Zendex
 ZX-200A Single Board Diskette Controller

Zendex
 ZX-200A Single Board Diskette Controller

Pub. \# 98-200A
Copyright (c) 1981 Zendex Corporation
6644 Sierra Lane
Dublin, CA 94566-9990
(415) 828-3000
TWX-910-389-4009

Specifications subject to change without notice. Intel, Intellec and Multibus are trademarks of Intel Corporation.

WARRANTY

All products are warranted against defects in material and workmanship under normal and proper use and in their original unmodified condition. If found defective by Zendex Corp. within the terms of this warranty, Zendex Corp.'s sole obligation shall be to repair or replace at Zendex Corp.'s option the defective product. If Zendex Corp. determines that the product is not defective within the terms of this warranty, customer shall pay all costs of handling and return transportation. All replaced products become the property of Zendex Corp. As a condition of this warranty, customer must obtain a Zendex Corp. Return Material Authorization Number, and must return all products, transportation prepaid and insured, to Zendex Corp.'s Dublin, CA facility or other specified location.

Transportation charges for the return to customer shall be paid by Zendex Corp. within the contiguous United States only. These warranties outside the contiguous United States are limited to repair or replacement only and exclude all costs of shipping, customs clearance, and other related charges. Except for the express warranties stated above, Zendex Corp. disclaims all warranties on products, including all implied warranties of merchantability and fitness; and the stated express warranties are in lieu of all obligations or liabilities on the part of Zendex Corp. for damages, the use or performance with this product.

Warranty period is one (1) year from date of original shipment. Warranty registration card must be returned to Zendex for warranty to be in effect.

SERVICE POLICY

If a product should fail during the warranty period, it will be repaired for free. There will be a service charge for repair of a product after the warranty period. If a product exhibits misuse, negligence, or user misconnection, the failure will be treated as an out-of-warranty repair.

To return a product for in-warranty repair, first reverify that the unit is indeed at fault. Then, call the factory for Return Material Authorization (RMA) Number. The product should be carefully packaged and shipped prepaid using the provided RMA number on the outside of the package. Include a short statement of the malfunction, along with return address information, and the telephone number of a technical contact, in case the need arises.

For out of warranty repairs, a purchase order for repair charges must also be included.

Items should not be returned freight collect, as they will not be accepted. It is absolutely necessary to return products in the manner stated here, otherwise considerable delay will result in processing the return.

OUT OF WARRANTY REPAIRS

After the warranty has expired, or if no warranty registration is on file, any Zendex board product will be repaired or replaced (at Zendex's option) for a flat fee of $\$ 100$, provided, in Zendex's opinion, the product has not been abused, misused, modified or damaged. Otherwise there will be a time and materials charge for returning it to original condition. This policy is subject to cancellation, modification, and change without notice.

Table of Contents

page
Chapter 1 - General Information
Introduction 1
Description 1
Equipment Supplied 2
Compatible Equipment 2
Specifications 3
Chapter 2 - Preparation for Use
Introduction 4
Unpacking and Inspection 4
Installation Considerations 5
Jumper/Trace Cut Options 8
Chapter 3 - Operating System 11
Chapter 4 - Programming Information 16
Introduction 16
Operational Modes 16
I/O Parameter Block 17
Disk Commands 25
Channel Commands 28
Chapter 5 - Controller 33
Introduction 33
Interrupts 33
I/O Base Address Selection 33
Drive Interface 33
Multibus Interface 36
Board Location Considerations 36
Controller Features 47
Controller Operation 44
Appendix 46
Figure A - ZX-85 Minimum Diskette SystemSchematicComment Card
Bill of Materials

Figures

page
Figure 1 - The ZX-200A (photo) 1
Figure 2 - Jumper Adaptions 7
Figure 4.1 - IOPB Byte 1 - Channel Word 18
Figure 4.2 - Summary of Byte One of the IOPB 21
Figure 4.3 - IOPB Byte Two - Diskette Information 21
Figure 4.5 - Port 7B 8B Read Result Byte 30
Figure 5.1 - Ribbon Connections 34
Figure 5.2-Bus Access Timing 37
Figure 5.3-8219 Set-up and Hold Timing 37
Figure 5.4 - Implemented Serial Priority Network 41
Figure A - ZX-85 Minimum Diskette System 47
Tables
Table 1 - ZX-200 Specifications 3
Table 2 - Jumper Trace Cut Options 8
Table 3.1 - Drive Number Assignments 11
Table 3.2 - Drive Assignments for MDS-800 \& MDS-230 13
Table 4.1 - Op Code 22
Table 4.2 - Unit Select, Bit 4-5 23
Table 4.3-Status Word 29
Table 4.4 - Read Result Type 30
Table 5.l - Signals at Drive Interface Jl 35
Table 5.2 - Multibus Pin Assignments 38
Table 5.3-Multibus Signal Descriptions 39

Chapter 1 - General Information

1.1 Introduction

The ZX-200A is a single-board floppy disk controller which is able to interface from one to four eight-inch single density (FM) or double density (MMFM) disks to the multibus structure The controller allows up to four single sided drives to be used, thus providing up to two megabytes of storage.

1.2 Description

The ZX-200A utilizes an 8085A microprocessor and 8257 DMA controller to perform all disk controller functions. Single or double density operation is under software control, and full emulation of standard Intel disk systems is possible. The ZX-200A can fully replace the intel disk controller boards used in the MDS-800 and MDS 220/230 Development Systems, and can operate under ISIS-II software. The $Z X-200 A$ uses one Multibus card slot.

Figure 1 - ZX-200A

Zendex Corporation has been licensed by Micromation Corporation to build the $\mathrm{ZX}-200 \mathrm{~A}$ using the Micromation MM-SBC-80F Multibus Floppy Disk Controller printed circuit artwork. Thus the layout, configuration, and features of the $Z X-200 A$ match the MM-SBC-80F. The Micromation manufactured board sold by zendex was known as Model ZX-200

1.3 Equipment Supplied

The following equipment is supplied with the $\mathrm{ZX}-200 \mathrm{~A}$:
ZX-200A Hardware Reference Manual; with Schematic Diagram D200-01A; and Assembly Diagram

1.4 Compatible Equipment

CPU: The $\mathrm{ZX}-200 \mathrm{~A}$ is compatible with any CPU, which is multibus compatible and is capable of multimaster operation, such as:

$$
\begin{aligned}
& \text { ZX-85, } 88,86 \\
& \text { SBC-80/10B, } 80 / 20,80 / 24,80 / 30 \\
& \text { SBC-86/12A } \\
& \text { ZX-80/05 }
\end{aligned}
$$

Disk Drive: The $\mathrm{ZX}-200 \mathrm{~A}$ is compatible with the following drives or their equivalents:

Shugart Associates 800/801
Memorex 550/552 CDC 9404

Host Software: The $\mathrm{ZX}-200 \mathrm{~A}$ is compatible with the following software: ISIS-II (Intel)

CP/M for MDS
Intel FORTRAN, BASIC
UCSD PASCAL for CP/M
Intel PLM, RMS-80 (Host)
Emulation: The $Z X-200 A$ emulates and can replace the following Intel disk controllers:

Single Density - SBC-201, SBC-211, SBC-212, MDS-2DS, MDS-710 Double Density - SBC-202, MDS-DDS, MDS-720

The ZX-200A when sold in combination with the Zendex ZX-730 Dual Drive Unit, is known as ZX-710/720 Mod 200A.

1.5 Specifications

Table 1

ZX-200 Specifications

Operation Modes	Single Density (FM) Ports 88H-8FH Double Density (MMFM) Ports 78H-7FH
System Bus Interface	Compatible with MULTIBUS specifications See Intel publication 9800083-02
Floppy Disk Dive Interface	Accommodates Shugart 800 Series standard size disk drive (8 inch)
Power Requirement	+5 volts at 2.75A (TYP)
Temperature	0 degrees to 40 degrees Centigrade
Humidity	0 to 90 percent RH non-condensing Dimensionsl2 inches long 0.75 inches wide inches deep (one card slot)
Weight	14 ounces

Chapter 2 - Preparation for Use

2.1 Introduction

This chapter provides information on preparing and installing the $Z X-200$ A. Included are instructions on unpacking and inspection as well as information on installation procedure.

2.2 Unpacking and Inspection

Inspect the shipping carton immediately upon receipt for evidence of mishandling during transit. If the shipping carton is severely damaged or waterstained, request that the carrier's agent be present when the carton is opened. If the carrier's agent is not present, and the contents of the carton are damaged, keep the carton and packing material for the agent's inspection.

For repair to a product damaged in shipment, contact zendex, Inc. to obtain further instructions. A purchase order will be required to complete the repair. A copy of the purchase order should be submitted to the carrier with your claim.

It is suggested that salvageable shipping cartons and packing material be saved for future use in the event the product must be shipped.

Please fill out warranty card immediately and return to zendex. This is your only way to receive regular ECO information and various updates that may become available.

2.3 Installation Considerations

The $Z X-200 A$ is intended to replace the two-board Intel Diskette Controller set (Channel and interface boards). It should be inserted into the card slot that would have held the Intel Diskette Interface Board. In order to ensure that the ZX-200A connects properly to the bus resolving multibus signals (BPRN/, BPRO/, BREQ/), it must occupy an odd-numbered card slot in the MDS-800 only. Series II and III can be in any slot.

The user should be aware of the fact that the Intellec MDS 220 has a single density drive mounted in the cabinet next to the CRT. This drive is controlled by the IO controller board, which is located not in the card cage, but at the back of the cabinet. The $\mathrm{ZX}-200 \mathrm{~A}$ can still be plugged into the card cage, however, the original integrated single drive (ISD) will respond as :F4: under ISIS-II, rather than physical drive zero; and physical drive one will also respond as single density drive :F5:.

Before installing the $Z X-200 A$, turn off all system power and remove the front panel (MDS 220/230), or the top panel (MDS 800). If the Intel channel and interface boards are installed, first remove the cable from the interface board, then remove both boards. Allow the $Z X-200 A$ to run both the single and double density systems. The Intel disk controller must be removed.

Before installing the $Z X-200 A$, clean off the multibus and disk drive cable edge connector fingers with alcohol and for MDS800 plug the $Z X-200 \mathrm{~A}$ controller into an odd-numbered slot of the card cage.

If the $Z X-200 \mathrm{~A}$ has been purchased in conjunction with a ZX 710/720 MOD 200 System, all cabling necessary to connect the ZX200A to the $Z X-730$ disk drives is supplied. If the $Z X-200 A$ is purchased separately, a fifty-pin ribbon cable must be made. This must have a fifty-pin printed circuit connector in place at each end. This can connect the $Z X-200 A$ edge connector directly to four disk drives. The $\mathrm{ZX}-200 \mathrm{~A}$ connector is pin for pin compatible with Shugart SA800. The cable supplied with the Intellec MDS is of no use and may be set aside.

Refer to Figure 2, for the jumper options required of a Shugart SA80IR for use with the ZX-200A.

Figure 2 - Jumper Adaptions for $2 X-200 A$

2.4 Jumper/Trace Cut Options

Various jumper and trace cut options are offered to allow maximum flexibility when working with the $\mathrm{ZX}-200 \mathrm{~A}$. These are arranged as follows:

Jumpers			
Label	Function	Factory Default	Location
W1, W2	Drive Assignment Select These two jumpers allow four possible choices with respect to the various drive name and density assignments under CP/M or ISIS. However, the present firmware does not make use of these jumper positions; therefore, the user may configure these jumpers as desired and allow the software to read their states and branch accordingly. Remember, the current firmware does not use these jumpers.	Wl in W2 in	Near Ul 2
W3	Reserved for future use	W3 in	Near U43
($\mathrm{A}-\mathrm{B}-\mathrm{C}$)	Disk Drive Buffer Enable. This jumper allows the disk drive buffer to be either enabled permanently or to be enabled by the head load signal. Normally, the buffer should be enabled by the head load signal in order to qualify the disk control signals and avoid glitches on the drive select lines.	Head Load	Near Ull

Jumpers (continued)

Label	Function	Pactory Default	Location
TV	Daisy Chain Priority Resolution. The ZX-200A can operate either with daisy chain or parallel resolution. To select daisy chain resolution, install a jumper plug from T to V. For parallel resolution, leave the jumper plug out.	Installed	Near U67
G, H, J, $\mathrm{K}, \mathrm{L}, \mathrm{M}$, $\mathrm{N}, \mathrm{P}, \mathrm{R}$, and S	System Interrupt. G and H plated through holes are the outputs from the interrupt generator circuitry. A jumper is installed at the factory from G and H, to N (INT2/). This is the standard configuration. G represents an interrupt associated with addresses 88H to 8 FH , while H represents the same from 78 H to 7 FH .	$\begin{array}{r} \text { G-H-N } \\ \text { U7I-U73 } \end{array}$	Between
Trace Cut			
$A-B, \quad C-D$	Disable Controller for 78H or 88H*. There are four plated through holes in the PCB next to the U43. Each pair of holes is connected with a trace on the coponent side when shipped from the factory. Cut the trace between the hole pair closest to U43 and the $\mathrm{ZX}-200 \mathrm{~A}$ will not respond to addresses 78 H to 7 FH (usually, but not always for double density). Cut the other trace and the $Z X-200 A$ will not respondto addresses 88 H to 8 FH (always single density)	AB Connector CD Connector	Near U43 on component side

Label	Function	Factory Default	Location
Write Enable	Write Protect. There are two plated through holes between Ul2 and Ul3 which are connected by a trace on the solder side. If the trace is cut, the controller will not write to any of the disk drives connected to it.	Connected	Between Ul2, Ul3
G-H-J	Advance Acknowledge There are three plated through holes between U69 and U70. The one closest to the 86 -pin connector goes to the /AACK backplane signal and nowhere else. The other two holes are connected by a trace on the solder side and are connected to the /XACK backplane signal. Normally, the /XACK signal is the one that should be used, since the /AACK signal is being abandoned by various Multibus standards. However, should the user wish to use /AACK, cut the trace on the solder side and connect a jumper between the middle hole and the one closest to the 86-	$\begin{gathered} \mathrm{G}-\mathrm{H} \\ \text { connected } \\ \mathrm{H}-\mathrm{J} \text { open } \end{gathered}$	$\begin{aligned} & \text { Between } \\ & \text { U69, U70 } \end{aligned}$
* Note: In order to have the $Z X-200 A$ respond to addresses other than 78 H to 7 FH or 88 H to 8 FH , U43, the I/O MAP PROM, MAP23 at U43, must be changed by the user as desired. Zendex does not offer or support alternate PROMS. It should be kept in mind before changing PROMs that the factory PROM is compatible with CP/M and ISIS-II requirements.			

Chapter 3 - Operating System

The $Z X-200 A$ will run under either the $C P / M$ or ISIS-II operating systems. An important fact, which needs clarification at this point is how the disk drives are numbered according to recording density and operating system. Table 3-1 shows how the drive numbers are assigned.

Physical Drive	ISIS Drive	CP/M Drive	Single Density	Double Density
0	$:$ F0:	$\mathrm{A}:$		X
1	$:$ Fl:	$\mathrm{B}:$		X
2	$: F 3:$	None		X
3	$: F 4:$	None		X
0	$: F 5:$	$\mathrm{C}:$	X	
1	$\mathrm{D}:$	X		

Table 3.1 Drive Number Assignments

In order to bring up the operating system for a particular configuration, the double density system disk must be placed in Drive zero.

In a two drive Zendex or Intel double-density system, drive zero is on the right, drive one is on the left, and for the single density system, drive four is on the right, drive five is on the left. However, the situation becomes more complicated than
this, because a total of five drives could be utilized in an MDS220 system, where the drive next to the CRT is controlled by the I/O controller in the MDS $\mathbf{2} 20$ chassis, and up to four external drives may be controlled by the ZX-200A.

The main thing to remember is that the logical number of a physical drive depends on the density of the diskette inserted in it at the time.

If a drive has a single-density diskette inserted in it, the only possible logical numbers for that drive are either :F4: (C:) or :F5: (D:). If it has a double-density inserted in it, the only possible numbers for that drive are: :FO:(A:), :Fl:(B:), :F2: , :F3:. An attempt will be made to illustrate various drive number assignments for MDS-800, MDS-220 and MDS-230 Systems as a function of number of drives, density of diskette inserted. See the table on the following page.

Table 3.2
Drive Assignments for MDS-800, MDS-220

Drive Assignment Diskette			
	RH	LH	Density
MDS $-800 /$ MDS-230 MDS-800 Two-drive System	$\frac{1}{5}$	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { DD } \\ & \text { SD } \end{aligned}$
MDS-800/ MDS-230 MDS-800 Four-drive System	1 3 5	0 2 4	$\begin{aligned} & \text { DD } \\ & \text { DD } \\ & \text { SD } \end{aligned}$
MDS-220 MDS-220 Five-drive System	1 3 5	$\begin{aligned} & 0 \\ & 2 \\ & 4 \text { * } \end{aligned}$	$\begin{aligned} & \text { DD } \\ & \text { DD } \\ & \text { SD } \end{aligned}$
MDS-220 MDS-220 Three-drive System	1 5	$\begin{aligned} & 0 \\ & 4 * \end{aligned}$	$\begin{aligned} & \text { DD } \\ & \text { SD } \end{aligned}$

*Single-density drive \#4 always located in CRT chassis

The above illustration assumes that the $Z X-200 \mathrm{~A}$ is the only disk controller in the system aside from the IOC inside the MDSSeries II or III. The maximum number of drives in this case is five; four controlled by the $Z X-200 A$ and one controlled by the MDS-220 IOC.

CAUTION: If the $C P / M$ is used with the MDS-220, and the MDS-220 is controlling two external drives,the MDS-220 drive is always single density and with ISIS is drive four. However, with CP/M this drive is invisible to the operating system and is not accessable.

Once the system configuration is well understood, all cabling is in place and the $Z X-200 A$ jumpers and trace cuts are understood and implemented, the operating system may be loaded. This is done according to the type of system being used, as follows:

MDS-220/230 (All Series II or III)
(1) Apply power to the MDS-220/230 and to the floppy disk drives. A prompt will appear on the CRT indicating that the system monitor has been entered.
(2) Insert the double density ISIS or CP/M system disk in Drive zero with the label facing up or left depending on horizontal or vertical drive mounting, and close the door.
(3) Press the system RESET button. A disk access will take place, the operating system gets loaded, and the sign-on message and prompt are displayed.

MDS-800 and Zendex Models 835, 838

(1) Turn the power on/off key to the on position. Apply power to the drives.
(2) Insert the double density ISIS or CP/M system disk in drive zero with the label facing up or left depending on horizontal or vertical drive mounting, and close the door.
(3) Depress the top of the BOOT push button on the MDS-800 panel. This enables the bootstrap PROM.
(4) Press the top of the RESET push button. A disk access will take place and the Interrupt two light on MDS-800 will be illuminated.
(5) After the Interrupt two light turns on, hit the space bar of the system terminal device. The Interrupt two light turns off. A Zendex system will sign on at this point.
(6) Press the bottom of the BOOT push button to disable the bootstrap PROM. The operating system is loaded from disk, and the sign-on message and prompt are displayed.

Chapter 4 - Programming Information

4.1 Introduction

The $Z X-200 A$ operates in an Intel Intellec MDS environment and responds to CPU commands issued over the multibus. The $Z X-$ 200A therefore, conforms to the software protocol of the Intel controller boards that it replaces.

4.2 Operational Modes

The ZX-200A operates in two modes:
(1) When it hasn't been selected to perform a disk related function, it is in the IDLE MODE. In this mode, it is constantly looping through a routine that checks the status of the disk drives. If a change in the status is noticed (a disk is removed or inserted, for instance), an interrupt is sent to the CPU to register the change.
(2) During program execution, The $Z X-200 A$ is selected

- to perform diskette reads and writes
- to be reset
- to stop prematurely a group of linked disk operations (in single density operation only)
- to render diskette drive status to the CPU
- to indicate the result of an operation to the CPU

Each of the above operations is initiated by a CPU input or output to a specific port. There are two base addresses, one for single density operation and one for double density. (Although
the $\mathrm{ZX}-200 \mathrm{~A}$ reads or writes in both densities, Intel has separate floppy disk controllers for each density.)

The base address for single density operation is at 88 H and the base address for double density operation is 78 H .

4.3 I/O Parameter Block (IOPB)

The IOPB consists of ten (in single density operation) or seven (in double density operation) bytes of information which indicate the disk operation to be performed. The former has more bytes per IOPB because the original Intel single density controller permitted the linking of several IOPBs together. Several bits (see the description of the channel word) and bytes are present to accommodate this feature. The Intel double density controller does not include the linking feature.

The ten IOPB bytes are described on the following page. In the description, the first seven commands apply to both single and double density operation. The last three are used in single density only.

The IOPB is stored in main memory and thus is accessible by both the $\mathrm{zX}-200 \mathrm{~A}$ and the CPU.

The ten* IOPB bytes are:
Byte 1: Channel Word
Byte 2: Diskette Instruction
Byte 3: Number of Records
Byte 4: Track Address
Byte 5: Sector Address
Byte 6: Buffer Address (lower)
Byte 7: Buffer Address (upper)

* Byte 8: Block Number
* Byte 9: Next IOPB Address (lower)
* Byte 10: Next IOPB Address (upper)

The host CPU must write the IOPB to main memory. Once written, the host CPU instructs the $Z X-200 A$ as to the IOPB locations through I/O ports. These instructions are called channel commands and are explained later.

* Single density operations only.

IOPB Byte 1 - Channel Word

Figure 4.1
Channel Word

Bit 0, 1 - Wait, Branch on Wait
Single Density Mode (Port 88):

Bit 1	Bit 0	Action		
0	0	Immediately perform the current IOPB.		
0	1	Idle for ten MS after which the Wait bit (bit 0) is examined. This loop is exe- cuted until the wait bit is reset.		
1	1	Illegal 1		An unconditional jump to the l6-bit ad-
:---				
dress pointed to by bytes nine and				
ten of the IoPB. The next IOPB to be				
performed must be resident at this				
address.				

Double Density Mode (Port 78)

Bits zero and one are not used in the double density mode, since linked IOPBs are not supported in the double density mode. The $\mathrm{ZX}-200 \mathrm{~A}$ Controller, therefore, will not wait and will execute only the correct IOPB.

Bit 2 - Sucessor

Single Density Mode (Port 88)
The sucessor bit (Bit 2) is reset if the current IOPB is the last (or only) one to be executed. Setting this bit indicates that a succesor $I O P B$ is to be executed; its address is in IOPB bytes nine and ten. The diskette controller will issue an interrupt when the operation is complete, bit two is reset, and bits four and five of this byte allow interrupt.

Double Density Mode (Port 78H)

Bit two is not used in the double density mode, since linked IOPBs are not supported.

Bit 3 - Data Word Length

Bit three must always be reset to a zero, to specify eight bit word length, since l6-bit word lengths are not allowed on the ZX-200A.

Bit 4, 5 - Interrupt Control

Bit 4	Bit 5	Function
0	0	Generates interrupt: (a) upon completion of an unchained diskette operation; (b) after the last operation in a chain of linked operations; or (c) upon detection of an error in any intermediate operation in a chain of linked operations.
0	1	Disable disk operation complete interrupt to CPU.
1	1	Generates disk operation complete interrupt to CPU after current operation even though it is not the last in a chain of linked IOPBS. This code is illegal in the double density mode.
1	1	Illegal Code.

Bit 6 - Random Format Sequence

A logical zero in this bit assigns sequential sector addresses when a disk is formatted. A logical one writes the sector addreses according to a pattern listed in a 52 byte memory buffer pointed to by bytes six and seven of the IOPB (see below).

Bit 7 - Lock Override

Single Density Mode (Port 88H)
When set (logical one), this bit prevents the "wait" bit from being set upon completion of the current operation specified in the IOPB. When reset (logical zero), this bit alows the $Z X-$ 200A to set the "wait" bit.

Double Density Mode (Port 78H)
This bit is never used in the double density mode, since tre ZX-200A never sets the "wait" bit in double density.

The following figure summarizes byte one of the IOPB, the channel word.

Figure 4.2
Summary of Byte One of the IOPB

Single Density Mode (Port 88)

Lock Override

Wait
Random Format Sequence
Branch on Wait. Interrupt Control Data Word Length

Double Density Mode (Port 78)


```
0 = Must be zero
x = Doesn't care
```

Figure 4.2
Byte Two - Diskette Instruction

Table 4.1 Op Code

Bits 0, 1, 2 - OP Code

Bits			
2	1	0	Operation
0	0	0	No operation
0	0	1	Seek: move the head to the track indicated in byte four of the IOPB.
0	1	0	Format track: write the address marks, gaps address fields and data fields on the track indicated in byte four of the IOPB. This type of format is determined by bit six of byte one as described below.
0	1	1	Recalibrate: move the head to track 00.
1	0	0	Read data: transfer N sectors (N indicated by byte three of the IOPB) from the disk to system RAM. The destination locations in memory start at the address pointed to by bytes six and seven of the IOPB. If the head is not already positioned over the track indicated by byte four of the IOPB, it is moved automatically. A CRC check is performed,which compares the two bytes of CRC written on the disk with the two generated from the data address mark and data field read.
1	0	1	Verify CRC: check the CRC of the indicated sector(s). The operation is similiar to a READ; however, no data is transferred to memory.
1	1	0	Write Data: write N sectors (N specified in byte three of the IOPB) from the contents of memory that starts at the location indicated in IOPB bytes six and seven. As in read, the head is automatically moved to the desired track (from byte four of the IOPB) if it is not already there. Two bytes of CRC are generated and written to the disk. Note that multi-sector writes (N greater than l) may not extend beyond a single track.
1	1	1	Write "Deleted" Data: write N sectors as described in the preceding operation except write a "deleted data mark" rather than the "normal" data mark.

Bit 3 - Data Word Length
Bit three must always be reset to a zero to specify eightbit word length, since the $\mathrm{ZX}-200 \mathrm{~A}$ will not handle l6-bit words.

Bits 4, 5 - Unit Select

Single Density Mode (Port 88H)

Bits	Function
5	4
0	0
0	1
1	0
1	1

Double Density Mode (Port 78H)

Bits	Function
5	4
0	0
0	1
1	0
1	1

Table 4.2 - Unit Select, Bits 4 and 5

Bits 6, 7 - Reserved

These bits are not used and should be set to zero at all times.

IOPB Byte 3 - Number of Records
Byte 3 indicates the number of records (sectors) to be written/read. The number must be written in binary and may not exceed 26 in single density operation or 52 in double density operation. (Recall from the description of the Op Code above, that a read write operation may not extend beyond a single track.)

IOPB Byte 4 - Track Address
A binary code in byte 4 indicates the desired track number. Acceptable values are 00 to 4 C hex (0 to 76).

IOPB Byte 5 - Sector Address
This byte specifies the first (or only) sector for operation. In single density mode specify $1-1 A_{10}(2610)$ and in double density mode $1-3416$ (5210). Bit five of this word must equal bit five of byte two in single density mode only.

IOPB Bytes 6, 7 - Buffer Address

These bytes specify the address of the disk buffer block for Read/Write/Format operations. Byte six is the least significant eight bits of the address while byte seven is the most significant portion.

Note: The next three IOPB Bytes (8, 9, 10) are used for single density applications only. They are used when a chain of IOPBs is to be executed. Note that this feature is not used frequently. (In fact, Intel dropped this feature from its double density controller.) If chaining is not used, these three bytes have no effect.

IOPB Byte 8 - Block Number (Single Density Only)

The specific number of the current IOPB is specified in this byte. Only six bits (5-0) are used. The block number allows the CPU to associate an I/O complete interrupt request from an intermediate link in a chain of IOPBs with the IOPB which actually caused the interrupt. The block number need only be initialized for linked IOPBs, since there can be no uncertainty when only a
single IOPB exists. This byte and bytes nine and ten are used for linked IOPBs.

IOPB Byte 9 - Next IOPB (Lower Address) (Single Density Only)

The least significant byte of the 16 -bit memory address of the next IOPB is entered in this byte.

IOPB Byte 10 - Next IOPB (Upper Address) (Single Density Only)

The most significant byte of the l6-bit memory address of the next IOPB is entered in this byte. If the successor bit (two) of IOPB byte one is set (logical 1), the controller accesses the IOPB starting at this address upon completion of the current operation. If the successor bit is zero, it is assumed that the current IOPB is the last. The controller also looks at the "branch on wait" and "wait" bits in IOPB byte one. If both are set (logical 1), a jump to the IOPB at the address identified here is performed.

4.4 Disk Commands

The $\mathrm{ZX}-200 \mathrm{~A}$ is capable of performing seven distinct operations: Recalibrate, Read, Write, Write Deleted Data, Record, Verify CRC, Seek, and Format. To begin any operation, the host CPU should output both bytes of the 16 -bit memory address that point to byte one of the IOPB. The operation to be performed is specified in byte two of the IOPB. After the $\mathrm{ZX}-200 \mathrm{~A}$ receives the upper byte of the IOPB address, it accesses the IOPB to interpret the operation to be performed and acquire the various parameters necessary to carry out the execution. The $\mathrm{zX}-200 \mathrm{~A}$ will set the
interrupt flip-flop after it has performed the operation or has halted operation due to errors.

The eight diskette operations are explained in more detail in the following paragraphs.

Recalibrate (Opcode 3 of IOPB Byte 2)
This operation will cause the selected unit's head to move over Track zero. Operation is mechanically verified by detectors in the drive itself.

Seek (Opcode 1 of IOPB Byte 2)
This operation will cause the selected drive to position its head over the specified track. Seek Track zero is tested for and, if issued, Recalibrate is executed instead.

Read (Opcode 4 of IOPB Byte 2)
This operation will return the specified number of data records to be written to the buffer, beginning at the given buffer address and continuing upward, starting with the track and sector given in the IOPB.

Write Data (Opcode 6 of IOPB Byte 2)
This operation is the same as Write Data except that each 128 byte data field is preceded with a deleted data address mark.

Verify CRC (Opcode 5 of IOPB Byte 2)
This operation will read the data records to verify the CRC check word. No data is transferred to the buffer.

Format a Track (Opcode 2 of IOPB Byte 2)
This operation is used to initialize a new disk or restore a "wiped-out" track. Prior track contents will be lost.

It should be noted here that a track can be "wiped-out" if the operator shuts off power to the diskette system while the
diskette is installed or the reset is hit while heads are loaded. Pop out diskettes BEFORE power-down or reset!

The order sector numbers that are assigned in the formatting of a track will depend on the state of the "Random Format" bit in byte one of the IOPB. If the random format bit is set, the pattern of sector addressing and initial sector data contents will be prescribed by the information in the buffer.

For Random Format the buffer contains the sector numbering, in order of assignment on the track, beginning with the first byte of the buffer and continuing through each odd numbered byte. The even numbered byte (one greater than sector address) will be the data to be initially written to all 128 bytes of the sector.

For example, if the buffer was constructed as:

Byte	Contents (Hex)
1	07
2	20
3	05
4	FF

the first physical sector of the track will be numbered seven with 20 as data in each of its 128 bytes. The second physical sector will be numbered five with all ones as initial data.

If the Random Format bit is reset, the order of sector numbering will be that of the physical sector and the initial data written to all sectors will be that of byte one of the buffer.

No Operation (Opcode 0 of IOPB Byte 2)
The No-Op instruction causes the $Z X-200 A$ to execute a read drive status and is intended to verify that the controller is functioning.

4.5 Channel Commands

Diskette status, result, and IOPB information are communicated over a set of I / O channels and are called, as a group, the Channel Command.

Once a proper IOPB has been constructed in main memory the controller must be informed of the IOPB address via Channel Commands. Upon completion, or interrupt, result data is available with error indications by way of Channel Commands.

When the Write IOPB Address Upper is executed the disk system will commence the operation specified in the IOPB. Therefore, the lower portion of address and the entire IOPB must have been properly constructed before this Channel Command is executed.

Out Port 7F 8F - Reset
This output channel command causes all logic in the $\mathrm{ZX}-200 \mathrm{~A}$ to be reset to an initialized state. This command is intended to clear hang-ups.

Out Port 7989 - Write IOPB Address Lower
This channel command outputs the low byte of the l6-bit address pointing to byte one in the IOPB.

Out Port 7A 8A - Write IOPB Address Upper
This channel command outputs the high byte of the IOPB's 16bit address. This command also causes the $Z X-200$ A to begin execution of the IOPB.

Out Port 8B - Stop
The diskette controller will stop operation AFTER completing the current IOPB instruction. It will not proceed to the next IOPB in a link. This channel command has no meaning in double density mode since linked operations are not performed.

In Port 7888 - Status Input
This input channel command causes the $\mathrm{ZX}-200 \mathrm{~A}$ to return the drive and controller ready status.

Table 4.3 - Status Word

Bit 0	Ready Status of Drive 0
Bit 1	Ready Status of Drive 1
Bit 2	Interrupt Pending
Bit 3	Controller Present
*Bit 4	Double Density Controller Present
*Bit 5	Ready Status of Drive 2
*Bit 6	Ready Status of Drive 3
Bit 7	Hard Disk Present

*Active in Port 78 only (double density mode)

Bits zero, one, five and six, allow the host to determine whether the target drive is ready (bit equals one) or not (bit equals zero).

This input channel command will return a two bit result type (bits 0 and l) and, for 201 mode only, a block number in bits two through seven. The result type is decoded as:

Bit	$\mathbf{1}$	$\mathbf{0}$	Meaning
	0	0	I/O complete. Result byte contains error bits.
	0	1	Single Density mode only. I/O complete, result byte contains linked error bits.
	1	0	Result byte has drive ready status.
	1	1	Reserved.

Table 4.4 Read Result Type

The Result Type command must be issued to clear the system interrupt and diskette controller interrupt pending bits (which toggle together) in the status word.

In Port 7B 8B - Read Result Byte
The channel command causes the $Z X-200 A$ to return eight bits of operation results. The proper interpretation of the result byte depends upon the result type. For result types 00 and $01:$

Figure 4.5
Port 7B-8B Read Result Byte for Result Types 00 and 01

If the host executes a 'read result byte' channel command the diskette channel will return the result word on the systen data bus. The bits are defined as follows:

Not Ready:

Bit seven indicates the selected unit was not ready or the selected unit changed to a not ready status during operation.

Write Erior:
Bit six indicates that during a write operation a condition existed which precluded data integrity. An example of a condition causing this error is an attempt to write a 'not ready FDD.'

Write Protect:
Bit five indicates the selected drive contains a diskette, which is not write enabled. This condition is checked on format a track, write data (with data address marks) and write data (with deleted data address marks) operations.

Data Overrun/Underrun Error:

Bit four indicates that the $Z X-200 A$ controller was not able to service a byte transfer request from the drive before the next request occurred. The data byte is lost.

Address Error:

Bit three indicates that the disk address received from the CPU is invalid; that is:

- track address > 7610
- sector address = 00
- sector address > 5210 (202 mode)
- sector address >2610 + number of records >5210 (202 mode)
- sector address + number of records $>26{ }_{10}$ (201 mode)

Seek Error:

Bit two indicates that at the completion of a head movement sequence the head is not positioned over the expected track. This bit indicates the controller and/or FDD are malfunctioning, and a recalibrate diskette operation should be performed. Seek error can occur during any diskette operation.

CRC Error:
Bit one indicates the CRC characters generated during a read data or verify CRC operation were not the same as the two CRC characters appended to the data field when it was originally written on the diskette.

Deleted Record:
Bit zero indicates that a sector addressed during a read data or verify $C R C$ operation was preceded by a deleted data address mark.

Two other error conditions are provided when more than one error bit is true. They are:

ID CRC Error:
If the address error and CRC error (bits 3 and l, respectively) are true, this indicates the CRC characters generated during the reading of an $I D$ field were not the same as the CRC characters appended to the field when it was written by a format track operation.

Data Mark Error or No Address Mark:

If the address error, seek error, and CRC error (bits 3, 2 and 1 , respectively) are true, this indicates no address mark or a data mark error was encountered. This usually means the track has not been formatted.

Chapter 5 - Controller Operation

5.1 Introduction

This chapter is intended to give a brief description of the ZX-200A hardware operation and its external interfaces.

5.2 Interrupts

The ZX-200A will generate interrupt requests when allowed by certain channel commands (see Chapter 4). Any interrupt (INTO through INT7) may be used, but most operating systems, expecially ISIS, will require INT2/. This may be selected via jumper (see Chapter 2).

5.3 I/O Base Address Selection

The I/O base address is fixed by U43, a bipolar PROM.
For microcomputer development systems using ISIS the required address is 78H - 7FH for logical drives :FO:, :Fl:, :F2: and :F3:, which are all double density.

The required address is $88 \mathrm{H}-8 \mathrm{FH}$ for logical drives : $\mathrm{F} 4:$ and :F5:, which are both single density, and independently add reusable.

5.4 Drive Interface

The $\mathrm{ZX}-200 \mathrm{~A}$ has been designed to interface readily with the Shugart SA800. The 50-pin edge connector is pinned alike with the SA800, thus allowing simple ribbon connectors. More than one
drive may be used by simply paralleling it on a common connector and wire system as shown in the following figure.

Figure 5.1 Ribbon Connection

Line terminators must be installed for each signal line at the last drive unit to use it. In the figure most lines (except DS1 through DS3) will be terminated at drive one.

The table on the following page lists the signals available at the drive interface connector Jl.

Table 5.1 Signals at Drive Interface Connector Jl

SIGNAL NAME	FUNCTION
$\begin{aligned} & \text { DS1/-DS4/ } \\ & \text { J1-26 } \\ & \text { Jl-28 } \\ & \text { Jl-30 } \\ & \text { Jl-32 } \end{aligned}$	A low state selects the drive. When active DSl/DS4/ allows drives 0 through 3 to accept the remaining drive input signals and to gate its output back to the $\mathrm{ZX}-200 \mathrm{~A}$.
WRITE ENABLE/ J1-40	A low state will allow the data to be written on the diskette. When this signal is inactive the write electronics are disabled and the drive reads data from the diskette.
$\begin{aligned} & \text { STEP/ } \\ & \text { Jl-36 } \end{aligned}$	A signal pulsing low will cause the head to step one track, for each low-going, in the direction determined by DIR/.
$\begin{aligned} & \text { DIR/ } \\ & \text { JI-34 } \end{aligned}$	When this line is low the step signal will cause the head to move toward the track 76 (step in), and when high the head to step out toward the outermost track 00.
$\begin{aligned} & \text { WR DAT/ } \\ & \text { Jl-38 } \end{aligned}$	This is the composite data/clock serial write signal. A high-to-low transition on this line indicates a bit to be written on the diskette.
$\begin{aligned} & \text { RDY } \\ & \mathrm{J} 1-22, \\ & 4,6,8 \end{aligned}$	A low on this line indicates the selected drive is ready. This is a radial ready circuit.
WR PROT/ J1-44	An active low on this line indicates a write protected diskette is installed in the selected drive.
$\begin{aligned} & \text { TRKO/ } \\ & \text { J1-42 } \end{aligned}$	An active low indicates the selected drive's head is positioned over track 00.
$\begin{aligned} & \text { INDEX/ } \\ & \text { Jl-20 } \end{aligned}$	A low going pulse is passed on this line that is coincident with the index hole in the diskette.
$\begin{aligned} & \text { READ DATA/ } \\ & \text { J1-46 } \end{aligned}$	The composite data and clock signal generated during a diskette read operation. A high-to-low going transition indicates a clock or data one bit.
LOW CURRENT/ JI-2	Signal to the drive to reduce write current through head. Active low for track 43.
FAULT RESET/ J1-4	Reset signal to drive to clear fault indicator.

Table 5.1 Signals at Drive Interface Jl (continued)

SIGNAL NAME	FUNCTION
FAULT/ Jl-6	Fault detected by drive. Signal is input to con- troller to cause fault routines to execute.
TWO SIDED/ J-10	Signal from FDD to indicate presence of a two sided media.
SIDE SELECT/ Jl-l4	Signal from FDC to FDD to select which side of a two sided media operation is to be performed.

Note: $1-49$ odd are all signal grounds.

5.5 Multibus Interface

The $Z X-200 A$ communicates with the master CPU over the bus through the $86-\mathrm{pin}$ connector Pl. Table 5.1 defines Multibus signals used and Figures 5.1 and 5.2 describe signal timings.

5.6 Board Location Considerations

The ZX-200A is a Multibus bus master and as such must be located in a backplane slot which provides for the BPRN/, BREQ/, BUSY, and BCLK signals. Other bus master cards in a system will consist of the CPU and DMA boards. Provision must be made for the various bus masters to communicate bus requests and grants through card arrangements and connections of the above bus signals. The most common priority resolution scheme is the serial type and is typically used in systems with less than four bus masters. A jumper should be used at wire wrap position $T-V$ to provide BPRO/ output in serial priority schemes.

Figures 5.1 and 5.2 on the following page show bus access timing and 8219 set-up and hold timing.

Figure 5.2 Bus Access Timing

TABLE 5.2 MULTIBUS PIN ASSIGNMENTS

BOARD COMPONENT SIDE				BOARD CIRCUIT SIDE		
	PIM	MMEMONIC	DESCRIPTION	PIM	MREMONIC	DESCRIPTION
Power Supplies	$\begin{array}{r} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \end{array}$	$\begin{aligned} & \text { GND } \\ & +5 \\ & +5 \\ & +12 \\ & -5 \\ & \text { GND } \end{aligned}$	Signal Ground +5 VDC +5 VDC +12 VDC -5 VDC Signal Ground	$\begin{array}{\|r} 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \end{array}$	$\begin{aligned} & \text { GND } \\ & +5 \\ & +5 \\ & +12 \\ & -5 \\ & \text { GND } \end{aligned}$	Signal Ground +5 VDC +5 VDC +12 VDC -5 VDC Signal Ground
Bus Controls	$\begin{aligned} & 13 \\ & 15 \\ & 17 \\ & 19 \\ & 21 \\ & 23 \\ & 25 \end{aligned}$	BCLK/ BPRN/ BUSY/ MRDC/ IORC/ XACK/ AACK/	Bus Clock Bus Priority In Bus Busy Memory Read Command 1/O Read Command Transfer Acknowledge Advance Acknowledge	$\begin{aligned} & 14 \\ & 16 \\ & 18 \\ & 20 \\ & 22 \\ & 24 \\ & 26 \end{aligned}$	INIT/ BPRO/ BREQ/ MWTC/ IOWC/ INH1/ INH2/	Initialize Bus Priority Out Bus Request Memory Write Command 1/0 Write Command Inhibit (disable) RAM Inhibit (disable) ROM or EPROM
	$\begin{aligned} & 27 \\ & 29 \\ & 31 \\ & 33 \end{aligned}$	BHEN/ CBRQ/ CCLK/ INTA/	Byte High Enable Common Bus Request Constant Clock Interrupt Acknowledge	$\begin{aligned} & 28 \\ & 30 \\ & 32 \\ & 34 \end{aligned}$	ADRIO/ ADRIl/ ADR1 $2 /$ ADR13/	Address Extension Lines
	$\begin{aligned} & 35 \\ & 37 \\ & 39 \\ & 41 \end{aligned}$	$\begin{aligned} & \text { INT6/ } \\ & \text { INT4/ } \\ & \text { INT2/ } \\ & \text { INT0/ } \end{aligned}$	Interrupt Requests	$\begin{aligned} & 36 \\ & 38 \\ & 40 \\ & 42 \end{aligned}$	$\begin{aligned} & \text { INT7/ } \\ & \text { INT5/ } \\ & \text { INT3/ } \\ & \text { INT1/ } \end{aligned}$	Interrupt Requests
Address	43 45 47 49 51 53 55 57	ADRE/ ADRC/ ADRA/ ADR8/ ADR6/ ADR2/ ADR2/ ADRO/	Address Lines	$\begin{aligned} & 44 \\ & 46 \\ & 48 \\ & 50 \\ & 52 \\ & 54 \\ & 56 \\ & 58 \end{aligned}$	ADRF/ ADRD/ ADRB/ ADR9/ ADR7/ ADR5/ ADR3/ ADR1/	Address Lines
-	$\begin{aligned} & 59 \\ & 61 \\ & 63 \\ & 65 \\ & 67 \\ & 69 \\ & 71 \\ & 73 \end{aligned}$	DATE/ DATC/ DATA/ DAT8/ DAT6/ DAT4/ DAT2/ DATO/	Data Lines	$\begin{aligned} & 60 \\ & 62 \\ & 64 \\ & 66 \\ & 68 \\ & 70 \\ & 72 \\ & 74 \end{aligned}$	DATE/ DATD/ DATB/ DAT9/ DAT7/ DAT5/ DAT3/ DAT1/	Data Lines
Power Supplies	$\begin{aligned} & 75 \\ & 77 \\ & 79 \\ & 81 \\ & 83 \\ & 85 \end{aligned}$	$\begin{aligned} & \text { GND } \\ & -10 \\ & -12 \\ & +5 \\ & +5 \\ & \text { GND } \end{aligned}$	Signal Ground -10 VDC -12 VDC +5 VDC +5 VDC Signal Ground	$\begin{aligned} & 76 \\ & 78 \\ & 80 \\ & 82 \\ & 84 \\ & 86 \end{aligned}$	$\begin{aligned} & \text { GND } \\ & -10 \\ & -12 \\ & +5 \\ & +5 \\ & \text { GND } \end{aligned}$	Signal Ground -10 VDC -12 VDC +5 VDC +5 VDC Signal Ground

Table 5.3 Multibus Signals Descriptions
Signal
Mnemonic

AACK/	Advanced Acknowledge. This signal is an advanced indication that the requested Read or Write operation will be completed in a specified time ($t_{\text {AACK }}$).
ADRO/-ADRF/	Address. These 16 lines are used to transmit the address of the memory location or I/O port to be accessed. ADRF/ is the most significant bit.
ADR10/-ADR13	Address Extension. These four lines are appended to the address to allow accessing of megabyte memories.
BCLK/	Bus clock. The high-to-low transition of BCLK/ is used to synchronize bus contention resolution circuits. BCLK/ is asynchronous to the CPU clock. It has a minimum period of 100 nanoseconds and a 35\% duty cycle. BCLK/ may be slowed, stopped, or single stepped for troubleshooting.
BHEN/	Byte High Enable. Indicates use of data lines DAT8-F.
BPRN/	Bus Priority In. Indicates to a particular master module that no higher priority module is requesting use of the bus. BPRN/ is synchronized with BCLK/. This signal is not bussed on the backplane.
BPRO/	Bus Priority Out. Used with serial (daisy chain) bus priority resolution schemes. BPRO/ is passed to the BPRN/ input of the master module with the next lower busy priority. BPRO/ is synchronized with BCLK/. This signal is not bussed on the backplane.
CBRQ/	Common Bus Request. Indicates a master module, not currently in control, requests use of the bus.
BuSy/	Bus Busy. This signal is driven by the bus master currently in control to indicate that the bus is in use. BUSY/prevents all other master modules from gaining control of the bus. BUSY/ is synchronized with BCLK/.
CCLK/	Constant Clock. Provides a clock signal of constant frequency for unspecified general use by modules on the bus. CCLK/ has a minimum period of 100 nanosconds and a 35% to 65% duty cycle.

Table 5.3-Multibus Signal Descriptions (continued)

Signal Mnemonic	Functional Description
DAT0/-DATF/	Data. These 16 bi-directional lines transmit or receive information to or from a memory location or I/O port. DATF/ is the most significant bit. In eight bit systems only lines DATO/-DAT7/ are used, in which case DAT7/ is the most significant bit.
INH1/	Inhibit RAM. Prevents RAM devices from responding to the memory address on the address lines. INH1/ effectively allows ROM devices to override RAM devices when ROM and RAM are assigned the same address space. INHl/ may also be used to allow memory mapped I/O devices to override RAM.
INH2/	Inhibit ROM. Prevents ROM devices from responding to the memory address on the address lines. INH2/ effectively allows start-up software such as ROM based bootstrap programs to override another ROM device when the two ROMs are assigned the same address space. INH2/ may also be used to allow memory mapped I/O devices to override ROM.
INIT/	Initialization. Resets entire system to a known internal state. INIT/ may be driven by one bus master or by an external source such as a front panel reset switch.
INT0/-INT7/	Interrupt. Each of these eight lines causes the master processor to generate INTA as defined below. INTO/ has the highest priority; INT7/ has the lowest priority as assigned by an interrupt priority resolution network.
IORC/	I/O Read Command. Indicates that the address of an input port has been placed on the address lines and that the data is to read from the data lines. IORC/ is asynchronous with BCLK/.
MRDC/	Memory Read Command. Indicates the address of a memory location has been placed on the address line a data word (eight or 16 bits) is to be read from the data lines. MRDC/ is asynchronous with BCLK/.
MWTC/	Memory Write Command. Indicates that the address of a memory location has been placed on the address lines and that a data word (eight or 16 bits) has been placed on the data lines. MWTC/ specifies that the data word is to be written into the addressed memory location. MWTC/ is asynchronous with BCLK/.

Table 5.3-Multibus Signal Descriptions (continued)
Signal
Mnemonic
XACK/

Functional Description

Transfer Acknowledge. The required response of memory location or I/O port to indicate that the specified read/write operation has been completed. That is, data has been placed on, or accepted from, the data lines. XACK/ is asychronous with BCLK/.

Figure 5.3 shows an implemented serial priority network. In this type of arrangement the bus master with the highest priority can be identified by its pin 15 (BPRN/) being grounded.

Figure 5.3 Implemented Serial Priority Network

In the above figure, the master in slot Jl will drop BPRO/ low to pass priority grant on to J 2 if the master in Jl is NOT requesting the bus. BUSY/ will be high if no master is currently using the bus. If the master J2 doesn't need the bus, it will drop its BPRO/ low to cause J3 BPRN/ to go low and thus grant a J3 request. If $J 2$ requests the bus it will raise its BPRO/ high and wait until its BPRN/ goes low, BUSY/ goes high, and BCLK/ does a negative transition. J2 will then latch BUSY/ low and that will disallow even higher priority master requests until $J 2$ drops its use of the bus.

Higher speed and bus contention resolution schemes involving four or more masters use a parallel priority network. BREQ/ signal is output to an SN74148 (typical) priority encoder. Then an SN74Sl38 (typical) decoder outputs a master's BPRN/ for input grant.

5.7 Controller Features

The Zendex ZX-200A Multibus floppy disk controller emulates and enhances the Intel iSBC 202 Double Density and iSBC 201 Single Density floppy disk controllers. A single CONTROLLER card can replace both sets of boards (each Intel controller consists of two boards, the channel and interface cards) in an Intel Intellec MDS system and interfaces as many as four floppy disk drives. These drives can be single or double sided with single or double density fomat diskettes. The operator does not need to enter any commands to indicate the recording density of the diskette to be read from or written to.

From the system's perspective, the CONTROLLER appears as two separate controllers, one for single density diskettes and one for double density diskettes. Typically, each of the controllers is accessed via a different port address. Usually, these addresses fall in the following ranges:

$$
\begin{array}{ll}
\text { Single density: } & 88-8 F \text { hex } \\
\text { Double density: } & 78-7 F \text { hex }
\end{array}
$$

The resident CONTROLLER firmware decodes the address to determine the recording density of the diskette. However, there are circumstances where the address range for the single density controller is 78 - 7 FH . The firmware has been written to accommodate this configuration as well. (See Note on following page.)

Note: the first revision of the CONTROLLER firmware does not support single density operation from port 78 H .

Data to be read from or written to the disk is fully buffered. The CONTROLLER contains lK of static RAM temporarily storing the data for transfer. This means two things to the system designer: (l) the chance of a data overrun or underrun is completely removed, and (2) the controller cannot get control of the system bus in time for a byte of data read from the disk to be transferred to system RAM (data is transferred on a byte by byte basis). Consequently, that byte disappears as the next one is read from the disk and moved to RAM (assuming the controller gets control of the bus in time to transfer this byte). Data underrun is similiar, but occurs during a disk write operation. With the CONTROLLER, the entire sector (l28 bytes) is written to the onboard RAM independently of the system bus. Data is transferred to system RAM with a DMA controller. If this gets inter rupted by a higher priority component, the DMA controller keeps a record of the last location transferred, so that when it has control ofthe bus again, it can begin where it left off.

The rate of data exchange is 250 K bits per second in single density and 500 K bits per second in double density. Single density recording uses the standard IBM 3740 format. This format uses the frequency modulation (FM) recording technique and specifies 26 sectors of 128 bytes of data per track. In double density, MMFM (modified-modified frequency modulation) recording is used with 52 sectors of 128 bytes per track.

5.8 Controller Operation

The $Z X-200 A$ CONTROLLER firmware responds to ten I/O addresses output by the CPU. These addresses typically appear between 78 - 7FH for double density operation, 88 - 8FH for single density operation. In some circumstances 78 - 7H is also used for single density. The CONTROLLER firmware can interpret these addresses as well. (Note: these ports can be changed by inserting a different I/O address decode PROM u43). Of the eight available ports in each range, only five are used. The CPU selects one of seven disk-related operations by outputting to the port associated with that operation.

The CONTROLLER operates as a system within the system. It contains a 8085 A processor, which executes the requested disk operation via a memory-map. For instance, a read sector command from the CPU requires a number of processes be performed in addition to the read operation (for example, move head to track, synchronize with the disk, read data, read and compare CRC, etc.) Each of these functions is enabled by an output to the port within the CONTROLLER dedicated to it.

When the command requests a disk read or write, two DMA operations follow. First, the seven or ten bytes of the I/O parameter block (IOPB) are moved to a lK RAM buffer on the CONTROLLER RAM buffer. A resident 8257 DMA controller performs this task. Once it has control of the system bus from the CPU, the whole content of the data buffer is transferred to system RAM for a disk read or vice versa for a disk write. The requisite bus signals are generated to access memory. If the controller is
interrupted by a higher priority component in the system, the 8257 "remembers" the last byte transferred. When it has regained control of the bus, the next byte is transferred.

The CONTROLLER operates in two modes:
(1) when it hasn't been selected to perform a disk related function, it is in the IDLE MODE. In this mode, it is constantly looping through a routine, which checks the status of the disk drives. If a change in the status is noticed (a disk is removed or inserted, for instance), an interrupt is sent to the CPU to register the change.
(2) During program execution, the CONTROLLER is selected:

- to perform diskette reads and writes
- to be reset
- to stop permaturely a group of linked disk operations (in single density operation only)
- to render disket drive status to the CPU
- to indicate the result of an operation to the CPU

Each of the above operations is initiated by a CPU output to a specific port. There are two base addresses, one for single density operation and one for double density. (Although the ZX200A CONTROLLER reads or writes in both densities, Intel has separate floppy disk controllers for each density.)

Note: The base port for the Intel single density controller is address 88 H ; the base port for the double density controller is at 78 H .

Appendix

Figure A - zX-85 Minimum Diskette System

Addr	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0000	F															
0010	F															
0020	F															
0030	F															
0040	F															
0050	F															
0060	F															
0070	F	7	7	7	7	F	F	F	5							
0080	F	A	A	A	A	F	F	F	9							
0090	F															
$00 A 0$	F															
$00 B 0$	F															
$00 C 0$	F															
0000	F															
$00 E 0$	F															
$00 F 0$	F															

Addr	0	1	2	3	4	5	6	7	8	9	A	B	C		E	F
0100	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0110	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0120	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0130	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0140	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0150	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0160	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0170	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0180	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0190	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
01A0	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
01B0	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
01 CO	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Old0	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
OlE0	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
$01 F 0$	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F

MAP 20

	0	1	2	3		5	6		8		A	B	c	D	E	F
0000	DD	DD	DD	DD	DD	DD	D	D	DD							
0010	DD	E0	E0	E0	E0	E0	E									
0020	FF															
0030	FF															
0040	DF	DF	DE	DE	DE	DE	DD	DD	DD	DC	DC	DC	DC	DB	DB	DA
0050	DA	DA	DD	D												
0060	FF	F														
0070	FF															
0080	DD															
0090	DD	E0	E0	E0	E0	E0	E0									
00A0	FF															
00BO	FF															
00C0	DF	DF	DE	DE	DE	DE	DD	DD	DD	DC	DC	DC	DC	DB	DB	DA
00D0	DA	DA	DD													
OOEO	FF															
00F0	FF															

MAP 21

															F
000	DD	5D													
010	DD	5D	DD	5D	5D	DD	5D	D9	59	5D	5	5D	5D	E1	D
20	FF														
030	FF														
040	DD	5D	DF	5B	5D	DD	5D	D9	5D	5D	5	5D	61	El	61
050	DB	5 F	DD	5D	5D	DD	5D	D9	59	5D	59	5D	5D	El	5D
060	FF														
070	FF	F	F	FF	F	FF	FF	FF	FF	F	F	F	FF	FF	F
080	5D	5D	5D	5D	5D	DD	5D	D9	5D	5D	5D	5D	61	E	1
0090	5D	5D	5D	5D	5D	DD	5D	D9	59	5D	59	5D	5D	El	5
A0	FF	F													
OBO	FF	FE	FF	FF	FF	F	F								
C0	DD	5D	DF	5B	5D	DD	5D	D9	5D	5D	5 D	5D	61	E1	61
ODO	DB	5 F	DD	5D	5D	DD	5D	D9	59	5D	59	5D	5D	El	5D
OEO	FF	F			FF			FF					FF	FF	FF

CP/M MACRO ASSEM 2.0 \#001 ZX-200A FLOPPY CONTROLLER V1.2
TITLE 'ZX-200A FLOPPY CONTROLLER V1.2'
MACLIB I8085

$; \$$	MOD85
$; \$$	XREF
$;$	
;	REVISION: $10 / 02 / 81$ BY S.R.

VERSION 1.2
LAST MODIFIED AUG 6, 1981
RICK MAIN, PGMR

ZENDEX CORPORATION
6680 SIERRA LANE
DUBLIN, CA 94566
(415) 829-1284

TWX 910-389-4009
 ;
; THIS PROGRAM IS ORGANIZED TO RUN IN THE ZENDEX ZX-200A FLOPPY DISK CONTROLLER. THE FIRMWARE IS CONTAINED IN A SINGLE 2716 EPROM.

CP/M MACRO ASSEM 2.0 \#X003 ZX-200A FLOPPY CONTROLLER V1.2

CP/M MACRO ASSEM 2.0 \#005

0112	E604
0114	C2C1O
0117	78
0118	E610
$011 A$	C2540
011 D	$3 E 84$
$011 F$	D367

0121 3A0040 0124 E604 0126 CA5400 0129 3EOA

012B+30
012C DB67
012E E680
0130 C22101
0133 2A0840
0136 C3C100
0139 CDE301
013C 3A0140
013F OF
0140 OF
0141 OF
0142 OF
0143 E603
01454 F
0146 1E04
0148 3EOB
014A 321640
014D 3EFF
014F C38401
0152 2A0840
0155 OF
0156 DA6101
0159 060A
01,5B CDBF02
015E 2A0B40
0161 220B40
0164 CDE301
0167 3A0040
016A OF
016B DA5201
016E 3A0140
0171 OF
0172 OF
0173 OF
0174 E606
0176 4F
0177 OF
0178 A9
0179 E603
MOV

L11E:

L122:
MVI
OUT

SIM

L13A: RRC RRC RRC RRC

MOV

JMP
L153:

LDA
RRC

RRC
RRC
RRC

RRC

ANI 4 ; ISOLATE SUCCESSOR BIT IN CHANWD
JNZ LC1 ; JUMP IF LINKED
ANI $\quad 10 \mathrm{H}$; ISOLATE INTERRUPT DISABLE BIT
JNZ 54 H ; JUMP IF INTERRUPTS DISABLED
LDA
ANI

A,84H ; SET INTERRUPT 88 WRCNT1

CHANWD ; ISOLATE SUCCESSOR BIT
JZ L5

MVI A,OAH ; SET RST 6.5 MASK
DB 30 H
IN RDRDY ; READ INT. \& FDD READY PORT
ANI 80 H ; ISOLATE INT 88 BIT
JNZ L122 ; LOOP TILL FALSE, HOST MUST ACK
LHLD NXIOPB ; NEXT IOPB ADDRESS
JMP LC1
CALL L1D7 ; FETCH IOPB FROM HOST TO BUFFER LDA DKINST ; LOAD UNIT NO. SELECTED BY HOST

ANI 3 ; ISOLATE UNIT NUMBER
MVI E,4 ; SEND DD MODE TO WRCONT1 PORT
MVI A,OBH ; SPECIFY DD DATA ADDRESS MARK
STA DAMARK ; DATA ADDRESS MARK STORE
MVI A,OFFH ; SET DD FLAG MODE
$\begin{array}{lll}\text { LHLD } & \text { NXIOPB } & \text {; NEXT IOPB ADDRESS } \\ \text { RRC } & & \text {; TEST BRANCH BIT } \\ \text { JC } & \text { L162 } & \text {; IF SET, BRANCH TO LINKED IOPB } \\ \text { MVI } & \text { B,OAH } & \text {; OTHERWISE IDLE 10 MS } \\ \text { CALL } & \text { DELAY } & \\ \text { LHLD } & \text { 400BH } & \text {; RESTORE ORIGINAL IOPB ADDRESS } \\ \text { SHLD } & 400 B H & \text {; SAVE AS ADDRESS OF IOPB TO EXECUTE }\end{array}$
CALL L1D7 ; MOVE HOST IOPB TO OUR BUFFER

JC L153 ; JUMP IF WAIT BIT SET
LDA DKINST ; FETCH OPCODE

ANI 6
MOV C,A ; INTERMEDIATE TO C
XRA C ; COMBINE
ANI $3 ; \operatorname{MASK} 00=0,11=1,01 \& 10$ ILLEGAL

CP/M MACRO ASSEM 2.0 \#X007 ZX-200A FLOPPY CONTROLLER V1.2

01 D 9 FB02
01DB 01
01DC BF
J1DD 02
01DE DF
01DF 04
01E0 EF
01 E 108
01E2 F7

01 E3 010980
01E6 CDF901
01 E 92643
01EB 110040
01EE OEOA

01F0 7E
01F1 12
01F2 13
01F3 2C
01 F 4 OD
01F5 C2F001
$01 F 8$ C9
01F9 97
01FA D365
01FC E5
01FD EB
01FE 210020
020173
020272
020323
020471
020570
0206 3E41
0208320820
020B E1
020C C9
020D CD7C02
0210 B7
0211 C0
0212 3A0240
0215 E607
021707
0218 4F
02190600
021B 212402
021E 09
021F 5E
022023
022156
0222 EB
0223 E9

DW WRITDL ; WRITE DELETED DATA
UNITAB:

DB	1	UNIT 1
DB	NOT 40H	
DB	2	; UNIT 2
DB	NOT 20H	
DB	4	UNIT 3
DB	NOT 10H	
DB	8	; UNIT
DB	NOT 8	

L1D7:

```
LXI B,8009H ; SELECT HOST READ, 9 BYTES
CALL DMALOD ; INVOKE DMA TRANSFER
MVI H,43H ; ADDRESS ON-BOARD BUFFER
LXI D,CHANWD ; POINT TO IOPB CHANNEL WORD
MVI C,10 ; MOVE 10 BYTES FROM DMA BUFFER TO IOPB ARRAY
```

L1E6:

MOV	A,M	; READ BUFFER
STAX	D	; STORE AT IOPB
INX	D	; ADJUST POINTERS
INR	L	
DCR	C	DECREMENT COUNTER

JNZ L1E6
RET
DMALOD:
SUB A
OUT 65H ; CLR EXTENDED ADDRESS
PUSH H ; SAVE HL
XCHG
LXI
H,DMADDR ; SEND TO 8257 DMA REG PORT
MOV
MOV
INX H
H ; POINT TO TC PORT
MOV M,C ; WRITE TC AND CYCLE CODE
MOV
MVI
STA
POP H
RET
L20C:
CALL SEEK ; DO SEEK
ORA A ; TEST ERROR
RNZ ; RETURN IF ERROR
LDA NUMRCD ; LOAD \# RECORDS
ANI 7
RLC
MOV C,A
MVI B,0
LXI H,L223
DAD B
MOV E,M
INX $\quad \mathrm{H}$
MOV D,M
XCHG
PCHL ; EXECUTE PROCEDURE

L223:

0234	110062
0237	1 A
$02: 38$	C 33702

023B 110061
$023 E$ C33702

0241110062
0244 C34A02
0247110061
024 A D5
02 4B CDE602
024 E D 1
024 F C8
0250 3A0440
025312
0254 C35302

0257 OEOO
0259 C35E02
025 C OEFF
025 E 0680
0260 C36C02
0263 OEOO
0265 C36A02
0268 OEFF
026A 0640
0216 C C5
026D OEFF
026F 2A0540
02' 72 CDF90 1
02' 75 C1
02 ' 76 AF
02' 77 B1
02' 78 C26C02
02' 7B C9

DW	L233
DW	L23A
DW	L240
DW	L246
DW	L256
DW	L25B
DW	L262
DW	L267

L233:
LXI D,DISKIO
; RD DISK
L236: LDAX D ; RD DISK + X
JMP L236 ; LOOP

L23A:

LXI D,6100H ; RDMRKA
JMP L236 ; GO INTO LOOP
L240:
LXI D,DISKIO ; RD DISK
L246:
L249: PUSH D
CALL WRENBL ; ENABLE WRITE CONTROLS

RZ ; RETURN IF WRITE PROTECTED

L252:

L256:

L25B:
L25D:

L262:

L267:
L269:
L26B:
PUSH B
MVI C,OFFH ; 256 BYTES
LHLD BUFFER ; LOAD BUFFER ADDRESS
CALL DMALOD ; MOVE DATA
POP B ; RESTORE BC
XRA A ; ACC=0
ORA C
JNZ L26B ; JUMP IF NOT A VERIFY CYCLE
RET

CP/M MACRO ASSEM 2.0 ZX009 ZX-200A FLOPPY CONTROLLER V1. 2
; SEEK A TRACK- THE BYTE IN TRKADR IS USED TO DETERMINE THE THE TARGET TRACK TO STEP TO. IF ZERO RECALIBRATE IS USED INSTEAD. ENTERED DIRECTLY AS A HOST COMMAND OR AS A PRELUDE TO ANOTHER OPERATION FOR IMPLIED SEEK.

027 C 3A0340 027 F B7 0280 CAD502 028357 0284 FE4D 0286 3E08 0288 D0 0289 7A 028A FE2B 028C DA9602 028F 210 A 40 0292 7E 0293 E6FB 029577

0296 CDCA02
0299 7A 029A 96
029B C8
029C CDA202 029F C39902

02A2 3AOA40
02A5 DAAC02 02A8 E6FD 02AA 34 02AB 34

02AC 35
02AD D366
02AF 3D
02BO 00
02B1 D366
02B3 00
$02 \mathrm{B4}$ F601
02B6 D366
$02 \mathrm{B8} 00$
02B9 F602
02BB D366
02BD 0608
02BF OED6
02C1 OD
02 C 2 C 2 C 102
02 C 505
02 C 6 C 2 BF 02 02 C 9 C 9

LDA TRKADR ; SEEK OPERATION. FETCH TARGET TRACK ADDRESS
ORA A ; ZERO?

JZ RECAL ; DO RECAL IF ZERO
MOV D,A ; TRK ADR TO D
CPI 4DH ; TEST FOR ILLEGAL TRACK
MVI A,8 ; ANTICIPATE WITH ERROR CODE
RNC ; RETURN IF ERROR
MOV A,D ; TRK ADR TO ACC.
CPI 2BH ; TRK>43?
JC S1 ; JUMP IF NOT
LXI H,400AH
MOV A,M
ANI OFBH ; SET LO CURR BIT
MOV M, A
S1:
CALL TRKREG ; SET HL = TRK REG
S2:
MOV A,D ; TRK ADR TO ACC.
SUB M ; COMPARE TARGET TRACK TO DESTINATION TRACK
RZ ; RETURN WHEN EQUAL
CALL STEP ; DO A STEP OF HEAD
JMP S2 ; LOOP
STEP:
LDA 400AH ; LOAD UNIT SELECT
JC L2AB ; JUMP TO DO STEP OUT
ANI OFDH ; ELSE STEP IN
INR M ; INCREMENT CURRENT TRACK
INR M
L2AB:
DCR M
OUT WRCONT ; WRITE FDD CONTROL PORT
; STEP=1
DCR A
NOP
OUT
NOP
ORI
OUT
NOP
ORI
OUT
TENMS:
MVI
WRCONT ; WRITE FDD CONTROL PORT, STEP=0
1
WRCONT ; WRITE FDD CNT PORT, STEP=1

2
WRCONT ; WRITE FDD CONTROL PORT, DIR=1
B, 8
DELAY:
MVI C,OD6H ; DELAY LOOP
L2B9:
DCR C
JNZ L2B9
DCR B
JNZ DELAY

02CA	$210 E 40$
02CD	$3 A 0 D 40$
02D0	4 F
02D1	0600
02D3	09
02D4	C9

02 D 5 CDCAO 2
02D8 3600
02DA DB66
02DC E640
02DE C8
02DF 37
02EO CDA202
02E3 C3D802

02E6 3A1240
02E9 2F
02EA E601
02EC F606
02EE D367
02FO DB66
02F2 E620
$02 F 4$ 3E20 $02 F 6$ C9
02F7 AF

02FB 211640
02FE 7E
02FF E6F8

CP/M MACRO ASSEM 2.0
030177

0302 CDE602 0305 C8 0306 3EFF 0308321540 030B CD7C02 030E B7 030F C0 0310210440 03130636 0315 3A1240 0318 B7 0319 7E 031A C22203 031D E61F 031F 77 0320 061C

0322 3C

0323321940
0326 3D
0327 3E08
0329 C8
032A 110240
032D 1A
032E 86
032F B8
0330 3E08
0332 D0
0333 1A
0334 B7
0335 1F
0336321840
0339 CEOO
033B 12
033C AF
033D 321740
0340 2A0540
0343 017F80
0346 3A1540
0349 B7
034A C4F901
034D 3E04
034F 321340
0352210065
0355110062
0358 3A1240
035B B7
035C CAA704
035F 3600
0361 DB66
WRITE:

L300:

L31A:

L334:

L34A:

L357:

ZX-200A FLOPPY CONTROLLER V1. 2
MOV M,A
CALL WRENBL ; WRITE COMMAND, CALL WR ENABLE
RZ ; RETURN ERROR IF WRITE PROTECTED
MVI A,OFFH ; SET FLAG
STA RWFLG; READ WRITE FLAG ; STORE FLAG
CALL SEEK ; FIX CNTL, DO SEEX
ORA A
RNZ ; RETURN IF SEEX ERROR
LXI H,SCTADR ; POINT TO SECTOR ADDRESS
MVI B,36H ; DD EOT SECTOR +1
LDA DDSDFL ; TEST FOR DD
ORA A
MOV A,M ; FETCH SECTOR ADDRESS
JNZ L31A ; JUMP IF DD
ANI 1 FH ; ISOLATE LEGAL SD SECTOR ADDRESSES
MOV M,A ; RESTORE CORRECTED ADDR
MVI $\quad \mathrm{B}, 1 \mathrm{CH}$; MAX SD ADDR +1
INR A
STA FLAGD ; STORE NEXT SECTOR ADDRESS
DCR A ; TEST FOR ZERO
MVI A,8 ; ANTICIPATE ADDRESS ERROR
RZ ; RETURN IF SECTOR ADDR=0, ILLEGAL
LXI D,NUMRCD ; FETCH \# RECORDS
LDAX D
ADD M ; ADD ADDRESS TO \# OF RECORDS
CMP B ; TOO MUCH?
MVI A,8 ; ANTICIPATE ERROR
RNC ; RETURN ERROR IF TOO MUCH
LDAX D ; LOAD AGAIN \# RECORDS
ORA A
RAR
STA
ACI
STAX
FLAGC
0

XRA A
STA FLAGB
LHLD BUFFER ; LOAD BUFFER ADDR
LXI B, 807FH ; DMA CYCLE, TC
LDA RWFLG ; READ WRITE FLAG, FLAG $=0$ FOR READ, NZ FOR WRITE
ORA A
CNZ DMALOD ; DMA LOAD UP
MVI A,4 ; COUNT FOUR DISK REVS
STA INDXCT ; INDEX COUNT
LXI H,6500H
LXI D,DISKIO
LDA DDSDFL
ORA A
JZ L49B

MVI	M, 0	; WRCLK
IN	RDSTAT	; READ FDD STATUS PORT

L35B:

CP/M MACRO ASSEM 2.0 \#013 ZX-200A FLOPPY CONTROLLER V1. 2

03BA	05
03BB	C2B903
03BE	1A
03BF	210065
03 C 2	3600
$03 C 4$	00
03 C 5	3A0063
03 C 8	3C
03 C 9	C2C403
03CC	3670
03CE	1A
03CF	3A0061
03D2	FEOB
03D4	C29004

| DCR | B | |
| :--- | :--- | :--- | :--- |
| JNZ | L3B1 | |
| LDAX | D | |
| LXI | H,6500H | |
| MVI | M,0 | ; MAKE SYNCHMARK $=0$ |
| | | |
| NOP | | |
| | | |
| LDA | SYNCPL | ; SYNCPLO |
| INR | A | |
| JNZ | L3BC | |
| MVI | M,70H | ; SYNCHMARK $=70 H$ |
| LDAX | D | |
| LDA | MARK | ; READ DATA ADDDRESS MARK |
| CPI | OBH | ; GOOD? |
| JNZ | L489 | ; JUMP IF BAD |

;
;
L3CF:
03D7 2A0540
03DA 2643

03DC 1A
03DD 77
03DE 0E7F
03E0 2C
03E1 1A
03E2 77
03E3 OD
$03 E 4$ C2E003
03 E 7 1A
03E8 1A
03E9 1A
03EA DB66
O3EC 17
O3ED 3E02
03EF D8
03F0 2A0540
03F3 017F40
$03 F 6$ 3A0140
03F9 E601
03FB CCF901
03FE C33B04
;
;
L3FB:
0401 1A
0402 OE09
0404 1A
0405 OD
0406 C20404
0409
040 A
042

L3BC: L3BD:

LDA SYNCPL ; SYNCPLO
INR A
JNZ L3BC
MVI M,70H ; SYNCHMARK=70H
LDAX D
LDA MARK ; READ DATA ADDDRESS MARK
JNZ L489 ; JUMP IF BAD

WRITE A DISK RECORD, SPLICE GAP 2

LDAX D ; READ GAP 2 BYTE
L3FE:
MVI C,9

LDAX	D	; READ GAP 2
DCR	C	; DECREMENT LOOP
JNZ	L3FE	; LOOP TEN TIMES
STAX	D	; SPLICE IN SAME BYTE READ
STAX	D	

CP/M MACRO ASSEM 2.0

O40B 3EFF 040D OE08

040F 12 0410 OD 0411 C20F04 0414010061

041712
0418 2A0540
041B 2643
041D 12 041E 3A1640
042102
0422 7E
042312
0424 OE7F
0426 2C
0427 7E
042812
0429 OD
042A C22604
042D 320063
0430 3A1240
0433 2F
0434320063
043712
043812
043912
043A 12
043B 210640
043E 34
043F 210240
044235
0443 C23C03
0446111840
0449 1A
044A B7
044B C8
044 C 77
04.4D AF

044 E 12
044 F 3A1940
0452210440
045556
045677
045792
0458 1F
045957
045A 1E80
045C 2A0540
\#014
ZX-200A FLOPPY CONTROLLER V1. 2

L409:

MVI C,8
STAX D ; WRITE 9 BYTES OF FF
DCR C
JNZ L409
LXI B,MARK ; POINT TO WRMRK
;
;
L411:

WRITE DISK FROM 2114 BUFFER
L411:

STAX	D	; ONE MORE SPLICE BYTE
LHLD	BUFFER	; LOAD BUFFER ADDRESS
MVI	H,43H	
STAX	D	; LAST SPLICE BYTE
LDA	DAMARK	; DATA ADDRESS MARK
STAX	B	; WRMRK
MOV	A,M	; READ BUFFER
STAX	D	; WRITE FIRST DATA BYTE
MVI	C,127	; LOOP COUNT ONE SECTOR
		; WRITE REMAINING 127 FROM LOOP

L421:
INR L
MOV A,M ; READ BUFFER
STAX D ; WRITE DATA TO DISK
DCR C
JNZ L421
STA WRCRC ; WRITE TWO CRC BYTES
LDA $\quad 4012 \mathrm{H}$
CMA
STA WRCRC ; WRCRC (WRITE CRC BYTE)
STAX D ; SPLICE GAP 3
STAX D
STAX D
STAX D
L432:

LXI	H, BUFFER+1	; BUFFER MSD	
INR	M	; ADVANCE BUFFER	ADDRESS BY ONE BLOCK
LXI	H, NUMRCD		
DCR	M	; DCR \# RECORDS	
JNZ	L334		
LXI	D, FLAGC		
LDAX	D		
ORA	A		
RZ			
MOV	M, A		ब220
XRA	A ;	$\mathrm{A}=0$	
STAX	D		
LDA	FLAGD		
LXI	H,SCTADR		
MOV	D,M ;	FETCH SECTOR ADDR	
MOV	M, A ;	REPLACE IT	-
SUB	D		
RAR			
MOV	D, A		
MVI	E, 128		
LHLD	BUFFER ;	INX BUFFER ADDR ONE SE	TOR COUNT

045F 19 0460220540 0463 C33C03

0466 3A1740 0469 B7
046A C0 046B 3E0E 046D C9

046E 1A
046F 1A
0470 1A
0471 1A
0472 1A
0473 1A
0474 DB66
047617
0477 DA8804
047A 3E04
047C 321740
047F CDD502
0482 CD7C02
0485 C35203
0488 3EOA
048A 321740
048D C35203
0490 FE08
0492 C39704
0495 FEF8
0497 3EOF
0499321740
049C 3E01
049E C8
049F 210440
04A2 35
04A3 35
04 A 4 C 35203
04A7 36FF
04A9 3A1340
04AC B7
04AD FA6604
L4A4:
04B1 CAA904
$04 \mathrm{B4}$ 3A0063
04B7 B7
04B8 C2B004
L45F:

L467:

L46D:

L481:

L489:

L48E:
L4A2:
L492:

L49B:
L49D:
\#015

BUFFER
JMP L334
LDA FLAGB
ORA A
RNZ
MVI A,OEH
RET
LDAX D
LDAX D
LDAX D
LDAX D
LDAX D
LDAX D ; SIXTH TIME
IN RDSTAT
RAL ; CRCSTAT?
JC L481 ; JUMP CRC ERROR
MVI A,04
STA FLAGB
CALL RECAL
CALL SEEK
JMP L34A
MVI A,OAH
STA FLAGB
JMP L34A
CPI 08 H
JMP L4A2
CPI $\quad 0 \mathrm{~F} 8 \mathrm{H}$
MVI A,OFH
STA FLAGB
MVI A,1
RZ
LXI H,4004H
DCR M
DCR M
JMP L34A
; SINGLE DENSITY WRITE
MVI M,OFFH
LDA INDXCT ; INDEX COUNT
ORA A
JM L45F
INR B ; INX LOOP COUNT
JZ L49D
LDA SYNCPL ; SYNCPLO
ORA A
JNZ L4A4 ; LOOP TILL 00 READ

L4AF:

04BB	1A
04BC	B7
04BD	C2B004
04 CO	1A
04 C 1	B7
04C2	C2B004

$04 C 536 C 7$
$04 \mathrm{C7}$ 3A0060
04CA B7
04CB CAC704
04CE FEFE
04D0 CA8B03
04D3 36FF
04D5 3A0063
04D8 B7
04D9 CAC504
04DC C3A704

04DF 3A1540
$04 \mathrm{E} 2 \mathrm{B7}$
04E3 C20405
04 E 6 1A
04E7 060A
04 E 91

04EA 05
04EB C2E904
04EE 1A
04EF 210065
04F2 36FF
$04 F 4$ 3A0063
$04 \mathrm{F7} 36 \mathrm{C7}$
04F9 3A0060
04FC FEFB
04FE C29504
0501 C3D703
0504 1A
0505 1A
0506 3EFF
050812
050912
050A 12
050B AF
050C 12
050D 12
050E 12
050F 12
0510010060
0513 C31704

LDAX	D
ORA	A
JNZ	L4A4
LDAX	D
ORA	A
JNZ	L4A4

; READ GAP TILL 00 READ
L4B9:
L4BB:
MVI M,OC7H ; WRITE C7 SYNCH MARK
LDA MRKCRC ; READ DATA MARK
ORA A
JZ L4BB ; LOOP TILL NON-ZERO
CPI OFEH ; SEE IF CORRECT DATA MARK
JZ L383 ; JUMP IF GOOD
MVI M,OFFH
LDA SYNCPL
ORA A
JZ L4B9
JMP L49B
L4D3:
LDA RWFLG ; READ WRITE FLAG
ORA A
JNZ L4F8
LDAX D
MVI B,OAH ; WAS 7, READ IN THREE EXTRA TO IGNORE ; THANKS TO LARRY BOBERG.
L4DD:
LDAX D
DCR B
JNZ L4DD
LDAX D
LXI H,6500H
MVI M,OFFH ; WRCLK
LDA SYNCPL
MVI M,0C7H
LDA MRKCRC
CPI OFBH
JNZ L48E
JMP L3CF
L4F8:
LDAX D
LDAX D
MVI A,OFFH
STAX D
STAX D
STAX D
XRA A
STAX D
STAX D
STAX D
STAX D
LXI B,MRKCRC
JMP L411

055E 12	STAX	D		ONE MORE
055F 0634	MVI	B,34H	;	DD SECTOR COUNT
L555:				
0561 DB66	IN	RDSTAT		
0563 3EFF	MVI	A, OFFH		
0565 OEO9	MVI	C, 9		
L55B:				
056712	STAX	D	;	WRITE OFFH TEN TIMES
0568 OD	DCR	C		
0569 C26705	JNZ	L55B		LOOP
056C 12	STAX	D	;	ONE MORE
056D 3E0E	MVI	A, OEH		WRITE I.D. ADDRESS MARK FOR MMFM
056F 320061	STA	MARK	;	WRMRK
0572 3A0340	LDA	TRKADR	;	LOAD TRACK ADDR
057512	STAX	D		WRDISK
0576 AF	XRA	A		ACC=0
057712	STAX	D	;	WRDISK
0578 7E	MOV	A, M		FETCH SECTOR I.D.
057912	STAX	D		WRDISK
057A AF	XRA	A	;	ACC=0
057B 2C	INR	L		
057C 12	STAX	D		WRDISK
057D 320063	STA	WRCRC	;	WRCRC
0580320063	STA	WRCRC	;	WRCRC
0583 OE11	MVI	C, 11H		
DDGAP2: L57A:				
058512	STAX	D	;	WRITE 11 ZERO'S
0586 OD	DCR	C		
0587 C28505	JNZ	L57A		
058A 12	STAX	D	;	ONE MORE
058B 3EFF	MVI	A, OFFH	;	WRITE NINE OFFH'S
058D 0E09	MVI	C, 9		
L584:				
058F 12	STAX	D	;	WRDISK
0590 OD	DCR	C		
0591 C28F05	JNZ	L584		
059412	STAX	D	;	ONE MORE
0595 3E0B	MVI	A, OBH		WRITE DATA MARK
0597320061	STA	MARK		SEND TO DISK
059A 7E	MOV	A, M		LOAD DATA BYTE FOR FILL
059B 0E7F	MVI	C, 7 FH	,	ONE SECTOR COUNT-1
L593: MVI				
059D 12	STAX	D	;	FILL DATA FIELD
059E OD	DCR	C		
059F C29D05	JNZ	$L 593$		
05A2 12	STAX	D	;	ONE MORE
05A3 AF	XRA	A		
05 A4 320063	STA	WRCRC		WRITE TWO DATA FIELD CRC BYTES
05A7 2C	INR	L		
05A8 320063	STA	WRCRC	;	WRCRC
05AB 0E11	MVI	C, 11H		
DDGAP3:L5A3:				
05AD 12	STAX	D		
05AE OD	DCR	C		

\#019

05AF C2AD05	JNZ	L5A3	; WRITE 17 ZERO'S
05B2 12	STAX	D	; ONE MORE
05B3 05	DCR	B	
05B4 C26105	JNZ	L555	; DO NEXT RECORD
55B7 12	STAX	D	; WRITE A ZERO
05B8 C31E06	JMP	L616	; DO GAP 4 AND RETURN

; WAIT FOR INDEX MARK
; 5 B1:

05BB	OA
05BC	B7
05BD	C2BB05
05C0	3EFF
05C2	OE48

;

L5BA:
SDGAP1:

LDAX	B	; TEST	
ORA	A		
JNZ	L5B1	FLAG	
MVI	A,0FFH		
MVI	C, 48 H		

SINGLE DENSITY FORMAT RECORD

STAX	D	; WRITE 48H OFFH'S
DCR	C	
JNZ	L5BA	
STAX	D	ONE MORE
MVI	B,26	; 26 SECTORS LOOP COUNT

L5C2:
05CC AF
05CD 12
O5CE 12
05CF 12
05D0 12
05D1 12
05D2 12
05D3 3EFE
05D5 320060
05D8 3A0340
05DB 12
05DC AF
05DD 12
05DE 7E
05DF 12
05EO AF
05E1 2C
05E2 12
05E3 3EFF
05E5 320063
05E8 320063
O5EB

OEOA
05ED
05EE
OD
05EF
05F2
02ED05

ZX-200A FLOPPY CONTROLLER V1. 2
L5C2:

XRA A
STAX D ; WRITE 6 ZERO'S
STAX D
STAX D
STAX D
STAX D
STAX D
MVI A,OFEH ; WRITE I.D. RECORD MARK
$\begin{array}{lll}\text { STA } & \text { MRKCRC } \\ \text { LDA } & \text { TRKADR } & \text {; FETCH TRACK ADDRESS }\end{array}$
STAX D ; WRITE TRACK I.D.
XRA A
STAX D ; WRITE SIDE 0 I.D.
MOV A,M ; FETCH SECTOR ADDRESS
STAX D ; WRITE SECTOR I.D.
XRA A
INR L
STAX D ; WRITE SECTOR LENGHT CODE=0
MVI A,OFFH
STA WRCRC ; WRITE TWO CRC BYTES
STA WRCRC ; WRCRC
WRITE SD GAP 2
MVI C,OAH
L5E4:
STAX D ; WRITE FF

DCR C
JNZ L5E4
STAX D ; ONE MORE FF
ZX-200A FLOPPY CONTROLLER V1. 2

4004	SCTADR: DS	1	; SECTOR ADDRESS
4005	BUFFER: DS	2	; BUFFER ADDRESS
4007	BLOCKN: DS	1	; BLOCK NUMBER, SD LINKED ONLY
4008	NXIOPB: DS	2	; NEXT IOPB ADDRESS, LINKED
400A	UNITSL: DS	1	; $\mathrm{ADDR}=400 \mathrm{AH}$
400D	ORG	400DH	
400D	UNIT: DS	1	
400E	TRKRGO: DS	4	; UNIT TRACK REGISTER ARRAY
4012	DDSDFL: DS	1	; SINGLE/DOUBLE DENSITY FLAG
4013	INDXCT: DS	1	; INDEX COUNTER
4014	RDYBIT: DS	1	; READY BIT STATUS FROM FDD
4015	RWFLG: DS	1	; READ/WRITE FLAG
4016	DAMARK: DS	1	; DATA ADDRESS MARK
4017	FLAGB: DS	1	
4018	FLAGC: DS	1	
4019	FLAGD: DS	1	

4007 BLOCKN	4005 BUFFER	4000 CHANWD	0080 CLRINT	01 CB CTAB
4016 DAMARK	0559 DDGAP1	0585 DDGAP2	05AD DDGAP3	4012 DDSDFL
02BF DELAY	6200 DISKIO	4001 DKINST	2000 DMADDR	01F9 DMALOD
2008 DMAMOD	2001 DMATC	0015 DSKCLR	4017 FLAGB	4018 FLAGC
4019 FLAGD	0516 FORMAT	061E GAP4	0020 INDEX	4013 INDXCT
4000 IOPB	00D9 LODA	0107 L108	011D L11E	0121 L122
0139 L13A	0152 L153	0161 L162	0184 L185	01 E 3 L1D7
01F0 L1E6	020D L20C	0224 L223	0234 L233	0237 L236
023B L23A	0241 L240	0247 L246	024A L249	0253 L252
0257 L256	025C L25B	025E L25D	0263 L262	0268 L267
026A L269	026C L26B	02AC L2AB	02 C 1 L2B9	02D8 L2D0
0308 L300	0322 L31A	033C L334	0352 L34A	035F L357
0363 L35B	036A L362	0377 L36F	038B L383	03B9 L3B1
03 C 4 L3BC	03 C 5 L 3 BD	003C L3C	03D7 L3CF	03E0 L3D9
0401 L3FB	0404 L3FE	040F L409	0417 L411	0426 L421
043B L432	0466 L45F	046E L467	0474 L46D	0488 L481
0490 L489	0495 L48E	0499 L492	04A7 L49B	04A9 L49D
004A L4A	0497 L4A2	04B0 L4A4	04BB L4AF	04 C 5 L4B9
$04 \mathrm{C7}$ L4BB	04DF L4D3	04E9 L4DD	0504 L4F8	0537 L52B
0541 L535	0054 L54	0551 L545	0559 L54D	0561 L555
0567 L55B	0585 L57A	058F L584	059D L593	05AD L5A3
05BB L5B1	05 C 4 L5BA	05CC L5C2	05ED L5E4	0602 L5FA
0613 L60B	061E L616	0623 L61B	006A L6A	0096 L95
009 C L9B	00CO LCO	00 C 1 LC1	0028 MA78	0034 MA88
6100 MARK	6000 MRKCRC	4002 NUMRCD	4008 NXIOPB	6402 PORT79
6403 PORT7 B	6400 PORT89	6401 PORT8B	0009 RAMCLR	6500 RDPRT1
0067 RDRDY	0066 RDSTAT	4014 RDYBIT	0074 RDYINT	02 F 7 READ
02 D 5 RECAL	4015 RWFLG	0296 S1	0299 S2	4004 SCTADR
$05 C 4$ SDGAP1	0613 SDGAP3	027 C SEEK	02A2 STEP	003 CTSP
6300 SYNCPL	02BD TENMS	4003 TRKADR	02CA TRKREG	400E TRKRGO
400D UNIT	01DB UNITAB	400A UNITSL	6500 WRCLK	0067 WRCNT1
0066 WRCONT	6300 WRCRC	02E6 WRENBL	02FB WRITDL	0302 WRITE
0000 ZX202				

Item \#	Qty.	Part\#	Description
R8, 9	2	10 KOHM	Resistor
R2	1	1500 HM	Resistor
R5, 7	2	1 KOHM	Resistor
Rll, 12	2	2.2 KOHM	Resistor
U47, 48	2	2114-3	I. C.
U6 3	1	2716-ZX200	I.C. EPROM Version 1.1 for $\mathrm{ZX}-200$
R1	1	3300 HM	Resistor
R113, 14	2	4308R-101-471	Bourns 8P SIP
R3, 4, 10	3	4700 HM	Resistor
XU43	1	516-AG11D	Dip Socket
XU20-22	3	520-AG11D	Dip Socket
XU6 3	1	524-AG11D	Dip Socket
W3	1	530153-1	Jumper
XU64, 65	2	540-AG11D	Dip Socket
$\begin{aligned} & \text { Ul1, } 36,41, \\ & 45,52,82 \text {, } \end{aligned}$			
84	7	74 LSO 0	I.C., LS TTL
U51	1	74 LSO 2	I.C., LS TTL
U9, 18, 42	3	74 LSO 4	I.C., LS TTL
Ul 2	1	74LS08	I.C., LS TTL
U24, 35, 61	3	74LS0	I.C., LS TTL
U6, 59	2	74LSll3	I.C., LS TTL
U70	1	74LS13	I.C., LS TTL
U53, 54, 55	3	74LS14	I.C., LS TTL
U25	1	74 LSl 55	I.C., LS TTL
U39	1	74LS157	I.C., LS TTL
U40	1	74 LSl 63	I.C., LS TTL
U15, 16	2	74LSl65	I.C., LS TTL
U4, 17, 31,			
38, 83	5	$74 \mathrm{LS174}$	I.C., LS TTL
U30	1	74LS244	I.C., LS TTL
U33, 34	2	74LS266	I.C., LS TTL
U32	1	74LS273	I.C., LS TTL
U27	1	74 LS 279	I.C., LS TTL
U23	1	$74 \mathrm{LS32}$	I.C., LS TTL
Ul0, 69	2	$74 \mathrm{LS3} 67$	I.C., LS TTL
U49	1	74LS373	I.C., LS TTL
U14	1	74 LS 374	I.C., LS TTL
U8, 13	2	74LS38	I.C., LS TTL
U76-81	6	74LS670	I.C., LS TTL
U5, 19, 50	3	74LS74	I.C., LS TTL
U68	1	74 S0 0	I.C. TTL SCHOTTKY
Ul, 60	2	74S04	I.C.
U57	1	74Sl0	I.C. TTL SCHOTTKY
U2, 3	2	74S163	I.C. TTL SCHOTTKY
U20, 21	2	745471	TI TBPl8S22 Bipolar PROM
U58, 71	2	74S74	I.C.

Bill of Materials (continued)

Item \#	Qty	Part \#	Description
U65	1	8085A-2	I.C., 8-Bit CPU
U64	1	8257-5	DMA CHIP
XW3	3	B7022-A	AMP Wire Wrap Post
U43	1	93446 PC	I.C., BIPOLAR PROM
U6 6	1	9401	IC CRC Generator \& Checker
U46, 62,			
74, 75	4	AM2946	I.C.
U29	1	AM2956	I.C.
U72, 73	2	AM2957	I.C.
Cl	1	C40Cl00K	Centralab Cap
C2-8, \&			
10-12	41	C41Cl04K	Centralab Cap
U7	1	CD4040BE	I.C. CMOS
Y1	1	CY22A	Crystek 20 MHz Crystal
Y2	1	CY6C	Xtal 6.144 MHz
C9	1	TE-1211	Sprague Cap
--	1	PCZX-200A	PC Board, ZX-200A

