
Inter-Office Memorandum

To Distdbution Date 9 August 71

From Jim White Location Palo Alto

Subject Mail Update to Mesa FTP Specification Organization SDD/SO/es

XEROX
XEtaX SDD ARCHIVES

I have read and undelstood

Filed on: <White)UFTPPackage.Ears Pages ______ ---To ------------
Reviewer ________ - Date--------

of Pages Ref 't115>OD~!>co

Introduction

This memo updates the interface specification for the mail portion of the Mesa FTP
Package proposed in the author's memo, "Mesa FTP Specification", dated 15 June 77. This
new interface specification corresponds to the new Mail Transfer Protocol specification
contained in Ed Taft's memo, "Pup Mail Transfer Protocol (Edition 3)", dated 13 July 77.

Already Proposed Support Procedures

The mail application requires certain general purpose program management, connection
management. and file access procedures already proposed for FTP. These procedures are
enumerated below; the reader is referred to the complete Mesa FTP specification for a
detailed description of their use:

FTPMukeUser: PROCEDURE RETURNS [ftpuser: FTPUser];

Fl'POpenConnection: PROCEDURE [ftpuser: FTPUser, host: STRING, purpose: Purpose];

Purpose: TYPE = {files. mail, filesandmail};

FTPSetAccessibleDirectory: PROCEDURE [ftpuser: FTPUser, directoryid: Directoryld, directory,
password: STRING];

Directoryld: TYPE = {primary, secondary};

FTPCloseConnection: PROCEDURE [ftpuser: FTPUser];

FTPDestroyUser: PROCED.URE [ftpuser: FTPUser];

Newly Proposed Mail Procedures

The FTP Package provides procedures for delivering or forwarding mail to and extracting
mail from remote mailboxes. Rather than signalling the presence of exceptional condilions,
each of these procedures returns a numeric error code as one of its results. (Note that the
Sl.lpport procedures described above, on the other hand, signal when exceptional conditions
arise.) The following error codes are currently defined:

Mail Update to Mesa FTP Specification

MailErrorCode: TYPE = {ok, noValidRecipients, noDiskSpace, noSuchMailbox. accessDcnied,
noMoreMessages, noMoreBlocks}:

Mail Delivery

2

The FrP Package provides three procedures for delivering or forwarding mail to remote
mailboxes. The use of these procedures is illustrated by the following slice of Mesa code:

mailbox1. to [next: @mailbox2. mailboxName: "Wegbreit", mailboxHostName: "Maxc2'", dmsName:
"Wegbreit.Palo Alto", errorCode: ok, errorMessage: NIL];

mailbox2 to [next: NIL, mailboxName: "Brotz", mailboxHostName: NIL, dmsName: NIL. errorCode: ok,
errorMessage: NIL]:
errorCode .. FTPBeginDeliveryOfMessage[ftpuser. @mailbox1, AllocateHeapString];
IF errorCode = ok THEN errorCode .. FTPSendBlockOfMessage[ftpuser.

LOOPHOLE[messageHeader, POINTER]+2, messageHeader.length]:
IF errorCode = ok THEN errorCode .. FTPSendBlockOfMessage[ftpuser.

LOOPHOLE[messageBody. POINTER] +2, messageBody.length];
IF errorCode :: ok THEN errorCode .. FTPEndDeliveryOfMessage[ftpuser];
mailbox .. @mailbox1;
WHILE mailbox # NIL DO

IF mailbox.errorCode # ok THEN SIGNAL MailboxException[mailbox]:
mailbox .. mailbox.next;
ENDLOOP;

IF errorCode # ok THEN ERROR DeliveryError[errorCode]:

The first procedure, FTPBeginDeliveryOfMessage. initiates the delivery and/or forwarding
of a message by.enumerating its intended recipients via a linked Jist, mailboxUst. In the
simpler case, called delivery, in which a recipient's mailbox resides on the connected host (a
case which the procedure distinguishes by finding mailboxHostName set to NIL), the
corresponding list element need contain only a pointer, next, to the next element in the list
(NIL signalling the end of the list) and the host-specific name, mailboxName, of the remote
mailbox to which a copy of the message is to be appended. In the more complex case, called
forwarding, in which a recipient's mailbox resides on a third host (a case which not all hosts
will support), the corresponding list element must also contain the name, mailboxHoslName,
of the target host and (optionally) the full dmsName of the target mailbox (which the
forwarder may be able to use to locate the recipient if he is found to have moved):

FTPBeginDeliveryOfMessage: PROCEDURE [ftpuser: FTPUser. mailboxUst: MailboxPlr,
allocate String: PROCEDURE [INTEGER] RETURNS [STRING]] RETURNS [mailErrorCode:
MailErrorCode]:

MailboxPtr: TYPE = POINTER TO Mailbox;

Mailbox: TYPE = RECORD [next: MailboxPtr. mailboxNarne, mailboxHostName. dmsName:
STRING, errorCode: ErrorCode, errorMessage: STRING];

ErrorCode: TYPE = {Ok, noSuchMailbox, noSuchMailboxHost. noSuchDmsName,
noForwardingProvided, unspecifiedTransientError. unspecifiedPermanentError.
unspecifiedError 1:

Delivery of the message succeeds or fails for each of its intended recipients independently.
Either FTPBegillDeliveryOjMessage or the FTPEndDeliveryOjMessage procedure described
below may report the failure of an individual delivery attempt by despositing in the
appropriate list element a numeric errorCode intended for examination by the client (ok
signalling successful delivery, but only tentatively until' FTPEndDeliveryOjll4essage has
returned) and, if errorCode is one of the three having the form unspecified ... Error, a
textual error Message intended for examination by a human user. Storage for any error
messages that may be returned is allocated via the al/ocaleString procedure provided by the
client. which assumes responsibility for releasing the storage.

Mail Update to ·Mesa FTP Specification 3

The second procedure, FTPSendBlockOjMessage, specifies a portion of the text of the
message and is called repetitively once the message's recipients have been identified via
FTPBeginDeliveryOjMessage. Successive calls specify the location in the client's address
space, source, and the length in bytes, byteCount, of successive blocks of text. The text of
the message must include a message header conforming to ARPANET standards, the current
unofficial standard being set forth in RFC 680, "Message Transmission Protocol", dated 15
May 75. Throughout the message, end of line is indicated via a carriage return (CR):

FTPSendBlockOfMessage: PROCEDURE [ftpuser: FTPUser, source: POINTER, bytcCount:
CARDINAL] RETURNS [maiIErrorCode: MaiIErrorCode];

The third procedure, FTPEndDeliveryOjMessage, signals the end of the sequence of calls ·to
FTPSendBlockOjA.fessage and, therefore, of the message's text, and effects the message's
delivery and/or enqueues the message for forwarding:

FTPEndDeliveryOfMessage: PROCEDURE [ftpuser: FTPUser] RETURNS [maiIErrorCode:
MailErrorCode];

Like the FTPBeginDeliveryOjMessage procedure already described,
FTPEndDeliveryOjMessage reports its failure to deliver the message to one of its intended
recipients by despositing in the corresponding element of the recipient list supplied to
FTPBeginDeliveryOfMessage, a numeric errorCode intended for examination by the client
(ok here signalling successful delivery with finality) and, if errorCode is one of the three
having the form unspecijied ..• Error, a textual errorMessage intended for examination by a
human user. Storage for any error messages that may be returned is again allocated via the
allocateString procedure provided by the client, which assumes responsibility for releasing
the storage.

Mail Retrieval

The FIP Package provides four procedures for emptying a remote mailbox. The use of
these procedures is illustrated by the following slice of Mesa code:

errorCode .. FTPBeginRetrievalOfMessages[ftpuser, "Brotz"];
IF errorCode # ok THEN ERROR RetrievaIError[errorCode];
UNTIL errorCode = noMoreMessages DO

errorCode <- FTPldentifyNextMessage[ftpuser. @messagelnfo];
SELECT errorCode FROM

ok =>
BEGIN -- begin processing ·of new message
UNTIL errorCode = noMoreBlocks DO

[errorCode. block.length] .. FTPRetrieveBlockOfMess3ge[ftpuser.
LOOPHOLE[block, POINTER]+ 2, block.maxlength];

SELECT errorCode FROM
ok =>

BEGIN -- begin processing of new block
END: -- complete processing of new block

noMoreBlocks = > NULL;
ENDCASE => ERROR RetrievaIError[errorCode];

ENDLOOP;
END; -- complete processing of new message

noMoroMessages = > NULL;
ENDCASE => ERROR RetrievalError[errorCode];

ENDLOOP;
errorCode •. FTPEndRetrievaIOfMessuges[flpuser];
IF errorCode # ok THEN ERROR RetrievaIError[crrorCode];

·The first procedure. FTPBeginRetrievalOfMessages, initiates retrieval of the contents of the
remotemailboxwhosehost-specificname.mailboxName. is specified:

FTPBeginRetrievulOfMessuges: PROCEDURE [ftpuser: FTPUser. mailboxName: STRING] RETURNS
[maiIErrorCode: MailErrorCode 1; .

Mail Update to Mesa FTP Specification 4

The second procedure, FTPldentifyNextMessage, retrieves information about one of the
messages in the mailbox specified in the previous call to FTPBeginRetrievalOfMessages.
This procedure is called repetitively until the error code, noMoreMessages, is returned.
Successive calls return information about successive messages stored in the mailbox. (The
client may elect to leave some or all of the mailbox's contents unretricved. in which case
whatever remains will be sent by the remote FTP Server but discarded by the local FTP User
in the final call to FTPEndRetrievalOfMessages.) The information returned by the
procedure is deposited in a record. messagelnfo, supplied by the client. and consists of the
messsage's size in bytes, byteCount; the date and time. deliveryDate. at which the message
was deposited in the mailbox (the required STRING being supplied by the client); and
whether or not the message has been opened (i.e. examined) or deleted while in the mailbox
(a possibility only for Maxc mailboxes, which can be manipulated directly via the MSG
subsystem):

FTPldentifyNextMessage: PROCEDURE [ftpuser: FTPUser, messagelnfo: POINTER TO Messagelnfo
] RETURNS [mailErrorCode: MailErrorCode];

Messagelnfo: TYPE = RECORD [byteCount: CARDINAL, deliveryDate: STRING, opened,
deleted: BOOLEAN];

The third procedure. FTPRetrieveBlockOfMessage, retrieves a portion of the text of the
message identified by the previous call to FTPldentifyNexl Message. This procedure is
called repetitively until the error code, 110M oreBlocks, is returned. Successive calls return
successive blocks of the message. (The client may elect to leave some or all of the message's
text unretrieved, in which case whatever remains will be scnt by the remote FrP Server but
discarded by the local FTP User in the next call to FTPldenlifyNexIMessage.) (Note that
the client can anticipate floM oreBlocks on the basis of the byte count returned by
FTPldentifyNextMessage.) The text returned by the procedure is deposited in the buffer
whose location in the client's address space, destination, and whose length in bytes,
maxByteCount. are specified by the client. The procedure returns the length in bytes.
actualByteCount, of the block of text actually retrieved (which may be shorter than the
block requested). The text of the message includes a message header conforming to
ARPANET standards, the current unofficial standard being set forth in RFC 680, "Message
Transmission Protocol", dated 15 May 75. Throughout the message, end of line is indicated
via a carriage return (CR):

Fl'PRetrieveBlockOfMessage: PROCEDURE [ftpuser: FTPUser, destination: POINTER.
maxByteCount: CARDINAL] RETURNS [mailErrorCode: MailErrorCode, actualByteCount: CARDINAL];

The fourth procedure. FFPEfldRetrie~·a/OfMessages. terminates the retrieval operation and
resets the mailbox to empty. fTPBeginRetrievalOfMessages and
fTPEndRelrievalOfMessages are implemented in such a way that no new messages are lost
during the retrieval transaction:

FTPEnciRetrievalOfMessages: PROCEDURE [ftpuser: FTPUser] RETURNS [mailErrorCode:
MaiIErrorCode];

Distribution:

David Boggs
Roger Necdham
Ed Satterthwaite
Mike Schroeder
Dan Swinehart
Ed Taft
Ben Wegbrcit

Mail Update to Mesa FTI) Specification 5

SOD/SO/es

