
· STREAMS and MAINKERMIT User's Guides

MAINSAIL~ STREAMS and MAINKERMIT

User's Guides

24 March 1989

Copyright (c) 1986, 1987, 1988, 1989, by XIDAK, Inc., Menlo Park, California.

The software described herein is the property of XIDAK, Inc., with all rights reseIVed, and is a confidential trade secret
of XIDAK. The software described herein may be used only under license from XIDAK.

MAINSAIL is a registered trademark ofXIDAK. Inc. MAINDEBUG, MAINEDIT, MAINMEDIA. MAINPM.
Structure Blaster, roB, and SQUT are trademarks of XIDAK, Inc.

CONCENTRlX is a trademark of Alliant Computer Systems Corporation.

Amdahl, Universal Time-Sharing System, and UTS are trademarks of Amdahl Corporation.

Aegis, Apollo, DOMAIN, GMR, and GPR are trademarks of Apollo Computer Inc.

UNIX and UNIX System V are trademarks of AT&T.

DASHER, DG/UX, ECLIPSE, ECLIPSE MV /4000, ECUPSE MV/8000, ECUPSE MV /1 0000, and ECLIPSE
MV /20000 are trademarks of Data General COIpOration.

DEC, PDP, TOPS-10, TOPS-20, V AX-ll, VAX, MicroV AX, MicroVMS, ULTRIX-32, and V AXNMS are
trademarks of Digital Equipment Corporation.

EMBOS and ELXSI System 6400 are trademarks of ELXSI, Inc.

The KERMIT File Transfer Protocol was named after the star of THE MUPPET SHOW television series. The name is
used by pennission of Henson Associates, Inc.

HP-UX and Vectra are trademarks of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

CLIPPER, CLIX, Intergraph, InterPro 32, and InterPro 32C are trademarks of Intergraph Corporation.

System/370, VM/SP CMS, and CMS are trademarks of Intemational Business Machines Corporation.

MC68000, M68000, MC68020, and MC68881 are trademarks of Motorola Semiconductor Products Inc.

ROS and Ridge 32 are trademarks of Ridge Computers.

SPARC, Sun Microsystems, Sun Workstation, and the combination of Sun with a numeric suffix are trademarks of Sun
Microsystems, Inc.

WINrrcp is a trademark of The Wollongong Group, Inc.

WY-50, WY-60, WY-75, and WY-lOO are trademarks ofWyse Technology.

Some XIDAK documentation is published in the typefaces "Times" and "Helvetica", used by pennission of Apple
Computer, Inc., under its license with the Allied COIpOration. Helvetica and Times are trademarks of the Allied
Cotporation, valid under applicable law.

The use herein of any of the above trademarks does not create any right, title, or interest in or to the trademarks.

-ii-

Table of Contents

1. MAINSAIL STREAMS and MAINKERMIT User's Guides
1.1. Conventions Used in This Document.
1.1.1. User Interaction . . .
1.1.2. Syntax Descriptions .
1.1.3. Temporary Features ..

I. MAINSAIL(R) STREAMS User's Guide .

2. Overview
2.1. Version . . .
2.2. Terminology
2.3. Stream Features .
2.3.1. Summary of Stream Support and Implementation .
2.3.2. The Basic TTY Stream
2.3.3. Reading Interrupt Characters from the TTY
2.3.4. Opening Serial TTY Lines
2.3.5. Setting the Baud Rate on TTY Streams
2.3.6. Writing a BREAK on TTY Streams
2.3.7. Clearing Pending I/O
2.3.8. Scheduling of TTY Streams ..
2.3.9. Catching Keyboard Interrupts .
2.3.10. Server/Client Communication
2.3.11. Process Rendezvous
2.3.12. Child Process Creation . . .
2.3.13. The System Shell as a Child Process.
2.3.14. Scheduling of Advanced STREAMS.
2.3.15. Timeouts
2.4. Stream Types
2.5. Automatic Scheduling of Stream I/O. . .
2.6. Loose Coupling of Streams to MAINSAIL

3. Opening and Closing Streams
3.1. Making STREAMS Available to a MAINSAIL Program: the STRHDR Intmod

and $initializeStreams.
3.2. Automatically Opened Streams: $tty and $parent.
3.3. The Class $stream
3.4. Opening and Closing Streams: $openStream and $c1oseStream .

4. Remote Modules and Remote Procedure Calls (RPC) .
4.1. Overview. . . . '.

- iii -

1
1
1
1
2

3

4
4
4
6
6
6
7
8
8
8
8
8
9
9
9
9

10
10
11
11
12
12

15

15
15
16
18

21
21

4.2. Remote Module Procedures
4.3. Remote Module Interfaces.
4.4. Buffer Passing Conventions
4.5. Example of Remote Modules between a Parent and Child Process
4.6. Example Clients and Servers Using Remote Modules
4.6.1. Use of Version Numbers.
4.6.2. Writing Adaptable Clients
4.6.3. The Server Log File. . . .
4.6.4. Terminating a Global Server
4.7. Generic RPC Server: the RPCSRV Module .
4.8. RPC Implementation Restrictions . .
4.9. RPC Efficiency Considerations
4.10. Parallel Processing Using RPC Calls
4.11. Remote Exceptions
4.12. CRPC
4.12.1. Data Type Rules
4.12.2. connserver and the _init Procedure
4.12.3. Calling Remote Procedures . .
4.12.4. The _final Procedure and close. .
4.12.5. dispose_array.
4.12.6. Handling Exceptions in the Remote Module.
4.12.7. Sample C RPC Session

5. RPC Files
5.1. $openRpcFile. . . .
5.2. $rpcFileModuleCls.

6. Intetprocess Communication: Socket Streams. .
6.1. Meaning of $eos on Socket Streams
6.2. Socket-Specific Fields of $stream
6.3. Servers and Clients: Network Protocol Modules and the SERVICE Stream

Prefix
6.3.1. Terminology and Conventions.
6.3.2. Service Protocol Table.
6.3.3. The Client End.
6.3.4. The Server End.
6.3.5. The Service Protocol Table
6.4. Child Process Creation: SOCPRO and PTYPRO .
6.4.1. Starting a Child Process Using SOCPRO
6.4.2. Starting a Child Process Using PTYPRO
6.4.3. Starting a MAINSAIL Child Process
6.4.4. Establishing an Additional Control Stream to a Cooperating Child
6.5. Terminating a Child Process .
6.6. Process Control
6.7. Examples.
6.7.1. Sprouting a Print Job and Waiting for It to Exit. .
6.7.2. Sprouting an Interactive Child.

- iv-

24
26
27
29
32
33
36
37
37
38
38
39
39
39
40
41
45
45
46
46
46
47

50
50
51

56
56
56

58
58
59
59
60
64
65
65
66
67
68
68
69
69
69
70

6.8. Process Rendezvous Communication [Not Implemented]. .
6.8.1. Creating a Rendezvous Stream Name
6.8.2. Symmetric Communication Using a Rendezvous Name. .
6.8.3. Server/Client Communication Using a Rendezvous Name. .
6.8.4. Underlying Implementation.

7. Multitasking and the Scheduler.
7.1. Cautions About Shared Data Access
7.2. Scheduling Coroutines for Stream I/O: $queueCoroutine.
7.3. Voluntary Rescheduling: $msTimeout and $reschedule
7.4. Waiting for Descendant Coroutines: $waitForDescendants..
7.S. Semaphores (Locks) .
7.6. Scheduled Coroutine Map
7.7. Example Multitasking Programs.
7.7.1. A Simple Terminal Emulator
7.7.2. Parallel Processing Using RPC Calls

8. Handling Keyboard Interrupts
8.1. Enabling and Handling Interrupts on $tty
8.2. Stacking of $enablelnterrupts.
8.3. Conflict between $enablelnterrupt and the $nolnterrupt Bit.
8.4. Sample Program That Catches Interrupts
8.S. Causing Keyboard Interrupts to Occur in a Child Process .

9. Low-level Stream I/O Procedures
9.1. Overview of the Low-Level Stream I/O Procedures.
9.1.1.
"9.1.2.
9.1.3.
9.1.4.
9.1.5.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.

Timeouts
Success and Failure of I/O Operations.
The General Error Return ($error) .
The End-of-Stream Return ($oos)
Timeout Return ($timedOut)

Octets
Input: $readStream.
Output: $writeStream. . . .
Single-Character I/O: $cReadS tream and $c WriteStream . .
Miscellaneous Operations: $flushStream and $clearStream .
Constants and Macros for Stream I/O.

10. TrY Streams: TTYS1R.
10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.

$tty
Meaning of $eos on TTY Streams
TTY -Specific I/O Bits
TTY -Specific Procedures. . . .
TTY -Specific Fields of $stream
Is My $tty Interactive? . . .
Am I a Cooperative Child?
Half-Duplex TTY Streams

- v-

73
73
73
74
74

75
76
77
77
78
78
80
80
80
81

87
87
88
89
90
91

92
92
92
93
94
94
95
95
95
98

100
101
103

104
104
105
105
108
109
110
110
111

10.9. PrY Streams.
10.9.1. Meaning of $eos on PTY Streams.
10.9.2. PTY -Specific Procedures . . .
10.9.3. PrY -Specific Fields of $stream. .

11. :MEMORY Streams: MEMSTR ...

II. MAINKERMIT User's Guide . .

12. Overview of MAINKERMIT . .
12.1. Version.
12.2. File Names and Types .
12.3. File Transfer.
12.4. Operation.

13. MAINKERMIT Commands
13.1. The "SEND" Command
13.2. The "RECEIVE" Command.
13.3. The "GET" Command
13.4. The "TEXT", "PTEXT", and "DATA" Commands
13.5. The "SERVER" Command
13.6. The "R1EXT", "RPTEXT", and "RDATA" Commands ..
13.7. The "REMOTE", "FINISH", and "REXECUTE" Commands ..
13.8. Local File Manipulation Commands
13.9. The "SET" Command
13.9.1. "SET LINE deviceName"
13.9.2. "SET BAUD [30011200124001480019600]"
13.9.3. "SET FILETYPE [1EXTIP1EXTIDATA]" .
13.9.4. "SET TARGET osName" .
13.9.5. "SET PROMPT s". . . .
13.9.6. "SET DEBUG"
13.10. The "TAKE" Command ..
13.11. The "CONNECT" Command ..
13.12. The "HISTORY" Command .

14. Program Interface.

- vi-

111
112
113
113

114

135

136
136
138
138
138

140
141
141
141
142
142
142
143
144
144
144
145
145
145
145
146
146
146
146

148

Appendices

A. Server Installation Instructions.
A.L The Fannat of the XIDAK Service Protocol Table .
A.L1. "MYHOST hostName"
A.L2. "HOSTNAME officialName alias 1 alias2 ... aliasn"
A.L3. "HOS1PROTOCOL hostName protocoll protocol2 ... protocoln"
A.L4. "SERVICE serviceName hostName/protocol. .. "
A.LS. "DEFAUL 1PROTOCOL protocoll protoco12 ... protocoln" .
A.2. Host-Dependent Service Tables.
A.3. Installing the "gensrvlt Server and the Service Protocol Table. . .
A.3.1. Create a XIDAK Service Protocol Table
A.3.2. Add "ENTER" Subcommands to the MAINSAIL Site-Specific Startup

Command File (ltsite.cmd")
A.3.3. Modify the Operating System Services Table.
A.3A. Arrange for "gensrv" to be Started as a Background Process. .

B. Available Network Protocol Modules

C. System-Specific Support For Streams

D. Extended C RPC Client Example.

E. Remote Streams: NETSTR . . .
E.1. Opening a Remote TTY Device.
E.2. Explicit Gateway Mechanism.
E.3. Underlying Implementation

F. A Guide to Remote File Access Using NET. .
F.l. Use of the NET Device Module.
F.2. Execution of Modules Stored Remotely. .
F.3. Syntactic Sugar for Remote File Access. .
F.4. Known Restrictions and Limitations . . .

G. XIDAK STREAMS Applications and Utilities
G.I.
G.2.
G.3.
G.4.
G.S.

Technology Database Management System: TDB
Network File Access: NET Device Module .
Bug Tracking System: UCRSYS . .
Network Server Status: SRVINF. .
MAINSAIL Kermit

H. Status ofMAINKERMIT Version 2.0 .

I. XIDAK Operating System Abreviations Used with the "SET TARGET" Command

- vii-

115
115
115
116
116
117
117
117
117
118

118
119
119

121

122

124

128
128
128
129

130
130
131
131
131

133
133
133
133
133
134

149

150

List of Examples

1.1.1-1. How User Input Is Distinguished. .
1.1.2-1. Syntax of a Mailing Address. . . .
2.6-1. Using the NTI'Y Device Module . .
3.1-2. Use of $initializeStreams.
4.4-1. Example Uses, Produces9 and Modifies Buffer Parameters
4.5-1. Example Remote Module
4.5-3. Child Providing the FOOMOD Remote Module.
4.5-2. Parent Executing Remote Module FOOMOD in a Child . .
4.6-1. Example Remote Module
4.6-2. Example Client of the FOOMOD Remote Module Service
4.6-3. Example Server Providing the FOOMOD Remote Module
4.6.1-1. A Remote Module That Sets Its Version Numbers.
4.6.3-1. Example "server.log" Log File.
4.12.6-1. Use of rpc_register.Jump and rpc_clear.Jump
4.12.7-1. Compilation of Remote Module with "RPC CIt Compile Subcommand
4.12.7-2. C RPC Client in "foo.c"
6.7.1-1. Sprouting a Print Job and Waiting
6.7.2-1. Sprouting an Interactive Child.
7.7.1-2. A Simple Tenninal Emulator Using STREAMS ..
7.7.2-1. Multitasking RPC Calls
8.1-2. Handling Keyboard Interrupts.
8.4-1. Catching Interrupts Asynchronously .
A.l-1. Typical Service Protocol Table
AJ.l-1. Minimal General Service Protocol Table between Hosts A and B .
AJ.2-1. "ENlER" in "site.cmd" for Using Servers
AJ.3-1. Declaring the Service "gensrv" to BSD UNIX
AJ.4-l. Starting GENSRV Automatically Under BSD UNIX.
D-l. MAINSAIL RPC Server Interface Procedure Header .
D-2. C Client That Calls MAINSAIL Remote Module.

List of Figures

2.3.1-1. Summary of Stream Support.
4.1-1. Schematic Diagram of a Remote Procedure Call
5.1-1. $openRpcFile
5.2-2. RPC File openBits
5.2-1. CLASS $rpcFileModuleCls
7.7.1-1. Schematic of a Terminal Emulator Program
14-1. MAINKERMIT Module Dec1artion.

- viii -

1
1

13
16
28
30
30
31
33
34
35
35
37
47
48
49
69
70
82
84
89
90

116
118
118
119
120
124
124

7
23
50
52
53
81

148

List of Tables

3.1-1. $initializeStreams
3.3-1. User-Visible Fields of $stream and STREAMS Macros.
3.4-1. $openStream (Generic) and $closeStream
3.4-2. Error Handling in $openStream
4.2-1. Remote Module Procedures.
4.6.1-2. User-Visible Fields of$remoteModuleCls
4.12-1. C Client Arguments and MAINSAIL Server Parameters.
4.12.1-1. ARRAY StructFields and Meanings.
4.12.7-3. Compiling the C Client on a Typical UNIX System .
6.2-l. Socket-Specific Fields of the Stream Record.
6.3.3-1. Client Access to a Service.
6.3.4-1. Server Procedures.
6.3.4-2. Valid hostAndServiceName values ($getProtocols). .
6.3.4-3. Fields of Sport
6.4.3-1. $executableBootName.
6.8.1-1. $createRendezvousName
7.2-1. Creating and Scheduling Coroutines .
7.3-1. Voluntary Rescheduling Calls. . . .
7.4-1. Coroutine Synchronizing Calls: $waitForDescendants (Generic) .
7.5-1. Semaphore Scheduler Calls.
7.6-1. Scheduled Coroutine Map
8.1-1. Interrupt Catching Procedures.
9.1.1-1. Special Timeout Values
9.1.2-1. Error Testing Macros . . .
9.3-1. $readStream (Generic).
9.3-2. Buffering Modes (X = valid, - = invalid, D = Default)
9.4-1. $writeStream (Generic)
9.5-1. $cReadStream and $cWriteStream. .
9.6-1. $ftushStream and $clearStream
10.4-l. TTY-Specific Procedures
10.5-1. TTY -specific Fields of $stream.
10.9-1. Interaction Between PTY and $tty
10.9.2-1. PTY-Specific Procedures ...
B-l. Protocol Modules and Their Characteristics. .
C-1. Features Supported by STREAMS Implementations
12-1. MAINKERMIT AtaGlance
12.3-1. Information Displayed During File Transfer.
13-1. MAINKERMIT Command list.
13.5-1. Server Commands Supported by MAINKERMIT
13.7-1. Remote Commands
13.8-1. MAINKERMIT Local File Commands.
13.9-1. MAINKERMIT "SET" Options . . .

- ix-

15
17
18
20
24
36
42
44
48
57
59
60
62
63
67
73
77
77
78
78
80
87
93
93
95
97
98

100
101
108
109
111
113
121
122
137
138
140
143
143
144
145

13.11-1. MAINKERMIT Emulator Commands .
1-1. XIDAK Operating System Abreviations.

-x-

146
150

1. MAINSAIL STREAMS and MAINKERMIT User's
Guides

This document describes MAINSAIL S1REAMS, a package for portable distributed
applications, and MAINKERMIT, a file transfer program using the KERMIT protocol, which is
implemented using STREAMS.

1.1. Conventions Used in This Document

1.1.1. User Interaction

Throughout the examples in this document, characters typed by the user are underlined.
"<eo!>tt symbolizes the end-of-line key on a terminal keyboard; this key is marked "RETURN"
or IIENTERII on most keyboards. In Example 1.1.1-1, IIPrompt:" is written by the computer;
the user types ttresponsell and then presses the end-of-line key.

Prompt: respoDse<eol>

Example 1.1.1-1. How User Input Is Distinguished

1.1.2. SyntaX Descriptions

Specifications of syntax often contain descriptions enclosed in angle brackets ("<II and ">11).
Such. descriptions are not typed literally, but are replaced with instances of the things they
describe. For example, a specification of the syntax of the address on an envelope might appear
as in Example 1.1.2-1.

<name of addressee>
<street number> <street name>
<town or city name>, <state abbreviation> <zip code>

Example 1.1.2-1. Syntax of a Mailing Address

- 1 -

Optional elements in command or syntax descriptions are often enclosed in curly brackets (" {"
and "} "). For example, a string of characters specified as II {A} B {C} " could have anyone of
the forms "B", "BC", "AB" t and "ABC". Alternatives may be enclosed in square brackets (or
curly brackets, if all alternatives are optional) and separated by vertical bars ("1"); "[AIBIC]"
means "A", "B", or "C"; "{AlB}" means "A", "B", or nothing.

1.1.3. Temporary Features

Temporary features that have not acquired a final form are marked as follows:

TEMPORARY FEATURE: SUBJECT TO CHANGE

Temporary features are subject to change or removal without notice. Programmers who make
use of temporary features must be prepared to modify their code to accommodate the changes
in them on each release of MAINSAIL. It is recommended that code that makes use of
temporary features be as isolated from normal code as possible and thoroughly documented.

-2-

MAINSAIL ® STREAMS

User's Guide

[Preliminary Documentation: 24 March 1989]

2. Overview

This document describes STREAMS, a MAINSAIL package supporting implementation of
portable distributed MAINSAIL applications.

The STREAMS package is not part of the MAINSAIL runtime system, but is a separately
licensable package. Due to the difficulty of implementing portable interprocess communication
and process control, XIDAK cannot guarantee that that the STREAMS package will be
available on all platforms that support MAINSAIL, nor can XIDAK implement all STREAMS
capabilities on all plaforms for which XIDAK supports the STREAMS package. XIDAK will
attempt to supply STREAMS on all platforms for which it makes technical and business sense,
and to support all STREAMS capabilities on each such platform for which such capabilities can
be effectively implemented. Accordingly, programs that make use of STREAMS must be
written to adapt to the capabilities provided on each platform if they are to be used portably on
more than one platform, and the programmer must understand that programs with absolute
requirements for certain capabilites may not work at all on certain platforms.

2.1. Version

This version of the "MAINSAIL STREAMS User's Guide" is current as of Version 12.10 of
MAINSAIL. It supersedes the document entitled "STREAMS, a MAINSAIL Package for
Distributed Computing" .

As of the date of this document, STREAMS has not yet been cast in final form. The current
release of STREAMS should be considered an alpha release, subject to subsequent change.
This is so that qualified customers can provide feedback on possible modifications.
Accordingly, if you use STREAMS, please don't hesitate to contact XIDAK with suggested
improvements or description of your problems. XIDAK does not envision any fundamental
changes in the architecture of STREAMS, but does reserve the right to make changes it deems
necessary to create a truly usable product (these changes are likely to include the provision of
more convenient, higher-level facilities for some operations).

2.2. Terminology

"Distributed computing" refers to independent sequential algorithms that run simultaneously or
asynchronously on one or more computers ("nodes"), and the intercommunication facility
(S1REAMS) by which the algorithms communicate.

-4-

MAINSAIL STREAMS User's Guide

A "process" is an operating-systeM-specific unit of execution with its own context (e.g., address
space, primary input and output, global variables, set of open files, and other resources). For
example, all current implementations of MAINSAil.. consist of a single process that is started
with the MAINSAil.. bootstrap. Most platforms allow multiple processes to run independently
of each other, without requiring mutual awareness among separate processes (except where the
algorithm desires to use interprocess communication).

"Scheduled coroutines" are independent threads of execution that run within a single
MAINSAIL process. Using scheduled coroutines, an application can implement cooperative
multitasking within a single MAINSAIL process. Scheduled coroutines are implemented as
ordinary MAINSAll.. coroutines. '

Scheduled coroutines are more efficient to create and schedule than processes. They can be
thought of as "featherweight" processes that share the resources of a single process, including
the address space. primary input and output. global variables. and open files.

Because they share data structures and resources, scheduled coroutines can communicate
among themselves much more efficiently than can separate processes. Unlike programs that
run as independent processes, however, procedures that are run as scheduled coroutines
generally must be written with some awareness of other scheduled coroutines that may be
running and sharing the data structures and resources in the same process.

When the underlying operating system supports the necessary capabilities, the STREAMS
package provides these facilities related to interprocess communication and distributed
computing:

,~ Streams: two-way channels used for communication among processes and with
human users through various communications devices.

• Child process support: the creation of, communication with, and deletion of child
processes controlled by a parent process. The children need not run on the. same node
as the parent process.

1"... Server and client processes: the ability of a process (the server) to establish a service
with a global, unique name, and the ability of a client process to establish
communication with that service, given the service's name. A single server may
provide more than one service. Server and client processes may run on different
nodes.

• Process rendezvous: the ability of two processes to establish communication with
each other based on a rendezvous name supplied by an arbitrary third process. The
two processes may run on different nodes.

- 5 -

MAINSAIL STREAMS User's Guide

• Scheduled coroutines: cooperating "featherweight" tasks running within a single
MAINSAIL process that perform independent I/O functions in parallel.

2.3. Stream Features

2.3.1. Summary of Stream Support and Implementation

Figure 2.3.1-1 is a Venn diagram showing the possible support combinations for various
stream-related features. Basic STREAMS, guaranteed for all STREAMS implementations,
includes only the basic TTY (terminal) stream, which may be limited to half-duplex line­
at-a-time operation. Various additional features of the TTY stream are available on some
platforms (see below).

On some platforms, advanced STREAMS provides the ability to control processes and
communicate with other processes using server/client communication. If advanced STREAMS
is supported, the ability to schedule advanced STREAMS may also be supported.

Appendix C summarizes the current status of support and implementation of STREAMS on the
current MAINSAIL platforms. Programs that must run on systems where only some
STREAMS features are supported must use the runtime tests provided to determine which
features are available. They must then adapt to the environment as best they can.

2.3.2. The Basic TTY Stream

The minimal STREAMS implementation is a single TTY stream that connects to the
controlling terminal device. This stream need not be capable of independent input and output
scheduling, polling, or timed reads. The STREAMS system variable $tty, declared as:

POINTER ($stream) $ttYi

is automatically opened to the controlling terminal.

The TTY stream may be half-duplex, in which case I/O may be restricted to a line at a time.
This minimal implementation is sufficient to write, e.g., a KERMIT server, but not a KERMIT
client. The minimal STREAMS capabilities provided for half-duplex TTY streams is no more
than what the MAINSAIL language currently guarantees for terminal I/O on half-duplex
systems.

The minimal STREAMS capabilities for full-duplex TTY streams are more than what the
MAINSAIL promises, but similar to what the full-duplex MAINSAIL display modules assume.

-6-

MAINSAIL STREAMS User's Guide

+----~-----------+
I BASIC STREAMS I
I I
I +---+
I I I TTY Stream Features Available on I
I I I Some Systems; I
I I 1 Full-duplex TTY I
I 1 Basic I Reading interrupt characters 1
I I TTY I Open serial lines, set baud rate I
I I Stream I Write a BREAK, clear pending I/O I
I I I Scheduled TTY streams, timeouts 1

I I I Keyboard interrupts I
+-------+--------+------------------------------------+

ADVANCED I
STREAMS I

+-------------------------------------+
I I Advanced STREAMS Features I
I Server 1 Available on Some Systems; I
I Client I Scheduled advanced STREAMS I
+--------+ Timeouts I
I Rendez-I PTY access to child process I
1 vous 1 System shell as a child I
+--------1 I
1 Parent 1 1

1 Child 1 1

+-------+--------+-----------------------~----+

Figure 2.3.1-1. Summary of Stream Support

Thus, full-duplex TTY streams can be used to read and write single characters at a time or
groups of characters, optionally with echo turned off.

2.3.3. Reading Interrupt Characters from the TTY

On some platforms, the TTY stream may support the ability to read all interrupt and flow
control characters as normal characters so that a terminal emulator can be written. This mode
is controlled by bits passed to $readStream. Refer to Chapter 10 for a description of these bits.

-7-

MAINSAll... STREAMS User's Guide

2.3.4. Opening Serial TTY Lines

The basic TTY stream, $tty, is pre-opened by the STREAMS package and is connected to the
"primary" input/output device, usually an interactive terminal. The ability to open additional
serial TrY lines by name is supported on many systems. The program must provide an
installation-dependent name that corresponds to the desired serial line (see Chapter 10).

2.3.5. Setting the Baud Rate on TTY Streams

The ability to set the baud rate on TTY streams is supported on some systems. If this capability
is not supported, the procedures used to set the baud rate in Section 10.4 give error returns.

2.3.6. Writing a BREAK on TTY Streams

The ability to write a BREAK (something like a sustained NUL; often interpreted by programs
as an interrupt or closed connection) on TrY streams is supported on some systems using the
procedure described in Section 10.4. The procedure gives an error return if the capability is not
supported.

2.3.7. Clearing Pending 1/0

The ability to clear pending input and/or output is supported on some systems using the
procedure described in Section 10.4. The procedure gives an error return if the capability is not
supported.

2.3.8. Scheduling of TTY Streams

TrY streams may support scheduled I/O so that more than one coroutine doing TrY I/O may
run at once (see below).

A DrOl!fam may determine if schedulinQ' annlies to t.he TTY strf'..:tm on thp. host svstp.m th~t 1~
... '-"'., '-"& - - -~.-~ - --------J------7------7

if $uy can participate in scheduled I/O activities along with other streams, by the test
"$isScheduled($Uy)". If not, I/O to $tty must be assumed to block.

/~. Y .
j f

- 8-

MAINSAIL STREAMS User's Guide

2.3.9. Catching Keyboard Interrupts

The TTY stream may support the ability to intercept and test a single keyboard interrupt
character (CTRL-C on many systems). A program may determine whether catching TIY
keyboard interrupts is possible on its $tty by calling the $enableInterrupts procedure and testing
its return value.

If $enableInterrupts succeeds, the exception $keyboardInterruptExcpt is raised whenever the
Scheduler gets control and discovers an interrupt that has not previously been observed. This
exception is raised in the coroutine that most recently called $enableInterrupts.

If the $tty is scheduled, i.e., "$isScheduled($tty)" is true, the exception
$keyboardInterruptExcpt can be raised while the program is waiting for TrY input. Otherwise,
interrupts that occur during TIY input cause the exception to be raised the next time that the
Scheduler is invoked following the TrY input.

2.3.10. Server/Client Communication

A platform may support server/client communication through one or more network protocols.

2.3.11. Process Rendezvous

A platform may support the ability of two processes to establish communication with each
other, or rendezvous. .

2.3.12. Child Process Creation

If child process creation is supported, the stream module SOCPRO is available for the system.

Child processes may be categorized as either cooperating or non-cooperating.

A child process that knows it is being invoked by a parent and that uses an agreed-upon
communication protocol is called a cooperating child process. Typically, a cooperating child
process uses its $tty for error messages and debugging and a secondary stream (available as the
STREAMS system variable $parent) for communication with the parent process.

A child process that does not know that it is being run from a parent is called a non-cooperating
child process. All communication with non-cooperating children takes place through the
child" s TTY.

-9-

MAINSAIL STREAMS User's Guide

Some systems support the ability to create non-cooperating child processes with a $tty that has
all of the semantics normally associated with a $ tty , including echo and line editing on input
On such systems the stream module called PTYPRO is available.

Limits on the ability to run non-cooperating general child processes through PTYPRO are
system-dependent. On some systems, the PTYPRO stream is half-duplex, capable only of line­
at-a-time I/O. The results of running a display editor in such a child process would be less than
satisfactory!

2.3.13. The System SheD as a Child Process

The ability to run the standard system shell through PTYPRO is system-dependent Even if the
system supports the concept of a "shell", the results of running it may be less than satisfactory
for some applications. The V AXNMS shell, for example, turns off all prompting when run as
a child process.

2.3.14. Scheduling of Advanced STREAMS

Scheduling of advanced STREAMS is available on some platforms. Without scheduling, the
functionality of advanced STREAMS is limited because multiple I/O tasks cannot be
performed simultaneously. Without scheduling, for example, servers can process only one
client at a time and they can accept clients using only one network protocol.

The STREAMS system macro $systemSupportsScheduling tells whether the host system
supports scheduling of advanced STREAMS. This support is independent of whether the
system supports scheduling on TIY streams. Thus, there are four possible levels of scheduling
possible on a given system:

IF $systemSupportsScheduling AND $isScheduled($tty) THEN
the system supports scheduling on all streams

EF $systemSupportsScheduling AND NOT $isScheduled($tty) THEN
the system supports scheduling of advanced STREAMS but
not $tty

EF $isScheduled($tty) AND NOT $systemSupportsScheduling THEN
the system supports scheduling of only $tty

EL # the system does not support scheduling at all

- 10-

MAINSAIL STREAMS User's Guide

2.3.15. Timeouts

If a system supports scheduling then it may also support timeouts for stream-related activities.
If a system supports timeouts in general then it supports timeouts for all scheduled streams
(including TrY streams if they are scheduled).

The STREAMS system macro $systemSupportsTimeout tells whether the host system supports
the ability to use timeouts on scheduled streams. If the TTY can be scheduled and
$systemSupportsTimeout is true, timed input may also be performed on the TIY. If
$systemSupportsTimeout is false, timeout values are ignored.

Currently, all systems that support scheduled streams also support timeouts.

2.4. Stream Types

The basic stream I/O procedures work uniformly regardless of the underlying stream device
being used. Some stream types, most notably TTY streams, require special additional
procedures and have limitiations specific to the device. These limitations must usually be
understood by the programmer in order to use these devices effectively, except in simple cases.

The types of streams currently known to the system are:

• TIY streams

• socket (interprocess communication or IPC) streams

• memory streams

• PrY streams

TTY streams allow the program to communicate with a terminal. The teoninal may be either a
screen and a keyboard or a serial line· (e.g .• RS-232). For historical reasons that are not likely
to change soon, TrY streams have special modes, limitations, and job control side effects.

Socket streams rovide conceptually simple, unencu bered communication between rocesses. --------- ,,--

Memory streams are a special kind of stream for internal communication between coroutines of
the same process. They are created in pairs.

PTY streams are used to communicate with a child process that thinks it is communicating with
a real terminal. The parent. which is typically a shell or a windowing system, passes on the

- 11 -

MAINSAIL STREAMS User's Guide

child's output, read from the PTY, to a terminal or window. The parent passes keystrokes to
the child by writing to the PTY.

Other stream types may be implemented in the future.

2.5. Automatic Scheduling of Stream I/O

Task scheduling is crucial to distributed computing, since it allows a single process to interact
with several other processes (and possibly also a user) without constraining the order in which
the communications take place. The power of stream I/O for multiprocessing and multitasking
lies in a special STREAMS system coroutine called the Scheduler.

Whenever any coroutine calls a stream I/O procedure, the Scheduler coroutine is resumed to
decide what to do next The original caller coroutine is resumed by the Scheduler only when its
requested I/O is ready, i.e., when the I/O can be performed without blocking. In this way, the
program runs much the way it would if each of its coroutines were run as a separate process
under a multiprocess operating system, or as separate programs on two different computers.

Chapter 7 describes the use of stream scheduling for implementing multitasking programs.

2.6. Loose Coupling of Streams to MAINSAIL

In the current release of MAINSAIL, the stream I/O facilities are "loosely coupled" with the
traditional MAINSAIL runtime system. In particular, unless special steps are taken, normal
TTY I/O through cmdFile and 10gFile, the file "TrY", ttyRead and ttyWrite, and $timeout are
performed independently of the stream Scheduler and therefore block.

Eventually it may be that all I/O to the file "TTY" (e.g., the default cmdFile and logFile) will go
through the $tty stream, at least on systems where STREAMS is installed. The procedures
ttyRead, ttyWrite, and ttycWrite may also eventually go through the $tty stream. Should this
"strong coupling" be implemented, the procedure $timeout will work through the Scheduler if
$systemSupportsTimeout is true.

In the meantime, to aid programs that wish to make output to the file "TrY" be scheduled, the
device module NTIY is supplied. Output to a file opened through NTIY goes through $ tty . In
particular, if cmdFile and 10gFile are reopened through NTIY, any I/O to the terminal through
them is scheduled, including error messages reported by errMsg. Example 2.6-1 shows how a
program can arrange to use the NTIY device module in place of the file "TIY".

- 12-

MAINSAIL STREAMS User's Guide

RESTOREFROM "strhdr";

POINTER (textFile) origCmdFile,newCmdFile,origLogFile,
newLogFile;

INLINE PROCEDURE startup;
BEGIN * Make cmdFile/logFile go through ntty>
enterLogicalName("tty","ntty" & $devModBrkStr);
setModName("tty","ntty");
origCmdFile := cmdFile;
origLogFile := logFile;
open(newCmdFile,"ntty" & $devModBrkStr,input);
open(newLogFile,"ntty" & $devModBrkStr,output);
cmdFile := newCmdFile; close(origCmdFile);
logFile .= newLogFile; close (origLogFile) ;
END;

INLINE PROCEDURE cleanup;
BEGIN * Restore original cmdFile/logFile
enterLogicalName("tty","");
setModName ("tty", '''');
close(cmdFile); * Reopens to TTY
newLogFile := logFile;
open(origLogFile,"tty",output);
logFile := origLogFile;
close(newLogFile):
END:

Example 2.6-1. Using the NTTY Device Module (continued)

- 13 -

MAINSAIL STREAMS User's Guide

..... ----------------------------... --~., .• --~ -

INITIAL PROCEDURE;
BEGIN
$initializeStreams;
startup;

END;

FINAL PROCEDURE;
cleanup;

Example 2.6-1. Using the NTTY Device Module (end)

- 14-

MAINSAll... STREAMS User's Guide

3. Opening and Closing Streams

A stream is a two-way communication mechanism through which text and data may be
transmitted The other end of the stream may be an external device such as a keyboard and
screen, another process, or a coroutine running as part of the same process.

Because streams are a fairly low-level concept, beginning programmers typically do not use
streams directly. They may, however, use features implemented using stream I/O, such as the
Remote Procedure Call facility or servers built by XIDAK.

3.1. Making STREAMS Available to a MAINSAIL Program: the
STRHDR Intmod and $initializeStreams

In the current version of MAINSAIL, the procedures and symbols associated with STREAMS
are made available to a MAINSAIL module by restoring from the STRHDR intmod when a
module that uses STREAMS is compiled. It is also necessary at runtime to call the STREAMS
system procedure $initializeStreams (shown in Table 3.1-1) in the module's initial procedure
before making use of any other STREAMS facility (the effect is undefined if a STREAMS
facility is used before $initializeStreams is called). $initializeStreams may be called more than
once with no ill effects.

PROCEDURE $initializeStreams;

Table 3.1-1. $initializeStreams

STREAMS identifiers may at some point be included in the MAINSA~ system intmod, in
which case the restore from STRHDR and perhaps the call to $initializeStreams would become
unnecessary .

3.2. Automatically Opened Streams: $tty and $parent

The stream $tty is automatically opened to the controlling terminal. Programs that wish to take
advantage of the stream nature of $ tty , to read single characters and control echo on full-duplex
systems, for example, may do their I/O directly on $tty.

- 15 -

MAINSAIL STREAMS User's Guide

BEGIN "mod"

RESTOREFROM "strhdr";

INITIAL PROCEDURE;
BEGIN
$initializeStreams;

END;

END "mod"

Example 3.1-2. Use of $initializeStreams

When a cooperating child process is started by a MAINSAIL parent, the stream $parent is
automatically opened to the parent process. The $parent stream is typically used for
communication with the parent, while the $tty is used for I/O outside of the normal
communications protocol, e.g., for error messages. If the process was not started as a
cooperating process by its parent, the variable $parent is nullPointer.

3.3. The Class $stream

Stream records have the user-visible interface fields shown in Table 3.3-1.

The $name field is the full name used to open this stream (analogous to the name field of a file
record). The $lastInputError and $lastOutputError fields contain the most recent error message
associated with stream input and output. If the operation producing the error was neither input
nor output, the message is placed in $lastInputError.

The system attribute macros describe the functionality of the underlying implementation of the
stream. $systemSupportsScheduling and $systemSupportsTimeout apply to all streams except,
possibly, the $ny stream. If the system does not support timeouts, timeout values other than
$block are ignored (see Section 9.1.1).

- 16-

MAINSAIL STREAMS User's Guide

CLASS $stream (
STRING

) ;

BOOLEAN
<macro>

BOOLEAN
<macro>

BOOLEAN
<macro>

BOOLEAN
<macro>

BOOLEAN
<macro>

$name,
$lastInputError,
$lastOutputError;
Other user-visible fields are set according
to the stream type

$systemSupportsScheduling;

$systemSupportsTimeout;

$isScheduled
(POINTER ($stream) st);

$isatty (POINTER ($stream) st);

$isHalfDuplex
(POINTER ($stream) st);

Table 3.3-1. User-Visible Fields of$stream and STREAMS Macros

The stream-specific attribute macros describe the functionality of a particular stream. The
macro $isScheduled tells whether I/O to the stream st will be scheduled (see Chapter 7). If this
macro returns false, the program may block until the I/O is complete.

Programmers should assume that all the attribute macros shown in Table 3.3-1 are evaluated at
runtime rather than compiletime. On some platforms they may actually be evaluated at
compiletime, but this is subject to change.

The stream-specific attribute macro $isHalfDuplex applies to TTY and PTYPRO streams only.
It indicates that the tenninal or pseduo-tenninal is half-duplex. Note that testing the
MAINSAIL system variable $attributes for the $halfDuplex bit applies only to the standard
system primary input and output associated with a program. Other TTY streams (e.g., one

- 17-

MAINSAIL STREAMS User's Guide

opened to a remote system) might not have the same characteristics as the primary input and
output.

3.4. Opening and Closing Streams: $openStream and $closeStream

NOTE: The actual strings passed to $openStream are
subject to change in subsequent releases of STREAMS.
Programmers should write their programs in a way that
will make it easy to accommodate this change.

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

$openStream (PRODUCES POINTER ($stream) st;
STRING streamName;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING

errorMsg) ;

$openStream (PRODUCES POINTER ($stream)

$closeStream

stl,st2;
STRING streamName;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING

errorMsg) ;

(MODIFIES POINTER ($stream) st;
OPTIONAL BITS ctrlBits);

Table 3.4-1. $openStream (Generic) and $closeStream

Streams are opened and closed by explicit calls that manipulate a $stream record.

$openStream opens a stream identified by streamName, making it available for I/O in
accordance with ctrlBits.

- 18-

MAINSAIL STREAMS User's Guide

The stream name is of the form:

strmod>name

or:

strmod(host»name

where strmod is the name of a stream module (or special stream prefix; this prefix is often
called a "stream module" in the documentation even when it is a special name recognized by
$openStream instead of the name of an actual MAINSAIL module), name is a name with a
syntax and meaning that depends on the stream module name, and host (if supplied) is the host
system on which the stream is to be opened.

The character ">" is always used as the stream prefix separator, unlike the corresponding
separator for file names. The file name separator, $devModBrk, is ">" on most operating
systems but may differ on some systems. The stream name separator is always ">", so no
special identifier is provided for it; programs that specify stream names should just use the
character ">" in the strings specifying the names.

The description given in this document of each stream module gives the naming conventions
and characteristics of each stream module.

Some stream modules produce only one stream when an $openStream is done. Such stream
modules include those that communicate with an external device, such as TTYSTR. For these
stream modules, the first form of $openStream must be used.

Some stream modules, such as MEMSTR, always produce two streams. Stream pairs allow
different coroutines within the same process to communicate with each other. For these stream
modules, the second form of $openStream must be used.

Some stream modules can produce either one or two streams. For example, SOCPRO and
PTYPRO produce one stream to talk to the child process's $tty, and may optionally produce
another stream to talk to the child's $parent. For these stream modules, either the first or
second form of $openS tream may be used.

If $openStream is able to open the stream, it produces the stream handle record(s) and returns
true.

The valid ctrlBits bits are input, output, and errorOK. If neither of input or output is given,
both are assumed. In the second form of $openS tream to a memory stream, specifying either
input or output, but not both, makes stl work in the specified direction and st2 work in the
opposite direction.

- 19 -

MAINSAIL STREAMS User's Guide

errorOK not set: errMsg is called and a new stream name
is reprompted for until a valid name is
given. A valid stream handle is always
returned, and $openStream always returns
true.

errorOK set: errorMsg is set to a description of the
error, the stream handles to
nullPointer, and $openStream returns
false.

Table 3.4-2. Error Handling in $openStream

The procedure $closeStream closes a stream and sets its pointer argument to nullPointer. In the
case of stream pairs opened with $openStream, both pointers should be closed with
$closeS tream. After a stream is closed, no further I/O may be performed on the stream.

If an error occurs during closing (e.g., the stream handle is invalid) and errorOK is given in
ctrlBits, $closeStream returns false after printing the error message; if errorOK is not set, a fatal
error occurs.

- 20-

MAINSAIL STREAMS User's Guide

4. Remote Modules and Remote Procedure Calls (RPC)

The remote module binding mechanism is a high-level interface that simplifies the construction
of algorithms that consist of multiple cooperative processes. The remote module facility
handles the required communication automatically through what look like ordinary procedure
calls, allowing the programmer to concentrate on solving the application problem.

Remote modules are a high-level concept built using the interprocess communication methods
described in Chapter 6. The idea is- to make an interaction with another process look like the
creation of a new MAINSAIL module instance (the "remote module") in the remote process.
Intermodule procedure calls to the remote module are called "remote procedure calls" (RPC).

The remote module may be created in any process with which a program is communicating
using STREAMS. Commonly, the remote module is created in either a global server process,
in a child process, or in a parent process.

In the discussion that follows, the process in which the remote module actually runs is often
termed the "RPC server", and the process that makes the calls the "RPC client". However,
these processes need not be servers and clients in the senses given in Section 6.3. The server
may be thought of as the "callee process" and the client as the "caller process".

RPC clients may be written in MAINSAIL or in C. The MAINSAIL case is described first, as
many of the MAINSAIL client concepts are applicable to C as well. RPC servers must be
written in MAINSAIL.

To create a new instance of a remote module, a MAINSAIL program must know how to open a
stream that communicates with the process that is providing that remote module, or else it must
already have a stream that is open to that process. In the case of a remote module provided by
a global server, the user needs to know the name of the service and possibly the host system, if
the service is provided on multiple systems.

4.1. Overview

To provide remote computation using RPC, the programm~r writes a MAINSAIL module (the
server) with interface procedures that provide the desired computation. The module's interface
declaration must use the prefix class $remoteModuleCls. The remote module is compiled with
the "RPC" subcommand (with no arguments) to the MAINSAIL compiler to produce two
MAINSAIL source modules. The source module names are derived from the remote module

- 21 -

MAINSAIL STREAMS User's Guide

name by appending "SRV" and "CLI" to the first three letters of the remote module name, and
the output file names are derived from the module names by converting them to lower case and
adding ".msI". For example, if the remote module is FOOMOD, the compilation produces the
two MAINSAll... source modules FOOCLI and FOOSRV in the files "foocli.msl" and
"foosrv.msl".

In the case of a remote module FOOMOD, the FOOMOD and FOOSRV modules are compiled
for the system that is to execute the remote module, and FOOCLI is compiled for the system
that will call the remote module.

Figure 4.1-1 shows a process A creating a new instance of the remote module FOOMOD and
calling the procedure procl in FOOMOD.

The module FOOCLI is a "stub" that runs in the "client" process. It has the same interface
procedures as FOOMOD and it implements those procedures by communicating with the
"server" process, sending and receiving the arguments as necessary, and returning the values
produced by the procedure call.

The module FOOSRV is the companion stub to FOOCLI that runs in the server process. It
communicates with FOOCL! to receive the arguments, then it invokes the correct procedure in
the "real" module, FOOMOD, to do the actual work. It sends back the resultant modified
arguments to FOOCLI.

The remote module itself, FOOMOD, is written much as any other MAINSAIL module would
be written, except that certain restrictions on the argument types of procedures apply, argument
transmission efficiency considerations must be taken into account, its interface declaration must
use prefix class $remoteModuleCls, and no module interface variables are allowed.

When developing distributed applications, it is often useful to write the module that will
eventually be remote (e.g., FOOMOD) as a local module and debug it that way. Then, to
distribute the application, the remote module can be compiled with the RPC compiler and
either installed into a server or made available to the process that is to provide it.

The call to $newRemoteModule in the process A actually creates a new instance of the module
FOOCLI in A's address space. Recall that FOOCLI was produced by the RPC compiler from
the interface of the "real" FOOMOD module. In its initial procedure, FOOeLI uses '
STREAMS to connect to the service "abc" in the process B. B creates a new instance of the
FOOSRV module. FOOSRV in turn creates a new instance of the FOOMOD module. The
connection is maintained until the instance of FOOMOD is disposed.

When the process A makes the intermodule call FOOCLI.proel, FOOCLI.proel communicates
with FOOSRV in B, telling it that tlproel" is being called. FOOSRV in B invokes
FOOSRV.procl to read the uses arguments from FOOCLI.procl. FOOSRV.procl then calls

- 22-

MAINSAll... STREAMS User's Guide

+----------------------+ +------------------------+
IPROCESS A (CLIENT) I IMODULE fooCli I
1----------------------1 1------------------------1
I POINTER (fooCls) p; I I MODULE (fooCls) fooCli; I
I I I I
Ip := $newRemoteModule(1 +->IPROCEDURE procl(....); I
I "service>abc", I I 1* Communication with B I
I "fooMod"); I I I... 1-+
I p. procl (....) ; I -+ I I I
+----------------------+ +------------------------+ I
===1=

+----------------------+
IPROCESS B (SERVER) I
1----------------------1
IINIT modNames I
I ("fooMod", I
I "infMod"); I
I I
l$becomeServer(I
I "service>abc", I
I modNames); I
I I
+----------------------+

I
+----------------------~-----+

I
I +-----------------------+
I IMODULE fooSrv I
I 1-----------------------1
I I MODULE (fooCls) fooSrv; I
I I I
I I I
+->IPROCEDURE procl; I

I BEGIN I
1* Communication with A I
I fooMod.procl (....) ; 1--+
lEND; I I
+-----------------------+ I

I
+-----------------------------+

+-----------------------+
IMODULE fooMod I
1-----------------------1
I MODULE (fooCls) fooMod; I
I I

+->IPROCEDURE procl(....); I
1* actual code for procll
+-----------------------+

Figure 4.1-1. Schematic Diagram of a Remote Procedure Call

- 23-

MAINSAIL STREAMS User's Guide

the "real" proel, FOOMOD.procl, and communicates the results back to FOOCLI.procl,
which returns them to the original caller in A.

During the call to procl, the current coroutine in A is blocked, just as it would be for a local
procedure call. Because STREAMS communication is used, other scheduled coroutines in A,
if any, can run while FOOCLI.procl is waiting for the results from FOOSRV.procl.

In the example above, B is a global server process that uses the $becomeServer procedure to
become an RPC server that provides the modules FOOMOD and INFMOD under the service
name "abc". The $becomeServer call does not return until the server is killed.

4.2. Remote Module Procedures

POINTER ($remoteModuleCls)
PROCEDURE $newRemoteModule

(STRING servieeStreamName;
STRING moduleName;
OPTIONAL LONG INTEGER eli Version,

oldestSrvVersion;
OPTIONAL BITS etrlBits;
OPTIONAL PRODUCES STRING msg) ;

POINTER ($remoteModuleCls)
p'ROCEDURE $newRemoteModule

BOOLEAN
PROCEDURE

(POINTER ($stream) st;
STRING moduleName;

$beeomeServer

OPTIONAL LONG INTEGER eli Version,
oldestSrvVersion;

OPTIONAL BITS etrlBits;
OPTIONAL PRODUCES STRING msg);

(STRING servieePortName;
STRING ARRAY(*) moduleNamesi
OPTIONAL BITS etrlBits;
OPTIONAL PRODUCES STRING msg)i

Table 4.2-1. Remote Module Procedures (continued)

- 24-

MAINSAIL STREAMS User's Guide

BOOLEAN
PROCEDURE $becomeServer

(POINTER($stream) sti
STRING ARRAY(*) moduleNamesi
OPTIONAL BITS ctrlBitsi
OPTIONAL PRODUCES STRING msg)i

Table 4.2-1. Remote Module Procedures (end)

$newRemoteModule creates a new remote i!1stanc~ of the module named moduleName. It
returns a pointer to a new (unbound) instance ofthe'"Ciient end of the desirect module. If
errorOK is set in ctrlBits, errors cause a nullPointer return with msg set; otherwise, a fatal error
message is issued. The use of optional version numbers is discussed below.

The first instance of $newRemoteModule takes a stream name that can be used to establish a
connection with the desired server process or create the desired child process. It calls
$openStream to open serviceStreamName and creates a new local instance of moduleName to
talk to a new remote instance of moduleName created in the server.

The second instance of $newRemoteModule takes an already open stream that is connected to a
process that is about to call or has already called $becomeServer on the other end of the stream.
It creates a local instance of moduleName to talk to a new remote instance of moduleName
created by the process at the other end of the stream st. This form of $newRemoteModule is
useful for talking to child or parent processes when the streams are already open.

$becomeServer becomes a server for the remote modules named by the elements of
moduleNames. If errorOK is set in ctrlBits, errors in becoming a server cause a false return
with msg set; otherwise, a fatal error message is issued.

The first form of $becomeServer sets up one or more ports on which new clients are accepted
as they connect to the service of which the name is given as part of servicePortName. This
form is used by a global server process. For each client that connects, a service coroutine is
started to provide one of the remote modules to that client The service coroutines run
scheduled so that more than one client can be serviced at once. When the client disconnects,
the service coroutine is killed automatically.

The port name may specify an explicit network protocol, e.g., "tcp>abc", or it may specify the
generic protocol "service", e.g., "service>abc", to serve clients using every network protocol
that the server is declared to serve. The service "abc" must have been previously declared as a
valid service name in the service protocol table as described in Appendix A.

- 25-

MAINSAIL STREAMS User's Guide

The second form of $becomeServer may be used by a process that wishes to provide a remote
module to the process at the other end of the stream st It provides any of the remote modules
in moduleNames to the process at the other end of the stream st. The process on the other end
of the stream must call $newRemoteModule to create a new remote module. When the process
at the other end disposes of the remote module, the second form of $becomeServer returns with
the stream still open.

In either case of $becomeServer, the server program can perform independent computation
and/or stream I/O on its own in parallel by calling $becomeServer in an independent scheduled
coroutine that it sets up.

4.3. Remote Module Interfaces

The following restrictions apply to module interface declarations for remote modules:

• The module interface must use the prefix class $remoteModuleCls.

• The module may have only interface procedures; no interface variables are allowed.

• The data types address and charadr are reserved for buffer passing (see below). The
type of a procedure may not be address or charadr.

• Pointers and arrays must be the roots of structures that can be legally read and written
in PDF structure images by the Structure Blaster. Data sections should not be
included in structures that might be sent to a server running on another system or
another version of MAINSAIL (if a data section is to be valid in the RPC server, the
RPC server must have access to the appropriate objmod).

• The module must be written to operate as an unbound module.

• The macro $remoteModuleDefaults must be invoked at the end of the remote module
(see Example 4.5-1). This macro defines procedure bodies for two interface
procedures in the $remoteModuleCls prefix class.

The semantics of uses, modifies, and produces for pointers and arrays are slighty different
between local calls and remote calls. In local calls (standard MAINSAIL), a produces or
modifies pointer or array means that the pointer value itself can be changed. The structure
referred to by the pointer or array can be changed even through a uses parameter. Since RPC
involves a transfer of data, uses, modifies, and produces refer to the entire structure being
pointed to; i.e., a uses pointer or array sends the structure to the remote module, but does not
read it back. A produces pointer or array does not send a structure, but reads a structure back
from the remote module. A modifies pointer or array both writes and reads the structure.

- 26-

MAINSAIL STREAMS User's Guide

4.4. Buffer Passing Conventions

A buffer is a block of storage units, portable storage units (PDF data), or character units. The
start of a buffer of storage units is given by an address parameter. The start of a buffer of
portable storage units or characters is given by a charadr parameter. The data types address and
charadr are thus reserved for buffer passing between the two processes.

Buffers containing characters are distinguished from buffers containing portable data by the
name of the charadr parameter. Names ending with "pdf' (case is not distinguished in
parameter names) indicate portable data; other names indicate characters. Characters are
translated by the remote procedure call interface automatically, while PDP and storage unit data
are not.

The length of the buffer is given in parameters following the address or charadr parameter. If
the buffer contains storage units, the length and size are given in storage units; if the buffer
contains characters or PDF data, the length and size are given in characters.

Like other procedure parameters, buffers maybe uses, modifies, or produces. A uses buffer
passes the data in the buffer to the procedure. A produces buffer receives data from the
procedure. A modifies buffer passes data to the procedure and receives data back (the returned
data overwrite the original data).

For all three kinds of buffers, the address or charadr parameter must itself be declared as a uses
parameter. The caller of the procedure must thus supply a valid address or charadr; i.e., the
parameter may not be nullAddress or nullCharadr.

A uses buffer is indicated by following the address or charadr by a single uses long integer
parameter giving the amount of data supplied in the buffer. The parameter name must end with
"length".

Produces and modifies buffers are indicated by following the address or charadr by two long
integer parameters. The first must be a uses parameter giving the allocated size of the buffer.
Its name must end with "size". For produces buffers, the second parameter must be a produces
parameter that will be set to the length of data supplied by the procedure call. For modifies
buffers, the second parameter must be a modifies parameter that is initially set to the length of
data in the buffer and is modified to the length of data supplied by the procedure call. In both
cases, the name of the second parameter must end with "length".

Example 4.4-1 shows an example module declaration of a remote module with uses, produces,
and modifies buffer parameters for storage unit, character, and portable data buffers.

- 27-

MAINSAIL STREAMS User's Guide

MODULE ($remoteModuleCls) xxx (

4/: USES Buffers

PROCEDURE

PROCEDURE

PROCEDURE

writeDataBuf
(ADDRESS buf;
LONG INTEGER bufLength);

writeTextBuf
(CHARADR buf;
LONG INTEGER bufLength);

writePdfBuf (CHARADR bufPdf;
LONG INTEGER bufLength);

4/: PRODUCES Buffers

PROCEDURE

PROCEDURE

PROCEDURE

readDataBuf (ADDRESS buf;
LONG INTEGER bufSize;
PRODUCES LONG INTEGER

bufLength) ;
readTextBuf (CHARADR buf;

LONG INTEGER bufSize;
PRODUCES LONG INTEGER

bufLength) ;
readPdfBuf (CHARADR bufPdf;

LONG INTEGER bufSize;
PRODUCES LONG INTEGER

bufLength) ;

4/: MODIFIES Buffers

Example 4.4-1. Example Uses, Produces, and Modifies Buffer Parameters (continued)

- 28-

MAINSAIL STREAMS User's Guide

PROCEDURE

PROCEDURE

PROCEDURE

) ;

writeAndReadDataBuf
(ADDRESS buf;
LONG INTEGER bufSizei
MODIFIES LONG INTEGER

bufLength) i

writeAndReadTextBuf
(CHARADR buf;
LONG INTEGER bufSizei
MODIFIES LONG INTEGER

bufLength)i
writeAndReadPdfBuf

(CHARADR bufPdfi
LONG INTEGER bufSize;
MODIFIES LONG INTEGER

bufLength) ;

Example 4.4-1. Example Uses, Produces, and Modifies Buffer Parameters (end)

4.5. Example of Remote Modules between a Parent and Child Process

Example 4.5-1 shows an example remote module that provides a single trivial remote
procedure Ithellolt

•

Examples 4.5-2 and 4.5-3 are an example of the use of fooMod by executing it in a child and
calling it from a parent.

In its initial procedure, the parent, shown in Example 4.5-2, creates a child process running the
module CHILD under the current version of MAINSAIL. It sets up a coroutine to multiplex
the child's TTY (for error messages and debugging) to the parent's TTY. It then creates a new
instance of the remote module FOOMOD in the child and calls the procedure "hello lt in the
remote module. Eventually it disposes the remote module, and kills the child process.

Example 4.5-3 shows how the module CHILD might be written. It becomes a server for the
remote module FOOMOD.

- 29-

MAINSAIL STREAMS User's Guide

BEGIN "fooMod"

RESTOREFROM "rpchdr" i

MODULE ($remoteModuleCls) fooMod (
STRING PROCEDURE hello (STRING S)i

) i

STRING PROCEDURE hello (STRING S)i

RETURN(nHow do you do n & S)i

$remoteModuleDefaults

END "fooMod"

Example 4.5-1. Example Remote Module

BEGIN "child"

RESTOREFROM "rpchdr";

CLASS ($remoteModuleCls) fooModCls (
STRING PROCEDURE hello (STRING S)i

) ;

INITIAL PROCEDUREi
BEGIN
STRING ARRAY(l TO 1) modNames;

new(modNames)i
INIT modNames ("fooMod");

$becomeServer($parent,modNames);
END;

END "child"

Example 4.5-3. Child Providing the FOOMOD Remote Module

- 30-

MAINSAIL STREAMS User's Guide

BEGIN "parent"

RESTOREFROM "rpehdr";

CLASS ($remoteModuleCls) fooModCls (
STRING PROCEDURE hello (STRING s);

) ;

POINTER ($stream) ehTty;
POINTER ($eoroutine) re, we;

PROCEDURE reader;
BEGIN
STRING s;
WHILE $sueeess($readStream(ehTty,s,errorOK» DO

$writeStream($tty,s,$line);
IF we AND NOT $killedCoroutine(we) THEN

$killCoroutine(we);
$resehedule(delete);
END;

PROCEDURE writer;
BEGIN
STRING s;
DO $readStream($tty,s)

UNTIL NOT.$sueeess($writeStream(ehTty,s,errorOK»;
IF re AND NOT $killedCoroutine(re) THEN

$kiIICoroutine(re);
$resehedule(delete);
END;

INITIAL PROCEDURE;
BEGIN
STRING s;
POINTER (fooModCls) m;
POINTER ($stream) ehCtli

Example 4.5-2. Parent Executing Remote Module FOOMOD in a Child (continued)

- 31 -

MAINSAIL STREAMS User's Guide

* Create the child
$openStream(chTty,chCtl,"socpro>" & $executableBootName &

" child");

* Handle its tty
rc := $createCoroutine(thisDataSection,"readern);

$queueCoroutine(rc);
wc := $createCoroutine (thisDataSection, "writer n

) ;

$queueCoroutine(wc)i

* Use it to supply FOOMOD
m := $newRemoteModule(chCtl,"fooMod");
s := m.hello("xxx") i

dispose (m) i

* Kill the child (kills the reader and writer implicitly)
$closeStream(chTtY)i $closeStream(chCtl)i
END;

END "parent"

Example 4.5-2. Parent Executing Remote Module FOOMOD in a Child (end)

A generic module RPCSRV (see Section 4.7) is supplied with the RPC package. The RPCSRV
module provides the functionality of the child shown in Example 4.5-3 in a generic way.

4.6. Example Clients and Servers Using Remote Modules

Example 4.6-1 shows the same remote module as in Example 4.5-1 except that it declares its
optional protocol version numbers.

Examples 4.6-2 and 4.6-3 are examples of a server program that provides FOOMOD, and a
client program that executes FOOMOD remotely.

The client is written like the parent in the previous section, except that it asks to talk to the
server named "foo" instead of creating a child process. The server process is written like the

- 32-

MAINSAIL STREAMS User's Guide

BEGIN "fooMod"

RESTOREFROM "rpchdr";

INITIAL PROCEDURE;
BEGIN
newestVersion := SL;
oldestVersion := 3L;
END;

* OPTIONAL (see below) * OPTIONAL (see below)

MODULE ($remoteModuleCls) fooMod (
STRING PROCEDURE hello (STRING S)i

) ;

STRING PROCEDURE hello (STRING s);
RETURN ("How do you do");

$remoteModuleDefaults

END "fooMod"

Example 4.6-1. Example Remote Module

child in the previous section, except that it becomes a server to "service>foo" instead of to its
parent.

The server shown in Example 4.6-3 keeps accepting and servicing new clients indefinitely.

4.6.1. Use of Version Numbers

When a remote module is provided as part of a service, the author of the service must provide
writers of client modules with documentation that includes:

• the declaration for the remote module,

• a description of the semantics of the procedures in the remote module declaration,
and

- 33 -

MAINSAIL STREAMS User's Guide

BEGIN "client"

RESTOREFROM "rpchdr";

CLASS ($remoteModuleCls) fooModCls (
STRING PROCEDURE hello (STRING s);

) ;

INITIAL PROCEDURE;
BEGIN
STRING s;
POINTER (fooModCls) m;

Ask for version 4L of fooMod
m := $newRemoteModule("service>foo","fooMod",4L);
s := m.hello("xxx");

'dispose (m) ;
END;

END "client"

Example 4.6-2. Example Client of the FOOMOD Remote Module Service

• a service version number identifying the version of the remote module to which the
accompanying description applies.

The declaration of the remote module allows the client program to declare a pointer to the
remote module's class so that procedure calls can be made using MAINSAIL's "p.r' construct.

The description of the semantics of the procedures allows the client to make use of the remote
module to do useful work.

The service version number allows the client to identify the semantics it is expecting to the
server. If a new version of the server is written that accepts new or additional semantics in
addition to the old semantics, the server may be written so that it can also service older clients.

When a remote module is written for use in a server, it may set two version parameters in its
initial procedure, as shown in Example 4.6.1-1.

- 34-

MAINSAIL STREAMS User's Guide

BEGIN "server"

RESTOREFROM "rpchdr";

CLASS ($remoteModuleCls) fOOMOd~ (
STRING PROCEDURE hello (STRING s);

) ;

INITIAL PROCEDURE;
BEGIN
STRING ARRAY(l TO 1) modNames;

new (medNames) ;
INIT modNames ("foeMod");

$becomeServer("service>foo",modNames) ;
END;

END "server"

Example 4.6-3. Example Server Providing the FOOMOD Remote Module

BEGIN "fooMod"

INITIAL PROCEDURE;
BEGIN
oldestVersion := 3L;
newestVersion := SL;

END;

END "fooMod"

Example 4.6.1-1. A Remote Module That Sets Its Version Numbers

- 35 -

MAINSAIL STREAMS User's Guide

These numbers describe the oldest and newest semantics the server is willing to provide to the
client, thus allowing servers to be updated with new semantics while still providing the older
semantics to older clients.

newestVersion is the current version of the remote module semantics. oldest Version is the
oldest backward-compatible version that the server provides.

If a server provides no version numbers, the default for both version numbers is OLD

If the code in the remote module wishes to adapt to the client's actual version, it may access the
long integer interface variable "version". This interface variable is declared in
$remoteModuleCls, as shown in Table 4.6.1-2. It is set to the value of the cliVersion parameter
in the call to $newRemoteModule.

CLASS $rernoteModuleCls (

LONG INTEGER version;

) ;

Table 4.6.1-2. User-Visible Fields of $remoteModuleCls

4.6.2. Writing Adaptable Clients

Version numbers allow new servers to be installed that support both new and old clients, and
for new clients to make use of older servers. By giving an explicit remote module version
number (or range of version numbers) in the $newRemoteModule call, the client can indicate
which module version (or range of module versions) it is written\to use.

When the server and client establish a connection at the time of the call to
$newRemoteModule, the underlying communication code determines if there is an overlap
between the versions provided by the server and the versions acceptable to the client, and if so,
the highest common version number. This highest number is then made available to the "true"
remote module in the long integer module interface variable "version".

A client may ask for a range of service version numbers when it calls $newRemoteModule. It
may then obtain the actual remote module version provided by the server and adapt to the
published semantic and syntactic specifications of the returned version.

- 36-

MAINSAIL STREAMS User's Guide

If different versions provide different module interfaces, the client must not call any procedures
of which the interface has changed (this requirement is enforced by runtime checking).

4.6.3. The Server Log File

When a server is started with the first fonn of $becomeServer, a log of the server's activities is
kept in the file "server.log". By examining that file (in the directory on which the server is
running), a user may determine what the server has been doing.

Entries are made automatically into "server.log" when the following activities occur in a port
based server:

• The server is started with the first form of $becomeServer.

• A client connects and starts a remote module.

• A client disposes a remote module or disconnects.

• An unhandled error occurs in a remote module (the call stack is listed).

If multiple servers are run from the same directory, a MAINEX "ENlER" subcommand can be
used in each server to cause the log files to have different names, if desired.

A sample "server.log" file is shown in Example 4.6.3-1.

29-Feb-88 14:21:
Server service>srv Started, RPC 1 MAINSAIL 11.20

29-Feb-88 14:21:
Client: bob@Poseidon.1 fooMod 5 3 29-Feb-88 14:21

29-Feb-88 14:32:
Finish: bob@Poseidon.1 fooMod 5 3 29-Feb-88 14:21

Example 4.6.3-1. Example "server.log" Log File

4.6.4. Terminating a Global Server

When the first form of $becomeServer is used, the server process can be killed by raising the
exception $killServerExcpt in one of the remote modules. This exception causes

- 37-

MAINSAIL STREAMS User's Guide

$becomeServer to return. $becomeServer cleans up after itself by closing any streams that it
opened.

4.7. Generic RPC Server: the RPCSRV Module

The RPCSRV module is provided by the RPC package to facilitate the creation of child and
server processes for remote modules. RPCSRV is a generic module that provides remote
modules either to its parent or as a global server.

RPCSRV accepts a command line of the form:

rpcsrv <servicePortName> rml rm2 rm3 ...

to start a global server on the port named <servicePortName>, or:

rpcsrv - rml rm2 rm3 ...

to start a parent server on $parent. In both cases, the names nnl, rm2, etc., are names of
remote modules to supply to the clients or parent.

Using the RPCSRV module, a server named "foo" that provides the RPC modules "fooMod"
and "infMod" can be started using the UNIX shell command:

/mslDirectory/mainsa rpcsrv service\>foo fooMod infMod

where "mslDirectory" is the MAINSAIL directory. Note that under the UNIX shell, you must
quote the ">" used in the service port name with the shell escape character ',\".

Using the RPCSRV module, a child process that provides the RPC module FOOMOD can be
started using the $openS trearn procedure in a MAINSAIL program:

$openStream(chTty,chCtl,"socpro>" & $executableBootName &
" rpcsrv - fooMod");

4.8. RPC Implementation Restrictions

Only one $new RemoteModule may be active on a given stream, in the case that the second
form of $newRemoteModule is called. This restriction can be lifted at some future date, if it
becomes a nuisance.

- 38 -

MAINSAIL STREAMS User's Guide

A server process must do a $becomeServer before a client process can call
$newRemoteModule to talk to that server. This restriction is not severe because server
processes are usually started when the node on which they run comes up.

4.9. RPC Efficiency Considerations

Because many network protocols are often slow, remote modules should be designed to handle
relatively large subtasks rather than trivial ones. When possible, all the necessary uses and
produces data should be passed in a single call rather than multiple calls.

For example, using TCP on a SUN 3/60, the wall clock time to bind a remote module varies
from a fraction of a second to seconds, depending on whether the server process is paged out.
Once the remote module is bound, the wall clock time to complete a trivial remote procedure
call is typically about 0.2 seconds. This time is almost entirely due to TCP communications
overhead.

We believe that the overhead per procedure call could be improved with a faster UNIX network
protocol such as UDP. In addition, on operating systems that support faster mechanisms, the
overhead may be considerably less. However, if the remote procedure does a non-trivial
amount of computation (e.g., several seconds' worth), even the communication overhead of
TCP is not a significant factor.

4.10. Parallel Processing Using RPC Calls

Section 7.7.2 describes how RPC calls can be performed in parallel using multitasking.

4.11. Remote Exceptions

TEMPORARY FEATURE: SUBJECT TO CHANGE

An experimental temporary feature has been added to RPC in the ability to propagate
exceptions from a remote module to the calling client, including the ability to examine the calls
stack and to debug the server.

The "model" for exception handling is that the remote procedure execution is taking place in
the client, so exceptions go up to the procedure invocation in the server stub, then are raised in

- 39-

MAINSAIL STREAMS User's Guide

the client stub. Certain exceptions are considered local to the server (mainly
$abortProcedureExcpt). These are not raised in the client

$exceptionPointerArg is always set to nullPointer in the client, since it would be undesirable to
pass a large structure when an exception occurred.

$systemExcpt is handled specially. If a remote procedure call causes a $systemExcpt, errMsg
is called in the client with some extra registered exceptions: "remote calls" to see the remote
calls stack, "remote PRNTCO" to see the output of PRNTCO run in the server, and "remote
debug" to debug the server. $exceptionStringArgl is prefixed with "RPC:" when $systemExcpt
is raised, so that "RPC:" appears in any error message displayed to the user.

Debugging the server currently means that a call to $debugExec is made in the server. If the
server is running on a terminal or terminal emulator, it can be debugged. This is very useful
(compared to the way things have been up until now) but one could imagine other debugging
mechanisms.

4.12. C RPC

The C RPC facility is still being designed,
and so is especially likely to change.

RPC clients written in C are similar to those written in MAINSAIL except:

• The server (written in MAINSAil..) must be compiled with the "RPC C"
subcommand (Le., the "RPC" subcommand followed by the argument "C"). This
produces a header file and a client stub procedure file; the latter is analogous to the
FOOCL! module in Figure 4.1-1. The base of the two file names is derived from the
remote module name by appending "eli" to the first three letters of the remote module
name converted to lower case. The header file has the extension" .h" and the client
stub procedure file the extension" .c"; for example, "foocli.h" and "foocli.c" would be
produced for a remote module FOOMOD.

• The RPC client source file must include (with "#include" directives) a file "mrpc.h",
which is shipped with the MAINSAIL STREAMS package, and, for each remote
module in which it calls a procedure, the header file generated when the remote
module was compiled with the "RPC CIt subcommand.

-40 -

MAINSAIL STREAMS User's Guide

• Instead of opening a stream to the RPC server 9 the client calls the procedure
"connserver" (provided by the file "mrpc1.o", which resides on the MAINSAIL
directory).

• Instead of calling $newRemoteModule, the C client calls a procedure called by the
name of the remote module (in lower case) with "_init" added to it, e.g.,
"foomod_init", with the int value returned by conn server as one of the arguments, to .
initialize the connection. This special procedure is called the remote module's _init
procedure.

• The remote procedures, instead of being called with a direct pointer call, as in
MAINSAIL, are called with the procedure name converted to lower case and prefixed
by the remote module name and an underscore, e.g., "foomod_proc1", and with the
value returned from the _init procedure as the first argument.

• When the connection is to be closed, the C program calls a _final procedure,
analogous to the _init procedure, instead of $closeStream, and ltc1ose" must be called
for the value returned from conn server.

• MAINSAIL server procedures with pointer arguments or return values cannot be
called. Array and string arguments must be handled specially as described below.

• The client must be linked with the client stub procedures and with the file "mrpcl.o"
from the MAINSAIL directory.

The correspondence between C client arguments and MAINSAIL remote module parameters is
shown in Table 4.12-1.

4.12.1. Data Type Rules

String arguments must be null-terminated. Strings containing the character code 0 cannot be
sent to or received from the remote procedure. Modifies and uses strings returned by remote
procedures must be passed to cfree to reclaim the space they occupy. If the string or array
passed to the remote procedure was allocated with malloc, then the client is also responsible for
deallocating it by passing it to cfree; it is not automatically deallocated by RPC after
transmission.

Arrays are passed as pointers to a C struct ARRAY typedefed in "mrpc.h" as:

- 41 -

MAINSAIL STREAMS User's Guide

MAINSAIL

USES BOOLEAN
MODIFIES BOOLEAN
PRODUCES BOOLEAN

USES INTEGER
MODIFIES INTEGER
PRODUCES INTEGER

USES LONG INTEGER
MODIFIES LONG INTEGER
PRODUCES LONG INTEGER

USES REAL
MODIFIES REAL
PRODUCES REAL

USES LONG REAL
MODIFIES LONG REAL
PRODUCES LONG REAL

USES BITS
MODIFIES BITS
PRODUCES BITS

USES LONG BITS
MODIFIES LONG BITS
PRODUCES LONG BITS

USES STRING
MODIFIES STRING

PRODUCES STRING

USES ARRAY
MODIFIES ARRAY

PRODUCES ARRAY

short
short *
short *

short
short *
short *

long
long *
long *

float
float *
float *

double
double *
double *

short
short *
short *

long
long *
long *

char *
char **

char **

ARRAY *
ARRAY *

ARRAY *

o is false,
else true

Same as INTEGER

Same as LONG
INTEGER

Caller must cfree
result

Caller must cfree
result

allocated by caller
return allocated by

RPC
allocated by RPC

Table 4.12-1. C Client Arguments and MAINSAIL Server Parameters (continued)

-42 -

MAINSAIL STREAMS User's Guide

POINTER

USES buffer
ADDRESS, LONG INTEGER
CHARADR, LONG INTEGER

MODIFIES buffer
ADDRESS, LONG INTEGER,

MODIFIES LONG INTEGER
CHARADR, LONG INTEGER,

MODIFIES LONG INTEGER
PRODUCES buffer

ADDRESS, LONG INTEGER,
PRODUCES LONG INTEGER

CHARADR, LONG INTEGER,
PRODUCES LONG INTEGER

forbidden

char *,
long

char *,
long,
long *

char *,
long,
long *

Table 4.12-1. C Client Arguments and MAINSAIL Server Parameters (end)

typedef struct mainsail_array_descr
char *ary_first_elem;
long ary_lbl,ary_ubl,

ary_lb2,ary_ub2,
ary_lb3,ary_ub3;

short ary_dims, ary_type;
long ary_alloc_statusi
} ARRAY;

When a C procedure passes an array to a remote procedure, it must first set all the relevant
fields of the ARRAY struct. The meanings of the fields are shown in Table 4.12.1-1. Since
MAINSAIL arrays, unlike C arrays, are not necessarily zero-origin, lower bounds as well as
upper bounds of each dimension must be specified.

The ary _type field is the data type of the MAINSAIL array. It should be set to one of the
following constants defined in "mrpc.h":

- 43-

MAINSAIL STREAMS User's Guide

Field Meaning
ary_first_elem Pointer to first element
ary_dims Number of dimensions (1, 2, or
ary_type MAINSAIL data type
ary_lb1 Lower bound of first dimension
a ry_ub 1 Upper bound of first dimension
ary_lb2 Lower bound of second dimension

ary_dims GEQ 2)
ary_ub2 Upper bound "of second dimension

ary_dims GEQ 2)
ary_lb3 Lower bound of third dimension

ary_dims = 3)
ary_ub3 Upper bound of third dimension

ary_dims = 3)
ary_alloc_status

For use with dispose_array

Table4.12.1-1. ARRAY StructFields and Meanings

MAINSAIL
Data Type
BOOLEAN
INTEGER
LONG INTEGER
REAL
LONG REAL
BITS
LONG BITS
STRING
ADDRESS
CHARADR

Arrays of pointers are not allowed.

C Value for
ary type
MS_BOOLEANCODE
MS_INTEGERCODE
MS LONGINTEGERCODE
MS REALCODE
MS LONGREALCODE
MS BITSCODE
MS LONGBITSCODE
MS STRINGCODE
MS ADDRESSCODE
MS CHARADRCODE

3)

(only if

(only if

(only if

(only if

The elements of the array should be stored as the C data type corresponding to the MAINSAIL
data type of the array; Le., they do not have to be stored as MAINSAIL or PDF data types.

A nullArray is represented by an ARRA Y with ary _dims or ary _firscelem equal to zero. A
uses nullArray can also be passed as null C pointer.

- 44-

MAINSAIL STREAMS User's Guide

The array elements returned in modifies and produces array parameters are automatically
allocated with malloc by RPC. The C client must deallocate the elements by calling
dispose_array as described in Section 4.12.5.

4.12.2. connserver and the _init Procedure

The C procedure connserver, provided in "mrpcl.o", has the following interface:

int connserver (hostname, servername)
char *hostname,*servername;

The parameters hostname and servername are null-terminated strings that are the name of a
host and the name of a service available on that host connserver returns an integer file
descriptor. If the descriptor is nonnegative, it must be passed to the appropriate _init procedure
to initialize a connection with the specified service; if negative, an error occurred and no
connection is established.

The _init procedure for a remote module has the name of the remote module (in lower case)
with "_init" added to it, e.g., "foomod_init" for a remote module FOOMOD. The interface of
an _init procedure is as follows:

MRPCMOD *foomod~init(fd,cliver,oldestsrvver,msg)
int fdi
long cliver, oldestsrvver;
char *msg;

fd is the file descriptor returned from a successful conn server call. If the _init procedure is
successful, it returns a non-zero value (the "MRPCMOD *") which must be specified as the
first parameter to all remote procedure calls to FOOMOD. If the _init procedure fails, it returns
a zero value. msg is set to an error message if a failure occurs. cliver and oldestsrvver
correspond to the cliVersion and oldestSrvVersion parameters to $newRemoteModule; see
Section 4.2.

4.12.3. Calling Remote Procedures

The name of a remote procedure in C is the module name of the remote module followed by an
underscore followed by the MAINSAIL name of the remote procedure, all converted to lower
case; e.g., to call myProc in FOOMOD, the C procedure name would be "foomod_myproc".
Remote procedures return the return value of the remote procedure; rules for C data types of
return values are the same as for produces parameters. The first argument to the remote

- 45-

MAINSAIL STREAMS User's Guide

procedure must be the value returned by the remote module's _init procedure; the subsequent
arguments correspond to the MAINSAIL procedure's arguments .

. 4.12.4. The _final Procedure and close

To close the connection to the remote module, the C program calls a procedure with the name
of the remote module (in lower case) with "_final" added to it, e.g., "foomod_final" for a
remote module FOOMOD. The argument of the final procedure is the value returned from the
_init procedure.

The procedure dispose_array can be used to deallocate an array (by calling cfree) if the
appropriate bits are set in the ARRAY struct's ary_alloc_status field. The bits and their
meanings are:

Bit
ARY DSCR DYN - -
ARY DATA DYN - -

Meaning
Free the ARRAY struct itself
Free the array elements at

ary_first_elem
ARY STRING DYN If the array type is string, free the

text of the strings
- -

dispose_array is declared as follows:

dispose_array (a)
ARRAY *a;

4.12.6. Handling Exceptions in the Remote Module

The C setjmp/longjmp mechanism is used to allow a C client to handle MAINSAIL exceptions
in the remote module. A jmp_buf value, as returned from setjmp, is passed to
rpc_register.Jump along with the text of the'exception that is to be handled. rpc_register.Jump
is declared as:

void rpc_register_jump(s,env)
char *s;
jmp_buf env;

-46 -

MAINSAIL STREAMS User's Guide

A longjmp is made to env when the exception occurs. When the exception handling
terminates, rpc_clearjump must be called to prevent the longjmp from being taken:

rpc_clear_jump(s)
char *s;

More than one exception may be handled by the same environment (i.e., the same jmp_buf may
be passed to rpc_registerjump several times to handle several different exceptions in the same
place). The CUlTent exception is given by the char pointer ms_exception.

A sample use of rpc_registerjump and rpc_clearjump appears in Example 4.12.6-1.

if (! setjmp(my_env» { /* equivalent of "$HANDLE" */
rpc_register_jump(exception_name,my_env);
< c code normally executed >
rpc_clear_jump(s);
}

else {
/* equivalent of "$WITH", except only possible

ultimate action is to fallout */
may want to examine ms_exception ...
handler code ...

Example 4.12.6-1. Use of rpc_registerjump and rpc_clearjump

4.12.7. Sample C RPC Session

The C program of Example 4.12.7-2 is a client that calls the interface procedure provided by
the remote module Example 4.5-1; it is the C equivalent of the module of Example 4.6-2. The
C program is compiled with the command shown in Table 4.12.7-3 on a typical UNIX system.
The files "mrpc.h" and "mrpc1.o" have been copied to the current directory from the
MAINSAIL directory; alternatively, they could be copied to a well-known (site-dependent)
directory. The files "foocli.c" and "foocli.h" were produced by the C RPC compilation shown
in Example 4.12.7-1, in which "foomod.msl" contains the remote module FOOMOD of
Example 4.5-1.

-47 -

MAINSAIL STREAMS User's Guide

Appendix D shows a C client that calls remote procedures with a greater range of parameter
types to demonstrate the correspondence between C client arguments and MAINSAil.. server
parameters.

MAINSAIL (R) Compiler
Copyright (c) 1984, 1985, 1986, 1987, 1988, and 1989 by

XIDAK, Inc., Menlo Park, California, USA.

compile (? for help): foomod,msl,<eol>
> rpc c<eol>
> <eol>
Opening intmod for $SYS ...

foomod.msl
Opening intmod for RPCHDR ...

Opening intmod for $SYS ...
Client for FOOMOD stored on foocli.c
Header for FOOMOD stored on foocli.h
Intmod for FOOMOD not stored

compile (? for help) :

Example 4.12.7-1. Compilation of Remote Module with "RPC Cit Compile Subcommand

% co -0 foo foo,o foooli,o mrpc1,o<eol>

Table 4.12.7-3. Compiling the C Client on a Typical UNIX System

- 48-

MAINSAil.. STREAMS User's Guide

#include "mrpc.h"
#include "foocli.h"

MRPCMOD *rem;

main (argc,argv)
int argc;
char *argv[];
{

int fd;
char host[lOO],serv[lOO],emsg[lOO];
char *hostS; char *servS; char *s;

if (argc <= 2) {
printf(IIHost: "); gets(host); hostS = host;
printf("Server: "); gets (serv) ; servS = serv;

else { hostS = argv[l]; servS = argv[2]; }

if «fd = connserver(hostS,servS» < 0) exit (1) ;

if (! (rem - foomod_init(fd,4,0,emsg»)
printf("Could not init: %s\n",emsg);
exit () ;
}

s = foomod_hello(rem,"xxx");

cfree(s);

foomod_final(rem); close (fd) ;
}

Example 4.12.7-2. C RPC Client in "foo.c"

-49 -

MAINSAIL STREAMS User's Guide

5. RPC Files

RPC files provide support for file I/O operations in which the contents of the file are provided
by a remote module. Application clients pass a file name and a pointer to a remote module of
class $rpcFileModuleCls (see Figure 5.2-1) to the procedure $openRpcFile (see Figure 5.1-1).
If the call is successful, an open file is returned upon which normal MAINSAll... I/O can be
performed. The remote module is responsible for maintaining the actual contents of the RPC
file.

Thus, RPC files make it possible for a server to provide "logical files" to its clients, the contents
of which can be computed in arbitrary ways. For example, a server could maintain a single
physical file containing a number of structure images. Clients could access each image as a
separate RPC file. The server would be able to enforce file locking between the clients and to
permit client access to only limited portions of the physical file.

If simple access to a system-dependent file is desired on a remote system, the NET device
module (see Appendix F) provides a more transparent and convenient method than RPC files.

5.1. $openRpcFile

BOOLEAN
PROCEDURE $openRpcFile (

PRODUCES POINTER(textFile) fi
STRING fileName;
BITS openBitsi
POINTER($rpcFileModuleCls) Pi
PRODUCES OPTIONAL STRING errorMsg)i

Figure 5.1-1. $openRpcFile (continued)

- 50-

MAINSAIL STREAMS User's Guide

BOOLEAN
PROCEDURE $openRpcFile (

PRODUCES POINTER (dataFile) f;
STRING fileName;
BITS openBits;
POINTER ($rpcFileModuleCls) p;
PRODUCES OPTIONAL STRING errorMsg);

Figure 5.1-1. $openRpcFile (end)

$openRpcFile opens an RPC file. The interpretation of fileName is completely up to the remote
modulep.

The openBits can be any combination of input, output, create, random, keepNul, delete,
alterOK, $pdf, and errorOK. The detailed interpretation of all but keepNul and errorOK is up
to the remote module p.

If the file can be opened, a pointer to an open file is produced, and true is returned.

If the file cannot be opened, and errorOK is set, then an error message is produced in errorMsg
and false is returned.

If the file cannot be opened, and errorOK is not set, then a fatal error is signalled with errMsg.
This differs from a normal MAINSAll... open since the file names passed to $openRpcFile
typically have meaning only to the remote module, not to an interactive user.

RPC files support all of the MAINSAIL file system procedures that actually perform I/O, and
are closed with the normal MAINS All... close procedure. At present, RPC files do not support
MAINSAIL file system procedures that do not actually perform I/O, e.g., $filelnfo.

5.2. $rpcFiIeModuleCls

TEMPORARY FEATURE: SUBJECT TO CHANGE

Modules of the class $rpcFileModuleCls are RPC modules that supply the contents of RPC
files. The procedures in RPC file modules are actually called by a device module written by

- 51 -

MAINSAll... STREAMS User's Guide

XIDAK. This device module is used by the files returned by calls to $openRpcFile. Thus,
normal application client code never calls the procedures in an RPC file module directly.

$rpcFileOpen is called whenever a client attempts to open an RPC file by calling
$openRpcFile.

The tHeN ame supplied to the $openRpcFile call is passed without modification to
$rpcFileOpen.

$openRpcFile maps a subset of its openBits into those shown in Figure 5.2-2, and passes them
to $rpcFileOpen. Other bits contained in $openRpcFile's openBits are not passed to
$rpcFileOpen. This mapping is necessary since the MAINSAIL-defined bits passed to
$openRpcFile may change across MAINSAIL versions, but the mapped bits are guaranteed to
remain the same. This makes it possible for a client and a server to be running different
MAINSAIL versions.

In addition to the bits shown in Figure 5.2-2, the $rpcFileDataBit is set if the file is a data file,
or the $rpcFileTextBit is set if the file is a text file. If the file is a PDF file, whether text or data,
the $rpcFilePdffiit is set.

The actual interpretation of the openBits passed to $rpcFileOpen is completely up to the RPC
file module. The remote module may ignore any bits, but should give an error return if passed
a bit'it ignores. It is expected that if an RPC file module supports one of these bits that the
semantics will parallel that for the bit when passed to the normal MAINSAIL open procedure.

$openRpcFile
openBits
input
output
create
random
delete
$pdf
alterOK

$rpcFileOpen
openBits
$rpcFilelnputBit
$rpcFileOutputBit
$rpcFileCreateBit
$rpcFileRandomBit
$rpcFileDeleteBit
$rpcFilePdfBit
$rpcFileAlterOKBit

Figure 5.2-2. RPC File openBits

bufferSize is initialized by the device module to to a positive value that is the size of buffer the
device module prefers to use. For example, under SunOS TCP/lP this might be 16K, since this
is the size for optimum performance. $rpcFileOpen modifies bufferSize to be the actual buffer

- 52-

MAINSAIL STREAMS User's Guide

CLASS ($remoteModuleCls) $rpcFileModuleCls (

BOOLEAN
PROCEDURE $rpcFileOpen (

PRODUCES LONG INTEGER fileDscr;
STRING fileNamei
MODIFIES LONG INTEGER bufferSizei
PRODUCES LONG INTEGER eofPosi
LONG BITS openBitsi
PRODUCES STRING errorMsg)i

BOOLEAN
PROCEDURE $rpcFileClose (

LONG INTEGER fileDscr;
LONG BITS closeBitsi
PRODUCES STRING errorMsg) ;

BOOLEAN
PROCEDURE $rpcFileWriteBuffer (

LONG INTEGER fileDscri
LONG INTEGER bufferNumberi
CHARADR bufferPDFi
LONG INTEGER bufferLength;
PRODUCES STRING errorMsg)i

BOOLEAN
PROCEDURE $rpcFileReadBuffer (

LONG INTEGER fileDscr;
LONG INTEGER bufferNumber;
CHARADR bufferPDF;
LONG INTEGER bufferSize;
PRODUCES LONG INTEGER bufferLength;
PRODUCES STRING errorMsg)i

Figure 5.2-1. CLASS $rpcFileModuleCls (continued)

- 53 -

MAINSAIL STREAMS User's Guide

BOOLEAN
PROCEDURE $rpcFileWriteThenReadBuffer

LONG INTEGER fileDscr;

) ;

LONG INTEGER writeBufferNumber;
LONG INTEGER readBufferNumber;
CHARADR bufferPDF;
LONG INTEGER bufferSize;
MODIFIES LONG INTEGER bufferLength;
PRODUCES STRING errorMsg);

Figure 5.2-1. CLASS $rpcFileModuleCls (end)

size to be used by $rpcFileWriteBuffer, $rpcFileWriteBuffer, and
$rpcFileWriteThenReadBuffer.

eofPos is produced by $rpcFileOpen as the end of file position of the file at the time is is
opened if it can be computed by $rpcFileOpen. Otherwise it is produced as -lL.

If $rpcFileOpen can open the file, true is returned and a positive long integer is produced in
fileDscr to identify the RPC file uniquely. The file descriptor is unique among all RPC files
currently open by a given RPC file module. If the file cannot be opened, false is returned, and
an error message is produced in errorMsg.

$rpcFileClose is called to close an RPC file. The only valid closeBit is $rpcFileDeleteBit, and
its detailed interpretation is up to the RPC file module. After an RPC file is closed, the long
integer used as its file descriptor may be reallocated by a subsequent $rpcFileOpen. If no errors
occur, $rpcFileClose returns true, otherwise it produces the error message in errorMsg, and
returns false.

$rpcFileWriteBuffer is called when the client wants to write a buffer to the RPC file indicated
by fileDscr. bufferNumber indicates which buffer is to be written to the file (the first buffer in
the file is buffer zero and contains character units OL through bufferSize - lL of the file).
bufferPDF is the address of the buffer, and bufferLength is its size. bufferLength is nonnally
equal to the bufferSize returned by $rpcFileOpen; it will be less than bufferSize only for the
last buffer in the file, and will never be greater. If the buffer can be written to the file, true is
returned. If an error occurs, an error message is produced in errorMsg, and false is returned.

- 54-

MAINSAIL STREAMS User's Guide

$rpcFileReadBuffer is called when ihe client wants to read a buffer from the RPC file indicated
by fileDscr. bufferNumber indicates which buffer is to be read from the file (the first buffer in
the file is buffer zero). bufferPDF is the address of the buffer, and bufferLength is its size.
bufferSize is equal to the bufferSize returned by $rpcFileOpen. If the buffer can be read from
the file, true is returned, the buffer contents are filled, and bufferLength indicates the actual
amount of data read into the buffer (which must always be less than or equal to bufferSize). If
the requested buffer position is beyond the end of the file, true is returned, but bufferSize is OLe
If an error occurs, an error message is produced in errorMsg, and false is returned.

$rpcFile WriteThenReadBuffer is an optimization for random access files. It acts exactly as the
sequence $rpcFile WriteBuffer followed by $rpcFileReadBuffer, but requires only one remote
procedure call.

The bufferPDF parameter in $rpcFileWriteBuffer, $rpcFileReadBuffer, and
$rpcWriteThenReadBuffer is a charadr so that it can address character units or storage units.
The identifier ends in PDF only to suppress character set translation by RPC, not to indicate
that the buffer necessarily contains PDF text or data; it may, in fact, contain machine-dependent
text or data.

$rpcFileModuleCls is subject to change, most likely by the addition of procedures to provide
additional file functionality (e.g., $fileInfo). It is possible that the name of the class and/or its
fields may also change. Users writing modules of $rpcFileModuleCls must be prepared to
track the applicable changes.

- 55 -

MAINSAIL STREAMS User's Guide

6. Interprocess Communication: Socket Streams

Socket streams are used for two-way interprocess communication. They do not have semantics
normally associated with TIY streams: no echo occurs, there are no special keyboard interrupt
characters, and there is no explicit flow control or baud rate.

The communicating processes must be aware that they are communicating with another process
and they must agree on a protocol for exchange of information, including who speaks first, how
the conversation is terminated, what kind of buffering is used, the required size of the buffers,
what kind of objects are written (e.g., characters or storage units), and what those objects mean.
This communications protocol is distinct from and "built on top of' the underlying network
protocol used to carry the bytes between the processes.

Creation of sockets for client-server communication is described in Section 6.3. Creation of
child processes is described in Section 6.4. Creation of sockets for communication between an
arbitrary pair of processes is described in Section 6.8.

A high-level facility for remote module creation that does not require the user to deal explicitly
with interprocess communication is described in Chapter 4.

6.1. Meaning of $eos on Socket Streams

On both input and output, $eos means that process at the other end has broken (hung up) the
connection.

6.2. Socket-Specific Fields of $stream

The socket-specific fields of $stream are shown in Table 6.2-1.

- 56-

MAINSAll.. STREAMS User's Guide

STRING $myHostName, 41= Our host's name
$hisHostName, 41= Other end's host's name
$serverName, 41= The server we are talking to, or

41= "" if we are not talking to a
41= server.

$protocolName; 41= The network protocol name, or "n

41= if the socket is a simulated
41= internal socket.

Table 6.2-1. Socket-Specific Fields of the Stream Record

- 57-

MAINSAIL STREAMS User's Guide

6.3. Servers and Clients: Network Protocol Modules and the SERVICE
Stream Prefix

This section describes a low-level interface to server/client communication. Before a server
can be run, an entry must be made in the service protocol table as described in Appendix A.

It should rarely be necessary for the typical programmer to write a low-level server; the RPC
facilities described in Chapter 4 should be sufficiently general for most applications and are
much simpler to use than the facilities described in this chapter.

6.3.1. Terminology and Conventions

A "service" is a set of functions available under a global (system- or network-wide) name; like
a file name, the service name can be used by any process that wants to make use of the service.
The service functions are available through a "high-level protocol" (defined by the author of the
service) that specifies the semantics of data transferred to and from the service. The data are
transmitted according to a "low-level protocol" (or "network protocol" or just Itprotocollt

)

specified by the operating system; a given service may be available only through a single low­
level protocol or through several different low-level protocols.

A "server" is a process that provides one or more services. When the process wishes to start
handling the functions of a given service, it must make calls to the operating system to inform it
that is ready to do so. In MAINSAIL, this is done with the $bindService and $acceptClient
calls.

A "port" is a handle (used on the server end) that represents an active service. It is represented
by a record of the MAINSAIL class Sport. In a process that wishes to become a server for a
particular service, the normal sequence is to verify that it is legal to become a server for that
service by calling $bindService, and then, if $bindService returned a non-Zero port, to pass the
port to $acceptClient $acceptClient is typically called in a loop; each time it produces a
stream, a new coroutine is created to talk through the stream.

A "client" is a process that makes use of a service. It communicates with the service through a
stream. It can use the stream prefix "SERVICE" to request a connection to the service on any
available low-level protocol, or it can use a stream module named for a low-level protocol to
specify the low-level protocol (this may be useful where a service supports more than one low­
level protocol).

A "connection" is the two-way channel between a client and a service. It is represented as a
stream on each end; the server stream is obtained from the call to $acceptClient. If a server

- 58 -

MAINSAIL STREAMS User's Guide

expects to receive more than one connection at a time, it must set up a scheduled coroutine for
each possible connection.

6.3.2. Service Protocol Table

A global table of registered services, the service protocol table, is maintained on each node.
All services must be registered in this table before they can be used. The table format is
described in Section A.I.

6.3.3. The Client End

$openStream(st,"service>serviceName");

or:

$openStream(st,"service(host»serviceName");

Table 6.3.3-1. Client Access to a Service

Clients may open a stream to a service using the stream prefix SERVICE. At a minimum, the
service name must be provided. The host name may also be given. If the host name is omitted,
$openStream automatically determines the host on which the service is available. SERVICE
automatically maps to an appropriate network protocol module, e.g., TCP or VMSMBX. The
available network protocol modules are listed in Appendix B.

Examples:

• ttservice(m»ucrsrv": Connect to the service ttucrsrvtt on host "mtt using the best
available common network protocol.

• ttservice>ucrsrvtt: Connect to the service "ucrsrv" on the default host using the best
available common network protocol.

The network protocol module to use to talk to the service may be given instead of using the
generic SERVICE stream module, although it is rarely necessary to be so specific:

• tttcp(m»ucrsrvtt: Connect to the service ttucrsrvtt on host ttmtt using the TCP network
protocol.

- 59-

MAINSAIL STREAMS User's Guide

• "vmsmbx>ucrsrv": Connect to the service "ucrsrv" on the default host using the
V AX/VMS mailbox network. protocol.

NOTE: As of this writing, when host names are specified,
the implementation requires the syntax:

service>host:serviceName
tcp>host:serviceName
vmsmbx>host:serviceName

6.3.4. The Server End

STRING
PROCEDURE

STRING
PROCEDURE

INTEGER
PROCEDURE

INTEGER
PROCEDURE

$myHostName;

$canonicalHostName

$getHosts

(STRING hostName);

(STRING serviceName;
MODIFIES STRING ARRAY(l TO *)

hosts;
PRODUCES OPTIONAL STRING eMsg);

$getProtocols
(STRING hostAndServiceName;
MODIFIES STRING ARRAY(l TO *)

prots;
PRODUCES OPTIONAL STRING eMsg);

Table 6.3 A-I. Server Procedures (continued)

- 60-

MAINSAIL STREAMS User's Guide

LONG INTEGER
PROCEDURE

LONG INTEGER
PROCEDURE

BOOLEAN
PROCEDURE

$unbindService
(MODIFIES POINTER($port) Pi
OPTIONAL LONG INTEGER timeouti
OPTIONAL BITS ctrlBits)i

$acceptClient
(POINTER($port) Pi
PRODUCES POINTER($stream) sti
OPTIONAL LONG INTEGER timeouti
OPTIONAL BITS ctrlBits)i

$parseHostServiceName
(S TRING name i
PRODUCES STRING host,servicei
PRODUCES OPTIONAL STRING eMsg)i

Table 6.3.4-1. Server Procedures (end)

A server typically uses $getProtocols to discover the network protocols it is expected to support
for each service. It then starts a separate coroutine to handle each protocol/service pair. For
each such pair, the server uses $bindService to bind itself to a port for the protocol and service
and repeatedly calls $acceptClient to accept new clients on that port. Whenever $acceptClient
returns a new stream, a new coroutine is created to talk through that stream and perform the
service functions on the connection represented by the stream.

$myHostName returns the host name of the current host. If the host name is not available,
$myHostName returns the null string. The $myHostName field of a socket stream st gives the
host name of the system on which the program is running, Le.:

st.$myHostName = $myHostName

$canonicalHostName returns the official name of the host named by hostName according to the
MAINSAIL services table. It returns the original string if hostName is not in the table.

$getHosts returns the host names that support the service serviceName. In this way, a server
may determine if any other copies of itself might be running on other systems. $getHosts is
also used internally when a client opens a stream with a name of the form "service>xxx"

- 61 -

MAINSAIL STREAMS User's Guide

(where xxx is a service). In this case, if the service xxx is uniquely available on a single host,
the host name is filled in automatically. $getHosts returns 0 with eMsg set to an appropriate
error message if an error occurs.

$getProtocols returns the network protocols through which hostAndServiceName may be
accessed from the current host. The call is provided for servers so they can set themselves up
to service the appropriate set of network protocols.

$getProtocols modifies the input array (allocating it if nullArray is passed) to contain all of the
nework protocols required to support the specified service on the specified host, and it returns
the number of such protocols in the array. The information returned by $getProtocols is
currently derived from the service protocol table. If no protocols are available, $getProtocols
returns 0, with eMsg set to an appropriate error message. hostAndServiceName may take one
of the forms shown in Table 6.3.4-2.

hostAndServiceName

""

"service"

"(host»service"

Returned Network Protocols

All that the current host speaks

All under which "service" is
available on the current host

All under which "service" is
available on the host with the
given name

NOTE 1: Both the host and service name are assumed to be
valid MAINSAIL identifiers.

NOTE 2: As of this writing, the only accepted syntax is
still "service>host:serviceName"

Table 6.3.4-2. Valid hostAndServiceName values ($getProtocols)

$bindService accepts a single network protocol and service name and returns a pointer to a
port. A server typically binds itself to one port for each network protocol that the host system
supports.

The protocolAndServiceName argument has the format:

- 62-

MAINSAIL STREAMS User's Guide

protocol(host»service

or, in the current release:

protocol>host:service

The "protocol>" and "host:" parts are optional. If the host is omitted, the current host is the
default. If the protocol is omitted, the protocol defaults to the first one listed in the service
protocol· table for the named service on the given host. The available protocol modules are
listed in Appendix B.

Table 6.3.4-3 shows the user-visible fields of a Sport record. The service name and host name
are the parsed service and host name supplied to the $bindService call, or if they were not
supplied, to the values to which they defaulted $lastError is set by $acceptClient if an error
return is made.

CLASS Sport (

) ;

STRING
$serviceName,
$hostName;

STRING
$lastError;

* As supplied to $bindService

*"" ""
* Set by $acceptClient

Table 6.3.4-3. Fields of Sport

If the service cannot be bound, $bindService returns nullPointer with eMsg set to an
appropriate error message. If timeout is a positive number, the call returns when that many
milliseconds have elapsed. Specify the value $block to wait indefinitely.

The $unbindService procedure is used if the server decides to stop accepting clients on a port.

The $acceptClient procedure accepts a port (returned by $bindService) and produces a stream.
It blocks until a client requests a connection to the server on the port p (the client uses
$openStream to open its end). The server then talks to the client through the stream produced
by $acceptClient At the end of the interaction, the server and the client each call $closeS tream
on their respective streams to terminate the connection. $acceptClient returns standard stream
error codes; i.e., "$success($bindService(... »" returns true if the service can be bound,
otherwise false, with p.$lastError set to an error message string. On a false return, the value is

- 63-

MAINSAIL STREAMS User's Guide

either $error or $timedOut, if a positive timeout value (milliseconds) was given. Specify
$block for timeout if the procedure should wait indefinitely.

$parseHostServiceName parses a "(host»service" name into the strings host and service,
handling quoted names and the fact that the host name may be omitted. This procedure is
rarely needed by user code. It returns false with eMsg set to an explanation if it cannot parse
the name.

6.3.5. The Service Protocol Table

The server/client implementation currently depends on the availability of a file describing the
services available on each host. The logical name "(service protocol table)" must be defined
using a MAINEX "ENTER" subcommand in the MAINSAIL startup command file to specify
the file containing the table.

The service protocol table may eventually be replaced by a XIDAK name server. See
Appendix A.

- 64-

MAINSAIL STREAMS User's Guide

6.4. Child Process Creation: SOCPRO and PTYPRO

In the parent/child process control model, a parent process creates one or more child processes
to do its bidding. The children may in turn become parents of additional processes. The child
process currently runs on the same node as the parent unless the NETSTR stream module is
used to access a remote node.

When the parent process exits, the children processes (and all of their children) are usually
terminated if they are still active.

The parent/child process control model is similar to the scheduled coroutine model. In fact, it
is possible to write programs that communicate through a stream with some other entity that is
either a separate process or another coroutine in the current process.

6.4.1. Starting a Child Process Using SOCPRO

Child processes are started using the $openStream procedure and the stream module SOCPRO.
The name of the stream has the form:

or:

"socpro>programName programArgs <eol>
userName <eol>
password <eol>
directoryName"

"socpro(hostName»programName programArgs <eol>
userName <eol>
pas~word <eol>
directoryName"

In the. first case, a new process is started on the current host by running the program stored in
the file named by programName. If a host name is specified, as in the second case, the new
process is started on that host instead of the current system.

If programArgs is given, those arguments are made available to the program, provided that
program arguments are supported by the operating system. The process is started with the
same user ID as the current process, unless userName is given, in which case it is used to set
the user ID for the process. The process's current directory is the same as the parent process's
(if on the same machine) or the home directory for the user ID (if on a remote machine).

- 65-

MAINSAIL STREAMS User's Guide

Password is required if the current process would not normally have the right to run as the
specified userName.

The $openStream call returns a socket stream that talks directly to the child's $tty stream.
Thus, for the child, "$isatty($tty)" returns false. Input for the child may be supplied by calling
$writeStream, and output from the child may be read using $readStream.

Characters written to the process stream are not echoed back. This form of process control is
useful for direct interprocess communication. It is very similar to the use of pipes on UNIX.

6.4.2. Starting a Child Process Using PTYPRO

A child process may also be started using the $openS tream procedure and the stream module
PTYPRO. The name of the stream has the form:

or:

"ptypro>programName programArgs <eol>
userName <eol>
password <eol>
directoryName"

"ptypro(hostName»programName programArgs <eol>
userName <eol>
password <eol>
directoryName"

A new process is started on the current host or on the specified host by running the program
stored in the file named programName. If neither programName nor programArgs is given, and
the system supports running a "shell" as a child process, the standard system shell is run. The
remaining arguments are optional and are interpreted as for SOCPRO.

The $openStream call returns a PTY stream to talk to the child's $tty. Thus, for the child,
"$isatty($tty)" is true. Talking to the PTY is much like sitting at a keyboard in front of a
terminal screen. Characters written to the stream are echoed back, if the running program
wants them to be.

This kind of connection has a specialized but useful application for system shells and
windowing systems. The program that creates the process (e.g., the shell or window manager)
serves merely as the intennediary between the actual user and the created process.

Special considerations of the PTY stream type are discussed in Section 10.9.

- 66-

MAINSAIL STREAMS User's Guide

Many systems do not provide general pseudo-terminal support. On such systems, PTYPRO is
not available.

6.4.3. Starting a MAINSAIL Child Process

STRING
PROCEDURE $executableBootName

(OPTIONAL STRING hostName);

Table 6.4.3-1. $executableBootName

$executableBootName returns the name of the standard MAINSAIL executable bootstrap on
hostName (on the local system if hostName is omitted). It returns the null string if the
information is not available.

A MAINSAIL child process can be started on the current system with a stream name of the
form:

"socpro>" & $executableBootName

If the operating system supports command line arguments, a particular MAINSAIL module can
be started in a child process using a stream name of the form:

"socpro>" & $executableBootName & " " & modName

where modName is the desired MAINSAIL modu1e~

- 67-

MAINSAIL STREAMS User's Guide

IMPLEMENTATION NOTE

$executableBootName is currently implemented using a
logical file name. $executableBootName calls
100kupLogicalName with the argument:

"(executable boot" & hostName &")"

For this call to succeed on systems other than the current
host, the installer of MAINSAIL must define the standard
bootstrap names of all host systems in MAINEX "ENTER"
subcommands (typically in the local "site.cmd" file). The
implementation may be changed in the future to use a more
flexible mechanism.

6.4.4. Establishing an Additional Control Stream to a Cooperating Child

A cooperating child process is a program designed to talk to a parent, much as a server process
is designed to talk to a client. It is written to use a predefined communications protocol for
exchange of information with its parent.

Typically, the cooperative communication with the child takes place over a control stream that
is separate from the child's $tty. This control stream is available to the child as the STREAMS
system variable $parent and may be established by the parent using the two-pointer form of
$openStream, e.g.:

$openStream(childTty,childControl,"socpro> ");

Typically, childTty is used by the child only for error messages and when the debugger is
invoked in the child. The childControl stream is typically used for all cooperative
communication between parent and child.

6.5. Terminating a Child Process

A child process created with $openStream may be terminated by closing the stream with
$closeStream. If the process terminates by itself prior to the $closeStream call, the currently
active or next I/O call to the process's stream returns with an error.

- 68-

MAINSAIL STREAMS User's Guide

6.6. Process Control

If the started process is a cooperating child program designed to run as a child process, the
parent and child can use a communications protocol of their choice. Any stream I/O
mechanism may be used, including $packet I/O.

If the started process is a non-cooperating child program connected to a PTY stream, a special
character may be sent to the process to cause it to interrupt. This character is provided as a
field of the class $stream (see Chapter 10). Alternatively, the procedure $writeStreamInterrupt
may be used to interrupt a non-cooperating child process. If the child process has enabled
interrupt handling, it may do something special based on the interrupt. Otherwise it will
probably die and further reads and writes to its stream will return an error.

No other process control is currently provided.

6.7. Examples

6.7.1. Sprouting a Print Job and Waiting for It to Exit

The most simple interaction with a child process is running a non-interactive program and
waiting for it to complete. This form of child process control does not require scheduling.
Example 6.7.1-1 is an example of invoking a print program directly from a MAINSAIL
program.

PROCEDURE printFile (STRING name);
BEGIN
STRING s;
POINTER ($stream) child;

$openStream(child,"socpro>print" & name);
WHILE $success($readStream(child,s,errorOK» DO

write (logFile, s) ;
$closeStream(child);
END;

Example 6.7.1-1. Sprouting a Print Job and Waiting

- 69-

MAINSAIL STREAMS User's Guide

printFile uses a program called "print" to print a file given its name. Any terminal output
generated by the print program is written to its parent process's 10gFile. When the print
program terminates, $readStreamreturns an end-of-stream and the child stream is closed.

This simple example does not require scheduling of advanced STREAMS for the system on
which it is run. Note, however, that no provision for providing input to the child is provided.
If the child program attempts to read from its terminal, it blocks until some input is supplied.
The parent is also blocked in $readStream waiting for the child to output or terminate, so both
processes may block indefinitely.

6.7.2. Sprouting an Interactive Child

The more general case of handling an interactive child process, that is, a process that performs
terminal input, is shown in Example 6.7.2-1. The child is started much the way a program is
stared by a system shell. All of the child's output goes to the parent's terminal, and input from
the parent's terminal goes to the child. This form of child process control requires scheduling.

runCmd runs a child program. The child's input and output are connected to the stream
returned by $openStream, so the parent must handle both using two independent coroutines.
reader is started as a coroutine to read what the child writes and output it to the parent's $tty.
writer is started as a coroutine to read from the parent's $tty and write the keystrokes to the
child process.

The parent might also perform processing of the I/O to the child, such as logging the child's
output or supplying its input from a file. Also, typically the parent will want to enable and
handle keyboard interrupts and pass them on to the child. Neither of these possibilities is
shown.

If either the reader or writer detects the end of the child process, both the reader and writer are
killed and runCmd returns to its caller in the parent.

POINTER ($stream) ptYi
POINTER ($coroutine) rc, WCi

DEFINE print (x) = [$writeStream($tty,x,$line)];

Example 6.7.2-1. Sprouting an Interactive Child (continued)

-70 -

MAINSAIL STREAMS User's Guide

PROCEDURE reader;
BEGIN
STRING S;
WHILE $suecess($readStream(pty,s,errorOK» DO print(s);
IF we AND NOT $killedCoroutine(we) THEN

$killCoroutine(we)i
$reschedule(delete)i
END;

PROCEDURE writer;
BEGIN
STRING Si

DO $readStream($tty,s)
UNTIL NOT $success($writeStream(pty,s,errorOK» i

IF rc AND NOT $killedCoroutine(rc) ~~EN

$killCoroutine(rc)i
$reschedule(delete)i
END;

PROCEDURE runCmd(STRING args);
BEGIN
Srr:RING s, t;
OWN INTEGER nRuni
IF NOT $openStream(pty, "ptypro>"&args,errorOK,s) THENB

printError(s); RETURN END;

Example 6.7.2-1. Sprouting an Interactive Child (continued)

-71 -

MAINSAIL STREAMS User's Guide

$HANDLEB
startup; nRun.+l;
s := "RunReader" & cvs(nRun);
t := "RunWriter" & cvs(nRun.+l);
rc := $createCoroutine(thisDataSection,"reader",s);
$queueCoroutine(rc);
wc := $createCoroutine(thisDataSection,"writer",t);
$queueCoroutine(wc);
$waitForDescendants;
$closeStream(pty) END

$WITHB

END;

IF $exceptionName = $abortProcedureExcpt THENB
IF pty THEN $closeStream(pty); cleanup END;

$raise END;

Example 6.7.2-1. Sprouting an Interactive Child (end)

-72 -

MAINSAIL STREAMS User's Guide

6.8. Process Rendezvous Communication [Not Implemented]

In the rendezvous model, a process creates a "rendezvous" stream name and passes the name
(as a string) to two arbitrary processes. At some later time, the two processes may establish
communication with each other by opening a rendezvous stream using the "rendezvous" stream
name.

6.8.1. Creating a Rendezvous Stream Name

STRING
PROCEDURE $createRendezvousName

(OPTIONAL BITS ctrlBitsi
OPTIONAL STRING msg)i

Table 6.8.1-1. $createRendezvousName

$createRendezvousName returns a new rendezvous name. The name may be used by processes
to establish communication with each other. It is guaranteed to be unique to the network on
which the process is running.

If the errorOK bit is given, $createRendezvousName returns the null string and sets msg when
an error occurs. Otherwise, the procedure calls errMsg on errors. The most common error is
the inability to access the name server on the current system.

6.8.2. Symmetric Communication Using a Rendezvous Name

Given a rendezvous name, a process can establish communication with another process using a
normal $openStream call, e.g.:

$openStream(st,rendezvousName)i

The $openStream procedure waits until some other process requests a rendezvous on that name.
It then returns a socket stream over which further communication may occur.

-73 -

MAINSAIL STREAMS User's Guide

The communications protocol must be known in advance by both processes. The protocol is
typically either known in advance by both processes or indicated by the process that provided
the rendezvous name.

6.8.3. Server/Client Communication Using a Rendezvous Name

Given a rendezvous name t one of the processes may elect to become a server by using the
rendezvous name as a port name rather than as a stream name. Several other processes may
then establish communication with the server using $openStream t as described in the previous
section. The server process does a normal $bindService call, e.g.:

port := $bindService(rendezvousName);

and then does $acceptClient calls on the port returned by $bindService.

6.8.4. Underlying Implementation

The rendezvous name currently has the form:

rendezvous (rendezvousHost»uniqueName

where rendezvousHost is the host name of the process that called $createRendezvousName and
uniqueName is a name provided by a rendezvous service running on rendezvousHost that is
unique to that server. The processes that wish to communicate call $openStream on the name,
which causes a communication with the rendezvous server on rendezvousHost to find out how
to locate and communicate with the other process.

-74 -

MAINSAIL STREAMS User's Guide

7. Multitasking and the Scheduler

PORTABILITY WARNING

Not all operating systems support the ability to schedule
stream I/O. Many systems, such as BSD UNIX and VAX/VMS,
support scheduling on all stream types. Some operating
systems do not support the ability to schedule any stream
types at all, and some restrict scheduling to either TTY
streams or non-TTY streams.

To be portable, programs must check whether timeout is
supported by the Scheduler on the current system. If they
contain logic that relies on timeouts, that logic must be
conditional on timeout support. Programs must also check
whether TTY and advanced STREAMS support scheduling on the
current system, and handle both possibilities. A summary
of how to test adaptively for support of various stream
facilities may be found in Chapter 2.

Using coroutines, a single MAINSAIL program may perform multiple "simultaneous" I/O tasks
in parallel. The effect is similar to the use of several independent processes except that the
coroutines may share data structures and the scheduling is, in general, more efficient.

To use scheduled stream I/O, a program sets up one coroutine for each independent stream I/O
task that it wishes to perform. Each coroutine then performs the I/O in the usual way, as if it
were the only coroutine running.

When a stream input or output procedure is called by more than one coroutine, the STREAMS
package schedules the next runnable coroutine, i.e., the next coroutine that can perform its
operation without blocking. The Scheduler, a special STREAMS system coroutine, makes a
single operating system call that waits until the first of the pending I/O operations can be
performed, and it then resumes the coroutine for which the operation is complete. Coroutines
manipulated by the scheduler are called "scheduled coroutines"; scheduled coroutines are
distinguished from other coroutines only in that they are manipUlated by the Scheduler.
Scheduled coroutines may be created with $createCoroutine like any other coroutine.

-75 -

MAINSAIL STREAMS User's Guide

Rescheduling can occur whenever a coroutine performs I/O to a stream or when it explicitly
calls a Scheduler procedure (see Tables 7.2-1,7.3-1, 7.4-1, 7.5-1, and 7.6-1). The calling
coroutine is not resumed until the reason for scheduling has been satisfied, at which point it
becomes eligible to be resumed. If more than one coroutine is eligible to run, the Scheduler
maintains a FIFO queue of ready coroutines and uses a round robin approach to reschedule the
ready coroutines in the order they become ready.

The STREAMS Scheduler performs functions similar to a multiprocess operating system's
process scheduler. It schedules stream I/O operations to achieve the appearance of
asynchronously running processes. Unlike an operating system, however, it cannot interrupt
running coroutines based on an allotted time quantum alone. Thus, if one coroutine gains
control and then begins a CPU-intensive computation that involves no I/O, that coroutine
continues to run until it performs stream I/O or voluntarily makes an explicit call to the
Scheduler to allow other coroutines to run.

When a coroutine is stopped waiting for the Scheduler to resume it, the effects are undefined if
any coroutine other than the Scheduler resumes it.

7.1. Cautions About Shared Data Access

Programmers using coroutines must be aware that any variables may be modified by any
coroutine that happens to be running that has access to the variable. Coroutines that share a
common data structure should use the locking semaphores described below to ensure that any
shared data structures are.updated correctly.

Another source of potential trouble is procedure re-entrancy. The same procedure may be in
the course of executing in several different coroutine execution threads. Own variables in such
procedures must be considered a shared global resource if there is any possiblility that the
procedure might be re-entered by another coroutine before the current coroutine has exited it,
due to the current coroutine being rescheduled. '. .

Many conditions can cause rescheduling, including calls to errMsg and all I/O calls (even
ordinary disk and terminal I/O). Since error conditions are difficUlt to predict, the use of
semaphores for shared data access of questionable safety is recommended.

-76 -

MAINSAIL STREAMS User's Guide

7.2. Scheduling Coroutines for Stream I/O: $queueCoroutine

BOOLEAN
PROCEDURE $queueCoroutine

(POINTER ($coroutine) c;
OPTIONAL BITS ctrlBits);

Table 7.2-1. Creating and Scheduling Coroutines

Coroutines that perform scheduled I/O ("scheduled coroutines") are created using
$createCoroutine just like any other coroutine. Instead of using $resume to resume them, the
Scheduler procedure $queueCoroutine is used to put a coroutine on the ready list, ready to run
when the next rescheduling takes place.

Coroutines that do scheduled I/O are killed using $killCoroutine, just like any other coroutine.

7.3. Voluntary Rescheduling: $msTimeout and $reschedule

PROCEDURE $msTimeout (LONG INTEGER milliseconds);

PROCEDURE $reschedule (OPTIONAL BITS ctrlBits);

Table 7.3-1. Voluntary Rescheduling Calls

$msTimeout blocks the calling coroutine until the specified number of milliseconds has
elapsed. The timeout value must be positive.

$reschedule places the currently running coroutine at the end of the ready queue. A coroutine
may wish to do this to timeshare itself when it performs long computations that do not involve
stream I/O or any other calls that enter the Scheduler.

If the delete is specified in ctrlBits, the currently running coroutine is killed and the Scheduler
is resumed so that other eligible coroutines may be run.

-77 -

MAINSAIL STREAMS User's Guide

7.4. Waiting for Descendant Coroutines: $waitForDescendants

LONG INTEGER
PROCEDURE

LONG INTEGER
PROCEDURE

$waitForDescendants
(OPTIONAL POINTER($coroutine)

ARRAY(l TO *) children;
OPTIONAL LONG INTEGER timeout);

$waitForDescendants
(POINTER ($coroutine) child;
OPTIONAL LONG INTEGER timeout);

Table 7.4-1. Coroutine Synchronizing Calls: $waitForDescendants (Generic)

$waitForDescendants blocks until the coroutines in the children array have died. If the array is
omitted or nullArray is given, it waits until all of its children have died. In the second form, the
procedure waits until a single child coroutine has died.

It is an error to wait for coroutines that are not descendants of the calling coroutine.

7.5. Semaphores (Locks)

CLASS $semaphore (
STRING $name;

) ;

POINTER ($semaphore)
PROCEDURE $newSemaphore

(STRING name);

Table 7.5-1. Semaphore Scheduler Calls (continued)

-78 -

MAINSAIL STREAMS User's Guide

PROCEDURE $disposeSemaphore

LONG INTEGER
PROCEDURE $lock

LONG INTEGER
PROCEDURE $unlock

(MODIFIES POINTER ($semaphore)
sem);

(POINTER ($semaphore) semi
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout);

(POINTER ($semaphore) semi
OPTIONAL BITS ctrlBits);

BOOLEAN
<macro> $isLocked (sem) ;

Table 7.5-1. Semaphore Scheduler Calls (end)

Semaphores provide a mechanism through which a set of cooperative coroutines can share
common data structures and perform manipulations on them without risking an invalid
simultaneous update. The Scheduler delays the execution of a coroutine that requests a
semaphore until the semaphore is available.

Using semaphores. an application can build higher-level locking mechanisms. For example,
the MEMSTR stream module is implemented using semaphores, and XIDAK database
software uses semaphores to implement read and write locks on database records with deadlock
detection.

A semaphore is created by calling $newSemaphore. Its initial state is unlocked. A semaphore
name is supplied when creating the semaphore. The name helps identify the semaphore in error
messages, during debugging, and in the scheduled coroutine map. It need not be unique.

$semaphore may contain additional, undocumented fields besides $name.

The procedures $lock and $unlock lock and unlock a semaphore record. Once the semaphore is
locked, any coroutine that attempts to lock it blocks until some other coroutine unlocks it. An
optional timeout allows the lock request to time out if it cannot be performed within the given
timeout period. Unlocking is always performed immediately. If errorOK is given in ctrlBits,
error messages are suppressed for $lock and $unlock; otherwise, fatal error messages are
issued.

-79 -

MAINSAIL STREAMS User's Guide

The macro $isLocked may be used to query the state of a semaphore without rescheduling the
current coroutine. It evaluates to true if the semaphore is locked and false if not.

A semaphore may be disposed by calling $disposeSemaphore. Any coroutines waiting for the
semaphore get an error return from their $lock calls.

It is the responsibility of the programmer using semaphores to ensure that they are unlocked
and/or disposed of properly when coroutines that need them are killed. Through injudicious
use, it is possible to create deadlocks.

7.6. Scheduled Coroutine Map

TEMPORARY FEATURE: SUBJECT TO CHANGE

STRING
PROCEDURE $scheduledCoroutineMap;

Table 7.6-1. Scheduled Coroutine Map

$scheduledCoroutineMap returns a string showing the currently queued I/O requests -by
coroutines, the streams currently blocked for I/O, the state of the coroutines and streams in the
map, and all locked semaphores. This procedure may be invoked interactively by invoking the
module SCOMAP.

7.7. Example Multitasking Programs

7.7.1. A Simple Terminal Emulator

A standard terminal emulator (such as the one implemented in MAlNKERMIT to allow the
user to log into a remote system) must perform the following independent functions:

• Read characters from the keyboard as they are typed, and send them to the remote
system through a serial line without echoing them on the local screen.

- 80-

MAINSAIL STREAMS User's Guide

• Read characters from the remote serial line and display them on the screen as they are
received.

These functions are shown schematically in Figure 7.7.1-1.

LOCAL
SCREEN
OUTPUT

LOCAL
KEYBOARD

INPUT

+-----------+
<======= I Display <====

I Function II
+-----------+ vv Serial Line to

=====================>
+-----------+ AA Remote System

========> I Typein I II
I Function I
+-----------+

Figure 7.7.1-1. Schematic of a Terminal Emulator Program

Example 7.7.1-2 shows how these two independent functions might be implemented as two
coroutines that perform stream I/O. The initial procedure creates and queues a coroutine to
perform each of the functions, and then waits for both coroutines to complete. Each coroutine
keeps copying until its read fails, and then the coroutine kills itself. The actual termination
sequence is not shown in this simple example.

The variables $tty and serialLine refer to the controlling terminal (keyboard and screen) and an
independent serial line to the remote computer, respectively.

Each coroutine is written as if it were doing normal blocking I/O. However, the Scheduler and
the stream I/O system make sure that neither coroutine causes the program to go into a blocked
state, thus preventing the other coroutine from running when input is available to it

In general, a MAINSAIL program may contain an unlimited number of such coroutines. For
example, to implement a windowing environment, a pair of coroutines similar to the ones
above might be used for each simultaneously active window on the screen.

7.7.2. Parallel Processing Using RPC Calls

In applications that are easily divisible into several tasks, each independent of the results of the
other tasks, a significant speedup can be achieved using multiple coroutines to make remote

- 81 -

MAINSAIL STREAMS User's Guide

BEGIN "emu18"

PROCEDURE displayFunction;
BEGIN
CHARADR buffer;
LONG INTEGER ii;
<allocate buffer>
WHILE $success(ii :=

$readStream(serialLine,buffer,bufSize,errorOK»
DO $writeStream($tty,buffer,ii);

<deallocate buffer>
$reschedule(delete);
END;

PROCEDURE typeinFunction;
BEGIN
CHARADR buffer;
LONG INTEGER ii;
<allocate buffer>
WHILE $success(ii :=

$readStream($tty,buffer,bufSize,
errorOK!$noFlow!$noInterrupt»

DO $writeStream(serialLine,buffer,ii);
<deallocate buffer>
$reschedule(delete);
END;

Example 7.7.1-2. A Simple Terminal Emulator Using STREAMS (continued)

- 82-

MAINSAIL STREAMS User's Guide

INITlAL PROCEDURE;
BEGIN
$queueCoroutine($createCoroutine

(thisDataSection,"displayFunction"»;
$queueCoroutine($createCoroutine

(thisDataSection,"typeinFunction"»;
$waitForDescendants;
END;

END "emu18"

Example 7·.7.1-2. A Simple Tenninal Emulator Using STREAMS (end)

procedure calls to different processes in overlapping time, rather than performing the tasks
sequentially in the same coroutine.

For example, the initial procedure in Example 7.7.2-1 starts up remote procedure calls to
several different instances of the same remote module REMMOD in parallel and returns when
all of them are done. If the different instances run on different CPU's, true parallel processing
occurs.

The program sets up the array "task" to contain different arguments to be passed to the remote
module remMod. It also sets up the array "host" to contain host names on which to execute
each instance of REMMOD, and the array "result" to hold the answers.

The initial procedure of the program starts "task. ubI " coroutines executing the doCall
procedure, one for each argument It then waits for all of the coroutines to finish (die).

Each instance of doCall starts a child process running a unique instance of REMMOD, passes it
the argument, and receives back the result (the argument is a modifies parameter). The doCall
coroutine kills itself when it has the answer (the answer has been saved in a global array).

The example above has been kept fairly simple for clarity. It could be enhanced in several
ways:

• doCall could call more than one remote procedure in REMMOD.

• The program could handle an unexpected termination of child processes and restart
them, possibly on a different node.

- 83 -

MAINSAIL STREAMS User's Guide

· BEGIN "11"

RESTOREFROM "rpchdr";

CLASS ($remoteModuleCls) remModCls
STRING PROCEDURE proc (STRING task);

) ;

INTEGER argNum;
STRING ARRAY(l TO *) task,result,host;

PROCEDURE reader;
BEGIN
STRING Si

POINTER ($stream) cttYi
ctty := $thisCoroutine.$userHook; * Copy my TTY
$thisCoroutine.$userHook := NULLPOINTER;
WHILE $success($readStream(ctty,s,errorOK» DO

$writeStream($tty,s,$line);
$reschedule(delete);
END;

PROCEDURE doCalli
BEGIN
INTEGER i;
POINTER (remModCls) m;
POINTER ($stream) chCtl,chTty;
POINTER($coroutine) readerCo;

i := argNum;

* Create the child
$openStream(chTty,chCtl,

"socpro(" & host[i] & H»~" &
$executableBootName & " rpcsrv - remMod");

Example 7.7.2-1. Multitasking RPC Calls (continued)

- 84-

MAINSAIL STREAMS User's Guide

* Handle its TTY output, in case of errors
readerCo := $createCoroutine(thisDataSection,"readern);

readerCo.$userHook := chTty; * Pass stream as parameter
$queueCoroutine(readerCo);

* Use it to supply remMod
m := $newRemoteModule(chCtl,"remMod");
result [i] :== m.proc (task [iJ) ;

dispose (m) ;

* Kill the child
$closeStream(chTty); * kills the reader implicitly
$closeStream(chCtl);

* Kill this coroutine
$reschedule(delete);
END;

INITIAL PROCEDURE;
BEGIN
INTEGER i; ... * set up the arrays task, host, and result * Start task.ubI coroutines and wait for them to finish
FOR i := 1 UPTO task. ubI DaB

globalI := i;
$queueCoroutine($createCoroutine

(thisDataSection,"doCall"» END;
$waitForDescendants;
END;

END "11"

Example 7.7.2-1. Multitasking RPC Calls (end)

• A dynamic mechanism could be used to select hosts on which to execute each
subtask, and the program could be modified to work with fewer hosts than there are
subtasks.

- 85 -

MAINSAIL STREAMS User's Guide

Note that each coroutine creates a different instance of the remote module. Calling the same
instance of a remote module in different coroutines does not speed up the progriun, because all
of the calls to a single instance of a remote procedure are processed by the same process and go
through the same communication channel.

- 86-

MAINSAIL STREAMS User's Guide

8. Handling Keyboard Interrupts

The STREAMS package provides the ability to detect interrupts generated on the physical $tty
in a portable way, provided that this capability is supported by the underlying operating system.
The interrupt is typically generated by typing some control character such as C1RL-C on the
keyboard of the program's controlling terminal. Using an exception handler, a portable
MAINSAll.. program can handle such interrupts in what appears to be an asynchronous way.

8.1. Enabling and Handling Interrupts on $tty

BOOLEAN
PROCEDURE

PROCEDURE

INTEGER
PROCEDURE

$enableInterrupts
(OPTIONAL INTEGER

exitAfterThisMany);

$disableInterrupts;

$interruptsEnabled;

* Predefined identifier for the interrupt governed by the * above procedures:

* system variable
STRING $keyboardInterruptExcpt;

Table 8.1-1. Interrupt Catching Procedures

Currently, these procedures work only on the physical TTY stream $tty (see Section 10.1)
associated with a process. If multiwindow support is implemented, these procedures may be
extended to work on simulated TTY streams that refer to a window.

By default, keyboard interrupt catching through S1REAMS is disabled. This means that the
interrupt character typically either aborts the program or confirms the interrupt and then aborts
the program.

- 87-

MAINSAIL STREAMS User's Guide

When the procedure $enablelnterrupts is called and the system supports catching interrupts on
$tty, the procedure returns true; interrupt catching through STREAMS is then enabled. If
interrupt catching on $tty is not supported by the system, the procedure returns false.

Once interrupt catching is enabled, the coroutine that most recently called $enableInterrupts (or
possibly one of that coroutine's ancestors) may catch the exception $keyboardinterruptExcpt
using a MAINSAIL exception handler. The exception is raised by the Scheduler.

exitAfterThisMany may be supplied to provide an "escape hatch" in case the Scheduler does
not receive control for some reason (the program might be in a tight loop that does not involve
scheduled I/O). The exitAfterThisMany value applies only to the physical terminal, not to
(possible future) simulated $tty's, since the Scheduler will always be involved when generating
a simulated interrupt.

If exitAfterThis~lany physical keyboard interrupts occur without a rescheduling, the interrupt
is processed in the default way as if the program had not issued the $enablelnterrupts call
(typically the program is aborted). If exitAfterThisMany is not given or is 0,10 is used by
default. If exitAfterThisMany is -1, the escape hatch feature is disabled. Programs that do
$enablelnterrupts(-I) must be very carefully written so they never go into an infinite loop.

$disablelnterrupts restores the previous behavior of keyboard interrupt handling. Calls to
$enableInterrupts and $disablelnterrupts may be nested, in which case $disablelnterrupts
restores the previous caller's parameters.

It is the programmer's responsibility to ensure that the exception $keyboardlnterruptExcpt is
actually handled. It is also the programmer's responsibility to ensure that a matching
$disablelnterrupts occurs for each $enableInterrupts. In particular, be sure to call
$disableInterrupts if the $abortProcedureExcpt occurs in the handling coroutine.

$interruptsEnabled returns the non-zero value of exitAfterThisMany, or zero if interrupts are
not currently enabled by the calling coroutine.

Example 8.1-2 shows the recommended form of a keyboard interrupt handler. Interrupt
handling is enabled and disabled within the handle statement, to guarantee that there is always a
handler for the keyboard interrupts. Interrupt handling is also disabled when
$abortProcedureExcpt is raised, to clean up correctly in case the current procedure is aborted
(e.g., due to an unanticipated error).

8.2. Stacking of $enableInterrupts

Enabling may be dynamically stacked, that is, a procedure that was called by the first enabling
procedure may also enable interrupts. Enabling may also be stacked with respect to coroutines;

- 88 -

MAINSAIL STREAMS User's Guide

$HANDLEB
$enableInterrupts;

$disableInterrupts END
$WITHB

IF $exceptionName = $keyboardInterruptExcpt THENB
IF ... THEN $raiseReturn
EL disableInterrupts; # and fallout of handler
END

EF $exceptionName = $abortProcedureExcpt THENB
$disableInterrupts; $raise END

EL $raise END;

Example 8.1-2. Handling Keyboard Interrupts

i.e., a coroutine that is either a descendant or an ancestor of all enabled coroutines may also
enable. No other coroutines may enable; it must be the case that there is a direct line of
coroutine ancestry through all enablers. An error message is issued if this rule is violated.

The coroutine of the most recent enabler receives the exception. If it does not handle
$keyboardInterruptExcpt by falling out of the handler or by doing a $raiseReturn, the exception
is propagated to the ancestor coroutines in the normal way. It is an error if the exception is not
handled at all by any coroutines. In this case, the Scheduler disables the most recent enabler,
and possibly its ancestors as well.

If all enablers disable, handling of interrupts is disabled, that is, the default action for keyboard
interrupts (typically aborting the program) is restored.

8.3. Conflict between $enablelnterrupt and the $nolnterrupt Bit

The $noInterrupt bit in a read, if implemented, takes precedence over the state of enabled
interrupts. Thus, if a program is set up to catch interrupts on $tty and a procedure running in
any coroutine calls "$readStream($tty, ... ,$nolnterrupt. ..)" on the same $tty, the interrupt
characters are read as normal characters by $readStream. Interrupts remain turned off until an
input from $tty occurs in which $noInterrupt is not given.

- 89-

MAINSAIL STREAMS User's Guide

8.4. Sample Program That Catches Interrupts

Example 8.4-1 shows an interactive program (command interpreter) that catches interrupts.

PROCEDURE commandInterpreter;
BEGIN
STRING cmd;
DOB write (logFile, "Command: n); read(cmdFile,cmd);

IF equ(cmd,"exit",upperCase) THEN RETURN
EF isValidCmd(cmd) THENB ... END
EL errMsg("Invalid command", "",noResponse) END;

END;

PROCEDURE topLevel;
BEGIN
$enableInterrupts;
DOB $HANDLEB commandInterpreter; DONE END

$WITHB
IF $exceptionName

41= fallout
$keyboardlnterruptExcpt THEN

EF $exceptionName $abortProcedureExcpt THENB
$disablelnterrupts; $raise END

EL $raise END END;
$disablelnterrupts;
END;

Example 8.4-1. Catching Interrupts Asynchronously

This approach is similar to that taken by a system shell. The top-level procedure, topLevel,
calls a command interpreter that read commands in a loop. If an interrupt occurs, the handler in
the top level gains control and falls out of the handler, thus aborting the command interpreter
and any nested procedUres it has called. At this point, topLevel continues its loop and starts a
fresh command interpreter.

The command interpreter itself has no knowledge that it is running under an interrupt handler.

- 90-

MAINSAIL STREAMS User's Guide

If the command interpreter (or a procedure that it calls) enables interrupts, it has the first chance
to handle them. If it chooses not to handle them, the procedure topLevel is notified of an
interrupt

Although the use of this handler appears to allow true asynchronous interrupt catching, the
Scheduler gains control only during scheduled I/O (e.g., to the $tty if it is scheduled). Thus,
this approach does not allow the program to abort another coroutine that is in a tight loop that
does not do stream I/O or otherwise give up control to the STREAMS Scheduler. In such
cases, calls to the $reschedule procedure could be inserted within the offending procedure to
allow the Scheduler to check for interrupts.

8.5. Causing Keyboard Interrupts to Occur in a Child Process

When a stream is connected to a process through a PTY, the process can be signalled to
interrupt using the procedure $writeStreamInterrupt

In addition, PTY streams may have an associated character pty.$interrupt If this character is
not -1, it causes an interrupt if it is written to the PTY using $cWriteStream or as part of a
$writeS tream. It it has the value -1, it is not possible to interrupt the PTY process.

On some systems, a program running as a child process through a PTY may not be able to
enable interrupt catching even though the program can enable them when running on an
interactive terminal. On such systems, if the parent calls $writeStreamInterrupt, the child
process is killed.

- 91 -

MAINSAIL STREAMS User's Guide

9. Low-level Stream 110 Procedures

Normally, programmers use remote procedure calls to implement distributed MAINSAIL
programs. Occasionally, the RPC mechanism is not general enough, or the programmer may
require more control over the stream than supported by RPC. The low-level stream I/O
procedures are supplied to provide an escape mechanism for such cases.

NOTE: Since STREAMS has not yet achieved a final form,
the low-level streams procedures are the most likely to
change. RPC is sufficiently high-level that it is
unlikely to experience significant change. Accordingly,
low-level streams procedures should be used only when
necessary, and the programmer should isolate such use so
that changes in their formulation will be easily tracked
in the application.

9.1. Overview of the Low-Level Stream I/O Procedures

Stream I/O consists of a flow of eight-bit character units. I/O to streams may be done to or
from a supplied buffer, string, or an individual character. The type of buffer determines how
the characters in the stream are interpreted and therefore how they are packed into the buffer or
removed from the buffer.

9.1.1. Timeouts

Associated with each I/O procedure is a long integer timeout value, the number of milliseconds
to wait for the operation to complete. The timeout value may be a positive long integer to
cause the procedure to timeout after that number of milliseconds, or one of the constants shown
in Table 9.1.1-1.

If timeout is omitted or $block is given, the procedure blocks indefinitely until something can
be input/output or an error occurs. If timeout is greater than zero, it specifies a minimum
amount of time in milliseconds to wait before returning a timeout failure. If timeout is SpoIl,
the procedure returns immediately with either a success value or one of the error values
described below, as applicable.

- 92-

MAINSAIL STREAMS User's Guide

$poll
$block

* Return immediately * Block indefinitely (infinite timeout)

Table 9.1.1-1. Special Timeout Values

If the system does not support timeout, i.e., if $systemSupportsTimeout returns false, all
timeout values are treated as if they were $block and the procedure does not return until the I/O
is complete or an error occurs.

9.1.2. Success and Failure of I/O Operations

The I/O procedures return a long integer that is nonnegative to indicate success and negative to
indicate failure. Unless the bit errorOK is given to the procedure, however, errMsg is called
with the fatal bit if a failure of any kind occurs.

The macros shown in Table 9.1.2-1 are defined to test the return values.

BOOLEAN
<macro> $success (LONG INTEGER ee); * ee is return from stream proceedure; returns true * iff procedure succeeded

COMPILETIME
LONG INTEGER
<macro> $error; * General error occurred

COMPILETIME
LONG INTEGER
<macro> $eos;

COMPILETIME
LONG INTEGER

* End of stream occurred

<macro> $timedOut; * Operation timed out

Table 9.1.2-1. Error Testing Macros

- 93-

MAINSAIL STREAMS User's Guide

A return of $error indicates a general error. A return of $timedOut indicates that the I/O
operation did not occur because the timeout value was exceeded. A return of $eos indicates
that no more data are available on input, or that no more data can be accepted by the other end
on output.

The character reading procedure $cReadStream returns integer instead of long integer values
but is otherwise similar in this respect.

If an error return of any kind occurs, the field $lastInputError or $lastOutputError of the stream
contains a description of the error. If the operation is neither input nor output, $lastInputError
is set

9.1.3. The General Error Return ($error)

The general error return occurs if the error does not fit one of the other error categories, or if the
STREAMS package could not detennine the precise reason for the failure. The error could be
anything from a physical device error to an attempt to use an invalid stream handle.

9.1.4. The End-or-Stream Return ($eos)

The precise meaning of "end-of-stream" ($eos error) depends on the stream type, on whether
the requested operations was input or output, and on the underlying implementation. The
distinction between a normal $error and $eos might possibly be of some use to a program.
When in doubt, treat $eos and $error the same way.

For TTY streams, in the input direction, $eos means that the user typed some system-dependent
key combination to signal the end of an exchange (e.g., CTRL-D under BSD UNIX or CTRL-Z
under V AXNMS). Repeated $eos errors, however, might mean that no more input is available
at all.

For socket streams, in both the input and output directions, $eos means that the process at the
other end has "hung up" the connection for some reason.

For some implementations of some stream types, such as standard UNIX V.O TTY streams, the
STREAMS package may not be able to distinguish end-of-stream from a simple lack of data.
On such platforms, the $eos return does not occur.

- 94-

MAINSAIL STREAMS User's Guide

9.1.5. Timeout Return ($timedOut)

A return of $timedOut indicates that the I/O operation did not occur because the timeout value
was exceeded. This error does not occur if a timeout value of $block (default) was supplied.

9.2. Octets

The term "octets" refers to eight-bit character units or their contents. The term differs from
"characters" or "character units" in that octets are uninterpreted and untranslated; i.e., the
stream operations on "characters" interpret their arguments or return values as text, whereas
"octet" operations work on "raw bits".

All physical channels on which stream communication is based transmit information in the
form of eight-bit units, so the octet is the quantum of information used by most stream I/O
procedures.

9.3. Input: $readStream

LONG INTEGER
PROCEDURE

LONG INTEGER
PROCEDURE

$readStream (POINTER ($stream) st;
PRODUCES STRING s;
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout) ;

$readStream (POINTER ($stream) st;
CHARADR ca;
LONG INTEGER bufSize;
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout);

Table 9.3-1. $readStream (Generic) (continued)

- 95-

MAINSAIL STREAMS User's Guide

LONG INTEGER
PROCEDURE $readStream (POINTER ($stream) st;

ADDRESS a;
LONG INTEGER bufSize;
OPTIONAL BITS ctrlBits;

'OPTIONAL LONG INTEGER timeout) ;

Table 9.3-1. $readStream (Generic) (end)

$readStream reads octets from the stream st into the destination string or buffer with maximum
size given by bufSize.

The interpretation of the octets read from the stream (how they are packed into memory)
depends on the the form of $readStream that is used. The string and charadr forms read text
($text mode), the charadr form with the $octet. bit set reads octets, and the address fonn reads
octets into complete storage units ($image mode).

It is not necessary to specify the bits $text or $image in ctrlBits because they are implied by the
generic instance. However, when reading octets it is necessary to include the $octet bit, since
octets are addressed by charadrs.

The precise interpretation of the octets in the stream is as follows:

• The text (string and charadr without the $octet bit set) forms interpret the incoming
octets as characters and pack them into memory as strings are normally packed. By
default, each read returns the next group of characters that is received from the
stream, including eol characters but not necessarily an integral number of lines.
bufSize for the charadr form is given in characters.

• The octet form packs the incoming octets into memory as full octets are normally
packed. By default, the next group of octets that flow through the stream is read.
bufSize is given in octets.

• The storage unit form packs the incoming octets into memory as full storage units.
bufSize is given in storage units. By default, the next group of octets corresponding
to an integral number of storage units are read

At most one of the following buffering bits may be set:

- 96-

MAINSAIL STREAMS User's Guide

• $unbuffered (default): $readStream waits until some octets are available. It returns
all the available octets that fit into the supplied buffer, retaining any that do not fit for
subsequent reads. In $text mode, the amount of text returned may not be an integral
number of lines. End-of-line characters are incl~ded in the buffer where they occured
in the input. In $image mode, $readStream always reads octets corresponding to an
integral number of storage units.

• $line (for $text only): $readStream waits for a full line of text to become available.
It then returns the characters in the line, including the end-of-line or line break
character. .

• $fillBuffer: $readStream waits until the supplied buffer has been filled completely.
For the string form, $charsPerPage characters are read.

• $packet: $readStream reads a well-defined packet produced by the other end of the
stream. The packet is guaranteed to be read and returned as a unit, rather than
possibly arriving piecemeal. This mode is useful for communications between a
client and server process, for example. Both the reader and writer must set $packet
for the operation to work.

The buffering modes and defaults for each type of object read are summarized in Table 9.3-2.

Buffering Mode ~ $octet $ image

$unbuffered D D D

$line X

$fillBuffer X X X

$packet X X X

Table 9.3-2. Buffering Modes (X = valid, - = invalid, D = Default)

If the read is successful, the number of characters or octets actually read is returned.
Otherwise, a negative error value is returned.

On streams that buffer output opened for both input and output, the output is flushed with
$flushStream (see below) before a read on the stream. This ensures that prompts or requests to

- 97-

MAINSAIL STREAMS User's Guide

a user or another process are sent out to the other side before the read blocks waiting for a
response.

The MAINSAIL procedure ttyRead acts similarly to the following stream calls:

$readStream($tty,tempString,$line);
read(tempString,resultString);

The second call to read removes the eol that $readStream returns as part of the line.

9.4. Output: $writeStream

LONG INTEGER
PROCEDURE $writeStream

LONG INTEGER
PROCEDURE $writeStream

LONG INTEGER
PROCEDURE $writeStream

(POINTER ($stream) st;
STRING s;
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout);

(POINTER ($stream) st;
CHARADR ca;
LONG INTEGER bufSize;
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout);

(POINTER ($stream) st;
ADDRESS a;
LONG INTEGER bufSize;
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout) ;

Table 9.4-1. $writeStream (Generic)

$writeStream writes the data contained in the specified buffer to the stream st.

- 98-

MAINSAIL STREAMS User's Guide

The interpretation of the buffer (how it is converted into octets) depends on the the form of
$writeStream that is used. The string and charadr (without $octet set) forms write text by
encoding each character into an octet, the charadr form with $octet set in ctrlBits writes octets
directly, and the address form writes storage units by converting them to octets in the standard
way for the host system. The bufSize parameter is in character units for the charadr form and
storage units for the address form.

It is not necessary to specify the bits $text or $image in ctrlBitsbecause they are implied by the
generic instance. However, when reading octets it is necessary to include the $octet bit because
octets are addressed by charadrs.

At most one of the following buffering bits may be set

• $unbuffered (default): $writeStream writes the octets and make them available to the
other end of the stream immediately.

• $line ($text mode only): $writeStream writes the text in units of lines, including any
eol characters, but (possibly) buffers up characters until an eol has been written
before sending characters to the reader at the other end of the stream. The buffering
is done if it is required for efficiency. Also, eel-like characters are converted to their
proper form for the output device. For example, bare carriage returns and/or bare
linefeeds are typically translated into carriage return-linefeed sequences if the output
goes to a TTY and the device requires such a translation.

• $packet: $writeStream writes a well-defined packet to be read as a packet by the
other end of the stream. The packet is guaranteed to be preserved as a unit upon
arrival, rather than possibly arriving piecemeal. This mode must be used if and only
if the reader calls the corresponding $readStream with $packet set. Clearly, this
mode must be used as part of an overall communications protocol, e.g., between a
server and a client or between two cooperating coroutines.

$writeStream returns a non-negative long integer on a successful write. Otherwise, a negative
value is returned.

The system procedure ttyWrite produces results similar to:

$writeStream($tty,argStr,$line)

- 99-

MAINSAIL STREAMS User's Guide

9.5. Single-Character 110: $cReadStream and $cWriteStream

INTEGER
PROCEDURE

LONG INTEGER
PROCEDURE

$cReadStream
(POINTER ($stream) st;
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout);

$cWriteStream
(POINTER ($stream) st;
INTEGER c;
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout);

Table 9.5-1. $cReadStream and $cWriteStream

The procedures $cReadStream and $cWriteStream are similar to $readStream and
$ writeS tream except that they read and write single characters or octets at a time. It is
necessary to include the $text or $octet bit to indicate whether characters or octets should be
read or written. It is illegal to specify $image, since MAINSAIL provides no portable way to
address individual storage units.

The following bits are valid in ctrlBits:

• $text: On input, the next octet from the stream is interpreted as a character and
returned in the rightmost $bitsPerChar bits of the result If $line is set, the first
character of a line may (possibly) not be returned until the entire line containing it
has been received. On output, interpret the rightmost $bitsPerChar bits of the
argument as a character and send it out as an octet. If $line is set, the character may
(possibly) not be sent to the other end of the stream until an eol is output.

• $octet: On input, the next octet read from the stream is returned unchanged. On
output, the rightmost eight bits of the argument are interpreted as an octet and sent
out

• The only legal buffering modes for $cReadStream and $cWriteStream are
$unbuffered (the default) and $line (which affects only $text I/O).

- 100-

MAINSAIL STREAMS User's Guide

On success, $cReadStream returns the actual octet or character value. On failure it returns one
of the standard error codes $error, $eos, or $timedOut, except that the value is converted to an
integer instead of a long integer (i.e., test for "cvi($error)", "cvi($eos)", or "cvi(StimedOut)").
$cReadStream is the only stream I/O procedure that returns an integer instead of a long integer.

On success, $cWriteStream returns an arbitrary nonnegative value; on failure, it returns a
negative value.

The buffer procedures $readStream and $writeStream are more efficient for reading many
characters or octets. However, the character versions of these procedures are more convenient
when program logic requires reading a single character or octet at a time.

9.6. Miscellaneous Operations: $flushStream and $c1earStream

BOOLEAN
PROCEDURE

BOOLEAN
PROCEDURE

$flushStream

$clearStream

(POINTER ($stream) st;
OPTIONAL BITS ctrlBits);

(POINTER ($stream) st;
BITS ctrlBits);

Table 9.6-1. $flushStream and $clearStream

$flushStream forces all output done to the stream out so that it is available to the process or
device at the other end. This action is of use if the implementation of the stream uses an
internal buffer for efficiency. A read on the stream automatically causes the previously
buffered output to be sent, but a program might want to ensure that all output has been sent
prior to issuing an error message, for example.

$clearStream discards pending input (if input is set in ctrlBits) and/or output (if output is set in
ctrlBits) on st. For example, if an editor reads an invalid command character from the tenninal
and prints an error message, it would be reasonable to call "$clearStream($tty,input)" so that all
unread characters typed ahead by the user are discarded (since the user is likely to assume that
the errant command was perfonned).

- 101 -

MAINSAIL STREAMS User's Guide

Both $flushStream and $clearStream return true if the operation was successful and false if the
operation failed and errorOK was specified in ctrlBits. If errorOK was not set, they issue a
fatal error.

- 102-

MAINSAIL STREAMS User's Guide

9.7. Constants and Macros for Stream 110

The following constants are provided to aid in writing portable MAINSAIL programs that
manipulate streams:

• $optionalFirstEol: A character that sometimes precedes Itlast(eol) It in text read from
streams, files transferred from other systems, or output from certain programs. The
portable way to remove ends-of-lines from such text on all systems is to look for
"last(eol)" and then discard the previous character if it is $optionalFirstEol.

• $error: The general error return value.

• $timedOut A timeout error.

• $eos: An end-of-stream condition.

• $poll: A special timeout value that indicates immediate return if the operation would
otherwise block.

• $block: A special timeout value that indicates an indefinite wait for an operation to
complete. This is the default timeout for most procedures.

-103 -

MAINSAIL STREAMS User's Guide

10. TTY Streams: TTYSTR

TIY streams communicate with TIY -like devices, including the controlling terminal, serial
lines, and a parent process that is communicating with the current (child) process through a
pseudo-terminal. TrY streams have special characteristics that often must be taken into
account by the programmer, including keyboard interrupts, echo, and line editing.

Every implementation of the STREAMS package guarantees at least one TTY stream
connected to the controlling terminal. This stream is always available in the STREAMS
system variable $tty. In some cases, $tty may be a half-duplex TIY, that is,
"$isHaltDuplex(tty)" is true. Half-duplex TIY's have restricted functionality (see Section
10.8).

Some systems support the ability to open an auxiliary serial port with terminal-like
characteristics. On such systems, TIY streams to serial lines other than the controlling
terminal may be opened using a name of the form "ttystr>xxx", where "xxx" is the (operating­
system- and installation-dependent) name of the terminal line.

10.1. $Uy

The controlling terminal is opened automatically by the STREAMS package and is available
through the STREAMS system variable $ tty . Input from the initial $tty stream comes from the
keyboard and output usually goes to the screen, unless the primary input and output of the
MAINSAIL process were somehow redirected by some external means.

File I/O done on files opened with the NTTY device module always goes through the current
$tty stream. When cmdFile and 10gFile are opened through NTTY, they also go through the
$tty stream.

If programs using $tty open or access the controlling terminal through non-S1REAMS means,
the mode setting logic for the controlling terminal may be confused and the redirection of $tty
subverted. Such access therefore has undefined effects.

On systems that support the stream modules PTYPRO and SOCPRO, these may be used to start
external processes in which $tty is not the physical terminal. The processes that may be run
may possibly be restricted to MAINSAIL and specially written non-MAINSAIL processes on
some systems.

- 104-

MAINSAIL STREAMS User's Guide

10.2. Meaning of $eos on TTY Streams

On input, the $eoserror return means that there is no more input available. This condition
might be due to the user typing a special control character (such as CTRL-D under UNIX or
CTRL-Z under V AX/VMS). In that case, a subsequent input may get more data.
Alternatively, the $eos return might indicate a permanent condition, such as the end of a batch
job input file.

On output, $eos means that no more data can be written.

10.3. TTY.Specific 110 Bits

ITY streams have some additional characteristics not present in other stream types. They are
also unable to send or receive certain octet values (Le., special control characters) unless some
special bits are specified to the stream I/O procedures. The characteristics of TTY streams
include:

• echo and line editing: Certain default actions take place when reading a line from a
TIY, including the echo of typed characters back to the output side of the stream
(Le., to the "screen"). Also, certain characters typed by the user are interpreted as
line editing functions for correcting mistakes (e.g. delete or backspace). However, at
times these defaults are not desired.

• interrupt characters: Certain character codes are interpreted in a special way by the
operating system. When these characters are received by a ITY, they cause
"interrupts" to occur. For example, CTRL-C on the controlling terminal might abort
the program doing the read. However, at times these interrupt characters must be
turned off so that all characters may be read by the program.

• flow control: TTY streams often use distinguished character codes (e.g.,
XONIXOFF) to signal the writer that the reader is ready to accept more data. Flow
control prevents the receiver's buffer from overflowing and is commonly used by
interactive terminals, modems, and operating systems.

• transmission speed: Various TIY devices are capable of transmitting at different
speeds (baud rates). The sender and receiver must agree on the rate.

When $text is read from a TTY stream in $line mode, and no special TIY -specific bits are set,
reading occurs in units of lines, line editing characters are available to the user at the keyboard
to correct mistakes on input, and the characters read are echoed to the output end of the stream.

- 105-

MAINSAIL STREAMS User's Guide

When any of the buffering bits other than $line is used for TIY input, both line editing and the
echoing of input to the output are disabled until a read is done from the 1TY stream in which
$line is specified.

When $text is written to a TTY stream in $line mode, eol characters are modified as necessary
to cause the cursor to move to the beginning of the next line. Typically it is necessary to supply
both a carriage return character and a linefeed character to the actual physical terminal. When
output is done in a buffering mode other than $line, e.g., $unbuffered, no such manipulation of
eol characters takes place. It is then the program's responsibility to ensure that the desired
sequence of characters is sent. That sequence is available as the $stream field $unbufferedEol.

For example, under UNIX, the string eol contains the single character linefeed. If this alone
were output to most terminals, the cursor would not move back to the first column of the
screen; i.e.:

$writeStream($tty,"Hi" & eol & "Hi")

would produce:

Hi
Hi

while either:

$writeStream($tty,"Hi" & eol & "Hi",$line)

or:

$writeStream($tty,"Hi" & $tty.$unbufferedEol & "Hi")

would produce:

Hi
Hi

Aside from the side effects of echoing and eol manipulation associated with $line, the $line and
$unbuffered bits work for TIY's as they do for all other streams. The $fillBuffer and $packet
buffering modes are of little use for TIY streams because such streams are unreliable when
connected to a physical terminal line. However, these modes might be useful over a TTY
stream that is connected to a parent process instead of a physical terminal.

System-specific interrupt characters and flow control characters introduce a slight complication
into programming a TTY stream. By default, interrupt characters have a special effect and are

-106 -

MAINSAIL STREAMS User's Guide

not passed to the program. The flow control characters are not available to the program, either
for reading or writing.

Unless some special bits are set for TTY stream I/O, the programmer must be careful not to
expect to read octets that correspond to interrupt or flow control characters or to write flow
control characters and have them received at the other end of a ITY stream. Since these
characters are usually non-printing characters, normal applications do not need to worry about
this limitation. However, special applications such as screen editors and terminal emulators
must take special action.

To vary these characteristics from the default, additional ctrlBits bits are provided for the
stream input functions. The additional bits are:

• $nolnterrupt: Read characters that normally cause keyboard interrupts (e.g.,
CTRL-C) and return them as normal characters without causing the usual interrupt
action. This mode is useful for implementing terminal emulators. It is set
automatically for $image reads. It is illegal in combination with $line.

• $noFlow: Turn off flow control and read the flow control characters as normal
characters. This mode is useful for implementing multiwindow terminal emulators
that wish to read XON/XOFF and apply them selectively to each window. It is set
automatically for $image reads.

• $flow: Turn on flow control. If neither $flow or $noFlow is set, the stream module
sets flow control in a device-dependent manner. In particular, for the controlling
terminal, if neither bit is given, the flow control is set the way the user had it set up
prior to running MAINSAIL.

These bits are ignored for non-TTY streams or in implementations where they cannot be
supported.

For example, to read a character without echo and without waiting for an eol,
"$cReadStream($tty,$text!$unbuffered)" could be used, provided that $tty is not a half-duplex
terminal. The program may want to echo the character it read. If it does not do so explicitly,
the user does not see any echo.

The system procedure "ttycWrite(char)" functions similarly to
"$cWriteStream($tty ,char,$text!$line)". To cause char to be displayed immediately rather than
waiting for an eol (full-duplex systems only), "$cWriteStream($tty,char,$text!$unbuffered)"
could be used instead. However, when $unbuffered is set, it is the responsibility of the
program to make sure that the sequence of characters $ tty .unbufferedEol is output at the end of
a line~ This character sequence is not necessarily the same as the string constant eol.

- 107-

MAINSAIL STREAMS User's Guide

10.4. TTY ·Specific Procedures

LONG INTEGER
PROCEDURE $getBaudRate

BOOLEAN
PROCEDURE

LONG INTEGER
PROCEDURE

$setBaudRate

(POINTER ($stream) st;
OPTIONAL BITS ctrlBits);

(POINTER ($stream) st;
LONG INTEGER baud;
OPTIONAL BITS ctrlBits);

$writeStreamBreak
(POINTER ($stream) st;
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout);

Table lOA-I. TTY-Specific Procedures

The procedure $getBaudRate returns the baud rate of the TTY stream st, OL if the rate is
unknown, and negative failure values if st is not a valid stream or some other error occurs.

The procedure $setBaudRate sets the baud rate of the TTY stream st to baud, returning true if it
was success.ful and false otherwise.

Setting errorOK in ctrlBitsfor these functions suppresses a fatal error message; the error text is
. then put in st$lastInputError.

The procedure $writeStreamBreak sends a break on a TIY stream, returning a nonnegative
value if the function is implemented and succeeds, or a negative failure value otherwise.
Breaks are typically read as one or more null characters (Le., $nulChar). Setting errorOK in
ctrlBits suppresses a fatal error message; the error text is then put in st.$lastOutputError.

- 108-

MAINSAIL STREAMS User's Guide

10.5. TTY-Specific Fields of $stream

The TIY -specific fields of $stream give the character sequences corresponding to specially
interpreted characters (normally these are control characters) that may be typed by the user to
cause special actions.

STRING
$unbufferedEol; * How to write eol in $unbuffered

* mode. This is typically a two­* character string, even though * length (eol) = 1.

INTEGER * Characters received in $unbuffered mode when:
$returnKey, * A return key is pressed
$linefeedKey, * A linefeed key is pressed
$eofIndicator, * An end-of-file character is typed

* Line editing characters for this TTY:
$erase, * Erase the most recent character sent
$altErase, * Erase the most recent character sent
$wordErase, * Erase the most recent word sent
$lineErase, * Erase the entire line
$reprint, * Reprint the current line be.1:ng input
$quoteNext, * quote the next character

* Flow control characters for this TTY:
$startOutput, * An XON (e.g., CTRL-Q)
$stopOutputi * An XOFF (e.g., CTRL-S)

* Interrupt characters for this TTY:
$interrupt, * The interrupt character
$discardOutput; * Clear (discard) pending output

Table 10.5-1. TTY -specific Fields of $stream

If any of the functions implied by these fields is not supported by a given system, the
corresponding characters are -1. The only fields that are guaranteed to be defined are
$unbufferedEol, $returnKey, and $erase.

- 109-

MAINSAIL STREAMS User's Guide

Using these character field definitions, a program that wishes to read characters in a mode other
than $line may intelligently interpret the special incoming character sequences according to the
host system conventions to achieve each of these functions.

The $startOutput and $stopOutput characters tell a program what characters are reserved for
flow control (unless $noFlow mode is in effect).

The complete set of characters reserved for interrupts may not be determined. The character
$interrupt is the standard interrupt character (the one that may possibly be trapped by the
STREAMS package and that otherwise causes program termination) if such a character is
available for this system and TTY. The character $discardOutput is the character the user may
type to discard the pending output to the terminal. Neither of these characters may be read
from the TTY unless $nolnterrupt is set.

10.6. Is My $tty Interactive?

A program may determine whether its $tty has the characteristics of a true terminal or not. If
not, it should not expect interaction with a real user.

IF $isaTty($tty) THEN * I am interactive or PTYPRO
EL * I am batch or SOCPRO

On UNIX, a program for which "$isatty($tty)" is false might also be running with its standard
input comjng from a pipe or file set up by the shell.

This test works if the system supports a means to determine the difference between an
interactive and "batch" terminal. Otherwise, "$isatty(st)" always returns true.

10.7. Am I a Cooperative Child?·

A program may determine if its parent expects to talk to it through the $parent stream by
checking if $parent is nullPointer, e.g~: .

IF $parent THEN * I am a cooperative child

Cooperative children mayor may not have an interactive TTY.

- 110-

MAINSAIL STREAMS User's Guide

10.8. Half.Duplex TTY Streams

On half-duplex TTY streams, the only allowed buffering bit for input is $line. For output, both
the $unbuffered (default) and $line bits are supported, but $unbuffered text output may not
behave differently from $line output The programmer must use adaptive programming tests in
a portable program to find alternative methods if the program would normally perform
$unbuffered, $packet, or $fi.lffiuffer I/O and it is to be run on a half-duplex system, e.g.:

IF NOT $isHalfDuplex(st) THEN * Full-Duplex Case
$readStream(st, ... ,$unbuffered);

EB * Half-Duplex Case: Cannot turn off echo
positionCursorToTopOfScreen(st); * user-supplied function
$readStream(st, ... ,$line);
repositionCursor(st) END; # user-supplied function

10.9. PTY Streams

When PfYPRO is used to start a child coroutine (see Chapter 6), the child's $tty is set up to
communicate directly with the parent's PTY stream. As far as the child is concerned, its $tty
has all of the characteristics of an interactive terminal, including echo, interrupts, and flow
control. However, in fact, what it reads is supplied by the parent coroutine that opens the PTY,
and what it writes is supplied to the parent on the PTY.

PTY is an acronym for "pseudo-TTY". The interaction of the parent program with the PTY is
much like the interaction of a user with a terminal keyboard and screen. It is the "other end" of
the child process's $ tty .

Parent Coroutine Child Coroutine

$writeStream(pty, ...); ===> $readStream($tty, ...);
$readStream(pty, ...); <=== $writeStream($tty, ...);

Table 10.9-1. Interaction Between PTY and $tty

The coroutine that opens the PTY stream is responsible for simulating a person sitting at a
terminal. It must write characters to the PTY to simulate typing at the keyboard and read

- 111 -

MAINSAIL STREAMS User's Guide

characters from the PTY that would normally appear on the screen (including echo of the
charaCters it wrote!).

On systems that support process creation and control, PTY streams may be used to create and
talk to an independent program running in a separate (child) process external to the creating
(parent) process. On systems that support transparent pseudo-terminals, any program may be
run through the PTY without restriction, not just MAINSAIL programs. On such systems, the
standard system "shell" (command interpreter) may be run.

To the child process that is running through the PTY, everything appears as if it were
connected to a true interactive terminal. The child process may tum echo on and off, read
characters in $line or $unbuffered mode, interpret interrupt characters specially or not, and
interpret flow control specially or not as it chooses. The parent process itself does not use these
modes when reading from or writing to the PTY.

PTY streams are used to communicate with child processes when the details of the interaction
are unknown to the program that opens the PTY. Typically, the program that opens a PTY
serves merely as an intermediary that accepts keystrokes from a user (passing them on to the
child process) and displays the resultant input from the PTY on the screen. For example, a
window manager can use PTY's to implement a window that talks to a separate job.

The only buffering mode that makes sense in general for both input and output on PTY's is
$ unbuffered. The output is made available to the child process immediately. The child process
mayor may not choose to buffer when it does its input, but that is entirely separate. PTY input
should be done in $unbuffered mode since it is based on the available characters written by the
child. Because the exact interaction expected by the child is generally unknown, it is not
generally useful to perform input from the PTY in $line mode (doing so could cause the parent
to fail to display, e.g., a prompt not terminated by eol, until after the text responding to the
prompt had been set, an undesirable interaction).

The use of PTY streams to control child processes is described in Section 6.4.

10.9.1. Meaning of $eos on PTY Streams

On both input and output, $eos means that the process controlled by the PTY is no longer alive.

There are no PTY-specific I/O bits. The only buffering mode supported is $unbuffered.

- 112-

MAINSAIL STREAMS User's Guide

10.9.2. PTY -Specific Procedures

LONG INTEGER
PROCEDURE

LONG INTEGER
PROCEDURE

$writeStreamBreak
(POINTER ($stream) ptYi
OPTIONAL BITS ctrlBitsi
OPTIONAL LONG INTEGER timeout)i

$writeStreamInterrupt
(POINTER ($stream) ptYi
OPTIONAL BITS ctrlBits;
OPTIONAL LONG INTEGER timeout);

Table 10.9.2-1. PTY-Specific Procedures

The procedure $writeStreamBreak sends a break on a PTY stream, returning a nonnegative
value if the function is implemented, or a negative failure value otherwise. Breaks are typically
read on the other end as one or more null characters (i.e., $nuIChar). Setting errorOK in
ctrlBits suppresses a fatal error message; the error text is then put in pty.$lastOutputError.

The procedure $writeStreamInterrupt signals an interrupt to the child process. If the child has
not enabled itself to catch the interrupt or if interrupt catching is not implemented, the child
will probably be killed. The bit errorOK suppresses error messages. An optional timeout may
be given to return early if the procedure blocks.

In addition, a PTY stream pty has an associated character pty.$interrupt. If this character is
nonnegative, it causes an interrupt if it is written to the PTY using $cWriteStream or as part of
a $writeStream, e.g., "$cWriteStream(pty,pty.$interrupt)".

10.9.3. PTY -Specific Fields of $stream

The PTY -specific fields give the character sequences corresponding to specially interpreted
characters (normally these are control characters) that may be typed by the user to cause special
actions. These are the same as the TIY-specific fields (see Table 10.5-1).

If any of the fields is not supported by a given system, the corresponding character is -1. The
only fields that are guaranteed to be defined are $unbufferedEol, $returnKey, and $erase.

- 113 -

MAINSAIL STREAMS User's Guide

11. MEMORY Streams: MEMSTR

Memory streams are used for two-way communication between coroutines. They are created in
pairs with the stream module MEMSTR. Both coroutines typically know that they are
communicating with each other so that an understood communications protocol can be used.

Output to $openStream's stream sl is read as input on s2, and output to s2 is read as input on
sl. The Scheduler (see Chapter 7) ensures that the coroutines that read and write the streams
are scheduled appropriately.

Memory streams are useful for serialized communication of text, octets, or storage units
between two or more coroutines running in the same MAINSAIL process. They are a low­
overhead simulation of the use of socket streams for interprocess communication. Closely
coupled coroutines that share arbitrarily complex data structures should probably use
semaphores instead of memory streams.

Memory streams do not have semantics normally associated with TTY streams: no echo
occurs, there are no special keyboard interrupt characters, and there is no explicit flow control
or baud rate.

There are no special bits, fields, or procedures associated with memory streams. The $eos
return means that the other end of the stream has been closed.

It is invalid to give a host name for a MEMSTR stream.

NOTE: MEMORY streams are a special case of RENDEZVOUS
streams for use when both tasks are running in the
same process.

- 114-

MAINSAIL STREAMS User's Guide

Appendix A. Server Installation Instructions

. The XIDAK service named "gensrv" is used to support several STREAMS features, including:

• Remote file access using the NET device module

• Remote stream gateway using NETS1R

• Server status using the SRVINF module

For these features to be available, the It gensrv" server process must be started on each node and
a service protocol table must be created containing the names of the host systems and the
servers that are running on each host.

To run the "gensrv" server, it is wise to use the special MAINSAIL bootstrap named "gensrv".
This bootstrap is built during the MAINSAIL installation process. It is configured to use less
memory than normal interactive MAINSAIL processes.

A.t. The Format of the XIDAK Service Protocol Table

The server/client implementation currently depends on the availability of a file describing the
services available on each host. The logical file name "(service protocol table)" must be
defined, typically with a MAINEX "ENTER" subcommand in the "site.cmd" command file for
each MAINSAIL installation.

The need to maintain service protocol tables may eventually be replaced by a XIDAK name
server. When this happens, a program interface will be supplied to update the service protocol
table throughout a local network.

A typical service protocol table is shown in Example A.I-I.

The commands in the service protocol table are described below.

A.I.l. "MYHOST hostName"

The "MYHOST" entry, not shown in Example A.I-I, specifies the name of the host node under
which MAINSAIL is running. This entry is needed only on systems that do not provide a

- 115 -

MAINSAIL STREAMS User's Guide

HOSTNAME Apollo apollo s
HOSTNAME Poseidon poseidon p

HOSTPROTOCOL Apollo tcp
HOSTPROTOCOL Poseidon tcp

SERVICE gensrv Apollo/tcp Poseidon/tcp
SERVICE srv Poseidon/tcp
SERVICE ucrsrv Apollo/tcp

DEFAULTPROTOCOL tcp

Example A.I-I. Typical Service Protocol Table

system call that returns the current host's name. It should be omitted when possible, since
leaving it out allows the same table to be shared among several hosts.

A.l.2. "HOSTNAME officialName alias1 alias2 ••• aliasn"

The ItHOSTNAME It entry declares a host that is directly accessible from the current system by
some network protocol. There must be one "HOSTNAMEIt entry per accessible host. The first
name is the Itofficial" or canonical name by which that host is known, and the remaining names
are acceptable aliases for the official name.

A.1.3. "HOSTPROTOCOL hostName protocoll protocol2 ••• protocoln"

Each ItHOSTNAME" entry must have a corresponding It HOSTPROTOCOL It entry to describe
the network protocols through which that host may be accessed. The protocols are valid
STREAMS protocol modules by which the access is made. Generally these names match the
network methodology (e.g., TCP for TCP/IP, VMSMBX for V AXNMS named mailboxes,
etc.). The list should be ordered in preference, with the most preferred method listed first.

Available network protocol modules are listed in Appendix B.

- 116-

MAINSAIL STREAMS User's Guide

A.I.4. "SERVICE serviceName hostName/protocol

For each service that is to be accessed or provided by a MAINSAIL program, there must be a
"SERVICE" entry. This entry specifies that the named service (e.g., "gensrvu, "ucrsrv") is
available on the named hosts under the specified network protocols (the hosts and protocols are
associated in pairs).

A.I.S. "DEFAULTPROTOCOL protocoll protocol2 ••• protocoln"

The "DEFAULTPROTOCOL" entry lists the default network protocols to try if the host is not
explicitly declared. This entry is optional.

A.2. Host-Dependent Service Tables

On some systems, such as UNIX, it is neces.sary to enter service names in a host-dependent
table or file in addition to entering them in the XIDAK table. For example, under BSD UNIX,
the file "/etc/services" must be updated to contain the service name and port number for each
service to be supplied or accessed. On SunOS, the Yellow Pages server must be used instead
of directly editing the file "/etc/services". Consult the documentation provided by the operating
system for details.

A.3. Installing the" gensrv" Server and the Service Protocol Table

The steps required for installing" gensrv" on a host are:

1. Create a service protocol table (it may be possible to share the same table on several
different hosts).

2. Add an "EN1ER" subcommand to the "site.cmd" startup command file (for each
installation of MAINSAIL being used) that points to the service protocol table (see
below).

3. Declare the "gensrv" service in an operating system file, if required (e.g., in
"/etc/services" under BSD UNIX).

4. Start the "gensrv" process (using the "gensrv" bootstrap) as a background process. It
may be desirable to set up the operating system to do this whenever it is rebooted,
e.g., in an operating-system-specific command file.

- 117-

MAINSAIL STREAMS User's Guide

These steps must be performed on all systems on which clients or servers are to be run. The
steps are described in detail below.

A.3.1. Create a XIDAK Service Protocol Table

The minimal service protocol table required to have general access between hosts A and B is
shown in Example A.3.1-1. This example assumes that the TCP protocol is being used. Other
protocols may be appropriate. and more than one protocol may be supplied for a host or service
on a host.

HOSTNAME A
HOSTNAME B

HOSTPROTOCOL A tcp
HOSTPROTOCOL B tcp

SERVICE gensrv A/tcp B/tcp

Example A.3.1-1. Minimal General Service Protocol Table between Hosts A and B

A.3.2. Add "ENTER" Subcommands to the MAINSAIL Site-Specific Startup Command
File ("site.cmd")

The service protocol table is accessed by MAINSAIL through the logical file name "(service
protocol table)". An "ENTER" subcommand for this logical name must be made, e.g., in the
MAINSAIL startup command file "site.cmd", on all MAINSAIL installations that are to be
servers or clients, as shown in Example A.3.2-1.

ENTER (service protocol table) /etc/mslhosts

Example A.3.2-1. "ENTER" in "site.cmd" for Using Servers

- 118-

MAINSAIL STREAMS User's Guide

A.3.3. Modify the Operating System Services Table

Some operating systems require that the service" gensrv" be declared in a system table. For
example, under BSD UNIX, the file "/et£/services" must contain an entry similar to the one
shown in Example A.3.3-1. This line tells the host system that the "gensrv" server is available
under port number 2000 using TCP (note that this kind of port, a TCP port, is not the same
thing as a MAINSAIL port as represented by a Sport record). You may have to choose a
different number if 2000 is already used as a local service, but be sure to choose the same
number on each system of the network. The number may be chosen arbitrarily within the
constraints on TCP port numbers; check your operating system documentation for details.

gensrv 2000/tcp # XIDAK GENSRV Server

Example A.3.3-1. Declaring the Service "gensrv" to BSD UNIX

A.3.4. Arrange for" gensrv" to be Started as a Background Process

The MAINSAil.. bootstrap "gensrv" starts the XIDAK GENSRV server. Because this bootstrap
is configured to use less memory than an interactive MAINSAIL, it is better to use it than the
standard MAINSAIL bootstrap.

The method of starting a background process varies from system to system. "gensrv" should
generally run as a "superuser" or "root" job so that it can access all files. It should also run
connected to a directory with no important files in it, just for saftety.

Under BSD UNIX, for example, the file "/etc/rc.local" may be edited to start GENSRV as a
local daemon by adding lines as shown in Example A.3.4-1. This example assumes that
MAINSAIL resides in the directory "/usr/mainsail". The entry in "/et£/rc.local" causes
"gensrv" to be started automatically whenever the computer system is booted.

GENSRV may be started manually under UNIX as follows:

1. Become super user.

2. Connect to "/trnp" (e.g., do "cd /trnp").

3. Issue the command "nohup /usr/mainsaiVgensrv &".

- 119-

MAINSAil.. STREAMS User's Guide

if [-f /usr/mainsail/gensrv]; then
(echo -n ' gensrv'; cd /tmp; /usr/mainsail/gensrv&) \

>/dev/console
fi

Example A.3.4-I. Starting GENSRV Automatically Under BSD UNIX

"gensrv" must run on all nodes where the desired remote files are located.

- 120-

MAINSAIL STREAMS User's Guide

Appendix B. Available Network Protocol Modules

Table B-1 lists the currently available stream protocol modules for interprocess
communication.

Can Detect
MQg1!l~ ~:l~:t~m~ ~u1212Qr:t~ Eng Qf ~:tr~9m
DECNET VAX/VMS DECNETi server must have YES

SYSNAM privilege set
TCP UNIX TCP/IP YES
TCPWOL VAX/VMS Wollongong's WIN/TCP YES
VMSMBX VAX/VMS VAX/VMS named mailboxes NO

Table B-1. Protocol Modules and Their Characteristics

- 121 -

MAINSAIL STREAMS User's Guide

Appendix C. System-Specific Support For Streams

Table C-1lists the currently implemented support for various stream- and Scheduler-related
features.

Plat. TTY Sched. Sched. Sched.
~ .l.DL. ll~ NQn-IIX IQ'~ .soc.... PTY, SERVo

aeg * * * * * * *
aix + ? + + + ? +

alnt + + + + + + +
cms + + + + +

dgux * * * * * * *
emb ? ? ? ? ? ? ?

hp20 * * * * * * *
hp38 + + + + + + ,+
hpux * * * * * * *

ip32c + + + + + + +
ipsc2 + + * * * * *
ix20 * * * * * * *
ixat + + + + + + +

ixfpa * * * * * * *
mvux ? ? ? ? ? ? ?

ros * * * * * * *
spix + + + + + + +
sun2 * * * * * * *
sun3 * * * * * * *

sun38 * * * * * * *
sun4 * * * * * * *
sw38 * * * * * * *

ultrx * * * * * * *
uts5 ? ? ? ? ? ? ?
xcms + + + + +

vms * * * * * *

Table C-l. Features Supported by STREAMS Implementations (continued)

- 122-

MAINSAIL STREAMS User's Guide

~:
* = IMPLEMENTED
+ POSSIBLE (BUT NOT IMPLEMENTED)
? UNKNOWN WHETHER POSSIBLE

IMPOSSIBLE TO IMPLEMENT

Plat. Abbr. =
TTY Int. =
Sched. TTY =
Sched. Non-TTY
Sched TO's
SOC. =
PTY. =
SERVo

Platform abbreviation
TTY interrupts

Scheduled TTY stream
Scheduled streams other than TTY
Timeouts when Scheduling
SOCPRO child processes
PTYPRO child processes
SERVICE service streams

Comments:
(1) Standard UNIX SVRO and SVR2 do not support

efficient TTY scheduling.

(2) Standard UNIX SVRO and SVR2 have no network
communication facilities and no PTY jobs.

(3) The UNIX SVR3 concept of TTY streams is currently
unimplemented by all known SVR3 UNIX ports. The
STREAMS package could support scheduled TTY streams
using a busy poll loop with a small timeout.

(4) UNIX SVR4 promises to support all stream functions
but is not yet available for testing as of this
writing.

Table C-l. Features Supported by STREAMS Implementations (end)

- 123-

MAINSAIL STREAMS User's Guide

Appendix D. Extended C RPC Client Example

The examples in this section demonstrate a greater variety of argument types used in a C client
than shown in Chapter 4. Example 0-2 is a C client that calls a MAINSAIL server with an
interface procedure xxx with the header shown in Example 0-1. The MAINSAIL remote
module is called RO 1.

PROCEDURE xxx (
MODIFIES STRING ARRAY(l TO 11) Aryl;
PRODUCES LONG INTEGER ARRAY(-2 TO 2) Ary2;
PRODUCES STRING ZS3;
CHARADR PdfBuf4Pdf; LONG INTEGER PdfBuf4Length;
CHARADR TxtBuf5; LONG INTEGER TxtBuf5Length;
ADDRESS DatBuf6; LONG INTEGER DatBuf6Size;

PRODUCES LONG INTEGER DatBuf6Length;
USES STRING S7;
USES LONG INTEGER Li8);

Example 0-1. MAINSAIL RPC Server Interface Procedure Header

#include "mrpc.h"
#include "r01cli.h"

MRPCMOD *rem;

Example 0-2. C Client That Calls MAINSAIL Remote Module (continued)

- 124-

MAINSAIL STREAMS User's Guide

newAryl{a,typeCode,lbl,ubl,elements)
ARRAY *a;
int typeCode,lbl,ubl;
char *elements;
{

a->ary_dims = 1;
a->ary_type = typeCode;
a->ary_lbl = lbl; a->ary_ubl = ubI;
a->ary_first_elem = elements;
}

newAry2(a,typeCode,lbl,ubl,lb2,ub2,elements)
ARRAY *a;
int typeCode,lbl,ubl,lb2,ub2;
char *e1ements;
{

newAryl(a,typeCode,lbl,ubl,elements)i
a->ary_dims = 2;
a->ary_1b2 = 1b2; a->ary_ub2 = ub2;
}

newAry3(a,typeCode,lbl,ubl,lb2,ub2,lb3,ub3,elements)
ARRAY *ai
int typeCode,lbl,ubl,lb2,ub2,lb3,ub3;
char *e1ementsi
{

newAry2(a,typeCode,lbl,ubl,lb2,ub2,e1ements);
a->ary_dims = 3;
a->ary_1b3 = Ib3i a->ary_ub3 = ub3i
}

Example D-2. C Client That Calls MAINSAIL Remote Module (continued)

- 125 -

MAINSAIL STREAMS Userts Guide

main (argc,argv)
int argc;
char *argv[];
{

int fd;
char host[lOO],serv[lOO],emsg[lOO];
char *hostS;
char *servS;

long XXXX;

ARRAY Aryl;
char **eAryl;
ARRAY Ary2;
long *eAry2;
char *ZS3;
char *PdfBuf4Pdf; long PdfBuf4Length;
char *TxtBufS; long TxtBufSLength;
char *DatBuf6; long DatBuf6Size;
long DatBuf6Length;
char *S7;
long LiB;

if (argc <= 2) {
printf("Host: H); gets(host); hostS = host;
printf("Server: H); gets(serv); servS = serv;

else { hostS = argv[l]; servS = argv[2]; }

if «fd = connserver(hostS,servS» < 0) exit(l);

if (! (rem = rOl_init(fd,O,O,emsg»)
printf("Could not init: %s\n",emsg);
exit () ;
}

eAryl = (char **) calloc(ll,sizeof(char *»;
newAryl(&Aryl,stringCode,l,ll,eAryl);

... set up par.ms ...

Example D-2. C Client That Calls MAINSAIT.:. Remote Module (continued)

-126 -

MAINSAIL STREAMS User's Guide

rOI_xxx(rem,&AryI,&Ary2,&ZS3,PdfBuf4Pdf,PdfBuf4Length,
TxtBuf5,TxtBuf5Length,DatBuf6,DatBuf6Size,
&DatBuf6Length,S7,Li8);

... use results ...

AryI.ary_alloc_status ARY_DATA_DYN I ARY_STRING_DYN;
dispose_array(&Aryl);
Ary2.ary_alloc_status ARY_DATA_DYN;
dispose_array(&Ary2);
if (ZS3) { cfree (ZS3); }
}

rOI_final (rem) ;
close(fd);
}

Example D-2. C Client That Calls MAINSAIL Remote Module (end)

-127 -

MAINSAIL STREAMS User's Guide

Appendix E. Remote Streams: NETSTR

The NETSTR stream module is used internally to implement opening streams on other nodes
and to support gateways.

The NETSTR stream module opens a stream on another computer system. It may be used in
conjunction with any stream module, including the stream modules SOCPRO and PTYPRO
that create processes. Thus, NETSTR can be used to create and control a process on another
node in the network.

For NETSTR to be used, the service" gensrv" must be available on the desired host system and
the gensrv process must have been started on that system (see Appendix A).

Remote streams are opened through the NETSTR stream module, with the syntax:

netstr(hostName»remoteStreamName

NOTE: As of this writing, the only accepted syntax is:
netstr>hostName:remoteStreamName

E.l. Opening a Remote TTY Device

To open a TTY stream named "/dev/ttyb" on a host "a":

$openStream(lpt,"netstr(a»ttystr>/dev/ttyb", ...);

E.2. Explicit Gateway Mechanism

Because the syntax of NETSTR allows nested calls to NETSTR, it provides an explicit gateway
mechanism between nodes in networks linked by a common node.

For example, suppose that nodes A and B are part of network Nl, and nodes B and C are part
of network N2. Node B is a gateway node because it is part of both networks.

A process running on node A can create a process on node C using the stream name:

-128 -

MAINSAIL STREAMS User's Guide

"netstr(B»netstr(C»socpro> "

The process running on node A asks node B to create a process on node C.

E.3. Underlying Implementation

The NETSTR stream module establishes communication with the "gensrv" server on the
remote host and requests that the stream be opened. Depending on the implementation and the
type of stream being opened, NETSTR may perform all operations through "gensrv", or it may
establish independent communication that does not go through the remote "gensrv".

- 129-

MAINSAIL STREAMS User's Guide

Appendix F. A Guide to Remote File Access Using NET

F .1. Use of the NET Device Module

NET is a MAINSAIL device module for accessing files on other computers through a network.
The general form of a file name that uses NET is:

net (hostName»hostPath

e.g.:

net (george»/usr/bob/foo

(">" is shown for the device module separator, $devModBrk; the actual character may differ on
some operating systems).

The hostName field is the name by which the desired system is known to the machine on which
MAINSAIL is running. The storageUnitSize is the size of storage units in the dataFile to be
accessed. It is optional and applies only to data files. The hostPath is the file name in the
syntax expected by the host system. The hostPath must be a complete path name, since there is
no concept of a current directory on a remote system.

The normal MAINSAIL file I/O routines work as usual. The fact that the file resides on
another host is hidden from the user, except for speed of access. Thus, for example, files on
remote systems.maybe edit~by the MAINSAIL editor or compiled by the MAINSAIL
compiler, an~ compiler output may b~directed to a remote system.

[NOTE: Due to a lack of generality in the $rename system procedure, the compiler currently is
not able to output an intmod to a remote system. This problem may be fixed eventually.]

Internally, the NET module reads and writes the file one buffer at a time. Thus it is not
necessary to wait for the entire file to be transmitted to read or write it The remote file never
exists in the local file system.

On systems that do not provide operating system file versions, the server that provides access to
the system's files prevents more than one user from opening the same file for conflicting
purposes through NET. Thus, if two processes attempt to open a UNIX file
"net(foo»/usr/bob/bar" for writing, the second process gets an error. However, no check for

- 130-

MAINSAIL STREAMS User's Guide

simultaneous local access is made unless the operating system supplies this check as part of its
standard file I/O.

F.2. Execution of Modules Stored Remotely

Modules that are stored in files or libraries on a remote system may be executed through NET
simply by arranging for the associated file name to reference the remote file. The MAINEX
"SEARCHPATH" and "EN1ER" subcommands may be set up to access modules on another
system through NET, e.g.:

SEARCHPATH *.olb *.olb net (central»/usr/mainsail/*.olb
ENTER graflib net (george»/usr/george/lib/grafix.olb

F .3. Syntactic Sugar for Remote File Access

To make entering of remote file names easier, define searchpaths for remote systems of the
form:

SEARCHPATH george:* net(george»*

This allows files on the node "george" node to be accessed with the prefix It george:" .

F .4. Known Restrictions and Limitations

NET is available only for systems on which scheduled advanced S1REAMS is supported.

Before NET can be used, servers must be installed and service protocol tables must be set up.
The installation of the remote file system is described in Appendix A.

As currently implemented, there is no notion of security or file protection in NET. Because the
server typically runs as root, any file on the remote system can be accessed through NET. Also,
the default file protection for files created through NET reflects that of the server process,
which may cause problems if the file is later accessed locally on that system by a non-root user.

Each host system imposes some limit on the number of simultaneous open files a process may
have. Since all files accessed remotely at a given host are accessed through a single process on
that host, the maximum number of remote files open on a given system is limited and may
easily be exceeded. For example, the server running on SunOS uses three file handles for
STDIN, STDOUT, and STDERR, MAINSAIL itself uses one for its system library, the port for
accepting clients uses an additional one, and each remotely opened file uses two files (the

- 131 -

MAINSAIL STREAMS User's Guide

socket stream and the actual file being accessed). To verify files, $filelnfo is used which
requires at least one additional file. Since at most 31 files may be opened by a process under
SunOS Version 3, only 12 files may be open simultaneously through NET to a particular
SunOS host.

If NET is used to open a non-disk file that blocks for long periods (e.g., a terminal), all clients
accessing the same server are blocked.

The check for simultaneous access of files through NET currently uses the $fullPathName field
returned by $filelnfo. On some systems, it is possible for the same physical file to have
different $fullPathName values (e.g., hard links under UNIX). On such systems, the
simultaneous access check done in the server may fail to detect the collision, with possible
damage to the file being accessed twice.

- 132-

MAINSAIL STREAMS User's Guide

Appendix G. XIDAK STREAMS Applications and Utilities

This appendix describes software written by XIDAK that uses STREAMS but is not
necessarily part of the STREAMS package. Contact XIDAK for further information.

G.I. Technology Database Management System: TDB

The TDB database management system is a relational database system for distributed
heterogeneous computing environments. For more information on TDB, contact XIDAK for
the relevant documentation.

G.2. Network File Access: NET Device Module

The MAINSAIL device module NET allows a MAINSAil.. program to access files on other
systems as if the files were local. It works by talking to a server process (" gensrv") on the
remote system. Refer to Appendix F for more information.

G.3. Bug Tracking System: UCRSYS

The XIDAK UCR System (bug tracking system) provides simultaneous access to a common
data base of UCR' s. Each user runs his own copy of the command executive (UCREX).
UCREX communicates with the common server process II ucrsrv II • Refer to the document
(available by request) "MAINSAil..(R) UCR Executive Command Summary" for more
information.

G.4. Network Server Status: SRVINF

The SRVINF utility reports on the status of XIDAK servers on the hosts whose names the user
supplies. SRVINF prompts for a line of host names and prints a summary of the current
connections to the hosts.

- 133-

MAINSAil.. STREAMS User's Guide

G.S. MAINSAIL Kermit

MAINKERMIT, a MAINSAIL implementation of the Kermit file transfer program. is shipped
with MAINSAIL systems containing STREAMS. Source code and documentation for it are
available on request from XIDAK.

- 134-

MAINSAIL STREAMS User's Guide

MAIN KERMIT User's Guide

24 March 1989

12. Overview of MAIN KERMIT

MAINKERMIT is a version of the Kermit file transfer utility implemented in the portable
programming language MAINSAIL. The Kermit protocol was developed by the Columbia
University Center for Computing Activities. Kermit is available for a variety of system for a
nominal fee from Columbia and from various user group organizations, such as DECUS and
SHARE. MAINKERMIT is available in source form on XIDAK's MAINSAIL Public Tape,
which can be obtained from XIDAK, at XIDAK's standard media production fee.
MAINKERMIT is also shipped in object form to all MAINSAIL users licensed to use the
MAINSAIL STREAMS package.

This manual is intended to be used as a supplement to an authorative reference on Kermit, such
as the "KERMIT User Guide" (fifth edition. New York: Columbia University Center for
Computing Activities, 1984) or "KERMIT: A File Transfer Protocol" (Bedford,
Massachusetts: Digital Press, 1987), both by Frank da Cruz. It is assumed that the reader is
familiar with basic Kermit concepts, such as "local" and "remote" Kermits, and is familiar with
the use of a "typical" Kermit. Copies of Kermit documenation and sources for other Kermit
implementations can be obtained from them by writing to:

Kermit Distribution
Columbia University Center for Computing Activities
612 West l15th Street
New York, "NY 10025

MAINKERMIT has been designed to run interactively. Although no wildcard send is currently
allowed, a list of files can be specified to be sent as a batch. Also, because File Attribute
packets have been implemented, text and data files can be intermixed when two
MAINKERMIT's are talking to each other.

12.1. Version

This version of the "MAINKERMIT User's Guide" is current as of Version 12.10 of
MAINSAIL.

- 136-

MAINKERMIT User's Guide

Local operation *
Remote operation Yes
Login scripts No
Transfer text files Yes
Transfer data files Yes
Wildcard send No
File transfer interruption No
File name collision avoidance No
Can time out *
8th-bit prefixing Yes
Repeat count prefixing Yes
Alternate block checks No
Terminal emulation *
Communication settings *
Transmit BREAK *
Support for dialout modems No
IBM mainframe communication Yes
Transaction logging Yes
Session logging No
Debug logging No
Packet logging Yes
Act as server Yes
Talk to server Yes
Advanced server functions Yes
Local file management Yes
Command/Init files Yes
File Attribute packets Yes
Command macros No
Raw file transmit No

* -- Depends on capabilities provided by the
operating system.

Table 12-1. MAINKERMIT At a Glance

- 137 -

MAINKERMIT User's Guide

12.2. File Names and Types

MAINKERMIT was designed to be a highly portable, full-featured Kermit, which can reliably
transfer both text and data files. Due to the implementation of File Attribute packets, a mixture
of text and data files can be batched and sent with no user intervention.

Currently, very little is done in the way of file name translation. File names are converted to
lower case unless literal-names has been set Nothing is done about converting directories from
one form to another, or making sure that the target file name is legal for a given system.

12.3. File Transfer

When running MAINKERMIT in local mode, some information is printed during the course of
a file transfer. When a File Header packet is received or sent, the file name is printed. During
the transfer, a dot is printed for every five Data packets. Table 12.3-1 lists other information
shown.

Five Data packets
Z End of file
S Short packet received
N NAK received
T Timeout
C Checksum Error

Table 12.3-1. Information Displayed During File Transfer

The keyboard is not active during the transfer, except for normal operating-system specific
interupts, such as CTRL-C or CTRL-T.

12.4. Operation

The MAINKERMIT default prompt is "MAINKERMIT> ", indicating that Kermit is waiting
for a command. This prompt can be changed by the user to minimize confusion when
switching from one system to another. In general, a command line is a command verb followed
by an optional list of arguments, separated by spaces. Commands can be typed in from the
keyboard, or taken from a file (see the liT AKE" command, Section 13.10). When

- 138-

MAINKERMIT User's Guide

MAINKERMIT is first started, the file "kermitini" is looked for on the current directory, and if
present, commands are executed from it Command files can be nested.

MAINKERMIT is slightly different from most other Kermits in that file transfer requests can
be queued. The "TEXT", "P1EXT", and "DATA" commands allow the user to enter such a
request and specify the file type. The "SEND" or "GET" commands start the transfer of the
queue. It is posible to distinguish between text and data files during transfer because File
Attribute packets have been implemented. The user must note, however, that few other
Kermits have implemented this feature. If the other Kermit does not support File Attribute
packets, the file is still sent, but may be treated incorrectly.

MAINKERMIT can also be used in a mode similar to other Kermits, where the file type is set
with "SET FILETYPE" and file names are specified in the "SEND" command.

Chapter 13 describe the commands to MAINKERMIT in detail.

- 139-

MAINKERMIT User's Guide

13. MAIN KERMIT Commands

Table 13-1 lists the current MAINKERMITcommands. All commands and arguments listed
can be abbreviated to the shortest unambiguous substring.

SERVER
RECEIVE
SEND
SET
EXIT
QUIT
TAKE
CONNECT
GET
FINISH
TEXT
PTEXT
DATA
RTEXT
RPTEXT
RDATA
REMOTE
REXECUTE
HISTORY
TYPE
COpy
DIRECTORY
RENAME
DELETE
INVOKE
?

Enter server mode.
Receive files.
Send files.
Set a set option.
Exit KERMIT to operating system.
Exit KERMIT to MAINSAIL.
Take commands from a command file.
Start terminal emulator.
Get files from remote server.
Tell remote server to finish.
Queue a text file.
Queue a portable text file.
Queue a data file.
Remotely queue a text file.
Remotely queue a portable text file.
Remotely queue a data file.
Execute a remote server command.
Remotely execute a Kermit command.
Show the file transaction history.
Type a local file on the screen.
Copy one local text file to another.
Display the local directory specified.
Rename a local file.
Delete a local file.
Invoke a MAINSAIL module.
Display a list of commands.

Table 13-1. MAINKERMIT Command list

-140-

MAINKERMIT User's Guide

13.1. The "SEND" Command

Syntax: SEND, SEND fn, or SEND fnl fn2

The SEND command with no file name specified starts transmitting the current transfer queue,
as specified by previous "TEXT", "PTEXT", or "DATA" commands.

If a file name "fn" is specified, the named file is transfered under the current default file type.

If both an input file name "fnltt and an output file name "fn2" are supplied, the file "fnl" is
transfered under the name "fn2".

The corresponding Kermit must be in either server or receive mode.

13.2. The "RECEIVE" Command

Syntax: RECEIVE

The "RECEIVE" command accepts file transfers from a single "SEND" command, then returns
to the Kermit command level. If the sending Kermit supports file attributes, the file type is set
by the File Attribute packet. If no attribute packet is sent, the file type is set to the default file
type.

13.3. The" GET" Command

Syntax: GET, GET rfn, or GET rfnl fn2

Request the remote Kermit to send the remote file named. If the remote Kermit is
MAINKERMIT, the rest of the remote transfer queue is sent as well. If the output file name
"fn2" is specified, the file is stored under that name. The remote Kermit must be in server
mode to use this command.

The syntax of this command is different from that for most Kermits. Usually, if no file name is
given, the user is prompted for a remote name, then a local file name. In MAINKERMIT a
"GET" with no file name requests the remote Kermit to send its transfer queue. This queue can
be built using the "RTEXT", ttRPTEXT", and "RDATA" commands (see Section 13.6).

- 141 -

MAINKERMIT User's Guide

13.4. The "TEXT", "PTEXT", and "DATA" Commands

Syntax: TEXT fn or TEXT fnl fn2,
PTEXT fn or PTEXT fnl fn2,
DATA fn or DATA fnl fn2

The "TEXT" command adds the filename "fn" to the local transfer queue as a text file. If the
output file name "fn2" is specified, the file "fn1" is transfered under the name "fn2".

The "PTEXT" command works the same as the "TEXT" command except that it does not filter
out nulls or other special characters. Character set and eol translation is still done, however.
This command should be used for transferring MAINSAil... intmods.

Similarly, the "DATA" command add the filename to the transfer queue as a data file. If the
remote Kermit does not support File Attribute packets, it stores the files as its own default
value. Currently, no warning is issued in such a situation.

13.5. The tt SERVER tt Command

Syntax: SERVER

The "SERVER" command puts Kennit in "server mode". All commands from that point must
be in the form of server packets. Table 13.5-1 lists the commands to which the server responds.

13.6. The "RTEXT", "RPTEXT", and "RDATA" Commands

Syntax: RTEXT rfn or RTEXT rfnl fn2,
RPTEXT rfn or RPTEXT rfnl fn2,
RDATA rfn or RDATA rfnl fn2

The "RTEXT" command sends a "TEXT rfn" command to a remote server, which causes the
remote filename specified to be added to the remote transfer queue. If the output file name
"fn2" is specicied, the file "rfnr' is transferred under the name "fn2".

The "RPTEXT" command acts the same way for a portable text file, and the "RDATA"
command acts the same way for a data file. The remote transfer queue can be retrieved by
using the "GET" command. These commands work only for a MAINKERMIT server.

-142 -

MAINKERMIT User's Guide

COmmand
GET
SEND
FINISH
REMOTE DIRECTORY
REMOTE COPY
REMOTE TYPE
REMOTE RENAME
REMOTE DELETE
RTEXT
RPTEXT
RDATA
REXECUTE

Server Response
Send files
Receive files
Exit server mode
Send directory listing
Copy files
Send file to display
Rename a file
Delete a file
Add "TEXT" file to transfer queue
Add "PTEXT" file to transfer queue
Add "DATA" file to transfer queue
Execute a Kermit command

Table 13.5-1. Server Commands Supported by MAINKERMIT

13.7. The "REMOTE", "FINISH", and "REXECUTE" Commands

MAINKERMIT may request a number of services from a remote server. In addition to the
"SEND", "GET", "RTEXT", "RPTEXT", and "RDATA" commands already described, Table
13.7 -1 lists other commands.

REMOTE DIRECTORY {dn}

REMOTE COpy rfl rf2
REMOTE RENAME rfl rf2
REMOTE DELETE rf
REMOTE TYPE rf

FINISH

REXECUTE s

Request a remote directory be
sent. Use the directory name
"dn" if supplied.
Copy remote file "rfl" to "rf2".
Rename remote file "rfl" to "rf2".
Delete remote file "rf".
Send the remote file "rf" to the
screen.
Cause the remote server to exit
server mode.
Execute the Kermit command "s".

Table 13.7-1. Remote Commands

- 143 -

MAINKERMIT User's Guide

A few words about the "REXECUlE" command: this causes the string "s" to be sent to the
remote Kermit's command exec, exactly as if you had typed it in at the command prompt This
feature is supported by the MAINKERMIT server, but may not be supported by other servers.
In general, care should be taken with this command, as it is possible to send commands to the
remote server that may confuse it (e.g., if you were to change the line while communication
was in progress). On the other hand, it can be useful to alter remote "SET" options. The
"RTEXT", "RPTEXT", and "RDATA" commands are implemented through the "REXECUTE"
command.

13.8. Local File Manipulation Commands

MAINKERMIT allows some local file manipulation. These commands are listed in in Table
13.8-1.

DIRECTORY {dn}

COpy fl f2
RENAME fl f2
DELETE f
TYPE f

Request a directory be sent. Use the
directory name "dn", if supplied.
Copy file "fl" to "f2".
Rename file "fl" to "f2".
Delete file "f".
Send the file "rf" to the screen.

Table 13.8-1. MAINKERMIT Local File Commands

13.9. The "SET" Command

Syntax: SET option {value}

MAINKERMIT has a number of variables and options. The "SET" command allows the user
to tailor these for a specific need. Table 13.9-1 lists the set options available. These options
are described in detail below,

13.9.1. "SET LINE deviceName"

"SET LINE" sets the communication device. The device name is the operating-system-specific
name for the line you plan to use, e.g., "/dev/nyb" or "_TXA5:". When the "SET LINE"
command is given, Kermit is put in "local mode". By default, Kermit is in "remote mode",

-144 -

MAINKERMIT User's Guide

LINE
FILETYPE

TARGET
BAUD
DEBUG
PROMPT

Communication device name.
Default file type (text, portable text, or

data) .
Target operating system for data files.
Baud rate of communication device.
Toggle the debug switch.
Change the Kermit prompt.

Table 13.9-1. MAINKERMIT "SET" Options

After a "SET LINE" command, it is possible that a "SET BAUD" command may need to be
issued. Note that the "SET LINE" command is operating-system-dependent, and may not be
implemented on all systems.

13.9.2. "SET BAUD [30011200124001480019600]"

Set the baud rate of the line specified in the "SET LINE" command to the baud rate selected.
The command is supported only if the host operating system allows the baud to be set. A "SET
LINE It command must be issued before this command.

13.9.3. "SET FILETYPE [TEXTIPTEXTIDATA]"

Set the default file type to It1EXT", "PTEXT", or "DATA", as specified. File Attribute packets
override this setting, but this is the file type used in the absence of such a packet. By default,
the file type is "TEXT".

13.9.4. " SET TARGET osName"

This sets the target used in a data transfer to the operating system name specified. osName is
one of the accepted XIDAK operating system name abreviations shown in Table I-I.
Normally, this command can be dispensed with, as most machines support 8-bit bytes.

13.9.5. "SET PROMPT s"

Set the Kennit command prompt to the specified string s. This can be useful if you are using
MAINKERMIT on two different system.

- 145 -

MAINKERMIT User's Guide

13.9.6. "SET DEBUG"

Toggle the debug switch. With debug on, packets are dumped to the screen as they are
received and sent This may be useful in tracking down a failing connection.

13.10. The "TAKE" Command

Syntax: TAKE fn

The itT AKE" command instructs MAINKERMIT to execute commands from the filename "fn".
This file may also contain "TAKE" commands. The commands executed are echoed.
Command files are especially useful in building transfer queues.

An implict "TAKE" is done on the file "kermit.ini" when MAINKERMIT is first invoked.

13.11. The" CONNECT" Command

The "CONNECT" command causes the terminal to go into a terminal emulator, talking to the
line specified by the "SET LINE" command. All characters typed are passed through the line,
and all characters received are displayed. This is an operating-system-specific command, as
some operating systems cannot support this function. The quality of the terminal emulator may
vary from system to system as well, depending on the exact nature of the primitives provided.
Commands to the local Kermit are prefixed with CTRL-\and a single character. Table 13.11-1
lists the control codes.

c Close the connection, return to the local Kermit
b Send a BREAK (not supported on all systems)
o Send a NULL
CTRL-\ Send a Control-backslash
? List the control codes accepted

Table 13.11-1. MAINKERMIT Emulator Commands

13.12. The "HISTORY" Command

Syntax: HISTORY

- 146-

MAINKERMIT User's Guide

The ItlllSTORylt command lists all files transferred since MAINKERMIT was started. The
command prints whether the file was sent or received, if it was text, portable text, or data, what
the name was, what time it was started and what time it was completed. If the transfer was
aborted for any reason, that fact is also noted.

- 147-

MAINKERMIT User's Guide

14. Program Interface

MAINKERMIT may be invoked from any MAINSAIL program, by including the module
declaration shown in Figure 14-1.

MODULE kermit
INTEGER
PROCEDURE $exeeuteKermitCommand

(STRING em;
PRODUCES OPTIONAL STRING

msg) ;

STRING $prompt;
) ;

Figure 14-1. MAINKERMIT Module Declartion

The procedure $executeKermitCommand takes a string consisting of a single command line for
the MAINKERMIT executive. $executeKermitCommand must be invoked once for each
command line; you may not issue more than one line per call. The procedure returns a 0 if
there were no errors, a 1 if there was an error, and a-I if Kermit should cease execution (Le., a
"QUIT" command was given). If there is an error, an error message is returned in the string
msg. The interface string $prompt is the prompt string with which MAINKERMIT would
prompt the user; if it is to be changed, it may be set directly or by passing a "SET PROMPT"
command to $executeKermitCommand.

- 148-

MAINKERMIT User's Guide

Appendix H. Status of MAINKERMIT Versio.n 2.0

XIDAK does not currently provide standard product support for MAINKERMIT; however, bug
fixes and enhancements can be returned to XIDAK for possible incorporation into subsequent
releases of MAINKERMIT by writing to XIDAK.

The following items are proposed for inclusion is some future release of MAINKERMIT:

• Increase the number of "SET" options. A number of parameters should be settable,
such as the quote character, terminal escape, etc.; currently, they are not.

• Add more logging features, such as a true packet log and an error log.

• Add support for wildcard characters on "SEND", "GET", "TEXT", "PTEXT", and
"DATA" commands.

• Add modem dialout support.

• Add MAINSAIL device module support, so that MAINSAIL can transparently
reference remote files.

- 149-

MAINKERMIT User's Guide

Appendix I. XIDAK Operating System Abreviations Used
with the "SET TARGET" Command

Abbreviation
aeg
aos
cms
emb
ua20
uclp
udg
ui38
ui96
uibm
um20
um68
umv
upri
urdg
uspa
uvax
uw38
uxa
vms

xcms

Operating System Name
Aegis
AOS/VS
VM/SP CMS
EMBOS
Apollo MC68020/FPA UNIX
CLIPPER UNIX
ECLIPSE DG/UX
Intel 80386 UNIX
Intel 80960 UNIX
IBM System/370 UNIX
MC68020/MC6888I UNIX
M68000 UNIX
ECLIPSE MV UNIX
PRISM UNIX
Ridge 32 UNIX
SPARC UNIX
VAX-II UNIX
Intel 80386/WTL 1167 UNIX
IBM System/370 Extended Architecture UNIX
VAX/VMS
VM/XA SP CMS

Table I-I. XIDAK Operating System Abreviations

- 150-

MAINKERMIT Userts Guide

(service protocol table) 64, 115

< an~ > in syntax desciptions 1

> in stream names 19

[and] in syntax desciptions 2

_final procedure 46
_init procedure 45

(and } in syntax desciptions 2

I in syntax desciptions 2

$acceptClient 60
adaptable RPC clients 36
address RPC parameter 26, 27
advanced STREAMS 6, 10
$altErase 109
alterOK bit 51
ary _alloc_status 44
ary _dims 44
ary _firscelem 44
ary_Ibl 44
ary_Ib2 44
ary_Ib3 44
ary_type 44
ary_ub1 44
ary_ub2 44
ary_ub3 44
asynchronous

execution simulation 76
interrupt catching 90

backspace 105
basic STREAMS 6
baud, TTY 8, 105
$becomeServer 24
$bindService 60, 74
$block 16,63,92,103
blocking

Index

- 151 -

I/O 12
in RPC calls 24

break,11ri 8,108
buffer RPC parameter 26, 27

CRPC 40
$canonicalHostName 60
carriage return 99, 106
charadr RPC parameter 26,27
child process 5,9,65,67
clear pending I/O 8
$clearStream 101
client 58

process 5
RPC 21,32

client/server rendezvous 74
$closeS tream 18
cmdFile and STREAMS 12
connection 58
connserver 45
controlling terminal 104
cooperating

child process 9, 16,68
child test 110

coroutine
scheduled 75
service 25

coroutines sharing data 76
$cReadS tream 100
create bit 51
$createRendezvousName 73
C1RL-C 9,87, 105
C1RL-D 94,105
C1RL-Q 105
C1RL-S 105
C1RL-Z 94,105
$currentDirectory 65
$cWriteStream 100

deadlock, semaphore 80
debugging an RPC module 22
DEFAUL TPROTOCOL service protocol table entry 117
delete 105

bit 51, 77
descendants, waiting for 78

- 152-

$disablelnterrupts 87
$discardOutput 109
dispose_array 46
$disposeSemaphore 78
distributed applications 4

echo of TTY 6, 105
editing, line 105
efficiency, RPC 39
$enableInterrupt 89
$enableInterrupts 9, 87
end-of-file

on stream 94
on TIY 105

end-of-line
and stream 99
andTIY 106

$eoflndicator 109
eol and ITY 106
$eos 93, 103

on socket 56
on TTY 105

$erase 109
errMsg and scheduling 76
$error 63, 93, 103
error, STREAMS 16
errorOK bit 19,25,51, 73, 79, 102, 108
$executableBootName 67

featherweight process 5
file

remote 50
RPC 50

$fillB uffer bit 96
$flow 107
flow control 105
$flushStream 97, 101
full-duplex ITY 6, 104, 111

gateway, stream 128
gensrv installation 115
$getBaudRate 108
$getHosts 60
$getProtocols 60

- 153 -

half-duplex TIY 6, 17, 104, 111
$hisHostName 57
HOSTNAME service protocol table entry 116
$hostName 63
HOSTPROTOCOL service protocol table entry 116

I/O
clearing 8
low-level stream 92
scheduled 75

$image bit 96, 99
$initializeStreams 15
input bit 19,51, 101
installation, server 115
interactive child 70
interface, RPC module 26
interprocess

communication 4
communication stream 11
procedure calls 21

$interrupt 109
interrupt 9, 87

character 105
interrupt character, reading 7
$interruptsEnabled 87
intmod, STREAMS 15
IPC stream 11
$isaTty 16, 110
$isHaltDuplex 16
$isLocked 78
$isScheduled 8, 16

keepNul bit 51
Kennit tenninal emulator 80
keyboard interrupt 9, 87
$keyboardlnterruptExcpt 9, 87
$killServerExcpt 37

$lastError 63
$mstlnpu~or 16,94
$mstOutputError 16, 94
Stine bit 96,99, 100
line editing 105
$lineErase 109
linefeed 99, 106

- 154-

$linefeedKey 109
$lock 78
locking data structures 76, 78
log file, server 37
10gFile and STREAMS 12
low-level stream I/O 92

MAINKERMIT tenninal emulator 80
map of scheduled coroutines 80
memory stream 11, 114
:MEMSTR STREAMS module 79, 114
MS_ADDRESSCODE 43
MS_BITSCODE 43
MS_BOOLEANCODE 43
MS_CHARADRCODE 43
ms_exception 46
MS_INTEGERCODE 43
MS_LONGBITSCODE 43
MS_LONGINTEGERCODE 43
MS_LONGREALCODE 43
MS_REALCODE 43
MS_STRINGCODE 43
$msTimeout 77
multiprocessor program 81
multitasking 75
MYHOST service protocol table entry 115
$myHostName 57,60

$name 16,78
NET device module 130, 133
NETSTR 65, 128
network

distributing application across 81
protocol module 58

newestVersion 36
$ new RemoteModule 24
$newSemaphore 78
node, computer 4
$noFlow 107
$nolnterrupt 107

bit 89
non-blocking I/O 12
NTTY device module 12, 104
null character 108

- 155 -

$octet bit 96,99, 100
octet 95
oldestVersion 36
$openStream 18
$optionalFirstEol 103
output bit 19,51, 101

$packet bit 96, 99
parallel processing 81
$parent 9, 15,68,110
$parseHostServiceName 60
PDP

data in RPC call 27
image 26

$pdfbit 51
$poll 92,103
Sport 60,63
port 58

in rendezvous 74
server 25

primary I/O 104
procedure call, interprocess 21
process 5

communication 21
control 69
rendezvous 5, 73

protocol
for server port 25
module 58
version in RPC 32, 33

$protocolName 57
pseudo-terminal 11, 111
PTY stream 11, 111
PTYPRO 10, 65

STREAMS module 111
$tty in child 104

$queueCoroutine 77
$quoteNext 109

random bit 51
re-entrant procedure caveat 76
$readStream 95
Remote Procedure Calls 21
remote

- 156-

file 50
module execution in child 29
module interface 26

$remoteModuleCls 22, 26, 36
$remoteModuleDefaults 26
rendezvous 5, 73, 114
$reprint 109
$reschedule 77
$retumKey 109
RPC 21

buffer 26, 27
efficiency 39
execution in child 29
file 50
forC 40
module interface 26
protocol version 32, 33
server/client 21, 32

RPC module, debugging 22
rpc_clear.Jump 46
rpc_registerjump 46
RPCSRV server module 32, 38
RS-232 stream 11

scheduled
coroutine 5, 12, 75
TIY8

$scheduledCoroutineMap 80
Scheduler 12, 75
scheduling of I/O 12
SCOMAP module 80
$semaphore 78
semaphore 76

deadlock 80
server 58

generic (RPCSRV) 38
installation 115
log file 37
process 5
RPC 21,32

server.log 37
server/client rendezvous 74
$serverName 57
SERVICE 58

service protocol table entry 117

- 157 -

service 58
coroutine 25
protocol table 64, 115

service version, RPC 33
$serviceName 63
$setBaudRate 108
shared data among tasks 76
shell 112

as child process 10
starting with PTYPRO 66
writing 90

simultaneous remote procedure calls 81
site.cmd 117
socket stream 11, 56
SOCPRO 65

stream module 9
Stty in child 104

SRVINF module 133
$startOutput 109
$stopOutput 109
$stream 16
stream 5

clearing 101
end-of-line 99
flushing 101
gateway 128
memory 114
opening and closing 18

stream I/O, low-level 92
STREAMS 4

intmod 15
STRHDR 15
stub,RPC 22
$success 93
synchronizing scheduled coroutines 78
system shell as child process 10
$systemSupportsScheduling 10, 16
$systemSupportsTimeout 11
$systemSupportsTimeouts 16

task
scheduled 75
scheduling 12

TDB 133
terminal

- 158-

echo 105
emulator example 80
interrupt 9, 87

tenninal interrupt character, reading 7
$text bit 96,99, 100
$timedOut 63,93, 103
$timeout and STREAMS 12
timeout, STREAMS 11, 92
TrY

break 108
echo 105
end-of-file 105
end-of-line 106
file and STREAMS 12
interrupt 9, 87
stream 6, 104

$tty 6,15,104
TTY interrupt character, reading 7
ttyRead and ttyWrite and STREAMS 12
TTYSTR STREAMS module 104

UCRSYS 133
$unbindService 60
$unbuffered bit 96,99, 100
$unbufferedEol 109
$unlock 78
$userID 65

version
$remoteModuleCls field 36
RPC protocol 32, 33

$waitForDescendants 78
$wordErase 109
$writeS tteam 98
$writeStreamBreak 108, 113
$writeStteamlnterrupt 113

XON/XOFF 105

- 159-

XIDAK, Inc., 530 Oak Grove Avenue, MIS 101, Menlo Park, CA 94025 , (415) 324-8745

