
To: 

From: 

Subject: 

Stored: 

XEROX 
INFORMATION I)RODUCI'S GROUP 

Systems Development Division 
July 19, 1977 6:33 PM 

XEROX SDD ARCHIVES 
1 have read and understood 

pages ____ -----To---------
Pup and FrP Package Users Reviewer _Date----

Hal Murray, x4539 
., of Pages Re! .. :11 <:>() p - 2 '1 ~ 

How to get at the Pup and FrP Packages 

<Murray>PupFrP.Bravo 

Everything needed to interface to the Pup Package in defined in PupDefs. The FrP package 
interface is defined in FrPDefs. Both packages also reference MesaDefs, and SysDefs. If' 
you are looking for some simple examples, the Mesa PupTest package (probably in 
<Murray>Pt.DM) is probably a good place to start. The NameLookup module (in the Pup 
Package) also has a nice example of how to use the Socket level interface. Snarf.mesa is a 
simple FrP example. 

The Pup Package and optionally the FrP Package comes preloaded as an appendage to the 
Mesa runtime routines. This makes a fat image file if all the symbols are included for 
debugging, but you can discard your M esa.i mage. A Statistics package, and a window 
manager modified to use our secheduler is also available as an option. I will brew up an 
image file with the desired options when you need it. You can also make a disk that has all 
of the sources and xm's, and use it to build your own image file. Everything just barely fits 
on one disk, but you will probably have to delete the Compiler when you are finally ready 
to make your image file. 

You can't BIND to any of the pup routines because we have fixed up the binding path to hide 
everything except a tiny interface module. This makes binding to the system faster. The 
interface module is called Coolie - be sure to get Coolie.xm if you are getting an image file 
without symbols. The actual routines in the Pup Package and the FrP Package are 
referenced via two giant dispatch vectors. There is a third vector that the Pup Package and 
the FTP Package use to interface to the Mesa Runtime routines. It avoids binding, and can 
readily be used by other programs. I will add things to the giant mesa vector if there is 
something you need that isn't already there. The vectors live in file segments so they don't 
even use any core when not being used. 



There are routines (on the binding path) that return pointers to the needed dispatch records. 
Normally, a manager would pass these pointers to other modules at NEW time where they 
would be OPENed on the module BEGIN. 

GetMesaVector: PROCEDURE RETURNS [MesaDefs.MesaFacilitiesHandle]i 
GetStatsVector: PROCEDURE RETURNS [SysDefs.Statslnterface]; 
GetPupVector: PROCEDURE RETURNS [PupDefs.Puplnterface]; 
GetFTPVector: PROCEDURE RETURNS [FTPDefs.FTPFacilitiesHandle]; 

NB: the mesa slots in the Pup vector, and the Mesa and the Puplnterface slot in the FrP 
vector don't get setup until PupPackageMake or FTPPackageMake is called, so don't use 
either too early if you have caJled GetPupVector or GetFTPVector - call GetMesaVector if 
you need the mesa vector. 

NormaJly, the Pup Package includes a statistics gathering section and some debugging aids. 
They can be supressed (by setting doStats in SysDefs to FALSE and recompiling the world) if 
core space is more important GetStatsVector and GetFTPVector will generate some 
obnoxious ERROR if their option hasn't been loaded up. A WindowManager that has been 
modified to use our scheduler also comes as an option in case you need one. (RunUser, an 
FrP user interface program needs it) 

PupPackageMake: PROCEDURE RETURNS [Puplnterface]; 
PupPackageDestroy: PROCEDURE; 

> , 

PupPackageMake increments a use counter, and if it was zero, calls GetPupVector and 
GetMesaVector, builds some internal tables, allocates the pool of free packet buffers, locks 
some code into core, and turns on the Ethernet hardware interface. (A copy of 
PupPackageMake lives in a place where the binder will find it) PupPackageMake must be 
caJled before any other routines (except GetPupVector) in the Pup Package. 
PupPackageDestroy decrements the use counter, an if it goes to zero, it undoes everything 
that PupPackageMake did, returning all the core that the Pup Package allocates. It does not 

destroy any sockets, PktStreams or ByteStreams left dangling. NB: The pointer returned by 
PupPackageMake is not valid after PupPackageDestroy has been called - beware of dangling 
references. If you need a pointer that will remain valid, call GetPupVector. 

FTPPackageMake: PROCEDURE RETURNS [FTPlnterface]; 
FTPPackageDestroy: PROCEDURE; 

FTPPackageMake increments a use counter, and if it was zero, calls Pup Package Make and 
builds some internal tables. (A copy of FTPPackageMake lives in a place where the binder 
will find it.) FTPPackageMake must be called before any other routines in the FrP 
Package. FTPPackageDestroy decrements the use counter, an if it goes to zero, it undoes 
everything that FTPPackageMake did, returning all the core that the FrP Package allocates. 

It does not destroy any listeners, servers, or users left dangling. NB: The pointer returned 

2 



by FTPPackageMake is not valid after FTPPackageDestroy has been called - beware of 
dangling references. If you need a pointer that wi1l remain valid. call GetFTPVector. 

There are two ways to get at either the Pup Package or the FrP Package. One: get a pointer 
to the interface vector. probably by calling GetPupVector during your initialization code. 
and keep the vector locked in core. In this case. a manager could pass the vector to other 
modules at NEW time where they would be oPENed on the module BEGIN. Then. the worker 
programs would be written just like they had opened a defs file. If the Pup Package is on 
all the time, this doesn't cost any core. Two: don't lock the vector until you need it In this 
case, you have to be sure that all copies of the pointer are updated if it has been passed 
around. This mode is appropiate for programs that are trying to conserve core, and only 
reference the Pup Package or FTP Package from a single module, and run most of the time 
with the Pup Package turned off. 

There is one more interesting routine on the BINDing path. 

SetSandBarOK: PROCEDURE [BOOLEAN]; 

When the file segment used to store the giant PupVector is brought into core, it might wind 
up in the middle of the only remaining "large" block that is left. To avoid fragmenting 
core, the Pup Package normal1y flushes all the code before bringing in the PupVector. If 
you don't like the disk rattling, and won't be bothered by core fragmentation, can 
SetSandBarOK[TRUE] to suppress swapping out al1 of the code modules. The same flag and 
mechanisim are used when locking the Ethernet driver code in core (by PupPackageMake) 
and for the FTPVector. 



SCHEDULER 

The Pup Package runs under a nonpreemptive scheduler. If you don't have one, we supply a 
nice simple one. The only primitives needed are ScheduleeCreate and ScheduleeVields. 
(Destroy is implemented by returning to the scheduler.) If you want to supply your own 
scheduler, just store your own procedures into the ScheduleeCreate and ScheduleeVields 
slots into the pup vector before calling PupPackageMake. When the Pup Package needs to 
wait for an external event it calls ScheduleeVields. There are several hidden processes 
needed by the Pup Package. They must be run every now and then, so user programs should 
also yield artifically during extend periods of computing. Things should be ok if all the non 
pup processes taken as a group run for 112 second or so. 

Packets will be lost if interrupts are disabled for too long. Currently, code swapping and 
scrolling the display (BITBLT) are both done with interrupts disabled. At full speed, about 
14 packets are lost while a normal sized mesa display gets scrolled up one line. Except for 
performance considerations, this shouldn't make any noticable effect. Both PktStream and 
ByteStream modes will recover by retransmiting. 

NB: Don't call any of the get routines from two different processes for the same 
connection at the same time. It probably doesn't make sense, and we don't know what will 
happen. Crashes and/or screwups are possible. Similarly, don't try to put to one connection 
from two different processes at the same time. One process getting, and another putting is 
ok. Also, beware that some other process isn't doing a get or put when you destroy a 
connection. 

If you are going to use the keyboard, you will probably want to call 
SetidleProc[ScheduleeVields] so that the scheduler will continue to run other processes 
while one is waiting for the user to kit a key. You will probably have to qualify 
ScheduleeVields to get it out of the PupVector. If you need to get at ScheduleeVields from 
a program that uses the FTP Package, but don't otherwise need the PupVector, PupInterface 
in the FTPVector can be used after calling FTPPackageMake. 

4 



OTHER GOODIES IN PupInterface 

There are several other variables in the PupInterface record that may be of interest to users. 

myHost: INTEGER; 

myNetwork: INTEGER; 

This is simply the address of the local machine. Note that myNetwork will be zero if there 
arn't any gateways up, or the system is running in the local mode. 

bufferPoolSize: INTEGER, -- default is 10 
stormy: BOOLEAN; 

showit: BOOLEAN; 

localOnly: BOOLEAN; 

bufferPoolSize is the number of buffers to allocate when PupPackageMake is called. The 
default of 10 is reasonable for one active connection, or a few if you don't mind occasional 
interference. It should work with as few as 5 buffers if you don't mind poor performance. 
stormy controls a debugging aid. If TRUE, lightning will strike various packets, and they 
won't get delivered. Normally, this is uninteresting, but if you are accessing the Pup Package 
at the socket level, this will allow you to debug retransmission procedures on a single 
machine. showit activates a routine that prints the header of every packet. Its very verbose 
and slow, but sometimes helps to find out what is really happening. (It probably won't work 
in some of the special shunts.) localOnly is a debugging aid to make things reproducible. If 
is it set before caIling PupPackageMake, then the Ethernet interface won't be turned on. 
This prevents gateway packets from introducing any perturbations, so core clobbering bugs 
can be tracked down systematically. (It also prevents you from communicating with any 
other machines, but you can talk to other processes on the same machine.) 

5 


