






































































If there are n slots, and m binary relations, then this technique generates a space of mn2 "cross­
term" type slots. Naturally most of them won't be very useful, but this provides a generator for a 
large space of potentially worthwhile new slots. Some heuristics guide EURISKO in selecting 
plausible ones to define, monitoring the utility of each selection, and obliterating any losers (slots 
which, empirically, fail to facilitate the statement of or discovery of a highly-rated concept of any 
type). An excerpt from EURISKO illustrating this process is given in Section 4.3. 

Again, there is nothing magical about the number two, and one could pick an n-ary relation Rand 
n slot names, and use them all to build a new slot, as mentioned in the first paragraph of this 
subsection. 

4.3 Discovering a New Heuristic 

The heuristics present in AM and EURISKO create new concepts via specializing existing ones, 
generalizing (either from existing ones or from newly-gathered data), and analogizing. These are 
the three "directions" new heuristics will come from. We have exemplified Specialization already. 
One point about Generalization is worth making: Heuristics which serve as plausible move 
generators originate by generalizing from past successes; heuristics which prune away implausible 
moves originate by generalizing from past failures. Since successes are much less common than 
failures, it is not surprising that most heuristics in most heuristic search programs are of the pruning 
variety. In fact, many authors define heuristic to mean nothing more than a pruning aid. 

One of the typical "common sense number theory" heuristics which AM lacked was the one which 
decides that the unique factorization theorem is probably more significant than Goldbach's 
conjecture, because the first has to do with multiplication and division, while the latter deals with 
addition and subtraction, and Primes is inherently tied up with the former operations. How could 
such a heuristic be discovered automatically? This is the starting point for the example we now 
begin, an exaalple which concludes in the following section, 4.4. What is the tie between these two 
sections? That is, what in the world does discovering heuristics have to do with representation of 
know ledge? The connection is much deeper than we originally suspected. 

Consider just the special case where we restrict our representations to frame-like ones. The larger 
the number of different kinds of slots that are known about, the fewer keystrokes are required to 
type a given frame (concept, unit) in to the system. For instance, if NGoodConjecs weren't known, 

. it might take 40 keystrokes rather than 1 to assert that there were 3 good conjectures known 
involving prime numbers. Moreover, no special-purpose machinery to process such an assertion 
would be known to the system. 

This is akin to the power INTERUSP derives from the thickness of its manual, from. the huge 
number of useful predefined functions. Merely thickening the LISP 1.5 manual by defining random 
LISP functions wouldn't make it as useful as INTERLISP -- the latter comprises a profusion of 
predefined predicates and functions that have proven themselves necessary and useful in many 
applications over a long period of time. A large, appropriate vocabulary streamlines 
communication. 

Not only does a profusion of slot types facilitate entering a concept (assuming that the slots have 
been defined only when needed). it makes it easier to modify a concept once it's entered. Finally, it 
makes it easier to discover it in the first place; think of it. as combining terms in a more powerful, 
higher levellangllage. �(�E�.�g�.�~� although random schema instantiation is a terrible way to· do automatic 
programming. one gets qualitatively better results working in LISP (Lenat's PWl, in .[Green et al 74]) 
than in machine language [Friedberg 58].) 

So we see thatthe task of discovering heuristics can be profoundly accelerated -- or retarded -- by 
the choice of slots we make for our �r�e�p�r�e�s�e�n�t�a�t�i�o�n�~� In the case of an excellent choice of slots, a 
new heuristic would frequently be simply a new entry on one slot of some concept Let's see how 

33 



34 

that can be. 

Recall that primes were originally discovered by the AM system as extrema of, the function 
"Divisors-of'. This was recorded by placing the entry "Divisors-of' in the slot called "Defined­
using" on the concept called "Primes" (see Figure 6). Later, conjectures involving Prim~s were 
found, empirically-observed patterns connecting Primes with several other concepts, such as Times, 
Divisors-of, Exponentiation, and Numbers-with-3-divisors. This is recorded on the 
GoodConjecUnits slot of the Primes concept. Notice that all the entries on Primes' DefinedUsing 
slot are also entries on its GoodConjecUnits slot. This recurred several times while runnin~ 
EURISKO, that is for several concepts besides Primes, and ultimately the heuristic H99 (below) 
became relevant (its IF-part became satisfied): 

H99: IF (for many units u) most of the entries on u.r are also entries on u.s, 
THEN-ASSERT that r is a subslot1 of s (with justification H99) 

This heuristic said that it would probably be productive to pretend that DefinedUsing was always a 
subslot1 of GoodConjecUnits. Thus, as soon as you define a new concept X in terms of Y, you 
shollld expect there to be some interesting conjectures between X and Y. This new expectation is a 
new heuristic; in our 01<L cumbersome IF /THEN language we might express it by two rules saying: 

(A) "IF a concept is created with a value in its DefinedUsing slot, 
THEN place that value in its GoodConjecUnits slot, with justification H99." 

(B) "IF Y is an entry· Oll the GoodConjecUnits slot of X, but no good conjecture between X and 
Y is yet known, THEN propose a task for the agenda, to look for conjectures between X cpld Y." 

The second of these, (B), bas nothing to do with DefinedUsing slots. In fact, it is really no more 
powerful than a combination of (i) a very general rule that says to verify suspected members of any 
given slot, and (ii) enough facts about GoodConjecUnits and Conjectures to know how to apply (i)' 
to them. The first one, (A), is the "new heuristic" synthesized by H99. It needn't be represented 
as shown above; rather, we can simply go to the concept called DefinedUsing (the data structure 
which holds all the infonnation the program knows about that kind of slot in general), and record 
that one of its Superslotsl is GoodConjecUnits. EURISKO also explicitly recorded H99 as the 
justification for this entry - after all, it is just a heuristic, not a known fact (and, if it turns out 
exceedingly well or ill, H99 should get the blame or credit). Figure 21 depicts what this record 
looks like in our current implementation of EURISKO. The new heuristic is simply the line or two 
emboldened below; all the non-bold text was present in the program already (though it h'ld been 
written by the program itself at earlier times, not provided by human hands). 

To reiterate: EURISKO has already' almost a thousand separate kinds of slots, most of which are 
defined using other slots, all of which were useful at some time or times. As a result of this large 
vocabulary of useful slot types, many entire heuristics can be recorded succintly as a single atom or 
two placed in the right sl~ Heuristic (A) was added to the program merely by adding the atom 
GoodConjecUnits to the slot called SuperSlots of the unit called Archetypical-"Defined-UsiQg"-slot. 

It is important to make dear that the semantics of a value v appearing as an entry on slot s of 
concept c does not neceSsarily mean that it is formally proven that v merits a position there; rather, 
it is merely plausible. Anf entry v can have an explicit justification, but in lieu of any infonnation 
to the contrary, the default justification is merely empirical. Thus, when an entry, say Palindromes, 
is on the GoodConjecUnits slot of Primes, it may mean that some interesting conJectures have been 

lOur usage of the term 'subslols drawn from subset, subgroup. etc.: namely. r is a subslot ofs iff (for all copcepts u) 
any entry on u.r is also a valid mtry one could place on u.s. So Extreme-examples is a subslot of Examples, since any 
extreme example of a concept as is also an example of u. Mother is a subslot of Parent. Subslot is a subslot of 
Specializations. Another way to formulate this is to say that, for every concept u. the legal entries for its r slot are a 
subset of the legal entries for its j slot. The inverse of the subs/or relation is called supers/ot. Unlike some uses of these 
words, the fact that one slot is a 5uperslot of another has no bearing on how it is slored. retrieved, elc .. nor on whether 
one is primitive and the 0IM virlual. 



found between Primes and Palindromes, or just that it is suspected -- and expected -- that such 
conjectures can be found if one spends the trouble looking for them. 

How does the EURISKO program know what the justification of a slot is, if it isn't explicitly 
recorded? It goes to the unit for the archetypical representative of that slot, looks up a slot called 
Justification, and retrieves that value. In the case 'of the Defined-Using slot, there is almost never 
any question. of uncertainty about its values -- the definition of one slot in terms of another has to 
be spelled out in black and white. Therefore, as Figure 21 shows, the Justification slot for the unit 
called Archetypical-"Defined-Using"-slot is filled with the entry "Formal". Things are not so clear­
cut for entries on most units' Worth slots, and therefore in the EURISKO system, on the Justification 
slot of the Archetypical-"Worth"-slot unit, there is no entry. Rather, by inheritance from the very 
high-level unit called Any-Slot, the justification for Worth values is determined to be "Empirical". 

Thanks to the large number of useful specialized slots, thousands of heuristics which would be 
bulky if stated as IF- THEN- rules can be compactly, conveniently, efficiently represented as simple 
links -- as a single atom entered on the appropriate slot of the appropriate unit. Most of these 
useful slots are very general (e.g., SuperSlots, Worth), but some are domain dependent (e.g:, 
Predators, Toxicity). Thus, as new domains of knowledge emerge and evolve, ne\":' kinds of slots 
must be devised if this powerful property is to be preserved. The next natural question is, 
therefore, "How can useful new slots be found?" By way of answering those two questions, the 
next section continues -- and concludes -- the example we've begun in this section. 

NAME: Archetypical-"Defined-Using" -slot 
SPECIALIZATIONS: 

Su bSlots: Really-Defined-Using, Could-Have-Defined-Using 
GENERALIZATIONS: 

SuperSlots: Origin, GoodConjecUnits 
Justification: H99 

IS-A: Kind of slot 
WORTH: 300 
ORIGIN: Specialization of Origin 

Defined-using: Specialize 
Creation-date: 9/18/79 15:43 

AVERAGE-SIZE: 1 
FORMAT: Set 
FILLED-WITH: Concepts 
JUSTIFICATION: FOmlal 
CACHE? Always-Cache 
MAKES-SENSE-FOR: Concepts 

Figure' 2l. Part of the concept containing centralizing knowledge about all DefinedUsing slots. 

4.4. Heuristics used to extend existing representations 

Each kind of representation makes some set of operations efficient. often at the expense of other 
operations. Thus, an exploded-view diagram of a bicycle makes it easy to see which parts touch 
each other, sequential verbal instructions make it easy to assemble the bicycle, an axiomatic 
fonnulation makes it easy to prove properties about it. etc. 

3S 

-----._--------_._---------



36 

As a field matures, its goals vary, its paradigm shifts, the questions to investigate change, the 
heuristics and algorithms to bring to bear on those questions evolve. Therefore, the utility of a 
given representation is bound to vary both from domain to domain and within a domain from time 
to time, much as did that of a given corpus of heuristics. The representation of today must adapt 
or give way to a new one -- or the field itself is likely to stagnate and be supplanted. 

Where do these new representations come from? The most painless route is to merely select a new 
one from the stock of existing representational schemes. Choosing an appropriate representation 
means picking one which lets you quickly carry out the operations you're now going to carry out 
most frequently. 

In case there is no adequate existing representation, you may try to extend one, or devise a whole 
new one (good luck!), or (most frequently) simply employ a set of known ones, whose union makes 
all the common operations fast. Thus, when· I buy a bicycle, I expect both diagrams and printed 
instructions to be provided. The carrying along of multiple representations simultaneously, and the 
concommitant need to shift from one to another, has not been much studied -- or attempted -- in 
AI to date, except in very tiny worlds (e.g., the Missionaries & Cannibals puzzle; graphics). 

Th~~·e are several levels at which "new representations" can be found. At the lowest level, one may 
say that AM changed its representation every time it defined a new domain concept or predicate, 
thereby changing its vocabulary out of which new ones could be built. At the highest level would 
be true open-ended exploration in "the space of all representations of knowledge". The latter may 
someday be possible, but we currently lack adequate experience to fOffilulate the necessary 
generation rules. 

The example below lies inteffilediate between these two extremes: it shows how EURISKO discovers 
new kinds of slots which can be used to advantage. For instance, when AM found the unique 
factorization conjecture (UFf), it would have been helpful if AM had at that instant defined a new 
kind of slot, Prime-Factors, that every Number could have possessed. A EURISKO rule capable of 
this sort of second-level representatiori augmentation is the following one: 

IF the average size of s slots is large, 
THEN propose a new task: replace s by new specializations of s. 

The vague teffils in the rule have specific computational interpretations, of course, in EURISKO; for 
instance, "large" is coded as "more than twice the average size of all slots, and also larger than the 
average number of slots a unit has". In one experiment, the various types of examples (extreme, 
typical. boundary, etc.) were not given separate slots initially, but were unioned into huge Examples 
slots. The above rule then caused the program to focus on defining new specializations of Examples; 
recall that we term such specializations "subslots", though this does not mean that they are 
implemented as pieces of their superslots; the old Examples slot still exists and has many entries, 
even if everyone of those entries also exists on some subslot(s) of Examples. Note that the subslots 
will not in general be disjoint. In a more domain-dependent usage, the above rule causes Factors to 
be split up into PrimeFactors, OddFactors, LargeFactors, etc. 

A slightly more advanced level at which "new representations" are synthesized by EURISKO is to 
actually shift from one entire scheme to another -- potentially novel -- one. The following two rules 
indicate when a certain type of shift is appropriate: 

IF the problem is a geometric one, 
THEN draw a diagram. 

IF most units have most of their possible slots filled in, 
THEN shift from property lists to record structures. 

All the heuristics of this type are specializations of the general one which says IF some operation is 
performed frequently, T'HEN shift to a representation in which it is very inexpensive to perform. 



Let us continue our example. Here is a heuristic which is capable of reacting to a situation by 
defining an entirely new slot, built up from old ones, a new slot which it expects will be useful: 

HIOD: IF a slot s is very important, and all its values are units, 
THEN-CREATE-NEW-KIND-OF-SLOT which contains "all the relations 

among the values of my s slot" 

When the number stored in the Worth slot of the GoodConjecUnits concept is large enough, the 
system attends to the task of explicitly studying GoodConjecUnits. Several heuristi~s are relevant 
and fire; among them is HIOO, the rule shown above. It then synthesizes a whole new unit, calling 
it RelationsAmongEntriesOnMy"GoodConjecUnits"Slot. Every known way in which entries on the 
GoodConjecUnits slot of a concept C relate to each other can be recorded on this new slot of C. 
In practice, this slot typically had only a few entries, for most units: only relations which were 
explicitly defined could be perceived and recorded therein (e.g., all the various types of slots), and 
EURISKO is not designed to spend its time in undirected searching for entries for that slot. 

How was the new slot used by the program? Take a look at the Primes concept (Figure 6). Its 
GoodConjecUnits slot contains the followin:: entries: Times, Divisors-of, Exponentiation, Squaring, 
and Numbers-with-three-divisors. The first two of these entries are inverses of each others; that is, 
if you look over the Times unit, you will see a slot called Inverse which is filled with names of 
concepts, including Times. Similarly, still looking over the TImes unit, one can see a slot called 
Repcat which is filled with the entry Exponentiation, and one can see a slot called Compose filled 
with Squaring. So Inverse and Repeat and Compose are some of the relations connecting entries on 
the GoodConjecUnits slot of Primes, hence the program will record Inverse and Repeat and 
Compose as three entries on the RelationsAmongEntriesOnMy"GoodConjecUnits"Slot slot of the 
Primes concept. 

Now it so happens that several concepts wind up with "Compose" and "Inverse" as entries on their 
RelationsAmongEntriesOnMy"GoodConjecUnits"Slot slot. The alert reader may suspect that this is 
no accident, and an alert program should suspect that, too. Indeed, the following heuristic says that 
it might be useful to behave as if "Compose" and "Inverse" were always going to eventually appear 
there: 

HIOl: IF (for many units u) the s slot of u contains the same values Vi' 

THEN-ADD-V ALUE Vi to the ExpectedEntries slot of the Typical-s-slot unit 

This causes the program to add Compose and Inverse to the slot called ExpectedEntries of the 
concept called RelationsAmongEntriesOnMy"GoodConjecUnits"Slot. This one small act, the 
creation of a pair of links, is in effect creating a new heuristic which says: 

IF a concept gets entries X and Y on its GoodConjecUnits slot, 
THEN predict: it will get Inverse(X), Inverse(Y), and Compose(X,Y) there as well. 

How is this actually used? Consider what occurs when the program defines a new concept, C, 
which is DefinedUsing Divisors-of. As soon as that concept is formed, the heuristic link from 
DefinedUsing to GoodConjecUnits automatically fills in Divisors-of as an entry on the 
GoodConjecUnits slot of C. Next, the links just illustrated above come into action, and place 
Inverse and Compose on the RclationsAmongEntriesOnMy"GoodConjccUnits"Slot slot of C. That 
in turn causes the inverse of Divisors·of, namely Times, to be placed on the GoodConjecUnits slot 
as well as the already-present entry, Divisors-of. Finally, that causes the program to go off looking 
for conjectures between C· and either multiplication or division. When a conjecture comes in 
connecting C to one of them, it will get· a higher a priori estimated worth than one which doesn't 
connect to them. 

If only we'd had the new heuristics back when Primes was first defined. they would have therefore 
embodied enough "common scnse" to prefcr the Uniquc Factorization Theorem to Goldbach's 
conjecture. If wc'd had them then, these hcuristics would have led us to our present state much 

37 

W=="",,,=rO;·;;;;;;=.;'";%',M! 



38 

sooner. Because of our assumptions about 'the continuity of the world, such heuristics are still 
worth having and using -- we expect them to be useful from time to time in the future. 

Notice that there's nothing special about mathematics -- the newly synthesized heuristics have to do 
with very general slots, like DefinedUsing and GoodConjecUnits. For instance, as soon as a new 
concept (say Middle-Class) is defined using the old slot Income, the program immediately fills in 
the following underlined information: 

NAME: Middle-Class 
Defined-using: Income 
RelationsAmongEntriesOnMy" GoodConJecUnits" Slot: Inverse, Compose 
Good-Conjec-Units: Income, Spending, EarnedInterest 

Figure 22. A non-math concept for which some predictions have been rec,)rded. 

Thus, it goes off looking for (and will expect more from) conjectures between Middle-Class and any 
of Income, Spending, and EarnedInterest. In one run of the EURISKO system, some such 
conjectures were then found (including "MiddleClass spends all its income"), but we primed the 
system with very caricatured data about Americans' incomes and spending habits. When we 
removed heuristic HIOO, RelationsAmong ... slots never was defined, so 1-1101 didn't fire, so Income 
and Spending weren't placed on the GoodConjecUnits slot of MiddleClass, and the preceding 
conjecture was never found. So the new slot is useful, though it has a terrible name, and the new 
little heuristics (which looked like little links or facts but were actually permission to make daring 
guesses) wer~ powerful after all. 

We have relied"heavily on our representation being very structured; in a very uniform one (say a 
calculus of linear propositions, with the only operations being Assert and Match) it would be 
difficult to obtain enough empirical data to easily modify that representation. This is akin to the 
nature of discovering domain facts and heuristics: if the domain is too simple, it's harder to find 
new knowledge and -- in particular -- new heuristics. Heuristics for propositional calculus are much 
fewer and weaker than those available for guiding work in predicate calculus; they in tum pale 
before the rich variety available for guiding theorem proving "the way mathematicians really do it". 
This is an argument for attacking· seemingly-difficult problems which turn out to be lush with 
structure, rather than working in artificial worlds so constrained that their simplicity has sterilized 
them of heuristic structure.· 

5. Conclusions 

The field of Heuretics was proposed as a promising one for AI to investigate, one which may aid us 
in understanding -- and constructing -- expert systems. We began by defining what it meant for 
something to be a scientific discipline, and showing that Heuretics met these criteria. 

Hcuretics asks "What is the source of power of heuristics?", to which our first-order reply is: 
"Behave as though APPROPRIATENESS(action,situation) were time-invariant and continuous in both 
variables." Heuristic sea~ch is adequate' for modeling worlds which arc observable (so heuristics can 
be fonned), stable (so heuristics abstracted from past experiences will be useful in the future), and 
continuous (so that if A was (in)appropriatc in S, then actions similar to A will be (in)appropriate in 



situations similar to S). Corollaries of this provide the justification for the use of analogYt 
generalization, and even for the utility of memory. The central assumption was seen to be just 
that -- an assumption. It's often false in small ways, but nevertheless the central assumption has 
proven itself to be a useful fiction to be guided by. 

Using the metaphor of Appropriateness being a function, we considered graphing the power curves 
of a heuristic (the utility of that heuristic as a function of task being worked on), and were able to 
see the gains -- and dangers -- of specializing and generalizing heuristics to get new ones. 
Consideration of such curves led us to an algorithm for deciding in which order to obey relevant 
heuristics, and suggested several specific new attributes worth measuring and recording for each 
heuristic (e.g., the sharpness with which it flips from useful to harmful, as one leaves its domain of 
relevance). 

By arranging all the world's heuristics (well, at least all of AM'S, and several more randomly-chosen 
ones from chess, biology, and oil spills) into a hierarchy using the relation "More-General-Than", 
we were surprised to find that hierarchy very shallow, thereby implying that analogy (a side-to-side 
operation) would be more useful a method of generating new heuristics than would specialization or 
generalization (up-and-down operations). By noting that both Utility and Task have several 
dinjensions, most of this "shallow-tree" problem went away. By noting that two heuristics can have 
many important relations connecting them, of which More-General-Than is just one example, the 
shallowness problem turns into a powerful heuristic: if a new heuristic h is to differ from an old one 
along some dimension (relation) r, then use analogy to get h if r's graph is shallow, and use 
generalization/specialization if r's graph is deep. We also discussed some useful slots which 
heuristics can have, and a principled method for generating new kinds of slots. 

Heuretics asks "How do new heuristics originate?", to which we recursively reply: "By generalizing 
other heuristics, abstracting from data, specializing other heuristics, finding analogies to other 
heuristics and to processes whereby other heuristics were formed." EURISKO demonstrated that these 
processes themselves can be guided adequately by a corpus of heuristics, that there is no need to 
distinguish such "meta-heuristics" from "object-level heuristics", and -- surprisingly to us -~ that 
analogy has more potential than generalization or specialization. In more detail: 

AM demonstrated the adequacy of the heuristic search paradigm to guide a program in formulating 
useful new concepts, gathering data about them, and noticing relationships connecting them. 
However, as the body of domain-specific facts grew, the old set of heuristics became less and less 
relevant, less and less capable of guiding the discovery process effectively. New heuristics must also 
be discovered. 

EURISKO was developed as the successor system, one whose field of expertise was not mathematics, 
or diagnosis, but rather Heuretics. That is, EURISKO had a corpus of heuristics which, as they ran, 
gathered data about their own running, and synthesized new members of that corpus (and modified 
old ones). As expected, this process was very slow and explosive. By taking the four best (in 
EURISKO'S jUdgment) synthesized heuristics, and rerunning the program from scratch, almost an 
order of magnitude improvement in performance was obtained (a factor 7 in the number of tasks 
executed, a factor of 8 in the number of losing heuristics synthesized, a factor of 4 in the cpu time 
involved, and a factor of 9 in the storage cells used). The explosive process of synthesizing 
heuristics was made feasible only by having "the right representation". EURISKO. like AM, used a 
schematized representation, so the right representation meant having a large repertoire of very 
useful kinds of slots. 

We saw how. in EURISKO. heuristics led to the development of useful new kinds of slots, to 
improved representations of knowledge. Note that the same representation AM used for attributes 
and values of object-level math concepts was also used to represent heuristics and even to represent 
representation. E.g., Primes (a set of numbers), GeneralizeRarePredicate (a heuristic), 
GeneralizeRareHeuristic (a meta-heuristic), and DefinedUsing (a representation concept) are all 
represented adequately as concepts (units with slots having values.) Since meta-heuristics are not 
distinguished from heuristics, a singJe interpreter of necessity runs both types of rules, and is itself 
represented as a col1ection of units (and dynamically rcdefinable). While meta-heuristics could be 

39 



40 

tagged to distinguish them from heuristics, the utility of doing so rests on the existence of rules 
which genuinely treat them differently somehow .. - and few such rules have to date been 
encountered. 

To advance the Heuretics research programme, much more must be known about analogy, and 
more complete theories of heuristics and of representation must exist. Toward that goal we must 
obtain more empirical results from programs trying to find useful new domain-specific heuristics 
and representations. 

Acknowledgements 

Productive discussions with lohn Seely Brown, Bruce Buchanan, lohan deKleer, John Doyle, Mark 
Stefik, and Mike Williams have heavily influenced this work. Danny Bobrow, Bruce Buchanan, 
Bill Clancey, and Russ Greiner provided valuable critiques of earlier versions of this paper, which 
have led to substantial changes in its organization and content. Section 2 presents lessons learned 
from AM, for which I thank Bruce Buchanan, Ed Feigenbaum, Cordell Green, Don Knuth, and 
Allen Newell. The data for Section 3.4's "shallowness" conclusion about the tree of heuristics was 
gathered while I was at CMU. with the aid of Herb Simon and Woody Bledsoe. Much of Section 4 
relies upon RLL, a self-describing and self-modifying representation language constructed by Russ 
Greiner and the author. Finally, I wish to thank XEROX PARe and Stanford's HPP for providing 
superb environments (intellectual. physical, and computational) in which to work. Financial support 
was provided by ONR (N00014-80-C-0609), NSF (MCS 79-01954)) and XEROX. 



References 

Barr, Avron, and Edward A. Feigenbaum, eds., Handbook of Artificial Intelligence, Volume II, 
William Kaufman, Los Altos, 1981. 

Brown, John Seely, and Kurt VanLehn, "Repair Theory: A Generative Theory. of Bugs in 
Procedural Skills," to appear in J. Cog. ScL, IV, 4, 1980. 

Clancey, William J., "Dialogue Management for Rule-Based Tutorials," Proc. Sixth International 
Joint Conference on Artificial Intelligence, Tokyo, 1979. 

Davis, Randall, and Douglas Lenat, Knowledge Based Systems in Artificial Intelligence, McGraw­
Hill, 1981. 

Feigenbaum, Edward A., "Knowledge Engineering: The Practical Side of Artificial Intelligence," 
HPP Memo, Stanford University, Stanford, Ca., 1980. 

Friedberg, R. M., "A Learning Machine", IBM J. Res. and Dev., 2, 1, January, 1958. Part II 
published in 3, 3, July, 1959. 

Gaschnig, John, "Exactly How Good Are Heuristics?: Toward a Realistic Predictive Theory of Best­
First Search", Proc. Fifth International Joint Conference on Artificial Intelligence, Cambridge, 1977. 

Green, Cordell, Richard Waldinger, David Barstow, Robert Eischiager, Douglas Lenat, Brian 
McCune, David Shaw, and Louis Steinberg, Progress Report on Program Understanding Systems, 
AIM-240, STAN-CS-74-444, AI Lab, Stanford, Ca., August, 1974. 

Hayes-Roth, Frederick, Donald Waterman, and Douglas Lenat (cds.), Building Expert Systems, 
proceedings of the 1980 San Diego workshop in expert systems, to appear 1981. 

Lenat, DougJas B., "On Automated Scientific Theory Formation: A Case Study Using the AM 
Program," in (Jean Hayes, Donald Michie, and L. I. Mikulich, cds.) Machine Intelligence 9, New 
York: Halstead Press, a division of John Wiley & Sons, 1979, pp. 251-283. 

Lenat, Douglas B., and Russel D. Greiner, "RLL: A Representation Language Language," Proc. of 
the First Annual Meeting of the American Association for Artificial Intelligence (AAAI), Stanford, 
August, 1980. 

Minsky, Marvin, "Steps Toward Artificial Intelligence", in (Feigenbaum and Feldman, eds.) 
Computers and Thought, McGraw-Hill, 1963. 

Newell, Allen, and Herbert Simon, "Computer Science as Empirical Inquiry: Symbols and Search", 
CACM, 19, 3, March, 1976. 

Poincare', H., The Foundations of Science. The Science Press, New York, reprinted in 1929. 

Polya, G., How to Solve It, Princeton University Press, 1945. 

Pushkin, V. N., ed., Problems of Heuristics, Institut Psikhologii Akademii Pedagogicheskikh, Nauk, 
USSR, English translation published by Keter Press. Jerusalem. 1972. Note esp. the articles by 
Pospelov et al (pp 1-11) and Zavalishina (pp 132-142). 

41 





i 
z , 
c ... 
CD 
o ... 
~ 
CD 
C ... 
;;;' 
ct, 
n ... 

.f 
5' c 
tQ. .. .. 
III 

r­
et 

! 


