Pilot Programmer"s Manual

XEROX

- 610E00160
December 1986.

. Xerox Corporation
Information Systems Division
XDE Technical Services

_ 475 Oakmead Parkway

-Sunnyvale, California 94086

Copyright © 1986, Xerox Corporation. All rights reserved.
XEROX®, 8010,and XDE are trademarks of XEROX CORPORATION.

Printed in U.S. A.

Preface

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document has been prepared for this purpose. Please send your comments to :

Xerox Corporation

Office Systems Division

XDE Technical Documentation, M/S 5827
2300 Geng Road

Palo Alto, California 94303

iii

Preface

-

iv

Table of contents

1.1
1.2
1.3

1.4

1.5
1.6
1.7

2.1

2.2

2.3

Introduction
General structure of system software . . 141
Files12
General characteristics of Pilot . 1-2
1.3.1 Processes, monitors, and synchronization14
1.3.2 Virtual memory, files,and volumes.15
1.3.3 Stream, device, and communication interfaces. 1-6
Pilot concepts . .17
14.1 Stateless enumerators. . .17
1.4.2 Synchronous and asynchronous operations . . 1-8
Notation and conventions. . 1-8
Common Software. . 1.9
What follows . .1-10
Environment
Processor environment . 2-1
2.1.1 Basic types and constants . . 2-1
2.1.2 Device numbers and device types . 2-4
Processor interface . 2-5
2.2.1 BitBlt . 2-5
2.2.2 TextBIt .2-10
2.2.3 Checksum . .2-14
2.2.4 ByteBlt .2-14
- 225 Other Mesa machine operations .2-15
System timing and control facilities .2-18
2.3.1 Universal identifiers .2-18
2.3.2 Network addresses .2-19
2.3.3 Timekeeping facilities . .2-20
2.3.4 Control of system power .2-23

iii

Table of contents

2.4

2.5
2.6

2.7

3.1
3.2

3.3
3.4
3.5

4.1

iv

2.3.5 Pilot's state after booting

Mesa run-time support

2.4.1 Processes and monitors.

2.4.2 Programs and configurations
2.4.3 Trapsandsignals
2.4.4 Calling the debugger or backsto
Client startup. .
Coordinating subsystems’ acquisition of resources
2.6.1 Use of the Supervisor

2.6.2 Supervisor facilities

2.6.3 Exception handling

General object allocation .

2.7.1 Basic types.

2.7.2 Basic procedures and errors

Streams

Semantics of streams

Operations on streams .

3.2.1 GetBlock and PutBlock .

3.2.2 Additional data transmission operations
3.2.3 Subsequence types .

3.24 Attention flags .

3.2.5 ‘Timeouts

3.2.6 Stream positioning.

Creating streams . .
Control over physical record characteristics
Transducers, filters, and pipelines .
3.5.1 Representing filters and transducers
3.5.2 Stream component managers

File Storage and Memory

Physical volumes . .

4.1.1 Physical volume name and size.

4.1.2 Physical volume errors.

4.1.3 Drives and disks

414 Disk access, Pilot volumes, and non-Pilot volumes .
4.1.5 Physical volume creation

4.1.6 Scavenging
4.1.7 Logical volume operations on physical volumes.

41.8 Miscellaneous operations on physical volumes .

.. 2-24
.2-26
.2-26
.2-31
.2-35
.2-36
.2-37
.2-37
.2-38
.2-39
.2-42
.2-42
.2-43
.2-43

. 32
. 33

. 3-6
.37

. 39
. 39
. 39
.3-11
.3-13
.3-14
.3-18

. 41

4-2
4-2
4-3
4-4
4-6
4-6
4-8

Pilot Programmer’s Manual

4.2

4.3

4.4

4.5

4.6

417

5.1

5.2

Logical volumes
4.2.1 Volume name and size .
4.2.2 Logical and physical volumes

4.2.3 Volume error conditions .
4.2.4 Creating and erasing logical volumes .
4.2.5 Volume status and enumeration

426 Opening and closing volumes
4.2.7 Volume attributes .
4.2.8 Volume root directory .
Files .

4.3.1 File naming .
432 Addressing within files.
4.3.3 File types .

4.3.4 File error conditions

435 Filecreation and deletion .
4.3.6 File attributes .
Scavenging

4.4.1 Scavenging a volume

4.4.2 Scavenger log file .
443 Operations on log files .

44.4 Investigating and repairing damaged pages

Virtual memory management

4.5.1 Fundamental concepts of virtual memory .

4.5.2 Mapping files to virtual memory intervals .

453 Explicitly reading and writing virtual memory.

454 Swapping .

455 Access control . e e e
45.6 Explicit allocation of virtual memory and special intervals.
4.5.7 Map unit and swap unit attributes, utility operations

Pilot memory management

4.6.1 Zones

46.2 Heaps .

Logging

471 Writing into the log file
4.7.2 Reading a log file

I/0 Devices

Channel structure and initialization .
51.1 Data transfer

5.1.2 Device specific commands .
5.1.3 Device status

Keyset, keyboards, and mouse

. 4-10
. 4-10
. 4-11
. 4-12
. 4-12
. 413
. 4-14
. 4-15
. 4-16
. 417
. 4-17
. 4-18
. 4-18
. 4-20
. 4-21
. 4-21
. 4-22
. 4-23
. 4-24
. 4-26
. 4-27
. 4-29
. 4-29
. 4-32
. 4-35
. 4-37
. 4-39
. 4-39
. 4-42
. 4-43
. 4-44
. 4-49
. 4-55
. 4-55
. 4-58

. 5-2
. 5-5
. 5-5
. 5-6

Table of contents

5.3

5.4

5.5

5.6

5.7

6.1
6.2

6.3

vi

The user terminal.

5.3.1 The display image .
5.3.2 Smooth scrolling

5.3.3 The keyboard and keyset
534 The mouse . '

5.3.5 The sound generator
Floppy disk channel

5.4.1 Drive characteristics
5.4.2 Diskette characteristics
5.4.3 Status .

544 Transfer operations
5.4.5 Non-transfer operations
Floppy file system

5.5.1 Accessing files on the diskette . .
5.5.2 Snapshotting and replication of the floppy volume .

5.5.3 Managing the floppy volume
TTY Port channel.

5.6.1 Creating and deleting the TTY Port channel

5.6.2 Data transfer

56.3 Data transfer status
5.6.4 TTY Port operations
5.6.5 Device status

TTY Input/Output

571 Starting and stopping .
5.7.2 Signals and errors .
5.7.3 Output .

517.4 Utilities .
5.1.5 String input operations
5.7.6 String output operations

5.7.7 Numeric input operations .
5.7.8 Numeric output operations.
Communication

Well known sockets

Packet exchange . .

6.2.1 Types and constants

6.2.2 Signals and errors .

6.2.3 Procedures .

Network streams . .

6.3.1 Types and constants

6.3.2 Creating network streams .

.5-11
.5-11
.5-13
.5-15
.5-15
.5-15
.5-16
.5-16
.5-17
.5-17
.5-18
.5-19
.5-20
.5-20
.5-23
.5-24
.5-28
.5-28
.5-29
.5-29
.5-30
.5-31
.5-32
.5-32
.5-33
.5-33
.5-34
.5-35
.5-36
.5-37
.5-38

. 6-2

. 6-4
. 6-5
. 6-6
. 6-7
. 69
.6-10
.6-12

Pilot Programmer’s Manual

6.4

6.5

6.6

7.1.

7.2

7.3

7.4

7.5

6.3.3
6.3.4
6.3.5
Routing
6.4.1
6.4.2
6.4.3

Signals and errors .
Utilities .
Attributes of Network streams .

Types and constants
Signals and errors .
Procedures .

RS232C communication facilities .

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
Courier
6.6.1
6.6.2
6.6.3

1 6.6.4

6.6.5
6.6.6
6.6.7

Correspondents
Environment
RS232C channel

Procedures for starting and stopping the channel

Auto-dialing

Definition of terms .
Binding

Remote procedure calling .
Errors .

Bulk data

Description routines
Miscellaneous facilities

Editing and Formatting

ASCII character definitions

Formatting .o

7.2.1 Binding
7.2.2 Specifying the destination of the output
7.2.3 String editing .

7.24 Editing numbers

7.2.5 Editing dates

7.2.6 Editing network addresses .

Strings L.

731 Sub-strings. .

7.3.2 Overflowing string bounds .

7.3.3 String operations

Time .

7.4.1 Binding

7.4.2 Operations .

Memory stream

7.5.1 Errors .

7.5.2 Procedurés .

.6-14
.6-17
.6-19
.6-23
.6-23
.6-24
.6-24
.6-27
.6-27
.6-29
.6-32
.6-43
.6-43
. 6-46
.6-46
. 6-46
.6-49
.6-53
.6-58
.6-59
.6-65

.11
.72
. 7-2
.72
. 7-2

. T1-4
.15

. 7-6
. 7-6
. 1-6
.7-10
.7-10
.7-10
.7-12
.7-12
.7-12

vii

Table of contents

8.1
8.2
8.3

84
8.5

9.1

9.2
10

10.1

10.2
10.3
10.4

11

11.1

viii

System Generation and Initialization

System components

Pilot initialization

Volume initialization .

8.3.1 Formatting physical volumes
8.3.2 Checking drives for bad pages .
8.3.3 Microcode and boot files

8.3.4 = Miscellaneous operations
Communication initialization.

Booting e

8.5.1 Creating a boot file . .
8.5.2 Writing the contents of a boot file
8.5.3 Making a boot file bootable .
8.5.4 Installing a boot file

8.5.5 Booting a boot file .

8.5.6 Updating a boot file

8.5.7 Atomic saving and restoring of Pilot instances .

The Backstop

Implementing a backstop . .
9.1.1 Initializing a backstop log file .
9.1.2 Control flow

9.1.3 Logging errors .

Reading backstop log files

Online Diagnostics

Communication Diagnostics .

10.1.1 Ethernet echo testing .

10.1.2 Gathering Ethernet statistics .

10.1.3 RS232C testing

10.1.4 Dialertesting
Bitmap Display, Keyboard, and Mouse Diagnostics
Lear Siegler Diagnostics .

Floppy Diagnostics

TCP/IP Interfaces

ARPARouter . ..
11.1.1 Types and constants
11.1.2 Procedures.
11.1.3 References .

.81
. 82
. 83
. 85
. 86
. 86
.89
812
812
.8-13
.8-13
.8-13
.8-14
.8-14
.8-15
815

. 941

. 92
. 9-2
. 94

. 10-1
. 10-2
. 10-7
. 10-9
.10-13
.10-14
.10-17
.10-18

. 1141
. 11-1
. 11-1
. 11-2

Pilot Programmer’s Manual

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

TcpStream .
11.2.1 Types and constants
11.2.2 Procedures .

11.2.3 Restrictions

11.2.4 References .
ArpaAddressTranslation .
11.3.1 Errors .

11.3.2 Procedures.

11.3.2.1 Host table .

11.3.3 References .
ArpaAddressCache

11.4.1 Procedures.

11.4.2 References .
ArpaHostTable

11.5.1 Procedures .

11.5.2 References .
ArpaTelnetStream .
11.6.1 Types and constants
11.6.2 Signals.

11.6.3 Procedures.

11.6.4 References .
TelnetListener .
11.7.1 Types and constants
11.7.2 Procedures.

11.7.3 References .
ArpaFilingCommon

11.8.1 Types and constants
TFTP.
11.9.1 Types and constants
11.9.2 Errors and signals .

- 11.93 Procedures .

11.94 References .
ArpaFTP . .o
11.10.1 Types and constants
11.10.2 Errors and Signals .
11.10.3 Procedures.
11.10.4 References .
ArpaFTPServer .
11.11.1 Types and constants
11.11.2 Procedures.
11.11.3 References .

. 11-2
. 11-2
. 11-5
. 117
. 11-8
. 11-8
. 11-8
. 11-9
. 119
.11-10
.11-10
.11-10
11-11
11-11
11-11
11-12
11-12
11-12
11-16
.11-16
.11-19
.11-19
.11-19
.11-20
.11-20
.11-20
.11-20
.11-22
.11-22
.11-23
.11-23
11-24
.11-25
.11-25
11-27
.11-28
.11-30
.11-30
.11-30
.11-34
.11-34

ix

Table of contents

11.12 ArpaSMTP .
11.12.1 Types and constants
11.12.2 Signals.
11.12.3 Procedures.
11.12.4 References .
11.13 ArpaSMTPServer. .
11.13.1 Types and constants
11.13.2 Procedures.
11.12.3 References .
11.14 ArpaMailParse
11.14.1 Types . L
11.14.2 Constants and data objects .
11.14.3 Signals and errors .
11.14.4 Procedures.
11.14.5 References .
Appendices
A Performance Criteria
Al Physical memory requirements of Pilot
A2 Execution speed and client program profile
A.2.1 Memory management .
A.2.2 File management .
A.2.3 Communication via the Ethernet
A.2.4 Processes
B Assigning and Managing File Types
C Pilot's Interrupt Key
D Utility Pilot
E Multi-national Considerations .
F References
F.1 Mandatory references.
F.2 Informational references .

.11-34
.11-34
.11-35
.11-36
.11-37
11-37
11-37
.11-38
.11-39
.11-39
.11-39
.11-40
.11-41
.11-41
.11-42

. Al
. A2
. A2
. A3
. A-3
. A3

. B-1

. D1

. E-1

. F-1
. F1

Introduction

This document defines and describes the external structure, appearance, and interfaces of
Pilot, the operating system for the Mesa processor, and the other packages released with
it. The description is primarily intended for the designers and implementors of client
programs of Pilot, i.e., applications, certain development and production tools, test
programs, etc. It provides sufficient information to allow the programmer to understand
the facilities available and to write procedure calls in the Mesa language to invoke them.
For each of the facilities of Pilot, this manual lists the procedure names, parameters,
results, the data types of each of the arguments, and the possible signals which can be
generated. These are captured in the Mesa DeFINITIONS modules which are part of each
release.

This manual is a reference manual for programmers, who are assumed to be familiar with
the Mesa programming language. It is not a tutorial on how to write programs which use
Pilot. The order of information presented, insofar as possible, tries to minimize the
number of forward references. Cross referencing within the text has been abandoned for a
more comprehensive referencing via the index. It is expected that the reader will go to the
index to locate the description of terms or concepts encountered. References in the text of
the form §1.2.3 refer to section 1.2.3. Deviations from the descriptions given here and the
currently released version of Pilot are noted in the documentation which accompanies the
release.

The specification presented here is adequate for the majority of programs which need to
interface with Pilot and make use of its facilities. In some cases, however, supplementary
facilities will be required in order to permit certain applications to make effective use of
the Mesa hardware and processor. Such facilities, if made generally available, could lead
to degraded performance or degraded reliability of both Pilot and the whole Mesa system.
Therefore, they are not described here but are in supplementary documents which are
made available, along with the corresponding DEFINITIONS modules, only as required.

1.1 General structure of system software

It is important to understand the relationship of the various kinds of software found in a
* Mesa processor. There are the following major categories:

1-1

Introduction

1.2 Files

Faces, Heads. and Microcode: A face is a Mesa interface that embodies some aspects of
the processor, defined in the Mesa Processor Principles of Operation, and of its [/O
devices. Each face is implemented by a combination of Mesa code, called a head, lower
level machine code, called microcode, and the underlying hardware. The collection of
heads and microcode provides a machine-independent environment in which Pilot and
its clients execute.

Pilot: Pilot is the operating system which manages the hardware resources of, and
provides the run-time support for, all Mesa programs on a machine. Pilot is written in
the Mesa language. Its facilities are explicitly invoked by means of procedure calls
from, or exceptions generated by, client programs.

Common Software: These are collections of modules and configurations which provide
services often useful to applications. They are written in Mesa and call upon Pilot
facilities. Some are released with Pilot while others are released separately.

Applications: Application software actually performs the functions we are marketing.
These programs are written in Mesa and may call upon Pilot and Common Software
for support.

In addition, there are other categories of software which are important but which will not
appear in a final product as delivered to a customer. These include the Mesa compiler and
binder, a number of development tools, test programs, etc. These are designed to operate
in the environment of Pilot.

This document deals with Pilot, and the Common Software released with it. However, it is
not possible to consider Pilot in isolation, and frequent reference must be made to
documents describing the other categories of software. In particular, the Pilot facilities
described here would be inadequate for supporting a modern software development project
in the absence of the Mesa facilities.

Y

The basic facilities of Pilot are incorporated in the object file PilotKernel.bcd. There is
also a special version of Pilot in the object file UtilityPilotKernel.bcd; this version
is intended to support small applications and utilities which must run in real memory (see
Appendix D for more details). Some of the facilities described in this manual are
implemented in their own object files. In those cases, the name of the object file will be
mentioned in the section that describes the facility.

There is no explicit mention made in this document of the location of files. That
information is contained in the documentation that is issued in conjunction with each
release of Pilot. Readers should consult that documentation to ascertain where files are
located.

1.3 General characteristics of Pilot

1-2

Pilot is not a general purpose operating system. Instead, it is a nucleus of software which
serves as an interface between a Mesa processor and all other software. In particular,
Pilot defines a "Basic Machine" which is an abstraction of the physical resources provided
by the hardware. The purpose of this Basic Machine is to define a standard interface

Pilot Programmer’s Manual 1

which is relativelv independent of the size, speed, particular model, and configuration
upon which it is operating. It thus provides a uniform environment in which clients can be
designed and programmed. Furthermore, it insulates these as much as possible from
variations in hardware configuration from site to site and from time to time.

In general, Pilot is designed around the notion that its clients are a cooperative system of
programs all serving a common purpose. Thus, it is far more tolerant and permissive than
most operating systems. [t delegates much more control of system resources to its users.
It permits programs and subsystems to recover gracefully from errors, but it also places
more responsibility on them to ensure the overall well-being of the machine and of the
networks to which it is connected.

The major facilities of the Basic Machine can be regarded as falling roughly into three
main categories:

Mesa run-time support including processes, monitors, and synchronization facilities
Virtual memory, files, and volumes
Stream, device, and communication interfaces

Each of these categories are described below in some detail.

Some facilities and concepts normally associated with operating systems have been
deliberately omitted from Pilot. For example,

Master Mode and Protection: There is no "ironclad"” mechanism which protects Pilot
from errant or malicious client programs, or even which protects client programs from
each other. Instead, Pilot consists simply of a group of Mesa modules, and relies on
such facilities as Mesa type-checking to provide the redundancy necessary to detect
errors. The protection relationship between Pilot and its clients is the same as that
between any two systems built in Mesa.

Job Control: Since product systems have no explicit concept of "job", Pilot provides no
Jjob control facilities. Instead, groups of related processes which support a particular
application control themselves and their use of resources in response to external
stimuli from the human user, or from other system elements via the Network Services
(NS) Communication System.

Billing and Accounting Functions: Since the product architecture is designed around
the concept of a distributed network of low cost system elements, there is no need to do
detailed billing or to account for the use of resources within a single system element.
In those few applications where economic management of resources is required or
desired, such as in central file servers, this function is performed at a higher level, not
within Pilot.

Competitive Allocation of Resources: The allocation of major system resources will
generally be on a cooperative rather than a competitive basis. Thus, Pilot does not
contain elaborate resource allocation functions. Instead, resources and resource
management can often be planned statically when systems are configured. Where
dynamic resource control is required, such as in the sharing of physical memory, Pilot
provides facilities which allow the applications to state their current requirements.

1-3

Introduction

1-4

Complex Services: Pilot does not provide very complex services or facilities such as
directories, display and keyboard management routines, command languages, or
human-engineered interfaces. These are all provided by client programs, and are
likely to vary across the product lines.

1.3.1 Processes, monitors, and synchronization

Within a system element, there will almost always be several activities occurring
concurrently. For example, the display will be updated at the same time as the human
user is typing on the keyboard, and perhaps both of these will take place at the same time
files are being read, text is being edited, or documents are being transferred to other
system elements. To support this kind of concurrent activity, Mesa (with the help of the
Mesa processor and Pilot) provides the following facilities:

Processes, which represent asynchronous activities,
Monitors, which arbitrate access to shared resources, and
Condition variables, which provide flexible interprocess synchronization.

These facilities are actually features of the Mesa language, but are described here for
completeness. A ~

The concept of process is a fundamental architectural concept in all Mesa software. Mesa
processes are intentionally "lightweight". They are much more like Mesa procedures
than, say, entire application programs. A process is instantiated in much the same way
that a Mesa procedure is called. When this is done, the result is a separate, independently
executing thread of control, with its own local data (if any). A process has the same status
as a procedure. A process may call procedures, access local or global data, and spawn new
instances of processes, subject to the standard Mesa name scoping constraints. A typical
application may utilize many processes, and the whole processor may contain hundreds of
process instances at one time. These can be created and deleted frequently (tens, or even
hundreds of times per second if this proves useful).

The general philosophy of programming with processes in Mesa is that one or a collection
of modules manages a particular resource or common data structure. Each process which
needs to access that resource or data structure calls the procedures defined in those
modules. To impose order on the possible chaos which could result from asynchronous
manipulation of the data, the concept of monitor lock is provided. A monitor lock is a data
structure which contains the interlocks sufficient to guarantee that only one process at a
time may gain access to the data. It serves as an orderly "meeting ground"” through which
otherwise asynchronous processes may synchronize their activities and ensure the
consistency of the data or resource which they are sharing.

In many cases, the exclusive access guarantee of the monitor mechanism is not sufficient
to express the desired pattern of coordination among cooperating processes. The condition
variable facility provides additional flexibility in synchronizing such interactions, by
allowing one process to wait for some event, and another process to notify it when the
event occurs. Condition variables also provide the basic means in Pilot and Mesa by which
a process may wait for an event and time out after a specified period of elapsed time if that
event does not occur.

Pilot Programmer’s Manual : 1

In Pilot, the interfaces to sharable system resources are presented as procedures which
client programs may call. These procedures almost always define synchronous operations,
even when they involve the operation of an asynchronously operating device connected to
the Mesa processor. Thus, some of them may take a long time to complete. In general, if
an application program cannot tolerate such a long wait, or could make better use of its
time, it should fork a new process instance to call the Pilot procedure and do the waiting
for it. Later, when the results are actually required, the two process instances can be
synchronized and one of them deleted. This is the general mechanism.by which
asynchronous activity is managed by both Pilot and client programs. The single exception
to this is in the area of direct control of physical devices, in which Pilot provides a more
primitive means of implementing overlapped, concurrent activity. Very few clients will
be directly involved with this interface to Pilot.

1.3.2 Virtual memory, files, and volumes

Pilot provides an integrated system for managing main memory and file storage. In
particular, it implements a single, monolithic, page-oriented, virtual memory shared by
all Mesa software, including Pilot itself. This virtual memory consists of 220 to 232 16-bit
words, depending upon the hardware processor. The memory is organized into 256-word
pages. To complement the virtual memory, Pilot provides a system of files, each of which
may contain up to 223 pages (i.e., 232 bytes). Files are aggregated into volumes each of
which also may contain up to 223 pages. Files are accessed via the virtual memory
swapping mechanism, as described below.

Traditionally, virtual memories are implemented in operating systems by swapping the
contents of virtual pages between real memory and some form of backing store. In Pilot,
the files serve the role of backing store. Any page of virtual memory which contains
information must have associated with it a page from a file to and from which it can be
swapped. In the case of pages containing Mesa object code (which are always read-only),
the backing file is just the object code file output by the Mesa system. In the case of virtual
memory which "buffers" the contents of files containing long-term data, the files
themselves act as the backing store. Finally, for pages containing temporary data which
is purely internal to the current execution of the program, Pilot provides private,
temporary, anonymous files for backing storage. In UtilityPilot based systems, pages for
temporary data are only supplied from the processor’s real memory.

Files are associated with virtual memory by mapping a file or portion of a file to virtual
memory. The interval of virtual memory used is normally allocated as part of the mapping
operation. Each map unit, or mapped interval, is typically subdivided into swap units, for
swapping purposes, as described in the next paragraph. Pilot also provides operations to
remove the mapping when it is no longer required.

Whenever a process attempts to reference (i.e., fetch or store) a virtual memory location
within a map unit, the page containing that location may not be present in real memory.
If it is not, Pilot must read it into real memory. Execution of the process is suspended until
the swapping is completed. Pilot provides swapping in two ways:

under the control of the client program, in the form of swapping commands -- these are
commands by which the client program informs Pilot that certain intervals of virtual
memory will be needed in the immediate future and that swapping should be initiated
as soon as possible; An interval is no longer needed and should be swapped out; An

Introduction

interval is not likely to be referenced soon, so Pilot should write it out and release the
real memory allocated to it.

on demand -- if the page referenced is neither in real memory nor the subject of a
recent swapping command to bring it in, Pilot will itself initiate a swapping action to
bring in the that page and any adjoining swapped-out pages of the containing swap
unit.

Typically, intervals containing code, and intervals containing local and global frames will
be swapped on demand, while those which contain the major client data structures and
data from files will be swapped under client program control. Swapping performance can
be improved by organizing the Mesa code file(s) so that related procedures are located in
the same interval of virtual memory, typically by use of the packager. Pilot further
improves performance by attempting to allocate the pages of a file contiguously on the file
storage medium so that an interval can be swapped in a single [/O operation.

A client which wishes to read from a file will map that file into a virtual memory interval
and then use explicit or demand swapping to cause it to be swapped into real memory. If
the file is being updated in place, the client will simply store into the relevant locations of
virtual memory. Subsequently, when the interval is unmapped or otherwise swapped out
of real memory, the file will reflect the new contents. If, on the other hand, the file is not
being updated in place, the client program can copy the contents of a virtual memory
interval to a portion of a file, and copy a portion of a file to a virtual memory interval,
without altering the mapping of the interval.

Pilot supports access to files on local volumes. Each existing file is uniquely defined
within that volume. If that volume is implemented on a removable medium, it (and all of
its files) may be removed and remounted on another system element.

Files are identified by file ids. When a new file is created, a new file id is issued. The file is
uniquely identified to Pilot by presenting Pilot with its id and the id of the containing
volume. Client may not generate file ids, but they may store them, copy them, and pass
them to other programs.

An important interval of virtual memory recognized by the Mesa processor and the Mesa
system is the main data space (MDS). This is a contiguous subset of virtual memory
consisting of 216 words (256 pages), any part of which may be addressed by a sixteen-bit
Mesa POINTER. An MDS contains the low-level data structures and mechanisms, such as
local and global frames and trap handlers, necessary for executing Mesa processes.
Conversely, each process is associated with one and only one MDS. Although the Mesa
processor supports multiple coexisting MDS'’s, Pilot does not. Thus, any Pilot-based
system has only one MDS, which is shared by all of the system'’s processes.

1.3.3 Stream, device, and communication interfaces

Pilot supports a sophisticated, packet-switched, communication system. The heart of this
system is a software package called the router.

Information received from one Pilot client for transmission to another Pilot client (on the
same or another system element) is broken into packets for delivery. These packets,
encapsulated in the Xerox Internet Transport Protocols and including both source and

Pilot Programmer’s Manual 1

destination addresses, are passed to the router. If the destination client is on the local
machine, the packet is passed to that client.

For remote destination clients, the router determines if there is a communication path
from the local machine to the final destination machine. If no path exists, the packet
cannot be transmitted, and an appropiate status is set. Otherwise the best available path
is selected and the packet is transmitted via the first communication link of the path on
route to its final destination. This physical transmission may take place on any one of a
number of communication devices, including the ethernet or telephone lines.

The router sends and receives packets via ethernet device drivers and by other
communication device drivers which may be added in the future. On the Pilot client side,
the router is accessed by the NetworkStream and Packetéxchange interfaces (see Chapter 6).

Pilot establishes a style and some standards for the construction of I/O device drivers by
defining the notion of channel. This makes the style of usage of the various [/O drivers
similar enough to be somewhat predictable and standard enough that a client constructed
I/0 device driver can be included in Pilot without a formal integration. All of the Pilot-
supplied and Pilot-required device drivers conform to this style and these standards.

One such Pilot-supplied device driver is the ethernet device driver. The ethernet device
driver not only may be used to transmit Internet Transport Protocol packets through the
router as described above, but may also be used as an ordinary device driver for non-NS
communication with non-NS stations.

When sequential data is to be transported between a Pilot client and an I/O device or
another Pilot client, it is usually possible to do this in a device and format independent
way. The Pilot Stream Package accomplishes this. The mechanism for transcribing a
sequential stream of data on or off an I/O device is provided by a client written or Pilot-
supplied ¢ransducer. Modifications to the data stream (e.g., code conversion) are
accomplished by a client or Pilot filter. The stream package provides a basic set of
transducers and filters and, more important, a way of assembling them sequentially into
processing and transmitting pipelines.

One kind of stream supported directly by Pilot is the Network stream referred to above.
This kind of stream is capable of receiving data from a Pilot client on one machine and
transmitting it to another client on a different machine.

1.4 Pilot concepts

There are methodologies which are used repeatedly in the design of the Pilot functions.
They are described here.

1.4.1 Stateless enumerators

Many Pilot functions return information to the client of the form of a list of items whose
length cannot be a priori known. Consequently, Pilot functions that supply this type of
information do so by passing back an item of the list for each call for the information.
These functions are created in a very stylized way.

The basic idea is that the client, on its first call to such a function, supplies a value which
no item of the list can have. This item is usually has a name of the form nullobject, for

1-7

Introduction

whatever object is being enumerated. The function returns a member of the list. [f the
client, on its next call on the list function, supplies the dpreviously returned value, Pilot
will return another member of the list. This goes on until the list is exhausted where upon
Pilot returns nullobject, indicating the end of the list.

These types of functions are called stateless enumerators. A reference to a stateless
enumerator will always be accompanied by the beginning and ending values. Usually the
items of the list are not returned in any particular order. If there is some order imposed,
this will be pointed out in the description of the function.

1.4.2 Synchronous and asynchronous operations

When a Pilot function is called, it may or may not return before the requested operation
has been completed. If Pilot waits until the operation is done (the usual case), the
operation is called synchronous. If the operation queues the operation and returns before
it has completed, it is dubbed asynchronous. If no mention is made of the type of a
particular operation, the operation is synchronous. Almost all Pilot operations are
synchronous.

1.5 Notation and conventions

1-8

At the beginning of each section are listed the names of the DEFINITIONS modules containing
the Pilot facilities described in that section. The procedure and type definitions contained
in each of the interface modules are presented in this document as pseudo-Mesa
declarations of the form: '

ModuleName.TypeName: TYPE = ... ;
ModuleName.ProcedureName: PROCEDURE [ParameterList] RETURNS [ResultsList];
ModuleName.SignalName: siGNAL [ParameterList] RETURNS [ResultsList];

That is, each definition is listed with its own name qualified by the DEFINITIONS module
name. Any Mesa program which invokes the facilities of Pilot must list the names of the
relevant DEFINITIONS modules in its DIRECTORY clause. [t may then refer to one of these
variables, procedures, types, or signals by its fully, qualified name. This style of explicit
qualification is strongly recommended (i.e., as opposed to opening the scope of the
DEFINITIONS module by an OPEN clause, and using the unqualified name).

Accompanying these Mesa declarations is the explanation of the function of each
procedure, the conditions under which it may be invoked, and the SIGNALS and ERRORS it can
raise. In this explanatory text, the explicit interface qualification is usually dropped,
since it is clear from the context.

The following rules apply to all the operations discussed in this manual. Exceptions to the
rules will be mentioned explicitly.

1) If the explanatory text of an operation does not explicitly say that a specific error
is raised, then the operation does not raise the error.

Pilot Programmer’s Manual 1

2) Ifanoperation returns by raising an error, then the operation will appear to have
only raised the error.

3) If an operation is to operate on a object already operated on (e.g.,
Space.MakeReadOnly on a read-only object), then the operation will return
successfully. That is, most operations are idempotent.

4) All operations that may be performed outside the body of a catch phrase, may be
performed within the body of the catch phrase (e.g., Pilot holds no monitor locks
while raising a signal or error).

5) Invoking an operation with a count parameter of zero, is equivalent to invoking
the operation with a count of one minus one (i.e., zero is not a special case).

Note: A paragraph in this form headed by the word "Note" contains additional
information about how the operations are intended to be used. These are included to help
the programmer to design his program to take best advantage of the Pilot facilities.
Ignoring these notes will not produce incorrect programs, but it may produce programs
that execute slowly, or require excessive amounts of system resources.

Caution: Paragraphs labeled with "Caution” are intended as warnings to programmers.
In general, these apply to features or aspects of Pilot which can be easily misused, and
which will result in incorrect or inconsistent operation if they are misused. In particular,
Pilot is not likely to be able to detect errors cautioned against in these paragraphs. It is the
programmer's responsibility to avoid making these mistakes.

For example, an error which Pilot cannot detect is the "dangling reference" problem. In
many cases, Pilot defines a class of abstract objects and provides client programs handles
for accessing such objects. If one client program should request Pilot to destroy a
particular object, then later another client program requests Pilot to create a new one of
the same type, Pilot may reuse the handle of the old, destroyed one. If the first client
program inadvertently retains and uses copies of the old handle, these will now look like
legitimate handles for the new object. Pilot may not be able to detect the condition and
chaos is likely to ensue. :

Metasymbols are indicated with italics. It is expected that some specific instance will be
filled in for the metasymbol, such as in the case of nullobject in the preceding section. A
possible instance of a nullobject might be nuflHandle.

1.6 Common Software

This manual also includes descriptions of the Common Software. Common Software is
not included in PilotKernel.bed, but is made available as separate object files. Clients
which make no use of Common Software need not be burdened with its presence. Common
Software comes in two varieties, Product and Development. Those Common Software
packages denoted as Product Common Software are intended to be used in products.
Development Common Software consists of packages that are used internally, in the
development environment; they should not be used in product systems. Only Product
Common Software is described in this manual.

1-9

Introduction

1-10

Because the Common Software packages are not included in PilotKernel bed, the name of

. the implementing object file, how to bind, ¢tc. 1s presented at the beginning of each section

describing a Common Software package.

1.7 What follows

The rest of the manual describes the interfaces to Pilot and the Common Software
packages in terms of the Mesa data types and procedures used by clients. These types and
procedures are embodied in one or more Mesa interfaces (DEFINITIONS modules) made
available to programmers of client software. The description is organized according to the
major resources managed by Pilot.

Chapter 2 describes the interface provided by Pilot to various Mesa processor features.
Described are the various constants and types associated with the processor. It also
describes the run-time support needed to execute Mesa programs. This chapter includes
the descriptions of facilities to support the Mesa concepts of process, monitor, and
condition variable and the various traps, procedures, and signals defined by the Mesa
language. It describes some basic, low-level system facilities provided by Pilot. These
include: universal identifiers, by which volumes and other objects are named; network
addresses, which control communication via the Xerox Internet Transport Protocols;
several forms of timekeeping facilities; and facilities for controlling system electrical
power.

-

In Chapter 3, the general concept of a stream is introduced. Streams may be superimposed
upon files, communication facilities, and devices in order to achieve a high level, medium
independent means of accessing and distributing information.

Chapter 4 describes the file management and virtual memory facilities of Pilot.

Chapter 5 describes the facilities by which client software can exercise control over
hardware devices. These facilities are meant primarily for situations in which streams
are not suitable. This chapter is a mode! for individual device interfaces, some of which
are described in this manual, and others of which are implemented by clients.

Chapter 6 describes the communication facilities of Pilot.

Chapter 7 describes miscellaneous editing and formatting packages.

Chapter 8 describes how to initialize the system, and how to get a client to start execution.

Chapter 9 describes facilities for automatically handling system errors and signals. The
processing of error conditions is done by a separate program referred to generically as a
backstop.

Environment

This chapter describes the constants, types, and procedures, available to the Pilot
programmer, which describe the system element and make available at the client level,
certain features of the abstract machine. It contains the basic levels of the system.

2.1 Processor environment
Environment: DEFINITIONS . . . ;
This section captures all of the basic constants describing the processor and peripherals.

The first section describes the processor and the second defines the constants pertinent to
the peripheral devices attached to the processor.

2.1.1 Basic types and constants

Pilot is specifically designed to execute on system elements defined by the Mesa Processor
Principles of Operation. For convenience, the basic types and constants of that
architecture are captured symbolically in the DEFINITIONS module Environment.

The following definitions define the basic word, byte and character sizes of the Mesa
processor.

Environment.Byte: TYPE = [0..255];
Environment.Word: TYPE = [0..65535];

Environment.bitsPerWord: CARDINAL = 16;

"
L

Environment.bitsPerByte, Environment.bitsPerCharacter: CARDINAL
Environment.logBitsPerWord: CARDINAL = 4;

Environment.bytesPerWord, environment.charsPerWord: CARDINAL
bitsPerWord / bitsPerCharacter;

Environment.logBitsPerByte, Environment.logBitsPerChar: CARDINAL = 3;

2-1

Environment

2-2

“Environment.logBytesPerWord, environment.logCharsPerWord: CARDINAL = 1;

All constants of the form log... are base 2 logarithms of their respective quantities. The
following type is a general purpose descriptor for a sequence of bytes in virtual memory
(see section §4.5 for a description of virtual memory).

Environment.Block: TYPE = RECORD[
blockPointer: LONG POINTER TO PACKED ARRAY [0..0) OF Environment.Byte,
startindex, stopindexPlusOne: CARDINAL];

The following constant defines an empty block.

Environment.nullBlock: environment.Block = [nw, 0, 0];

The following definitions characterize the basic page size of the Mesa processor.

Environment.wordsPerPage: CARDINAL = 256;

Environment.bytesPerPage, Environment.charsPerPage: CARDINAL = wordsPerPage *
bytesPerWord;

Environment.logWordsPerPage: CARDINAL = 8;

Environment.logBytesPerPage, Environment.logCharsPerPage: CARDINAL =
logWordsPerPage + logBytesPerWord;

The following definitions characterize the maximum virtual memory address space
available to Pilot clients.

Environment.maxPagesinVM: CARDINAL = Environment.lastPageCount;

- This is one less than the number of VM pages provided by the hardware. The highest

numbered VM page is reserved for system purposes.

Environment.maxPagesinMDS: CARDINAL = 256;

Environment.PageNumber: TYPE = LONG CARDINAL; --[0..224-1)--
Environment.firstPageNumber: environment.PageNumber = 0;

Environment.lastPageNumber: Environment.PageNumber = 16777214; -=224-2--

Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines PageNumber as a LONG CARDINAL and defines the
constants firstPageNumber and lastPageNumber to specify FiRsT[PageNumber] and
LAsT[PageNumber]. Similarly for PageCount and PageOffset below.
Environment.PageCount: TYPE = LONG CARDINAL --[0..224-1]--;

Environment.firstPageCount: Environment.PageCount = 0;

Environment.lastPageCount: Environment.PageCount = lastPageNumber + 1; -- 222-1

Pilot Programmer’s Manual 2

Environment.PageOffset: TYPE = Environment.PageNumber;
environment.firstPageOffset: Environment.PageOffset = 0;
Environment.lastPageOffset: Environment.PageOffset = lastPageNumber;

Caution: Substituting LAST[Environment.PageNumber] or LAST[Environment.PageCount] for
the above constants will yield incorrect results.

Environment.Base: TYPE = LONG BASE POINTER;
Environment.first64K: Environment.Base = ...;

first64K is the base pointer to the first 64K of virtual memory.
Environment.MaxINTEGER: INTEGER = LAST[INTEGER];

Environment. MiNINTEGER: INTEGER = FIRST[INTEGER] ;
Environment.MaxCARDINAL: INTEGER = LAST[CARDINAL];
Environment.MaxLONGINTEGER: INTEGER = LAST[LONG INTEGER] ;
Environmient.MiNLONGINTEGER: INTEGER = FIRST[LONG INTEGER] ;
Environment.MaxLONGCARDINAL: INTEGER = LAST[LONG CARDINAL];
The following types allow direct manipulation of long values.

Environment.Long, Environment.LongNumber: TYPE = MACHINE DEPENDENT
RECORD [SELECT OVERLAID * FROM
lc = > [lc: LONG CARDINAL],
li = > [li: LONG INTEGER],
Ip = > [Ip: LONG POINTER],
lu = > [lu: LONG UNSPECIFIED],
num = > [lowbits, highbits: carDiNAL],
any = > [low, high: unsPeCiFiED],
ENDCASE];

The following structure is used to address bits (used principally by BitBlt).
Environment.BitAddress: TYPE = MACHINE DEPENDENT RECORD [

word: LONG POINTER,

reserved: [0..LAST[WORD]/Environment.bitsPerWord) « 0,

bit: [0..Environment.bitsPerWord)];
Note that the reserved field must be zero.

The following operation returns a LONG POINTER to the first word of a page.

Environment.LongPointerFromPage: PROCEDURE [page: Environment.PageNumber]
RETURNS [LONG POINTER];

2-3

Environment

2-4

The following operation returns the number of the page containing pointer. If pointer is
NIL, the value returned is undefined-no signal is raised.

Environment.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]
'RETURNS [Environment.PageNumber];

2.1.2 Device numbers and device types

Device: DEFINITIONS . . . ;
DeviceTypes: DEFINITIONS . . . ;

Definitions are provided for devices and classes of devices attached to the system element.
These constants are defined in the interfaces Device and DeviceTypes. Definitions in the
interface Device serve to identify the individual devices attached to the system element.

Device.Type: TYPE = RECORD [CARDINAL];
Device.nullType: Device.Type = [0];
Device.Ethernet: TYPE = CARDINAL [5..16);
Device.PilotDisk: TYPE = CARDINAL [64..1024);

All Ethernet type devices will have a value in the range defined by Ethernet. All devices
capable of containing a Pilot physical volume will be in the range defined by PilotDisk.

Device types provide a means of classifying the different devices attachable to the system
element. Device typesfor Ethernet devices are:

DeviceTypes.anyEthernet: Device.Type = ...;

DeviceTypes.ethernet: Device.Type = ... ;

DeviceTypes.ethernetOne: Device.Type = ... ;

A type of anyEthernet indicates that the device is an Ethernet but of unspecified type. A
type of ethernet indicates that the device is a 10 megabit Ethernet. A type of ethernetOne
indicates that the device is a 3 megabit Ethernet.

The specific device types assigned to Pilot disks are:

DeviceTypes.anyPilotDisk: Device.Type = ...;

DeviceTypes.sa1000: Device.Type

DeviceTypes.5a1004: Device.Type

DeviceTypes.sa4000: Device.Type

DeviceTypes.sa4008: Device.Type

Pilot Programmer’s Manual 2

DeviceTypes.t300: Device.Type = ... ;
DeviceTypes.t80: Device.Type = ... ;

DeviceTypes.cdc9730: Device.Type = ...;

DeviceTypes.q2000: Device.Type

DeviceTypes.q2010: Device.Type

DeviceTypes.q2020: Device.Type

DeviceTypes.q2030: Device.Type

[]
-

DeviceTypes.q2040: Device.Type

DeviceTypes.q2080: Device.Type

A type of anyPilotDisk indicates that the device is a Pilot disk but of unspecified type.

A type of sa1000 indicates that the device is some unspecified disk of the Shugart
Associates SA1000 family. Similarly, a type of sa8000 indicates that the device is some
unspecified disk of the Shugart Associates SA4000 family. A type of sa1004 indicates that
the device is an SA1004 disk, a type of sa4008, an SA4008 disk.

A type of t300 indicates that the device is a Century Data Systems T-300 disk. A type of
t80 indicates that the device is a Century Data Systems T-80 disk. A type of ¢dc9730
indicates that the device is a Control Data Corporation CDC-9730 disk.

A type of q2000 indicates that the device is some unspecified disk of the Quantum 2000
family. Types of 2010, q2020, q2030, q2040, and q2080 indicate Quantum disk devices of
type 2010, 2020, 2030, 2040, and 2080, respectively.

Other device types included in the interface are:

DeviceTypes.null: Device.Type = Device.nullType;

DeviceTypes.sa800: Device.Type = ... ;

A type of sa800 indicates that the device is some unspecified disk of the Shugart
Associates sa800 family.

When indicating devices capable of holding a Pilot volume, Pilot will report a correct
device type, although it may not be as specific as possible (i.e., a Shugart SA4008 disk
might be reported as either DeviceTypes.anyPilotDisk or DeviceTypes.sad4000 or
DeviceTypes.sa4008. .

The following Extras interfaces are interim for this release. In future releases, all Extras
interfaces will be merged with their parent interfaces.

DeviceTypesExtras.anyFloppy: Device.Type = ... ;

Environment

]
<

DeviceTypesExtras.saB50: Device.Type

DeviceTypesExtras.sa455: Device. Type

DeviceTypesExtras.sa456: Device.Type = ...;

DeviceTypesExtraExtras.m2235: Device. Type

DeviceTypesExtraExtras.m2242: Device.Type

oo oy

DeviceTypesExtraExtras.m2243: Device.Type
A type of anyFloppy indicates that the device is a floppy drive but of unspecified type.

A type of sa850 indicates that the device is a Shugart Associates SA-850 floppy drive.
Similarly, a type of sa455 or sa 456 indicates that the device is a Shugart SA-455 or SA-
456 floppy drive, respectively.

A type of m2235 indicates that the device is a Fujitsu 26 MB rigid disk drive. Similarly, a
type of m2242 or m2243 indicates that the device is a Fujitsu 50MB or 80 MB rigid disk
drive, respectively.

2.2 Processor interface

2-6

This section presents interfaces, provided by Pilot, that permit access to features provided
by the underlying Mesa processor which are not provided by the Mesa language. These
interfaces define pseudo-faces-types defined by the hardware and operations directly
implemented by the hardware. Pilot merely exports the definitions for the use of its
clients. The types and operations are defined below.

Y

2.2.1 BitBlt

BitBlt: DEFINITIONS...;

The Bit Block Transfer operation in this interface is 81TBLT which operates on rectangular
arrays of bits in memory. The instruction accesses source bits and destination bits,
performs a function on them, and stores the result in the destination bits.

Successive bit pairs are obtained by scanning a source bit stream and a destination bit
stream. The instruction operates successively on lines of bits called items; it processes
width bits from a pair of lines, and then moves down to the next item by adding srcBpl (bits
per line) to the source address and dstBpl to the destination address. It continues until it
has processed height lines.

Figure 2.1 illustrates a possible configuration of source and destination rectangles, which
are always of the same size and dimensions, embedded in separate bitmaps.
Approximately half of the items have been moved to the destination, and the location of
the next item is highlighted in the source bitmap and shown as a dotted line in the
destination bitmap.

BitBIt.BITBLT: PROCEDURE [ptr: BBptr]

Pilot Programmer’s Manual 2

Destination Bitmap

Source Bitmap

dst src "
’\4___ width —] _T—

height l

i X

if dstBpl

item

[~ wigtn —>

X

I<———-———-—— srcBpl _______.)I

Figure 2.1 BitBlt Source and Destination

The argument to Bit Block Transfer is a short pointer to a record containing the source
and destination bit addresses and bits per line, the width and height (in bits) of the
rectangle to be operated on, and a word of flags that indicate the operation to be
performed. The width and height of the rectangle are restricted to a maximum of 32,767.
The argument record must be aligned on a sixteen word boundary.

gitslt. AlignedBBTable: PROCEDURE [ip: POINTER TO BBTabIeSpace] RETURNS [b: BBptr] ;
Bitsit.BBTableSpace: TYPe = ARRAY [1..51ze[BBTable] + BBTableAlignment) OF UNSPECIFIED;
gitBit.BBTableAlignment: cArRDINAL = 16;

AlignedBBTable ensures that the BBTable will be on a sixteen word boundary.
BitBlt.BBptr, sitsit.BitBltTablePtr: TYPE = POINTER TO BBTable;

sitBlt.BBTable, BitBIt.BitBltTable: TYPE = MACHINE DEPENDENT RECORD |
dst: BitAddress,
dstBpl: INTEGER,
src: BitAddress,
srcDesc: SrcDesc,
width: CARDINAL,
height: CARDINAL,
flags: BitBltFlags,
reserved: UNSPECIFIED « 0];

This table contains all the arguments for specifying the resultant bit pattern. The
following types are used to make up a BitBltTable (BBTable).

BitBIt.BitAddress: TYPE = Environment.BitAddress;

BitAddress is used to address bits.

2-7

Environment

BitBit.SrcDesc: TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID * FROM
gray = > [gray: GrayParm],
srcBpl = > [sreBpl: INTEGER],
ENDCASE];

The description of the source may be a pattern to be repeated or may be particular bits. In
the case of a pattern, the gray field would be selected. This is described in detail under
Gray Flag following.

BitBit.BitBItFlags: TYPE = MACHINE DEPENDENT RECORD]
direction: Direction « forward,
disjoint: BOOLEAN « FALSE,
disjointitems: BOOLEAN & FALSE,
gray: BOOLEAN & FALSE,
srcFunc: SrcFunc « null,
dstFunc: DstFunc « null,
reserved: [0 511 0];

Direction Flag

The direction flag indicates whether the operation should take place forward (left to right,
from low to high memory addresses) or backward (right to left, from high to low memory
addresses). This allows an unambiguous specification of overlapping BitBlts, as in
scrolling.

gitBlt.Direction: Tvype = {forward, backward};

If the direction is backward, the source and destination addresses point to the beginning of
the last item of the blocks to be processed, and the source and destination bits per line
must be negative. This restricts the width of the bitmaps involved to a maximum of 32,767
bits.

Disjoint Flag

If the operation’s source and destination are completely disjoint, the implementation
performs the operation from left to right, top to bottom.

Both the direction and the disjointitems flags in the argument record are ignored in the
case that disjoint is set.

Disjointitems Flag

If the individual items of the source and destination are disjoint, but the rectangles
otherwise overlap, the disjointitems flag should be set (and the disjoint flag should be
clear); this allows the implementation to perform the operation so that, within each item,
the bits are processed in the most efficient horizontal direction. The items are processed in
the order indicated by direction. ‘

If neither disjoint nor disjointitems is set, the implementation processes the items and the
bits within items in the direction indicated by the direction flag.

Pilot Programmer’s Manual 2

Gray Flag

The gray flag allows repetitive bit patterns to be specified in a condensed format. The
usual application is for generation of various shades of gray on the display, but any
repetitive pattern within the limits stated below may be supplied.

If the gray option is specified, the srcBpl field of the argument record is reinterpreted as
follows: Note also that the gray case is always forward and completely disjoint
(disjointltems is ignored).

BitBIt.GrayParm: TYPE = MACHINE DEPENDENT RECORD |
reserved: [0..15] « 0,
yOffset: [0..15],
widthMinusOne: [0..15],
heightMinusOne: [0..15]];

The fields grayparm.widthMinusOne and grayParm.heightMinusOne define the width
(less one) in words and height (less one) in bits, respectively, of a gray brick located at
arg.src. (see figure 2.2). Note, the term “brick” refers to a rectangular area containing the
gray pattern to be copied. Conceptually, this brick is replicated horizontally and vertically
to tile a plane of dimensions arg.width and arg.height that becomes the source rectangle
of the operation. This brick is a maximum of sixteen words wide and sixteen lines high.
Patterns, therefore, are also limited to a repetition rate of sixteen in each direction. To
guarantee correct repeatability of the pattern in the horizontal direction, it is usually the
case that the width of the gray brick (in bits) is a multiple of the repetition rate; the height
of the gray brick is usually equal to the vertical repetition rate.

Proper alignment of the gray pattern with the destination bitmap requires the initial x
and y offsets into the brick in addition to its width and height. The initial x offset is
derived from arg.src as follows: arg.src.word always points to the beginning of the first
line to be transferred (not to the origin of the gray brick). The x offset of the first bit to be
transferred is supplied by arg.src.bit; this bit is always in the first word of the line. The
initial y offset is the number of lines down from the origin of the brick and is specified by
grayParm.yOffset; subtracting the y offset times the brick width from arg.src.word gives
the origin of the gray brick.

Source and Destination Functions

BitBit.SrcFunc: TYPe = {null, complement};

itBit.DstFunc: Type = {null, and, or, xor};
The functions available for combining the source and destination rectangles are shown in
Figure 2.3.

The src field has two options; the null selection indicates using the source rectangle as is
for the destination function. The complement selection will invert the source bits in the
destination function.

The dst field determines the function to be used for changing bits in the destination
rectangle. The null selection causes the destination to be “replaced” with the source bits.
There is no boolean operation in this case. Anding the destination bits with the source bits

2-9

Environment

2-10

Gray Brick
arg.srcword e

l |<— arg.src.bit

T A

yOffset

' |

height

Destination Bitmap
- Width ————— 5

Figure 2.2 Gray Brick

dst
n a o x
src n 3 s-d s+d s®d
C ~s ~s-d ~s+d ~s@d

Figure 2.3 Source and Destination Functions

leaves only those bits in common in the destination. “Painting” the destination requires
oring. This will leave the union of the two sets of bits in the destination. The last function
is the xor. This essentially masks out the matching bits leaving the union but not the
intersection of the bits in the destination rectangle.

2.2.2 TextBlt
TextBIt:DEFINITIONS ...

The Text Block Transfer interface operates on an array of characters; it implements three
functions useful in generating the font representation of the text in a bitmap. It may
calculate the number of characters on a line, convert characters to their font
representation, or widen or narrow select characters for justification. There is more
discussion on these functions later in this section.

TextBit.TextBlt: PROCEDURE [
index: CARDINAL, bitPOs: CARDINAL, micaPos: CARDINAL, count: INTEGER,
ptr: POINTER TO TextBitArg]

Pilot Programmer’s Manual 2

RETURNS [
newindex: CARDINAL, newBitPos: CARDINAL, newMicaPos: CARDINAL,
newdCount: INTEGER, result: Result] ;

TextBlt proceeds through the text until either there is no more text or a stop character is
encountered; it maintains the bitPos and the micaPos of the origin of each character, and
increments the count of the number of pad characters processed. The new character
positions are returned along with the result of what caused the completion.

TextBit.TextBItArgAlignment: CARDINAL = 16;

TextBit.TextBitArgSpace: TYPE = ARRAY [1..s1ze[TextBItArg] + TextBitArgAlignment) ofF
UNSPECIFIED; _

TextBit. AlignedTextBItArg: PROCEDURE [ip: POINTER TO TextBItArgSpace]
RETURNS [p: POINTER TO TextBltArg]

TextBlt's static arguments are passed via a short pointer to a record; the argument record
must be aligned on a sixteen word boundary.

TextBit.TextBItArg: TYPE = MACHINE DEPENDENT RECORD
reserved: [0..377778B] « 0,
function: Function, -- display, format or resolve
last: CARDINAL, -- index of last character to process
text: LONG POINTER TO PACKED ARRAY CARDINAL OF CHARACTER,
font: FontHandle, -- Long Pointer to font information
dst: LONG POINTER, -- destination bitmap (display only)
dstBpl: CARDINAL, -- Bits per line (display only)
margin: CARDINAL, -- mica value of right margin (format only)
space: INTEGER, -- width adjustment to pad characters (display, resolve)
coord: LONG POINTER TO ARRAY CARDINAL [0..0) OF CARDINAL -- widths array for resolve

I

The limits of the text that TextBlt operates on are arg.text to arg.last. Depending on the
function specified (explained below) specific args will be pertinant. During the format
function, the scan is terminated before the right arg.margin (in micas) is passed. The
display function Ors the character’s font bits into the destination bitmap specified by
arg.dst and arg.dstBpl (bits per line). The resolve function saves the bitPos of the origin of
each character in the array arg.coord.

Justification can be accomplished using the display and resolve functions with
appropriate settings of the arg.space and count values; arg.space is added to the width of
every pad character (it may be negative), and count is incremented each time a pad
character is encountered (it may also be initially negative). Since the amount of white
space to be absorbed by (or squeezed out of) pad characters is rarely an even multiple of the
number of pad characters, pad characters encountered have arg.space +1 added to their
widths as long as count is negative. Thus if sixteen bits need to be added to the width of
the line in order to justify it, but it contains only thirteen pad characters, arg.space would
be set to one, and count would be initialized to negative three; this will result in widening
the first three pad characters by two bits, and the remaining ten pad characters by one bit
each.

2-11

Environment

2-12

Textsit.Function: Type = {display, format, resolve};

The TextBlockTransfer implements three functions useful in generating the font
representation of the text in a bitmap. The format function is used to calculate the number
of characters that will fit on a line, given its right margin (in micas). The display function
converts characters to their font representation in the destination bitmap, optionally
widening or narrowing pad characters to perform line justification. The resolve function is
used to record the horizontal bit position of the origin of each character in the bitmap; it
also handles justification.

Caution: Because of kerning, the display function may place bits into the destination
bitmap to the left of the bitPos of the leftmost character and to the right of the right
margin. It is the programmer’s responsibility to initialize the bitPos to allow for the left -
kerning of the first character, and to supply a bitmap wide enough to allow for the
maximum possible right kerning. Kerning is further explained below.

TextBlt.FontHandle: TYPE = LONG POINTER TO Font;
TextBit.FOnt: TYPE;

TextBlt.FontHandle points to the font information TextBlt needs. The interface Fonts
describes the TextBlt font type. TextBitFontFormat.FOntRecord is the concrete type of a
TextBlt.Font. TextBitFontFormat.FontRecord must be aligned on a sixteen-word boundary.

TextBltFontFormat.fontRecordAlignment: NATURAL = 16;

TextBltFontFormat.FOntRecord: TYPE = MACHINE DEPENDENT RECORD |
fontbits(0): FontBitsPtr,
fontwidths(2): FontWidthsPtr,
fontchar(4): FontCharPtr,
rgflags(6): RgFlagsPtr,
height(8): CARDINAL];

The following types make up FontRecord:
TextBltFontFormat:FONtBitsPtr: TYPE = LONG BASE POINTER TO ARRAY [O..Oi OF UNSPECIFIED;

The data at TextBltFontFormat.FOntBitsPtr is a base pointer for the character raster data. For
a particular character, TextBitFontFormat.CharEntry.offset (defined below) is added to this
base to get the address of the character's raster.The raster format includes the scan lines
within the dimensions given by fontwidths and fontchar. The height of the raster is
constant for all characters.

The memory order of the bits in the raster correspond to the memory order that TextBlt
will paint them into the destination bitmap. Said another way, TextBlt paints the first
scan line of the raster into the appropriate place in the first scan line of the destination
bitmap, and so on. Similarly, the first bit of a raster's scan line is painted into the
appropriate first bit of the scan line in the destination bitmap, and so on.

In conventional Xerox bitmap displays, the first scan line in memory corresponds to the
top line on the screen, and the first bit of a scan line corresponds to the left pixel of the line.

Pilot Programmer’s Manual 2

For this case, the first scan line in the raster will be the topmost row of the character, and
the first pixel (most significant bit) of a scan line will be the leftmost pixel of its row.

TextBItFontFormat.FOntWidthsPtr: TYPE = LONG POINTER TO FontWidths;
TextBitFontFormat.FOntWidths: TYPE = PACKED ARRAY CHARACTER OF PixelWidth;
TextBltFontFormat.PixelWidth: TYPE = CARDINAL [0..3778B];
The width of the font is dependent on the width of the pixel.
Text8itFontFormat.FontCharPtr: TYPE = LONG POINTER TO FontChar;
TextBItFontFormat.FontChar: TYPE = ARRAY CHARACTER OF CharEntry;
CharEntry must be aligned on a two-word boundary.
TextBitFontFormat.charEntryAlignment: NATURAL = 2;
TextBItFontFormat.CharEntry: TYPE = MACHINE DEPENDENT RECORD [

leftKern(0:0..0): BOOLEAN,

rightKern(0:1..1): BOOLEAN,

offset(0:2..15): RasterOffset,

mica(1): CARDINAL];
If CharEntry.leftKern = TRUE, the character's raster has one column preceeding the char's
origin, and is to be written into the destination bitmap one column preceeding the current
position (bitPos). If CharEntry.rightKern = TRUE, the raster extends one column past the
spacing width into the space for the next char; that char's raster should begin coincident
with the current char's last column (one column preceeding where it would normally go).
CharEntry.offset is the offset for the address of the character’s raster.
TextBltFontFormat.RasterOffset: TyPe = CARDINAL [0..377778];
Mica indicates the “physical” width of the char (typically in micas).
TextBltFontFormat.RgFlagsPtr, RgflagsPtr: TYPE = LONG POINTER TO RgFlags;

TextBltFontFormat.RgFlags: TYPE = PACKED ARRAY CHARACTER OF Flags;

TextBltFontFormat.Flags: TYPE = MACHINE DEPENDENT RECORD [
pad(0:0..0): BOOLEAN,
stop(0:1..1): BOOLEAN];

The pad flag allows the character to have its width increased or decreased (in bits) for line
justification. The stop flag will specify a stop character to terminate a TextBlt operation.

TextBItFontFormat.maxLeftKern: CARDINAL = 1;

TextBltFontFormat.maxRightKern: CARDINAL = 1;

2-13

Environment

2-14

MaxLeftKern and maxRightKern support kerning up to one pixel in the respective
direction.

TextBit.Result: TYPe = {normal, margin, stop};

TextBIt returns, in place of the argument pointer on the stack, an indication of its
completion condition: normal if the last character was processed, margin if the right
margin was reached (format only), and stop if a terminating character was detected.

notinFont is returned if the printer width for the character is a distinguished value
(177777B). This allows the flags to be independent of the font and yet provides a way for
information in the font to cause TextBlt to terminate.

TextBlt. SoftwareTextBlt: PROCEDURE [
index: CARDINAL, bitPOs: CARDINAL, micaPos: CARDINAL, count: INTEGER,
ptr: POINTER TO TextBltArg]
RETURNS [
newlindex: CARDINAL, newBitPos: CARDINAL, newMicaPos: CARDINAL,
newCount: INTEGER, result: Result];

SoftwareTextBlt is a software version of TextBIt. It is useful on processors that do not have
microcode support for the TextBIt operation described in this section.

“

2.2.3 Checksum

Checksum:DEFINITIONS . .. ;

This interface produces a checksum for nWords starting at p. Changing the initial value
¢s is useful if forming a single checksum for discontinuous areas of memory.

Checksum.ComputeChecksum: PROC [cs: CARDINAL « 0, nWords: CARDINAL, p: LONG POINTER]
RETURNS [checksum: CARDINAL] ;

Checksum.nullChecksum: CARDINAL = 1777778;

This is a ones-complement add-and-left-cycle algorithm.

2.2.4 ByteBIt

ByteBIt: DEFINITIONS...;

The only operation in this interface is ByteBIt which provides a Mesa definition of a byte
boundary block transfer operation. It takes descriptions of two byte blocks as arguments,
transfers as many bytes as possible (the MiN of the two lengths), and returns a count of how
many bytes were actually moved.

ByteBlt.ByteBlt: PROCEDURE [tO, from: Environment.Block,
overLap: Bytesit.OverLapOption]
RETURNS [nBytes: CARDINAL]J;

ByteBlt.OverLapOption: TYPe = {ripple, move};

Pilot Programmer’s Manual 2

ByteBlt.StartlndexGreaterThanStoplndéxPIusOne: ERROR;

A length of zero in either to or from is acceptable, resulting in no transfer. If a negative
length (startindex > stopindexPlusOne) is present in either to or from, ByteBIt signals
ByteBlt.StartindexGreaterThanStopindexPlusOne.

The overLap argument defines the effect of ByteBlt when the source and destination fields
overlap. If overLap is move then the contents of the source field are preserved by the
move. It acts as if the two fields did not overlap. If overLap is ripple then a low address to

high address move takes place with no notice taken of overlapping fields. This mode is
useful for propagating a value throughout a block of storage.

2.2.5 Other Mesa machine operations
Inline: DEFINITIONS ... ;

This interface defines a set of instructions not directly accessible from Mesa. It includes
some logical instructions and some extended-precision arithmetic instructions.

2.2.5.1 Accessing parts of a word or double word

The type Environment.LONG allows direct access to the high-order and low-order words of
LONG values. For convenience, a copy of this type is available in the Inline interface.

inline.LongNumber: TYPE = Environment.LongNumber;
Alternatively, the following operations may be used:
Inline.LowHalf: PROCEDURE [LONG UNSPECIFIED] RETURNS [UNSPECIFIED]
inline.HighHalf: PROCEDURE [LONG UNSPECIFIED] RETURNS [UNSPECIFIED]

LowHalf and HighHalf return, respectively, the least and most significant words of its
argument.

Note: A LONG CARDINAL or LONG INTEGER whose value is in CARDINAL or INTEGER, respectively,
may be directly converted to a short value using a mesa range assertion.

The following procedures return the least and most significant bytes of a word,
respectively.

inline.LOowByte: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

Inline.HighByte: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

2.2.5.2 Copying blocks of words
The following operations copy blocks of words.

Inline.COPY : PROCEDURE [from: POINTER, nwords: CARDINAL, tO: POINTER]

2-15

Environment

2-16

Inline.LONGCOPY : PROCEDURE [from: LONG POINTER, nwords: CARDINAL,
t0: LONG POINTER]

Inline.LongcoPYReverse: PROCEDURE [from: LONG POINTER, nwords: CARDINAL,
t0: LONG POINTER]

copPY and Longcopy copy nwords and are equivalent to the following Mesa code fragment:
FOR i IN [0..nwords) Do (to +i) T « (from +i) T ENDLOOP;

LongCOPYReverse copies nwords aqd is equivalent to the following Mesa code fragment:
FOR{ DECREASING IN [0..nwords) po(to +i) 1 « (from +i) 1 enpLOOP;

An upper limit of 65,535 words can be copied in any one call on Copy, LongCopy, or
LongCopyReverse.

Caution: Many errors in COPY, LongCOPY, and LongCOPYReverse are the result of an
incorrect order of parameters. The keyword constructor call is recommended.

2.2.5.3 Special divide instructions

All of the divide operations described in this section will raise the error
Runtime.ZeroDivisor if the denominator is zero. All except for UDDivMad and SDDivMod,
will raise Runtime.DivideCheck if the quotient is greater than 216-1 (see §2.4.3 for more
information on these errors).

The quotient and remainder of two cardinals or long cardinals can be obtained with the
procedures

inline.DIVMOD: PROCEDURE [num, den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

inline.UDDivMod: PROCEDURE [num, den: LONG CARDINAL]
RETURNS [quotient, remainder: LONG CARDINAL];

where num is the numerator and den, the denominator. The procedure

Inline.LDIVMOD: PROCEDURE [numlow: WORD, numhigh: CARDINAL, den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

is the same as DIVMOD except that the numerator is the double length number
numhigh*216 + numlow.

The operation

inline.LongDiv: PROCEDURE [num: LONG CARDINAL, den: CARDINAL]
RETURNS [CARDINAL]

returns the single precision quotient of num by den.

Pilot Programmer’s Manual 2

If both the quotient and remainder of num and den are desired, the following operation
can be used.

inline.LongDivMod: PROCEDURE [num: LONG CARDINAL, den: CARDINAL]
RETURNS [quatient, remainder: CARDINAL]

The quotient and remainder of two long integers can be obtained with the procedure

inline.SDDivMod: PROCEDURE [num, den: LONG INTEGER]
RETURNS [quotient, remainder: LONG INTEGER];

2.2.5.4 Special multiply instruction
The double precision product of two cardinals is obtained with

inline.LongMult: PROCEDURE [CARDINAL, CARDINAL]
RETURNS [product: LONG CARDINAL]

2.2.5.5 Operations on bits

The following operations perform the indicated bitwise logical operations on their
operand(s):

inline.BitOp: TYPE = PROCEDURE [UNSPECIFIED, UNSPECIFIED] RETURNS [UNSPECIFIED];
inline.BITAND, BITOR, BITXOR: Inline.BitOp;

inline.DBitOp: TYPE = PROCEDURE [LONG UNSPECIFIED, LONG UNSPECIFIED]
RETURNS [LONG UNSPECIFIED]; :

inline.DBITAND, DBITOR, DBITXOR: inline.DBitOp;

inline.BITNOT: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]
inline.DBITNOT: PROCEDURE [LONG UNSPECIFIED] RETURNS [LONG UNSPECIFIED];
A word or double word can be shifted by the operations

Inline.BITSHIFT: PROCEDURE [value: UNSPECIFIED, count: INTEGER]
RETURNS [UNSPECIFIED]

Inline.DBITSHIFT: PROCEDURE [value: LONG UNSPECIFIED, count: INTEGER]
RETURNS [LONG UNSPECIFIED];

inline.BITROTATE: PROCEDURE [value: UNSPECIFIED, count: INTEGER]
RETURNS [UNSPECIFIED];

These operations return value shifted by ABs[count] bits. The shift is left if count > 0, and
right if count < 0. In both cases, zeros are supplied to vacated bit positions. In the case of
BITROTATE, the bits are shifted circularly.

2-17

Environment

Note: A left shift is a multiply by two ignoring overflow; a right shift is an unsigned divide
by two with truncation.

2.3 System timing and control facilities

2-18

System: DEFINITIONS ... ;
NSConstants: DEFINITIONS . . . ;

This section describes some basic system and control facilities provided by Pilot. It
introduces and discusses: universal identifiers, by which all network resources and other
permanent objects in a network may be named; the means by which communicating
processes are identified; the various forms of timekeeping provided by Pilot; the Pilot
facilities for turning system power on and off; and how a client gets started.

2.3.1 Universal identifiers

A universal identifier may be used for naming all permanent or potentially permanent
objects in the network. Every object and every resource may be assigned a separate,
unique, universal identifier which is different from any other assigned for any other
purpose. Thus, a particular universal identifier can be interpreted unambiguously in any
context or on any processor, and it always refers to the same thing.

Universal identifiers are 5word Mesa objects of the following type.
system.UniversallD: Type [5];

Pilot issues a new universal identifier, distinct from all others on all other processors at all
times, as a result of the operation ‘

system.GetUniversallD: PROCEDURE RETURNS [uid: System.UniversallD];

A UniversallD has no internal structure perceivable by client programs, and no properties
must be attributed to values of this type except the property of uniqueness. Pilot takes
extreme measures to ensure with a very high probability that UniversallDs are not
duplicated. The supply of new universal identifiers is limited to an overall processor
average of approximately one or a few per second, though the instantaneous rate of
creating them can exceed this at times. If Pilot detects any danger of compromising the

reliability of the uniqueness property, the process calling GetUniversallD is delayed until
a new UniversallD can'be safely issued.

The following are some particular uses of UniversallDs:
System.PhysicalVolumelD: TYPe = RECORD [System.UniversallD];
system.VolumelD: TYPE = RECORD [System.UniversallD];
System.nulllD: system.UniversaliD = .. ;

Note: nulllD is never returned by GetUniversallD.

Pilot Programmer’s Manual 2

2.3.2 Network addresses

The Internet Transport Protocols are the principal means of communication among
processes which reside on different machines (see §6.2, Network streams). A source or
destination of such communication is identified by its NetworkAddress.

system.NetworkAddress: TYPE = MACHINE DEPENDENT RECORD][
net: system.NetworkNumber,
host: System.HostNumber,
socket: system.SocketNumber] ;
system.NetworkNumber: Tvpe [2];
system.HostNumber: Tvype [3];
system.SocketNumber: Tvee [1];
system.nullNetworkAddress: system.NetworkAddress = ...;
system.nuliNetworkNumber: system.NetworkNumber = .. .;
System.nullHostNumber: System.HostNumber = .. .;
System.broadcastHostNumber: System.HostNumber = ...;
system.nullSocketNumber: system.SocketNumber = .. .;

system.localHostNumber: READONLY System.HostNumber ;

nullNetworkAddress is never used as a source or destination and so may be used when no
valid address exists.

nullNetworkNumber is normally not used as a source or destination. However, it can be
used on networks that are unable to obtain a network number.

localHostNumber is the HostNumber of the local machine.

Within a processor, sockets are used to separate and identify communication meant for
different purposes or destined for different processes. Sockets are associated with network
addresses and are considered to be a reusable resource which is allocated as required.

A NetworkAddress is normally retrieved from a Clearinghouse server. The network
address of the local system element can be discovered with
NetworkStream.AssignLocalAddress (q.v.). Network addresses are guaranteed to be unique
between system restarts, but not across system restarts, i.e., they are reused each time the
system is restarted (see chapter 6).

The case of network addresses of processors which are connected to more than one network
is still to be determined.

2-19

Environment

2-20

2.3.3 Timekeeping facilities

There are three forms of timekeeping facilities in Pilot: the date and time-of-day, the
"stopwatch" or interval timing function, and the "alarm clock” facility.

2.3.3.1 Time of day, and date

The time and date are maintained by Pilot and the system hardware, typically in the form
of an accurate, crystal-controlled clock. The following operations are used to access the
clock:

System.GetGreenwichMeanTime: PROCEDURE
RETURNS [gmt: System.GreenwichMeanTime];

system.GreenwichMeanTime: TYPE = RECORD [LONG CARDINAL];
system.gmtEpoch: system.GreenwichMeanTime = [2114294400];

System.SecondsSinceEpoch: PROCEDURE [gmt: System.GreenwichMeanTime]
RETURNS [LONG CARDINAL];

The gmtEpoch is equivalent to the following:
(67 years * 365 days + 16 leap days) * 24 hours * 60 minutes *60 seconds

The GetGreenwichMeanTime operation returns the time as a count of seconds since a
fixed, arbitrary base time. In particular, :

gmt = t corresponds to the time t-System.gmtEpoch seconds after midnight, 1
January 1968. That is, the time System.gmtEpoch+1 corresponds to 00:00:01,
January 1, 1968 (i.e., one second after midnight, ten years prior to the first
publication of the Pilot Functional Specification).

The "end of time" occurs 232 seconds after 00:00:01 January 1, 1968. After the "end of
time", new clock readings will not be valid. Two GreenwichMeanTimes can be compared
directly for equality. To find which of two GreenwichMeanTimes comes first, apply
SecondsSinceEpoch to each. This gives the number of seconds that each is after 00:00:00
January 1, 1968. Finally, compare the results to determine which is the later time. That
is, compare SecondsSinceEpoch [t1] to SecondsSinceEpoch [t2] and not t1 to t2.

SystemExtras.ClockFailed: siGNAL;

PilotSwitchesExtraExtrakxtraExtras.ignoreClockFailures:
PilotSwitches.PilotDomainA = '.;

Pilot periodically checks to see if the time-of-day clock is running correctly by
GetGreenwichMeanTime. If it appears that it is not, the signal Systemextras.ClockFailed
will be raised. If the switch PilotSwitchesExtraExtraExtraExtras.ignoreClockFailures is down,
however, the signal will not be raised.

Pilot Programmer’s Manual 2

This signal is resumable, but unless the client sets ignoreClockFailures, the signal will
probably be raised again.

The operation

system.AdjustGreenwichMeanTime: PROCEDURE [
gmt: system.GreenwichMeanTime, delta: LONG INTEGER]
RETURNS [System.GreenwichMeanTime];

has the result gmt+delta. If t is a GreenwichMeanTime then [t + delta] is the
GreenwichMeanTime that is delta seconds after t.

Within the range that they overlap, the times defined here and the Alto time standard
assign identical bit patterns to a particular time. However, the Pilot standard runs an
additional 67 years before overflowing.

Client programs are responsible for converting between Greenwich Mean Time and local
time, taking into account Daylight Saving Time, etc., (see the next section).

The time and date is kept accurately (to within a few seconds per month) by the hardware
and is adjusted as part of system maintenance. In addition, Pilot ensures that all
interconnected system elements on an NS network agree about the current time within a
few seconds of each other, and that they agree with an externally supplied timekeeping
standard if one is available. Prior to calling the client during booting, Pilot ensures that
the processor clock is set correctly. UtilityPilot clients, however, must set the processor
clock prior to calling any Pilot operation. This is done by using the operations in the
OthelloOps interface. If this is not done, the results of Pilot operations are unspecified.

2.3.3.2 Local time parameters

Client programs may obtain the parameters of the local time zone. In normal network
configurations, Pilot finds the parameters from a server and remembers them in
nonvolatile storage. (Currently it stores them in the root page of the system physical
volume.) There is also an operation by which a client can set the parameters (typically on
a stand-alone or server machine). The time zone parameters are represented as a record:

system.LocalTimeParameters: TYPE = MACHINE DEPENDENT RECORD [
direction(0:0..0): System.WestEast,
zone(0:1..4): [0..12],
zoneMinutes(1:0..6): [0..59],
beginDST(0:5..15): [0..366],
endDST(1:7..15): [0..366]];

System.WestEast: TYPE = MACHINE DEPENDENT {west(0), east(1)};

The fields zone, zoneMinutes, and direction together define the time zone as so many
hours and minutes west or east of Greenwich. Normally zoneMinutes is zero, but there
are a few places in the world whose local time is not an integer number of hours from
Greenwich. beginDST gives the last day of the year on or before which Daylight Savings
Time could take effect, where 1 is January 1st and 366 is December 31st (the
correspondence between numbers and days is based on a leap year). Similarly, endDST
gives the last day of the year on or before which Daylight Savings Time could end. Note

2-21

Environment

2-22

that in any given year, Daylight Savings Time actually begins and ends at 2 A.M. on the
last Sunday not following the specified date. If Daylight Savings Time is not observed
locally, both beginDST and endDST are zero.

To find the local time zone parameters, a client calls

System.GetLocalTimeParameters: PROCEDURE [
pviD: system.PhysicalVolumelD « [nulliD]]
RETURNS [params: System.LocalTimeParameters];

system.LocalTimeParametersUnknown: ERROR;

This procedure returns the local time zone parameters provided that Pilot could determine
them either by consulting a network time server during initialization or because they had
been previously saved on the system physical volume by a call to SetLocalTimeParameters
(see below). If the parameters cannot be determined in either of these ways, the error
LocalTimeParametersUnknown is raised. A normal Pilot client should always default
pviD. A UtilityPilot client, on the other hand, must specify the ID of the physical volume
of the normal system drive, if the local time parameters are to be saved on the disk..

While it is normally unnecessary for a client to do so, the time zone parameters saved in
nonvolatile storage on an individual workstation can be set by calling

system.SetLocalTimeParameters: PROCEDURE [params: System.LocalTimeParameters,
pviD: system.PhysicalVolumelD &« [nullID]];

The main use for this procedure would be in a server, where a system administrator could
set the time zone parameters at system initialization time, in response to an act of
Congress, etc. Pilot guarantees the local time parameters are set from the network or from
the physical volume on the local disk. In UtilityPilot, however, the client must set the
parameters prior to the call on GetLocalTimeParameters.

As with GetlLocalTimeParameters, pvID should always be defaulted by a normal client.

2.3.3.3 Interval timing

It is frequently desired to measure elapsed time at the resolution of microseconds during
the execution of programs. Such measurements can be used in controlling system
behavior, analyzing program or system performance, and stimulating various other
activities. In many cases, the processor underlying Pilot will not provide a timer with a
resolution of one microsecond. As a result, Pilot would have to convert between processor
dependent units and microseconds to provide a timing facility that measured in
microseconds. In many cases, the overhead inherent in this conversion would be large
enough to inhibit the timing of functions. For this reason, Pulses are provided:

System.Pulses: TYPE = RECORD [pulses: LONG CARDINAL];
A Pulse is a processor dependent unit of time. The actual resolution and accuracy of Pulses

is determined by the accuracy and resolution of the internal clocks of the processor.
Typically, resolution of Pulses will be in the range 1 - 1000 microseconds and it will be

Pilot Programmer’s Manual 2

accurate to within 10% or better. The current value of the processor interval timer may be
read by

system.GetClockPulses: PROCEDURE RETURNS [System.Pulses];

A client may convert between pulses and microseconds with the operations:

system.PulsesToMicroseconds: PROCEDURE [p:System.Pulses]
RETURNS [m: System.Microseconds];

system.MicrosecondsToPulses: PROCEDURE [m:System.Microseconds]
RETURNS [p:System.Pulses];

System.Microseconds: TYPE = LONG CARDINAL;

System.Overflow: ERROR;

To perform accurate timings, the user should measure events in terms of Pulses and only
convert to and from microseconds when it is absolutely necessary. In particular, Pulses
should be the time units used in the inner loops of programs or in any place where time is
critical.

Conversion in one direction or the other may cause an overflow. When this happens, Pilot
will raise the error Overflow.

Caution: The error Overflow is not implemented in Pilot 11.0.

The processor interval timer wraps around after a processor dependent period of time,
typically greater than one hour. Thus, Pulses cannot be used to measure events with a
duration in excess of the wrap around period.

2.3.3.4 Alarm clocks

An alarm clock facility is provided by the Mesa process mechanism. A timeout value may
be assigned to any condition variable by means of the operation Process.SetTimeout (see
§2.4.1.2). A process may then "go to sleep" for that period by executing a WAIT operation on
that condition variable. When the timeout expires (or when a NOTIFY operation is executed
on that condition variable, whichever comes first), the process awakens and continues
execution. One convenient way for a process to wait when there is no requirement for a
NOTIFY wakeup is to call Process.Pause (§2.4.1.6).

The resolution of the process timer is on the order of 15-50 milliseconds. It has no accuracy
whatsoever. Thus, a client process must check either the time of day, an interval timer or
the processor timer if it needs to know the time accurately.

2.3.4 Control of system power

The following operations allow the processor to be turned on and off under program
control. ~ .

2-23

Environment

2-24

system.PowerOff: PROCEDURE;

This operation causes the machine to be turned off. It does not return. Pilot will cause all
input/output activity to be suspended, purge all of its internal caches, force out all mapped
spaces to their file windows, stop all processes from further execution, and cause the
display to be turned off. The only way to recover from this operation is to turn the system
power on and press the restart button. If there is no power relay, the system element
remains turned on but executing no programs; a unique code is displayed in the
maintenance panel in this situation.

The operation

System.SetAutomaticPowerOn: PROCEDURE |
time: system.GreenwichMeanTime, externalEvent: BOOLEAN];

sets the internal clock of the processor to automatically turn on the system power at or
after time. If externalEvent is FALSE, power is turned on at the specified time. If
externalEvent is TRUE, power is turned on in response to the first external event occurring
after the time specified by time. An external event is an electrical signal made available to
the processor (e.g., the ringing signal of a data telephone).

If power is already on when this operation would turn it on, there is no effect. The
automatic power on facility may be reset by calling

System.ResetAutomaticPowerOn: PROCEDURE;

2.3.5 Pilot's state after booting

The device that the system was booted (loaded) from may be ascertained by referencing
System.systemBootDevice: READONLY System.BootDevice;

System.BootDevice: TYPE = RECORD [device: Device.Type, index: CARDINAL];

Client programs can determine if they are running upon UtilityPilot with:
System.isUtilityPilot: READONLY BOOLEAN;

Boot switches are used to transmit operational information from the booting agent (e.g.,
Othello) to the running boot file (see client documentation for definitions of applicable
boot switches). The boot switches are made available as

System.Switches: TYPE = PACKED ARRAY CHARACTER OF System.UpDown;

System.UpDown: TYPE = MACHINE DEPENDENT {up(0), down(1)};

System.switches: READONLY System.Switches;

system.defaultSwitches: system.Switches = ALL[up];

If a switch is down, then it is active; if a switch is up, then it is inactive. The value of

switches is determined as follows. First, if the booting agent provides switches other than
defaultSwitches, that value is used. Otherwise, if the boot file was constructed (by

Pilot Programmer’s Manual 2

MakeBoot) to contain other than defaultSwitches, that value is used. Otherwise,
defaultSwitches is used.

Switch assignments are made by the Manager of Operating Systems. Ranges of switches
are allocated for Pilot, for the Mesa Development Environment, and for product systems.
The following list enumerates those switches currently used by to Pilot and describes their

significance.
Value Meaning
& Hang with a maintenance panel code in lieu of going to the debugger.
0 Go to debugger as early as possible in Pilot initialization.
1 Go to debugger as soon as all code is map-logged.
2 Go to debugger just before calling pilotClient.Run.
3 Simulate 192K memory size for a Dandelion with no display .
4 Initialize scratch memory pages to zero.
5 Go to the Ethernet for a debugger.
6 Turn owner checking on for the system zones.
7 Disable map logging (see below).
8 Create a Pilot interrupt key watcher.
9 Simulate 256K memory size for a Dandelion with display.
: Go to the debugger as early in initialization of the File manager as possible.
; Go to the debugger as early in the initialization of the VM manager as possible.
< Pretend that there is no Ethernet 1 attached to the system element.
= Do not initialize the Communication package at system start-up.
> Pretend that there is no Ethernet attached to the system element.
{ Set the VM backing file size to 750 pages (see below).
| Set the VM backing file size to 1400 pages (see below).
} Set the VM backing file size to 2000 pages (see below).
1 Turn checking on the for system zones.
? Make loadstate resident (for debugging on UtilityPilot-based clients).
[Create a tiny heap, with tiny increment values.
% Create a medium-size heap, with medium-size increment values (default).
1 Create a large heap, with large increment values).
/360 Display error code, global frame, and pc on boot loader errors.

/361 Transmit Ethernet packets using IEEE 802.2 Logical Link Layer protocol.
/362 Accept packets from the Ethernet in either IEEE 802.2 Logical Link Layer
or Ethernet version 1.0 format. '

/363 Transmit packets to hosts in the format that the receiver desires.
/366 Hold back 48 pages of reserved display memory.

/367 Hold back 64 pages of reserved display memory.

/370 Bypass the debugger substitute by going to the real debugger.
/371 Tile code with one page swap units.

/372 Give display memory to Pilot for client use.

/373 Give display memory to Pilot for client use if no bitmap display.
/374 Allows special clients to set parameters of system zones

/375 Disable map logging (see below).

/376 Delete boot loader so that the memory that it uses can be recycled.

Full map logging is the default case when Pilot is booted if there is a debugger present.
Full map logging includes occasionally going to the debugger to clean up the log. A
debugger is considered present if there is a debugger installed on a volume of type one

2-25

Environment

higher than that of the boot file, or if debugger pointers have been set in the boot file, or if
a remote debugger is specified (boot switch "5").

If there is no debugger present, map logging proceeds until the log file fills up and then
logging is disabled. This situation may be forced by setting boot switch /375. Boot switch
"7" will cause Pilot to stop map logging when PpilotClient.Run is called (at key stop 2). This
key switch overrides key switch /375.

The VM backing file is the file which is used to provide the backing file for Pilot data
spaces (q.v.). Under normal circumstances, its size is a function of the size of the volume
booted from. For some logical volumes the default size may be too small. In that event, the
switches "{","|", and "}" may be used to specify the size of the backing file.

2.4 Mesa run-time support

2-26

This section describes low-level facilities used to support the execution of Mesa programs.
It describes operations to support the Mesa process mechanism; facilities relating to Mesa
program modules; traps, signals, and errors which may be generated by a Mesa program
during execution; and finally, some miscellaneous interfaces.

2.4.1 Processes and monitors

Process: DEFINITIONS . .. ;

Most aspects of processes and monitors are made available via constructs in the Mesa
language and are described in the Mesa Language Manual. Some operations whose
frequency of use does not justify such treatment are cast as procedures.

When a process is FORKed, it is called a live process. When it has been JoINed or when it has
been detached and its root procedure has returned, it is called a dead process. Programs
must take care not to use or retain copies of the PROCESS of a dead process. Since Pilot may
reuse PROCESSes, any operation performed on the PROCESS of a dead process may mistakenly
operate on a different process than the one intended, with unpredictable results.

Most of the operations which take a PROCESS as an argument (JOIN, Process.Abort, and
Process.Detach) may generate the following signal:

Process.InvalidProcess: ERROR [process: PROCESS];

This signal indicates that the argument is not a live process.

The argument of InvalidProcess is actually of type uNsPeciFieD. This is necessary since
there is no generic type which includes all PROCESS types, independent of their result types.
The same is true of all arguments and results discussed in this section that would
otherwise be of type PROCESS.

A PROCESS can be checked for validity by the operation

Process.ValidateProcess: PROCEDURE [UNSPECIFIED]

Pilot Programmer’s Manual 2

If the argument does not represent a live process, Process.InvalidProcess will be raised.
Otherwise, this operation just returns.

Caution: Since Pilot may reuse PROCESSes, ValidateProcess applied to the PROCESS of a
dead process may not raise InvalidProcess. Such a dangling reference will appear
legitimate to ValidateProcess, but is almost certain to cause trouble for any client program
that makes use of it.

2.4.1.1 Initializing monitors and condition variables

Every monitor lock and every condition variable must be initialized before it can be used.
There are three cases:

Any monitor lock or condition variable residing in a global frame will be initialized
automatically when the program is sTARTed. Any monitor lock or condition variable
residing in a local frame will be initialized automatically when the procedure is
entered.

Any monitor lock or condition variable allocated dynamically by the NEw operator
(from an uncounted zone or MDS zone) will be initialized automatically upon
allocation.

Any monitor lock or condition variable allocated dynamically by other than the New
operator must be initialized by the programmer using the facilities described below.

Caution: Using uninitialized monitor locks or condition variables, or reinitializing
monitor locks or condition variables once they are in use, will lead to totally unpredictable
behavior.

The following operations are provided for initializing monitor locks and condition
variables which are allocated dynamically by other than the NEw operator:

Process.InitializeMonitor: PROCEDURE [monitor: LONG POINTER TO MONITORLOCK];

InitializeMonitor sets the monitor unlocked and the queue of waiting processes to empty.
It may be called before or after the monitor data is initialized, but must be called before
any entry procedure is invoked. Once use of the monitor has begun, the monitor must
never be initialized again.

Process.InitializeCondition: PROCEDURE[cONdition: LONG POINTER TO CONDITION,
ticks: Process.Ticks];

Process.Ticks: TYPE = CARDINAL;

InitializeCondition sets the queue of waiting processes to empty and the timeout interval
of the condition variable to the specified value, in units of "ticks" of the process timer
clock. It may be called before or after the other monitor data is initialized, but must be
called before any WAIT or NOTIFY operations are performed on the condition variable. Once
use of the condition variable has begun, the condition variable must never be initialized
again.

2-27

Environment

2-28

Clients may convert process timer ticks to or from milliseconds using the following
operations:

Process.Milliseconds: TYPE = CARDINAL;
Process.MsecToTicks: PROCEDURE [Process.Milliseconds] RETURNS [Process. Ticks];

Process.TicksToMsec: PROCEDURE [ticks: Process. Ticks]
RETURNS [Process.Milliseconds];

For setting long timeout intervals, the following operation is provided:
Process.Seconds: TYPE = CARDINAL;

Process.SecondsToTicks: PROCEDURE [Process.Seconds)
RETURNS [Process.Ticks];

Caution: Due to the limited range of the process timer, the maximum timeout that
maybe set is about 980 seconds (16 minutes).

2.4.1.2 Timeouts

Condition variables that are initialized automatically do not time out. The time out of any
condition variable may be changed by the operation:

Process.SetTimeout: PROCEDURE
[condition: LONG POINTER TO CONDITION, ticks: Process.Ticks];

The given timeout interval will be effective for all subsequent WAIT operations applied to
the condition variable. This operation will not affect the timeout interval of any processes
currently waiting on the condition variable.

Process.DisableTimeout: PROCEDURE [LONG POINTER TO CONDITION];

DisableTimeout sets the timeout interval for the condition variable to infinity. That is, a
process waiting on the condition variable will never time out. This will be effective for all
subsequent WAIT operations applied to that condition variable. This operation will not
affect the timeout interval of any processes currently waiting on the condition variable.

SetTimeout and DisableTimeout are the only operations that may be used to adjust the
timeout interval of a condition variable once it has been used. In particular,
InitializeCondition must not be used for this purpose.

Caution: Since the Mesa processor reserves some distinguished values of Ticks for special
purposes, the timeout interval of a condition variable should not be set via the Mesa
construct:

condition.timeout & ticks. --WRONG

Pilot Programmer’s Manual “ 2

2.4.1.3 Forking processes

There is a limit on the number of co-existing processes allowed by Pilot. Attempts to fork
too many processes will result in the error

Process.TooManyProcesses: ERROR;

This may be caught by a catch phrase on the FORK, or by a catch phrase in some enclosing
context.

The maximum number of coexisting processes is specified to MakeBoot when building a
boot file. See the Mesa User's Guide for details.

A process which is FORKed but will never be JoiNed should be detached using the operation
Process.Detach: PROCEDURE [PROCESS];

This operation conditions the process such that when it returns from its root procedure, it
will be deleted immediately.

Caution: Note that a variable of type PROCESS does not return results. If the root procedure
of a process does return results, it will be necessary to loophole the parameter to Detach. In
those cases, care should be exercised because if the results returned take more than 12
words of storage, the storage that contains the results (a local frame) will be discarded and
the space will never be recovered. If there are 12 or less words of results, the results will be
discarded and the storage recovered.

A process may determine its own identity by invoking

Process.GetCurrent: PROCEDURE RETURNS [PROCESS];

2.4.1.4 Priorities of processes

When a process is created with FORK, it inherits the priority of the forking process. A
process may change its own priority with the SetPriority operation.

Process.SetPriority: PROCEDURE [Process.Priority];

Process.priorityBackground: READONLY Process.Priority;
Process.priorityNormal: READONLY Process.Priority;
Process.priorityForeground: READONLY Process.Priority;

Process.Priority: TYyPe = [0..7];

Larger values of Priority correspond to higher priorities. Implementation restrictions
make it necessary to limit ordinary client processes to three priority levels, defined via
exported variables, which are listed above in order of increasing priority. SetPriority
should only be given one of these three constants (or a value previously obtained from
GetPriority, which will be equal to one of these constants).

2-29

Environment

2-30

If it is desired to fork a process which runs immediately at a higher priority than the
parent process, the parent can set its own priority to the higher level, fork the new process,
and then restore its own priority.

A process may determine its own priority by calling

Process.GetPriority: PROCEDURE RETURNS [Process.Priority];

2.4.1.5 Aborting a process

A process can be aborted by calling the operation
Process.Abort: PROCEDURE {process: UNSPECIFIED];

The effect of this operation is to generate the error ABORTED the next time the process WAITs
on any condition variable which has aborts enabled. If the process is already waiting, the
error is generated immediately.

ABORTED may be caught by a catch phrase on the WAIT, or by a catch phrase in an enclosing
context. The catch phrase is executed with the corresponding monitor locked.

The intended use of Abort is to provide a means whereby one process may request of
another that the latter should stop what it is doing. An ABORTED signal may occur on any
condition variable which has aborts enabled, and thus every monitor should either be
protected by some catch phrase for it, or contain no condition variables which have aborts
enabled.

A pending abort may be canceled by calling the operation
Process.CancelAbort: PROCEDURE [process: UNSPECIFIED];

A process may discover if there is an abort pending for it by the operation
Process.AbortPending: PROCEDURE [] RETURNS [abortPending: BOOLEAN];

When a condition variable is initialized, it has aborts disabled. A condition variable may
be set to allow aborts by the operation:

Process.EnableAborts: PROCEDURE [LONG POINTER TO CONDITION];

If a process with an abort pending is currently waiting on the condition variable,
EnableAborts will have no immediate effect on it. However, if the process times out or is
NOTIFYed, it will be aborted at that time.

It is sometimes desirable to avoid aborts while waiting on a given condition variable. This
may be effected by using

Process.DisableAborts: PROCEDURE [LONG POINTER TO CONDITION];

Condition variables are initialized to have aborts disabled. If a process with an abort
pending waits or is waiting on a condition variable, the abort will be delayed until the
process WAITs on some other condition variable which has aborts enabled.

Pilot Programmer’s Manual 2

A process can be suspended for a specified number of ticks with the operation
Process.Pause: PROCEDURE [ticks: Process.Ticks];

Pause waits with aborts enabled, and so may raise the error ABORTED. Note that monitor
locks of the caller are not released during the pause.

The Mesa process mechanism does not attempt to allocate processor time fairly among
processes of equal priority. A process itself will yield the processor to other processes of

equal priority whenever it faults, Pauses or waiTs. If a process does these things only
rarely, it may be desirable for it to occasionally yield control of the processor by calling

Process.Yield: PROCEDURE;
This places the calling process at the rear of the queue of ready-to-run processes of the
same priority. Thus, all other ready processes of the same priority will run before the

calling process next runs. Note however, that these other processes may make arbitrarily
little progress due to page faults, etc.

The logical correctness of client programs must no¢ depend on the presence or absence of
calls to Yield. Priorities and yielding are not intended as a process-synchronization
mechanism. They are only provided to assist in meeting performance requirements.

2.4.2 Programs and configurations
Runtime: DEFINITIONS . . . ;
Programs may be validated by
Runtime.ValidateGlobalFrame: PROCEDURE [frame: Runtime.GenericProgram];
Runtime.GenericProgram: TYPE = LONG UNSPECIFIED;

Runtime.InvalidGlobalFrame: ERROR [frame: Runtime.GenericProgrami;

If frame is not valid, InvalidGlobalFrame is raised. frame may be either a PROGRAM or a
LONG POINTER TO FRAME[< program >]. Normal usage requires a LOOPHOLE.

Pointers to procedure activation records (local frames) may be validated by
Runtime.ValidateFrame: PROCEDURE [frame: UNSPECIFIED];

Runtime.InvalidFrame. ERROR [frame: UNSPECIFIED];

If frame is definitely not valid, InvalidFrame is raised. frame should be a POINTER TO
FRAME[<procedure>]). The checking done by ValidateFrame only verifies that frame

looks like a valid local frame; it is not possible for it to verify that it actually is a valid local
frame.

Runtime.nullProgram: PROGRAM = NIL;

2-31

Environment

2-32

For backwards compatiblity, a null PROGRAM constant is provided. New client code should
just use NIL.

The PROGRAM containing a PROCEDURE can be obtained using
Runtime.GlobalFrame: PROCEDURE [link: Runtime.ControlLink] RETURNS [PROGRAM];
Runtime.ControlLink: TYPE = LONG UNSPECIFIED;

ControlLink may be any PROCEDURE. Normal usage requires a LOOPHOLE. If link is an
unbound procedure, Runtime.UnboundProcedure is raised. Runtime.InvalidGlobalFrame may
also be raised.

A program which was created by New <program > may be deleted using
Runtime.UnNew: PROCEDURE [frame: PROGRAM];

UnNew deletes the program and reclaims its storage. All items which were exported by
the program (procedures, variables, signals, and the program itself) become dangling
references and should not be retained or used by any programs which imported them. If
frame is not valid, Runtime.InvalidGlobalFrame is raised. If the program was not created by
NEW <program >, the debugger is called.

Caution: When a program is UnNewed, there must be no processes executing procedures
in the program or expecting to return to procedures in it. Failure to observe this rule will
lead to unpredictable behavior.

Since UnNew may not be used while any processes are using a program, it is not possible
for a process to UnNew the program in which it is currently executing. Since this is
occasionally desirable, a special operation is provided:

Runtime.SelfDestruct: PROCEDURE;

SelfDestruct deletes the program that invokes it and then returns, with no results, to the
first enclosing context which is not in the deleted program. All items which were exported
by the program (procedures, variables, signals, and the program itself) become dangling
references and should not be retained or used by any programs which imported them.

Caution: Since SelfDestruct effects a RETURN without results to the first enclosing context
which is not in the deleted program, the procedure which was called from that context
must be declared as having no results; otherwise a stack error will occur.

Caution: When a program is SelfDestructed, there must be no other processes executing
procedures in the program or expecting to return to procedures in it. Failure to observe
this rule will lead to unpredictable behavior.

The following operations are used to load configurations and programs. They are
implemented by the object file Loader .bcd.

Runtime.RunConfig: PROCEDURE [
file: rile.File, offset: File.PageCount, codelLinks: BOOLEAN « FALSE];

Pilot Programmer’s Manual 2

Runtime.LoadConfig: PROCEDURE [
file: file.File, offset: File.PageCount, codeLinks: BOOLEAN &« FALSE]
RETURNS [PROGRAM];

Runtime.NewConfig: PROCEDURE [
file: rile.File, offset: rile.PageCount, codeLinks: BOOLEAN ¢ FALSE];

Runtime.ConfigError: ERROR [type: Runtime.ConfigErrorType];

Runtime.ConfigErrorType: TYpe = {
badCode, exportedTypeClash, invalidConfig, missingCode, unknown};

Runtime.VersionMismatch: SIGNAL [module: LONG STRING];

These operations load a configuration or program from the object file contained in file
starting at page offset of the file. offset enables one to skip leader pages, pack many object,
files into one, etc. Each program in the object file will be loaded with code links if (1)
codelinks = TRUE, and (2) the object file is a configuration, and (3) the program or a
configuration containing the program specified LINKS: CODE, and (4) a configuration
containing that configuration or program was packaged, or bound specifying code copying.
If a program is loaded with code links, its links are written into the object file. The three
operations differ as follows. LoadConfig loads the object file and returns a PROGRAM. The
PROGRAM is used to start the object file. If the object file is a configuration, PROGRAM is one
of the configuration’s control programs (= NiL if the configuration has no control
programs); if the object file is not a configuration, PROGRAM is the program itself. A
subsequent START <program > will initialize the loaded programs (note that START NiL is a
no-operation). RunConfig both loads and starts the object file. NewConfig loads the object
file and throws away the PROGRAM, thus preventing it from being explicitly started. Using
NewConfig is only appropriate if the configuration does not require initialization, its use
is not recommended.

If an object file being loaded imports an interface item and there are several instances of
that interface item being exported by already-loaded objects files, the import is bound to
the most-recently loaded instance of the interface item. If an object file being loaded
imports an interface item which it itself exports, the import is bound to the one it exports.

If the object file being loaded imports or exports a version of a program which differs from
a version exported or imported by already-loaded files, Runtime.VersionMismatch is raised,
passing the name of the offending program. Resuming this signal allows loading to
proceed; the imported items with mismatched versions remain unbound. The signal is
raised once for each mismatch encountered.

Note: If VersionMismatch is resumed, the system will be exporting two different versions
of various programs. Object files loaded subsequently which import these programs may
get VersionMismatch against the “bad” version; however, if the signal is resumed and the
correct version is found, the desired binding will be done.

If the code for any of the programs is not contained in the object file (typically because a
configuration was not bound with code copying), Runtime.ConfigError[missingCode] is
raised. If the object file exports a TYpe that differs from that exported by an already loaded
program, Runtime.ConfigError[exportedTypeClash] is raised. If any program in the object
file is loaded with code links but the volume containing file is read-only, vVolume.ReadOnly

2-33

Environment

2-34

is raised. If the object file contains a definitions module, is not compatible with the current
version of Mesa, or is not an object file at all, Runtime.ConfigError[invalidConfig] is raised.
If the object file is not completely contained in the file, Space.Error[noWindow] is raised.
Any of the errors raised by space.Map may also be raised. ConfigErrorTypes of badCode
and unknown are not used at present.

Caution: If a program in the boot file imports an item which is satisfied by a
configuration which is loaded at run-time, the importing program must have frame links.

If this rule is not followed, the link to the imported item will be written into the boot file,
and will be a dangling reference when the boot file is invoked at later times.

A object file which was loaded at run-time may be unloaded by

Runtime.UnNewConfig: PROCEDURE [link: Runtime.ControlLink];

UnNewConfig unloads the dynamically-loaded object file associated with link. link may be
any PROCEDURE or PROGRAM in the object file. UnNewConfig frees the storage of all

PROGRAMS of the object file, and unmaps and deallocates the virtual memory containing its
code. All items that were bound to the object file are reset to unbound.

Caution: When an object file is UnNewConfiged, there must be no processes executing
procedures in programs of the object file or expecting to return to procedures in them.
Failure to observe this rule will lead to unpredictable behavior.

The time at which the currently running boot file was built by MakeBoot is returned by
Runtime.GetBuildTime: PROCEDURE RETURNS [System.GreenwichMeanTime];

The time at which a configuration was bound is returned by

Runtime.GetBcdTime: PROCEDURE RETURNS [System.GreenwichMeanTime];

This operation returns the bind or compile time of the outermost configuration containing
the caller of GetBcdTime. If there are no containing configurations, GetBcdTime returns
the compile time of the caller.

The next two operations are useful for debugging and determining what has been loaded.

Runtime.GetCaller: PROCEDURE RETURNS [PROGRAM];

GetCaller returns the PROGRAM that called the client’s PROGRAM. More precisely, it returns
the PROGRAM of the innermost enclosing context which is outside the PROGRAM that
contains the procedure called GetCaller.

Runtime.lsBound: PROCEDURE [link: Runtime.ControlLink] RETURNS [BOOLEAN];

IsBound returns TRUE if the imported procedure link is bound (i.e., if link is being exported.
Normal usage requires a LOOPHOLE. link may also be an imported variable or an imported
PROGRAM.

Caution: Unexpected results can be experienced using code links, run-time loading and
IsBound. In particular, if a program in the boot file is loaded with code links and imports
an item which is satisfied by a configuration which is loaded at run-time, the program will

Pilot Programmer’s Manual 2

have links which appear to be bound but are actually left over from a previous boot
session. Boot file importers of unbound items should be bound with frame links.

A pointer to the data portion of a program compiled with the Table Compiler is returned
by

Runtime.GetTableBase: PROCEDURE [frame: PROGRAM] RETURNS [LONG POINTER];

GetTableBase may raise Runtime.InvalidGlobalFrame.

2.4.3 Traps and signals

Programming errors and other errors encountered by Mesa programs result in signals or
errors. The first five errors described below are related to specific language features and
are described in more detail in the Mesa Language Manual.

Runtime.StartFault: ERROR [dest: PROGRAM];

StartFault is raised if dest was sTARTed but it had been started previously (perhaps by a
start trap), or if dest was RESTARTed but it had not sTOPped.

Note: If a program does START <program> but program is not valid,
Runtime.lnvalidGlobalFrame is raised. This will happen if program is an unbound import.

Runtime.ControlFault: ERROR [source: Runtime.ControlLink] ;

ControlFault is raised if a program attempts to transfer to a null control link while
executing in the local frame denoted by source. This error passes the control link that was
used. In the current version of Mesa, ControlFault may be raised on an attempt to call an
unbound PROCEDURE (instead of UnboundProcedure).

Runtime.UnboundProcedure: eRROR [dest: Runtime.ControllLink];

UnboundProcedure is raised if a program attempts to call an unbound PROCEDURE. This
error passes the PROCEDURE that was called.

Caution: In the current version of Mesa, ControlFault may be raised instead of
UnboundProcedure.

Runtime.LinkageFault: ERROR;

A transfer has been attempted through a port that has not been connected to some other
port or procedure (the link field of the port was NiL).

Runtime.PoOrtFault: ERROR;

A transfer has been attempted to a port which is not pending (the frame field of the
destination port is NiL). This error is used to handle the transients normally occurring
while initializing coroutines.

BoundsFault: SIGNAL;

2-35

Environment

2-36

A value being assigned to a subrange variable or being used in an indexing operation was
out of range. This signal may also be raised if an attempt is made to assign a signed value
to an unsigned variable and vice versa. This signal is only raised by programs which have
been compiled specifying bounds checking. RESUMEing this signal will allow the program to
use the illegal value, with unpredictable results.

NarrowFault: ERROR;

An attempt was made to use the NARROW operator on a value x to make it of TYPe T, but the
type of the value of x was some other. For example, an attempt was made to narrow a
(pointer to a) variant record to a (pointer to a) specific variant, but the value of x was some
other variant.

PointerFault: SIGNAL;
An attempt has been made to dereference a NiL pointer. This signal is only raised by
programs which have been compiled specifying nil checking. RESUMEing this signal will

use the NiL value, almost invariably causing an immediate address fault.

Note: Pilot leaves virtual address Nit T and LONGNIL T unmapped. Attempts to dereference
a NiL pointer will usually cause an address fault.

Runtime.ZeroDivisor: SIGNAL;

An attempt was made to divide by zero. If this signal is RESUMEd, the result of the divide
operation is undefined.

Runtime.DivideCheck: SIGNAL;
An attempt was made to perform a division invdlving LONG operand(s) whose result could

not be expressed in a single word. If this signal is ResuMed, the result of the divide
operation is undefined. '

2.4.4 Calling the debugger or backstop

A program can explicitly invoke the debugger or backstop by calling

Runtime.CallDebugger: PROCEDURE [LONG STRING];

Client program execution is suspended. The debugger prints the string provided and
awalits user commands. A Proceed command resumes client program execution after the
call to CallDebugger. (If continuing execution at this point is not reasonable, the call to
CallDebugger should be placed inside a non-terminating loop.)

A program may also invoke the debugger or backstop by calling

Runtime.Interrupt: PROCEDURE;

The debugger prints "*** Interrupt ***" and awaits user commands. Interrupt is typically
called by a user input handling process in response to some user action such as typing a
special keyboard key.

Pilot Programmer’s Manual 2

2.5 Client startup
PilotClient: DEFINITIONS . . . ;

Pilot imports precisely one client interface, called PpilotClient. The PilotClient interface is
defined as follows:

PilotClient: DEFINITIONS =
BEGIN
Run: PROCEDURE [];
END.

The client configuration must export a PROCEDURE called PilotClient.Run. Pilot initializes
itself and without explicitly STARTing any client programs calls Run, the first client
procedure, as follows:

Process.SetPriority[Process.priorityNormal};
Process.Detach[FORK PilotClient.Run[] I;

This will cause a start trap within the program containing Run, and will thus start the
control module(s) of the containing configuration, if any. Run is responsible for loading
and starting all client programs, creating spaces, forking processes, etc. It may freely use
the Mesa NEw statement, refer to any known file, and use any facility of Pilot. It may or
may not have a user interface, depending upon the application it implements.

2.6 Coordinating subsystems' acquisition of resources
Supervisor: DEFINITIONS . . . ;
SupervisorEventindex: DEFINITIONS . . . ;

This interface provides a facility for notifying interested clients of events which typically
have a fairly widespread impact. The Supervisor can be used for managing the orderly
acquisition and release of shared resources such as a file, a removable volume, or, in the
case of restarting the machine from a restart file, the entire processor. The Supervisor
facility has some similarities to the Ethernet, in that it provides a way to broadcast
information (within a single processor) to an expandable collection of interested client
software.

The Supervisor accommodates a model of the entire client system as a collection of
subsystems which depend on some basic resource. To handle this model, the Supervisor
maintains a database which describes dependency relationships, and provides a way to
invoke the subsystems in a clients-first or implementors-first order.

Consider the event where a user indicates that he wants to withdraw a removable volume
from a system element. The subsystems which are using the volume must release it in an
orderly manner. Since the volume typically will be used by lower-level subsystems to
build higher-level abstractions for its clients, the higher-level abstractions must also be
released, and indeed must be released before the lower-level subsystem may release the
volume. Thus, the releasing of a volume should normally proceed in a clients-first order.

2-37

Environment

2-38

Similarly, when a volume is added to a system, the subsystems which would like to use it
should acquire it in an orderly manner, typically implementing subsystems first.

Events for which the Supervisor may be useful include:

® Making a restart file.

® Restarting the system element from a restart file.

® Removing or adding a physical or logical volume.

® Turning power off (possibly with Automatic Power On enabled).

® The appearance/disappearance of some service or resource on this or another system
element.

The implementation module is SupervisorImpl.bcd.

2.6.1 Use of the Supervisor

Each subsystem should obtain a subsystem handle from the Supervisor and export it to its
clients. The handles are used by clients to declare, to the Supervisor, which subsystems
they depend on. Each subsystem also registers an agent procedure. When an interesting
event happens, the Supervisor is invoked to notify, in proper order, the agent procedures of
all-subsystems, informing them of the event. Upon return from this enumeration, all
subsystems will have been notified of the event. ‘

Since several lowest-level subsystems may utilize the same basic resource, the event of
releasing a resource might be organized as follows: the enumeration would have each
subsystem release its use of the resource, and then the caller of the enumeration would
actually release the basic resource.

On the other hand, acquisition of a new resource is slightly different. The enumeration
would declare the availability of a new resource. The lowest level subsystems might
implement some higher-level resource on it, and then that subsystem's clients could
interrogate it for the new resources when their agent procedures were called.

For example, in the event of removing a physical volume from the system element, the
agent procedure for a subsystem might perform the following actions:

1. Put the subsystem’s processes to sleep, or into some quiescent state;

2. Browse through the subsystem's database and locate any objects which were built
upon files residing on the physical volume to be removed; this step may well involve
calls to some lower-level subsystems to determine the physical location of their
objects;

3. Delete or otherwise make inactive any objects based on these files and update the
database accordingly;

4. Reawaken its processes;

Pilot Programmer’s Manual 2

5. Return.

The enumeration of subsystems is typically invoked from a very high level, not from
within a monitor implementing a resource which is acquired or released.

2.6.2 Supervisor facilities

An Event is a value that names a particular event in which some subsystems may be
interested.

Supervisor.Event: TYPE = RECORD [eventindex: supervisor.Eventindex];
Supervisor.Eventindex: TYPE = CARDINAL;
supervisor.nullEvent: supervisor.Event = Supervisor.Event[LAST[Supervisor.Eventindex]];

The domain of Event is shared by all of the Supervisor's clients, who therefore must agree
on the meaning of the values. If some software that uses events runs in several disparate
systems (e.g., Star and Tajo), then those systems must agree on the values of the events
which are common to both systems. In this case, there is a common definitions module,
SupervisorEventindex, which defines subdomains for those events common to each
system, and subdomains for those events unique to each system. Also disallowed is the
defining of one element of Event to correspond to more than one event. That is, there
cannot be any catch-all Events.

The basic structure of the SupervisorEventindex interface is a set of subrange definitions. The
following ranges are defined.

SupervisorEventindex.Eventindex: TYPE = Supervisor.Eventindex;
SupervisorEventindex.MesaEventindex: TYPE = CARDINAL [0..1024];
SupervisorEventindex.CommonSoftwareEventindex: TYPE = CARDINAL [1024..1280];

MesaEventindex’s are used by Mesa source and object files.
CommonSoftwareEventindex’s are used by product common software.

Note: Each client of SupervisorEventindex interface should maintain an interface which
defines the Events in its subrange.

Each software component or subsystem which is interested in events should register an
AgentProcedure, which will be called when events occur:

Supervisor.AgentProcedure: TYPE = PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER TO UNSPECIFIED, instanceData: LONG POINTER TO UNSPECIFIED];

Ssupervisor.nullAgentProcedure: supervisor. AgentProcedure = NiL;
When an agent procedure is called, it should first examine event, and ignore ones which it

does not recognize or care about. The agent procedure may use facilities upon which it
depends (see DependsOn below). eventData is supplied by the software that caused the

2-39

Environment

2-40

notification of the event, and its interpretation depends on event. eventData might be
declared as

eventData: LONG POINTER TO RECORD [SELECT COMPUTED event.eventindex FROM . . . ENDCASE;

instanceData is supplied when the agent procedure is declared to the Supervisor, and may
be used to convey to the agent procedure any data necessary for a particular instance of its
parent program. An AgentProcedure of NiL may be used for subsystems which do not wish
to have an associated agent procedure. For backwards compatiblity, a null

AgentProcedure constant is provided. New client code should just use NIL.

The client's AgentProcedure must not call back into the Supervisor, either directly or
indirectly, as this will cause the containing process to hang on a monitor lock.

To participate in the event mechanism, each implementing subsystem must register itself
with the Supervisor. When it does, the Supervisor returns a SubsystemHandle, which is
used to identify the subsystem to the Supervisor, and to the subsystem's clients.
Supervisor.SubsystemHandle: Type [1];

Supervisor.nullSubsystem: READONLY Supervisor.SubsystemHandle;

Supervisor.CreateSubsystem: PROCEDURE [agent: supervisor.AgentProcedure « NiL,
instanceData: LONG POINTER TO UNSPECIFIED ¢ NiL]
RETURNS [handle: supervisor.SubsystemHandle];

This operation creates a new subsystem object and causes an agent procedure and a set of
instance data to be associated with it. The returned subsystem handle typically is made
available to the subsystem's clients. The agent procedure for the subsystem will be called
when events happen, passing instanceData to it at that time.

A subsystem is deleted by

Supervisor.DeleteSubsystem: PROCEDURE [handle: Supervisor.SubsystemHandle];

Supervisor.InvalidSubsystem: ERROR;

InvalidSubsystem is raised if handle does not describe a valid subsystem. Clients must
take care to not retain nor use the SubsystemHandle of a deleted subsystem.

Operations are provided for declaring the dependency relationships between subsystems,
and for inquiring about current dependencies:

Supervisor.AddDependency: PROCEDURE [client, implementor: supervisor.SubsystemHandle];
supervisor.CyclicDependency: ERROR;

Supervisor.RemoveDependency: PROCEDURE [client, implementor:
Supervisor.SubsystemHandle];

Supervisor.NOSuchDependency: ERROR;

Pilot Programmer’s Manual 2

AddDependency declares that client is directly dependent on implementor and directly
uses its services. Typically, this declaration is made because a client subsystem needs to
act on some event either before or after the subsystems which he depends on act on it.
Duplicate direct dependencies are ignored. If implementor is already registered as being
directly or indirectly dependent on client, CyclicDependency is raised. If client or
implementor do not describe a valid subsystem, Supervisor.InvalidSubsystem is raised.

RemoveDependency declares that client is no longer directly dependent on implementor.
If client was not directly dependent on implementor, NoSuchDependency is raised. If
client or implementor do not describe a valid subsystem, Supervisor.InvalidSubsystem is
raised.

Supervisor.DependsOn: PROCEDURE [client, implementor: Supervisor.SubsystemHandle]
RETURNS [BOOLEAN];

DependsOn returns TRUE if and only if client is directly or indirectly dependent on
implementor. If either client or implementor does not describe a valid subsystem,
Supervisor.InvalidSubsystem is raised.

When an event happens, the client program that caused the event notifies the registered
subsystems with the following operation:

Supervisor.NotifyAllSubsystems: PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER TO UNSPECIFIED, whichFirst: supervisor.Clientsimpls];

supervisor.Clientsimpls: Tvpe = {clients, implementors};

This operation calls the agent procedures of all subsystems. If whichFirst is clients, a
subsystem is notified only after all of its clients have been notified. If whichFirst is
implementors, a subsystem is notified only after all of its implementors have been
notified. See the definition of AgentProcedure for a description of eventData. If a
subsystem handle does not describe a valid subsystem, Supervisor.lnvalidSubsystem is
raised.

Caution: No client of Tajo, CoPilot, or the Development Environment, versions 11.0,
should call NotifyAllSubsystems. It will cause these systems to crash or hang.

For events which are only of interest to a separable set of subsystems and for which it is
desired to avoid swapping in the code of all agent procedures, NotifyRelatedSubsystems
may be used.

Supervisor.NotifyRelatedSubsystems: PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER TO UNSPECIFIED, which, whichFirst: supervisor. Chentslmpls,
subsystem: supervisor.SubsystemHandle];

This operation calls the agent procedures of all subsystems which are directly or indirectly
clients or implementors of subsystem. For which equal to clients, it calls all agent
procedures which are direct or indirect clients of subsystem. For which equal to
implementors, it calls all agent procedures which are the direct or indirect implementors
of subsystem. For whichFirst equal to clients, it visits a subsystem only after all of its
clients have been visited. For whichFirst equal to implementors, it visits a subsystem only
after all of its implementors have been visited. See the definition of AgentProcedure for a

2-41

Environment

description of eventData. If subsystem does not describe a valid subsystem,
Supervisor.InvalidSubsystem is raised.

Caution: NotifyRelatedSubsystems is not implemented in Pilot 11.0.

For events which are only of interest to the immediate clients or implementors of a
subsystem and for which it is desired to avoid swapping in the code of all agent procedures,
NotifyDirectSubsystems may be used.

Supervisor.NotifyDirectSubsystems: PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER TO UNSPECIFIED «— NiL, which: Supervisor.Clientsimpls,
subsystem: supervisor.SubsystemHandle];

This operation calls the agent procedures of all subsystems which are directly related to
subsystem. For which equal to clients, it calls the agent procedures of all subsystems
which are direct clients of subsystem. For which equal to implementors, it calls the agent
procedures of all subsystems which are direct implementors of subsystem. See the
definition of AgentProcedure for a description of eventData. If subsystem does not
describe a valid subsystem, Supervisor.InvalidSubsystem is raised.

2.6.3 Exception handling

Handling recoverable error conditions encountered during an enumeration of subsystems
requires some special consideration. Exceptions in Mesa are usually handled by signals.
In the context of the Supervisor, these are not appropriate since the subsystems are
enumerated sequentially, not recursively, and therefore the previously-invoked agent
procedures are not in a position to catch a signal or an UNWIND.

Thus, the following procedure is suggested: The agent detecting an error condition would
signal an error to the caller of NotifyxSubsystems. That caller would catch the signal,
unwind, and then call NotifyxSubsystems for an inverse event to the one being aborted.
Thus, each agent would then be given the chance to back out of any actions he had taken.
If there is no naturally-occurring inverse event, an artificial one can be defined
specifically for backing out of particular kinds of aborted events. In some cases, a two-
phase protocol may be necessary to handle an event properly.

If no special information needs to be communicated while aborting an enumeration, the
following signal may be used:

Supervisor.EnumerationAborted: ERROR;

The caller of the enumeration should catch it.

2.7 General object allocation

2-42

ObjAlloc: DEFINITIONS ... ;

This section describes the facility used to control the allocated/free state of a collection of
objects. A typical application of this facility would be a storage allocator using ObjAlloc to
manage its underlying database.

Pilot Programmer’s Manual 2

2.7.1 Basic types
Objalloc. AllocFree: TYPE = MACHINE DEPENDENT {free(0), alloc(1)};
ObjAlloc.AllocationPool: TYPE = PACKED ARRAY [0..0) OF Objalioc.AllocFree;

Objalloc. AllocPoolDesc: TYPE = RECORD [allocPool: LONG POINTER TO Objalloc.AllocationPool,
poolSize: objalloc.itemCount];

Objallac.Interval: TYPE = RECORD [first: Objalloc.ltemindex, count: Objalloc.ItemCount];
ObjAlloc.Itemindex: TYPE = LONG CARDINAL;
ObjAlloc.ItemCount: TYPE = LONG CARDINAL;

An objalioc.AllocationPool describes the allocated/free state of an ordered set of objects.
Each object is identified by a name, called an Objallocltemindex. The location and size of
an Objalloc.AllocationPool is given by an Objalloc.AllocPoolDesc.

Note: The location must be word aligned, and the size is given in terms of the number of
objects in the pool.

An objalloc.Interval describes a range of objects by giving the objAlioc.Itemindex of the first
object, and the number of objects in the range.

2.7.2 Basic procedures and errors

Objalloc.Allocate: PROCEDURE [pool: Objalloc.AllocPoolDesc, count: ObjAlloc.itemCount,
willTakeSmaller: BOOLEAN «FALSE] RETURNS [interval.objalloc.Interval];

ObjAlloc.Error: ERROR [error: ObjAlloc.ErrorType];
objalloc.ErrorType: TYpPe = {insufficientSpace, invalidParameters};

objAlloc.Allocate finds, and marks as allocated, a range of count objects. If willTakeSmaller
is FALSE and count contiguous objects can not be found, Objalloc.Error[insufficientSpace] is
raised. If willTakeSmaller is TRUE, Objalloc.Allocate will allocate the largest range of objects
whose size does not exceed count. In this case, Objalloc.Error[insufficientSpace] will only be
raised if no free objects can be found. In either case, the returned range is guaranteed to be
the range with the smallest first name that meets the needs inferred by count and
willTakeSmaller.

Objalioc.ExpandAllocation: PROCEDURE [pool: Objalloc.AllocPoolDesc,
where: Objalloc.itemindex, count: ObjAlioc.ltemCount,
willTakeSmaller: BOOLEAN « FALSE] RETURNS [extendedBy.ObjAlloc.ItemCount];

An allocated range can be expanded using ObjAlloc.ExpandAllocation. If the objects
[where..where + count) are all free, they are marked as allocated, and extendedBy is set
to count. If only the objects [where.where+countFree) are free, where
0< = countFree<count, the result depends upon the value of willTakeSmaller. If
willTakeSmaller is FaLse, extendedBy is returned as zero and no objects are marked

2-43

Environment

2-44

allocated. If willTakeSmaller is TRUE, the objects [where..where + countFree) are marked
as allocated and extendedBy is returned as countFree.

ObjAlloc.Free: PROCEDURE [pool: Objalloc.AllocPoolDesc, interval: objalloc.Interval,
validate:BOOLEAN «TRUE];

oObjalloc.AlreadyFreed: ERROR [item: Objalloc.Itemindex];

A range of objects is freed by calling Objalloc.Free. If not all of the named objects are
contained in pool, objaAlioc.Error[invalidParameters] is raised and no objects are marked
free. If validate is TRUE then an attempt to free an already free object results in the signal
Objalloc.AlreadyFreed[item] being raised, with item as the smallest index of a free object in
the interval. No objects are freed in this case. If validate is FALSE, the specified objects are
marked as free with no checking performed.

Objalloc.InitializePool: PROCEDURE [pool: Objalloc.AllocPoolDesc, initialState:
objalioc.AllocFree];

An objalloc.AllocationPool may be initialized by calling objalloc.InitializePool. It will set
the initial state of all of the objects in the pool to the specified state.

Note: In any call to Objalloc.Allocate, Objalioc.ExpandAllocation, ObjAlloc.Free, or ObjAlloc.
InitializePool, an ADDRESS FAULT may result if any part of the allocation pool is unmapped.
Additionally, it is the clients responsibility to serialize access to the database. Objalloc
provides no serialization.

Streams

Stream: DEFINITIONS ... ;

The Stream Facility described in this section provides to Pilot clients a convenient,
efficient, device- and format-independent interface for sequential access to a stream of
data. In particular:

It provides a vehicle by which processes or subsystems can communicate with each
other, whether they reside on the same system element or on different system
elements.

It permits processes or subsystems to transmit arbitrary data to or from storage media
in a device-independent way.

It defines a standard way for transforming the detailed interface for a device into a
uniform, high level interface which can be used by other client software.

It provides an environment for implementing simple transformations to be performed
on the data as it is being transmitted.

It provides optional access to and control over the mapping of data onto the physical
format of the storage or transmission medium being used.

The stream package provides several facilities, not all of which may be important to an
individual client. First, there is the stream interface, the set of procedures and data types
by which a client actually controls the transmission of a stream of information. Each of the
operations of the stream interface takes as a parameter a Stream.Handle which identifies
the particular stream being accessed. Second, the stream package defines the concepts of
transducer and filter. A transducer is a software entity (e.g., module or configuration)
which implements a stream connected to a specific device or medium. A filter also
implements a stream, but only for the purpose of transforming, buffering, or otherwise
manipulating the data before passing it on to another stream. Transducers and filters may
be provided either by Pilot or by clients. Third, the stream package provides a standard
way of concatenating a sequence of filters (usually terminated with a transducer) to form a
compound stream called a pipeline. A pipeline is accessed by means of the normal stream
operations, and causes a sequence of separate transformations to be applied to data

3-1

Streams

flowing between the client program at one end and the physical storage (or transmission)
medium at the other.

Pipelines permit clients to interpose new stream manipulation programs (filters and
transducers) between clients (producers and consumers of data) without modifying the
interfaces seen by the clients. For example, a data format conversion program can obtain
its data either from a magnetic cassette or from a floppy disk, using the same stream
interface, and hence the same program logic, for both. Similarly, filters performing such
functions as code conversion, buffering, data conversion, and encryption, may be inserted
into a pipeline without affecting the way the client sends and receives data through the
stream interface.

The stream facility transmits arbitrary data, regardless of format and without prejudice to
its type or characteristics. The data may comprise a sequence of bytes, words, or arbitrary
Mesa data structures. The stream facility does not presume or require the encoding of
information according to any particular protocol or convention. Instead, it permits clients
to define their own protocols and standards according to their own needs.

In this chapter, sections 3.1, 3.2, and 3.3 will be of interest to all clients. Section 3.4 will be
of interest only to those clients wishing to control the physical record characteristics of a
particular stream. Section 3.5 will be of interest only to those clients wishing to
implement their own filters or transducers. In addition, the clients of a particular stream
type (e.g., disk, tape) will normally have to consult separate documentation regarding the
details of that kind of stream.

3.1 Semantics of streams

3-2

The stream facility supports transmission of a sequence of eight-bit bytes. This sequence
may be divided into identifiable subsequences, each of which has its own subsequence type.

Stream.Byte: TYPE = Environment.Byte;
Environment.Byte: TYPE = [0..256);
stream.SubSequenceType: TYPE = [0..256);

A subsequence may be null: i.e., it may be of zero length and contain no bytes but still
contain the SubSequenceType information. This information allows all subsequences to
be easily identified and separated from each other while shielding clients from the
bothersome problems of control-codes (i.e., embedding control codes into the stream,
making them transparent, and building a parser to implement such transparency).

Additionally, an attention flag may be inserted into a stream sequence. Attention flags are
transmitted through the stream as quickly as possible, possibly bypassing bytes and
changes in SubSequenceType which were transmitted earlier but which are still in
transit. This provides a simple mechanism for implementing breaks (similar to the
"attention-key" of many time-sharing systems). A byte of data is associated with an
attention flag for the use of client protocols. Note that the attention flag and the data byte
occupy a byte in the stream sequence.

Streams have no intrinsic notion of the bytes passing through them being grouped into
physical records. The client program can completely ignore physical record structure and

Pilot Programmer’s Manual 3

is thus relieved of the burden of dealing with the associated packing and unpacking
problems. If, however. it becomes necessary to control or determine the underlying
physical record structure, as determined by the particular storage (or transmission)
medium, the interface provides extended facilities which allow this.

All of the procedures described here are synchronous. That is, an input operation does not
return until the data is actually available to the client, and an output operation does not
return until the data has been accepted by the stream and client buffers may be reused.
Note, however, that a stream component may do internal buffering and that the
acceptance of data means only that the stream component itself has a correct copy and is in
a position to proceed asynchronously to write or send it.

Streams in Pilot are inherently full duplex. Separate processes may be transmitting and
receiving simultaneously. The stream interface does no¢ guarantee mutual exclusion
among different processes attempting to access the same stream. However, individual
transducers or filters may restrict themselves to half duplex operation and may
implement such mutual exclusion or more elaborate forms of synchronization as is
appropriate. Documentation for such filters and transducers should be consulted on a case-
by-case basis for details.

3.2 Operations on streams

The stream interface provides operations for sending and receiving data, for sending state
information, and for dealing with stream positions. In addition, a Delete operation is
provided to delete a stream. A create operation is not provided. Streams are only created
by individual stream components, namely, pipelines, transducers and filters.

A client program identifies a particular instance of the stream interface by means of a
stream.Handle.

stream.Handle: TYPE = ... ;

A stream.Handle identifies an object (see §3.5.1) which embodies all of the information
concerning the transfer of data to or from the client program via stream operations. It is
passed as a parameter to each of the data transmission operations of the following sections
to specify the stream to which the operations apply.

A stream may be deleted by the operation:

stream.Delete: PROCEDURE [sH:Stream.Handle];

The client must ensure that there are no outstanding references to the stream being
deleted. Failure to observe this caution will result in unpredictable effects.

3.2.1 GetBlock and PutBlock
The principal operations for transferring blocks of data are Stream.GetBlock and
stream.PutBlock. Both are inline procedures. Each of these takes a parameter specifying

the block of virtual memory to or from which bytes are to be transmitted.

stream.Block: TYPE = Environment.Block;

3-3

Streams

Environment.Block: TYPE = RECORD |
blockPointer: LONG POINTER TO PACKED ARRAY [0..0) OF Environment.Byte,
startindex, stopindexPlusOne: CARDINAL];

A Block describes a section of memory which will be the source or sink of the bytes
transmitted. The section of memory described is a sequence of bytes (not necessarily word
aligned) which must lie entirely within a mapped space. blockPointer selects a word such
that a startindex of zero would select the left byte of that word (i.e., bits 0 - 7). The selected
block corsists of the bytes blockPointer[i] for i in [startindex..stopindexPlusOne). Notice
that a Block cannot describe more than 216-1 bytes or 215-1 words. A Stream.Block can
describe any part of virtual memory.

Some of the operations of this section and the next may cause signals to be generated. If
such a signal is resumed, transmission continues from where it left off so that any changes
made by the catch phrase to the Block record or to the input options (see below) are
ignored. If, however, such a signal is RETRved, the next byte of the stream sequence is
transmitted to or from the byte specified by the current value of the Block record or input
options, either of which might have been updated by the catch phrase. In no case is the
stream sequence itself "backed up”. Bytes previously received from input are not re-
received, and bytes previously transmitted on output are not withdrawn.

The primary block input operation is Stream.GetBlock.

stream.GetBlock: PROCEDURE [sH: stream.Handle, block: Stream.Block]
RETURNS [bytesTransferred: CArRDINAL, why: Stream.CompletionCode,
sst: stream.SubSequenceType]; :

stream.CompletionCode: Type = {normal, endRecord, sstChange, endOfStream,
attention, timeout}; '

The parameter block describes the virtual memory area into which the bytes will be
placed. GetBlock does not return until the input is terminated. Its exact behavior,
however, is controlled by a set of input options which may be set by the client using the
following operation:

Stream.SetInputOptions: PROCEDURE [sH: stream.Handle, options: stream.InputOptions];

Stream.InputOptions: TYPE = RECORD[
terminateOnEndRecord «FALSE, signalLongBlock « FALSE, signalShortBlock « FALSE,
signalSSTChange « FALSE, signalEndOfStream «FALSE, signalAttention e FALSE,
signalTimeout « TRUE, signalEndRecord: BOOLEAN &~ FALSE];

stream.defaultinputOptions: stream.InputOptions = [];

SetlnputOptions controls exactly how GetBlock terminates and what signals it generates.
Ordinarily (i.e., with the parameter options set to defaultinputOptions) the transmission
will not terminate until the entire block of bytes is filled unless there is a timeout.
However, under the exceptional conditions described in §3.4, the’ transmission may
terminate before the block is filled and may also result in a signal. In all cases the
procedure will return the actual number of bytes transferred, a CompletionCode
indicating the reason for termination, and the latest SubSequenceType encountered. The

Pilot Programmer’s Manual 3

input operation may convenientlv be restarted where it left off by first adding the result
bytesTransferred to block.startindex to update the record describing the block of bytes.

‘In general, any status that may be returned from GetBlock may also be signalled, and the
option to do so is available through InputOptions. A catch phrase for these signals must
not attempt any other stream operations using the same Stream.Handle, for this will
corrupt the internal state information maintained for the stream.

Three circumstances which always suspend the transmission of data before the block is
filled are the detection of a change in SubSequenceType, the detection of an attention,
and the detection of the end of the stream. In the first case, if the input option
signalSSTChange is FALSE (the default) then the procedure GetBlock terminates
immediately and returns the number of bytes transferred, with why = sstChange, and sst
set to the new value of the SubSequenceType. If the input option signalSSTChange is TRUE
then the signal

stream.SSTChange: SIGNAL [sst: stream.SubSequenceType, nextindex: CARDINAL];

is generated. The parameter sst specifies the new SubSequenceType, and the parameter
nextindex specifies the byte index within the block where the first byte of the new
subsequence will be placed. This signal may be resumed, and the effect is to continue the
data transmission as though the change in SubSequenceType had not occurred (i.e., in the
same block of bytes).

If an attention is detected in the byte stream, the GetBlock terminates immediately and
returns immediatly with the number of bytes transferred and with why = attention. If
the input option signalAttention is TRUE then the signal

stream.Attention: SIGNAL [nextindex: CARDINAL];

is generated. The parameter nextindex specifies the byte index within the block where the
position within the block where the next byte, the attention byte, would be placed. This
signal may be resumed, and the effect is to continue the data transmission as though the
Attention had not occurred (i.e., in the same block of bytes).

A catch phrase for these signals must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for the
stream.

Implementation of the end-of-stream feature is strictly transducer and filter specific, and
optional. Transducer and filter implementors may implement an end-of-stream
mechanism using any protocol they desire. When putting together a pipeline from a
transducer and filters, great care needs to be taken to preserve the end-of-stream feature
through all the stream components. If the input option signalEndOfStream is FALSE (the
default) and the stream component detects that the end-of-stream has occurred then the
procedure GetBlock terminates immediately and returns the number of bytes transferred,
with why = endOfStream. If the input option signalEndOfStream is TRUE and the stream
component detects that the end-of-stream has occurred then the signal

Stream.EndOfStream: SiGNAL [nextindex: CARDINAL];

3-5

Streams

3-6

is generated. The parameter nextindex specifies the byte index immediately following the
last byte of the stream sequence tilled in a client's block.

Stream component implementors may provide special procedure calls in order to actively
cause a stream to be terminated.

Semantics of the end-record feature are also transducer and filter specific. Furthermore,
all transducers may not preserve the same semantics across the transmision medium. In
any case, all notion of end-record processing may be suppressed by setting
terminateOnEndRecord FALSE (the default). If the input option terminateOnEndRecord is
TRUE and signalEndRecord is FALSE (the default) and the stream component detects that the
end-record has occurred then the procedure GetBlock terminates immediately and returns
the number of bytes transferred, with why = endRecord. If the input option
signalEndRecord is TRUE and the stream component detects that the end-record has
occurred then the signal

stream.EndRecord: SIGNAL [nextindex: CARDINAL];

is generated. The parameter nextindex specifies the byte index immediately following the
last byte of the stream sequence filled in a client's block.

The principal block output operation is Stream.PutBlock.

stream.PutBlock: PROCEDURE [sH: stream.Handle, block: stream.Block,
endRecord: BOOLEAN « FALSE];

This operation is analogous to Stream.GetBlock. The parameter block describes the area of
virtual memory from which information is transmitted. This procedure returns only after
the data has been accepted by the stream, at which time the client may reuse block. If the
client is ignoring record boundaries (the default), endRecord should be set to FALSE.
Otherwise, see the section on controlling physical record characteristics, §3.4.

Stream operations have the right to discard empty blocks, hence a PutBlock operation
specifying a block of length zero may be a no-op even if endRecord is TRUE.

3.2.2 Additional data transmission operations

In addition to GetBlock and PutBlock, the following operations are provided to permit the
sending and receiving of individual bytes, characters and words. All but SendNow are
inline procedures. They are supplied so that some streams can provide byte or character or
word operations in a more efficient manner than is possible with GetBlock or PutBlock.
The documentation for individual streams should be consulted for detailed performance
information.

Stream.GetByte: PROCEDURE [sH: stream.Handle] ReTuRNS [byte: stream.Byte];
stream.GetChar: PROCEDURE [sH: stream.Handle] RETURNS [char: CHARACTER];
Stream.GetWord: PROCEDURE [sH: Stream.Handle] RETURNS [word: Stream.Word];

Stream.Word: TYPE = Environment Word;

Pilot Programmer’s Manual 3

GetByte and GetChar operations get the next Byte or CHARACTER from the stream sequence
and return it just as a call upon stream.GetBlock specifying a Block containing one byte

- would. The GetWord operation gets the next Word from the stream sequence and returns
it just as a call upon GetBlock specifying a Block containing €nvironment.bytesPerWord
bytes would. In all three cases, the effect is as if the input options to GetBlock had been
signalShortBlock, signalLongBlock, signalAttention, signalEndRecord and
terminateOnEndRecord = FALSE, and signalEndOfStream, signalTimeout and
signalSSTChange = TRuEe. Thus, these operations may result in the signal SSTChange,
EndOfStream or Stream.TimeOut (see §3.2.4).

Note: When any of the signals are generated when processing a GetWord and nextindex
is an odd value, the two communicating processes are responsible for the outcome.

Stream.PutByte: PROCEDURE [sH: Stream.Handle, byte: stream.Byte];

stream.PutChar: PROCEDURE [sH: Stream.Handle, char: CHARACTER];

stream.PutWord: PROCEDURE [sH: stream.Handle, word: stream.Word];

Stream.PutString: PROCEDURE [sH: Stream.Handle, string: LONG STRING, endRecord « FALSE];

The PutByte and PutChar operations transmit the Byte or CHARACTER to the medium just as
a call on stream.PutBlock specifying a Block containing one byte would. The PutWord
operation transmits the next Word to the medium just as a call on PutBlock specifying a
Block containing Environment.bytesPerWord bytes would. In the first three cases, the effect
is as if endRecord is set to FALSE in the call to PutBlock. PutString transmits the bytes
described by string to the medium.

stream.SendNow: PROCEDURE [sH: stream.Handle, endRecord « FALSE];

This operation flushes the stream sequence. It guarantees that all information previously
output (by means of PutBlock, PutByte, PutChar, PutWord, PutString, or SetSST) will
actually be transmitted to the medium (perhaps asynchronously). The default
implementation of this procedure is equivalent to a call on Stream.PutBlock specifying a
Block containing no bytes and endRecord set to TRUE (see §3.4). Client programs should
call SendNow at appropriate times to ensure that the bytes and changes in
SubSequenceType have actually been sent and are not buffered internally within the
stream, awaiting additional output operations.

Through use of the endRecord parameter, SendNow may apply transducer or filter
specific semantics to the transmission of the data, such as the idea of a logical record. A
logical record may be a collection of one or more physical records. The logical record
boundaries can be detected by the receiving client by proper setting of
terminateOnEndOfRecord and perhaps signalEndRecord in the streams’s InputOptions.

3.2.3 Subsequence types
The subsequence type of a stream may be changed by

Stream.SetSST: PROCEDURE [sH: Stream.Handle, sst: stream.SubSequenceType};

Streams

3-8

All subsequent bytes transmitted on the strcum have the indicated SubSequenceType.
Even if the subsequent sequence ol bytes is null (ie., a call on SetSST is immediately
followed by another), the SubSequenceType change demanded by this call will still be
available to the receiver of the stream sequence.

SubSequenceTypes are intended to be used to delineate different kinds of information
flowing over the same stream (e.g., to identify control information, indicate end-of-file,
etc.). The interpretation of a SubSequenceType value is a function of the particular
stream.

A SetSST operation specifying a SubSequenceType identical to the previous
SubSequenceType is a no-op. Otherwise, 5etSST always has the side effect of completing
the current physical record, as explained in §3.4.

3.2.4 Attention flags

The following operation causes an attention flag and an associated byte of data to be
transmitted via the stream facility.

stream.SendAttention: PROCEDURE [sH: stream.Handle, byte: stream.Byte];

Note that the attention flag and the data byte occupy a byte in the stream sequence. The
attention is sent as both an in-band and out-of-band signal. The out-of-band attention is
not necessarily transmitted in sequence, but may bypass bytes and changes in
SubSequenceType which were transmitted before it. byte is used by the client protocol to
transmit other information regarding this attention.

The following operation awaits the arrival of an attention flag.
stream.WaitForAttention: PROCEDURE [sH: Stream.Handle] RETURNS [Stream.Byte];

When the out-of-band attention is received on stream sH, this procedure returns the byte
of data associated with the attention. It is the responsibility of the client program to
determine the appropriate action to take. If more than one attention flag has been sent,
these will be queued by the stream. Each return from a call on WaitForAttention
corresponds to precisely one attention sent by SendAttention.

When the in-band attention is received on stream sH, the effect depends upon the setting
of the InputOptions. If signalAttention is FALSE, the operation terminates with a
completion code of attention. The next byte in the stream is the byte passed to
SendAttention. If the input options specify signalAttention as TRUE, the signal Attention
is raised with the index pointing in the current block to the byte passed to SendAttention.

WaitForAttention is usually executed by a different process from that operating upon the
stream. It returns as soon as the attention is received, whether or not all of the bytes
preceeding it in the stream have been transferred.

Pilot Programmer’s Manual 3

3.2.5 Timeouts

Any of the operations of this section (except SendAttention and WaitForAttention) may
fail to complete within a reasonable amount of time due to external conditions. In such a
case the following signal is generated:

stream.TimeQut: sIGNAL [nextindex: CARDINAL];

The parameter of this signal indicates the position within the block of bytes where the
next byte would be placed. This signal may be resumed.

If this signal is ReTRYed all previously received data may be lost. This is because it is likely
that a stream component is performing internal buffering (transferring data from its
buffer into the client's block), and the action of RETRYing the signal may not tell the
component that it must refill the client's block. Even if the component was informed of this
fact, it may have discarded data already transferred into the client's block from its
internal buffer.

A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for the
stream.

The timeout value for the stream may be read and altered by using the getTimeout and
setTimeout procedures in the Stream.Object (section 3.5.1).

msecs « sH.getTimeout[sH];

sH.setTimeout[sH, msecs];

3.2.6 Stream imsitiohing

For those streams which may be accessed randomly, the position of a stream may be
determined with the procedure

Stream.GetPosition: PROCEDURE [sH: stream.Handle]
RETURNS [position: stream.Position];

Stream.POsition: TYPE = LONG CARDINAL;
The value returned is the byte index of the next byte to be read from or written in the file.
The position of a stream may be set with the procedure

stream.SetPosition: PROCEDURE [sH: Stream.Handle, position: stream.Position];

3.3 Creating streams

Pilot provides no general operations for creating streams. The main reason for this is that
the components of a stream (pipelines, transducers, and filters) must be able to take
arbitrary parameters at the time they are created. It is not possible for Pilot to specify a
general interface for their creation without either compromising the basic type-safeness of
Mesa or constraining the flexibility and power of client-provided streams. Thus, the create

3-9

Streams

3-10

function is implemented on a case-bv-case basis, and clients must therefore refer to
documentation for individual stream components for the correct interface tor this
operation. Specifications for Pilot-provided transducers and filters are included in § 3.6. In
this section, the general style is illustrated by means of hypothetical examples.

For example, if a utility package implements a transducer to a magnetic cassette reader, it
is obligated to provide a means by which other clients can create instances of that
transducer, use them, and later delete them. Suppose the name of the interface module
providing this function is CassetteStream. Then it would provide the following operation:

CassetteStream.Create: PROCEDURE [-—optional parameters--]
RETURNS [Stream.Handle, --optional other results--|;

A client wishing to use the stream interface to access this device would thus call
CassetteStream.Create, then use the Stream.Handle returned from it as parameter to the
stream operations of this chapter. When the stream was no longer needed, it would be
deleted by calling Stream.Delete.

Similarly, a security package providing, say, an encryption facility might implement this
by means of a filter for a stream. In this case, the interface module might be called
EncryptionFilter, and it would provide the following operation:

Encryptionfilter.Create: PROCEDURE [Stream.Handle, --optional other parameters--]
RETURNS [Stream.Handle, --optional other results--];

The client could easily couple an instance of this filter with the transducer above. This is
done by calling EncryptionFilter.Create, passing as a parameter the Stream.Handle returned
from CassetteStream.Create. Then the Stream.Handle returned from Encryptionfilter.Create
would be the one used in GetBlock, PutBlock, and the other operations of §3.2. The net
effect would be stream components which, on input, read bytes from the cassette reader,

" decrypt them, and pass them to the client and which, on output, encrypt the bytes supplied

by the client and write them on the cassette.

In general, a procedure creating a filter accepts one Stream.Handle as a parameter and

returns another as its result. Thus, several filters, each implementing a simple
transformation, may be concatenated together to implement a more interesting
transformation on the stream sequence. The parameter passed to each one is the result
returned from the adjacent one. Such a concatenation, called a pipeline, is illustrated in
Figure 3.3a.

< < - & PRL

Cliegt Filter A Filter B Transducer

Figure 3.3a

Pilot Programmer’s Manual 3

This diagram illustrates how each stream.Handle returned from a transducer or filter is
passed as a parameter to the next adjacent filter, and how the last one is used directly by
the client. In particular, hy is returned from the procedure which creates Transducer. [t is
passed to the procedure which creates Filter B, returning h;. This is passed, in turn, to the
next filter, and so on, until h, is returned and passed to Filter A. Filter A is the last one in
the pipeline, and its stream.Handle, h, is returned to the client. i

Figure 3.3b shows the flow of data through the pipeline and the use of the various
stream.Handles as a result of a client call on Stream.GetBlock (calls on other data
transmission operations are analogous).

GetBlock[h,...] | GetBlock[hp,...] GetBlock[hy,...] device operation
h h h
« <= - & -
Client Filter A Filter 8 Transducer
Figure 3.3b

Here, the client calls stream.GetBlock([h, ...], which is transformed by the stream interface
into an appropriate call on Filter A. Filter A, in turn, calls Stream.GetBlock[h,,, . . .], which is
passed to the next filter in the pipeline, and so on, until eventually a call is made on
stream.GetBlock[hy, . . .]. This is transformed into a call on Filter B, which then calls °
stream.GetBlock[hy, . ..], to invoke Transducer, which actually operates the device.

Note that the only difference between a transducer and a filter is that a transducer
interfaces to some device or channel, while a filter interfaces to anothgr stream and, thus,
indirectly to another filter or transducer.

Note also that the client can construct a pipeline "manually," by tediously assembling the
various components, instantiating each of them, and binding them together. However, a
pipeline can also be presented as an integrated package, already assembled. For example,
the two components described above may have been assembled into a pipeline called
EncryptingCassetteStream. This pipeline might then provide the following operation,
which clients can call to create an procedure an instance of this pipeline:

EncryptingCassetteStream.Create: PROCEDURE [~~optional parameters--]
RETURNS [Stream.Handle, --optional other results--];

The client of such a stream would merely invoke this procedure to create the stream
without having to bother about finding and putting together the individual components.

3.4 Control over physical record characteristics

Most of the time, the client will not wish to know about how the data in a stream sequence
is divided into physical records for recording or transmission. For some applications,
however, this is of vital importance. The stream facility has been designed so that the
details of the physical encoding can be ignored when desired, or completely known and
controlled when that is necessary. On output, complete control of the placement of bytes in

3-11

Streams

3-12

physical records can be achieved for most media. On input, complete information is
available about how the bytes were arranged in physical records.

These facilities to control the placement of bytes on physical records are not meant to be
used as a means of transmitting information. In particular, a transducer might suppress
or generate empty physical records and will necessarily partition oversize "physical”
records into smaller ones. Any filter may rearrange (or completely obliterate) physical
record boundaries. Documentation for the individual transducer or filter and for the
individual transmission or storage medium should be consulted for full details.

The output and input cases will be treated separately. On output, bytes will be placed in
turn into the same physical record until one of the following events occurs:

1. The SendNow procedure is called. It has the side effect of causing the current record to
be sent. The next byte output will begin a new physical record. This is the main
mechanism for controlling physical record size on output.

A SendNow with endRecord TRUE may apply further transducer or filter dependent
semantics, such as end of logical record.

2. APutBlock procedure is called with an endRecord parameter of TRUE (this is equivalent
to a SendNow with endRecord TRUE). After the transmission of this block of bytes, the
current physical record is ended. If, at this point, the physical record is at its
maximum size (see 5. below), an empty record will not be transferred.

3. A SetSST procedure has been called. The first byte of a new subsequence always begins
a new record and has the new SubSequenceType. This may cause the previous record
to be sent.

4. Enough bytes have been output to fill the physically maximal record. At this point the
record will be written and a new record started. This maximum number is a function
of the medium being written, hence documentation concerning the medium must be
consulted to determine this value.

5. Some other device-dependent event, such as a timeout, occurs. In this case, a buffer
may be flushed automatically. Details are documented with individual transducers.

On input, bytes will be placed in turn into the record until one of the following events
occurs:

1. The end of the logical record is reached, and the input option terminateOnEndRecord
is TRUE.

The end of the logical record is reached at the same time that the block of bytes
described in the Block record is exhausted. In this case, neither of the signals
ShortBlock and LongBlock is generated. If the input option terminateOnEndRecord is
TRUE, then why is set to endRecord; otherwise, it is set to normal.

In any case, if the input option signalEndRecord is TRUE and the logical record has just
been exhausted, then the following signal is generated.

stream.EndRecord: siGNAL[nextindex: CARDINAL];

Pilot Programmer’s Manual 3

This signal indicates by nextindex the position within the block of bytes where the
next byte will be placed. [f it is resumed, transmission continues as if it had not been
generated.

A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for
the stream.

2. The end of a physical record is reached, the block of bytes described in the Block record
is not exhausted, and signalLongBlock is TRUE.

If signalLongBlock is TRUE, the following signal is generated:
stream.LongBlock: SIGNAL [nextindex: CARDINAL];

This signal indicates by nextlndex the position within the block of bytes where the
next byte will be placed. If it is resumed, transmission continues as if it had not been
generated.

A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for
the stream.

3. The block of bytes described in the Block record is exhausted, the end of the physical
record has not been reached, and the input option signalShortBlock has the value TRUE.
At this time the input is terminated (without losing the subsequent bytes of the
physical record, which are still available for reading by subsequent GetBlock
operations), and the signal stream.ShartBlock is generated.

stream.ShortBlock: ERROR;
This signal may not be resumed.

The easiest approach is usually to establish a Block longer than the longest expected
physical record and specify input options signalLlongBlock as FaLSE, signalShortBlock as
TRUE, and terminateOnEndRecord as TRUE. At this point the transmission will cease with
the entire contents of the physical record in the block of bytes, and the number of bytes
transmitted will be returned as the result of the GetBlock procedure. In this way a signal
will be generated only under unusual circumstances.

3.5 Transducers, filters, and pipelines

The stream package is designed so that clients can implement their own stream
components (transducers, filters, and pipelines). The implementor of one of these has three
different obligations to fulfill. First, he must design an interface (i.e., Mesa DEFINITIONS
module) in the style described in the section about creating streams, §3.3, by which his
clients create instances of that stream component. Such an interface (together with its
accompanying implementation modules) is called a stream component manager. Second,
he must provide a functional specification describing this interface and the detailed
behavior of the stream component, including any specific signals, errors, parameters, etc.,
which it defines. Third, he must implement the actual component, if it is a filter or

3-13

Streams

3-14

transducer. (Pipelines are assumed to be composed of previously implemented components
which already have their own component managers and documentation.)

w

This section describes the standards, data types, and operations to be used in defining a
new stream component It discusses, the precise interface which each instance of each
filter or transducer must provide, and outlines a typical method for implementing a filter
or transducer manager.

3.5.1 Representing filters and transducers

At run time, a filter or transducer is represented by sixteen procedures, a set of options
and an instance data field so that clients may associate other data with a stream instance.
The procedures execute in a common context to provide the data transmission operations
of that filter or transducer. Descriptors for these procedures are stored in a record defined
by the stream package, and pointed to by a Stream.Handle.

The procedures stored in Object must implement the semantics of the corresponding
procedures (GetByte, Put, etc.) described in §3.2 on the stream sH. In particular, they must
terminate according to the specifications of those sections and must generate the
appropriate signals (SSTChange, LongBlock, ShortBlock, EndOfStream, TimeOut,
EndRecord) as required.

stream.Handle: TYPE = LONG POINTER TO Stream.Object;

stream.Object: TYPE = RECORD [
options: stream.InputOptions,
getByte: sweam GetByteProcedure,
putByte- stream.PutByteProcedure,
getWord: stream GetWordProcedure,
putWord: Stream PutWordProcedure,
get: Stream.GetProcedure,
put: Stream.PutProcedure,
setSST: stream.SetSSTProcedure,
sendAttention: stream.SendAttentionProcedure,
waitAttention: stream WaitAttentionProcedure,
delete: stream.DeleteProcedure
getPosition: stream.GetPositionProcedure
setPosition: stream.SetPositionProcedure
sendNow: stream.SendNowProcedure,
clientData: LONG POINTER,
getSST: stream.GetSSTProcedure,
getTimeout: stream.GetTimeoutProcedure,
setTimeout: stream.SetTimeoutProcedure];

A client call on a Pilot stream operation is normally converted by the stream package into
a call on the appropriate procedure named in the Stream.Object pointed to by the
stream.Handle parameter of that operation. Thus, it is the responsibility of the
implementor of each filter and transducer to satisfy exactly the specifications of the
stream package. Pilot assists in this task by utilizing the Mesa type checking machinery
and by defining the uniform interface encapsulated by Stream.Object.

Pilot Programmer’s Manual 3

In this section, the meanings of the fields of stream.Object are enumerated and a default
stream.Objectdescribed.

The options field specifies the currently valid input options for the stream.
options: stream.InputOptions;

This field is set by Stream.SetlnputOptions and its current value is passed as a parameter
to the get procedure described below. Implementors of filters and transducers need not be
concerned with maintaining or inspecting this field.

The get field specifies the block input procedure of the stream.
get: Stream.GetProcedure;
stream.GetProcedure: TYPE 2
PROCEDURE [sH: stream.Handle, block: stream.Block,options: stream.InputOptions]

RETURNS [bytesTransferred: CARDINAL,why: stream.CompletionCode,
sst: stream.SubSequenceType];

In a filter, the body of a GetProcedure will typically contain one or more calls on GetBlock,
GetByte, GetChar, or GetWord with a stream.Handle parameter pointing to the next
stream component in the pipeline (i.e., the parameter passed at the time this filter was
created). In a transducer, the body of a GetProcedure will typically have calls on input
operations for the specific device being supported.

The getByte field specifies the byte input procedure of the stream.
getByte: stream.GetByteProcedure;

Stream.GetByteProcedure: TYPE = PROCEDURE [sH: Stream.Handle]
RETURNS [byte: Stream.Byte];

The getWord procedure specifies the word input procedure of the stream.
getWord: stream.GetWordProcedure;

stream.GetWordProcedure: TYPE = PROCEDURE [sH: stream.Handle]
RETURNS[word:stream.Word];

The put field specifies the block output procedure provided by the filter or transducer.
put: Stream.PutProcedure;

stream.PutProcedure: TYPE =
PROCEDURE [sH: stream.handle, block: stream.Block, endRecord: BOOLEAN];

This procedure must regard the parameter endRecord = TRUE as an indication to flush any
output buffers and actually initiate the physical -transmission of information. It may
suppress output requests specifying a block of no bytes provided that there is no previous
output, change in SubSequenceType, or attention flag still waiting to be sent. This
procedure may generate the signal TimeOut if necessary.

Streams

3-16

In a filter, the bodyv of a PutProcedure will typically contain one or more calls on PutBlock,
PutByte, PutChar, PutWord, or SendNow with a Stream.Handle parameter pointing to the
next stream component in the pipeline (i.e., the parameter passed at the time this filter
was created). In a transducer, the body of a PutProcedure will typically have calls on
output operations for the specific device being supported.

The putByte field specifies the byte output procedure provided by the transducer or filter.
putByte: stream.PutByteProcedure;

stream.PutByteProcedure = PROCEDURE [sH: Stream.Handle, byte:Stream.Byte];

This procedure may generate the signal TimeOut if necessary. |

The putWord field specifies the word output procedure provided by the transducer or
filter.

putWord: stream.PutWordProcedure;
stream.PutWordProcedure = PROCEDURE [sH: Stream.Handle, word:Stream.Word];
This procedure may generate the signal TimeOut if necessary.

The setSST field specifies the procedure to change the current SubSequenceType of the
output side of the filter or transducer.

setSST: Stream.SetSSTProcedure;

Stream.SetSSTProcedure: TYPE = PROCEDURE [sH: stream.Handle,
sst: stream.SubSequenceType];

This procedure should be a no-op if the new SubSequenceType of sH is the same as the old
one. Otherwise, it should have the effect of completing the current physical record (as if a
call on stream.SendNow had been made immediately before).

A call on setSST may have the effect of changing the internal state of the stream
component, or in the case of a filter, it may result in a call to $etSST to the next stream
component in the pipeline, or both.

The getSST field specifies the procedure to find the current SubSequenceType of the
output side of the filter or transducer (the SST set by $etSST). The input SST can be found
by doing a get of 0 bytes.

getSST: Stream.GetSSTProcedure;

Stream.GetSSTProcedure: TYPE = PROCEDURE [sH: stream.Handle]
RETURNS [sst: stream.SubSequenceType];

The sendAttention and waitAttention fields specify the two procedures implementing the
sending of and waiting for attention flags in the transducer or filter.

sendAttention: stream.SendAttentionProcedure;

Pilot Programmer’s Manual 3

waitAttention: stream.WaitAttentionProcedure;

stream.SendAttentionProcedure: TYPE = PROCEDURE [sH: Stream.Handle,
byte: stream.Byte];

stream.WaitAttentionProcedure: TYPE = PROCEDURE [sH: Stream.Handle]
RETURNS [byte: Stream.Byte];

These two procedures will be called by stream.SendAttention and stream.WaitForAttention,
respectively.

The getTimeout field specifies the procedure to find the current timeout field of the filter
or transducer.

getTimeout: stream.GetTimeoutProcedure;

stream.GetTimeoutProcedure: TYPE = PROCEDURE [sH:Stream.Handle]
RETURNS [waitTime:LONG CARDINAL - msecs--];

The setTimeout field specifies the procedure to set the current timeout field of the filter or
transducer.

setTimeout: stream.SetTimeoutProcedure;

stream.SetTimeoutProcedure: TYPE = PROCEDURE [sH:Stream.Handle,
waitTime:LONG CARDINAL — msecs-- |;

The delete field specifies a procedure implementing the deletion of a filter or transducer.
delete: stream.DeleteProcedure;

stream.DeleteProcedure: TYPE = PROCEDURE [sH: Stream.Handle]; _

This procedure is called by the stream.Delete operation.

The getPosition and setPosition fields specify procedures implementing the setting and
recovering of a stream position.

getPosition: stream.GetPositionProcedure;

stream.GetPositionProcedure: TYPE = PROCEDURE [SH: Sstream.Handle]
RETURNS [position: stream.Position];

setPosition: stream.SetPositionProcedure;

stream.SetPositionProcedure: TYPE = PROCEDURE [sH: Stream.Handle,
position: Stream.Position];

w

The sendNow field specifies a procedure to force data to be transmitted.

sendNow: Stream.SendNowProcedure;

3-17

Streams

3-18

stream.SendNowProcedure: TYPE = PROCEDURE [sH: Stream.Handle,
endRecord: BOOLEAN « FALSE];

This procedure is called by the stream.SendNow operation.

The following object is provided to supply default values for a Stream.Object. It is an
exported variable. The implementor of a stream can use it to ease the burden of
initializing all of the fields in a Stream.Object although the implementor must still
initialize some of the fields.

stream.defaultObject: READONLY Stream.Object = [
options: stream.defaultinputOptions,
getByte: ..., -- requires sH.get to be defined
putByte: ..., -— requires sH.put to be defined
getWord: ..., -~ requires either sH.getByte or sH.get to be defined
putWord: ..., -— requires either sH.putByte or sH.put to be defined
get:..., -~ requires sH.getByte to be defined
put:...,-- requires sH.putByte to be defined
setSST, sendAttention, waitAttention, delete: . . .,]

In this description, the phrase "to be defined" means that the supplied default procedure
assumes that the user has supplied the indicated procedure as opposed to using the default
procedure. Thus, the implementor of the stream must supply either getByte or get -- both
cannot be defaulted. Similarly, the implementor must supply either putByte or put -- both
cannot be defaulted. The default entries for setSST, getSST, setTimeout, getTimeout
sendAttention, waitAttention and delete simply raise the exception
stream.InvalidOperation. Thus, the implementor must supply these procedures.

Stream.InvalidOperation: ERROR;

Individual default procedures may be extracted for client use by the standard Mesa
extractor expression. For example, the default get procedure is defaultObject.get.

Caution: The effect of not providing at least one of getByte/get (putByte/put) is
unspecified by Pilot. Thus the stream implementor must be sure to provide at least one of
each of these pairs of procedures.

3.5.2 Stream component managers

Implementors of stream components may create instances of them by whatever means is
most appropriate to their requirements. A particular filter or transducer may, for
example, consist of one module, a collection of modules, a local frame used in conjunction
with the Mesa PORT facility, or some other construct. Moreover, it may be allowed to exist
on a given machine in only one or a limited number of copies which are regarded as
"serially reusable" resources (for example, a transducer to a particular device, of which
there is only one or a limited number on a machine), or it may be allowed to exist in as
many copies as appropriate (for example, the Network stream of §6.3). It is the
responsibility of the stream component manager to create (or control access to) instances
of that stream component, as appropriate. When access is granted, the component
manager must also provide a pointer to a Stream.Object containing procedure descriptors
for that component.

Pilot Programmer’s Manual 3

One way of implementing a component is as a single module which is instantiated at run-
time by the Mesa New statement Declared within this module would be the procedures of
the component plus a stream.Object which would contain their procedure descriptors. The
component manager executes NEW to create a new instance of one of these, followed by
START to initialize it, pass any parameters to it, and get back a pointer to the Stream.Object.

The component manager deletes instances of stream components by calling
Runtime.UnNew or Runtime.SelfDestruct.

Runtime.SelfDestruct sets the internal state of the process so that the module in which the
calling procedure is declared will be un-New'd after the calling procedure returns to its
own caller. This operation has the effect of placing a "self-destruct” mechanism in the
module which will take effect after the calling process exits from it. Thus, it is a means of
deleting the stream component from within that component. .

The typical use of Runtime.SelfDestruct will be from a procedure named in the delete entry
of the stream.Object. The component manager will call h.delete[h] (where h is a
stream.Handle). This procedure will perform the necessary finalization, such as flushing
buffers, closing files or connections, releasing storage and resources, etc. It will then call
Runtime.SelfDestruct and finally return to the component manager. After this return, the
module representing this instance of the stream component will be automatically deleted
and space occupied by the component's global frame freed.

Caution: The client must ensure that there are no outstanding references to the
component module being deleted -- i.e., no procedure descriptors or pointers which might
be used. In addition, any process waiting for attentions (i.e., a process which has called but
not returned from WaitForAttention) must be aborted and allowed to exit from the
module. Failure to observe this caution will result in unpredictable effects. In particular,
Runtime.UnNew must be called from outside the module being deleted.

3-19

File Storage and Memory

A file is the basic unit of long-term information storage (see §4.3). A file consists of a
sequence of pages, the contents of which can be preserved across system restarts. Files are
stored on volumes (see §4.1, 4.2) and are identified by the containing volume and a file
identifier which is unique within that volume.

Pilot stores files on logical volumes, which are contained in physical volumes of storage
devices (typically disks). A physical volume is the basic unit of physical availability for
random access file storage. It represents the notion of a storage medium whose
availability is intrinsically independent of that of other instances of such media (e.g., one
physical disk pack). A logical volume is either a physical volume or a subset of a physical
volume or a collection of subsets of physical volumes. A logical volume is the unit of
storage for client files and the system data structures for manipulating them. It becomes
logically available or unavailable as a unit and contains only complete files (i.e, files
cannot span logical volumes). Volumes which have been damaged may be restored by
scavenging (see §4.4).)

Client programs access data in files by mapping them into spaces in virtual memory (see
§4.5). Pilot provides client programs with facilities for associating areas of virtual
memory with portions of files, for allocating sections of virtual memory independent of
mapping, and for influencing swapping between virtual and real memory.

Pilot provides free storage management through zones and heaps (see §4.6). Zones are
segments of storage in client-designated areas of virtual memory. Heaps are available for
managing arbitrarily sized nodes; they support the Mesa language facilities for dynamic
storage allocation.

A general purpose log file facility (§4.7) allows recording of information in a client-
supplied log file.

4.1 Physical volumes
PhysicalVolume: DEFINITIONS .. . ;
This section describes those interfaces provided by Pilot which permit clients to initialize

and manage physical volumes. Pilot brings the system physical volume online during
Pilot initialization, repairing it if necessary. Thus most clients will not need to use the

11

File Storage and Memory

facilities in this section. However. UtilityPilot-based clients do not have a system
physical volume: these clients must manage physical volumes themselves. Clients which
might use the Physicalvolume facilities include volume management utility programs,
system elements with several physical volumes, and UtilityPilot-based systems. Sections
4.1.1 through 4.1.4, 4.1.7, and 4.1.8 deal with general physical volume management,
section 4.1.5 with initializing a physical volume, and section 4.1.6 with scavenging. See
also Chapter 8 for facilities to format physical volumes and install boot files on them.

4.1.1 Physical volume name z..d size
The fundamental name for a physical volume is its ID.
PhysicalVolume.|D: TYPE = System.PhysicalVolumelD;
system.PhysicalVolumelD: TYPe = RECORD [System.UniversallD];
PhysicalVolume.nulliD: PhysicalVolume.lD = [System.nulliD]; -- “null ID”
Pilot ensures with a very high probability that each distinct physical volume is assigned a
distinct ID. No ID is reused for any purpose by any copy of Pilot on any machine at any
time. Thus, a physical volume may be unambiguously identified by its ID, even if it is
moved to another machine or environment, or if it is stored off-line for a long time. nuliliD

is never assigned as an ID and is used to indicate the absence of a physical volume.

The error Physicalvolume.Error[physicalVolumeUnknown] may be raised by any of the
operations that take an ID as an argument. '

A physical volume is organized as a sequence of up to 232 pages, each containing
Environment.wordsPerPage words. Pages are numbered starting from zero.- The actual
volume size is accounted for by Pilot and does not result in the redefinition of the
maximum page number.

PhysicalVolume.PageCount: TYPE = LONG CARDINAL;

PhysicalVolume.firstPageCount: Physicalvolume.PageCount = 0;
PhysicalVolume.lastPageCount: PhysicaiVolume.PageCount = LAST[LONG CARDINAL];
PhysicalVolume.PageNumber: TYPE = LONG CARDINAL;

Physicalvolume.firstPageNumber: physicalvolume.PageNumber = 0;

PhysicalVolume.lastPageNumber: physicaivolume.PageNumber = LAST[LONG CARDINAL] - 1;

Pilot’s maximum values for PageCount and PageNumber do not, for all practical purposes,
limit the size of a physical volume.

4.1.2 Physical volume errors

PhysicalVolume operations may raise the following signals:

Pilot Programmer’s Manual 4

PhysicalVolume.Error: ERROR [error: Physicalvolume.ErrorTypel;

Physicalvolume.ErrorType: Tyre = {badDisk, badSpotTableFull, containsQpenVolumes,
diskReadError, hardwareError, hasPilotVolume, alreadyAsserted, insufficientSpace,
invalidHandle, nameRequired, notReady, noSuchDrive, noSuchLogicalVolume,
physicalVolumeUnknown, writeProtected, wrongFormat, needsConversion};

Physicalvolume.NeedsScavenging: ERROR;

The conditions causing each error are described as the error occurs in the text. The errors
raised by each operation are indicated with the operation’s description.

4.1.3 Drives and disks

A drive is an /O device capable of containing a Pilot physical volume. Such devices have a
Device.Type which is in the range defined by Device.PilotDisk. The storage medium on a
drive is the physical object which holds the stored information, typically a fixed disk or a
removable disk pack. It will be called a disk in the description which follows. A drive is
uniquely named by its device index. A drive may be in two states: if a drive is ready then it
contains a storage device, e.g., a disk pack, that may be accessed by Pilot; if the drive is not
ready then it does not contain an accessible storage device.

PhysicalVolume.ErrorType: TYPe = {..., noSuchDrive,...};

All operations which take a device index will raise Physicaivolume.Error[noSuchDrive] if
provided a device index which does not denote a drive.

The set of drives on a machine may be enumerated with the operation
PhysicalVolume.GetNextDrive: PROCEDURE [index: CARDINAL] RETURNS [nextlndex: CARDINAL];
Physicalvolume.nullDevicelndex: CARDINAL = LAST[CARDINAL];

GetNextDrive is a stateless enumerator. Enumeration begins and ends with the value
nullDevicelndex. GetNextDrive may raise Error[noSuchDrive] .

For every drive, Pilot maintains a monotonically increasing change count of the number of
times that the drive has changed state between ready and not ready. If a drive changes
state, the change count for that drive will increase by at least one. Thus while the change
count remains the same the client can be sure that the same disk is mounted on the drive.

The client may wait for one or more drives to change state by invoking

PhysicalVolume.AwaitStateChange: PROCEDURE [changeCount: CARDINAL,
index: CARDINAL &« Physicaivolume.nullDevicelndex]
RETURNS [currentChangeCount: CARDINAL};

The AwaitStateChange operation waits until the change count of the drive equals or
exceeds changeCount, then returns the new change count. If index = nullDevicelndex,
the operations waits until the sum of the change counts of all drives equals or exceeds
changeCount, then returns the sum AwaitStateChange may raise Error[noSuchDrive] .

13

File Storage and Memory

+4

A unique instance of a disk mounted on a drive is represented by a PhysicalVolume.Handle.
A Handle denotes both a drive and the change count at the time at which the Handle was
obtained. A Handle is valid until the drive that it denotes changes state. After that time,
the error Error[invalidHandle] is raised by any operation that takes a Handle as an
argument. ')

Physicalvolume.Handle: Tvpe [3];
Physicalvolume.ErrorType: TYPe = {...,invalidHandle,...};
PhysicalVolume.GetHandle: PROCEDURE [index: CARDINAL] RETURNS [Physicalvolume.Handle];

PhysicalVolume.interpretHandle: PROCEDURE [instance: Physicalvolume.Handle]
RETURNS [type: Device.Type, index: CARDINAL];

A Handle is obtained for a drive using GetHandle. The change count of the drive at the
time GetHandle is invoked defines the valid change count for the disk mounted on the
drive represented by the returned Handle. GetHandle may raise Error[noSuchDrive].
InterpretHandle returns the drive denoted by a given Handle. The returned type may be
general rather than precise, i.e., a type naming a device family rather than a specific
member of the family. InterpretHandle may raise Error{invalidHandle]. '

Information about the ready state of a drive can be obtained with

Physicalvolume.lsReady: PROCEDURE [instance: PhysicalVolume.Handle]
RETURNS [ready: BOOLEAN];

IsReady may raise Error[invalidHandle].

4.1.4 Disk access, Pilot volumes, and non-Pilot volumes

The disk on a ready drive may be in one of three states: inactive, Pilot access, and non-
Pilot access. An inactive disk may be accessed only in stylized ways that permit clients to
determine in which of the other two states to place the device. A disk with Pilot access
contains a Pilot physical volume and may be accessed only through the Pilot File,
PhysicalVolume, Space and Volume interfaces. Non-Pilot access indicates that the the disk may
be accessed only through special interfaces which permit direct access (that is,
unembellished with Pilot space, mapping and file structures) to the storage device.
Whenever a drive becomes ready, Pilot places its disk in the inactive state. Once a client
has obtained a Handle for a drive and ascertained that the disk is ready, the client must
inform Pilot what type of access to the disk is desired. The following operations allow
clients to determine and change the state of a drive.

To aid the client in determining how to access a disk, Pilot provides two facilities. The
first is an operation which examines the disk and determines whether or not it contains a
Pilot volume.

PhysicalVolume.GetHints: PROCEDURE [
instance: Physicalvolume . Handle, label: LONG STRING « NIL]
RETURNS [pvID: Physicalvolume.ID, volumeType: physicalvolume.VolumeType];

Pilot Programmer’s Manual 4

Physicalvolume.VolumeType: Tvee = {notPilot, probablyNotPilot, probablyPilot, isPilot};

The returned volumeType gives Pilot’s best guess as to the nature of the disk on instance
in volumeType: notPilot indicates that the disk is definitely not a Pilot physical volume;
probablyNotPilot indicates that the disk may or may not be a Pilot volume but attempting
to use the disk as a Pilot physical volume is likely to fail; probablyPilot indicates that the
disk may not actually contain a Pilot volume, but that an attempt to use it as a Pilot
physical volume is very likely to succeed; isPilot indicates that the disk almost certainly is
a Pilot physical volume. In all four cases, pviD is the identifier that the disk appears to
have and label is the apparent label of the disk (See Physicalvolume.CreatePhysicalVolume
below for more information about physical volume labels.) It does not matter whether or
not the access state of the disk has already been asserted. GetHints does not change the
access state of the disk. GetHints may raise Error[notReady] or Error{invalidHandle] .

As a second facility to aid the client in determining how to access a disk, Pilot permits the
client read-only, direct access to the device. This allows the client to examine the disk
safely to determine if it contains a known, but non-Pilot, volume. Such access is provided
by special Pilot interfaces.

Given the result of the GetHints operation and of reading the disk, the client can declare
the access desired to the disk. Upon return from these operations, that the client has the
indicated access to the disk.

PhysicalVolume.AssertPilotVolume: PROCEDURE [instance: Physicalvolume.Handle]
RETURNS [Physicalvolume.lD];

Physicalvolume.ErrorType: Tyre = {...,alreadyAsserted, ...};

AssertPilotVolume asserts to Pilot that the disk contains a Pilot volume. Ifinstance is not
in the inactive state, Error{alreadyAsserted] is raised. If Pilot’s data structures are not in
order, NeedsScavenging is raised (see Section 4.1.6 on scavenging). Error[notReady] and
ErrorflinvalidHandle] may also be raised. On return, the disk is in the Pilot-access state
and the physical volume named by the returned value may be accessed. The returned
physical volume is said to be online.

PhysicalVolume.Offline: PROCEDURE [pviID: Physicalvolume.iD];

PhysicalVolume.ErrorType: TYPE =
{....,containsOpenVolumes, physicalVolumeUnknown, .. .};

Offline terminates access to an online Pilot physical volume, returning the drive
containing that volume to the inactive state. All logical volumes contained on the
physical volume must be closed. This operation may raise
Error{physicalVolumeUnknown] or Error[containsOpenVolumes] .

Caution: In the current version of Pilot, if a disk goes not ready while in the Pilot access
state, the results are unspecified.

4 File Storage and Memory

Non-Pilot access to a disk is initiated and terminated with the following operations.
PhysicalVolume.AssertNotAPilotVolume: PROCEDURE [instance: Physicalvolume.Handle];
PhysicalVolume.FinishWithNonPilotVolume: PROCEDURE [instance: Physicalvolume.Handle];
PhysicalVolume.ErrorType: TYpe = {..., hasPilotVolume,...};

AssertNotAPilotVolume initiates direct access to a storage device. If the drive is not
currently in the inactive state, Error[alreadyAsserted] is raised. Error[invalidHandle]
may also be raised. On return, unlimited access to the device is permitted by Pilot
through special direct access facilities.

FinishWithNonPilotVolume returns a disk being accessed with non-Pilot access to the
inactive state. It raises Error[hasPilotVolume] if instance currently is in Pilot-access
mode. It may also raise Error[invalidHandle] .

4.1.5 Physical volume creation

Pilot disks are created by first creating a physical volume and then creating logical
volumes upon that physical volume. All storage devices require formatting before their
first use. (See §8.3.1 for formatting, §4.2.4 for logical volume creation.) A physical
volume is created by invoking

' .
PhysicalVolume.CreatePhysicalVolume: PROCEDURE [

instance: physicalvolume.Handle, name: LONG STRING]
RETURNS [PhysicaiVolume.ID];

PhysicalVolume.maxNameLength: caroiNAL = 40;
PhysicaiVolume.ErrorType: TYPE = {..., badDisk, diskReadError, nameRequired, ...};

This creates a physical volume upon instance. Ifinstance is in the Pilot access state, Pilot
first calls Offline to place it in the inactive state. This may raise
Error[physicalVolumeUnknown] or Error[containsOpenVolumes]. The label of the newly
created physical volume is name. The name must contain at least one character or
Error[nameRequired] is raised. If the name contains more than maxNamelength
characters, only the first maxNameLength characters will be used as the label. The newly
created volume is placed online (i.e., just as if AssertPilotVolume had been called) and its
ID is returned. If the specified drive is in either the Pilot access state (i.e., online) or in the
non-Pilot access state, Error(alreadyAsserted] is raised. If Pilot cannot do the necessary
disk access required to create a physical volume on the disk, Error[badDisk] or
Error[diskReadError] will be raised. This operation may also raise Error[notReady] and
Error{invalidHandle].

4.1.6 Scavenging

Scavenging is the process of returning a physical or logical volume to a consistent state.
This is necessary if the volume was damaged by software errors, pages on the disk went

4-6

Pilot Programmer’s Manual 4

bad, the volume is not of the current version, or the like. Section 4.4 covers scavenging
logical volumes. A\ physical volume can be scavenged by invoking
Physicalvolume.Scavenge: PROCEDURE [instance: physicalvolume.Handle,

repair: Physicalvolume.RepairType, okayToConvert: BOOLEAN]

RETURNS [status: Physicalvolume.ScavengerStatus];

Physicalvolume.RepairType: Tvre = {checkOnly, safeRepair, riskyRepair};

PhysicalVolume.ScavengerStatus: TYPE = RECORD [
badPagelist, bootFile, germ, softMicrocode, hardMicrocode:
PhysicalVolume.DamageStatus,
internalStructures: Physicalvolume.RepairStatus];

Physicalvolume.DamageStatus: Type = {okay, damaged, lost};
PhysicalVolume.RepairStatus: Tyre = {okay, damaged, repaired};
Physicalvolume.noProblems: READONLY Physicalvolume.ScavengerStatus = .. . ;

The purpose of Scavenge is two-fold. First, it allows Pilot to place its internal physical
volume data structures in order so that client access to the physical volume may be
permitted. Second, it returns a ScavengerStatus describing any damage found for which’
the client has repair responsibility. Physicalvolume.Scavenge is responsible for the integrity
of the physical volume only. To repair any logical volume damage, the client must call
Scavenger.Scavenge. ’

If the volume is not of the current version, i.e., not compatible with the Pilot boot file
which is running, it must be made so before any access is allowed. Invoking Scavenge
with okayToConvert = TRUE will cause the volume’s version to be increased to the current
version. This is the only way to cause volume conversion. Scavenging to a previous
version is not supported, nor is scavenging a volume forward more than one version.

The physical volume to-be scavenged must be offline. Error[alreadyAsserted] is raised if
the specified disk drive is online. If the volume version is incorrect and okayToConvert is
FALSE, Error[needsConversion] is raised. Error[badDisk] is raised if the damage to the
physical volume data structures is so great that the physical volume cannot be
reconstructed. Error[invalidHandle] may also be raised.

If repair is set to safeRepair or riskyRepair, the scavenger will attempt to repair the
damage that it finds on the physical volume. The safeRepair mode is limited to repairs
that are expected to be low risk. The riskyRepair mode imposes no such limits and should
be used only as a last resort. In particular, it should be used only when the hardware is
known to be functioning correctly. If repair is set to checkOnly, no repair is attempted but
a ScavengerStatus indicating any damage is returned.

The individual status fields have the following meanings:

badPageList: okay is returned if the bad page list is intact. A status of damaged is
returned if damage is found and the parameter repair was set to checkOnly. A status
of lost indicates that damage was found and repair was set to safeRepair or
riskyRepair. If badPageList = lost, the physical volume scavenger resets the bad page

17

File Storage and Memory

4-8

list to empty and marks all logical volumes on this physical volume to be scavenged.
Bad pages must be marked bad again using a disk utility such as Othello.

bootFile, germ, softMicrocode, hardMicrocode: okay is returned if the indicated file,
and the reference to it in the physical volume’s data structures, are intact. If the
status returned is damaged, the indicated file has been found to be damaged. That is,
there are unreadable pages, missing pages, or the file is otherwise not in valid boot file
format. The physical volume scavenger will mark the containing logical volume to be
scavenged. The client should either delete the boot file and reinstall it, or scavenge
that -logical volume to discover and repair any unreadable or missing pages before
replacing its contents. If the status returned is lost, the reference to the indicated file
contained in the physical volume's data structures appears to be damaged, either
because the data structures have been damaged or the boot file has been deleted. If the
file has a unique file type and has not been deleted, the client should be able to find it
and restore it via OthelloOps.SetPhysicalVolumeBootFile as the appropriate physical
volume boot, germ, or microcode file.

internalStructures: the status returned is okay if no damage is discovered in the
internal data structures of the physical volume. The status returned is damaged if
damage was found and the parameter repair was set to checkOnly, or if repair was set
to safeRepair and damage was found that can be repaired only in riskyRepair mode.
The status is repaired if repair was set to riskyRepair, or if repair was set to safeRepair
and damage was found which could be repaired safely.

The constant noProblems is provided to allow the client to determine with a single
comparison whether it has any work to do after the physical volume scavenger finishes.

Caution: In Pilot 11.0 the local time parameters may be lost any time the physical
volume scavenger repairs internal volume structures. This will be the case when
internalStructures is not reported as okay and repair is set to safeRepair or riskyRepair . It
is the client's responsibility to reset local time parameters correctly if they have been lost.

Caution: In Pilot 11.0 the only significant fields of status are badPagelList and
internalStructures. The other fields are always returned as okay, and for them none of the
validity checking implied is performed.

4.1.7 Logical volume operations on physical volumes
The logical volumes on an online physical volume may be enumerated by invoking

PhysicalVolume.GetNextLogicalVolume: PROCEDURE [
pviD: physicalvVolume.ID, IVID: system.VolumelD]
RETURNS [System.VolumelD];

This operation is a stateless enumerator. The enumeration begins and ends with
Volume.nulllD. GetNextLogicalVolume may raise Error[physicalVolumeUnknown] and
Error{noSuchLogicalVolume].

Pilot Programmer’s Manual 4

The physical volume that contains a given logical volume is returned by

Physicalvolume.GetContainingPhysicalVolume: PROCEDURE [IvID: System.VolumelD]
RETURNS [pviID: physicalvolume.lD];

If IviD is unknown to Pilot, volume.Unknown is returned. Note that IviD need not be open
to invoke this operation. However, it must be in an online physical volume.

4.1.8 Miscellaneous operations on physical volumes
The set of online physical volumes is enumerated by

PhysicalVolume.GetNext: PROCEDURE [pvID: Physicalvolume.lD]
RETURNS [PhysicalVolume.ID];

This operation is a stateless enumerator. The enumeration begins and ends with
Physicalvolume.nulliD. [f pviD is not known to Pilot, Error[physicalVolumeUnknown] is
raised.

The attributes of an online physical volume may be ascertained by invoking

PhysicalVolume.GetAttributes: PROCEDURE [pvID: PhysicalVolume.lD, label: LONG STRING « NIL]
RETURNS [instance: physicalvolume.Handle, layout: physicalvolume.Layout];

PhysicalVolume.Layout: TYPE =
{partialLogicalVolume, singleLogicalVolume, multipleLogicalVolumes, empty};

A handle to the drive containing the physical volume is returned in instance, the label
name string is returned in label, and the nature of the logical volumes that exist upon
pviD is returned in layout. If the volume label is longer than the string label, cfnly the
characters which will fit into the string are returned. A layout value of
singleLogicalVolume indicates that there is one entire logical volume on pviD;
multipleLogicalVolumes indicates that there is more than one logical volume upon pviD.
A value of empty indicates that no logical volumes have been created upon pviD.
GetAttributes may raise Error[physicalVolumeUnknown].

The physical volume name (label) may be changed by invoking
Physicalvolume.ChangeName: PROCEDURE [pvID: Physicalvolume.lD, newName: LONG STRING];

If the length of newName exceeds Physicalvolume.maxNamelength, only the first
maxNamelength characters are used. If newName does not contain at least one
character, Error[nameRequired] is raised. ChangeName may also raise
Error{physicalVolumeUnknown].

A physical volume may have pages upon it that are unusable (e.g., some sector of the disk
has failed). Such pages are called bad pages. A page is marked as bad by the operation

Physicalvolume.MarkPageBad: PROCEDURE
[pviD:Physicaivolume.ID, badPage: Physicalvolume.PageNumber];

4-9

File Storage and Memory

After a page has been marked bad. Pilot no longer attempts to access it. [fa page is to be
marked as bad, the logical volume containing that page should be closed before invoking
MarkPageBad. This is not checked by Pilot. Moreover, after this operation returns, that
logical volume should be scavenged before being opened. Pilot will remember only a
limited number of had pages for a given physical volume. If Pilot's table of bad pages. is
full, Error[badSpotTableFull] is raised and badPage is not remembered as being bad. See
§8.3 for a description of Pilot facilities for identifying bad pages. MarkPageBad may also
raise Error[physicalVolumeUnknown].

The set of bad pages on a physical volume may be enumerated by invoking
Physicalvolume.GetNextBadPage: PROCEDURE [
pviD: Physicalvolume.lD, thisBadPageNumber: physicalvolume.PageNumber]
RETURNS [nextBadPageNumber: physicalvolume.PageNumber];

Physicalvolume.nullBadPage: PageNumber = LAsT[PageNumber];

This operation is a stateless enumerator. Enumeration begins and ends with
nullBadPage. GetNextBadPage may raise Error[physicalVolumeUnknown].

4.2 Logical volumes

410

Volume: DEFINITIONS ... ;

In this section the term volume, where not specified as logical or physical, will refer to a
logical volume.

Before being presented to Pilot for the first time, a volume must be initialized, and it may
require scavenging or re-initialization after system crashes. Such operations are
performed using Othello (see the Mesa User’s Guide), or by a user-written volume
initializer (See Chapter 8).

The current version of Pilot supports a maximum of ten logical volumes on a physical
volume.

4.2.1 Volume name and size

The fundamental name for a volume is its ID:
Volume.I|D: TYPE = System.VolumelD;

System.VolumelD: TYPE = RECORD [System.UniversallD];
Volume.nulliD: volume.ID = [System.nullID];

Pilot ensures with a very high probability that each distinct volume is assigned a distinct
ID. NoID is reused for any purpose by any copy of Pilot on any machine at any time. Thus
a volume may be unambiguously identified by its ID, even if it is moved to another
machine, or if it is stored offline for a long time. volume.nulllD is never the name of a
volume and is used to denote the absence of a volume.

Pilot Programmer’s Manual 4

The maximum size of a logical volume is 232 bytes, or 223 pages.
Valume.maxPagesPerVolume: LONG CARDINAL = 8388608; -- 223

volume.PageCount: TYPE = LONG CARDINAL; -- simulates [0..volume.maxPagesPerVolume]
volume.firstPageCount: volume.PageCount = 0;

volume.lastPageCount: volume.PageCount = volume.maxPagesPerVolume;

Volume.minPagesPerVolume: READONLY Volume.PageCount;

Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines Volume.PageCount as a LONG CARDINAL, and defines
constants firstPageCount and lastPageCount to specify fFirRsT[PageCount] and
LasT[PageCount]. These constants should be used rather than the FIRST and LAST operators,
which cannot supply the correct value in the case of a simulated subrange. Minimum and
maximum values are similarly defined for volume.PageNumber below.

Volume.PageNumber: TYPE = LONG CARDINAL; -- simulates [0..volume.maxPagesPerVolume)
Volume.firstPageNumber: volume.PageNumber = 0;

Volume.lastPageNumber: volume . PageNumber = volume.maxPagesPerVolume - 1;

4.2.2 Logical and physical volumes

The correspondence between logical and physical volumes is not dynamic but is
established at volume initialization time. When a logical volume exists on several
physical volumes, all of the physical volumes must be available before the logical volume
is available. Logical volumes permit the simulation of volume sizes not present in
hardware. For example, several smaller disks can be combined to look like a larger disk.

Clients should contemplate combining physical volumes into logical volumes only if file
sizes are likely to exceed the size of an individual physical volume. Pilot offers no recovery
if one of the physical volumes comprising a logical volume is lost or destroyed. The
contents of the remaining physical volumes are, in general, irretrievable.

Note: There is no mechanism to create a logical volume which spans multiple physical
volumes.

There is one volume known as the system volume, intended to be used as the default
volume by Pilot and its clients. The system volume is the logical volume which contains
the boot file of the system being executed. The ID of this volume is contained in

Volume.systemiD: READONLY Volume.lD;

Note: [n UtilityPilot-based systems there is no system volume. Volume.systemiD will have
the value volume.nullID.

+-11

File Storage and Memory

412

4.2.3 Volume error conditions

The following errors may be raised during many Volume operations. The description of
each operation indicates which errors it can raise.

Volume.Unknown: ERROR [volume: Volume.ID];

Unknown is raised when a volume is not known to Pilot. No part of the volume is online.
Unknown will be raised if volume.nulllD is used for any operation except those which start
an enumeration.

Volume.NotOnline: eRROR [volume: volume.ID];

NotOnline indicates that a volume is only partially online, i.e., not all of the physical
volumes comprising the volume are online.

Volume.NotOpen: ERROR [volume: volume.ID];

Operations which require the volume to be open raise NotOpen if the volume is partially
online or online but closed.

Volume.ReadOnly: ERROR [volume: Volume.ID];

Attempting to change the contents of a volume which is open for reading but not writing,
will cause ReadOnly to be raised.

Volume.NeedsScavenging: eRROR [volume: volume.ID};
NeedsScavenging indicates that Pilot data structures on the volume are inconsistent or
incorrect. This can occur as a result of a system crash, or the volume may have the format

of an incompatible version of Pilot, or the volume may not in fact be a Pilot volume.

volume.InsufficientSpace: ERROR [
currentFreeSpace: Volume.PageCount, volume: volume.ID];

The error InsufficientSpace is raised when there is not enough space left in the volume for
the requested operation to complete. The number of pages actually available is returned
in currentFreeSpace.

Volume.Error: ERROR [error: volume.ErrorTypel;

volume.ErrorType: Type = {...};

The specific values for Error are defined below as they occur in the text.

4.2.4 Creating and erasing logical volumes

A logical volume can be created on a physical volume by invoking

Volume.Create: PROCEDURE | :
pvID: system.PhysicalVolumelD, size: volume.PageCount, name: LONG STRING,

Pilot Programmer’s Manual 4

type: volume.Type, minPVPageNumber: physicalvolume PageNumber « 1]
RETURNS [volume: volume.ID];

PhysicalVolume.maxSubvolumesOnPhysicalVolume: READONLY CARDINAL;
volume.maxNamelength: CARDINAL = 40;

Volume.Type: TYPE = MACHINE DEPENDENT .
{normal(0), debugger(1), debuggerDebugger(2), nonPilot(3)};

volume.ErrorType: TYPe = {nameRequired, pageCountTooSmallForVolume,
subvolumeHasTooManyBadPages, tooManySubvolumes};

This creates a new logical volume on pviD of type type and containing size pages. (See
§4.2.6, Opening and closing volumes, for a discussion of the significance of volume types.)
The volume label, which can be used to identify the logical volume, is name. The label is
not used by Pilot. Only the first volume.maxNameLength characters of name are used.
The newly created volume will not overlap any other logical volumes upon pviD. Logical
volumes occupy one or more contiguous, disjoint regions of physical volumes. The volume
will start at a page number at least as large as page minPVPageNumber of pvID; it may
start later.

If this new volume will cause the number of subvolumes to exceed
maxSubvolumesOnPhysicalVolume, Error[tooManySubvolumes] will be raised. If pviD is
not a valid physical volume, Physicalvolume.Error{physicalVolumeUnknown] is raised. If
size is not enough pages to make a volume, Error[pageCountTooSmallForVolume] is
raised. If there is insufficient unused space on pviD to create the logical volume,
Physicalvolume.Error[insufficientSpace] will be raised. If name is NIL or its length is zero,
Error[nameRequired] is raised. If there are too many bad pages on the area of the disk to
be used for the proposed logical volume, Error{subvolumeHasTooManyBadPages] to be
raised. Hardware errors encountered in creating the volume will cause
Physicalvolume.Error{hardwareError] to be raised.

A logical volume may be erased, destroying its previous contents, by invoking
Volume.Erase: PROCEDURE [volume: volume.ID];
Volume volume may be online or open when this operation is invoked, and Erase does not

affect this status. Erase may raise the errors Unknown, NotOnline, ReadOnly, or
Physicalvoiume.Error[hardware€rror].

4.2.5 Volume status and enumeration

The logical volumes of an online physical volume may be enumerated by
PhysicalVolume.GetNextLogicalVolume (see §4.1.7).

A client may determine the status of a logical volume by calling

Volume.GetStatus: PROCEDURE [volume: volume.lD] RETURNS [Volume.Status];

4-13

File Storage and Memory

414

Volume.Status: Type = {unknown, partiallyOnLine, closedAndinconsistent,
closedAndConsistent, openRead, openReadWrite};

The meaning of each Status is as follows. unknown indicates that no part of volume is
contained in an online physical volume. partiallyOnLine indicates that the volume spans
multiple physical volumes and at least one of those physical volumes is offline.
closedAndinconsistent means that all parts of volume are online but it needs scavenging
before it can be opened. closedAndConsistent means all parts of volume are online, and it
is closed and does not need scavenging. openReadWrite indicates that volume is open and
accessible for both reading and writing. openRead indicates that the volume is open only
for reading.

Clients can discover the identities of online or open logical volumes by calling
Volume.GetNext: PROCEDURE [volume: volume.ID,

includeWhichVolumes: volume.TypeSet « onlyEnumerateCurrentType]

RETURNS [nextVolume: volume.ID];-
Volume.TypeSet: TYPE = PACKED ARRAY Volume.Type OF Volume.BooleanDefaultFalse;
volume.BooleanDefaultFalse: TYPE = BOOLEAN & FALSE;
volume.onlyEnumerateCurrentType: Volume.TypeSet = [];
GetNext is a stateless enumerator with a starting and ending value of Volume.nuillD. [t

enumerates the logical volumes of the type(s) specified by includeWhichVolumes which
are currently online or open. GetNext may raise the error Unknown.

4.2.6 Opening and closing volumes

When a Pilot boot file is invoked, the system physical volume and system logical volume are
the physical and logical volumes containing the boot file. During its initialization, Pilot
brings the system physical volume online and opens the system logical volume,
scavenging it if necessary. [f the logical volume version is not current (compatible with the
Pilot boot file which is running), initialization scavenging will cause it to be converted to
the current version.

Note: For UtilityPilot-based systems there is no system physical or logical volume, and
no physical or logical volumes are brought online.

A client may open an online volume, making its files accessible, by calling
Volume.Open: PROCEDURE [volume: volume.ID];

Once a volume is open, the client may create, read, write, and delete files on the volume.
Opening an already open volume is a no-op. A volume will be opened read-only if the
volume being opened is of a higher volume.Type than the system volume. This will be the
case if, (a) the system volume is of type normal, and volume is of type debugger or
debuggerDebugger, or (b) the system volume is of type debugger and volume is of type
debuggerDebugger.

Pilot Programmer’s Manual 4

Note: For UtilityPilot-based svstems volumes are always opened read-write.

An attempt to write on or otherwise change the state of a read-only volume will cause
ReadOnly to be raised. Other errors which may be raised by Open are Unknown,
NotOnline, and NeedsScavenging.

Caution: If a debugger opens (for read-write) any volume which its debuggee currently
has open, that debuggee should not be allowed to continue execution. Opening the volume
changes its state, and the debuggee’s Pilot will have out-of-date information about the
volume. Continuing its execution in this case will have unpredictable (and undesirable)
results.

The client may close an open volume by calling
Volume.Close: PROCEDURE [volume: volume.ID];
This operation assures that the volume is in a a physically consistent state. The data on

the volume will no longer be accessible. Closing a closed volume is a no-op. Close may
raise errors Unknown and NotOnline.

4.2.7 Volume attributes
Volumes have attributes which can be examined and some of which can be set.

Volume.GetAttributes: PROCEDURE [volume: volume.ID]
RETURNS [volumeSize, freePageCount: volume.PageCount, readOnly: BOOLEAN];

This operation may be applied to any online or open volume. The attributes volumeSize
and freePageCount indicate the number of pages and free pages, respectively, of the
volume. freePageCount is the maximum length file that can be created, or the maximum
by which the size of a file may be grown, at that time. Because the space reflected by
freePageCount must also be used for Pilot internal data structures, it may not be possible
to create or extend a file by precisely this much. In general, the amount of free space left
after creating or extending a file cannot be predicted exactly. readOnly is TRUE if the
volume is open for reading but not writing, i.e., if it is of a higher volume.Type than the
system volume. GetAttributes may raise Unknown, NotOnline, and NeedsScavenging.

The ID of the volume that contains the debugger is kept in
volume.debuggerVolumelD: READONLY Volume.ID;

If it is equal to voiume.nulllD, there is no debugger present on a local volume. In
UtilityPilot-based systems, debuggerVolumelD is always nulllD.

The type of an online or open volume may be ascertained with the procedure
Volume.GetType: PROCEDURE [volume: volume.ID] RETURNS [type: Volume.Typel;

GetType may raise errors Unknown, NotOnline, and NeedsScavenging.

4-15

File Storage and Memory

4-16

The volume label is set when a volume s created. The label can be used by the client to
identify the logical volume, but it is not significant to Pilot. The label of an online or open
volume may be changed by the following operation.

volume.ChangeLabelString: PROCEDURE [volume: volume.ID, newlabel: LONG STRING];
Only the first volume.maxNameLength characters of newLabel are used. [f newlabel is NiL

or its length is zero, Error[nameRequired] is raised. ChangelabelString may raise
Unknown, NotOnline, ReadOnly, and NeedsScavenging.

The label of an online or open volume may be retrieved by the following operation.
Volume.GetLabelString: PROCEDURE [volume: volume.ID, s: LONG STRING];
[f the length of the volume label exceeds that of s, the returned label will contain only as

many characters as will fit. The length will not exceed maxNamelength. GetlLabelString
may raise Unknown, NotOnline, and NeedsScavenging.

4.2.8 Volume root directory

The volume root directory provides a mechanism for client file systems to retain a File.File
for the root of their file system. It provides a mapping from a Ffile.Type into a File.File. For
any given File.Type there can be at most one root file. A Frile.Type of FileTypes.tUntypedFile
functions as a null value for the root directory operations. The operations in this section
allow manipulation of an open volume'’s root directory.

Volume.RootDirectoryError: ERROR [type: Volume.RoOOtDirectoryErrorType];

volume.RootDirectoryErrorType: TYPE =
{directoryFull, duplicateRootFile, invalidRootFileType, rootFileUnknown};

Root directory operations may raise the error RootDirectoryError. Individual errors are
described with the operations that raise them. All of the root directory operations may
also raise Unknown, NotOnline, and NotOpen, and NeedsScavenging.

Inserting a file into the volume root directory is accomplished by
Volume.lnsertRootFile: PROCEDURE [type: File.Type, file: File.File];
volume.maxEntriesinRootDirectory: READONLY CARDINAL;

If the root directory already has an entry for type, RootDirectoryError{duplicateRootFile]
is raised. The root directory is of fixed size. If the insertion would result in more than
maxEntriesinRootDirectory entries, RootDirectoryError[directoryFull] is raised. An
attempt to insert a file with type FfileTypes.tUntypedFile into the root directory results in
the error RootDirectoryError(invalidRootFileType]. ReadOnly may also be raised.

Pilot Programmer’s Manual 4

4.3 Files

Volume.RemoveRootFile: PROCEDURE {
type: File.Type, volume: volume.lD « volume.SystemiD];

The entry for a given File.Type may be removed from the root directory by
RemoveRootFile. [t may raise RootDirectoryError{rootFileUnknown] and ReadOnly.

Volume.LookUpRootFile: PROCEDURE [type: File.Type] RETURNS [file: File.File];

The file previously stored for a given file type may be retrieved by calling LookUpRootFile.
If there is no entry in the root directory for that type,
RootDirectoryError[rootFileUnknown] is raised.

Volume.GetNextRootFile: PROCEDURE [
lastType: rile.Type, volume: volume.ID « Volume.SystemiD]
RETURNS [file: rile.File, type: File.Type];

The set of root files in the root directory may be enumerated by calling the stateless
enumerator GetNextRootFile. The enumeration begins and ends with
FileTypes.tUntypedFile. [t may raise RootDirectoryError[rootFileUnknown].

File: DEFINITIONS ... ;
FileTypes: DEFINITIONS . . . ;
CommonSoftwareFileTypes: DEFINITIONS . . . ;

A file is the basic unit of long-term information storage. A file consists of a sequence of
pages, the contents of which can be preserved across system restarts. Files are named by
specifying the containing volume, and by a file identifier which is unique within that
volume. The operations described in this section enable clients to create and destroy files,
and to examine and set their attributes.

4.3.1 File naming

A file is named by giving the identifier of the volume on which it resides and the ID of the
file:

File.ID: TYPE [2];

File.File: TYPe = RecORD [filelD: File.ID, volumelD: System.VolumelD];

File.nullID: File.ID = ...; =- "null ID"

file.nullFile: rile.File = [File.nulllD, [System.nulliD]];

File.IDs are unique within any single volume. Since Pilot ensures with a very high
probability that each distinct volume is assigned a distinct volume identifier, the
combination of a volume identifier and a File.ID in a File.File is similarly unique. Pilot will

normally create files with file.IDs which have never appeared on the containing volume.
However, Pilot may reuse the File.IDs of deleted files under some circumstances. File.nulllD

4-17

File Storage and Memory

418

is-never allocated as the ID of a file. and will cause the error File.Unknown to be raised if
used for any operation except those that start an enumeration. File.nullFile may be used to
denote the absence of a tile.

All File operations require the volume containing the file to be open.

4.3.2 Addressing within files

Pilot fi'es may hold up to 232 bytes (223 pages) and may be randomly accessed on a page-
by-page basis. All addresses within a file are in terms of page numbers, representing
offsets (in pages) from the beginning of the file. The first page of a file is page number
zero.

fFile.PageNumber: TYPE = LONG CARDINAL; -- simulates [0..File.maxPagesPerFile)
File.maxPagesPerFile: LONG CARDINAL = 8388607; -- 223-1

file.firstPageNumber: File.PageNumber = 0;

File.lastPageNumber: File.PageNumber = file.maxPagesPerFile - 1;

Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines PageNumber as a LONG CARDINAL and defines constants
firstPageNumber and lastPageNumber to specify firsT[PageNumber] and
LAsT[PageNumber]. These constants should be used rather than the FIRST and LAST
operators, which cannot supply the correct value in the case of a simulated subrange.
Minimum and maximum values are similarly defined below for file.PageCount. -

File.PageCount: TYPE = LONG CARDINAL; -- simulates [0..File.maxPagesPerFile]
file.firstPageCount: rile.PageCount = 0;

file.lastPageCount: file.PageCount = File.maxPagesPerFile;

4.3.3 File types

In Pilot, every file must be assigned a file type at the time it is created. A file type is of type
File.Type and is constant for the life of the file. It provides a means for Pilot, various
scavenging programs, and clients to recognize the purpose for which each file was
intended. This is especially important because files on Pilot disks do not inherently have
meaningful strings for names, making it difficult for a human user or programmer to
recognize which file is which. To make this principle work effectively, each different kind
of file should be assigned its own unique type. See Appendix B for an explanation of how
file types are assigned and managed.

File types are intended to be used by Pilot clients in distinguishing the types of objects
represented by Pilot files. Each specific application may assign its own type to its own

files, either for redundancy or for control of the processing of those files.

File types are allocated by the Manager of System Development and are defined as follows:

Pilot Programmer’s Manual 4

File.Type: TYPE = RECORD [CAROINAL];

The center of this scheme is the FileTypes interface, maintained by the Pilot group. In this
file are defined all subranges of file.Type assigned to individual client and application
groups. This module is designed so that it can be recompiled whenever a new type is
assigned without invalidating any old version. Thus, within certain limits, a program
may include any version of FileTypes which contains the file types of interest to it without
building in an unnecessary or awkward compilation dependency.

The basic structure of FileTypes is a set of subrange and constant definitions. The following
ranges are defined. (The reader should consult the documentation of the appropriate
system to see how the specific file types have been defined):

FileTypes.MesaFileType: TYPE = CARDINAL[...];

FileTypes.DCSFileType: TYPE = CARDINAL[...];

FileTypes.TestFileType: TYPE = CARDINAL [. . .];

FileTypes.SBSOFileType: TYPE = CARDINAL [. . .];

FileTypes.CommonSoftwareFileType: TYPE = CARDINAL[. . .];

FileTypes.DocProcFileType: TYPE = CARDINAL[. . .];

FileTypes.FileServiceFileType: TYPE = CARDINAL [. . .];

FileTypes.ServicesFileType: TYPE = CARDINAL [.. .];

FileTypes.MesaDEFileType: TYPE = CARDINAL [. . .];

FileTypes.PerformanceToolFileType: TYPE = CARDINAL[. . .];

FileTypes.DiagnosticsFileType: TYPE = CARDINAL [...];

FileTypes.CADFileType: TYPE = CARDINAL[...];

FileTypes.CedarFileType: TYPE = CARDINAL [. . .];

FileTypes.VersatecFileType: TYPE = CARDINAL [. . .];

Mesa file types are used by Mesa source and object files. DCS file types are used by
development common software. Test file types are used by the test tools. SBSO file types
are used by OPD Small Business Systems Operation. Common Software file types are
used by product common software. File service file types are used by the file server.
Printing service file types are used by the print server. MesaDE file types are used in the
Mesa development environment. Performance tool file types are used to store binary data
typically generated by performance tools. Diagnostics file types are used by diagnostics
software. CAD file types are used by computer aided design software. Cedar file types are

used by the PARC Cedar project. Versatec file types are provided for the use of Versatec.

The type

4-19

File Storage and Memory

4-20

FileTypes.tUntypedFile: rile.Type = [LAsST[cARDINAL]];

may be used as a null value, denoting the absence of a type. This is not enforced by Pilot
however. '

The following common software file types are defined in the range
CommonSoftwareFileType: .

CommonSoftwareFileTypes.tUnassigned: rile.Type = [...];
CommonSoftwareFileTypes.tDirectory: File.Type = [...];
CommonSoftwareFileTypes.tBackstopLog: File.Type = [...];
CommonSoftwareFileTypes.tCarryVolumeDirectory: File.Type = [...];
CommonSoftwareFileTypes.tClearingHouseBackupfFile: file.Type = [...];
CommonSoftwareFileTypes.tFileList: File.Type = [...];
CommonSoftwareFileTypes.tBackstopDebugger: File.Type = [...];
CommonSoftwareFileTypes.tBackstopDebuggee: File.Type = [...];

These are mostly self-explanatory. tDirectory is obsolete. tFileList is the file type of the
file list used by the Floppy file system (see §5.5).

4.3.4 File error conditions

The following errors may arise during file operations:

File.Error: ERROR [type: File.ErrorType];

File.ErrorType: Tvpe = {invalidParameters, reservedType};

Most file operations raise Error. Error[invalidParameters] is raised by operations
when the parameters specify an illegal condition. Error[reservedType] is raised
when one of Pilot's reserved file types is used improperly.

File.Unknown: erRrOR [file: File.File];

Unknown indicates that the file does not exist on the given volume. It is also raised if
file.nullFile is supplied to any operation except a stateless enumerator.

File. MissingPages: ERROR [
file: rile.File, firstMissing: File.PageCount, countMissing: File.PageCount] ;

MissingPages indicates that the specified pages are missing from the file due to an
exceptional condition, usually a disk hardware error. This error is not raised by any File
operation, but is raised by other Pilot operations.

Pilot Programmer’s Manual . 4

File operations may raise the errors volume.Unknown, volume.NotOnline, volume.NotOpen,
Volume.lnsufficientSpace, und volume.ReadOnly.

4.3.5 File creation and deletion
To create a new file on a volume, call the procedure:

file.Create: PROCEDURE(
volume: system.VolumelD, initialSize: rile.PageCount, type: file.Type]
RETURNS [file: File.File]

A file.File for the new file is returned. Files are created as temporary files. The file initially
contains the number of pages specified by initialSize (filled with zeros). Pilot attempts to
allocate contiguous space on the volume, if such is available. There are significant
performance penalties associated with increasing the size of a file. Programmers should
make every attempt to create the file with the size it will eventually be. If initialSize is
zero or greater than File.maxPagesPerFile, Error[invalidParameters] is raised. If there is not
enough space on the volume to contain the file, volume.lnsufficientSpace is raised.
Volume.ReadOnly is raised if the volume is open for reading only.

The type attribute of the file is a tag provided by Pilot for the use of higher level software.
If type is one of a set of values reserved by Pilot, Error[reservedType] is raised.

By creating a file on an empty volume, creating a second file, and so on, a client program
can construct a set of files all of whose space is guaranteed to be contiguous.

A file is deleted by the operation

File.Delete: PROCEDURE [file: File.File];

The file is deleted permanently; no "undelete" operation exists. File.Unknown is raised if
there is no such file on the volume. volume.ReadOnly is raised if the volume is open for

reading only.

Caution: The file being deleted must not contain any file windows for mapped spaces (see
§4.6.2); the behavior of Pilot in such circumstances is undefined.

4.3.6 File attributes
Aside from its name and contents, a file has three other attributes: size, type, and
temporary/permanent status. These can be examined using the operations defined below.
All of these operations may raise file.Unknown.
The size of a file may be ascertained by calling
File.GetSize: PROCEDURE [file: File.File] RETURNS [size: File.PageCount];

The size of a file may be altered by calling

File.SetSize: PROCEDURE [file: File.File, size: File.PageCount];

4-21

File Storage and Memory

[f the size is increased, Pilot attempts to allocate disk space physically adjacent to the end
of the file, and it also attempts to allocate a contiguous sequence of pages, il such is
available. Any new pages of the file are filled with zeros. Attempting to set the size to zero
or greater than Ffile.maxPagesPerFile will cause Error{invalidParameters] to be raised.
Volume.ReadOnly will result if the volume is readonly, and volume.InsufficientSpace will be
raised is there are not enough free pages on the volume for the new file size.

Extending a file is a fairly expensive operation. It is better for a client to determine the
ultimate amount by which a file is to be extended, and do it all at once rather than to
increase its size a page or two at a time. This both reduces the amount of disk traffic and
increases the likelihood that Pilot will be able to allocate a contiguous sequence of pages
for the extension. There are also continuing performance penalties for accessing a
fragmented file, which may result from growing the file one or more times.

Caution: For a file which is being shrunk, the pages being deleted must not be mapped
into virtual memory. The behavior of Pilot in such circumstances is undefined.

The rest of the attributes of a file can be inspected collectively by calling

File.GetAttributes: PROCEDURE [file: File.File]
RETURNS [type: File.Type, temporary: BOOLEAN];

The temporary attribute indicates whether the file is temporary or permanent. Pilot
deletes temporary files when the volume is next booted, scavenged, or opened,for writing.
Permanent files are preserved across system restarts. A file is always created as
temporary. A file may be made permanent by calling the operation

File.MakePermanent: PROCEDURE [file: File.File];

A file should not be made permanent before the client has safely stored the File.File for that
file in some client-level directory or other permanent data structure. The scavenger (§ 4.4)
provides means for recovering a permanent file for which the Frile.File has been lost.

The intended sequence for making a permanent file is as follows: When a client creates a
file, it is temporary. The client then stores the rile.File for that file in a safe place, doing
space.ForceOut on the safe place to guarantee that it is written into the backing file. The
client then makes the file permanent using File.MakePermanent.

4.4 Scavenging

4-22

Scavenger: DEFINITIONS .. . ;

The act of repairing an inconsistent or damaged Pilot logical volume is known as
scavenging. A Pilot logical volume may become damaged for any number of reasons. A
machine that is using the volume may stop abnormally due to hardware or software
failure. The drive containing the volume may fail and damage the volume, or the physical
medium containing (part of) the volume might fail. A damaged volume may not be
accessed until it has been repaired. This is enforced at the time that volume.Open is called.
If the volume is detected as damaged by Pilot, volume.NeedsScavenging is raised. A
volume is repaired using the Scavenger interface.

Pilot Programmer’s Manual 4

1.4.1 Scavenging a volume
A damaged volume is repaired by the operation

Scavenger.Scavenge: PROCEDURE [volume, logDestination: volume.1D,
repair: Scavenger.RepairType, okayToConvert: BOOLEAN]
RETURNS [logFile: rile File];

Scavenger.RepairType: TYPE = MACHINE DFPENDENT {checkOnly(0),
safeRepair(1), riskyRepair(2)};

Scavenger.Error: ERROR [error: Scavenger.ErrorTypel;

Scavenger.ErrorType: Type = {..., volumeOpen, cannotWritelLog,
needsRiskyRepair, needsConversion, . . .};

The purpose of the Scavenge operation is two-fold. First, it allows Pilot to place its own
data structures in order so that client access to the volume may be permitted. Second, it
produces a log file (described below) describing the state of the volume. The log file is
intended to be used by client-level scavengers to reconstruct client data structures.

The volume to be scavenged is given by volume. If volume is open, the error
Error[volumeOpen] is raised. The log file is created on the volume logDestination. If
logDestination equals volume, the created log file is permanent; otherwise, the log file is
temporary. Volume logDestination must be open if it is not the same as the volume to be
scavenged. Scavenge may also raise volume.NotOnline and volume.Unknown.

The level of repair attempted by the scavenger is governed by the value of repair. A value
of checkOnly causes a log file to be produced but no repair is done. In this case, it is
advisable to specify logDestination to be a volume different from the scavengee since it
may not be possible to build a log file on a damaged volume. If repair is safeRepair, the
scavenger will attempt to repair the damage that it finds upon the volume. This is the
normal usage. I[f Pilot is unable to repair the volume satisfactorily in this mode,
Error[needsRiskyRepair] is returned. Certain forms of repair are performed only if repair
is equal to riskyRepair. Scavenging in riskyRepair mode should be attempted only after
the hardware has been verified to be working correctly.

Caution: In the current version of Pilot, repair equal to checkOnly is not implemented.

okayToConvert determines whether conversion of a volume of an incompatible version
will occur. A volume is of an incompatible version if its format is not compatible with the
Pilot boot file which is running. If okayToConvert is TRUE scavenging will convert a
volume from the previous version to the current one. If the volume version is incompatible
but okayToConvert is FaLSE, Error[needsConversion] is raised. Scavenging to a previous
version is not supported, nor is scavenging a volume forward more than one version.
okayToConvert is set to FALSE during pilot initialization, causing the system logical
volume to not be converted forward.

If a previous log file for this volume exists, Pilot attempts to delete it after Pilot data
structures have been repaired, but before a new log is written. This delete is comparable

4-23

File Storage and Memory

4-24

to a call on the DeleteLog operution (see below). [If Pilot is unable to write the log for any
reason, Error[cannotWriteLog] is returned and no scavenging is done.

Caution: In the current version of Pilot, the volume is repaired even if cannotWriteLog is
raised.

During Pilot initialization, the system logical volume is scavenged as necessary with
repair = safeRepair and okayToConvert = TRUE. The resulting log file is placed on the
system volume.

4.4.2 Scavenger log file

A log file describes the state of a volume after the Scavenge operation has been invoked. It
contains information about the volume and the outcome of the Scavenge as well as a list of
all files on the volume and the problems, if any, with each file. A log file contains a data
structure of type LogFormat.

Scavenger.LOgFOrmat: TYPE = MACHINE DEPENDENT RECORD [
header: scavenger.Header,
files: ARrRAY [0..0) OF FileEntry];

Scavenger.Header: TYPE = MACHINE DEPENDENT RECORD [
seal: CARDINAL « Scavenger.LogSeal,
version: CARDINAL < Scavenger.currentLogVersion,
volume: volume.ID,
date: System.GreenwichMeanTime,
repairMode: Scavenger.RepairType,
incomplete: BOOLEAN,
repaired: BOOLEAN,
bootFilesDeleted: scavenger.BootFileArray,
pad: [0..0] <O,
numberOfFiles: LONG CARDINAL];

Scavenger.LogSeal: carRDINAL = 1307258;
Scavenger.currentLogVersion: CARDINAL = 1;

Scavenger.BootFileArray: TYpe =
PACKED ARRAY Scavenger.BootFileType OF BOOLEAN;

Scavenger.BOOtFileType: TYPE = MACHINE DEPENDENT {
hardMicrocode(0), softMicrocode(1), germ(2), pilot(3), debugger(4), debuggee(5)};

Scavenger.noneDeleted: scavenger.BootFileArray = ALL[FALSE];

Scavenger.FileEntry: TYPE = MACHINE DEPENDENT RECORD [
file: File.1D,
sortKey: LONG CARDINAL,
numberOfProblems: CARDINAL,
problems: ARRAY [0..0) OF Scavenger.Problem];

Pilot Programmer’s Manual 4

Scavenger.Problem: TYPE = MACHINE DEPENDENT RECORD [
trouble: SELECT entryType:Scavenger.EntryType FROM
unreadable, missing = > [first: rile.PageNumber, count: rile.PageCount],
duplicate, orphan = > [id: scavenger.OrphanHandle]
ENDCASE];

Scavenger.EntryType: TYPE = MACHINE DEPENDENT {
unreadable(0), missing(1), duplicate(2), orphan(3)};

Scavenger.OrphanHandle: Type [2];
Scavenger.tScavengerLog: READONLY File.Type;
Scavenger.tScavengerLogOtherVolume: READONLY File.Type;

The log consists of a Header followed by zero or more FileEntrys. The Header describes the
scavenged volume and the outcome of scavenging. The seal field is used to verify that a
file is in fact a scavenger log; its value should be LogSeal. The version is the log file
format version, its value should be currentLogVersion. The scavenge occurred on volume
volume at time date with the value of the repair argument which was passed to the
Scavenge operation equal to repairMode. If incomplete is TRug, the file list may not
include all files or problems due to insufficient space on the log destination volume or
overflow of the internal tables used when scavenging. The header is always complete. A
value of TRUE for repaired indicates that all volume structures are in order and the volume
may be accessed. If it was necessary to delete one or more boot files in order to complete
the scavenge, the elements of bootFilesDeleted corresponding to the deleted boot files will
be TRUE. Boot files are deleted only in very unusual situations. The count of files on the
scavenged volume is given by numberOfFiles.

Following the header are Header.numberOfFiles contiguous entries of type FileEntry. In
each entry, file identifies the file, sortKey is a sort accelerator for client scavengers , and
numberOfProblems is the number of problems associated with the file. If
numberOfProblems is not zero, problems contains one Problem entry for each problem
encountered. Note that some files will be absent from the list if header.incomplete is TRUE.

There are four categories of problem: unreadable pages, missing pages, duplicate pages,
and orphan pages. If the data portion of a sequence of file pages is unreadable or the label
can be read correctly, but is either self-inconsistant or is inconsistant with the rest of the
file, an unreadable Problem entry is entered in the log. If a sequence of file pages is
missing, a missing Problem entry is created. If a page has an unreadable label, it cannot
be associated with any file and is reported as an orphan Problem of a FileEntry which has
file equal to file.nuillD Finally, if there are two or more pages claiming to be the same
page of a file, one is arbitrarily chosen as the actual file page. The rest are reported as
duplicate Problem entries. A page identified as orphan or duplicate is provided a
Scavenger.OrphanHandle in the problem entry so that the page may be accessed. The size of
a Problem entry in the log is always size[Problem].

The scavenger cannot detect the absence of one or more pages from the very end of a file. It
is the client's responsibility to deal with failures of this nature. If only the first page of a
file is missing, Pilot assumes that the file is permanent. Missing or unreadable pages

1-25

File Storage and Memory

426

should be accessed only via operations provided by the Scavenger interface for dealing with
such pages and not by, ¢.g., Space.Map

A scavenger log file built upon the volume being scavenged will be of file type
tScavengerlog. A log file written to a different volume will have type
tScavengerLogOtherVolume.

A log file may also be generated by the following operation:

Scavenger.MakeFileList: PROCEDURE [volume, logDestination: volume.ID]
RETURNS [logFile: File.File];

This procedure will generate a Log for the volume volume without the overhead of
actually scavenging the volume. If either of the specified volumes is not open,
Volume.NotOpen is raised. volume.Unknown is raised if either volume is unknown. The
resulting log will be the same form as a log generated by Scavenge except that no
problems are reported. The log file is not an “official” log file, i.e., it is not affected by
Scavenge, GetlLog, or DeleteLog. The returned file is a temporary file; it is the client's
responsibility to make it permanent if that is appropriate.

Caution: The client should not create or delete files from volume while MakeFileList is in
process or the log may be incomplete or incorrect.

4.4.3 Operations on log files

The current log file for an open volume, as produced by the most recent invocation of
Scavenger.Scavenge[volume, ..], is returned by

Scavenger.GetLog: PROCEDURE [volume: volume.ID]
RETURNS [logFile: File.File];

If there is no log file, File.nullFile is returned. Even if the returned logFile is not File.nullFile
the log file will not exist if it has been deleted by some means other than a
Scavenger.DeleteLog. Thus, the client must be prepared to catch the signal file.Unknown
while accessing logFile. GetLog may also raise volume.NotOpen, Volume.NotOnline, or
Volume.Unknown.

The current log file for an open volume may be deleted by
Scavenger.DeleteLog: PROCEDURE [volume: volume.ID];

volume is the volume which was scavenged to produce the log file. The log file may be on
volume or it may be on another volume, depending on the log destination chosen for the
Scavenge. If the volume containing the log file is not open for writing, the file is not
deleted. Subsequent GetLog operations on volume return Ffile.nullFile until
Scavenge[volume, . . .] is called again. Deletelog does not affect log files generated by
MakeFileList. DeleteLog may also raise volume.NotOpen, volume.NotOnline,
Volume.Unknown, or volume.ReadOnly.

Pilot Programmer’s Manual 4

4.4.4 Investigating and repairing' damaged pages

The damage reported in the log file may be investigated and repaired through the use of
the following operations. All of these operations require the volume to be open. All of the

' operations raise File.Unknown if the specified file cannot be found, and volume.NotOpen,
Volume.NotOnline, or volume.Unknown for the specified problem with the volume. Those
which change volume contents may raise volume.ReadOnly.

An unreadable page, as described by an unreadable Problem entry, may be read by

Scavenger.ReadBadPage: PROCEDURE {
file: rile.File, page: rile.PageNumber, destination: space.PageNumber]
RETURNS [readErrors: BOOLEAN];

Scavenger.ErrorType: TYPe = {..., diskHardwareError, diskNotReady,
noSuchPage, .. .};

The contents of page page of file are read into virtual memory page destination which
must be mapped and writable. (An address fault or write protect fault is indicated if it is
not.) The effect is to overwrite the previous contents of destination with the contents of
the specified file page. The returned value readErrors indicates whether or not any error
was encountered while accessing the specified file page. Read errors that occur while
reading page affect only the value of readErrors and are otherwise ignored. If the read
encountered errors, the data is not guaranteed to be reliable.If page does not exist or lies
beyond the end of file, Error[noSuchPage] is raised. If the target disk is not ready,
Error[diskNotReady] is raised. If the target disk reports a drive-level failure (as opposed to
a page-level failure such as a read error), Error[diskHardwareError] is raised.

An unreadable page may be rewritten or a missing page may be replaced by

Scavenger.RewritePage: PROCEDURE [
file: rile.File, page: File.PageNumber, source: Space. PageNumber]
RETURNS [writeErrors: BOOLEAN];

The current contents of page page of file are overwritten by virtual memory page source,
which must be mapped. The original disk page is reused if it is present (to replace a file
page, use ReplaceBadPage below); if the original page is missing, Pilot will allocate a new
page for that file page. The return value writeErrors indicates whether or not errors were
encountered while trying to rewrite the specified page. If writeErrors returns FALSE, the
page should be considered to be rehabilitated. Clients should first attempt to rewrite bad
file pages using RewritePage. If this fails repeatedly, the client should use
ReplaceBadPage to rewrite the file page in a different backing page.

If page is beyond the end of file, Error[noSuchPage] is raised. If no page can be allocated to
replace a missing page, Volume.InsufficientSpace is raised. If the target disk is not ready,
Error{diskNotReady] is raised. If the target disk reports a drive-level failure,
Error[diskHardwareError] is raised. An address fault will result if source is not mapped.

The following procedure also rewrites a bad page in a file, but in addition it discards the
disk page that the file currently occupies and allocates a new one:

4-27

File Storage and Memory

4-28

Scavenger.ReplaceBadPage: PROCEDURE |
file: rile.File, page: file.PageNumber, source: space.PageNumber]
RETURNS [writeErrors: BOOLEAN];

ReplaceBadPage will allocate a new page for the specified file page and mark the old page
as bad in the physical volume's bad page list. The returned value writeErrors indicates
whether or not errors were encountered while replacing the file page. This operation
always allocates a single new page even if writeErrors is returned as TRUE.
ReplaceBadPage is subject to the same error conditions as RewritePage.

An orphan page may be read by the operation

Scavenger.ReadOrphanPage: PROCEDURE [
volume: volume.lD, id: scavenger.OrphanHandle, destination: space.PageNumber]
RETURNS [file: File.File, type: file.Type, pageNumber: file.PageNumber,
readErrors: BOOLEAN];

Scavenger.ErrorType: TYpPe = (..., orphanNotFound,...};

The contents of virtual memory page destination are overwritten by the contents of the
orphan page designated by id. The destination page must be mapped and writable or an
address fault or write protect fault will occur. This operation returns the information that
Pilot knows about id. The file to which it appears to belong is given by file, the apparent
page number within that file by pageNumber, and the type of file by type. If errors were
encountered in reading the orphan page, read€rrors is returned TRUE and the returned
data is not guaranteed to be accurate.

Caution: There is no validity checking to ensure that the page referred to by id is actually
anorphan. It is the client's responsibility to pass only a currently valid OrphanHandle.

If id does not refer to a valid page on volume, Error{[orphanNotFound] is returned. If the
target disk is not ready, Error[diskNotReady] is raised. If the target disk reports a drive-
level hardware failure, Error[diskHardwareError] is raised.

Once the client is through with an orphan page, it should be deleted by the operation
Scavenger.DeleteOrphanPage: PROCEDURE [volume: voiume.ID, id: Scavenger.OrphanHandle];

The specified orphan page is deleted, making invalid all outstanding references to it. If
the page is usable, it will be returned to volume's free page pool. If the page is
incorrigible, it will be added to the bad page list for the physical volume containing
volume. Ifid does not refer to a valid page on volume, Error[orphanNotFound] is raised.

Caution: There is no validity checking to ensure that the page referred to by id is actually
an orphan. It is the client's responsibility to pass only currently valid OrphanHandles. In
particular, it is possible for a client to delete a random page from a random file by
supplying a random, but valid, value for id.

File Storage and Memory 4

4.5 Virtual memory management
Space: DEFINITIONS . . .
SpaceUsage: DEFINITIONS . ..
The Mesa Processor provides a large, linearly addressed, word-organized virtual memory
common to all PROCESSes and devices. All software, including Pilot, common software, and
applications, resides in this single, uniformly-addressable resource. Pilot both manages
and implements it using the system element’s physical resources. In particular, client

programs can associate areas of virtual memory with portions of files and manage system
performance and reliability by controlling swapping between virtual and real memory.

4.5.1 Fundamental concepts of virtual memory
The Mesa Processor virtual memory is organized as a sequence of 224 pages, each
containing Environment.wordsPerPage words. Pages are numbered starting from zero.
Clients can use one fewer page than provided by the Mesa Processor because the last page
is reserved for system use. A specific implementation of the processor may provide a
smaller virtual address space, which does not require redefining the maximum page
number but is accounted for in Pilot’s internal data structures. A client program can
determine the size of its virtual address space, as described in §4.5.6.1 below.
Environment.wordsPerPage: CARDINAL = 256;
Environment.PageNumber: TYPE = LONG CARDINAL; --[0..22¢-1)
Environment.firstPageNumber: environment.PageNumber = 0;
Environment.lastPageNumber: environment.PageNumber = 16777214; --22¢+-2
Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines PageNumber as a LONG CARDINAL and defines the
constants firstPageNpmber and lastPageNumber to specify FIRsT[PageNumber] and
Last[PageNumber]. Similarly for PageCount and PageOffset below.
Environment.PageCount: TYPE = LONG CARDINAL; --[0..224-1]
Environment.firstPageCount: environment.PageCount = 0;
Environment.lastPageCount: Environment.PageCount = lastPageNumber + 1; -- 224-1
Environment.PageOffset: TYPE = Environment.PageNumber;
Environment.firstPageOffset: Environment.PageOffset = 0;
Environment.lastPageOffset: Environment.PageOffset = lastPageNumber;

The following operation returns a LONG POINTER to the first word of a page.

Environment.LongPointerFromPage: PROCEDURE [page: Environment.PageNumber]
RETURNS [LONG POINTER] = INLINE...;

4-29

Pilot Programmer’s Manual

4-30

The following operation returns the number of the page containing pointer. If pointer is
NiL, the value returned is undefined-no signal is raised.

Environment.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]
RETURNS [Environment.PageNumber] = INLINE. . . ;

For convenience, copies of the types wordsPerPage, PageNumber, PageCount, and
PageOffset, and the procedures LongPointerFromPage and PageFromLongPointer are
available in the Space interface.

Space.wordsPerPage: CARDINAL = Environment.wordsPerPage;

space.PageNumber: TYPE = Environment.PageNumber;
space.PageCount: TYPE = Environment.PageCount;
Space.PageOffset: TYPE = Environment.PageOffset;

Space.LongPointerFromPage: PROCEDURE [page: Environment.PageNumber]
RETURNS [LONG POINTER] = INLINE...;

Space.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]
RETURNS [Environment.PageNumber] = INLINE. .. ;

A basic concept used to describe parts of virtual memory is the Interval.
Space.Interval: TYPE = RECORD [pointer: LONG POINTER, count: Environment.PageCount];
space.nullinterval: space.Interval = [pointer: NiL, count: 0];

An Interval is a sequence of pages in the virtual address space, and is described by a
pointer to the first page and a count of the number of pages. When Pilot returns an Interval
to the client, the pointer points to the first word of the first page of the Interval. When
Intervals are passed to Pilot, the pointer may point to any word in the first page. Clients
should be careful not to misconstrue the pointer passed to Pilot as defining the first
address affected by an operation; Space operations always start at page boundaries.
nullinterval may be used to denote the absence of an interval. It is returned by a few Space
operations.

Pilot implements virtual memory using the resources of real memory and files. In
particular, any part of virtual memory which contains information must be associated
with backing storage consisting of a sequence of pages from some file. This sequence of file
pages is called a window. The act of associating an area of virtual memory with a window
is known as mapping; the resulting interval is called a map unit. Any attempt by a
program to reference or store into a virtual memory location which is not contained in a
mapped interval causes an address fault. Any attempt by a program to store into a virtual
memory location which has read-only access causes a write protect fault. Both faults cause
the debugger to be called with an appropriate message.

When an interval is mapped, it is typically subdivided into modest-sized swap units to
allow more efficient management of swapping. When a PROCESS references a page not
present in real memory, Pilot reads in the page and any adjacent swapped-out pages of the
containing swap unit. Thus the size of a swap unit limits how many pages will be swapped

File Storage and Memory 4

in when one of its pages is referenced. When inactive pages are moved from real memory
to backing storage, Pilot ignores swap unit boundaries. That is, it will swap out a run of
consecutive inactive pages even if the run crosses one or more swap unit boundaries. As
described below, some attributes of mapped intervals are maintained as properties of the
individual swap units.

Note: In unusual circumstances (described below), Pilot may break a client-specified swap
unit into smaller swap units.

When an interval is mapped, its swap units are given initial access permissions.
space.Access: TYpe = {readWrite, readOnly};

Each swap unit has its own Access status. readWrite specifies that clients are allowed to
read and write in the swap units. readOnly specifies that only reading is allowed. Any
attempt to write into a page of a swap unit which is readOnly results in a write protect
fault. Operations are also provided for changing the access of existing swap units.

When an interval is mapped, its swap units are given an initial life. This specifies whether
or not the initial contents of the backing file are useful.

space.Life: TYPe = {alive, dead};

Each swap unit has its own Life status. alive specifies that a swap unit initially contains
useful data; dead specifies that it does not. Pilot uses this information to avoid reading
pages of the interval from backing storage and writing pages containing no useful data.
When a swap unit is marked dead, the contents of each page will be unpredictable until
that page is written into by the client. Until that time, the client can make no assumption
about the contents of the pages or their consistency with the corresponding pages of the
window. Pilot insists that readOnly swap units be alive; any attempt to make a readOnly
swap unit be dead will be ignored—-it will remain alive. A swap unit becomes alive when
(1) one of its pages has been written into, or (2) it is made readOnly. A page can be

swapped out either explicitly by the client or implicitly by Pilot in managing memory. The
operation Space.Kill is provided to make existing swap units dead.

Any Space operation may raise the signal:
Space.Error: ERROR [type: Space.ErrorType];
Space.ErrorType: TYype = {... };

Specific values of ErrorType are defined below. In addition, some operations may raise
other signals as defined below.

If any Space operation is given an Interval whose pages are not completely contained
within the implemented virtual memory of the system element,
space.Error[pointerPastEndOfVirtualMemory] is raised.

space.ErrorType: TYpe = { ..., pointerPastEndOfVirtualMemory, ... };

4-31

' ! 4 Pilot Programmer’s Manual

Any Space operation that transfers data to backing storage may encounter an
unrecoverable error in reading or writing the data. If so, it will raise the signal

|

|

} Space.lOError: ERROR [page: Environment.PageNumber];
1 .

|

page is the first page of the data being transferred which is in error.

i 4.5.2 Mapping files to virtual memory intervals

As described above, Pilot implements virtual memory by associating intervals of memory
with backing storage consisting of a sequence of pages from some file. This sequence of file
pages is called a window. Associating an area of virtual memory with a window is known
as mapping, the resulting interval is called a map unit. Virtual memory is normally
allocated when an interval is mapped.

A Window is a contiguous group of pages in a file starting at a specified base.

Space.Window: TYPE = RECORD |
file: File.File,
base: rFile.PageNumber,
count: Environment.PageCount];

. The window within the file starts at base, the first page relative to the beginning of the
file, and extends for count pages or to the end of the file, whichever comes first. The actual
window length is the lesser of count and the file size minus base. If count is set to
Environment.lastPageCount, the window will extend to the end of the file.

When an interval is mapped, it is typically subdivided into modest-sized swap units to
allow more efficient management of swapping. If there is no known grouping of the
references to the pages of a map unit, uniform-sized swap units should be specified; this is
the default. If there is no knowledge of the proper size for the uniform swap unit size, the
client may request a default swap unit size. If there is some known grouping of the
references to the pages of a map unit, the map unit may be subdivided into swap units
with specific sizes and locations. In some circumstances, Pilot may break a client-specified
swap unit into smaller swap units.

Mapped Virtual Memo}y

——— Map unit ——p

memory pages L SYepYniEs |
file pages

System performance can be severely degraded if a swap unit is a substantial fraction of
the size of real memory. Clients should ensure that map units are divided into swap units
of manageable size. As a general rule, a swap unit should not exceed one-tenth the size of
real memory.

4-32

File Storage and Memory

4

The operations for controlling the allocation of intervals and mapping them to windows

are Map, ScratchMap, and Unmap.

space.Map: PROCEDURE [
window: Space.Window,
usage: Space.Usage « Space.unknownUsage,
class: space.Class « file,
access: Space.Access « readWrite,
life: space.Life «alive,
swapUnits: Space.SwapUnitOption « space.defaultSwapUnitOption]
RETURNS [mapUnit: Space.Interval];

Space.Usage: TYre = [0..2048);
space.unknownUsage: space.Usage = 0;
space.Class: TYPE = MACHINE DEPENDENT {
unknown(0), code(1), globalFrame(2), localFrame(3),
zone(4), file(5), data(6), spareA(7), spareB(8), pilotResident(31)};
space.SwapUnitOption: TYPE = RECORD [
body: SeLECT swapUnitType: space.SwapUnitType FROM
unitary = > NULL,
uniform = > [size: Space.SwapUnitSize « space.defaultSwapUnitSize],
irregular = > [
sizes: LONG DESCRIPTOR FOR ARRAY [0..0) OF space.SwapUnitSize]
ENDCASE];
Space.SwapUnitType: Tyre = {unitary, uniform, irregular};

space.defaultSwapUnitOption: space.SwapUnitOption =
[uniform[space.defaultSwapUnitSize]];

Space.SwapUnitSize: TYPE = CARDINAL;
space.defaultSwapUnitSize: space.SwapUnitSize = 0;

space.ErrorType: TYPE = {

... incompleteSwapUnits, invalidSwapUnitSize, invalidWindow, noWindow, . .

space.InsufficientSpace: eRROR [available: Environment.PageCount];

.k

Map allocates an interval of virtual memory and associates it with a window of a file. The
allocated interval is called a map unit. The window is then the backing store for the map
unit. The length of the map unit is the actual window length, which is the lesser of
window.count and the size of the file minus window.base. The allocated map unit is

returned.

Caution: Clients must not delete the backing storage for any mapped interval or close the

volume containing it. The behavior of Pilot in such circumstances is undefined.

4-33

Pilot Programmer’s Manual

4-34

Caution: Clients should ensure that different map units are not mapped to overlapping
windows of a file if any of them is writable. The contents of the windows and the map units
in such circumstances are unpredictable.

If window.file is File.nullFile, then window.volume, window.base, life, and access are
ignored and Pilot supplies anonymous backing file storage for the interval. Such a window
is called a data window (a window mapped to a file is called a file window). The length of
the allocated window and map unit is window.count. The interval is mapped with access
= readWrite and life = dead. Backing storage for data windows is allocated on the system
volume. Information in data windows is discarded when the client Unmaps the interval or,
if the system crashes, when the system volume is next opened for writing. For UtilityPilot-
based systems, data windows are backed only by resident memory.

Map may encounter various conditions which will cause errors to be raised:

Condition ERROR

Actual window length is 0 space.Error[noWindow]
Not enough contiguous free virtual memory Space.InsufficientSpace
window.base > rile.lastPageNumber space.Error{invalidWindow]
Volume can’t be located volume.Unknown

Volume partially online volume.NotOnline

Volume online and closed Volume.NotOpen

File does not exist on the volume File.Unknown

Any of the pages of window do not exist File.MissingPages

Cannot supply backing file for a data window Volume.InsufficientSpace
Volume is read-only, but access = readWrite volume.ReadOnly

Note that space.InsufficientSpace passes back the maximum amount that could have been
allocated.

The interval is mapped with the access given. If access = readOnly, life is ignored and the
interval is mapped with life = alive. If access = readWrite but window.volume is read-
only, Volume.ReadOnly is raised.

usage identifies the data in the map unit. The usage of map units will be available to the
debugger and performance monitoring tools. The interface SpaceUsage defines subranges
of space.Usage for various clients and applications. Clients are encouraged to have their
own private definitions file which further suballocates the space.Usages assigned to them
by the SpaceUsage interface.

class indicates the class of the data in the map unit. Pilot uses this data in its swapping
decisions. Clients will normally specify only file for file windows and data for data
windows.

If swapUnits.swapUnitType = uniform, the map unit is subdivided into equal-sized swap
units of the indicated size. If size equals defaultSwapUnitSize or 0, Pilot will choose an
appropriate size. If size equals or exceeds the size of the map unit, the swap unit serves no
purpose; in this case specifying unitary swap units is more efficient.

If swapUnits.swapUnitType = irregular, the map unit is subdivided into irregular-sized
swap units of the sizes given in swapUnits.sizes. Each element of swapUnits.sizes is the
size of the corresponding swap unit. If the size of any irregular swap unit is greater than
an implementation-dependent upper limit, it will be subdivided into smaller swap units.

File Storage and Memory 4

Excess elements of swapUnits.sizes are ignored. If the window does not completely cover
the last swap unit, this swap unit will be shorter than requested. If any required element
of swapUnits.sizes is 0, Space.Error[invalidSwapUnitSize] is raised. If any required element
of swapUnits.sizes is unmapped storage, an address fault will result. If the sum of the
elements of swapUnits.sizes is less than the size of the map unit,
space.Error[incompleteSwapUnits] is raised.

If swapUnits.swapUnitType = unitary, the map unit is not subdivided into smaller swap
units. This indicates the client’s desire to have the map unit swap as a single entity.

ScratchMap is a more convenient way than Map to allocate temporary storage.

Space.ScratchMap: PROCEDURE [
count: PageCount, usage: Space.Usage « Space.unknownUsage]
RETURNS [pointer: LONG POINTER];

The operation

Space.Unmap: PROCEDURE [
pointer: LONG POINTER, returnWait: space.ReturnWait « wait]
RETURNS [nil: LONG POINTER];

space.ReturnWait: TYpe = {return, wait};
Space.ErrorType: TvPe = {..., notMapped,...};

removes the association between the map unit containing pointer and the map unit’s
window. This frees the map unit’s virtual memory for other uses. If returnWait = wait,
the operation does not return until the contents of the window reflect the contents of the
interval. If returnWait = return, the operation returns immediately without waiting for
any required output to complete. Pilot ensures, however, that client actions on the backing
window have the same effect as if returnWait = wait had been specified. If the interval is
mapped to a data window, the information in the window is discarded. If pointer is not
contained in a map unit, Space.Error[notMapped] is raised. If the data‘in the interval
cannot be written to the window, Space.lOError is raised.

Note: For the current release returnWait = return is equivalent to returnWait = wait.
Of course, pointers into a map unit should not be retained after unmapping. To encourage
this, Unmap returns a NiL pointer. The intended usage is

myPointer « space.Unma plmyPointer];

References to an interval formerly occupied by the map unit can result in an address fault,
or worse, may access or overwrite other data if the virtual memory is reused.

4.5.3 Explicitly reading and writing virtual memory

Copyln and CopyOut are similar to read and write operations in a conventional file
system. However, since the interval involved must already be mapped to a backing file,
each can also be thought of as a file-to-file copy. Neither operation returns until the data
has been transferred and neither changes the mapping of the interval.

4-35

Pilot Programmer’s Manual

4-36

The operation

Space.COpyln: PROCEDURE [pointer: LONG POINTER, window: Space. Window]
RETURNS [countRead: Environment.PageCount];

Space.ErrorType: TYpe = {...,readOnly,...};

reads the contents of window into virtual memory starting at the page that contains '
pointer. countRead is the amount read, which is the lesser of window.count and the size
of the file minus window.base. All virtual memory pages into which data will be read
must be mapped. The contents of window are not changed by this operation.

Note: The virtual memory modified may start before pointer 1 since reading starts at the
first word of the page containing pointer.

Caution: Clients should not Copyin from any part of a window currently mapped in
virtual memory with write access. The data read in such circumstances is unpredictable.

If any portion of the virtual memory involved is read-only, space.Error[readOnly] is raised.
If any portion of the virtual memory involved is unmapped, Space.Error[notMapped] is
raised. If the data cannot be read from the window, Space.lOError is raised. In all of these
cases, the pages preceding the offending page may have been overwritten by the
corresponding portion of window. See also the list of errors raised by both Copyln and
CopyOut, below.

The operation

space.CopyOut: PROCEDURE [pointer: LONG POINTER, window: Space.Window]
RETURNS [countWritten: Environment.PageCount];

writes the current contents of virtual memory, starting at the page that contains pointer,
out to window. countWritten is the amount written, which is the lesser of window.count
and the size of the file minus window.base. All of the virtual memory pages from which
data will be read must be mapped. The contents of virtual memory are not changed by this
operation.

Note: The virtual memory being read may start before pointer 1 since reading starts at a
page boundary.

Caution: Clients should not CopyOut to any part of a window which is currently mapped
in virtual memory. The contents of those map units in such circumstances is
unpredictable.

If any portion of the virtual memory involved is unmapped, Space.Error[notMapped] is
raised. If the data in the interval cannot be read from backing storage or if it can not be
written to the given window, Space.lOError is raised. In both of these cases, the pages of the
window corresponding to those preceeding the offending virtual memory page may have
been overwritten by the corresponding portion of virtual memory. If window.volume is
read-only, volume.ReadOnly is raised.

Copyln and CopyOut both raise the following exceptions: If window.base >
File.lastPageNumber, space.Error[invalidWindow] is raised. If the volume cannot be
located, volume.Unknown is raised. volume.NotOnline is raised if any part of the volume is

File Storage and Memory 4

not online. If the volume is closed, volume.NOtOpen is raised. If the file does not exist on
the volume, File.Unknown is raised. If any of the required pages of window do not exist,
File.MissingPages is raised.

4.5.4 Swapping

Before a virtual memory location can be accessed, the page containing that location must
be in real memory. If it is not, Pilot must read the contents of that page from its window
into a real-memory page. If there is no available real memory page, Pilot makes room by
writing pages to their backing window(s). Since Pilot keeps track of which pages match
the contents of their window, it need not write unchanged pages.

There are two ways in Pilot to cause swapping: demand swapping, and controlled
swapping.

4.5.4.1 Demand swapping

When a PROCESS attempts to reference a virtual page not currently in real memory, it
causes a page fault. When a page fault occurs, execution of that PROCESS is suspended. Pilot
reads in the page referenced and any adjoining swapped-out pages of the containing swap
unit. This is known as demand swapping. The suspended PROCESS is blocked until the read
operation is complete. Of course, any other ready PROCESSes are allowed to proceed
concurrently with the handling of the page fault.

4.5.4.2 Controlled swapping

Pilot also swaps in response to advice given by the client indicating its intentions with
respect to particular intervals. The operations provided allow the client to advise Pilot
about:

an interval that will be referenced soon,;
a recently referenced interval that will not be referenced for a while;
an interval whose current contents are not wanted anymore (i.e. will be written

before being read);

This advice enables Pilot to manage memory better than with simple demand
swapping.

An operation is also provided to assure that the current contents of an interval are
accurately reflected in its backing window. This is useful for transactional systems.

The operations Activate, Deactivate, and Kill allow the client to advise Pilot so it can
manage swapping better. ForceOut allows the client to assure that the information in an
interval will survive a system crash. Each of these operations can be applied to any
interval of virtual memory, independent of map unit boundaries. The operations apply
only to mapped portions of the specified interval, ignoring unmapped regions.

Space.Activate: PROCEDURE [interval: space.Intervall;

space.Deactivate: PROCEDURE [interval: space.Intervall;

4-37

Pilot Programmer’s Manual

4-38

Activate indicates to Pilot that the interval is expected to be referenced in the near future
and that Pilot should begin reading it in. This operation returns without waiting for any
input to complete. Deactivate indicates to Pilot that the interval is not likely to be
referenced soon, and that Pilot should write it out and release the real memory allocated to
it. This operation also returns without waiting for any output to complete.

The following procedures allow the activation and deactivation of swap units containing
Mesa code.

Space.ActivateProc: PROCEDURE [proc: --GENERIC-- PROCEDURE];
Space.DeactivateProc: PROCEDURE [proc: --GENERIC-- PROCEDURE];
space.ErrorType: TYPe = {...,invalidProcedure,...};

ActivateProc causes the swap unit (code pack) containing the code for the procedure proc’
to be activated, and DeactivateProc deactivates it. If proc has arguments or results,
normal usage is ActivateProc[LoorHOLE[proc, PROCEDURE]]. If proc is not a valid procedure,
space.Error[invalidProcedure] is raised.

A common technique for using ActivateProc and DeactivateProc is to package a vacuous
procedure with the code of interest. This procedure serves as a “handle” on a code pack,
decoupling the function implemented by the code pack and the explicit procedures which
compose it.

The operation
space.Kill: PROCEDURE [interval: space.Intervall;

asserts to Pilot that the current contents of the interval are of no further value. Kill is
intended to be used two ways: to avoid reading a page about to be overwritten, and to avoid
writing a page which is no longer useful.

Pilot uses this information to avoid input/output activity on the interval. When Kill is
applied to an interval, any real memory in the interval is immediately reclaimed;
furthermore, any writable swap units wholly contained in the interval are marked dead.
Pilot may supply arbitrary values for the contents of any page of a dead swap unit until
the page is next written into by the client. The client should not make any assumptions
about the contents of these pages or their consistency with the corresponding pages of the
window (see also the previous discussion of the Life attribute).

The operation
Space.ForceOQut: PROCEDURE [interval: space.Intervall;

causes the window(s) of the interval to agree with the current contents of virtual memory.
It does not return until all required writing is complete. Any pages of the interval in real
memory will remain there. Since Pilot keeps track of which pages match the contents of
their window, ForceOut can bypass writing unchanged pages. If the data in the interval
can not be written to the given window, Space.lOError is raised. If ForceOut causes any
pages to be written to backing storage, the swap units containing those pages will be
marked alive.

File Storage and Memory 4

Any temporary disagreement between an interval and its window should be invisible
during normal operation of the system. The intended use of ForceQut is to guarantee that
the information in an interval will survive a system crash, by forcing it out to a non-
volatile backing storage.

Calls on Activate and Deactivate may be added or deleted anywhere in a program without
affecting its correctness. Calls on Kill may be deleted from, but not necessarily added to, a
program without affecting its correctness. Calls on ForceOut may be added to, but not
necessarily deleted from, a program without affecting its correctness.

4.5.5 Access control

The following operations allow portions of virtual memory to be made read-only or read-
write.

Space.SetAccess: PROCEDURE [interval: space.Interval, access: Space.Access];

This operation makes all swap units which include any portion of interval to be readOnly
or readWrite. If the swap units were made readOnly, subsequent attempts to store into a
page of any of these swap units will cause a write protect fault. If access = readWrite but
the volume to which the interval is mapped is read-only, volume.ReadOnly is raised.

When an interval is made readOnly, Pilot also does a ForceOut on the swap units and
marks them alive. While doing this, if the data in the interval cannot be written to its
window, Space.lOError is raised; in this case, the swap units preceding the offending page
may have been made readOnly and alive.

If an arbitrary interval within a map unit is given, this operation may affect less virtual
memory than that implied by the client-specified swap unit structure; this is because Pilot
may occasionally break a client-specified swap unit into smaller swap units. A client can
precisely specify which swap units are affected by having interval begin and end on the
boundaries of the client-specified swap units.

Note: The virtual memory affected may start before interval.pointer? since this
operation starts at the first page of the swap unit containing interval.pointer 1 . Similarly,

the virtual memory affected may extend past (interval.pointer + count *
wordsPerPage) T .

Two convenience operations are also provided.

Space.MakeReadOnly: PROCEDURE [interval: space.Interval] =
INLINE { Space.SetAccess[interval, readOnly] };

Space.MakeWritable: PROCEDURE [interval: space.Interval] =
INLINE { Space.SetAccess[interval, readWrite] };

4.5.6 Explicit allocation of virtual memory and special intervals

Virtual memory is normally allocated when a window is mapped. However, facilities are
also provided to allocate virtual memory explicitly, independent of the act of mapping.

4-39

4-40

|
i
4‘ 4 Pilot Programmer’s Manual

4.5.6.1 Special intervals of virtual memory, main data spaces, and pointers

When virtual memory is being explicitly allocated, some intervals are of special interest:
Space.virtualMemory: READONLY Space.Interval;

virtualMemory describes the entirety of the virtual memory address space as actually
implemented on the system element on which Pilot is running. The actual size of the
virtual memory of a particular system element is given by virtualMemory.count.

A special kind of interval which is recognized by the Mesa processor and by Pilot is the
Main Data Space (MDS). This interval consists of 256 pages (216 words) and holds the Mesa
run-time data structures needed to support the execution of a collection of PROCESSes.
Every PROCESS is associated with some MDS. The procedure

Space.MDS: PROCEDURE RETURNS [Space.Interval] ;

returns the interval of the MDS of the PROCESS calling it. One MDS may be shared by many
PROCESSes. A PROCESS may allocate virtual memory either inside or outside of its own mDs.
Information within the MDS can be accessed by a POINTER, which is interpreted relative to
the beginning of the mps. Information outside of the MDs is accessed by a LONG POINTER or a
POINTER RELATIVE to a LONG BASE POINTER. Since space in the mMDs is typically in short supply,
clients should normally allocate virtual memory outside the mps. Executable code is not
contained within any mMDs and is shared by all PROCESSes in all MDS's.

Note: Although the Mesa Processor allows multiple MDS's, only a single MDS is
implemented by the current version of Pilot.

4.5.6.2 Explicit allocation of virtual memory

Operations are provided for the explicit allocation and deallocation of an interval of
virtual memory independent of the act of mapping.

space.Allocate: PROCEDURE [
count: Environment.PageCount, within: Space.Interval « space.virtualMemory,
base: Environment.PageOffset « space.defaultBase]
RETURNS [interval: space.Intervall;

space.defaultBase: Environment.PageOffset = ... ;
Space.ErrorType: TYPe = { ..., alreadyAllocated, invalidParameters, ... };

This operation allocates an interval of unmapped virtual memory within an arbitrary
containing interval. If count is zero, Space.Error[invalidParameters] is raised.

Managing an allocated interval is the responsibility of the client. Part or all of the interval
may used for mapping windows using Space.MapAt.

The client may either specify exactly the location of the interval to be allocated or have
Pilot choose a suitable interval. To have Pilot choose a suitable starting location within
the containing interval, the client passes defaultBase. If there are not enough contiguous
unallocated pages in within, space.InsufficientSpace is raised; this signal passes the

File Storage and Memory 4

maximum amount that could have been allocated. To specify the location of the interval
exactly, the client gives a base other than defaultBase. The interval to be allocated will
start at the specified offset base from the start of the containing interval. If the requested
interval would overlap an alrea&y allocated interval, Space.Error{alreadyAllocated] is
raised. If the end of the interval would exceed the end of the containing interval,
space.Error{invalidParameters] is raised.

Note: When Pilot chooses the location of the interval, any special properly-contained
subintervals of within (e.g., the mDsS) may be skipped over. Thus Pilot may raise
space.InsufficientSpace when within = space.virtualMemory even though there is still
space available in the mDs.

The operation
space.Deallocate: PROCEDURE [interval: Space.intervall;
space.ErrorType: TYPe = { ..., notAllocated, stillMapped., ... };

deallocates the interval, making it available for other uses. interval should only contain
virtual memory obtained from Space.Allocate or Space.UnmapAt. If any portion of the
interval is mapped, space.Error[stillMapped] is raised. If any portion of the interval is
already deallocated, space.Error[alreadyDeallocated] is raised. If interval exceeds the
limits of implemented virtual memory, Space.Error{invalidParameters] is raised.

4.5.6.3 Mapping explicitly allocated virtual memory to files

The operations for controlling the mapping of explicitly allocated intervals are MapAt and
UnmapAt.

Space.MapAt: PROCEDURE |
at: Space.Interval,
window: space.Window,
usage: space.Usage « Space.unknownUsage,
class: space.Class « file,
access: Space.Access « readWrite,
life: Space.Life & alive,
swapUnits: space.SwapUnitOption & space.defaultSwapUnitOption]
RETURNS [mapUnit: space.Intervall;

This operation maps a window of a file to virtual memory starting at at.pointer. The
interval at must have been previously obtained from Allocate or UnmapAt or be a
subinterval of one. The resulting interval is a map unit. The length of the map unit is the
actual window length. If at contains any unallocated pages, Space.Error[notAllocated] is
raised. If the end of the map unit would exceed the end of at,
Space.Error{invalidParameters] is raised. This operation is otherwise analagous to
Space.Map (q.v.).

4-41

Pilot Programmer’s Manual

4-42

The operation

* space.UnmapAt: PROCEDURE [

pointer: LONG POINTER, returnWait: Space.ReturnWait « wait]
RETURNS [interval: space.Intervall;

removes the association between the map unit which contains pointer and its window.
interval describes the map unit being unmapped. If the virtual memory of the map unit
was originally obtained from Allocate, the associated interval remains the property of the
client. If the virtual memory of the map unit was originally obtained from Map, the client
acquires the associated interval. The client retains this interval until it is Deallocated.
This operation is otherwise identical to Space.Unmap (q.v.). Note that a client can Unmap
an interval originally obtained from Allocate and subsequently mapped with MapAt; the
associated interval becomes the property of Pilot.

4.5.7 Map unit and swap unit attributes, utility operations

The operation

Space.GetMapUnitAttributes: PROCEDURE [pointer: LONG POINTER]
RETURNS [mapUnit: space.Interval, window: space.Window,
usage: Space.Usage, class: Space.Class, swapUnits: Space.SwapUnitOption];

returns the location and length of the map unit which contains pointer, the window to
which it is mapped, the usage of the map unit, its swapping class, and the swap unit
structure. If the map unit is mapped to a data window, the returned window will be
[[File.nulliD, volume.nulliD], 0, count]. window.count (which equals the returned
interval.count) reflects the actual size of the map unit. It may be less than the
window.count given to Map or MapAt if the file was not long enough to supply the
requested count. If swapUnits.swapUnitType = uniform, the returned swapUnits.size is
the actual size of the swap units; defaultSwapUnitSize is never returned. If
swapUnits.swapUnitType = irregular, the returned swapUnits.sizes is Ni;
GetSwapUnitAttributes may be used to discover the sizes of irregular swap units. If
pointer is not in any map unit, this operation returns mapUnit = Space.nullinterval and
window.count = 0. Thus a pointer p points to unmapped storage if
GetMapUnitAttributes[p].mapUnit.count = 0. If the map unit containing pointer was
mapped by some facility other than Space, Space.Error[invalidParameters] is raised.

The operation

Space.GetSwapUnitAttributes: PROCEDURE [pointer: LONG POINTER]
RETURNS [swapUnit: space.Interval, access: space.Access, life: space.Life];

returns the location, length, current access, and current life of the swap unit which
contains pointer. The returned count reflects the actual size of the swap unit. In the case of
uniform or irregular swap units, the size will differ from the size given to Map or MapAt if
the requested size was zero or larger than Pilot implements. Also, Pilot may occasionally
break a client-specified swap unit into smaller swap units. If pointer is not in any swap
unit, this operation returns interval = space.nullinterval.

File Storage and Memory 4

The following operation returns the number of pages required to contain a specified
number of words.

space.PagesFromWords: PROCEDURE [wordCount: LONG CARDINAL]
RETURNS [pageCount: Environment.PageCount] =...;

The operation
Space.Pointer: PROCEDURE [pointer: LONG POINTER] RETURNS [POINTER];

converts a LONG POINTER to an equivalent POINTER. If the argument is not in the mDS of the
calling PROCESS, Space.Error[invalidParameters] is raised.

The operation
Space.PointerFromPage: PROCEDURE [page: Environment.PageNumber] RETURNS [POINTER];

returns a POINTER which points to the first word of the argument page. If the argument is
not in the mDs of the calling PROCESS, Space.Error{invalidParameters] is raised.

4.6 Pilot memory management

Four different facilities are available for acquiring and managing storage areas. Global
frame space is considered a precious resource, but may be used for small (a few dozen
words) storage that needs to be shared by multiple procedures and processes. Local
frames, existing only as long as it's procedure instance, may be used for storage items that
are less than a few hundred words in length and are not shared among procedures and
processes. The Space machinery, described in detail in §4.5, provides contiguous groups of
pages (256 word blocks) in the virtual memory and is most suitable for obtaining large
blocks of storage. There is also a Pilot free storage package for managing arbitrarily sized
nodes within client-designated areas of virtual memory called zones.

All state information pertaining to a zone is recorded within the zone itself, and, as a
consequence, each zone can be managed independently of all others through the same
interface, zone. The Heap facility provides further assistance in managing arbitrary sized
nodes. The following properties distinguish a heap from a zone:

1. Heaps are more automatic, occupying system-designated (rather than client-
designated) virtual memory, and expanding automatically (rather than requiring a

client call).

2. Heaps are designed to support the Mesa language facilities for dynamic storage
allocation (UNCOUNTED ZONES, NEW, FREE).

3. Some care is taken to treat large nodes (e.g., larger than 128 words) efficiently.
4. There is no mechanism to file away a heap and recreate it later.

It is expected that most Pilot clients will want to use the heap facilities. The zone facilities
provide extra fine-grain control which may be useful for certain critical applications. Like

4-43

Pilot Programmer’s Manual

4-44

the zone facility, the heap performs best when the sizes of nodes are small compared to the
size of the entire heap.

4.6.1 Zones

Zone: DEFINITIONS . . . ;

The Pilot zone management facility is based upon a suggestion by Don Knuth (The Art of
Computer Programming, Volume 1, p. 453, #19). Within a zone, free nodes are kept as a
linked list. One hidden word containing bookkeeping information is stored with each
allocated node, and additional bookkeeping information is kept in the header of each zone.
Allocation and release of nodes are usually very fast. Adjacent free nodes are always able

to be coalesced. It is also possible to add new areas of virtual memory to enlarge a zone.

These new areas, called segments, are linked together so that they may be deleted if all the
nodes in a seqment become free. In addition, an entire zone may be deleted. A zone may
be saved in a file, and later recreated in memory at a different address.

The zone facility performs best when the sizes of nodes are small compared to the sizes of
the block(s) making up the zone. A typical use for a zone is, for example, for small,
transient data structures, such as the nodes of a temporary list structure or the bodies of
(short) strings when the maximum length must be computed dynamically or the structure
must outlive the frame that creates it. Use of a zone for large (i.e., multi-page) nodes
decreases flexibility in storage management and is not recommended.

The allocator in the Pilot free storage package returns 16 bit pointers relative to a LONG
BASE POINTER supplied at the time the zone is created. Note that these values are free
pointers (type RELATIVE POINTER TO UNSPECIFIED) which must be cast appropriately (usually by
assignment) before being used. Allocated nodes are not relocatable within the zone, and
there is no garbage collection or automatic deallocation.

Because of its use for managing private, internal zones of Pilot, the zone facility raises no
signals or errors. Instead, the various operations return a status from the enumerated

type:

Zone.Status: TYPe = {...};

4.6.1.1 Zone management

A zone can be created from a block of client supplied virtual memory by calling the
procedure Create.

Zone.Create: PROCEDURE [
storage: LONG POINTER, length: zone.BlockSize, zoneBase: zone.Base,
threshold: zone.BlockSize « zone.minimumNodeSize, checking: BOOLEAN & FALSE]
RETURNS [zH: Zone.Handle, s: Zone.Status];

Zone.BlockSize: TYPE = CARDINAL;

Zone.Base: TYPE = Environment.Base;

Zone.minimumNodeSize: READONLY Zone.BlockSize;

File Storage and Memory 4

Zone.Handle: Type [2] ;
zone.nullHandle: zone.Handle = ...;
Zone.Status: TYPE = { ..., okay, storageOutOfRange, zoneTooSmall, ... };

A zone is created to occupy the number words of virtual memory specified by length and
beginning at the word pointed to by storage. The argument zoneBase is a LONG BASE
POINTER which supplies the base address for all relative pointer calculations in this zone.
The argument threshold indicates the minimum size node that will be maintained by this
zone. All allocation requests will be rounded up to this size and no unallocated fragments
smaller than this will be left in the zone.

The argument checking indicates whether or not some internal checking of the
consistency of the zone is turned on. The checking option is useful for helping debug client
programs which are improperly using or freeing nodes in the zone. Because it causes each
node to be checked on each zone operation, checking degrades performance somewhat.

The virtual memory must be mapped and have write permission. If it does not, an address
fault or write protection fault will be generated as if the client program had attempted to
write directly into that area of virtual memory. If length is too small to support a zone
with at least one node of size threshold, a status of zoneTooSmall is returned. All
segments of a zone must lie entirely within a single 64K word address space, i.e., all of the
zone must be addressable by 16 bit relative pointers based on base. If that is not the case,
or if the zone size is not in the range [0..216), a status of storageOutOfRange is returned.

Caution: Inthis version of Pilot, zone sizes are restricted to the range [0..215).

If a zone is successfully created, the Create operation returns a status of okay and a
Zone.Handle which is used to identify the zone for all other zone operations.

nullHandle is never the Handle to an actual zone and is provided as a reference to the null
zone.

A client may save a zone in a file for later use. Since the implementation of a zone may
change from release to release, client code using filed zones must be prepared to cooperate
in recovering from a "wrong version" condition detected by Pilot, as explained below. A
client may request Pilot to resurrect an old zone, presumably one previously saved in a
permanent file, with the procedure:

Zone.Recreate: PROCEDURE [storage: LONG POINTER, zoneBase: zone.Base]
RETURNS [zH: Zone.Handle, rootNode: zone.Base RELATIVE POINTER, S: Zone.Status];

Zone.Status: TYrPe = {..., wrongSeal, wrongVersion};

The storage parameter to Recreate should point to a place in virtual memory which is
mapped to a file window containing the contents of a zone created (or recreated) earlier in
the same or an earlier run. While the storage and corresponding zoneBase need not
remain fixed each time a zone is recreated, the arithmetic difference between them must
be kept invariant. Note also that the relative positions of any segments added to the zone
must stay invariant.

4-45

Pilot Programmer’s Manual

4-46

Normally Recreate returns a status of okay, together with an ordinary zone handle for the
zone and the value of the root node of the zone. However it is possible that an incompatible
implementation change in Pilot has been made since the zone was created, in which case
Recreate returns a status of wrongVersion, an invalid zone handle, and the correct value
of the root node of the old zone. In this case it is the client's responsibility to rebuild a new
version of the zone, perhaps by enumerating the nodes reachable from the root node via
fields defined within the client node format(s). Finally, a status of wrongSeal indicates a
client programming error: the storage passed to Pilot does not begin with a fixed "seal"
value, and probably never contained a valid zone. In this case, the returned handle and
root node are both undefined.

Zone.GetRootNode: PROCEDURE [zH: Zone.Handle]
RETURNS [node: zone.Base RELATIVE POINTER];

Zone.SetRootNode: PROCEDURE [zH: Handle, node: zZone.Base RELATIVE POINTER];
Zone.hil: READONLY Zone.Base RELATIVE POINTER;

To support the notion of a filed zone, Pilot allows a root node to be associated with every
zone. This value, initially set to zone.nil, is just a short relative pointer which the client
may use to point to a distinguished node within the zone, thus providing a "point of
purchase” on the data structures contained within the zone. As discussed above, the
entire set of nodes in a filed zone should be enumerable from the root (unless the entire
data structure can be reconstructed from some other source).

The Mesa construct NiL does not apply to RELATIVE POINTERS such as those used to reference
nodes. For this reason, the constant zZone.nil is provided for representing the nil RELATIVE
POINTER.

There is no explicit operation for destroying a zone. The client program merely recovers
the storage it had provided and ceases to use the zone.

The following procedure returns the attributes of a zone.

Zone.GetAttributes: PROCEDURE [zH: Zone.Handle]
RETURNS [zoneBase: zone.Base, threshold: zone.BlockSize,
checking: BOOLEAN, storage: LONG POINTER, length: zone.BlockSize,
next: zone.SegmentHandle];

Zone.SegmentHandle: Type [1];
Zone.nullSegment: READONLY Zone.SegmentHandle;

The results zoneBase, threshold, storage, and length are exactly as specified when the
zone was created. The result checking indicates whether or not consistency checking is
currently enabled for this zone (see below). The result next is a handle for an additional
segment of this zone (see §4.6.1.2); zone.nullSegment is returned if there are no additional
segments in this zone. No validity check is made of zH, the zone.Handle, prior to returning
these results.

File Storage and Memory 4

The following operation is used to enable or disable consistency checking of the zone. If
checking is TRUE, a consistency check is made that all of the nodes in the zone, and the data
structures of the zone, are well-formed.

Zone.SetChecking: PROCEDURE [zH: Zone.Handle, checking: BOOLEAN]
RETURNS [s: Zone.Status];

Zone.Status: TYPe = {...,invalidZone, invalidSegment, invalidNode, nodeLoop, ... };

A status of invalidZone indicates the the basic data structures of the zone identified by zH
are malformed. A status of invalidSegment indicates that although the primary block of
virtual memory in the zone is okay, one of its segments (see §4.6.1.2) is malformed. A
status of invalidNode indicates that within the zone, some node is malformed or invalid.
This could mean that the overhead word of the node has been overwritten, that a 'node’ has
been freed which does not lie within the virtual memory constituting the zone, or that a
‘free’ node is not properly linked on the free list in the zone. A status of nodelLoop
indicates that the free list has a loop within it. Except as otherwise indicated, any of these
status results can be returned if consistency checking is enabled and the corresponding
condition is detected during the execution of any of the operations in the zone interface.

4.6.1.2 Segment management

The virtual memory provided to the zone at the time it is created is the primary storage of
the zone. It is of fixed size and cannot be reclaimed by the client so long as the zone is of
any value. Additional blocks of storage can be added to the zone by the procedure:

Zone.AddSegment: PROCEDURE [zH: zone.Handle, storage: LONG POINTER,
length: zone.BlockSize]
RETURNS [sH: Zone.SegmentHandle, s: Zone.Status];

Zone.Status: TYPe = { ..., segmentTooSmall,...};

This operation creates a new segment of the zone containing the number of words
indicated by length and beginning at the virtual memory word pointed to by storage. The
virtual memory of the segment must be mapped and have write permission. If it does not,
an address fault or write-protect condition will be generated as if the client had written or
referenced that part of virtual memory directly. This area of virtual memory must also be
addressable by 16 bit pointers relative to the zoneBase of the zone, and length must be in
the range [0..216). If it is not, a status of storageQutOfRange is returned. If length does
not specify enough virtual memory to implement a segment and to contain at least one
node of size threshold, a status of segmentTooSmall is returned.

Caution: In this version of Pilot, segment sizes are restricted to the range [0..215).

All segments of a zone are linked together in a list pointed to by the nextSegment
attribute of the zone. The attributes of any segment, including the next member of the list
are returned by:

Zone.GetSegmentAttributes: PROCEDURE [zH: zone.Handle,sH: zone.SegmentHandle]
RETURNS [storage: LONG POINTER, length: zone.BlockSize, next: zone.SegmentHandle];

4-47

Pilot Programmer’s Manual

4-48

A segment may be removed from a zone if it contains no allocated nodes. This is
accomplished by the procedure:

Zone.RemoveSegment: PROCEDURE [zH: zone.Handle, sH: zone.SegmentHandle]
RETURNS [storage: LONG POINTER, S: Zone.Status];

Zone.Status: Type = { ..., nonEmptySegment,...};

A status of okay indicates that the segment was successfully removed. A status of
nonEmptySegment indicates that the segment still contains allocated nodes and that
therefore it could not be removed. A status of invalidZone or invalidSegment is returned if
the data structures of the zone are not well-formed enough to permit removal of the
segment.

4.6.1.3 Node allocation and deallocation

The operations of this section provide the facilities for allocating and deallocating nodes in
a zone.

Zone.MakeNode: PROCEDURE [zH: zone.Handle, n: zone.BlockSize,
alignment: zone.Alignment « a1]
RETURNS [node: Zone.Base RELATIVE POINTER, S: Zone.Status];
Zone.Alignment: Tyre = {a1, a2, a4, a8, a16};

Zone.Status: TYPE = { ..., noRoominZone, ... };

MakeNode allocates a node of n words in the zone identified by zH. An optibnal alignment
may be specified for this node, in which case the node is aligned in virtual memory as
follows:

if alignment is set to a1 then the node is word aligned

if alignment is set to a2 then the node is double word aligned

if alignment is set to a4 then the node is quad word aligned

if alignment is set to a8 then the node is eight word aligned

if alignment is set to a16 then the node is sixteen word aligned
If a node of at least n words of the desired alignment can be allocated, a 16 bit pointer
relative to the zoneBase of the zone is returned pointing to the node, along with a status of
okay. More than the requested number of words will be allocated to avoid fragmentation
of the free space remaining in the zone into pieces of size less than the threshold of the
zone. If a contiguous block of space is not available in the zone, a status of noRoominZone

is returned. The value Zone.nil is returned by MakeNode if it is unable to allocate a node.

If B is the zoneBase of the zone and node is the relative pointer returned by MakeNode
then a Mesa LONG POINTER to the node is represented by the expression @B[node]. IfB =

File Storage and Memory 4

space.MDS[].pointer then the expression LOOPHOLE[nOde, POINTER] is a Mesa short pointer to
the node.

Zone.FreeNode: PROCEDURE [zH: zone.Handle, p: LONG POINTER]
RETURNS [s: Zone.Status];

This operation deallocates the node pointed to by p in the zone indicated by zH. If the node
does not lie within that part of virtual memory addressable by 16 bit relative pointers
based on the zoneBase of the zone, or the node is not marked in use, a status of
invalidNode is returned. Otherwise, a status of okay is returned. More detailed checking,
including that the node actually lies within the zone (or one of its segments) is only done if
consistency checking is enabled.

Zone.SplitNode: PROCEDURE [zH: Zone.Handle, p: LONG POINTER, n: Zone.BlockSize]
RETURNS [s: Zone.Status];

This operation splits the node pointed to by p, retaining the first n words and freeing the
remainder. No split occurs if the remainder would be smaller than the threshold of the
zone.

Zone.NodeSize: PROCEDURE [p: LONG POINTER] RETURNS [n: Zone.BlockSize];

This operations returns the actual size of the node pointed to by p (this may exceed the
allocated size to avoid fragmentation). No check is made to determine the validity of the
node.

4.6.2 Heaps
Heap: DEFINITIONS ... ;

The heap facility consists of the Pilot interface Heap together with some language features
built into Mesa. The operations in Heap are primarily concerned with creating and
deleting heaps. Almost all node allocation and deallocation may be performed using Mesa
NEW and FREE constructs, which also allow initialization and pointer management. The
reader is assumed to be familiar with these Mesa features.

4.6.2.1 Heap management
There are three types of heaps: normal, uniform, and Mps. Normal heaps allow allocation
of arbitrary sized objects. Uniform heaps allow allocation of objects whose size is equal to
or less than a fixed size. The MDS heaps allow allocation. of arbitrary sized objects from
withif the mps.

Normal and uniform heaps are identified by a value of type UNCOUNTED ZONE, MDS heaps by
a value of type MDSZone. Pilot provides a standard normal heap and a standard mps heap:

Heap.systemZone: READONLY UNCOUNTED ZONE;

Heap.systemMDSZone: READONLY MDSZone;

4-49

Pilot Programmer’s Manual

4-50

Note that the READONLY attribute applies not to the contents but to the reference to the
particular heap.

The system provided heaps can be used to share information between subsystems. If a
subsystem requires a lot of private storage it is often more efficient to create a private
heap than to use the system provided heaps. If objects being allocated are all the same size,
uniform heaps are more efficient since less overhead is required for each node. To create
additional heaps, call either Create to create a normal heap, CreateUniform to create a
uniform heap, or CreateMDS to create an MDS heap.

Heap.Create: PROC [
initial: Environment.PageCount,
maxSize: environment.PageCount &« Heap.unlimitedSize,
increment: Environment.PageCount « 4,
swapUnitSize: space.SwapUnitSize « space.defaultSwapunit,
threshold: Heap.NWords ¢ Heap.minimumNodeSize,
largeNodeThreshold: Heap.NWords &« Environment.wordsPerPage/2,
ownerChecking: BOOLEAN & FALSE,
checking: BOOLEAN & FALSE]
RETURNS [UNCOUNTED ZONE];

Heap.CreateUniform: proc|[
initial: Environment.PageCount,
maxSize: environment.PageCount « Heap.unlimitedSize,
increment: environment.PageCount «- 4,
swapUnitSize: space.SwapUnitSize « space.defaultSwapunit,
objectSize: Heap.NWords, '
ownerChecking: BOOLEAN « FALSE,
checking: BOOLEAN & FALSE]
RETURNS [UNCOUNTED ZONE];

Heap.CreateMDS: PROC [
initial: environment.PageCount,
maxSize: Environment.PageCount « Heap.unlimitedSize,
increment: Environment.PageCount « 4,
swapUnitSize: space.SwapUnitSize « Space.defaultSwapuUnit,

" threshold: Heap.NWords « Heap.minimumNodeSize,
largeNodeThreshold: Heap.NWords ¢« Environment.wordsPerPage/2,
ownerChecking: BOOLEAN « FALSE,
checking: BOOLEAN & FALSE]

RETURNS [MDSZone];

Heap.NWords: TYPE = [0..32766);
Heap.unlimitedSize: environment.PageCount = ...;
Heap.minimumNodeSize: READONLY Heap.NWords;

Heap.Error: ERROR [type: Heap.ErrorType];

File Storage and Memory . 4

Heap.ErrorType: TyPe = {.., maxSizeExceeded, invalidParameters, invalidSize,
insufficientSpace, otherError, .. .};

When an allocation request would exceed the current size of a heap, the heap is
automatically expanded by increment pages. It is still a good idea to specify a reasonable
value for initial to minimize fragmentation. (The expansions to a heap are not, in general,
contiguous in virtual memory.)

If a nondefault maxSize is specified, the signal Heap.Error[maxSizeExceeded] is raised
when a heap is being created or expanded, or a large node is being allocated, and the total
number of pages allocated for the heap exceeds maxSize. The signal
Heap.Error[insufficientSpace] is raised when the underlying zone implementation returns
a status to the Heap package that is either unexpected or not understood.

If a nondefault swapUnitSize is specified, the spaces created to hold the heap and its
extensions will have uniform swap units of size swapUnitSize. If it is defaulted, no swap
units will be created.

For normal or MDs heaps, the argument threshold indicates the minimum size node that
will be maintained by this heap. All allocation requests will be rounded up to this size and
no unallocated fragments smaller than this will be left in the heap. The argument
largeNodeThreshold indicates the size of node which will not be allocated in the normal
fashion. Allocation requests of this size or larger will be handled by creating a separate
space for each, which is deleted when the node is deallocated.

For uniform heaps, the argument objectSize indicates the size node that will be
maintained by this heap. All allocation requests greater than this size will result in the
signal Heap.Error{invalidSize] being raised.

If ownerChecking is TRUE, owner checking is enabled (see the description in §4.7.2.3 below
of the operation CheckOwner). The argument checking indicates whether or not some

internal checking of the consisténcy of the heap is turned on.

The checking option is useful for helping debug client programs which are improperly
using or freeing nodes in the heap. However, because it checks each node on each heap
operation, it does degrade performance noticeably.)

A heap may be deleted with one of the operations, as appropriate:

Heap.Delete: PROCEDURE [z: UNCOUNTED zZONE, checkEmpty: BOOLEAN « FALSE];

Heap.DeleteMDS: PROCEDURE [z: MDSZone, checkEmpty: BOOLEAN & FALSE];

If checkEmpty is TRUE, then Heap.Error[invalidHeap] will be raised if there are still nodes in
the heap which have not been deallocated.

4.6.2.2 Node allocation and deallocation

Nodes are allocated from a heap using the Mesa NEW operator and are deallocated using
the Mesa FREE statement. For the remainder of this section, assume that z and mz have

4-51

" Pilot Programmer’s Manual

4-52

been declared as a UNCOUNTED ZONE and an MDSZone, respectively, and have been
initialized. For example: '

Z: UNCOUNTED ZONE = Heap.systemZone;

mz: MDSZone = Heap.systemMDSZone;

or

Z: UNCOUNTED ZONE = Heap.Create(initial: .. .];

mz: MDSZone = Heap.CreateMDS[initial: .. .];

(It is also possible to initialize z and mz by assignment subsequent to their declaration.)
If Tis a type and ¢ is an expression of type T then

Z.NEW[T & ¢]

allocates a node of size at least si1ze[T], sets its contents to ¢, and returns a long pointer to
the node. Similarly for

mz.NEwW[T «¢]

except a short pointer is returned. If p is a LONG POINTER TO T pointing to a node previously
allocated from z then

2.FREE[@p];

sets p to NiL and frees the node p had pointed to (in that order). Similarly, if mp is a POINTER
T0 T pointing to a node previously allocated from mz then

mz.FREE[{@mp];

sets mp to NIL and frees the node mp had pointed to (in that order). In both cases of FReE, if
p is NiL then the operation is a no-op.

A special construct is provided for allocating a string body from a heap:
2.NEw[StringBody[nl]]

allocates a node large enough to hold a string body of n characters, initializes its length
field to 0 and its maxlength field to n (but leaves its text field uninitialized), and returns a
LONG STRING pointing to the node. Similarly for

mz.New[StringBody|[n]]

except a short STRING is returned.

File Storage and Memory | 4

4.6.2.3 Miscellaneous operations

It is possible to determine the initial parameters and current statistics of a heap by calling
the appropriate one of:

Heap.GetAttributes: PROC[z: UNCOUNTED ZONE]
RETURNS [
heapPages, maxSize, increment: Environment.PageCount,
swapUnitSize: space.SwapUnitSize,
ownerChecking, checking: BOOLEAN, attributes: Heap.Attributes];

Heap.Attributes: TYPE = RECORD [
SELECT tag: Type FROM
normal = > [
largeNodePages: environment.PageCount,
threshold, largeNodeThreshold: Heap.NWords],
uniform = > [objectSize: Heap.NWords],
ENDCASE];

Heap.GetAttributesMDS: proc [z: MDSZone]
RETURNS [
heapPages, largeNodePages, maxSize, increment: Environment.PageCount,
swapUnitSize: space.SwapUnitSize,

threshold, largeNodeThreshold: Heap.NWords,
ownerChecking, checking: BOOLEAN];

If a client is about to create a large number of nodes which together would cause a heap to
expand by more than increment (the parameter to Create) pages, some fragmentation may
be avoided by first calling: '

Heap.Expand: PROCEDURE [z: UNCOUNTED ZONE, pages: Environment.PageCount];
Heap.ExpandMDS: PROCEDURE [z: MDSZone, pages: Environment.PageCount];

The client can return the heap to the state it had when it was created by calling:
Heap.Flush: PROCEDURE [2: UNCOUNTED ZONE];

Heap.FlushMDS: PROCEDURE [z: MDSZone];

All nodes that were allocated are freed and all extensions to the heap are freed.

If many nodes have been deallocated from a heap, for example at the end of some
intermediate phase of activity, it may be possible to release some of the virtual memory
occupied by that heap. The operations

Heap.Prune: PROCEDURE [Z: UNCOUNTED ZONE];

Heap.PruneMDS: PROCEDURE [z: MDSZone];

4-53

Pilot Programmer’s Manual

4-54

examine each of the spaces containing expansions to the heap z, releasing any containing
no nodes.

If a heap was created with ownerChecking = TRUE, then the procedures
Heap.CheckOwner: PROCEDURE [p: LONG POINTER, Z: UNCOUNTED ZONE];
Heap.CheckOwnerMDS: PROCEDURE [p: LONG POINTER, z: MDSZone];
Heap.ErrorType: TyPe = {...,invalidOwner,...};

may be called to determine if a node was allocated by the same module (global frame) as
the caller of CheckOwner. If not, Heap.Error[invalidOwner] will be raised.

It may be determined whether or not ownerChecking = TRUE by calling
Heap.OwnerChecking: PROCEDURE [2: UNCOUNTED ZONE] RETURNS [BOOLEAN];
Heap.OwnerCheckingMDS: PROCEDURE [z: MDSZone] RETURNS [BOOLEAN];

The checking feature, described in §4.6.2.1 above, may be turned on and off by:
Heap.SetChecking: PROCEDURE [z: UNCOUNTED ZONE, checking: BOOLEAN];
Heap.SetCheckingMDS: PROCEDURE [z: MDSZone, cHecking: BOOLEAN];

Heap.ErrorType: TYPe = {...,invalidHeap, invalidNode, invalidZone,...};

There may be times when it is convenient to allocate untyped storage, say for a variable-
length structure not defined as a Mesa SEQUENCE. Several procedures are provided for
these cases. Wherever possible it is preferable to use NEw and FREE instead, redefining
types in terms of SEQUENCE where necessary. The following two procedures allocate a node

of the specified size, returning a pointer to the new node:

Heap.MakeNode: PROCEDURE [
Z: UNCOUNTED ZONE « systemZone, n: NWords] RETURNS [LONG POINTER];

Heap.MakeMDSNode: PROCEDURE [
z: MDSZone « systemMDSZone, n: NWords] RETURNS [POINTER];

The following two procedures deallocate the specified node. If p is NIL the operation is a no-
op.

Heap.FreeNode: PROCEDURE [z: UNCOUNTED ZONE « systemZone, p: LONG POINTER];

Heap.FreeMDSNode: PROCEDURE [z: MDSZone « systemMDSZone, p: POINTER];

File Storage and Memory 4

4.7 Logging
Log: DEFINITIONS . . . ;
LogFile: DEFINITIONS . . . ;

These interfaces supply a general purpose facility for recording information in a client-
supplied log file. These facilities allow logging words, blocks of words, and strings,
turning the log on and off, limiting the entries placed in the log based on a severity level,
initializing and resetting the log file, and controlling the action taken when it fills up.
Additional facilities are provided for subsequently examining the contents of a log file.
The implementation modules for the logging facility are LogImpl.bcd and
LogFileImpl.bcd.

4.7.1 Writing into the log file

The procedures in the Log interface are used to write into the log file, and to install the log
file, start and stop logging, and other control functions. The file used for the log is
supplied by the client, and its properties (length, type, etc.) are not changed by the logging
package; only its content is modified. This allows the client to retain control of the log file
for purposes of examining it, copying it, displaying it to field service personnel, etc.

4.7.1.1 Installing, opening, and closing the log file

Install is used to initialize a log file. It is normally called only during system generation
when a file system is being built.

Log.Install: PROCEDURE [file: File.File, firstPageNumber: rile.PageNumber«< 1];

Log.logCap: READONLY File.File;

Log.Error: ERROR [reason: Log.ErrorType];

Log.ErrorType: TYPE = MACHINE DEPENDENT {illegalLog, tooSmallFile, ... };

Install will format the file starting at firstPageNumber. Pages preceding firstPageNumber
will not be used by the logging package. Log.Error[illegalLog] is raised if there is already a
current log file. Log.Error[tooSmallFile] is raised if the usable size of file is too small.

Install also automatically performs an Open (see below). The currently installed log file is
kept in the variable logCap.

Caution: In the current version of Pilot, the minimum usable size of a log file is 4 pages.
Also, the logging package will not use more than 256 pages of a log file.

Log.Open: PROCEDURE [file: File.File, firstPageNumber: fFile.PageNumbere1];
Log.ErrorType: TYPe = {...,invalidFile,... };

Open prepares the logging package to write log entries into file, which becomes the
currently installed log file. This must be done before any entries may be written into the
log. Open is typically used after a system restart to re-establish logging on an existing log
file (one that has already been formatted as a log). This procedure does not reset the

4-55

Pilot Programmer’s Manual

4-56

contents of the log; new entries will be added to the end. Log.Error[invalidFile] is raised if
file has not been formatted as a log file, or if logging is currently open on a different file.
Opening the current log file is a no-op.

Log.Close: PROCEDURE {];
Log.ErrorType: Tyre = {...,logNotOpened, ...}
Close causes all current log entries to be forced out to the log file and the logging facility to

stop accessing it. It ceases to be the current log file. Log.Error{logNotOpened] is raised if
there is no current log file.

4.7.1.2 Writing entries in the log file

Procedures are provided for logging three data types: a single word, a block of words, or a
string.

Log.PutWord: PROCEDURE [level: Log.Level, data: UNSPECIFIED, forceOut: BOOLEAN e FALSE];

Log.PutBlock: PROCEDURE [
level: Log.Level, pointer: LONG POINTER, size: CARDINAL, forceOut: BOOLEAN &« FALSE];

Log.PutString: PROCEDURE [
level: Log.Level, string: LONG STRING, forceOut: BOOLEAN & FALSE];

Log.Level: TYPE = Log.State[error..remark];
Log.State: TYPE = MACHINE DEPENDENT {off, error, warning, remark};

An entry is only written to the log if its level is less than or equal to the current state (see
§4.7.1.3). If forceOut is true, the buffer containing the entry is forced out to the file. The
length of a log entry is restricted to a maximum of 255 words; PutBlock and PutString will
truncate an entry if necessary. Log.Error[logNotOpened] is raised if there is no current log
file. Except for their order, the logging package attaches no particular semantics to the
levels; the names used are meant only to be suggestive of the ordering.

Log.SetRestart: PROCEDURE [message: UNSPECIFIED];

SetRestart allows the client to write a special entry in a log file. This "message" entry is
the only entry in a log file that may be overwritten. This entry could be used by a backstop
(see Chapter 9) to communicate to its client when and why the client last crashed. The
client could obtain this information by reading the restart entry of its backstop's log file.
Log.Error[logNotOpened] is raised if there is no current log file.

4.7.1.3 Controlling logging

The following procedures can be used to control what information is recorded in the log
file:

Log.SetState: PROCEDURE [state: Log.State];

File Storage and Memory 4

Log.GetState: PROCEDURE RETURNS [state: Log.State];
Log.Disable: PROCEDURE RETURNS [Log.State];
Log.Reset: PROCEDURE [];

SetState specifies what levels of log entries are to be written into the log file.
Subsequently, any call that specifies a level less than or equal to the current state will
make an entry in the log. The current state is initially set to error. Note that if the state is
off, all logging calls are ignored, since level is never less than or equal to off. GetState
returns the current value of the state. Disable sets the current state to off, with the side
effect of forcing out any internal buffering to backing storage. It also returns the previous
value of the state. Reset will reset the log file to the beginning, thereby completely
emptying it; this also flushes buffers. tog.Error[logNotOpened] is raised if there is no
current log file.

Log.SetOverflow: PROCEDURE [Option: Log.Overflow];

Log.Overflow: TYPE = MACHINE DEPENDENT {reset, disable, wrap};

SetOverflow allows the client to specify what is to be done when the log file becomes full.
If reset is specified, the log will start over at the beginning (this will invalidate all
previous entries). If disable is specified, logging will be turned off; Log entries will
continue to be accepted, but their contents will be discarded. If wrap is specified, the log
will behave like a ring buffer, with a new entry overwriting the oldest one. Logging is

initially set for wrap mode. Log.Error[logNotOpened] is raised if there is no current log
file.

4.7.1.4 Properties of the current log file
The following procedures can be used to detérmine the properties of the current log file:
Log.GetCount: PROCEDURE RETURNS [count: CARDINAL];
Log.Getindex: PROCEDURE RETURNS [index: Log.Index];
Log.GetLost: PROCEDURE RETURNS [lOst: CARDINAL];
Log.GetU pdaté: PROCEDURE RETURNS [time: System.GreenwichMeanTime];
Log.Index: TYPE = CARDINAL;
Log.nulllndex: Index = 0;
Log.ErrorType: TYpe = {...,logNoEntry,...};
GetCount returns the current number of entries, counting from the beginning of the log
file.Getlndex returns the current index into the log file. GetlLost returns the number of
entries that have been lost due to log overflow (for overflow mode of disable). GetUpdate

returns the time of the last log entry, or raises Log.Error[logNoEntry] if the log is empty.
Log.Error[logNotOpened] is raised if there is no current log file.

4-57

Pilot Programmer’s Manual

4-58

4.7.2 Reading a log file

The procedures defined in LogFile interface are used to examine a log file. They should not
be applied to the current log file. If it is necessary to read the current log file, the client
must Log.Close it first.

If the file supplied to any LogFile operation does not appear to be formatted as a log file, the
error InvalidFile is raised. If the file is the current log file, the error lllegalEnumerate is
raised.

LogFile.InvalidFile: ERROR;
Logrile.lllegalEnumerate: ERROR;

The following procedures can be used to determine the properties of a log file. They
parallel those of the same name in the Log interface.

LogFile.GetCount: PROCEDURE [file: File.File, firstPageNumber: rile.PageNumber « 1]
RETURNS [count: CARDINAL];

LogFile.GetLost: PROCEDURE [file: File.File, firstPageNumber: File.PageNumber « 1]
RETURNS [count: CARDINAL];

The following procedure is used to enumerate the entries of a log file.

LogFile.GetNext: PROCEDURE
[file: rile.File, current: Log.Index, firstPageNumber: file.PageNumber « 1]
RETURNS [next: Log.Index];

LogFile.Inconsistent: ERROR;

GetNext is a stateless enumerator with a starting and ending value of nullindex. If current
appears to contain garbage, GetNext will raise Inconsistent. This situation could arise if
the system crashed before the last page of the log was written to the log file. Therefore,
this error can be used to detect the last entry before the system crashed.

LogFile.GetAttributes: PROCEDURE
[file: File.File, current: Log.Index, firstPageNumber: file.PageNumber &« 1]
RETURNS [time: System.GreenwichMeanTime, type: LogFile.Type,
level: Log.Level, size: CARDINAL];

LogFile.GetBlock: PROCEDURE [file: File.File, current: Log.Index,
place: LONG POINTER, firstPageNumber: rile.PageNumber « 1];

LogFile.GetString: PROCEDURE [file: File.File, current: Log.Index,
place: LONG STRING, firstPageNumber: File.PageNumber « 1];

LogFile.Type: TYPE = MACHINE DEPENDENT {null (0), block (1), string (2), (63)};

LogFile.DifferentType: ERROR;

File Storage and Memory 4

GetAttributes will return the type, level and size of an entry, as well as the time at which
it was written. Only two types of entries are returned: If type is set to block, size is the
number of words in the block. If type is set to string, size is the number of characters in
the string. A single word log entry is treated as a block of size one. Once the type and size
of an entry are determined, GetBlock or GetString can be used to copy the entry into
storage supplied by the client. If GetBlock is called to copy a string entry or GetString is
called to copy a block entry, the error Logrile.DifferentType is raised.

LogFile.Reset: PROCEDURE [file: File.File, firstPageNumber: file.PageNumber « 1}];

Reset will reset a log file to be empty. The file could then be reestablished as the current
log file using Open.

LogFile.GetRestart: PROCEDURE [file: File.File, firstPageNumber: file.PageNumber « 1]
RETURNS [restart: LogFile.Restart];

LogFile.Restart: TYPE = MACHINE DEPENDENT RECORD [
message(0): UNSPECIFIED, time(1): System.GreenwichMeanTime];

GetRestart allows the client to read a special entry from a log file and to obtain the time
that entry was last written. This "restart” entry is the only entry in a log file that may be
read without enumerating the entries. The message returned is the restart supplied to
Log.SetRestart. If SetRestart was never called for that log file, time will have the value
system.gmtEpoch and the value of message will be undefined. The "restart" entry might
be used by a client to examine his backstop's log file to determine when and why he last
crashed. For the client to interpret message, he must have independent knowledge of the
values given to message by the system that wrote it.

4-59

I/0 Devices

The facilities described in this section provide the lowest level standard access to
input/output devices through Pilot. Two concepts are defined: software channel and
device driver. A software channel is a Mesa interface to a device. It specifies all of the
device-specific data and control information which a client needs to operate the device. A
device driver is a set of programs which actually implement and export a software channel.
It includes all of the necessary "interrupt" routines, interfaces with microprograms,
control of hardware registers, etc., to service the device. It may be part of Pilot or it may be
supplied by another organization for a special purpose device.

Initializing a software channel binds the client to a physical resource and device driver.
Each channel represents a single device. Shared resources, such as common controllers,
are normally hidden from view so that, for example, each drive unit connected to a
common controller is treated as a distinct device. The device drivers hold the decision
making power over the allocation of these shared resources. In the case that this does not
provide the proper control, it will be necessary to construct a new device driver.

The concept of software channel is common to all devices and all channels have a common
style. However, Pilot does not provide a central, common interface to all of them. Instead,
each channel is represented by its own Mesa DEFINITIONS module. The common style is
presented in this section in the form of the specification of a hypothetical device called
ExampleDevice. The channel interfaces for specific devices exported by Pilot are given
later in this section. In addition, client development groups may add additional channels
to Pilot for specialized or private devices.

5.1 Channel structure and initialization
To create and initialize a software channel for ExampleDevice, the client calls
ExampleDevice.Create: PROCEDURE [assign: ExampleDevice. WhichDevice,
drive: CARDINAL]
RETURNS [ExampleDevice.ChannelHandle];

Examplepevice. WhichDevice: TYPe = {any, specified};

ExampleDevice.ChannelHandle: TYPE = PRIVATE...;

1I/0 Devices

5-2

ExampleDevice.DeviceNotAvailable: ... ;

The assign parameter indicates how to choose among multiple instances of a device." If any
is specified, the device driver allocates any instance of that device. If specified is passed,
then the device driver selects the drive indicated by drive. If the channel cannot be
initialized for any reason, the routine signals ExampleDevice.DeviceNotAvailable.

Device drivers which support multiple instances of a device also define the operation

ExampleDevice.GetDrive: PROCEDURE [channel: ExampleDevice.ChannelHandle]
RETURNS [drive: CARDINAL];

This operation is used to identify the specific device associated with the ChannelHandle.
Deleting a channel and releasing the associated device are accomplished by
ExampleDevice.Delete: PROCEDURE [channel: exampleDevice.ChannelHandle];

This operation calls ExampleDevice.Abort before returning. If the client wishes to complete
all pending transfers he should first call ExampleDevice.Suspend.

The following operations allow a client to control the data transfer activity on a specific
device.

ExampleDevice.Suspend: PROCEDURE [channel: ExampleDevice.ChannelHandle];

This operation waits for all pending transfers (i.e., as a result of previously executed calls
on ExampleDevice.Get and ExampleDevice.Put) to complete before returning. Subsequent calls
on Get, Put, or any control operations are ignored. However, calls on TransferWait for
previously outstanding transfers will return normally.

ExampleDevice.Restart: PROCEDURE [channel: ExampleDevice.ChannelHandle];

This operation restarts a suspended channel. A channel may become suspended (with no
pending operations) as a result of the Suspend operation or (with some operations
pending) as the result of the occurrence of a sufficiently serious error.

ExampleDevice.Abort: PROCEDURE [channel: ExampleDevice.ChannelHandle];

This operation aborts all activity on the indicated channel. Any outstanding data transfer
operations will be immediately terminated with a TransferStatus = [TRuUE, aborted] (see
§5.1.1.3 for TransferStatus).

5.1.1 Data transfer

The operations described below transmit information to and from a device. This data
transfer is asynchronous so that many input and output operations can be simultaneously
pending.

Each device may impose its own constraints on the alignment of data in memory. This is
specified by three constants declared (statically) in the interface to the software channel.

Pilot Programmer’s Manual 5

ExampleDevice.alignment: CARDINAL = ... ;
ExampleDevice.granularity: CARDINAL = ... ;
ExampleDevice.truncation: CARDINAL = ... ;

These three values must be specified and clients of devices must adhere to them. These
requirements are normally imposed by certain high-performance devices to maintain
physical memory bandwidth, satisfy physical constraints in the implementation of the
controllers, ete. In particular, the device may constrain:

each /O buffer to be aligned on a virtual memory address which is a multiple of
alignment;

each I/O buffer in virtual memory to have a length which is an integral multiple of
granularity; and

each physical record on the device to have a length which is a multiple of truncation.

Each of these constants must be a power of two in the range [0..256]. A value of zero is
interpreted to represent byte alignment, granularity, and truncation; a value of one
represents word alignment, granularity, and truncation, a value of four represents
quadword alignment, granularity, and truncation; a value of sixteen represents 16-word
alignment, granularity, and truncation; and a value of 256 represents page alignment,
granularity, and truncation.

Normally, granularity is greater than or equal to truncation. On output, the buffer must
be a multiple of granularity, but the physical record may be truncated to a multiple of
truncation. On input, the buffer must also be a multiple of granularity. If a shorter (i.e.,
truncated) record is read, the remainder of the buffer may be filled with garbage.

5.1.1.1 Data transfer types

The following data structures are the most general form for describing the source or
destination of the data being transferred. Specific software channels may define simpler
versions of these which, for example, omit the header or trailer, startindex, ete.

ExampleDevice.PhysicalRecordHandle: TYPE = LONG POINTER TO ExampleDevice.PhysicalRecord;

ExampleDevice.PhysicalRecord: TYPe = RECORD [header: ExampleDevice.BlockDesc,
body: ExampleDevice.BlockDesc, trailer: ExampleDevice.BlockDesc];

ExampleDevice.BlockDesc: TYPE = RECORD [blockPointer: LONG POINTER TO UNSPECIFIED,
startindex, stopindexPlusOne: CARDINAL];

The PhysicalRecord specifies control information for the transfer operation in the header
and trailer. The body specifies the buffer to or from which data is transferred. Quantities
such as disk addresses and communication packet routing information are placed in the
header and trailer blocks in a device dependent way.

5-3

I/0 Devices

5-4

If necessary, the alignment, granularity, and truncation may be specified separately for
the header, body, and trailer.

ExampleDevijce.CompletionHandle: TYPE = PRIVATE...;

The CompletionHandle identifies the [/O transaction initiated by a Get or a Put operation.
It is passed as parameter to the TransferWait operation, which does not return until that
particular I/O operation is completed. Get and Put are asynchronous and return to the
caller as soon as the request has been queued and made pending. TransferWait completes
the operation and returns the number of bytes transferred and the resulting
TransferStatus.

5.1.1.2 Data transfer procedures

ExampleDevice.Get: PROCEDURE [channel: ExampleDevice.ChannelHandle,
rec: ExampleDevice.PhysicalRecordHandle]
RETURNS [ExampleDevice.CompletionHandle];

This operation queues the PhysicalRecord for input transfer and returns to the client with
the input transfer pending. The CompletionHandle must be submitted to the
TransferWait operation in order to complete the transfer and before any of the input
information can be used.

ExampleDevice.Put: PROCEDURE [channel: ExampleDevice.ChannelHandle,
rec: ExampleDevice.PhysicalRecordHandle]
RETURNS [ExampleDevice.CompletionHandle];

This operation queues the PhysicalRecord for output transfer and returns to the client
with the output transfer pending. The CompletionHandle must be submitted to the
TransferWait operation in order to complete the transfer and before the output record can
be reused.

For both Get and Put, the I/0 buffers described by the PhysicalRecord must not be released,
altered, or reused until after the TransferWait operation for this transfer completes. In
particular, any control information contained, for example, in the header or trailer buffers
will be read or processed in place by the device rather than stored internally.

ExampleDevice. TransferWait: PROCEDURE [channel: ExampleDevice.ChannelHandle,
event: ExampleDevice.CompletionHandle]
RETURNS [byteCount: CARDINAL, status: ExampleDevice.TransferStatus];

This operation completes the processing of the I/O and returns the number of bytes
transferred and the status to the client. The CompletionHandle specifies the particular
pending transfer to await. If the channel has been aborted, status = [TRUE, aborted].

5.1.1.3 Data transfer status

Transferring data can provoke a number of errors. When a serious error occurs, the
channel is suspended. In any case Pilot returns the TransferStatus as the result of the
TransferWait procedure. The client can then examine this status and take corrective
action. If this status indicates that the channel has been suspended, it must be restarted

Pilot Programmer’s Manual 5

after corrective action is taken and before any further data transfers are possible. A
Restart allows I/O transactions to continue over the channel.

ExampleDevice.TransferStatus: TYPE = RECORD [error: BOOLEAN,
type: Examplepevice.TransferErrors];

ExampleDevice.TransferErrors: TYPe = {aborted,... };

If no errors were encountered then error is FALSE. If errors were encountered then error is
TRUE and the particular error is identified in type.

5.1.2 Device specific commands

Most devices need a number of device specific auxiliary operations which are not specified
by the common channel style. Rewind for a magnetic tape is an example.

Some of these operations are for direct and simple communication with the device driver
and involve no physical [/0, e.g.,

ExampleDevice.SetNumberOfRetries: PROCEDURE [channel: ExampleDevice.ChannelHandle,
numberOfRetries: CARDINAL];

Others might invoke an I/O operation which is not a data transfer, e.g.,
ExampleDevice.Rewind: PROCEDURE [channel: ExampleDevice.ChannelHandle];
Completion of this kind of operation is detected via StatusWait described below.

Yet others might initiate I/O operations which are similar to data transfers and may
choose to use the CompletionHandle and TransferWait mechanisms to detect completion,

e.g.,

ExampleDevice.VerifyData: PROCEDURE [channel: ExampleDevice.ChannelHandle,
rec: ExampleDevice.PhysicalRecordHandle]
RETURNS [ExampleDevice.CompletionHandle];

5.1.3 Device status

In addition to the status information returned for each data transfer operation, Pilot
maintains global information about the device itself in the DeviceStatus record. This
contains state information about the static and long term state of the device. It is accessed
via the GetStatus and StatusWait procedures.

ExampleDevice.DeviceStatus: TYPE = RECORD[...];

ExampleDevice.GetStatus: PROCEDURE [channel: ExampleDevice.ChannelHandle]
RETURNS [ExampleDevice.DeviceStatus];

ExampleDevice.StatusWait: PROCEDURE [channel: ExampleDevice.ChannelHandle,
stat: ExampleDevice,DeviceStatus]
RETURNS [ExampleDevice.DeviceStatus];

5-5

I/0 Devices

StatusWait waits until the current DeviceStatus differs from the supplied parameter stat.
The client must examine the device status to determine what action to take.

=

5.2 Keyset, keyboards, and mouse

5-6

Keys: DEFINITIONS . . . ;
KeyStations: DEFINITIONS . . . ;
LevellVKeys: DEFINITIONS . .. ;
LevelVKeys: DEFINITIONS . . . ;
JLevellVKeys: DEFINITIONS . . . ;

The state of the keys on the keyboard is described by an array of bits. These ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>