

Pilot Programmer's Manual 11

The putByte procedure places one byte of data on the out going Telnet connection. Setting
the push flag to TRU E has the same effect as the send Now procedure on a pilot stream: the
data is flushed from the sending side to the receiving side. If the push flag is TRUE, the
TCP data buffers are flushed. This is an expensive operation and should be done only
when necessary.

The get and put procedures are similar to the getbyte and put Byte procedures except they
operate on blocks rather than bytes. The same comments on the push boolean apply for
put as did for putByte.

The push procedure causes all buffered data to be sent to the telnet partner. This is the
same operation that is done when put or pupByte procedures are called with the push
boolean set to TRUE.

The clientData field is a pointer to data needed by the internal implementation.

The getTimeout procedure returns the timeout that is set on the telnet connection.

The setTimeout procedure is used to set the amount of time the telnet connection waits on
a get operation before returning with a timeout reason or before raising the timeout
signal. If this procedure is called with a value of 0, then the timeout in effect is infinite.
The length of time the get process can wait is limited to about 16 minutes.

The procedure setlnputOptions is used to set various options described below.

The flushDataLine procedure flushes the incoming data stream of all pending data.

UserDataEntry: TYPE(2];

Opaque type used by telnet internal implementation.

Options: TYPE. RECORD (
signalTimeOut: BOOLEAN +- TRUE.
signalOnGoAhead: BOOLEAN +- FALSE.
signalOnEraseLine: BOOLEAN +- FALSE.
signalOnEraseChar: BOOLEAN +- FALSE.
signalOnAbort: BOOLEAN +- FALSE.
signalOnlnterrupt: BOOLEAN +- FALSE.
signalOnBreak: BOOLEAN +- FALSE.
signalOnShortBlock: BOOLEAN +- FALSE.
will Echo: BOOLEAN +- TRUE.
wiliBinary: BOOLEAN +- TRUE.
wiliStatus: BOOLEAN +- TRUE];

Options decide the way in which the Telnet connection operates and how the client is
notified about connection events. The options that decide how the user is notified about
telnet events are signalTimeOut, signalOnGoAhead, signalOnEraseLine,
signalOnEraseChar, signalOnAbort, signalOnlnterrupt, signalOnBreak and
signalOnShortBlock. The options which govern the way a telnet connection responds to
option requests from a connection partner are will Echo, wiliBinary and wiliStatus. The
signal options, when true, cause the client to be signaled rather than notified in the return
arguments of the get call of an event that has taken place. These events are described

11-13

11

11-14

TCP/IP Interfaces

below. The other options govern the telnet options exported to Telnet users. will Echo
allows the telnet partner to request remote echo rather than always having to do local
echo. willBinary allows the telnet partner to request a binary transmission path .rather
than using the NVT (Network Virtual Terminal) character code standard. willStatus
allows the telnet partner to request its partners status information.

ReturnCode: TYPE • {normal, timeOut, goAhead, eraseLine, eraseChar, abort, interrupt,
break, shortBlock, echo, binary, endOfRecord, terminalType, status};

ReturnRecord: TYPE • RECORD [
returnCode: ReturnCode +- normal,
argument: SELECT OVERLAID ReturnCode FROM

timeOut. > [index: CARDINAL +-0]
binary, echo. > [on: BOOLEAN +- FALSE],
terminalType • > [string: LONG STRING],
status. > [hostStatus: HostStatusRecord],

ENDCASE];

The ReturnRecord is returned by all get operations dealing with data. The following is a
description of each return code.

normal - The procedure is returning because it has exhausted the space provided for the
results of the get operation.

timeOut - The get procedure has taken longer than the specified time set with the
setTimeout procedure. In the variant part of the return record the index points at the last
byte of data received.

goAhead - When the goAhead code is returned, the telnet partner indicates that all the
. data has been sent and it is now waiting for data.

eraseLine - The remote side of the telnet connection has sent an erase line code. The user
should treat this as if an eraseLi ne character were typed to the local stream.

eraseChar - The remote side of the telnet connection has sent an erase character code. the
user should treat this as if an eraseChar character were typed to the local stream.

abort - The remote side of the telnet connection indicated that all the queued output
should be suspended but that the currently running process should continue.

interrupt - The remote side of the telnet connection indicated that the current process
should be cancelled.

break - Same as pressing the Break key (128 decimal) .

shortBlock - Not used.

echo - The remote side of the telnet connection has requested echoing from the server side.

binary -The remote side of the telnet connection indicated that data transmitted should be
treated as binary data without regard for the NVT character set.

Pilot Programmer's Manual 11

endOfRecord - Not used.

terminalType - The return record contains the terminal type requested. The terminal type
is an Ascii string and should conform to RFC 940 - Assigned Numbers.

status - This is the return of an earlier status request. The status information is contained
in the return record.

HostStatusRecord:TYPE. RECORD [
optionsPossible:

PACKED ARRAY OptionsEnnum OF BOOLEAN ALL[TRUE],
options Record :

PACKED ARRAY OptionsEnI;um OF BOOLEAN ALL[FALSE],
optionsVerified:

PACKED ARRAY OptionsEnnum OF BOOLEAN ALL[FALSE],
Terminal: LONG STRING];

The HostStatusRecord is returned when the user requests the status of the Telnet
connection. The fields should be interpreted as follows: the optionsPossible field are
those options which the telnet connection partner may export, the options Record are
those options which are enabled at the connection partner site, and the optionsVerified
field is the list of those options which the connection partner supports. The above fields
can be indexed using the OptionsEnnum enumeration which lists all the options
supported by this implementation of Telnet. The Terminal is an Ascii string specifying the
terminal type which the connection is supporting. This field may be NIL if no terminal
type is set.

OptionsEnnum: TYPE • {Binary, Echo, SupGA, Status, TimeMark, TerminalType, EOR,
ExtendedOptionsList};

The OptionsEnnum is an ennumeration of all the supported telnet options.

Binary ~ Indicates binary transmission of data characters, not using NVT.

Echo - If the echo field is TRU E, the site supports or is doing echo rather than the local site
echoing typed characters.

SupGA - Indicates the suppression of GoAhead ,characters.

Status - Indicates the transmission of status information.

TimeMark - Indicates Telnet Timing Mark option.

TerminalType - Indicates the support of other terminal types other that the standard NVT
(Network Virtual Terminal)

EOR - Indicates support of the end-of-record option.

ExtendedOptionsList - This option is not supported.

11-15

11

11-16

TCP/IP Interfaces

11.6.2 Signals

Error: SIGNAL [reason: TelnetErrorReason];

TelnetErrorReason: TYPE. {doesntBinary. doesntEcho. doesntStatus, doesntTermType,
timeOut};

The SIGNAL Error is raised either when the client trys to enable an option that is not
supported by the Telnet connection or when the timeout interval set by the client is
reached on a get operation.

11.6.3 Procedures

Create: PROCEDURE [
input: TcpStream.Handle,
options: Options.
addLFToCR: BOOLEAN +- TRUE]
RETURNS [telnetStream: Handle];

Create sets up a stream-like connection to a remote host. The parameters needed are a
TcpStream.Handle to the connection which provide the data in the field input, the set of
options which describe how the telnet stream appears to the user, as well as the telnet
connection partner, and the the boolean addLFToCR, which defaults to TRUE if not
supplied. This boolean should be set FALSE when the client wishes to provide lines ending
only in a Ascii carriage return. The Telnet implementation adds the additional Ascii line
feed (LF) to make the line a valid Telnet line. This procedure returns a Handle which
contains the procedures which are the telnet stream.

GetByte: PROCEDURE [sH: Handle]
RETURNS [byte: Environment.Byte. code: ReturnRecord);

The Get Byte procedure returns the next byte of data in the data stream. If there is no data
pending, it waits the amount of time set in the SetTimeout procedure, or an infinite
amount of time if no time out was set. GetByte also returns the reason that the procedure
is returning. In most cases, this will he set to normal, but if some event occurs that forces
the procedure to return, this is noted in the code field.

PutByte: PROCEDURE [
sH: Handle, byte: Environment.Byte. push: BOOLEAN] •
INLINE {sH.putByte[sH. byte. push]};

The PutByte procedure places one byte of data on the out-going Telnet connection. Setting
the push flag to TRU E has the same effect as the send Now procedure on a pilot stream and
the data is flushed from the sending side to the receiving side. The push flag generates a
TCP Push flag. This is an expensive operation and should he done only when neccesary.

GetBlock: PROCEDURE [sH: Handle. block: Environment.Block]
RETURNS [bytesTransferred: CARDINAL. code: ReturnRecord);

Pilot Programmer's Manual

PutBlock: PROCEDURE [
sH: Handle, block: Environment.Block, push: BOOLEAN] •
INLINE {sH.put[sH, block, push]};

11

The GetBlock and PutBlock procedures are similar to the GetByte and PutByte procedures
except they operate on blocks rather than bytes. The same comments on the push boolean
apply for PutBlock as did for PutByte.

Push: PROCEDURE [sH: Ha'ndle] • INLINE {sH.push[sH]};

The Push procedure will cause all buffered data to be sent to the telnet partner. This is the
same operation that is done when PutBlock or PutByte is called with the push boolean set
to TRUE.

GetTimeout: PROCEDURE [sH: Handle]
RETURNS [timeOut: TcpStream.WaitTime] •
I NLiNE {RETU RN[sH .getTi meout[sH]]};

The GetTimeout procedure returns the timeout that is set on the telnet connection.

SetTimeout: PROCEDURE [
sH: Handle, timeOut: TcpStream.WaitTime] =
INLINE {sH.setTimeout[sH, timeOut]};

The SetTimeout procedure is used to set the amount of time the telnet connection waits on
a get operation before returning with a timeout reason or raising the timeout signal. If
this procedure is called with a value of 0, then the timeout in effect is infinite. The length
of time the get process can wait is limited to about 16 minutes.

SetlnputOptions: PROCEDURE [sH: Handle, options: Options] •
INLINE {sH.setlnputOptions[sH, options]};

The procedure SetlnputOptions is used to set various options described above.

Delete: PROCEDURE [sH: Handle] • INLINE {sH.delete[sH]};

Delete is called before closing the Telnet connection to free up local storage and destroy
the Handle passed in by the Create procedure.

FlushDataLine: PROCEDURE [sH: Handle] •
INLINE {sH.flushDataLine[sH]};

The FlushDataLine procedure flushes the incoming data stream of all pending data.

GA: PROCEDURE [sH: Handle);

The GA procedure sends the go ahead signal on the telnet connection.

AbortOutput: PROCEDURE [sH: Handle];

This procedure cancels the output of a remote process if the connected system supports
output abort, otherwise the process continues to completion.

11-17

11

11-18

TCP/IP Interfaces

InterruptProcess: PROCEDURE [sH: Handle];

This procedure interrupts a remote process if the connected system can interrupt the
process.

AreYouThere: PROCEDURE [sH: Handle];

This procedure forces the remote host to send some visible signal (character or string) that
the connection is still active. The character or string is seen on the get operation.

EraseLine: PROCEDURE [sH: Handle];

This procedure erases the last line typed (to the last CRLF).

EraseChar: PROCEDURE [sH: Handle];

EraseChar is used instead of BS SP to do an erase of the last character. On many systems
the character BS does the correct operation.

The following procedures all may raise the Error signal if that option is not supported by
the remote site.

Echo: PROCEDURE [sH: Handle, on: BOOLEAN];

Echo causes the remote connection to echo characters rather than having the local
connection echo characters. Described by RFC 857.

Binary: PROCEDURE [sH: Handle, on: BOOLEAN];

Binary causes the connection to stop interpreting characters as NVT characters. This is
described by RFC 856.

Break: PROCEDURE [sH: Handle];

This procedure sends the Telnet break character to the remote host.

Status: PROCEDURE [sH: Handle]
RETURNS [status: LONG POINTER TO HostStatusRecord];

Status causes the remote site to send connection status information if this option is
supported. This is described by RFC 859.

SetTerminalType: PROCEDURE [
sH: Handle, terminalType: LONG STRING]
RETURNS [success: BOOLEAN];

Sends the terminal type requested to the remote site if the terminal type option is
supported. See RFC 943 Assigned Numbers under the Terminal Types heading for a list of
valid terminal type strings. This procedure uses telnet subnegotiation to negotiate the
terminal type with the remote host. The default is NVT.

Pilot Programmer's Manual 11

11.6.4 References

RFC854 TELNET Protocol Specification, Postel, May, 1983.

RFC855 TELNET Option Specification, Postel, May, 1983.

RFC856 TELNET Binary Transmission, Postel, May, 1983.

RFC857 TELNET Echo Option, Postel, May, 1983.

RFC858 TELNET Suppress Go Ahead Option, Postel, May, 1983.

RFC859 TELNET StatUs Option, Postel, May, 1983.

RFC860 TELNET Timing MarkOption, Postel, May, 1983.

RFC861 TELNET Extended Options - List, Postel, May, 1983.

RFC960 Assigned Numbers, Reynolds, December, 1985.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11. 7 TelnetListener

The TelnetListener interface provides Pilot clients with an interface to the Telnet Protocol
defined by RFC854. The TelnetListener interface is used by clients needing to listen on a
specified port for a telnet connection. Telnet is a virtual terminal protocol used with the
TCP/IP protocols.

11.7.1 Types and constants

ConnectProc: TYPE • PROCEDURE [
sH: ArpaTelnetStream.Handle.
underlyingStream: TcpStream.Handle.
remoteAddr: ArpaRouter.lnternetAddress];

The procedure type ConnectProc is called by the telnet interface when a connection is
received on the port specified in the Listen procedure.

ConnectlD: TYPE [2];

This 10 is returned by the Listen procedure and is used to destroy a Telnet listening
connection.

11-19

11 TCP/IP Interfaces

11.7.2 Procedures

Listen: PROCEDURE [
connect: ConnectProc,
portNumber: ArpaRouter.Port,
suppressLF: BOOLEAN ~ FALSE]
RETURNS [connectionID: ConnectID];

The Listen procedure is called by the client to establish a telnet listening connection on the
port specified in the field portNumber. The procedure called when a connection is received
is passed in the field connect. If line feeds are to be suppressed every time a carriage
return is seen (CRLF -+ CR), the suppressLF boolean should be set to TRUE. This procedure
returns the value connectionlD to be used in destroying the telnet listener.

StopListening: PROCEDURE [connectionlD: ConnectID];

This procedure destroys a listening connection started with the procedure Listen.
StopListening is called with the connectionlD returned by Listen.

11.7.3 References

RFC854 TELNET Protocol Specification, Postel, May, 1983.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.8 ArpaFilingCommon

The ArpaFilingCommon interface provides types to be used by clients using the TFTP or
ArpaFTP interfaces. It defines a set of common types so that these types can be used with
both the TFTP and ArpaFTP interfaces.

11.8.1 Types and constants

11-20

StatusCode: TYPE. {
ok, notRetrieving, notStoring, fileNotFound, accessViolation, mediumFull, fileExists,
invalid FileName, undefined, eof};

The StatusCode type is used to return information about the state of the local filing
operation in a standard manner.

ok

notRetrieving

The filing action completed successfully.

The filing action did not complete because file retrieval is
not allowed by the local filing system.

Pilot Programmer's Manual 11

notStoring The filing action did not complete because file storing is not
allowed by the local filing system.

fileNotFound The file action did not complete because the specified file
was not found in the current context.

accessViolation The user did not have sufficient access rights to access the
file or the file is in use by another user.

mediumFull The file storing action did not complete because the local
filing medium is full or the user has exhausted the allocated
space.

fileExists The file being accessed exists but could not be overwritten.

invalidFileName The specified file name is not valid in the current context.

undefined A file error that doesn't fit into the above catagories.

eof The logical end of the file was reached successfully and
there is no more data to retrieve.

PutProc: TYPE '. PROCEDURE [
fileStream: Stream.Handle,
block: Environment.Block,
eot: BOOLEAN ~ FALSE]
RETURNS [statusCode: StatusCode);

The PutProc type is used as the call back procedure to a file storing operation, The field
fileStream contains a stream to the currently active local file and is passed to the caller
using some other protocol specific operation. The field block contains the data to be stored.
The field eot is set true when the file transfer has ended. The field statusCode is returned
with a code.

GetProc: TYPE • PROCEDURE [
fileStream: Stream.Handle, block: Environment.Block)
RETURNS [statusCode: StatusCode,
bytesTransferred: CARDINAL);

The GetProc type is used as the call back procedure to a file retrieval operation. The field
fileStream contains a stream to the currently active local file and is passed to the caller
using some other protocol specific operation. The field block receives the data to be sent.
The field statusCode is returned with a code and the number of bytes transmitted is in the
field bytesTransferred.

CloseProc: TYPE • PROCEDURE [
fileStream: Stream.Handle,
deleteFile: BOOLEAN ~ FALSE,
fileName: LONG STRING ~NIL);

The type CloseProc is used a call back procedure in ei~her a file retrieval or file storing
operation. It is called when the operation has completed. The field fileStream contains a
stream to the specifed local file that was passed to the caller by some protocol specific

11-21

11

11.9 TFTP

TCP/IP Interfaces

operation. The deleteFile field, when TRUE and the file operation is storing, indicates
that the file operation did not complete and that the file stored may be incomplete and
should be deleted. The field fileName contains the name of the file when the field
deleteFile is TRUE and may provide a hint as to which file should be deleted.

PrintProc: TYPE • PROCEDURE
[stringToPrint: LONG STRING];

The type PrintProc is used by the caller to notify the client of debugging information.

Trivial File Transfer Protocol (TFTP) is a simple file transfer protocol which is a client of
the User Datagram Protocol (UDP). It can be used to tranfer files between hosts
implementing the arpa protocols. See RFC783 for a full description of this protocol.

11.9.1 Types and constants

11-22

TFTPModes: TYPE. {netascii, octet, mail};

TFTPModes is used to indicate the type offile being transferred.

netascii

octet

mail

This is Ascii as defined in USA Standard Code for Information
Interchange with modifications specified in RFC764. It is eight-bit ascii.

Raw eight-bit bytes.

Netascii characters sent to a user rather than a file.

FileStreamProc: TYPE • PROCEDURE [
fileName: LONG STRING,fileType: TFTPModes]
RETURNS [
statusCode: ArpaFilingCommon.StatusCode,
fileStream: Stream.Handle, put: ArpaFilingCommon.PutProc,
get: ArpaFilingCommon.GetProc,
closeProc: ArpaFiI i ngCommon.CloseProc];

The FileStreamProc procedure is used by the server side of an TFTP connection to solicit
"information from the TFTP server client. The put and get callback procedures are used to
store o~ retrieve file data from the client's file system. The close procedure is called when
the file transfer is completed. For the store case, the get procedure need not be provided
and for the retrieve case, the put procedure need not be provided. When the
FileStreamProc is called, file type information is derived from the fileType field and the
file name from the fileName field. Client filing errors are returned using the statusCode
field.

GetStreamProc: TYPE • PROCEDURE [fileName: LONG STRING]
RETURNS [stream: Stream.Handle, fileError: BOOLEAN];

This is used by Retrieve for file stream creation.

Pilot Programmer's Manual 11

11.9.2 Errors and signals

TFTPError: ERROR [reason: TFTPErrorReason, errorMsg: LONG STRING];

TFTPErrorReason: TYPE • {aborted, undefined, fileNotFound, accessViolation,
mediumFull, iliegalOp, unknownTID, fileExists, noSuchUser, timeOut, hostError,
locaIFileError};

aborted The current session is cancelled.

undefined Not defined, error message may help.

fileNotFound File was not found at the remote location.

accessViolation The remote file cannot be accessed.

mediumFull The remote sites disk is full or allocation exceeded.

iIIegalOp Received an illegal TFTP responce.

unknownTID Not used.

fileExists File exists and cannot be overwritten.

nOSuchUser Not used.

timeOut The TFTP session has timed out becuase the remote site has
not responded.

hostError Remote error.

localFileError Error in acquiring the file for transmission.

The errorMsg is passed by the protocol and contains an English error message. The
errorMsg is allocated from the zone passed into the interface by the client and should be
freed by the client.

11.9.3 Procedures

Send: PROCEDURE [
toHost: ArpaRouter.l nternetAddress,
fileName: LONG STRING,
fileStream: Stream.Handle,
dataProc: ArpaFilingCommon.GetProc,
zone: UNCOUNTED ZONE,
rexmt: CARDINAL +- 5,
timeOut: CARDINAL +- 25];

Send is used to store a file to a TFTP server. The toHost field has the address of the
destination file. The fileName field has the name of the file on the remote server and
should be in the file naming structure of the remote machine. fileStream is a stream to the
local file to be stored. The callback procedure provided in dataProc is used to retrieve the

11-23

11 TCP/IP Interfaces

file from the local file system. This procedure may raise TFTPError { ... aborted,
undefined, accessViolation, medium Full, iIIegalOp, fileExists, timeOut...}. Any error
message strings returned by the signal TFTPError are allocated from zone and should be
freed by the client. The rexmt field gives the timeout between TFTP data packets and
TFTP acknowledgements. The field timeOut gives the total timeout period for the TFTP
connection.

Retrieve: PROCEDURE [
fromHost: ArpaRouter.lnternetAddress,
fileName, localName: LONG STRING,
fileType: TFTPModes,
fileStreamProc: GetStreamProc,
zone: UNCOUNTED ZONE,
rexmt: CARDINAL ... 5,
timeOut: CARDINAL ... 25];

The Retrieve procedure is used to retrieve a file from a TFTP server. The from Host field
has the address of the source of the file being retrieved. The fileName field has the name
of the file on the remote server and should be in the file naming structure of the remote
machine. The fileStreamProc is called when a connection is established to acquire the
local filing stream handle. If a local filing error is encountered when trying to acquire the
local file, the fileStreamProc should return a NIL stream handle and a value of TRUE in
the fileError field. Retrieve may raise TFTPError { ... Aborted, Undefined, FileNotFound,
AccessViolation, lIIegalOp, TimeOut ... }. Any error message strings returned by the signal
TFTPErrorare allocated from zone and should be freed by the client. The rexmt field gives
the timeout between TFTPdatapacketsand TFTP acknowledgements. The field timeOut
give the total timeout period for the TFTP connection.

Register: PROCEDURE [
storeFile: FileStreamProc,
retrieveFile: FileStreamProc,
print: PrintProc,
zone: UNCOUNTED ZONE,
rexmt: CARDINAL E- 5,
timeOut: CARDINAL ... 25];

Register is used for server side filing implementation. The procedures registered are
called in the following instances. StoreFile is called when a request to write is received by
the server. RetrieveFile is called when a request to read is received by the server. The
print procedure is used for debug and status messages. The rexmt field gives the timeout
between TFTP data packets and TFTP acknowledgements. The field timeOut gives the
total timeout period for the TFTP connection. Only one client should register procedures.
Other clients who register procedures overwrite the previous procedures.

UnRegister: PROCEDURE;

This procedure is called to suspend TFTP server operations.

11.9.4 References

RFC764 Telnet Protocol, Postel, June, 1980.

11-24

Pilot Programmer's Manual 11

RFC783 The TFTP Protocol (Revision 2), SolUns, June, 1981.

An RFC can be copied from the < RFC > directory at SRI's machine:

-NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.10 ArpaFTP

The ArpaFTP interface provides Pilot clients with an interface to the File Transfer
Protocol (FTP) defined by RFC959. FTP is a file transfer protocol used in with the TCP/IP
protocols.

11.10.1 Types and constants

Handle: TYPE. LONG POINTER TO FTPObject;

FTPObject: TYPE;

FileTypeEnum: TYPE. {ascii. EBCDIC. image. other};

The FileTypeEnum defines the file types understood by FTP.

ascii

EBCDIC

image

other

This is the default file type, intended for transferring text files.
Ascii is defined in the Telnet specification to be the lower half of an
eight-bit code set (the most significant bit is zero).

This type is not supported

This type is used for the transfer of binary or compressed data.

This type is used to accomodate other data representations and is
supported for eight-bit bytes.

FileFormatEnum: TYPE. {nonPrint, telnet,asa};

The FileFormatEnum defines the set offormat control options that can be used with the file
types Ascii and EBCDIC.

nonPrint

tel net

asa

This is the default formatting option and indicates there is no formatting
in the file.

This indicates that the file contains vertical format controls (such as
>CR>, <LF>, <NL>, <VT>, <FF».

This indicates that the file contain asa (FORTRAN) vertical control
characters. (See RFC 740 or Communications of the ACM, Vol. 7, No. 10,
p. 606, October 1964).

FileStructureEnum: TYPE. {file, record, page};

11-25

11

11-26

TCP/IP Interfaces

The FileStructureEnum defines the set offile structures that are know to FTP.

file This is the defaulted file structure.

record This is not supported.

page This is not supported.

TransmissionModeEnum: TYPE.
{stream, block, compressed};

The TransmissionModeEnum defines the set of data transmission types known to FTP.

stream

block

compressed

This is the default transmission mode. The data is transmitted as a
stream of bytes.

This is not supported.

This is not supported.

Options: TYPE. RECORD [
fileType: FileTypeEnum ~ ascii,
fileFormat: FileFormatEnum ~ nonPrint,
fileByteSize: CARDINAL ~8,
fileStructure: FileStructureEnum +- file,
transmissionMode: TransmissionModeEnum +- stream.
modeChanged: BOOLEAN ~ FALSE,
fileTypeChanged: BOOLEAN +- FALSE,
fileStructureChanged: BOOLEAN ~ FALSE,
optionsChanged: BOOLEAN ~ FALSE);

The options record is used to set various options allowed by the FTP protocol. Not all
options are available on all hosts. When options are changed the optionschanged field for
the appropriate option should be set to TRUE (for example, when transmission Mode is
changed the modeChanged boolean should be set to TRUE) and the optionsChanged
BOOLEAN should be set to TRUE. The fileByteSize is the size of the data bytes of a file.
Only a byte size of eight is supported.

defaultOptions: Options. [ascii, nonPrint, 8, file, stream);

The defaultOptions can be used to set the options field in Store and Retrieve.

ListStyle: TYPE. {verbose, terse};

The ListStyle type is used with the List procedure to indicate whether verbose (all
information that can be displayed about the file) or terse (only the file name) is wanted.

OutputListProc: TYPE. PROCEDURE [output: Environment.Block);

The OutputListProc is used with the List command to provide a call back procedure for the
listing return information.

Pilot Programmer's Manual 11

11.10.2 Errors and Signals

FTPError: ERROR [
reason: FTPErrorReason, errorNumber: CARDINAL, errorstring: LONG STRING];

The error FTPError is raised for all error conditions that arise on the local or remote
machine. The error reasons are described below. The errorNumber field is reserved for
error conditions that are reported by the remote FTP site. Error numbers follow the error
number definitions as outlined by RFC 959. The errorstring is also reserved for remote
errors and is the human readable text message that accompanies the FTP errorNumber.
The string errorstring is allocated from a private zone and is deallocated on unwinding
this error.

FTPErrorReason: TYPE • {accessViolation, accountNeeded, badCommandSequence,
fileExists, fileNotFound, hostError, iliegalOp, invalidFileName, invalidOption,
localFileError, mediumFull, noSuchUser, remoteFileError, serverCommandError,
serviceUnavailable, timeOut, userNotLoggedln, undefined, unimplemented};

accessViolation

accountNeeded

badCommandSequence

fileExists

fileNotFound

hostError

iIIegalOp

invalidFileName

invalidOption

localFileError

mediumFull

noSuchUser

remoteFileError

serverCommandError

User does not have the access right for this operation.

The user must supply an account number to complete the
operation.

The protocol commands were received in the wrong order by
the remote site. '

The remote file already exists and could not be overwritten
or deleted.

The operation indicated could not complete because the file
was not found.

Not used.

Some illegal operation was attempted.

The file name specified was invalid.

The options specified were invalid in this context.

Some local filing error was encountered.

The remote filing medium is full or the current operation
exceeds the user's space allocation.

The user name could not be found on the remote host.

Some remote file error was encountered.

The FTP command sent to the remote site could not be
understood by the remote site.

11-27

11

11-28

TCP/IP Interfaces

serviceUnavailable

timeOut

userNotLoggedln

undefined

unimplemented

11.10.3 Procedures

Create: PROCEDURE [

The file service is not available at this time.

The operation timed out. The remote host may no longer be
responding.

The user is not be logged in.

An undefined error was raised by the remite site.

The indicated action is not implemented by the remote host.

destinationHost: ArpaRouter.lnternetAddress, options: Options)
RETURNS [connectionHandle: Handle];

Create is used by clients to open an FTP session. The destinationHost is the address of the
FTP server that is used in the FTP session. The options field is to be filled in according to
how the connection operates. The connection Handle returned must be used in all
subsequent FTP calls for this session.

Store: PROCEDURE [
remoteFileName: LONG STRING,
fileStream: Stream.Handle,
getProc: ArpaFilingCommon.GetProc,
options: Options,
connectionHandle: Handle];

The Store procedure is used to store a file to an FTP server. The remoteFileName field
should have the name of the file on the remote server, and should be in the file name
structure of the remote machine. fileStream is a stream to the file to be stored. The
procedure provided in getProc is used to retrieve the file from the local file system. The
options field should have the options to be used for this file transfer and should follow the
conventions stated in the description of the Options record. This procedure may raise the
error Error.

Retrieve: PROCEDURE [
remoteFileName: LONG STRING,
fileStream: Stream.Handle,
putProc: ArpaFilingCommon.PutProc,
options: Options,
connectionHandle: Handle];

The Retrieve procedure is used to retrieve a file from an FTPserver. The remoteFileName
field should have the name of the file on the remote server, the file name should be in the
file naming structure of the remote machine. The fileStream field is a stream to the file to
be stored on the local file system. The procedure provided in putProc is used to retrieve the
file from the local file system. The options field has the options to be used for this file
transfer and should follow the conventions stated in the description of the Options record.
This procedure may raise the error Error.

Pilot Programmer's Manual

Login: PROCEDURE [
userName, userPassword, userAccount: LONG STRING,
connectionHandle: Handle]
RETURNS [success: BOOLEAN];

11

The Login procedure sends the given login information to the FTP server. The userName,
userPassword and userAccount fields should be strings to the users name, password and
account information on the remote host and should follow the conventions of the remote
host. Not all values need be specified if not needed on the remote host. The procedure
returns TRUE if the user has logged in successfully and FALSE if not. This procedure may
raise the error Error.

Quit: PROCEDURE [connectionHandle: Handle]
RETURNS [success: BOOLEAN];

The Quit procedure disconnects the user's curr~nt filing session from the remote FTP
server. The FTP connectionHandle is no longer valid after this operation. This procedure
may raise the error Error.

List: PROCEDURE [
filePathName: LONG STRING,
outputProc: OutputListProc,
outputStyle: ListStyle +- terse,
connectionHandle: Handle];

The List procedure can be used to request that the FTP server send a list of the current
filing context to the user. The filePathName field specifies a system specific file path
name. If the outputStyle is verbose, all current information on the file or file group
specifed by the field filePathName is returned using the procedure outputProc. If the
outputStyle is terse, only the file name of each of the files specified by the filePathName is
returned. In either case the file information should be separated by a CRLF or Null
character. The outputProc sends the reccived information to the client process. This
procedure may raise the error Error.

Delete: PROCEDURE [
filePathName: LONG STRING,
connectionHandle: Handle];

The Delete procedure deletes the file defined by the filePathName on the remote FTP
server. This procedure may raise the error Error.

Rename: PROCEDURE [
from, to: LONG STRING, connectionHandle: Handle];

The Rename procedure renames the remote file defined in the from field to the remote file
name defined in the to field. This procedure may raise the error Error.

Relnit: PROCEDURE [connection Handle: Handle];

The procedure Relnit reinitializes the current FTP connection specifed by the argument
connectionHandle. All previous connection states are lost. This procedure is used to

11-29

11 TCP/IP Interfaces

change the FTP user without dropping the FTP connection. This procedure may raise the
error Error.

Abort: PROCEDURE [connection Handle: Handle];

The procedure Abort cancels any outstanding FTP command on the connection specued by
connectionHandle. Any outstanding data transfers terminate. This procedure may raise
the error Error.

11.10.4 References

RFC959 File Transfer Protocol, Postel, October, 1985.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARP A

using FTP with username, ANONYMOUS, and password, GUEST.

11.11 ArpaFTPServer

11-30

The ArpaFTPServer interface provides Pilot clients with an interface to the server side of
the File Transfer Protocol (FTP) defined by RFC959. FTP is a file transfer protocol which
is a client of the TCPIIP protocols (RFC793 and RFC792).

11.11.1 Types and constants

Options: TYPE. RECORD [
fileType: FileTypeEnum ~ascii,
fileFormat: FileFormatEnum ~ nonPrint.
fileByteSize: CARDINAL ~ 8,
fileStructure: FileStructureEnum ~file];

The Options type defines the record passed to the client to indicate the method a file is
retrieved or stored. The fileByteSize is the logical byte size of the file transferred. All files
are transferred as eight-bit files regardless of their logical byte size.

FileTypeEnum: TYPE. {ascii, EBCDIC, image, other};

The FileTypeEnum deimes the set of file types that can be understood by FTP.

ascii

EBCDIC

image

other

This is the default file type and is intended for transferring text files.
Ascii is defined in the Telnet specification to be the lower half of an eitht­
bit code set (the most significant bit is zero).

This type is not supported.

This type is used for the transfer of hi nary or compressed data.

This type is used to accommodate other data representations and is
supported for eight-hit bytes.

Pilot Programmer's Manual 11

FileFormatEnum: TYPE • {nonPrint, tel net, asa};

The FileFormatEnum defines the set offormat control options that can be used with the file
types Ascii and EBCDIC.

nonPrint This is the default formatting option and indicates there is no formatting
in the file.

tel net This indicates the file contains vertical format controls (such as < CR > ,
<LF>, <NL>, <VT>, <FF».

asa This indicates the file contains asa (FORTRAN) vertical control
characters. (See RFC 740 and Communications of the ACM, Vol. 7, No.
10, p. 606, October 1964).

FileStructureEnum: TYPE. {file, record, page};

The FileStructureEnum defines the set offile structures known to FTP.

file This is the defaulted file structure.

record This is not supported.

page This is not supported.

LoginlnfoNeeded: TYPE • {
name, nameAndPassword, nameAndPasswordAndAcct};

The type LoginlnfoNeeded describes the types of login information required by the
authentication mechanism on the FTP server.

name Only the user's name is required to use the FTP server.

nameAndPassword The user's name and password are required to use the FTP
server.

nameAndPasswordAndAcct the user must specify name, password and account
information to use the FTP server.

ListStyle: TYPE. {verbose, terse};

The ListStyie type is used with the List procedure to indicate whether verbose (all
information that can be displayed about the file) or terse (only the file name) is wanted.

FileStreamProc: TYPE • PROCEDURE [
fileName: LONG STRING, options: Options,
conversationHandle: LONG POINTER]
RETURNS [
statusCode: ArpaFilingCommon.StatusCode,
fileStream: Stream.Handle,
put: ArpaFilingCommon.PutProc,

11-31

11

11-32

TCP/IP Interfaces

get: ArpaFilingCommon.GetProc,
closeProc: ArpaFilingCommon.CloseProc];

The FileStreamProc type is used by the FTP server when either the store or retrieve
operations are initiated by the FTP user. The fileName field contains the name of the
requested file. The options field contains the retrieval options. The conversationHandle
field contains client information that was passed to the server at user logon time. The
server client procedure returns whether or not the operation was successful by returning
the correct statusCode. If the operation was successful, the server client returns a stream
to the requested file in the field fileStream. The returned stream is used with the get or
put procedure. The server client need not provide the get procedure when used with the
store operation but must provide the put procedure. The server client need not provide the
put procedrue when used with the retrieve operation but must provide the get procedure.
The closeProc is called when the file transfer is completed. When the closeProc is called,
no other file operation is performed on the file describe by fileStream.

LogonProc: TYPE. PROCEDURE [
userName,
userPassword,
userAccount: LONG STRING ~ NIL]
RETURNS [success: BOOLEAN, conversationHandle: LONG POINTER];

The procedure LogonProc is called by the FTP server when the' login information is
received as defined by the parameters of the Register command. The client returns TRUE
if the information identifies an authenticated user. The field conversationHandle may
contain client information that is passed with subsequent calls, such as authentication
information. The server rejects all filing calls made before the user is authenticated.

QuitProc: TYPE • PROCEDURE [
conversationHandle: LONG POINTER];

QuitProc is called at the end of a FTP session. The client may free any session information
at this time. The field conversation Handle contains client information for the current
session that was passed to the server at user logon time and should be invalidated by this
call.

ReinitializeProc: TYPE • PROCEDURE [
conversationHandle: LONG POINTER];

When the ReinitializeProc is called by the FTP server, the client should consider the
current session to be open but should set its state back to its initial values. This procedure
is called when the remote user wishes to destroy the session but maintain the
communication line as active. The field conversation Handle contains client information
for the current session that was passed to the server at user logon time and should be
invalidated by this call.

RenameProc: TYPE • PROCEDURE [
from, to: LONG STRING,
conversationHandle: LONG POINTER]
RETURNS [statusCode: ArpaFilingCommon.StatusCode];

Pilot Programmer's Manual 11

RenameProc is called by the FTP server when it receives a request to rename a file. The
from field contains the current name of the file and the to field contains the new name of
the file. The field conversationHandle contains client information that was passed to the
server at user logon time. The client returns a code in statusCode.

AbortProc: TYPE • PROCEDURE [
conversationHandle: LONG POINTER];

AbortProc is called by the FTP server when an abort is received from the FTP user. When
AbortProc is called, the client should suspend and terminate all active processes for the
specified session. The field conversationHandle contains client information that was
passed to the server at user logon time.

DeleteProc: TYPE. PROCEDURE [
filePathName: LONG STRING,
conversationHandle: LONG POINTER]
RETURNS [statusCode: ArpaFilingCommon.StatusCode];

DeleteProc is called by the FTP server when it receives a request to delete a file. The field
filePathName contains the name of the file to be deleted. The field conversationHandle
contains client information that was passed to the server at user logon time. The client
returns the termination status in the field statusCode.

ListProc: TYPE • PROCEDURE [
filePathName: LONG STRING,
outputProc: OutputListStringProc,
outputStyle: ListStyle +- terse,
conversationHandle: LONG POINTER];

ListProc is called by the FTP server when it receives a request to list the contents of the
files specified by the field filePathName. This field may contain wildcard and expansion
symbols native to the local file system. The type and amount of information returned is
specified by the field outputStyle. When the value of this field is terse, the client returns
the name of the files specified by the filePathName field. When the value of the field
outputStyle is verbose, the client returns a complete list of information about the file or
files specified by the filePathName field. The procedure specified by outputProc is used to
return this information to the caller. Individual file information is separated by the Ascii
character string CR and LF. The field conversationHandle contains client information
that was passed to the server at user logon time.

OutputListStringProc: TYPE. PROCEDURE [output: LONG STRING];

This procedure type is used with ListProc to send list data to the remote site.

FTPProcList: TYPE • RECORD [
logon: LogonProc,
quit: QuitProc,
store: FileStreamProc,
retrieve: FileStreamProc,
reinitialize: ReinitializeProc,
rename: RenameProc,
abort: AbortProc,

11-33

11 TCP/IP Interfaces

delete: DeleteProc,
list: ListProc,
print: ArpaFilingCommon.PrintProc];

This type is used with the Register procedure to give the server a list of service commands
to call when it receives services requests from a remote user. These procedures are
described above.

11.11.2 Procedures

Register: PROCEDURE [
ftpProcList: FTPProcList. I09onlnfo: LoginlnfoNeeded);

This procedure initializes an FTP server process. Only one call to this procedure is valid
without calling UnRegister. Mutiple calls to this procedure without calling UnRegister
may produce undefined results. Procedures passed in the field ftpProcList are used to
satisfy service requests from remote users. The field logonlnfo contains the value for the
amount ofinformation needed to authenticate remote users.

UnRegister: PROCEDURE;

This procedure is used to terminate and unregister the FTP server process initiated by a
call to the procedure Register. This procedure is currently not implemented.

11.11.3 References

RFC740 NETRJS Proctocol- Appendix C, Braden, November, 1977.

RFC792 Internet Control Message Protocol, Postel, September, 1981.

RFC793 Transmission Control Protocol, Postel, September, 1981.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with usemame, ANONYMOUS, and password, GUEST.

11.12 ArpaSMTP

The ArpaSMTP interface provides Pilot clients with an interface to the client side of the
Simple Mail Transfer Protocol (SMTP) defined by RFC821.

11.12.1 Types and constants

Handle: TYPE. LONG POINTER TO SMTPObject;

SMTPObject: TYPE;

A Handle is a pointer to an SMTPObject representing a connection to a remote SMTP host.

11-34

Pilot Programmer's Manual 11

Recipients: TYPE. LONG POINTER TO RecipientsSequence;

RecipientsSequence: TYPE. RECORD [
recipients: SEQUENCE length: CARDINAL OF LONG STRING];

The type RecipientsSequence is a sequence of the recipient that a particular message is
addressed to.

InvalidRecipientList: TYPE. RECORD [
invalidRecipients: SEQUENCE length: CARDINAL OF InvalidRecipientRecord];

The type InvalidRecipientList is a sequence of all recipients that a post operation could not
post to.

InvalidRecipientRecord: TYPE. RECORD [
recipientName: LONG STRING +-NIL,
errorReason: SMTPErrorReason,
errorNumber: CARDINAL];

For each invalid recipient of a Post operation an InvalidRecipientRecord is returned, The
field recipientName is a pointer to the name string that was passed into the Post
procedure. The errorReason field is the translated error condition as received from the
remote host. The field errorNumber contains the error number reason of the remote reject.
This number conforms to the error numbering scheme outlined in RFC821.

11.12.2 Signals

SMTPError: SIGNAL [
reason: SMTPErrorReason,
errorNumber: CARDINAL,
errorstring: LONG STRING];

The error SMTPError is raised for all error conditions that arise on the local or remote
machine. The error reasons are described below. The errorNumber field is reservered for
error conditions that are reported by the remote SMTP site. Error numbers follow the
error number dermitions as outlined by RFC 821. The errorstring is also reserved for
remote errors and is the human readable text message that accompanies the SMTP
errorNumber. The string errorstring is allocated from a private zone and is deallocated on
unwinding this error;

SMTPErrorReason: TYPE. {addressTranslationError,
insufficientSpaceOnRemote, invalidName, mailboxUnavailable, remoteError,
remoteStorageAllocExceeded, serverCommandError, serviceUnavailable, tcpError,
tcpTimeOut, transactionFailed, userNotLocal};

addressTranslationError

insufficientSpaceOnRemote

invalidName

the remote host name passed is invalid

the remote site has insufficient space to process the
mailing request

the specified recipient name is invalid

11-35

11 TCP/IP Interfaces

mailboxUnavaiiable

remoteError

remoteStorageAllocExceeded

serverCommandError

serviceU navailable

tcpError

tcpTimeOut

transactionFai led

userNotLocal

the specified recipients mailbox is not available

some remote error

remote mail storage allocation exceeded

error in the processing of the SMTP command

the service must shut 'down

some TCP error on connection establishment

TCP timeout on connection establishment, the
remote server may no longer be responding

mail transaction failed

user is not local to this remote machine; the
accompanying error string may have an alternate
path to the user

11.12.3 Procedures

11-36

Open: PROCEDURE [remoteHost.locaIHostName: LONG STRING] RETURNS [Handle];

Open opens a SMTP connection with the host specified in remoteHost. This procedure can
raise the SIGNAL SMTPError. The field localHostName contains the name that the local
host is advertised to the remote server. This name is the common name of the sending
machine. This procedure returns a connection handle to be used in all subsequent SMTP
operations.

Post: PROCEDURE [
smtpHandle: Handle. returnPath: LONG STRING.
recipients: Recipients. message: Stream.Handle]
RETURNS [success: BOOLEAN.
badRecipientList: LONG POINTER TO InvalidRecipientList];

Post sends a message to the host specified by thesmtpHandle field. The field returnPath
contains the common address of the sender of the message (Le.
·<userName>@<locaIHostName>). The recipients field contains a sequence of users
believed to reside on the host specified by the smtpHandle field to whom the message is
addressed to. This procedure returns a boolean specifying success or failure in posting the
message to the specified recipients. If it was not successful, the field badRecipientList
contains a pointer to a sequence of invalid recipients. Free this field by using the
procedure FreelnvalidRecipients.

Verify: PROCEDURE [smtpHandle: Handle.
user. fullyQualUserName. mailBox: LONG STRING];

Pilot Programmer's Manual 11

The procedure Verify is used to confirm that the s-tring user identifies a known user on the
host specified by the field smtpHandle. If the the argument user is a user on the remote
host, the full name of the user (if known) and the fully specified mailbox are returned.

Expand: PROCEDURE [smtpHandle: Handle,
distributionList, expandedList: LONG STRING];

The procedure Expand asks the host specified by the field smtpHandle to confirm that the
argument distributionList identifies a mailing list, and if so to return the membership of
that list. The full name of the users (if known) and the fully specified mailboxes are
returned.

Close: PROCEDURE [smtpHandle: Handle];

Close ends the existing SMTP connection identified by smtpHandle. The connection
identified by smtpHandle is invalid after successful completion of this operation and
should not be used for subsequent operations.

FreelnvalidRecipients: PROCEDURE [smtpHandle: Handle,
invalidRecipients: LONG POINTER TO InvalidRecipientList];

The procedure FreelnvalidRecipients frees invalid recipients returned by the procedure
Post. The field smtpHandle is a handle to the SMTP connection and the field
invalidRecipients is a pointer to the sequence returned by Post.

ll.l2.4 References

RFC821 Simple Mail Transfer Protocol, Postel, August, 1982.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.13 ArpaSMTPServer

The ArpaSMTPServer interface provides Pilot clients with an interface to the Simple Mail
Transfer Protocol (SMTP) defined by RFC821. SMTP is a mail transfer protocol to be used
with the TCP/IP protocols.

ll.l3.l Types and constants

PostProc: TYPE • PROCEDURE [
message: Stream.Handle,
recipientName, returnPath: LONG STRING];

The procedure PostProc is used by the SMTP server when a message is received for the
user specified by the field recipientName. The message can be received by reading from
the stream provided in the field message until the signal Stream.EndOfStream is raised.
The returnPath contains the return mail path to the sender of the message.

11-37

11 TCP/IP Interfaces

ExpandProc: TYPE. PROCEDURE [
dl: LONG STRING,
dataProc: PROCEDURE [user, mBox: LONG STRING));

The procedure ExpandProc is used by the SMTP server when a request for distribution list
expansion is made on the server. The client process returns the distribution list contents
identified in the field dl by calling the dataProc with each user's name in the field user and
mailbox information in the field mBox.

VerifyProc: TYPE = PROCEDURE [user: LONG STRING]
RETURNS [fullyQualifiedUser, mailBox: LONG STRING];

The procedure VerifyProc is used by the SMTP server when a request for user name
verification is made on the server. The client process returns the users fully qualified
name, if known, in the field fullyQualifiedUser and the user's mailbox identifier in the
field mailBox.

ValidateProc: TYPE • PROCEDURE [user: LONG STRING)
RETURNS [accept: BOOLEAN];

The procedure ValidateProc is used by the SMTP server when a request to deposit mail for
a particular user is made on the server. If the client process is recieving mail for the
indicated user, it I returns TRUE in the field accept.

PrintProc: TYPE • PROCEDURE [
stringToPrint: LONG STRING];

The procedure PrintProc is used by the SMTP server to give the client process debugging
and state information of its actions. The field stringToPrint contains information about
the current SMTP connections.

SMTPProcList: TYPE • RECORD [
post: PostProc,
expand: ExpandProc,
verify: VerifyProc,
validateUser: ValidateProc,
print: PrintProc);

The SMTPProcList is used to pass the SMTP server a list of procedure that the SMTP server
uses to communicate with client processes.

11.13.2 Procedures

11-38

Register: PROCEDURE [
smtpProcs: SMTPProcList, serverName: LONG STRING);

Register starts an SMTP server session. Only one session is started no matter how many
calls are made to Register. The fields smtpProcs contains a list of procedure that the
SMTP server uses to communicate with the client process. The serveName field contains
the commonly known name of the server.

Pilot Programmer's Manual 11

UnRegister: PROCEDURE;

Unregister stops the SMTP server from recieving any additional connections and releases
all resources used by the SMTP server.

11.12.3 References

RFC821 Simple Mail Transfer Protocol, Postel, August, 1982.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.14 ArpaMailParse

The ArpaMailParse parses the headers of messages formatted according to RFC822.
Syntactic entities from RFC822, such as atom, are indicated by italics in this chapter.

Essentially, to parse a message call Initialize loop calling GetFieldName, call either
GetFieldList or NameList (depending on the semantics of the field name returned by
GetFieldName), and call Finalize. NameList is the main procedure to deal with lists of
recipients in the many syntactic forms defined by RFC822. Most of the remaining
procedures in the interface support special cases of these forms and are used infrequently.

ArpaMailParse is implemented by the program ArpaMailParserlmpl. bed.

11.14.1 Types

ArpaMailParse.BracketType: TYPE • RECORD [
group:BOOLEAN +-FALSE,
routeAddr: BOOLEAN +-FALSE);

BracketType, passed to a ProcessProc as part of its Namelnfo argument, describes the
context of a name in a name list.

group is TRUE lithe name appears in the context "phrase: ... ;"; Le., phrase is the name of a
group. This phrase is not treated as part of any recipient name.

routeAdd is TRUE if the name appears in the context "phrase < ... >"; Le., phrase is the
initial part of a route-addr describing a recipient.

ArpaMailParse.Handle: TYPE = LONG POINTER TO Object
ArpaMailParse.Object: TYPE;

A Handle is a pointer to an Object, representating an instance of a parse.

ArpaMailParse.Namelnfo: TYPE • RECORD [
nesting: ArpaMailParse.BracketType,
type: ArpaMailParse.NameType);

11-39

11 TCP/IP Interfaces

Namelnfo, used exclusively with the NameList procedure, provides the client-supplied
process procedure with information about its parameters. nesting describes the context of
this name in the name list being parsed. If nesting.group or nesting.routeAddr is TRUE,
then procedure GetGroupPhrase or GetRouteAddrPhrase may be called from the process
procedure to obtain the phrase for that nesting property.

ArpaMailParse.NameType: TYPE. {normal. file};

NameType. passed to a ProcessProc as part of its Namelnfo argument, describes how the
local name is interpreted.

normal The name is a single recipient (neither a file name nor a public
distribution list).

file The name occurs as the tag portion of an empty group list and should be
treated as the name of a file containing a list of recipient names.

ArpaMailParse.ProcessProc: PROCEDURE [
h: ArpaMailParse.Handle.
local. registry. domain: LONG STRING.
info: Namelnfo];

For each recipient encountered, NameList calls the client's ProcessProc, passing it the
simple name, registry, and Arpanet host. If domain is absent, a string of length zero (not
NIL) is passed. Each is guaranteed to contain room for ArpaMailparse.minLength characters.
local is always non-empty. The string parameters are free from leading, trailing, and
excess internal white space. info provides additional information about the name being
supplied (see the description of Namelnfo for above). domain (but not local) may be
changed in limited ways by a ProcessProc. It is permissible to either change the length to 0
or (if the length is 0) append a value to alter the qualification of the name if it is to be
passed to the write agrument of NameList. h is provided so the client may call
GetGroupPhrase or GetRouteAddrPhrase. registry is not used.

ArpaMailParse.WriteProc; PROCEDURE [string: LONG STRING];

Each time the client's ProcessProc returns TRUE, NameList outputs the complete name
(with possibility altered qualification), by calling the WriteProc with fragments of the
recipient name. NameList keeps the original format of the name as much as possible,
including bracketing, comments, and the location of white space. Successive white space
characters (outside of quoted strings) is replaced by a single space. NameList assumes
responsibility for outputting appropriate separators (commas) and brackets, based on the
values returned by successive invocations of process.

11.14.2 Constants and data objects

11-40

ArpaMailParse.endOflnput: CARDINAL = ••• ;

endOflnput should be returned by the client's next procedure (see Initialize) when the end
ofthe input is reached.

ArpaMailParse.endOfList: CARDINAL = ... ;

Pilot Programmer's Manual 11

endOfList may be used as a delimiter terminating a list of names. It has no other effect.

ArpaMailParse.minLength: CARDINAL = 40;

The registry and domain STRINGS passed to the client's ProcessProc will be at least this
long.

11.14.3 Signals and errors

ArpaMailParse.Error: ERROR [code: ArpaMailParse.ErrorCode, position: CARDINAL];

Error is raised when the parse of the mail message fails. code describes the reason for the
failure. position is the number of characters parsed when the error was detected.

ArpaMailParse.ErrorCode: TYPE. {
iIIegalCharader, unclosed Bracket, bracketNesting, implementationBug,
phraseExpeded, domainExpeded, atomExpeded, commaOrColon Expected.
at Expected, spacelnLocalName, mailBOX Expected, missingSemiColon, nestedGroup,
endOflnput, commaExpected, fieldsAreAtoms, colon Expected, lessThanExpected,
greaterThanExpeded, noFromField};

The error conditions that cause a failure are largely self-explanatory. noFromField is not
raised by ArpaMailParse, but is provided for clients who cannot succeed if the message is
either unparseable or contains no "From:" field.

11.14.4 Procedures

ArpaMailParse.Finalize: PROCEDURE [h: ArpaMailParse.Handle];

FinalizeParse finalizes the parse. This procedure must be called when the client has
finished parsing, after either normal completion or an error has occurred. Finalize modifies
h, so it should not be reused. Note: Finalize may not be called from within the process
procedure invoked by NameList or from within the catch phrase of Error.

ArpaMailParse.GetFieldBody: PROCEDURE [
h: ArpaMailParse.Handle, string: LONG STRING, suppressWhiteSpace: BOOLEAN Eo- FALSE];

GetFieldBody reads the remainder of the current field body using next (see Initialize) and
puts the characters consumed into string. If the field body is too long, overflow characters
are discarded. If the field body terminates before a CR is seen, Error[endOflnput] is raised.
Upon return, string has no initial or terminal white space (blanks and tabs) and, if
suppressWhiteSpace is TRUE, each internal run of white space is replaced by a single
blank. RFC822 line-folding conventions are also observed.

ArpaMailParse.GetFieldName: PROCEDURE [h: ArpaMailParse.Handle. field:LONG STRING]
RETURNS [found: BOOLEAN];

GetFieldName presumes that next (see Initialize) is positioned to read the first character of
a field name and it returns the field name, without the terminating colon, in field. It
leaves next ready to return the first character following the colon (or, if the end of the
message header has been reached, the character (if any) after the two CRS that normally
terminate the header). If the field name is too long, overflow characters are discarded.

11-41

11 TCP/IP Interfaces

Upon return, found is FALSE if no field names remain in the header. If the header field ends
prematurely or illegal header characters are encountered, Error[fieldsAreAtoms] is
raised. Error[colonExpected] is raised if there are embedded spaces in the field name.

ArpaMailParse.GetGroupPhrase: PROCEDURE [h: ArpaMailParse.Handle, phrase: LONG STRING];

GetGroupPhrase can only reasonably be called from inside the process procedure passed
to NameList. The phrase that introduces the current group is appended to phrase. If the
phrase is too long, overflow characters are discarded. Upon return, phrase has no initial or
terminal white space (blanks and tabs, and each internal run of white space is replaced by
a single blank. If GetGroupPhrase is called at an inappropriate time (for example, when
Namelnfo.nesting.group • FALSE), no changes are made to phrase.

ArpaMailparse.GetRouteAddrPhrase: PROCEDURE (h: ArpaMailParse.Hjlndle, name: LONG STRING];

GetRouteAddrPhrase can only reasonably be called from inside the process procedure
passed to NameList. The phrase that describes the current recipient is appended to name.
If the phrase is too long, overflow characters are discarded. Upon return, name has no
initial or terminal white space (blanks and tabs), and each internal run of white space has
been replaced by a single blank. If GetRouteAddrPhrase is called at an inappropriate time
(e.g., when Namelnfo.nesting.routeAddr • FALSE), no changes will be made to name.

ArpaMailparse.lnitialize: PROCEDURE [next: PROCEDURE RETURNS [CHARACTER],
RETURNS [ArpaMailParse.Handle];

Initialize creates an instance of the header parser and returns a Handle to be passed to
other procedures of this interface. Subsequent invocations of GetFieldName,
GetFieldBody, and NameList obtain their input using next.

ArpaMailParse.NameList: PROCEDURE [
h:ArpaMailParse.Handle, process: ArpaMailParse.ProcessProc, write: ArpaMailParse.WriteProc
+-NIL];

The NameList procedure expects to read characters using next (see Initialize) for a
structured field body consisting of a list of recipient names. For each name encountered, it
calls process. If process returns TRUE and write is not NIL, NameList outputs the complete
name, with potentially altered qualification, by calling write. If any syntax errors are
detected during parsing, Error is raised. It is legitimate for the process procedure to raise a
signal that causes NameList to be unwound.

ArpaMailParse.StringForErrorCode: PROCEDURE [code: ArpaMailParse.ErrorCode, s: LONG STRING];

StringForErrorCode appends a user-sensible error message onto the string s. If the error
message is too long, overflow characters are discarded.

11.14.5 References

RFC822 Standard for the Format of ARPA - Internet Text Messages, Crocker, August, 1982

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11-42

A

Performance Criteria

This appendix contains quantitative information about the observed performance of Pilot
and information about how client programs are expected to behave. Where machine
dependencies are a factor, it is assumed that the machine is a Dandelion. Some effort has
been expended in describing the source of and confidence in the figures presented. These
figures are presented to convey the flavor of the system rather than as hard performance
guarantees. In general, crisp and quantitative performance requirements for Pilot are not
available for comparison with the figures presented here.

A.I Physical memory requirements of Pilot

The resident part of Pilot, the part that is ineligible for swapping, is 113 pages (28,928
words). It is allocated as follows: code - 51, data - 36, the Mesa runtime data structures - 19,
and global frames - 7. As far as memory usage is concerned, this is the only machine
dependent part of Pilot.

Most Pilot functions will require additional code and data to be swapped in. The memory
requirements for Pilot functions are given in terms of working sets. A working set for a
function is defined to be those virtual pages (code and data) which, if they are all in
memory, provide a local minimum of page faults to service the function.

Because there is a significant overlap of code and data between one Pilot function and
another, it is not possible to simply add up the sizes of all the working sets one anticipates
using to get the total amount of memory required for a task_

Working set sizes are given in pages. They do not include the resident.

Pilot Function

Comm unication

Working
Set Size

Idle 15
First Connection 13
Subsequent Connections 2 - 17

Notes

Does not include Idle
Does not include first'connection

A-l

A Performance Criteria

Pilot (o'unction

File
Create
Delete
SetSize

Floppy Channel
Heap

MakeNode
FreeNode

Signals
Space

Allocate
Deallocate
MapAt
UnmapAt

Streams

Working
Set Size

26
25
28
8

4
4
7

9
14
21
6
1

A.2 Execution speed and client program profile

A-2

This section enumerates some typical characteristics which Pilot expects or will support in
its clients. These estimates are intended to assist the client programmer in designing his
use of Pilot facilities. They provide guidelines about which facilities are expensive and
thus to be used sparingly and which facilities are inexpensive and can be exercised
heavily. None of these estimates are binding on either Pilot or client programs. Pilot 11.0
may deviate from these figures.

These estimates apply to the cumulative load imposed by all clients operating on a single
system element. A particular client program or system which does not exercise any of the
resources very heavily may share the system element with other client programs,
provided that the sum of their requirements remains within the estimates set out below.

A.2.1 Memory management

The following figures indicate the dynamic cost of virtual memory in terms of disk
accesses, CPU time, and real time for a particular disk unit.

Facility

disk accesses to create
or delete a space

number of disk accesses to
handle a page fault

cpu time to handle a page fault

Minimum

o

o

4-5 msec

real time to handle a page fault 1.2 5-7 msec

Typical Maximum

2

1 >2

6-8 msec

45-55 msec >0.1 sec

l"'Paging from the local Shugart 4008 disk. Real time per disk access = 1 -200 milliseconds.

Pilot Programmer's Manual A

2~t) guarantt'~ a~ til thi' nlilXll1tlll1l tunt' t.1) SI'f'\'ICe a pa~e f;nalt \\'illl~\'pr' hf' ~ivl'n. In lhp I'asp that tht)

disk is 'lccllpl('d with ,'I'at I.lllil' fll·' sslllJ.(. paL;e fault halldlillJ.(llllwS "I' sl'v al , .. com.!:; "I' lllon,' ,'(1n

occur. The maximum tlmp stated is the max time exclusive of such situatIOns.

A.2.2 File management

The following figures indicate the typical characteristics of the Pilot file system. In this
table, the term "active file" means a file which has been referenced recently so that its
location and description are still present in the Pilot's caches.

Facility

total dri ves
(i.e., active physical volumes)

total existing files per volume

rate of file creation and
deletion (long term average)

size of files (in pages)

number of volume pages
allocated as a unit

number of file pages
accessed in a sequence 1

Typical

1

4

8

1 Limited by the amount of real memory for the access sequence.

A.2.3 Communication via the Ethernet

Maximum

16

lIdisk page

8 * 106

8't; 106

8 * 106

The following figures indicate the expected performance of communication between
system elements connected to the same Ethernet.

Facility

memory-to-memory transfer
through the Stream interface

A.2.4 Processes

Maximum

7.5 * 105 bits/sec

The following table provides data about the expected processing time on the Dandelion of
each of the process structuring facilities.

Facility Minimum Typical Maximum

Monitor entry or exit 3J.lsec. < 4 J.lsec. 5 J.lsec.

Process switch time 25 J.lsec. 30 J.lsec. 40 J.lsec.

Fork or .Join2 0.7 msec. 1 msec, 1.5 msec.

A-3

A

A-4

Performance Criteria

Facility Ylinimum Typical Ylaximum

Wait 1,2 10/lsec. <60/lsec. 100 f1.sec.

Notify! 10 /lsec. 15/lsec. 20/lsec.

1 Exc:1usive of process switl'hing time.

2The wide range on this facility reflects a current lack of data about its operating time rather than a

dynamic variation in the tinal product.

B

Managing and Assigning File Types

In Pilot, every file must be assigned a type code at the time it is created. This code is of
type File.Type and is constant for the life of the file. It provides a means for Pilot, various
scavenging programs, and clients to recognize the purpose for which each file was
intended. This is especially important because files on Pilot disks do not inherently have
meaningful strings for names, making it difficult for a human user or programmer to
recognize which file is which. To make this principle work effectively, each different kind
of file should be assigned its own unique type. This appendix describes how the type codes
are assigned.

The center of this scheme is the FileTypes interface, maintained by the Pilot group. In this
file are defined all subranges of File.Type assigned to individual client and application
groups. This module is designed so that it can be recompiled whenever a new type is
assigned without invalidating' any old version. Thus, within certain limits, a program
may include any version of FileTypes which contains the type codes of interest to it without
building in an unnecessary or awkward compilation dependency.

The basic structure of File Types is a set of subrange and constant definitions of the following
form:

PilotFileType: TYPE = CARDINAL [0 .• 256);

MesaFileType: TYPE = CARDINAL [256 .. 512);

DCSFileType: TYPE = CARDINAL [512 .. 768);

• • . -- Subranges assigned to other clients and subsystems

The subranges are designed to allow individual client organizations to administer their
own file type assignment for their own purposes. Each group should maintain a module of
the same form as FileTypes and include FileTypes in its DIRECTORY clause. Such a module would
be used to assign types within the subrange allocated to that group while still providing a
measure of protection against conflicting assignment by independent groups. The
structure of this module should be similar to that of File Types in order that the assignment
ofa new type code does not trigger a universal recompilation of the subsystem.

B-1

B

8-2

Managing and Assigning File Types

For example, the Ylesa Development Environment group is assigned the subrange of file
types [9280 .. 9344) to allocate as the) see lit. This allocation is managed by the module
MesaDEFileTypes, of the following form:

DIRECTORY

File: USING [Type],
FileTypes: USING [MesaOEFileType);
MesaOEFileTypes: DEFINITIONS II

BEGIN
MesaOEFileType: TYPE II FiIeTypes.MesaOEFileType;
-- MesaDE File Types
tUnassigned: File.Type II (MesaOEFileType[FIRST(MesaOEFileType)));
tRootOirectory: File.Type II [tUnassigned + 1];
tOirectory: File.Type II [tRootDirectory + 1];

• -- Other rile eypes ror use by Mesa
END.

This module can be recompiled independently of the module FiteTypes, for example each
time a new type code is added by the Mesa Development Environment group. All of mesa
environment would derive the type codes for its files from this module.

In a similar manner, types within the sub range PiiotFileType, for file types used by Pilot
itself, are found in a private Pilot definitions module.

It is possible for two different program modules or configurations which include two
different versions of FileTypes. bed (or any of its derivatives, such as
MesaDEFileTypes. bed) to be bound together without error or conflict. This situation
can arise, for example,because one configuration was compiled prior to the assignment of
a new file type while the other was compiled afterwards. A problem occurs, however, if a
module includes (either directly or indirectly) two different files defining file types. In this
case, the compiler will refuse to compile the module unless the sa.me version is used in
both cases. For example, if a program includes both FileTypes and MesaDEFileTypes, and if
FileTypes. mesa was updated after MesaDEFileTypes. bed was created, then the Mesa
compiler would generate an error message about FileTypes being used in differing versions.
This error would also be generated if the program included File Types indirectly, say, by
including another definitions module which itself had included a different version of
File Types.

This problem should not, however, occur in a well-structured system design. For example,
a file of type tWidget is perceived as such only by the module or modules which actually
implement widget objects. All other modules use only a well-defined interface and deal in
widgets, not widget implementations; Le., the underlying file and its type are hidden.
Since a single module will not be involved in the implementation of abstractions from two
widely separated parts of the NS world, it need not see two different modules both defining
separate ranges of type codes for files.

Therefore, the following style rules are recommended:

a. FileTypes. bed and its derivatives should be included only in program modules, not
in definitions modules.

Pilot Programmer's Manual B

b. Only one module defining the type codes for' tiles should be included in any program
(e.g., do not include both FileTypes and MesaDEFileTypesl.

c. The Pilot group will keep FileTypes.mesa and FileTypes.bcd up-to-date in
conspicuous places. on the release directory between releases of Pilot.

d. All programs, including Pilot, Common Software, and applications, should use type
codes only symbolically from modules in which they are assigned. No program should
fabricate a value of type File.Type from a numeric constant.

If all clients of Pilot observe these rules and the style of using Mesa definitions modules of
the form of FileTypes. the job of administering the assignment of type codes for Pilot files can
be kept manageable. In return, the Pilot group can react immediately to requests for a
new type code or subrange of type codes. If this style is not observed, the administration of
global constants such as these will become a complicated, time-consuming task with a
corresponding difficulty in reacting quickly to requests.

8·:3

c

Pilot's Interrupt Key Watcher

This appendix describes the operation of the interrupt key watcher that can be enabled by
users or clients at boot time, via boot switch 8.

If one goes to the debugger and then does an interpret call, the interpret call is executed in
the process that went to the debugger, and consequently runs at that process's priority. If
this is a priority at which the taking offaults is restricted, the interpret call may fault and
block trying to allocate state vectors.

If Pilot is booted with the 8 boot switch, pressing LOCK-LeftSHIFT-RightSHIFT-STOP will cause
Pilot to call the debugger with the message "Pilot Emergency Interrupt". This is done at a
priority level that precludes doing any interpret calls from the debugger.

C-l

D

UtilityPilot

Systems that are based on PilotKerneJ.bcd require that a disk be present on the machine.
The boot file containing the system must be installed on the disk, from which it is loaded
into the processor memory when the system is booted. The disk contains the system
physical and logical volumes for the system (i.e., those on which the boot file is located).

Systems that are based on UtilityPilotKerneJ.bcd do not require that a disk be present on
the machine. The boot file containing the system may be loaded from any source, e.g.,
ethernet, floppy disk. Utility Pilot provides the same facilities as regular Pilot, with the
following exceptions:

• There are no system physical and logical volumes.

• No volumes are brought online as part of Pilot initialization.

• The entire system and its working data must fit into the real memory of the
processor. (Backing storage provided by Space.ScratchMap and the system heaps
come from real memory)

• Clients must validate/set local time parameters before calling any pilot facility that
needs them.

• Map logging is disabled.

• Run-time loading is not supported.

UtilityPilot is commonly used to build special utility systems, such as, disk initializers
and diagnostics.

D-1

E

Multi-national Considerations

The hardware and software described in this manual support serial communication via
the RS-232-C controller in accordance with EIA standard RS-232-C. No support is
provided for CCITT Recommendations V.24 and V.27, the equivalent prevailing standard
in most of Europe.

E-l

F

References

F.l Mandatory references

The following documents should be studied before or in conjunction with this document:

• Courier: The Remote Procedure Call Protocol, XSIS 038112

• Mesa Language Manuai··610E00170

• XDE User's Guide··610E00140

• Mesa Programmer's Manuai··610E00150

In addition, the release documentation accompanying each release of Pilot should be
consulted before writing programs that use Pilot.

F.2 Informational references

The following documents provide useful additional information:

• The Ethernet, A Local Area Network, Data Link Layer, and Physical Layer
Specifications, Version 1.0. [September 30, 1980]

• Xerox Internet Transport Protocols. [February 1982]

F-1

F References

F-2

a1,4-48
a16,4-48
a2,4-48
a4,4-48
a8,4-48

Index

Abort, 2-18, 2-21, 5-16
abort

canceling, 2-22
key, 5-33

AbortCall, 6-44
ABORTED, 2-22
aborted, 5-29, 5-30,10-9
abortedByDelete, 5-29, 5-30
AbortPending, 2-22
Access, 4-31
access permissions, 4-31
Activate, 4-37, 4-38, 4-39
ActivateProc, 4-38
Add Dependency, 2-32
address fault, 2-28, 2-36, 4-30, 4-35,

4-45, 5-23, 9-1
addressfault, 9-3
AddSegment, 4-47
AdjustGreenwichMeanTime, 2-13
agent procedure, 2-30,2-31
AgentProcedure, 2-31
alarm clock, 2-15
Alignment, 4-48
alignment, 4-48, 5-3
alignment

byte, 5-3
page, 5-3, 5-23
word, 2-35, 4-48, 5-3

alive, 4-31
Allocate, 2-35, 4-40, 4-41
allocation

of objects, 2-34
AliocationPool, 2-34,2-35

AllocFree, 2-34
AllocPoolDesc, 2-35
alreadyAllocated, 4-40,4-41
alreadyAsserted, 4-3, 4-5, 4-6, 4-7,

8-7
alreadyDeallocated, 4-41
AlreadyFormatted,5-25
AlreadyFreed, 2-35,2-36
Alto, 7-10
Alto

ADL keyboard, 5-6
Microswitch keyboard, 5-6
time standard, 2-13

american, 10-14
ANSI,7-10
anyEthernet, 2-4
anyPilotDisk, 2-4, 2-5
Append,7-11
AppendChar, 7-6
AppendCharAndGrow, 7-9
AppendCurrent, 7-11
AppendDecimal, 7-8
AppendExtensionlfNeeded, 7-9
AppendLongDecimal,7-8
AppendLongNumber, 7-8
AppendNumber, 7-8
AppendOctal, 7-8
AppendString,7-6
AppendStringAndGrow, 7-9
AppendSubString, 7-6
Applications, 1-2
ApproveConnection, 6-14,6-17
Arguments, 6-48, 6-51
arguments, 6-50, 6-51; 6-52, 6-53
ARRAY, 6-46
Ascii

DEFINITIONS, 7-1
asciiByteSync, 6-28
AssertNotAPilotVolume, 4-6

I-I

I

1-2

Index

AssertPilotVolume, 4-5, 4-6
AssignAddress, 6-24
AssignDestinationRelativeAddress

6-25
AssignLocalAddress, 2-11
AssignNetworkAddress, 6-11,

6-12,6-18
asynchFramingError, 5-29, 5-30
asynchronous, 6-31, 6-32
asynchronous operation

defi~ition of, 1-8
atomic'

restoring, 8-16
saving, 8-16

Attention, 3-5, 3-8, 6-20
attention, 3-4
attention, 6-20, 6-21
attention flag, 3-2, 3-8
Attributes, 4-53, 5-17
AutoRecognitionOutcome, 6-28
AutoRecognitionWait, 6-28
AwaitStateChange, 4-3
Background,5-13,10-14
backing file, 1·5, 2.17, 5-33
backing storage, 4-30, 4-32
backing stream, 5-34
BackingStream, 5-34
Backstop

DEFINITIONS, 9-1
backstop, 1-10,2-28,9-1

control, 9-1
core, 9-1

" implementing, 9-1
" initializing log file, 9-2

log file, 9-1, 9-2
"logging errors, 9-2
reading log file, 9-1, 9-4

Backstoplmpl. bcd, 9-1
BackstopNub, 9-4

DEFINITIONS, 9-1
BackstopN ublmpl. bcd, 9·1
bad pages, 4-9, 4-10, 4-27, 8-5, 8-6
bad sector, 5-23
badCode, 2-24, 2-25
badDisk, 4-3, 4-6, 4-7,5-25
BadPage, 8-5, 8-7
badPageList, 4-7, 4-8
badSedors, 5-27
badSpotTableFull, 4-3, 4-10
BadSwitches, 8-11
Base, 2·3, 4-44
BASE POINTER, 4-44
basic machine, 1-2

facilities, 1-3
BBTable, 5-13, 5-14
Beep, 5-16, 10-15

BEL, 7-1
Billing and Accounting Functions,
1-3
binding, 6-46
BitAddress, 2-3
BlTANO,2-9
BitBlt, 2-3, 2-6, 5-13

table, 5-13
BitmaplsDisconnected, 5-14
BlTNOT,2·9
BitOp,2·8
BlTOR,2-9
BITROTA TE, 2-9
BlTSHIFT,2-9
bitsPerByte,2-1
bitsPerCharacter, 2-1
bitsPerWord,2-1
bitSync, 6-28
bitSynchronous,6-31
BlTXOR,2-9
black, 5-13,10-14
BlackenScreen, 10-15,10-16
Blank, 7-3
Blanks, 7-3
BlinkDisplay, 5-13, 5-34
Block, 2·2,3-3,3-4,3-12,3-13,6-6

6-9,6-17,6-20,6-21,6-65,7-3
" block, 4-58
blockPointer, 2-2
BlockSize,4-44
boolean,10-18
BooleanDefaultFalse, 4-14
boot button, 8-13, 8-15
boot file, 2-20, 2-26, 4-8, 4-14, 5-28,

8-2,8-4,8-7,8-8,8-9, 8-13, 8~14
booting, 8-15
creation, 8-13
default, 8-8
installation, 8-7, 8-14, 8-15
leader, 8-13, 8-14
local, 8-3
making, 8-14
universal,8-3
updating, 8-15
writing, 8-14

boot loader, 2-17, 8-8
boot switch, 2-16, C-1

default, 8-11
assignments, 2-16

bootable floppies, 5-27
BootButton, 8-13, 8-15
BootDevice,2-16
bootFile, 4-7,4-8
BootFileArray, 4-24
BootFileType, 4-24, 8-7
BootFromFile, 8-13,8-15

Pilot Programmer's Manual

BootFromPhysicalVolume, 8-13.
8-15

BootFromVolume, 8-13, 8-15
booting

Pilot's state after, 2-16
preparation, 8-4

booting agent, 2-16
BootLocation, 8-16
bootServerSocket, 2- 11
BoundsFault, 2-27
break,5-32
breakDeteded, 5-29, 5-30, 5-31
broadcastHostNumber, 2-10
BS, 5-36, 7-1
8SMemCache.bcd,9-1
bug, 9-3
bulk data transfer, 6-47, 6-50, 6-53,

6-55,6-58
Byte, 2-1,3-2
byte alignment, 5-3
Byte Bit

DEFINITIONS, 2-6
bytesPerPage, 2-2
bytesPerWord, 2-1
byteSyrichronous, 6-31
CADFileType, 4-19
Call, 6-49, 6-59
call,9-3
Call Debugger, 2-28,9-1
CancelAborts, 2-22
cancelSignal, 10-16, 10-17
cannotWriteLog, 4-23
cantFindStartListHeader, 8-9
CantlnstallUCodeOnThisDevice,

8-58-7
cantWriteBootFile, 8-9
cardinal·,l0-18
catch phrase, 2-22, 3-5
Caution, 1-9
cCallCSC, 10-17
CCITT Recommendations, E-!
cCloseWn, 10-17
cdc9730, 2-5
CedarFileType, 4-19
cEnsure Ready , 10-17
Century Data Systems, 2-5
cExit, 10-17
cFirst, 10-17
change count, 4-3, 4-4
ChangeLabelString, 4-16
ChangeName, 4-9 .
channel, 1-7,6-1
ChannelAI readyExists, 5-28
Channel Handle, 5-28
ChannellnUse, 6-37
channellnUse, 10-9

ChanneIQuiesced.5-29
ChannelSuspended, 6-:38
Char, 7-2
charader, 1 0-18
character terminal, 5-28, 5-32
CharaderLength, 5-30, 5-31
CharLength, 6-29,6-32,6-34
CharsAvaiiable, 5-30, 5-34
charsPerPage, 2-2
charsPerWord,2-1
CharStatus, 5-35
checkOnly, 4-7, 4-8, 4-23
CheckOwner, 4-51,4-54
CheckOwnerMDS, 4-54
Checksum, 2-6
dnsDiffCleanDisk, 10-17
dnsertCleanDisk, 10-17
dnsertDiagDisk, 10-17
dnsertWriteable, 10-17
Class, 4-33
OassOfService, 6-11, 6-47, 6-48
dast, 10-17
ClearDisplay, 10-15, 10-16
clearinghouse, 2-11
clearingHouseSocket, 2-11
client, 6-10
client program profile, A-2
client programs, I-I
clients, 2-33
Oientslmpls, 2-33
clock ticks

conversion of, 2-19

I

Oose, 4-15, 4-56,4-58,5-22,6-18,
6-19

close protocol, 6-18
closedAndConsistent, 4-14
closedAndlnconsistent, 4-14
OoseReply, 6-19
closeReplySST, 6-18,6-19
closeSST, 6-18, 6-19
CloseStatus,6-18,6-19
cmcll,6-28
cNBNotReady, 10-17
code links, 2-24, 2-26
CommError, 10-1
Common Software, 1-2,5-28,5-32,

7-1,7-2,7-5,7-10,8-3
CommonSoftwareEventlndex,2-31
CommonSoftwareFileType,

4-19,4-20
CommonSoftwareFile Types

DEFINITIONS, 4-17
CommParamHandle, 6-29, 6-32
CommParamObject, 6-29,6-32
communication

errors,6-14

1-3

I

1-4

Index

initialization, 8-12
link, 1·7
performance, A-3
system, 1-6

Communication package, 2-17, 8-1
Communication. bed, 6-4, 6-9, 6-23
communication Error, 10-1
Compact, 5-26, 5-27
Compare, 7-7
Compiler option, 2-27
CompletionCode, 3-4
CompletionHandle, 6-30, 6-32
complex services, 1-4
condition variable, 1-4, 1-10,2-19,

2-22
timeout, 2-20

ConfigError, 2-24, 2-25
ConfigErrorType, 2-24
configuration, 2-24, 2-26
connection, 6-10
ConnectionFailed, 6-13, 6-14, 6-15
ConnectionID,6-11
connection less protocol, 6-4
ConnectionSuspended, 6-14, 6-19
containsOpenVolumes, 4-3, 4-5, 4-6
Context, 5-17, 5-19
continueOnError, 1O~19
continueToNextError, 1 0-18
Control, 7-1
control characters, 7-1
control codes, 3-2
Control Data Corporation. 2-5
control link

null,2-27
Control Fault, 2-27
ControILink,2-23
Coordinate, 5-12, 10-14
CoPilot, 8-2
COPY, 2-7
Copy, 7-7
CopyFromPiiotFile, 5-23
Copyln, 4-35, 4-36, 5-23, 8-14
CopyOut, 4-35, 4-36; 5-23,8-14
CopyToNewString, 7-9
CopyToPilotFile, 5-23
Correspondent, 6-30, 6-32, 6-34
cOtherDiskErr, 10-17
CountType, 10-10
Courier data t¥pes, 6-59
courierSocket, 2-11
CR, 7-1,7-3
Create, 3-10, 4-12, 4-21, 4-44, 4-45,

4-50, 4-52, 4-53, 5-28, 5-32, 5-33,
6-11,6-13,6-15,6-38,6-47,6-61,
7-12,8-13

CreateBackstopLog, 9-2

CreateFile, 5-26,5-27
CreateFloppyFromlmage, 5-24
CreateListener, 6-11, 6-13, 6-17
CreateMDS, 4-50, 4-52
CreatePhysicalVolume, 4-5,4-6, 8-5
CreateReplier, 6-7, 6..-9
CreateRequestor, 6-7
CreateScrollWindow, 5-14
CreateSubsystem, 2-32
Create"'ransducer, 6-11. 6-12, 6-13,

6-14,6-15,6-18
CreateUniform, 4-50
cRemoveCleanDisk, 10-17
cRemoveOiskette, 10-17
Current, 7-11
current date, 7-10
current time, 7-10
currentLogVersion, 4-24
cursor, 5-14
CursorArray, 5-14, 10-14
CyclicSubsystem, 2-32
Dakuon, 5-9
damaged, 4-7, 4-8
DamageStatus, 4-7
Dandelion, 2-17. 5-16, A-I, A-3
dangling reference, 1-9,2-18,2-24,

2-2.4,2-25, 3-3
data blocks, 8-5
data space, 2-17
data window, 4-34, 4-35
DataError, 5-22, 5-23,5-25
dataLost, 5-29, 5-30 .
dataTerminalReady, 6-34
Date, 7-4,7-5
date, 2-12
DateFormat, 5-36, 7-4
dateOnly, 5-37, 7-4
dateTime, 5-37, 7-4
Daylight Saving Time, 2-13
DBITAND, 2-9
DBITNOT,2-9
DBitOp, 2-9
DBITOR, 2-9
DBITSHIFT,2-9
DBITXOR, 2-9
DCSFileType, 4-19,8-1
Deactivate, 4-37, 4-38, 4-39 .
DeactivateProc, 4-38
dead,4-31
Deallocate, 4-41
debuggeDebugger, 4-14
debugger, 4-13,4-14,8-10
debugger, 2-17,2-28,8-4,8-9,9-1,

Col
debugger. 8-4
remote, 2-17

Pilot Programmer's Manual

debuggerDebugger, ../.-13
debuggerVolumelD, ../.-15
Decimal,7-4
DecimalFormat, 7-3
DecodeSwitches, 8-11
default, 5-25
default stream, 6-58
default volume, 4-11
defaultBase, 4-40,4-41
defaultlnputOptions, 3-4, 6-20, 6-58
defaultObjed,3-18
defaultPageCount, 5-23
defaultRetransmissionlnterval,6-5
defaultSwapUnitOption, 4-33
defaultSwitches, 2-16, 8-12
defaultTime, 7-11
defaultWaitTime, 6-5, 6-10
DEL,7-1
DEL,5-33
Delete, 3-3, 3-10, 4-21, 4-51, 5-29,

5-30,5-32,6-7,6-40,6-47
delete, 3-17
DeleteFile, 5-26
DeleteListener, 6-13, 6-14, 6-17
DeleteLog, 4-24, 4-26
DeleteMDS, 4-51
DeleteOrphanPage.4-28
DeleteProcedure, 3-17
DeleteScrollWi ndow, 5-15
DeleteSubString, 7-7
DeleteSubsystem, 2-32
DeleteTempFiles, 8-10
Density,5-25
dependency relationship, 2-32
DependsOn, 2-31, 2-33
Description, 6-49, 6-59
description, 6-53
description routine, 6-59, 6-64, 6-66
DescriptorForArray, 6-65
deserialization, 6-61
DeserializeParameters, 6-66,7-12
Destroy, 5-33, 7-12
Detach, 2-18, 2-21, 2-29
Detail,10-6
Development Common Software, 1-9
development tools, 8-2
Device

DEFINITIONS, 2-4
device driver, 1-7,5-1
device faces, 8-1
device interfaces

model of, 1-10
device numbers, 2-4
device types, 2-4
deviceNotReady, 1 0- 18
DeviceStatus, 5-31, 6-32

DeviceTypes

DEFINITIONS,2--l

Diablo 630 charaster printer, 5-28
diagnostics, 10-1
DiagnosticsFileType, 4-19
diagnosticsServerSocket, 2-11
Dial,6-43
Dialer testing, 10-12
DialMode, 6-30, 6-33
DialupOutcome, 10-13
DialupTest, 10-13
DifferentType, 4-58, 4-59
directoryFull,4-16
Disable, 4-57
disable, 4-57
DisableAborts, 2-22
DisableTimeout, 2-20
disconnected, 5-12
disjoint data, 6-46
disjoint data, 6-52, 6-53, 6-65
disjoint data types, 6-64
DisjointData, 6-61,6-65
disk diagnostic, 8-4
disk drive, 4-3, 4-4

change state, 4-3
direct access, 4-4
inactive state, 4-5, 4-6
non-Pilot access, 4-4, 4-5
Pilot access, 4-4
read-only, 4-5
ready, 4-3, 4-4
state, 4-4

disk formatting, 8-4
DiskAddress, 5-19
diskette, 5-17

bad pages, 5-27
compaction, 5-25
free pages, 5-25, 5-27
IBM format, 5-17, 5-20
label,5-25
malformed, 5-27
Troy format, 5-17
write enable sticker, 5-23
Xerox 850 format, 5-17

diskette hardware error
read or write, 5-23

diskHardwareError, 4-27, 4-28
diskNotReady, 4-27, 4-28
DiskPageNumber, 8-5,8-6
diskReadError, 4-3, 4-6
Dispatch, 6-48
dispatch, 6-48
Dispatcher, 6-52, 6-57
dispatcher, 6-52
display, 5-12

blink,5-13

I

[-5

I

1-6

Index

border, 5-13
cursor, 5-12,5-14
cursor coordinates, 5-14
cursor pattern, 5-14
image, 5-12

DisplayFieldsProc, 10-19
DisplayNumberedTableProc, 10-19
displayStuff,10·18
DisplayTableProc, 10-19
DivideCheck, 2·8, 2-28
DIVMOD,2·8
DocProcFileType, 4-19
double, 10· 18, 5·17, 5-25
down, 2-16
Drive, 5-20
Duplexity, 6-29,6-33
duplicate, 4-25
duplicate page, 4·25
duplicate suppression, 6-4, 6-9
duplicateRootFile, 4·16
east, 2-13
ebcdicByteSync, 6-28
echo testing, 10-2
EchoClass, 5-34
echoerSocket, 2·11
EchoEvent, 10-3
echoing, 6-35
EchoParams, 10-3, 10-4
EchoResults, 10-4
echoUserNotThere, 10-5
EIA Standard RS-232-C, E-l
EIDisk,8-4
electronicMailFirstSocket, 2-11
electronicMailLastSocket, 2-11
Empty, 7·7
empty, 4-9
emptyFile, 8-7
EnableAborts, 2-22
end of time, 2-12
end-of·stream

implementation, 3-5
endEnumeration, 6-23
endOfFile, 5-22, 5-23
EndOfStream, 3-5, 3-7, 6-19
endOfStream, 3-4
EndRecord, 3-6,3-12,3-14
endRecord, 3-4, 3-6, 3-7, 3-12
EntryType, 4-25
EnumerateExports, 6-66
Enu~erateRoutingTable, 6-25
EnumerationAborted, 2·34
Environment

DEFINITIONS, 2·1
envoySocket, 2·11
Equal,7-7
EqualSubString, 7-7

Equivalent, 7-7
EquivalentSubString, 7-7
Eras!!,4.13
Error, 2·25, 2-35, 4-2, 4·3, 4-8, 4-9,

4-10,4·12,4-20,4·23,4-31,4-35,
4-36, 4-41, 4-42, 4-50, 4-55, 5·14,
5-17,5-21,6-6,6·8,6·9,6-47,
6-53,8-5, 8-7, 8-9, 8~ 10

error, 4-56
error

protocol, 6-2
uncaught, 9-1

error-free, 6-9
Error[alreadyAssertedl,8-5
ErrorCode, 6-47,6-48,6-49,6-50,

6-51,6-53,6-59
ErrorEntry, 9-4, 9-5
ErrorHandling, 10-19
ErrorReason, 6·6
errorSocket, 2-11
ErrorType, 2·35, 4-3, 4-4, 4-5, 4-6,

4-12,4-13,4-20,4-23,4-27,4-28,
4-31,4-33,4-38,4-40,4-41,4-50,
4-51,4-54,4-55,4-56,4-57,5-14,
5-15,5-17,5-20,5-21,5-22,5-23,
5-24, 5-25, 5-26, 5-27, 5-28, 9-3

ESC, 7-1
ESC,5-37 .
etherBooteeFirstSocket, 2-11
etherBooteeLastSocket, 2-11
etherBootGermSocket, 2-11
EtherDiagError, 10-5
EtherErrorReason, 10-5
Ethernet, 2-4
ethernet, 2-4
ethernet, 1-7,6-1,2-17,2-29,8-2,

8-11,8-14
performance, A-3
statistics, 10-6

Ethernet 1, 2-17
ethernetOne, 2-4
EtherStatslnfo, 10-6
european, 10-14
even, 5-31
Event, 2-31
eventData, 2-31, 2-33
Eventlndex, 2·31
EventReporter, 10-5
ExchangeClientType, 6-4, 6-9
ExchangeHandle, 6-5, 6-9
ExchangeID,6-5
exit,10-18
Expand, 4-53
ExpandAllocation, 2-35
ExpandMDS, 4-53
ExpandString, 7-10

Pilot Programmer's Manual

expiration date, 8-11
exportedTypeClash, 2·24, 2·25
Exportltem, 6-66
ExportRemoteProgram, 6-48, 6-52,

6-56,6-61,6-66
Exports, 6-66
face, 1-1,8-1
failure, 6-28
FailureReason, 6-15
FailureType,8-7
fetch, 6-61
fetch,6-66
FF,7-1
Field,10-18

. FieldDataType,10-18
File, 4-17
file, 1-5,4-1,4-17

absence of pages at end, 4-25
access, 1-5
addressing, 4-18
attributes, 4-21
create, 4-21
creation performance, 4-21
delete, 4-21
extension, 4-22
id,1-6
identifier, 4-17
list, 5-21, 5-25,5-26
location of, 1-2
management, 1-10

performance, A-3
_ manager, 2-17.
maximum ~ize, 4-18
name, 4-17
permanent read-only, 4-21
temporary, 4-22, 4-26
type, 5-28
type code, 4-18

allocation, 4-18
windows, 4-21,4-34

File

DEFINITIONS, 4-17
FileCount, 5-21
FileEntry, 4-24, 4-25
FileHandle, 5-22
FilelD, 5-21, 5-28
fileListFull,5-26
fileListLengthTooShort, 5-24
FileLocation, 8-16
fileNotFound, 5-22, 5-23, 5-26
FileServiceFileType, 4-19
FileTypes, B-1, B-2
FileTypes,4-19

DEFINITIONS, 4-17
FileTypes.bcd, B-2, B-3
FileTypes. mesa, B-3

FiliRoutingTable, 6-25
FiliScreenWithObject, 10-16
filter, 1-7, 3-1,3-2, 3-5, 3-9, 3-11,

3-13,3-14,3-18

I

FindAddresses, 6-18
FindDestinationRelativeNetID,6-26
FindMyHostID,6-26
FinishWithNonPilotVolume, 4-6
first64K, 2-3
firstPageBad,8-7
firstPageCount, 2-2,4-2,4-11,4-18,

4-29
firstPageNumber, 2-2,4-2,4-11,

4-18,4-29
firstPageOffset, 2-3, 4-29
FirstSA 1000PageForPilot, 8-6
Fi rstt300PageForPi lot, 8-6
Firstt80PageForPilot, 8-6
five12,10-18
flakeyPageFound, 8-7
Floppy

DEFINITIONS, 5-21
floppy

enumeration of bad sectors, 5-27
enumberation of files, 5-26
Pilot supported standard, 5-22
snapshotting and replication, 5-24

floppy disk, 5-16, 8-2
drive characteristics, 5-17
multiple sector transfers, 5-19

Floppy file system, 4-20, 5-21
F/oppyChannel

DEFINITIONS, 5-16
FloppyCleanReadWriteHeads,

10-20, 10-21
FloppyCommandFileTest, 10-21
FloppyDisplayErrorLog, 10-21
FloppyExerciser, 10-20
floppyFailure,10-18
FloppyFormatDiskette, 10-21
floppylmagelnvalid, 5-24
FloppyImpl.bcd,5-21
FloppyMessage, 10-17
FloppyReturn, 1 0-18
floppySpaceTooSmall, 5-24
FloppyStandardTest, 10-20
FloppyWhatToDoNext,10-18
flow-controlled,6-9
FlowControl, 6-30, 6-33
flowControl,6-35
Flush,4-53
FlushMDS, 4-53
ForceOut, 4-22, 4-37, 4-38, 4-39
FORK, 2-18, 2-20
Format, 5-25,8-5
Format

I-7

I

1-8

Index

DEFINITIONS, 7-2
Format package, 7-2
FormatBootMicrocodeArea,8-5
Formatlmpl.bcd, 7-2
FormatPilotDisk, 8-5, 8-7

OEFINITIONS, 8:3
FormatPilotDisklmpl.bcd,8-5
formatted, 8-5
FormattingMustBeTrackAligned,

8-5
Frame, 9-3
frame links, 2-25, 2-26
frameTimeout, 6-35
FREE, 4-43, 4-49, 4-51, 4-52, 4-54
Free, 2-35, 6-52
free, 6-61
free storage package, 4-43
FreeEnumeration, 6-66
FreeMDSNode, 4-54
FreeMDSString. 7-9
FreeNode, 4-49, 4-54
FreeString, 7-9
full, 5-37,7-4
full-duplex, 5-31
garbage collection, 4-44
GenericProgram,2-23
germ, 4-7, 4-8, 8-7,8-8
germ, 8-1, 8-4, 8-7, 8-8, 8-13, 8-16
Get, 5-29, 6-40
GetAttributes, 4-9, 4-15,4-22,4-46,

4-53,4-58, 4-59, 5:'25
GetAttributesMDS, 4-53
GetBackground, 5-13
GetBcdTime, 2-26
GetBitBltTable, 5-13, 5-14
GetBlock, 3-4, 3-5, 3-6, 3-7, 3-10,

3-11,3-13,4-58,4-59
GetBootFilePointer,5-27
GetBootFiles, 5-27
GetBuildTime, 2-26
GetByte, 3-6, 3-7
GetByteProcedure, 3-15
GetCaller, 2-26
GetChar, 3-6, 3-7, 5-35
GetClockPulses,2-14
GetConfirmationProc,10-20
GetContainingPhysicalVolume, 4-9
GetContext, 5-17
GetCount, 4-57, 4-58
GetCurrent,2-21
GetCurrentProcess,9-3
GetCursorPattern, 5-14
GetDecimal,5-38
GetDelayToNet, 6-26
GetDeviceAttributes, 5-17
GetDialerCount, 6-45

GetOriveSize, 8-1 1
GetEcho, 5-34
GetEchoCounters, 10-8
GetEchoResults, 10-2
GetEditedString, 5-33, 5-35, 5-36,

5-37
GetError, 9-3
GetEthernetStats, 10-7
GetExpirationOate, 8-11
GetExpirationOat~Success, 8-11
GetFaultedProcess, 9-3
GetFileAttributes, 5-26
GetFileLocation, 8- 16
GetFloppyChoiceProc, 10-20
GetGreenwich mean time, 7-11
GetGreenwichMeanTime,2-12
GetHandle, 4-4, 5-20
GetHints, 4-4, 4-5
GetID,5-36
GetlmageAttributes, 5-24, 5-25
Getlndex, 4-57, 7-12
GetLabelString, 4-16
GetLine, 5-36
GetLocalTimeParameters, 2-14
GetLog, 4-26
GetLogEntry, 9-4, 9-5
GetLongDecimal, 5-38
GetLongNumber, 5-37
GetLongOctal, 5-38
GetLost, 4-57, 4-58, 9-2, 9-4
GetMapUnitAttri butes , 4-42
GetMesaChar, 10-16, 10-17
GetMousePosition,10-15
GetNetworkID,6-26
GetNext, 4-9, 4-14, 4-58, 9-4, 9-5
GetNextAction, 10-16
GetNextBadPage, 4-10
GetNextBadSector,5-27
GetNextDrive, 4-3, 5-20
GetNextFile, 5-26
GetNextFrame, 9-3
GetNextLine, 6-42
GetNextLogicalVolume, 4-8
GetNextProcess, 9-3
GetNextRootFile,4-17
GetNextSubVolume, 8-10
GetNumber, 5-37
GetOctal, 5-38
GetPassword,5-36
GetPhysicaIVolumeBootFile,8-9
GetPosition,3-9
GetPositionProcedure,3-17
GetPriority, 2-21
GetProcedure, 3-15
GetPVLocation, 8-17
GetRestart, 4-59

Pilot Programmer's Manual

GetRootNode.4-46
GetRouterFunction. 6-26
GetRS232CRe~ults, 10-9
GetSegmentAttributes.4-47
GetSize, 4-21, 9-4, 9-5
GetSSTProcedure, 3-16
GetState, 4-57, 5-13
GetStatus, 4-13, 5-31, 6-42
GetString. 4-58, 4-59, 5-36
C:~tSwapUnitAttributes, 4-42
GetSwitches, 8-11, 8-12
GetTableBase, 2-26
GetTimeFromTimeServer, 8-12
getTimeout, 3-17
GetTimeoutProcedure, 3-17
GetType, 4-15

. GetUniqueConnectionlD, 6-11, 6-12,
6-18

GetUniversaIlD.2-10
GetU pdate , 4-57
GetVolumeBootFile, 8-8
GetVol umeLocation , 8-16
GetWord, 3-6, 3-7
GetWordProcedure, 3-15
GetYesOrNoProc, 10-20
global frame, 1-6,2-19

validation, 2-23
global frame space, 4-43
GlobalFrame, 2-23, 9-4
gmtEpoch, 2-12, 4-59
granularity,5-3
Greenwich mean time, 2-12

comparison, 2-12
GreenwichMeanTime, 2-12, 7-11
Handakuon, 5-9
Handle, 3-1. 3-3, 3-5. 3-9, 3-10, 3-11,

3-13,3-14,3-19,4-4,4-44,4-46,
5-16,5-20,5-32,5-33,5-34,5-35,
6-11,6-12,6-13,6-47,6-48,9-4

handle, 1-9
hardMicrocode, 4-7, 4-8, 8-7, 8-8
hardware devices

control of, 1-10
hardwareError, 4-3,4-13,5-22,5-23
hasBorder, 5-13
hasPilotVolume, 4-3, 4-6
hBusy, 10-17
hCRC1,10-17
hCRC2, 10-17
hCRCerr, 10-17
hDelSector, 10-17
hDiskChng.10-17
head, 1-2, 8-1,8-2
Header, 4-24, 4-25
headers, 8-5
Heap

DEFINITIONS,4-..\.9

heap, -1,-1, ..\.-..\.3
MDS, 4-49
normal,4-49
performance impact, 4-51
uniform, 4-49

hErrDetc, 10-18
hex, 7-5
hexadecimal,10-18
hex byte ,10-18
hExpec1, 10-17
hExpec2m, 10-17
hFirst, 10-17
hGoodComp, 10-18
hHead,10-18
hHeadAddr, 10-18
HighByte, 2-7
HighHalf, 2-7
hlllglStat, 10-18
hlncrtLngth, 10-18
Histogram, 10-6
hLast, 10-18
hObser1, 10-18
hObser2, 10-18
hop, 6-23
HostNumber, 2-10,6-1,7-5
hReadHead, 10-18
hReadSector, 10-18
hReadStat, 10-18
hReady, 10-18
hRecal, 10-18
hRecalErr, 10-18
hSector, 10-18
hSectorAddr, 10-18
hSectorCntErr, 10-18
hSectorLgth, 10-18
hSeekErr, 10-18
hTimeExc, 10-18
hTrack, 10-18
hTrackO, 10-18, 10-18
hTwoSide, 10-18
hWriteDelSector, 10-18
hWritePro, 10-18
hWriteSector, 10-18
iBadContext, 10-18
iBadLabel,10-18
iBadSector, 10-18
iBadTrackO,10-18
IBM, 5-17
ibm2770Host, 6-28
ibm3270Host, 6-28
ibm6670, 6-28
ibm6670Host, 6-28
iCheckPanel,10-18
iCIERec, 10-18
iCleanDone,1O-18

I

1-9

I

1-10

Index

iCleanProgress, 10- 18
10,4-2,4-10, 4-11, 4-17

• idle line probes, 6-15
iErrOet, 10-18
iErrNoCRCErr, 10-18
iExerWarning, 10-18
iFirst, 10-18
iFormDone, 10-18
iFormProgress, 10-18
iFormWarning, 10-18
ignore, 5-35
iHardErr, 10-18
iHeadDataErr, 10-18
ilnsertDiagDisk, 10-18
ilnsertFormDisk, 10-18
iLast,10-18
lIIegalEnumerate, 4-58
illegal Log, 4-55
immediate timeout, 6-5
implementation module

Backstoplmpl.bed, 9-1
BackstopN ublmpl. bcd, 9-1
BSMemCache.bed, 9-1
Communication, 6-23
Communication. bed, 6-4, 6-9
Floppylmpl.bed,5-21
Formatlmpl.bed, 7-2
FormatPilotDisklmpl.bcd,8-5
Loader.bcd,2-24
LogFileImpl.bcd,4-55
LogImpl. bcd, 4-55
MemCacheNub.bcd,9-1
OthelloOpslmpl.bcd,8-5
PilotKernel.bcd, 1-2,8-1,8-2
RS232CIO.bcd,6-27
RuntimeLoader.bcd,8-2
StringslmpIA.bed, 7-5
StringsImplB.bed,7-5
SupervisorImpl.bed,2-30
Timelmpl.bcd,7-10
TTYPortChannel.bcd,5-28
UtilityPilotKernel.bcd, 1-2,8-1,
8-3

VMMapLoglmpl.bcd,9-1
implementors, 2-33
imports

unbound,2-26
in-band

attention, 6-22
signal,3-8

incompatibleSizes, 5-23
incompleteSwapUnits, 4-33, 4-35
Inconsistent, 4-58
Index, 4-57
IndexOutOfRange, 7-12
infinite wait time, 6-5

infiniteWaitTime, 6-11, 6-14, 6-17
infinity, 6-23
initial microcode, 5-27,8-4
InitializeCondition, 2-19,2-20
InitializeMonitor, 2-19
InitializePool, 2-36
initial MicrocodeS pace NotA vail able ,

5-27
Inline

DEfiNITIONS, 2-6
inload, 8-17
input streams

alternate, 5-35
InputOptions, 3-4, 3-8, 3-14
InsertRootFile, 4-16
Install, 4-55
InstallBootMicrocode, 8-7
InstallPhysicalVolumeBootFile,

8-13,8-15
InstallVolumeBootFile, 8-13,8-14,

8-15
instance data, 2-32
instanceData, 2-32
InsufficiehtSpace, 4-12,4-21,4-33,

4-34,4-40,4-41,9-2
insufficientSpace, 2-35,4-3,4-13,

4-51,5-26
integer ,1 0-18
inter-processor communication, 6-1
interesting event, 2-30
interface

volume, 8-4
internal buffering, 3-3, 3-9
internalStructures, 4-7, 4-8
Internet Datagram Protocol, 6-1
Internet Transport Protocols, 6-1
Internetwork routers, 6-23
internetwork topology, 6-23
internetworking.8-12
InterpretHandle, 4-4,5-20
Interrupt, 2-28, 9-1
interrupt, 9-3
interrupt key, 2-17, 2-28, C-1
Interval, 2-35, 4-30
interval, 1-5, 1-6,4-32,4-33
interval timing, 2-14
intra-processor communication, 6-1
Invalid,7-11
InvalidArguments, 6-56, 6-57
invalidConfig, 2-24,2-25
invalidDrive, 5-20
InvalidFile, 4-58
invalidFile, 4-55, 4-56
invalid Format, 5-22
InvalidFrame, 2-23
InvalidGlobalFrame, 2-23, 2-26

Pilot Programmer's Manual

invalidHandle, 4-3. -t-4, -t-;;, 4-6, -t-7.
5-17

invalidHeap, 4-51,4-54
InvalidLineNumber, 5-29, 6-38
invalidNode, 4-47,4-49,4-54
InvalidNumber, 5-37, 7-7
InvalidOperation, 3-18, 6-13, 6-58
invalidOwner, 4-54
invalidPageNumber, 5-28
InvalidParameter, 6-38
invalidParameter, 10-9
InvalidParameters, 8-14, 8-16, 8-17
invalidParameters, 2-35, 4-20, 4-21,

4-40,4-41,4-42,4-51
invalidProcedure, 4-38
InvalidProcess, 2-18
invalidRootFileType, 4-16
invalidSegment, 4-47, 4-48
invalidSize,4-51
InvalidSubsystem, 2-32, 2-33
invalidSwapUnitSize, 4-33, 4-35
InvalidVersion, 8-8, 8-14
invalidVolumeHandle, 5-21, 5-22
invalidWindow, 4-33, 4-34, 4-36
invalidZone, 4-47, 4-48,4-54
invertPattern, 10-15
InvertScreen, 10-15
IOError, 4-32, 4-35, 4-38, 4-39
IOError, 4-36
iOneSided, 10-18
irregular, 4-33
iRunStdTest, 10-18
IsBound, 2-26
iSoftErr,10-18
isolated page zero, 4-25
isPilot, 4-5
IsReady, 4-4
ISTimeValid,8-12
isUtilityPilot,2-16
italics

as metasymbols, 1-9
ItemCount, 2-35
Itemlndex,2-35
iTnx,10-18
iTwoSided,10-18
iUnitNotReadY,10-18
iVerDataErr,10-18
January 1 1968,2-12
japanese, 10-14
Japanese keyboard, 5-6
JlevellVKeys

DEFINITIONS, 5-6
job control facilities, 1-3
JOIN, 2-18
kAndCTL, 10-16
kAndShift, 10-16

kAtSign, 10-16
kBackSlash, 10-16
kBreak, 10-16
kCaret, 10-16
kCTLC, 10-16
kCTLStop, 10-16
kEndAdj,lO-16
kEscape,10-16
keyboard, 5-6, 5-16, 10-15
keyboard,5-l2,5-13,5-16
KeyboardAndMouseTest, 10-14
KeyboardType, 10-14
keyboardType, 10-14
Keyname, 5-6
Keys

DEFINITIONS, 5-6
keyset, 5-12, 5-16
KeyStations

DEFINITIONS, 5-6
kFiliScreen,10-16
kHyphen, 10-16
Kill, 4-37, 4-38, 4-39
kKey, 10-16
kLearColon, 10-16
kLeftBracket,10-16
kLetter, 10-16
kLineFeed, 10-16
kNumeral, 10-16
kReturnKey, 10-16
kRightBracket, 10-16
kSemiColon, 10-16
kShAt, 10-16
kShBackSlash,10-16
kShBreak, 10-16
kShCaret, 10-16
kShColon, 10-16
kShComma, 10-16
kShHyphen, 10-16
kShLeftBracket, 10-16
kShPeriod,10-16
kShRightBracket, 10-16
kShSemiColon, 10-16
kShVirgule, 10-16
kSpBar, 10-16
kTermAdj, 10-16
kTermTest, 10-16
kTestKey,1O-16
kTypeCharFiII, 10-16
kTypeComma,10-16
kTypeHair,10-16
kTypePeriod, 10-16
kUnknown, 10-16
kVirgule, 10-16
labels, 8-5

I

lastPageCount, 2-2,4-2, 4-11, 4~18,
4-29

1-11

I

I-12

Index

lastPageNumber. 2-2, 4-2, 4- t t,
+18,4-29

lastPageOffset, 2-3,4-29
latch bit, 5-31,5-32
latchBitClear, 6-35
LatchBitClearMask, 6-33
Layout, 4-9
LDIVMOD, 2-8
Lear Siegler ADM-3 display, 5-28
length,7-7
lengthls5bits, 5-31
lengthls6bits, 5-31
lengthls7bits, 5-31
lengthls8bits, 5-31
LengthRange, 10-10
Level,4-56
level 0, 6-1
level 1,6-1
level 2, 6-2, 6-4, 6-9
LevellVKeys

DEFINITIONS, 5-6
LF,7-1
LFDispiayTest, 10-15
Life, 4-31
lifetime, 6-10
Line, 7-3
IineCountError, 5-15
LineOverflow, 5-33, 5-35
LineSpeed, 5-30, 5-31, 6-30, 6-34
IineSpeed,6-35
LineType, 6-30, 6-34
LinkageFault, 2-27
Listen, 6-13, 6-14, 6-17
listen, 6-10
listener, 6-11
ListenerHandle, 6-13
ListenerHandle, 6-11
ListenError, 6-14, 6-17
ListenErrorReason, 6-17
ListenTimeout, 6-13, 6-17
LoadConfig, 2-24
loader

bootstrap, 8-1
Loader.bcd, 2-24
loading an object file, 8-2
loadstate, 2-17
local frame, 1-6,2-19,2-27

validation, 2-23
local frame space, 4-43
local network number, 8-12

default, 8-13
local networks, 8-12
local time parameters, 2-13
localHostNumber, 2-11
LocalSystemElement, 6-66
LocalTimeParameters, 2-13

LocalTimeParametersUnknown,
2-14,7-11

log, 4-26
Log, 9-1
Log

DEANITIONS, 4-55
log entries

enumeration of, 4-58
log file, 4-23,4-24,4-27,4-55

baekstop, 9-1, 9-2
current, 4-55,4-57,4-58,4-59
enumeration of, 9-5
initializing, 4-55
minimum size, 4-55
opening, 4-56
properties. 4-57
reading, 4-58
resetting, 4-59
restart entry, 4-56, 4-59
writing entries, 4-56

logBitsPerByte, 2-1
logBitsPerChar, 2-1
logBitsPerWord,2-1
logBytesPerPage, 2-2
logBytesPerWord, 2-2
log(ap, 4-55
logCharsPerPage, 2-2
logCharsPerWord,2-2
LogError, 9-2
LogFile, 4-58
LogFile, 9-1
LogFile

DEFINITIONS, 4-55
LogFilelmpl.bcd,4-55
LogFormat, 4-24
LogFrame, 9-3,9-4
logging

controlling, 4-56
logical operations, 2-8
logicalrecord,6-21
logical volume, 2-30, 4-8, 4-22, 8-4

attributes, 4-15
close, 4-14
consistant state, 4-6
create, 4-12
enumeration of, 4-8, 4-10, 4-14
erase, 4-12
errors, 4-12
10,4-10
label,4-16
maximum number, 4-10
maximum size, 4-11
name, 4-10
open, 4-14
opening, 8-3
root directory, 4-16

Pilot Programmer's Manual

spanning physical volumes, 4-11
status, 4-13

LogicalVolumePageNumber, 8-10
LogImpl.bcd,4-55
logNoEntry, 4-57
logNotOpened, 4-56, 4-57
LogProcess, 9-3
LogSeal, 4-24, 4-25
logWordsPerPage, 2-2
Long, 2-3
LONG CAROINAL, 6-62
LONG DESCRIPTOR, 6-46, 6-63
LONG DESCRIPTOR FOR ARRAY, 6-61
LONGINTEGER,6-62
LONG POINTER, 6-46, 6-64
LONG STRING, 6-62
LongBlock, 3-13, 6-21
LongCOPY, 2-7
LongCOPYReverse, 2-7
LongDecimal,7-4
LongDiv,2-8
LongDivMod, 2-8
LongMult, 2-8
LongNumber, 2-3,2-7,7-4
LongOctal,7-4
LongPointerFromPage, 2-3, 4-30

- LongString, 7-3
LongSubString,7-2
LongSubStringlteni, 7-2, 7-3
LookUpRootFile,4-17
loopOnError, 10-19
loopOnThisError,10-18
lost, 4-7, 4-8
LowByte, 2-7
LowerCase~ 7-6
LowHalf, 2-7
LSAdjust,10-16
LSMessage, 10-16
LSTest,10-17
LTP,7-11
machine, 1-2
machine-independent en vironment,

1-2
mailDate, 5-37, 7-4
Main Data Space, 4-40
main data space, 1-6
maintenance panel, 2-16, 2-17, 8-12
MakeBoot, 2-20, 2-26, 8-2, 8-3, 8-10,

8-13,8-14
MakeBootable, 8-8, 8-13, 8-14,,8-15,

8-16
MakeDLionBootFloppy, 5-28
MakeDLionBootFloppyTool,8-7
MakeFileList, 4-26
Makelmage, 5-24
MakeMDSNode, 4-54

MakeMDSString, 7-9
MakeNode, 4-48, 4-54
MakePermanent, 4-22
MakeReadOnly, 4-39
MakeString, 7-8
MakeUnbootable, 8-8, 8-16
MakeWritable, 4-39
Map, 4-26,4-32,4-35,8-14
map logging, 2-17

I

map unit, 1 -5, 1-5,4-30, 4-33, 4-34,
4-35

MapAt, 4-40,4-41
mapped spaces, 4-21
mapping, 1-5,4-30,4-32
MarkPageBad, 4-9, 4-10, 8-6
marshalling, 6-'61
master mode, 1-3
maxBlocklength, 6-5,6-6,6-8
max CARDINAL, 2-3
maxCharacterslnLabel, 5-25
maxData, 10-10
maxEntrieslnRootOirectory, 4-16
maximum internet packet, 6-10
maximum internet packet size, 6-6
maximum internetwork length, 6-1
maximum packet lifetime, 6-5
maxINTEGER, 2-3
maXLONGCARDINAL, 2-3
maxLONGINTEGER, 2-3
maxNameLength, 4-6,4-9, 4-13
maxPageslnMOS, 2-2
maxPageslnVM,2-2
maxPagesPerFile, 4-18, 4-22
maxPagesPerVolume, 4-11
maxSizeExceeded, 4-51
maxSubvolumesOnPhysicalVol ume,

4-13
maxWeliKnownSocket, 2-12
MOS, 4-40,4-49
MDS, 1-6
MDS zone, 2-19
MDSZone, 4-49,4-52
MemCacheNub,bcd,9-1
memory management

performance, A-2
MemoryStream

DEFINITIONS, 7-12
Mesa development environment, 8-2
Mesa emulation

microcode, 8-8
Mesa Language Manual, 2-18
Mesa Processor Principles of

Operation, 1-2,2-1,2-6,5-13
Mesa to Courier mapping, 6-59,6-61
Mesa type-checking, 1-3
Mesa User's Guide, 4-10, 8-2, 8-7

1-13

I

1-14

Index

Mesa variant record, 6-63
MesaOEFileType. 4-19
MesaOEFileTypes, B-2
MesaEventlndex, 2-31
MesaFileType, 4-19, B-1
metasymbols, 1-9
microcode, 1.2,8-1,8-8

initial, 8-7
microcode files, 8-7

installing, 8-7
MicrocodelnstaliFailure, 8-7
microcodeTooBig, 8·7
Microseconds, 2-15
MicrosecondsToPulses, 2-15
Milliseconds, 2-19
minimumNodeSize, 4-44, 4-50
minINTEGER, 2-3
minPagesPerVolume, 4-11
missing, 4-25, 4-27
missing page, 4-25
missingCode, 2-24,2-25
MissingPages, 4-20, 4-34, 4-37, 8-16
ModemChange. 10-~0
ModemSignal,10-1O
monitor, 1-4, 1·10,2-18,2-22,2-30
monitor lock, 2-19

uninitialized, 2-19
mou~e, 5-16
mouse,5-12,S-13,5-16

coordinates,S-16
move, 2-6
MsecToTicks, 2-19
multiple physical volumes, 8-10
multipleLogicalVolumes, 4-9
multipleWindows, S-15
nameRequired, 4-3, 4-6, 4-9, 4-13,

4-16
NARROW, 2-27
NarrowFault, 2-27
needsConversion, 4-3, 4-7, 4-23
needsRiskyRepair, 4-23
NeedsScavenging, 4-3, 4-5, 4-12,

4-lS, 4-16, 4-22, 8-9, 8-11, 8-17
needsScavenging, 5-22
NetAccess, 6-31,6-34
NetFormat, 7-5
network address, 1-10, 2-10, 6-66

editing, 7-5
when connected to many
networks, 2-11

Network stream, 1-7, 3-18
NetworkAddr, 6-11
NetworkAddress, 2-10, 6-1, 6-13,

6-47,7-S
NetworkAddresses, 6-9
NetworkNonExistent, 6-24

NetworkNumber, 2-10, 6-1. 7-5
NetworkStream, 1-7, 6-2

OEFINITIONS, 6-9
NEW, 2-19, 2-29,3-19,4-43.4-49,

4-51,4-52,4-S4
newClearinghouseSocket, 2-11
NewConfig, 2-24, 2·25
Newline, S-34
NextAction, 10-15
nextPattern, 10-15
nil, 4-46, 4-48
no, 10-20
noAnswerOrBusy, 10-1
NOBackingFile, S-34
noChecking, 10-19
noCommunicationFacilities,8-12
NoCommunicationHardware, 6-43
node

minimum size, 4-45, 4-S1
noOebugger, 8-9
NoDefaultinstance, 5-32
nodeLoop, 4-47
NodeSize,4-49
nOErrorFound,10-18
noHardware, 10-9
noMoreNets, 10-5
none, 5-31, S-34
noneOeleted, 4-24
nonEmptySegment, 4-48
nonPilot, 4-13
Nop, 5-20
noProblems, 4-7, 4-8
noResponse,8-12 .
noRetries,8-S
normal,3-4,4-13
noRoomlnZone, 4-48
noRouteToSystemElement, 10-1
NoRS232CHardware, 6-38
noScrollWindow, 5-15
noSeconds, 5-37, 7-4
noSuchOiagnostic, 10-1
noSuchOrive, 4-3,4-4, 5-22
noSuchLine, 10-9
nOSuchLogicalVolume, 4-3,4-8
noSuchPage, 4-27
NoSuchProcedureNumber,

6-48, 6-52, 6-57
NOSuchSubsystem, 2-32
NoTableEntryForNet, 6-24
NotAFault, 9-3
notAllocated,4-41
NotAPiiotOisk, 8-5, 8-7
notation, 1-8
notOiagOiskette, 1 0-18
~ote, 1-9
NoteArrayOescriptor, 6-63

Pilot Programmer's Manual

NoteBlock, 6-65
NoteChoice, 6-63
NoteDeadSpace,6-65
NoteDisjointData, 6-63
NoteLongCardinal, 6-62
NoteLonglnteger,6-62
NoteParameters, 6-64
NotErrorEntry, 9-4, 9-5
Notes, 6-59
notes object. . 6-59
NoteSize, 6-62
NotesObject, 6-59, 6-61, 6-62, 6-63,

6-64,6-65
NoteSpace, 6-61, 6-64
NoteString,6-62
NOTIFY, 2-15, 2-19, 2-22
NotifyAJlSubsystems, 2-33
NotifyDirectSubsystems, 2-34
NotifyRelatedSubsystems, 2-33
notlnitialBootFile, 8-9
NotLoggingError, 9-3
notMapped, 4-35, 4-36
NotOnJine, 4-12, 4-13, 4-15, 4-16,

4-21,4-26,4-34,4-36,8-9,8-11,
8-16,8-17

NotOpen, 4-12, 4-16, 4-21, 4-26,
4-34,4-37, 8-8, 8-9, 8-16

notPilot, 4-5
notReady, 4-3, 4-5, 5-22
NoITYPortHardware, 5-29
noWindow, 2-25,4-33,4-34
NS Communication System, 1-3
NSConstants, 2-11

DEFINITIONS, 2-9, 6-2
nsProtocol, 6-28
nsSystemElement, 6-28
nsSystemElementBSC, 6-28
NUL,7-2
null, 2-5, 4-58
nullAgentProcedure, 2-31
nuJlBadPage, 4-10
nullBlock, 2-2, 6-8
nullBootFile, 8-9
nullBootFilePointer, 5-27
nuJlChannelHandle, 5-28
nullDevicelndex, 4-3
nullDrive, 5-20
null Event, 2-31
nuJlExchangeHandle, 6-5
null File, 4-17, 4-26
nullFilelD, 5-26, 5-28
null Frame, 9-3, 9-4
nuJlHandle, 4-45, 5-32
nullHostNumber, 2-10
nuIlID,2-10, 4-2, 4-9, 4-10, 4-11,

4-12,4-17

nulllndex, -l-57. 9-5
Aulllnterval, -l-30
nullLineNumber, 6-31, 6-34
nuIlNetworkAddress,2-10
nullNetworkNumber, 2-10
nuJlParameters, 6-49, 6-50, 6-51,

6-53, 6-57, 6-58
nullProcess, 9-3
nuUProgram, 2-23
nullSegment, 4-46
nullSocketNumber, 2-10
nullSubsystem, 2-32
nuJlSubVolume,8-10
nullType, 2-4
nullVolumeHandle, 5-21
Number, 6-43, 7-3
NumberFormat, 5-38, 7-3, 7-4
NWords, 4-50
ObjAlloc

DEFINITIONS, 2-34
Object, 3-9, 3-14, 3-18, 3-19,6-11,

6-47
object allocation, 2-34
object file, 8-2, 8-2
Objects, 6-48
Octal, 7-4
octal,10-l8,7-5 .
Octal Format, 7-3
odd,5-31
off, 4-56,5-12
Offline, 4-5
ok,5-35
okay, 4-7, 4-7, 4-8, 4-45, 4-49
on, 5-12
on-line, 8-3
one, 5-25, 5-31
one024,10-18
one28,10-18
oneAndHalf, 5-31
online, 4-5, 8-5
Online Diagnostics

DEFINITIONS, 10-14, 10-16, 10-17
onlyEnumerateCurrentType, 4-14
onlyOneSide, 5-25
onlySingleDensity, 5-25
Open, 4-14, 4-22, 4-55,4-59,5-22
openRead,4-14
openReadWrite, 4-14
OperationClass, 6-34
optional packages, 8-2
orphan, 4-25
orphan page, 4-25, 4-28
Orphan Handle, 4-25, 4-28
orphanNotFound,4-28
Othello, 2-16, 4-10, 8-2, 8-4,8-13
OthelloOps, 8-4,8-7

I

I-IS

I

1-16

Ind~x

DEFINITIONS, 8-3
OthelloOpslmpl.bcd, 8-5
other, 8-7,8-9,9-3
otherError, 4-51, 10-9
out-of-band

attention, 6-21
signal,3-8

Outcome, 6-43
outload, 8-17
outload file, 9-2
OutLoadlnLoad, 8-17
OutOflnstances, 5-32
outsideXeroxFirstSocket, 2-12
outsideXeroxLastSocket, 2-12
Overflow, 2-15, 4-57
OverLapOption, 2-6
owner checking, 2-17, 4-51
OwnerChecking, 4-54
OwnerCheckingMDS, 4-54
Pack,7-11
packager, 1-6
Packed,7-10
packet, 6-1, 6-1
Packet Exchange Protocol, 6-4
packet exchange protocol, 6-2

. PacketExchange, 1-7,6-2
DEFINITIONS, 6-4

packets, 1-6
page alignment, 5-3
page fault service time, A-2
page number, 4-18
PageCount, 2-2,4-2,4-11,4-18,4-29
pageCountTooSmallForVolume,

4-13
PageFromLongPointer, 2-4, 4-30
PageNumber, 2-2, 4-2,4-11,4-18,

4-29, 4-30, 5-21
PageOffset, 2-3,4-29,4-30
PagesForlmage, 5-24
PagesFromWords, 4-43
Parameter, 5-30, 6-34
parameter area, 6-46, 6-61, 6-62,

6-64,6-65
Parameters, 6:49, 6-52
ParameterType, 6-34
Parity, 5-30, 6-31, 6-34, 6-35
parityError, 5-29, 5-30
partialLogicalVolume, 4-9
partiallyOnLine,4-14
PatternType, 10-11
Pause, 2-15,2-22
PC, 9-4
PerformanceToolFileType, 4-19
permanent, 4-23,4-25
permissions, 4-31
physical record, 6-20

physical volume, 2-13, 2-30, 4-5, 8-2,
8-4

consistant state, 4-6
creation, 4-6
enumeration of, 4-9
errors, 4-2
formatting, 8-5
identifier, 8-15
name, 4-2, 4-9
size, 4-2

PhysicalMedium, 6-23
PhysicalRecord, 6-31,6-36
PhysicalRecordHandle, 6-31, 6-36
PhysicalVolume, 8-5

DEFINlnDNS, 4-1
PhysicalVolumelD, 2-10, 4-2
physicalVolumeUnknown, 4-2, 4-3,

4-5,4-6,4-9,4-10,4-13.,8-9,8-10
physicalVolumeUnknown, 4-8
pilot, 8-7, 8-8
Pilot, 8-4, 8-5

boot loader, 8-13
disk utility, 8-2, 8-4
execution speed, A-2
initialization, 8-1,8-2,8-9
microcode, 8-4
performance requirements, A-I
physical memory requirements,
A-I
program, 8-1
released version of, 1-1
restart, 8-3
swapping, 1-5,4-30,4-31
switches, 8-2, 8-11, 8-15
System Components, 8-1

Pilot Emergency Interrupt, C-1
PilotClient, 8-3

DEFINITIONS, 2-28
PilotDisk, 2-4, 4-3
PiiotFileType, B-1, B-2
PilotKernel.bcd, 1-2, 1-9,8-1,8-2,

D-l
pilotSnapshot, 8-7, 8-8
pipeline, 1-7,3-1,3-2,3-5,3-9,3-10,

3-11,3-13
pixelsPerlnch,5-12
plain, 5-34
Pointer, 4-43
PointerFault, 2-28
PointerFromPage, 4-43
pointerPastEndOfVirtual Memory,

4-31
PopAlternatelnputStreams, 5-34
PORT, 3-18
port, 2-27
PortFault, 2-27

Pilot Programmer's Manual

Position, 3-9
power olT, 2-30
power on

automatic, 2-30
PowerOff, 2-15
pre-emptive allocation, 6-38
primary storage, 4-47
priorities

ranking of, 2-21
Priority, 2-21
priorityBackground, 2-21
priorityForeground, 2-21
priorityNormal,2-21
probablyNotPilot, 4-5
probablyPilot, 4-5
Problem, 4-24
procedures

activation and deactivation, 4-38
Proceed,9-2
PROCESS, 2-18
Process, 9-3
Process

DEFINITIONS, 2-18
process, 1-4,1-6,1-10,2-18

abort, 2-21
active, enumeration of, 9-3
awakening, 2-30
dead, 2-18
detached,2-21
fork, 2-20, 2-21
lightweight, 1-4
live, 2-18
maximum number, 2-20
performance, A-3
priority, 2-21, C-l
suspend, 2-22
synchronization, 2-23
validation, 2-18

processor

10,8-3
setting of clock, 8-12
yielding control, 2-22

Product Common Software, 1-9,
5-28,5-32,7-2,7-5,7-10

product system, 9-1
productSoftware, 7-5
PROGRAM, 2-25
program

logical correctness of, 2-23
protection, 1-3
protocDICertificationControl, 2-12
protocol Certification Test, 2-12
Prune, 4-53
PruneMDS, 4-53
PSBlndex, 9-4

pse.udo-~e~;a declarations, 1-8
pulse definition, 2-14
Pulses, 2-14
PulsesToMicroseconds, 2-15
pupAddressTranslation, 2-11
PushAlternatelnputStream, 5-34
Put, 5-29, 6-40
PutBackChar, 5-34
PutBlank,5-36
PutBlanks,5-3fl

I

PutBlock, 3-6, 3-7, 3-10, 3-12,4-56,
5-34,9-2

PutByte, 3-7
PutByteProcedure, 3-16
PutChar, 3-7, 5-36
PutCR, 5-36, 10-16
PutDate, 5-36
PutDecimal, 5-38
PutLine, 5-37
PutLongDecimal,5-38
PutLongNumber, 5-38
PutLongOctal, 5~38
PutLongSubString, 5-37
PutMesaChar, 10-17
PutMessage, 10-17
PutMessageProc, 10-19
PutNumber, 5-38
PutOctal, 5-38
PutProcedure, 3-15
PutString, 3-7,4-56,5-37
PutSubString, 5-37
PutText, 5-37
PutWord, 3-7, 4-56
PutWordProcedure, 3-16
PVLocation, 8-16
q2000, 2-5
q2010,2-5
q2020, 2-5
q2030,2-5
q2040,2-5
q2080,2-5
quad-word alignment, 5-3
Quantum, 2-5
Quiesce, 5-29, 5-30, 5-32
quiescent state, 2-30
quit, 10-15
Read, 5-22, 5-23
ReadBadPage, 4-27
ReadID,5-20
ReadOnly, 2-25, 4-12, 4-13, 4-15,

4-16,4-21,4-26,4-34,4-36,4-39,
8-9,8-11

readOnly, 4-31,4-36
ReadOrphanPage, 4-28
ReadSectors, 5-19
readWrite, 4-31

1-17

I

1-18

Index

Recalibrate.5-20
recording information, 4-55
Recreate, 4-45
references

informational, F-1
mandatory, F-l

RejectRequest, 6-8, 6-9
ReleaseDataStream, 6-59
remark, 4-56
remote procedure calling, 6-46
remote program, 6-46
RemoteErrorSignalled, 6-51, 6-57
remoteSystemElementNot

Responding, 10-1
removable medium, 1-6
RemoveCharacter, 5-37
RemoveCharacters,5-37
RemoveRootFile, 4-17
RemoveSegment, 4-48
RemoveSubsystem, 2-32
repair, 4-23
repaired, 4-7
RepairStatus,4-7
RepairType, 4-7, 4-23
Replace, 7-10
ReplaceBadPage, 4-27
ReplaceBadSector, 5-23, 5-24
replier. 6-4, 6-5
RequestHandle, 6-5
RequestObject, 6-5
requestor,6-4,6-5
requestToSend, 6-35
reservedType, 4-20, 4-21
ReserveType, 6-32, 6-37
Reset, 4-57, 4-59
reset, 4-57
ResetAutomaticPowerOn, 2-16.
ResetUserAbort, 5-33
resource

allocation, 1-3
new, acquisition of, 2-30
shared, acquisition and release,

2-29
RESTART, 2-27
Restart, 4-59, 6-41, 9-2
restart

file, 2-29
message, 9-1
system, 2-11

Results, 6-48, 6-52, 6-59
results, 6-50, 6-51, 6-52
retransmission, 6-4,6-15
retransmissionlnterval,6-7
RETRY, 3-4, 3-9
RetryCount, 6-32, 6~43
RetryLimit, 8-5

retrylimit.8-5
return, 4-35
ReturnWait, 4-35
RewritePage, 4-27
ripple, 2-6
riskyRepair, 4-7,4-8,4-23
root page, 2-13
RootDirectoryError, 4-16, 9-2
RootDirectoryErrorType, 4-16
rootfileUnknown, 4-16,4-17
router, 1-6,8-12
RoutersFunction, 6-24
routing delay, 6-23
routing protocol, 6-2
routing table, 6-23
routing table cache fault, 6-23
routinglnformationSocket, 2-11
RPC,6-46
R5232C

DEFINITIONS, 6-32
RS232CCorrespondents

DEFINITIONS, 6-27
RS232CDiagError, 10-9
RS232CErrorReason, 10-9
RS232CIO.bcd, 6-27
RS232CLoopback, 10-8
RS232CParams, 10-11
RS232CTestMessage, 10-12
Rubout, 5-33, 5-35
Run, 2-17,2-29,8-3, 8-13, 9-2
RunConfig, 2-24, 2-25
Runtime, 8-2

DEFINITIONS, 2-23
RuntimeLoader.bcd,8-2
sa1000, 2-4
SA1000lastPageOfMicrocode.8-6
SA1000pagesPerTrack, 8-6
SA1 OOOstartOfMicrocode , 8-6
sa1004,2-4
SA 1004pagesPerCylinder, 8-6
5a4000, 2-4
SA4000lastPageOfMicrocode, 8-6
SA4000startOfMicrocode, 8-6
sa4008,2-4
SA4008pagesPerCyi i nder, 8-6
sa800, 2-5
SA800, 8-7
safeRepair, 4-7, 4-8,4-23
SBSOFileType, 4-19
Scan, 8-6
scan line zero, 5-13
Scavenge, 4-7, 4-23, 4-25, 4-26, 5-27
scavenge, 4-1, 4-23, 8-2, B-1

physical volume, 4-6, 4-7
Scavenger, 8-4

DEFINITIONS, 4-22

Pilot Programmer's Manual

ScavengerStatus,. 4-7
Scratch Map, 4-33, 4-35
screenHeight, 5-12,10-15,10-16
screenWidth, 5-12, 5-13,10-15,

10-16
Scroll,5-15
scroll window, 5-14, 5-15
scrollinglnhibitsCursor, 5-15
scrollXQuantum, 5-14
scrollYQuantum, 5-14
SDDivMod, 2-7, 2-8
Seconds, 2-20
SecondsSinceEpoch,2-12
SecondsToTicks, 2-20
SectorLength, 10-18
sectors, 8-5
segment, 4-44

attributes, 4-47
SegmentHandle, 4-46
segmentTooSmall, 4-47
Self Destruct, 2-24,3-19
SendAttention, 3-8
SendAttentionProcedure, 3-17
SendBreak, 5-29, 6-42
SendBreaklliegal,6-38
SendNow, 3-6, 3-7, 3-12, 3-18
SendNowProcedure, 3-17, 3-18
SendReply, 6-5, 6-8, 6-9
SendRequ~st, 6-7, 6-8
SEQUENCE,4-54
sequence, 6-5
sequence packet protocol, 6-2
sequenced, 6-9
sequenced packet protocol, 6-9, 6-19
sequential

access, 3-1
data, 1-7

serialization, 6-61
SerializeParameters, 6-65, 7-12
server, 6-10, 6-46
ServerOff, 10-1
ServerOn, 10-1
ServicesFileType, 4-19
SetAccess, 4-39
SetAutomaticPowerOn, 2-16
SetBackground, 5-13, 10-15, 10-16
SetBackingSize, 5-33
SetBootFiles, 5-27, 5-28
SetBorder, 5-13, 10-15, 10-16
SetChecking, 4-47, 4-54
SetCheckingMDS, 4-54
SetContext, 5-18
SetCursorPattern, 5-14, 10-15
SetCursorPosition, 5-14, 10-15
SetDebugger,8-9
SetDebuggerSuccess, 8-9

SetDefaultOutputSink,7-2
SetDiagnosticLine, 10-12
SetEcho, 5-34, 5-35

. SetExpirationDate, 8-11
SetExpirationDateSuccess, 8-11
SetGetSwitchesSuccess, 8-11
Setlndex,7-12
SetlnputOptions, 3-4,3-15
SetLineType, 6-42
SetLocalTimeParameters, 2-14
SetLocalTimeParameters, 7-11
SetMousePosition, 5-16, 10-15
SetNetworkID,6-27
SetOverflow, 4-57

I

SetParameter, 5-30,5-32,6-39
SetPhysicalVolumeBootFile, 4-8, 8-8
SetPosition, 3-9
setPosition, 3- 17
SetPositionProcedure, 3-17
SetPriority. 2-21,2-29
SetProcessorTime, 8-12
SetRestart, 4-56, 4-59, 9-3
SetRootFile, 5-26
SetRootNode, 4-46

• SetSize, 4-21, 8-14
SetSST, 3-7, 3~7, 3-12
SetSSTProcedure, 3-16
SetState,4-56,5-14
SetSwitches, 8-11,8-12
SetTimeout, 2-15, 2-20
setTimeout, 3-17 .
SetTimeoutProcedure, 3-17
SetUserAbort, 5-33
SetVolumeBootFile, 8-8
SetWaitTime, 6-18
SetWaitTimes, 6-7, 6-8
. shift operations, 2-9
ShortBlock, 3-13, 6-21
Shugart Associates, 2-5
Sides, 5-25
siemens9750,6-28
Signal, 9-4, 9-5
signal,9-3
signal

in-band, 3-8
out-of-band, 3-8
uncaught, 9-1

signalAttention, 3-4,3-7,3-8
signalEndOfStream, 3-4, 3-5,3-7,

3-14
signalEndRecord, 3-4, 3-6, 3-7, 3-12
signalLongBlock, 3-4, 3-7,3-13,3-14
SignalMsg, 9-4, 9-5
SignaIRemoteError,6-58
signalShortBlock, 3-4, 3-7, 3-13, 3-14
signalSSTChange, 3-4, 3-5, 3~7, 3-14

1-19

I

1-20

Index

signalTimeOut. 3-14
signalTimeout. 3-4, 3-7
simple routers, 6-23
single, 1 0-18, 5·17, 5-25
SingfeDouble,10-18
singleLogicalVofume, 4-9
sink,7-2
sixteen-word alignment, 5-3
smooth scrolling, 5-12, 5-14
socket,2-11,6-1,6-15
SocketkNumber,6-1
SocketNumber, 2-10, 7-5
sockets, 6-9

well-known, 2-11
softMicrocode, 4-7, 4-8,8-7,8-8
software channe 1, 5-1, 5-16

example of, 5-1
sound generator, 5-16 .
SP,7-2
space, 4-1

alive, 4-38
dead, 4-38

Space
DEFINInONS, 4-29

space machinery
storage, 4-43

SpaceUsage
DEFINInONS, 4-29

SplitNode, 4-49
SSTChange, 3-5, 3-7, 6-20
sstChange,3-4
Star, 2-31
Star System Keyboard Requirement
Specification, 5·6
stars, 5-34
START,2-19,2-27,2-29,3-19
Start, 6-43
StartEchoUser, 10-2
startEnumeration, 6-24
StartFauft, 2-27
startlndex, 2-2, 2-6, 3-4, 3-5
StartlndexGreaterThanStopl ndexPI
usOne, 2-6
startListHeaderHasBadVersion,

8-9,8-10
State, 4-56, 5~12
stateless enumerator of

active processes, 9-3
definition of, 1-8
floppy bad sectors, 5-27
floppy files, 5-26
log entries, 4-58
log files, 9-5
logical volumes, 4-8, 4-10
physical volumes, 4-9
subvolumes, 8-10

Statslndices. 10-6
Status, 4-13,4-44,4-45,4-47.4-48,

5.18
StatusWait, 5-31, 6-42
stillMapped,4-41
STOP, 2·27
Stop, 6-43
stop, 5-35
Stoplits, 5-30, 5-31, 6·32, 6-36
stopBits, 6-35
stoplndexPlusOne, 2-2, 2-6, 3-4
stopOnError, 10-19
storage allocation

using heaps, 4-1
using zones, 4-1

storageOutOfRange, 4-45,4-47
store, 6-61
store, 6-66
Stream, 6-9

DEFINITIONS, 3-1
stream, 1-7, 1-10

component manager,
3-13,3-18

creation, 3-3, 3-9, 6-11, 6-13, 6-14
delete instances of, 3-19
example of creating, 3-10
full duplex, 3-3
half duplex, 3-3
implementation, 7-12
physical records, 3-2, 3-3, 3-11,

3-12
physical records, maximum, 3-12
positioning, 3-9
SubSequence Type, 6-56
timeouts, 3-9, 3-12, 6-18

STRING, 6-61
string,10-18,4-58
String

DEFINITIONS, 7-5
string body

allocating from a heap, 4-52
String package, 7-2, 7-5, 7-10
StringBody, 6-46, 6-62
StringBoundsFault, 7-6
StringProc, 7-2
StringslmplA.bcd, 7-5,7-10
StringslmpIB.bcd,7-5
StringToDecimal, 7-8
StringToLongNumber, 7-8
StringToNumber, 7-7
StringToOctaf,7-8
stringTooShort, 5-25
style rules, B-2
subscript out of range, 2-27
subsequence type, 3-2
subsequences, 3-2

Pilot Programmer's Manual

SubSequenceType, 3-2. 3-4, 3-5. :3-7.
3-7,3-12,6-19,6-56

SubString, 7-3, 7-6
SubStringDescriptor, 7-3,7-6
SubsystemHandle, 2-32
subsystems, 2-29

clients-first order, 2-29
implementors-first order, 2-29

SubVolume, 8-10
subvolume, 8-10

enumeration of, 8-10
subvolumeHasTooManyBadPages,

4-13
SubVolumeUnknown, 8-10
success, 5-29, 5-30,8-9
Supervisor

DEFINITIONS, 2-29
Supervisor error conditions

recoverable, 2-34
SupervisorEventlndex, 2-31

DEFINITIONS, 2-29
SupervisorImpl.bcd,2-30
suppress duplicate, 6-5
Suspend, 6-40
SuspendReason, 6-14
swap unit; 1-5, 1-6,4-30,4-31,4-32

access, 4-39 -
boundary, 4-31
life, 4-31
size, 4-32, 4-34,4-35

swapping
advice, 4-37
controlled, 4-37
demand, 4-37

SwapReason, 9-4, 9-5
SwapUnitOption, 4-33
SwapUnitType, 4-33
Switches, 2-16, 8-11
switches, 2-16
switches

boot, 2-16
SyncChar, 6-32
syncChar, 6-35
SyncCount, 6-32
syncCount, 6-35
synchronous, 5-22
synchronous operation, 1-5

dermition of, 1-8
of physical devices, 1-5

synchronous procedures
stream,3:'3

System

DEFINITIONS, 2-9
system

logical volume, 4-14
physical volume, 4-14

power. 2-15. 2-16
restart, 2-1 1
volume, 4-11, 8-2, 8-3
zones, 2-17

system6,6-28
systemBootDevice, 2-16
SystemElement, 6-47
systemlD, 4-11
systemMDSZone, 4-49, 4-52
systemZone, 4-49,4-52
t300,2-5
t300IastPageOfMicrocode, 8-6
t300pagesPerCylinder, 8-6
t300pagesPerTrack,8-6
t300startOfMicrocode, 8-6
taO,2-5
tSOlastPageOfMicrocode, 8-6
tSOpagesPerCyl i nder, 8-6
tSOpagesPerTrack, 8-6
tSOstartOfMicrocode, 8-6
TAB,7-2
Table Compiler, 2-26
Tajo, 2-31, 8-2
tBackstopDebuggee, 4-20
tBackstopDebugger, 4-20
tBackstopLog, 4-20
tBootFile,8-13
tByteCnt,10-18
tCarryVolumeDirectory, 4- 20
tCIERH,10-18
tCIERS,1O-18
tCIEVer,10-18
tCIEWDS,10-18
tCIEWS,10-l8
tClearingHouseBackupFile, 4-20
tDirectory, 4-20
teleDebugSocket, 2-12
temporary, 4-22, 4-23
temporary file, 8-10
TemporaryBooting, 8-2, 8-7, 8-13

DEFINITIONS, 8-13
terminateOnEndRecord, 3-4, 3-6,

3-7,3-12,6-20
TestFileType,4-19
TextBlt, 2-6
tFileList, 4-20
tFirst,10-18
tHeadDataErr ,10-18
tHeadDisp,10-l8
tHeadErrDisp,1O-18
Ticks, 2-19, 2-20
ticks, 2-19
TicksToMsec,2-l9
Time

DEFINITIONS, 7-10
time of day , 2-J2

I

1-21

I

1-22

Index

Time package, 7-2, 7-\ 0
time zone parameters, 2-13, 2·14
Timelmpl.bcd,7-10
TimeOut, 3-7, 3-9, 6-12, 6-20
Timeout, 6-7, 6-8, 6-9
timeout, 3-4
timeout, 6-49,6-58
timeout interval, 2-20
timeout resolution, 2-15
TimeServerError, 8-12
TimeServerErrorType, 8-12
timeServerSocket, 2-11
TimeZoneStandard,7-10
tLast, 10-18
tooManyConnedions, 10-1
tooManyEchoUsers, 10-5
TooManyProcesses, 2-20
tooManySubvolumes, 4-13
tooSmaliFile, 4-55
transducer, 1-7,3-1,3-2,3-5,3-9,

3-11,3-13,3-14,3-18,6-9
TransferStatus, 5-29, 6-37
TransferWait, 6-40
transmissionMediumProblem, 10-1
TransmitNow, 6-40
tr~nsport, 6-46
Trident disk, 8-6
Troy, 5-17
truncation, 5-3
tScavengerLog,4-25
tScavengerLogOtherVolume, 4-25
tSectorDisp,10-18
tStatDisp,10-18
tSummErrLog,10-18
TTY

DEFINITIONS, 5-32
TTY Port controller, 5-28
ttyHost, 6-28
TTYPort

DEFINITIONS, 5-28
TTYPortChannel.bcd,5-28
TTYPortEnvironment

DEfiNITIONS, 5-28
tUnassigned, 4-20
tUntypedFile, 4-16,4-17,4-20,8-13
tVerDataErr,10-18
two, 5-25,5-31
two56,10-18
Type, 2-4, 4-3, 4-13, 4-15, 4-18,4-58,

5-26, B-1, B-2, B-3
type code, B-1
TypeSet, 4-14
ubBootServeeSocket, 2-11
ubBootServerSocket, 2-11
ublPCSocket, 2-11
UDDivMod, 2-7, 2-8

UnboundProcedure, 2-27
UNCOUNTED lONE, 4-43, 4-49, 4-52,

6-47
uncounted zone, 2-19, 4-49
undelete, 4-21
UnexportRemoteProgram,

6-49,6-57
uniform, 4-33
uniform swap units, 4-51
UnimplementedFeC'l~ure, 6-38
unimplemented Feature , 10-9
unique address, 6-2
unique network address, 6-18
uniqueConnectionlD, 6-13, 6-18
uniqueConnlD, 6-11, 6-12,6-14
uniqueNetworkAddr, 6-12,6-14
uniqueSocketlD, 2-11
unitary, 4-33
universalidentUUer, 1-10,2-9,8-3

instantaneous rate of creating,
2-10

Universall 0, 2-10, 4-10
Unknown, 4-9, 4-12, 4-13, 4-14, 4-15,

4-16,4-18,4-20,4-21,4-26,4-34,
4-36,4-37,8-8,8-9,8-10,8-11,
8-16,8-17

unknown, 2-24, 2-25, 4-14
unknown network number, 8-13
unknownConnID,6-11
unknownSocketID,2-11
unknownUsage, 4-33
unlimitedSize, 4-50
Unmap, 4-33,4-35,8-14
UnmapAt, 4-41, 4-42
unmapped storage, 4-42
unmarshalling,6-61
UnNew, 2-24,2-24,3-19
UnNewConfig,2-25
unnoted, 6-64, 6-65
Unpack, 7-11
Unpacked, 7-10,7-11
unreadable, 4-25, 4-27
unreadable page, 4-25, 4:-27
unrecoverable error, 4-32
unusable pages, 8-4
unused,9-3
UNWIND, 2-34
up, 2-16
UpDown, 2-16
UpDown[up],8-11
UpperCase, 7-6
Usage, 4-33
useGMT,7-11
user, 6-46
UserAbort, 5-33
UserTerminal

Pilot Programmer's Manual

DEFINITIONS, 5-12
UserTerminalExtras

DEFINITIONS, 5-12
useSystem, 7-11
utility Pilot, 1-2, 1-5,2-14,2-16,4-2,

4-15,8-1,8-3,8-4,8-5,8-9,8-12,
0-1

compared to Pilot, 0-1
UtilityPilotKernel.bcd, 1-2,8-1,0-1
VaJidateFrame, 2-23
ValidateGJobalFrame, 2-23
ValidateProcess, 2-18
VersatecFileType, 4-19
Version Mismatch, 2-24, 2-25, 6-50,

6-57,9-2
VersionRange, 6-48, 6-50
virtual address

LONG NIL, 2-28
NIL,2-28

virtual memory, 1-5, 1-10
organization, 4-29
page, highest numbered, 2-2
size, 1-5

virtualMemory, 4-40
VM man~ger, 2-17
VMMapLogImpl.bcd,9-1
VoidPhysicalVol umeBootFi Ie, 8-9
VoidVolumeBootFile, 8-9
Volume

DEFINITIONS, 4-10
volume, 1-5, 1-6,4-1,4-17

initialization, 4-11, 8-3
local,1-6
logical, 4-1
physical, 4-1
type, 8-4, 8-9

Volume, 8-4
VolumeHandJe, 5-21
VolumelD, 2-10, 4-10
VolumeLocation, 8-16
VolumeNotClosed, 8-10, 8-11
volumeNotOpen, 5-22
volumeOpen, 4-23
VoJumeType, 4-4
WAIT, 2-15,2-19,2-20,2-22
wait, 4-35
WaitAttentionProcedure, 3-17
WaitForAttention, 3-8, 3-19
WaitForKeyTransition, 10-15
WaitForRequest, 6-5,6-8
WaitForScanLine, 5-13
WaitTime, 6-5, 6-10
waitTime, 6-7
warning, 4-56
well known exchange types, 6-4
well-known socket, 6-2, 6-66

west,2·13
WestEast, 2-13
white, 5-13,10-14
Window, 4-32
window, 4-30, 4-32, 4-33

I

actual window length, 4-32, 4-33
data window, 4-34, 4-35
file window, 4-34
length, 4-34
overlapping, 4-34

Word, 2-1,3-6
word alignment, 2-35, 5-3
WordsForString, 7-6
WordslnPacket, 10-6
wordsPerPage, 2-2, 4-29, 4-30
working set, A-I
wrap, 4-57
Write, 5-22, 5-23, 5-24
write-protect fault, 4-30, 5-23
WriteOeletedSectors, 5-19
writelnhibited, 5-22, 5-23
WriteMsg, 10-12
writeProtected,4-3
WriteProtectFault, 4-45, 9-1
writeprotectfault, 9-3
WriteSectors, 5-19
wrong Format, 4-3
wrongSeal,4-45
wrongVersion, 4-45
x860ToFileServer, 2-11
Xerox Internet Transport Protocols,

1-6
xerox800, 6-28
xerox850, 6-28
xerox860, 6-28
xQuantumError, 5-15
yOispExpObsOata,10-18
yOispSects, 1 0-18
yOoor JustOpened, 1 0- 18
yOoorOpenNow,10-18
yOoorOpenShut, 10-18
yes, 10-20
YesOrNo; 10-20
yFirst,10-18
Yield,2-22
ylsltOiagOisk,10-18
ylsltWrProt,10-18
yLast,10-18
yQuantumError, 5-15
yStillContinue,10-18
yStiIlSure,10-18
ZeroOivisor, 2-7,2-28
zeroSizeFile, 5-26
Zone

DEFINITIONS, 4-44
zone, 4-1, 4-43

[-23

I

1-24

Index

tiled, 4-45. 4-46
recreating, 4-44
root node, 4-46
sizes. 4-44
wrong version, 4-45

zoneTooSmall, 4~45

