
XEROX Xerox Development Environment

Mesa Course

Version 12.0
September 1985
610E00230

Office Systems Division
Development Systems
Xerox Corporation
2400 Geng Road
Palo Alto, California 94303

Table of contents

1 From Pascal to Mesa

1.1 Definition of terms 1-1
1.2 A comparison of Mesa and Pascal constructs . 1-2
1.3 Mesa extensions of Pascal. 1-10

1.3.1 Modules and interfaces. 1-10
1.3.2 Exceptions: signals and errors 1-11
1.3.3 Processes, monitors, and condition variables . 1-12
1.3.4 New data types. 1-13
1.3.5 Mesa extensions of Pascal constructs . 1-14
1.3.6 . Input and output in Mesa . 1-17

1.4 References 1-18

1.5 Exercises. 1-18

2 Interfaces

2.1 Preliminary Readings 2-1
2.2 Definition of terms. 2-1
2.3 Discussion 2-2

2.3.1 CompareImplA, which uses no interfaces 2-2
2.3.2 Exporting . 2-3
2.3.2.1 The interface 2-3
2.3.2.2 The implementation .. 2-3
2.3.3 Importing. 2-5
2.3.3.1 Importing a procedure 2-5
2.3.3.2 Template for importing a procedure 2-5
2.3.3.3 Importing a constant 2-6

2.4

2.5

2.6

2.7

Table of contents

2.3.3.4

2.3.4

2.3.5

2.3.6

TemR.late for importing a constant .

Compiling and running your programs.

(mporting and exporting

System interfaces .

2.3.6.1 An example of using system interfaces.

Summary

Questions

References

Exercises

2.7.1 Exercise in importing a procedure •

2.7.2 Exercise in exporting a procedure •

2.7.3 Exercise in importing and exporting using one interface

3 Binding and system interfaces

3.1

3.2

3.3

3.4

3.5

Definition of terms

Discussion

3.2.1

3.2.1.1

3.2.1.2

3.2.1.3

3.2.1.4

3.2.2

3.2.3

3.2.4

A configuration file

Reading a configuration file

[mporting into a configuration .

Exporting from a configuration

Template for a configuration file

Unbound procedures

Naming conventions

System interfaces

Summary.

References

Exercises.

3.5.1

3.5.2

Writing a configuration file and binding

Writing an interface

4 Pointers

4.1

4.2

Definition of terms

Discussion

4.2.1" Declaring pointers •

4.2.2 Initializing pointers

2-6

2-7

2-7

2-8

2-9

2-9

2-10

2-10

2-12

2-12

2-12

2-13

3-1

3-1

3-2

3-2

3-3

3-3

3-5

3-5

3-5

3-6

3-6

3-8
3-8
3-8
3-8

4-1

4-2

4-2

4-2

4.3

4.4

4.5

4.6

Mesa Course

4.2.3

4.2.3.1

4.2.3.2

4.2.4

4.2.5

Assigning pointers.

Assigning pointer values

Assigning the contents of pointer references

U sing pointers for parameter passing .

A common mistake: dangling pointers to local storage

Summary.

References

Questions.

Exercises.

4-5

4-5

4-6

4-7

4-9

4-11

4-11
4-11
4-12

5 Dynamic storage allocation and management

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Preliminary readings.

Definition of terms

Discussion

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

The system heap

Private heaps .

Allocating nodes: Using the NEW operator.

Deallocating nodes: Using the FREE operator

The system MDSZone .

Basic rules for storage management .

5-1

5-1

5-2

5-2

5-3

5-3

5-4

5-5

5-5

5.4.1 Hold onto storage only while you are using it 5-5

5.4.2 Minimize the number of times you allocate anyone item 5-5

5.4.3 Keep global frames small . 5-6

5.4.4 Allocate temporary variables from local frames 5-6

5.4.5 Avoid allocating string literals from the global frame 5-6

5.4.6 Pass a pointer to an object as an argument rather than the object itself. 5-6

5.4.7 Use the systemZone when the total amount of allocated storage is small,

andwhen use is over a short period of time. 5-6

5.4.8 Use a private heap when your program (or set of programs) requires a lot

of storage. . 5-7

5.4.9 Avoid allocation from the systemMDSZone. 5-7

Summary.

Questions.

Exercises.

5-7

5-7

5-8

6 Sequences

6.1 Discussion

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

Declaring a sequence

Allocating a sequence

U sing a sequence .

Deallocating a sequence

VowelSeparatorWithPublicHeap

6-1

6-1

6-2

6-2

6-2

6-3

6.2

6.3

6.4

Table of contents

6.1.5.1 TextSeqBody: the data structure used for storing text

6.1.5.2 The procedure Main

6.1.5.3 How the input is separated

6.1.6 VowelSeparatorWithPrivateHeap

Summary

References

Exercises.

7 Strings

7.1

7.2

7.3

7.4

7.5

Definition of terms

Discussion

7.2.1 Allocating a STRING •

7.2.2 Caveats in using strings

7.2.2.1 Initializing strings from the current frame.

7.2.2.2 Comparing strings

7.2.2.3 Assigning strings .

7.2.3 U sing the String interface

Summary.

References

Exercises.

8 Signals

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Definition of terms

Discussion

8.2.1 How signals work

8.2.2 Resume

8.2.3 Retry and continue.

8.2.4 Exit, loop and goto .

8.2.5 Unwind

Summary.

Style .

8.4.1 Scope

8.4.2 Errors vs. signals

8.4.3 A caution

Questions.

Exercises.

References

.

6-3

6-3

6-5

6-8

6-8

6-8

6-8

7-1

7-1

7-2

7-3

7-3

7-3

7-4
7-4
7-4
7-5

7-5

8-1

8-2

8-3

8-4

8-7

8-9

8-10

8-13

8-14

8-14

8-14

8-15

8-15

8-19

8-22

Mesa Course

9 Variant records

9.1 Definition of terms 9-1

9.2 Discussion 9-1

9.2.1 Declaring variant records 9-1

9.2.2 Allocation of variant records 9-3

9.2.3 Initialization of and assignment to variant record variables 9-4

9.2.4 Accessing the fields of a variant record variable 9-4

9.3 Summary. 9-5

9.4 References 9-6

9.5 Exercises. 9-6

10 Processes and monitors

10.1 Defmition of terms 10-1

10.2 Discussion 10-2

10.2.1 Joining processes 10-2

10.2.2 Detached processes 10-4

10.2.3 Monitors 10-4

10.2.3.1 Mutual exclusion to shared data 10-4

10.2.4 Synchronization with condition variables 10-7

10.2.4.1 Producer/Cons umer problem . 10-7

10.2.4.2 Single resource manager 10-10

10.2.4.3 Variable size, single resource manager. 10-11

10.3 Issues and concerns 10-12

10.3.1 Aborting a process 10-12

10.3.2 Signals and processes 10-12

10.3.3 Signals and monitors 10-12

10.4 Summary 10-13

10.5 References 10-14

10.6 Exercises 10-14

11 Introduction to Tajo

11.1 Definition of terms 11-1

11.2 Discussion 11-1

11.2.1 Windows and subwindows 11-1

11.2.2 Plug-in modules 11-2

11.2.3 Notification 11-2

11.2.4 Virtual memory 11-3

11.2.5 The file system 11-3

11.3 Summary 11-4

Table of contents

12 The Exec interface

12.1 Discussion 12-1

12.2 Writing programs that use the Executive. 12-2

12.2.1 Registering a command 12-2

12.2.2 Getting information from the command line 12-4

12.2.3 Displaying in the Executive window 12-6

12.2.4 Other useful procedures 12-6

12.3 Summary. 12-7

12.4 Style 12-7

12.5 References 12-7

12.6 Exercises. 12-7

13 MFile

13.1 Definition of terms 13-1

13.2 Discussion 13-1

13.2.1 Gaining access to files 13-1

13.2.1.1 Other methods of acquiring files 13-3

13.2.2 Copying file handles 13-3

13.2.3 Releasing files . 13-4

13.2.3.1 PleaseReleaseProcs 13-4

13.2.4 Notification 13-7

13.2.4.1 Removing notification 13-8

13.2.5 Manipulating files . 13-11

13.2.5.1 Obtaining information about files . 13-11

13.3 Summary. 13-11

13.4 References 13-11

13.5 Exercises. 13-12

Mesa Course

14 MSegment

14.1 Definition of terms 14-1

14.2 Discussion 14-2

14.2.1 Creating a segment 14-4

14.2.2 Copying segments to and from files. 14-4

14.2.3 Forcing pages to the disk . 14-7

14.2.4 Direct access within segments • 14-8

14.2.5 Copying segment handles . 14-9

14.3 Summary. 14-10

14.4 Style 14-10

14.5 References 14-11

14.6 Exercises. 14-11

15 Streams

15.1 Definition of terms 15-1

15.2 Discussion 15-1

15.2.1 The stream handle • 15-2

15.2.2 Creating a stream . 15-2

15.2.2.1 Examples of creating streams on files 15-3

15.2.3 The basic data transmission operations 15-4

15.2.4 Data transmission by blocks 15-4

15.2.5 Positioning and random accessing streams. 15-6

15.2.6 Deleting streams . 15-6

15.2.7 Handling multiple access to streams 15-6

15.3 Summary. 15-10

15.4 Style • 15-10

15.5 References 15-10

15.6 Exercises. 15-11

Table of contents

16 The FormSWLayout,Tool

16.1 Preliminary reading . 16-1

16.2 Definition of terms 16-2

16.3 Discussion 16-2

16.3.1 Plagiarize • 16-3

16.3.2 Layout mode 16-4

16.3.2.1 Enumerated items 16-5

16.3.3 The SetDefaults·Command. 16-6

16.3.4 FormSWLayoutTool boo leans • 16-6

16.3.5 Generating the tool 16-6

16.5 Summary. 16-6

16.6 Exercises. 16-7

17 Tool window interfaces

17.1 Discussion 17-1

17.1.1 The data 17-1

17.1.2 The call to Tool.Create 17-2

17.1.3 Subwindows 17-3

17.1.3.1 Command items 17-5

17.1.3.2 String items 17-6

17.1.3.3 Enumerated items 17-6

17.1.4 Window state transitions · 17-7

17.2 Summary. 17-7

17.3 Exercises. 17-8

18 Tool building

18.1 Discussion 18-1

18.1.1 Reading the user .cm 18-2

18.1.2 Pop-up menus 18-4

18.1.2.1 Creating a menu 18-4

18.1.2.2 Instantiations of a menu 18-5

18.1.2.3 Menu command routines · 18-6

18.1.2.4 Freeing a menu 18-6

18.1.3 Registering a tool with the Tool Driver. 18-6

18.1.4 The Supervisor facility. 18-7

18.1.4.1 Using the Supervisor . · 18-8 .
18.1.5 Using the Executive interface . 18-10

18.2 References 18-12

18.3 Exercises. 18-12

Mesa Course

19 Multiple instance tools

19.1 Definition of terms 19-1

19.2 Discussion 19-1

19.2.1 Obtaining a context type 19-2

19.2.2 Creating the context 19-3

19.2.3 U sing the context . 19-4

19.2.4 Destroying the context 19-4

19.3 Summary. 19-5

19.4 References 19-8

19.5 Exercises 19-8

20 Terminal interface package (TIP)

20.1 Definition of terms 20-1

20.2 Discussion 20-1

20.2.1 Default TIP tables . 20-3

20.2.2 TIP table syntax 20-3

20.2.2.1 Modifying TIP tables 20-4

20.2.2.2 Writing new TIP tables 20-5

20.2.3 NotifyProcs 20-7

20.2.4 The GMP: Macro package 20-9

20.3 Summary 20-10

20.4 References 20-10

20.5 Exercises. 20-10

21 Creating subwindows

21.1 Definition of terms 21-1

21.2 Discussion 21-1

21.2.1 Registering a subwindow type • 21-2

21.2.2 Creating a subwindow • 21-2

21.2.3 Making a sub window do something useful 21-3

21.2.3.1 The DisplayProc 21-3

21.2.3.2 The NotifyProc 21-5

21.2.4 Implementing scrolling 21-6

21.2.4.1 Creating the scrollbar . 21-6

21.2.4.2 Calculating scrolling information 21-6

21.2.4.3 Scrolling . 21-7

21.2.5 Adjusting subwindows with scrollbars • 21-8

21.3 Summary 21-9

21.4 Excercises 21-9

21.4.1 Excercise 1: horizontal scrolling 21-9

21.4.2 Excercise 2: the crossword puzzle tool 21-9

Table of contents

Appendices

A Correcting compilation errors

A.1 Discussion A-I

A.2 Early-pass errors. A-2

A.3 Later-pass errors. A-3

A.4 Successful compilation A-4

A.5 Let the Compiler help you. A-4

B Setting breakpoints

B.1 Discussion B-1

B.1.1 The interpreter. B-1

B.1.2 Sample debugger session B-1

B.1.2.1 U sing the interpeter B-2

B.1.2.2 Setting breakpoints B-3

B.l.2.3 Dereferencing pointers B-6

B.2 Style B-7

B.3 References B-7

C Translating uncaught signals

C.l Definition of terms C-l

C.2 Discussion C-l

C.2.1 Example A: Pre-translated uncaught signal C-2

C.2.1.1 Why the debugger translated the signal C-2

C.2.1.2 Returning from an uncaught signal C-3

C.2.2 Retranslating an untranslated signal: Method 1 C-3

C.2.3 Retranslating an untranslated uncaught signal: Method 2 • C-4

C.2.4 If you want more information C-4

C.3 Summary. C-5

C.4 References C-6

D Debugging an address fault

D.l Definition of terms D-l

D.2 Discussion D-1

D.3 Start of the debugging session D-2

D.4 Running then setting breakpoints D-3

D.5 Summary. D-7

Mesa Course

E Answers to questions

E.I Chapter 2: Interfaces . E-I

E.2 Chapter 4: Pointers E-I

E.3 Chapter 5: Dynamic Storage Allocation E-2

E.4 Chapter 8: Signals E-2

F Trainer information

F.I The machine • F-I

F.1.1 User.cm entries F-2

F.2 Location of course materials . F-2

F.3 The course's directory structure F-3

FA References F-4

F.5 Errors in course materials F-4

G Glossary

Introduction

The Mesa Course is a self-paced programming tutorial intended to give you hands-on
experience with applications and systems programming in the Xerox Development
Environment. The course introduces important concepts, illustrates those concepts with
extensive examples, and provides exercises to ensure your familiarity with those concepts.
The Mesa Course is intended for use at any XDE customer site.

The twenty one chapters of the Mesa Course are grouped into two major sections: the Mesa
Language and the ''Tajo'' development environment. The experienced professional need
only skim the Mesa Language chapters and can begin with serious study of the
development environment, referring to language issues in the first section as required.
The less experienced programmer should work through the material sequentially. The
initial section of the course is designed to present Mesa programming to someone who is
familiar with other structured languages, particularly· Pascal, and has completed the
Introduction to XDE on-line tutorials.

The Mesa Language section introduces you to Mesa programming concepts and essential
components of the Xerox Development Environment. You will learn how to develop and
run programs in our environment, including how to:

• convert standard Pascal constructs into their Mesa counterparts,

• use Mesa's interface mechanism to integrate independently developed
programs and share information among them,

• allocate dynamic storage from a common pool,

• declare and manipulate strings, dynamic arrays, and variant records

• use processes and monitors effectively,

• handle exception occurrences via a software interrupt mechanism,

• debug your program when things go a wry, and

• use the Mesa reference manuals to find the information you need.

Upon completing the first section you should have a well-grounded understanding of how.
to use Mesa and the development environment.

1

Introduction

The last half of the course emphasizes advanced features of XDE and concentrates on
fundamental aspects of tool creation. In this section you will learn how to

• write programs that run in the Executive window,

• interact with the Mesa file system including performing file I/O and attaching a
stream to a file,

• allocate space from virtual memory and map it to a backing file,

• use the form subwindow layout tool to generate "standard" tool subwindow
implementation code,

• implement tool features not provided by the form subwindow layout tool,

• handle terminal input for a tool, and

• paint into the windows of a tool

If you do not intend to be an active Mesa programmer, then this course is probably not for
you. The Introduction to XDE on-line tutorials provide an explanation of the non
programming aspects of the development environment, and may be what you want.

Course structure

The course consists of twenty one chapters, six appendices, and a Glossary. The early
chapters, Chapters 1 through 10, each concentrate on a single concept and build on the
previous chapters. If this material is appropriate for your experience level, you should
study each of these in order. The chapters of the environment section, from Chapter 11 on,
are somewhat more independent and self-standing. Chapter 12 deals with the Executive,
chapters 13 through 15 deal with aspects of the file system, chapters 16 through 19 cover
fundamental aspects of tool construction, and chapters 20 and 21 discuss gathering input
for tools and painting tool windows.

Some of the appendices cover basic debugging techniques. The remaining appendices,
answers to questions, and the Glossary should be referenced as needed. The course
suggests points wh~n studying the appendices might be most helpful to you.

How to read a chapter

2

For the most part, each chapter contains the following sections in the following order:

• An introduction covering what it is about; what you will learn from it, and what you
will do in it.

• A description of preliminary readings and where to find them. These are usually the
sections in the reference documentation that describe the concepts to be discussed.
You should read, but not disect, this information. We discuss the depth to which you
should study these readings in the next section, Using the Course.

• A glossary of terms, which defines the terms new to that particular section.

Mesa Course

• A discussion of the chapter's main topic. This section is the main body of the chapter.
It usually takes the form of a general introduction to the concept, a discussion of the
facilities you need, and at least one programming example.

• A summary of what you have learned. This helps you to check quickly that you have
understood the major points of the chapter, and can later serve as a reference.

• A discussion of style-related issues related to the concept being learned. The section
explains the choice and type of coding style used in the examples.

• A description of reference materials and where to find them. These are usually
collected journal articles that relate to the concept being taught. Using these
materials will extend the breadth of your knowledge or give you a different
perspective on the topic.

• A set of questions. Questions and answers are provided so you can judge how well you
have understood the material. The answers are collected in an appendix.

• A programming exercise that applies the new concept and provides experience with
the Mesa language. It is primarily through these exercises, as well as through
programming examples and readings in the Mesa Language Manual, and the Mesa
and Pilot Programmers Manuals, that you will become familiar with the XDE.

U sing the course

Beginning users of Mesa come with a wide range of experience. You can use the following
guidelines to' gauge the level appropriate for you and how best to use this course.

The primary purpose of this training is to initiate you to programming in the Xerox
development environment. This environment is documented by well over one thousand
pages of material. You need to know how to find, use, and understand information in these
documents. The course presents the information in the reference materials around a
framework of examples and exercises. There is no information in the course that is not
also in at least one other document.

Many chapters ask you to do preliminary readings in reference manuals. If you
understand the reference materials easily, then the chapter will not provide you with any
more information. Instead, you may find it best, after completing the preliminary
readings, to skim the chapter, check your understanding via the questions, and go straight
to the exercises. On the other hand, if you find the reference readings overly difficult, do
not pore over them. Instead, skim them and concentrate your efforts on the discussion
section of the appropriate Mesa Course chapter. After you have finished the chapter, go
back and re-read the reference material. This will give you more information on the
subject, and will also give you experience in using the manuals.

Getting Started

This is version 12.0 of the Mesa Course. It assumes that you are using a Dandelion or
Daybreak processor running the Sequoia release (12.0) of the Xerox Development

3

4

Introduction

Environment with Tajo installed on a normal volume, CoPilot serving as a debugger for
the volume on which Tajo is installed, and a User.cm that is set up for this configuration.

Programs
(PUBLIC)

Interpress
(PUBLIC,

initially)

MesaCourse

OF
(PUBLIC)

12.0

Solutions
(PRIVATE.

initially)

Errata
(PUBLIC)

The Mesa Course Directory Structure

References
(PUBLIC)

Interpress masters for the course text are stored electronically in the folder
[CustomerNSFileServer]<MesaCourse>12.0>Interpress>. You can print copies
of the course from these folders as you need them (universities may have this folder
protected). Your local support group may have bound copies of the Mesa Course available.

The programs discussed in the chapters are stored in the C ..] < ••• > .•• >
Proqrams>ChapterName(ChapterNumber) folder for each chapter. Retrieve all files
from this folder before starting a chapter, e.g., retrieve all the files in
[CustomerNSFileServer] <MesaCourse> 12. O>Proqrams > Interfaces (2) before
starting Chapter 2.

Solutions to programming exercises are stored in the [. .. J < ••. > ... > Solutions>
folder. Your XDE training liaison will decide who has access rights to this folder: it may be
read protected initially.

There are two papers cited in the Mesa Course that are not part of the XDE release
documentation. They can be found in the [... J < ..• > ... > References> folder.

The Mesa Course is still under development, and we would appreciate your comments and
corrections. We apologize for any inconveniences caused by inconsistencies or inaccuracies
that have escaped our current review. Please check on [... J < .•. > •.. > Errata> fOf
any update information.

If you run into any trouble getting started or while you are going through the course, do
not hesitate to ask your XDE training mentor for help. Initially, please ask your mentor to
make sure that your disk and User.cm are compatible with the course, and for the name of
a Cus tomerNSFileServer near you that has a copy of the <MesaCourse> folder.

1

From Pascal to Mesa

This chapter will introduce you to the programming language Mesa by building on your
knowledge of Pascal.

Pascal has become the instructional language of choice in the computer science academic
community and is gaining in general popularity. It is a language that has integrated a
small set of features into a powerful and efficient programming tool. One of Pascal's most
attractive features is user-defined data types that enable data structuring capability and
data abstraction. Standard Pascal does have a significant shortcoming in terms of writing
a large system: there is no way to break the system down into small separately compiled
units and then integrate them into a consistent whole. This prevents the compiler from
checking the type correctness of actual parameters in distinct units, inhibits the
development of "libraries" to extend the language, and generally complicates the
implementation of large systems constructed by a group of programmers. Furthermore,
standard Pascal does not support dynamic array bounds; it is difficult to write general
routines that process arrays of different sizes. Standard Pascal has no exception handling
facilities and does not support concurrent processes.

Mesa is a strongly typed, block structured programming language whose syntax is similar
to that of Pascal. Mesa extends Pascal in a number of ways intended to make it more
effective for the development of large systems, while preserving Pascal's data structuring
and data abstraction facilities. We begin this chapter by examining the common ground
between Pascal and Mesa: shared language concepts and constructs. Then we look at some
ofthe ways in which Mesa differs from Pascal.

1.1 Definition of terms

Most of the concepts found in Pascal have counterparts in Mesa. The list below defines
terms that are either distinctive to both Pascal and Mesa or terms whose Pascal and Mesa
definitions differ slightly.

type definitions

name

Type definitions are the mechanism for describing data of
Mesa programs.

A name (or identifier) is a sequence of alphabetic and
numerIC characters beginning with an alphabetic

1-1

1 From Pascal to Mesa

static variables

dynamic variables

strongly typed

procedural abstraction

actual procedure

procedure variable

character. Identifiers in Mesa can be up to 256 characters
long; character case is significant in Mesa identifiers.

Static variables are variables for which an explicit variable
declaration has been made.

Dynamic variables are generated by a special procedure
(NEW) that yields a pointer or reference value that
subsequently serves in place of a name to refer to the
variable.

The Mesa compiler uses static analysis to deduce the type
of every constant, variable, and expression to ensure that
all programs are type correct. Languages in which such
type correctness is determined at compile time are called
strongly typed.

A procedural abstraction is a mapping from a set of inputs
to a set of outputs that can be described by a specification.
The specification must show how the outputs relate to the
inputs, but it does not reveal or imply the way the outputs
are to be computed.

An actual procedure is a procedure initialized so that its
meaning (defined by its body) cannot change. You cannot
assign a value to an actual procedure.

A procedure variable is a procedure initialized in such a
way that the procedure's value (body) can be changed by
assignment.

1.2 A comparison of Mesa and Pascal constructs

This section presents a sequence of examples showing analogous Mesa and (standard)
Pascal constructs.

Mesa

Comments

--This is a comment terminated by EOL

--This is a comment terminated by dashes--

< < This is a comment extending
over more than one line> >

1-2

Pascal

{This is a comment}

{This is a comment extending
over more than one line}

Mesa Course

Mesa Pascal

Constant declarations

Pi: REAL. 3.14;
-Note

Mesa is case sensitive.
Reserved words are capitalized.
Constants have explicit types.

MinusPi: REAL. ·Pi;

linesPerPage: INTEGER. 60;

shortPage: INTEGER. linesPerPage. 6;

capA: CHARACTER • 'A;

smallA: CHAR. 'a;
--CHARACTER and CHAR are equivalent

message: LONG STRING" "Hello there";
--String literal allocated in global frame.

anotherMessage: LONG STRING. "Boo"L;
--The string literal is allocated in the local frame
--of the innermost procedure enclosing the
--literal. Thus, in Mesa you can choose whether
--to allocate from a local or global frame.

CONST

Pi • 3.14;
{Pascal is not case sensitive.
Capitalization is only for readability.
Constants have implicit TYPE.}

Minuspj • ·Pi;

linesPerPage • 60;

{Pascal does not support general
expression constants}

capA • 'A';

smallA = 'a';

message .. 'Hello there";

Type declarations: One dimensional ARRAVS

Name: TYPE. ARRAV[O •• 9) OF CHAR;

packName: TVPE .. PACKED ARRAV

[0 •• 9] OF CHAR;

Dashes: TVPE = ARRAV(0 •• 7) OF CHAR +-oALL['-];

--[O .. n + 1) equivalent to [O .. n]

RARRAV: TYPE = ARRAV[O •• 8) OF REAL;

TVPE

Name .. ARRAV[O •• 9] OF CHAR;

packName = PACKEDARRAV[0 •• 9] OF CHAR;

Dashes = ARRAV[O •• 6] OF CHAR;

{No default initialization}

RARRA V = ARRA v[O •• 7] OF REAL;

1

1-3

1 From Pascal to Mesa

Mesa Pascal

Type declarations: Two dimensional ARRAYS

M3by4: TYPE. ARRAV(1 •• 3] OFARRAV[1 •• 4]
OF INTEGER +- ALL{O];

M3by4 • ARRA v[1 •. 3] OF ARRAV[1 .• 4]
OF INTEGER;

{ No default initialization}

{or}

ALT3by4. ARRAV[3,4] OF INTEGER;
{Compact representation of two dimensional ARRA Y,
no default initialization}

Type declarations: Records

Coordinate: TVPE • RECORO[
horizontal: REAL +- 0.00;
vertical: INTEGER +- 0];
- default field initialization

--or

Coordinate: TVPE • RECORO(
horizontal: REAL.
vertical: INTEGER] +- [O.OO~O]
-- default TYPE initialization

Coordinate.
RECORD

horizontal: REAL; {no initialization}
vertical: INTEGER

END;

Type declarations: Variant Records

Shape: TYPE. {point, line, circle};

Figure TYPE • RECORO[
figureName: Name,
specificFigure: SELECTfieldID: Shape FROM

point. > [position: Coordinate],
line. > [xCoef, yCoef, slope: REAL],
circle • > [center: Coordinate.

radius: REAL];
ENOCASE);

1-4

Shape • (point, line, circle);

Figure.
RECORD

figureName: Name;
CASE tag: Shape OF

point:

END;

(postion: Coordinate);
line:

(xCoef. yCoef. slope: REAL);
circle:

(center: Coordinate;
radius: REAL);

Mesa Course

Mesa Pascal

Type declarations: Records containing pointers

personPtr: TYPE .. LONG POINTER TO Person;

Person: TYPE .. RECORD[

name: Name.
age: [21 .. 120].
sex: {male. female}.
party: {Demo. GOP}.
contri bution: [0 .. 1 0000));

link: TYPE. LONG POINTER TO Node;

Node:TYPE :II RECORD[
voter: Person.
next: link];

personPtr .. i Person;

Person ..

RECORD
name: Name;
age: 21 .. 120;
sex: (male. female);
party: (Demo. GOP);
contribution: (0 .. 10000)

END;

link .. i Node;

Node =
RECORD

voter: Person;
next: link

END;

Variable declarations

b: BOOLEAN TRUE;

--BOOLEAN and BOOL are equivalent

Ii.lj: LONGINTEGER -7;

i, j: INTEGER 41 ;
iSquared: INTEGER i*i;
k: INTEGER iSquared - i + 1;

a: RARRAY ;

mxy: M3by4;

control: [1 .• 15];

VAR

b:BOOLEAN; {no initialization possible}

{no double precision or initialization}

i, j: INTEGER;
iSquared: INTEGER;
k: INTEGER;
{Initialization of iSquared and k must be done
in statement section.}

a: RARRAV;

mxy: M3by4;
altmxy: ALT3by4

control: 1 .. 15;

1

1-5

1 From Pascal to Mesa

Mesa Pascal

Variant record variables

figure: Figure; figure, pointFigure, lineFigure, circleFigure: Figure;

"Bound" variant record variables

pointFigure: point Figure;
IineFigure: line Figure;
circleFigure: circle Figure;

{Pascal has no concept of bound variant RECORDS.}

Dynamic storage allocation

Z: UNCOUNTED ZONE +-NIL;
--source of dynamically allocated objects

{Nodes are automatically allocated from a
system heap}

Variables for pointer examples

cand1, cand2, cand3, cand4: Person;
preswinner, presloser, vpwinner,
vploser: personPtr;
p. rootNode: link;

cand1, cand2, cand3, cand4: Person;
preswinner, presloser, vpwinner
vploser: personPtr;
p. rootNode: link;

Procedure declarations

Fad: PROCEDURE[n: LONG INTEGER]
RETURNS [LONG INTEGER] •
BEGIN

RETURN[1f n • 0 THEN 1
ELSE n*Fad[n -1]]

END;
--Mesa does not differentiate between
--FUNCTION and PROCEDURE.

Swap: PROCEDuRE[iptr. jptr:
LONG POINTER TO INTEGER] •
{temp: INTEGER;
temp +- iptr i ;
iptr i +- jptr i ;
jptr i +-temp};

--All arguments are passed by value in Mesa:
--i.e., the value of an argument, not its address
--is assigned to the parameter. Of course, this
--value itself can be an address.

--In Mesa, a block .can be delimited either by
--BEGIN ... END or by { ... }

1-6

FUNCTION Fact(n: INTEGER): INTEGER;
BEGIN

IF n • 0 THEN Fad: = 1
ELSE Fad:. n*Fact(n -1)

END; {Fad}

{Pascal FUNCTIONS can only return "simple" TYPES,

i.e., CHAR, INTEGER, and REAL.}

PROCEDURE Swap(var i, j: INTEGER);
VAR t: INTEGER;

BEGIN
t: = i;
i : = j;
j : = t

END;

Mesa

a[1] +- 3.8E6;
mxy[2][3] +-7;

Mesa Course

IF b THEN PROCEDURE1[];

IFi#j/2
THEN PROCEDURE1 []
elSE PROCEDURE2[];

a[1] +-IF boolvar1
THEN 4.56
elSE 8.71;

--An IF expression

--control: [1 •• 15);
SELECT control FROM

1,IN [7 •• 10) • > statement1;
2,5. >10 • > statement2;
ENDCASE • > statement3;

SELECT TRUE FROM

boolvar1 • > statement1;
boolvar2 • > statement2;

boolvarn • > statementn;
ENDCASE;

a[1] +- SELECT control FROM
1.IN[7 •• 10] • > 1.12;
2.5. >10 • > -4.856;
ENDCASE • > 73.2;

--A SELECT expression

i: INTEGER +- 1 ;
WHILE i < 10

DO ••• i +- i + 1; ••• ENDLOOP;

Statements

Pascal

a[1] : • 3.8E6;
mxy[2J[3] : • 7;
altmxy[2.3] : • 7;

IF b THEN PROCEDURE1 ;

IFi< > j div2
THEN PROCEDURE1
ELSE PROCEDURE2;

IF boolvar1
THEN a(1) : • 4.56
ELSE a(1):. 8.71;

{control: 1 .• 15;}
CASE control OF

1.7.8.9,10: statement1;
2,5.11,12,13,14.15: statement2;
3,4,6: statement3

END;

IF boolvar1 THEN

statement1
ELSE IF boolvar2 THEN

statement2

ELSE IF boolvarn THEN
statementn;

CASE control OF
1,7,8.9,10: a(1):. 1.12;
2,5,11,12,13,14,15: a[1] : • -4.856;
3,4.6: a[1] : • 73.2

END;

i :. 1; {assume i defined earlier}
WHILE i < 10 DO

BEGIN •.. i : • i + 1; ••• END;

1

1-7

1 From Pascal to Mesa

Mesa Pascal
Statements continued

i: INTEGER ..-1;
DO

.. .i..-i + 1; ...
IF i > • 10 THEN EXIT;

ENDLOOP;

--The Mesa construct

--UNTIL condition DO

- {StatementSeries};
--ENDlOOP;

--is similar to that of Pascal except that the
--condition is tested at the "top "ofthe LOOP

--and, if false, the LOOP is not executed. REPEAT

--is a Mesa reserved word whose semantics are .
--not the same as Pascal REPEAT.

FOR i: INTEGER IN [1 .. n) DO

... sum ..-sum + ali]; .•.
ENDLOOP;

i:. 1;
REPEAT ••• i: • i + 1; ...
UNTIL i ;;:: 10;

{In the Pascal construct

REPEAT StatementSeries
UMnL condition;

the condition is tested only after the StatementSeries
has been executed once, i.e., the test is at the "bottom"
of the LOOP.}

{i: INTEGER; defined earlier}
FOR i : • 1 to n - 1 DO

BEGIN ••• sum ..- sum + a[i]; ... END;

Unbound variant record initialization

figure.figureName..- ['a, 'r, 'b, 'i, 't. 'r, 'a, 'r, 'y);
WITH f: figure SELECT FROM

point. > f.position ..-[-1.37.14];
line • > {f.xCoef ..- 2.81,

f.yCoef ..- 4.2.
f.slope ..- -. 7};

circle • > {f.center..- [0.00,3.00],
f.radius..- 5.00}:

ENDCASE;

--the variable figure must be renamed
--within the WITH statement

figure.figureName[O] : III 'a';
figure.figureName(1] : III 'r';
WITH figure DO

CASE tag OF

point: WITH position DO

BEGIN horizontal: III -1.37;
, vertical: III 14;

END;

line: BEGIN

xCoef : • 2.81:
yCoef : • 4.2;
slope:. -.7;

END;

circle: WITH center DO

END;

BEGIN horizontal: • 0.00;
vertical: = 3.00;
radius: = 5.00;

END

Bound variant record initialization

pointFigure.figureName ..-['p, '0, 'i, 'n, 't,' ,'1,' ,'];
pointFigure.point..- [-1.37, 14];

1-8

{Pascal has no notion of bound variants}

Mesa Course

Mesa Pascal

Some pointer examples

cand1 E- Person(
name: Name('R, 'e, 'a, 'g, 'a, 'n, , , , , '],
age: 72,
sex: male,
party: GOP,
contribution: 0];

--Similarly initialize cand2 to MondaleData,
--cand3 to BushData, and cand4 to FerraroData.

ZE- Heap.Create(initial: 1];
--Initialize source FOR dynamically
--allocated objects

preswinner E- Z.NEw[Person E- cand1];
presloser E- Z.NEw[Person E- cand2];
vpwinner E- Z.NEw[Person E- cand3];
vploser E- Z.NEw[Person E- cand4];

preswinner E- presloser;
--preswinner and pres/oser both point to
--the same RECORD (initialized to MondaleData).
--No access path remains to the RECORD initialized
--with ReaganData.

vpwinner f E- vploser f ;
--vp winner and vploser point to distinct
--RECORDS, each initialized to FerraroData.

FOR p: LONG POINTER TO Node E
rootNode, p.next UNTIL p.next = NIL DO

IF p.voter.contribution > 100
THEN AskFoRMoney(p. voter .name]

ENDLOOP;

--When applied to a pointer, the operation
--of selection implies dereferencing. In Mesa,
--this type of dereferencing is done
--automatically. Thus, it is not necessary to
--write pi . voter. contribution or
--p i .voter.name.

WITH cand1 DO
BEGIN

name[O] : :8 'R'; name(1] : = 'e';
age: = 72;
sex: :I male;
party: :I GOP;
contribution: :I 0;

END;

{Pascal allocation will be from an anonymous
system heap.}

NEw(preswinner); preswinner f : == cand1;
NEw(presloser); presloser i : :I cand2;
NEw(vpwinner); vpwinner i : :I cand3;
NEW(vploser); vploser i : :I cand4;

preswinner : == presloser;

vpwinner f : :I vploser f ;

p : = rootNode;
WHILE p < > NIL DO

BEGIN
IF P f .voter.contribution > 100

THEN AskFoRMoney[p f .voter.name];
p: = p.next

END;

1

1-9

1 From Pascal to Mesa

1.3 Mesa extensions of Pascal

1-10

1.3.1 Modules and interfaces

Mesa programs look quite similar to Pascal programs when viewed in the small. However,
Mesa provides and enforces a modularization capability that is far more powerful than
that of Pascal. In Mesa, you build large systems from a collection of smaller, separately
compiled components called modules. 1'he Mesa binder (the binder is similar to a linking
loader in Pascal) enforces strong type checking among the modules that make up a system.
In Pascal, you must make a choice when developing a large system. Either you construct a
monolithic program to ensure type correctness, or you link separately complied program
units without any guarantee that the type of variable X in one unit matches the type of
variable X in another unit. In the latter case, type mismatches are discovered only at run
time.

Type checking across module boundaries in Mesa is only part of its modularization power.
There are two categories of module in Mesa. Definitions (or interface) modules declare
types, constants, and procedure headers of procedures that manipulate values of types
declared in the module. An interface defines an abstraction by collecting all operations on
a class of objects into a single module. An interface module contains no executable code; it
only contains enough information to allow the compiler to type check other modules that
use thededared symbols. The body of a procedure declared in an interface is not part of the
interface. Interface modules compile into symbol tables.

The second category of module is the Program module. A program module acts as an
implementor of an interface if it contains code that implements procedures declared in an
interface module. A program module acts as a client of an interface if it calls procedures
defined in that interface module.

An interface is a contract between client and implementor: the interface specifies items
that are available for clients to use, but doesn't say how they will be provided; the
implementing module determines the details of the implementation.

There are several advantages of interfaces:

• Once an interface has been agreed upon, construction of the implementor and client
can proceed independently. Thus interfaces and implementations are decoupled. This
facilitates information hiding and permits changes to implementing modules without
requiring a change to a client. Once an abstraction has been defined in a DEFINITIONS

module (the interface) and implemented in one or more PROGRAM modules, an arbitrary
(client) PROGRAM module can access the services advertised in the interface.

• Interfaces enforce consistency in the connections among modules. Operations upon a
class of objects are collected into a single interface, not defined individually and in
potentially incompatible ways.

• N early all of the work required for type-checking interfaces is done by the compiler.

Mesa Course

Queue: DEFINITION

Types

Queue Procedure Declarations

~ " QueueClient: PROGRAM Queuelmpl: PROGRAM

IMPORTS Queue EXPORTS Queue

• Mesa separates the definition of an interface from the actual code that
implements the interface.

• QueueClient, Queue, and Queuelmpl are individual files, separately
prepared. Queuelmpl implements the procedures declared in Queue.

• QueueClient program uses the Queue interface.

• Compiler and Binder type-check the interface between QueueClient and
Queuelmpl.

Mesa modularity

1.3.2 Exceptions: signals and errors

1

Mesa provides signals to indicate exception conditions. Signals provide an orderly means
for dealing with exceptions that is inexpensive if they occur infrequently. Examples of
exceptions are invalid inputs, the inability of an abstractions to respond (e.g.,an allocator
out of space), or any unusual or "impossible" event.

A Mesa SIGNAL can be thought of as the association of a procedure with an exceptional
condition. "Raising" a signal when the exception occurs is similar to invoking the
associated procedure except that the code to be executed is determined dynamically and is
found in a "handler". The binding to a handler is determined by searching catch phrases
(that contain handlers) in the call stack of the process in which the exception is raised; the
dynamically innermost catch phrase that accepts the signal (by having a handler prepared
to deal with the signal) is selected and executed. Often, parameters are passed when the
signal is raised to help a handler determine what went wrong. Catch phrases are written
in a distinctive syntax that clearly identifies them as the location of handlers containing
code to respond to signals.

1-11

1

1-12

From Pascal to Mesa

The cost of raising a signal is significantly higher than the cost of calling a procedure, but
exceptions are events that should not happen very often. The system guarantees that all
exceptions are handled at some level; those that the program fails to catch are accepted by
the debugger. The debugger keeps intact the state of the program that raises a signal.

1.3.3 Processes, monitors, and condition variables

Mesa provides efficient mechanisms for concurrent execution of multiple processes within
a single system. This allows programs that are inherently parallel in nature to be clearly
expressed.

Example

Getlnput: PROCEDURE[buffer: LONG POINTER TO Buffer]
RETURNS [bytesRead: CARDINAL] =

BEGIN
P: PROCESS RETURNS [CARDINAL];

p +- FORK ReadLine[buffer);

< < concurrent computation > >

bytesRead +- JOIN p;
END;

FORK makes it possible to start the execution of another procedure concurrently with the
program that started it. FORK returns a process, which may either be detached to proceed
independently, or saved for a future JOIN. A process type is declared similarly to a
procedure type, except that only the type of the result is specified.

All processes execute in the same address space. Consequently, they are not protected
from each other (certainly acceptable in a single-user system) but process creation and
switching between processes is cheap (about the same as a procedure call).

Mesa provides facilities for synchronizing processes by means of entry to monitors and
waiting on condition variables. A monitor has shared data in its global frame, and its own
procedures for accessing it. To prevent two processes from executing the the same monitor
at the same time, a monitor lock is used for mutual exclusion. Calling one of a monitor's
ENTRY procedures automatically acquires the monitor lock (WAITing if necessary), and a
return releases it. The monitor lock serves to guarantee the integrity of the global data,
which is expressed as the monitor invariant, an assertion defining what constitutes a
"good state" of the data for that particular monitor. It is the responsibility of every entry
procedure to restore the monitor invariant before returning.

Mesa Course

StorageAllocator: MONITOR ,.
BEGIN
StorageAvailable: CONDITION;
Block: TYPE,. RECORD[•••]:

Example

ListPtr: TYPE,. LONG POINTER TO ListElmt;
ListElmt: TYPE,. RECORD[block: Block. next: ListPtr];
FreeList: ListPtr;

Allocate: ENTRY PROCEDURE RETURNS [p: ListPtr] ,.
BEGIN
WHILE FreeList ,. NIL DO

WAIT StorageAvailable
ENDlOOP;

p ... FreeList; FreeList +- p.next;
END;

Free: ENTRY PROCEDURE[P: ListPtr] ,.
BEGIN
p.next ... FreeList; FreeList +- p;
NOTIFY StorageAvaiiable
END;

END.

1

It may happen that one process enters the monitor, finds the monitor data in a valid state,
bl.!-t cannot continue until some other process enters the monitor and alters the state (for
example, a process may find that there is no storage available). The WAIT operation allows
the first process to release the monitor lock and await the desired condition. The WAIT is
performed on a condition variable associated by agreement with the actual condition
required. When another process makes that condition true, it will perform a NOTIFY on the
condition variable, and the waiting process will continue from where it left off (after
reacquiring the lock) and testing the condition again.

1.3.4 ~ew data types

In Mesa, the predefined type LONG STRING is really "LONG POINTER TO Stringbody"; a
StringBody contains a packed array of characters, a maxlength field giving the length of
that array, and a length field indicating how many of the characters are currently
significant. Each program contains the following predeclarations:

Example

LONG STRING: TYPE = LONG POINTER TO StringBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD[

length: CARDINAL.
maxlength: --readonly-- CARDINAL.
text: PACKED ARRAY[O .. O) OF CHARACTER];

whatWasThat: LONG STRING = "Eh?"; --constant STRING

answer: LONG STRING +- [256]; --allocate a StringBody with maxlength 256

1-13

1

1-14 .

From Pascal to Mesa

A sequence is an indexable collection of items, all of which have the same type. In this
respect a sequence resembles an array; however, the length of the sequence is not part of
its type. The (maximum) length of a sequence is specified when the object containing that
sequence is created, and it subsequently cannot be changed. It is the responsibility of the
programmer to keep track of the number of items in the sequence at any time. Sequences
are declared as the last field in a record.

Example

Iptscr: TYPE. LONG POINTER TO SequenceContainingRecord;
finger: Iptscr +-NIL;
SequenceContainingRecord TYPE • RECORD[

a: BOOLEAN,
b: BOOLEAN,
seq: SEQUENCE length:CARDINAL OF LONG INTEGER];

finger +- Heap.systemZone.NEw[SequenceContainingRecord(10));
--SequenceContainingREcORD[10J is a TYPE specification describing a RECORD with a
--sequence part, seq, containing 10 LONG INTEGERS. The effect of the call is to aI/ocate
--enough storage to hold two BOOLEANS and 10 LONG INTEGERS and return a long
--pointer to this storage.

Dynamic variables in Mesa are allocated in zones. Zones are not necessarily associated
with fixed areas of storage; rather they are objects characterized by procedures for
allocation and deallocation. There is a standard system zone, systemZone, but programs
that allocate substantial numbers of similar dynamic variables can often improve
performance by segregating each kind into its own zone. NEW is used to allocate a dynamic
variable from a zorie, and FREE to release it.

Mesa allows a default initial value to be associated with a type. Default values for
arguments can simplify procedure applications; default initial values are useful to ensure
that the corresponding storage is always well-formed, even before the variable has been
used by the program.

1.3.5 Mesa extensions of Pascal constructs

This section mentions a number of areas where Mesa provides "convenience" extensions or
conceptually small changes.

SELECT statements generalize Pascal's CASE construct by allowing several ways to specify
how one statement is to be chosen for execution from an ordered list. The most common
form is based on the relation between the value of a given expression and those of
expressions associated with each selectable statement. The relation may be equality (the
default), any relational operator appropriate to the types of the values involved, or
containment in a subrange. A single selection may be prefixed by several selectors and an
optional ENDCASE statement is selected only if none of the others are. Discriminating
selection is used to branch on the type of a variant record value. SELECT expressions are
analogous, but choose from an ordered list of expressions.

Mesa Course

Examples

--control: [1 .• 15];
SELECT control FROM

1, IN [7 .. 10] • > statement1;
2, 5, > 10 = > statement2;
ENOCASE = > statement3;

Shape: TYPE = {point, line. circle};

Figure TYPE • RECORO(
figureName: Name.
specificFigure: SELEcTfieldlD: Shape FROM

point. > [position: Coordinate]
line. > [xCoef. yCoef. slope: REAL].
circle = > [center: Coordinate,

radius: REAL];
ENOCASE];

a{1] ~ SELECT control FROM
1,IN[7 .. 10] =>1.12;
2, 5, > 10 • > -4.856;

ENOCASE = > 73.2;
--A SELECT expression

1

Iteration is provided by loop statements in which several different kinds of control can be
freely intermixed. A loop has a control clause and a body. The control clause may specify a
logical condition for normal termination, possibly combined with a range or a sequence of
assignments for a controlled variable. In addition to ordinary statements, the body may
contain EXIT or GOTO statements to explicitly terminate its execution, and may be followed
by a REPEAT clause that acts like a selection on the GOTO used to terminate the loop. (GOTO
cannot be used to synthesize arbitrary control structures. It is much like a "local"
exception.)

i~1;

UNTIL i > = 10
DO .•. i ~ i + 1 ; ... ENOLOOP;

Next-Statement;

Examples

--UNTIL i> = 10 is the loop control

The following example is equivalent to the one above.

i~1;
DO
IF i > = 10 THEN GOTO quit; --first statement in the body
... i~i+1; ...
REPEAT --REPEAT doesn't mean repeat, it means "location of exits options".

quit = > NULL;
ENOLOOP;
Next-Statement;

1-15

1

1-16

From Pascal to Mesa

An example of linked list traversal:

NodeLink: TYPE • LONG POINTER TO Node;
node, headOfList: NodeLink;
Node: TYPE. RECORD{

IistValue: SomeTVPE,
next: NodeLink);

FOR node +- headOfList, node. next UNTIL node • NIL
DO .•• ENDLOOP;

The loop control variable is node. Its initial value, headOfList, is assigned prior to the first
iteration. Before each subsequent iteration the next expression, node. next, is reevaluated
and assigned to the control variable. The user must either use a GOTO to terminate the loop
or include a condition test. The condition test UNTIL node • NIL was used in the above
example.

The LOOP statement is used when there is nothing more to do in the iteration, and the
programmer wishes to go on to the next repetition, if any.

stuff: ARRAV{O .. 100) of PotentiallylnterestingData;
Interesting: PROCEDURE[PotentiallylnterestingData] RETuRNs[aooLEAN];
i: CARDINAL;

FOR i IN (O .. 100) DO
---some PRocessing FOR each value of;

IF -lnteresting[stuff[i11 THEN LOOP;
-PRocess stuff[;};

ENDLOOP;

In Pascal, procedure execution must proceed somehow to the end of the body before
terminating; in Mesa, it can be terminated anywhere by executing a RETURN statement. If
the procedure's type includes results, the RETURN statement may supply the values to be
returned - otherwise they are taken from the result variables named in the type. Each
procedure body is followed by an implicit return.

Mesa Course

Examples

ReturnExample1: PROCEDURE(option: [1 •• 4]] RETuRNs[a, b, c: INTEGER] •
BEGIN
a~b~c~O;
SELECT option FROM

1 • > RETURN [a:1, b:2, c:3];
2 • > RETURN [1,2,3];
3 • > RETURN;
ENDCASE • > b ~ 4;

c~9;

--keyword parameter list
-- position version of option 1
--a=b=c=O

END; -- implicit return; a = 0, b = 4, c = 9

ReturnExample2: PROCEDURE[g: INTEGER] RETURNS[INTEGER ~ 3, INTEGER ~ 4] •
BEGIN
SELECT 9 FROM

o • > RETURN [, 2];
1 • > RETURN [8,];
2 • > RETURN [,];
3 • > RETURN (5];
4 • > RETURN [];
ENDCAsE • >

END;

- RETURNS [3,2)
--RETURNS [8,4}
--RETURNS [3,4}
--RETURNS [5,4}
--RETURNS [3,4}

--implicit return: [3,4}

Pascal procedures are not values that may be assigned to variables; Mesa procedures are.

Example

InverseTrigValue: REAL;
InverseTrigFunction: TYPE. PROCEDURE [x: REAL] RETURNS [REAL];

ArcSin: InverseTrigFunction • BEGIN --PROCEDURE body- ... END; -PROCEDURE constant
ArcCos: InverseTrigFunction = BEGIN --PROCEDURE body-- ... END; -PROCEDURE constant
ArcTan: InverseTrigFunction = BEGIN --PROCEDURE body-- ... END; -PROCEDURE constant
InverseTrigFunctionVariable: InverseTrigFunction; --PROCEDURE variable

InverseTrigFunctionVariable ~ ArcSin;
InverseTrigValue ~ InverseTrigFunctionVariable[3.1415/4];

1.3.6 Input and output in Mesa

1

The Mesa language definition omits many of the features commonly expected in
programming languages, such as input/output and string manipulation operations. These
facilities are available to Mesa programmers, but they are provided by interfaces written
in the language itself. Standard interfaces are documented in the Mesa Programmer's
Manual.

1-17

1 From Pascal to Mesa

1.4 References

The definitive reference for the language is the Mesa Language Manual, version 11.0. The
remaining chapters in the Mesa Course will guide your reading of the Mesa Language
Manual and will discuss in detail all of the topics mentioned oniy briefly in this chapter.

1.5 Exercises

1-18

1. Convert the following Pascal program fragment to Mesa.

CONST

maxlength .. 1000;
TYPE

index .. 1 .. maxlength;
rowType .. ARRAY [index] OF integer;

VAR

inrow : rowType;
ix: index;

PROCEDURE shellsort (VAR row: rowType; length: index);
VAR

jump, m, n : index;
temp: integer;
alldone : boolean;

BEGIN

jump: .. length;
WHilE jump> 1 DO

BEGIN

jump: .. jump DIV 2;
REPEAT

alldone: .. true;
FOR m : .. 1 TO length - jump DO

BEGIN

n: .. m + jump;
IF row[m] > row[n]

THEN

END { FOR}

UNTIL alldone

BEGIN

END

temp: .. row[m);
row[m] : == row[n];
row[n] : .. temp;
alldone : .. false

END {while}
END; {sort}

Mesa Course

2. Convert the following Pascal program fragment to Mesa.

{straight Jist insertion}
TVPE

ref. fword;
word • RECORD

VAR

key: integer;
count: integer;
next: ref

END;

root: ref;

PROCEDURE search (x: integer; VAR root: ref);
VAR

w: ref;
b: boolean;

BEGIN
w:. root;
b: • true;
WHILE (w < > nil) AND b DO

IF W f .key • x THEN b : • false ELSE w : • w f .next;
IF bTHEN

BEGIN {NEW ENTRV}
w:. root;
NEw(root);
WITH root f DO

END
ELSE

BEGIN

END

key:. x;
count:. 1;
next:. w

wf .count:. wf .count + 1
END; {search}

1

1-19

1 From Pascal to Mesa

Notes:

1-20

2

Interfaces

As mentioned in the last chapter, the chief differences between Pascal and Mesa lie not in
the syntax of the language, but rather in how modules interact to share information, and
how individual modules are combined together into systems. Mesa's structured
modularization allows modules to be created and tested individually, and then later
integrated with complete type safety. Thus, Mesa effectively reduces the problems of
programming in the large down to the problems of programming in the small. This
chapter illustrates how Mesa's interfaces allow individual programs to share information;
the next chapter discusses how interfaces are used in large-scale system building.

2.1 Preliminary readings

Skim the first five chapters in the Mesa Language Manual to get acquainted with the
common Mesa constructs and syntax. You will need these chapters as a reference as you
read this chapter and do the exercises.

Read Appendix B of the Mesa Language Manual, Programming Conventions, before you
start to write your own programs.

2.2 Definition of terms

Client

Interface

Interface module

Implementation module

A client is a program (as opposed to a person) that uses the
services of another program or system.

An interface is a formal contract between pieces of a system
that describes the services to be provided. A provider of
these services is said to implement the interface; a
consumer of them is called a client of the interface.

An interface or DEFINITIONS module defines types, variables,
constants, procedures, and signals, thus specifying the
services to be provided by its implementation modules.

An implementation or PROGRAM module is a program that
codes (implements) and makes available to clients (exports)
items in an interface. One implementation module can
export all or part of one or several interfaces, and an

2-1

2 Interfaces

Load

Symbol

interface can be implemented by several implementation
modules jointly.

Loading a module allocates memory space for its code and
data, and links it to other modules that are already loaded;
but does not start it.

A symbol is any user-defined name in a program, such as a
constant, type, variable, or procedure.

2.3 Discussion

2-2

There are two kinds of modules in Mesa: DEFINITIONS and PROGRAM. DEFINitiONS modules are
also called interface modules, or just interfaces for short. You can think of an interface or
DEFINITIONS module as a catalog containing a precise description of each item offered. The
purpose of an interface is only to define procedures and variables that will be available to
other programs; the interface does not contain the actual code for those procedures.

All executable code is contained in the second kind of module, called a PROGRAM module. A
program module can act as a manufacturer of an interface (creating the items in the
catalog), or as a customer (ordering items from the catalog). In Mesa, the "manufacturers"
are called implementors, and the "customers" are called clients. Thus, program modules
communicate via interfaces: a shared symbol is defined in an interface module,
implemented by a program module, and used by other program modules. The interface is
the link between the two program modules; there is no direct communication between
client and implementation.

One advantage of this approach is information hiding; the client knows nothing of the
implementation, and thus cannot take advantage of specific details of that
implementation. Another important advantage is that the implementation is decoupled
from the client; as long as the declaration in the interface remains the same, the
implementation can be changed without affecting the client.

The rest of this chapter discusses the mechanics of linking together the three basic pieces
of the interface mechanism, which are:

(1) an interface or DEFINITIONS module,
(2) an implementor of that interface, which is a PROGRAM module, and
(3) a client, which is also a PROGRAM module.

2.3.1 CompareImplA, which uses no interfaces

You can write Mesa code without using interfaces at all. ComparelmplA.mesa is a simple
example of a self-contained PROGRAM module. Take a look at the code:

ComparelmplA: PROGRAM =
BEGIN
Compare: PROCEDURE [x.y: CARDINAL) RETURNS [same: BOOLEAN] ==

BEGIN
IF X == Y THEN RETURN[sameE- TRUE]
ELSE RETURN[sameE-FALSE] ;
END; --of procedure Compare

END.

Mesa Course 2

ComparelmplA consists of one procEldure, Compare, which takes two numbers as
arguments, compares them, and returns a result of either TRUE (the numbers are the same)
or FALSE (the numbers are not the same). However, there is no mainline code to call
Compare, nor are there any I/O calls to get input or print results. Obviously, this program
is of little use by itself. One way to make it useful is to "publish" it so that other programs
can call our Compare procedure. This is called exporting the procedure.

2.3.2 Exporting

Exporting describes the relationship between an interface and its implementation. If you
want to make a procedure available to the outside world, you define that procedure in an
interface, implement it in a program module, and export the implementation to the
interface. Client programs can then access the procedure directly from the interface. This
process is called exporting an interface.

To use the earlier analogy, we want to publish a catalog from which clients can order a
compare procedure, and we want to sign up as the manufacturer of the compare procedure
advertised in the catalog. To do this, we have to write the interface and upgrade
ComparelmplA so that it exports Compare.

2.3.2.1 The interface

Here is the interface, which we have called InterfaceB:

InterfaceB: DEFINITIONS. --keyword DEFINITIONS declares this to be an interlace
BEGIN
Compare: PROCEDURE [X.y:CARDINAL] RETURNS(result:BOOLEAN];
END.

This module is an interface; it defines procedures that are available to others. This
particular interface contains only one definition, that of the procedure Compare.
InterfaceB provides enough information about Compare so that the compiler can type
check client programs, but it does not contain the actual executable code for Compare. The
actual code for Compare is in our implementation, which is a PROGRAM module.

2.3.2.2 The implementation

Here is ComparelmplB, the implementation module:

DIRECTORY
InterfaceB;

ComparelmplB: PROGRAM EXPORTS InterfaceB.
BEGIN
Compare: PUBLIC PROCEDURE [X,Y:CARDINAL] RETURNS(result:BOOLEAN] =

BEGIN
IF X • Y THEN RETURN[result Eo-TRUE]
ELSE RETURN[result Eo- FALSE] ;
END; --of procedure Compare

END.

This module is an upgraded version of ComparelmplA; the code for the procedure is the
same, but this time we are exporting the code to the interface, To export all or part of an
interface, you need to do three things You need to specify that you are referencing other

2-3

2

2-4

Interfaces

modules, you need to list the interfaces that you are exporting, and you need to list the
specific procedures that you are exporting.

The DIRECTORY clause in ComparelmplS accomplishes the first of these three; it tells the
compiler which interfaces will be referenced during this compilation. If you want to use
information from an interface, you must include that interface in your DIRECTORY clause. In
this case, the compiler needs to reference InterfaceS to verify that the procedure
declaration in the implementation matches the procedure declaration in the interface.

The EXPORTS clause accomplishes the second objective; it lists the interfaces that are being
implemented, at least in part, by this module. An exporting module need not implement
all the symbols in an interface; the implementation of an interface is often the cooperative
effort of several modules. A PROGRAM module can also export more than one interface.

The third objective is achieved by declaring Compare to be a PUBLIC procedure. Symbols can
be declared as being PUBLIC or PRIVATE. PUBLIC symbols can be exported to an interface, but
PRIVATE symbols cannot. In PROGRAM modules, the default is PRIVATE: all symbols are
assumed to be PRIVATE unless specifically declared PUBLIC. Thus, the word PUBLIC indicates
that Compare is an implementation that is being exported to an interface. The compiler
verifies that the declaration matches the declaration in the interface exactly, except for
the word PUBLIC.

Figure 2.1 summarizes the communication between an interface and its implementation.

2.3.3 Importing

Interface

InterfaceName: DEFINITIONS =
BEGIN
ProcedureName: PROCEDURE ••• ;
END.

Implementor

DIRECTORY
InterfaceName ;

Interfacelmp/: PROGRAM
EXPORTS InterfaceName =

BEGIN
ProcedureName: PUBLIC PROCEDURE ••• =

BEGIN

END; -- of procedure
END. -- of implementation module

Figure 2.1

Now that we have exported Compare, other programs can use it. Conveniently, we have a
willing client, CompareClient, eagerly waiting on the sidelines to import our code.

Importing describes the relationship between a client program and an interface. A client
that wishes to use a particular procedure only needs to know the definition of the
procedure and the name of the interface from which to access it. It knows nothing about

Mesa Course 2

the actual implementation. Thus, in our example, ComparelmplB exported Compare to
the interface InterfaceB, and now CompareClient can import Compare from InterfaceB.
There is no direct communication between ComparelmplS and CompareClient.

2.3.3.1 Importing a procedure

Here is the skeleton of Compare Client:

DIRECTORY
InterfaceB USING [Compare] ;

CompareClient: PROGRAM IMPORTS InterfaceS •
BEGIN

f +-lnterfaceB.Compare[a. b] ;

END;

There are three steps to importing a procedure, which correspond to the three steps of
exporting a procedure. First, you must list the interface in the DIRECTORY statement, just as
in the exporting example. This tells the compiler that your module references InterfaceS.
In this example, the DIRECTORY clause is further restricted by a USING clause, which lists the
specific symbols that you will be using from that interface. 'l'hus, CompareClient can use
Compare from InterfaceB, but cannot use any other symbols from that interface. You do
not have to have a USING clause, but it is a very good idea.

Second, you need to list InterfaceS in the IMPORTS list; this specifies the interfaces for which
implementations must be provided at run-time.

Finally, you need to indicate that the procedure is imported by referring to it as
InterfaceS.Compare, and not just Compare. You must always fully qualify the name of an
imported symbol so that the compiler will know that it is coming from another interface.

2.3.3.2 Template for importing a procedure

Figure 2.2 diagrams the communication between an interface and a client that IMPORTS a
procedure.

Interface
InterlaceName: DEFINITIONS =

BEGIN

~Iient

ProcedureName: PROCEDURE •.• ;
END.

DIRECTORY
InterlaceName USING [ProcedureName];

ClientName: PROGRAM
IMPORTS InterlaceName =

BEGIN
... lnterlaceName.ProcedureName[•..] ; ...
END.

Figure 2.2

2-5

2

2-6

Interfaces

2.3.:1.3 Importing a constant

In the last section, we discussed how to import a procedure from an interface. However, not
all information in an interface requires an implementation. Some of the symbols in an
interface, such as variables, types, and constants, are compile-time symbols. Such symbols
are available directly from the interface; no implementation is necessary. Run-time
symbols, on the other hand, are symbols (such as procedures) for which code must be
supplied at run-time. If you use only compile-time symbols from an interface, and not run
time symbols, you do not need to import the interface. For example, here is an interface:

IncrementOefs: DEF,NITIONS =
BEGIN

inputTooBig: CARDINAL. LAST(CARDINAL)
END.

--LAST returns largest value

and here is the module Incrementlmpl, which imports inputTooBig from IncrementOefs.

DIRECTORY
IncrementOefs USING [inputTooBig] ; -- note interface and constant name
Incrementlmpl: PROGRAM.

BEGIN
Increment: PROCEDURE (x: CARDINAL] RETURNS [y:CARDINAL. error:BOOLEAN] II

BEGIN
IF x < IncrementDefs.inputTooBig THEN -- note fully-qualified name

RETURN [y Eo- x + 1, error Eo- FALSE]
ELSE RETURN[y Eo- x, error Eo- TRUE] ;
END;

END.

Thus, importing compile-time information is just like importing run-time information,
except that you do not need to include the interface in the IMPORTS list. The IMPORTS list
includes only those interfaces for which run-time implementations are needed.

2.3.3.4 Template for importing a constant

Figure 2.3 diagrams the communication between an interface and a client that is
importing a constant from that interface.

Interface

InterfaceName: DEFINITIONS =
BEGIN
ConstantName: CARDINAL = ... ;
END.

Client using a constant

DIRECTORY
InterfaceName USING [ConstantName];

Interfacelmp/: PROGRAM =
BEGIN
.. .InterfaceName.ConstantName •.. ;
END.

Figure 2.3

Mesa Course 2

2.3.4 Compiling and running your programs

As discussed above, a module's DIRECTORY clause lists all the interfaces referenced by that
module. When you compile a module, the compiler needs to be able to read all the
interfaces listed in the DIRECTORY clause so that it can type-check your program. This
means that if you list an interface in your DIRECTORY clause, you must have the compiled
version of that interface on your local disk when you compile your program, or you will get
a compilation error. Thus, an interface :must always be compiled before program modules
that reference that interface.

Another important thing to remember is that when you recompile an interface, you will
have to recompile all of its clients and implementors as well. The reason for this is that all
Mesa object modules Cbcd files) contain a time stamp as part of their identification. When
clients and implementors of an interface are compiled, the time stamp of the interface is
noted and retained in both the client and implementation object code file identification.
When you try to combine the client and the implementation into a larger system, the time
stamps are checked against one another. If the client and the implementation do not
reference the same version of the interface, a version mismatch will occur, which prevents
the system from running.

Once you have compiled all the modules that make up a system, you can run the system.
In the next chapter, you will learn how to use the binder to help you group your modules
together, but for now you will have to load them all manually from CommandCentral. (All
modules listed on the Run line of CommandCentral will be loaded.) You need to load all
the program modules (your client, plus the implementations for any procedures that you
have imported), but not the interfaces (since they don't contain executable code.)
Implementation modules must be loaded before client modules, so that the
implementation is ready when the client needs it.

Thus, to execute the Compare system, you would have to set up Command Central like
this, and invoke Go!. You can run Compare now, if you like. (Note: CompareClient
references some interfaces that you may not have on your local disk, so we have provided a
compiled version ofthis module. Normally you would have to compile CompareClient.)

Compile: InterfaceB CompareImplB
Bind:
Run: CompareImplB CompareClient

2.3.5 Importing and exporting

In the previous example, each program module was either a client or an implementor.
Generally speaking, however, a PROGRAM module can be a client, an implementor, or both.
Most commonly, a given PROGRAM module is both client and implementor. The module can
import and export the same interface, or it can export one or more interfaces and import
another (or several others.) The terms client and implementor refer more to the function of
a module than to the module itself; there is nothing to prevent a client module from also
being an implementor, or vice versa.

Figure 2.4 is a diagram of the communication between an interface and another module,
which is both an implementor and a client of the interface. This diagram is merely a
composite of the client/interface and the implementor/interface diagrams.

2-7

2

2-8

Interfaces

Interface
InterlaceName: DEFINtnONS =

BEGIN
ConstantName: CARDINAL = ... ;
ExportedProcedureName: PROCEDURE ••• ;
ImportedProcedureName: PROCEDURE ••• ;
END.

Implementor and Client

DIRECTORY
InterfaceName USING [ConstantName, ImportedProcedureName)

Interfacelmp/: PROGRAM
IMPORTS InterfaceName
EXPORTslnterlaceName =
BEGIN
ExportedProcedureName: PUBLIC PROCEDURE ••• = BEGIN ••• END;
••• lnterfaceName.ConstantName ..• ;
InterfaceName.lmportedProcedureName[] ;
END.

Figure 2.4

2.3.6 System interfaces

System interfaces are general purpose interfaces that define comprehensive facilities for
building everything from tools to whole systems. System interfaces serve as the entry
point to an extensive library of procedures, variables, and data types, that saves you from
reinventing and reimplementing utilities. Examples of system interface are String, which
performs common string operations, and Exec, which handles communication with the
Executive window.

System interfaces are nice because they provide so many useful utilities, but they have the
attendant disadvantage that you must learn what interfaces are available, and what
routines they implement. System interfaces that are part of Pilot (the operating system)
are documented in the Pilot Programmer's Manual; interfaces that are part of the tools
environment are documented in the Mesa Programmer's Manual.

You use symbols from a system interface just like private interfaces; you need to include
the interface in the DIRECTORY clause and in the IMPORTS list, and refer to the symbol as
InterfaceName.Symbol. In fact, system interfaces are just like all other interfaces except for
one thing: the compiled versions of implementations of system interfaces are included in
the XDE system bootfile. Thus, since the implementations are provided in the bootfile, you
do not have to explicitly load implementation modules for system interfaces.

Recall from section 2.3.4 that when you use symbols from any interface, system or private,
you must have the compiled version of the interface (not the implementation) on your local
disk. If, for example, you want to use some procedures from the Heap interface (a system
interface), you must make sure that Heap.bed is on your local disk before you compile your
program. Compiled versions of system interfaces are stored on a special directory, called
the release directory; when you need to use a system interface, you will have to ask

Mesa Course 2

someone where the release directory is and retrieve the appropriate object file for that
interface from that directory.

Thus, to summarize: if you want to use procedures defined in the system interface String,
you must import that interface and you must have the file String.bed on your local disk
when you compile your program (which is thus a client of the String interface), but you do
not have to explicitly run the file that implements those procedures. In fact, you will not
normally even know the name of the implementation file; remember, an interface is the
link between programs, and the client need know nothing about the implementation.

2.3.6.1 An example of using system interfaces

To see an example, take another look at CompareClient.mesa, which uses procedures from
several system interfaces. Here is the beginning of that program:

DIRECTORY

FormSW USING [

AllocateltemDescriptor, ClientltemsProcType, Commandltem, lineO, Iine1,
Numberltem, ProcType),

Heap USING [systemZone),
InterfaceB USING [Compare),
Put USING [Line),
Tool USING [Create, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc,

UnusedLogName),
ToolWindow USING [TransitionProcType],
Window USING [Handle);

CompareClient: PROGRAM IMPORTS FormSW, Heap, Put, Tool, InterfaceB •

CompareClient uses procedures from seven interfaces: six system interfaces and one
private interface (lnterfaceB). As you can see, the USING clause is a good way to document
the exact symbols that this progam uses. Also notice that two of the interfaces are in the
DIRECTORY, but not in the IMPORTS list. As discussed in section 2.3.3, this means that the
symbols being used from that interface are compile-time values, and not run-time values.

2.4 Summary

Mesa's interfaces provide a formalized mechanism to allow individual modules to share
types, constants, variables, and procedures. You can define your own interface, implement
procedures declared in that interface, or use procedures implemented elsewhere.
Interfaces thus encourage data abstraction and information hiding. As a quick review:

To implement a symbol defined in an interface you must:

• include the interface in your module's DIRECTORY clause;
• include the interface in your module's EXPORTS list;
• declare the symbol with the same name and type as appears in the interface;
• declare the symbol to be PUBLIC; and
• compile your module after the interface.

2-9

2 Interfaces

To be a client (use symbols defined in an interface), you must:

• include the interface name in the DIRECTORY clause;
• include the symbol in a USING clause

(you do not have to have a USING clause, but it is a good programming habit);
• include the interface name in the IMPORTS list;
• use the symbol with its interface's name prefixed, as Interface.Symbol;
• compiJe the module after the interface has been compiled; and
• make sure the module that the implementation is available at run-time (loaded).

If you only use compile-time symbols, you do not need to IMPORT the interface.

Figure 2.5 on the next page summarizes the communication between an interface and its
implementation and between an interface and its client. Implementations and clients are
both PROGRAM modules, and a single module can function in both ways (although this is not
shown in the figure.)

2.5 Questions

1) In what order must the following six modules be compiled? In what order must they be
run?

a) Program1 is an implementation module that imports procedures from
Interface1 and Interface2. One of the procedures that it imports is implemented
by Program2. Program1 also exports a procedure to Interface3.

b) Interface1 is a def'mitions module.

c) Program2 is an implementation module that uses types from Interface1 and
exports a procedure to Interface2.

d) Interface2 is a definitions module that uses types from Interface1.

e) Program3 is a module that imports procedures from all three interfaces.

fj Interface3 is a definitions module

2.6 References

2-10

Chapter 7 of the Mesa Language Manual is essentially a denser statement of the
information in this chapter and the next chapter.

Appendix A of the Mesa Language Manual, Pronouncing Mesa, tells you how to pronounce
Mesa symbols.

Mesa Course

Client

DIRECTORY
InterlaceName USING [ProcedureName, ConstantName] ;

ClientName: PROGRAM
IMPORTS InterlaceName =
BEGIN •• .InteriaceName.ProcedureName[]; ... lnterlaceName.ConstantName ... END.

Notes:

1) This is a client module because it IMPORTS an interface.
2) The client can call procedures and use constants defined in the interface.
3) The interface must be listed in the DIRECTORY.
4) The procedures and constants must be in a USING clause.
5) The implementations of the procedures are bound at run-time, not at compile-

time. The interface must be IMPORTed.
6) The constants are bound at compile-time. The interface need not be IMPORTed just

to access them.

Interface

InteriaceName: DEFINITIONS •
BEGIN
ConstantName: CARDINAL •... ;
ProcedureName: PROCEDURE ... ;
END.

Notes:
1) This is a interface module, as shown by the key word DEFINITIONS.
2) Interfaces can define constants that are available directly from the interface.
3) Interfaces can define procedures that are implemented by an implementation

module.

Implementor

DIRECTORY
InterlaceName :

InterlacelmpJ: PROGRAM
EXPORTS InterlaceName •
BEGIN
ProcedureName: PUBLIC PROCEDURE ... = BEGIN ... END ;
END.

Notes:

1) This is an implementation module because it EXPORTS an interface.
2) The InterlaceName must appear in the DIRECTORY.
3) The procedures being exported are declared as PUBLIC.
4) The EXPORTS list causes public procedures in this Implementation to be exported to

the interface.
5) The module that implements interface X is conventionally called XImpl.
6) An implementation can also be a client provided the correct DIRECTORY ... USING

clause is included. (see Figure 2.4.)

Figure 2.5

2

2-11

2 Interfaces

2.7 Exercises

2-12

Before beginning these exercises you should read Appendices A and B of this manual,
which address Mesa syntax errors and debugger basics, respectively. Do the debugger
exercises of Appendix B to start becoming familiar with the debugger.

2.7.1 Exercise in importing a procedure

Your assignment is to write a client program. We have provided an interface
(ReverseLettersDefs) that defines a procedure, and an implementation module
(ReverseLetterslmpl) that supplies that procedure. The client module, which you should
call ReverseLetters.mesa, will call the procedure ReverseProc from ReverseLettersDefs.
ReverseProc in turn calls procedures that accept a character string from the user and
output the string with the letters reversed.

Use the client template from Figure 2.5 to help you with this exercise. Once you have
written your client program, compile the following modules (remember, an interface must
be compiled before any modules that use it):

• ReverseLettersDefs.mesa -- the interface that defines ReverseProc

• ReverseLetters.mesa - your client module

• ReverseLetterslmpl.mesa -- the module that implements ReverseProc,.

• BasiclOlmpl .mesa -- contains 110 procedures used by ReverseLetterslmpl

Run the following modules

Run: BasicIOImpl ReverseLettersImpl ReverseLetters

BasidOlmpl implements procedures that are imported by ReverseLetterslmpl, imported so
it must be loaded before ReverseLetterslmpl. When Tajo is ready, bring up the Tajo
Executive window and type:

> ReverseLetters.- hello -- you type this

The reversed letters are: olleh -- the program returns this

Experiment with reversing strings of letters and spaces.

2.7.2 Exercise in exporting a proced ure

Now it's your turn to write an implementation module. You will write a procedure called
GetAverage that computes the average of the integers passed to it. (You can do the average
computation by any method, or do something else with the numbers, as long as you pass out
an integer.) To keep the 110 simple, the average passed out of your procedure will be an
integer value, and thus will be rounded up or down.

Your procedure will receive an array containing up to ten integers, and the actual number
of integers to average. You will export your procedure GetAverage to the interface
AverageDefs.mesa, which we provide. We also supply a client program to call your
procedure and do the 110.

Mesa Course 2

After you have written your implementation module, compile the following modules:

• AverageClient.mesa -- this client program gets up to ten integers from the user,
counts them, imports the interface AverageDefs to get your procedure, calls your
procedure to compute the average of the numbers, and outputs the result.

eAverageDefs.mesa -- this is the interface that contains the definition of your
procedure .

• Averagelmpl.mesa (or whatever you called your implementation module).

Run the following files:

Run: Averagelmpl AverageClient

Invoking Run! will put you into Tajo. Bring up the Executive and type:

> Average 2 4 -- you type this

The average is: 3 -- the program returns this

2.7.3 Exercise in importing and exporting using one interface

This exercise demonstrates importing and exporting using a single interface. First, you
will import the interface CombineDefs. This imported interface provides the factorial
routine Fad, which computes the factorial of a number for you. CombineDefs also contains
some types and constants that you will need.

Your job is to write a procedure to compute a combinatorics problem, using the imported
Fad. You will then export your procedure to the interface CombineDefs for a client to use.
The client, which is provided for you, will create a tool window for you to enter data, and
will use your code to compute a solution and display the result.

The first step is to write a procedure to calculate the following: Given a group of people of
size "baseSize", how many ways can you combine them into groups of size
"groupingSize" ? The formula for this problem is

base Size !

groupingSize! (baseSize· groupingSize) !

These variable names must be exact, and capitalization IS relevant. The name of your
procedure will be Combine, and its type is CombineDefs.CombineType. You will find its
definition in the interface CombineDefs. You will need to import CombineType, and the
procedure Fad to perform the factorials from the interface CombineDefs. You will then
export your procedure Combine to the interface CombineDefs.

Using CommandCentral, compile the following 5 modules:

2-13

2

2-14

Interfaces

.CombineOefs.mesa _. the interface
• Combinelmpl (or whatever you called it) _. the implementation module for Combine
• Factoriallmpl.mesa -. supplies the factorial procedure for Fact
• CombinatoricsToollmpl.mesa -- supplies the user interface tool for the client
e<:ombineClient.mesa -- the client module

Runt the four implementation modules:

Run: Combinelmpl FactorialImpl CombinatoricsToolImpl Combine Client

When you arrive in Tajo, you will see a tool window, which was produced by
CombinatoricsToolimpl. Fill in the fields for baseSize and groupingSize and invoke
Combine!. The answer will appear in the lower subwindow.

3

Binding

In the last chapter, we discussed how individual modules can use interfaces to share
information. In this chapter, we will focus on how separately compiled modules are bound
together into larger units.

3.1 Definition of terms

Configuration

Configuration file

System interface

3.2 Discussion

A configuration is the bound code of one or more individual
modules.

A configuration file is the file that contains the names of the
modules that are to be bound together and describes how they
are to be bound.

A system interface is an interface whose implementation is
exported by the system bootfile.

In the last chapter, you had to run several modules in a specific order to ensure that the
implementation of an interface was available when a client program tried to reference it.
This process is inconvenient, but manageable when there are few modules involved. When
you are working on a large system, however, the job of keeping track of the necessary
modules and their loading order becomes more difficult.

To help simplify things, the Mesa binder creates a logical structure called a configuration
for the modules comprising a large system. This is analogous to the grouping of employees
within a company. Groups of employees are organized into departments, with each
department having certain duties. While the employees in a department do the actual
work, the department itself can be thought of as doing the work, thus simplifying the
world's view of things. Similarly, each configuration can be thought of as one logical entity
that performs a certain task, although the task is actually performed by the modules
within the configuration.

The binder processes a special file called a configuration file. This file contains a list of
modules, which may be program modules or other configurations, and describes how they

3-1

3

3-2

Binding

are to be combined and initialized. The binder matches the import requests and export
requests of the listed modules and creates an object module containing information about
imported and exported items, object code for each module in the configuration, the names.
and versions of each module, and the interfaces referenced by those modules. This object
module, the configuration, is also called a binary configuration description or "bed" file.

There are several advantages to using a configuration instead of loading each module
individually. One advantage is simplicity: after you have bound the modules together, you
can type just the name of the configuration to run your program or system. Additionally, if
other programmers want to use your system, they only need to obtain one module, the
bound configuration, instead of finding and retrieving each individual module.

Another advantage of using the binder is version control. Every program module and
definitions module has an associated time-stamp. This time-stamp can be thought of as an
extension of the module's name; thus different versions of a module are different modules.
For example, Comparelmpl.bcd of Oct 14, 1984 1:15 p.m. is a different module from
Comparelmpl.bcd of Oct 15, 1984 10: 12 a.m. When creating a configuration, the binder
insures that all clients and implementors of an interface are referring to the same version
of that interface; this effectively extends Mesa's strict type-checking across module
boundaries.

3.2.1 A configuration file

The input to the binder is a configuration file, which contains a list of the modules to be
bound, a list of imports and exports, and the order in which the modules are to be loaded.
Here is Average.config, a configuration file for the program that you wrote in chapter 2:

Average: CONFIGURATION
IMPORTS Exec, String, Format, Heap
CONTROLAverageClient =
BEGIN
Averagelmpl ;
AverageClient;
END.

3.2.1.1 Reading a configuration file

Although Average looks much like a Mesa program, it is actually written in C/Mesa
(configuration Mesa). There are five parts to a C/Mesa file:

(1) declaration (Name: CONFIGURATION),
(2) IMPORTS list
(3) EXPORTS list
(4) CONTROL list
(5) BEGIN·ENO block

• The Name of the configuration file is the name that you will type to run your
program after you have bound it.

• The IMPORTS list contains any interfaces that need to be imported from outside of the
configuration; this is covered more fully in section 3.2.1.3.

Mesa Course 3

• The EXPORTS list names all the interfaces for which this configuration exports an
implementation. In this case, nothing is exported so there is no exports list.
Exporting from a configuration is covered more fully in section 3.2.1.4 .

• The CONTROL list states which bound components are to be started and in which
order. In most simple applications, only one component need be started explicitly.
This is usually the component that contains mainline code. The other components
are started implicitly when procedures in them are called.

• The BEGIN-END block itemizes the modules and configurations that are going to be
bound together in the output configuration. This list corresponds to the list that you
typed on the Run: line in the last chapter. In this case, the binder will use the
information given in Average.config to bind together the files AverageClient.bcd
and Averagelmpl.bcd, and the resulting configuration will be stored in the file
Average.bed. The module names in the BEGIN-END block do not have to be listed in
any particular order.

When you run the configuration Average, it will execute just as the individually loaded
modules Averagelmpl and AverageClient did in the chapter 2 exercise. If you want to try
it, set up Command Central as follows and invoke Go!:

Compile:
Bind: Average
Run: Average

3.2.1.2 Importing into a configuration

The IMPORTS list of a configuration file is not simply a list of the imports of its components.
It is a list of interfaces that need to be imported from outside the configuration. Interfaces
that are imported by one module of the configuration and exported by another module in
the same configuration are referred to as "self-contained" within the configuration, or
"resolved." Such interfaces do not need to be imported by the configuration, but you must
make sure that their implementation modules are listed in the configuration file.

The module AverageClient imports GetAverage from the interface AverageDefs, and the
module Averagelmpl supplies GetAverage. Thus, all the necessary information is
available; GetAverage need not be imported into the configuration. The implementations
for Exec, String, Format, and Heap, however, are not supplied by either of the modules
being bound together, and must thus be imported into the configuration. (Recall from the
last chapter that implementations for system interfaces are part of the bootfile, and are
thus already loaded.)

3.2.1.3 Exporting from a configuration

Like the IMPORTS list, the EXPORTS list is not just a list of items exported by the components
of the configuration. Putting an interface in the EXPORTS list of a configuration makes its
symbols available to the world outside the configuration, just as putting an interface in
the EXPORTS list of a module makes its symbols available outside the module. You can think
ofthe bound configuration as a large module, composed of other, smaller modules. You get
to choose which symbols you will make available to the outside world, and which you will

3-3

3

3-4

Binding

keep local to your configuration. You might want to keep all of your symbols local to your
configuration, in which case you wouldn't even have an EXPORTS list.

One of the side effects of exporting an interface from a configuration is that the interface's
implementation will remain loaded. (It thus has the same status as a system interface.)
This means that the next configuration that imports the interface won't have to load the
implementation module by listing it in the configuration file. Figure 3.1 illustrates
exporting an interface from a configuration.

MoreOefs Config2: CONFIGURATION
:---------------------+ IMPORTS MoreOefs

~ EXPORTS •••

TwoProgs: CONFIGURATION

IMPORTS •••

EXPORTS MoreOefs

CONTROL Prog2 =
BEGIN Prog1 ; Prog2 ; END.

ProgOefs

r------------------.

Notes:

Prog1 :PROGRAM

IMPORTS •••

EXPORTS ProgOefs

Prog2 : PROGRAM

IMPORTS ProgOefs •••

EXPORTS MoreOefs

1) -The procedures imported by Prog2 are exported by Prog1
2) Another configuration (Config2) can now import MoreDefs because

TwoProgs exported it.
3) IfConfig2 imported MoreDefs, it wouldn't have to load Prog2 (the

implementation of MoreDefs). Prog2 will already be loaded because
MoreDefs was exported by TwoProgs. This means that Config2 wouldn't
have to list Prog2 in its BEGIN-END block.

Figure 3.1 Exporting from a configuration

Mesa Course 3

3.2.1.4 Template for a configuration file

Figure 3.2 is a general template for a configuration file.

Configuration

ConfigName: CONFIGURATION
IMPORTS InterfaceA, InterlaceS, ..•
EXPORTS InterfaceX, Interlace Y, InterlaceZ, ..•
CONTROL Module 1, .•. =
BEGIN
Module 1; Module2; ...
END.

Notes:

1) This is a configuration because of the key word CONFIGURATION. The name of the
source file should be ConfigName.config.

2) The configuration contains Module1, Module2, etc. ModuleK can be a program or a
configuration. Order of module names within the BEGIN •.• END block is not important.

3) The CONTROL statement specifies the module that is to receive control when the
configuration is started. (Also list there any modules that require explicit starting,
but this is rarely necessary.)

4) ConfigName will import the interfaces listed in the IMPORTS statement. These
interfaces should be all those imported within any ModuleM and not exported by
another ModuleN.

5) ConfigName will export the interfaces listed in the EXPORTS statement. These
interfaces must be exported by some ModuleJ. (You never have to export anything
from a configuration, unless you want to make it available to others.)

Figure 3.2 Template for a configuration file

3.2.2 Unbound procedures

In XDE, a configuration can be run even if some of the procedures are not available, as
when the exporting module has not yet been loaded. If a missing procedure is not called,
everything runs without incident. However, when a missing procedure is called, a
software interrupt named UnboundProcedure is generated. The program will not be able
to continue and control will transfer to the debugger. If this happens, you should make
sure that all of the modules necessary to run your program are listed in your configuration
file, and add them if they're not there. Such errors are generally easy to debug.

3.2.3 Naming conventions

The file name is the name of the file in which you store modules, as in XYZ.mesa. The
module name is the name that appears before the word PROGRAM, DEFINITIONS, or
CONFIGURATION. It is highly recommended that you keep the file name the same as the
module name (and remember that capitalization is significant.)

The name of a configuration file should be different from the names of the modules that it
binds together. The reason is this: if you compile a module called XYZ.mesa, you get an
object file called XYZ.bcd. If you bind this module to other modules using a configuration

3-5

3 Binding

file called XYZ.config, you get a bound configuration eaned XYZ.bed, whieh overwrites the
old XYZ.bed. Consequently, you lose your compiled implementation of XYZ.mesa. By
convention, implementation modules should have the suffix Impl, as in XYZlmpl.mesa, to
avoid this problem. Figure 3.3 illustrates this problem and its solution.

XYZ.mesa ----+lcompller t--- .. XYZ.bcd of Oct 14,1984 at 2:17 pm I
XYZ.eonfig -- - - +1 'binder

- XYZ.bcdofOct14,1984at2:20pm

1-----+'--_---------'
WRONG WAY: The bound configuration overwrites the compiled source code.

XVZlmpl.mesa ----+I compiler ~---+I XVZlmpl.bcd

XYZ.eonfig ----+1 binder 1---... , XVZ.bed

RIGHT WAY: The configuration file and the its components have different names,
so nothing is overwritten.

Figure 3.3 Naming conventions

3.2.4 System interfaces

As discussed in the last chapter, system interfaces are interfaces whose implementations
are included in the bootfile. Thus, when you import a system interface, you do not have to
include its implementation in your config file. The implementation is already bound into
the bootfile, and will be available when you run your program. You do have to import the
interface, but you do not have to include its implementation in your configuration, and
you do need to have the copmiled version of the interface on your local disk.

3.3 Summary

3-6

This chapter discussed using the binder to produce bound configurations from a list of
object modules. From the information in the "config" file and in each "bcd" file being
bound, the binder can:

(1) resolve requests from modules for imported items
(2) combine a group of object modules into one larger object module
(3) control which interfaces are to be exported.
(4) determine which module is to be started first.
(5) maintain version control

Figure 3.4 gives a summary of the source file used by the binder, and its relationship to
the modules that it binds together. This diagram also includes the use of system interfaces
in program modules and in the configuration file.

Mesa Course

Implementation Module

--this text stored in a file called ProgramNamelmpl.mesa
DIRECTORY

InterfaceName ;
ProgramNametmpl: PROGRAM

EXPORTS InterfaceName ==
BEGIN

ProcedureName: PROCEDURE ..• == BEGIN ... END.
END

Client Module

--this text stored in a file called ClientName.mesa
DIRECTORY
InterfaceName USING [ProcedureName] •
Systeml nterfaceName USING [System Procedure] ;

ClientName: PROGRAM
IMPORTS InterfaceName. SystemlnterfaceName •
BEGIN .•.

InterfaceName.ProcedureName[] ;
Systeml nterfaceName.SystemProcedure[] ...

END

Notes:
1) System interfaces are imported just like any other interface.
2) The module name should be the same as the program name, but not

the same as any of the procedure names.

Configuration File

--this text stored in a file called ProgramName.config
ProgramName:CONFIGURATION
IMPORTS SystemlnterfaceName
CONTROL ClientName •
BEGIN

ProgramNamelmpl ;
ClientName ;

END.

Notes:
1) The name of the configuration file is not the same as the name of

any of the modules that it binds together.
2) Implementation modules for the system interfaces are not listed.
3) There are no imports other than system interfaces because all of the

.imported interfaces are implemented by modules within the
configuration.

4) Control goes to the module that has the mainline code, generally the
client module.

Figure 3.4 Configuration file and Naming Conventions

3

3-7

3 Binding

3.4 References

Chapter 7 of the Mesa Language Manual, Modules, Programs, and Configurations, discusses
configuration files and C/Mesa.

Chapter 17 of the Xerox Development Environment User's Guide discusses the binder and
how to use it. This chapter also describes the binder's switches and error messages.

The Mesa Programmer's Manual and the Pilot Programmer's Manual give the details of the
various system interfaces.

3.5 Exercises

3-8

3.5.1 Writing a configuration tile and binding

For your first exercise, we have supplied a client program and two interfaces. Your job is to
write a configuration file to bind the client with the implementations of the interfaces.

You will need the following files: .

• ReverseWordslmpl.mesa -- the client program. It takes a string of input words
(separated by spaces) from the user and reverses the order of the words.

• PrivateStorage mesa -- an interface defining storage allocation procedures
• BasiclODefs.mesa -- another interface
• BasiclOlmpl mesa - the implementation for some of the procedures defined in the

interfaces BasiciODefs and PrivateStorage .

. The scenario looks like this: ReverseWordslmpl gets the definitions of the procedures it
needs from the interfaces PrivateStorage and BasiclODefs. These interfaces in turn get the
actual code for the procedures from the implementation module BasiclOlmpl. Therefore, you
need to write a configuration file that binds together the client program and the
implementation module. The name of your configuration file should be Reverser.config. You
will then run the entire program under the name "Reverser".

Remember, if you are binding two modules together and one of them exports the symbols
that the other imports, you don't need to list the interface in the IMPORTS or EXPORTS list of the
configuration file. You only need to list interfaces that are IMPORTed from outside the
configuration file (such as system interfaces).

3.5.2 Writing an interface

We're going to re-visit the combinatorics exercise. This time, instead of using CombineDefs
to export Combine, you will write your own interface to define this procedure. Modify your
implementation of Combine so that it exports the interface MoreCombineDefs, and write
this interface so that it defines Combine.

You still need to import CombineDefs to use Fact and CombineType. However, you should
now export Combine to MoreCombineDefs.

You must also modify the client module to import Combine from MoreCombineDefs.

Mesa Course 3

Compile the following 3 modules:

• your interface (MoreCombineDefs)
• the modified client module (CombineClient)
• your modified implementation module (Combinelmpl)

Write a configuration file, bind the necessary modules together, and run your configuration.
Remember, you need all the same implementation modules that you needed last time you
ran this program.

3-9

3 Binding

Notes:

3-10

4

Pointers

This chapter is an introduction to using pointers in Mesa. It covers what pointers are, how
to perform common operations such as initialization and assignment on them, and how to
pass them as procedure parameters. The next chapter, Dynamic Allocation, discusses how
to allocate storage for the data that pointers reference.

There are a number of graphs throughout this chapter. They depict the memory in a
hypothetical machine by representing each location in memory as a box. The number
above the box is the memory location. The number in the box is the value stored in the
location. The name below the box is the symbol in the example that has the associated
value stored in the memory location.

4.1 Definition of terms

Pointer A pointer is a reference to the location of a value. Mesa has pointer
types, for pointers to specific types of values, and pointer variables,
which contain the addresses of values rather than the values
themselves. In Figure 4.1 below, c is a variable of type INTEGER

containing the value 5. The variable b, a LONG POINTER, contains the
address of c, and therefore b is a pointer to c and is said to reference c.

@ @ is the prefix "address of" operator. @x generates a reference to the
expression x. In Figure 4.1, b contains the value @c, and so b is a
pointer to c. Similarly, a contains @b, and so is a pointer to b.

Dereference To dereference a pointer is to follow the pointer through one level of
indirection toward the value it is referencing. Dereferencing a variable
is the opposite of generating a reference to a variable. In other words, if
b is a pointer to c then dereferencing b produces c. In Figure 4.1,
dereferencing a once produces b, and de referencing a twice produces c.

t In Mesa, t is the postfix dereferencing operator. t is the inverse of@,
and is found at the opposite end of the expression. In Figure 4.1, a is
@b, while a f is b, and a f f is the same as b f , which is c.

Dangling pointer A dangling pointer is a pointer to an invalid memory location. A
dangling pointer is usually caused by de allocating storage while a

4-1

4 Pointers

Address fault

Frame

pointer to it remains. Deteferencing a dangling pointer leads to
unpredictable results.

An address fault occurs when an attempt is made to reference an
illegal address. For example, suppose that pointer b were not
initialized to point to c, but instead left to be whatever value was in
that location when b was allocated. If the value in the location is not a
legal address, then dereferencing b causes an address fault. If, on the
other hand, the address is legal, then you will not get an address fault.
Rather, your pointer will be referencing some arbitrary location in
memory, and you will be working with invalid data.

A frame is a Mesa processor data structure allocated while a module or
procedure is executing to contain the variables and internal data
structures for that module or procedure. Program frames are called
global frames, and procedure frames are called local frames. Since
Mesa supports recursion, there may be several frames for a particular
program or procedure.

memory address 12 861 942

value
1861 942 1

5

Symbol name a .. b ~ c

Figure 4.1

4.2 Discussion

4-2

Pointers are essential for good programming.

4.2.1 Declaring pointers

The Mesa architecture defines a uniform, paged virtual memory of I6-bit words. (A page is
256 words.) The entire virtual memory can be accessed by LONG POINTERS, which are two
words long and can therefore address all 232 locations.

Within this uniform virtual memory there is a distinguished region called the Main Data
Space (MOS). Within the MOS, words may be addressed by POINTERS, which are one word
long. The MOS is used internally to hold global and local frames. Therefore, all the pointers
to storage that you allocate should be LONG POINTERS.

Pointers in Mesa are declared as references to types so that the Compiler can type-check
their usage. The following example declares a pointer to an object of type INTEGER:

intPtr: LONG POINTER TO INTEGER;

4.2.2 Initializing pointers

Pointers allow indirect access to objects. In order for a pointer to be meaningful, the object
it points to must exist. This means that storage has been allocated for the object, and has

Mesa Course 4

been appropriately initialized. In the exercises in this chapter, the storage is allocated
from the program's frame. Once an object is allocated and initialized, the @ operator is
used to generate the pointer.

You can also allocate storage dynamically using the system's storage allocator; we will
discuss this in the next chapter.

To initialize a pointer called intPtr to point to an INTEGER variable whose value is 5 you
would write:

int: INTEGER +- 5;
intPtr: LONG POINTER TO INTEGER +- @int;

The first line allocates a space in the global frame and initializes it to 5. The second line
initializes the pointer to the address of the storage location that contains the integer, as
depicted in Figure 4.2 below.

memory address 12861 .
value I 861 I ~ I 51
Symbol name intPtr •

Figure 4.2

What if intPtr were initialized and int were not? As shown in Figure 4.3, the value for int
would be meaningless, even though int is allocated. Pointing intptr to this location is
valid, but not very useful.

int: INTEGER;

intPtr: LONG POINTER TO INTEGER +-@int;

memory address 12

value 861 I
Symbol name intPtr

Figure 4.3

861 :S last value placed here

(garbage)

It is a good idea to avoid having pointers to uninitialized objects, lest you forget that the
object is uninitialized and try to use the pointer. This would cause strange errors that are
hard to debug. Instead, keep a pointer "uninitialized" until the object it will point to is
initialized. Consider:

int: INTEGER;

intPtr: LONG POINTER TO INTEGER;

4-3

4

·4-4

Pointers

This reeodingis one way o/keeping your pointer utlinitialized, but it suffers from the same
problem as before. Now there are two uninitialized variables instead of just one, as
illustrated in Figure 4.4.

memory address

value

Symbol name intptr

last value placed here

(garbage)

Figure 4.4

last value placed here

(garbage)

We have already discussed what might happen if you have a pointer to an uninitialized
variable (such as int). If you try to dereference an uninitialized pointer, on the other hand,
the value stored in the pointer's location would be interpreted as the address of a location.
As shown in Figure 4.5 this pointer's value might point to a valid memory location in the
address space. Dereferencing intPtr would therefore yield the garbage value 212 stored in
memory location 942.

memory address 12 861 942

value 1942 1471 p12

Symbol name intPtr int ?

t
Figure 4.5

If, on the other hand, the value of intPtr pointed outside of the address space, to
unavailable memory, then your program would address fault and the debugger would be
called. In an environment that uses real memory addresses in code, this means that any
address that points beyond the end of available memory would cause an address fault.
However, the Pilot environment provides virtual memory. Addresses (that appear in code)
are virtual and must be dynamically translated into real memory address at runtime.

During address translation, Pilot determines whether the page containing the reference is
in real memory. If it is not, a page fault occurs and the page is swapped in from its backing
file using available mapping information. An address fault occurs if the page to be
swapped in is not mapped (has no associated backing store). Thus, in a virtual memory
system, addresses that lie in the address space of a process can still cause address faults if
they reference sections of the address space that are not mapped, as shown in figure 4.6.

Mesa Course 4

unmapped section of

the virtual address

space

memory address 12 416 861

value
1942 I ?

1
1471

Symbol name IntPtr

r----t-----,
int

I Address fault I
I I L ___________ J

Figure 4.6

It is important to initialize all pointers, even those that have no referent. Mesa provides
the special value NIL for this purpose. NIL signifies that a pointer does not point to anything
valid and should not be dereferenced. Dereferencing a NIL pointer is undefined and will
cause an address fault. When you are debugging, getting an immediate address fault is far
better than having your program continue to execute with invalid data. In the latter case,
your program may not malfunction until far from the scene of the crime.

int: INTEGER;
intPtr: LONG POINTER TO INTEGER +-NIL;

4.2.3 Assigning pointers

There are two common uses of pointers in assignment statements: assigning the address of
a location to a pointer, as in the initialization of intPtr; and changing the contents of one
pointers's referent to be a copy of another pointer's referent.

4.2.3.1 Assigning pointer values

In Mesa, pointers are type checked to the object they reference. This means that only
pointers pointing to the same type of object can be assigned, as in this example:

int: INTEGER +-5;
intPtr: LONG POINTER TO INTEGER +-@int;
anotherPtr: LONG POINTER TO INTEGER +- NIL;
anotherPtr +- intPtr;

The assignment of intPtr to anotherPtr is valid because they both point to an object of type
INTEGER. After the assignment is complete, both intPtr and anotherPtr point to the same
memory location. This has the same effect as if both pointers were individually assigned
the address of int, like this:

int: INTEGER +-5;
intPtr: LONG POINTER TO INTEGER+-@int;
anotherPtr: LONG POINTER TO INTEGER +-@int;

Figure 4.7 shows a before-and-after view of this assignment.

4-5

4

4-6

Pointers

Before

memory address 12 861 942

value 1861 I~
Symbol name intPtr - int anotherPtr

After

memory address 12 861 942

value 861 I
Symbol name intPtr _ ~ ... int _ anotherPtr

Figure 4.7

Now both intPtr and anotherPtr reference into When int's value changes, de referencing
either pointer will yield the changed value.

4.2.3.2 Assigning the contents of pointer references

Often, you do not want to share the value of an object, but you want to have two pointers
that reference identical copies of one object. To do this, you dereference the pointers in the
assignment statement:

int: INTEGER +-5;
anotherlnt: INTEGER +- 0;
intPtr: LONG POINTER TO INTEGER +-@int;
anotherPtr: LONG POINTER TO INTEGER +-@anotherlnt;
anotherPtr f +- intPtr f ;

This assignment copies the value referenced by intPtr into the memory location referenced
by anotherPtr. Changing the value in either of these two locations has no effect on the
value pointed to by the other pointer. Figure 4.8 shows this situation.

Before I
memory address

value

Symbol name

After

memory address

value

Symbol name

12

intPtr

12

intPtr

861 • 942 985

I 51
- int anotherPtr--" anotherlnt

861 • 942 985

I 5 I
--tl~ ... int anotherPtr--" anotherlnt

Figure 4.8

Mesa Course 4

When you use pointers, be sure to think about the type of assignments you want your
program to perform. If you accidentally share data between two or more pointers when you
intend to copy the values, you will undoubtedly find some surprises when one pointer's
referent is unexpectedly changed through another pointer. Conversely, copying data when
you intend to share it will result in expected changes not taking effect.

4.2.4 Using pointers for parameter passing

There are two basic techniques of parameter passing: call by reference and call by value. In
Mesa, all parameter passing is done as call by value. In other words, the variables passed
as parameters to a procedure are not changed by what happens inside that procedure's
body. For example, consider the procedure DoNothing:

DoNothing: PROCEDURE [a: INTEGER] •

BEGIN a a + 1; END;

Assume that an INTEGER int has the value 5. When a program calls DoNothing [int], the
lJalue of int is copied into DoNothing's local variable a. When DoNothing changes the
value of a, nothing happens to the value of into Once int's value has been copied into a, int
is isolated from whatever goes on inside of DoNothing. Upon exit from DoNothing, a has
the value 6 but int still has the value 5, as illustrated in Figure 4.9.

I Before Entry

memory address 861 985

value ?

Symbol name int

I After Entry

memory address 861 985

value 5

Symbol name int a

I After Increment I
memory address 861 985

value 6

Symbol name int a

I After Exit I
memory address 861 985

value ?

Symbol name int

Figure 4.9

4-7

4

4-8

Pointers

If Mesa did support call by reference and DoNothing was called so that its parameter, a,
was a reference to the actual parameter, int, then DoHothing would have the desired
effect of incrementing into This manner of programming, where an argument to a
procedure is changed as a side effect of the call, is considered bad form and discouraged in
favor of having the procedure return the new value, as in:

DoSomething: PROCEDURE [a: INTEGER] RETURNS [INTEGER] •

BEGIN RETURN (a + 1]; END;

Nevertheless, it is sometimes desirable for a procedure to modify one of its arguments. For
example, a procedure may be called with a large array, several components of which need
to be changed. If the array is so large that returning a copy of it would consume significant
processor time and memory, then efficiency considerations may outweigh model
programming, and the procedure might be designed to accomplish its end through side
effects on its input.

When a procedure needs to have a side effect on one of its input variables, it takes as an
argument not the variable itself but a pointer to that variable. Mter all, a pointer is a
reference to where the value of the variable is stored. Given this reference (the address of
the variable), a procedure can freely manipulate the contents of a variable by storing
values into the location in memory where the variable's value resides. For example, a
procedure Increment could look like this in Mesa:

Increment: PROCEDURE [a: LONG POINTER TO INTEGER] .,

BEGIN a f of- a f + 1; END;

To change the value of int by calling Increment, a program has to pass the procedure a
pointer to into When it makes the call Increment[@int], the program makes the local
variable a inside Increment point to into Given such a call, Increment can change the value
of the variable int by dereferencing the pointer a. Figure 4.10 illustrates the situation
upon entry to the Increment procedure. The local variable a contains the address of the
global variable into When the assignment statement a f of- a f + 1 is executed inside of
Increment, the value of int is incremented. If int held the value 5 before the call
Increment(@int], then it will contain the value 6 immediately after the statement a f of

a f + 1 is executed, as illustrated in Figure 4.10.

Mesa Course 4

I Before Entry I
memory address 861 985

I

I I I I I I I I I ? I value
I

5

Symbol name int

I After Entry I -· · memory address 861 · 985 ·
value I I I I I 5 I I I I I 861 I
Symbol name int a

I After Increment I -· · memory address 861 · 985 ·
value I I I I I 6 I ~ I I I 861 I
Symbol name int a

I After Exit I -· · memory address 861 · 985 ·
value I I I I I 6 I I I I I ? I
Symbol name int

Figure 4.10

4.2.5 A common mistake: dangling pointers to local storage

When you asssign pointers to local values in procedures, you must not reference these
values after exiting the procedure. Dereferencing a dangling pointer that used to point to a
value allocated in a local procedure is undefined. The following example illustrates this.

SimplePointer 1. mesa contains an instance of the Increment procedure discussed
above. This program, when run, will work perfectly. Take a look at the code:

SimplePointer1: PROGRAM ..

BEGIN

c: CARDINAL ~ 0;
worked: BOOLEAN ~ FALSE;

Increment: PROCEDURE [a: LONG POINTER TO CARDINAL] =
BEGIN a t ~ a t + 1; END; ··Increment

Unity: PROCEDURE RETURNS [b: CARDINAL] .. BEGIN b ~ 1; END; ··Unity

··Mainline Code
c~Unity[);

Increment[@c];
worked ~ c = 2;
END.

4-9

4

4-10

Pointers

SimplePointer2.mesa tries to accomplish the same thing as SimplePointer1, but it
takes a more devious approach. The code for SimpiePointer2 is slightly confusing, but
looks like it will work when run. Unfortunately, the code is faulty. See if you can find the
problem:

SimplePointer2: PROGRAM.
BEGIN
c: CARDINAL +- 0;
worked: BOOLEAN +- FALSE;

I ncrement: PROCEDURE [a: LONG POINTER TO CARDINAL) •
BEGIN a f +- a 1. + 1; END; ··Increment

PointerToUnity: PROCEDURE RETURNS [b: LONG POINTER TO CARDINAL) •
BEGIN d: CARDINAL +-1; RETURN[@d); END; -Unity

--Mainline Code
c +- PointerToUnity[] f ;
Increment(@c];
worked +- c • 2;
END.

Look at the first assignment statement in the main body of SimplePointer2, the line: c +
PointerToUnity(] f;. The intent is to dereference the pointer returned by the call to
PointerToUnity in order to get the value 1. While PointerToUnity is executing, the
situation is as depicted in the "Before Exit" part of Figure 4.11. The pointer b to be
returned by PointerToUnity contains the address of the variable d, a variable local to
PointerToUnity.

I Before Exit I
memory address 12 861 • 942

value 01
Symbol name b ---I •• d c

After Exit 1

memory address 12 861 • 942 ·
value

1861 I
? I ? I

Symbol name b • d c

Figure 4.11

"Mter Exit" shows the situation after returning from PointerToUnity. The variable c
should be assigned the value contained in the variable pointed to by b. But, now that
PointerToUnity has been exited, the space used by PointerToUnity is considered by the
system to be free space, ready to be overwritten as space is needed. Since d is local to
PointerToUnity, it may already be overwritten now that PointerToUnity has been exited.
The pointer returned by PointerToUnity points to where the value of d used to be. But d
may be overwritten now, and so the pointer is worthless. When the program tries to assign

Mesa Course 4

the value @d l' to c, it will be assigning a value that might not be the value that d had
when PointerToUnity finished execution.

This procedure demonstrates the mistake of returning a dangling pointer to a local
variable. When assigning pointers to values in local frames, be sure that the referents will
still exist after the procedure has returned. One way to ensure this is to dynamically
allocate space that outlives the local frame; this is the subject of the next chapter.

4.3 Summary

This chapter briefly discussed how pointers are used in Mesa programs. It presented a set
of do's and don't's to keep in mind when programming with pointers, most notably:

• Do declare pointers as pointers to objects. This keeps you inside of the Mesa type
checking system, which will go a long way in preventing pointer errors.

• Do initialize all variables including pointers. Having initialized variables will save
you the trouble of worrying about whether or not a variable's value is valid. When you
cannot initialize a pointer to an allocated and initialized piece of storage, signify this
by initializing the pointer to NIL.

• Do be aware, when using pointers in assignment statements, whether you want the
value shared between the two pointers (and therefore alterable by either pointer), or
copied. To share the value between two pointers, assign the pointers (ptr2 +- ptr1); to
copy the value, assign the dereferenced pointers (ptr2 t +- ptr1 t).

• Do use pointers as arguments to procedures when you want the value of the caller's
variable changed by the called procedure.

• Do not return pointers that point to a procedure's local variables.

4.4 References

Sections 3.3 and 3.4 of the Mesa Language Manual cover the syntax of record and pointer
declarations, as well as detailing the operations that can be performed on pointers and
records.

4.5 Questions

1) Assume that you are calling a procedure from an interface in order to get the next piece of
input data from a file of CARDINALS. Let's say that the Dataln interface contains three
procedures, declared as follows, that can each get the next CARDINAL from the file.

GetNextValue1: PROCEDURE [nextValue: CARDINAL1;

GetNextValue2: PROCEDURE [nextValue: LONG POINTER TO CARDINAL1;

GetNextValue3: PROCEDURE RETURNS [nextValue: CARDINAL1;

From looking at those declarations, determine which of the following calls will actually
get the next piece of data from the file, and decide which call would be the best one to use
in a Mesa program from a sty listic point of view.

4-11

4 Pointers

i: CARDINAL ~ 0;
Dataln.GetNextValue1[@i];
Dataln.GetNextValue1 [iJ;
Dataln.GetNextValue2(@i];
Dataln.GetNextValue2(i];
@i oil- Dataln.GetNextValue3[];
i ~ Dataln.GetNextValue3[];

2) Given the type declarations below, explain what the differences between calling
AverageData1 and AverageData2 are.

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE .. RECORD [

interval. scale, length, maxlength: CARDINAL.
data: ARRAY (O •• O) OF CARDINAL];

AverageData1: PROCEDURE [dataToAverage: Data] ..
BEGIN
FOR i: CARDINAL IN [O •. dataToAverage.length .1} DO

BEGIN
dataToAverage.data[i] ~ (dataToAverage.data[i] + dataToAverage.data[i + 1])/2;
END;

END;

AverageData2: PROCEDURE [dataToAverage: DataHandle] ..
BEGIN
FOR i: CARDINAlIN [O •• dataToAverage.length G 1) DO

BEGIN
dataToAverage.data[i] ~ (dataToAverage.data(i] + dataToAverage.data[i + 1])/2;
END;

END;

4.6 Exercises

4-12

1) Study Appendix D, which appears at the end of this course. It discusses how to deQug
address faults.

Write two procedures: Compare, which compares the values referenced by two pointers, and
Exchange, which exchanges the value referenced by two pointers. You should declare your
procedures to be of type PointerDefs.CompareProcType and PointerDefs.ExchangeProcType. Store
your procedures in a file called CompareAndExchangelmpl.mesa.

To test your procedures, have your program call PointerDefs.CreateCompareAndExchangeTool
passing the names of the two procedures. We ha ve provided a config file
(CompareAndExchangeTool.config) and the implementation for the tool
(MesaCourselmpIForCompareAndExchangeTool.bcd). Thus, you need to write your
implementation, bind the config file, and run CompareAndExchangeTool.bcd.

5

Dynamic storage allocation and
management

After reading the last chapter, you undoubtedly realized that pointers were not invented
to point at just INTEGERS, when there're so many more interesting data structures in the
world. Pointers can point at just about anything, including objects of undeterminable size
at compile-time. Of course, constructs such as CARDINALS, with their fixed known length at
compile-time, can reside in a local or global frame, but what about a dynamic array or a
string of characters? To allocate storage for constructs whose length or usage is not known
at compile-time, you need dynamic allocation.

This chapter discusses how you allocate and deallocate storage dynamically, and suggests
some ways for managing that storage effectively. We also discuss heaps, which are the
storage allocators used. for dynamic allocation.

5.1 Preliminary readings

Read the Pilot Memory Managment section (§ 4.6) in the Pilot Programmer's Manual 11.0.
This section discusses zones and heaps.

Read § 6.6 in the Mesa Language Manual 11.0, entitled "Dynamic Storage Allocation." It
discusses the Mesa operators NEW and FREE, which are used to allocate and deallocate
storage.

5.2 Definition of terms

Dynamic allocation

Dynamic deallocation

Node

Storage Leak

Dynamic allocation acquires storage during program
execution.

Dynamic deallocation releases space acquired through
dynamic allocation.

A storage node, or node for short, is a block of allocated
storage, often with a record structure.

A storage leak occurs when a program neglects to free all
the storage nodes it has allocated, thus reducing the total
amount of space available for the system. Leaked storage

5-l

5 Dynamic storage allocation and management

Heap

Valid memory location

Zone

degrades thesyste1ft perfof'ftmneeandin: ext~me eases ean
cause the system to crash. '

A heap is a system-<iesignated area of virtual memory used
for, dynamic allocation of storage. Heaps, which provide
more automatic management of storage than zones, are
designed to support the Mesa language operators NEW and
FREE, which allocate and deallocate storage dynamically.

A location is valid if it is currently allocated. A location
that has been freed is invalid and should not be referenced.

A zone is a client--<iesignated area of virtual memory used
to acquire and manage arbitrarily sized storage nodes.

5.3 Discussion

5-2

Heaps are the primary storage allocators in Mesa. They are designed to allocate and free
blocks of storage (nodes) of arbitrary size. A heap begins as one large free (unallocated)
node somewhere in virtual memory. When a program requests storage, a node is allocated
and a pointer to its location is returned to the requesting program. The program then
moves values in and out of this node by indirect reference through the pointer. When the
program no longer needs the storage, it returns the node to the heap's pool of available
(free) nodes.

Clients interact directly with a heap by using Mesa's NEW and FREE operators and the
facilities of the Heap interface, Clients use the Heap interface to obtain a heap (by either
creating one or using one provided by the system) and to, destroy a heap. Clients allocate
storage from a heap with the NEW operator, and return storage to the heap when it is no
longer needed with the FREE operator

5.3.1 The system heap

Tajo provides a system-wide heap, called the systemZone, for all programs to share. If you
need to share storage with other programs, the system heap is a good place to allocate the
common storage. You should also use the system heap for programs that only allocate a
small amount of storage. You will see an example of using the systemZone a little later in
the chapter.

You access the systemZone through the Heap interface. For a program to allocate and
deallocate nodes from the systemZone, it must IMPORT it from the Heap interface. Take a
look at Section 4.6.2 of the Pilot Programmer's Manual, which describes this interface.
Heap.systemZone is declared as an UNCOUNTED ZONE. (Think of this name as historic, not
mnemonic.) The size of the systemZone, initially 40 pages, is bounded only by the amount
of available virtual memory; it expands automatically when a request for storage is larger
than the largest free node. The systemZone is created when a volume is booted and not
destroyed unless the volume is rebooted. Misuse of this heap can be costly, since there is no
garbage collection mechanism to free nodes that are no longer in use.

Mesa Course 5

5.3.2 Private heaps

A program can create a private heap. Private heaps exist separately from the system heap,
and only programs that have access to a private heap can allocate nodes from it. Like the
system heap, private heaps can be grown to unlimited size, although they are typically
bounded at 64K pages. The growth of an unbounded heap is limited only by available
virtual memory.

Heap.Create is declared as follows:

Heap.Create: PROCEDuRE(initial: Space.PageCount,
maxSize: space.PageCount +- Heap.unlimitedSize,
increment: Space.PageCount +- 4,
swapUnit: Heap.SwapUnitSize +- Heap.defaultSwapUnitSize
threshold: NWords +- Heap.minimumNodeSize,
JargeNodeThreshold: NWords +-space.wordsPerPage/2,
ownerChecking: BOOLEAN +- FALSE, checking: BOOLEAN +- FALSE]
RETURNS (UNCOUNTED ZONE];

Except for initial, the parameters have default values, which you will not (at this point)
need to change. initial specifies the initial size of the heap, in pages. The system will
automatically grow the heap as needed, in steps of increment up to maxSize.

You should destroy a private heap when you are finished with it. To destroy a private
heap, call Delete, passing the zone returned by Create, like this:

Heap.Delete: PROCEDURE(Z: UNCOUNTED ZONE. checkEmpty: BOOLEAN +- FALSE];

Delete has a second parameter to check if all the allocated nodes have been deallocated.
This parameter, defaulted to false, prevents the accidental deletion of a heap still in use.

Space leaks are not as important in private heaps as they are in the systemZone, since
deleting a private heap frees the entire space occupied by the heap and thereby reclaims
any unfreed nodes. Any space leaks would be a potential problem only during the life of
the private heap.

5.3.3 Allocating nodes: Using the NEW operator

A conventional way to allocate a node is to determine the amount of storage needed, and
then ask the heap for a chunk of that size. The NEW operator does this, but it adds the
protection of type checking for the allocated node by taking the type of the object as a
parameter. It determines the size of the node that needs to be allocated, allocates it, and
then returns a pointer to the allocated node.

Mesa enforces type checking on the returned value (the pointer). For example, if you were
allocating a record of 3 CARDINALS, your code would look something like this:

5-3

5

5-4

Dynamic storage allocation and management

ptrToRecord: LONG POINTER TO Record NIL;
Record: TYPE = [a: CAROINAL O.

b: CARDINAL 1.
c: CARDINAL 2);

ptrToRecord Heap.systemZone.NEw(Record];

The node allocated by the NEW operator (from Heap.systemZone) is of type Record. The
pointer returned by NEW is thus a LONG POINTER TO Record. The variable on the left side of
this assignment statement must conform to that type.

You can also initialize a node while allocating it with the NEW operator. To get the default
initialization for Record, you could change the assignment to be:

ptrToRecord Heap.systemZone.NEw[Record []];

To override the default values, to set c 10, for example, you could write:

ptrToRecord Heap.systemZone.NEw[Record [c:10]];

5.3.4 Deallocating nodes: Using the FREE operator

The FREE operator takes a pointer to a node pointer as its parameter It frees the node and
sets the value ofthe node pointer to NIL, as in

Heap.systemZone.FREE{@ptrToRecord];

Setting the pointer to NIL reduces the chances of creating a dangling reference. Figure 5.1
illustrates how FREE works. Without the extra level of indirection in @ptrToRecord, the
system would not be able to change the value in ptrToRecord to NIL.

Before FREE

ptrToRecord ---__ .~ record

I address of record G
B During FREE

@ptrToRecord -----~.. ptrToRecord
r------------~

address ofptrToRecord address of record

After FREE

ptrToRecord

NIL

Figure 5.1 Using FREE

r-----------,
: storage for record is

: fr d

I

I
I
I
I
I

; ~ [JreCOfd .:
I a '" 0 I
I I

: b = 1 :
Ie'" 2 I
I I
I I L ___________ J

Mesa Course 5

5.3.5 The systemMDSZone

The Mesa environment also provides a second system-wide heap. This second heap is
called the systemMDSZone, and is used for allocating storage pointed to by POINTERS

(whereas the systemZone is used for allocating storage pointed to by LONG POINTERS). The
systemMDSZone exists inside a 256-page space called the Main Data Space (MDS), and is
limited to that size. Since you will not ordinarily be using the systemMDSZone, this
chapter discussed only the systemZone. However, the two heaps are functionally
identical, and all observations about the systemZone apply also to the systemMDSZone.

5.4 Basic rules for storage management

So far, you've learned the definition of dynamic storage allocation and the procedures to
manipulate storage dynamically. However, we haven't covered the best ways to supervise
and manipulate space allocation and deallocation. If you had an infinite amount of
resources (time and space), then management of those resources would be unnecessary,
but since resources are limited and therefore considered to be precious, taking the time to
understand storage management can improve your program's (and system's) performance.
The following list represents general guidelines for efficient storage management. The
rest of this chapter will discuss each item on the list in detail.

1. Hold onto storage only while you are using it.
2. Minimize the number of times you allocate anyone item.
3. Keep global frames small.
4. Allocate temporary variables from local frames.
5. Avoid allocating string literals from the global frame.
6. Pass a pointer to an object as an argument rather than the object itself.
7. Use the systemZone when the total amount of allocated storage is small, and when

use is over a short period of time.
8. Use a private heap when your program (or set of programs) require a lot of storage.
9. Avoid allocation from the systemMDSZone.

5.4.1 Hold onto storage only while you are using it

The actual space taken up by dynamically allocated objects is a precious resource, so you
should only use it when absolutely necessary. Avoid allocating storage until you need it,
and release that storage when you are no longer using it.

5.4.2 Minimize the number of times you allocate anyone item

This rule really asks you to think about how a particular item is to be used in your
program. When you learn about SEQUENCES in the next chapter, you'll find that a dynamic
array is implemented by copying different-sized arrays back and forth and changing the
pointers to create the illusion of a dynamic array. The problem is that repeated allocations
and deallocations take time and cause fragmentation within the heap. If you can
determine the approximate use of the SEQUENCE in the program, then you can allocate a
SEQUENCE that is, for example, four elements larger than what is currently needed, because
you know that the SEQUENCE will need space for four more elements in the near future.

You might have noticed that this rule can conflict with the first rule of holding onto
storage only while you are using it. You walk a fine line between the time issue and the

5-5

5

5-6

Dynamic storage allocation and management

space issue and must make tradeoffs between the two to "optimize" your program. When
making decisions about tradeoffs, keep in mind such issues as the size of the allocations,
the use of the allocated space, and the length of use of the space.

5.4.3 Keep global frames small

Again, you are trying to conserve a precious resource. Global frames reside in the Main
Data Space (MDS), a 256-page segment of virtual memory that can be directly addressed
by short (16-bit) POINTERS. The MDS is heavily used by the run-time system, so you should
avoid placing non-essential demands on it. As you may know, once a program is loaded it
stays loaded until it is explicitly unloaded or until the system is rebooted. As a result,
many global frames can exist in the MDS; thus the amount of free pages available for
other programs to use decreases. Keeping global frames small helps to free the MDS for
other tasks.

5.4.4 Allocate temporary variables from local frames

Besides the global frame, you can allocate space from a local frame and from heaps.
Storage for local frames also comes from the MDS (see above). The difference between local
and global frames (in terms of their burden on the MDS) is that a local frame remains
allocated only as long as it is executing. When the procedure returns, the space for the
local frame is released. Therefore, when you have fixed-size variables that are not needed
for the life of the program, you should allocate them from local frames.

5.4.5 A void allocating string literals from the global frame

Suppose you need a string literal in the mainline code. If you allocate a string literal in the
mainline code (with or without the L suffix), that literal will take up space in your global
frame for the life of the program. To work around this problem, you should have the
mainline code call a procedure that includes the code using the string literal. That way,
the space for the string literal is released when the procedure finishes.

5.4.6 Pass a pointer to an object as an argument rather than the object itself

In Mesa, procedures pass arguments by value. In a procedure call, the parameters are
copied into the local frame of the called procedure. Thus, passing a large object wastes both
space and time. A void copying large objects in procedure calls by passing a pointer to an
object instead.

5.4.7 Use the systemZone when the total amount of allocated storage is small. and when
use is over a short period of time

The systemZone is created when the system is booted; a private heap, however, is created
when your program makes a call to Heap.Create. The time needed to make this call can be
significant when all you need is a small block of storage for a short period of time. For
transient storage, the low overhead of using the systemZone is quite attractive.

Mesa Course 5

5.4.8 Use a private heap when your program (or set of programs) requires a lot of storage

Private heaps have several advantages over public heaps. You can restrict the number of
clients using a private heap, allowing faster access and minimizing fragmentation. You
have potentially faster access because requests for storage must be monitored; thus, the
fewer the clients, the less you have to wait in line for storage. Having a small number of
clients reduces the amount that allocated nodes are spread around the heap. Since you
have no control over where a block of storage is allocated from, the degree of dispersion of
nodes wlll be large if the heap is large. The result ofthis is that a large heap will have very
little of it mapped into real memory at anyone time, and accessing the blocks of storage
will cause more swapping than if they were allocated within a smaller heap.

5.4.9 Avoid allocation from the systemMDSZone

Since the systemMDSZone is contained within the MDS, allocations from this public heap
compete with local and global frames for the bounded 256-page resource. The systemZone
and private heaps, by comparison, are bigger and less congested.

5.5 Summary

This chapter discussed why you need dynamic allocation, and introduced heaps as the
most common storage allocator for dynamically allocating nodes. To access the heap
facility, you use the Heap interface (described in the Pilot Programmer's Manual). This
interface provides two system heaps, as well as the mechanisms for creating and deleting
private heaps.

You use the NEW operator to allocate nodes from a heap. When using NEW, you specify the
heap the node should be allocated from and the type of the node to be allocated. The NEW

operator calculates the size of storage needed, causes the allocation to occur, and returns a
pointer to the node.

When your program is through with a node it must return the storage to the storage
allocator. You do this with the fREE operator, passing a pointer to the pointer to the node.
fREE deallocates the node and sets your pointer to NIL.

This chapter also presented some guidelines to help you manage storage allocation in a
manner that will help your programs' performance. Most of the guidelines are common
sense maxims that will help you use the system's time and space efficiently. The
guidelines can be boiled down to two basic themes: don't waste time and space, and make a
careful tradeoff when time and space issues conflict.

5.6 Questions

Assume that you are using an interface named Node that has procedures to allocate and
free nodes of type NodeType, as defined below:

5-7

5 Dynamic storage allocation and management

Nodefllltt: l"fH ,. 't~~TER TO NodeType;
Node Type: TYPE == RECORD [

start. end. size: LONG CARDINAL,
duration: CARDINAL];

AliocateNode: PROCEDURE RETURNS [newNode: NodePtr];
FreeNode: PROCEDURE (nodeToFree: NodePtr];

Because the FreeNode procedure does not return NIL, you must set the NodePtrs to NIL with
an assignment statment after you call FreeNode. Since the code frees nodes in many
places, the following procedure was written to help free nodes. Does this procedure work as
intended?

OurFreeNode: PROCEDURE [nodeToFree: NodePtr] ==
BEGIN
Node.FreeNode[nodeToFree);
nodeToFree +- NIL;
END;

5.7 Exercises

5-8

The Tree Traversal Tool allows you to enter numbers into a sorted binary tree. At any point,
you can make a preorder, inorder, or postorder traversal of the tree, with the order of tra versal
displayed in the tool. Your assignment is to complete the tool by writing the procedures Init,
EnterNumber, and ClearTree in the module TreeTraversaIProblem.mesa. The comments in this

PreOrder called

Number = 14

Enter Input! Clear Tree!

PreOrder! InOrder! PostOrder!

»»»»««««

PreOrder is 7 4 2 5 9 8 12

»»»»««««

Tree Traversal Tool

module provide a more complete explanation of the procedures that you are expected to write.

You will also need the modules TreeProblem.config, TreeTraversalTool.mesa, and
TreeTraversaIOefs.mesa.

6

Sequences

Now that you know about heaps, it's time to look at one of the most common heap
dependent Mesa constructs: SEQUENCEs, the Mesa implementation of dynamic arrays. This
construct allows you to defer specifying the size of an array until run-time. Because you
don't know the size of a sequence until run-time, you have to allocate that sequence from a
heap rather than in a local or global frame. This chapter discusses how to allocate,
deallocate, and use sequences.

6.1 Discussion

One of the main advantages of using a dynamic array rather than a static array is that
you don't have to commit your program to consuming storage before it uses that storage. A
program does not allocate storage until it is actually ready to use that storage. You can
also change the size of a dynamic array after it allocating it; this comes in handy when you
find out sometime in the middle of your program that your sequence is too short. However,
a corresponding drawback of using dynamic arrays is the amount of time it takes to
allocate a dynamic array during run-time. Static arrays avoid this overhead since they're
allocated when the program is loaded.

6.1.1 Declaring a Sequence

Sequences are always declared as the last field in a record. For example, the following
declares a record structure that contains a sequence of LONG INTEGERS:

ptrToRecord: LONG POINTER TO Record +- NIL;
Record : ~PE • RECORD[

a: BOOLEAN +- TRUE.
b: BOOLEAN +- FALSE,
C: BOOLEAN +- TRUE.
seq: SEQUENCE length: CARDINAL OFLONG INTEGER];

The declaration of a sequence has a variant tag part (the length: CARDINAL) and an element
type part (the LONG INTEGER). The type specification in the variant part determines the type
of the indices used to select a sequence element. The range of valid indices is not specified
when the sequence is declared but will be computed by the FIRST and SUCC functions when
the sequence is allocated. This computation requires that the variant tag specify a valid

6-1

6

6-2

Sequences

IndexType, as defined in the Mesa Language Manual. The element typedefiftes the type of
object that is being sorted in the sequence, thereby making sequences type-safe.

6.1.2 Allocating a Sequence

To allocate the record to contain a sequence of 10 elements, you could encode:

ptrToRecord +- Heap.systemZone.NEw(Record(10]];

Record(10) is a type specification describing a RECORD with a sequence part, seq,
containing 10 LONG INTEGERs. The effect of Heap.systemZone.NEw{Record(10)] is to allocate
slze[Record[10J] words of storage from the systemZone and return a LONG POINTER TO Record
to this storage. All fields in the common part of the RECORD (the BOOLEAN fields a,b, and c in
the example) are initialized to their default values if default values have been specified
(TRUE, FALSE, and TRUE in the example). The sequence tag field, length, is set to 10, a value
computed automatically using the formula:

length +- succ10 [FIRST(CARDINAL))

If the variant tag type uses an enumerated type or a subrange type whose first element is
not 0, the value of length would still be the value of the tenth successor of the first element
of the index set.

The index will range over [0 .. 10), a set of values computed using the formula:

[FIRST[CAROINAL1 .. succ10 [CARDINAL])

The elements of the sequence part are not initialized when the sequence is allocated.
Initializing the sequence is your responsibility. However, you can use a constructor of type
Record in the call to NEW to provide different initial values for the common part of the
RECORD, as in:

ptrToRecord +- Heap.systemZone.NEw[Record[10] +- [a: FALSE));

6.1.3 Using a Sequence

You can index individual elements of a sequence directly. For example, if var is of type
LONG INTEGER ,then all ofthe following are equivalent:

var +-ptrToRecord t .seq[3];
var +- ptrToRecord.seq[31;
var +- ptrToRecord[31;

Once you have allocated a sequence, you can use it as you would an array:

IF ptrToRecord.length > 5 THEN ptrToRecord[S] +- 13;

6.1.4 Deallocating a Sequence

You deallocate the record containing the sequence as you would any other node, by using
the FREE operator:

Heap.systemZone.FREE[@ptrToRecord];

Mesa Course 6

6.1.5 VowelSeparatorWithPublicHeap

VowelSeparatorWithPublicHeap is an example of dynamically allocating records with
sequences in them. The program, which runs from the Executive, separates user input
into vowels and consonants. A sample input would be:

VowelSeparator. - separate the letters in these words by vowels and
consonants

Try running the program now.

6.1.5.1 TextSeqBody: the data structure used for storing text

The input is stored in the TextSeqBody data structure, which is defined in the
SequenceDefs interface as:

TextSeqBody: TYPE • RECORD [
length: CARDINAL,
text: SEQUENCE maxlength: CARDINAL OF CHARACTER];

The length field specifies the number of elements currently stored in the sequence. The
text field defines the sequence of characters where the input is stored. The maxlength tag
field specifies the maximum number of characters that can be stored in the sequence.

TextSeq is a pointer type to this record object, defined as:

TextSeq: TYPE = LONG POINTER TO TextSeqBody;

6.1.5.2 The procedure Main

In VowelSeparatorWithPublicHeaplmpl, the procedure Main controls translating the
input into a TextSeqBody and separating the characters into vowels and consonants.
However, since the program runs from the Executive, no call to Main appears in the
program. Instead, the mainline code calls Init, which subsequently calls InitializeVowel
Separator (from the SequenceDefs interface). InitializeVowelSeparator registers the
program with the Executive, telling it that Main is the procedure to call when a user types
the VowelSeparator.- command. It is important to remember that the procedure, not
the whole program, is executed when the command is invoked.

Let's assume a user types into the Executive

VowelSeparator. - separate the characters in these words

The Executive recognizes the command and calls Main. Main declares three variables,
input, vowels, and consonants, of type TextSeq. These variables will point to TextSeq
Bodys containing the input, the vowels in the input and the consonants in the input. The
variables vowels and consonants are initialized to NIL.

SequenceDefs.GetText stores the user's input in input and then translates it into a
TextSeqBody. Because GetText must allocate the TextSeqBody, we pass the systemZone
as a parameter to GetText. Passing the zone ensures that all nodes are allocated from the
same heap. Figure 6.1 depicts the situation at this point.

6-3

6

6-4

Sequences

After initializations

.--__ ~i~n!put~....;==:;----_==::!:. node in systemZone

address of TextSeq80dy
returned by GetText

vowels

NIL

length = 38
text = separate the characters in these words

consonants

NIL

Figure 6.1

Following these initializations, Main calls Separate to sort the input line into vowels and
consonants. Separate creates (allocates) two TextSeqBodys and returns a pointer to each
of these TextSeqBodys. Figure 6.2 represents the situation after Separate has returned.

After Separate returns

input

address of TextSeqBody
returned by GetText

vowels

address of TextSeqBody
returned bySeparate

consonants

address of TextSeqBody
returned bySeparate

.. node in systemZone

length = 38
text .. separate the characters in these words

.. node in systemZone

length = 12

text .. eaaeeaaeieeo

.. node in systemZone

length = 21

text = sprtthchrctrsnthswrds

Figure 6.2

Main now outputs the separated characters, fIrst checking to see if there is anything to
print. It uses SequenceDefs.PutComments and SequenceDefs.PutText to print to the Executive.
(PutComments outputs string literals; PutText outputs a TextSeqBody.)

Next, Main frees the TextSeqBodys that were allocated and passed to it:

FreeTextSeq[@input];
FreeTextSeq[@vowels];
FreeTextSeq[@consonants];

Figure 6.3 shows that all allocated storage is freed before Main returns.

Mesa Course 6

After deallocations

vowels vowels consonants

NIL ~ ____ N_IL ____ ~I ~I _____ N_IL ____ ~

Figure 6.3

Note: Use the information presented in the last chapter (Dynamic Storage Allocation and
Management) to figure out the reason for freeing the TextSeqBody nodes in this procedure
as well as in AppendChar

6.1.5.3 How the input is separated

Separate and AppendChar are the procedures primarily responsible for separating the
characters. Separate defines the algorithm for separating the characters; AppendChar
adds a character into a TextBodySeq object.

Separate takes a parameter of type TextSeq and separates the characters into two
sequences, one containing vowels and the other containing consonants, and returns
pointers to each of these TextSeqBodys. We use the following algorithm: check if the next
character in the input line is alphabetic; if it is, check the alphabetic character to see if it
is a vowel. If the character is a vowel, we append it to the vowels TextSeqBody.
Otherwise, we append it to the consonants TextSeqBody.

Note: In the implementation of this algorithm, Separate allocates storage for vowels and
consonants from a reasonable guess of vowel and consonant distribution. We did this to
minimize the number of allocations done by AppendChar.

AppendChar builds the vowel and consonant sequences by adding a character to the end of
a text sequence. If the text sequence is not full (Le., length is less than maxLength), then
the character can just be appended (by entering it as the next element in the sequence and
incrementing length).

However, if the text sequence is full, the situation is more complicated. AppendChar
cannot add the next element because there is no room left in text. Trying to store into the
sequence will cause a run-time error if you compiled with the b switch (bounds checking).
If there is no bounds checking, the append will be done, but the element will not be stored
into a properly allocated memory location. Instead, it will be stored just beyond the end of
the allocated storage. This location could be undefined (causing an address fault),
currently allocated for another node (smashing memory by writing over other data), or
unallocated (with no assurances on how long the location will stay unallocated and its
contents unchanged).

To avoid this situation, you must allocate a new TextSeqBody when the sequence is full.
(This is how to "grow" a sequence.) You must then copy the contents from the old sequence
into the new one. This is what AppendChar does; take a look at the code for this procedure.

6-5

6

6-6

Sequences

The series of graphs in Figure 6.4 illustrates the expansion of the sequence when
AppendChar is asked to append the letter e to a full TextSeqBody.

Entry to AppendChar char

8
onto .. vowels .. node in systemZone

I address of vowels I address of TextSeqBody I length .,

I containing vowels • text = eaaeeaael

After allocation of S char

8
.. vowels onto .. node in system Zone

I address ofvowels I address of TextSeqBody length = 9
containing vowels text = eaaeeaaei

s .. node in systemZone

address of larger length = 10
TextSeqBody text = space for 10 characters

After vowels copied to S char

8
onto .. vowels .. node in systemZone

I address of vowels I address of Text5eqBody length .. 9
containing vowels text = eaaeeaaei

s .. node in system Zone

address of larger length .. 10
TextSeqBody t~xt = eaaeeaaei

Figure 6.4

Mesa Course o

After char appended char

GJ
onto • vowels • node in systemZone

I address of vowels I address of TextSeqBody length = 9
containing vowels text = eaaeeaaei

s • node in systemZone

address of larger length = 10
TextSeqBody text = eaaeeaaeie

After node pointed char

to by vowel is freed GJ
onto • vowels • node in systemZone

I address of vowels I address of now freed I Freed node I node

s • node in system Zone

address of larger length = 10
TextSeqBody text = eaaeeaaeie

After vowels assigned char
to point to new node GJ

onto • -.1. ~ node in systemZone

I address of vowels I address of TextSeqBody I Freed node I containing vowels

s • node in systemZone

address of larger length = 10
TextSeqBody text = eaaeeaaeie

After Exit from AppendChar

vowels • node in systemZone

address of TextSeqBody length = 10
containing vowels text = eaaeeaaeie

FIgure 6.5

6-7

6 Sequences

6.1.6 VowelSeparatorWithPrivateHeap

VowelSeparatorWithPrivateHeaplmpf differs from VowefSeparatorWithPublicHeaplmpf
only in that it uses a private heap instead of the systemZone to allocate TextSeqBody.
This module is part of the configuration called VowelSeparatorWithPrivate
Heap.bed. It runs from the Executive command VowelSeparator.-. Run the program
to verify that it acts like VowelSeparatorWithPublicHeap, and then study
VowelSeparatorWi thPrivateHeaplmpl.mesa. Pay particular attention to the
creation and deletion of the private heap, and to the allocation and deallocation of nodes.

6.2 Summary

A sequence appears as the last field in a record. It contains a variant index field in its
declaration, which becomes fixed at the time of allocation. To enlarge a sequence,
therefore, you must:

1) allocate a new, larger one,

2) copy the data from the full sequence into the new one,

3) free the old sequence, and

4) adjust the pointers so the new sequence is referenced by the point~t: th~t
referenced the original sequence.

6.3 Reference

The Mesa Language Manual 11.0 section entitled "Sequences" is a thorough reference.

6.4 Exercises

6-8

Complete a program that takes a string of characters as input and stores the characters
alphabetically in queues according to the number of queues that the user specifies. For
example, if the input were James! Where are you?!, and the user wanted four groups of
characters, the result would look like this:

For Group 0 (A-G):
aeeeae

For Group 1 (H -N):
J m h

For Group 2 (O-T):
s r r 0

For Group 3 (U -Z):
Wyu

For Last Group (non-alphabetic characters):
! SP SP SP ? !

Done.

Mesa Course

The program runs from a tool, which consists of the following modules:

LetterTool.mesa: contains tool-related code (1/0);
Letterl m pI. mesa: contains the implementation code that actually processes the input;
LetterDefs.mesa: is the interface for these modules;
LetterConfig.config: is the configuration module for the above.

Input: James! Where are you?!

Number of Queues: {four}

Group!

For Group 0 (A-G):
a e e e a e

For Group 1 (H-N):

The tool as it appears when LetterConfig. bed is executed.

6

When Group! is invoked, the CommandItem procedure Group (in letterTool) passes the input
string and the number of desired queues to procedure Processlnput (in Letterlmpl).
Processlnput calls InitQueues to create and initialize the queues. It then calls CutUpAlphabet
to determine which characters each queue will handle. Processlnput then calls Store Letters
to actually put the characters into the queues. Finally, PrintResults (in LetterTool) is called to
display the results of the user-requested action.

There are two instances where you must consider dynamic storage allocation. First, there is
the initial allocation from a heap, where two factors are variable: the number of queues and
the size of each queue. Secondly, there is the expansion of a queue when the sequence that
represents the queue is full. The "expansion" really consists of allocating a new sequence that
is larger than the original one, copying over the original sequence into the new one, inserting
the new sequence in place of the original one, and freeing the space that the original sequence
occupied (see diagram on next page).

6-9

6 Sequences

I I I I I I 'a I
allocate new, larger

'a 'e 'b 'd I 'a I sequence

I I I I I I I I

I I I 'a I 'e I 'b I 'a I 'd I 'a I copy contents of old
sequence to new one

I 'a I 'e I 'b I 'a I 'd I 'a I I

~I I I I I I I
insert new sequence in
place of old one, which is
deallocated back to the

r heap

'a I 'e 1 'b 1 'a I 'd I 'a 1 ·1

"Expansion" of a sequence

6-10

7

Strings

In this chapter we introduce Mesa strings. Although you may not have realized it, the
classic implementation of a string as an array of characters with an associated length
actually involves a pointer. In languages such as Pascal, these string pointers are hidden
from you. Mesa, on the other hand, makes this string pointer explicit and puts it under
program control.

This chapter will show how string pointers differ from standard pointers, and how string
use is facilitated by using public interfaces

7.1 Definition of terms

String A string is conceptual1y a sequence of characters, such as "that". A string is
represented in Mesa as a pointer to a record that contains an array of
characters and a length

7.2 Discussion

The structure of a STRING is very similar to the structure of the TextSeqBody in the last
chapter. As described in the Mesa Language Manual (§6.1), the type LONG STRING is:

LONG STRING: TYPE. LONG POINTER TO StringBody;
StringBody: TYPE. MACHINE DEPENDENT RECORD [

length: CARDINAL,
maxlength: CARDINAL,
text: PACKED ARRAV[O .. O) OF CHARACTER];

The length field of the string is, by convention, the current length of the string in the text
array. The maxlength field specifies the maximum length of the string. This field is read-
only because the size of a string is fixed when it is allocated. 0

The text field is a special form of array, which used to be the primary way for providing
dynamic arrays in Mesa, before SEQUENCEs were added to the language. It declares an array
(as·the last field in a record) to have an undetermined length (indices from [0 .. 0». The
compiler, however, interprets this field as an array with zero length. This has interesting

7-1

7

7-2

Strings

effects on string pointer manipulations in assignment and comparisons, asd.iscussed
below.

7.2.1 Allocating a STRING

There are four ways to allocate a STRING:

• Allocate fixed-sized storage from the local or global frame of a program.

• Assign a string literal to a string variable. String literals are automatically allocated
in the local or global frames of your program.

• Use the NEW operator to allocate storage from a heap.

• Use procedures provided by the String interface (discussed in the Pilot Programmer's
Manual, §7.3) to allocate storage from a heap.

STRINGs are the only Mesa construct that can be allocated by an explicit request for space
from a local or global frame. For example, the following declares a variable string and
allocates space for up to 256 characters from the same local or global frame as the
statement itself:

string: LONG STRING +- [256];

Sometimes, however, you may want to use known text as a string, for example, to print a
message, prompt the user for input, or explain how to use the program Mesa provides
string literals for these uses, such as:

globalString: LONG STRING +- "Hi There";
localString: LONG STRING +- "Hi There"l;

Both of these strings are initialized to point to a record whose length and maxlength fields
are 8 and whose text field contains the characters H, i, , T, h, e, r, e. globalString is
allocated out of the program's global frame; local String is allocated from the local frame
(denoted by the suffixed l.)

When a string literal is inappropriate, you will often allocate the string from a heap (or it
will be allocated for you). As a pointer, a STRING is well suited for the NEW and FREE
operators. The following example accomplishes what our first example did, except it gets
its storage from the heap instead of the local or global frame of the program. It declares a
LONG STRING and initializes it to NIL. When space is needed, it uses the NEW operator on the
StringBody type to allocate a space for 256 characters:

stri ng: LONG STRING +- NIL;

string Eo- Heap.systemZone-.NEw[StringBody[256]];

To deallocate the string, you use the FREE operation:

Heap.systemZone.FREE[@string];

Because strings are very common in Mesa programs, there is a system interface (called
String) that implements primitive string operations such as allocating, copying, and

Mesa Course 7

comparing strings. The MakeString and FreeString procedures in this interface work
much like NEW and FREE for allocating and de allocating a string.

String.MakeString takes two parameters: the heap from which the node is to be allocated,
and the maximum size of the string:

String.MakeString: PROCEDURE[Z: UNCOUNTED ZONE. maxlength: CARDINAL];

To allocate a string of the same size and from the same heap as the last example, you could
code:

string: LONG STRING +-NIL;

string +-String.MakeString[z: Heap.SystemZone. maxlength: 256];

String.FreeString takes as its arguments the heap from which the string was allocated and
a pointer to the string. It frees the space pointed to by the string and sets the string to NIL:

String.FreeString[z: Heap.systemZone. s: string];

7.2.2 Caveats in using strings

Besides the usual pointer considerations, there are a few peculiarities related to the
structure of strings that you should be aware of. The following examples demonstrate
common STRING misuse. Try to figure out the effect of each group (and the error) before
looking at the explanations. .

7.2.2.1 Initializing strings from the current frame

string1. string2: LONG STRING +- [256];

This is analogous to

number: CARDINAL +- 5;
ptrToNumber1. ptrToNumber2: LONG POINTER TO CARDINAL +- @number;

It points both strings to the same 256-character space, which is most likely not what was
intended. To point each string to its own space of256 characters, you would code:

string1: LONG STRING +- [256];
string2: LONG STRING +- [256];

7.2.2.2 Comparing strings

Consider the following attempts to compare string1 and string2:

string1: LONG STRING = "Hi There"L;
string2: LONG STRING = "Hi There"L;

1) IF string1 = string2 THEN ...
2) IF string1 i = string2 i THEN ...
3} IF string1.text = string2. textTHEN ...

All three string comparisons are incorrect. The first compares the value of the pointers,
and not the objects which these pointers reference. This comparison asks if the two

7-3

7 Strings

pointers point to the same object, not if the two objects pomted to ~re equaL For this
example, the result is FALSE, even though the two strings contain the same text.

The second comparison seems like it should work: it compares the objects referenced by the
two pointers. Unfortunately, when the compiler generates code for the comparison, it
treats strings as having text fields with zero length without taking run-time sizes into
account. Since the sizes are zero, the statement only compares the length and maxlength
fields of the two strings (equivalent to string1.1ength • string2.1ength AND
string1.maxlength • string2.maxlength). For this example, the result is TRUE. However,
this comparison does not really compare the two strings.

The final statement fails for the same reason as the second comparison. When the
compiler generates the comparison code, it treats the text field as an empty array (0 .. 0).
The compiler thinks it is comparing two empty objects. (The result of this is left for you to
determine. The value is definitely a constant, but is it TRUE or FALSE?)

To compare two strings properly, you need to compare each element in their arrays. This is
simple to encode, and you may want to try it as a short exercise. However, the String
interface provides String. Equal and String. Compare to perform these primitive STRING
operations; take a look at their descriptions in the String section of the Pilot Programmer's
Manual.

7.2.2.3 Assigning strings

string1: LONG STRING +- [256];
string1 +- "Copy this into the string, pleaseNL;

This set of statements does not, in fact, copy the string literal into the space allocated from
the current frame. The first statement declares the variable string1 and initializes it to
point at a String Body with a 256-character text field. The second statement assigns
string1 to point to a new StringBody, one which contains the literal "Copy this into the
string, please", making the original 256-character text field leaked storage that can no
longer be referenced.

To correctly copy this literal into string1 you could use either AppendString or Copy from
the String interface.

7.2.3 Using the String interface.

The String interface provides routines for doing common string operations: comparing,
appending, copying, and allocating. A number of the appending and copying routines also
involve allocation. You will need to be familiar with these routines to complete the
exercises at the end ofthis chapter.

7.3 Summary

7-4

This chapter has not really presented anything new. All string use involves pointers, and
you have already learned the intricacies of pointer usage. However, STRINGS do cause
problems, often because programmers are used to strings as arrays of characters. Just
remember that in Mesa, the pointer has been put under program control. The structure of
Mesa STRINGs is another potential source of difficulty. Because the text field is seen by the

Mesa Course 7

compiler as having zero length, comparisons among StringBodies are not as
straightforward as among other pointer objects. However, the String interface supplies
most common string routines, so you will not have to worry about writing them yourself.

7.4 References

Section 6.1 of the Mesa Language Manual briefly describes the record structure of a STRING

and discusses how to declare and use string variables.

Section 7.3 of the Pilot Programmer's Manual describes the String interface, including
many procedures for manipulating STRINGS.

7.5 Exercises

In this exercise, you will modify a line editor that runs in a tool window. The line editor
currently calls several string manipulation procedures defined in the String interface.
These procedures allocate and deallocate strings from a heap, free strings, copy strings,
and replace strings. In addition, the tool implements some more advanced string features
such as substring operations. Your assignment is to implement the same procedures
through another interface called String2. You will write the implementations to this new
interface and bind the modules together into a configuration.

You will need the following modules for this assignment:
EditorOefs.mesa
Editortmpl mesa
EditorTool.mesa
String2.mesa
Editor2.config

Notice that none of the modules currently use String2. You should:

1) Change all String references in the module Editortmpl to String2.

2) Create an implementation module for String2.
(Name it String2Impl.mesa.)

3) Move the procedure InsertString from the module Editorlmpl to String2lmpl.mesa.

4) Change all I nsertString references to String2.1nsertString.

5) Write implementations for the procedures listed in String2.

6) Change the configuration Editor2.config to reflect the new program modules.

All of the procedures in String2 are taken directly from the Pilot String interface. You
should take a look at the String documentation in the Pilot Programmer's Manual to get
an idea of what each ofthese procedures is supposed to do.

This might also be a good time for you to familiarize yourself with a tool called
DebugHeap. This tool allows you to check for storage leaks in your programs. To find out
how to use this tool, check your XDE User's Guide.

7-5

7 Strings

Notes:

7-6

8

Signals

Signals are a software interrupt facility used when exceptional conditions occur during
the execution of a program. Mesa's signal mechanism is more flexible and powerful than
the exception handling facilities provided by most other languages or systems.

This chapter provides several examples that illustrate how to suspend program execution
to handle an exception, how to provide code to handle the exception, and how to continue
program execution afterwards. At the end of the chapter, you will apply your
understanding of signals to write a program that both generates and handles signals.

8.1 Definition of terms

Exception

Signal

Error

CatchPhrase

Signaller

Call Stack

An exception is an unusual event that programs must be prepared to
handle, such as end-of-file or an invalid input.

A signal is a Mesa language construct used to help handle exceptional
conditions encountered during program execution. Signals are like
procedures except that the code to be executed for a signal call is
determined at run-time.

An error is a Mesa language construct similar to a signal, except that
program execution can be resumed after a signal, but not after an
error. The word "signal" is used to refer to both signals and errors,
except where explicitly noted.

A catch phrase is a Mesa construct that establishes code to catch one or
more signals. The catch phrase contains the code to be executed when
the exception occurs.

The Signaller is the program that receives control when a signal is
raised, attempts to find an associated catch phrase, and executes the
code in the catch phrase.

The call stack is a Mesa processor data structure containing a frame for
each procedure invocation that has not yet returned. The call stack is
ordered by most recent invocation, and is referred to as growing

8-1

8 Signals

Raise

Reject

Resume

Continue

Retry

Goto,Exit,
Loop

Unwind

downward. Therefore, going "up" the call stack means going from the
most recently called procedure record toward the oldest.

To raise a signal is to instruct the Signaller to look in each procedure
on the call stack until it finds a procedure with a catch phrase for that
signal. The Signaller searches up the call stack.

A catch phrase rejects a signal when it is not prepared to handle it (the
Signaller continues searching up the call stack for another catch
phrase for the same signal). A catch phrase rejects a signal either by
explicitly placing a REJECT statement in the code or by not specifying
how to resolve the signal.

To resume a signal is to tell the Signaller to resume program execution
immediately after the statement that raised the signal. As when
returning from a procedure call, any values returned by the signal are
passed back to the statement that raised the signal. An ERROR cannot
be resumed.

To continue a signal is to tell the Signaller to resume program
execution at the statement following the one to which the catch phrase
belongs. Thus, control is resumed in the procedure where the signal
was caught, not the procedure that raised the signal.

To retry a signal is to tell the Signaller to re-execute the statement to
which the catch phrase belongs.

These are Mesa statements that can be used, in addition to REJECT,

RESUME, CONTINUE, and RETRY to indicate where execution is to occur
after the signal handling mechanism is finished.

Unwind is a special signal raised by the Signaller to allow procedures
about to be deleted from the call stack to clean up their data structures
(e.g. deallocate storage and close files). When there is an unconditional
branch out of the catch phrase (GOTO, EXIT, LOOP, CONTINUE, RETRY) the
Signaller raises the unwind signal at the point where the original
signal was raised.

8.2 Discussion

8-2

Generally speaking, there are two methods for detecting an event at which you are not
present. You can continuously poll an observer or participant of the event, or you can have
the observer or participant notify you. If the event you are checking for is reasonably
predictable and you have. time, polling may be convenient. However, if the event is
unlikely to occur or happens intermittently, notification may be more convenient. The
choice of method always involves a trade-off between the inefficiency of polling when
nothing has happened and the inconvenience of being interrupted for notification.

Most computer languages do not implement a notification system for errors or exceptions.
Since computers execute so quickly, the inefficiency of polling can often be tolerated,
particularly when compared with the expense of providing a notification capability.

Mesa Course 8

However, there are cases, such as device time-out, when notification is an easier, more
logical, and more efficient way to communicate the information that an exception has
occurred. For example, while you are transferring files from a file server, it is a rare event
for the connection to time out, and notification is preferable to polling. Mesa provides the
signal facility for cases such as this.

Signals also make it easier for someone who is reading a program to see the exceptions
that are being handled and to identify the code that handles them. A signal always
indicates the occurrence of a rare event. Status polling doesn't have this feature: since it is
usually implemented by boolean checking, it is not always obvious which of the two is the
rare case.

8.2.1 How signals work

The declaration of a signal is similar to that of a procedure: there may be a parameter list
and a returns list. But instead of being initialized to an actual body of code, a signal is
initialized by the symbol CODE. Here's a sample signal declaration:

StringBoundsFault: SIGNAL[S: LONG STRING]
RETURNS [ns: LONG STRING] :II CODE;

A signal is raised when a SIGNAL (or ERROR) statement is executed, as in:

SIGNAL StringBoundsFault [string];

The body of code to be executed for a signal is determined at run-time (dynamic binding).
When a signal is raised, normal execution is suspended and control is passed to the
Signaller, which is part of Mesa's run-time support. It is the Signaller'S responsibility to
find and execute the bodies of code to handle the signal.

These bodies of code are called catch phrases. Each catch phrase can have code for one or
more signals, in a structure similar to a SELECT statement. For example:

StringBoundsFault :II >
BEGIN
ns ~ AllocNewString [s: length + 10];
CopyString [from: s, to: ns];
DeallocateString [5];
RESUME [n5];
END;

String2 :II> BEGIN ... END;

A catch phrase can occur in one of two places: explicitly on a procedure call (denoted by
"!"), or after the word ENABLE in a BEGIN-END block. A !-defined catch phrase will catch a
signal raised while the called procedure is executing, or while procedures called by that
procedure are executing. An ENABLE-defined catch phrase does the same thing for every
procedure call in the surrounding BEGIN-END block, and in addition will catch any signal
raised directly in the BEGIN-END block. In the code fragment below, Signal1 would be caught
only if it is raised while Procedure1 is executing. Signal2, on the other hand, would be
caught if it is raised through Procedure1, through another procedure call in the block, or
directly, as in the SIGNAL Signal2 statement.

8-3

8

84

Signals

BEGIN
ENABLE Signal2 = > BEGIN ... END;

Procedure1[.•. !SignaI1 :I> BEGIN ... END];
SIGNAL Signal2;

END;

Catch phrases form a dynamic list that is ordered by the call stack, and by BEGIN-END blocks
within each procedure call. In the example above, the catch phrase for Signal1 in the call
to Procedure1 is nested below the ENABLE-defined catch phrase for Signal2. These two catch
phrases are followed by any ENABLE-defined catch phrases in enclosing BEGIN·END blocks and
then any catch phrase on the procedure one higher on the call stack, etc. This list of catch
phrases is terminated at the root of the call stack, where there is an implicit catch phrase
that catches any signal that has not been otherwise dealt with and raises the error
UncaughtSignal.

When a signal is raised, the Signaller goes up the program's call stack looking in the BEGIN
END blocks of each procedure on the stack for a catch phrase that recognizes the signal.
When an appropriate catch phrase is found, the Signaller executes a call to it. The
parameters (if any) are passed and the catch phrase is entered. As with procedures, the
signal's parameters can be referenced inside the body of the catch phrase. (The signal's
parameters have precedence over any other symbols of the same name. Within a
StringBoundsFault catch phrase, for example, sand nsrefer to the signal's parameters.)

After the catch phrase is entered one of three things can happen:

• Resume A RESUME statement tells the Signaller to conclude processing of this
signal and resume execution of the program at the point where the signal was
raised. Its syntax is just like RETURN, and the signal can return values if it is
defined that way. RESUME is not legal ifthe signal is an ERROR.

• Exit EXIT, CONTINUE, RETRY, LOOP, and GOTO are the statements used to
conclude processing a signal by jumping to a point outside the catch phrase.
When a jump occurs, the Signaller raises the special signal UNWIND to inform
procedures more deeply nested on the call stack that they are about to be
deleted. (UNWIND is discussed in §8.2.5.)

• Reject This tells the Signaller to continue processing this signal and to pass
it to the next higher catch phrase. There are three ways that a catch phrase can
reject a signal: explicitly (with a REJECT statement), implicitly (by not catching
the signal), or by first catching the signal, and then "falling off the end" without
executing a RESUME, EXIT, CONTINUE, RETRY, LOOP, or .GOTO.

8.2.2 Resume

After handling an exception, it's possible to return to the code that raised the signal. This
is desirable if the code executed in the catch phrase has eliminated the source of the
exception.

For example,

Mesa Course

Node: TYPE. RECORD{
index: CARDINAL,
sequence: SEQUENCE length: CARDINAL OF SeqType);

PtrToNode: TYPE • LONG POINTER TO Node;
seq: PtrToNode;

GrowSequence: PROCEDURE (seqNeedsLengthening: PtrToNode]
RETURNs(lengthenedSeq: Ptr ToNode]. { ... };

8

--lfseqNeedslengthening is NILthen GrowSequence allocates a new sequence and
--returns a pointer, lengthenedSeq, to it. Otherwise, GrowSequence allocates a
--new sequence longer than seqNeedsLengthening.length, copies the data from
-- seqNeedsLengthening t to lengthenedSeq t, frees seqNeedsLengthening t,
--and returns a pointer, lengthenedSeq, to the new sequence.

InsertNode: PROCEDURE [object: SeqType] •
BEGIN

IF (seq • NIL) OR (seq.index • seq. length) THEN seq Eo- GrowSequence[seq);
seq[seq.index) Eo- object;
seq.index Eo- seq. index + 1;

ProcessNextObject PROCEDURE(object: SeqType];
BEGIN

IF DuplicateObject[object) THEN TakeAppropriateAction
ELSE I nsertNode(obj ect];

END;

If the sequence is full, InsertNode calls GrowSequence[seq] to lengthen the sequence. It
would improve modularity if InsertNode knew only how to add data to the sequence, and
did not attempt to handle the exception. Instead, when the sequence is full, InsertNode
would raise a signal to inform a catch phrase on the call stack (presumably one that knows
how to grow the sequence) to take care of the problem. Once the sequence has been
lengthened, the signal can be RESUMEd, returning control to InsertNode, which can then
continue to add data to the sequence.

Call Stack

Code to allocate and deallocate
storage

Catch phrase to allocate and
deallocate node

...

InsertNode (Raises a signal if
node allocation is required)

Figure 8.1

8-5

8

8-6

Signals

Figure 8.1 illustrates this scheme. It shows a box for a procedure that knows how to
allocate and deallocate storage, and, lower on the stack, a box for the procedure
InsertNode, which communicates with the previous procedure by raising a signal when it
is necessary to allocate a new node.

Let's look at how to add the appropriate signal-raising and signal-handling code to the
above fragment to accomplish this design.

First, we declare the following signal:

SequenceBoundsFault: SIGNAL[oldSeq: PtrToNode]
RETURNS [newSeq: PtrToNode) • CODE;

We want to raise this signal when the sequence needs more space. This can occur either
when the sequence needs to be initialized for the first time, or when the sequence needs to
be extended beyond its present boundaries. We have modified InsertNode as follows:

InsertNode: PROCEDURE [object: SeqType) •
BEGIN

IF seq • NIL THEN seq ... SIGNAL SequenceBoundsFault[seq); --raise signal
UNTIL seq.index < seq.length DO

seq ... SIGNAL SequenceBoundsFault[seq]; --raise signal
ENDLOOP;
seq[seq.index) ... object;
seq.index ... seq.index + 1;

END;

The first line of code checks to see if the sequence is NIL. If it is, it raises Sequence
BoundsFault, passing seq as the sequence to be extended. When the signal is raised,
normal program execution is suspended. The Signaller takes over and begins to examine
catch phrases on the call stack. An appropriate one is found in the call to InsertNode in the
revised ProcessNextObject:

ProcessNextObject PROCEDURE[object: SeqType);
BEGIN

IF DuplicateObject(object) THEN TakeAppropriateAction
ELSE InsertNode[object! SequenceBoundsFault • > --catch signal

RESUME[GrowSequence[oldSeq]]];
END;

The body of the catch phrase is dynamically bound to the signal call and is executed after
passing in the parameter, oldSeq. of SequenceBoundsFault. This catch phrase only
contains one line of code, the RESUME statement, which calls GrowSequence[oldSeq}.
GrowSequence takes oldSeq, allocates a larger one (copying the data from oldSeq f), and
returns the new sequence. The signal is then resumed, which passes control back to
InsertNode, in the statement that raised the signal. At this point, seq is assigned the
newly allocated sequence returned by the RESUME. InsertNode now has a freshly allocated
sequence into which it can insert data.

The UNTIL loop handles the case of no space for new data in the existing sequence
SequenceBoundsFault works in the same way as just described. (The raising of the signal
appears in a loop for robustness, in case the catch phrase does not allocate enough new
space to cover InsertNode's needs in a single call. The copying operation described above is

Mesa Course 8

performed each time the signal SequenceBoundsFault is raised in the UNTil loop of
InsertNode.)

Figure 8.2 shows the state of the call stack when a full sequence is encountered.
ProcessNextObject has called InsertNode, which has raised SequenceBoundsFault(seq] to
signify the need for a larger sequence. This resulted in a run-time system call to the
Signaller, which created a call to the catch phrase for SequenceBoundsFault (labelled
CatchFrame: ProcessNextObject in the figure). The catch phrase has then called
GrowSequence, which will allocate a new sequence and deallocate the old one. When
GrowSequence returns, the catch phrase will execute a RESUME, and return the longer

. sequence to InsertNode.

Call Stack

ProcessNextObject

InsertNode
(Raises SequenceBoundsFault)

Signaller (One or more procedures)

CatchFrame: ProcessNextObject

GrowSequence

Figure 8.2

Signals do not automatically return after execution of a catch phrase; you must indicate
where control is to continue if you do not want the Signaller to continue up the call stack
looking for catch phrases. In this case we wanted to return to the point where the signal
was raised, so we used RESUME. Allowing a signal to "fall off the end" of a catch phrase, is
not a RESUME, but rather an implicit REJECT.

8.2.3 Retry and continue

There are times when an unsuccessful action raises a signal and it is appropriate to repeat
the action until it is successful. For instance, if the File Tool is unable to open a connection
to a specified service on the first try, you might want it to keep trying until it was
successful or until you told it to stop. RetryExample provides an example of this. Run the
program by typing RetryExample in the Executive, followed by the name of a server.
(You should move the program to the Tajo volume via Command Central, etc.) The
program simulates a failure to open a connection to the specified server. (Notice the
message to that effect.) On the second attempt the simulated connection is made.

Take a look at the source listing to see how this retry was accomplished.
RetryExamplelmpl primarily consists of one procedure, RetryProc, which gets the server
name from the user's input and then tries to open a connection. Inside OpenConnection

8-7

8

8-8

Signals

the signal TimeOut can be raised if the connection is not established within a certain time
period. This signal is defined in the SignalsDefs interface as

TimeOut: ERROR;

OpenConnection has been rigged for this example to raise the signal TimeOut the first
time it is called. We catch this signal in the call to OpenConnection, print a message to
the user to explain the problem and RETRY. This causes the program to make the procedure
call to OpenConnection again. The second call succeeds and we post a message indicating
the open connection. Figure 8.3 shows the situation after the signal is caught.

Call Stack

RetryProc

OpenConnection
(Raises Timeout)

Signaller (One or more
procedures)

CatchFrame:
OpenConnection

Figure 8.3

When the catch phrase executes the RETRY, there is ajump to the beginning of the statement
that contains the catch phrase, in this case, the call to OpenConnection:

OpenConnection[server! Timeout = > BEGIN ... RETRY END]

When an ENABLE clause is used to define the catch phrase, the BEGIN·END block surrounding
the ENABLE clause is the "statement that contains the catch phrase." For example, if
RetryProc had been coded this way:

BEGIN

ENABLE Timeout = > BEGIN ... RETRY END;

OpenConnection[server] ;
END;

then the RETRY would jump to the beginning of the outermost BEGIN-END block.

CONTINUE is similar to RETRY, except that the jump is to the statement following the one that
contains the catch phrase, or for an ENABLE clause, the statement following the BEGIN-END

block surrounding the clause. CONTINUE is used when the catch phrase determines that it is
desirable to skip the signal-raising statement rather than retry it.

Mesa Course 8

8.2.4 Exit. loop and goto

The Mesa statements EXIT, LOOP, and GOTO can be used within a catch phrase just as they
are used in BEGIN-END blocks and loops. These statements are legal within a catch phrase
whenever the catch phrase is enclosed within a loop or BEGIN-END block in which they would
normally be legal.

As an example, consider a program fragment that reads data from a file and inserts it into
a linked list in sorted order. (We use the system interface Stream, discussed later in the
course, to read the file. Stream raises the signal Stream. EndOfStream at end of file.)

DIRECTORY

Heap USING [Create, Deletel,
MStream USING [Handle, •.•],
Stream USING [EndOfStream, GetWord, ... 1,

.. -,

ExitExample: PROGRAM

IMPORTS Heap, MStream, Stream, ... =
BEGIN

--TYPES
Node: TYPE =- RECORD(

data: CARDINAL +- 0,
nextNode: PtrToNode +- NIL];

PtrToNode: TYPE. LONG POINTER TO Node;
ptrToPtrToNode: TYPE. LONG POINTER TO ptrToNode;

--Variables
z: UNCOUNTED ZONE +-NIL;
head Of List: ptrToNode +- NIL;

--Heap allocation I deallocation procedures
CreateStorageArea: PROCEDURE = BEGIN Z +- Heap.Create(initial: 20); END;

DestroyStorageArea: PROCECURE = { ... };

MakeNode: PROCEDuRE(nextNode: ptrToNode]
RETuRNs(nodePtr: PtrToNodel .= { ... };

FreeOneNode: PROCEDuRE[freeThisNode: ptrToPtrToNode]

RETuRNs[nodePtr: ptrToNode] = { ... };
FreeAIiNodes: PROCEDURE =
BEGIN

tempNodePtr: PtrToNode +- headOfList;
UNTIL tempNodeptr = NIL DO

tempNodePtr +- FreeOneNode[@tempNodePtr];
ENDLOOP;

headOfList +- NIL;
END;

8-9

8

8-10

Signals

--File Management Procedures
OpenDataFile: PROCEDURE (fileName: LONG STRING)

RETURNS[sh: MStream.Handle] = { ... };
CloseDataFile: PROCEDURE(sh: MStream.HandleJ

RETURNs[default: MStream.Handle +-NIL] == { ... };

GetNextData: PROCEDURE{sn: MStream.Handle]
RETURNs{n: CARDINALI =
BEGIN

RETURN[Stream.GetWord[shJ]; --raises Stream.EndOfStream
END; -- at "end of file"

--Linked List Management
ProcessData: PROCEDURE =

BEGIN
insertHere: PtrToPtrToNode +- NIL;
sh: MStream.Handle +- OpenDataFile[MyFile];
n: CARDINAL +- 0;
DO

n +- GetNextData[sh! Stream.EndOfStream = > EXIT];
insertHere +- SearchLinkedList[n];
InsertNode[insertHere. n1;

ENDLOOP;
sh +- CloseDataFile[sn];

END;

SearchLinkedList: PROCEDURE[n: CARDINAL]
RETURNS [insertionPoint: PtrToPtrToNode] ::: { ... };

InsertNode: PROCEDURE[insertionPoint: PtrToPtrToNode. n: CARDINAL] := { ••• };

END.

The loop in Process Data gets the next data item from the file, searches the list to see where
it belongs and inserts it. Execution of the loop ends at the end of the file. The procedure
Stream.GetWord, which is called in GetNextData, raises the signal Stream.EndOfStream
when there is no more data to be transferred. The signal is caught in the call to
GetNextData in ProcessData. The loop is then EXITed and control is transfered to

sn +- CloseDataFile(sh);

which closes the file before returning.

8.2.5 Unwind

A GOTO, EXIT, RETRY, LOOP or CONTINUE statement can cause a jump out of a catch phrase into
the surrounding code. When a jump of this sort occurs, there may be several procedure
calls on the stack below the target of the jump that will be prematurely exited when the
jump is accomplished. (The signal was necessarily raised by the procedure on the bottom of
the call stack, so neither that procedure nor any of the procedures between it and the
procedure with the catch phrase will be completed when the jump is executed.) Since these

Mesa Course 8

procedures may have been in the midst of doing something when the signal was raised,
Mesa provides a facility for them to wrap up any unfinished operations.

Before executing the jump, the Signaller raises a special signal called UNWIND to tell all
catch phrases that had previously rejected the signal that they are about to be removed.
UNWIND propagates along the same path as the original signal: from the BEGIN-END block in
which the original signal was raised to the BEGIN-END block containing the catch phrase
executing the jump. It is the responsibility of each of these blocks to catch UNWIND and
clean up its operations. The Signaller stops UNWIND when it reaches the catch phrase that
is making the jump. The jump is then executed and control returns to the program.

Call Stack

ProcA
(Target of the jump below)

...

ProcB
(Raises a signal)

...

CatchFrame: ProcA
(Does jump into ProcA)

Figure 8.4

In Figure 8.4, ProcB has raised a signal which was caught by a catch phrase in ProcA.
When that catch phrase does a jump, all the procedures below ProcA will be removed from
the call stack and all BEGIN-END blocks within ProcA below the target of the jump will be
exited. All of the catch phrases more deeply nested than the one executing have
(necessarily) rejected the signal, so UNWIND propagates through this set of catch phrases.
Because UNWIND stops after going through the catch phrases that rejected the original
signal, it never results in an uncaught signal.

When doing a GOTO, EXIT, RETRY, LOOP or CONTINUE from a catch phrase, you must be aware
that the UNWIND signal is going to be raised and that you need to clean up any work in
progress in the procedures and BEGIN-END blocks lower on the call stack. If you forget, your
programs may have space leaks from storage that should have been deallocated, or they
may develop strange bugs from things such as files that should have been closed.

As an example, let's modify the previous fragment to allow the user to cancel the operation
of inserting data from MyFile into the linked list. If the user hits the ABORT key (detected

8 11

8

8-12

Signals

by the call to the system interface Userlnput) then the file transfer and insertion operation
will be terminated.

DIRECTORY

Usertnput USING [UserAbort],
FormSW USING[ProcType, ••.),
Put USING[Line, •.•],

.. -,
UnwindExample: PROGRAM

IMPORTS Heap, MStream, Stream, Userlnput, .•• =
BEGIN

--Signal declaration
UserAbort: ERROR. CODE;

CheckForAbort: FormSW.ProcType =
--Later chapters discuss sending text to a tool message subwindow

BEGIN
ENABLE

UserAbort • > BEGIN GOTO abort; END;
Put.Line[PtrToSomeToolsDataStrudure.msgSW, "Processing File "L);
ProcessData[) ;
Put.Line[PtrToSomeToolsDataStrudure.msgSW, " •.. done" L);
EXITS

abort. >Put.Line[PtrToSomeToolsDataStrudure.msgSW, " ., .aborted" L];
END;

Process Data : PROCEDURE =
BEGIN

insertHere: PtrToPtrToNoc:le NIL;
sh: MStream.Handle +- OpenDataFile[MyFile);
n: CARDINAL"" 0;
BEGIN
ENABLE

UNWIND. >
BEGIN

IF sh #: NIL THEN sh CloseDataFile[sh);
IF headOfList # NIL THEN FreeAIINodes;

END;
DO

IF Userlnput.UserAbort[PtrTolnputWindow] THEN ERROR UserAbort;
--If the user has pressed the abort key raise the global signal UserAbort
n GetNextData(sh! Stream.EndOfStream = > EXIT];
insertHere SearchLinkedList(n);
InsertNode{insertHere, n);

ENDLOOP;
sh +- CloseDataFile[sh);
END;

END;

Mesa Course 8

--mainline code

CheckForAbort;

On each pass through the DO loop of ProcessData, we check to see if the user has hit the
ABORT key. If so, the error UserAbort is raised. (See the Style section for a discussion of
when to use ERROR and when to use SIGNAL.)

We catch the signal and print a message to the user that the action has been aborted. Since
this signal has been declared as an ERROR, the catch phrase cannot RESUME. It must remove
Process Data from the stack, but at this point Process Data has an open file and a linked list
filled with nodes allocated from a heap. By providing a catch phrase for UNWIND in
ProcessData, we get the chance to deallocate the nodes in the linked list and close the file
before the procedure is removed. (See the Style section for a discussion on why the ENABLE

clause is in an embedded BEGIN-END block.)

Note: It is common to recognize an exception condition (either by boolean checking or by
catching a signa!), and then raise a signal to pass this information on to a higher level
procedure. This is often done to hide the lower level's implementation from the higher
level's implementation. When debugging an uncaught signal, it is important to remember
to check on the call stack for nested signals. For example, the apparent signal may have
been raised in a catch phrase for some other signal. The root of the problem may be more
apparent from the original signal than the one being debugged.

8.3 Summary

Signals and errors are an alternative to status polling. They are best at handling rare
events, since raising a signal requires fewer checks than status polling within a loop, but
processing a signal (with the Signaller) takes more time than processing a boolean
statement. Using signals also helps the reader of a program to see which exceptions are
being handled and to identify the code that handles them.

Though raising a signal is similar to calling a procedure, there are several differences:

• The code for a signal is dynamically bound to the signal at run-time, whereas the code
for procedures is specified at compile-time.

• Normal execution halts during the processing of a signal, and the Signaller takes
control.

• Execution can proceed at several places after a signal is raised, whereas after a
procedure call execution must proceed after the statement that made the call.

The code for processing a signal is contained in a catch phrase. Catch phrases can occur
either after an ENABLE, or after an ! in a procedure call. Catch phrases after an ENABLE can
catch signals from any procedure calls nested within the BEGIN-END block, but catch phrases
in procedure calls can only catch signals nested within that procedure call.

When the Signaller takes control, it does the following:

8-13

8 Signals

1. Looks up the call stack for a catch phrase that recognizes the signal, starting with the
BEGIN.£ND blocks in the code that raised the signal.

2. Executes any catch phrases found for the signal, branching as indicated in the catch
phrase. If no jump is indicated, it continues looking up the call stack.

3. If it can't find a catch phrase in any of the procedures on the call stack, the signal is
uncaught, and the debugger is called via the special signal UncaughtSignal.

There are several ways to tell the Signaller how to continue execution after a catch phrase.
You can use the Mesa statements GOTO, EXIT, or LOOP, with their normal effects. There are
also several signal-specific jump statements. Doing a RESUME is similar to returning from a
procedure call: control returns to the statement that raised the signal. However, you
cannot RESUME an error. (This is the only difference between signals and errors.) CONTINUE

causes execution to be transferred to the first statement after the one containing the the
catch phrase. RETRY retries the statement that contains the catch phrase. (If the catch
phrase is in an ENABLE clause, then the "containing statement" means the BEGIN-END block
that contains the ENABLE.) REJECT tells the Signaller to continue looking up the call stack for
another catch phrase that recognizes the signal. If you don't specify any jump statement
the catch phrase performs an implicit reject.

GOTO, EXIT, LOOP, CONTINUE, and RETRY each cause a jump into the procedure containing the
catch phrase. This means that the procedure and BEGIN-END blocks below it will be removed
from the call stack. The Signaller generates the special signal UNWIND to allow catch
phrases that have previously rejected the signal to do clean up, such as closing files and
deallocating storage.

8.4 Style

8-14

8.4.1 Scope

The scope of an ENABLE clause places it outside the scope of variables declared in the same
BEGIN-END block, since the ENABLE clause must precede any declarations. (See page 8.5 of the
Mesa Language Manual for a diagram of clause scopes.) To permit the catch phrase in the
ENABLE clause to have access to local variables, the ENABLE clause must be more deeply
nested than the local variables. To accomplish this, declare the ENABLE clause and the
executable statements within an extra BEGIN-END block. The ENABLE clause will then know
about the variables since they are declared in a surrounding block:

BEGIN

Declarations
BEGIN

ENABLE

Statements
END

END

8.4.2 Errors VB. signals

An ERROR is used instead of a signal when a RESUME cannot be handled, since it is illegal to
RESUME an ERROR. You don't want a catch phrase to do a RESUME if you do not want to return
to the procedure that generated the ERROR, either because it would be inappropriate, or

Mesa Course 8

because something catastrophic has happened. In the program UnwindExample, we used
the ERROR UserAbort. We made UserAbort an ERROR since the user wants the procedure to
stop. This is a case where it would be inappropriate to resume execution.

8.4.3 A caution

In the RESUME example in §8.2.2, the catch phrase returned a pointer for use by the RESUMEd
procedure. If some intermediate procedure held the value of the old pointer it would not
have been informed of the new value, and presumably an error situation would arise when
control returned to it. When you code a catch phrase to replace a node out from under a
pointer, make sure that any code that used the old node will use the revised pointer.

8.5 Questions

1) In the following code fragment, to which statement will the CONTINUE branch?

commands +- 0;
BEGIN
ENABLE

AlreadyDone = > CONTINUE;
GetToken[token) ;
DoCommand[token]; -- where AlreadyDone would get raised
commands +- commands + 1;
ResetStatus[] ;

ENO
Write["Commands completed. "L);

In the following code fragments, list the order that the statements labeled <statement n>
will be executed.

2)
Sig1: SIGNAL = CODE;
x: CARDINAL +- 0;

FOR counter: INTEGER IN [1 .. 3) DO
ENABLE

Sig1 • > RETRY;
< statement 1 >
IFcounter = 2THEN

BEGIN
ENABLE

BEGIN
Sig 1 = > < statement 2> ;
UNWIND = > x ~ 1 ;
END;

< statement 3 > ;
IFX = OTHEN

SIGNAL Sig1;
< statement 4> ;
END;

< statement 5 >
ENDLOOP; ...

8-15

8 Signals

3)
Sig1: SIGNAL. CODE;

FOR counter: INTEGER IN [1 .. 2] DO

BEGIN

ENABLE

Sig1 • > LOOP;

< statement 1 > ;
IF counter • 1 THEN

SIGNAL Sig1;
< statement 2> ;
END;

< statement 3> ;
ENDLOOP;

< statement 4> ;

4)

Sig1: SIGNAL. CODE;

FOR counter: INTEGER IN [1 .. 2] DO

BEGIN

ENABLE

Sig1 • > CONTINUE;

< statement 1 > ;
IF counter • 1 THEN

SIGNAL Sig1 ;
< statement 2> ;
END;

< statement 3> ;
ENDLOOP;

< statement 4>;

5)

Sig1: SIGNAL. CODE;

FOR counter: INTEGER IN [1 .. 2) DO

BEGIN

ENABLE

Sig1 • > EXIT;

< statement 1 > ;
IF counter. 1 THEN

SIGNAL Sig1 ;
< statement 2> ;
END;

< statement 3> ;
ENDlOOP;

< statement 4> ;

8-16

Mesa Course 8

6)
Sig1 : SIGNAL. COOE;

FOR counter: INTEGER IN [1 •• 2] DO
ENABLE

Sig1 • > LOOP;
< statement 1 > ;
IF counter = 1 THEN

SIGNAL Sig1 ;
< statement 2> ;
< statement 3> ;

ENDLOOP;
< statement 4> ;

7)
Sig1: SIGNAL. CODE;

FOR counter: INTEGER IN [1 •. 2] DO
ENABLE

Sig1 == > CONTINUE;
< statement 1 >;
IF counter = 1 THEN

SIGNAL Sig1 ;
< statement 2>;
< statement 3>;

ENDLOOP;
< statement 4> ;

8)
Sig1: SIGNAL = CODE;

Proc1:PROCEDURE ==

BEGIN
SIGNAL Sig1;

END;

IF TRUE THEN
BEGIN
ENABLE

Sig1 == > RESUME;
<statement 1 >;
Proc1[!Sig1 = > CONTINUE];
< statement 2> ;
Proc1;
< statement 3> ;
ENO;

< statement 4> ;

8-17

8

8-18

9)

Signals

Sig1: SIGNAL = CODE;

BEGIN

ENABLE

Sig1 = > RESUME;

< statement 1 > ;
IF TRUE THEN

BEGIN

ENABLE

Sig1 = > GOTO TheEnd:
< statement 2> ;
SIGNAL Sig1 ;
< statement 3> ;
EXITS

TheEnd = > <statement 4>;
< statement 5> ;
EXITS

TheEnd = > < statement 6> ;
END;

10) In the following pseudo-Mesa code, what happens when the call Proc1 [0] is made? (Assume
that catch-cases 4 and 7 reject Sig1.) Which catch-cases are executed, and in what order?

Proc1: PROC [x: CARDINAL] =
BEGIN -- block A
ENABLE { -- Catch phrase-1

Sig1 :I > GOTO punt; - Catch-case-1
Sig2 :I> <Catch-case-2>;
UNWIND :I> <Catch-case-3>};

Stmt1;
Stmt2;

BEGIN -- block B
ENABLE -- Catch phrase-2

Sig1 :I > < Catch-case-4 > ;
Stmt3;
Stmt4;
OtherProclx ! -- Catch phrase-3

Sig2 =- > < Catch-case-5 > ;
UNWIND =- > < Catch-case-6 >];

END; .- block B, and scope of Catch phrase-2
Stmt5;
EXITS

punt = > Stmt6;
END; -- Proct, and scope of Catch phrase-1

OtherProc: PROC [x: CARDINAL] = {stiliOtherProc[x! _e Catch phrase-4
Sig1 = > <Catch-case-7>;
Sig2 = > < Catch-case-8 > ;
UNWIND:: > <Catch-case-9>]};

Mesa Course

StiliOtherProc: PROC [x: CARDINAL] = {
IF x = 0 THEN ERROR Sig1 ELSE ERROR Sig2};

11) In the program below, what value does b get?

Question3: PROGRAM.

8.6 Exercise

BEGIN

Sig: SIGNAL [c1: CARDINAL] RETURNS [c2: CARDINAL] • CODE;

Proc: PROCEDURE [c1, c2: CARD] RETURNS [BOOLEAN] =
BEGIN

ENABLE Sig • > {c2~ c1; RESUME];

If c2 # c1 THEN c2 ~ SIGNAL Sig[c2];
RETURN [c1 = c2]

END;

c1, c2: CARDINAL;

b: BOOLEAN;

--Mainline code
b ~ Proc[1 ,2];

END.

8

In this programming assignment, you will alter a program that has been written to play
the game of blackjack. The user initially specifies the number of games the program will
play with itself. There will only be 2 players in the game: the dealer and the player. When
the user clicks Start!, the program will play out all of the games; the player's winnings
will be output to a file sub-window when all of the games are finished:

Start! GaJles=10000

Your total winnings are -1

Your total winnings are 25

Your total winnings are -150

8-19

8

8-20 .

Signals

In this game of blackjack, the player bets 1 dollar on every hand. If he getsblaekjaek(a
total of 21 in exactly two cards), then he wins 2 dollars. If the dealer gets blackjack, the
player loses. If the game continues, the player receives hits (additional cards) according a
conservative strategy based on his hand, and the dealer's face card. If he busts (exceeds
21), he loses. Otherwise, the dealer receives hits until his total is a hard 17 (a hand in
which an ace is counted as 1 rather than 11) or above. If the dealer busts, the player wins 1
dollar. Finally, if the game has reached this stage, the 2 hands are compared. The players
wins 1 dollar if his hand is greater; his winnings remain the same if the hands tie; and he
loses if the dealer's hand is greater. There is no double-down, splitting, or insurance in this
version of blackjack.

When the user invokes Start!, the following procedure in the implementation module is
called:

Mesa Course 8

PlayBlackJack: PUBLIC PROCEDURE(Output: Window.Handle ~ NIL. gamesToBePlayed:
CARDINAL ~ 0) =

-This procedure will play Blackjack as many times as specified in gamesToBePlayed.
-After the games have been played, results are written out to the window handle
-output.

BEGIN
playerTotal: CARDINAL;
dealerTotal: CARDINAL;
playerHasAce: BOOLEAN;
dealerHasAce: BOOLEAN;
dealerHole: CardType;.
dealerFace: CardType;
winnings: INTEGER ~ 0;

THROUGH [1 .. gamesToBePlayed] DO
IntializeDeckForNewGame;
[playerTotal,dealerTotal,playerHasAce,dealerHasAce,dealerHole,dealerFace] ~

Deal£];
IF playerHasAce AND (playerTotal • 11) THEN

BEGIN
winnings ~ winnings + 2; -Player has Blackjack
LOOP;
END;

IFdealerHasAce AND (dealerTotal = 11) THEN
BEGIN
winnings ~ winnings· 1; --Dealer has Blackjack
LOOP;
END;

[playerTotal] ~ HitPlayer[playerHasAce, playerTotal, dealerFace];
IF playerTotal > 21 THEN

BEGIN
winnings ~ winnings. 1; --Player busted
LOOP;
END;

dealerTotal ~ HitDealer(dealerHasAce, dealerTotal];
IF dealerTotal > 21 THEN

BEGIN
winnings ~ winnings + 1; --Dealer busted
LOOP;
END;

SELECT playerTotal FROM
< dealerTotal = > winnings ~ winnings· 1;
> dealerTotal = > winnings ~ winnings + 1;
ENDCASE = > NULL; •• Push

ENDLOOP;
Put.CR(output];
Put.Text[output,"Yourtotal winnings are "L];
Put.LongDecimal[output, winnings];
Put.CR[output];
ENO;

8-21

8 Signals

The procedures Deal,HitPlayer, and HitDealer all call the following procedure when
they need a card:

NewCard: PROCEDURE RETURNS [card: CardType) •
- This procedure returns the next card in the deck. If at any point, the last card in
- the deck is used, the non-used cards in the deck are shuffled, and play continues
-where it left off
BEGIN
If freeCard • 53 THEN

[deck, firstCard, freeCard] Shuffled[deck, firstCard);
card deck[freeCard];
freeCard freeCard + 1;
RETURN;

END;

In the procedure NewCard, deck is an array of 52 records with each record representing
one card. Dealing is accomplished by stepping through the deck one card at a time. At any
point during a game of blackjack, firstCard is an index indicating the first card that was
dealt for that hand. freeCard is an index indicating the top card on the remaining deck
(the next card to be dealt). Thus, when freeCard is 53, deck, tirstCard, and freeCard
are reinitialized by calling the procedure Shuffled. which makes sure that the cards on
the table are not included in the shuffle. To complete this assignment, you don't have to
know how Shuffled works, just that it does the right thing when passed the right
arguments.

Currently, if the dealer runs out of cards at any point in the game, the cards are in use are
shuflled, and the game continues where it left off. So if only 1 card remains in the deck,
that card will be dealt, the rest of the deck will be shuffled, and the dealing will continue.

Modify this program (using a signal) so that if the dealer runs out of cards while dealing
the initial hand (the first 4 cards), that game is started over with a shuflled full deck of 52
cards. If the dealer runs out of cards while hitting the player, the unused cards in the deck
should be shuffled, and the game continued where it had paused (as before). If the dealer
runs out of cards while hitting himself, then the dealer loses the game and the next game
is started with a shuffied full deck of 52 cards. The file that you will be altering is
Blackjacklmpl.mesa. Other files you will need are BlackjackDefs.mesa,
BlackjackControL mesa, and Blackjack.contig. Once you have the new version of
BlackjackImpl.mesa. answer the following questions:

1. Briefly describe how you could have completed the the assignment without using a
signal.

2. Signals could have been used to indicate DealerBlackjack, DealerBusted, ... From an
efficiency point of view, why isn't this a good idea?

8.7 References

8-22

Chapter 8 of the Mesa Language Manual describes the syntax of signals and some reasons
for using them.

Section 4 of Mesa: A Designer's User Perspective gives some background information on
signals.

9

Variant records

Programmers often find it convenient to aggregate information of different types. For
example, suppose you want a data base of statistics for individual softball players. For
each player, you want to know things like name (LONG STRING), position (enumerated TYPE),

times at bat (INTEGER), hits (INTEGER), etc. When the information is the same for all players,
you can use the Mesa RECORD type to group the data for each player. However, some players
have additional pieces of information that are relevant only to the position they play. For
example, if a player is a pitcher, you want to keep track of the number of walks given up,
and the number of strikeouts pitched, in addition to the common information that you
keep track of for all players. Or, if a player is an infielder, you might want to know the
number of errors committed. In cases where members of a class have information that is
relevant only to their subclass, you should use the variant RECORD construct.

In this chapter, we discuss how to declare variant RECORD types, how to declare, allocate
and initialize variant RECORD variables, how to use constructors to assign values to variant
RECORDS, and how to access the fields of variant RECORDS.

9.1 Definition of terms

adjective

tag

discrimination

9.2 Discussion

An adjective is an identifier constant from an enumerated TYPE used to
select one of the alternatives in a variant RECORD template.

The tag is a field of a variant RECORD; tag is used to select one of the
alternative "arms" of the variant part by matching one of the
adjectives.

A discrimination statement provides access to the fields in the variant
part of a variant RECORD variable, based on the value of the tag.

9.2.1 Declaring variant RECORDS

There are basically two parts to declaring a record variable. Step one is to declare a TYPE

that provides a "template" - that is, the TYPE declaration shows all the fields that a
variable of that TYPE will have Step two is to declare variables of the newly defined RECORD

9-1

9

9-2

Variant Records

type. Variant RECORDs are done the same way. The only difference is that the TYPE

declaration must show the fields for all possible alternative variants ofthe TYPE.

It is worth taking some time to study the syntax of variant RECORDS to make your use of
them less error-prone. We declare the TYPE as follows:

identifier: TYPE • RecordTC

The syntax for RecordTC is shown in Fig. 9.1. Refer to it as you read this discussion.

RecordTC
MachineDependent

CommonPart

Access

TagType
VariantList
Variant

N amedFieldList

:: = Machine Dependent RECORD [V ariantFie IdList]
:: = empty I MACHINE DEPENDENT

.. - empty I
N amedFieldList ,

.. - empty I
PUBLIC I
PRIVATE

TypeSpecmcation I *
Variant I VariantList Variant
IdList =* [VariantFieldList] , I
IdList =* []

IdList : Access TypeSpecification DefaultOption I
NamedFieldList, idList: Access TypeSpecification
Defaul tOption

Figure 9.1 RecordTC Syntax

Obviously, the syntax presents a lot of possibilities for declaring a variant RECORD type.
The main things to notice are the syntax for the variant field list, for the variant part and

Mesa Course 9

for the tag within the variant part. If a RECORD has a common part and a variant part, there
will be an identifier for the variant part and a second identifier for the tag.

Let's look at a simple example. There is a variant RECORD type declared in the program
Softball Data Too I. (You should retrieve the files SoftballOataTool.mesa and
SoftballOataTool. bed from the course directory, if you don't already have them on
your local disk.) This program is designed to solve the problem of keeping track of
information for people on a softball team. Let's look first at the TYPE declarations.

The declaration for SoftballPlayerData is a variant RECORD:

SoftballPlayerData: TYPE. RECORD[

name: LONG STRING .- NIL,

timesAtBat: INTEGER .-0,
hits: INTEGER .- 0,
otherlnfo: SELECT position: Position FROM

outfielder • > (
bestPosition: OutfieldPosition,
errors: INTEGER'- OJ,

infielder • > [
bestPosition: InfieldPosition,
doublePlays: INTEGER .- 0,
errors: INTEGER .- 0],

pitcher. > [strikeouts, walks: INTEGER'- 0),
catcher. > n,

ENDCASE1;

The fields in the common part include name, timesAtBat and hits. We want these three
pieces of information about every player. Notice that the syntax requires that you declare
all fields of the common part before you declare the variant part. The identifier for the
variant part, otherlnfo, comes just after the fields for the common part.

Each player has a position, which is the tag identifier. The TYPE of this field is enumerated:
Position: TYPE = {outfielder, infielder, pitcher, catcher};. The constants of the
enumerated TYPE are used as adjectives in the variant part of the variant RECORD. In our
example, the value of position for any given player may be either outfielder, infielder,
pitcher, or catcher. The remaining fields in the RECORD representing any individual player
will depend on the value in the tag field. If a player's position is outfielder, for example,
the RECORO representing that player will have two fields (bestPosition and errors) in
addition to the fields in the common part of the RECORD. So, a RECORD representing an
outfielder has a total of five fields, while the RECORD of an infielder has a total of six fields.
Notice that a catcher's RECORD only has three fields, because

catcher ~ []

is the way to express the fact that this variant has no additional fields.

This is a relatively simple example. The syntax for RECORD types provides many
possibilities, such as bound variant types, implicit tags and computed tags.

9.2.2 Allocation of variant RECORDS

Now that we have declared a variant RECORD type, we can declare variables of that TYPE.

You declare and initialize variant RECORD variables in the usual way. For example, notice

9-3

9

9-4

Variant Records

noPlayer: SoftbaliPlayerOata +- [NIL, 0, 0, catcher[]];

in SoftballDataTool. mesa. This is the declaration and initialization of a variant
RECORD variable. You may be wondering how the Compiler can allocate space for a variable
whose size may change during the course of execution of the program; after all, we may
assign some other variant to noPlayer at some point. The answer is that when a variable is
declared to be of TYPE SoftballPIayerData, the Compiler allocates enough space for the
largest variant.

This program also illustrates allocation from a heap. Instead, the space for the dataSeq is
dynamically allocated from the system heap by the following statement:

IF dataPtr = NIL THEN
dataPtr +- Heap.systemZone.NEw[Oata{numberOfPlayers));

in the procedure C1ientTransition. Here the run-time system allocates enough space for
each member of the sequence to hold the largest possible variant.

9.2.3 Initialization of and assignment to variant RECORD variables

Variant RECORDS are initialized and assigned values like regular RECORDS, except that you
must supply appropriate information about the variant part. Here's a helpful way to look
at variant record initialization: the variant part is another, embedded record, whose type
is determined by the tag, and the syntax for constructing this embedded record is exactly
the same as for a regular record.

The RECORD constructor that you use to initialize a variant RECORD variable must specify a
value for the tag field, and values for the appropriate fields for that variant. In the above
example, the value catcher is assigned to the tag field of noPlayer. Recall that the catcher
variant had no additional fields, so no additional values are given in the above
constructor. We see other examples of initialization of variant RECORD variables in the
procedure InitOataBase. For example

dataPtr(O] +- [String.CopyToNewString[s: "Ralph"L, z: Heap.systemZone].
140,128. pitcher[133, 1]];

assigns "Ralph" to the name field, 140 to the timesAtBat field, and 128 to the hits field of
the RECORD. The position field is assigned the value pitcher, 133 is assigned to the
strikeouts field in the variant part, and 1 is assigned to the walks field of the variant part
of the R.ECORD.

An alternate way of stating this assignment is:

dataPtr[O] +- SoftbaliPlayerOata[
name: String.copyToNewString[s: "Ralph"L. z: Heap.systernZone],
timesAtBat: 140,
hits: 128,
otherlnfo: pitcher[

strikeOuts: 133,
walks: 1]];

9.2.4 Accessing the fields of a variant RECORD variable

Finally, now that we ha ve declared a variant RECORD type and variant RECORD variables, we
are ready to use these \ ariables. A typical situation is when a procedure accepts a

Mesa Course 9

parameter that is of some variant RECORt) type, and processes the information contained in
the RECORD variable. For example, take a look at the procedure DisplayData. This
procedure displays the information about each player in the data base in the tool's
message subwindow. Notice that it expects a parameter of TYPE SoftbaliPlayerData.

The "discrimination statement" solves the problem of making sure the procedure knows
which variant it is dealing with. The common fields of the actual parameter can be
accessed normally, but the fields in the variant part can be accessed only inside the
discrimination statement, which is

WITH player: playerData SELECT FROM
outfielder => { ... };
infielder => { •.. };
pitcher => { ... };

ENDCASE;

Notice how the structure of the discrimination statement mirrors the structure of the TYPE
declaration of SoftbaliPlayerData.

Inside the discrimination statement, an "alternate name" is given to the actual parameter
by

WITH player: playerData SELECT FROM

The fields of the variant part of player (but not playerData) become accessible inside
whichever arm is selected, based on the value in the tag of playerData. This construct
allows the compiler to detect any attempt to access an "incorrect" field within a given arm.
For example, if you write

Put. Decimal [tool Data. msgSW. player.strikeouts];

inside the outfielder arm of this discrimination statement, the compiler will tell you that
"strikeouts is not valid as a field selector ... "This prevents you from trying to access a
field in an incorrect variant at run time.

Since the discrimination statement relies on the value in the tag field of the RECORD,
suppose you just change that value in the tag field. That is, what if you add

playerData.position Eo- pitcher

as the first statement in DisplayData? Would the discrimination statement always select
the pitcher arm of the discrimination statement, and try to use the value strikeouts for
every kind of player? No, Mesa won't allow you to selectively access the tag field of a
variant RECORD. In fact, if you try to write the above statement, the Compiler will tell you
that "playerData.position cannot be updated " The only way you can change the
variant tag is to assign a new value to the entire variant part using a constructor for that
variant part. Variant RECORDs in Mesa are type-safe.

9.3 Summary

This chapter introduced the fundamentals of variant RECORDs. One important feature of
Mesa's variant records is that they are type-safe. You can depend on the discrimination
statement, in concert with the syntax, to prevent errors associated with accessing the
fields in the variant parts of RECORDS.

9fi

9 Variant Records

Several topics related to variant RECORDS that we did not discuss include "bound" variant
types, and "implicit" and "computed" tags. The built-in predicate ISTVPE, and the built-in
operator NARROW are also available to assist you in your use of variant RECORDS. These
features, along with a variation of the discrimination statement that is more efficient in
certain cases than the one we looked at, are described in the Mesa Language Manual.

9.4 References

Section 6.4 of the Mesa Language Manual discusses variant RECORDS, including declaring
variant RECORD types and variables, giving values to variant RECORD variables, and
accessing the fields of variant RECORDS. This section also discusses several other points
regarding particular uses of variant RECORDS that we did not discuss in this chapter.

9.5 Exercises

9-6

Modify the SoftballDataTool (used as an example in this chapter) to include the following
information:

If a player is an infielder, has he been traded?

Ifhe has been traded:

-- how many times has he been traded?

-- in what year was he last traded?

Ifhe has NOT been traded:

-- how many years has he played for the team?

- is he likely to be traded this season?

You should include this information in a variant section, which is enclosed by the infielder
section. Thus, you will create a variant within a variant record. You will have to add this
new information for any infielders already existing in the database. Assume that existing
infielders have never been traded.

Once you have added the new variant section, a new player will be joining the team. His
name is Larry, he is an infielder who plays third base, and he has been traded 3 times, the
last time in 1983. You will have to increase the numberOfPlayers in order to add him to
the database, and print out his statistics along with those of the rest of the team.
Obviously, you will also have to change the output routines to dispaly the new
information.

10

Concurrency

Mesa provides language support for concurrent execution of multiple processes, as well as
monitors and condition variables to help synchronize such processes.

In this chapter, we discuss how to use the FORK and JOIN operators to create new processes
and later resynchronize them. We also illustrate how to monitor access to a module's
global variables, and how to use condition variables to accomplish more complex forms of
synchronization. We do not discuss how to monitor data implemented by a multi-module
abstraction, or data that is encapsulated in an object rather than in a module; you will
have to consult the Mesa Language Manual for information on these topics.

10.1 Definition of terms

Asynchronous call

Background process

Condition variable

Critical section

Hint

Monitor

An asynchronous call is a procedure call that initiates an
operation and then returns control to its caller without waiting
for the operation to complete.

A background process is a process that receives machine
resources only if higher priority processes are idle or blocked.

A condition variable is a Mesa construct by which processes wait
for or provide notification of an event. A condition variable is
associated with a monitor.

A critical section is a portion of a program in which only one
process may be executing at a time. In Mesa, access to critical
sections is arbitrated by monitors.

A hint is information that is usually accurate and is easy for a
program to use. A program can detect when a hint is inaccurate
and find the truth in some other (usually less efficient) way.

A monitor module is a Mesa module that controls access to
shared data.

10-1

10 Concurrency

Monitor invariant

Monitor lock

Process

Synchronous call

A monitor invariant is a logical assertion about the state of
monitored data whenever the monitor is unlocked (i.e., exited).
Every monitor has a monitor invariant.

A monitor lock is essentially a hidden data item associated with
each monitored record or program that indicates when a process
has entered and not yet exited a critical section.

A process is effectively a procedure activation that runs
concurrently with its caller, allowing asychronous activities.

A synchronous call is a procedure call that returns control only
after the operation completes.

10.2 Discussion

10-2

Mesa casts the creation of a new process as a special procedure call. You create a new
process by FORKing a procedure rather than simply calling it; the new process then runs
concurrently with its caller. The new process has a different call stack, with the forked
procedure as the root of the activation. Mesa allows any procedure (except an internal
procedure of a monitor; see section 10.2.3.1) to be invoked in this way.

10.2.1 JOINing processes

Once you have created concurrent processes, there are various levels of synchronization
possible, depending on the role that your forked process is to perform. For example, you
might fork a process when you have a long computation to perform, and you would like to
allow other processing to take place concurrently. When you create such a process, you
later need to synchronize that process with its parent so that it can return the result of the
computation. You can accomplish this synchronization with the JOIN operation. JOIN
establishes a rendezvous point: the first process to reach the rendezvous is blocked until
the other arrives. When both processes have arr:i~d;the forked process returns its results
and is then terminated.

To illustrate this, here is an example that iteratively reads a large buffer of data and
processes it. A sequential implementation might look like this:

Control: PROCEDURE =
BEGIN
buffer: LONG POINTER TO Buffer +- zone.NEw[Buffer];
DO

ENABLE
NoMore = > EXIT;

Read Buffer[buffer];
ProcessBuffer[buffer];
ENDLOOP;

zone.FREE[@buffer];
END;

ReadBuffer collects input data in buffer, and then ProcessBuffer manipulates the data.
The signal NoMore is raised when there is no more data, causing the DO loop to terminate.

Mesa Course 10

A problem with this code is that you can not read a buffer of data whi~e processing one, nor
process a buffer of data while reading one. Since these operations are distinct, it would be
useful (and more efficient) to read the next buffer of data while processing the previous
one. This double buffering scheme might look like this:

Control: PROCEDURE =
BEGIN
Status: TYPE • {normal. end};
read Buffer: LONG POINTER TO Buffer zone.NEw[Buffer);
processBuffer: LONG POINTER TO Buffer zone.NEw[Buffer);
status: Status normal;
p: PROCESS RETURNs[status: Status); --declare the process

status ReadBuffer[readBuffer);
WHILE status • normal DO

SwapBuffers[readBuffer. processBufferj;
< < points readBuffer to the buffer that has just been processed and points
process Buffer to the buffer that has just been read> >

p FORK ReadBuffer[readBuffer);
ProcessBuffer[processBuffer] ;
status JOIN p;
ENDLOOP;

zone.FREE{@readBuffer];
zone.FREE{@processBuffer);
END;

Control now allocates two buffers, one of which can be processed while the other is being
filled with the next block of data. Control reads in an initial buffer of data and then loops
until the reading process returns a state other than normal. During the loop, we swap
buffers and then we fork ReadBuffer. Thus, we can fill the new buffer while we process the
old one. At the end of the loop, we synchronize the two processes with the JOIN operator.

Some things to notice from this example:

• FORK always returns a value (of type PROCESS) and thus a FORK cannot stand alone as a
statement. Unlike a procedure call, which returns a RECORD, you cannot discard the
value of the FORK by writing an empty extractor. Thus FORK ReadBuffer[readBuffer) is
assigned to p.

• The JOIN appears as either a statement or an expression, depending upon whether or not
the process being joined returns anything. When the forked procedure has executed a
RETURN and the JOIN is executed (in either order),

the returning process is deleted, and

the joining process receives the results, and continues execution.

• There is no intrinsic rule against multiple activations (calls and/or forks) of the same
procedure coexisting at once. Of course, it is possible to write procedures that will work
incorrectly if used in this way, but the mechanism itself does not prohibit such use.

1 (1-3

10

10-4

Concurrency

10.2.2 Detached processes

Not all processes follow the FORK/JOIN paradigm; there are others whose role is better cast
as continuing provision of services, rather than one-time calculation of results. Such
processes are called "detached", since they never need to be resynchronized with their
caller. If the lifetime of a detached process is bounded at all, its deletion is a private
matter, since it involves neither synchronization nor delivery of results.

Pilot provides the facilities for detaching processes. The Process interface, documented in
section 2.4.1 olthe Pilot Programmer's Manual, includes operations to check on the state
of a process, to set process timeouts, to set process priorities, to abort processes, and to
detach processes.

Process.Detach takes a process and detaches it from its creator. If you use this procedure to
create a detached process, the Process interface will take care of deleting the process when
it returns from its root procedure.

Consider a tool with one command, which takes a long time to process. Typically this
command runs in the notifier and therefore prevents concurrent user interactions. To
avoid this, you can FORK the command as a new detached process:

Command: Form5w.ProcType =
BEGIN

10.2.3 Monitors

Process.Detach(FORK ReaICommand];
END;

FORK/JOIN enables very simple synchronization: you can synchronize two process when a
computation has been completed. However, you need a more general mechanism to allow
processes to communicate while work is in progress. Specifically, the FORK/JOIN construct
does not provide access control (mutual exclusion) to shared data. Thus, we coded the
double buffering example to ensure that ReadBuffer and ProcessBuffer never shared a
buffer by executing the pointer swap while only one process existed (and thus there could
be no contention to the data).

To enable more sophisticated interaction, Mesa provides an interprocess synchronization
mechanism that is a variant of monitors adapted from the work of Hoare, Brinch Hansen,
and Dijkstra. The underlying view is that processes share little, but when they do, the
interaction reduces to carefully synchronized access to shared data.

10.2.3.1 Mutual exclusion to shared data

A monitor is a module instance. It thus has its own global frame, and its own procedures
for accessing this (global) data. Unlike normal PROGRAM module instances, however, a
monitor module has an associated monitor lock, which guarantees that only one process at
a time can access the data. (The lock can also be associated with the object being shared;
see section 9.4.5 ofthe Mesa Language Manual).

Mesa Course 10

Monitor modules are declared much like program or definitions modules; for example:

M: MONITOR [arguments] =
BEGIN

END.

A call into the monitor implicitly acquires the lock; returning from the monitor releases
the lock. When a process attempts to enter a monitor and the lock is already held, it must
wait until the current process finishes and releases the lock. The monitor lock thus
ensures that only one process at a time can change the data, thereby guaranteeing the
integrity of the monitor invariant. (A monitor invariant is an assertion defining what
constitutes a "good state" of the data for that particular monitor.)

It is important to realize that the mutual exclusion takes place at the entry and exit points
of a monitor. In Mesa, these entry/exit points are encapsulated in procedures called ENTRY

procedures. The code within an ENTRY procedure is a critical,section: a call to an ENTRY

procedure acquires the monitor lock, a return from an ENTRY procedure releases the
monitor lock. Entry procedures are declared as:

P: ENTRY PROCEDURE [arguments] RETURNS [results] = ...

The entry procedures will usually comprise the set of public procedures visible to clients of
the monitor module. (There are some situations in which this is not the case; see external
procedures, below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply.

Many monitors will also have internal procedures, which are common routines shared
among the several entry procedures. These execute with the monitor lock held, and may
thus freely access the monitor data as necessary. Internal procedures should be private,
since direct calls to them from outside the monitor would bypass the acquisition of the
lock. You can only call internal procedures from an entry procedure or another internal
procedure. They are declared as follows:

Q: INTERNAL PROCEDURE [arguments] RETURNS [results] =

The attributes ENTRY or INTERNAL may be specified only on a procedure in a MONITOR module
(or on an INLINE procedure in a definitions module).

Some monitor modules may also wish to have external procedures. These are declared as
normal non-monitor procedures:

R: PROCEDURE [arguments] RETURNS [results] = ...

Such procedures are logically outside the monitor, but are declared within the same
module for reasons of logical packaging. For example, a public external procedure might

. do some preliminary processing and then make repeated calls into the monitor proper (via
a private entry procedure) before returning to its client. Since it is outside the monitor, an
external procedure must not reference any monitor data nor call any internal procedures.
The compiler checks for calls to internal procedures within external procedures, but does
not check for accesses to monitor data.

Generally speaking, a chain of procedure calls involving a monitor module has the form:

10-5

10

10-6

Concurrency

Client procedure -- outside module

~
External procedure(s) -- inside module but outside monitor

~
Entry procedure -- inside monitor

~
Internal procedure(s) -- inside monitor

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs
and increase the readability of a monitor module is to structure the source text in the
corresponding order:

M: MONITOR =
BEGIN
< External procedures>
< Entry procedures>
< Internal procedures>
<Initialization (main-body) code>
END.

To illustrate mutual exclusion using monitors, consider the case where many processes
may be capable of inspecting, incrementing, and decrementing a counter of active and
inactive windows of a multiple instance tool. The operation Activate decrements the
inactive counter by one and increments the active counter. The. Deactivate operation does
the reverse. To ensure consistent data (Le. the number of active windows plus the nuD\ber
of inactive windows equals the number of instantiated windows) the increment/decrement
to the active and inactive counters must occur atomically. Otherwise, it would be possible
for an Inspect operation to return a counter that has only been partially updated.

KeepCount: MONITOR =
BEGIN
CounterType: TYPE = RECORD[active: INTEGER, inactive: INTEGER];
counter: CounterType +- [0.0];
Activate: ENTRY PROCEDURE =

BEGIN
ENABLE UNWIND = > NUll; --see section 10.5.3 for a discussion of thisstatement
counter.active +- counter.active + 1;
counter.inactive +- counter.inactive·1;
END;

Deactivate: ENTRY PROCEDURE ==
BEGIN
ENABLE UNWIND:: > NUll; --see section 10.5.3 for a discussion of this statement
cDunter.active +- counter. active • 1;
counter.inactive +- counter.inactive + 1;
END;

Inspect: ENTRY PROCEDURE RETURNs[counter: CounterType] =
BEGIN
ENABLE UNWIND = > NUll; --see section 10.5.3 for a discussion of this statement
RETURN[counter];
END;

END.

Mesa Course 10

10.2.4 Synchronization with condition variables

In addition to providing mutual exclusion; monitors also allow a sophisticated form of
synchronization. For example, a process may only want to execute monitored code if
certain conditions hold. If the conditions hold, the process continues as usual. If a
condition is not satisfied, however, the process blocks and releases its hold of the monitor
lock. A new process can then enter the monitor, eventually make the condition true, and
notify the blocked process that it may continue. This kind of synchronization is provided
by condition variables.

Condition variables are declared as:

c: CONDITION;

All the fields of a condition variable are private to the process mechanism; you can only
access a condition variable via the condition variable operations WAIT, NOTIFY, and
BROADCAST.

WAIT condition blocks the current process and releases the monitor lock. Since a WAIT

always releases the monitor lock while waiting, you must restore the monitor invariant
(Le., return the shared data to a "good state") before waiting.

NOTIFY condition wakes up one process waiting on the condition. (Each condition
variable has an associated queue.) If no process is waiting on the condition, the
notification is discarded. Unlike WAIT, NOTIFY does not release the monitor lock.
Therefore you can leave the monitored data in an arbitrary state, so long as you restore
the invariant before the next time you release the lock (by exiting the entry procedure).

BROADCAST condition wakes up all processes waiting on the condition variable. If no
processes are waiting on the condition, the broadcast is discarded. Like NOTIFY, the
monitor lock is held during this operation.

10.2.4.1 Producer/Consumer problem

Consider the buffering scheme described in the beginning of this chapter. Because of the
synchronization limitations imposed by FORK/JOIN, we could only use two buffers. A more
general solution, however, would allow the two operations to share a buffer pool. This
buffer pool would be bounded, as shown in the example on the next page:

10-7

10

10-8

Concurrency

DtRECTORY
Heap USING (systemZone].
MStream USING (Handle. ReadOnly. ReadWrite].
Process USING [Detach].
Stream USING (Delete. EndOfStream. GetChar. Handle. PutChar);

CircularBuffer: MONITOR IMPORTS Heap, MStream, Process. Stream.
BEGIN
maxElements: CARDINAL. 10; -max number of buffers
bufferSize: CARDINAL. 128;
zone: UNCOUNTED ZONE +- Heap.SystemZone;

Elmt: TYPE • LONG POINTER TO Buffer;
Buffer: TYPE • RECORD[

length: CARD/NAL..-O.
chars: ARRAY [O •• bufferSize) OFCHARACTER..-ALL[']];

BUfferArrayType: TYPE • ARRAY (O .. maxElements) OF Elmt +- ALL{N/L);

get. put: CARDINAL [O •• maxElements] +- 0; --which buffer being read/written
bufferArray: BufferArrayType;
notEmpty: CONDITION;
notFull: CONDITION;

-- The consumer gets a buffer from the monitored array of buffers and writes its
-- contents to another file. This process blocks if there are no buffers available.
Consumer: PROCEDURE(outStream: MStream.Handle) •
BEGIN

DO
myBuffer: Elmt +- ConsumeBuffer[];
FOR i: CARDINAL IN [O •• myBuffer.length) DO

ch: CHARACTER..- myBuffer.chars[i];
IF ch • • & THEN GOTO Exit;
Stream.PutChar[outStream, chI;

ENDLOOP;
zone.FREE[@myBuffer];

ENDLOOP;
EXITS Exit. > Stream.Delete[outStream);

END;

-- Producer produces buffers of information obtained from reading a file.
--It blocks when there is no more room in the monitored array of buffers
Producer: PROCEDuRE[inStream: MStream.Handle] =
BEGIN

DO
myBuffer: Elmt +- zone.NEW[Buffer);
FOR i: CARDINAL IN [O .. bufferSize) DO

myBuffer.chars[i] +- Stream.GetChar[inStream! Stream. EndOf Stream = >
{myBuffer.length +- i; GOTO Exit}];

ENDLOOP;
ProduceBuffer[myBuffer); -- put buffer in monitored buffer array

ENDLOOP;
EXITS Exit = > Stream.Delete[inStreaml;

END;

Mesa Course

-- Produce Buffer is called when the Producer needs a buffer.
ProduceBuffer: ENTRY PROCEDURE[element: Elmt] ..
BEGIN

ENABLE UNWIND .. > NULL;
WHILE (put + 1) MOD maxElements .. get DO WAIT notFull ENDLOOP;
bufferArray[put14-- element;
put 4-- (put + 1) MOD maxElements;
NOTIFY notEmpty

END;

10

-- Consume Buffer returns a previously allocated buffer to the available buffer list
ConsumeBuffer: ENTRY PROCEDURE RETURNs(element: Elmt] ..
BEGIN
ENABLE UNWIND .. > NULL;

WHILE get .. put DO WAIT notEmpty ENDLOOP;
element 4-- bufferArray[get];
get 4-- (get + 1) MOD maxElements;
NOTIFY notFull;

END;

Init: PROCEDURE£] ..
BEGIN

inStream: MStream.Handle 4-- MStream.ReadOnly[
name:"inFile"L,
release: [NIL,NIL]];

outStream: MStream.Handle 4-- MStream.ReadWrite[
name:"outFile"L,
type: text,
release: [NIL,NIL]];

Process.Detach[FORK Consumer[outStreamJ1;
Process.Detach[FoRK Producer[inStreaml1;

END;

--mainline code
Init[];
END .•.

In this example, bufferArray is an array that can contain at most max Elements (10)
elements (buffers). The bufferArray starts out empty. The Producer (the process reading
input) allocates buffers, fills them with information, and adds them to the buffer pool via
ProduceBuffer. If the buffer pool is full, ProduceBuffer waits until there is room. After
adding the element to the buffer, ProduceBuffer notifies any waiting consumers that
another element is available. Similarly, the Consumer (the process processing the input)
receives its elements by calling ConsumeBuffer. If there are no elements in the buffer pool
ConsumeBuffer waits. Once an element becomes available, ConsumeBuffer removes it
and notifies any waiting producer processes that the buffer pool is not full.

Notice that a condition variable c is always associated with some boolean expression
describing a desired state of the monitor data. Each WAIT must be embedded in a loop that
checks the validity of the corresponding boolean. In Mesa, NOTIFY is regarded as a hint to a
waiting process; it causes a process waiting on the condition variable to resume execution
at some convenient time in the future. When the waiting process resumes, it will
reacquire the monitor lock. But there is no guarantee that some other process will not
enter the monitor before the waiting process. Therefore, the waiting process must

10-9

10

10-10

Concurrency

reevaluate the condition before continuing. The general pattern for condition variable
code is therefore:

Process waiting for condition:

WHILE -Boo/eanExpression 00
WAITe
ENDLOOP;

Process making condition true:

make BooleanExpression TRUE;
NOTIFYe;

-- i. e. as side effect of modifying global data

When appropriate, the process mechanism always does a NOTIFY, even when there are no
processes waiting to be notified. The reason for this is that the built in check (and discard
mechanism) is more efficient than any explicit test you could use to avoid the NOTIFY. Thus,
for example, ProduceBuffer always notifies notEmpty even if no process is waiting.

This arrangement results in an extra evaluation of the co~dition after a wait. In return,
however, it avoids extra process switches and puts no constraints on when the waiting
process must run after a notify. This method is preferable and efficient in Mesa because in
general few processes are waiting on the same condition variable at the same time (not
many processes will be notified), and context switching is fast (it does not take long for all
processes to recheck the state).

10.2.4.2 Single resource manager

Controlling access to a limited shared resource is another common problem that requires
interprocess synchronization. The following code segment illustrates a simple storage
allocator for objects of uniform size.

StorageAllocator: MONITOR ..
BEGIN
storageAvaiiable: CONDITION;

Block: TYPE .. RECORD [.,,]; om or some other data type
Listptr: TYPE .. LONG POINTER TO ListElmt;
ListElmt: TYPE .. RECORD[block: Block. next: Listptr);
freelist: Listptr +- NIL;

Allocate: ENTRY PROC RETURNS [elmt:Listptr] ..
BEGIN
ENABLE UNWIND .. > NULL;
WHILE freeList .. NIL 00 WAIT storageAvailable ENDLOOP;
el mt +- freeList;
freeList +-elmt.next;
END;

Mesa Course

Free: ENTRY PROC [elmt:ListPtr] =
BEGIN
ENABLE UNWIND = > NULL;
elmt.next +- freeList;
freeList +- elmt;
NOTIFY storageAvailabJe;
END;

END •••

10

freeList is the global linked list of available storage. Allocate waits until freeList is not
empty to remove an element. Free puts an element back on the freeList and notifies any
process waiting in Allocate that more storage is available.

10.2.4.3 Variable size, single resource manager

If a resource manager manipulates variable sized objects, notification will not work as
well. The difficulty is that NOTIFY only wakes up one process when more storage is
available. Since the size of storage requests vary, available storage may not be enough to
meet the needs of the process that is awakened, but it may be enough to satisfy another
waiting process.

In this case, you should use BROADCAST instead of NOTIFY. A BROADCAST wakes up all waiting
processes. Since the WAIT condition statement occurs in a WHilE loop, each process will
check state before continuing and put itself to sleep if there is not enough storage. Thus,
processes that need a smaller amount of storage will be able to continue.

Here is an example of this sort of storage allocator:

StorageAllocator: MONITOR.
BEGIN
storageAvailable: CONDITION;

Block: TYPE = RECORD [.••]; •• or some other data type
ListP"tr: TYPE = LONG POINTER TO ListElmt;
ListElmt: TYPE = RECORD{block: Block, next: ListPtr];
freeList: ListPtr +- Nil;

Allocate: ENTRY PRoc[size: CARDINAL] RETURNS [elmt:ListPtr] =
BEGIN
ENABLE UNWIND = > NULL;
UNTIL < storage chunk of size words available> DO WAIT storageAvailable ENDLOOP;
elmt +- < remove chunk of size words>;
END;

Free: ENTRY PROC [elmt:ListPtr, size: CARDINAL] =
BEGIN
ENABLE UNWIND = > NULL;
<put back storage of size words>

BROADCAST storageAvailable;
END;

END ..•

10-11

10 Concurrency

Again, the waiting processes treat notification only as a hint. A process that is a wakened
does not assume that the condition is true; rather, it assumes that state has changed, and
that it should check to see if the condition is true.

10.3 issues and concerns

10-12

This section discusses some issues associated with monitors and processes: how to abort a
process, and the relationships between signals and processes, and signals and monitors.

10.3.1 Aborting a process

In addition to NOTIFY and BROADCAST, you can also resume a waiting process with a timeout
or an abort. We discuss Abort in this section; for a discussion on using time outs see section
9.3.2 of the MLM.

Abort does really not abort the process; it merely raises a signal that indicates to the
process that it should clean itself up and return. (If the process is detached, Pilot will
destroy it when it returns.) However, the aborted process is free to do arbitrary
computations before returning, or indeed to ignore the abort entirely.

You can raise the signal Abort by calling Process.Abort, with the process to be removed as
its argument. The signal is raised the next time the process WAITs on any condition
variable that has aborts enabled (the default is to not have aborts enabled; you can call
Process.EnableAborts to reverse this). If the process is currently waiting it is aborted
immediately_

If you want to abort a process that never waits on a condition variable, you must
periodically force the process to pause. Process. Pause causes a process to wait with aborts
enabled for a specified length oftime.

10.3.2 Signals and process

Though the creation of a new process via FORK is similar to a procedure call, the new
process has a different call stack with the forked procedure as the root of the activation.
The implication of this is that signals will not cross process activations. Any signal not
caught by a new process will not continue to propagate to its parent; instead the debugger
will be invoked with an uncaught signal.

10.3.3 Signals and monitors

Signals interact with monitors (entry procedures) in two special ways; in raising a signal
and in handling UNWIND. Both cases are motivated by the need to release the monitor lock.

When you raise a signal from an entry procedure, the lock is not released. Thus, catch
phrases, which can invoke arbitrary operations, may deadlock if they try to reenter the
monitor. For errors, you can avoid this with the RETURN WITH ERROR construct.

RETURN WITH ERROR NoSuchObject;

Mesa Course 10

This statement has the effect of removing the currently executing process from the call
chain before issuing the ERROR. Thus, if you execute this statement within an entry
procedure, the monitor lock is released before the error is started.

For example, consider the following code segment:

Failure: ERROR [kind: CARDINAL] :II CODE;

Proc: ENTRY PROCEDURE[...] RETURNS[c1, c2: CHARACTER] :II

BEGIN

ENABLE UNWIND :II > ...

IF cond1 THEN ERROR Failure[1];

IF cDnd2 THEN RETURN WITH ERROR Failure[2];

END;

Executing ERROR Failure[1] raises a signal that propagates until some catch phrase
specifies an exit. At that time unwinding begins; the catch phrase for UNWIND in Proc is
executed and then Proc's frame is destroyed. The lock is held until the unwind occurs.

Executing RETURN WITH ERROR Failure[2j releases the monitor lock and destroys the frame of
Proc before propagation of the signal begins. The catch phrase for UNWIND is not executed
in this case. The signal Failure is actually raised by the system, after which Failure

propagates as an ordinary error.

Another important issue regarding signals is the handling of UNWIND. The monitor lock is
released as part of the UNWIND, so any entry procedure that may experience an UNWIND

must catch it and restore the monitor invariant:

Proc: ENTRY PROCEDURE[.•.] =
BEGIN

ENABLE UNWIND = > BEGIN < restore invariant> END;

END;

At the end of the outermost UNWIND catch phrase, the compiler appends code to release the
monitor lock before the frame is destroyed.

Even if you don't have to restore the monitor invariant, you should still catch UNWIND in
every entry procedure in which it might propagate. The compiler will not generate the
code to release the lock unless the UNWIND catch phrase is present. If the monitor is not
released during an UNWIND, ensuing calls to the monitor will deadlock.

10.4 Summary

You can spawn new processes from existing ones via the FORK operation. FORK creates a new
process, with the invoked procedure as the root of the activation, and returns a process id
of type PROCESS to identify the object.

Once instantiated, a new process will either run forever, run for a finite time and return
values to (or need to be synchronized with) another process, or run for a finite time without
returning results to another process. In the first case, FORKing the new process is sufficient.

10-13

10 Concurrency

In the second case, when a process is expected to return results, you can synchronize its
return with the JOIN construct. At this junction, the returning process is deleted and the
joining process receives the results and continues its execution.

In the third case, when a process is not JOINed, you must ensure that the process activation
is removed. If you use Process. Detach, Pilot will delete the process when it returns to its root
procedure.

Concurrent processes create a need for cooperation and communication. Monitors and
condition variables provide this cooperation by allowing controlled access and
synchronization through shared variables and code.

Mesa monitors are module instances with an associated monitor lock. Mutual exclusion to
shared variables (global variables in the monitor module) is ensured by allowing only one
process to hold the lock at a time.

In addition to a collection of data and an associated lock, a monitor contains a set of
procedures that perform operations on the data. There are three kinds of procedures:
entry, internal, and external. External procedures are declared as normal procedures and
logically live outside the monitor. Calls to these procedures do not acquire the monitor
lock. Entry procedures provide controlled access into the monitor. Calls to an entry
procedure either acquire the monitor lock or block until the lock can be acquired. Internal
procedures contain the common routines shared among the several entry procedures.
These procedures execute with the monitor lock held, and therefore may freely access the
monitored data.

Synchronization is accomplished with condition variables and the operations WAIT, NOTIFY,
and BROADCAST. A WAIT releases the monitor lock before it blocks. NOTtfYand BROADCAST do
not release the lock. Therefore WAIT statements occur in loops, since the condition that was
notified may no longer be true when the blocked processes wakes up.

This chapter discussed only the most common form of monitor lock, the global monitor
lock. Mesa also supports more specialized forms of monitors, including monitored records
and object monitors. Consult chapter 9 of the Mesa Language Manual for more details.

10.5 References

Read Chapter 9 of the Mesa Language Manual on Processes and Concurrency.

Read "Experience with Processes and Monitors in Mesa" by Lampson and Redell. (Page
191 ofthe Office Systems Technology book.)

10.6 Exercises

10-14

The basic assignment for this chapter is to implement the dining philosophers problem. In
this problem, you have 5 philosophers at a dining table. However, there is only one
chopstick between each plate, and a philosopher needs 2 chopsticks to eat. At any given
time, a philosopher may be thinking, eating, or waiting for the philosopher next to him to
put down a chopstick so he can use it.

Mesa Course

,,---0 I 0
0/ 6

0\

10

You can tell a philosopher to try to start eating, or to stop eating and start thinking. When
a philosopher is told to start eating, he will look around for some chopsticks and start
eating if he can; otherwise he will wait. When a philosopher is told to start thinking, he
stops eating (puts down his chopsticks); other waiting philosophers will then see if they
can start eating.

Philosophel"l: {thinking. waiting. eating}
Philosophel"2: {thinking. waiting. eating}
PhilosopheI"3:. {thinking, waiting. eating}
Ph il osophel"4: {thinking, waiting. eating}
Philosophel"5: {thinking, waiting. eating}

Ph il osopher # 1 is eating.
Ph i1 osopher # 2 must wait to eat.
Philosopher # 1 has finished eating.
Philosopher # 2 is eating.

There are two levels to this problem, easy and hard. The hard assignment is to solve the
dining philosophers problem by yourself. For the easy assignment, we have provided two
interfaces and part of the implementation; you only need to write two procedures. If you
are adventurous, go start solving the problem now. If you are less adventurous. read the
next page to get some help in solving this problem.

10-15

10

10-16

Concurrency

For the easier version of this problem, you need to implement the procedures BeginEating
and End Eating from the OP interface:

--DP.mesa

OP: DEFINITIONS.
BEGIN
numOfPhils: CARDINAL. 5;

BeginEating:
EndEating:
IsWaiting:
IsEating:

PROCEDURE[philosopher: CARDINAL];
PROCEDURE[philosopher: CARDINAL];
PROCEDURE[philosopher: CARDINAL];
PROCEDURE[philosopher: CARDINAL];

END ••

BeginEating will be called every time a philosopher (a process) thinks it might be able to
eat. The philosopher will look around him (look at an array) and see if he can start eating.
If he can't, he informs the world that he must wait to eat, calls the procedure DP.lsWaiting,
and then waits. If he can eat, he informs the world that he is eating, uses his chopsticks
(sets some variables in an array) and calls the procedure DP.lsEating.

EndEating will be called every time a philosopher has been told to stop eating and start
thinking. He should inform the world that he is no longer eating, set down his chopsticks,
and tell all waiting philosophers (if any) that they might want to try to start eating. Note
that although the tool refers to philosophers 1 through 5, philosopher in the above
procedures will range from 0 through 4.

To communicate with the world, use the procedures provided in the ToolOefs interface:

-- ToolDefs.mesa

ToolOefs: DEFINITIONS.
BEGIN

PostText: PROCEDURE(string: LONG STRING];
PostLine: PROCEDURE[string: LONG STRING];
PostNumber: PROCEDURE[num: CARDINAL];

END ••

--writes a string of text
--writes a string of text with CR
--writes a number

You need to write the implementation module OPlmp/.mesa, which implements the
procedures BeginEating, and EndEating in the OP interface. Use a monitor and a condition
variable to synchronize access to the chopsticks by the 5 philosophers (processes). You will
need the files OP.mesa, TooIOefs.mesa, OPTool.mesa, and DiningPhilosophers.config,
which are on the course directory for this chapter.

11

Introduction to Tajo

This chapter provides a brief introduction to some of the basic ideas behind the design of
the Tajo tools environment. The next ten chapters will expand on the ideas contained in
this chapter, and illustrate how those ideas are implemented in the design of a new tool.

11.1 Definition of terms

Call back procedure

Client

11.2 Discussion

A call back procedure is a procedure that is passed as a
parameter to another procedure, and is eventually called from
that procedure.

A client is a program (as opposed to a person) that uses the
services of another program or system.

11.2.1 Windows and subwindows

Most XDE tools use a window for their primary user interface. At the most basic level, a
Tajo window is just a virtual terminal shell. Tajo provides basic operations on these
window shells (such as moving them on the screen), but clients are responsible for adding
some functionality to the window. One way to do this is to design your own user interface
and implement it using Tajo's low-level routines.

In most cases, however, you do not need to implement your own user interface. Most new
tools are built from standard sub window types, such as file subwindows, message
subwindows, form subwindows, and tty sub windows. Each of these subwindow types
defines and implements a certain type of user interface. Thus, you can add functionality to
a window by specifying that it should consist of some combination of standard
subwindows.

This approach has two chief advantages over the approach of writing your own user
interface. First, it is much easier for you. Second, it makes life easier for the people who
will be using your new tool. Tajo tries to maintain a user interface that is consistent across

111

11

11-2

Introduction to Tajo

all tools, so that the user interface is both easy to learn and easy to use. Thus, you are
encouraged to use the standard subwindow types whenever appropriate.

11.2.2 Plug-in modules

The XDE is based on plug-in applications. The basic idea is that the XDE is one self
contained (but expandable) unit; it does not import any specific procedures that it expects
a client to supply, so new applications do not have to be bound in. Rather, any client can
call in and announce that it implements some facility. The new application is then
"plugged in" to Tajo.

The application is not necessarily run right away, however; instead, once it is loaded, it
waits for the user to call it. Instead of a main procedure that calls subroutines, therefore,
each tool contains an initialization procedure and individual command execution routines.
Loading a tool calls its initialization procedure, which registers the available commands
with the system. When the tool is fully initialized, control returns to the system. Thus, a
tool simply provides a set of functions and arranges for Tajo to notify it when the user
wants it to perform some action.

This style is characterized by the phrase "Don't call us; we'll call you." The motivation for
this approach is that the user should be in control, and that he should be able to interact
with any tool at any time. Thus, tools are expected to respond to user commands, but
should never seize exclusive control ofthe processor or act independently.

Once a program has been loaded, it remains loaded until the user specifically unloads it or
until Tajo is rebooted. This means that software is also reusable: since a program remains
loaded, the user can call its command routines at any time.

11.2.3 Notification

This approach means that Tajo is responsible for notifying a tool of user actions (mouse
movements, keystrokes, and mouse clicks) that are directed toward its window. There are
two processes that cooperate in this notification: one (high priority) that just queues the
actions, and another (normal priority) that dequeues each user action and sends it to the
appropriate window. (The "appropriate window" is usually the window with the input
focus. However, some actions, such as mouse clicks, are sent to the window containing the
cursor, which mayor may not be the window with the input focus.) Once the action has
been directed to a window, it is looked up in a TIP (Terminal Interface Package) to
determine which procedure in the associated tool is to be called.

The action lookup table, or TIP table, specifies translations between a sequence of user
actions and a sequence of program actions. Each tool window has an associated chain of
user-editable TIP tables. A user action is looked up in the first table associated with the
designated window. If the event matches the left hand side of a statement in that TIP
table, the right hand side (result list) of that statement is executed. If no match is found in
that table, the next table in the chain is checked, and so on. If no match is found in any
table, the event is discarded.

Mesa Course 11

11.2.4 Virtual memory

Pilot implements a single page-oriented virtual memory shared by all Mesa software,
including Pilot itself. All processes run in the same address space, which means that both
code and data are shared. (Such sharing is not just permitted, but is encouraged.) To
complement the virtual memory, Pilot provides a file system, which serves as the backing
store for swapping.

Any page of virtual memory that contains information must have associated with it a page
from a file to and from which it can be swapped. Files are associated with virtual memory
by mapping a file or portion of a file to virtual memory. The interval of virtual memory
used is normally allocated as part of the mapping operation. Each map unit, or mapped
interval, is typically subdivided into swap units, which consist of one more more pages.
Swapping can be done either on demand or under program control. Demand swapping is
done by swap units rather than pages; when a page needs to be swapped in, Pilot will bring
in that page and any adjoining pages of its swap unit.

Swapping under program control is done via swapping commands, which you can use to
specify that you are through with an interval of virtual memory, or that you will be
needing one soon.

11.2.5 The File system

The XDE file system is built on top of the Pilot file system. The Pilot file system provides a
single, flat (non-hierarchical) directory, and primitives such as file creation and deletion
Pilot expects the XDE file system to super-impose further structure on its files; the
emphasis at the Pilot level is on simple, powerful operations for accessing information.

The XDE local file system, called MFile, provides a hierarchical directory structure.
Directories are just files containing name translation tables that provide the virtual
memory addresses of either files containing data or additional directories. Thus, you can
store a file on an arbitrarily deep directory structure.

The XDE file systems provide two ways to access a file. The first way is via streams, which
provide sequential access to a file. Thus, a program can use streams to read or write data
in a series of bytes, words, or blocks of bytes. The second way is by mapping the file. A
client that wants to read from a file will map that file into a virtual memory interval and
then use explicit or demand swapping to swap it to real memory. If the file is being
updated in place, the client will simply store into the relevant locations of virtual memory.
Subsequently, when the interval is unmapped or otherwise swapped out of real memory,
the file will reflect the new contents. Doing file access via mapping is a great deal less
automated than doing it by streams; if you use mapping to access a file, you need to know
what you are doing.

MFile also provides a sophisticated paradigm for sharing files among cooperating
processes. Most file systems consider processes to be antagonistic, so they prevent one
process from acting on a file if there is a chance that those actions will harm another
process using that file. If several processes need to cooperate in the use of a file, they must
communicate explicitly among themselves.

11 Introduction to Tajo

MFile,however, provides sharing among processes that do not have to communicate with
one another, nor know one another's identities. When a client registers itself with the file
system, it can provide a call back procedure. When there is an access conflict, MFile will
call that procedure to find out whether the client is willing to release the file. Thus, a
client that has provided such a call back procedure will always be notified when another
process wants to use that file.

11.3 Summary

11-4

All of the ideas presented here are discussed fully later in the course; this chapter serves
as an introduction to the rest of the Mesa Course.

12

The Exec interface

In the XDE, a program can interact with users either through its own tool window or
through the Executive window. The Executive paradigm is the simpler of the two, and is
thus often used for programs that do not require much user interaction or for programs
that have a simple syntax. For example, to delete a file it is just as easy to type delete
filename in the Executive as it is to type filename into a form field of a tool and invoke
delete!.

On the other hand, tool windows are an advantage when you need a lot of interaction,
when there are a lot of options or parameters to remember and change, or when you use
the same commands repeatedly (as with the File Tool). To increase generality, there are
many programs and commands, such as file deletion, that can be used either from the
Executive or from an individual tool window, depending on the circumstances.

The Exec interface provides many routines that make lt easier to write a program that
runs from the Executive. Using these routines frees you from writing your own user
interface and lets you concentrate on writing the code that actually performs the desired
command. This chapter discusses how to write code that uses the Executive, and
introduces many of the routines in the Exec interface. Chapters 17 and 18 discuss how to
write programs that have their own window interface.

12.1 Discussion

The first time you type the name of a program into the Executive, you load that program
and run it once. All programs remain loaded until you specifically unload them or until
you reboot the system. Loading a program also registers an associated command and name
a command procedure to be called when that command is invoked. When you later invoke
that registered command, the command procedure is called; the command procedure is
then responsible for interpreting the rest of the command line and calling other
procedures to get the work done. When the command has been executed, the program
returns to its quiescent loaded state until you next invoke the command. Thus, programs
are not run in the traditional sense, but are loaded and then wait to be called by the user.
We call this style of program execution "don't call us, we'll call you".

The "don't call us, we'll call you" approach means that Tajo is responsible for notifying a
program when the user wants it to do something. Tajo checks the Executive window for
input and interprets that input by searching its list of known commands. When the

12 1

12 The Exec interface

command is found, the Executive invokes the procedure that corresponds to that
command. (If the command is not found in the list, the Executive will print an error
message to that effect.)

To simplify the code that has to gather input and process it, the Exec interface provides
many I/O procedures, such as routines for reading and writing to the Executive window.
The procedures for writing are first passed to your program from the Exec interface and
then called by your procedures. Procedures that have been passed as arguments to your
program and are then called within your code are referred to as "call back procedures".

12.2 Writing programs that use the Executive

. 12-2

To use the Executive, you type Name Argument to the Executive. This loads and runs the
program Name.bed, registers Name. - as a command, supplies the procedure within
Name.bcd that processes the command, and then calls that procedure. The procedure is
then responsible for reading the rest of the input line to obtain its parameter, Argument,
calculating a result, and displaying that result in the Executive window. Thus, to write
programs that use the Executive interface, you need to know how to register a command,
how to get information from the input line, and how to output information to the
Executive.

12.2.1 Registering a command

Exec.AddCommand is the procedure used to register a command with the Executive. It
takes four parameters. name, proc, help, and unload:

name is the name of the command to be registered. By convention, a. - suffix is used
to differentiate commands from programs.

proc is the command procedure that the Executive will call when a user invokes the
command.

help is a procedure supplied by the client program that prints a message in the
Executive window describing how to use the command. The Executive will call this
procedure when the user invokes a Help.- name command.

unload is a procedure that the program uses (before it is unloaded from memory) to
put itself into a clean state, free allocated memory, and "un-register" its command
from the Executive's list. The Executive will call this procedure when the user
invokes an Unload.- name command.

An example of Exec.AddCommand occurs in the following program (along with several
other routines from the Exec interface):

Mesa Course

DIRECTORY
Exec,
Format,
String;

ExecFactorial: PROGRAM
IMPORTS Exec, Format, String =
BEGIN

Factorial: PRocEDuRE[n: CARDINAL] RETURNs(factorial: LONG CARDINAL] II

BEGIN
inputTooBig: CARDINAL II 0;
SELECT n FROM

=0 = > RETURN(1];
IN [1 .. 12) = > RETURN(n*Factorial(n-1]];

ENDCASE = > RETURN(inputTooBig];
END;

--Print out help information to the Executive
--Called when user types Help Fact to the Executive
HelpProc: Exec.ExecProc =
BEGIN

OutputProc: Format.StringProc +- Exec.OutputProc(h];
OutputProc["Fact calculates the factorial of a CARDINAL"L);
Format.eR[OutputProc];
OutputProc("number less than or equal to 12"L);
Format. eR(OutputProc] ;

END;

-- Read the argument from the command line with.Exec.GetToken
--call Factorial to calculate the factorial
--print the results with a call back procedure named OutputProc.
Fact: Exec.ExecProc =
BEGIN

answerString: LONG STRING +- [16J;
number: CARDINAL;
answer:LONG CARDINAL;
token,switches: LONG STRING +- NIL;
OutputProc: Format.StringProc +- Exec.OutputProc(h];

[token,switches] +-Exec.GetToken(h]; -- get arguments
IF token II NIL THEN RETURN;
number +- String.StringToNumber[s:token, radix:10];
answer +- FactoriaHnumber];
IF answer = inputTooBig THEN OutputProc("lnput Too Big"L]
ELSE
BEGIN --put numeric answer in string format for output

String.AppendLongNumber[s:answerString, n: answer, radix:10);
OutputProc["The Factorial of ilL];
OutputProc(token]; .- print answer to Executive
OutputProc[" is ilL];
OutputProc[answerStri ng];

END;

12

12-3

12

124

The Exec interface

token +- Exec.FreeTokenString[s:token); --Free strings
switches +- Exec.FreeTokenString{s:switches];

END;
--register Fact with the Executive
Exec.AddCommand[name: "Fad."" H t •. prot: Fact. hel p: HelpProc];
END.

This call to AddCommand does not specify an unload argument. since ExecFactorial is
coded to leave itselfin a clean state each time a Fact command is processed. A "clean state"
is one in which the program has released all storage allocated during run time: in this case
Fact does not have any global data and it calls FreeTokenS'i:ring to release its strings. Thus
the default Exec.DefaultUnfoadProc is sufficient. so the unload parameter may be omitted:

Exec.AddCommand[name: "Fact.""'''L, proc:Fact. help: HelpProc];

If your procedure does not leave itself clean you would add a fourth argument to the call to
Exec.AddCommand that specified a procedure to call when unloading. The procedure for
unloading has two tasks: first. it must free any global data and second, it should make a
call to Exec.RemoveCommand to remove the instantiation of the command.
bec.RemoveCommand takes a handle to the Executive (h) and a LONG STRING ("Fact.-") as
arguments. For example:

UnloadProc: Exec.ExecProc =
BEGIN
--Free global variables (if any)
Exec.RemoveCommand[h,"Fact "L]; --remove Fact. - from the Executive
END;

The procedure HelpProc is invoked when a user types Help Fact in the Executive; in this
example, two lines of text are printed as an aid to the user. Fact is called whenever the user
types Fact to the Executive. It is up to the writer of Fact to read and process the arguments
that follow the command.

The procedures proc, help and unload are usually provided by the writer of the command
being registered, although default values such as Exec.DefaultUnloadProc are available.
These procedures are of type

Exec.ExecProc: TYPE = PROCEDURE [
h: Exec.Handle] RETURNS [outcome: Exec.Outcome Eo- normal};

Each procedure is called with argument h, which is a handle to the Executive that called
it. h identifies the particular instantiation of the Executive window in which the command
was invoked. proc, help and unload use this variable when passing information to and
from an Executive window.

The variable outcome' that is returned by each of these procedures, indicates the status of
the returning procedures, and can be normal, warning, error, or abort. If everything went
smoothly, the outcome normal should be returned. Ifproblems were encountered that the
Executive should know about, the other outcomes can be used.

Mesa Course 12

12.2.2 Getting information from the command line

The Executive provides support for interpreting the user's input as a series of pairs in the
form token/swi tches token2/swi tches2 ... , where each pair is separated from each
other pair by white space (one or more spaces or tabs), token and sw itches are separated
by I, and the input line is terminated by a return.

Each token or switches is a set of characters terminated by a delimiter, which can be white
space, a slash or a return. If a token or switches has quotes around it, like "this is one
token and/or switch" then you can incl~de white space in it. The first token on a command
line is interpreted by the Executive as the command name, as in this example:

Command Argumentl/Switchesl Argument2/Switches2

Tokens and Swi tches are simply arguments for the command typed into the Executive.
Tokens can appear without any switches and switches can appear without a token. The
argument-tokens are usually used as arguments (or parameters) by the command-token,
and the switches-tokens are used to tell the command how to interpret the argument. For
example, many commands use If to mean that the argument is a file name, as in U ser.cmlf.

The procedure that parses the input line into tokens and switches is defined as:

Exec.GetToken: PROCEDURE [h: Exec.Handle] RETURNS [token, switches: LONG STRING];

where h is the input parameter available within each Exec.ExecProc. If either token or
switches is empty, GetToken will return NIL for that variable. When the entire input line
has been parsed, GetToken will continually return [NIL, NIL]. When a non-NIL token or
switches is returned, it is stored in memory allocated by Exec and it is the client's
responsibility to free this space using Exec.FreeTokenString.

The procedure Fact in ExecFactorial is responsible for getting the user's input from the
command line. Fact uses the Exec.GetToken procedure to read in both a token and a switch.
In this example only the token is analyzed. The token is first converted into a CARDINAL by
using the String.StringToNumber procedure in the string interface. The CARDINAL is then
passed to Fact and the factorial is calculated. In the example program, the line

[token,switches] +- Exec.GetToken[h]; -- get arguments

reads the number into token and nothing (NIL) into switches. When the program IS

finished with the strings token and switches, it makes calls to

token +- Exec.FreeTokenString[s:token]; --Free strings
switches +- Exec.FreeTokenString[s:switches];

which deallocates the strings and sets the pointers to NIL.

12-:1

12

12-6

The Exec interface

The first token on a command line is not available through GetToken, since it has already
been digested by the Executive as the command (or object file) name to be run. Thus, if the
user types:

Command/g Argl/a Arg2

successive calls to GetToken would return:

1) [NIL, "g"]

2) [.. Arg1", "a"]

3) [" Arg2", NIL]

4) [NIL, NIL]

and then continue to return [NIL, NIL] if called again.

12.2.3 Displaying in the Executive window

After Fact returns, the results need to be displayed in the Executive window. The Exec
interface supplies the procedure Exec.OutputProc, which outputs strings to an Executive
window. To get this procedure, call:

OutputProc: Format.StringProc +- Exec.OutputProc[h];

This assigns a procedure body to OutputProc. (Note that h is defined within Fact because
Fact has been defined to be an Exec.ExecProc.) To display text, call this procedure, passing
the desired string, as in:

OutputProc[Hthis will print in the Executive "L);

In the factorial example, OutputProc is used to print out help information in the HelpProc
procedure and to print the answer to the factorial in the Executive window. Because the
procedure returned by Exec.OutputProc is of type Format.StringProc it can be used as an
argument to other procedures in the Format interface. For example, HelpProc calls
Format.CR to output a carriage return to the Executive:

Format.CR[OutputProc);

12.2.4 Other useful procedures

This section discusses some of the other procedures in the Exec interface that you might
find useful.

You may want to allow your programs to Abort when the user hits the STOP key. This is
useful, for example, when a program is stuck in an infinite loop or when you type in a
command that you realize should not be executed. An example of this procedure is

DO
IF Exec.CheckForAbort[h] THEN EXIT;

END

The procedure CheckForAbort is of type CheckAbortProc. It takes a handle to the
Executive and returns a BOOLEAN indicating whether or not you wish to abort the
command. In this example you will EXIT the loop if the STOP key is struck.

The Exec.GetChar and Exec.PutChar offer single character I/O. Exec.GetChar is a procedure of
type Exec.GetCharProc; it takes a handle to the Executive and returns the next character

Mesa Course 12

on the command line. The first character that Getchar reads is the one immediately after
the command name; after the last character has been read Getchar returns an Ascii.Nul
character. The Exec interface also provides Exec.EndOfCommandLine, which tests for the
end of the command line. Exec.EndOfCommandLine takes a handle to the Executive and
returns a BOOLEAN indicating whether the end of the line has been reached. A short
program fragment illustrates the use of these commands:

ReadAndPrint: Exec.ExecProc •
BEGIN

letter: CHARACTER;
letter +- Exec.GetChar[h1;
WHILE -Exec.EndOfCommandLine[h1 DO

Exec.PutChar[h,letter];
letter +- Exec.GetChar[h};

ENDLOOP;

END;

12.3 Summary

12.4 Style

Using the Executive either as your primary user interface or as a supplement to a tool
window is a good idea when your commands are fairly simple. The Exec interface makes it
easy for you to present the user with a uniform interface. This interface uses a call-back
scheme: when a program is run, it registers a command-name and command-procedure
with the Executive, which is called-back by the Executive when a user invokes the
command.

To use the user interface supplied by the Exec interface you need to know how to register a
command with the Executive, how to get input from the command line, and how to print
information in the Executive window:

• To register a command with the Executive, use Exec.AddCommand. You need to supply
the name of the command, the procedure to be called when the command is invoked, a
help procedure which describes how to use the command, and, if necessary, an unload
procedure.

• To get input from the command line, use Exec.GetToken. This call returns a record
containing a pair of strings. The first element in the pair is the token, the second
element is the switches. Exec.FreeTokenString is used to free the space allocated to the
pair of strings and should be called before exiting the command procedure.

• To output to the Executive, use the procedure returned by a call to Exec.OutputProc. The
procedure returned by this call is a Format.StringProc and can be used to display strings
in the Executive window.

To avoid confusion, use a command name that is the same as the name of the program that
implements that command. This makes it easier to execute the c6mmand the first time
(when the command hasn't yet been registered), since the Executive will load and start a

12 7

12 The Exec interface

program with the given name if it cannot find an appropriate command. Once the program
is started, and the command is registered, the Executive will execute the command.

12.5 References

Chapter 4 of the XDE User's Guide discusses the Executive from the user's point of view.

Chapter 5 of the Mesa Programmer' s Manual discusses the Exec interface.

Section 7.2 of the Pilot Programmer's Manual discusses the Format interface. Procedures
from this interface are used to format data of various types into strings for output.

12.6 Exercise

12-8

In this exercise you will write a simple line editor that has four commands: Insert, Delete,
Find, and Replace. Each of these commands will operate on a character string that you
enter into the Executive at the start of the program. The syntax for each command is
explained below

Insert inserts the character string info either before or after key. The defauit should be
after if no switch is specified but the user may specify before with the "Ib" switch
immediately after the Insert command. You should write Insert so it takes any number of
info/key pairs and so it prints the modified string after each insertion. If no key is specified
the info should be appended to the end of the string.

Delete {keYl} .. [keyN]

Delete removes the item name key and replaces it with the value in info. If key is not found
a message should be printed to that effect and if it is found the resulting string should be
printed.

Find calculates the index of the item named key within the string and prints this value to
the Executive. lfthe key is not found a message should be printed.

Replace locates the item named key and replaces it with the value in info. (The string
may need to be lengthened or shortened depending on the lenth of key and info). If the key
is not found an error message should be printed.

Your program should add each of these commands to the Executive and provide help
procedures for each command. An Unload procedure should also be provided in order to
clean up when the editor is no longer needed. A template is provided to help you write code
for this program; this template is stored on >Chapter 12>ExecEditorTemplate.mesa.

13

MFile

The Mesa file system supports concurrent, cooperating client processes, and coordinates
accesses to files. The file system facilitates inter-process cooperation by asking clients to
provide procedures that the file system can call to ask the clients to give up a file or to tell
other clients that a file is available. The view that its clients are cooperative allows it to
support a more sophisticated sharing of files among independent processes than is possible
in traditional environments.

The Mesa file system is novel in that it supports cooperation between clients that do not
know about one another. This approach allow design strategies that would be impractical
under other circumstances. You can be secure in the knowledge that if an optional use of a
file is interfering with other work, the offending program will be informed that another
process wishes to access that file

This chapter discusses how to acquire a file from the file system, how to return it when you
are done, and how to provide call-back procedures to enable this cooperative sharing.

13.1 Definition of terms

Mesa file system

13.2 Discussion

The Mesa file system is a virtual tree-structured file system that
allows notification of events and provides a protocol for releasing
files to facilitate interprocess cooperation.

If you want to create or write into a file, you must first acquire the file. In the process of
acquiring the file you may find that it is unavailable (another process is using it), in which
case you may wish to be told when the file does become available for use. In addition, when
you have acquired a file, other processes may wish to use it also, thus creating a need for
cooperation. This chapter discusses how the XDE file system provides file access to
cooperating processes with as few conflicts as possible.

13.2.1 Gaining access to files

To perform operations on a file, you must first obtain a LONG POINTER (handle) to the filp
You use the file handle to access both the contents of a file and the properties of a file.

13

13-2

MFiIe

these properties are defined when the file is first created and are stored in the MFile.Object.
The MFile interface provides several procedures for obtaining this handle, the most
general of which is MFile.Acquire.

MFile.Handle: TYPE • LONG POINTER TO Mfile.Object;

Mfile.Object TYPE; --opaque type prevents direct access by programmer

MFile.Acquire: PROCEDURE[
name: LONG STRING,
access: MFile.Access,
release: MFile.ReJeaseD.ata,
mightWrite: BOOLEAN +-FALSE,
initial Length: MFile.lnitialLength +-MFile.dontcare,
type: MFile.Type +-unknown) RETURNS(MFile.Handle);

name is the name of the file that you want to acquire. The access parameter specifies the
desired access; this can be any of the following values:

MFileAccess; TYPE,. MACHINE DEPENDENT {anchor(O), readOnly, readWrite. writeOnly,
log, delete, rename, null};

anchor lets you determine whether a file exists and, if so, to read its properties, but does
not allow you to read or delete the file.

readOnly allows you to read the file but not to write it.

readWrite permits you to read and write the file and to change the length of the file.

writeOnly access lets you write the file and change the length but does not allow reads.

log truncates the file to length zero each time a client accesses the file, thus allowing
new data to be appended to the file. For example, the compiler uses a log file that it
rewrites each time you run the compiler.

delete permits you to delete the file.

rename lets you change the name/file binding of a file either by renaming a file or
swapping two files

null access is provided only for initialization and must not be used for accessing the file.

The mightWrite parameter is only significant if access is anchor or readOnly. If
mightWrite is TRUE. MFile.Acquire will not return a handle on a file in a write-protected
directory. We will discuss the release parameter in detail in section 13.2.3.

In addition to specifying the different access methods, you must also specify the type of file
you will be reading (or writing). The file type is a value ofMFile.Type:

MFile.Type: TYPE = MACHINE DEPENDENT {unknown(O), text, binary, directory, null(255)};

unknown indicates that the file does not have one of the other file system types.

text indicates that the file contains characters.

binary files may contain arbitrary data.

Mesa Course 13

directory files are special files containing part of the directory structure of a file system.

null is only used when copying file handles with the same access.

If access is anchor, readOnly, delete, or rename, the file must already exist or the error
MFile.Error[noSuchFile) will be reised. If access is readWrite, writeOnly, or log, the file
system first checks to see if the file already exists. If it does, Acquire ensures that the
number of bytes in the file is at least as large as initialLength, although it does not set the
logical length of the file. If the file does not exist, the file system will create a new file of
size initialLength and type type.

fileName: LONG STRING ~ "MyFile.txt"L;
releaseData: MFile.ReleaseData +- [NIL, NIL];
fileLength: MFile.lnitialLength +-1000;
fileHandle: MFile.Handle +-MFile.Acquire[name: fileName, access: readOnly, release:

releaseData, initialLength: fileLength, type: text];

-- Perform operations on the file

13.2.1.1 Other methods of acquiring files

In addition to Acquire, you can access files with MFile.ReadWrite, MFile.ReadOnly, and
MFile.WriteOnly. These procedures are really shorthand methods of calling MFile.Acquire,
so you can use them to reduce the number of parameters MFile.Acquire requires and to
increase the readability of your· code. The definitions for these procedures are shown
below:

MFile.ReadWrite: PROCEDURE [name: LONG STRING,
release: MFile.ReleaseData,
type: MFile.type,
initial Length : MFile.lnitialLength +- MFile.dontCare) RETURNS[MFile.Handle];

MFile.ReadOnly: PROCEDURE [name: LONG STRING,
release: MFile.ReleaseData,
mightWrite: BOOLEAN +- FALSE] RETURNS(MFile.Handle];

MFile.Wri:teOnly: PROCEDURE (name: LONG STRING,
release: MFile.ReleaseData,
type: MFile. Type,
initialLength: MFile.lnitialLength +- MFile.dontCare] RETURNS[MFile.Handle];

13.2.2 Copying file handles

Occasionally you will acquire a file with one type of access and later want to change to a
different access. One way to do this is to release your file handle and then perform another
Acquire, but this is relatively slow. A better method is to simply copy the file handle with
MFile.CopyFileHandle, which acts as an accelerator for Acquire and avoids looking up the
file in the directory again.

MFile.CopyFileHandle: PROCEDURE [file: MFile.Handle,
release: Mfile.ReleaseData,
access: MFile.Access +- null) RETURNS [MFile.Handle];

CopyFileHandle provides a way around some of the access controls provided by the file
system; if the access requested for the copy is no stronger than that of the original access

133

13

13·4

MFile

(e.g. readWrite is stronger than writeOnly, which is stronger than readOnly, which is
stronger than anchor), the file system will make the copy, even though it would not permit
another client to gain that access to the file. (There is a list of access conflicts in the MFile
chapter of the Mesa Programmers Manual.) Thus, if a client has a handle with readWrite
access, it can get a copy with readOnly access or readWrite access, although another client
requesting a handle with either of these accesses would be refused. You must be careful,
however, since the file system assumes that a client requesting such conflicting handles is
responsible for the potential chaos that might result if they are misused.

13.2.3 Releasing files

Once you have acquired a file, you will want to perform operations on it; the operations
you can perform are discussed in the next two chapters (MSegment and Streams).
Regardless of the operations you perform, however, you must release the file when you are
finished or other processes will not be able to access the file. You release a file by calling
MFile.Release, which returns control of the file to the file system.

fileHandle: MFile.Handle 4- MFile.Acquire{ ...); ...

MFile.Release: PROCEDuRE[file: MFile.Handle); ...

file Handle 4- NIL; -- a/ways set the Handle to NIL

You should always set the file handle to NIL after you return from your call to MFile.Release
since the file system does not do this automatically and if your program later attempts to
access the file an error will result.

13.2.3.1 PleaseReleaseProcs

In section 13.2,1 we mentioned the release parameter used when acquiring a file handle.
The release parameter is used to determine whether your process will allow another
process to access the file. When you do not want any other process to have access you can
simply set the release parameter to [NIL, NIL]: if you wish to allow multiple access to the file
you must provide an MFile.PleaseReleaseProc. This release parameter is defined as:

MFile.ReleaseData: TYPE = RECORD[
proc: MFile.PleaseReleaseProc 4- NIL,
clientlnstanceData: LONG POINTER 4-NIL);

MFile.PleaseReleaseProc: TYPE • PROCEDURE[
file: MFile.Handle,
instanceData: LONG POINTER] RETURNS[MFile.ReleaseChoice];

MFile.ReleaseChoice: TYPE = {later, no, goAhead, aliowRename};

later means that the file will be released soon, so the file system should delay the
Acquire until this occurs.

no tells the file system to reject any request to access the file.

goAhead specifies that you are willing to release the file, and can guarantee that you
will not access the file afterward. We discuss methods of releasing files in later
examples.

aliowRename specifies that you do not object to having the file renamed.

Mesa Course 13

Thus, when you set your release parameter to [Nil, Nil]; this says to the file system, "I want
exclusive access to this file". When you want to allow other processes to be able to access
the file, you must write an MFile.PleaseReleaseProc.

The Mesa file system facilitates inter-process cooperation by asking clients to provide
procedures (PleaseReleaseProc) that the file system can call to ask the client to give up a
file. We call such procedures call-back procedures because the file system will call back to
the client (at the file system's discretion) via these procedures. For example, if a process
wants to write a file that another process is currently reading, the file system will call the
reading process's pleaseReleaseProc and ask it to relinquish the file. When the
PleaseReleaseProc is called, it returns a ReleaseChoice to the Mesa file system. This
ReleaseChoice determines whether the file system will grant access to the requesting
process. If the PleaseReleaseProc relinquishes the file, the process that gives up the file
must not access it again since there is no implicit release of the file; in other words, the
client process should behave as if the last statement of its PleaseReleaseProc were
MFile.Release.

In addition to the PleaseReleaseProc, the ReleaseData contains a clientlnstanceData
pointer, which points to client-specific information that the pleaseReleaseProc can access
when it is called. For example, clientlnstanceData might be a pointer to a tool message
subwindow; thus, when another process attempts to access the file, the pleaseReleaseProc
can display a message in the subwindow.

You should generally allow others processes to have a file if you are reading it or are not
performing any critical tasks with the file. Some cases where you would not want to
release the file include: writing a file, deleting a file, and changing the files properties.
Below is a sample program which both reads and writes to a file; when it is writing to the
file, the process will refuse to release the file, but it will release the file when it is reading.

DIRECTORY --Definitions module
MFile;
CopyFileDefs: DEFINITIONS ,.
BEGIN

MyMonitor: PROGRAM;
AcquireRead: PROCEDURE[fileName: LONG STRING] RETURNs[handle: MFile.Handle];
AcquireWrite: PROCEDURE[fileName: LONG STRING] RETURNs[handle: MFile.Handle];
SomeOneWantsFile: PROCEDURE[handle: MFile.Handle] RETURNs[file: MFile.Handle];
MyReleaseProc: MFile.PleaseReleaseProc;

END.

13

13-6

MFile

DIR£CTORY --Monitor implementation
CopyFileDefs.
MFile;

MyMonitor: MONITOR
IMPORTS MFile
EXPORTS CopyFileDefs •
BEGIN

pleasefree, reading: BOOLEAN +-FALSE;
-- When either of the acquire procedures is called, acquire the file handle
-- from the file system and return it to the client
AcquireRead: PUBLIC ENTRY PROC£DuRE(fileName: LONG STRING)
RETURNs[handle: MFile.Handle] •
BEGIN

reading +-TRUE;
pleaseFree +-FALSE;
R£TURN[MFile.ReadOnly[name: fileName, release: [proc: MyReleaseProc,]]];

END;

AcquireWrite: PUBLIC ENTRY PROCEDUR£[fileName: LONG STRING]
R£TURNs(handle: MFile.Handle) •
BEGIN

reading+- FALSE;
pleaseFree +- FALSE;
R£TURN(MFile.WriteOnly{name: fileName. release: [proc: MyReleaseProc].

type: text]];
END;

--If another process wants to use the file and the file
-- is in read mode, then release the file
SomeOneWantsFile: PUBLIC ENTRY PROC£DuRE(handle: MFile.Handle)

R£TURNs[file: MFile.Handle) •
BEGIN

IF pleaseFree THEN {pleaseFree +-FALSE; MFile.Release[handle]; RETURN[NIL)};
R£TURN(handle); - no one wants or is granted access

END;

-PIeaseReleaseProc for file only release file if in read mode
MyReleaseProc: PUBLIC ENTRY MFile.PleaseReleaseProc •
BEGIN

IF reading THEN {pleaseFree +- TRUE; RETURN[later)}
ELSE RETURN[no);

END;
END.

Mesa Course

--Main program CopyFileExample
DIRECTORY
CopyFileDefs,
MFile;
CopyFileExample: PROGRAM
IMPORTS CopyFileDefs, MFile •
BEGIN

ENABLE
Mfile.Error • > GOTO exit;

finishedUsingFile: BOOLEAN +-fALSE;
fileName: LONG STRINq +- "MyFile.txt"L;

--get file from file system
myFileHandle: Mfile.Handle +-CopyfileDefs.AcquireRead[fileName);
UNTIL finishedUsingFile DO

-- perform some tasks using the file, if another process requests file
-- then exit
IFCopyFileDefs.SomeOneWantsFile[myFileHandle) • NIL THEN GOTO exit;

ENDLOOP;
MFile.Release(myFileHandle); --Release file so it may be reacquired
myFileHandle +-CopyFileDefs.AcquireWrite(fileName); --with write access
finishedUsingFile +-FALSE;
UNTIL finishedUsingFile DO

-- perform some more tasks using the file but don't release
ENDLOOP;

MFile.Release(myFileHandle); -- release the file and set the handle to NIL
myFileHandle +-NIL;

EXITS
exit • > NULL;

END.

13

Note that the sample program is divided into two modules. The first part (MyMonitor) is a
MONITOR that communicates with the file system; the second part (CopyFileExample)
makes calls to MyMonitor ENTRY procedures to acquire a file and to determine whether any
other process wants access to the file.

CopyFileExample first acquires the file with readOnly access and performs operations on
the file, periodically checking to see if others have requested the file. It performs these
checks by calling the MONITOR ENTRY SomeOneWantsFile. SomeOneWantsFi Ie checks to see
if another process has made a request to access the file (pleaseFree); if so, it will release
the file and return a value indicating that the file should not be used any longer. Thus,
CopyFileExample is willing to give up the file when it is in this first loop. However, when
CopyFileExample reacquires the file with writeOnly access, it is not willing to release the
file and therefore does not make any calls to SomeOneWantsFile.

13.2.4 Notification

Sometimes a client process may wish to be notified when a file becomes available for a
particular access; for example, a file window may wish to know whenever there is a new
version of the file it contains. In other words, whenever the file is changed the window
would like to redisplay the new version. Another common use of notification is when a
process relinquishes a file via its PleaseReleaseProc and would like to regain access as
soon as the file becomes available again. Client processes ask to be notified when a file is

13 7

13

13-8

MFile

available by calling Mfh.AddNotifyProcwith the file l'lame and access of interest, and the
NotifyProc to be called when the file becomes available.

Mfile.AddNotifyProc: PROCEDURE [
proc: MFile.NotifyProc.
filter: MFile.Filter.
clientinstanceData: LONG POINTER);

MFile.Filter: TYPE • RECORD [
name: LONGSTRING+-NIL.
type: MFile.Type +-unknown.
access: MFile.Access):

MFile.NOtifyProc: TYPE • PROCEDURE [
name: LONG STRING,
file: Handle,
clientlnstanceData: LONG POINTER) RETURNS [removeNotifyProc: BOOLEAN +- FALSE];

The notification is performed by a special process in the file system, which maintains a list
of files that are eligible for notification. This process checks the name and the Filter
information to determine if the desired file is available; if so, the NotifyProc is called.
Because of the nature of a multiprocess environment there are several important items to
note when using NotifyProcs

When the NotifyProc is called by the file system, the file argument to the NotifyProc
contains a Handle on the file if the file exists; otherwise, file is NIL. The NotifyProc
should always check this handle before using it.

file belongs to the system, so if you want a handle on the file you must call
MFile.CopyFileHandle on the handle passed in, and must explicitly specify the access
required. In addition, when using MFile.CopyFileHandle the file system does not
guarantee that you will be able to obtain the desired access, thus notification can only
be viewed as a strong hint.

There is no guarantee about the order of notification or about how quickly notification
will take place. This is due to the fact that notification takes place in another process.

To avoid deadlock with the file system, the NotifyProc should not call AddNotifyProc or
RemoveNotifyProc; you should use the BOOLEAN result of the NotifyProc to remove itself
from the notify list.

13.2.4.1 Removing notification

Under some circumstances you may want to remove the NotifyProc from consideration
yourself; this is done with a call to MFile.RemoveNotifyProc .

MFile.RemoveNotifyProc: PROCEDURE [
proc: MFile.NotifyProc,
filter: MFile.Filter,
clientlnstanceData: LONG POINTER];

As mentioned above you should not make a call to MFile.RemoveNotifyProc from within
your NotifyProc. A sample program illustrating NotifyProcs is shown below.

Mesa Course

DIRECTORY
MFile;
FileDefs: DEFINITIONS =
BEGIN

NotifyProcExample: PROGRAM;
Acquire: PROCEDURE[fileName: LONG STRING] RETURNs[handle: MFile.Handle];
NotifyProc: MFile.NotifyProc;
CanlKeepTheFile: PROCEDURE[handle: MFile.Handle] RETURNs[yes: BOOLEAN~FALSE];
ReleaseProc: MFile.PleaseReleaseProc;

END.

DIRECTORY
FileDefs.
MFile;
NotifyProcExample: MONITOR
IMPORTS MFile
EXPORTS FileDefs •
BEGIN

fileName: LONG STRING ~NIL;
pleaseRelease: BOOLEAN ~ FALSE;
ready: CONDITION; --wait on ready when the file is in use by others

-- Acquire acquires the file handle. If the file handle is not available, we
-- add a notify proc and wait for it to become available

Acquire: PUBLIC ENTRY PROCEDURE[fileName: LONG STRING]
RETURNs[handle: MFile.Handle ~NIL] =-

BEGIN
handle~ MFile.Acquire[

name: fileName,
access: readOnly,
release: [ReleaseProc] !MFile.Error • > {

}];

MFile.AddNotifyProc[
proc: NotifyProc,
filter: [name: fileName, access: readOnly).
clientlnstanceData: NIL); -- if the file is in use add the notify proc

WAIT ready; -- andwait here until the file is again available
RETRY; -- make another attempt to acquire the file

pleaseRelease ~FALSE; -- no one has requested file
RETuRN[handle}; --file was acquired so return handle

END;

NotifyProc: PUBLIC ENTRY MFile.NotifyProc =
BEGIN

removeNotifyProc +- TRUE;
NOTIFY ready; -- allow acquire entry to wake up

END;

13

13 9

13

13-10

MFile

-~ if another process requested the file then release it and wait
CanlKeepFile: PUBLIC ENTRY PROCEDURE [handle: MFile.Handle)

RETURNS [yes: BOOLEAN +-FALSE] =
BEGIN

If pleaseRelease THEN {
MFile.Release(handle); -- some other process wants file so release it
MFile.AddNotifyProc[-- ask to be notified when it becomes available

proc: MyNotifyProc.
filter: [name: fileName. access: readOnly].
clientinstanceData: NIL];

WAIT ready; -- wait here until file is available again
pleaseRelease ~ FALSE;
RETURN[fALSE]}; -- inform caller that the file must be reacquired

RETURN[TRUE]; -- file was available so keep using it
END;

--PleaseRe/easeProc for file always releases the file
ReleaseProc: PUBLIC ENTRY MFile.PleaseReleaseProc •
BEGIN

pleaseRelease +-TRUE; -file will be released when CanlKeepFile is called
REiURN[later];

END;
END.

DIRECTORY
FileDefs.
MFile;
CopyFileExample: PROGRAM
IMPORTS FileDefs •
BEGIN

fileName: LONG STRING +- "SomeFile.txt"L;
fileHandle: Mfile.Handle +-fileHandle +-FileDefs.Acquire[fileName];
DO

- perform operations on the file
- if anyone else wants the file then give it up and sleep
- until it becomes available again
If - fiIeDefs.canIKeepFile[fileHandle) THEN fileHandle +- FileDefs.Acquire(fileName);

ENDLOOP;
END.

CopyFileExample . first attempts to acquire a file by calling the MONITORed Acquire
procedure. If the file is not available, Acquire requests that the file system notify it when
the file does become available; the Acquire ENTRY then WAITs on the condition variable
ready. When the process that is currently using the file returns it, ready is NOTIFYed by the
notify procedure NotifyProc. Acquire then RETRYS to access the file; this mayor may not be
successful due to the fact that other processes may attempt to acquire the file also; thus,
Acquire may again be forced to WAIT.

When the file is finally acquired, CopyFileExample performs operations on the file while
checking to see if another process wants to use the file. It checks by calling CanlKeepFile,
which returns a BOOLEAN indicating whether it has given up the file at the request of
another process. canlKeepFile tests a global MONITORed variable pleaseRelease (that is set
to TRUE by the pleaseReleaseProc if another process attempts to gain access to the file.) If
pleaseRelease is TRUE, CanlKeepFile releases the file (doing the release notifies the other
process that the file is available), and then waits until the file is available again before it

Mesa Course 13

returns. If no other process has requested the file, CanlKeepFile immediately returns FALSE
and CopyFileExample can continue to process the file.

Note that this code is not re-entrant; that is, there can only be one copy of some of the
global variables. This is not ideal programming style; you will learn how to avoid the
global variables later in the course.

13.2.5 Manipulating Files

You may want to perform operations on files without accessing their contents. For
example, you may want to copy one file to another, delete a file, rename a file, or create a
new subdirectory. In this section we will briefly discuss the procedures that the Mesa file
system provides for doing these tasks.

The MFile.COpy procedure copies a file into another file. The client must have readOnly or
readWrite access to file, and it must be able to open the file newName for writeOnly.

MFile.COpy: PROCEDURE [file: MFile.Handle, newName: LONG STRING];

You can easily delete a file by calling MFile.Delete with the file handle, or rename a file
with Mfile.Rename.

MFile.Delete: PROCEDURE[file: MFile.Handle);

MFile.Rename: PROCEDURE[file: MFile.Handle, newName: LONG STRING];

MFile.CreateDirectory creates a directory if one does not already exist. All the intermediate
subdirectories on the path will be created as necessary, (e.g., if dir is <Tajo >Ders >Source
and subdirectory Ders does not exist, it will be created as well as subdirectory Source.

MFile.CreateDirectory: PROCEDURE[dir: LONG STRING1;

13.2.5.1 Obtaining information about files

Mesa files all have properties (dates, length, protection, type, etc.) and you can retrieve
many of these by calling the appropriate Mfile procedure. Some ofthe more useful of these
procedures are GetCreateDate, GetLength, and GetProtection, each of which takes an
MFile.handle as a parameter and returns information about the file.

MFile.GetCreateDate: PROCEDURE [file: MFile.Handle] RETURNS [create: Time.Packed];

MFile.GetLength: PROCEDURE [file: MFile.Handle) RETURNS [MFile.ByteCount);

MFile.GetProtection: PROCEDURE [file: MFile.Handle)
RETURNS [deleteProtected, writeProtected, readProtected: BOOLEAN];

13.3 Summary

In a multiprocess environment processes frequently need access to common files.
Traditionally, file systems grant access to files on a competitive basis. The Mesa file
system, however, assumes that processes are cooperative, thus permitting the maximum
amount of sharing. Cooperation is facilitated via call-back procedures that allow a process
to release a file and then to reacquire it without any direct interprocess communication.

13·11

13 MFile

When a process acquires a file from the file system, it can include a PleaseReleasePrac.
The file system will call this PleaseReleasePrac when another process requests the file
with a conflicting access. The PleaseReleasePrac may refuse to release the file (na), delay
the request to use the file until it has been released (later), allow the file to be renamed
(aliowRename), or relinquish the file (gaAnead).

A process may also ask to be notified when a specified file becomes available by calling
MFile.AddNatifyPrac, which registers a call-back procedure, (a NatifyProc), with the file
system. When the file becomes available, the NatifyPrac is called and can perform
operations in attempt to access the file.

The MFile interface provides procedures to manipulate files, to change their properties,
and to create or also destroy directories. In contrast to many environments the XDE allows
programs to manipulate files and their properties

13.4 References

Chapter 47 of the Mesa Programmer's Manual defines the MFile interface and provides
additional information on PleaseReleaseProcs.

Chapter 4 of the Pilot Programmer's Manual provides information about the file system.

13.5 Exercise

13-12

The exercise for this chapter is to write a monitor to implement a multi-window tool. The
tool has two commands, AcquireSW1 and AcquireSW2, that attempt to acquire a file and
display it in the corresponding subwindow. The problem is that both commands attempt to
acquire the same file with conflicting access; thus only one will be successful. (Note: you
need to try to acquire the files with readWrite access; if you request read access, there will
be no access conflict.) The command that is unsuccessful must wait for the file to become
available and again attempt to access and to display the file. The file will become
available when you invoke the Release command, which releases the file.

You are to implement a monitor that has ENTRYS for Acquire and Release, which are called
via detached processes when you invoke the corresponding commands. The arguments to
the processes contain pointers to the tool sub windows so you can perform output to the tool
windows. In addition, we provide a procedure that prints a file in a file subwindow, since
printing the file requires attaching a stream to the file.

You need to write a NotifyProc (NatifyProc) and possibly a PleaseReleaseProc
(ReleaseProc). The NatifyPrac should ensure that the process waiting for the file gets
notified that the file is available. The PleaseReleaseProc should always return na since
you want requesting processes to wait until the file is explicitly released via the tool.

The tool window module is stored as WindowTool.mesa and the definitions file, which
describes the procedures that you will write, is on FileDefs.mesa. A working
implementation module for the monitor is stored in MyMonitor.mesa and the
configuration file is ForkConfig.config.

14

MSegment

The MSegment interface supports mapping files to spaces in virtual memory called
segments. You can use such segments as input/output buffers to improve the performance
of programs that need to do a lot of file operations (reading and writing.) You can also use
segments to impose a structure on a data file and manipulate that structure much like a
simple Mesa variabl~. This chapter discusses how to create segments, how to perform I/O
with the segments and how to delete the segments when you are finished.

14.1 Definition of terms

Dirty Page

Page

Real Memory

Segment

Segment-File Mapping

A dirty page is a page in a segment that has information
different from the information in the backing file. To bring the
backing file up to date, dirty pages must be written to disk.

A page is a piece of storage One page is Environment. words
PerPage (256) words or Environment.bytesPerPage (512) bytes.

Real memory is that amount of fast-operating, random-access
storage directly addressable by a processor. Currently, most
Dandelion processors have between 1000 and 3000 pages
(512K bytes and 1.5 Mbytes) of real memory.

A segment is a sequence of virtual pages. Once created, a
segment occupies a fixed position in virtual memory; its
starting and ending·addresses never change. (However, you
can change the properties of a segment with a procedure called
MSegment.Reset; this procedure may have to change the
location of the segment in order to change the properties ..)

Segment-File Mapping is the process of associating a segment
with a sequence of contiguous pages of a backing file. Since
virtual memory is implemented by combining the resources of
real memory with those of the file system, any portion of
virtual memory that contains information must be associated
with a file that acts as a backing store. For proper operation of
segment-file mapping, the size of a segment in pages should be
less than or equal to the size of the backing file in pages.

1-1. 1

14 MSegment

Swapping

Virtual Memory

Swapping is the act of bringing pages of data from virtual
memory to real memory, or vice versa.

Virtual memory is a scheme by which the amount of storage
available to the processor appears, from a programmer's point
of view, to be larger than the size of the real memory. Data
stored in virtual memory actually exists in files. In order for
the processor to operate on data, the data must be mapped into
real memory via an address translation scheme.

14.2 Discussion

14-2

A segment is a sequence of contiguous pages in virtual memory. Since the operating
system cannot guarantee that an entire segment will be in real memory at any given time,
it needs a backing file as a place to store the data from those parts of the segment that are
not currently in real memory. Thus, every segment must be backed by a file (or some
portion of a file.) If you try to write data into a portion of a segment that is not correctly
mapped to a file, an address fault will occur.

Below are two examples of segment-file mappings. The first example illustrates the
default case: the segment and backing file have the same size. The second example shows
a backing file that is "larger" than its associated segment. It is possible to create a
segment that is larger than its backing file but writing data into regions of the segment
that have no backing will result in an address fault.

virtual memory
pages

fHe pages

segment

Swap units

backing file

Figure 14.1 a: The default segment-file mapping

Mesa Course

virtual memory
pages

segment

Swap units

backing file

Figure 14.1 b: Backing file length is a multiple of segment length

14

The easiest way to think about how the backing file works is to assume that the segment
and its image in the backing file contain the same data. The real situation, however, is a
little more complicated since there is a time lag between when something is changed in a
segment and when that change is reflected in the backing file. If you constantly update the
backing file you would not realize any performance improvement over normal file
input/output. The whole advantage that a segment offers is that it is a buffer, and as a
buffer, its contents are written out only occasionally.

There are three occasions when a segment is copied out into its backing file First, when a
segment is deleted, it copies out its data before it disappears. Second, you can explicitly
back up a segment by calling the procedure MSegment.ForceOut. (We discuss this more
completely later in this chapter.) Finally, the segment copies out data whenever it is
swapped out of real memory (this is totally invisible to you.)

In most other ways, segments are like blocks of real memory storage. For example,
segments start at an address that is fixed when they are created, so, like nodes in a heap,
segments do not move once they are created. Further, you can reference a segment
starting address, just like the address of the first word in a record node, with a LONG POINTER

variable. Thus, you can impose any data structure upon a segment just by creating a
variable that is a pointer to a data object and then assigning to that pointer the address of
the segment. An entire data file can be manipulated merely by mapping sections of the file
onto segments and then imposing some record structure onto the segments.

14-3

14

14-4

MSegment

14.2.1 Creating a segment

You create a segment with MSegment.Create:

MSegment.Create: PROCEDURE[
file: MFile.Handle +-NIL, --handle to the backing file
release: MSegment.ReleaseData,
fileBase: File.PageNumber +-0,
pages: Environment.PageCount Eo- defaultPages,
swaplnfo: MSegment.SwapUnitOption Eo- defaultSwapUnits]
RETURNS [segment: MSegment.Handle);

MSegment.Handle: TYPE • LONG POINTER TO MSegment.Object;

File.PageNumber: TYPE = LONG CARDINAL;

Environment.PageCount: TYPE • LONG CARDINAL;

Create creates a segment; the operations that you can perform on the segment are
restricted by the access associated with the file that is passed in. You should note that
owner,ship of the file is passed to the MSegment.Handle via the file parameter; if you want to
maintain control of the file you will need to copy the file handle with MFile.CopyFileHandle
before creating the segment. Iffile is NIL, MSegment will automatically create a nameless,
temporary file to act as the backing store for the segment; when the segment is deleted the
backing file will also vanish.

The release parameter is used to provide a PleaseReleaseProc to the file system when you
want to allow multiple processes to access the file (see the MFile chapter for a discussion of
PleaseReleaseProcs). If you do not want to share the file you can simply set the release
value to [NIL, NIL]. fileBase is the starting point of the segment on the file and is defaulted to
the beginning of the file. The pages parameter is the number of pages j'OU want for the
segment length; the default is the length of the file. swaplnfo is the number of pages that
each swap unit contains. This number should generally not be greater than one-tenth of
the size of real memory.

14.2.2 Copying segments to and from iIles

Once you have established a segment on a backing file, you may want to copy the contents
of that segment into another file. For example, you can selectively extract information
from a large data file and create' a new file that contains only a small subset of selected
information. You can perform this selective copying with MSegment.CopyOut.

MSegment.CopyOut: PROCEDURE [
segment: MSegment.Handle,
fi Ie :MFile.Handle,
fileBase: File.PageNumber,
count: Environment.PageCount];

-- segment containing the desired information
-- file to be copied into
-- copy starting position within the file
-- copy count pages into the file

Beginning with the first page of segment, CopyOut copies count pages of segment into
file, starting in position filebase of file. CopyOut is illustrated in Figure 14.2.

Mesa Course

virtual memory
pages

file
pages

filebase

count pages

segment

destination file (different
from backing file)

Figure 14.2 Segment.CopyOut

14

You may also wish to copy information from a file into a segment that is mapped to
another file; you can do this with MSegment.Copyln.

MSegment.Copyln: PROCEDURE [
segment: MSegment.Handle.
file:MFile.Handle.
fileBase: File.PageNumber.
count: Environment.PageCount);

-- segment to be copied into
- file containing the desired information
- copy starting position within the file
-- copy count pages into the segment

Notice that the parameters to Copyln are identical to those of Copy Out; the only difference
between the procedures is the direction of the copy. The two copy procedures are similar to
the read and write operations of a traditional file system. Here is an example that copies
one file to another using Copyln and CopyOut:

14-5

14

14-6

MSegment

DIRECTORY
Environment USING (bytesPerPage, PageCount, PageNumber],
ExeCUSING [AddCommand, ExecProc, GetToken, Handle, OutputProc),
Format USING [StringProc),
MFile USING [ByteCount, Error, GetLength, Handle, ReadOnly, Release, SetLength, WriteOnly),
MSegment USING (Create, Copy.n, CopyOut. Delete);

CopySegment: PROGRAM IMPORTS Exec, MFiJe, MSegment •
BEGIN

GetFileNames: PROCEDURE[h: Exec.Handle) RETURNs[inFile, outFile: MFile.Handle +- NIL] •
BEGIN

inName, outName:. LONG STRING +-NIL;
[in Name,) +- Exec.GetToken(h); -- Read in the filenames and ignore the switch
[outName,] +- Exec.GetToken[h);

inFile +-MFile.ReadOnly[name: inName, release: [NIL, NIL]];
outFile +-MFile.WriteOnly[name: outName, release: [NIL. NIL), type: unknown!MFile.Error

• > {MFile.Release[inFile); REJECT}]; - pass signal to Copy after releasing inFile
END;

--create a segment on a temporary file and transfer the file contents
TransferSegments: PROCEDuRE[inFile, outFile: MFile.Handle] •
BEGIN

LengthOfFile: MFile.ByteCount • MFile.GetLength[file: inFile);
ExtraBytes: MFile.ByteCount • LengthOfFile MOD Environment.bytesPerPage;

. FullPages: Environment.PageCount • LengthOfFile I Environment.bytesPerPage;
PagesToTransfer: Environment.PageCount •

FullPages + (IF ExtraBytes > 0 THEN 1 ELSE 0);

segmentSize: Environment.PageNumber • 4;

.. calculate the number of pages
-- to transfer
-- segments are 4 pages long

bufferSegment: MSegment.Handle +- MSegment.Create[release: [NIL. NILI. pages:
segmentSize);

ExtraPages: Environment.PageCount • PagesToTransfer MOD segmentSize;
numberOfTransfers:LONG CARDINAL. PagesToTransfer I segmentSize +

(IF ExtraPages • 0 THEN 0 ELSE 1); -- calculate the number of segment copies to make

MFile.SetLength{outFile. LengthOfFile]; - set the length of the output file

-- perform the copies from the input file to the segment and then from the
-- segment into the output file.

FOR pageCount:LONG CARDINAL IN [O .. numberOfTransfers) DO
MSegment.Copy'n[bufferSegment. inFile. pageCount*segmentSize. segmentSize);
MSegment.CopyOut[bufferSegment, outFile, pageCount*segmentSize, segmentSize);

ENDLOOP;
IF bufferSegment # NIL THEN {MSegment.Delete[bufferSegment); bufferSegment +- NIL};

END;

Mesa Course

-- Copy is called when the user types - Copy infilename outfilename
Copy: Exec.ExecProc •
BEGIN

Write: Format.StringProc - Exec.OutputProc[h);
inFile, outFile: MFile.Handle Eo- NIL;

[inFile,outFile) Eo- GetFileNames[h! MFile.Error • >

14

{Write("invalid or missing filename"L); GOTO exit}]; --get filenames from Executive

TransferSegments[inFile, outFile); --create the segment and perform the file transfer
Write["File transfer complete"L);
MFile.Release[inFile); --release the files since MSegment never owned them
MFile.Release[outFi Ie);
EXITS

exit • > RETURN; -- return to Executive if an error occurred when acquiring files
END;

-Mainline code
Exec.AddCommand[name: "Copy.-"L, proc: Copy); -- register the Copy command

END. -end of program

This program is invoked when you type Copy inputfile outputtHe in the Executive. The
Copy procedure first calls GetFileNames, which reads the names of the input and output
files from the Executive, and then acquires the file handles, creating an output file if one
does not already exist. Next, Copy calls TransferSegments, which creates a segment ort a
temporary file. (When no backing file is explicitly specified, MSegment automatically
creates a temporary backing file.)

TransferSegments then transfers segments from the inputfile to the outputfile by
alternating Copylns and CopyOuts until the entire inputfile has been copied to the
outputfile. After the entire file is copied, we call MSegment.Delete to delete the segment on
the temporary file, and then we release the input and output files. Calling MSegment.Delete
on a segment with a temporary backing file automatically releases the backing file.

An important thing to notice from this example is that you need to set the length of the
outputfile before you start the transfer. Otherwise, even if you create the output file witp
the correct length (number of pages) the file system will think that the file has a zero
length (byte length). To set the length, call MFile.SetLength, as shown in the above
example.

14.2.3 Forcing pages to the disk

When data integrity is very important (e.g. real time database applications), you will
want to frequently force dirty pages of the segment to the disk. When you are entering
information into a database, you may add information to a segment for some time before
the segment is deleted, and implicitly written to the disk. If the system crashes during this
time period, all your new information will be lost. To insure against this type of loss you
should periodically force all dirty pages to the backing file with MSegment.ForceOut.

MSegment.ForceOut: PROCEDURE [segment: MSegment.Handle];

14-7

14

14-8

MSegment

The example in the next section contains an example ofMSegmeftt.ForceOut.

14.2.4 Direct access within segments

Since segments let you create an arbitrary data structure on a file, you need a method to
modify that data structure. To access a specific part of a segment you get a pointer to the
start of the segment and then add an offset to the pointer to reach the address you want to
modify. You can get the starting address of a segment by calling MSegment.Address:

MSegment.Address: PROCEDURE (segment: MSegment.Handle] RETURNS [LONG POINTER];

You can access the segment's contents by defining a Mesa structure for the segment and
then LOOPHoLEing the pointer returned by MSegment.Address into that structure. (Note:
LOOPHOLE is a Mesa language operator that allows you to convert any data type into any
other data type, provided that the two data types occupy the same number of words. See
the MLM for details.) This technique gives you a view into the segment without having to
LOOPHOLE the segment's data into a separate structure. Of course, you must know the
structure of the segment before you can perform the preceding operations.

When you first insert information into your segment you must choose a structure for that
information. The structure you choose is arbitrary, but ideally there should be an integral
number of records in each segment (e.g. having one-half of a record or 1.7 records in a
segment is poor practice.) You must also declare a pointer to this structure in order to
access the record fields within the segment. It is important to ·remember that you cannot
assign default values to the structure, since it is only a template for the segment and not a
variable. The example below uses a template to write data into two areas of a segment.

DIRECTORY
Exec USING [AddCommand, ExecProc, GetToken, Handle],
MFile USING [Handle, ReadWrite. SetLengthj,
MSegment USING [Address, Create, Delete, ForceOut, Handle];

DirectAccessSegment: PROGRAM IMPORTS Exec, MFile. MSegment =.
BEGIN

- Declare record structure for accessing the segment
Data: TYPE • MACHINE DEPENDENT iUCORD[

name(O): PACKED ARRAY[O .. 14) OF CHARACTER,
address(7): PACKEDARRAV[0 .. 14) OF CHARACTER.
id(14): LONG CARDINAL];

SegmentOfData: TYPE .. PACKED ARRAV [0 .. 32) OF Data;
tenPages: CARDINAL • 5120; --ten pages of 512 bytes each

GetFile: PROCEDURE[h: Exec.Handle] RETURNs[inFile: MFile.Handle +- NIL] ..
BEGIN

inName: LONG STRING +-NIL;
[inName,] +-Exec.GetToken[h);
inFile +-MFile.ReadWrite[name: inName. release: [NIL, NIL], type: binary,

initialLength: tenPages];
END;

Mesa Course

-- create segment and write to the 10th and 18th records
ModifySegment: Exec.ExecProc =
BEGIN

segment: MSegment.Handle +- NIL;
data: LONG POINTER TO SegmentOfData; -- pointer for manipulating records
file: MFile.Handle +- GetFile[h]; -- read file name from Executive

14

MFile.SetLength[file,tenPages]; -- ensure file is the proper length
segment +-MSegment.Create[file: file, release: [NIL, NIL], pages: 2];
data +- MSegment.Address[segment];

-- write to the 10th record of the segment
data[10].name +- ['M,'a,'r,'k,',',',',',',',',','];

data[10].address +-['X,'e,'r,'o,'x,' " " " " .. I' " "];
data[10].id +-199;

-- perform other operations, but ensure that information
-- is safe by forcing out the segment's dirty pages
MSegment.ForceOut{segment] ;

-- perform another write to the data segment in record 18
data[18].name +- ['F,'r,'e,'d,',',',',',',',',','];
data[18].address +-['H,'i,'I,'I,'v,'j,'e,'w " " " " " "];
data[18].id +- 276;

MSegment.Delete[segment]; -- delete will write dirty pages
END;

--Mainline code
Exec.AddCommand[name: UModifySegment.-uL, proc: ModifySegment];

END.

The above program registers the command ModifySegment with the Executive. Invoking
this command calls the procedure ModifySegment, which reads the name of a file from the
Executive and sets the length of the file to ten pages (since the file may be new and not
have any length). Next, we create a segment of length two pages on the file and set a
pointer (data) to the beginning of the segment (with the implied structure of
SegmentOfData.) Thus, you can write to the segment as if it were a variable of type
SegmentOfData.

14.2.5 Copying segment handles

Under certain circumstances you may want to have more than one process use the same
segment. For example, suppose you want to have a database that gives a handle to the
segment of interest to each process that wants read access. To share a segment in this way,
you must copy the segment Handle with MSegment.CopySegment.

MSegment.CopySegment: PROCEDURE [
segment: MSegment.Handle] RETURNS [newSegment: MSegment.Handle];

14-9

14 MSegment

The new handle will have the same access as the old; thus, you can have more than one
readWrite handle to a segment. As with files, it is your responsibility to insure against
conflicts when overwriting data in this segment.

14.3 Summary

14.4 Style

l4-10

The MSegment interface allows you to access the contents of a file by mapping the file to a
segment of virtual memory. Mapping to a segment allows you to create a view of a file that
corresponds to a data structure of your choice, thus allowing you to treat files nearly as if
they were variables. When you create a segment, you need to supply a backing file. If you
don't explicitly name your backing file, MSegment will create a temporary backing file for
you.

MSegment.Copyln and MSegment.CopyOut provide a method of copying information to and
from files; these procedures copy data between a segment and a file much like the read and
write operations of traditional file systems. Neither procedure affects ownership of the
files involved.

MSegment.Address returns the virtual memory address of a given segment. You use this
procedure to directly access information contained in the segment via LONG POINTERS to the
data structure stored in the segment.

Since a segment is just a buffer, changes must be written to the backing file before they
become permanent. Thus, you should occasionally call MSegment.ForceOut to force dirty
pages to the disk. Use this procedure when the integrity of the information you put in the
segment is of great importance.

When you create a segment on a file, the ownership of the file is passed to the
MSegment.Handle; you must copy the file handle to a separate handle if you want to keep a
pointer to the file. When you delete a segment, the backing file for that segment is
released. If your segment is backed by a temporary file, the file is deleted when you delete
the segment.

When dealing with segments, there are several important style issues. First, you should
think carefully about the size of your swap units. If they are too large (more than one
tenth of the size of real memory), system performance will degrade severely. On the other
hand, you can also have swap units that are too small. For example, if your program
accesses a segment that contains data items that are 5 pages long, you should not have a
swap unit size smaller than 5 pages. A smaller swap unit would require at least two disk
accesses, whereas a 5 page swap unit might retrieve the entire structure in one access.

Segment size is another important consideration. An 8010 has only 222 words, (16,000
pages) of virtual memory. All clients in the XDE must share this same virtual address
space; thus, mapping a very large segment may not leave enough virtual memory for the
remaining processes. Again it is important to understand the memory requirements of
your process and the requirements of other running processes. On the other hand, if you
use small segments, the time required to map each segment will become quite large; thus
you should perform as little mapping as possible.

Mesa Course 14

Given these two conflicting problems, a good rule of thumb is to map entire files if you will
only use them for a short time (e.g. copying a file); or if you know that you will access each
page in the file. You should map smaller segments when other processes must run in
parallel or if the file is too big to map with available virtual memory.

14.5 References

Information on MSegment is contained in the Mesa Programmer's Manual.

The Space chapter in the Pilot Programmer's Manual describes how Pilot implements the
virtual memory system.

14.6 Exercise

The exercise for this chapter asks you to construct a data structure for a simple airline
reservation system on a file, and then manipulate that structure via segments. The data
structure consists of two parts; the first part is a directory and the second part is the data.

The directory should contain an array of data records, each of which contain
FlightNumber, FromCity, ToCity, and an InUse field. When you want to look for a
particular flight number, you simply test each FlightNumber that is inUse until you find a
match, and then calculate an address to access the data.

The data is composed of Flights, where each flight has an ARRAY of seats. Each seat has a
name, seatNumber, and InUse field. You should make one flight fit on each data segment;
thus, when you find a desired flight in the directory, you must map its corresponding data
into a segment.

When a FlightNumber is deleted, its inUse BOOLEAN is set to fALSE and the inUse fields in
the data object are marked as fALSE. If you want to insert information into the file you must
first find an empty slot in the directory (by checking inUse), then you can insert into the
first field in the data segment that is not inUse .

OpenSession accesses the data file and maps a segment to that file. CloseSession deletes
the segment, thus releasing the data file.

The sizes and definitions for the above data objects are defined in the interface module
Reservation.mesa. Your task is to implement five procedures, OpenSession, CloseSession,
Insert, Delete, and ShowFlights, that manipulate and display the data structure. We have
provided a tool interface that will call your procedures and accept input data. The tool is
called ReservationTool.mesa and a template for your procedures is on
ReservationTemplate.mesa

14-11

14 MSegment

Notes:

14-12

15

Streams

Mesa streams allow you to transport serial data (bytes, words, or blocks of bytes) to and
from various devices. Streams are most commonly used for reading and writing local files,
but they can be used with other devices as well (such as floppy disks.)

In this chapter, we discuss how to attach a stream to a storage device, how to access the
data once the stream is attached, and how to dispose of the stream when you are finished
with it. We also discuss how to associate PleaseReleaseProcs with streams.

15.1 Definition of terms

Stream

Stream Object

Stream Handle

Transducer

Stream component manager

15.2 Discussion

A stream is an abstraction for device- and format
independent sequential access to a collection of data.
Some streams also provide random access to the data.

A strearn object contains the data and procedures for
operations on the stream.

A stream handle is a pointer to a stream object that
identifies the particular stream being accessed.

A transducer is a software entity (e.g., module or
configuration) that implements a stream connected to a
specific device or medium. The MStream interface
implements a Pilot transducer for accessing a file as a
positionable byte stream.

A stream component manager is the software entity that
implements a stream component-a transducer, filter or
pipeline. Although Pilot supports filters and pipelines,
XDE does not currently use them; thus, stream
component manager is synonymous with transducer.

Mesa provides streams to remove the detail involved in transmitting and receiving data
from devices such as local disk files. Mesa streams enable you to think about input and

15-1

15

15-2

Streams

output without knowing the details of the device with which you will communicate, and
without writing low-level get- and put-data routines. Thus, your program need not depend
on the nature of the device, and you can focus on the main logic of a program without being
distracted by the details ofthe device. Additionally, if the details of the device itself should
change in the future, you will not have to rewrite your program.

The stream abstraction is device and data-independent, but creating a stream is device
and data-dependent. Thus, you will use device-specific routines to create a stream, and
then use the more general Stream interfaces to perform operations on the stream. In this
chapter, we discuss only one form of stream creation: creating a stream to a local disk file.

To use streams you must:
1. Declare a stream handle.
2. Create the stream.
3. Perform operations (read or write) on the stream.
4. Delete the stream.

15.2.1 The stream handle

To a client of the Stream interface, a stream is a variable of type Stream.Handle, which is
defined as :

Stream.Handle: TYPE • LONG POINTER TO Stream. Object;
Stream.Object: TYPE. RECORD [... J;

A Handle references an Object that defines the mechanisms for data transfer to and from
the particular device for which its stream was created. Transducers allocate and initialize
an Object with the necessary information and return the Handle to the client. This Handle
is then passed as a parameter to various operations in the Stream interface to identify the
particular stream on which the operations are to be performed.

15.2.2 Creating a stream

The MStream interface supplies a convenient transducer for creating a stream to a local
disk file. The following calls in the MStream interface are used to create streams to files:

MStream.Create: PROCEDURE [file: MFile.Handle, release: MStream.ReleaseData]
RETURNS [MStream.Handlel;

MStream.ReadOnly: PROCEDURE [name: LONG STRING, release: MStream.ReleaseData]
RETURNS [MStream.Handle);

MStream.ReadWrite: PROCEDURE [
name: LONG STRING, release: MStream.ReleaseData, type: MFile. Type +- unknown]
RETURNS [MStream.Handle);

MStream.WriteOnly: PROCEDURE [
name: LONG STRING, release: MStream.ReleaseData. type: MFile.Type)

RETURNS [MStream.Handle];

The Handle returned by these procedures is really a Stream.Handle, since MStream defines
its Handle like this:

MStream.Handle: TYPE = Stream.Handle

Mesa Course 15

Creating a stream on a file is a two step process: first you acquire the file, and then you
attach a stream to that file. To use MStream.Create, which is the most general of the four
calls, you must have a handle to the file. You pass the file handle to Create, which returns
a stream handle. The call to create makes the stream handle the new owner of the file.

MStream.ReadOnly, MStream.ReadWrite, and MStream.WriteOnly, on the other hand, are
"accelerators"; you pass in a file name, and they acquire the file for you and attach the
stream to it. We discuss when to use Create and when to use one of the accelerators in the
next section.

The release parameter in the above procedure is of type MStream. ReleaseData, declared as

MStream.ReleaseData: TYPE = RECORD

[proc:MStream.PleaseReleaseProc Eo- Nil,

clientlnstanceData: lONG POINTER Eo- Nil];

This parameter is used when a process wants access to a file that is currently attached to a
stream. For example, if you have a read-only stream attached to a file and another process
wants to write that file, then the release variable comes into play: the procedure specified
by the proc field is called with the clientlnstanceData pointer as a parameter. If proc is Nil,

access will be denied. This method of access is discussed further in section 15. 2. 7.

15.2.2.1 Examples of creating streams on files

To open a read-only stream attached to a file named Input.text, you could code:

-- variables
inputFile: MFile.Handle Eo- Nil;

fileReleaseData: MFile.ReleaseData Eo- [Nil, Nil];

inputStream: MStream.Handle Eo- Nil;

streamReleaseData: MStream.ReleaseData +- [Nil, Nil];

-- mainline code
-- use an MFile procedure to initialize the file handle and prepare for reading
inputFile +- MFile.ReadOnly[name: "lnput.text"L, release: fileReleaseData);
inputStream Eo- MStream.Create[file: inputFile, release: streamReleaseData];
inputFile +- Nil; -clear the MFile.Handle.

Note the last line of the above example, where the MFile.Handle is set to NIl. Strictly
speaking, this is not necessary, but it is advisable: once you have created the stream,
ownership of the file's handle is transferred to the stream. Thus, you should set the file
handle to Nil to avoid inadvertently using it.

In general, you will have to use MStream.Create when you need to do some processing with
the MFile.Handle between calls to MFile.ReadOnly and MStream.Create, or if you need to open
the file with a MFile.Access other than readOnly, writeOnly or readWrite. (If the latter is
the case, call MFile.Acquire with the desired access.) For the most part, however, you can
just use one ofthe accelerators, as illustrated below:

1 ') 3

15

15· -l

Streams

-- variables
inputStream: MStream.Handle 4- NIL;
streamReleaseData: MStream.ReleaseData 4- [NIL, NIL];

- mainline code
- use an MStream accelerator to acquire the file and create the stream
inputStream 4- MStream.ReadOnly[name: "lnput.text"L. release:

streamReleaseData);

15.2.3 The basic data transmission operations

Once you have a stream, you can perform 110. The basic input procedures are
Stream.GetByte, Stream. GetChar, Stream. GetWord, and Stream. GetBlock. These procedures
return a byte, a character, a machine word, or a block from the stream whose handle is sH.
Since GetBlock is slightly different from the other three, we discuss it separately in the
next section. The relevant declarations are:

Stream.GetByte: PROCEDURE [sH: Stream.Handle) RETURNS [byte: Stream.Byte];

Stream.GetChar: PROCEDURE [sH: Stream.Handle] RETURNS [char:'CHARACTER);

Stream.GetWord: PROCEDURE [sH: Stream.Handle] RETURNS [word: Stream.Word];

These procedures return the next byte, character, or word (respectively). The amount of
space needed to store the data being returned is predefined by the data's type.

The basic output operations for streams are Stream.PutByte, Stream.PutChar, Stream.Put
Word, Stream.PutString, and Stream.PutBlock. (PutBlock is discussed in the next section.)
The procedures are declared as follows:

Stream.PutByte: PROCEDURE [sH: Stream.Handle. byte: Stream.Byte];

Stream.PutChar: PROCEDURE[sH: Stream. Handle. char: CHARACTER);

Stream.PutWord: PROCEDURE[sH: Stream.Handle. word: Stream.Word];

Stream.PutString: PROCEDURE [sH: Stream.Handle. string: LONG STRING,
endRecord: BOOLEAN 4- FALSE);

The endRecord: BOOLEAN parameter of PutString controls how the stream deals with
physical record boundaries. This should be defaulted to FALSE, unless you are doing 110 that
relies on physical record boundaries.

Here is an example that creates two streams and does a byte-by-byte copy of one stream to
the other :

stream1, stream2: MStream.Handle 4-NIL;
releaseData: MStream.ReleaseData 4- [NIL.NIL); -- do not allow access by others
stream1 4-MStream.ReadWrite[ffFile1 ff L.releaseData);
stream2 4-MStream.ReadWrite[ffFile2ff L.releaseData); --create both streams

-- copy information from stream 1 to stream2 until the end-of-stream is reached

DO
Stream.PutChar[stream2. Stream. GetChar[stream1 !Stream.EndOfStream = > EXIT));

ENDLOOP;

Mesa Course 15

The standard way to recognize end-of-stream is by catching the signal
Stream.EndOfStream, which is declared as:

Stream.EndOfStream SIGNAL [nextlndex: CARDINAL);

GetChar, GetByte, and GetWord all raise this signal when they attempt a Get beyond the
end of the stream.

15.2.4 Data transmission by blocks

The block procedures are a little different. Here are the declarations:

Stream. Block: TYPE ,. Environment.BIOck;
Environment.BIOck: TYPE,. RECORD [

blockPointer: LONG POINTER TO PACKED ARRAY [0 •• 0) OF Environment.Byte
startlndex. stoplndexPlusOne: CARDINAL];

Stream.GetBlock: PROCEDURE [sH: Stream.Handle. block: Stream. Block]
RETURNS [bytesTransferred: CARDINAL. why: Stream.CompletionCode.
sst: Stream.SubSequenceType);

Stream.PutBlock: PROCEDURE [sH: Stream.Handle. block: Stream.Block
endRecord: BOOLEAN oE- FALSE];

GetBlock allows the client to buffer the stream's data. You must provide the storage for the
buffer, which takes the form of a record pointed to by a variable of type Stream. Block.
PutBlock is like GetBlock l"n that it allows buffering of data. However, since most
transducers set up streams with internal buffering of data, it is not necessary to use
GetiPutBlock just to achieve the efficiency of buffering. (On the contrary, it can cause a
second layer of buffering without enhancing I/O speed.) However, blocked 110 is
convenient for data already formatted into blocks.

Here is an example of using blocked transfers:

bufferSize: CARDINAL" 256;
buffer: PACKED ARRAV[O •• bufferSize) OF Environment.Byte;
block: Stream.Block oE- [@buffer. O. bufferSize];
completionCode: Stream.CompletionCode oE- normal;
UNTil completionCode :II endOfStream 00

[block.stoplndexPlusOne. completionCode.] oE
Stream.GetBlock[stream1. block];

Stream.PutBlock[stream2. block);
ENDlOOP;

This example illustrates another difference between the block operations and the other
data transmission operations. GetBlock normally uses the completion code endOfStream
instead of signalling endOfStream. To cause GetBlock to raise the signal, you can call
Stream.SetlnputOptions to set signalEndOfStream in inputOptions to TRUE:

myStream: MStream.Handle oE-Nll;
fileOptions: Stream.lnputOptions oE- [signaIEndOfStream: TRUE]; --allow signal
releaseData: Mstream.ReleaseData oE- [Nll,NIL];
myStream oE- MStream.ReadWrite["File1"L. releaseData);
Stream.SetlnputOptions[sH: myStream. options: fileOptions);

1 fi F)

15

15-6

Streams

15.2.5 Positioning and random accessing streams

There are two procedures that allow random access to data, provided that the physical
device and stream component manager that the stream is attached to support random
access. The relevant declarations in the Stream interface are:

Stream.Position: TYPE == LONG CARDINAL;
Stream.GetPosition: PROCEDURE [sH: Stream.Handle] RETURNS [position: Stream.Position];
Stream.SetPosition: PROCEDURE [sH: Stream.Handle, position: Stream.Position);

In both of the procedure declarations, the position parameter is the byte-index of the next
data in the stream to be read or written, where the first byte in the file has the index O.
Here is some Mesa code to illustrate the use of these procedures:

-- Read the fiftieth byte in the stream
Stream.SetPosition[inputStream,49);
byte'n 4- Stream.GetByte[inputStream);

-- Read every other byte in the stream
Stream.SetPosition[inputStream, 0); -- set position to start of file
DO

byte 4- Stream.GetByte[inputStreamIStream.EndOfStream == > EXIT];
nextPosition 4- Stream.GetPosition[inputStream) + 1;
Stream.SetPosition[inputStream, nextPosition];

ENDLOOP;

15.2.6 Deleting streams

Since a stream is a connection between a program and a device, the program should never
terminate without telling the device that the connection is no longer open. For every
stream you create, you must call Stream. Delete to close the stream when you are finished
with it. Regardless of how you obtained the stream handle, you close it down by calling
Stream.Delete with the stream handle as the parameter. Stream. Delete is declared as:

Stream.Delete: PROCEDURE [sH:Stream.Handle);

After closing the stream, you should always set t~e stream handle variable to NIL, to
ensure that you don't accidentally try to use it later on. Here is an example of using
Stream. Delete:

ioStream: MStream.Handle 4- NIL;
releaseData:MStream.ReleaseData 4- [NIL, NIL];

ioStream 4- MStream.ReadWrite["MyFile"L. releaseData];

-- perform various 110 operations until done with the stream
Stream.Delete[ioStream);
ioStream 4- NIL; --insure against accidental access

15.2.7 Handling multiple access to streams

As discussed in the MFile chapter, individual processes can cooperatively share files by
registering PleaseReleaseProcs and NotifyProcs. The MStream provides a similar facility
that allows a process to share a file to which it has a stream attached. Up to this point you

Mesa Course 15

have seen only NIL PleaseReleaseProcs; the example below illustrates how to use a
PleaseReleaseProc when you are willing to share the file.

-- CopyDefs.mesa
DIRECTORY
MStream.

CopyOefs: DEFINITIONS.
BEGIN

FileState: TYPE. {busy. beingReleased. released};
ExamplePleaseReleaseProc: PROGRAM;

. ChangeState: PRocEDuRE[newState: FileState); -- Monitor entries
MyReleaseProc: MStream.PleaseReleaseProc;

END.

--Monitor for granting access to the file
DIRECTORY
Stream,
CopyOefs.
MStream;

ExamplePleaseReleaseProc: MONITOR
EXPORTS CopyOefs =
BEGIN

state: CopyDefs.FileState;

ChangeState: PUBLIC ENTRY PROCEDURE [newState: CopyDefs.FileState] =
{state +- newState}; -set the global state to a new state

--PfeaseReleaseProc for file
MyReleaseProc: PUBLIC ENTRY MStream.PleaseReleaseProc =
BEGIN

SELECT state FROM

END;
END.

busy = > RETURN[no];
beingReleased • > RETURN[later];
released • > RETURN[goAhead];
ENDCASE = > RETuRN[no];

--CopyStream programs runs in the Executive and copies one stream to another
DIRECTORY
Exec,
Format,
Stream.
CopyOefs.
MStream;
CopyStreamExample: PROGRAM
IMPORTS Exec. MStream,CopyDefs, Stream =
BEGIN

157

15

15-8

Streams

- TakfPs tM It.mes of input and output filenames and returns stream handles
CreateStreams: PROCEDuRE[inName, outName: LONG STRING] RETuRNs[inStream, outStream:
MStream.Handle] :I

BEGIN
inReleaseData: MStream.ReleaseData +-

[proc:CopyDefs.MyReleaseProc,ciientlnstanceData: Nil];

outReleaseData: MStream.ReleaseData +- (proc: NIL, clientlnstanceData:NIL);
inStream +-MStream.ReadOnly(inName,inReleaseData];
outStream +-MStream. WriteOnly[outName ,outRe I easeData, text};
RETURN[i nStream,outStream];

END;

~- Deletes both input and output streams and sets their handles to Nil

DeleteStreams: PROCEDURE[inStream. outStream: MStream.Handle)
RETURNs[in, out: MStream.Handle] :I

BEGIN
Stream.Delete(i nStream];
Stream.Delete[outStream];
RETURN{NIL,NIL] ;

END;

-- perform the actual stream copy
Copy: PROCEDURE[inStream,outStream: MStream.Handle] =
BEGIN

DO
Stream.PutChar{outStream, Stream.GetChar[inStream ! Stream. EndOfStream :I > EXIT]];

ENDLOOP;
END;

-- gets input file and output file and calls procedures to do real work
CopyStream: Exec.ExecProc :I

BEGIN
Write: Format.StringProc :I Exec.OutputProc[h); -- Write prints strings to the Exec
inFileName. outFileName: LONG STRING +- NIL;
inStream, outStream: MStream.Handle +-NIL;
[in FileName.] +- Exec.GetToken(h); -- discard switches
[outFileName.] +- Exec.GetToken[h];
CopyDefs.ChangeState[busy]; -- fife is in use do not allow others to access
[inStream, outStream] +- CreateStreams[inFileName, outFileName);
Copy[i nStream, outStream]; --do the stream copy
CopyDefs.ChangeState[beingReleased]; --file will be available soon
[inStream, outStream] +- DeleteStreams[inStream. outStream); -- Delete streams
CopyDefs.ChangeState[released); -- okay for others to use file
Write["The file ,nl];
Write[inFileName] ;
Writer'"~ has been copied to the file "'L];
Write[outFileName];
inFileName +- Exec.FreeTokenString[inFileName];
outFileName +- Exec.FreeTokenString[outFileName];

END;

Mesa Course

--Main Code
Exec.AddCommand[name: ttCopyStream. -ttL. proc: CopyStream];
CopyDefs.ChangeState[released] ;
END.

15

The mainline code for this example calls Exec.AddCommand to register the CopyStream
command with the Executive. Thus, the CopyStream procedure is called whenever the
user runs the program. CopyStream first reads in two file names (inFileName and
outFileName) as arguments by calling Exec.GetToken. GetToken reads a token and a
switch (separated by a "I") from the command line; in this case there are no switches, so
the second argument returned by Exec.GetToken is elided. After the file names are
acquired, but before the streams are created, CopyStream sets the state of the input file to
busy so no other process will be able to access the file. CopyStream then creates the
streams, performs the file transfer, and finally deletes the streams.

CreateStreams takes the names of the input and output files and creates a ReadOnly
stream for the input file and a WriteOnly stream for the output file. The output file has a
null PleaseReleaseProc; thus no other processes can gain access to the file until the stream
is deleted. Since the output file is going to be rewritten by the CreateStreams command,
other processes should not be allowed access. However, we are assuming that more than
one process may want to access the input file while the CreateStreams command is
executing. You want to allow others to have access whenever you are not using the file in a
critical way (i.e. reading information from the file). Thus, to maximize the time other
processes may access a file, inStream has an associatedPleaseReleaseProc.

When a stream has an associated PleaseReleaseProc Tajo calls that PleaseReleaseProc
whenever another process wants to access a file currently in use. The PleaseReleaseProc
can return any offour enumerated values defined below:

MFile.ReleaseChoice: TYPE :I {later. no. goAhead, aliowRename}

In the above example, MyReleaseProc is called when another process attempts to access
the input file. MyReleaseProc checks the state variable and returns the corresponding
ReleaseChoice to Tajo. Tajo in turn either grants access to the requesting process or raises
the appropriate SIGNAL. In this fashion, processes can share files cooperatively without
direct communication (or even knowing of each others' existence.) Note that the
PleaseReleaseProc and the procedure ChangeState must both be MONITOR ENTRYs to ensure
that the state returned is the correct state of the stream.

After the stream is created, CopyStream calls Copy, which performs a simple character
character transfer from the input file to the output file. Reaching the end of the input file
raises a signal, which causes the program to exit the loop. Immediately after Copy is
exited, the state of the file is set to being Released. Thus, processes that attempt to access
the file are informed that it will be released soon and that they should try again later.

DeleteStreams relinquishes control over the streams and sets the MStream.Handles to NIL.
After DeleteStreams is finished the CopyStream command has no ability to access the
input or output streams and other processes can now use the files. Finally, CopyStream
makes a call to CopyDefs.ChangeState to set the state to released.

15-9

15 Streams

15.3 Summary

15.4 Style

The MStream interface implements a transducer for creating streams connected to files on
the local disk. You use MStream to create a stream for a file, and then use the more
general Stream interfaces to perform operations on the stream.

Once you have created a stream, you can send output through it (Stream.PutByte,
Stream.PutChar, etc.) and receive input from it (Stream.GetByte, Stream.GetChar, etc.). There
are also procedures that allow you to position a stream (Stream.GetPosition and Stream.Set
Position), provided that the device to which the stream is connected allows random access.

When you are finished using a stream you should use Stream. Delete to close it. If the
stream was for a file, you should be careful to set the file handle to NIL to prevent
referencing it after its stream has been closed.

There are several aspects of using streams that we did not cover in this chapter and that
you might want to investigate on your own, such as the SIGNAL Stream.TimeOut , the ERROR
Stream.lnvalidOperation, the attention flag procedures such as SendAttention and
WaitForAttention, the procedure SendNow, and the procedure SetSST. These advanced
concepts are documented in Chapter 3 of the Pilot Programmer's Manual.

"Object-oriented programming" is a style of programming in which objects existing in the
programming environment contain the definitions of operations. So, if you want an entity
to perform some task, you just request what you want-the entity itself will determine how
the task is to be accomplished. One advantage of this style is that the code for a given task
is isolated in the object, and is (presumably) correct, so clients who want the task
performed do not have to "re-invent the wheel" (with the attendant risk of inventing one
with a flat tire). Secondly, the implementation of the task can be modified internally to the
object without affecting the clients-they just continue to request the services, which the
object provides in the usual way. The notions of abstraction and information hiding make
the object-oriented approach a highly desirable programming methodology. It is well
illustrated by the stream concept in Mesa, which, in conjunction with the stream
component manager, determines "how" a variable such as an Environment.Byte. will be
transferred when a client program requests such a transfer, regardless of the kind of
device to which the stream is attached.

15.5 References

15-10

Chapter 3 of the Pilot Programmer's Manual provides background information about
streams and gives their definition in Mesa.

The MStream chapter in the Mesa Programmer's Manual defines the interface for a
transducer, for MStream.

Read the MFile chapter in the Mesa Programmer's Manual, paying particular attention to
the material on file access.

Mesa Course 15

15.6 Exercise

In this exercise you will perform a telephone directory update by applying changes
contained in a change log onto a master file that contains the current directory. The
directory consists of a series of fixed-size records, sorted alphabetically by name. The
records contain the following information:

name
address
phone number

Basically, you use the tool to create a change log, then you integrate that change log with
the master directory. You have to write the code that integrates the change log with the
master directory.

There can be three kinds of changes in the change log: additions, deletions, and changes.
To create a change log, you add entries one at a time and then invoke the
CreateChangeLog! command. This command writes the change log in free form with
fields separated by "/"s. The particular command that should be applied is denoted by a
single letter 0 (Delete), A (Add) or C (Change). For example, a command that adds a new
entry into the directory would look like this:

A/John Smithl2323 University Ave, Palo Alto/415-323-3399/

Thus, you follow these steps to create a change log:

1. Select a command type from the enumerated command field.
2. Fill in the name, address and phone fields.
3. Invoke AddCommand to add this command to the list of commands to perform.
4. Repeat steps 1-3 until all desired commands have been entered.
5. Type in the name of the change log file into the ChangeLog field.
6. Invoke CreateChangeLog! to create the change log.

Your assignment is to write the implementation procedure for the UpdateDirectory
command. This procedure is defined in the DirectoryDefs interface, and is called from the
tool code. Thus, all you have to do is write the implementation and export it to the
interface. To simplify things, we suggest that you put your implementation is a separate
module, rather than adding it to the existing implementation module.

Both the old master file and the change log are sorted alphabetically by name; thus, your
assignment is essentially to merge the two alphabetical listings and write the merged list
to a new file. You should read from the old directory by blocks that contain no more than 8
records and read the change log by characters.

The old master file is stored as OldDir and the other required files are DirectoryTool.mesa,
Directorylmpl.mesa and DirectoryDefs.mesa. The basic assignment is to implement only
the Add command, but for a more challenging exercise try to implement Change and
Delete too.

15· 11

15 Streams

Notes:

15-12

16

The FormSWLayout Tool

In chapter 12, we discussed programs that use the Executive for a user interface. In this
chapter, you will take the next step towards understanding and using Tajo: you will learn
how to generate a tool window interface using a tool called the FormSWLayoutTool.

The extensive layering of the XDE means that there are many different level~ of routines
that you can use to create a window interface, depending on the degree of flexibility that
you want. For example, at the lowest level, you would have to write code to "paint" the
window, to display text within that window, and to perform scrolling, selection, and cursor
management. Usually, however, you will use system interfaces to perform these kinds of
tasks for you; you don't have to think about low-level details unless you want unusual
features or functionality.

This chapter introduces a tool called the FormSWLayoutTool, which is an applications
generator: a tool that helps you write tools that have a window interface When you use the
FormSWLayoutTool, you are freed from writing the code to create the window interface;
you need only write the code to actually implement the commands that you want your tool
to perform.

This chapter focusses exclusively on using the FormSWLayoutTool; the next chapter, Tool
Window Interfaces, explains the code that this tool produces, and discusses how to modify
it or how to write your own window interface. You should run the FormSWLayoutTool in
your CoPilot or Tajo volume and experiment with it as you read this chapter. (If you are
familiar with the use of this tool, you should skim the chapter and go straight to the
exercises.)

16.1 Preliminary reading

Read the sections of the User Interface chapter of the Xerox Development Environment
User's Guide that discuss form subwindows.

16- l

16 The FormSWLayoutTool

16.2 Definition of terms

File subwindow

Form item

Form subwindow

Message subwindow

String subwindow

Text subwindow

TTY subwindows

A file subwindow is a text subwindow that uses a disk file
as its backing store. (Backing store refers to the data
object used to hoid the information that is displayed in
the window.)

A form item is an item that appears in a form subwindow.
Form items have a keyword (tag) and an associated field.
The keyword serves as a reminder of a command or
parameter; the field is where the user enters his chosen
value for that parameter.

A form subwindow provides the user with a means to
indicate parameters, options, and commands for the tool.

A message subwindow provides a simple way to post
feedback to the user.

A string subwindow is a text subwindow whose backing
store is a LONG STRING.

A text subwindow provides a way to view text from a wide
variety of sources. File and string sub windows are
specific types of text subwindows.

A TTY subwindow provides teletype interaction with the
user.

16.3 Discussion

16-2

In the XDE, there are several different standard sub window types, each of which provides
a different function. Basically, windows are composed of different combinations of
subwindows, depending on the functionality that is desired. During the evolution of Tajo,
many tool builders have chosen the same combination of subwindows: a message
subwindow, a form subwindow, and a file subwindow. Because this combination is very
common among existing tools, it has evolved into the "canonical" Tajo window.
Furthermore, because windows are at the heart of Tajo, the system interfaces provide very
strong support for creating and using the existing 'subwindow types. This means that
much of the code to create a standard window is identical from tool to tool; you can create a
new tool interface from an existing one just by changing the layout of the form subwindow.

The FormSWLayoutTool takes advantage of this situation; it allows you to graphically
specify the form subwindow that you want your tool to have, and it then generates code to
produce a "canonical" window with your new form subwindow. Thus, you just specify the
commands and fields that you want your form subwindow to have, and let the
FormSWLayoutTool generate the code.

The FormSWLayoutTool window has three subwindows: a message subwindow, a form
subwindow, and a file subwindow. Figure 16.1 is an illustration of this window.

Mesa Course 16

Por~ype: {bool, enum, longRum, numb, source, string, tag}
Tag:
AligDZ Osebox ADyfODt Root:
Dolt! Clear! SetDefaults! Load! Save! Plagiarize!

Figure 16.1 The FormSWLayoutTool

Basically, you use the FormSWLayoutTool commands to "draw" the layout of a form
subwindow in the file subwindow. When you have laid out a subwindow that you are
satisfied with, you can ask the FormSWLayoutTool to generate code. It will generate a
"standard" window with three subwindows: a message subwindow, a form subwindow, and
a file subwindow. The window generated by the FormSWLayoutTool always has these
three standard sub windows; the only thing you specify is the format of the form
subwindow. However, once the code has been generated, you can edit the code to add or
remove subwindows, or reorder the existing ones. (We will discuss how to do this in the
next chapter.)

16.3.1 Plagiarize

There are two ways to put a form item on your new form subwindow: you can add them
individually to the file subwindow or you can "plagiarize" from another form subwindow
on your screen. To plagiarize, you invoke the Plagiarize! command, and then click Point
over the form subwindow that you wish to copy. (The cursor will change into an "eyeball"
while you are in plagiarize mode.) When you click Point over the subwindow that you
want to plagiarize, a copy of that subwindow will appear in the bottom sub window of the
FormSWLayoutTool.

Once you have plagiarized a subwindow, you can edit the plagiarized copy using the
DELETE, MOVE, STOP, and UNDO keys. MOVE lets you move a selected form item around the file
subwindow; DELETE deletes a selected item. UNDO brings back the last form item that you
deleted; STOP lets you abort in the middle of a MOVE command. Thus, you can use
Plagiarize! to copy an existing form subwindow, and then use the function keys to modify
the plagiarized form.

16

16-4

The FormSWLayoutTool

16.3.2 Layout mode

You can also create form items "from scratch". The FormType: item in the
FormSWLayoutTool command subwindow is an enumerated form item that has as its
choices all possible types of form items; that is, every type of item that you can have in a
form subwindow. To add a form item to your new form subwindow, you first select the type
of item that you want from this enumeration, and then you enter a tag for it in the Tag:
field. Whenever you have a value in the Tag: field, you are in layout mode. While you are
in layout mode, moving the cursor into the bottom subwindow will cause the cursor to
change into a copy of the tag to be added. To add your item, just click Point at the desired
location; a new item will be added, of the type specified in the FormType: field, and with
the tag specified in the Tag: field.

For example, suppose that you want to write the Story tool, a tool that generates short
stories (or novelettes or novels). You want the user to be able to control the names and
personalities of the characters, so you decide that you need a CharacterName: string
field to contain the name, a CreateCharacter! command that creates a character with
that name, and a SetCharacterP.rops! command to specify character attributes. Figure
16.2 is an illustration of what the FormSWLayoutTool would look like while you are
creating the CharacterName: field. (Note that you don't have to include the punctuation
that should follow the item, such as colon or exclamation point, in the Tag: field; the tool
deduces the necessary punctuation from the type of the item and adds it automatically.)

PormType: {bool, command, enum, longllum, numb, source"
Tag: CharacterName
AlignZ Useboz Anyfont Root: StoryTool
Dolt! Clear! SetDefaults! Load! Save! Plagiarize!

acterllame:

Figure 16.2 Adding the CharacterName: field

tag}

To get out oflayout mode so that you can edit your new form using the DELETE, MOVE, STOP,

and UNDO keys, you will have to delete the value in the Tag: field.

Mesa Course 16

16.3.2.1 Enumerated items

All form items have an associated properties sheet, but in most cases you don't have to
change the properties of an item. When you create an enumerated item, however, you
have to provide the values that you would like to have as choices in your enumeration. To
do this, select your enumerated item in the bottom subwindow, and press the CONTROL key.
This will bring up a properties window. Choices: is used to list the values that you want
as possible choices in your enumerated type. Individual entries should be separated by
spaces; you can include spaces in your entry by quoting them. You can also use the
properties sheet to specify whether you want all the choices to be displayed, or just one.
Figure 16.3 is an illustration of the nearly-complete layout of the Story tool. The
properties sheet is open, and the Choices: item reflects the possible choices of plot type.
(Some of the entries in this properties window, such as EnumName, represent variable
names and other parameters in the actual code. You will learn about the other items in
the properties sheet in the next chapter.)

FormType: {bool, command,'., longKum, numb, source, string. tag}
Tag:
Ali nX Usebox I~"- Root: Stor Tool 9 t~~~ y
Dolt! Clear! SetDefaults! Load! Save! Plaqiarize!

CharacterKame: PlotType: {Science Fiction}

ProseStyle: {Wordy}

KumberOfDeaths=

CreateCharacter!

SetCharacterProps! FinishedLength: , novelette, novel}

Kame: plotType Tag: PlotType
invisible dravBox hasContext

Feedback: {one}
Value: plotType Proc: Cho i ceKame : plotType
Choices: Western Romance Mystery "Science Fiction" Textbook

Figure 16.3 Setting the choices for an enumeration

16-5

16 The FormSWLayoutTool

16.3.3 The SetDefaults Command

The SetDefaults command brings up a property sheet that allows you to specify defaults
for various things associated with the FormSWLayoutTool. For example, you can specify
that the default setting for an enumerated should be all instead of one, or you can specify
various characteristics of your string types. You should take a look at this property sheet
to get an idea of the kinds of things that you can change. Some of the defaults refer to
things that we won't discuss until the next chapter, so don't worry abut it if you don't
understand what everything on the sheet refers to. For now, you only need to know what
the SetDefaults command is good for.

16.3.4 FormSWLayoutTool booleans

The FormSWLayoutTool form subwindow also provides the boo leans AlignX, Usebox,
and Anyfont. AlignX controls the vertical spacing between form items. When AlignX is
on, each column will start on multiples of a specific distance from the previous column.
(This distance is defined to be the width of the character 0.) Usebox specifies that the
generated tool will have the same window box as the current size of the layout tool.
Anyfont will cause the tool to generate code that will have proportioned space on the form
sub window regardless of the system font being used.

16.3.5 Generating the tool

When you have finished laying out your form subwindow, you can use the Doit! command
to generate code. You should enter the name that you want your tool to have in the Root:
field. Doit! will then generate a file called Root.mesa; this file will contain the code
necessary to create a tool with a message subwindow, your form subwindow, and a file
subwindow. (The value in the Root: field will be the name of the program, file, and tool
that is generated; in the example, the root is Story, so the code will be in the file
Story. mesa.) The code that the FormSWLayoutTool generates will compile successfully. If
you then run Story.bed, the tool window interface will appear on your screen (but the
commands obviously won't do anything.)

You can also save an unfinished form. sub window in an intermediate format with the
Savel command. This generates a file with the extension .by; you can later use the
FormSWLayoutTool's Load! command to load this intermediate state into the tool and
continue editing. In general, it is a good idea to use the Save! command occasionally while
you are working on a complex form subwindow. You will then have the .by file as a
backup.

16.5 Summary

l6-6

The FormSWLayoutTool makes it easy for you to create a tool window interface; you can
use this tool without any knowledge of how windows are created. You simply "draw" a
form subwindow and let the FormSWLayoutTool generate code for your window. You need
only write the code to implement your commands, and you will have a functional tool.

Mesa Course 16

16.6 Exercise

The exercise for this chapter is to use the FormSWLayoutTool to create a tool that looks
like the one shown below. Save the generated code because you will need it for the next
chapter.

Access:
'l'ype: {

Kame:

Acquire! Release!
MightWrite InitialLength=

The Acquire Tool

16-7

16 The FormSWLayoutTool

Notes:

16-8

17

Tool window interfaces

The last chapter introduced the FormSWLayoutTool as a aid for generating your own
applications, but did not discuss any of the details of how windows are created. This
chapter picks up where the last left off: it explicates the code produced by the
FormSWLayoutTool. When you are through with this chapter you should understand
windows well enough to be able to modify the code produced by the FormSWLayoutTool or
to write your own window code if you want more flexibility than the FormSWLayoutTool
offers.

The next chapter will expand further on tool building by providing some details of how
tools are integrated into the Tajo environment.

17.1 Discussion

In this chapter, we use as an example the code produced by the FormSWLayoutTool for a
tool that has the same form subwindow as Command Central. This file is stored on the
course directory as CommandCentraI2.mesa; you can also generate your own with the
FormSWLayoutTool if you like.

The .mesa files generated by the FormSWLayoutTool typically consist of some
declarations, followed by procedure templates, followed by four procedures that do the
window creation. The procedure templates correspond to the command items in your form
subwindow. In the last chapter, you used a template generated by the FormSWLayoutTool
and provided the code for these procedure templates. In this chapter, we will look at the
rest ofthe code generated by this tool.

17.1.1 The data

The FormSWLayoutTool allocates its data in a MACHINE DEPENDENT RECORD. The example
below shows the data that would be declared for creating the Command Central tool
window:

17-1

17

17-2

Tool window interfaces

DataHandle: TYPE • LONG POINTER TO Data;
Data: TYPE. MACHINE DEPENDENT RECORD [

msgSW(O): Window.Handle ~ NIL,
formSW(2): Window. Handle ~ NIL,
fileSW(4): Window.Handle ~ NIL,
compile(6): LONG STRING ~ NIL,
bind(8): LONG STRING ~ NIL,
run(10): LONG STRING ~ NIL,
log(12): UNSPECIFIED ~ 0];

data: DataHandle;

The data is stored in a machine dependent record so that the fields will be aligned at word
boundaries. Word alignment is necessary because the code will later need to generate
addresses for the locations of enumerated and boolean items. There is a Window.Handle for
each subwindow of the tool window; if you want to add, remove, or rearrange the
subwindows of your tool, you should edit this record accordingly.

(If you leek at the declaration of Window. Hand!e in the Mesa Programmer's Manual, you
will discover that this is a pointer to a Window. Object, which is an opaque type. The
declaration of Window. Object gives the size of the type, but does not give any information
about its structure. This makes the internal structure of the type invisible.)

The last four items in this record contain the storage for the strings that the user enters in
the Compile:, Bind:, Run:, and Log: fields.

17.1.2 The call to Tool.Create

The actual window creation is done with a call to the Create procedure in the Tool
interface. This procedure is declared as:

Tool.Create: PROCEDURE [
name: LONG STRING,
makeSWsProc: Tool. MakeSWsProc.
initialState: Tool.State ~ default,
clientTransition: Toolwindow.TransitionProcType ~ NIL,
movableBoundaries: BOOLEAN ~ TRUE.
initialBox: Window. box ~ TooIWindow.nuIlBox.
em Section, tinyName1, tinyName2: LONG STRING ~NIL,
named: BOOLEAN ~ TRUE,
RETURNS [window: Window.Handle];

In the FormSWLayoutTool code, the call to Tool.Create is found in the procedure Init, as in:

Init: PROCEDURE • {
. wh ~ Tool.Create[

makeSWsProc: MakeSWs,
initialState: default,
clientTransition: ClientTransition,
name: "CommandCentra'''L,
cmSection: "CommandCentral "L]};

Mesa Course 17

name is the name that you specified in the Root: field of the FormSWLayoutTool form
subwindow; this parameter is displayed in the herald of the tool if the named parameter is
TRUE (which it is by default). cmSection specifies the name of the user.cm section that the
tool will look at to set default parameters. initialState can be any of the three window
states, or it can be default, as in this case. The value default specifies that the tool assumes
its state depending on how it is created. For example, if the tool was created because the
user ran it from the Executive, Tajo assumes that the user would like the tool to be active.
Ifit is run from an initial command line in a user.cm, however, it will be loaded inactive.

The movableBoundaries and initialBox parameters are defaulted in this call to
Tool.Create. movableBoundaries determines whether or not the user can move the
boundary lines separating subwindows; this parameter is defaulted to TRUE and is almost
always left that way. The initial Box parameter can be used to specify the tool box that the
tool will initially occupy. (For example, you can set this parameter with the Use Box: field
in the FormSWLayoutTool.) The value of ToolWindow.NullBox specifies that the window
box will be allocated by the normal Tajo window box allocator.

The remaining two parameters of Tool.Create, both of which are procedures, are described
below, in sections 17.1.3 and 17.1.4.

17.1.3 Subwindows

The functionality of a window is determined by the subwindows of which it is composed;
each of the various subwindow types has a specific function. The Tajo facilities provide
very strong support for using these existing subwindow types; thus, when you create a
window interface you don't have to worry about basic window facilities such as the
scrollbar and window herald. Instead, you only need to specify the number and type of
subwindows that you would like your tool to have. Thus, the heart of your window code is a
procedure of type Tool.MakeSWsProc that specifies the subwindow layout of your window.
In our example, this procedure is called MakeSWs. For example:

MakeSWs: Tool.MakeSWsProc = {
logName: LONG STRING ~ [10];
Tool.UnusedLogName[unused: logName, root: "CommandCentral.log"L];
data.msgSW ~ Tool.MakeMsgSW[window: Window.Handle];.
data.formSW ~TooI.MakeFormSW[

window: Window.Handle. formProc: MakeForm);
data.fileSW ~TooI.MakeFileSW[window: Window.Handle, name: logName);
};

This procedure is of type Tool.MakeSWsProc, which takes one argument, a window handle.

The window creation code makes extensive use of Tajo's call-back procedures to implement
the design principle of "Don't call us, we'll call you." When you run this "Command
Central" code, the procedure Init will be called from the mainline code. Init then calls
Tool.Create, passing in the MakeSWs proc, which describes the desired subwindow layout.
The Tajo facilities then have a procedure that it can call whenever it needs to create the
window for the Command Central interface; the client simply passes the MakeSWs
procedure to Tool.Create and lets Tajo and the Tool facilities decide when the MakeSWs
procedure should be called. For example, Tajo will call back to your MakeSWs procedure

17-3

17

17-4

Tool window interfaces

each time that the window is re-activated by the user. This ensures that Tajo is in control,
rather than an individual client program.

Within the MakeSWs procedure, the Tool.UnusedLogName procedure guarantees unique
log file names among file and TTY subwindows by enumerating all file and TTY
subwindows and checking that the name is not in use. Each individual subwindow is
created by a call to the appropriate procedure in the Tool interface.

The calls to Toot.MakeMsgSW and Tool.MakeFileSW are straightforward. Toot.MakeMsgSW
requires only the window handle as a parameter; TooI.MakeFileSW requires a window
handle and a name, which indicates the name of the file that is to be used for the backing
store. There are other possible parameters for each of these calls, which are assigned
default values in the type declaration. You should take a look at the declarations of
MakeMsgSwand MakeFileSW in the Tool interface so that you have some idea of the
other parameters that are available. In most cases, however, you can just default these
additional parameters.

When a tool has a form subwindow, things are a little more complex; you must also
provide a procedure of type Formsw.ClientJtemsProcType to set up the items in the form
subwindow. This procedure is another example of a call-back procedure: the client passes
the description of the desired form sub window to the FormSW interface, which is
responsible for actually creating that form subwindow. Our Command Central "tool" has
the following example of this kind of procedure:

Formltems: TYPE. {expand, compile. bind. run, go, options, compile.
bind, run, log};

MakeForm: Formsw.ClientltemsProcType = {
OPEN FormSW;
nltems: CARDINAL = Formltems.LAST.ORO + 1;
log: ARRAV[O .. 2) OF Enumerated 4- [

["Compiler"L, 0], ["Binder"L, 1]];
items 4- AllocateltemDescriptor[nltems];
items(Formltems.expand.ORD] 4- Commandltem[

ta~: "Expand"L. place: (0, lineOl. proc: Expand);

items[Formltems.options.ORD) 4- Commandltem[
tag: "Options"L, place: [294,lineO] .. proc: Options];

items[Formltems.compile.oRD] 4- Stringltem[
tag: "Compile"L, place: [O,line1], inHeap: TRUE, string: @data.compile);

items[Formltems.log.ORO] 4- Enumeratedltem [
tag: "Log"L, place: [0, line4], choices: OESCRIPTOR(log], value:

@data.log];
RETuRN(items: items, freeDesc: TRUE];
};

A procedure of type Formsw.ClientltemsProcType returns an array descriptor; each element
within the array is a record describing one of the items in the form subwindow. The call to
Formsw.AllocateltemDescriptor allocates an item descriptor for nitems. (It is important to
allocate your item descriptor through the FormSW interface so that Tajo handles the

Mesa Course 17

automatic allocation and deallocation of this storage during state transitions. If you don't
use the standard system routines and data types to create your subwindows, you will have
to explicitly allocate and deallocate that storage.)

The complete description for each type of item is given in a Formsw.ltemObject, which is a
variant record with a different arm for each possible type ofform item.

Two common fields of this variant record are tag and a place; every form item, regardless
of its type, has a tag and a place. A tag is a LONG STRING that you supply to be used as the
name of the item; this is the value in the Tag: field of the FormSWLayoutTool. place has
two integer fields, x and y. The x field specifies the number of bits that an item is shifted to
the right, starting from 0 at the left edge of the window. The y field specifies the number of
lines that an item is shifted down from the top of the subwindow. [0, line 0] places an item
in the top left corner of the subwindow.

There is a third common field in the Formsw.ltemObject variant record which is assigned
default values in the type declaration, and is omitted in our example. We include it here
for the sake of completeness; you will not often have to change the default values for this
field. This field is called flags, and is oftype FormSw.ltemFlags, which is declared as :

Formsw.ltemFlags: TYPE = RECORD [
readOnly: BOOLEAN ~ FALSE,
invisible: BOOLEAN ~ FALSE,
drawBox: BOOLEAN ~ FALSE,
hasContext: BOOLEAN ~ FALSE,
clientOwnsltem: BOOLEAN ~ FALSE,
modified: BOOLEAN ~ FALSE];

This record maintains state bits for an item in a form subwindow. The fields in this record
are the parameters that you see when you invoke propertires on an item in the
FormSWLayoutTool window. See the declaration of Formsw.ltemFlags in the FormSW
chapter of the Mesa Programmer's Manual for an explanation of the fields in this record.

In addition to these three common fields, a FormSW.ltemObject has a variant arm for each
type of form item that contains various pieces of information specific to that type of form
item. Many of these parameters have default values and should be ignored for now; an
ItemObject is a complex structure that allows flexibility when necessary but much of its
flexibility is used only in special cases. However, you should take a look at the declaration
of FormSW.ltemObject in the Mesa Programmer's Manual so that you have an idea of the
kinds of parameters that are available for the various types ofitems.

This example illustrates three types of form objects: command, enumerated, and string,
each of which is discussed below.

17.1.3.1 Command items

Command items have only one extra piece of information: a procedure (of type
FormSw.ProcType) that is to be called when the command is invoked. The
FormSWLayoutTool generates a "template" for each such procedure. For example:

17 5

17

17-6

Tool window interfaces

Expand: FormSw.ProcType = {
Put.Line[data.fifeSW, "Expand called"L]};

This procedure does nothing other than output a comment telling the user that the
command has been called. You are responsible for writing the actual code for this
procedure. Tajo will call this procedure when the user invokes the Expand! command.

17.1.3.2 String items

String items can have several other parameters. The FormSWLayoutTool, however,
generates a simple Stringltem that has only two parameters: inHeap and string. When
inHeap is TRUE, the backing string will be automatically allocated and deallocated (by a
procedure in the FormSW interface) when necessary. string is a LONG POINTER TO LONG STRING
that is used as the backing store for the characters entered by the user.

There are several other possible parameters for a string item; you should check the
deflnition of a Formsw.ltemObject to get an idea of the other options that are available to
you.

17.1.3.3 Enumerated items

The declaration of a FormSw.JtemObject has the following arm for enumerated items:

enumerated = > [
feedback: Formsw.EnumeratedFeedback,
copyChoices: BOOLEAN,
value: LONG POINTER TO UNSPECIFIED,
proc: Formsw.EnumeratedNotifyProcType,
choices: Formsw.EnumeratedDescriptor]

feedback determines how the choices for the enumeration are displayed; the choices are
one and all. (These choices correspond to those in the options sheet of the
FormSWLayoutTool.) This option is not illustrated in the above example.

The items in choice are the items that you entered in the properties sheet of the
FormSWLayoutTool; they are the possible values that the enumeration can assume.
When a value is selected, that value is stored in the location pointed to by value. value
points to an UNSPECIFIED so that its possible values can be of any type.

proc is a procedure that is called whenever the user changes value. This procedure is of
type Formsw.EnumeratedNotifyProcType, which is declared as follows:

Formsw.EnumeratedNotifyProcType: TYPE = PROCEDURE [
SW: window.Handle +- NIL,
item: Formsw.ltemHandle +- NIL,
index: CARDINAL +- Formsw.nullindex,
oldValue: UNSPECIFIED +- Formsw.nuIlEnumeratedValue];

sw is the sub window containing the item; item is the ItemHandle of the enumerated item;
index is the index of the item in the ItemDescriptor for the subwindow; oldValue is the
value of the emumerated item before it was changed by the user. The example above does

Mesa Course 17

not provide an example of such a proc; you can always write one if you find that you need
one.

17.1.4 Window state transitions

A tool can be in one of three states: inactive, tiny, and active. Changes in state are usually
made at the request of the user, via the commands on the window manager menu. These
state changes should be accompanied by an associated change in resources: when a tool is
deactivated, it should free all its resources; when a tool is tiny, it needs most of the
resources that it requires when active, but should free any resources used exclusively for
window display.

Tajo provides the window management for these transitions; that is, it allocates and
deallocates the resources needed for standard windows and menus. However, you as the
tool writer are responsible for managing any other resources that your tool creates (for
example, closing any open files and deallocating any other private data) by writing a
procedure that is called each time the window state is changed. This procedure is then
passed as one of the parameters to Tool.Create (see section 17.1.2). The code generated by
the FormSWLayoutTool includes such a transition procedure, which you should modify
and expand as you write your actual tool. The C/ientTransition procedure generated by the
FormSWLayoutToollooks like this:

ClientTransition: ToolWindow.TransitionProcType = {
SELECT TRUE FROM

};

old = inactive = >
IF data = NIL THEN data .- zone.NEw[Data .- []];

new == inactive == >
IF data # Nil THEN {

zone.FREE[@data]};
ENDCASE;

data is a DataHandle (see section 17.1.1 above.) The relevant declarations from the
ToolWindow interface are:

ToOIWindow.TransitionProcType: TYPE = PROC [
window: Window.Handle, old, new:TooIWindow.State);

ToolWindow.State: TYPE = {inactive, tiny, active}

This ClientTransition procedure is yet another example of a call back procedure. In this
procedure, you write the code that you want to have executed when the window state
changes. You then pass your transition procedure to Tajo via Tool.Create; Tajo will then
call your transition procedure when a state transition is about to occur.

17.2 Summary

A window is created with a call to Tool.Create. This procedure takes two primary
parameters: a procedure of type Tool.MakeSWsProc that describes the subwindow
structure of the tool; and a procedure of type ToolWindow.TransitionProcType that allocates
and de allocates resources as the tool is activated and deactivated. The main part of the

17-7

17 Tool window interfaces

MakeSWsProc is a procedure of type Formsw.ClientltemsProcType that describes the
format of the form sub window .

These procedures are passed to Tajo via the Tool.Create procedure; Tajo is then responsible
for calling those procedures when it is time to create the window or to change the window
state.

The FormSWLayoutTool generates code that has simple examples of these procedures;
you need not change the FormSWLayoutTool code at all. However, if you want additional
flexibility, you can modify the code that the FormSWLayoutTool produces by adding
additional parameters or sub window handles; you can also write your own window
creation code if you like.

17.3 Exercise

17-8

As an exercise, you will implement the two commands Acquire and Release in the
AcquireTool from the last chapter. The Acquire command should acquire the file with
MFile.Acquire, using the parameters that the user enters into the tool's fields. The Release
command should simply perform an Mi'ile.Release on the previously acquired file. You
should catch errors when you access the file since you as a programmer do not have control
over the user's input to the tool. The solution for this exercise is stored on
AcquireTool.mesa and LayoutAcquire.mesa.

Note: To output text to a subwindow (such as a message subwindow or file subwindow),
you should use procedures defined in the Put interface. (This interface is documented in
the Mesa Programmer's Manual.) The most commonly used procedures from this interface
are put.Char, put.Line, and Put. Text, which are declared as follows:

put.Char: PROCEDURE [h: Window.Handle +- NIL, char: CHARACTER];

put.Line: PROCEDURE [h: Window.Handle ~NIL. s: LONG STRING];

put.Text: PROCEDURE [h: Window.Handle +- NIL, s: LONG STRING];

18

Tool building

In the last few chapters, you have written tools that run from the Executive and created
window interfaces using the FormSWLayoutTool. This chapter will complete your
introduction to basic tool building in the XDE. We will use the Example Tool to illustrate
how to create a tool that is fully integrated with the Tajo environment

The Example Tool is on the release directory_ Retrieve this tool, and run it to familiarize
yourself with its interface. The Example Tool does not execute any useful commands; it is
merely a sample of how tools are written in the XDE. Figure 18.1 is an illustration of the
Example Tool.

18.1 Discussion

Command!

Password:

ReadOnly: Read Only String

Vanilla:

Cardinal=

boolean(truePalse): {~,FALSE} ~iP.i.l1ill

enumerated(one): {A} enumerated(all): {x, Ii z}

Figure 18.1 The Example Tool

This chapter is divided into four sections: how to read the user. em file, how to associate
pop-up menus with your tool, how to register your tool with the tool driver, and how to use
the Supervisor facility.

18- 1

18

18-2

Tool building

18.1.1 Reading the user.em

When you write a tool, you can include a procedure that reads a section in the user.cm to
determine initial values for the tool. To do this, you will need to write a procedure called
ProcessUserOotCM or ProcessUserCM, or the like, which you call from your transition
procedure to read and process the user.cm each time that the tool is activated.

The Example Tool has the following procedure and associated declarations:

Enum10ptions: TYPE := {A, B, C};
Enum20ptions: TYPE := {X, V, Z};

ProcessUserOotCM: PROCEDURf •
BEGIN
CMOption: TYPE. {EnumOne, EnumAII};
cmOptionTable: ARRAY (0 •• 1] OFLONGSTRING ... ("EnumOne"L, "EnumAII"L];
cmlndex: CMOption;
index: CARDINAL;

cmFile: CmFile.Handle ... CmFile.UserOotCmOpen[
! CmFile.Error := > IF code. fileNotFound THEN GOTO return];

IFCmFile.FindSection(cmFile, nExampleToo/"L] THEN

DO
index ... CmFile.NextValue[

h: cmFile, table: DESCRIPToR(cmOptionTable] !
CmFile. TableError := > CONTINUE]

IF [index. CmFile.noMatch) THEN EXIT

ELSE
SELECT (cmlndex ... VAL[i ndex]) FROM

EnumOne • >
BEGIN
enumHable: ARRAY [0 .• 2] OFLONG STRING'" [n A "L, "B"L, "C"L];
--note that this is case sensitive
e1lndex: CARDINAL;
value: LONG STRING. Token.ltem(cmFile);
e11ndex ... StringLookUp.lnTable[

key:value, table: DESCRIPToR[enumHable], caseFold: FALSE,
noAbbreviation :TRUE];

IF e11ndex # StringLookUp.noMatch THEN
toolData.enum1 ... vAL[e1Index];

[] ... Token.FreeTokenString[value];
END;

Mesa Course

EnumAIi = >
BEGIN
enum2Table: ARRAY [0 .. 2] OF LONG STRING +- ["X"l. "Y"l. "Z"ll;
e2lndex: CARDINAL;
value: LONG STRING = Token.ltem[cmFile1;
e21ndex +- StringLookup.lnTable[

18

key:value. table: DESCRIPToR[enum2Table]. caseFold: FALSE.
nOAbbreviation :TRUE1;

IF e21ndex # StringLookUp.noMatch THEN
toolData.enum2 +-VAL[e2Index1;

[] +- Token.FreeTokenString[value1;
END;

ENDCASE;
ENDLOOP;

[] +-CmFile.Close[cmFile1;
EXITS return .. > NULL;
END;

This procedure declares an enumerated type (CMOption) that lists all options for which
the user can have a user.cm entry. (In this case, we allow user.cm entries for the two
enumerateds, called enumerated(one) and enumerated(all).) This type is then used to
build a table (cmOptionTable) of the exact strings that are acceptable user.cm entries (in
this case, "EnumOne" and "EnumAll"). This structure is standard; you will have to
declare similar types each time that you write a ProcessUserCM-procedure.

After the types and variable declarations, the first two lines of code in this procedure call
CMFile.UserDotCMOpen and CMFile.FindSection to open the user.cm file and ensure that it
has an [ExampleTool1 section. If the user.cm is present on the search path, is successfully
opened, and has an [ExampleTool] section, you will enter a loop that reads through every
entry in that section and processes it.

Within the DO loop, there is an IF expression that calls CMFile.NextValue to read the next
value in the section. NextValue is passed a descriptor for the option table, and searches for
a match in the table. Thus, for example, if the user.cm section had as its first entry
EnurnOne: B, NextValue would read EnurnOne from the file, and check it against the values
in cmOptionTable. Since there is a match, it returns the index of that match (1); if a match
is not found, it will return the special value cmFile.noMatch, and the loop will be exited.

Within the SELECT statement, the EnumOne arm constructs a table of possible values that
the user can enter C"A", "B", or "C") and then uses the procedure Token.ltem to read the
user.cm file. Item just returns the next token after the entry, where a token is delimited by
white space. For example, if the entry was "EnumOne: A", Item would return "A". The
long string returned by Item is then passed to StringLookup.lnTable to see if it is a valid
value for that option. Since it is, this procedure returns the index ofthe element, and that
index is then converted back into its enumerated value with the VAL operator. (The code
within the EnumAIi arm is essentially identical.)

In general, the structure of your user.cm procedure will be very similar to this one. To
write a procedure to process a user.cm, you need to construct an option table, check to see if
there is a user.cm file on disk and open it, verify that there is a section for your tool, and

18

18-4

Tool building

then read the values in that section using the procedures in the Token interface. Basically,
you can copy the structure from this procedure and alter the code in the SELECT statement.

18.1.2 Pop-up menus

You can access the Window Manager menu from virtually every subwindow in the
environment; many tools have several other menus available as well. If you want your tool
to have any menus other than the Window Manager menu, you will have to create and
manage those menus through the Menu interface. This interface lets you determine which
menus the user will see and the actions that each menu item will perform.

18.1.2.1 Creating a menu

You can create a menu to be associated with your window with a call to Menu.Make. This
procedure is declared as:

Menu.Make: PROCEDURE [
name: LONG STRING,
stri ngs: LONG DESCRIPTOR FOR ARRAY OF LONG STRING.
mcrProc: Menu.MCRType,
copyStrings: BOOLEAN +- TRUE,
permanent: BOOLEAN Eo- FALSE1

RETURNS [Menu.Handle1;

This procedure makes a menu named name that hag the elements contained in strings.
mcrProc is the procedure that is called when the user selects one of the items on the menu;
this procedure is described more fully in section 18.1.2.3. The copyStrings flag indicates
whether strings should be copied into the system heap. When interfaces exchange
resources, clients must be very careful about who is responsible for the resource. Thus, all
interfaces involving resources must state explicitly whether ownership of the resource is
transferred. For example, if your strings are allocated in a local frame, and therefore will
be destroyed when you exit form the procedure, you will want to have copyStrings true.
permanent indicates whether the created object can subsequently be destroyed; you will
usually want this to be FALSE.

, Menu.Make returns a Menu. Handle, which is a long pointer to a Menu. Object:

Menu.Object: TYPE • RECORD [
permanent: BOOLEAN,
nlnstances: CARDINAL [0 .. 77777B1,
name: LONG STRING,
items: Menu.ltems];

Menu.ltems: LONG DESCRIPTOR FOR ARRAY OF Menu.ltemObject;

Menu.ltemObject; TYPE = RECORD [
keyword: LONG STRING, mcrProc; Menu.MCRType];

A Menu.Objectis the basic data structure of the menu.

Mesa Course 18

18.1.2.2 Instantiations of a menu

Once a menu has been created with a call to Menu.Make, you need to call Menu.lnstantiate
to indicate the window, windows, or subwindows with which the menu should be
associated. Menu.lnstantiate is declared as:

Menu.lnstantiate: PROCEDURE [menu: Menu.Handle, window: window. Handle]

An unlimited number of menus may be associated (instantiated) with your tool window or
with any of its subwindows. The menu mechanism maintains a ring of menu instances
(pointers to associated menus) for each sub window (if there is at least one associated
menu). One of these associated menus is taken to be the "current" menu for that
subwindow.

Some menus (such as the Window Manager) need to be available from virtually every
sub window. One way to accomplish this is to create an Object for each use, but the
primary memory cost of multiple copies of an Object is large. This leads to the use of a
level of indirection: Tajo never copies a client's Object; instead, it always keeps a pointer to
that Object. It is your responsibility to guarantee that the Object is valid as long as Tajo
has a pointer to it. You should only Make a menu once, but you may Instantiate that single
menu over as many windows as you like. The nlnstances field of a Menu.Object keeps a
count of the number of windows with which the menu is associated. Objects are created
and destroyed by the menu implementation

Menus are normally created in the procedure that creates the subwindows for a tool
(MakeSWsProc). (If you have a complicated menu to set up, you should write a procedure
to create the menus, and call it from your MakeSWs procedure.) For example:

--Example Tool Menu support routines
Menulndex: TYPE. {postMessage, aCommand, bCommand};
MakeSWs: Tool.MakeSWsProc =

BEGIN
menuStrings: ARRAY Menulndex OF LONG STRING +- [

postMessage: "Post message"L, aCommand: "A Command"L,
bCommand: "B Command"L];

toolData.menu +- Menu.Make(
name: "Tests"L,
stri ngs: DESCRIPTOR[menuStri ngs.BASE, menuStri ngS.LENGTH].
mcrProc: MenuCommandRoutine];

Menu.l nstantiate[tool Data . menu, tool Data. formSW];

END;

tool Data is a pointer to the MACHINE DEPENDENT record that contains the data (window
handles, menus, booleans, strings, etc.) for the tool. In this example, two of the parameters
to Menu.Make, copyStrings and permanent, are omitted; they have the default values
assigned in the type declaration (see section 18.1.2.1 above).

18-5

18

18·!)

Tool building

18.1.2.3 Menu command routines

One of the parameters to Menu.Make is a procedure of type Menu.MCRType. This type is
declared as:

Menu.MCRType: TYPE = PROCEDURE [
window: Window.Handle Eo-NIL, menu: Menu.Handle E-NIL.
index: CARDINAL Eo- LAsr[cARDINAL]];

A Menu Command Routine (MCR) is a procedure that is called when the user invokes the
associated menu item. index indicates which menu item was selected. You can have
different MeR procedures for each item on the menu, but clients typically have one MeR
per menu, so that they can use one large catch phrase to accomodate common exception
conditions. MeR procedures are another example of call-back procedures; you write the
MeR for your menu, and pass it to the Menu interface, which calls that procedure when
the user selects an item on your menu. Here is the MeR used in the Example Tool:

Menulndex: TYPE II {postMessage. aCommand, bCommand};
MenuCommandRoutine: Menu.MCRType =

BEGIN
mx: Menulndex II vAL[indexl;
SELECT mx FROM

postMessage II> put.Line[tooIData.msgSW, "Message posted. "l];
aCommand :I > put.line[tooIData.fileSW, "A Menu command called. "l];
bCommand II > put.line[tooIData.fileSW, "s Menu command called. "l]

END;

18.1.2.4 Freeing a menu

Menus are like any other storage: you should allocate them when you need them and free
them when you are through with them. Menu.Free is the complement of Menu.Make;
Menu.Uninstantiate is the complement of Menu./nstantiate:

Menu.Free: PROCEDURE [menu: Menu.Handle. freeStrings: BOOLEAN +- TRUE);

Menu.Uninstantiate: PROCEDURE [menu: Menu.Handle, window: Window.Handle];

These procedures should be called from your window state transition procedure. For
example:

new II inactive II>

Menu.Uninstantiate[menu: tooIData.menu. window: tooIData.formSW];
Menu.Free[tooIData.menu];

18.1.3 Registering a tool with the Tool Driver

The Tool Driver is a tool that provides a mechanism for automatically performing
repetitive, routine tasks in batch mode. The Tool Driver does not automatically have
access to every tool, however; you mllst include code to register your tool with the Tool
Driver. Every tool that performs some "generally useful function" should include code to

Mesa Course 18

register itself with the Tool Driver. You should give the user the option of using the Tool
driver with your tool.

The ToolDriver interface provides primarily two procedures: NoteSWs and RemoveSWs.
These two procedures are used to notify the Tool Driver of the existence of a tool's
subwindows and to remove that notification, respectively. The subwindow registration
should be done when the sub windows are created, in the MakeSWs proc; the removal
should be done in the TransitionProc, where the window resources are destroyed.

The subwindows for a window are described in an array of type TooIDriver.Address, which is
declared as follows:

TooIDriver.Address: TYPE = RECORD [name: LONG STRING, SW: Window.Handle]

For example:

MakeSWs: Tool.MakeSWsProc =
BEGIN
addresses: ARRAY [0 .. 3) OF TooIDriver.Address;

addresses ~ [
[name: "msgSW"L, sw: tooIData.msgSW],
[name: "formSW"L, sw: tooIData.formSW],
[name: "fileSW"L, sw: tooIData.fileSW]];

ToolDriver .NoteSWs[tool: "Exam pie Tool" L, subwi ndows: DESCRIPTOR[addresses]]

END;

ClientTransition: ToolWindow. TransitionProcType =
BEGIN
SELECT TRUE FROM

new = inactive = >
BEGIN

TooIDriver.RemoveSWs[tool: "ExampleTool"L];
END;

ENDCASE;
END;

18.1.4 The Supervisor facility

Supervisor is a Pilot interface that provides a way to broadcast information to a collection
of interested clients (within a single processor). This facility lets you register interest in a
particular event or class of events. When you register interest in an event, the Supervisor
will notify you each time that the event occurs or is about to occur. For example, your
program might want to be notified when a world swap is about to occur, when a window is
about to be deactivated, or when the user's credentials have just changed.

For example, consider the case of a world swap. The client transition procedures discussed
in the last chapter do not contdin any special provisions for a world swap. If you are

18- 7

18

18-8

Tool building

editing a file, for example, the editor should abort the world swap; It (;~do this
through the client transition procedure, however; all this procedure can do is free storage,
close files, and the like. Thus, the editor registers to be notified by the Supervisor when a
world swap is about to occur, and aborts that swap if the user is in the middle of editing a
file. Similarly, the File Tool might want to be notified about a world swap so that it can
close any connections to servers. The File Tool does not want to abort the world swap; it
just wants advance notice so that it can prepare itself. Thus, the Supervisor allows tools to
be notified about an event "before it is too late" and to take specific action regarding that
event.

The Supervisor models the entire client system as a collection of subsystems that depend
on some basic resource. A client program can register a dependency on any subsystem; that
is, it can register itself as a client of a particular subsystem, which means that it directly
uses the services of that subsystem. The Supervisor maintains a database that describes
dependency relationships among these subsystems, and provides a way to invoke them in
clients-first or implementors-first order. Thus, when an event occurs that involves several
subsystems, the Supervisor can either notify the clients of that subsystem first, or its
implementors, depending on which is the logical direction.

Each subsystem that wants to use the Supervisor facilities should obtain a subsystem
handle from the Supervisor and export it to its clients. The clients then use these handles
to declare the subsystems on which they depend. A Supervisor.SubsystemHandle may be
thought of as a class of related events. The Event interface in the Mesa Programmer's
Manual contains Supervisor.SubsystemHandles on which a client may add dependencies. A
client specifies interest in a particular class of events by registering a dependency on the
supervisor.SubsystemHandle obtained from Event. The interface EventTypes provides the
specific Supervisor. Events that are raised. A client that has been registered to be notified
about a class of events uses the Supervisor. Event to determine which element of that class
has actually occurred.

Each subsystem also registers an agent procedure. When an interesting event happens,
the Supervisor is invoked to notify the agent procedures that are interested in that event.
This notification can take place in either order (clients-first or implementors-first).

18.1.4.1 Using the Supervisor

To register interest in an event, you would find the event definition in the EventType
interface and add a dependency (supervisor.AddDependency) on the
Supervisor.SubsystemHandle in Event that corresponds to the event. (An event is defined by
a pair of items, one from Event and the other from EventType.)

Here is an example from the Example Tool that uses the Supervisor to abort deactivation
of a tool if the tool is still running:

Mesa Course

agent: Supervisor. Subsystem Handle =
Supervisor .CreateSubsystem{ Check Deactivate] ;

CheckDeactivate: Supervisor.AgentProcedure ==
BEGIN
IF event = EventTypes.deactivate AND

wh # NIL AND wh = eventData
ANDtoolData.commandlsRunning THEN {
put.Line[tooIData.msgSW. "The tool is still processing a

command: aborting deactivation "L];
ERROR Supervisor.EnumerationAborted};

END;

-- main code add the event
Supervisor .AddDependency[cI ient: agent. implementor: Event. toolWi ndow];

18

The signal Supervisor.EnumerationAborted refers to the enumeration of subsystems that
need to be notified of a particular event. This signal is raised whenever an enumeration is
aborted for some reason. (In this case, the Example Tool will abort the deactivation
whenever it is in the middle of processing a command, and raise EnumerationAborted
since there is no need to notify any other subsystems.)

As a second example, consider a world swap. When the user asks to leave CoPilot and
world-swap to the client volume, CoPilot will notify on the event Event.AboutToSwap. If
any tool is unwilling or unable to stop for a world swap, it should abort this event by
raising EnumerationAborted. If no clients abort the swap, CoPilot will notify on the event
Event.swapping with a swap-out reason (EventType.abortSession,
EventType.resumeDebuggee. or EventType.abortSession). All tools are expected to stop when
this event is notified. When CoPilot is re-entered for any reason, it raises the event
Event.swapping with a swap-in reason (EventType.newSession or EventType.resumeSession)
to let tools know that they can resume processing. Here is an typical example:

swapDone: CONDITION;
subsystemRunning. swapping: BOOLEAN +- FALSE;
aboutToSwapAgent: Supervisor. Subsystem Handle ==

Supervisor .CreateSubsystem[agent: AboutToSwap];
swappingAgent: Supervisor.SubsystemHandle ...

supervisor.CreateSubsystem{agent: Swapping];

StartSubsystem: ENTRY PROCEDURE ... {
IF swapping THEN WAIT swapDone;
subsystemRunning ~ TRUE};

SubsystemStopped: ENTRY PROCEDURE ... {subsystemRunning +- FALSE};

AboutToSwap: ENTRY Supervisor.AgentProcedure =
BEGIN
ENABLE UNWIND = > NULL;
IF subsystemRunning THEN {

END;

HeraldWindow.AppendMessage["MyTool busy: aborting swap."L];
ERROR Supervisor. Enu merati onAborted};

18-9

18

18-10

Tool building

Swapping: ENTRY Supervisor.AgentProcedure :I

BEGJN
ENABLE UNWIND = > NULL;
SELECT event FROM

EventTypes.newSession, EventTypes,resumeSession, EventTypes,swapCancel'ed.
EventTypes.bootPhysicalVolumeCancelled :I > {

swapping ~FALSE; BROADCAsTswapDone};
EventTypes.abortSession. EventTypes.resumeDebuggee,

EventTypes.bootPhysicalVolume =: >
swapping ~ TRUE;

ENDCASE;
END;

--mainline
Supervisor.AddDependency{client: aboutToSwapAgent. implementor:
Event.aboutToSwap];
Supervisor.AddDependency[

client: 5wappingAgent, implementor: event.swapping);
DO

SubsystemStopped[];
-- wait for user input from the Notifier
StartSubsystem[] ;
-- perform computation
ENDLOOP;

18.1.5 Using the Executive interface

As you have seen, there are two basic styles of program invocation in the XDE: interactive
(tool windows) and batch (the Executive). Typically, you provide an interactive interface
by creating a form subwindow with command items for each procedure, and provide a
batch interface by writing one or more Exec.ExecProcs that can be called from the
Executive. In general, it is a good idea to make your tool facilities accessible in either
style.

By taking some care in the design of your tools, you can support both invocation methods
fairly easily. You should provide an interface that defines the function provided by your
package. This functional interface can be called directly from programs, making it
possible for client programs to use the package directly. You can then write two interface
packages that invoke these functions: one package implements an ExecProc, and the other
implements a tool window.

This means that the functional interface should make no assumptions about where its
input comes from or where its output goes. If the package must interact with the user, it
must require interface packages for the interaction. It must not assume that it has a
window it can communicate through. The package should not assume it knows the
location of input parameters. All input should be passed to the package explicitly by the
interface packages, even if it is just in the form of a command line that must be parsed. An
output procedure should be provided by the caller.

Mesa Course 18

The Example Tool does not define an interface, but it does provide both sorts of
interaction. Here are the relevant routines from the Example Tool:

Help: Exec.ExecProc =
BEGIN
OutputProc: Format.StringProc Eo- Exec.OutputProc[h);
OutputProc[

"This command activates the ExampleTool window. The ExampleTool is an
example of a 'Tool' that runs in Tajo.lt demonstrates the use of a comprehensive set of
commonly used Tajo facilities. Specifically we present examples of the definition,
creation, use and destruction of the following:

Windows and subwindows, Menus, Msg subwindows, Form subwindows and File
subwindows"L);

END;

Unload: Exec.ExecProc =
BEGIN
IF wh # NIL THEN Tool.Destroy [wh);
wh Eo-NIL;
[) Eo-Exec.RemoveCommand[h, "ExampleTool.-"L);
END;

InitHeap: PROCEDURE == INLINE
BEGIN
heap Eo-Heap.Create[initial: 1];
END;

KiliHeap: PROCEDURE == INLINE
BEGIN
Heap.Delete[heap) ;
heap Eo-NIL;
END;

Init: PROCEDURE ==

BEGIN
Exec.AddCommand["ExampleTool.-"L, ExampleToolCommand, Help, Unload];
END;

MakeHeraldName: PROCEDURE =
BEGIN
tempName: LONG STRING Eo- heap.NEw[StringBody [60]];
String.AppendString [tempName, "ExampleTool "L];
Version.Append[tempName] ;
String.AppendString[tempName, " of "L];
Time.Append [tempName, Time. U n pack[Runtime. GetBcdTi me []]];
tempName.length Eo- tempName.length - 3; -- gun the seconds
heraldName Eo-String.CopyToNewString[tempName, heap];
heap.FREE[@tempName];
END;

18-11

18 Tool building

MakeTool: PROCEDURERETURNS(wh: Window.Handle} =
BEGIN
RETURN (Tool. Create[
makeSWsProc: MakeSWs, initialState: default.
clientTransition: ClientTransition, name: heraldName.
cmSedion: "ExampleTool"L. tinyName1: nExample"L. tinyName2: "Tool"L]]
END;

ExampleToolCommand: Exec.ExecProc =
BEGIN
IF heap = NIL THEN InitHeap[];
IF heraldName = Nil THEN MakeHeraldName[];
IF (wh # Nil) AND inactive THEN TooIWindow.Activate{wh]
ELSE IF wh = NIL THEN wh ... MakeTool[];
END;

-Mainline code
Init[];
END.

18.2 References

The material in this chapter makes extensive use of the material in the following chapters
of the Mesa Programmer's Manual: CMFile, Event, EventTypes; Menu, Token, ToolDriver.
The Supervisor material is covered in the also read the Supervisor section in the Pilot
Programmer's Manual.

18.3 Exercises

18-12

The exercise for this chapter is to write a tool that reads information from the user.cm file
and that uses the Supervisor facility. The tool should read a file name (fileName), and a
file length (Length) from the user. em file whenever the tool changes to an active state. In
order to read this information you will need to write a procedure, called from the tool's
TransitionProc, which uses the CmFile procedures.

The tool has only two commands, AcquireFile and ReleaseFile. AcquireFile acquires
fileName with readWrite access and with initial length of Length. When the tool has
acquired a file, you want to ensure that the user cannot deactivate the tool. To do this, you
need to add a dependency to the toolWindow event (e.g. deactivate). Thus if someone
attempts to deactivate the tool after the file is acquired, you should issue a message and
abort the deactivation. However, if the user releases the file, the tool may be deactivated.

To do this exercise you should create a tool with the FormSWLayoutTool and add two
procedures (ProcessUserCM and CheckDeactivate). In addition, you will need to make
calls to MFile.ReadWrite and MFile.Release for the file manipulation. The solution for this
exercise is located on UserCMtoolsolution.mesa.

19

Multiple instance tools

This chapter is the last of the tool building sequence; it assumes that you are familiar with
the material in chapters 16 through 18. In this chapter, we discuss how to design a tool so
that the user can have multiple copies of the tool on the screen simultaneously.

19.1 Definition of terms

Context

Multiple instance tool

Notifier

19.2 Discussion

A context is data associated with a window or subwindow;
such data has the same lifetime as the window with which it
is associated.

A multiple instance tool is a tool that allows the user to have
more than one copy of the tool window on the screen at a
given time. All instances of a multiple instance tool share
the same global frame.

The Notifier is the process that is responsible for processing
user actions, such as mouse clicks and keystrokes.

A multiple instance tool is a tool that can have more than one cQPY ("instance") of its
window on the screen at any given time. For example, the Mail Send Tool is a multiple
instance tool, but the File Tool is not. (A simplistic way of looking at it is that a multiple
instance tool has the commands Another! and Destroy! in its form subwindow.)

All copies of a particular tool share the same global frame. Thus, there is an obvious
problem: what does a multiple instance tool do with the data that it would normally store
in its global frame? Data that must be replicated for each copy of the window (such as
window and subwindow handles, and form subwindow items) can't reside in the global
frame, since the global frame is shared amongst all copies of a tool.

The Context interface solves this problem by enabling you to associate data with a window
handle rather than storing it in the global frame. Whenever you create a window, you
allocate your data and associate that data with the window. You can then retrieve the data
each time your tool is called.

19-1

19

19-2

Multiple instance tools

19.2.1 Obtaining a context type

When you want to use the Context interface, you have to acquire a unique context type for
your tool. The basic idea is that every client of the Context interface must have its own
unique type; this type is how you identify yourself to the interface. To get such a type, you
declare a global variable of type Context. Type and then call the procedure
Context.UniqueType. (The context type is the same for all copies of the tool, so putting it in
the shared global frame is the right thing to do)

context.UniqueType returns a Context. Type, which is unique for each client of the Context
interface. (UniqueType will raise an error if no more unique types are available.) You only
need to call this procedure once, during initialization. For example,:

dataType: PUBUC Context. Type +-Context.UniqueType{];

Figure 19.1 illustrates the idea behind contexts. Notice that all the windows have the
same context type (they are instances of the same tool), but they each have different data.

Window

Instance ~

1

Window

Instance ~

2

Window

Instance

3

Context Type - 337778 -
• x= 5,

y= 10,
z=O

Context Type - 337778 -
x=22,

~ y=6,
z=45

Context Type = 337778
.. x=12,

y=9,
z=3

Figure 19.1 Associating contexts with windows.

MesaCour~e 19

19.2.2 Creating the context

Before you can use a context, you have to allocate it and "attach" it to the window. Since a
context is basically just an alternative to global tool data, you should allocate the context
in the same places in your code that you would otherwise have allocated the tool data. To
do the allocation you need to call Context. Create:

Context. Create: PROCEDURE [
type: Context.Type.
data: Context. Data,
proc: Context.DestroyProcType.
window: Window.Handle];

Create creates a context of type type that contains data. type is your unique
identification; data is a record that you define to specify what you want to store in your
context. In this case, data is of type DataHandle, which is declared as follows:

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [

wheal: Window. Handle Eo- NIL,
msgSW(2): Window.Handle Eo- NIL,
fileSW(4): Window.Handle Eo- NIL,
formSW(6): Window.Handle Eo- NIL,
string(8): LONG STRING Eo- NIL];

--handle to parent window
--handle to message subwindow

--for string in form subwindow

The proc parameter to Create is a call back procedure that you can use to deallocate the
context data when the window is destroyed. window is the window or subwindow with
which the context is to be associated.

Thus, continuing the example in section 19.2.1, the relevant parts of your
ClientTransitionProc might look like this:

ClientTransition: ToolWindow.TransitionProcType =
BEGIN
... --retrieve the context here
SELECT TRUE FROM

old = inactive = > BEGIN --window being created; need to allocate context
IF tool Data = NIL THEN tool Data Eo- heap.NEw[Data Eo- []];

toolData.wh Eo- window;
Context.Create[dataType, toolData. DestroyProc, window];
END;

new = inactive = > --window being destroyed; need to destroy context
IF tool Data # NIL THEN

Context.Destroy[type: dataType. window: window];
--Context. Destroy is discussed in section 19.2.4

ENDCASE
END;

Thus, the above call to Create creates a context of type data Type, associates that context
with the window handle, and stores the information in the data record in that context.

19-3

19

19..J.

Multiple instance tools

19.2.3 Using the context

Once you have stored data in your context with Create, you can call Context.Find to retrieve
that data. Basically, you have to call Find each time that you need to reference your data.
This procedure is declared as:

Context.Find: PROCEDURE [type: Context. Type, window: Window.Handle]
RETURNS [Context. Data];

Find retrieves the data field from the specified context. Find will return NIL if no such
context exists on the window.

One example of when you need to use Find is when you create or reference the items in a
form subwindow. In section 19.2.2, notice that the context includes a string parameter,
which contains the value of a string in the form subwindow. Thus, when you create your
form subwindow (in a MakeForm procedure) you need to have the context available so that
you can specify it as the location where that string is to be stored.

However, to use Find, you need to pass the window handle as a parameter. How are you
going to get that handle in order to pass it to Find? A MakeForm procedure is of type
Formsw.ClientltemsProcType, which is declared as follows:

FormSw.ProcType: TYPE = PROCEDURE [
sw: Window.Handle +- NIL, item: Formsw.ltemhandle +- NIL,
index: CARDINAL +- Formsw.nulllndex);

Thus, when your MakeForm procedure is called, you are passed in a handle to the form
subwindow as a parameter. Unfortunately, in order to retrieve the context, you need a
handle to the parent window, and not just to the form subwindow. However, since you
have the subwindow handle, you can make a call to the procedure
TooIWindow.WindowForSubwindow: when you pass it the subwindow handle, it will
return the handle for the parent window. Thus, the first few lines of your MakeForm
procedure might look like this:

MakeForm: Formsw.ClientltemsProcType ==

BEGIN
OPEN FormSW;
toolData: DataHandle +-

Context.Find[dataType, TooIWindow.WindowForSubwindow[swJ];

Thus, you have retrieved your context into the variable tool Data, and you can store to it or
retrieve from it.

19.2.4 Destroying the context

The inverse of Context. Create is Context. Destroy, which you use to destroy a context of a
given type on a given window. Again, you want to call Context. Destroy in the same places
that you would normally free the tool Data record. Ifthe context exists, this procedure will
call the Context.DestroyProc that you passed as a parameter to Context.Create. Here is the
declaration of Context. Destroy:

Mesa Course

Context. Destroy: PROCEDURE [
type: Context. Type,
window: Window.Handle];

Here is an example of what a DestroyProc might look like:

19.3 Summary

DestroyProc: PRoc[data: DataHandle, window: Window. Handle] =
BEGIN

heap.FREE[@data];
END;

19

In general, you should always make your tools multiple instance t601s. To do so, you need
to store replicated global data in a context rather than in the global frame. A context is
essentially data that is associated with a window handle, and thus has the same life as the
tool window. Since the global frame is shared among all copies of the tool, you should only
use the global frame for data that is to be shared by all copies of the tool.

To use the context interface, you need to obtain a unique type (Context.UniqueType), create
the context (Context. Create) , use it (Context.Find), and destroy it (Context. Destroy). In
general, you need to call UniqueType each time the tool is loaded, call Create and Destroy
each time a window is created or destroyed, and call Find each time you need to access the
data.

Here are the relevant portions of a basic tool that uses the Context interface:

19-5

19

19-0

Multiple instance tools

•• File: MultiToo/.mesa -last edit 27-Dec-84 75:59:00
-- Copyright (C) Xerox Corporation 1984. All rights reserved.

DIR_ECTORY
Context USING [Create, Destroy, Find, Type, UniqueType),

MultiTool: PROGRAM
IMPORTS Context, Exec, FormSW, Heap, Put, Tool, ToolWindow =

BEGIN

-- TYPES

DataHandle: TYPE = LONG POINTER TO Data;
Data: TYPE • MACHINE DEPENDENT RECORD [

wh(O): Window.Handle +- NIL,
msgSW(2): Window. Handle +- NIL,
fileSW(4): Window.Handle +- NIL,
formSW(6): Window.Handle +- NIL,
string(8): LONG STRING +- NIL];

- create unique context for this tool and store it in global (shared) variable
data Type: PUBLIC Context. Type +- Context.UniqueType[];

--This procedure is called when the window state is about to change
ClientTransition: ToolWindow. TransitionProcType •

BEGIN
tool Data: DataHandle +- Context.Find[type: dataType, window: window];
SELECT TRUE FROM --allocate context and associate it with the window

old. inactive. > BEGIN
IF tool Data • NIL THEN tool Data +- heap.NEw[Data +- [J);
toolData.wh +-window;
context.Create{dataType, tool Data, DestroyProc, window);
END;

new = inactive = > -deallocate context
IF tool Data # NIL THEN
Context.Destroy[type: dataType, window: window);

ENDCASE
END;

--This call-back procedure deallocates the context
DestroyProc: PRoc[data: DataHandle, window: Window.Handle) =

BEGIN
heap.FREE[@data);
END;

Mesa Course 19

< < This procedure is called when a command in the form subwindow is invoked.
You need to retrieve the context so that you can access the information in the form
subwindow. > >

FormSWCommandRoutine: FormSw.ProcType =
BEGIN
toolOata: OataHandle +-

Context.Fi nd[dataType, ToolWindow. Wi ndowForSu bwi ndow[sw]];
SELECT index FROM

Formlndex.command.ORD = > CommandRoutine[tooiOata];
Formlndex.another.ORD = > MakeTool[];
Formlndex.destroy.ORD • > Tool.Oestroy[tooiOata.wh];

ENDCASE;
END;

-- standard procedure to create items in the form subwindow
--storage for items in form subwindow found in context

MakeForm: Formsw.ClientltemsProcType =
BEGIN
OPEN FormSW;
toolOata: OataHandie +-
Context.Find[dataType, TooIWindow.WindowForSubwindow[sw]];
formltems: LONG POINTER TO ARRAY Formlndex OF FormSw.ltemHandle +- NIL;
items +-AllocateltemOescriptor[nltems: Formlndex.LAsT.ORD + 1];
formltems +- LOOPHOLE[BAsE[items]];
formltems t +- [
command: Commandltem[

tag: "Command"L, place: [0, lineO), proc: FormSWCommandRoutine),
- Specify string field in context as storage for string
vanilla: Stringltem[

tag: "Vanilla"L, place: [90, IineO], string: @tooIData.string, inHeap: TRUE],
another: Commandltem[

tag: "Another"L, place: [250, IineO), proc: FormSWCommandRoutine],
destroy: Commandltem[

tag: "Destroy"L, place: [350.lineO], proc: FormSWCommandRoutine]];
RETURN [items: items, freeOesc: TRUE]
END;

< < Retrieve the context, create the subwindow handles, and then store the
handles in the context. > >

MakeSWs: Tool.MakeSWsProc =
BEGIN
tooiOata: OataHandie +-Context.Find[type: dataType, window: window);
logName: STRING +- [40];
Tool.UnusedLogName[unused: logName, root: "MuitiTool.tog"L];
tooiOata.msgSW +- Tool.MakeMsgSW[window: window];
tooiOata.formSW +-Tool.MakeFormSW[window: window. formProc:

MakeForm);
tooiOata.fileSW +-TooI.MakeFileSW[window: window. name: logName);
END;

END •••

19-7

19 Multiple instance tools

19.4 References

All of the procedures discussed in this chapter are documented in the Context chapter of
your Mesa Programmer's Manual.

19.5 Exercises

19-8

The exercise for this chapter is to take your tool from the last chapter and make it a
multiple instance tool.

20

Terminal interface package

In this chapter we discuss the Terminal Interface Package (TIP), which is responsible for
recognizing user actions and producing corresponding program actions. TIP is specialized
material; most of the code that you will write will not have to use the TIP facilities at all.
You only need to learn about TIP if you want to change the way that a certain window
handles user input, or if you are going to write a tool that uses a non-standard user
interface. (We discuss how to write custom user interfaces in the next chapter.)

20.1 Definition of terms

Atoms

Cursor

Input focus

TIP table

20.2 Discussion

Atoms are unique keywords that are used in TIP tables as either
actions or results of particular actions. Some predefined Atoms are
COPY, HELP, Point, COORDS, Video, and Word.

The cursor is the pointer that tracks mouse movements.

The input focus is the location of the flashing caret that indicates
the location of the next user input.

A TIP table is used to map keystrokes and mouse actions to a list of
results. TIP tables add an extra degree of indirectness in that you
can edit them to change the interpretation of keystrokes. The
structure of a TIP table is similar to a SELECT statement.

In conventional computer systems you can only interact with one program at a time, so
handling user input is not a big problem: the operating system interprets all user actions
(keystrokes) and takes appropriate action. In the XDE, however, the problem is
complicated by the fact that you can interact with many different windows
simultaneously. TIP was designed to solve the additional complications created by a
multi-window user interface. The following diagrams illustrate a simple single tasking
user interface, a multitasking environment without TIP tables, and the XDE
environment.

20-1

20

20-2

Terminal interface package

Stimulus level Operating System Application
(User actions) (Optional)

Fig. 20.1 a Single task user environment

Actions .I Application 1 I
/ Appfication2 I Stimulus level Operating System --(User actions) (Multiplexing) .1 Application3 I "I

Application4 I
Fig. 20.1 b Multitasking environment

Results
Actions ~I App1

~. TIP ., App2
Stimulus level Matcher ..
(User actions) (High priority)

~ ./ App3

·1 App4

Fig. 20.1 c XDE with TIP tables

TIP tables are thus the intermediary between user actions and program actions. A TIP
table is basically just a list of user actions that the program is interested in, and a list of
results associated with each user action. When the user does something, a high-priority
process called the StimulusLevel (StimLev) puts that action on a user action queue. A
second process called the Matcher dequeues each user action, figures out which window
the action is intended for, and checks the TIP tables associated with that window. (If the
action is a mouse click, the action is sent to the window with the current selection; "any
other action is sent to the window with the input focus.) The Matcher checks each TIP
table associated with the appropriate window until it finds the action in a table, or until it
runs out of TIP tables to check. If it doesn't find a match, the action is discarded; if it does
find a match, it passes the associated results list to a special procedure called a NotifyProc.

"

~

I
I
I
I

Mesa Course 20

The NotifyProc analyzes the results and produces the desired action. For example, when
you select characters in a text window, the results from the mouse clicks are passed to a
NotifyProc, which is responsible for doing the actual video-inversion (selection).

20.2.1 Default TIP tables

XDE provides seven default global TIP tables that are connected into a chain. Each of
these tables corresponds to a particular type of window or subwindow, and that table acts
as the head of the table chain for the user actions. Figure 20.2 shows the structure of the
default chain of TIP tables. For example, if you are typing into the Executive the system
would check tables in the following order: executive table, ttySW table, TextSW table, and
finally Root table; if none of these tables provided a match, it would ignore the action.

Root

/ ~
FormSW TextSW

/ " FileWindow ttySW

executive

Fig. 20.2 Default TIP table chain

Generally you will have a chain of TIP tables associated with a given window and a
NotifyProc associated with that same window. However, the relationships between tables,
windows and N otifyProcs can become quite complex. You don't need to worry about all the
gory details of how these three pieces interrelate, but you should be aware that the
relationship is not always simple.

20.2.2 TIP table syntax

There are two parts to a TIP table: an options list and a "trigger" statement. We don't
discuss the options list in this chapter; you'll have to consult the MPM to find out what
options are available. The main body of a TIP table resembles a Mesa SELECT statement.
The left hand side of the table contains various user actions; for example, A down means
the "Au key was pressed down, and Point Up indicates that the left mouse button was
released. (For a complete list of possible actions, see the TIP chapter of the Mesa
Programmer's Manual.)

The right hand sides of TIP tables are results that are to be passed to the NotifyProc. A
result must be one of the following seven variants;

20-3

20

20-4

Terminal interface package

TIP.Resultelement: TYPE • RECORD [
SELECTtype: * FROM

char • > (c: CHARACTER). --character representation of last user action
coords • >[place: Window.Place).- -current bitmap position of mouse
keys. > [keys: LONG PointER TO Keys.Key8its). -state of entire keyboard
atom. > [a: Atom.ATOM). -unique string
int • > Ii: LONG INTEGER).
string • > [S:LONG STRING].
time • > [time: System.Pulses). --time of last user action

ENDCASE];

The most common of these results is the atom, which is basically just a unique character
string used as a label. There are some standard system-defined atoms; mostly, you will
define your own atoms to stand for actions that you want to recognize. Here is a sample
TIP table:

SelECT TRIGGER FROM
Point Down AND Point Up BEFORE 200 • >

SELECT ENABLE FROM
LeftShift Down • > COORDS. ShiftedClick

ENDCASE • > COORDS. SimpleClick;
ENDCASE... -- use three periods to indicate the end of your table

In this example we SELECT the case where the left mouse button goes down (Point Down)
and then comes back up (Point Up) before 200 milliseconds has elapsed. If these actions
occur the system checks to see if the left shift key is also down. If the shift key is down, the
results COORDSand ShiftedClick are passed to the NotifyProc; otherwise, the results COORDS
and SimpleClick are passed. CCORDS is a system-defined result; SimpleClick is a client
defmed atom. You can name the atom anything you like; it just has to be a label that you
can recognize in your NotifyProc and act on accordingly.

The most common keywords in TIP tables are TRIGGER, WHILE, AND, and ENABLE. TRIGGER and
AND refer to events that have just happened; that is, the event in question has just been
dequeued from the user action queue. ENABlE and WHILE refer to the current state of
something, regardless of whether or not it just reached that state. Thus, every TIP table
must have at least one TRIGGER statement; this is the recent user action that has caused the
Notifier to check the TIP table. Once a user action has been matched to a TRIGGER
statement, you can use ENABLE statements to find out what else is true at the current time.

20.2.2.1 Modifying TIP tables

There are two ways that you can change the TIP tables associated with a window. You can
modify an existing table, in which case the changes will affect all windows of the
particular class, or you can write a new TIP table, and associate it with a particular
window or window class. We discuss how to modify an existing table in this section; in the
next section, we discuss how to integrate a new table into the existing structure.

Obviously, you can modify a TIP table either by changing the left hand side (thereby
affecting which actions are recognized), or by changing the right hand side (affecting what
happens once an action is recognized.) Once you have edited a system TIP file, you need to
reboot if you want those changes to take effect. The reason is that the system uses a
compiled version of the TIP tables, and that the compiled version will not be created until

Mesa Course 20

you reboot. (System TIP tables live on the directory <CoPilot>TIP. The .TIP files are the
text files; the .TIPC files are the compiled versions that are created whenever you boot.)

For example, suppose that you want to change the way mouse clicks are interpreted in text
subwindows. Instead of the standard scheme (one click selects a single character, two
clicks a word, and three clicks aline), suppose you always want to select a word, regardless
of the number of clicks. You can do this by modifying the right hand side of the TIP table;
in this case we add the result Word. Below is a portion of the TextSW TIP table after the
modification:

SELECT TRIGGER FROM
Point Down .. >

SELECT TRIGGER FROM
Adjust Down BEFORE 200 :I > Time, COORDS, Menu;

ENDCASE :II >
SELECT TRIGGER FROM

CONTROL Down :I > Time, COORDS, Movelnsertion
COpy OR MOVE :I > Time, COORDS, DoPrimary

ENDCASE :I> Time, COORDS, Video, InsertToSel, Word, DoPrimary -- add the result Word
-- to the existing results list

ENDCASE ..•

Thus, any point click that is not part of a chord, a CONTROL-POINT or a copy/move will cause
the atom word to be passed to the NotifyProc. To make this change really take effect, we
obviously have to also change the NotifyProc so that it recognizes the new result word. We
do this in section 20.2.3.

20.2.2.2 Writing new TIP tables

In addition to modifying existing tables, you can also write new TIP tables. When you
write a new TIP table, you can make that table apply to all windows on the screen, to all
windows ofa particular class, or to just one window. You also have the choice of whether or
not to attach it to the default chain. If you attach it to the chain, any actions not handled
by your TIP table will go through the standard chain. If you don't attach it, any actions
that you don't handle will be ignored.

The first step is to create a compiled version of the table that your program can use. To
create a compiled version from a text file, you call TIP.CreateTable:

T1P.CreateTable: PROCEDURE [file: LONG STRING ~ NIL, -- source file for the TIP table
opaque: BOOLEAN E-FALSE,
Z: UNCOUNTED ZONE E- NIL,
contents: LONG STRIN.G E- NIL]
RETURNS [table: TIP.Table]

-- don't search successive tables if TRUE
-- allocate table from z
-- contents can contain the TIP table
-- in a character string as below

With CreateTable you either supply the TIP table text in file, or you can use the contents
parameter and have the text within your program. The procedure below illustrates how to
create a TIP table using the contents parameter to fill in the table code rather than using
a file.

20-5

20

20-6

Terminal interface package

--excerpted from TIPExample2.mesa
myTip: TIP. Table +-NIL; - declare the TIP table (usually as a global variable)

InitTip: PROCEDURE =
BEGIN

tipContents: LONG STRING +-
"-- This TIP table makes single click Point select a word
-- Top-Level triggerselect-- (these comments will go inside the TIP table)

SELECT TRIGGER FROM
Point Down WHILE C;ONTROL Up WHILE COPY Up WHILE MOVE Up • >
SelECT TRIGGER FROM

Adjust Down BEFORE 100 • > TIME, COORoS, Menu;
ENOCASE • > TIME,COORoS, Video. InsertToSel, Word, DoPrimary;

ENDCASE ...
"L; -- end of TIP table code - note that this is a 10 line string literal

firstTime: BOOLEAN +-TRUE;
myTip +-Tip.CreateTable[

END;

file: nnPExample2.TlP"L, contents: tipContents !
TlP.lnvalidTable • >

IF type :# bad Syntax THEN CONTINUE -- file wasn't found
ELSE {
UserTerminaI.BlinkDisplay(]; - table has bad syntax so check log file
IF firstTi me THEN {fi rstTime +- FALSE; RESUME }});

If want to put your TIP table in a string rather than a file, you need to pay particular
attention to the way the error TIP.lnvalidTable is handled. The call to CreateTable will
search first for a file of the specified name; if it can't construct a compiled table from the
contents of the file, it will raise the error InvalidTable, with type = badSyntax. You must
catch the signal and RESUME it; the second time, the contents string will be used as the
table. If this error is raised a second time, there really is a syntax error in your table. (If
you use a file as the source of your table, rather than a string, the file must be stored on the
< >TIP local directory.)

Once you have created the table, you need to decide how it is to interact with the existing
chain, and then you need to associate it with one or more windows. To hook your new TIP
table into the existing chain, you call either TIP.PushLocal or TIP.PushGlobal:

TlP.PushGlobal: PROCEDURE [push: TlP.Table.
onto: TlP.GlobaITable. opaque: BOOLEAN +- FALSE];

TIP.PushLocal: PROCEDURE [push. onto: TIP.Table. opaque: BOOLEAN +-FALSE];

PushGlobal inserts push after the global table indexed by onto; PushLocal pushes the
table push in front of the table onto. If opaque is TRUE, any actions that your table does not
recognize will be ignored; if opaque is FALSE, the system will continue to check the other
TIP tables. You need only push the new table onto the chain once, so put the call to
PushLocal or PushGlobal in your initialization code. Mter the new table is in place, call
TlP.SetTable, which associates the table with a particular window:

· Mesa Course

TlP.SetTable: PROCEDURE [window: Window.Handle. table: TIP.Table]
RETURNS [oldTable: TIP.Table];

20

Just pushing the new TIP table is not enough; you must associate the table with a window
or the new table will be invisible. Below we push the TIP table myTip onto the global
TextSW table and then associate myTip with a file subwindow. In this case, we aren't
interested in the old TIP table, so we discard the results record returned by SetTable.

Init: PROCEDURE •
BEGIN

IF myTip # NIL THEN TIP.PushLocal[push: myTip. onto: TIP.globaITable(textSW]];
[] +-TIP.SetTable(window: tooIData.fileSW. table: myTip];

END;

20.2.3 Notify Procs

So much for the TIP tables themselves. The second big piece of the TIP mechanism is the
NotifyProc; which analyzes the results passed to it and then performs the desired function.
A TIP.NotifyProc is defined as:

TIP.NotifyProc: TYPE • PROCEDURE (window: Window. Handle. results: TlP.Results];

TIP.Results: TYPE := LONG POINTER TO TIP.ResultsList;

TIP.ResultsList: TYPE;

Thus, the results that are passed to the NotifyProc are opaque; you don't know anything
about the structure of a ResultsList. The only way you can access them is with the
procedures TIP. Rest and TIP.First:

TIP.Rest: PROCEDURE (results: TIP.Results] RETURNS [TIP.Results];

TIP.First: PROCEDURE [results: TIP.Results] RETURNS [TIP.ResultElement];

First returns a Tip.ResultElement, which is a variant record containing one of a number of
different result types (see section 20.2.2). Rest returns the results less the first one in the
list (First and Rest are similar to Lisp's- Car and Cdr primitives.) The following NotifyProc
taken from TIPExample3.mesa) displays the selected text (a single word) in a string field
on the form subwindow. Thus, when you click Point on a word, the text is both selected and
printed in the form subwindow.

20-7

20

20-8

Terminal interface package

--this call goes in the MakeSWs proc
toolData.oldNotifyProc +-

TIP.SetNotifyProc[window: tool Data.fileSW, notify: StuffSeledion);

Stuff Selection: np.NotifyProc •
BEGIN

s: LONG STRING +-NIL;
word: Atom.ATOM +-Atom.MakeAtom["WordHL); -- declare atoms
PointUp: Atom.ATOM+-Atom.MakeAtom["PointUp"L);
toolData: DataHandle +-Context.Find[type: dataType, window:

TooIWindow.WindowForSubwindow[window]]; -- find the context
tooIData.oldNotifyProc[window: window. results: results); - call the old NotifyProc

-- to interpret the user input
FOR input: np.Results +- results, input.Rest[] UNTIL input == NIL DO

WITH input.First(] SELECT FROM -- analyze the results one at a time
z: TIP.ResultElement.atom • > SELECT z.a FROM --variant record syntax
word = > tool Data.seledOccurred +-TRUE - first action was Point down
PointUp = > IF toolData.selectOccurred THEN -- when Point comes up
BEGIN - display text

toolData.seledOccurred +-FALSE;
s +-Selection.Convert[string); - convert selection to a string
IF String. Empty[s] THEN RETURN
ELSE
BEGIN

heap.FREE[@tooIData.select1on);
toolData.seledion +- String.CopyToNewString[s, heap); -- display string to
FormsW.Displayltem[tooIData.formSW. Formlndex.select.oRD); - window
heap.FREE(@S);
RETURN

END;
END;
ENOCASE;

ENDCASE;
ENOLOOP;

END;

The above code is only interested in two user actions, the Point button going down and
then going back up. When Point goes down, the oldNotifyProc selects a word; when Point
comes back up, the text is displayed in a string field in the form subwindow.

Before the Notify code is called, we call SetNotifyProc in the initialization code. If you are
associating a'NotifyProc with a particular window, you must call SetNotifyProc each time
your window is activated. (Remember, NotifyProcs are usually associated with windows
rather than with TIP tables.) Thus, we put the call in MakeSWs, which is called each time
the sub window is created. SetNotifyProc associates the Stuff Selection NotifyProc with the
file subwindow; all user actions directed toward the file sub window must first go through
this procedure. SetNotifyProc returns the old notify proc for the window:

TIP.SetNotifyProc: PROCEDURE [window: Window.Handle,
notify: TIP.NotifyProc]
RETURNS [oldNotify: TIP.NotifyProc];

Mesa Course 20

The first thing Stuff Selection does is "make" the necessary atoms. A NotifyProc must call
Atom.MakeAtom for every Atom that it wants to recognize, regardless of whether its a
"standard" atom. (If you have a lot of atoms to initialize, you should do it in a separate
procedure.) MakeAtom returns the atom corresponding to the string, creating one if
necessary.

Stuff Selection next finds the context for the subwindow to which the action belongs. It
then calls the oldNotifyProc (which is returned by SetNotifyProc). oldNotifyProc
interprets the Point Down motion by selecting the entire word where the cursor is located
(this example uses the TIP table from section 20.2.2.) The oldNotifyProc also interprets
most other user actions.

When the oldNotifyProc returns, Stuff Selection also interprets the same results list.
Stuff Selection is only interested in the two Atoms PointUp and word. When word is
encountered we know that a select (PointDown) has occurred, since word is one of the
results returned by the modified TIP table. Thus we set a BOOLEAN to indicate that a word
was selected, and return.

The next time Stuff Selection is entered is when the the mouse button comes up; when this
occurs the selected text is converted into a string. The string is then displayed in the form
subwindow and the storage that the string occupied is released.

20.2.4 The GPM: Macro Package

The system TIP tables are all coded in macro format. To help you to understand this
language we will show an example of a system TIP table and discuss its features. For a
more complete explanation refer to the References at the end of this chapter.

-- TextSW. TIP; created by System
-- Version of 25-Jan-83 15:30:21

[OEF,ChordTime,(100)] -- define ChordTime to be 100 milliseconds

[OEF,CopyMove,(CoPY Down I MOVE Down)] -- define CopyMove to be either copy or MOVE

[OEF, TC,(TlME COOROS)]-- define an abbreviation for the Atoms, TIME and COo~OS

[OEF,Chord,(SELECT TRIGGER FROM -- define the Chord macro
-1 Down BEFORE [ChordTime] =- > { [TC] Menu };

ENOCASE =- > -2)]

-- Top-Level trigger select
SELECT TRIGGER FROM

Point Down =- > [Chord,Adjust,
SELECT ENABLE FROM

CONTROL Down = > { [TC] Movelnsertion };
[CopyMove] =- > { [TC] Video DoPrimary };

ENOCASE = > {[Tc1 Video InsertToSel DoPrimary }];

Adjust Down = > [Chord,Point,
SELECT ENABLE FROM

[CopyMove] = > {[Tcl ExtendPrimary};
ENOCASE = > {[Te] InsertToSel ExtendPrimary}];

20·9

20 Terminal interface package

The TIP table begins with a series of definitions. Each definition consists of the keyword
OEF, followed by the macro-name, followed by the macro-definition body. Items in
parentheses are taken as literals; thus, ([)EF, ChordTime,(100)] sets ChordTime to 100
milliseconds.

The Chord macro's body performs the SELECT operation on the first argument (denoted -1)
of the actual parameter list. If there is no match in the SELECT statement, the result
returned is the second argument of the macro. For example, when a Point Down occurs in
the Top-Level select statement, the Chord macro takes Adjust as its first argument and
selects its second argument depending on which other keys are currently depressed. Thus,
if Point goes down and Adjust goes down before ChordTime then the results passed to the
NotifyProc are { [TC] Menu }. If Adjust does not go down, then other actions are checked
such as CONTROL Down or CopyMove.

20.3 Summary

The TIP mechanism translates keyboard and mouse actions into program actions. TIP
performs this translation by matching user actions in a TIP table and passing the
corresponding results to a NotifyProc. The NotifyProc then interprets the results and
takes appropriate actions.

You can easily change the global interpretation of keystrokes and mouse movements by
editing the global TIP tables. You need only edit the table and reboot to make the changes
take effect.

You can create a new TIP table either within your program or in a separate text file. You
must create the TIP table usingTIP.CreateTable, push the table on the TIP table chain, and
finally call TlP.SetTable to associate the table with a window.

You can also affect the way actions are interpreted by modifying a NotifyProc or by
writing a new one.

20.4 References

The TIP chapter in the Mesa Programmer's Manual describes the TIP interface and gives
the BNF for TIP tables.

The "General Purpose Macrogenerator" in the October 1965 Computer Journal is the
basis on which the TIP macro package is based. If you intend to do a great deal of
modifications to the system TIP tables this article is helpful.

The Workstation Programmer's Manual provides several examples of TIP tables and
NotifyProcs.

20.5 Exercise

20-10

The exercise for this chapter is to write a program that transposes two characters in the
current selection. The user should be able to switch any two adjacent characters by
selecting them and then pressing the PROP'S key.

Mesa Course 20

In order to write this program you will need to learn about another TIP procedure:
TIP.SetNotifyProcForTable:

TIP.SetNotifyProcForTable[table: TIP.Table,
notify: TIP.NotifyProc] RETURNS [oldNotify: TIP.NotifyProc];

SetNotifyProcForTable associates table with notify and returns the previous NotifyProc, if
any. This is different than SetNotifyProc, which associates a NotifyProc with a window.
SetNotifyProcForTable enables you to channel all actions through a global TIP table and
then to your own N otifyProc. If you do not recognize a particular action (its not in your TIP
table), it will be interpreted by other tables further down the chain. Thus you can add
another level to the interpretation of user commands for a particular window class.

For this exercise you will need to write a TIP table that recognizes one action (the PROP'S
key) and passes a result to your NotifyProc. Your NotifyProc must recognize the results
that your TIP table generates and take actions to transpose the characters. Since the
screen manipulation requires interfaces that you haven't used yet, we have provided a
procedure that returns the current selection as a character string (GetSelection), a
procedure that deletes the current selection (DeleteSelection), and a procedure that
inserts a character string into a Text subwindow (InsertText). The interface for these
procedures is called TransposeDefs.mesa.

20·11

20 Terminal interface package

Notes:

20-12

21

Creating subwindows

In the past five chapters you have been layering applications on top of Tajo's collection of
predefined subwindows. Using these standard sub window types insulates you from
actually displaying information on the screen; until now, you've only had to worry about
what was being displayed on the screen, not how it got there.

For most applications, you can blithely use the standard subwindow types and never have
to worry about the low-level details. However, if your application requires an unusual
user interface, such as a graphics-based interface, you will not be able to use a standard
subwindow. Instead, you will have to implement your own subwindow type to support
your desired functionality. This chapter discusses some of the strategies and mechanisms
for accomplishing this.

A word to the wise: creating and supporting your own subwindow is not easy. You may
want to postpone reading this chapter until you really need to implement your own
subwindow.

21.1 Definition of terms

Clip

Clipping window

21.2 Discussion

To clip a window is to cut off any information that the window
attempts to paint outside of its established boundaries. Thus,
Tajo will clip a subwindow if it attempts to paint beyond the
boundaries of its parent window.

A clipping window is a window that prevents a subwindow from
painting outside of its boundaries. In Tajo, a subwindow can
only paint within the boundaries of its parent window; a
clipping window is a window that is placed just within the
confines of the parent window, thereby ensuring that a
subwindow does not paint too close to the border.

In this chapter, we demonstrate subwindow creation with an example called the
BoxedTool, which has one graphics subwindow. The subwindow is basically just a grid
(electronic graph paper); when the user selects a box in the grid with the mouse, the box
video-inverts. We use this tool to illustrate how to register a new subwindow type, how to
draw the grid on the screen, and how to perform the video-inversion of the boxes. We use a

21-1

21

21-2

Creating subwindows

second example, called ScrollBoxedTool, to illustrate how to add a scrollbar to the tool, and
how to adjust things when the user changes the size ofthe tool window.

You might want to run BoxedTool in Tajo now, to familiarize yourself with how it works
before you fmd out how it is implemented.

21.2.1 Registering a subwindow type

When you want to create a custom subwindow, the first step is to register a new
subwindow type with Tajo. To do so, you call TooI.RegisterSWType, passing in some call
back procedures to handle size adjustments and window state transitions. Tajo returns a
unique subwindow type.

Tool.RegisterSWType: PROCEDURE [

adjust: ToolWindow.AdjustProcType +- TooI.SimpleAdjustProc,
sleep: TooIWindow.SWProc +- Tool.NopSJeepProc.
wakeup: TooIWindow.SWProc +- Tool.NopWakeupProc)

RETURNS [uniqueSWType: TooI.SWType);

The adjust procedure is called whenever the user moves the subwindow or changes the
subwindow size. The sleep procedure is called whenever the window in which the
subwindow lives becomes tiny. The subwindow is then expected to throwaway any data
that it uses only to display its contents. The wakeup procedure is the inverse of the sleep
procedure.

You only need to write an AdjustProc when the information in your window is dependent
on the size of the window. For example, if you had a tool with a 5 9Y 5 grid and you always
wanted the grid to exactly fill the window, then you would need an AdjustProc. The
BoxedTool, however, does not require an AdjustProc; the boxes are of fixed size and
nothing depends on the size of the window. If the window is big, you will see more of the
boxes than you do when the window is small, but the boxes do not have to be scaled to fit
the window. Similarly, you do not always have to provide sleep and wakeup procedures.
Instead, you can use the default procedures, or bypass the step completely by using the
Tool.SWType of vanilla instead of getting your own subwindow type. For example,
BoxedTool has the following global variable:

mySWType: Tool.SWType +- Tool.RegisterSWType[];

21.2.2 Creating a subwindow

Once you have a subwindow type, you use it to create an instance of that class. As with
predefined subwindows, you do this in a Tool. MakeSWsProc. For example:

MakeSWs: Tool.MakeSWsProc •
BEGIN

data.sw +- Tool.MakeClientSW[window, MyCreateSWPro(, Nil, mySWType);
END;

This creates a subwindow "shell"; MyCreateSWProc is a call back procedure that creates
the functionality for the subwindow. mySWType is the unique subwindow type that we
obtained from RegisterSWType, and window is a handle to the parent window (window is
a parameter to MakeSWs.)

Mesa Course 21

21.2.3 Making a sub window do something useful

The job of MyCreateSWProc is to associate functionality with the subwindow.In this
procedure, we associate a DisplayProc and a NotifyProc with our subwindow. The
DisplayProc is a call back procedure stored in the window object; Tajo will call this
procedure whenever the information displayed in the window needs to be updated. We
discuss our DisplayProc in section 12.2.1.3, and our NotifyProc in section 21.2.1.4.

MyCreateSWProc: PROC [sw: Window.Handle. clientData: LONG POINTER) =
BEGIN
[) ~ TIP.SetNotifyProc[window: sw. notify: MyNotify);
boxArray[O][O) ~ black; --make corner box black
[) ~ window.SetDisplayProc[sw. DisplayProc);
END;

The call to SetNotifyProc returns the old notify proc associated with the window. In this
. case, we don't care about the old notify proc, so we discard the results record. Similarly,

SetDisplayProc returns the old display procedure, which we also discard.

21.2.3.1 DisplayProcs

A DisplayProc is a call back procedure that is responsible for displaying information on
the screen. This procedure is called once to initialize the tool's display, and then again
each time the display needs to be updated. Once a window is active, Tajo oversees its
display state largely by managing an invalid box list. This list represents those regions of
the window that no longer have valid contents and therefore need to be repainted. When
an operation (like moving a window off of another) invalidates portions of the screen, the
operation must tell Tajo to validate its window structures. During validation, Tajo calls
the DisplayProc for each window that has invalid regions.

Before calling the client's DisplayProc, however, Tajo creates a bad phosphor list. This list
consists of the visible portions of the window's invalid areas. While a bad phosphor list
exists for a window, any painting done to that window will be clipped to the bad phosphor
list (Le., only visible invalid areas will be repainted.)

A DisplayProc can implement one of two methods for repainting a window. First, it can
call Window.EnumeratelnvalidBoxes, supplying a call-back procedure, which will be called
for each invalid box in the window's inyalid box list. By repainting each invalid box, the
DisplayProc can updates the display to reflect the current state. EnumeratelnvalidBoxes
should be called only from within a DisplayProc.

The other option for repainting a window is to ignore the invalid boxes and simply repaint
the entire window. Since there is a bad phosphor list, only those areas that need
repainting will be refreshed; the rest is ignored. Since this is the easier of the two
operations, it is preferred. Only use EnumeratelnvalidBoxes if there is no bad phosphor
list (the window has never been validated) or ifit takes too long to try and paint the whole
window. (The latter case should hopefully not happen very often.) The following code
fragment illustrates these two methods.

The DisplayProc gets the current window box and then loops through the pixels along the
x-axis painting vertical lines, and then along the y-axis painting horizontal lines. This is

21

21-4

Creating subwindows

an example of just repainting the entire window, without looking at the invalid list. To put
the boxes within the grid, however, we use the EnumeratelnvalidBoxes method.

Once the lines are drawn, we call EnumeratelnvalidBoxes, passing DProc. Thus, DProc
will be called for each invalid box on the window's invalid list. DProc just converts from
bitmap coordinates into row/column coordinates, and then calls DisplayBox to do the
actual painting. Inside DisplayBox, we loop through the appropriate portions (Le., the
invalid ones) of a two-dimensional array representing the boxes in the grid. A box may be
either white or black. If the data structure indicates the box as black, we call Display.Black
to draw the box. We don't have to do anything for the white boxes, since Tajo has already
painted them white.

DisplayProe: ToolWindow.DisplayProeType II!

BEGIN
box: Window. Box +- Window.GetBox(window];
--vertical. Starting at zero, increment by width until we reach edge of box.
--In the loop, call Display. Line. Each line starts at box.plaee.x + i,O
--and ends at box.plaee.x + i, box.dims.h.
FOR i: INTEGER +-0. i + width UNTil i > :I box.dims.w DO

Display.Line[window, [box.plaee.x + it 0], [box.place.x + i. box.dims.h]]
ENDlOOP;

--horizontal
FOR i: INTEGER +-0, i + height UNTil i > :I box.dims.h DO

Display.Line(window, [0. box.plaee.y + i], [box.dims.w, box.place.y + i]]
ENDlOOP;

Window.Enumeratel nval id Boxes[wi ndow, DProe];
END;

--called once for each box on the window's invalid box list
DProc: PROC [window: Window.Handle, box: Window. Box] :;

BEGIN rc: RC +- RCForBox[box]; DisplayBox[window, re] END;

DisplayBox: PROC [window: Window.Handle, rc: RC] ,.
BEGIN
FOR i: CARDINAL IN [re.br .. rc.er) DO

FOR j: CARDINAL IN [re.be •. re.ee) DO
IF boxArray[i]ij] ,. black THEN

Display.Blaek[
window, [
[G. firstColumn} * width, (i Q firstRow) * height], [
width, height]]];

ENDlOOP;
ENDlOOP;

END;

A window's location is defined in terms of its parent window. Thus, in DisplayProe,
Window.GetBox returns the coordinates of the subwindow relative to its parent. However,
the operations used to paint the bits (Display. Line, Display.Blaek, etc.) use window-relative
coordinates; thus, the place specified in the box represents the xy offset from the window's
origin. [[box.plaee.x + i, 0] are the window relative coordinates that specify where the
line is to start; [box.place.x + i, box.dims.h] specify where the line is to stop. Because of

Mesa Course 21

this difference, you should always use a box.place of [0,0] in calls to the Display interface.
This accounts for the 0 in the lines:

Display.Line[window, [box.place.x + i, 0], [box.place.x + i, box.dims.h)) and
Display.Line[window, [0, box.place.y + n, [box.dims.w, box.place.y + i]].

21.2.3.2 The NotifyProc

The NotifyProc associated with a window is responsible for recognizing "interesting" user
actions and acting upon them. The only user action that BoxedTool cares about is PointU p,
or releasing the left mouse button. When this happens, the NotifyProc needs to video
invert the box under the cursor. When it recognizes a mouse click, the NotifyProc calls
InBox to convert the current mouse position (a Window.Place) to a window.Box, and then
calls RCForBox to convert the Window. Box to row/column coordinates. It then toggles the
color of the box in the box array. To make the display consistent with the data structure, it
invalidates the appropriate region on the display and then tells Tajo to validate its
windows. The call to Window.ValidateTree eventually calls DisplayProc, which does the
actual painting. This is an example of the standard way to update display information.

Another way of doing this would be to paint the boxes directly from the NotifyProc. Thus,
instead of invalidating the boxes and then calling ValidateTree, you could just perform a
Display.Black right here. The choice of whether to do the display directly from the
NotifyProc or to do an Invalidate to force your DisplayProc to be called is basically an
efficiency issue. Doing the display directly from the NotifyProc'is probably slightly faster
for easy operations, such as displaying a single box. but if the operation is complicated,
you shouldn't lock up the Notifier to do the display from the NotifyProc. Doing an
invalidation and a validation to force the system to call your DisplayProc is never wrong.

MyNotify: TIP.NotifyProc •
BEGIN
wp: Window.Place ~ [0,0];
pointUp: Atom.ATOM ~ Atom.MakeAtom["PointUp"L];
FOR input: TIP.Results ~ results. input.Rest[] UNTIL input. NIL DO

WITH z: input.First(] SELECT FROM
atom. >

IFz.a • pointUpTHEN
BEGIN
box: Window.Box ~ InBox[wp]; --convert to window. box
rc: RC ~ RCForBox[box); - convert to row/column
IF boxArray[rc.br][rc.bc] • black THEN boxArray[rc.br][rc.bc] ~ white
ELSE boxArray[rc.br)[rc.bc] Eo- black;
Window.lnvalidateBox[windDW, box];
Window. ValidateTree(window];
END;

coords • > wp ~ z.place; --represents current mouse position
ENDCASE;

ENI)LDOP;
END;

21 5

21

216

Creatingsub~dows

21.2.4 Implementing scrolling

ScrollBoxedTool is just like BoxedTool except that it can be scrolled vertically. We have
added procedures to create the scrollbar, to calculate how much should be scrolled, to
perform the scrolling, and to adjust the scrollbar window so it shares part of the
subwindow's space. The rest of the code is the same as in BoxedTool. (Although the
DisplayProc looks different, it works the same way; it first displays the grid lines, then it
enumerates the invalid boxes to repaint the sections of the boxedArray.)

21.2.4.1 Creating the scrollbar

You create a scrollbar on a subwindow by calling Scrollbar.Create. Scrollbars are a slight
anomaly in Tajo. The size of a scroll bar is tied to the subwindow it appears with, which
might lead you to believe that the scrollbar should be a child of the subwindow. However,
though children obscure parent windows, they do not clip them: thus, if a scrollbar were
the child of a subwindow, it would obscure some of the subwindow's information, not
adjust it to the right (top). Therefore, a scrollbar window is a sibling of its subwindow. This
means that we have to create the scrollbar in MakeSWs and not MyCreateSWProc:

MakeSWs: Tool.MakeSWsProc •
BEGIN
data.sw Tool.MakeClientSW[window, MyCreateSWProc, NIL, mySWType];
Scrollbar.Create(data.sw, vertical, Scroll, Therm];
END;

The parameters of Scroll bar. Create include two procedures: Scroll and Therm. Therm is used
to get the scrollbar data from the client in order to display it to the user. Its primary
purpose is to calculate which portion of the available plane of information is being
displayed in the window, and what percent of the plane this viewing portion represents.
Tajo uses this information to display the dark areas in the scrollbar window. Scroll is
called when the user makes a scroll request. It is responsible for shifting the display and
adjusting the underlying data structures so the DisplayProc can repaint the area.

21.2.4.2 Calculating scrolling information

Tajo manages the visual cues in the scrollbar window that indicate the percentage and
portion of the plane that the user is viewing. Tajo calls Therm to get this information.

Therm: Scrollbar.ScrollbarProcType =
BEGIN
wbox: Window. Box Window.GetBox[window];
rows: INTEGER.... --number of rows currently displayed

IF wbox.dims.h MOD height = 0 THEN wbox.dims.h I height
ELSE wbox.dims.h I height + 1;

IF rows + data.firstRow > max Rows THEN rows maxRows; --bottom of grid
RETURN[

[[0,0], wbox.dims1, (100'" data.firstRow) I maxRows,
(100 .,. rows) I maxRows];

END;

Mesa Course 21

ScrollBoxedTool maintains two variables, firstRow and firstColumn, to represent the first
row and first column being displayed at the top of the window. By calling Window.GetBox
to get the dimensions for the window, and using the known width and height of a box,
Therm calculates how many rows are currently displayed and subsequently the
percentage of rows being displayed. Adjustments are made if the bottom of the grid has
been scrolled into the viewing area.

21.2.4.3 Scrolling

Scrolling involves calculating how much of the window to scroll, shifting the display, and
validating the window (so the DisplayProc will be called). The ScrollProc performs these
functions:

Scroll: scrollbar.ScroliProcType ==

BEGIN
box: Window. Box +- Window.GetBox[windowl;
rowsToScroll: INTEGER +- 0;
rows: INTEGER +- --rows currently displayed

IF box.dims.h MOD height == 0 THEN box.dims.h 1 height
ELSE box.dims.h 1 height + 1;

IF rows > max Rows THEN RETURN; --do not scroll
SELECT direction FROM

forward == >
BEGIN --percent is passed as a parameter
rowsToScroll +-(rows * percent) 1100;
IF (rowsToScroll + data.firstRow + rows) > maxRows THEN

BEGIN
rowsToScroll +- (maxRows)· (rows + data.firstRow);
IF box.dims.h MOD height # 0 THEN rowsToScroll +- rowsToScroll + 1;
END;

Display.Shift[window, [[0. rowsToScroll * height], box.dims], [0.0]];
data.firstRow +-data.firstRow + rowsToScroll;
Window.ValidateTree[window);
END;

backward == >
BEGIN
rowsToScroll +- (rows * percent) 1100;
IF rowsToScroli > data.firstRow THEN rowsToScroli +- data.firstRow;
Display.Shift[window. [[0. -(rowsToScroll * height)], box.dims], [0, 0]];
data.firstRow +- data.firstRow - rowsToScroll;
Window. ValidateTree[windowl;
END;

relative = > NULL;
ENDCASE;

END;

In the case of ScrollBoxedTool, scrolling requires calculating the number of rows to scroll.
We maintain the row currently at the top of the subwindow as a variable to help check
boundary cases. Once we have figured out the number of rows to scroll, we shift the
display the appropriate number of lines forward or backward, then then validate the

217

21

21-8

Creating sub windows

window. Notice that scrolling relative to some point in the window ("thumbing") is not
implemented.

21.2.5 Adjusting subwindows with scroll bars

In BoxedTool, we did not have to write an AdjustProc, since our grid image did not depend
on the size of the window. Now, however, we have added a scrollbar, and life is suddenly
more complicated. The AdjustProc associated with all windows created using Tool.Create
does not know how to redistribute new box sizes to subwindows with scrollbars. Thus,
ScrollBoxedTool has an AdjustProc to handle window changes and readjust the scrollbar.

You can associate an AdjustProc with a window that was created using Tool.Create by
calling TooIWindow.SetAdjustProc:

[J +- TooIWindow.SetAdjustProc[wh. MyAdjust);

This operation supplants Tajo's AdjustProc with MyAdjust. Here is MyAdjust from
ScrollBoxedTool:

MyAdjust: TooIWindow.AdjustProcT.ype =
BEGIN
SELECT when FROM

before • > NULL;
after = >

BEGIN
dientBox, vBox, hBox: Window.Box;
vWindow, hWindow: Window.Handle;
[dientBox. vWindow, vBox, hWindow. hBox] +- Scrollbar.Adjust[

window: window, box: [[0,0), box.dims));
IF vWindow # NIL

THEN Window.SlideAndSize[window: vWindow, newBox: vBox);
IF hWindow # NIL

THENWindow.SlideAndSize[window: hWindow. newBox: hBox];
Window.SlideAndSize(window:data.sw, newBox: clientBox);
END;

ENDCASE;
END;

MyAdjust will be called whenever the size of the tool window changes. It is called twice for
each change; once before the window is adjusted (with the old box size as a parameter), and
once after the window is adjusted (with the new box size as a parameter). Usually little, if
anything, is done in the "before" calL This call exists to give applications the opportunity
to save the bitmap for currently visible portions of the screen before they disappear. You
might want to do this when you know you will be redisplaying a region shortly, and you
know that it involves lengthy computations.

The "after" case is more interesting. If the window needs to display an image that depends
upon the size of the window, the necessary calculations are done here. Also, if the window
has any children, it must redistribute the regions to its children and adjust the scrollbar
and subwindow within its new space. As illustrated above, this is done by calling
Scrollbar.Adjust with the dimensions of the window box dimensions. This operation returns
the new sizes for the scrollbars and the associated subwindow. clientBox describes the area

Mesa Course 21

that the subwindow (minus the scrollbar) should actually occupy. verticalWindow is the
window used to display the vertical scrollbar, and verticalBox is the region that
verticalWindow should occupy. (horizontalWindow and horizontal Box are similar.)
Finally, we call Window.SlideAndSize to adjust the regions these windows occupy.

21.3 Summary

There are four basic cornerstones of subwindow implementation: a DisplayProc, an
AdjustProc, a NotifyProc and a ScrollProc.

A DisplayProc is responsible for painting bits in a window. The DisplayProc only displays
the information, however; it does not do any calculation to figure out what should be
displayed. Instead, an operation that changes something on the display updates the
internal data structures, and then invalidates the appropriate portion of the screen. When
it is through invalidating things, it calls Window. Validate to ask Tajo to update the display.
Tajo then calls the DisplayProc, which updates the display to correspond with the internal
data structures. A DisplayProc is always called as the result of a Window. Validate (or
Window. ValidateTree); you should never call your DisplayProc directly.

The NotifyProc, the AdjustProc, and the ScrollProc are the procedures that are responsible
for readjusting the internal display data structures. A subwindow's NotifyProc is called
whenever TIP determines that user actions should be directed to that sub window . The
NotifyProc implements the functionality that is dependent upon mouse and keyboard
actions. For example, a simple editor would define selection, insertion, and deletion. (If
you like, you can do simple display actions directly from the NotifyProc.)

An AdjustProc is called whenever the size of the window changes. It is called twice: before
the window is adjusted and after it is adjusted. An AdjustProc readjusts the internal data
structures to reflect the new size of the window. You don't always have to write an
AdjustProc; you only need one if the information you are displaying depends upon the size
of the window (i. e. scaling of pictures to a new window size).

In addition to managing the information displayed in the subwindow, the AdjustProc
must also divide the window among the subwindows. Thus, the AdjustProc is usually
associated with the main window; this AdjustProc can then call the AdjustProcs
associated with the individual subwindows (if there are any).

A ScrollProc is called whenever the user initiates a scrolling operatio"n; it then calculates
the amount of movement necessary. If this movement only involves shifting the contents
of the screen, the ScrollProc also performs the actual shifting.

21.4 Exercises

21.4.1 Exercise 1: horizontal scrolling

The first exercise for this chapter is to modify ScrollBoxTool so that it implements
horizontal scrolling as well as vertical scrolling. This is an easy "warm-up" exercise; you
should complete it before attempting the next one.

21.4.2 Exercise 2: the crossword puzzle tool

For this exercise, you are to create the "crossword puzzle tool", using BoxedTool as a
starting point. Basically, you need t~ modify BoxedTool so that each box can contain a

21-9

21

21 10

Creating subwindows

number and a letter . You should set things up so that the tool does the numbering, at the
request of the user. (The algorithm for numbering is that a box should be numbered if
there is a black box or an edge of the grid to its left or above it.)

There are a lot of possible features for you to add to this tool; how far you take it is entirely
up to you. One thing that you might want to do is modify the NotifyProc so that the mouse
tracks the selection. That is, when the user presses Point and holds it down, the screen
cursor should follow the mouse movements (as it does in standard text subwindows.)
Currently, BoxedTool recognizes PointUp, so it does not track the selection.

A

Correcting compilation errors

A big part of learning a new programming language is learning its syntax. Mesa's
advanced concepts make it an exciting language in which to program, and learning the
syntax is but a hurdle to be cleared. To expedite your learning, we suggest you follow
along with the compiling session presented here, which shows the Compiler's output for
several common errors.

A.I Discussion

The Compiler translates a Mesa program into executable code. This process consists of six
passes over the source file, during any of which the Compiler may detect and report errors.
Syntax errors, per se, are detected during one of the first passes. Later passes check for
other types of errors. For example, if your program references an interface that the
Compiler cannot find on your local disk, this is not a syntax violation and it will not be
reported until one of the later passes.

When the Compiler finds an error, it gives an indication of the error (an error message),
the position of the error in the source file, a listing of the offending line, and the fix the
Compiler assumed in order to continue (when possible).

The Compiler will not go on to the next pass after it detects an error. This means that you
must fix the errors and compile the program again. If it finds more errors, then you must
fix them and repeat the cycle.

The Compiler also gives warning messages when it discovers a problem (or potential
problem) that is not an out-right error. These do not cause the Compiler to stop at the end
of the pass, and compilation proceeds.

To demonstrate this process, we have supplied three versions of a sample program. The
first version contains several errors. The second version contains the corrections for those
errors, but reveals some new errors that went unnoticed in the original version. The third
version contains the final set of corrections and compiles successfully.

Please retrieve SyntaxErrorsl.mesa, SyntaxErrors2.mesa, SyntaxErrors3.mesa,
and InterfaceForSyntaxErrors .mesa from the >AppendixA>Programs > folder on
the course's file directory

A 1

A Correcting compilation errors

A.2 Early-pass errors

A-2

SyntaxErrorsl.mesa is a program intentionally laced with several common errors. It
looks like this:

DIRECTORY

InterfaceForSyntaxErrors USING [CreateFactorialTool FactType. tooBig];
SyntaxErrors1: PROGRAM =

BEGIN

Fact: PROCEDURE [n: LONG CARDINAL] RETURNs{factorial: LONG CARDINAL E- 0] :II

BEGIN
factorialOfZero: CARDINAL. 1;

SELECT n fROM
o • > RETURN[factorialOfZero]
IN [1 .• 12] • > RETURN[n*Fact[n-1]

ENDCASE • > RETuRN[lnterfaceForSyntaxErrors.tooBig]

END; --of procedure Fact

--mainline code
InterfaceForSyntaxE rrors. Create Factorial Tool [Fact];

END

Use Command Central to compile SyntaxErrorsl.mesa. You can see the results in the
Compiler log, which is displayed in the bottom subwindow of Command Central. (The log
displayed in Command Central is stored on your disk as C omp i 1 e r • 109.)

The text below is from the Compiler log with italic annotations added. The number in
square brackets following each error message is the character position in the source file
where the error was found. If you load the source into a window, you can use the Position
command to scroll the file to the error. (After you have edited the file these positions will
be a little off, since they refer to the position ofthe error before you began editing.)

Mesa Compiler 11.1 of 24.Sept-8411 :45:20
17·Dec-8416:48:42

Command: SyntaxErrors1
I nterfaceForSyntaxErrors USING [tooBig];
t Syntax Error [198]

Text inserted is: ,
Error 1: Items in DIRECTORY clauses must be separated by commas.

IN [1 .. 12] = > RETURN[n*Fact(n -1]
t Syntax Error [433]

Text inserted is: ;
Error 2: The line preceding this one must be terminated with a semicolon because it

is in a SELECT statement. Note that the Compiler displays the line following
the line that is erroneous; 433 is the character position of the i in IN.

ENDCASE = > RETuRN[lnterfaceForSyntaxErrors.tooBig]
t Syntax Error [4241

Text inserted is:]
Error 3: Not enough hrackets enclose the RETURN statement on the preceding line.

Mesa Course

END;
f Syntax Error [633]

Text deleted is:
Text inserted is: ..

A

Error 4: The last line in a program must be END followed by a period. (The Compiler
inserts two periods. The extra one doesn't hurt, and used to be a good idea
on an old version of the Compiler.)

SyntaxErrors1.mesa aborted
4 err, time: 5
Note: The compilation did not proceed to completion, but was cancelled at the

end of the pass . No object file was produced.

A.3 Later-pass errors

SyntaxErrors2 is a modified version of SytnaxErrorsl that fixes the problems in
SyntaxErrorsl, but introduces some new problems. SyntaxErrors2 splits the interface
into two pieces (InterfaceForSyntaxErrors and InterfaceForSyntaxErrors2)
just so that it can illustrate more errors. Here is the code for SyntaxErrors2:

DIRECTORY
InterlaceForSyntaxErrors USING [tooBig),

InterlaceForSyntaxErrors 2 USING (CreateFactoriaITool, FactType);

SyntaxErrors2: PROGRAM ==

BEGIN

Fact: PROCEDURE [n: LONG CARDINAL] RETURNs[factorial: LONG CARDINAL +-0] =
BEGIN
factorial Of Zero: CARDINAL == 1;

SELECT n FROM

o = > RETURN[factoriaIOfZero]
IN [1 •• 12} = > RETURN[n*Fact[n -1]
ENDCASE :I > RETURN[JnterlaceForSyntaxErrors.tooBig]

END; --of procedure Fact

--mainline code
InterfaceForSyntaxErrors2. CreateFactorialTool [Fact];

END

compile SyntaxErrors2. mesa. Here is another annotated compiler log:

Mesa Compiler 11.1 of 24-Sept-8411 :45:20
17-0ec-8416:50:42

Command: SyntaxErrors2
InterlaceForSyntaxErrors cannot be opened, at [133]:
DIRECTORY
Error 5: The interface mentioned in the DIRECTORY clause, InterfaceForSyn

taxErrors. bcd, is not on your local volume and cannot be opened by the
Compiler. To fix this, compile Inter faceForSyntaxEr rors. mesa.

A Correcting compilation errors

CreateFactorialTool must come from an imported interface. at
SyntaxErrors2[616] :

InterfaceForSyntaxErr0rs2.CreateFactoriaITool[Fact];
Error 6: CreateFactorialTool must be imported by your module. To ftx this, add an

IMPORTS list that includes InterfaceForSyntaxErrors2.

Fact has incorrect type. at SyntaxErrors2[616]:
InterfaceForSyntaxErrors2.CreateFactoriaITool [Fact];

Error 7: The procedure we are passing to CreateFactorialTool is of incorrect type.
CreateFactorialTool expects n to be a CARDINAL but our procedure defines it
as a LONG CARDINAL.

tooBig is not valid as a field selector, at Fact(524):
ENDCASE • > RETURN(lnterfaceForSyntaxErrors.tooBig];

Error 8: This error could mean one of two things: the symbol was not included in
the USING clause; or the Compiler could not open the interface in which the
symbol is defined. Since we already know that the Compiler could not open
the interface JnterfaceForSyntaxErrors, the latter case applies. This error
will go away when you have compiled InterfaceForSyntaxErrors.

warning: FactType is never referenced. at [145]:
InterfaceForSyntaxErrors2 USING [CreateFactorialTool, FactType).

Error 9: The Compiler is warning you that you have included FactType in your
USING clause, but never used it.

SyntaxErrors2.mesa aborted
4 err,1 warn, time: 4
Note: Again, the compilation did not proceed to completion, but was terminated

at the end of the pass. No object file was produced.

A.4 Successful compilation

SyntaxErrors3 .mesa is a version of the program with all the previously found errors
corrected. Remember to first compile InterfaeeForSyntaxErrors .mesa and then
SyntaxErrors3 .mesa. The Compiler log should show no errors, like this one:

Mesa Compiler 11.1 of 24-Sept-8411 :45:20
17-0ec-8416:51 :13

Command: SyntaxErrors3
SyntaxErrors3.mesa
lines: 24, code: 47. links: 1, frame: 1. time: 21
Note: This compilation was successful. The object file SyntaxErrors3. bed

was produced.

A.S Let the Compiler help you

A-4

The Compiler helps you find syntactic and semantic errors, and often helps expose logical
errors as well. Thus, you can view the Compiler as an aid to better programming.A final
piece of advice, though: don't stare at erroneous source code for too long trying to find a
syntax error. Ask one of your colleagues to take a look. Sometimes, an outside person can
spot a syntax error more quickly than the person who wrote the code, because the code is
fresh to the outsider.

B

Using the Debugger

Muddling around in appendices can be a frustrating experience. You're not likely to find
any interesting material in them ... appendices, by nature, are pretty boring. However, this
is your lucky day, because this appendix has some hot stuff in it. This chapter introduces
you to some ofthe more important features of the debugger.

B.I Discussion

Your goal for this chapter (and the next two) should be to become familiar with the
debugger so that you can take advantage of its power and debug programs quickly. To help
you achieve this familiarity, this chapter concentrates on using the interpreter and
setting breakpoints; appendices C and D will introduce some other debugging techniques.

In this chapter, we assume that you are familiar with the debugger's user interface. If you
are not, you should read the section of the debugger chapter of the XDE User's Guide that
discusses the user interface.

B.1.1 The interpreter

CoPilot has a built-in interpreter that enables you to evaluate Mesa expressions. The
interpreter allows you to display and re-assign variables (simple or complex), dereference
pointers, call procedures, and convert types. The interpreter handles a subset of the Mesa
language; mostly you'll be making assignment statements and simple queries of
variables. You invoke the interpreter by typing a space at the beginning of a line in the
debugger, followed by whatever it is you want to interpret.

B.1.2 Sample debugger session

In this sample debugging session, you'll use the interpreter to assign variables, call
procedures, and dereference pointers.

Retrieve MiscProcs.mesa and MiscProcs.bcd. Run MiscProcs/d from CommandCentral in
CoPilot (The "/d" means that the module will be loaded in Tajo but not started). Once you
have returned to CoPilot, follow along with the script presented below (underlined text in
the script indicates something you type in to CoPilot; italic text indicates commentary):

B-1

B

B-2

Using the Debugger

B.l.2.1 Using the interpreter

1. >§.!t Module context: MiscProcs --type a return at the end of the line

2. > -Ai..i --type a space, then ~ A;j" followed by a return

3. > Fac tor ial (5) -.type a space at the beginning of lines 3 through 9

4. > 1708?
5. >-Ai..i
6. > A[3} +- 30; API +- 70
7. >...a
8. > InterChange[3,7J
9. >...a
On line 1, you tell the debugger the module that you are interested in. For the debugger to
be able to find the code for a procedure, you must explicitly tell it where to focus its
attention. "SEt Module context" tells the debugger that subsequent commands pertain to
the specified module. (When you are using the debugger, you may find that the debugger
will occasionally tell you that it can't find a specified symbol. This usually indicates that
the debugger is looking in the wrong place. Use the SEt Module context command to
refocus the debugger's attention.) In this case, the debugger found the specified module in
Tajo. When it can't find a specified module, the debugger will issue an error message.

On line 2, you use the interpreter to examine the variables "A" (an array) and "j" (a long
cardinal). Their values will look unfamiliar; they aren't initialized because the module
hasn't been started (which explains the warning "{global frame number} is not started").

Online 4, you make an interpreted call to the procedure Factorial in module MiscProcs.
You pass the necessary parameter (in this case, a cardinal), and it returns an answer (the
factorial of your number). This number may be in octal format (denoted by the "B" after
the number). (Note again that you are warned that the module had not been started).

On line 4, you interpret the number "170B" by typing a "?" after the number. The reason
for this is that the answer returned by procedure Factorial was in octal format; this allows
you to see the answer in octal, hexidecimal, decimal, ascii, and other formats (See the XDE
User's Guide to find out how to set the default format using the Options Window.)

On line 5, you re-examine the variables "A" and "j"; you should find that they have been
initialized ("A" initialized to all zeroes and "j" being set by the Factorial call to 120). The
global variables in the module were initialized when you made your call to Factorial.

On line 6 you stufl'new values into the 3rd and 7th spots in the array "A."

On line 7, you examine "A" to make sure that the array contain your new values.

On line 8, you make an interpreted call to the procedure InterChange, which interchanges
the two values in the spots in the array that you specified (in this case, the third and
seventh spot).

On line 9, you re-examine "A" to check that the values for the 3rd and 7th spot have been
interchanged.

Your debugger should look similar to the one on the next page:

Mesa Course B

-- ---~- --------~--~ -- ------ - - --- ~~~ ------ --- - - ---

Nub: "MiscProcs.bcd" loaded.
>SEt Module context: MiscProcs
> A;j

. 1125608 is not started!
i A = (13)[1,2,64008,178,208,201568,675648,201468, 675658, 671448,201418,
~ 671448, 200008]
~ 1125608 is not started!
i j = 4640650441 8
~ > Factorial[5]

1125608 is not started!
1708
> 1708?
1708 = 78X = 120 = 'x = 7:8
> A;j

i A = (13)[0,0,0,0,0,0,0,0,0,0,0,0,0]

i j = 1708
~ > A[3] ~ 30; A[7] ~ 70
:>A
~ A = (13)[0,0,0,30,0,0,0,70,0,0,0,0,0]

. ~ > InterChange [3, 7]
:>A
~A=

>
(13)[0,0,0,70,0,0,0,30,0,0,0,0,0]

B.1.2.2 Setting breakpoints

Here is another series of debugger commands for you to type into your debugger
window:

10. >!!reak !ntry procedure: Factorial Breakpoint iI.
11. > Factorial(4]
12. >,Qisplay ~tack

>v
>51

13. >CLear !!reak i: .!.
14. >!!reak !it procedure: Factorial Breakpoint i2.
15. >~roceed [Confirm]
16. >,Qisplay ~tack

>v
>§.

>n.
>y
>n.
>v
>n.
>v

B-3

B

B-4

U sing the Debugger

>!!
>y
>g

17. >!!tach ~ondition i:1-Condition: number: 4
18. >froceed [Confirm)
19. >.Qisplay ~tack

>y
>g

20. >froceed [Confirm]

On line 10, you set a breakpoint at the entry to procedure Factorial. Breakpoints are
numbered sequentially throughout a debugging session, even if you remove earlier
numbered settings. The debugger allows you to set a breakpoint at entry or exit of a
procedure; you can also set a breakpoint at a specific line by selecting that line in the
source code and invoking the Break command in the DebugOps menu.

On line 11, you again make an interpreted call to Factorial.

On line 12, after returning to CoPilot at your breakpoint, you display the first element in
the run~time stack. This command provides the name of the current procedure, the local
frame number, the program counter state, the current module, and the global frame
number. Once you are inside Display Stack, there is a new set of single character sub
commands available. The sub-commands you can now use include: yariables, Qarameters,

" next, §ource and 9,uit. You will continue in stack viewing mode until you ask to 9,uit or hit
< DELETE> to the prompt. (The full set of subcommands is in the XDE User's Guide). When
you quit out of Display Stack mode, the full set of commands will once again be available.
Note: the variable "(anon)" is the unnamed return parameter for that procedure.

On line 13, you clear your breakpoint. It is no longer in effect.

On line 14, you set a breakpoint at the exit of procedure Factorial.

On line 15, you allow the process that was executing your procedure to proceed.

On line 16, you again display the stack, and look at some of the other entries on. the stack.
The stack is loaded with ca~ls to Factorial since Factorial is a recursive procedure.

On line 17, you make breakpoint #2 conditional (it will only be effective ifn = 4.)

On line 18, you proceed again.

On lines 19 and 20, after hitting the breakpoint, you display the stack to check the value of
your variables at that point. Since they look good, you should proceed again and the
procedure will return with the correct answer.

Your debug log should now look like the one on the next page.

Mesa Course

>Break Entry procedure: Factorial Breakpoint #1.
> Factorial[4]
Break #1 at entry to Factorial, L: 65150B, PC: 117B (in MiscProcs, G: 114340B)
> > Display Stack
Factorial, L: 65150B, PC: 117B (in MiscProcs, G: 114340B) >v
number = 4
(anon) = 14110B
>q

> >CLear Break #: 1
> >Break Xit procedure: Factorial Breakpoint #2.
> > Proceed [Confirm]
Break #2 at exit from Factorial, L: 3020B, PC: 163B (in MiscProcs, G: 114340B)
> > Display Stack
Factorial, L: 3020B, PC: 163B (in MiscProcs, G: 114340B) >v
number = 0
(anon) = 1
>s at exit. Factorial: PROC [number: CARDINAL] RETURNS [LONG CARDINAL] = BEGIN
>n

Factorial, L: 14120B, PC: 146B (in MiscProcs, G: 114340B) >v
number = 1
(anon) = 3745400001 B
>n

Factorial, L: 45364B, PC: 146B (in MiscProcs, G: 114340B) >v
number = 2
(anon) = 4000002B
>n

Factorial, L: 14110B, PC: 146B (in MiscProcs, G: 114340B) >v
number = 3
(anon) = 15207200003B
>n

Factorial, L: 65150B, PC: 146B (in MiscProcs, G: 114340B) >v
number = 4
(anon) = 4
>q

> > ATtach Condition #: 2, condition: number = 4
> > Proceed [Confirm]
Break #2 at exit from Factorial, L: 65150B, PC: 163B (in MiscProcs, G: 114340B)
> > Display Stack
Factorial, L: 65150B, PC: 163B (in MiscProcs, G: 114340B) >v
number = 4
(anon) = 24
>q

> > Proceed [Confirm]
24

B

8-5 "

B

B-6

Using the Debugger

8.1.2.3 Dereferencing pointers

Try the following in the debugger:

21. >~ear all lreaks
22. > MakeLinkedList(4)
23. > headNode
24. > headNode t
25. > headNode. next t
26. > headNode.next.nextt
27. > headNode.next.next.nextt

On line 21, you clear any currently set breakpoints.

On line 22, you make a call to the procedure MakeLinkedList, which creates a singly
linked list (the size of the linked list is specified by the caller; in this case, the size is 4.)
The global variable head Node is a pointer variable that acts as the head of this linked list.

On line 23, you examine the value of head Node and find the address of the record that it
points to. You know that it's an address by the up-arrow that follows the returned number.

On line 24, you dereference the pointer "headN ode" and examine the contents of its
referent. Notice the field "next" and the fact that it contains a number with an up-arrow
after it. This field points to the next element in the linked list. (The other field in this
record, "str," is a LONG STRING of length = 1 and maxlength = 1 [hence the "(1,1)"] that
contains the text "D".)

On line 25, you examine the contents of what the "next" field points to. Notice that you do
not have to type "headNode i .next i ", only "headNode.next i", due to the auto
dereferencing feature of the Mesa language (and interpreter).

On line 26, you examine the contents of what the next "next" field points to.

On line 27, you look at the final element in the linked list. Notice that the "next" field for
this last element is NIL.

The. last part of your debugger should look similar to the following.

B.2 Style

Mesa Course

> MakeLinkedList[4]
> head Node
headNode = 4021731B f
> headNodef
[str:4021736B f {1, 1)"0", next:4021742B f]
> head Node.next f
[str:4021747B f {1, 1)"C", next:4021753B f]
> head Node.next.next f
[str:4021760B f (1, 1)"B", next:4021764B f)
> head Node.next. next. next f
[str:4021771B f (l, 1)" A", next: NIL]

B

There is no single technique for debugging a program, since everyone tends to develop a
personal style. Yet, there always comes a time when staring at a listing of a program
doesn't give you a clue as to what has gone wrong. In this case you may want to use a
debugging technique that under most circumstances can track down any bug. This method
is called binary search debugging and it has only one requirement: there must be an
absolutely reproducible test case that causes the same problem every time. If the error can
be made to occur on demand, then debugging using binary search is very straightforward.

Like the standard searching algorithm of the same name, binary search relies on splitting
the search space into two parts and then determining in which half to continue the search.
In the case of debugging, the binary search range (or search space) starts at a point when
everything is okay and ends at a point where something is not okay. You are searching for
the instant when that something changes from okay to not okay. To start the search, split
the range in half, and set a breakpoint in the middle. Proceed and check which came first,
the bug or the breakpoint? If everything is still fine at the breakpoint, then split the
second half, set another breakpoint and proceed again. If the problem occurred before the
breakpoint, then start the program again, setting the breakpoint in the middle of the first
section. After just a few tries you will narrow things down and find the offending code.

It is important to realize that an exact split is not as important as making sure you narrow
the range with each iteration. As long as the search space shrinks each time, you will
eventually find the error. It is also useful to pin the problem down to a specific procedure
call or a particular DO loop since this provides a very specific area to search for the
problem. You should avoid setting breakpoints inside of loops or too close together since
those breakpoints will occur too often without significantly shrinking the search space.

B.3 References

Chapter 24 of the XDE User's Guide is the reference source for information about the
debugger.

B-7

B U sing the Debugger

Notes:

'B-8

c

Translating uncaught signals

Unexpected events can interrupt the execution of a program. For example, suppose that
you gave a program input that was not in the expected range. The most common solution
to this problem is for the programmer to write code to ensure that the input is acceptable
before the body of the program is executed. However, in Mesa, you can use a mechanism
called signals instead.

The signal mechanism was designed to allow you to anticipate and deal with unusual
occurrences during program execution. Signals are like procedure calls, except that the
code to be executed for a signal is determined dynamically. Thus, when an excception
occurs, control transfers to a runtime program called the Signaller, which searches up the
call stack looking for a procedure that has code to handle the exception. If no procedure has
code to handle the exception, the debugger is called to inform you of the error; the signal is
considered to be uncaught .In this appendix, you will see three examples of uncaught
signals and find out what to do when you get one. Chapter 8, Signals, presents a thorough
explanation of the signal mechanism, and discusses how to write programs that use
signals.

C.l Definition of terms

Signal A signal is a Mesa language construct used to help handle exceptional
conditions encountered during program execution. Signals are like
procedures, except that the code to be executed for a signal call is
determined at runtime.

Uncaught signal 1\n uncaught signal occurs when no module in the call stack handles a
signal that has arisen. If a signal is uncaught, control transfers to the
debugger.

C.2 Discussion

When you get an uncaught signal, you need to know what exception caused the signal, and
how to fix the problem. This appendix discusses primarily how to determine the name of
the signal that caused your problem. As you will see, however, learning the name of the
signal will often go a long way toward finding out why the signal was raised. You will also
find that this often gives information which allows you to prevent the signal from being
raised in the future. If you cannot figure out how to prevent a signal from being raised

C 1

c

C-2

Translating uncaught signals

again, consult someone for help. In most cases, rebooting the volume in which the
uncaught signal was generated will get you back working again.

C.2.1 Example A: Pre-translated uncaught signal

In this .example, the uncaught signal message is already translated into a human
readable form when it first appears in the debugger. Run the program UneaughtSignal
from Command Central. When you get to Tajo, fill in 14 in the number= field and invoke
CalculateFactoriaU. This will cause an uncaught signal and return control to the
debugger, because the program is coded to only accept input in the range [0 .. 12]. Once
CoPilot has fully instantiated itself, take a look in the debugger window. Instead of seeing
something you're used to, like

18-Dec-8410:05:38
**", interrupt *",*

you should see something like

18-Dec-8410:05:38
*** uncaught SIGNAL InputTooBig{input: 16BJ (in module UncaughtSignaLImpl. G:
71404B).

This is what a fully translated uncaught signal looks like in the debugger. You can read
the message as follows: when you used 14 (16 octal) as input, the signal InputTooBig,
which is declared in the module UneaughtSignalImpl, was raised and not handled by
the program. Instead, the signal was sent to the debugger so you can handle the problem.

Instead of using a boolean to check if the input is too big, this program uses a signal to
handle the exception. However, for the purposes of this example, it deliberately
mishandles the signal. Since you will not learn how to handle signals until Chapter 8, you
cannot fix the code in the program, however.

C.2.1.1 Why the debu'gger translated the signal

You may have noticed a delay after the ***uncaught SIGNAL part of the debugger's
message was displayed. CoPilot was making an automatic interpret call to determine the
signal's value (Le. its symbol name and parameter). As with any interpret call, CoPilot is
successful only if it can find the symbol table for the interpreted symbol. Remember, a
symbol resides in the symbol table of the module in which it was declared and in the
configuration file in which it was bound. For CoPilot to be able to translate this signal
either UneaughtSignalImpl. bed or UncaughtSignal. bed (or both) has to be on your
search path.

When CoPilot can't find a module whose symbol table includes the signal, it does not have
enough information to translate the signal and you'll see something like

18-Dec-841O:08:07
*** uncaught SIGNAL [50501BJ msg = ?f5367B](inmodule

SecondUncaughtSignalImpl, G: 71404B)

when you get to the debugger. The first bracketed number is the system's representation
of the signal. In Mesa, all signals are represented as unique numbers. This is fine for the
system, but it doesn't give you much information. The next two sections explain different

Mesa Course c
ways to make sure that the appropriate symbol table is on the local volume so that CoPilot
can translate the signal. First, however, a few words on how to get out of the debugger:

C.2.1.2 Returning from an uncaught signal

There are three ways to leave the debugger:

• Type P. The debugger will fill in "roceed" and ask you to confirm that you want to
proceed. This command is comparable to a return from a procedure. When you
Proceed, you will return to Tajo and continue execution from where you left off. An
example of when you might do this is when the signal is only a warning message.
Generally, though, you will not be able to proceed from an uncaught signal.

• Type Q. The debugger will fill in "uit" and ask you to confirm that you want to quit.
Quitting a program is similar to hitting the ABORT key except that it raises a signal for
notification. Chances are that this signal will also go uncaught and you will find
yourself back in the debugger. Ifthis happens, try Quitting a second time. This almost
always gets you back to the volume in which the original uncaught signal was raised.

• Reboot the volume that generated the uncaught signal. This is appropriate if you wish
to get back and work on the volume that crashed with the uncaught signal and
proceeding or quitting did not work. You will often need to reboot if the problem
occurred during the use of someone else's program. If you are testing your own code,
and you have learned how to handle signals (chapter 8) you will most likely want to
skip proceeding and quitting. Instead, you can alter your program to handle the signal
or fix the problem, and then you can reboot the volume by running from
CommandCentral.

C.2.2 Retranslating an untranslated uncaught signal: Method 1

Run the program SecondUncaughtSignal. Once you are in Tajo, try again to calculate
factorial with number = 14. As with the first example, the debugger will be called. But
this time, instead of a translated signal, you'll see an untranslated one. Follow the script
below to learn one way to translating an untranslated signal. CU nderlined text in the
script indicates something you type to the debugger; italic text indicates commentary):

1S-0ec-S4 10:09:41
*** uncaught SIGNAL [50501B]msg = 1[5367B] (in module

SecondUncaughtSignalImpl, G: 714048)
This is the message form of an untranslated signal. This message tells you that a signal
whose symbol's value is 50501B has gone uncaught. This symbol is declared in the module
SecondUncaughtSignallmpl. CoPilot attempted to translate this signal when you entered
the debugger but it was unable to find the symbol table for the module
SecondUncaughtSignallmpl. You must supply the symbol table module and then ask
CoPilot to reinterpret the signal.

>Current context
Module: SecondUncaughtSignalImpl, G: 71404B, L: 211348, PSB: 77B
Configuration:SecondUncaughtSignal

One way is to get the symbol from the symbol table that was generated when the
configuration file that includes SecondUncaughtSignalImpl was bound. To do this you

C-3

c

C-4

Translating uncaught signals

need to know the name of that configuration /ile. To get this informatiM,'Yf'u asle CoPilot to
tell you the current context (the current referencing environment). It tells you that the
configuration that was executing when the signal was raised is SecondUncaughtSignal.
But you have this file on your volume. Why didn't CoPilot find the symbol in its symbol
table?

When binding a configuration, it is common to separate the symbols (by putting them into a
separate file) from the rest of the configuration file. In this case, the symbols are in a
separate file (which is not on your local disk), so CoPilot was unable to translate the signal.
To make the symbol information available, you have to retrieve the file
SecondUncaughtSignal.symbols. Do this now. You should find the file on the release course
directory (subdirectory >AppendixC >Symbols). Once you have retrieved the file, you can
ask CoPilot to try again to do the translation.

>~eRisplay swap reason
SIGNAL InputToo8ig[input: 168] (in module UncaughtSignalAgainImpl,
G: 714048)
Redisplay Swap Reason tells the debugger to make another attempt at translating the
signal. This time, since you have retrieved the symbols file, the debugger is able to tell you
the name of the signal. You can now see that the problem was caused, as in the last example,
by our program's failure to handle the signal InputTooBig.

C.2.3 Retranslating an untranslated uncaught signal: Method 2

You've now seen one method for translating a signal. We will use this same example to
illustrate the other method for translating a signal. Delete
SecondUncaughtSignal. symbols. By doing this you are removing the means for
CoPilot to translate the signal. Try retranslating the signal. You should see

18-Dec-84 10:11:59
*** uncaught SIGNAL [505018] msg = ?[53678] (in module
SecondUncaughtSignallmpl, G: 714048)
Symbols reside in the module in which the symbol was declared, as well as in any bound
configuration that includes that module. In the previous example, you translated the signal
using the configuration's symbols. In this example you'll use the module in which the signal
was declared. Retrieve SecondUncaughtSignaUmpl.bcd from the release directory
(subdirectory >AppendixC >Symbols), and then do another Redisplay Swap Reason.

>~e~isplay swap reason
SIGNAL InputToo8ig[input: 168] (in module UncaughtSignalAgainImpl,
G: 714048)

C.2.4 If you want more information

When you have translated a signal, you will often find that you need more information to
determine what went wrong. For example, you may want to know which procedure raised
the signal and why, or you may want to see where you were in your program when the
signal was raised. In method 1 you saw that when CoPilot instantiated itself, it was set to
the context that resulted in the uncaught signal. By doing a Display §tack you can step
through the chain of calls that resul ted in the uncaught signal.

Mesa Course c
> Qisplay Stack
Fact, L: 40708, PC: 508 (in SecondUncaughtSignalImpl, G: 112004) >s
ENDCASE => < > SIGNAL InputToo8ig [n];

>n
Ca11ToCalcu1ateFactorial, L: 126748, PC: 4428 (in ToolFactorialImpl,
G: 1120348) >~

<>SELECT fact +- FactorialProc[toolData.number] FROM

>n
No symbols
No symbols
No symbols
No symbols
>n

for
for
for
for

L:
L:
L:
L:

57648, PC: 13438 (in FormSWs8, G: 327348) >n
53008, PC: 11478 (in FormSWsJ, G: 327348) >n
50308, pc: 31268 (in TIPMatchlmpl, G: 327348) .>n
605308, PC: 27768 (in TIPMatchlmpl, G: 327348)

No symbols for L: 40308, PC: 5648 (in TIPMatchlmpl, G: 327348) >n
No symbols for L: 214348, PC: 258 (in TajoControl, G: 327348) >n
No previous frame!
The first entry displayed is the code that actually raised the signal. By doing successive
g(exts) you can see the procedures that had a chance to handle the signal but did not. While
stepping through the stack, you may find that CoPilot is unable to translate a symbol's value
into its procedure name (the last six calls in the stack shown above). CoPilot is unable to
translate these symbols for the same reason it was unable to translate the signal. It cannot
find the corresponding symbol table for the value it wants to translate. By retrieving the
symbols (the object file for the module mentioned in the parentheses) and causing CoPilot to
retranslate the line, by either starting a new Display §.tack or doing a i(ump) of Q lines (see
the XDE User's Guide if you do not know how to do this), the procedure name will be
displayed. If you also retrieve the source file for the module you can look at the code that is
making the call or causing the problem. Normally, however, you will not need the symbols
or the source for these modules, which are part of the system. You will usually find the error
in your own code.

C.3 Summary

Each time the debugger is called with an uncaught signal, CoPilot immediately tries to
translate the signal's value into its name. CoPilot is successful only if it can locate a
symbol table that includes the signal's symbol. There are three files that can contain this
symbol table:

• The implementation module where the signal was declared. The name of this module
appears as part ofthe untranslated message.

• The symbols file that was generated when the implementation module in which the
signal was declared was bound into a configuration file. To find out the name of this
file, you need to do a Current context command to discover your context. The symbols
file is the name returned by this command with. symbols appended.

• If the symbols were not copied out at bind time into a separate. symbols file, they
will be in the configuration file. In this case, if the signal comes from your program,
you only need to retrieve the configuration file you ran. If it comes from somewhere
else, it is easier to retrieve the implementation module mentioned in the untranslated
message (because you know its name).

C-5

c Translating uncaught signals

If CoPilot is unable to translate the signal, retrieve one of these files and ask CoPilot to
reinterpret the signal (Redisplay Swap Reason).

We have not discussed how to handle signals that are under program control. You will
learn more about that in Chapter 8, Signals. For now, you just need to understand that
when signals are not recognized by the program, the debugger is called so you can do
something appropriate. Expect to see more uncaught signals. They are not a cause for
panic. They are undesirable, but you should assume the attitude that they are aids to your
efforts to write error-free programs.

C.4 References

C-6

A condensed version of the information provided in this chapter can be found in
"Interpreting Signals," XDE User's Guide, §III.6.5

A discussion of the rationale for the signal mechanism in Mesa and several more examples
of its use are provided in Mesa: A Designer's User Perspective, §4.

D

Debugging an address fault

This appendix examines a. debugging session that helps to determine the reason for an
address fault. Code involving pointers never seems to work on the first try, so you should
get a little practice at debugging the most common pointer programming problem: the
address fault.

In this appendix we use several debugger commands without fully explaining them. If we
use a command that is unfamiliar to you, you should look it up in the XDE User's Guide.

D.I Definition of terms

@

t

Address Fault

D.2 Discussion

The @ is the prefix "address of' operator. @x generates a reference to
the expression x.

is the Mesa dereferencing operator. t is the opposite of @.

An address fault occurs when you attempt to dereference an invalid
address.

The source code for the sample program you will run is in the module
AddressFaul t Impl. The first thing that you should do is retrieve
AddressFaul tImpl. mesa and AddressFaul tImpl. bed from the course directory, if
you don't already have them on your local disk.

Inside AddressFaul tlmpl, the AppendText procedure has been written in an attempt to
make the code more efficient. A good way of doing this is to create a TextBody that has
room for four extra characters to begin with, and then just copy the characters into the
text array. With this technique, only one TextBody need be created and only one freed, no
matter how many characters are being appended.

Unfortunately, the program AddressFaul t does not work. To start testing this program,
do the following:

1. Run AddressFaul t. bed from CommandCentral.

D-1

D Debugging an address fault

2. When Tajo is booted, bring up the Executive and type

AddressFault Moo unto ye!

This will invoke the debugger. To find out what to do next, follow the debugging session
below.{You might want to have AddressFaultlmpl.mesa loaded in an open file window
while viewing the Debugger log.)

D.3 Start of the debugging session

D-2

19-Dec-84 10: 46.
*** Address Fault, PS8: 1378, at 4151168, in AppendChar, L: 141348,
PC: 1268 (in AddressFaultlmpl, G: 1142748) ***
This message is displayed in the debugger whenever a program crashes due to an address
fault. Let's look at the call stack.
>~isplay §.tack
AppendChar, L: 36048, PC: 1538 (inAddressFaultlmpl, G: 714448) >!. ELSE
8EGIN <>onto.text[onto.length] +-from; onto.length+-onto.length+1;
EKD;
We crashed while trying to execute the line onto.text[onto.length] Eo- from. Let's look at the
variables involved in that statement to see if they are correct.

>~
onto = 4037338 t

> Onto t
47033258 t

> onto t t
[length:3408, maxlength:548, text: (0) []]
A TextBody with a length greater than its maxlength! Not only that, but the length seems
awfully large. Undou.btedly this TextBody has caused the address fault. Let's take a look at
its contents to see if they can give us a clue as to what has gone wrong. Note that the
debugger claims that the text field has a zero length and no contents. This is not really true,
but the debugger thinks this is true because the text array was declared as a PACKED ARRAY

[0 .. 0). The debugger, looking at the declaration, decides that the text array is an array with
a fixed size of zero, and refuses to show us anything inside the array. However, you can look
inside the array yourself by getting the address where it starts and then reading the contents
of memory directly.

> @onto t t . text
47033278 t

>g
>ASciigead: 47033278, n(lO): 3408
This command reads n bytes starting at the address specified and displays them as ASCII
characters.
yet ye! IIfflll"moo unto yet Iffi moo unto II moo unto.
IIlImoo " !Invalid Address [47034008]
Well, some of the contents of this array look familiar. But somehow the array is being
overwritten so that the last few elements of the array lie outside the legal address space. This
explains why you get an address fault when you try to access onto.text[onto.length]. Since
you had to stop displaying the stack in order·to do an Ascii Read, display the rest of the
stack now to try to get more information about the bug.

Mesa Course D

>Qisplay §tack
AppendChar, L: 3604B, pc: 153B (inAddressFaultlmpl, G: 71444B) >n
Reverse, L: 3730B, PC: 564B (in AddressFaultlmpl, G: 71444B) >~

< > AppendChar [onto: @reversed, from: Space] ;
> reversed t

[length:340B, maxlength:54B, text: (0) []]
Looks like the TextBody ofrever5ed was already wrong when AppendChar was called.

>n
Main, L: 6060B, PC: 707B (inAddressFaultlmpl, G: 71444B) >n
No symbols for L: 21350B, pc: 717B (in AddressFaultExports, G: 71420B) >n
No symbols for L: 11004B, pc: 5763B (in ExecsA, G: 32770B) >n
No symbols for L: 6640B, pc: 2122B (in Execlmpl, G: 32744B) >n
No previous frame!
Well, the address fault occurred because a TextBody record is being damaged. You can't tell
where <or when the damage occurs, though. Let's run the program again with the same
input, but this time with some breakpoints in strategic locations. Hopefully, we will be able
to see the trouble as it develops.

D.4 Running then setting breakpoints

In order to set breakpoints inside AddressFaul tlmpl, you need to have
AddressFaultlmpl.bcd and AddressFaultlmpl.mesa on your CoPilot search path
and you need to have the AddressFaul t program loaded in Tajo. Run
AddressFau1 t. bcd from CommandCentral, and then interrupt into CoPilot after Tajo is
booted but before typing anything to the Tajo executive. Running a program from
CommandCentral will load it in Tajo, thus enabling you to set breakpoints.

19-Dec-84 11: 04

*** interrupt ***
Here we have just SHIFT-STOPped into CoPilot from Tajo after hitting Run! in
CommandCentral. The module AddressFaultlmpl has been loaded in Tajo, so you can set
breakpoints in it.

>SEt !!odu1e context: AddressFaul tImpl
Set the module context so that the debugger knows where to look for the procedure that you
are going to set entry and exit breakpoints in. If you didn't set the module context, the
debugger would have no way of knowing what module to look in to find the AppendText
procedure.

>!!reak §ntry procedure: AppendText Breakpoint i1.
>!!reak.!i t procedure: AppendText Breakpoint i2.
In addition to the entry and exit breakpoints, set two other breakpoints inside the body of
AppendText, one each before the lines onto +- AddressFaultDefs.FreeTextNil[onto] and onto
+-5.

>1.ist !!reaks
1-- Break at entry to AppendText (inAddressFaultlmpl, G: 71444B).
2 -- Break at exi t from AppendText (in AddressFaul tlmpl, G: 71444B) .
3 -- Break in AppendText (in AddressFaul tImp1, G: 71444B).

< >onto ~ AddressFaul tOefs. FreeTextNi 1 [onto] ;
4 -- Break in AppendText (in AddressFaultlmpl, G: 71444B).

03

D

D-4

Debugging an address fault

< >onto +- s;

>froceed (Confirm)
Having set your breakpoints, you now can go back to Tajo and run the program again with
the same input as before.

8reak 11 at entry to AppendText, L: 40248, PC: 1708 (in AddressFaultlmpl,
G: 71444B)
You have returned to the debugger by encountering the breakpoint at the entry to
AppendText.

>J;!isplay ltack
AppendText, L: 40248, PC: 1708 (in AddressFaultlmpl, G: 714448) >.Q
onto" 47033328 f
from .. 47033378 f
startingAt "118
endinqAt .. 148

> onto t
[length:O, maxleng'th:3, text: (0) (]]

> from t
[1ength:148, maxlength:168, text: (0) []]
All of these TextBody records look fine.

>n
Copy, L: 37148, PC: 3608 (inAddressFaultImpl, G: 714448) > copy t
[length: 0, maxlength:3, text: (O) [] J

> cO.Qy
copy" 47033328 f
This is the same as the onto variable in AppendText, as it should be.

>-1
s .. 47033378 f
This is the same as the from variable in AppendText, as it should be.

>-!...t
[length: 14B, maxlength: 168, text: (0) []]

> @s.text
47033418 f

>9.
>!iciiSead: 47033418, n(10): 148
moo unto ye!
This is the text you typed in on the command line. So far, everything looks fine. Continue
execution of the program.

>froceed [Confirm]
8reak ,2 at exit from AppendText, L: 40248, PC: 3418 (in AddressFaultlmpl,
G: 71444B)
Now you've reached the exit of AppendText, and can check to see if the TextBody records,
which looked fine when you entered AppendText, look right now.

>J;!isplay ltack
AppendText, L: 40248, pc: 3418 (in AddressFau1tlmp1, G: 714448) > onto t

Mesa Course

[length:3, maxlength:3, text: (0) []]
> @onto. text

47033348 i
>9:

>ASciiSead: 47033348, n(10): 1
ye!

D

Well, everything looks fine here. Maybe the bug isn't in AppendText after all. Let's let the
program run some more to find out.

>froceed [Confirm]
8reak il at entry to AppendText, L: 40248, PC: 1708 (in AddressFaultlmpl,
G: 714448)
Here you are back at the beginning of the AppendText procedure, which must have been
called again.

>Qisplay ~tack
AppendText, L: 40248, PC: 170B (inAddressFaultlmpl, G: 714448) >p
onto = 47033258 i
from = 4703337B t
startingAt = 4
endingAt = 108

> onto t
[length: 4, maxlength: 4, text: (0) []]

> from t
[length:148, maxlength:168, text: (0) []]

>9:
Once again, everything looks fine here. Let's continue execution.

>froceed [Confirm]
Break i3 in AppendText, L: 4024B, pc: 300B (inAddressFaultlmpl, G: 71444B)
Ahh. This time the onto TextBody had to be re-allocated in order to hold the new text, so,
you've hit your other breakpoints inside of AppendText.

>Qisplay ~tack
AppendText, L: 4024B, pc: 300B (in AddressFaultlmpl, G: 71444B) >!,
< >onto - AddressFault.FreeTextHil [onto];

>....!,

5 = 4 703316B t
>....!l.

[length:10B, maxlength:lOB, text:(O)[]]
This s is the string allocated inside of the THEN block. Looks good.

> onto
onto = 4 703325B t

> onto t
[length:4, maxlength:4, text: (0) []]

> @onto. text
4703327B t
onto looks fine

> @from. text
4703341B i

D-5

D

D-6

Debugging an address fault

> @S.text
47033208 t
>~

Reverse, L:' 36208, PC: 5758 (in AddressFaultlmpl, G: 714448) >!,
< >AppendText (
So, the call to AppendText was made from Reverse. Let's see what the string to be appended
onto looks like right now.

> reversed
reversed = 47033258 t
This is the same as onto inside of AppendText. as it should be.

> reversed t
(length: 4, maxlength: 4, text: (0) [])
>g

Before you let the program continue, check up on the contents of all the text fields. Do this by
using the '".text" values from above.

>ASciiRead: 47033278, n(IO):!
ye!
This is the text of onto and reversed.

>ycii Read: 47033418, n(10): 148
moo unto ye!
This is the text offrom.

>ycii Read: 47033208, n(lO): 108
ye! unto
This is the text ofs inside of the THEN block of AppendText.

>lroceed [Confirm]
8reak 14 in AppendText, L: 40248, PC: 3038 (inAddressFaultlmpl, G: 714448)
Now you have hit the breakpoint set just after the onto TextBody has been freed by a call to
FreeTextNil.

>)lisplay itack
AppendText, L: 40248, PC: 3038 (in AddressFauItlmpl, G: 714448) >!,
<>onto+-s;

> onto
onto =HIL
As expected, onto is NIL. Since onto is the same as reversed inside the Reverse procedure,
reversed should be NIL now, too.

>~
Reverse, L: 36208, PC: 5758 (in AddressFaultlrilpl, G: 714448) >.!
< >AppendText [

> reversed
reversed = 47033258 t
Uh oh! It's not NIL!

> reversed t
[length: 3408, maxlength: 548, text: (0) []]

Mesa Course D

Sure enough, the TextBody of reversed is now garbled. Now you can see what went wrong.
In AppendText, onto starts out pointing to the same TextBody record that reversed points
to. Then we free the record that onto points to, and set onto to point at a new TextBody
record. But reversed is never changed! So, reversed still points to its original referent;, that
is, reversed points at the TextBody that has been freed. No wonder reversed is garbage!
This bug is a typical pointer bug: only the local copy of the pointer (onto) is being changed
in the procedure call; the actual pointer variable passed to the procedure is not modified.

So we have tracked down the bug: AppendText needs to be rewritten the way AppendChar
is written, so that it takes a pointer to a AddressFaultDefs.Text variable as a parameter. That
way, any changes made to onto t inside of AppendText will affect reversed inside of
Reverse.

D.5 Summary

This debugging session provided an example of how to debug programs with pointer
problems. Using the Mesa operators i and @, you can dereference a pointer and find the
address of a variable. Using the Ascii Read command, you can convert a sequence of
values into their corresponding characters. This is a very important command when you
need to see the value of a string variable.

By setting breakpoints, you were able to stop execution at key points and examine the
values of variables. This was very important in this example since you are not sure when
reversed was garbled. The address fault occurs after it was garbled. By setting
breakpoints at important places, you can determine when reversed changed, and
therefore have a clue as to why.

The techniques you learned here can be applied to debugging other address faults. Since
address faults are common, you should find these techniques very helpful.

D-7

D Debugging an address fault

Notes:

D-8

E

Answers to Questions

This appendix contains answers to the questions posed in the chapters.

E.l Chapter 2: Interfaces

E.I.I Question 1

These modules can be compiled in many orders. The only constraint on compilation is that
any interface that is used by a module (one that appears in the module's DIRECTORY clause)
must be compiled prior to the compilation of that module. Generally, this means that
interfaces must be compiled before implementations. When one interface uses another,
the same rule applies.

In this problem, Program1 must be compiled after I nte rface 1 , Interface2, and Interface3.
Interface1 depends on no other modules and can therefore be compiled at any time.
Program2 cannot be compiled until Interface1 and Interface2 have been compiled.
Interface2 must be compiled after Interface1. Program3 gets compiled after all three
interfaces have been compiled. Interface3, like Interface1, has no dependencies and can
therefore be compiled at any time.

You must run them in the order Program2, Program2, Program3. Remember, you don't
have to run interfaces, since they don't contain any executable code, and you must run
implementations before the clients that use those implementations.

E.2 Chapter 4: Pointers

E.2.1 Question 1

Examine the procedure declarations. GetNextVaJue1 can't possibly work: it doesn't have a
pointer to the variable that is passed as the nextValue parameter. Thus, since it can't
change the yalue of its parameter, and since it doesn't return a value, GetNextValue1 has
no way to communicate the next piece of input data to whoever calls it.

E-l

E Answers to Questions

GetNextValue2 takes a pointer to a CARDINAL variable as its parameter, so the call
Dataln.GetNextValue2(@i] is the correct one for this procedure.

The expression @i is not a variable, and so it cannot appear on the left hand side of the
assignment operator. Thus the statement @i +- Dataln.GetNextValue3(] makes no sense. i
+- Oataln.GetnextValue3(] is the correct call.

The call to GetNextData3 is the best one from the viewpoint of good style, since it does not
require the use of the @ operator. As discussed in §4.2.4, you should avoid passing around
addresses of variables whenever possible.

E.2.2 Question 2

Procedure AverageData1 is a ponderous no-op. Not only must it copy a large record into
the local variable dataToAverage, none of the changes that are made to the parameter
dataToAverage will be visible to a caller of AverageData1.

AverageData2 handles parameters correctly. Since it is passed a pointer to a record, only a
two-word pointer need be copied into dataToAverage. Consequently, an actual procedure
call executes much more quickly than does a call to AverageData1. Even better, the
changes made to dataToAverage.data by AverageData2 are visible to a caller.

E.3 Chapter 5: Dynamic Storage Allocation and Management

E.3.l Question 1

The OurFreeNode procedure is an invitation to disaster. It appears to be nice shorthand
that allows us to both free a Node and set the NodePtr to NIL in one operation.
Unfortunately, only the local variable nodeToFree of OurFreeNode gets set to Nil and not
the NodePtr passed as a parameter; the actual parameter will end up pointing to
deallocated storage. The correct way to write OurFreeNode is as a function that returns
NIL:

OurFreeNode: PROCEDURE (nodeToFree: NodePtr] RETURNS [NodePtr] =
BEGIN
Node.FreeNode[node ToFree];
RETURN [NIL];
ENO;

E.4 Chapter 8: Signals

E-2

E.4.l Question 1

The CONTINUE will branch to the statement Write["Commands completed."L);. Because
the signal is defined in an ENABLE clause, the continue will cause a branch to the statement
following the one in which the signal was raised. In this case, the outermost BEGIN·END block
serves as that statement, so the continue will branch to the first statement after the one
containing the catch phrase.

Mesa Course

E.4.2 Question 2

Sig1: SIGNAL :I CODE;

x: CARDINAL ~ 0;

FOR counter: INTEGER IN [1 .. 3] DO

ENABLE

Sig1 :I > RETRY;

< statement 1 >
IF counter :I 2 THEN

BEGIN

ENABLE

BEGIN

Sig1 :I> <statement 2>;
UNWIND .. > x~1;
END;

< statement 3> ;
IFX .. OTHEN

SIGNAL Sig1;
<statement 4>;
END;

ENDLOOP; •••

E.4.3 Question 3

Sig1: SIGNAL,. CODE;

FOR counter: INTEGER IN [1 .. 2] DO

BEGIN

ENABLE

Sig1 ,. > LOOP;

< statement 1 > ;
IF counter .. 1 THEN

SIGNAL Sig1 ;
< statement 2> ;
END;

< statement 3> ;
ENDLOOP;

< statement 4> ;

1
5
1
3
2
1
3
4
5
1
5

1
1
2
3
4

E

E-3

E Answers to Questions

E.4.4 Question 4

Sig1: SIGNAL .. CODE;

FOR counter: INTEGER IN [1 •• 2] DO 1
BEGIN 3
ENABLE 1

Sig1 =- > CONTINUE; 2
< statement 1 > ; 3
IF counter=-1 THEN 4

SIGNAL Sig1;
< statement 2> ;
END;

< statement 3> ;
ENDLOOP;
< statement 4>; ...

E.4.5 Question 5

Sig1: SIGNAL =- CODE;

FOR counter: INTEGER IN [1 .. 2] DO 1
BEGIN 4
ENABLE

Sig1 .. > EXIT;
< statement 1 > ;
IF counter II 1 THEN

SIGNAL Sig1 ;
< statement 2> ;
END;

<statement 3>;
ENDLOOP;
< statement 4>; ...

E.4.6 Question 6

Sig1: SIGNAL=- CODE;

FOR counter: INTEGER IN (1 .. 2] DO 1
ENABLE 1

Sig1 = > LOOP; 2
< statement 1 > ; 3
IF counter == 1 THEN 4

SIGNAlSig1 ;
< statement 2> ;
< statement 3 > ;

ENDlOOP;
< statement 4>; ...

E-4

Mesa Course

E.4.7 Question 7

Sig1: SIGNAL" CODE;

FOR counter: INTEGER IN [1 .. 2] DO

ENABLE

Sig1 .. > CONTINUE;

< statement 1 > ;
IF counter .. 1 THEN

SIGNAL Sig1;
< statement 2> ;
< statement 3> ;

ENDLOOP;

< statement 4> ;

E.4.8 Question 8

Sig1: SIGNAL .. CODE;

Proc1: PROCEDURE ..

BEGIN

SIGNAL Sig1 ;
END;

IF TRUE THEN

BEGIN

ENABLE

Sig1 .. > RESUME;

< statement 1 > ;
Proc1[!Sig1 .. > CONTINUE];

< statement 2> ;
Proc1;
< statement 3> ;
END;

<statement 4>;

1
1
2
3
4

1
2
3
4

E

E-5

E

E-6

Answers to Questions

E.4.9 Question 9

Si91: SIGNAL == CODE;

BEGIN
ENABLE

Si91 • > RESUME;
< statement 1 > ;
IF TRUE THEN

BEGIN
ENABLE

Si91 • > GOToTheEnd:
< statement 2>;
SIGNAL Si91 ;
<statement 3>;
EXITS

TheEnd • > < statement 4>;
< statement 5> ;
EXITS

The End == > < statement 6>;
END;

E.4.10 Question 10

1
2
4
5

Proc1 (0) calls OtherProc[O], (in block b), which calls StillOtherProc[O] ,which raises si91.
Catch phrase-4 sees the signal first, and we have assumed that it rejects it. Next Catch
phrase-3 is presented with the signal, but it rejects it implicitly since there is no catch
case for Si91. Next Catch phrase-2 catches Si91, and rejects it (by assumption). Finally
Catch phrase-1 catches Si91 and jumps to the label punt.

Beore executing this jump, the Signaller raises UNWIND in every catch phrase that had
rejected Si91: Catch phrase-4. then -3 then -2 (but not Catch phrase-1, because it didn't
reject the signal.). Thus, the program will execute the statements in the order given below:

Stmt1
Stmt2
Stmt3
Stmt4
ERROR 5i91
Catch-case-7
Catch phrase-3
Catch-case-4
GOTO punt
Catch-case-9
Catch-case-6
Catch phrase-2
Stmt6

E.4.11 Question 3

-- S;g1 ;s raised in StillOtherProc
-- in Catch phrase-4
-- Does not catch Sig 1
-- In Catch phrase-2
-- In Catch phrase-1/Catch-case-1. UNWIND;s raised
- In Catch phrase-4
-- In Catch phrase-3
-- Does not catch UNWIND

b will get the value FALSE. Within the catch phrase (Si9 == > c2 ~ c1: RESUME), the variables
c1 and c2 refer to variables local to Sig, and not to Proc's variables.

F

Training Liaison/Mentor Information

Trainers are an important part of the Mesa Course. Although the course is designed to be
completed with a minimum of outside assistance, students are sure to have questions. This
appendix provides information to those individuals who will be asked these questions.

Each XDE customer site will have a designated XDE training liaison with certain XDE
training responsibilities. He will assign other, more experienced, Mesa programmers to
act as training mentors for students who are beginning the Mesa Course. (It is entirely
possible to have a student who is working on the latter part of the course act as a training
mentor for one just beginning the course.) If a student has a question about an explanation
in the course or difficulty with a programming assignment, the student should ask his
training mentor for help. If the mentor cannot answer a question, he should refer it to the
training liaison. If the liaison cannot answer a question, he should refer it to
XDESupport.osbunorth@Xerox.arpa for customers "outside" Xerox corporation or
XDEConsultants:All Areas for internal users. Only the training liaison should
submit questions to XDESupport.

The training liaison is the owner of the local < MesaCourse > file drawer. Initially certain
subdirectories of this file drawer will be private. The training liaison will determine
access privileges appropriate for the installation. He is the person to contact if you wish
access to a protected folder.

F.l The machine

This is version 12.0 of the Mesa Course. It assumes that you are using a Dandelion or
Daybreak processor running the Sequoia release (12.0) of the Xerox Development
Environment with Tajo installed on a normal volume, CoPilot serving as a debugger for
the volume on which Tajo is installed, and a U ser.cm that is set up for this configuration.

A possible volume configuration for students using a Shugart 42MB disk is:

F -1

F Training Liaison/Mentor Information

Volume Size ~
CoPilot 25,000 Debugger
Tajo 10,000 Normal Tajo boot file
Scavenger' 3,900' Normal
User 26,376 Normal ViewPoint boot file

Use Othello's Describe Physical Volume command to compare the student's volume
structure with this one. This configuration is only a suggestion; other configurations are
possible. There must be at least a Tajo and CoPilot volume, however.

F.!.l User.em entries

Certain sections ofthe User.cm should be tailored for the Mesa Course. A crucial entry is
ClientVolume, which should correspond to the volume with an installed Tajo boot file
(typically the Tajo volume). The significant entries are:

[Executive]
CompilerSwitches: eub-j
BinderSwitches: ec
ClientVolume:Tajo
CodeLinks: FALSE
UseBackground: TRUE

--Volume with installed Tajo bootfile.

It is helpful to have editor symbiotes on file windows in the CoPilot volume so that the
student can easily set breakpoints and position files to correct compilation errors. We
suggest the following:

[FileWindow]
Menu:Load Edit Save Store Reset Empty Position Break Split Time Trace Destroy

Whenever a student starts the course, check the U ser.cm.

F.2 Location of course materials

F-2

Contact your local XDE training liaison to determine the location of the files that
comprise the Mesa Course. Training liaisons within Xerox corporation should copy the
course's release directory from [McKi nley: OSBU North Xerox) < MesaCourse > onto a
local file server.

Mesa Course F

The training mentor should make sure that the following system interfaces are on the
student's machine:

Ascii.bed, Environment.bed, Exee.bed, Format.bed, FormSW.bed, Heap.bed,
Inline.bed, MFile.bed, MStream.bed, Proeess.bed, Put.bed, Stream. bcd, String. bcd,
System. bcd, Time.bed, Tool.bed, TooIWindow.bcd, UserTerminal.bcd, and
Window. bed.

F.3 The Course's directory structure

Programs
(PUBLIC)

Interpress
(PUBLIC.

initially)

MesaCourse

DF
(PUBLIC)

12.0

Solutions
(PRIVATE.

initially)

The Mesa Course Directory Structure

Errata
(PUBLIC)

References
(PUBLIC)

Interpress masters for the course text are stored electronically in the folder
[CustomerNSFileServer] < MesaCourse > 12.0>lnterpress>. Within that folder there there
is an interpress master for each chapter. A student with proper authorization can print
copies of the course from these folders if necessary (Universities may want to protect this
folder, other sites would not). Bound copies of the Mesa Course should be available from
your local documentation support group.

The programs discussed in the chapters are stored in the [... 1 < ... > ... >
Programs>ChapterName(ChapterNumber) folder for each chapter. The student should
retrieve all files from this folder before starting a chapter, e.g., retrieve all the files in
[CustomerNSFileServer] < MesaCourse > 12.0 >Programs > Interfaces(2) before starting
Chapter 2.

Solutions to programming exercises are stored in the L .. J < ... > ... > Solutions> folder.
The XDE training laison will decide who has access rights to this folder: it may be read
protected (universities using the course may have reason to protect this folder; other users
may not).

The two papers mentioned below can be found In [... 1 < MesaCourse > 12.0 >
References>

F 3

F Training Liaison/Mentor Information

The Mesa Course is still under development, and we would appreciate your comments and
corrections. We apologize for any inconveniences caused by inconsistencies or inaccuracies
that have escaped our current review. Please check on [... J < ... > ... > Errata> for any
update information.

F.4 References

The Mesa Course refers students to various XDE release documents and two papers. The
release documentation is available from your local technical support group. It includes:

Xerox Development Environment User's Guide
Mesa Programmer's Manual
Pilot Programmer's Manual
Filing Programmer's Manual (contained in the Services 8.0 Programmer's Guide)
Mesa Language Manual

The papers can be found in the [...] < MesaCourse > 12.0> References> folder. They are:

Impact of Mesa on System Design by Hugh Lauer
Mesa: A Designer's User Perspective by James Mitchell

F.5 Errors in course materials

F-4

Report all errors not acknowledged in the [...] < .. , > ... > Errata> folder to your training
liaison. He can forward them to XDESupport.osbunorth@Xerox .. Arpa.

Internal Xerox students with access to the System Software Adobe data base can submit
AR's directly There is a Mesa Course subsystem under the Documentation system for
System Software

Glossary

Abstract machine: An abstract machine is a
set offunctions, provided by some combination of
hardware and software, that forms the
underpinnings of a system sitting above. Pilot,
for example, provides an abstract machine that
runs on a variety of machines.

Abort: To abort is to terminate a process
abnormally, such as by using the ABORT key.

Accelerator: An accelerator is an easier or
faster way of doing a common operation.

Active window: An active window is a window
that is ready for interaction with the user.
(Compare Tiny window, Inactive window.)

Actual parameters The variables and
expressions that are supplied to the procedure to
replace the formal parameters are called actual
parameters.

Actual procedure: An actual procedure is a
procedure initialized so that it's meaning
(defined by it's body) cannot change. Actual
procedures (as opposed to procedure variables)
cannot be assigned to.

Address Fault: An address fault occurs when
an attempt is made to reference an illegal
address.

Adjective: An adjective is an identifier
constant from an enumerated type, used to select
one ofthe alternatives in a variant record.

ADJUST: ADJUST is the right mouse button,
generally used to extend selections and for
accelerators.

ALT B: ALT B is a boot button used to do alternate
booting, such as booting from another device.

Argument: An argument is a piece of data upon
which an operation is performed. For example,
the argument to a DELETE command is the video
inverted text to be deleted.

Asynchronous call: An asynchronous call is a
procedure call that initiates an operation, but
returns control to its caller without waiting for
the operation to complete.

Atom: An atom is a Mesa primitive providing a
unique identifier in a global naming space. An
atom has a property list associated with it.

Authenticate: To authenticatp is to establish
that a user or client is who he, she, or it claims to
be. (See Credentials.)

Background process: A background process is
a process that receives machine resources only if
higher priority processes are idle or blocked.

BCD: A binary configuration description (BCD)
is a compiled and possibly bound Mesa module,
sometimes called an object file. (See
Configuration description.)

G-I

Glossary

Bind: To bind is to combine object modules into
one executable unit (called a configuration) by
resolving intermodule references.

Bitmap: A bitmap is a representation of an
image as a sequence of bits, each of which
represents the intensity of a point in the image.
The display hardware and microcode convert a
bitmap to a displayed image.

Block: A block is a construct used to associate
declarations with statements. The names so
declared have significance only within the block.
The block is the scope of these names which are
said to be local to the block. Since a block may
appear as a statement, scopes may be nested.

Boot: To boot is to load and start a system on a
machine whose main memory has undefined
contents. The Dandelion can be booted by
pressing the B RESET boot button. ("Boot" is short
for "bootstrap", which is in turn short for
"bootstrap load".)

Boot button: A boot button is a maintenance
panel button used to boot the processor. The
Dandelion has two buttons, labelled B RESET and
ALT B.

Boot file: A boot file is a file that contains a
bootable program.

Built-in types: The Mesa built-in types incluce
serveral numeric types (INTEGER, LONG INTEGER,

CARDINAL, LONG CARDINAL, REAL, and NATURAL) a
type for logical values (BOOLEAN) a type for
individual character values (CHARACTER), and a
type for sequences of characters (STRING).

CALL DeBUG: CALL DEBUG is the action of pressing
SHIFT-ABORT together, which transfers control to
the debugger.

Call Stack: The call stack is a :.Y1esa processor
data structure containing a frame for each
procedure invocation that has not yet returned.
The call stack is ordered with the most recent
invocation first.

Caret: The caret is a blinking pointer that
indicates the type-in point.

G-2

Catch Phrase: A catch phrase is a Mesa
construct that establishes code to catch one or
more signals.

Channel: A channel is a low-level procedural
interface for accessing and dri ving I/O devices.

Chord: To chord keys or buttons is to push
them down at the same time, as when chording
the mouse buttons.

Clearinghouse: A clearinghouse is a server for
locating named objects in a distributed
environment.

Click: To click a mouse button is to press down
on it and let it up.

Client: A client is a program (as opposed to a
person) tha.t uses the services of another
program or system. (See User.)

CoCoPilot: .CoCoPilot is the name usually
given to the debugger Debugger volume used to
debug CoPilot.

Command Central: Command Central is a
tool for compiling and binding programs on a
development volume and running them on a
client volume.

Command file: A command file is a fiie
containing commands, especially Executive
commands.

Compile: To compile is to translate a source file
into an object file (BCD).

Condition variable: A condition variable is a
Mesa construct by which processes wait for or
provide notification of an event. A condition
variable is associated with a monitor.

Configuration description: A configuration
description (config for short) is a C/Mesa source
file that tells the Binder how to combine
modules into a configuration. A configuration
file is the bound code of one or more modules.

Constant: A constant is a name, an associated
value, and a scope for the association. Within
this scope, the value associated with the name
may not change.

Mesa Course

Continue: To continue a signal is to resume
program execution at the statement following
the one to which the catch phrase belongs. Thus,
control is resumed in the procedure where the
signal was caught, not the procedure that raised
the signal.

CoPilot: CoPilot is the name of the debugger
volume used to debug Tajo and other normal
volumes. The boot file that contains the
debugger, used on both the CoPilot and
CoCoPilot volumes, is also called CoPilot.

Courier: Courier is the Network Systems
remote procedure call facility. A remote
procedure call causes a procedure to be executed
in another machine over a network.

Create date: The create date is the date and
time that the information contained in a
particular version of a particular file was
created. Since create dates are accurate to the
nearest second, the pair < file name, file
version's create date> serves as a unique
identifier for the contents of a file.

Credentials: Credentials are the identification,
such as name and password, presented by a
client to a service for authentication.

Critical section: A critical section is a portion
of a program in which only one process can be
executing at a time. In Mesa, access to critical
sections is arbitrated by monitors.

Current selection: See Selection.

Cursor: The cursor is an icon that tracks the
mouse position: moving the mouse moves the
cursor. The system may change the cursor shape
to provide feedback about what it is doing.

Dandelion: The Dandelion is a processor
supporting both the Xerox Development
Environment and the Office System products.

Dangling Pointer: A dangling pointer is a
pointer to an invalid memory location.

Data type: A data type is a set of objects and a
set of operations on those objects that create,
build-up, destroy, modify and pick apart
instances of the objects. A data type may be
either directly described in a declaration that

uses it, or it may be referenced by a type name
introduced in a type declaration.

Deactivate: To deactivate is to make a tool
inactive, removing all windows associated with
the tool from the display and discarding the
state of the tool.

Debugger context: A contf!xt in the debugger
is a referencing environment that determines
the meaning of symbols. The current context
identifies one of the executing processes (within
a particular module within a particular
configuration) that the debugger will use in
interpreting other commands. For example, the
current context determines which variables in
which procedure invocations to use in
evaluating an expression.

Debugger volume: A debugger volume is a
logical volume that contains a debugger and is
used to debug normal volumes. (See normal
volume, debuggerDebugger volume)

debuggerDebugger volume: A debugger
Debugger volume is a logical volume that
contains a debugger and is used to debug
debugger volumes.

Dereference: To dereference a pointer is to
follow the pointer through one level of
indirection toward the value it is referencing.

Device: A deuice is a peripheral unit (almost
always hardware) that is separately accessible
through its own channel.

Device driver: A device driver is a program
that translates channel requests into physical
device actions.

Directory: A directory is a named subdivision
of a logical volume. A directory can in turn be
divided into subdirectories. The top-level
directory on a volume has the same name as the
volume.

Discrimination: A discrimination statement
provides access to the fields in the variant part of
a variant record, based on the value of the tag.

G-3

Glossary

Disk page: A disk page is a contiguous 256-
word region of disk storage.

Dynamic allocation: Dynamic allocation
acquires storage during program execution.

Dynamic variables Dynamic variables are
generated by a special procedure (NEW) that
yields a pointer or reference value that
subsequently serves in place of a name to refer to
the variable.

Error: An error is a Mesa language construct
similar to a signal, except that a signal can
return to where it was raised (like a procedure),
whereas an error cannot.

Ethernet: The Ethernet is a communications
system for carrying digital data among locally
distributed computer systems. The Ethernet is
implemented as a 10 megabit/second multi
access packet-switched network.

Exception: An exception is an unusual event
that programs must be prepared to handle, such
as I/O error. In Mesa, exceptions are associated
with signals. (See Signal.)

Executive: The Executive is a tool with a
simple teletype interface for loading and
running Mesa programs. Some commands are
already available.

Expression: Expressions are constructs
describing rules of computation for evaluating
variables and for generating new values by the
application of operators.

Export: To export is to implement all or part of
an interface for use by other modules. (See
Import, Interface)

Face: A face is a Mesa interface that embodies
part of the abstract machine defined in the Mesa
Processor Principles of Operation.

File: A file is a sequence of data pages located
on some physical device and containing some
common grouping of information. Files may be
local or remote.

File extension: The file extension is the
(possibly null) portion of a file name that follows
a period. By convention some extensions
indicate the format of the data in the file

G-4

(although not all tools use default extensions
consistently). Some common extensions are:

archiveBcd
bcd
boot
cm
config

doc
errlog
log
mesa
symbols

tip

Mesa object program module
Mesa object program module
boot file
command file
a C/Mesa source file
(configuration description
file)
documentation file
error message file
history of program actions
Mesa source module
Mesa symbol table in binary
format (for debugging)
tip tables

File handle: A file handle is a data structure
that identifies a file being accessed.

File service: The file service is a set of network
facilities that provide file storage and retrieval.
A machine implementing this service is called a
file server.

File Tool: The file tool is a tool that allows the
user to store and retrieve files on remote file
servers.

File type: A file type is a file attribute provided
by Pilot for the use of higher level software.

File window: A file window is a window whose
main sub window is a text subwindow for
displaying and editing the contents of a file. A
contiguous group of pages within a file into
which a map unit is mapped is also called a file
window.

Filter: A filter is a software entity that
implements a stream for transforming,
buffering, and manipulating data.

Font: A font is a set of characters of one size and
style. Fonts come in different families (such as
Classic or Gothic), different sizes (such as 10
point or 14 point), and different styles (such as
plain, bold, or italic!. This sentence is in Classic
10 plain font.

Formatter: The Formatter is a tool that
transforms Mesa source files into a standard
format for display.

Mesa Course

Form subwindow: A form subwindow is a
system-provided subwindow type that supports
invoking commands and displaying or changing
the values of data.

Frame: A frame is a PrincOps data structure
allocated for the variables and internal data
structures of a module or procedure while it is
executing. Module frames are called global
frames, and procedure frames are called local
frames. Since Mesa supports recursion, there
may be several frames for a given procedure.

Frame pack: A frame pack is a swap unit
produced by the Packager that contains the
global frames for a collection of modules.

Gateway: A gateway is a processor serving as a
forwarding link between separate Ethernets.
(See Router.)

Germ: The germ is the Pilot program that loads
a boot file into memory and starts it executing.
The germ also creates outload files and
implements communication with remote
debuggers. The germ is so named because it is
the first program executed when a boot button is
pushed.

Head: A head is an implementation of a face for
some processor or device. A collection of heads
provides a processor-independent environment
in which Pilot and its clients execute.

Heap: A heap is a system-designated area of
virtual memory used for dynamic allocation of
storage. Heaps, which provide more automatic
management of storage than zones, support the
Mesa language operators NEW and FREE, which
allocate and deallocate storage dynamically.

Herald Window: The herald window is a tool
(usually a wide, short window at the top of the
screen) that displays information about the state
of the environment, has a menu to boot logical
volumes, and allows tools to display messages.

Hint: A hint is information that is usually
accurate and is easy for a program to use. A
program can detect when a hint is inaccurate
and find the truth in some other (usually less
efficient) way.

Icon: An icon is a small picture on the display
representing some entity.

Implementation module: An implementation
or PROGRAM module is a program that codes
(implements) and makes available to clients
(exports) items in an interface. One
implementation module can export all or part of
one or several interfaces, and an interface can be
jointly implemented by several implementation
modules.

Import: To import is to make accessible to one
module the procedures and variables exported
by other modules. (See Exports.)

Input Focus: The input focus is the window to
which keyboard commands and characters are
sent. The input focus contains the type-in point.

Interface: An interface is a formal contract
between pieces of a system that describes the
services to be provided. A provider of these
services is said to implement the interface; a
consumer of them is' called a client of the
interface.

Interface module: An interfacf! or DEFINITIONS

module defines types, variables, constants,
procedures, and signals, thus specifying the
services to be provided by its implementation
modules.

Interlisp: lnterlisp is an interactive version of
LISP with a large library of facilities.

Internet: An internet is a collection of networks
mutually accessible VIa internet routing
services.

Interpress: lnterpress is a print file format
standard.

Lister: The Lister produces listings of
information in object files, such as dates of the
interface modules used and cross references for
procedure calls.

Literal: A literal is a constant whose value is
given by its sequence of symbols.

Log file: A log file is a file containing a history
of program actions. For example, compiler. log

G·5

Glossary

contains summary statistics for each source file
compiled by the most recent compile command.

Logical volume: A logical volume is a partition
of storage for client files, including system data
structures for manipulating those files. A
physical volume is divided into one or more
logical volumes. Each logical volume is largely
protected from actions in other logical volumes.

Loophole: Loophole is a Mesa operator that
coerces a value of one type into another type,
thus circumventing Mesa's strong typing.

Machine: A machine is a hardware
configuration consisting of a processor, main
memory, and peripheral devices. Workstations
and servers are machines.

Main data space: The main data space (MDS)
is a subspace of virtual memory that provides
the local execution environment for Mesa
programs and holds the implicit Mesa data
structures. The MDS can contain up to 64K
words. Thus, only short (I6-bit) pointers are
needed to address any part of the MOS.

Maintenance panel: The maintenance panel is
the front panel on a Mesa processor with boot
buttons, a numerical display for maintenance
panel codes, and an on/off switch.

Maintenance panel codes: Maintenance panel
codes (MP codes) are three or four-digit status
and error codes that indicate the current
processor state.

Map: To map is to associate a region of virtual
memory with a file window so that the contents
l:>fthe file window appear to be the contents of
the region.

Map unit: A map unit is a contiguous group of
virtual memory pages that is the principle unit
for allocating, mapping, and swapping virtual
memory.

Menu: A menu is a list of available commands
or data chosen by mouse selection. More than
one menu may be associated with a tool window
or subwindow or with the unused portion of the
display.

G-G

Mesa: The Mesa language is a Pascal-like,
strongly typed, system programming language
that forms the basis of the Xerox Development
Environment.

Message subwindow: A message subwindow
is a system-provided subwindow type for posting
messages (including errors).

MLM: The Mesa Language Manual describes
the Mesa programming language.

Mode: A mode is a special state of a system in
which user actions have special meaning.

Modeless: A mode less user interface is one that
is free of modes. In such an interface, pressing a
particular key al ways has essentially the same
effect.

Moduie: A module is a Mesa program. A source
module is a text file that can be compiled into an
object module. There are three kinds of source
modules: PROGRAM, MONITOR, and DEFINITIONS.

Monitor: A monitor module is a Mesa module
that controls access to shared data, thus
synchronizing interactions among processes.

Monitor invariant: A monitor invariant is a
logical assertion about the state of monitored
data whenever the monitor is unlocked, (Le.,
exited). Every monitor has a monitor invariant.

Monitor lock: A monito~ lock is essentially a
hidden data item associated with each
monitored record or program that indicates
when a process has entered and not yet exited a
critical section.

Mouse: The mouse is a pointing device that
allows the user to direct the attention of the
machine to a particular point on the display. A
mouse usually has two buttons, POINT and ADJUST.

Mouse-ahead: Analogous to type-ahead,
mouse-ahead is mouse clicks made before a
program has asked for them.

Movable boundary: A movable boundary is a
horizontal line with a small box on its right end
that divides a window into subwindows and is

Mesa Course

used to change the relative heights of adjacent
subwindows.

MPM: The Mesa Programmer's Manual
describes the interfaces that provide the
framework and run-time system for writing
Mesa programs in the Xerox Development
Environment.

Name: A name (or identifier) is a sequence of
alphabetic and numeric characters beginning
with an alphabetic character. Identifiers in
Mesa can be up to 256 characters long; character
case is significant in Mesa identifiers.

Name lookup: Name lookup is the process of
mapping a character string to a network
address.

Name stripe: The name stripe is a rectangular
region at the top of a window. It is usually black,
with the window's name and other information
in white.

Network: A network is a communication
medium, such as an Ethernet, known to routers
by a unique network number.

Network address: A network address consists
of a network number, host number, and socket
number. The network number identifies a
network anywhere in the world. The host
number identifies a machine, independent of
which network it is on. A socket number
identifies a particular socket on that host. (See
Socket.)

Network stream: A network stream is a stream
representing a connection over a network
between two processes, often on different
machines.

Node: A storage node, or node for short, is a
block of allocated storage, often with a record
structure.

Normal volume: A normal volume is a logical
volume used to run client programs. (See
debugger volume, debugger Debugger
volume.)

Notifier: The Notifier process in Tajo handles
user actions, informing each tool of each user
action directed to it. Because tools perform their
work in the Notifier process, further user input

is not acted on until the first operation is
fnished.

NS: Network Systems (NS) are the Xerox
standard protocols for using the Ethernet.

Othello: Othello is a utility for managing Pilot
volumes, including initializing physical and
logical volumes, installing and invoking boot
files, and scavenging logical volumes.

Outload file: An outload file is a snapshot of
the volatile state of a system (essentially the
contents of memory and registersl. Outload files
are used by the debugger. (See World-swap.)

Package: To package is to group components of
modules together into swap units to try to
improve use of real memory.

Packet: An NS packet is the unit of information
in the internet. A packet consists of a header and
data, and has a maximum length of 576 bytes.
The information in the header is specified by the
Internet Datagram Protocol.

Page: A page is a block of 256 words of
information in either virtual memory or a file.
The page is the basic addressable unit of a file.

Path name: The path name is the complete
name of a file, including the file server or
workstation and directory or subdirectory on
which it is stored. A path name is usually
denoted by a machine name in square brackets
followed by a directory name in angle brackets,
optionally followed by one or more subdirectory
names separated with right angle brackets,
followed by the file name itself, such as
[Iris) < Mesa> Doc> Compiler .doc.

Physical volume: A physical volume is the
basic unit available for random access file page
storage. A physical volume corresponds to a
storage device, typically a disk.

Pilot: Pilot is the operating system for the
Xerox Development Environment. Pilot
provides a single-user, single-language
environment including virtual memory, a large
flat file system, network communication
facilities, and Mesa run-time support (including
concurrency facilities).

G-7

Glossary

~PiTot kernel: The Pilot kernel comprises the
basic facilities of Pilot.

Pipeljne: A pipeline is a sequence of
concatenated filters that perform a series of
transformations on the contents and properties
ofa stream.

POINT: POINT is the left mouse button, generally
used to identify data and to invoke commands.

Pointer: A pointer is a data item containing the
location of a value. The Mesa language has
pointer types.

PPM: The Pilot Programmer's Manual
describes the external structure and interfaces
of Pilot.

Print service: A print service provides printing
facilities, usually for files formatted in
Interpress format.

PrincOps: The Mesa Processor Principles of
Operation is a document that defines the
abstract architecture of the Mesa processor. It
specifies the processor's virtual memory
structure, its instruction interpreter, and the
Mesa instruction set. It is classified as Xerox
Private Data. ~ .

Procedural abstraction: A procedural
abstraction is a mapping from a set of inputs to a
set of outputs that can be described by a
specification. The specification must show how
the outputs relate to the inputs, but it does not
reveal or imply the way the outputs are to be
computed.

Procedure: A procedure is comprised of four
elements: its name, a list of identifiers called
formal parameters, a body, and an environment.

Procedure body: A procedure body is a block.

Procedure environment: A procedure's
environment consists of those variables that are
declared outside of the body of the procedure, but
which may be used ao altered at run-time by the
procedure's statements.

Procedure results: A procedure can produce
one or more values, called its results.

Procedure variable: A procedure variable is a
procedure initialized in such a way that the
procedure's value (body) can be changed by
assignment.

Procedure statement: A procedure statement
causes the application (invocation, call) of a
designated procedure value (body) to the values
of its arguments (actual parameters).
Application of procedures that produce results
may appear within expressions.

Process: A procesii is effectively a procedure
activation that runs concurrently with its caller,
allowing asychronous acti vities.

Processor: A processor is a computing engine
(including its memory) in a workstation or
server.

Raise: To raise a signal is to instruct the
Signaller to look in each procedure on the call
stack, starting with the most recently invoked,
until it finds a procedure with a catch phrase for
that signal.

Real estate: Real estate is any or all of the
display screen.

Real memory: Real memory is the physical
memory that holds software and data during
processing.

Reference: A reference component of a variable
identifies the area of stroage where a value ~ill
be kept.

Reject: A catch phrase rejects a signal when it
is not prepared to resolve it. A catch phrase
rejects a signal either by explicitly placing a
REJECT statement in the code or by not specifying
how to resolve the signal.

Release: A release is an official, consistent
version of software produced and maintained by
its developers.

Resume: To reliume a signal is to return
program control (and possibly values) to the
statement immediately following the one that
raised the signal. An ERROR cannot be resumed.

Mesa Course

Retry: To retry a signal is to tell the Signaller
to re-execute the statement containing the catch
phrase.

Router: A router is a software package that
sends packets between sockets. The path chosen
by a router includes intermediate stops if the
destination socket is on another network. A
router that sends packets between networks LS

called an internet router.

RS-232-C: RS-232-C is a standard established
by the Electronic Industries Association for
serial binary data interchange between a
machine and data communication equipment.
An RS-232-C controller connects a machine to a
modem, allowing data to be sent across
telephone lines.

Scavenge: To scavenge is to check for damaged
file structures and to attempt to repair them.

Scope The scope of a name is that part of the
program text where all uses of the name are the
same.

Scroll: To scroll is to reposition the data visible
in a sub window as though it were part of a long,
continuous sheet of paper. Scrolling up, for
example, moves the data near the bottom of the
window toward the top.

ScroUbar: A scrollbar is a tall, narrow
rectangle near the left border of a suhwindow,
used in scroHing and thumbing.

Search path: The search path is a sequence of
directories (with subdirectories> used as prefixes
to look up file names that are not fully specified;
i.e_, that do not start with a directory name.

Selection: The selection is a text string or icon
that the user has caused to be highlighted. :\lany
actions operate on the current selection, which
need not be in the window associated with the
action.

Server: A server is a machine dedicated to
performing one or more services.

Service: A service is a related set of facilities
provided for general use, such as a print service
or file service.

Signal: A signal is a Mesa languaie construct
used to help handle exceptional conditions
encountered during program execution. Signals
are like procedures except that the code to be
executed is dete1"mined at run-time.

Signaller': The Signallt'r is the program ,that
gets control when a signal is raised, attempts to
find an associated catch phrase, and executes the
code in the catch phrase.

Simple types: The simple types are the
enumerated types, the subrange types, and the
built-in types.

Size: To size a window is to switch its state
either from active to tiny or vice versa. (See
Window state.)

Smalltalk: Smalltalk is an object-oriented
programming language (and its integrated
programming system) developed by Xerox.

Snarl: To snarr is to copy files between logi.cal
volumes, especially from the CoPilot volume.

Socket: A socket is a source or de~tination of
packets on a given machine A socket is uniquely
identified by a I6-bit socket number. Several
streams of packets may sh'are a single socket. A
socket is accessed through a channel interface
and is thus a logical input/output device. The
clearinghouse and the time server, for example,
each have their own socket.

Space: Space is the Pilot interface for
managing virtual memory. Space often refers
more generally to virtual memory.

Storage Leak: A storage leak occurs when a
program neglects to free all the storage nodes it
has allocated, thus reducing the total amount of
space available for the system.

Stream: A stream is an abstraction for'device
and format-independent sequential acce::;s to a
collection of data, Some streams also provide
random access to the data. A stream is a
sequence of bytes, possibly marked by attention
flags and possibly partitioned into identifiable
subsequences.

Stream component manager: A ,',tream
component manager is the software entity that

"G-g

Glossary

. implementsia 'stream co.mponent-a transducer,
filter, (}r pipe:Hne.

.... Stream Handle: A stream handle is a Po.inter
to. the stream o.bject that identifies the particular

.{, - , : ',' . ~ ~

stream bemg accessed.

Str~am Object: A stream object co.ntains the
data and pro.cedures fo.r o.perations o.n the
stream.

v. : ft

String: A string is co.nceptually a sequence o.f
,characters, such as "that". A string is
, represented in Mesa as a Po.inter to. a reco.rd
co.ntaining an array o.f characters, the current
)~ngth, and the current maximum length.

! ~",

Strongly typed: The Mesa co.mpiler uses static
analysis to. deduce the type o.f every co.nstant,
v,ariable, and expression to ensure that all
pro.grams ar~ type co.rrect. Languages in which
such type co.rrectness is determined at co.mpile
time are called strongly typed.

~tub: A stub is Jlpro.gram that implements a
Mesa interface in. terms of Co.urier calls to a
remo.te server or workstation.

.. ",f

Subdirectory: '. A 'm~direct,ory caI1 be divided
into. a hierarchicaf'co.llectio.n o.f subdirectories.
Subdirectory names are listed fro.m the root o.f

.'•.. .", i . ('_' ,i

the tree do.wn to. the leaves,' separated by">".
(See Path namej" . '. .. :.

. .

Subrange types::?\' S'ubrange type is a type is a
ty{Ye created frbm'a sunset of an existing
enumerated type or type who.se elements can be
linearly o.rdered. The subrange takes o.n the
characteristics o.f the enclo.sing type but are
constrained to. thke values within so.me interval.

Subwilldow:A-windo.w is o.ften composed o.f
-o.ne:or m~re rectangular subwindows. The Xero.x

Develo.pment Enviro.nment pro.vides several
standard subwindow, types, including form
subwindo.ws and text subwindQws.

Swap: To. swap is to. transfer data between
memQry and files, either in resPo.nse to. hints
fro.m the client prQgram or UPQn demand. To.
swap in is to. Co.Py fro.m a file windQw into. real

memory; to. swap out is to. copy from real memQry
to. a file windo.w.

Swap unit: A swap unit is a portion of a space
to. be swapped together. Proper cho.ice of the size
o.f swap units can imprQve use of real memQry
and reduce disk o.verhead.

Swat: To. swat is to. strike CAll-DEBUG to invo.ke
the debugger.

Switch: A switch is a modifier to. a co.mmand o.r
subcommand, Qften preceded by a "/".

Symbiote: A symbiote is a subwindow that can
be added dynamically to a text subwindQw in an
existing to.o.l withQut changing the tQo.I Qr Tajo..
A symbiQte pro.vides extra facilities via stick
aro.und menu items.

Synchronous call: A synchronous call is a
pro.cedure call that returns co.ntrQl only after the
operatiQn cQmpletes.

Tag: The tag is a field o.f a variant reco.rd whQse
value selects Qne o.f the alternatives o.f the
variant part by matching one o.f the adjectives.

Tajo: Tajo is the user interface part o.f the
Xerox Develo.pment EnvirQnment. The main
client vo.lume and its bQo.t file are also often
called Tajo.

Teledebug: To. teledebug is to. debug remQtely,
that is, to. debug one machine frQm ano.ther over
the internet.

Text subwindow: A text subwindow is a
system-provided subwindQw type with text
display and editing capabilities.

Thumb: To thumb is to. positio.n the data in a
file (usually text) to. an arbitrary Po.sitio.n fQr
viewing o.n a display. The "thumb-index" in
SQme dictionaries perfQrms sQmewhat the same
functio.n: it gets you to rQughly the right place
quickly.

Timeout: Timeout is the failure to. complete an
QperatiQn within a specified amQunt o.f time.

Tiny window: A windQw is tiny if it is
represented on the display by an icon. A tiny
windo.w is no.t ready for interactio.n with the

Mesa Course

user, but maintains the state of the. tool.
(Compare Active window, Inactive window.)

TIP: Terminal Input Processor (TIP) is a
system for interpreting keyboard and mouse
actions and turning them into sequences of
commands based on TIP tables.

Tool: A tool is a Xerox Development
Environment applications program. A tool can
run in parallel with other tools, including other
instances of the same tool. Tools react to
prompting and seldom carry out operations
when not in use. A tool need not have a window
associated with it, although they usually do.

Transducer: A transducer is a software entity
that implements a stream, such as the MStream
interface, connected to a specific device or
medium through a Pilot channel.

Trash bin: The trash bin is the conceptual
container of the most recently deleted selection,
which can be retrieved to a different spot or a
different window.

Type-ahead: Type-ahead is the ability to type
characters to a program before that program has
asked for them.

Type-in point: Typed characters are inserted
at the type-in point. The type-in point is
indicated by a flashing caret or box.

Type declaration: Type declarations collect
together common properties of variables. The
type name declared refers to these common
properties. If one desires to change the
properties then one need only change the type
declaration.

Uncaught signal: An uncaught signal occurs
when no module in the call stack handles a
signal that has arisen. If a signal is uncaught,
the Signaller transfers control to the debugger.

Unwind: Unwind is a special signal raised by
the Signaller to allow procedures about to be
deleted from the call stack to do clean up (such
as deallocate storage and close files), When there
is an unconditional branch out of the catch

phrase, the Signaller raises theuij""~fld.s:i~~l;at
the point where the original signa'l ortginatedi"

User: A user is a person (rathen1 t,q~:Il-: a
program) who avails him or hers~~fpf ,the
services of some program or system;." (See

;1 ," i ,"

Client.)

"'f't' ...
User.em: User.cm is a file on the system
volume used to set defaults for many of the tools
in the Xerox Development Environment. This
file allows users to customize their environment.

User Interface: The user interface is the
man/machine interface. It is the manner 'in
which information is presented to you on the
display screen, and the way that"1you
communicate with using keyboard and mouse.

User profile: A utjer profile is commonly
accessed global information that identifies a
user in the internet. A user profile includes
name, password, and Clearinghouse domain:"

Valid memory location: A location is valid if
it is currently allocated A;I6Cation that has been
freed is invalid and should not be referenced.·~

Value: A value is an immutable object that is
(not ~hanged by comput~tiK6: , ::'laj~ ",'\ i b .

~- ;'.~·~~·10:"'· ",l:'~; ~.:·L

; . . , . ~ 'ltol I:" r,
Variant records: A variart:t record consists of an
optional common pat! f6Ilowe,ct: by a variant part.
The common part contains components that are
common to all recorp.sr\«2.f tpi~<!,~pe. J'he vari~nt
contains the componen,ts qf.d variants of~ the
record. This allows different recQrd \(Sllues of the
same types, or their names.;;,

Version stamp: Theisiersion-;stamp is the ,date
and time, accurate to the nearest second, at
,which a file' was created. f3ifferelW vann'()'R,'s'()f a
file are distinguished by theit versitYnsta-mps.
Version stamps allow toofssuch>cas·tn-e binder
and the debugger to ensure that proper versions
of files are used.

Video-invert: To video-invert a region is to
cause black areas of the region to become white
and white areas to become black.

". ".'.'.

Glossary

vt.;ual-.mory: V:irtual memory is the large
Word-oriented address' space of up to 2;1~ words
that forms the executioi'feltvironment.

Volume:
f'olume'r,·

See physicatli, iyolume, logical

Wed.~.t(.d\' program is wedg'f'd when there is no
response tG,mput from either thee keyboard or
the mouse:TI$!whole gystem or some part may
be wedged.

Winnow: . A wi1UJb~ is a rectangular region of
the display' ,in wJtith ~ext and graphics can be

. display.ed. Most tQ9ls'cqmmunicate vi.:l windows.

Window state: Thttstate of a window is either
actiVe, tiny, or inactke. (See Active wiJt4ow,
Tiny window, Ina~e window.) , '"

. ", -~

Word.: A wor(/",iit the basic I6-bit unit of
infor;nilt'fon ma~ipuleted by Mesa processws. '

.. ~. ::. :"") . ..,{~.I

WorksCaf;iQm' A<8Jorkstation is a machine
conneetedt&then-etwoHt and used as a personal
computer; Mos.t',Diriaelions are' iis'ed as
workstations. (See server.)

, • ~,:~i'>' ';,',.,,<. ·'k".,:; ',,'

Wd'fla-.swap: A world-swap is the prOCeSS of
/writing;. out the complete state ofa ,logical

volume-we,a disk tile and reading in a·iiifferent
state~CoPHot:~&rmally Works by wotitCf-swaps
betweeri'··the'~ger 'iu~4 the program' being
debu'gged. (SeeOutload"fil~~) ,

, " .,,', .<:t.'.,

li~ 'The:Xeto.x Deueiopment Enuironment
User's Guide provides \m introduction to the

;' Xerox oe:~.e1opment Environment and describes
',how to ,,~use the' . tools that make up the

en v iroriide ht. " .,.

Zeo,~C:-To ZOOM"a wintlowis to switch the size of
an active window either from normal to full
screen or viee.:versa. Zooming a normui~sized
window also puts it on top,it>f:aH other windows.

Z'oIiei .,- A zone is a' c·lient-designated area of
virtual memory used'~'to allocate and free
arbitrary-sized storage nodes~ (See Heap.)

<"'., -G-l'2~:""~: :, ,.,,,.

"

610E00310

Installing the Mesa Cours,~'(8010)

These instructions describe how to set up a file server with the 12.0 version· of the Mesa
Course. To do the installation, you will need one machine with at least 2,000 free pages on
the CoPilot volume. We assume you have completed the XDE tutorials and ate fapliliar
with multiple windows, mouse actions, etc.

1. Create a file drawer called MesaCourse

Have your local system administrator create a public access file drawer caUeti:Mesa<?ourse
on your local file server. This file drawer should have a capacity of5,OOOdisk~'g'es.

2. Copy the command file from the floppy

Insert the floppy into your disk drive. Now bring up the Executive window on your CoPilot
volume and copy the file MesaCourselnstall.cm from the floppy onto your local disk. (Type
"Floppy Read MesaCourselnstall.cm", without the quotes, andhit a carria-ge>fe<tum:)

3. Check the name of the file server

This command file assumes that the name of your local flleserver isXDEFS 1. If you wish to
store the files on a file server with a different name, you will have tQedit the command file
to replace all occurrences ofXDEFS 1 with the name of your fileservet.

4. Run the command file

Now run the command file by typing "@MesaCourseInstall.cm" {witnouUhe"quotes) into
the Executive window. This command file will take slightly overan,hou,r;torun. When it
is finished, the MesaCourse files will be stored on [XDEFS 1] < MesaCours.e;l!> 12:0.'

5. The directory structure

The ~esa Course Manual describes a directory structure that is slightly different from the"
one you just established. The structure in the manual includes some supp);ementary files
that are not necessary for the course and were therefore omitted from this version. The
current structure isjust a simplified version of the structure described in the manual.

The directory established by the command file, [XDEFS 1]< MesaCourse > 12.0, has two
subdirectories: Programs and Solutions. The Programs directory contains public 'fil~ for
each of the chapters; the Solutions directory contains the solutions to the probl:erpsin the
chapters. You may want to use the FSWindowTool to protect the Solutio9s folder.

Copyricght 198-5. Xerox Corporation '.

	00-0001
	00-0002
	00-0003
	00-0004
	00-0005
	00-0006
	00-0007
	00-0008
	00-0009
	00-0010
	00-0011
	00-0012
	00-0013
	00-0014
	00-01_Introduction
	00-02
	00-03
	00-04
	01-01_From_Pascal_to_Mesa
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-01_Interfaces
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01_Binding
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01_Pointers
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01_Dynamic_Storage_Allocation_and_Management
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01_Sequences
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01_Strings
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01_Signals
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01_Variant_Records
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01_Concurrency
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-01_Introduction_to_Tajo
	11-02
	11-03
	11-04
	12-01_The_Exec_Interface
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01_MFile
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	14-01_MSegment
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	15-01_Streams
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	16-01_The_FormSWLayout_Tool
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	17-01_Tool_Window_Interfaces
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	18-01_Tool_Building
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	19-01_Multiple_Instance_Tools
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	20-01_Terminal_Interface_Package
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	21-01_Creating_Subwindows
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	A-01_Correcting_Compilation_Errors
	A-02
	A-03
	A-04
	B-01_Using_the_Debugger
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01_Translating_Uncaught_Signals
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01_Debugging_an_Address_Fault
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01_Answers_to_Questions
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01_Training_Liason_Information
	F-02
	F-03
	F-04
	G-01_Glossary
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	X-01

