 
right-most byte of an eight position label, in the register pair Hand L. Then call 
this routine. 

Registers affected - All. 

Example - LBI RH, (label address +7) 
LBI RL, (label address +7) 

Call CMESSA. 

Result - Register values at completion are indeterminate. The new label appears 
properly. 

5.2-7 

DELBYT Delete Byte. 

Deletes byte at cursor location, and moves all data to the right, to the end of the 
line or to the next protected byte to the left one byte. The last byte on the line or 
the last unprotected byte in the current field is then blanked. 

Registers affected - All. 

Example - Call DELBYT. 

Result - All registers indeterminate. Cursor is not moved. 

13 



DELFLD Delete Field. 

INSERT 

DUNE 

From current cursor location, a scan is made to the left until either the start of line 
is reached or a protected byte is found. Then the scan is made to the right until 
either the end of line is reached or a protected byte is found. Within the established 
range, all unprotected bytes are blanked. The cursor is then repositioned at the 
left-most unprotected byte of the range. 

Registers affected - All. 

Example - Call DELFLD. 

Result - All registers indeterminate. Hardware and software cursor registers are up 
dated. 

5.2-9 

I nsert Byte. 

From the current cursor location, all data to the right, to the end of the line or to 
the next set of protected byte (s), is moved right one position. If the last position 
on the line was affected, that last position is changed to a blank. The keyed charac­
ter is then inserted at the current cursor location. The cursor is advanced automati­
cally. 

Registers affected - All. 

Example - Call INSERT. 

Result - All registers indeterminate. Cursor position advanced one position to right. 

5.2-10 

Delete Line. 

Cursor is moved to extreme left position of current line. A search is made of succes­
sive lines to find an all blank line. When found, all lines from the one following the 
cursor line, up to and including the all blank line are moved up one line. Thus all 
following moved lines overlay their next preceding line. If no all blank line is found, 
the last line is blanked at completion of the move. If the cursor is on the last line, 
it is blanked. 

Registers affected - All. 

Example - Call DUNE. 

Result - All registers indeterminate. Hardware and software cursor registers are up­
dated. 

14 



ILiNE 

5.2-11 

Insert Blank Line. 

Cursor is moved to extreme left position of current line. A search is made of succes­
sive lines to find an all blank line. When found, all preceding lines, up to and includ­
ing the cursor line are moved down one line. The cursor line is then blanked. If no 
all blank lines are found, the last available line is blanked, and operation proceeds 
normally. If the cursor is on the last available line, the move is not performed, the 
last line is blanked, the routine is exited normally. 

Registers affected - All. 

Example - Call I LINE. 

Result - All registers indeterminate. Hardware and software cursor registers are 
up dated. 

5.2-12 

5.3 MICROCOMPUTER ROUTINES 

LDFAS Load First Address 

The two byte value at address X'1 020' is the absolute binary address of the current 
cursor location. It is known as FAS, or First Address. As the binary counterpart of 
the current cursor location is used so often, FAS has special load and store routines. 
Calling LDFAS will load the Hand L registers with the value in FAS. That value will 
also be loaded in registers D and E. 

Registers affected - D, E, Hand L. 

Example - Call LDFAS. 

Result - The value in FAS (assume X'189C') will be loaded into registers D and E 
and also registers Hand L. Register D will contain X'18', E will contain 
X'9C', H will contain X'18', and L will contain X'9C'. 

Other - A portion of the LDFAS routine can be used to load registers Hand L 
from almost any addressable memory pair (note exception), by loading 
the address of the value desired into registers Hand L, and then perform­
ing a call to location LDFAS +4. 

Example - LBI RH, XX 
LBI RL, YY 

Call LDFAS +4 

Where XX is the high order byte of the desired location and YY is the 
low order byte of the desired location. 

Result - Same as in basic LDFAS routine, register pair D and E, Hand L are loaded 
with the value located at XX YY. 

Exception - Load results will be indeterminate, and almost certainly wrong, if the 
memory pair addressed crosses a hexadecimal century boundary, i.e. if 
the memory address to be loaded ends in X'FF'. 

15 



STFAS 

LDSAS 

STSAS 

5.3-1 

Store First Address. 

The two byte value in register pair Hand L is stored at FAS (absolute binary address 
X'1020'). 

Registers affected - D, E, Hand L. 

Example - Call STFAS. 

Result - At completion, FAS contains value that was in register pair Hand L. Re­
gister pair D and E also contains value originally in Hand L. Register pair 
Hand L contains the address of FAS +1. 

Other - A portion of the STFAS routine can be used to store the value in register 
pair D and E into FAS. 

Example - Call STFAS +2. 

Result - Same as basic STFAS result. 

5.3-2 

Load Second Address 

The two byte space at address X/1 022' is used as temporary storage by a significant 
number of the Basic Call routines. Calling LDSAS will load the register pair Hand 
L with the value in SAS. 

Registers affected - D, E, Hand L. 

Example - Call LDSAS. 

Result - The value in SAS will be loaded in register pairs D and E, and Hand L. 

5.3-3 

Store Second Address. 

The two byte value in register pair Hand L is stored at SAS (absolute binary address 
X'1022'). 

Registers affected - D, E, Hand L. 

Example - Call STSAS. 

Result - At completion, SAS and the register pair D and E will contain the value 
initially held in register pair Hand L. Hand L will contain the address of 
SAS+1. 

16 



LDTAS 

STTAS 

5.3-4 

Load Third Address. 

The two byte space at address X' 1 009' is used at temporary storage by several Basic 
Call routines. Calling LDTAS will load the register pair Hand L with the value in 
TAS. 

Registers affected - D, E, Hand L. 

Example - Call LDT AS. 

Result - The value in TAS will be loaded into register pairs D and E, and Hand L. 

Store Third Address. 

The two byte value in register pair D and E is stored at T AS (absolute binary address 
X'1009'). 

Registers affected - D, E, Hand L. 

Example - Call STT AS. 

Result - At completion, T AS and the register pair D and E will contain the value 
initially held in register pair D and E. Register pair Hand L will contain 
the add ress of T AS+ 1. 

5.3-6 

LDCU RS Load Cursor. 

The two byte terminal cursor value (discontinuous binary - column and row) loca­
ted at X'1000' is loaded into the register pair D and E. 

Registers affected - D, E, Hand L. 

Example - Call LDCU RS. 

Result - At completion, the register pair D and E contain the value from memory 
address X'1000'. Register pair Hand L contain the value X'1000'. 

17 



5.3-7 

8UMPHL Increase value in registers Hand L by one. 

DECHL 

The two byte binary value in register pair Hand L is increased by one. 

Registers affected - Hand L. 

Example - Call BUMPH L. 

Result - 16 bit binary value in register pair Hand L increased by one. 

5.3-8 

Decrease value in registers Hand L by one. 

The two byte binary value in register pair Hand L is decreased by one. 

Registers affected - Hand L. 

Example - Call DECHL. 

Result - 16 bit binary value in register pair Hand L decreased by one. 

5.3-9 

SUB REG Subtract paired register value from another paired register value. 

Subtracts 16 bit value in register pair Band C from 16 bit value in register pair D and 
E and stores 16 bit result in register pair Band C. 

Registers affected - A, B, C, D, and E. 

Example - After establishing registers B, C, D and E, 

Call SUBREG. 

Result - Registers D and E will remain as they were just prior to entry to this 
routine. Registers D and C will hold the new result value. 

18 



CONV 

RECON 

5.3-10 

Converts Binary Cursor Value in FAS to Hardware Cursor Value. 

Takes the 16 bit binary current cursor value from FAS, and converts it to row and 
column discontinuous binary value of terminal, and stores the value in the terminal 
Hardware register for showing the cursor on the screen. 

Registers affected - All. 

Example - Call CONV. 

Result - Registers A, B, C are indeterminate. Paired registers D and E will contain 
the new Hardware cursor value, and paired registers Hand L will contain 
the value X'l 001 '. 

5.3-11 

Generates Binary Cursor value in FAS from value in Hardware Cursor Register. 

Takes the Row/Column current Hardware cursor value and converts it to a 16 bit 
binary value and stores that value at FAS. 

Registers affected - All. 

Example - Call RECON. 

Result - Registers A, Band C are indeterminate. Register pair D and E contain the 
new 16 bit binary value representing the current cursor location, and 
register pair Hand L contain the address of FAS+1. 

5.3-12 

COMPER 16 bit Comparator Routine with High, Low or Equal Results. 

The value in register pair Band C is compared against the value in register pair D and 
E. At completion, Register B holds the High, Low or Equal result. 

Registers affected - A, B, C, D and E. 

Example - After loading the values to be compared in register pairs B, C and D, E 
then, 

Call COMPE R. 

Result - Register A is indeterminate. Registers C, D, E, Hand L are unchanged. 
Register B contains: 

X'02' if value in register pair D and E is numerically greater than value in 
Band C. 

X'Ol' if value in register pair D and E is less than value in Band C. 

X'OO' if values are equal. 

19 



ADD2 

SUBT2 

RMOVE 

5.3-13 

Adds single byte value to double byte value. 

Performs addition of value in register C to value in register pair D and E. Results are 
placed in register pair D and E. 

Registers affected - A, D and E. 

Example - After loading 16 bit value in registers D and E, and loading add value in 
register C, then, 

Call ADD2. 

Result - Register A is indeterminate. Registers B, C, H, and L are not changed. Reg­
ister pair D and E contain the new value. 

5.3-14 

Subtracts single byte value from double byte value. 

Performs subtraction of value in register C from value in register pair D and E. Re­
sults are placed in register pair D and E. 

Registers affected - A, D and E. 

Example - After loading 16 bit value in registers D and E, and loading subtract 
value in register C, then, 

Call SUBT2. 

Result - Register A is indeterminate. Registers B, C, H, and L are not changed. 
Register pair D and E contain the new value. 

5.3-15 

Moves Data in RAM, low-order to high-order addresses. 

Moves from minimum of one byte to maximum of 256 bytes from any addressable 
area in memory to any RAM location(s) in memory. The move is byte by byte, 
moving the leftmost byte of the 'from' block to the leftmost byte location of the 
'to' block first, then incrementing addresses and moving each additional byte until 
all bytes of move have been made. Register pair D and E must be loaded with the 
starting location of the 'to' block. Register pair Hand L must be loaded with the 
starting location of the 'from' block. Register C is loaded with the value X'01' to 
X'FF' to move from 1 to 255 bytes. Loading register C with X'OO' will cause 256 
bytes to be moved. 

20 



l.MOVE 

SMOVE 

Registers affected - All. 

Example - After loading register pair Hand L with the 'from' location, and after 
loading register pair D and E with the 'to' location, and after loading 
register C with move count then, 

Call RMOVE. 

Result - Register A and B are indeterminate. Register C is X'OO'. Register pair D 
and E point to the last byte plus one of the 'to' area. Register pair Hand 
L point to the last byte pi us one of the 'from' area. 

5.3-16 

Moves Data in RAM, high-order to low-order addresses. 

Moves from minimum of one byte to maximum of 256 bytes from any addressable 
area in memory to any RAM location(s) in memory. The move is byte by byte, 
moving the rightmost byte of the 'from' block to the rightmost byte location of the 
'to' block first, then decrementing addresses and moving each additional byte until 
all bytes of move have been made. Register pair 0 and E must be loaded with the 
starting location of the 'to' block. Register pair Hand L must be loaded with the 
starting location of the 'from' block. Register C is loaded with the value X'01' to 
X'OO' will cause 256 bytes to be moved. 

Registers affected - All. 

Example - After loading register pair Hand L with the 'from' location, and after 
loading register pair D and E with the 'to' location, and after loading 
register C with move count, then, 

Call LMOVE. 

Result - Registers A and B are indeterminate. Register C is X'OO'. Register pair D 
and E point to the last byte moved minus one, of the 'to' area. Register 
pair Hand L point to the last byte minus one of the 'from' area. 

5.3-17 

Special Move for data going to Control Line. 

The Control Line (bottom line of screen - always) has a special function associated 
with the high-order bit of each byte on that line (Addresses X'1 030' - X'107F'). The 
Special Move inserts data on that line without affecting the high-order bits. In all 
other respects this move is treated as an 'LMOVE' function. Thus, data moved to the 
control line must be addressed from the right side rather than the left, etc. See 
LMOVE for additional information. 

21 



Registers affected - All. 

Example - After loading register pair 0 and E with the 'to' location, and loading 
register pair Hand L with the 'from' location, and loading register C 
with move count, 

Call SMOVE. 

Result - See LMOVE for results. 

5.3-18 

5.4 TWO-PAGE OPTION ROUTINES 

UPAGE 

DPAGE 

Show Page Two on Screen. 

Hardware page register (X'1005') is set to X'19'. 

Registers affected - H, L. 

Example - Call UPAGE. 

Result - Register pair Hand L contain X'1005'. 

Note - Two page option required. 

Show Page One on Screen. 

Hardware page register (X'1005') is set to X'Ol'. 

Registers affected - H, L. 

Example - Call DPAGE. 

Result - Register pair Hand L contain X'1005'. 

Note - Two page option required. 

22 



5.4-2 

DSCROL Scroll page data downward. 

Screen view 'window' of data is moved upward, but page data appears to move down­
ward. Hardware page register value is decreased by value in location X'lOlO'. Page 
register val ue may not be less than X'D 1'. 

Registers affected - A, B, C, Hand L. 

Example - Call DSCROL. 

Result - Registers A, Band C are indeterminate. Register pair Hand L contain 
X'1005'. 

Note - Two page option required. 

USCROL Scroll page data upward. 

Screen view 'window' of data is moved downward, but page data appears to move 
upward. Hardware page register value is increased by value in location X'lOlO'. Page 
register value may not exceed X'19'. 

Registers affected - A, B, C, Hand L. 

Example - Call USCROL. 

Result - Registers A, Band C are indeterminate. Register pair Hand L contain 
X'1005'. 

Note - Two page option required. 

5.4-4 

6.0 DEVICE ORIENTED ROUTINE 

The routines in this section are tested and can be used either directly or as examples by the interested 
programmer. Routines similar to these are used in the ZENTEC 9002 where necessary. 

6.1 ZENTEC 9002 KEYBOARD 

Instructions in this example routine are written in ZENTEC assembler format. A translator table 
between the ZENTEC assembler statements and I NTE L's MCS-8 statements will be found in Appen­
dix 7A. 

The following is a 'CALLed' sub-routine. 

* Keyboard Character Pick Routine 

23 



PICK LBI 
LBI 

PICKA LB 
CI 
BE 
STBI 
RET 

RH,10 
RL,02 
RA 
RA,FF 
PICKA 
M, FF 

Load Registers Hand L with Keyboard Input Register Address 

Load Accumulator from Memory 
Is NULL character present? 
Yes, then branch and try again 
Store the NULL character 
Return with Data Character in Register A 

This routine will hang the CPU until a character appears from the keyboard. 

7.0 System Support Routines 

7.1 ZENTEC Assembler 

24 



Table 7-1 
Operation Codes 

OPERATION CODES: 

ZENTEC ASSEMBLY MCS-8 MCS-8 HEXADECIMAL 
STATEMENT EQUIVALENT BINARY CODES 

OCTAL FORM 

Load Register - Data moves from 2nd Register into 1 st. 

LR RA,RA LAA 11 000 000 CO 
RA,RB LAB 11 000 001 Cl 
RA,RC LAC 11 000 010 C2 
RA,RD LAD 11 000 011 C3 
RA,RE LAE 11 000 100 C4 
RA,RH LAH 11 000 101 C5 
RA,RL LAL 11 000 110 C6 

LR RB,RA LBA 11 001 000 C8 
RB,RB LBB 11 001 001 C9 
RB,RC LBC 11 001 010 CA 
RB,RD LBD 11 001 011 CB 
RB,RE LBE 11 001 100 CC 
RB,RH LBH 11 001 101 CD 
RB,RL LBL 11 001 110 CE 

LR RC,RA LCA 11 010 000 DO 
RC,RB LCB 11 010 001 Dl 
RC,RC LCC 11 010 010 D2 
RC,RD LCD 11 010 011 D3 
RC,RE LCE 11 010 100 D4 
RC,RH LCH 11 010 101 D5 
RC,RL LCL 11 010 110 D6 

LR RD,RA LDA 11 011 000 D8 
RD,RB LDB 11 011 001 D9 
RD,RC LDC 11 011 010 DA 
RD,RD LDD 11 011 011 DB 
RD,RE LDE 11 011 100 DC 
RD,RH LDH 11 011 101 DD 
RD,RL LDL 11 011 110 DE 

LR RE,RA LEA 11 100 000 EO 
RE,RB LEB 11 100 001 El 
RE,RC LEC 11 100 010 E2 
RE,RD LED 11 100 011 E3 
RE,RE LEE 11 100 100 E4 
RE,RH LEH 11 100 101 E5 
RE,RL LEL 11 100 110 E6 

LR RH,RA LHA 11 101 000 E8 
RH,RB LHB 11 101 001 E9 
RH,RC LHC 11 101 010 EA 
RH,RD LHD 11 101 011 EB 
RH,RE LHE 11 101 100 EC 
RH,RH LHH 11 101 101 ED 
RH,RL LHL 11 101 110 EE 



Z~NTEC ASSEMBLY 
STATEMENT 

MCS·8 
EQUIVALENT 

LR RL,RA LLA 
RL,RB LLB 
RL,RC LLC 
RL,RD LLD 
RL,RE LLE 
RL,RH LLH 
RL,RL LLL 

Load Byte - Data moves from Memory to Register 

LB RA LAM 
RB LBM 
RC LCM 
RD LDM 
RE LEM 
RH LHM 
RL LLM 

Store Byte - Dtat moves from Register to Memory 

STB RA LMA 
RB LMB 
RC LMC 
RD LMD 
RE LME 
EH LMH 
EL LML 

Load Byte Immediate - Immediate to Register 

LBI RA,nn LAI 
RB,nn LBI 
RC,nn LCI 
RD,nn LDI 
RE,nn LEI 
RH,nn LHI 
RL,nn LLI 

Store Byte Immediate - I mmediate to Memory 

STBI M,nn LMI 

Bump Register - Increment register by one 

BUMP RB INB 
RC INC 
RD IND 
RE INE 
RH INH 
RL INL 

Dec Register - Decrement register by one 

DEC RB DCB 
RC DCC 
RD DCD 
RE DCE 
RH DCH 
RL DCL 

26 

MCS·8 
BINARY CODES 
OCTAL FORM 

11 110 000 
11 110 001 
11 110 010 
11 110 all 
11 110 100 
11 110 101 
11 110 110 

11 000 111 
11 001 111 
11 010 111 
11 011 111 
11 100 111 
11 101 111 
11 110 111 

11 111 000 
11 111 001 
11 111 010 
11 111 011 
11 111 100 
11 111 101 
11 111 110 

00 000 110 
00 001 110 
00 010 110 
00 011 110 
00 100 110 
00 101 110 
00 110 110 

00 111 110 

00 001 000 
00 010 000 
00 011 000 
00 100 000 
00 101 000 
00 110 000 

00 001 001 
00 010 001 
00 011 001 
00 100 001 
00 101 001 
00 110 001 

HEXADECIMAL 

Fa 
Fl 
F2 
F3 
F4 
F5 
F6 

C7 
CF 
D7 
DF 
E7 
EF 
F7 

F8 
F9 
FA 
FB 
FC 
FD 
FE 

06 
DE 
16 
lE 
26 
2E 
36 

3E 

08 
10 
18 
20 
28 
30 

09 
11 
19 
21 
29 
31 



ZENTEC ASSEMBLY 
STATEMENT 

MCS-8 
EQUIVALENT 

Add Register - Add value in second register to register A 

AR RA,Rn ADA to ADL 

MCS-8 
BINARY CODES 
OCTAL FORM 

1 a 000 000 to 11 0 = 

Add Register Carry - Add value in second register and carry to register A 

ARC RA,Rn ACA to ACL 10 001 000 to 110 = 

Subtract Register - Subtract value in second register from register A 

SR RA,Rn SUA to SUL 10 010 000 to 110 = 

Subtract Register Carry - Subtract value in second register and carry from register A 

SRC RA,Rn SBA to SBL 10 all 000 to 110 = 

AND Register - AND value in second register into register A 

ANDR RA,Rn NDA to NDL 1 a 1 00 000 to 11 0 = 

Exclusive OR Register - Exclusive OR value in second register into register A 

XR RA,Rn XRA to XRL 10 101 000 to 110 = 

OR Register - OR value in second register into register A 

OR RA,Rn ORA to ORL 10 110 000 to 110 = 

Compare Register - Compare value in second register with register A 

CR RA,Rn CPA to CPL 10 111 000 to 110 = 

Add - Add value in memory to Register A 

A RA- ADM 10 000 111 

Add Carry - Add value in memory and carry to Register A 

AC RA- ACM 10 001 111 

Subtract - Subtract value in memory from Register A 

S RA- SUM 10 010 111 

Subtract Carry - Subtract value in memory and carry from Register A 

SC RA- SBM 10 011 111 

AND - AND value in memory into Register A 

AND RA- NDM 10 100 111 

OR - OR value in memory into Register A 

0 RA- ORM 10 110 111 

Compare - Compare value in memory with Register A 

C RA- CPM 10 111 111 

Exclusive OR - Exclusive OR value in memory into Register A 

X RA- XRM 10 101 111 

27 

HEXADECIMAL 

80 to 86 

88 to 8E 

90 to 96 

98 to 9E 

AO to A6 

A8 to AE 

BO to B6 

B8 to BE 

87 

8F 

97 

9F 

A7 

B7 

BF 

AF 



ZENTEC ASSEMBLY 
STATEMENT 

MCS-8 
EQUIVALENT 

Add Immediate - Add immediate to Register A 

AI RA,nn - ADI 

Add Immediate Carry - Add immediate and carry to Register A 

ACI RA,nn - ACI 

Subtract Immediate - Subtract immediate from Register A 

SI RA,nn - SUI 

MCS-8 
BINARY CODES 
OCTAL FORM 

00 000 100 

00 001 100 

00 010 100 

Subtract Immediate Carry - Subtract immediate and carry from Register A 

SCI RA,nn - SBI 00 all 100 

AND Immediate - AND immediate into Register A 

ANDI RA,nn- NDI 00 100 100 

Exclusive OR Immediate - Exclusive OR immediate into Register A 

XI RA,nn - XRI 00 101 100 

OR Immediate - OR immediate into Register A 

01 RA,nn - ORI 00 110 100 

Compare Immediate - Compare immediate with Register A 

CI RA,nn - CPI 00 111 100 

Rotate Left - Rotate Register A to left - Bit 7 goes to Bit a 
ROL RA- RLC 00 000 010 

Rotate Right - Rotate Register A to Right - Bit a goes to Bit 7 

ROR RA- RRC 00 001 010 

Rotate Left Carry - Rotate Register A to left - Bit 7 goes to Carry, Carry to Bit a 
RLe RA- RAL 00 010 010 

Rotate Right Carry - Rotate Register A to Right - Bit a goes to Carry, Carry to Bit 7 

RRC RA- RAR 00 all 010 

28 

HEXADECIMAL 

04 

OC 

14 

lC 

24 

2C 

34 

3C 

02 

OA 

12 

lA 



ZENTEC ASSEMBLY 
STATEMENT 

MCS-8 
EQUIVALENT 

Branch - Absolute Branch - System uses X'44' only 

B label JMP 

Branch True Carry - Branch if Carry Bit on 

BTC label JTC 

Branch True Zero - Branch if Accum Zero or Compare equal 

BTZ label JTZ 

Branch True Sign - Branch if Accum Sign.is negative 

BTS label JTS 

Branch True Parity - Branch if Accum Parity is even 

BTP label JTP 

Branch False Carry - Branch if Carry bit off 

BFC label JFC 

Branch False Zero - Branch if Accum Not Zero or Compare Not Equal 

BFZ label JFZ 

Branch False Sign - Branch if Accum Sign is positive 

BFS label JFS 

Branch False Parity - Branch if Accum Parity is odd 

BFP label JFP 

Branch on Zero - Branch if Accum Zero 

BZ label JTZ 

Branch on Plus - Branch if Accum Plus or Zero 

BP label JFS 

Branch on Minus - Branch if Accum Minus 

BM label JTS 

Branch on Equal - Branch if Accum Equal to Comparand 

BE label JTZ 

29 

MCS-8 
BINARY CODES 
OCTAL FORM 

01 XXX 100 

01 100 000 

01 101 000 

01 110 000 

01 111 000 

01 000 000 

01 001 000 

01 010 000 

01 011 000 

01 101 000 

01 010 000 

01 110 000 

01 010 000 

HEXADECIMAL 

44,4C,54,5C, 
64,6C,74,7C 

60 

68 

70 
(Sign Negative) 

78 
(Parity Even) 

40 

48 

50 
(Sign Positive) 

58 
(Parity Odd) 

68 

50 

70 

68 



ZENTEC ASSEMBLY 
STATEMENT 

MCS-8 
EQUIVALENT 

Branch on Low - Branch if Accum Lower than Comparand 

BI,. label JTC 

Branch on Not Zero - Branch if Accum Not Zero 

BNZ label JFZ 

Branch on Not Plus - Branch if Accum Minus 

BNP label JTS 

Branch on Not Minus - Branch if Accum Plus or Zero 

BNM label JFS 

~ranch on Not Equal - Branch if Accum Not Equal to Comparand 

BNE label JFZ 

MCS-8 
BINARY CODES 
OCTAL FORM 

01 100 000 

01 001 000 

01 110 000 

01 010 000 

01 001 000 

!3ranch on High - Branch if Accum Equal to or Higher than Comparand 

label JFC 01 000 000 

Call ~ Absolute Call - System uses X'46' Only 

Call label CAL 01 XXX 110 

Call True Carry - Call if Carry Bit on 

CTC label CTC 01 100 010 

Call True Zero - Call if Accum Zero or Compare equal 

CTZ label CTZ 01 101 010 

Call True Sign - Call if Accum Sign is negative 

CTS label CTS 01 110 010 

Call True Parity - Call if Accum Parity is even 

CTP label CTP 01 111010 

Call False Carry - Call if Carry bit off 

CFC label CFC 01 000 010 

C~II False Zero - Call if Accum Not Zero or Compare Not Equal 

CFZ label CFZ 01 010 010 

Call False Sign - Call if Accum Sign is positive 

CFS label CFS 01 010 010 

Call False Parity - Call if Accum Parity is odd 

CFP label CFP 01 all 010 

30 

HEXADECIMAL 

60 

48 

70 

50 

48 

40 

46,4E,56,5E, 
66,6E,76,7E 

62 

6A 

72 
(Sign Negative) 

7A 
(Parity Even) 

42 

4A 

52 

5A 



ZENTEC ASSEMBLY 
STATEMENT 

Call on Zero - Call if Accum Zero 

CZ label 

Call on Plus - Call if Accum Plus or Zero 

CP label 

Call on Minus - Call if Accum Minus 

CM label 

MCS-8 
EQUIVALENT 

CTZ 

CFS 

CTS 

Call on Equal - Call if Accum Equal to Comparand 

CE label CTZ 

Call on Low - Call if Accum Lower than Comparand 

CL label CTC 

Call Not Zero - Call if Accum Not Zero 

CNZ label CFZ 

Call Not Plus - Call if Accum Minus 

CNP label CTS 

Call Not Minus - Call If Accum Plus or Zero 

CNM label CFS 

Call Not Equal - Call if Accum Not Equal to Comparand 

CNE label CFZ 

Call on High - Call if Accum Equal to or Higher than Comparand 

CH label CFC 

Return - Absolute Return - System Uses X'07' Only 

,RET label RET 

Return True Carry - Return if Carry Bit on 

RTC label RTC 

Return True Zero - Return if Accum Zero or Compare equal 

RTZ label RTZ 

Return True Sign - Return if Accum Sign is negative 

RTS label RTS 

Return True Parity - Return if Accum Parity is even 

RTP label RTP 

Return False Carry - Return if Carry bit off 

RFC label RFC 

31 

MCS-8 
BINARY CODES 
OCTAL FORM 

01 101 010 

01 010 010 

01 110 010 

01 101 010 

01 100 010 

01 001 010 

01 110 010 

01 010 010 

01 001 010 

01 000 010 

00 XXX 111 

00 100 011 

00 101 011 

00 110 011 

00 111 011 

00 000 011 

HEXADECIMAL 

6A 

52 

72 

6A 

62 

4A 

72 

52 

4A 

42 

07,OF,17,lF 
27 ,2F ,37 ,3F 

23 

2B 

33 

3B 

03 



ZENTEC ASSEMBLY 
:;iTATEMENT 

MCS-8 
EQUIVALENT 

Return False Zero - Return if Accum Not Zero or Compare Not Equal 

RFZ label RFZ 

Return False Sign - Return if Accum Sign is positive 

RFS label RFS 

Return False Parity - Return if Accum Parity is odd 

RFP label RFP 

Return on Zero - Return if Accum Zero 

RZ label RTZ 

Return on Plus - Return if Accum Plus or Zero 

RP label RFS 

Return on Minus - Return if Accum Minus 

RM label RTS 

Return on Equal - Return if Accum Equal to Comparand 

RE label RTZ 

Return on Low - Return if Accum Lower than Comparand 

RL label RTC 

Return Not Zero - Return if Accum Not Zero 

RNZ label RFZ 

Return Not Plus - Return if Accum Minus 

RNP label RTS 

Return Not Minus - Return if Accum Plus or Zero 

RNM label RFS 

Return Not Equal - Return if Accum Not Equal to Comparand 

RNE label RFZ 

MCS-8 
BINARY CODES 
OCTAL FORM 

00 001011 

00 010 all 

00 all 011 

00 101 all 

00 010 all 

00 110 all 

00 101 all 

00 100 all 

00 001 all 

00 110 all 

00 010 all 

00 110 all 

Return on High - Return if Accum Equal to or Higher than Comparand 

RH label RFC 00 000 all 

32 

HEXADECIMAL 

OB 

13 

lB 

2B 

13 

33 

2B 

23 

OB 

33 

13 

OB 

03 



7.2 Z IH (ZENTEC INTERROGATION HODULE) PROGRAH (9002A) 

The ZIM provides means for visual access to the contents of ROM, PROH, and RAM 
memories in the system. The contents of each location in the memory is 
displayed on the screen in hexadecimal-coded form and various sections of the 
memory can be moved on or off the screen with the cursor controls. In 
addition, contents of any memory location in the RAM segment can be altered 
from the keyboard when operating under the control of Zll1 program. 
Consequently, ZIM program is useful for programming, program debugging, as well 
as maintenance purposes. 

Installation of the ZIM program requires that the page two video display option 
is present in the system. 

The ZIM program is entered from the CONTROL MODE by depressing the ZIM key. 
The 25th line will display CONTROL. A segment of the memory content will be 
displayed in hexadecimal in rows across the screen with their address 
appearing in the left hand column. 

OF80 
OF90 
OFAO 
OFBO 
OFCO 
OFDO 
OF EO 

C2 OA OA OA OA 24 OF Bl 2E 10 36 24 F8 07 46 00 
08 2E 10 36 01 C4 97 40 9B OF 19 EO 46 OC 08 16 
50 46 99 09 46 7A 09 46 59 08 09 OB EB F4 16 50 
C7 3C 20 48 9F OF 46 34 08 11 48 BO OF 07 CA 2E 
10 36 14 F9 44 C5 OD 00 46 8D OA IE 10 26 00 2E 
OF 36 DE 16 22 46 27 09 46 D3 OB 44 16 00 01 00 
FF 00 00 01 00 00 44 00 00 00 00 00 00 00 02 19 

CONTROL 

* The cursor move keys will allow indexing through the memory. The 
cursor appears as a reverse video character. 

* Indexing through memory can also be achieved by keying in the four 
digit memory address number and then depressing the lower case "1" 
key. This will cause the cursor to jump to the specified memory 
address. 

* The SPACE BAR can be used to enter hexadecimal code into the R.A}1 memory 
locations. This is achieved by depressing the appropriate alpha­
numeric key (two key sequence) and then depressing the SPACE BAR. The 
hexadecimal characters will be inserted at the cursor location. 

33 



* Depressing the RESET key or branching using the "g" key to location 
X'0008' will return the 9002 to the normal operating program. 

* The 9002 program can be made to BRANCH to a specific MEMORY location 
by keying in the four digit memory address number and then depressing 
the "g" key. This will cause the 9002 to BRANCH to the specific memory 
location and execute the program residing at that location. Depressing 
the RESET key or branching using the "g" key to location X'0008' will 
return the 9002 to the normal operating program. 

NOTE: The most significant number is entered first when keying in the 
hexadecimal memory address. 

34 



A P PEN D I X A 

KEYBOARD LAYOUT 

KEYBOARD CODE ASSIGNMENT 

CHARACTER GENERATOR CODE ASSIGNMENT 

35 



Bit No. 

765 
0 1 2 3 4 

32, 000 0001 0010 0011 

00000 FORM CLEAR SP 0 

1 0001 ENTER 1 ! 1 

20010 DELETE 2 " 2 

30011 5L 3 # 3 

40100 4 RETURN S 4 

50101 
LINE 
FEED MODE % 5 

60110 START T SCROL & 6 

ERASE 1 SCROL 
, 

70111 END DISP 7 

81000 
BACK 

-SPACE I ( 8 
BACK 

91001 TAB TAB ) 9 

A 1010 1 T * : 

B 1011 HOME ESC + , 

C 1100 T PAGE 1 PAGE , < 
AUTO AUTO 

D 1101 TAB BACK TAB - = 
INS 

E 1110 5U REP 

ERASE FORM 
/ ? 

F 1111 END LINE EDIT 

* SOFTWARE TREATS NUMERIC PAD KEYS (COLUMN A,B) 
AS COLUMN 2 & 3 KEYS 
SOFTWARE TREATS CTRL KEYS (COLUMN 8 & 9) 

4 5 6 7 
0100 0101 0110 0111 8 9 A B 

@ P ..... p CTRL@ CTRL P NP" 

A Q a q CTRLA CTRLQ NP 1 

B R b r CTRL B CTRL R NP 2 

C S c s CTRL C CTRLS NP 3 

D T d t CTRLD CTRL T NP4 

E U e u CTRL E CTRL U NP 5 

F V f v CTRL F CTRLV NP 6 

G W g w CTRLG CTRLW NP 7 

H X h x CTRL H CTRLX NP 8 

I Y i y CTRL I CTRL Y NP 9 

J Z j z CTRLJ CTRLZ 

K [ k { CTRL K CTRL [ 

\ I 
CTRL \ L I I CTRL L 

M ] m } CTRLM CTRLJ 

N A n r--/ CTRL N CTRLA NP· 

0 - 0 DEL CTRLO CTRL-

HARDWARE KEYBOARD CODE 



I ~~~S I RESET I 

AUTO BACK 
BACK TAB 
TAB 

AUTO 
TAB 

ESC 

CTRL 

I START I ENTER I ~~~~R I EOS EOL IDELETEI 

SHIFT 

TERMINAL KEYBOARD 

1 12 13 

@ 

\. 

PAGE 

t 
PAGE 

+ 

........ 
INSERT 
REPLACE 

MODE 

t 
HOME 

t 

4 5 

SCROL 

t 7 8 9 
SCROL 

+ 4 5 6 ... 1 2 3 
FORM 
EDIT () • 



Table 4-3, Character Generator Chart 

765 
21 000 001 010 011 100 101 110 111 

0000 0 - 0 @ P I 
P 

0001 .L r ! 1 A Q a q 

0010 T J " 2 B R b r 

0011 ~ ~ # 3 C S c s 
.. 

0100 w $ 4 D T d t 

0101 0 0 % 5 E U e u 

0110 E - & 6 F V f v 

0111 p a , 
7 G W 9 w 

1000 ...... .-... ( 8 H X h X 

1001 I:::. \l ) 9 I Y i y 

1010 t • if- J Z j Z 

1011 L A + , K [ k { 
1100 Z < L \ I I , I - .. 

1101 f X - = M 1 m } 
1110 f n • > N A n -
1111 C :> I 7 0 - 0 • 



A P PEN D I X B 

INTEL 8008 

OPERATION AND INSTRUCTION SET 

COURTESY - INTEL CORPORATION 

39 



8008 
8 Bit Parallel Central Processor Unit 

The 8008 is a complete computer system central processor unit which may be interfaced with memories 
having capacities up to 16K bytes. The processor communicates over an 8-bit data and address bus and 
uses two leads for internal control and four leads for external control. The CPU contains an 8-bit 
parallel arithmetic unit, a dynamic RAM (seven 8-bit data registers and an 8x14 stack), and complete 
instruction decoding and control logic. 

Features 

• 8-Bit Parallel CPU on a 
Single Chip 

• 48 Instructions, Data 
Oriented 

• Complete Instruction 
Decoding and Control 
Included 

• Instruction Cycle Time-
12.5 fJvs with 8008-1 or 20 fJvs 
with 8008 

• TTL Compatible (Inputs, 
Outputs and Clocks) 

• Can be used with any type 
or speed semiconductor 
memory in any combination 

BLOCK DIAGRAM 

ACCUMULATOR, DATA 
REGISTERS, PROG, 
COUNTER STACK 

INT 

TIMING 

RDY 

SI 62 SYNC 

40 

• Directly addresses 16K x 8 
bits of memory (RAM, ROM, 
or S.R.) 

• Memory capacity can be 
indefinitely expanded 
through bank switching 
using 1/0 instructions 

• Address stack contains 
eight 14-bit registers 
(including program counter) 
which permit nesting of 
subroutines up to seven 
levels 

• Contains seven 8-bit 
registers 

• Interrupt Capability 
• Packaged in 18-Pin DIP 

PIN CONFIGURATION 

Voo 18 INTERRUPT 

D70- 2 17 READY 

D6 0 3 16 ¢1 

INTEL 15 62 

DATA D4 5 8008 14 

BUS D3 6 13 

D2 7 12 

Dl 0-8 11 

Doo- 9 10 Vee 



I. INTRODUCTION 

The 8008 is a single chip MOS 8-bit parallel central processor unit for the MCS-8 micro computer 
system. A micro computer system is formed when the 8008 is interfaced with any type or speed 
standard semiconductor memoryupto 16K8-bitwords. Examples are INTEL's 1101, 1103,2102 (RAMs), 
1302, 1602A, 1702A (ROMs), 1404,2405 (Shift Registers). 

The processor communicates over an 8-bit data and address bus (Do through 0 7 ) and uses two input leads 
(READY and INTERRUPT) and four output leads (So' S" S2 and Sync) for control. Time multiplexing 
of the data bus allows control information, 14 bit addresses, and data to be transmitted between the 
CPU and external memory. 

This CPU contains six 8-bit data registers, an 8-bit accumulator, two 8-bit temporary registers, four flag 
bits, and an 8-bit parallel binary arithmetic unit which implements addition, subtraction, and log'ical 
operations. A memory stack containing a 14-bit program counter and seven 14-bit words is used internally 
to store program and subroutine addresses. The 14-bit address permits the direct addressing of 16K words 
of memory (any mix of RAM, ROM or S.R.). 

The control portion of the chip contains logic to implement a variety of register transfer, arithmetic 
control, and logical instructions. Most instructions are coded in one byte (8 bits); data immediate in­
structions use two bytes; jump instructions utilize three bytes. Operating with a 500kHz clock, the 
8008 CPU executes non-memory referencing instructions in 20 microseconds. A selected device, the 
8008-1, executes non-memory referencing instructions in 12.5 microseconds when operating from an 
800kHz clock. 

All inputs (including clocks) are TTL compatible and all outputs are low-power TTL compatible. 

The instruction set of the 8008 consists of 48 instructions including data manipulation, binary arith­
metic, and jump to subroutine. 

The normal program flow of the 8008 may be interrupted through the use of the "INTE RRUPT" 
control line. This allows the servicing of slow I/O peripheral devices while also executing the main 
program. 

The "READY" command line synchronizes the 8008 to the memory cycle allowing any type or sp-eed 
of semiconductor memory to be used. 

STA TE and SYNC outputs indicate the state of the processor at any ti me in the instruction cycle. 

41 



11111111 INTERNAL DATA BUS 

/ t 
8 BIT DATA BUS 

Isp AODRES~I 
INTERNAL DATA BUS 

ISSS OR DOD 

1 -s S 1 .--

1 ~. 
ACCUMULATOR 

I REGISTER a I REGISTER b I MEMORY CYCLEGI INSTRUCTION REGISTER-l ADDRESS ~ 0:: I--
(8 BITS) (8 BITS) CONTROL CODING (8 BITS) POINTER ~ :5 f.- 0 ~ f-t AND 

• A H L \!~ ~8f-t 

t • """" ~~l--n~~ 
SCRATCH PAD 

- f-enf-t MEMORY 
r~f.- <tenf.to u:;, a::l&,I 

~ r. REGISTER ~::IE ~~fto 7 WORDS X 8 BITS 

CARRY AND ~~ LOOK AHEAD ARITHMETIC I 
(8 BITS) INSTRUCTION MEMORY 

UNIT 

~ 
f---

AND I DECODER r--- MEMORY 
CONTROL I/O CONTROL H REFREs~l MULTIPLEXER AND 

COUNTER -
8 - BIT PARALLEL 

REFRESH 

ARITHMETIC 
AMPLIFIERS ... UNIT r.. I-;JJ J I 

I ~ 
r--f.-

r t 
, 

t + ~ ~ ~ 
ADDRESS STACK AND 

en 
en 0:: PROGRAM COUNTER 

CONDITION .1 MACHINE 1 
LULU 

~:5!-Jo STACK ~ x 
FLIP-FLOPS (Z,C,S,P) CYCLE I-- 0 LU f-t ~ gl: 8 WORDS. 14 BITS 

AND CONDITION 
1 CONTROL 1 POINTER <t g 

l<~ 
I • >::f- f-t U of.-

LOGIC 
U...J 

I I ;'!::> ~ f.-
• I 

",::IE 
L-- L--

STATE TIMING 

GENERATOR 
STATUS :: 
SIGNALS • 

!t~'! I lU ~ 
INT. 

FF F.F 

S2 51 So 
SYNC ¢2 ¢I 

READY INTERRUPT 

Figure 3. 8008 Block Diagram 



III. BASIC FUNCTIONAL BLOCKS 

The foOr basic functional blocks of this Intel processor are the instruction register, memory, arithmetic­
logic unit, and I/O buffers. They communicate with each other over the internal 8-bit data bus. 

A. Instruction Register and Control 

The instruction register is the heart of all processor control. I nstructions are fetched from memory, stored 
in the instruction register, and decoded for control of both the memories and the ALU. Since instruction 
executions do not all require the same number of states, the instruction decoder also controls the state 
transitions. 

B. Memory 

Two separate dynamic memories are used in the 8008, the pushdown address stack and a scratch pad. 
These internal memories are automatically refreshed by each WAIT, T3, and STOPPED state. In the worst 
case the memories are completely refreshed every eighty clock periods. 

1. Address Stack 

The address stack contains eight 14-bit registers providing storage for eight lower and six higher 
order address bits in each register. One register is used as the program counter (storing the effective 
address) and the other seven permit address storage for nesting of subroutines up to seven levels. 
The stack automatically stores the content of the program counter upon the execution of a CALL 
instruction and automatically restores the program counter upon the execution of a RETURN. The 
CALLs may be nested and the registers of the stack are used as last in/first out pushdown stack. 
A three-bit address pointer is used to designate the present location of the program counter. When 
the capacity of the stack is exceeded the address pointer recycles and the content of the lowest 
level register is destroyed. The program counter is incremented immediately after the lower order 
address bits are sent out. The higher order address bits are sent out at T2 and then incremented 
if a carry resulted from T1. The 14-bit program counter provides direct addressing of 16K bytes 
of memory. Through the use of an I/O instruction for bank switching, memory may be indefinitely 
expanded. 

2. Scratch Pad Memory or I ndex Registers 

The scratch pad contains the accumulator (A register) and six additional 8-bit registers (B, C, D, 
E, H, L). All arithmetic operations use the accumulator as one of the operands. All registers are 
independent and may be used for temporary storage. In the case of instructions which require 
operations with a register in external memory, scratch pad registers H & L provide indirect ad­
dressing capability; register L contains the eight lower order bits of address and register H contains 
the six higher order bits of address (in this case bit 6 and bit 7 are "don't cares"). 

C. Arithmetic/Logic Unit (ALU) 

All arithmetic and logical operations (ADD, ADD with carry, SUBTRACT, SUBTRACT with borrow, 
AND, EXCLUSIVE OR, OR, COMPARE, INCREMENT, DECREMENT) are carried out in the 8-bit 
parallel arithmetic unit which includes carry-look-ahead logic. Two temporary resisters, register "a" and 
register lib", are used to store the accumulator and operand for ALU operations. I n addition, they are 
used for temporary address and data storage during intra-processor transfers. Four control bits, carry 
flip-flop (c) , zero flip-flop (z) , sign flip-flop (s) , and parity flip-flop (p) , are set as the result of each 
arithmetic and logical operation. These bits pro\lide conditional branching capability through CALL, 
JUMP, or RETURN on condition instructions. In addition, the carry bit provides the ability to do mul­
tiple precision binary arithmetic. 

D. I/O Buffer 

This buffer is the only link between the processor and the rest of the system. Each of the eight buffers 
is bi-directional and is under control of the instruction register and state timing. Each of the buffers is 
low power TTL compatible on the output and TTL compatible on the input. 

43 



IV. BASIC INSTRUCTION SET 

The following section presents the basic instruction set of the 8008. 

A. Data and Instruction Formats 

Data in the 8008 is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be 
in the same format. 

I 0 7 0 6 05 0 4 0 3 O2 0 1 DO I 
DATA WORD 

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored 
in successive words in program memory. The instruction formats then depend on the particular operation 
executed. 

One Byte Instructions 

I D7 D6 DS D4 D3 D2 Dl DO I 
Two Byte Instructions 

I D7 D6 DS D4 D3 D2 Dl DO I 
I D7 D6 DS D4 D3 D2 Dl DO! 

Three Byte Instructions 

I D7 D6 DS D4 D3 D2 Dl DO I 
I D7 D6 DS D4 D3 D2 Dl Dol 

Ix X DS D4 D3 D2 Dl Dol 

OPCODE 

OPCODE 

OPERAND 

OP CODE 

LOW ADDRESS 

HIGH ADDRESS' 

TYPICAL INSTRUCTIONS 

Register to register, memory reference, 
110 arithmetic Or logical, rotate or 
return instructions 

I mmedlate mode instructions 

JUMP or CALL instructions 

+For the third byte of this instruction, D6 and D7 are "don't care" bits. 

For the MCS-8 a logic "1" is defined as a high level and a logic "0" is defined as a low level. 

B. Summary of Processor Instructions 

Index Register Instructions 
The load instructions do not affect the flag flip-flops. The increment and decrement instructions affect all flip­
flops except the carry. 

MINIMUM INSTRUCTION CODE 
MNEMONIC STATES ~D6 0 5 0 4 0 3 ~Dl DO DESCRIPTION OF OPERATION 

REQUIRED 

(1) Lr1r2 (5) 1 1 0 0 0 S S S Load index register r1 with the content of index register r2. 
\:lJ LrM (8) 1 1 D -0 0 1 1 1 Load index register r with the content of memory register M. 

LMr (7) 1 1 1 1 1 S S S Load memory register M with the content of index register r. 
(3JLrl (8) 0 0 0 0 0 1 1 0 Load index register r with data B , .. B. 

B B B B B B B B 

LMI (9) 0 0 1 1 1 1 1 0 Load memory register M with data B ... B. 
B B B B B B B B 

INr (5) 0 0 o oj 0 0 0 0 Increment the content of index register r (r -I AI. 

OCr (5) 0 0 o q 0 0 0 1 Decrement the content of index register r (r -I AI. 

Accumulator Group Instructions 

The result of the ALU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-flop. 

AOr (5) 1 0 0 0 0 S S S Add the content of index register r, memory register M. or data 
ADM (8) 1 0 0 0 0 1 1 1 B , . , B to the accumulator. An overflow (carry) sets the carry 
AOI (8) 0 0 0 0 0 1 0 0 flip-flop. 

B B B B B B B B 

ACr (5) 1 0 0 0 1 S S S Add the content of index register r, memory register M, or data 

ACM (8) 1 0 0 0 1 1 1 1 B ..• B to the accumulator with carry. An overflow (carry) 

ACI (8) 0 0 0 0 1 1 0 0 sets the carry flip-flop. 

B B B B B B B B 

SUr (5) 1 0 0 1 0 S S S Subtract the content of index register r, memory register M. or 

SUM (8) 1 0 () 1 0 1 1 1 data B .•. B from the accumulator. An underflow (borrow) 

SUI (8) 0 0 0 1 0 1 0 0 sets the carry flip-flop. 

B B B B B B B B 

SBr (51 1 0 0 1 1 S S S Subtract the content of index register r, memory register M, or data 

SBM (8) 1 0 0 1 1 1 1 1 data B •.• B from the accumulator with borrow. An underflow 

SBI (8) 0 0 0 1 1 1 0 0 (borrow) sets the carry flip-flop, 

B B B B B B B B 

44 



MINIMUM INSTRUCTION CODE 

MNEMONIC STATES 0 7 0 6 Os 0 4 0 3 ~Dl ~ DESCRIPTION OF OPERATION 

REQUIRED 

NOr (5) 1 0 1 0 0 S S S Compute the logical AND of the content of index register r, 

NOM (8) 1 0 1 0 0 1 1 1 memory register M, or data 8 ... 8 with the accumulator. 

NDI (8) 0 0 1 0 0 1 0 0 

8 8 8 8 8 8 8 8 

XRr (5) 1 0 1 0 1 S S S Compute the EXCLUSIVE OR of the content of index register 

XRM (8) 1 0 1 0 1 1 1 1 r, memory register M, or data B ... 8 with the accumulator. 

XRI (8) 0 0 1 0 1 1 0 0 

8 B 8 8 B B B 8 

ORr (5) 1 0 1 1 0 S S S Compute the INCLUSIVE OR of the content of index register 

ORM (8) 1 0 1 1 0 1 1 1 r, memory register m, or data B ... B with the accumulator. 
ORI (8) 0 0 1 1 0 1 0 0 

8 B B B B B B B 

CPr (51 1 0 1 1 1 S S S Compare the content of index register r, memory register M, 

CPM (8) 1 0 1 1 1 1 1 1 or data B ... B with the accumulator. The content of the 

CPI (8) 0 0 1 1 1 1 0 0 accumulator is unchanged. 

B B B B B B B B 

RLC (5) 0 0 0 0 0 0 1 0 Rotate the content of the accumulator left. 

RRC (5) 0 0 0 0 1 0 1 0 Rotate the content of the accumulator right. 

RAL (5) 0 0 0 1 0 0 1 0 Rotate the content of the accumulator left through the carry. 

RAR (5) 0 0 0 1 1 0 1 0 Rotate the content of the accumulator right through the carry. 

Program Counter and Stack Control Instructions 

(4) JMP (11 ) 0 1 X X X 1 0 0 Unconditionally jump to memory address B3 ... B3B2 ... B2. 

B2 B2 B2 B2 B2 B2 B2 B~ 
X X B3 B3 B3 83 83 83 

(5) JFc (90rll) 0 1 0 C4 C3 0 0 0 Jump to memory address 83 ... 8382 ... 82 if the condition 

82 82 82 B2 B2 B2 B2 B2 flip-flop c is false. Otherwise, execute the next instruction in sequence. 
X X B3 B3 B3 B3 B3 B 

JTc (9 or 11) 0 1 1 C4 C 3 0 0 0 Jump to memory address B3 ... B3B2 ... B2 if the condition 

B2 B2 B2 ~ B2 ~ B2~ flip-flop c is true. Otherwise, execute the next instruction in sequence. 
X X B3 B3 B3 B3 B3 B3 

CAL (11 ) 0 1 X X X 1 1 0 UnconditionallY call the subroutine at memory address B3 .•. 

~ B2 B2 B2 B2 B2 B2 B2 B3B2 ... B2. Save the current address (up one level in the stack), 
X X B3 B3 B3 B3 B3 B3 

CFc (9 or 11) 0 1 0 C4 C3 0 1 0 Call the subroutine at memory address B3 ... B3B2 ... B2 if the 

~ B2 B2 B2 B2 B2 B2 B2 condition flip-flop c is false, and save the current address (up one 
X X B3 B3 B3 B3 B3 B3 level in the stack'! Otherwise, execute the next instruction in sequence. 

CTc (9 or 11) 0 1 1 C4 C 3 0 1 0 Call the subroutine at memory address B3 ... B3B2 ..• B2 if the 

~ B2 B2 B2 B2 82 B2 B2 condition flip-flop c is true, and save the current address (up one 
X X B3 B3 B3 B3 B3 B3 level in the stack!' Otherwise, execute the next instruction in sequence,. 

RET (5) 0 0 X X X 1 1 1 Unconditionally return (down one level in the stack!. 

RFc (3 or 5) 0 0 0 C4 C3 0 1 1 Return (down one level in the stack) if the condition flip-flop c is 

false. Otherwise, execute the next instruction in sequence. 

RTc (3 or 5) 0 0 1 C4 C3 0 1 1 Return (down one level in the stack) if the condition flip-flop c is 

true. Otherwise, execute the next instruction in sequence. 

RST (5) 0 0 A A A 1 0 1 Call the subroutine at memory address AAAOOO (up one level in the stack!' 

Input/Output Instructions 
INP (8) 0 1 0 0 M M M 1 Read the content of the selected input port (MMM) into the 

accu mulator. 

OUT (5) 0 1 R R M M M 1 Write the content of the accumulator into the selected output 

port (RRMMM, RR if. 001. 

Machine Instruction 
HLT (4) o 0 000 o 0 X Enter the STOPPED state and remain there until interrupted. 

HLT (4) Enter the STOPPED state and remain there until interrupted. 

NOTES: 
(1) SSS ; Source Index Register } These registers, fj, are designated A(accumuiator-OOOI. 

DOD; Destination Index Register B{OOll, C(010), 0(0111. E(100), H{1011, L{110!. 
(2) Memory registers are addressed by the contents of registers H & L. 
(3) Additional bytes of instruction are designated by BBBBBBBB. 
(4) X ; "Don't Care". 
(5) Flag flip-flops are defined by C4C3: carry (DO-overflow or underflow), zero (Ol-result is zero), sign (1 O-MSB of result is "1 "), 

parity (11-parity is even). 

45 



C. Complete Functional Definition 

The following pages present a detailed description of the complete 8008 Instruction Set. 

Symbols 

<B2> 

<B3> 
r 

M 

( ) 

1\ 

-V­

V 

Am 
STACK 

P 

xxx 
SSS 

DOD 

Meaning 

Second byte of the instruction 

Third byte of the instruction 

One of the scratch pad register references: A, B, C, 0, E, H, L 

One of the following flag flip-flop references: C, Z, S, P 

Flag flip-flop codes 
00 carry 
01 zero 
10 sign 
11 parity 

Condition for True 
Overflow, underflow 
Result is zero 
MSB of result is "1" 
Parity of result is even 

Memory location indicated by the contents of registers Hand L 

Contents of location or register 

Logical product 

Exclusive "or" 

Inclusive "or" 

Bit m of the A-register 

I nstruction counter (P) pushdown register 

Program Counter 

Is transferred to 

A II don't care" 

Source register for data 

Destination register for data 

Register # Register Name 
(SSS or DOD) 

000 
001 
010 
011 
100 
101 
110 

A 
B 
C 
o 
E 
H 
L 

46 



INDEX REGISTER INSTRUCTIONS 

LOAD DATA TO INDEX REGISTERS - One Byte 
Data may be loaded into or moved between any of the index registers, or memory registers. 

Lr,r2 11 DDD SSS (r,)-(r2) Load register r, with the content of r2' 
(one cycle - PCI) The content of r2 remains unchanged. If SSS=DDD, 

LrM 
(two cycles -
PCI/PCR) 

LMr 
(two cycles -
PCI/PCW) 

11 DDD 111 

11 111 SSS 

LOAD DATA IMMEDIATE - Two Bytes 

the instructio'n is a NOP (no operation). 

(r)-(M) Load register r with the content of the 
memory location addressed by the contents of 
registers Hand L. (DDDi111 - HALT instr.) 

(M)-(r) Load the memory location addressed by 
the contents of registers Hand L with the content 
of register r. (SSSi111 - HALT instr.) 

A byte of data immediately following the instruction may be loaded into the processor or into the 
memory 

Lri 00 DDD 110 
(two cycles - <B2> 
PCI/PCR) 

LMI 00 111 110 
(three cycles - < B2> 
PCI/PCR/PCW) 

INCREMENT INDEX REGISTER - One Byte 

INr 00 DDD 000 
(one cycle - PCI) 

DECREMENT INDEX REGISTER - One Byte 

DCr 00 DDD 001 
(one cycle - PCI) 

(r) - <B2 > Load byte two of the instruction into 
register r. 

(M) - <B2> Load byte two of the instruction into 
the memory location addressed by the contents of 
registers Hand L. 

(r) - (r)+1. The content of register r is incremented by 
one. All of the condition flip-flops except carry are 
affected by the result. Note that DDDiOOO (HALT 
instr.) and DDDi111 (content of memory may not 
be incremented). 

(r)-(r)-1. The content of register r is decremented 
by one. All of the condition flip-flops except carry 
are affected by the result. Note that DDDiOOO (HALT 
instr.) and DDDi111 (content of memory may not be 
decremented) . 

ACCUMULATOR GROUP INSTRUCTIONS 

Operations are performed and the status flip-flops, C, Z, S, P, are set based on the result of the operation. 
Logical operations (NDr, XRr, ORr) set the carry flip-flop to zero. Rotate operations affect only the 
carry flip-flop. Two's complement subtraction is used. 

ALU INDEX REGISTER INSTRUCTIONS - One Byte 
(one cycle - PCI) 
Index Register operations are carried out between the accumulator and the content of one of the index 
registers (SSS=OOO thru SSS=110). The previous content of register SSS is unchanged by the operation. 

ADr 10 000 SSS (A)-(A)+( r) Add the content of register r to the 
content of register A and place the result into 
register A. 

ACr 10 001 SSS (A)-(A)+(r)+(carry) Add the content of register r 
and the contents of the carry flip-flop to the content 
of the A register and place the result into Register A. 

SUr 10 010 SSS (A)-(A)-(r) Subtract the content of register r from 
the content of register A and place the result into 
register A. Two's complement subtraction is used. 



ACCUMULATOR GROUP INSTRUCTIONS - Cont'd. 

SBr 10 all SSS 

NDr 10 100 SSS 

XRr 10 101 SSS 

ORr 10 110 SSS 

CPr 10 111 SSS 

ALU OPERATIONS WITH MEMORY - One Byte 
(two cycles - PCI/PCR) 

(A)-(A)-(r)-(borrow) Subtract the content of 
register r and the content of the carry flip-flop from 
the content of register A and place the result into 
register A. 

(A)-(A) I\(r) Place the logical product of the register 
A and register r into register A. 

(A)-(A)V(r) Place the "exclusive - or" of the 
content of register A and register r into register A. 

(A)-(A)V(r) Place the "inclusive - or" of the 
content of register A and register r into register A. 

(A)-(r) Compare the content of register A with 
the content of register r. The content of register A 
remains unchanged. The flag flip-flops are set by the 
result of the subtraction. Equality (A=r) is indicated 
by the zero flip-flop set to "1". Less than (A<r) is 
indicated by the carry flip-flop, set to "1". 

Arithmetic and logical operations are carried out between the accumu lator and the byte of data 
addressed by the contents of registers Hand L. 

ADM 10 000 111 
ACM 10 001 111 
SUM 10 010 111 
SBM 10 all 111 
NOM 10 100 111 
XRM 10 101 111 
ORM 10 110 111 
CPM 10 111 111 

ALU IMMEDIATE INSTRUCTIONS - Two Bytes 
(two cycles -PCI/PCR) 

(A}-(A)+(M) ADD 

(Al-(AI+(M)+(carry) ADD with carry 

(A)-(A)-(M) SUBTRACT 

(A)-(A)-(M)-(borrow) SUBTRACT with borrow 

(A)-(A) I\(M) Logical AND 

(A)-(A)V(M) Exclusive OR 

(A)-(A)V(M) Inclusive OR 

(A)-(M) COMPARE 

Arithmetic and logical operations are carried out between the accumulator and the byte of data 
immediately following the instruction. 

ADI 00 000 100 (A)-(A)+<B2> 
<B2> 

ACI 00 001 
<B2> 

SUI 00 010 
<B2> 

SBI 00 all 
<B2> 

NDI 00 100 
<B2> 

XRI 00 101 
< B2> 

ORI 00 110 
<B2> 

CPI 00 111 
<B2> 

100 

100 

100 

100 

100 

100 

100 

ADD 

(A)-(A)+<B2>+(carry) 
ADD with carry 

(A)-(A)-<B2> 
SUBTRACT 

(A)--(A)-<B2> -(borrow) 
SUBTRACT with borrow 

(A)-(A)I\<B2> 
Logical AND 

(A)-(A)V <B2> 
Exclusive OR 

(A)-(A)V <B2> 
Inclusive OR 

(A)- <B2> 
COMPARE 

48 



ROTATE INSTRUCTIONS - One Byte 
(one cycle - PC I) 
The accumulator content (register A) may be rotated either right or left, around the carry bit or 
through the carry bit. Only the carry flip-flop is affected by these instructions; the other flags are 
unchanged. 
RLC 

RRC 

00 000 

00 001 

010 

010 

Am+,-Am, Ao-A7, (carry)-A7 
Rotate the content of register A left one bit. 
Rotate A7 into Ao and into the carry flip-flop. 

Am-Am+, , A 7-Ao, (carry)-Ao 
Rotate the content of register A right one bit. 
Rotate Ao into A7 and into the carry flip-flop. 

RAL 00 010 010 A m+,-Am.Ao-(carrY),(carry)-A7 
Rotate the content of Register A left one bit. 
Rotate the content of the carry flip-flop into AQ • 

Rotate A7 into the carry flip-flop. 

RAR 00 all 010 A m-Am+,.A7 -(carry), (carry)-Ao 
Rotate the content of register A right one bit. 
Rotate the content of the carry flip-flop into A 7. 
Rotate Ao into the carry flip-flop. 

PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS 

JUMP INSTRUCTIONS - Three Bytes 
(three cycles - PCI/PCR/PCR) 
Normal flow of the microprogram may be altered by jumping to an address specified by bytes two 
and three of an instruction. 
JMP 01 XXX 100 (P)-<B3><B2> Jump unconditionally to the 
(Jump Unconditionally) <B2> 

<B3> 

JFc 01 OC4C3 
(Jump if Condition <~> 
False) <B3> 

JTc 01 1C4C3 
(Jump if Condition < B2> 
True) <B3> 

CALL INSTRUCTIONS - Three Bytes 
(three cycles - PCI/PCR/PCR) 

000 

000 

instruction located in memory location addressed 
by byte two and byte three. 

If (c) = 0, (P)-<B3> <B2>. Otherwise, (Pl = (P)+3. 
If the content of flip-flop c is zero, then jump to 
the instruction located in memory location <B3> <B2> 
otherwise, execute the next instruction in sequence. 

If (c) = 1, (P)-<B3> <B2>' Otherwise, (P) = (P)+3. 
If the content of flip-flop c is one, then jump to the 
instruction located in memory location <B3> <B2> ; 
otherwise, execute the next instruction in sequence. 

Subroutines may be called and nested up to seven levels. 
CAL 01 XXX 110 (Stack)-(P), (P)-<B3> <B2>. Shift the content of P 
(Call subroutine < B2> to the pushdown stack. Jump unconditionally to the 
Unconditionally) < B3> instruction located in memory location addressed by 

CFc 
(Call subroutine 
if Condition False) 

CTc 
(Call subroutine 
if Condition True) 

01 

01 

OC4 C3 010 
< B2> 
<B3> 

1C4 C3 010 
<B2> 
<B3> 

byte two and byte three. 

If (c) = 0, (Stack)-(P), (P)-<B3><B2>. Otherwise, 
(P) = (P)+3. If the content of flip-flop c is zero, then 
shift contents of P to the pushdown stack and jump 
to the instruction located in memory location<B3><B2> 
otherwise, execute the next instruction in sequence. 

If (c) = 1, (Stack)-(P), (P)-<B3> <B2>. Otherwise, 
(P) = (P)+3. If the content of flip-flop c is one, then 
shift contents of P to the pushdown stack and jump 
to the instruction located in memory location<B3> < B2>; 
otherwise, execute the next instruction in sequence. 

In the above JUMP and CALL instructions < B2 > contains the least significant half of the address and 
<B3> contains the most significant half of the address. Note that 0 6 and 0 7 of<B3>are "don't care" 
bits since the CPU uses fourteen bits of address. 

49 



RETURN INSTRUCTIONS - One Byte 
(one cycle - PC I) 
A return instruction may be used to exit from a subroutine; the stack is popped-up one level at a time. 

RET 00 XXX 111 (P)-(Stack). Return to the instruction in the memory 
location addressed by the last value shifted into the 
pushdown stack. The stack pops up one level. 

RFc 
(Return Condition 
False) 

RTc 
(Return Condition 
True) 

RESTART INSTRUCTION - One Byte 
(one cycle - PCI) 

If (c) = 0, (P)-(Stack); otherwise, (P) = (P}+1. 
If the content of flip-flop c is zero, then return to 
the instruction in the memory location addressed by 
the last value inserted in the pushdown stack. The stack 
pops up one level. Otherwise, execute the next instruction 
in sequence. 

If (c) = 1, (P)-(Stack); otherwise, (Pl = (P}+1. 
If the content of flip-flop c is one, then return to 
the instruction in the memory location addressed by 
the last value inserted in the pushdown stack. The stack 
pops up one level. Otherwise, execute the next instruction 
in sequence. 

The restart instruction acts as a one byte call on eight specified locations of page 0, the first 256 instruction 
words. 

RST 00 AAA 101 (Stack)-(P),(P)-(OOOOOO OOAAAOOO) 
Shift the contents of P to the pushdown stack. 
The content, AAA, of the instruction register is 
shifted into bits 3 through 5 of the P-counter. All 
other bits of the P-counter are set to zero. As a one­
word "call", eight eight-byte subroutines may be 
accessed in the lower 64 words of memory. 

INPUT/OUTPUT INSTRUCTIONS 
One Byte 

(two cycles - PCI/PCC) 
Eight input devices may be referenced by the input instruction 

INP 01 OOM MM1 (A)-(input data lines). The content of register A 
is made available to external equipment at state T1 
of the PCC cycle. The content of the instruction 
register is made available to-external equipment at 
state T2 of the PCC cycle. New data for the 
accumulator is loaded at T3 of the PCC cycle. 
MMM denotes input device number. The content of the 
condition flip-flops, S,Z,P,C, is output on °0 , °1 , °2 , 03 
respectively at T4 on the PCC cycle. 

Twenty-four output devices may be referenced by the output instruction. 

OUT 01 RRM MM1 (Output data lines)-(A). The content of register A 
is made available to external equipment at state T1 
and the content of the instruction register is made 
available to external equipment at state T2 of the PCC 
cycle. R RMMM denotes output device number (R R =f 
00). 

MACHINE INSTRUCTION 
HALT INSTRUCTION - One Byte 

(one cycle - PCI) 

HL T 00 000 OOX 
or 

11 111 111 

On receipt of the Halt I nstruction, the activity of the 
processor is immediately suspended in the STOPPED 
state. The content of all registers and memory is un­
changed. The P-counter has been updated and the 
internal dynamic memories continue to be refreshed. 

50 


	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50

