

Stylus User Interfaces for Manipulating Text

David Goldberg and Aaron Goodisman •

CSL·91·9 September 1991 [P91·00110]

@) Copyright 1991 Xerox Corporation. All rights reserved.

Abstract: This paper is concerned with pen-based (also called stylus-based) computers. Two

of the key questions for such computers are how to interface to handwriting recognition

algorithms, and whether there are interfaces that can effectively exploit the differences between

a stylus and a keyboard/mouse.

We describe prototypes that explore each of these questions. Our text entry tool is designed

around the idea that handwriting recognition algorithms will always be error prone, and has a

different flavor from existing systems. Our prototype editor goes beyond the usual gesture

editors used with styli and is based on the idea of leaving the markups visible.

CR Categories and Subject Descriptors: H.5.2 [Information Interfaces and

Presentation]: User Interfaces - Input devices and stategies; 1.7.1 [Text Processing]: Text

Editing;

General Terms: Human Factors

Additional Keywords and Phrases: stylus, two-view editor, character recognition.

This paper appeared in the Proceedings of the Fourth Annual ACM Symposium on User

Interface Software and Technology, pp 127 - 135.

• also with Department of Computer Science, Massachussetts Institute of Technology,

Cambridge, MA 02139

XEROX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

1

1 Introduction

Common experience with keyboards and pens suggest that keyboards are
optimized for text entry, and pens for drawing. With the appearance of
small, portable pen-based computers such as the GridPad, whose primary
input device is a stylus (i.e. an electronic pen) used directly on a display, we
are faced with the problem of how to use a stylus to manipulate text. This
paper studies two aspects of this problem.

First, what is a good user interface to a handwriting recognizer? There
have been many papers on handwriting recognition (see [11] for a survey),
but very few on user interfaces to recognizers (the most completely described
interface is PenPoint [3]). Our system is based on the philosophy that rec
ognizers will always make errors, and that the interface must be designed
from the beginning to accomodate that fact. This results in a substantially
different interface from PenPoint (and was developed before the publication
of [3]).

The second problem is this: can we find an interface that exploits the
differences between a stylus and a mouse/keyboard? If we cannot, then
there is a real question as to whether pen-based computers are viable, since
text entry is slower and more error prone with a stylus than with a keyboard,
and since it is feasible to build a notebook sized pen-based computer with a
keyboard and thumb operated trackball with similar functionality to a mouse
(such as the portable Macintosh).

Two of the primary differences between a stylus and a mouse are (1)
styli have much finer control than mice (try writing your signature with a
mouse), and (2) while it is easy to manipulate three buttons on a mouse,
it is difficult to use the same hand to both hold a stylus and press one of
three buttons. Most previous work with styli has focused on using gestures
as editing commands ([2], [3], [4], [8], [14] are examples). This works well
because it doesn't require buttons, and it is easier to draw gestures with a
stylus than a mouse. However, all these editors simply provide a different
way to do the same tasks that can be performed with mice and keyboards.
We propose that a markup editing interface (which extends gesture based
editors by leaving the gestures visible) is more appropriate for pen computers,
because it can perform some common tasks that are very awkward with
traditional keyboard/mouse systems.

There is a continuum of evaluation techniques for studying user interfaces,

2 2 THE HARDWARE

ranging from formal user studies to informal testing by a few users. Since
the space of stylus-based user interfaces is just beginning to be explored, we
felt that informal observation of users was the appropriate way to evaluate
our prototypes. Once the informal exploration has identified a few promising
UI techniques, then formal studies will become more important.

This paper has four parts. First, we describe the hardware used in our
studies. Next, we classify the different types of recognition systems and
explain the choices we made for our system. In the third part, we describe
our text entry program, which uses a number of techniques to compensate
for the error-prone analogue nature of handwriting recognition. Finally, we
describe our markup editor, and single out what we feel is a key design
principle for such editors. More details on the programs can be found in [6].

2 The Hardware

We did all our studies with a scratchpad,' which is a PARC-built peripheral
to a Sun Microsystems SPARCstation. A scratchpad consists of an 1120 by
780 LCD display, on top of which is a transparent tablet made by Scriptel
Corporation. The display is driven by a custom SBus card. To SPARCstation
software, the scratchpad looks like a second display, and our programs wrote
directly onto the display using Sun's pixrect library.

The Scriptel stylus we used for these studies is tethered to the tablet, and
has a microswitch in the tip to detect when the stylus is in contact with the
tablet, but has no buttons on the side of the barrel (the newest styli from
Scriptel do have a side button). The stylus plugs into an RS-232 port at
the back of the SP ARCstation, and reports the location of the pen at a rate
of 200 locations/second, with a resolution of about 400 dots/inch, which is
roughly four times the resolution of the display. The stylus can accurately
report its position even when it is above the display, that is, when the tip of
the stylus is not in contact with the tablet. Each location report contains a
bit telling whether or not the tip switch is depressed.

Because the Scriptel tablet lies between the pen and the display surface,
there is a fair amount of parallax between the tip of the pen and the display.
Although we tried to compensate for this by displaying a cursor, most users
had some difficulty pointing the stylus because of the parallax.

3

3 Parameters of Text Entry Systems

There are five major parameters that characterize handwriting recognition
systems.

Printing/Cursive Script Electronic styli can detect when the pen is in
contact with the tablet. This gives a way to mark the beginning and
ending of strokes, namely by when the pen is lifted off the tablet. In
printing the pen is lifted between each character (and also perhaps
between strokes withi~ a character). In cursive script writing, the pen
will not always lift between two characters.

Upper /Mixed Case Does the system recognize only upper case letters, or
does it accept mixed case?

Boxed/Unhoxed The key issue is who decides how to group strokes into
letters. In a boxed system, each letter is in a separate box, so the
user groups strokes into letters by writing different letters in different
boxes. In an unboxed system, the system provides only a line to write
on rather than a row of boxes, and the system itself must compute how
to group strokes into letters.

Recognition Feedback Does the system provide feedback after each letter,
immediately displaying the result of the recognition? Or does the user
signal the system after entering a unit of text, at which point the system
recognizes that whole block of text at once.

Writer Dependent/Independent Is the system writer independent, or
does it require each user to first train the system to learn his handwrit
lng.

3.1 Discussion

Here are the choices we made for our text entry tool. Our system recognizes
printed text. Cursive sc~pt recognition was not chosen because there are no
script systems known to the authors that have consistently high recognition
rates.

4 3 PARAMETERS OF TEXT ENTRY SYSTEMS

Our system recognizes mixed case. Although some commercial systems
(Pencept, GridPad) recognize upper case only, we feel that mixed case sys
tems are necessary for the acceptance of stylus text input.

Even though our recognizer can perform in an unboxed mode (that is, it
can do the segmentation itself), we chose to do all our UI studies in boxed
mode. There were several reasons for this. First, recognition in boxed mode is
more accurate, because there are no segmentation errors. Second, correction
and editing are greatly simplified when each letter is in a box. 1 Based on our
informal studies, we identified a third advantage to boxed input, which may
be most important of all: when users are given only lines to write on, some
writers frequently slip into a script mode where they join pairs of letters. For
recognizers that can recognize only discrete characters, this obviously results
in poor recognition rates. Boxes greatly reduce the chance that a writer will
join pairs of letters.

Our system recognizes one letter at a time. We did not study tradeoffs of
recognition by blocks versus by character, however we can make the following
observation. In our system, you can correct at any time (and we provide two
correction gestures: one to delete a letter and one to open up space). Systems
that recognize a block at a time essentially require a mode for correction, since
you can't correct until you see that the recognizer has made an error, and
thus you can't correct without first instructing the system to perform the
recognition. However, block recognition does provide more context to help
in performing the recognition.

3.2 Writer Independence

The last item on our list is the most interesting tradeoff. If writer independent
systems had the same accuracy of writer dependent ones, then writer inde
pendent systems would be the obvious choice. However, writer dependent
systems are more accurate. This is only partly due to imperfect recognition
technology. Consider the pair of letters u and v, written by two different
writers, and the unidentified letter shown in Figure 1.

If the unidentified character was printed by the first writer, it is obviously
a v, whereas for the second writer it is a u. This illustrates that even for

1 Pen Point finesses this point by allowing un boxed input, but then after recognition,
redisplaying using boxes.

3.2 Writer Independence 5

\jV
Fust Writer

uv ?

Second Wrirer

Figure 1: Lower case u, v for two different writers

human recognition of letters, knowledge about the writer is important. The
importance of writer-dependent information is even more crucial for mixed
case systems than for .upper-case only, for the simple reason that there are
more easily confused pairs like u and v.

Our system is writer dependent and requires training. This is partly be
cause we wanted to focus on user interfaces and minimize the effort on build
ing a recognizer. A trained recognizer is easier to write because it doesn't
require collecting a large database of user writing styles. But we also feel that
trained systems (or hybrid systems that modify their behavior with training)
are necessary for achieving high accuracy.

There are two disadvantages to trained systems: first, they must be
trained, and second, before using them, you must identify yourself to the
system so that it can locate your training database. For pen-based com
puters that will be used for several hours a day, the overhead of a training
session is small. Hybrid systems have the advantage that they can be used
immediately, but we· believe that virtually all users will eventually want to
go through a training session to improve accuracy.

The potentially larger problem with trainable systems is that you must
identify yourself to the system before you begin writing. Similar issues arise
in speech recognition ([5]), but the inconvenience of identification with stylus
systems is much less than with speech systems. First, there is often no over
head to begin using a speech system: you simply begin speaking. Thus the
relative overhead of an extra identification step can be significant. Imagine

6 4 THE TEXT ENTRY PROGRAM

an elevator where you speak the fioor number. Having to first identify your
self would take longer than performing the actual task of speaking a floor
number! For stylus applications, there is built-in overhead, because you have
to pick up the pen and place it on the writing surface. Thus the relative cost
of identifying yourself is less. Second, with speech there is a problem when
several people alternate speaking (say at a meeting). Identifying the speaker
after each speaker change is a significant problem. With multiple writers,
the common case will be for each writer to have a separate pen, and thus
once a mapping between people and pens has been established, there is no
further overhead to identification.

Once you 've decided to use a trained system, there is the question of how
to do the training. Perhaps the best method is to do it automatically, so
that each time the user draws a letter, that is used as training data. The
disadvantage of this technique is that a letter may be misrecognized, and
if the user doesn't bother to correct it then incorrect training data will be
used. Our system requires explicit training instead. With explicit training,
we believe that it is important to make training as simple as possible. Thus
we do not require the user to invoke a special program to train. Instead,
whenever the user is entering text, he can get a display which enables him
to examine and modify his training samples via a single tap. Details are
in section 4.2. Experience with our prototype shows that users often write
somewhat differently in a formal training session than when performing real
life tasks. Thus the accuracy of the training data improves if it is based on
input during actual tasks, and that in turn is more likely if there if very low
overhead to modifying training samples.

4 The Text Entry Program

The primary difference between keyboard and styli are that keyboards are
discrete. When you hit the A key, you will always get the character A. On
the other hand, when you write the letter A, because recognizers are heuris
tic, sometimes you won't get A, but rather H or some other incorrect letter.
Even the best recognizers will occasionally misinterpret a letter that seems
unambiguous to the writer. Thus a successful user interface to a charac
ter recognizer must have a strategy for overcoming the analogue nature of
handprinted input. Our text entry prototype uses two major techniques to

4.1 Segmenting Cursor 7

Improve accuracy.

4.1 Segmenting Cursor

First, it uses boxed entry, which eliminates segmentation errors and discour
ages run-on pairs of letters. Some users, however, find it awkward to write in
an input area filled with boxes. So we developed a technique we call the seg
menting cursor2 to gain the segmenting advantages that boxes give, without
having to fill the input area with boxes.

The basic idea is simple. The user is presented with a single box. This
is like the cursor in computer keyboard systems, except that this box is the
outline of a box, rather than a solid box. The user writes the first letter
inside the cursor/box. When all the strokes of the first letter are completed,
the user begins the first stroke of the next letter outside and to the right
of the box. At this point, the box/cursor moves to surround the letter now
being written.

In practice, we have discovered that a few refinements to this basic idea
are necessary. First of all, if the user is allowed to write on more than one
line, there should be a box at the beginning of the line followinc the line
being written on. That way, when the user wants to skip to the next line, he
know~ where to write the first character af that line.

Second, we found that it helps if the cursor is actually a pair of boxes.
The user writes the first letter in the left-most box. As soon as he sets the
stylus into the second box, the first box disappears and a new box appears
to the right of the second box. The reason this helps users is that at the
moment the user lifts the pen from the last stroke of a letter, he would like
to see the following box. But the system cannot know to create the next box
until the pen touches down outside the current box. Thus having a pair of
boxes ensures that when a user wants to write a new letter, the box for it will
be there in time to aim the beginning of the first stroke of that new letter.

Finally, if the writer wants to leave a space to begin a new word, it helps
to have a visible box where the new word will appear. Thus, the initial cursor
has two boxes, but after the user begins to write, we put up a third box. See
figure 2.

2This was based on a suggestion by David Gifford of MIT, although we later discovered
a similar idea in the patent literature [12].

8 4 THE TEXT ENTRY PROGRAM

~ [~J (... J.

~ D··················

Initially After starting to write

Figure 2: Segmenting Cursor

Some users find that erasing of old boxes and drawing of new boxes dis
tracting. Having the "buffer" of boxes as just described helps minimize this
problem, because the drawing of the new cursor Ibox does not appear directly
under where the pen is writing. Although many users find the segmenting
cursor a pleasant entry interface, even with this buffering some still find the
moving cursor distracting. Thus a system that uses the segmenting cursor
will probably want to provide a mode where the writing area is filled with
traditional boxes.

4.2 Tap-Correction

One obvious way to deal with the fact that recognizers make errors, is to
leverage off the fact that when the recognizer is wrong, its second guess is
usually right. Our first attempt to exploit this idea was as follows: after
printing a letter, the user would be presented with the first guess by having
his drawn letter replaced by the recognizer's best guess. We also presented
two smaller boxes containing the second and third choices (see Figure 3). If
the first guess was correct, the user would go on and print the next letter. If
the first guess was not correct, then the user could either redraw the letter,
or touch one of the buttons with alternate choices. Our expectation was that
most of the time, the correct choice would be in one of the smaller boxes,
and that the user save effort by clicking on the appropriate small box, rather
than having to reprint the letter.

4.2 Tap-Correction 9

User wrir.cs

Figure 3: Initial attempt at correction

However, our informal experiments showed that users rarely clicked on
the small correction boxes. It seems that the effort of reading what was
in the boxes and deciding if they were correct required too much cognitive
overhead, and so users prefered to simply rewrite the letter.

With that failure behind us, we tried a new idea. The simplest gesture
to make with a stylus is to tap, and so in our next system if a letter was
misrecognized, the user could tap on it and the system would display the
recognizer's second choice. This was much more successful. When the recog
nizer was wrong, but the second choice was correct, users tended to perceive
this as not really being an error. We call this system "tap-correction".

This technique does have a downside, which is illustrated by the letter i.
Normally, the system echos pen motion, spreading "ink" to mark the path
of the stylus, just as a real pen would. When the system recognizes a letter,
it replaces the ink with a nicely drawn version of the recognized letter either
when the user begins the next letter, or when one second has elapsed with
no input. So if a user writes a lower case i by first drawing the vertical
stroke and then a dot, the recognition will not occur until he moves on to
the next letter (or pauses). However, if a user writes slowly, and one second
elapses between the time of the vertical stroke and the dot, the dot will be
intepreted to mean "choose the second choice", rather than as dotting the
i. Our experience suggests that this is not a major problem, and can be
minimized by allowing users to change the one second time-out.

The next issue is what meaning to assign to a second tap. There are three

10 5 THE EDITING PROGRAM

possible actions: display the third best recognition, clear the writing area so
the user can rewrite the letter, or just escape into a system that displays a
keyboard so the user can select the key with his letter. We chose to have
the second tap clear the display, allowing the user to rewrite the character.
At the same time, a small box appears. Tapping on this box jumps to a
display that not only contains a keyboard, but also displays the reference
characters and buttons to modify them. This provides the easy access to
reference characters that was mentioned earlier.

We also found that after the second tap, when the user was going to
rewrite the letter, it was useful to redisplay the original ink. This has two
advantages. First, sometimes a user would forget what letter he was writing.
This usually happened when the user wrote a stretch of letters, and then went
back to correct the errors. Seeing the redisplayed original letter was often a
faster way to recall the original letter than rederiving it from context. Second,
redisplaying the ink gives the user useful feedback on why the recognizer
failed. After the recognizer has replaced the users ink with an incorrect
guess, there is no longer any hint as to why the recognizer failed. When
the ink is redisplayed, it is often obvious what the problem was. The input
letter may have been poorly formed, or perhaps the user drew a letter that
is ambiguous (e.g. u, v). Redisplaying the original ink helps remove an air
of mystery from the whole system.

One important aspect of tap-correction is that if you make an error, you
cannot immediately rewrite the letter: you must tap twice before you can
rewrite. However, in practice a double tap is a sufficiently simple gesture, so
that this is not an obstacle to directly proceeding to a rewrite. The advantage
of this approach is that users are "trained" to use the built-in fast correction:
you must go thru the "tap for second choice" step before you can rewrite a
letter.

5 The Editing Program

Most tasks performed on a computer involve some text creation. Although
there are some people who have a strong aversion to keyboards and prefer
handwriting recognition to typing, for most users the fact that handwriting
recognition is slower and more error prone than typing is a major drawback
to stylus systems. Thus if the stylus is to become widely used as an input

11

device, we must identify common tasks for which a stylus is superior to a
keyboard (and/or mouse). Our candidate for such a tjask is a markup editor,
others are discussed in [16].

A typical scenario that can benefit from markup editing is when two
people collaborate (possibly at remote sites) on a document. Author one
produces a draft and gives it to author two. With current tools, author two
has two choices. He can print the draft and mark it up with a pen, sending
the marked up paper back to author one, or he can receive the draft online,
edit it, and then resend it to author one. In the first case, author one can
clearly see the changes, but must key in the edits by hand. In the second
case the changes are already keyed in, but there is no easy way to see the
changes. 3 A markup editor combines the best features of both approaChes.
The edits are made using marks such as strikeout to erase a word. The editor
does not perform the edit and erase the word. Instead, it recognizes the edit
(or gesture), and signifies its recognition by replacing the strikeout ink with
a nicely drawn strikeout, in complete analogy with a character recognizer
that replaces the ink of a hand drawn letter with one from a nicely tuned
font. Because the gesture was recognized, the edit that it stands for can later
be carried out automatically. Markup editors combine the ideas of gesture
editing with two-view editors ([1] is a recent example) in that there are two
views of the document: one with the edits as gesture marks, and the other
with the edits applied.

In most previous work on gesture-based text editors, the gesture com
mands have either been carried out immediately ([2], [3], [4], [8], [14]), or the
marks have been left unintepreted ([13]). The work of Suenaga and Nagura
([9]) is closest to ours. They mark up a printed (possibly handwritten) doc
ument with gestures~ and then read the document and marks with a FAX
receiver. The marks are interpreted, and a revised document is then printed
on a FAX transmitter. 4

Experience with our prototype suggests that markup editors have two

30f course it is possible to develop a program that takes two input files and tries to
show the changes by marking up the original, but this seems inferior because (1) edits
can be made in more than one way, and the precise edit is lost and (2) marginal notes or
"comments" (that is ink that is meant for the reader but performs no editing function)
are lost.

4 After completing this paper, we received a copy of [7], which describes the use' of
markup in a collaborative editor.

12 5 THE EDITING PROGRAM

significant advantages that might make markup editors desirable even for
ordinary editing tasks. First of all, undo operations become much more
flexible. Traditionally, editors let you undo operations in reverse order, but
you since can't see what those edits were, you can only infer them from
watching the undo. A few editors (such as Tioga [10]) will display a list of
your recent edits, but only as textual descriptions which are not the same as
the mouse/keyboard actions that created the edits. With our editor, when a
user undoes an edit, he makes a rubout gesture on top of the edit mark, so
there is no ambiguity about what is being undone. Furthermore, the edits
can be undone in any order: there is no longer a constraint that the edits be
undone in the reverse order to which they were made. Of course, there is the
complication of two different edit operations that interact,S but no matter
what solution is provided to this problem, we feel that "random access" undo
is a significant advantage to this type of editor.

The second advantage of markup editors is that they tie in very nicely
with version control. At a certain point, the document will be filled with
marks, and the user will wish to see what the document looks like when the
edits are applied. This provides a natural checkpoint at which to make a new
version of the document.

5.1 Analogies with Paper

One popular approach to stylus-based editors is to mimic what people do
with pencil and paper ([15]). Although this is a valuable approach, we want
to emphasize the opposite. After all, if a stylus-based system can do only
what paper and pencil does, then why not just use paper? We propose
that an important design principal for stylus editors (and stylus interfaces in
general) is to try to go beyond what can be done with paper and pencil.

An example of an interface that uses a stylus like a pencil is Wang
FreeStyle ((13]). In this system, to erase you turn the pen over and rub,
just as you would with a pencil. Although this technique is easy to remem
ber, it is not the best approach for stylus editors for the following reasons.

FreeStyle allows you to make only uninterpreted marks on paper, so the
only operation (besides marking) is erasing. With a stylus text editor, how-

5For example, if you move a block of text, and then edit that text, what happens when
you undo the move operation? Will that r~place the original copy or the edited copy?

13

ever, you should also be able to move, copy and perform other editing actions.
It doesn't make sense to single out one editing action (erasing) to be per
formed in a special way. Furthermore, the potential advantage of erasing
with the other end of a stylus is that it is easy to remember; however, this
advantage is minimal because remembering that action doesn't carryover to
the other editing actions (eg. copy, move) that a stylus can perform.

Erasing by rubbing perpetuates an action which is clumsy and awkward
to perform with a pencil. In one of our prototypes, we used the action of
clicking a side button on a pen to indicate erase. Users loved it, because a
simple click is much simpler and faster than having to turn a pencil (or stylus)
around in your hand. This isn't to say that the best use of a side button is for
erasing, but simply to indicate that a stylus affords much simpler methods
of erasing than the use of more metaphorical techniques.

Here are two examples that arise in editing, which illustrate the principle
that editor interfaces should go beyond simply mimicking paper 8:nd pencil
practice.

First, consider moving text. The common practice with paper is to circle
the source, then draw an arrow to the destination. A markup editor could
use this as the gesture that it leaves on the screen. But it is possible to
go beyond this and do something that can't be done easily with paper: the
editor can also insert a copy of the source at the destination (preferably in a
different font). This is especially useful when the source and destination are
separated by many lines. Placing a copy of the inserted text at the insertion
point is a simple idea, but one that is easy to overlook when merely imitating
paper practice.

A second example is selection. With paper, selection tends to be done by
circling, and this has been adopted by some systems (for example [4]). But as
other have observed (e.g. [14]), it is awkward for selections that span multiple
lines. A better idea is inspired by mouse-based systems: simply indicate the
beginning and end of the selection, and let the computer highlight the rest.

6 Summary

We draw two main conclusions from our work.
First, it is possible to design a text entry interface that compensates for

the imperfections of handwriting recognition algorithms. Unlike PenPoint,

,

14 REFERENCES

our prototype allows usersto correct errors without having to rewrite a mis
recognized letter; in our system, a single tap corrects. We also observed that
writer-dependent, boxed-text entry was more accurate than unboxed text
entry, and we devised techniques (e.g. the segmenting cursor and the ability
to modify the reference characters at any time) for making this type of input
work more smoothly than the obvious implementation.

Second, we believe we have identified a type of stylus usage (markup
editing) that can accomplish many editing tasks more easily than can be
done with paper or with a keyboard/mouse system. An important principle
in designing stylus-based user interfaces is to focus not on imitating paper,
but rather on performing tasks that are difficult to do with paper. The two
view nature of our markup editor is an example of something that cannot be
done with a paper-only system.

7 Acknowledgements

We would like to thank Jim Gasbarro who designed the scratchpad hardware,
Russell Brown who implemented the character recognizer, Bill Buxton for
many enlightening conversations, and Dan Swinehart for a careful reading of
the manuscript.

References

[1] Avrahami, G., Kenneth Brooks, M. H. Brown. "A Two-view approach
to constructing user interfaces," Computer Graphics 23(3), 1989, pp.
137-146.

[2] E.R. Broklehurst. "The NPL electronic paper project," Int. 1. Man
Machine Studies 34(1),1991, pp. 69-95.

[3] Robert Carr and Dan Shafer. The Power of PenPoint, Addison-Wesley,
1991.

[4] Michael L. Coleman. "Text Editing on a Graphic Display Device Using
Hand-drawn Proofreader's symbols," Pertinent Concepts In Computer
Graphics, Proceedings of the Second Univeristy of Illinios Conference
on Computer Graphics, 1969, pp. 282-290.

REFERENCES 15

[5] Gearge R. Doddington and Thomas B. Schalk. "Speech recognition:
turning theory to practice," IEEE Spectrum, 18(9), September, 1981,
pp.26-32.

[6] Aaron Goodisman. A Stylus-Based User Interface for Text: Entry and
Editing, MIT Masters Thesis, 1991.

[7] Gary Hardock. "Design Issues for Line-Driven Text Editing / Annota
tion Systems," Proceedings of Graphics Interface '91, Calgary, Alberta,
June 3-7 1991, Morgan Kaufmann, pp 77-84.

[8] Arto Kankaanpaa. "FIDS - A Flat-Panel Interactive Display System,"
IEEE Computer Graphics and Applications, 8(2), March 1988, pp. 71-
82.

[9] Yasuhito Suenaga and Masakazu Nagura. "A facsimile based
manuscript layout and editing system by auxiliary mark recognition,"
Proceedings 5th International Conference on Pattern Recognition, Mi-
ami Beach, Florida, December 1980, pp. 856 - 858. .

[10] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert
B. Hagmann. "A Structural View of the Cedar Programming Environ
ment," A CM Transactions on Programming Languages and Systems,
8(4), October 1986, pp. 419-490.

[11) C.C. Tappert, C.Y. Suen, and T. Wakahara. "On-Line Handwriting
Recognition - A Survey," Ninth International Conference on Pattern
Recognition, 1989, pp. 1123-1132.

[12] Fumio Togawa and Hitoshi Hirose. "Handwritten Character
Recognizing Apparatus for Automatically Generating and Displaying
Character Frames," United States Patent 4,953,225, August 28, 1990.

[13] Wang FreeStyle SigGraph Video Review 45(3), 1989.

[14] L.K. Welbourn, R.J. Whitrow. "A Gesture Based Text Editor," Proc.
of the Fourth Conference of the British Computer Society of Human
Computer Interaction: 1988, pp. 363-371.

16 REFERENCES

[15] Catherine G. Wolf and Palmer Morrel-Samuels. "The Use of Hand
drawn Gestures for Text-Editing," International Journal of Man
Machine Studies, 27(11), 1987, pp. 91 - 102.

[16] Catherine G. Wolf, James R. Rhyne and Hamed A. Ellozy. "The Paper
Like Interface," in Designing and Using Human-Computer Interfaces
and Knowledge Based Systems, Edited by G. Salvendy and M. J. Smith,
Elsevier Science Publishers, 1989, pp. 494 - 501.

o
III
< a:
Gl
o
c:
0'"
(l)

«3
po

~
(3
::I

Gl
8 c.
en'
3
III
::I

