
Inter-Office Memorandum

To Bill Lynch

From Hugh C. Lauer

Subject A Simple Message-Passing
Facility for Pilot

XEROX

Filed on: <Lauer)SendMessage.memo

Date July 15, 1977

Location Palo Alto

Organi~tion SOD/SO

XEROX SDD ARCHIVES
I have read and understood

Pages _________ To _________ _

Reviewer Date ----
I: of Pages ___ .Ref., ," I ':.,r. 1 I~, "

At your request, I have prepared this memo outlining a streamlined version of a process and
message mechanism based on the philosophy of Chapter 2 of the current Pilot Functional
Specifications. The scheme described here should only be considered if the
recommendations of the Process Working Group are rejected, and then only after it has
been subjected to a careful technical scrutiny itself. The ground rule which I have followed
is that the scheme is to be implementable within the existing specifications of the Mesa
Language and DO Principles of Operations -- i.e., no changes to the compiler or microcode
are to be contemplated. For purposes of this presentation, I have deliberatedly changed all
terminology, both to be more consistent with generally accepted terminology of computer
science and to avoid confusing concepts described here with similar but not identical ones
in previous documents about Pilot.

The mechanism and interfaces described here represent a very basic set of process
communication facilities. It is hard to tell at this time whether or not a careful
implementation of these will impose an excessive amount of overhead on Pilot or its
applications (although that overhead will clearly be orders of magnitude greater than if
similar facilities were implemented in. Mesa and/or microcode). If it is felt that these
facilities are not sufficient and that additional mechanisms must be added to cater for
various special cases, then the whole scheme is likely to get out of hand very quickly,
requiring both excessive space and excessive time to execute its basic functions. Thus, I
have resisted the temptation to add extra functionality and virtual flexibility and have
instead concentrated on identifying the style of system design for which this mechanism is
most appropriate.

The Basic Mechanism

This scheme is a message-passing facility. All communication and synchronization among
processes in the system is done by passing messages. The mechanism assumes the existance
of a Ready Queue of processes (or its equivalent) ordered by priority. The processor is
always allocated to the process at the top of this queue. The message-handling operations
manipulate this queue as a side effect, thus providing the scheduling function at the
microscopic level. I do not expect that scheduling at the macroscopic level will be required for any of our
applications; but if it is, It would be provided by a process which could manIpulate the Ready Quelle
explicitly. The implementation is expected to provide buffers in which messages are
constructed, stored, and queued; this decouples the management of messages from the
management of memory and the swapping of the code and data of processes.

Simple Message-Passing System 2

Data Types

The format of a message is a fixed number of words (say, four) of unspecified type. All
message will be constructed from and interpreted as other Mesa data types by means of
loopholes.

Message: TYPE = RECORD[UNSPECIFIED, UNSI)ECIFIED, 0 0 0];

The mechanism provides a means of sending a message to a destination and optionally,
waiting for a reply to that particular message. In order to be able to identify messages for
the purpose of sorting out their replies, the following type is introduced. Objects of this
type are used by processes which originate messages.

Messageld: TYPE = PRIV ATE 0 0 0 ;

By symmetry, the mechanism provides a means for a process to receive arbitrary messages.
Such a process will operate upon the contents of a message and may choose to reply. In
order to permit that process to reply to the originator of the message without imposing on
it the burden of keeping track of who or where that originator is, the following type is
introduced.

MessageHandle: TYPE = PRIVATE RECORD[sender: Processld, msg: MessageId,
.•.]; -- or something equivalent

The type ProcessId .is strictly internal to the Pilot message-handling facility and will not be
available to any process. Instead, processes communicate over channels, which identify not
only the destination process but a port which is associated with the 'kind' of message or
service being requested. Thus, the following types are defined.

Processld: PRIVATE TYPE = • 0 • ;

PortNumber: TYPE = [0 .. MaxllortNumber];
-- 15 seems reasonable for MaxPortNumber

Channel: TYPE = PRIVATE RECORD[server: ProcessId, port: PortNumber];

Message-Handling Operations

There are four basic message-handling operations provided by this scheme: Send Message,
WaitForMessage, Send Reply, and AwaitReply. The system will maintain for each process a
queue of messages sent to it but not yet read or received by it. These queues are maintained
in FIFO order. The operations cause messages to be added to or deleted from the the
appropriate queues; they have the added side effect of relinquishing the processor if
necessary. In order to prevent a run-away process from clogging the system resource used
for implementing message buffers, each process is assigned a limit of the number of
outstanding messages which can be attributed to it. A message is attributed to a process if
either it was originated by that process via Send Message or it is a reply to a message
previously attributed to it. A process may send at most one reply to allY message it receives.

SendMessage: PROCEDUUE[msg: Message, destiuation: Channel]
RETUHNS[Mcssageld];

This procedure causes the message represented by the first parameter to be queued on the
destination process and port identified by the second parameter. If the destination process
is waiting for slich a message, it is inserted in the Ready Queue; if it is of higher priority
the originating process, the processor is relinquished. The value returned from this

Simple Message-Passing System 3

operation is used only as a parameter to AwaitRcply.

WaitForMessage: I'ROCEDURE[SET OF J>ortNumber] RETURNS[h:
MessageHandle, p: PortNumber, 01: Message];

This operation is the means by which a process waits for an arbitrary message on any of the
ports specified by the parameter. If no messages are queued, the processor is relinquished
to the next process on the Ready Queue. If such a message is queued, the first one is
returned along with its PortNIJmber and a handle through which a reply can be sent.

Send Reply: J>ROCEDURE[h: MessageHandle, reply: Message];

This procedure is the means of replying to a particular message. The destination of the
reply is the process which sent the original message identified by the first parameter. If
that process is waiting for this particular reply, it is inserted in the Ready Queue; if it is of
higher priority, the processor is relinquished to it. Otherwise the reply is queued.

AwaitReply: I'ROCEDURE[Messageld] RETURNS[reply: Message];

This operation is the means by which a process wait') for a reply to a particular message. If
the reply has already been queued, then it is returned. Otherwise the processor is
relinquished to the next process of the Ready Queue.

These operations can generate several possible signals or errors in response to bad
parameters; these will not be listed in this memo. However, two other signals are
particularly relevant:

TooManyMessages: SIGNAL;

ReplyNotJ>ermittcd: ERROR;

The first of these is generated by SendMessage if the process has too many messages already
attributed to it. The second is generated by SendReply if a reply has already been issued to
the particular message. A little more control can be imposed and the implementation can be simplified if
Channel is geven another attribute, namdy a Boolean indicating whether or not a reply is required to any
message transmitted over that channel. In this case, a message received by a process (via WaitForMessllgc) but
not yet answered would be attributed to that process. The signal TooManyMcssagcs could then al50 be
generated if a process tried to wait for more messages without first replYlJlg to some in hand. Similarly.
RcplyNotl'ermitted would be generated by AwaitReply or SendRcply if either were applied to a Mesr.ageld for
which no reply was required.

Creating Processes

In order to create a new process, several things must be provided. First, a configuration file
which contains the Mesa Object code is required. It is proposed that this be the BCD file
output by the new binder. Each process will require its own file, and bindIng of processes
together in advance is not feasible. Second, an MDS must be provided for the process to
execute in. We witt assume that this is a Space in the sense of my memo on a streamlined
memory management system « Lauer)memory.memo), however the exact nature of this is
not important to this discussion. Third, the new process must be provided with a means of
communication in order to get started. Since we are working within the existing constraints
of Mesa, no binding facilities are available to associate channels with ports at compile or
binding time (see (Lauer)MessageSystem.memo) and thus this mllst be done at run-time in
long-hand by each process using this communication means. Finally, we also need to
specify a priority and a limit on the number of messages which can be attributed to this
process; both of these numbers will remain static throughout the life of the process. The
following procedure ·creates a new process.

Simple Message-Passing System

Create Process: PROCEDURE[configuration: FileCapability, MDS: SpaceHandle,
interface: Channel, priority: CARDINAL, messageLimit: CARDINAL];

4

There are no constraints on the relation between the priority of the creating process and the
created one. The created process is immediately entered into the Ready Queue, and if it is
of higher priority, the processor is relinquished to it. If the MDS parameter is defaulted,
the new process is added to the mds of the creating process. The interface parameter is a
channel which is intended to be used for exporting to the outside world the channels
implemented by this process and importing from it the channels needed by this process.

channel: PROCEDURE[PortNumber] RETURNS[Channel];

This procedure is the means by which a process generates the channels which it exports.

Stylistic Considerations

The message-passing scheme of this memo is best suited to a restricted kind of system,
namely one in which processes are few in number and relatively static. Thus CreateProcess
can afford to be fairly slow and cumbersome and do both the loading of Mesa object code
as well as setting up the process in the Ready Queue; it should be called primarily (or only)
at system configuration time. There is no operation to delete a process because this rarely
or never needs to be done. (These two operations in the message-passing system are analogous to the
Mesa NEW and DeleteGlobalFrame operations; neither is expected to be called very often in the production
environment, if at all. See my memos on <Lauer>Duality.ears and <Lauer>MessageSystem.ears.) The typical
system organization for our model has a process associated (statically) with each system
resource, a few others for special 'background' functions and a small fixed number of
processes to implement the applications. The total number of processes in the system is of
the order of a dozen or two. Priorities are assigned to processes at the time of creation to
reflect the timing constraints of the functions they support, and these remain fixed.

Messages, by contrast, are lightweight objects; they can be created often, rapidly, and with
ease. They are used in lieu of the lightweight processes of procedure-oriented systems to
encapsulate asynchronous activity, to represent trainsient situations, and even to encode the
state of application transactions. Processes stay in static environments, while messages fly
around the system from process to process. requesting service of the various resources.

In general, a process is set up so that all messages on a particular port mean the same thing
or represent the same kind of request. For example, a file server process may have one port
for creating files, another for reading them. If we were in the strongly-typed environment
of Mesa, we would use procedures for this purpose and have full type-checking on
parameter lists. Unfortunately, our ground rule prevents us from modifying Mesa to take
advantage of type-checking on messages. Thus, the typical use of the message-handling
facilities should be encapsulated in modules which present a procedural interface and use
loopholes to transform the structured, typed, parameter lists into untyped messages and
replies. It is unwise to design systems or applications programs with direct calls upon
Send Message, for example, scattered about the code.

This style of system design does not readily support data shared among processes. It is
much easier to organize things so that a 'shared' data resource is 'owned' by a particular
process and is updated and accessed only as a result of messages to that process. For data
objects which do need to be accessed by more than one process (such as application data
structures in certain cases), it is better to arrange it so that only one process at a time has
knowledge of each object. This requires a very strict discipline controlling the naming and
accessing of such objects. For example, one successful method is to store pointers to these
things only in messages, with the constraint that a pointer to a given object may not appear
on more than one message at a tirne. All references to an object are then indirect through
messages. This automatically guarantees that only one process at a time knows about an

Simple Message-Passing System 5

object and that it 'forgets' about it as soon as the message is answered or deleted.

The facilities to wait for messages and replies thus provide all the synchronization required
for designing the operating system, common software, and applications. Nothing
resembling monitors, semaphores, or locks is needed or contemplated. In particular, the
hardware instructions for blocking and waking up processes and for manipulati.Qg the

• wakeup count should not be used anywhere except within the message-handling procedures
themselves (and also the procedures which queue 10CB's onto Controller Status Blocks -- these are
effectively operations which 'send messages' to 110 devices to control their activity).

Since processes in this model are fairly static, so should the interfaces between them be
static. Each process defines its own ports -- i.e., the classifications of messages it is willing
to accept -- then 'exports' these in the form Channels to other processes. Similarly, it must
'import' Channels from other process in order to access the resources and services it needs.
These exports and inports should be established at the time the process is created during
system configuration. The mechanism is not really rich enough to support dynamic
channels usefully without introducing a lot of complexity in the structure of the system or
applications and a lot of overhead a run-time. (In particular, the common practice in the
communications area of setting up sockets dynamically for each activity on the network is really too expensive.
The kind of connections we need to establish resemble more closely the connections made by the BIND
operatIOn in Mesa -- i.e., something we do not contemplate doing very often in Peoria.)

We can summarize the style of system design with our mechanism supports best by
providing a paradigm for its processes. This can be expressen be the following outline of
Mesa code.

process: PROGRAM[interface: Channel] =
BEGIN port 1: Port Number = . . .

port2: PortNumber = ...

END.

exports: RECORD[channel 1 , channel2, ... : Channel] ...
[channel[port1], channel[port2], ...];

-- use symbolic names for ports and channels
imports: REcORDlextChannel1, extChannel2, ... : Channel];
mask: SET OF Port Number ;
h: MessageHandle; p: PortNumber; m: Message;

-- other declarations for the process
imports'" AwaitReply[SendMessage[exporls], interface];

DO

-- Export our channels and Import the external ones
-- Loopholes are not shown
-- Include other process initialization here

[h, p, m] ... WaitForMessage[mask];
SELECT p FROM

port1 => ..
port2 => ..

ENDCASE;
ENDLOOP;

This program takes one parameter, namely the interface channel passed to it by
Create Process. It declares the ports which it will implement and a variable to contain the
channels implemented by other processes which it will need. It then sends a message over
the interface channel to export channels which access its ports and it waits for a reply
containing the external channels it needs to import. (Obviously, if the size of these records is too
large for a message, then it must arrange to send a pointer to a record containing the logical contents of the

Simple Message-Passing System 6

message. We have not r,hown any of these'details here.) After any other initialization, the process
enters an infinite loop which waits for messages on any of the ports named by the variable
mask and performs whatever action is required on the message received. The variable mask
provides a way of controlling which kind of messages the process is willing to receive and
corresponds roughly ,to the condition variables of monitors.

The effect of this model of process is to implement a resource server which acts 00 each
request serially. For may purposes, this is quite sufficient. But for some situations.,. the
serialization imposed by this discipline is intolerable. In these cases, several more elaborate
techniques are normally used. One trick is to set up several processes with some private
channels for communication among them. One process servers as the interface'lO the
outside world, receives requests, and mUltiplexes these in messages to its cohorts. Another
technique is for the process itself to simulate internally a number of subprocesses, each of
which keeps track of one request. Neither of these techniques is as well-developed as tllat.
of object-style programming in Mesa and other procedure-oriented environments. but they:
are usually satisfactory for most purposes.

Implementation

The implementation of the mechanism described in this memo is straightforward and needs
little comment. It should be pointed out that the Process State Blocks will be fairly large
and cumbersome and will need to reside in non-swapped memory. However, there are not
expected to be too many of them, so this is not much of a problem. Message buffers will
be very small but all of them will also have to reside in non-swapped memory. The total
number of message buffers will have to be fairly carefully calculated to avoid ,.a.,,:system
disaster resulting from exhaustng the supply. We might take a hint from the GEC4080' and
implement the free me~sage pool as a fiFO queue in order that the freed message burfers couk! serve as a
useful diagnostic tool dunng development. Finally, we would implement the message' passing
operations so that the distinctions between hard and soft processes is invisible to:-~e:veryone
save the microcode: this, of course, makes the implementation a little more complicated but
it is worth it.

