.

{DOCMPS)CHAFTER2.NLS;20, 20«JUN=T2 1h:l2 JGM ;

4 MODEL FOR ¥PS PROCESSES AND ENVIRONMENTS

22 JUN 72

MPS L.O

James G. Mitchells

Xerox Palo Alto Research Center#
318¢ Porver Drive
palo Alto, CA 9u30L
{L15) Lk93-1600

stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 9L025
(§15) 326=6200

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS - ' MPS L.O
Mitchell 22 JUN 72
SRI/XPAFEC) PAGE 1

This memo attempts to fornalize the notions of preocess, process
control states, inter=process control transfers, context, and
naning environments for processes.

PROCESSES:
(Processes) A process has the following attiributes:
" (Control)

control(s) is a pair (pc, status) consisting of a
control pointer into some body of code associated with
the process and a value denoting the status of 3, chosen
from thne 1list in the branch labelled States belov.

(Context)

conceptually, the context for a process is the sev of
objects which the program can access DY simple names.
since we view an activation record for a procedure, for
instance, as a compound object whose components
correspond to the local variapbles of the procedure, it
is convVenient to view the context of a process S simply
as a vector of "references" to objects Wnose components
can be accessed by simple identifiers in the source
Programe. :

An element of the context is a pair (CA, IND), where CA
is the address of an object whose semantics matches §'s
requirements for the opject specified oY the context
siot, and IND, if one, implies indirection (take tne
value of the object to which CA points as the CA for
this entry). ‘

The only Wway a process can touch any object is via the
context vector. This includes the datla objects called
ports which are used for all controcl transfers, and the
context vector itself (which must pe accessed as a data
structure for replacing context entries, for instance),

Accessing an object via a context entry whose CA value
is NIL is not currently defined, -but iv would be nice if
it would generate a signsal. :

(Ports) A port is simply a plug and a socket for forming a
control connection from the port's process to another. A port
has no state in its own right. The attributes of a port are
the following: :

(Oowner) We denote the owning'procéss of a port Q by
owner(Q). : '

‘A MODEL FOR MPS PROCESSES AND ENVIRONMENTS ’ " MPS h.O
Mitchell 22 JUN 72

SRI/XPARC | PAGE 2

(To) If a port @ is not connectled, we say To(Q)=Nil; 1if Q
is connected to another port Q', we say To(Q)=Q'.

Note that there is no requirement that To(To(Q))=Q.,
0f course, Tb(Q):Q is perfectly valid.
sone more global definitions:
A confizuration i5 just a set of processes.

we would like to arrange things so that a well=behaved
configuration can nave its ports interconnected and its
preccesses started in any order.

CONTEXT OF A PROCESS:

It is NOT assumed that the context vector is physically
attached to the data struciure wnich contains the variables

for the rrocess.

There are a number of distinguished entries in every process's
context {entries nmarked witn a % are considered dynanic and
must be set whenever a newv incarnation of a process is

created):

(SYSTEM) system transfer structure for access to systen
facilities; this is a component of every process's context,
although it does not have to have tne same value in then

all.

(RETURN)* Pointer to port over which control will leave if
S RETURNS,.

(PENDING)*® If S is Pendingz (@), then the PENDiNG entry
points to Q. v

initially the PENDING entry will point to a port
ngeclared" at compile time called, the process's RETURN
port: the process's control pointer is initialized from
‘information obtained at compile time also.

(CATCH)* Thne innernost catch'pnrase to be called if a
~signal is passed to S.

(SIGPATH)* pointer to the process to which signals which
are not caught by S should gO. Lo , .

1n the following list of allowable operations on context
Vectors, Ctx stands for a pointer to a contexv vector, i for
an integer value, and X for an arbitrary value,

NewCctX ¢ Copycontext(Cix);

" A MODEL FOR MPS PROOESS?S AND ENVIR NHENTS. : ‘ MPS 4.0
Mitchell 22 JUN 72
SRI/XPARC PAGE 3

SetContextEntry(Ctx, i, X);
X ¢ ReadcontextEntry(ctx, i);
DeleteContextEntry (Ctx, i)3
set the i'th context entry to NIL.
DeleteContext(Ctx);
PROCESS CONTROL STATES:
{states) The possible stales of a process ares

(F) Pending(Q5: Pending on port 94 i.e. control last left
py a successful call through port Q.

7his includes the case of one process starting another,

wnich is just a call on a systen facilivy (over a port
of course)

when a process is created, 3% is initially in state
P(START) where START is a distinguisned port used as the
inport for a function or the stariing point for a
Process.
(R) Running.
At Most one.process can be in state R at a time.
(RESUMARLE)

Process can be started by control over any one of its
ports or by a START operation directed at the process.

(Transitions) The transitions between the possible states of a
process are represented in the following diagrams

FROM\TO: Pending (Q) running Rresumable

| om oY e B W m ow W PR R R R R - W as G TR w2 ™ TR e Sa UG N e W

P(Q) ¢ KULL control entry on Q Invaliad

¥

E: port call on NULL ; : Signal
generation

RESU&ABLEQ‘(porL call on @ START(process) NULL

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS MPS L.O

Mitchnell 22 JUN 72

SKI/APARC : PAGE L

INTER=PROCESS CQNTRQL TRANSFERS?
Port Calls: the following MPS procedure describes port calls:

(PortCall) PROCEDURE (port, outparamlist):
IF port.owner # S THEN ERROR(InvalidPortCall, port);
makebendineg (3, portl;
(cheekFazults) DO BEGIN | loop until no problems with
the contirol transfer ; -
{Forketry) BEGIN
IF (ObjectFert e port.To) = NIL
THEN BEGIN
5ignal ¢« ResolutionFaulv;
EXIT Foarketry;

END; ‘
ResolvePort(objectPort, port); Inote that
PortCall aces this and not xfer.

ObjectProcess e ObjectPort.owner;
IF %OoT Pending (ObjectProcess, ObjectPort)

THEN BEGIN

gignal « Controlrault;
EXIT ForRetry;
END3
EXIT CheckFaults;
END ForPRetry;
| generate signal and anticipate control resumption
via RESUME or port
inparamlist ¢ SIGNAL(signal, port);
IF outparanlist = NIL THEN RETURN (inparamlist);
~END CneckFaultis; :
inparanliist « xfer{portv, Objectporty, outparamnlist)
lpasic control transfer ’ ' ’
RETURN (inparamlistv);
END. PoreCall

Note:
If a port is connected to itself, then its owning
process immeoiately regains contrpl as if the port caill
had not cccurred a2t all.
The mechanism wWorks correctly after any linkage fault is
generated whether control arrives over the port or as
the result of a RESUME by sonmeone who caught the signal.

Procedure Calls: the followvwinrg procedure describes procedure
calls: , ‘

(ProcedureCall) PROCEDURE(port, outparanlist);

NewProcess ¢ CopyProcess(port.To.Owner);

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS MPS L.O0
Mitchell 22 JUN- 72
SRI/XFARC : PAGE 5

inparanlist ¢ PortcCall(Port(Owner: NewProcess, To:
port.To), outparamlist); lnow perforn a normal port call

RETURHN {inparamlist);
EXD.

This description of the procedure call nechanism has a
numpber of conseqguences:

The caller is specifyineg that a orocedure call is to be
made rather than the callee or the callee's inport
specifying it.

The call is a two step oreration involving the
construction of a supsidiary port over whicn control
goes after a copy of the callee is nmade. If this new
port is not constructed, then the next time the caller
uses tihe given portv, it will no longer have QuwWner
pointing to tne vrotoprocess and the copy of the
noen~protoprocess may have altered lots of context
entries. '

The callee creates his local variavles and enters then
into nis context himself; this is not done for him. IV
is assumed that the initial control pointer points at a
place in nis coae pody which will make an activation
record for local valuead (Ulnis closely models procedures
in most current Algol-~like languages).

Possible solutions:

Let the inport to the callee contain the knowledge that
it Specifies whelher a new copy of the process named by
port,To.CowWner is to oe made. Then simple port calls
would look exactly lixKe procedure calls on the calling
side.. It also could allow the implementation of
FORTRAN=1like procedures which conceptually acquire local
storage the first time they are called and then retain
it tLhereafter.

This model of entry on a port isg close Lo that
proposed by BWL and suggests that the "knowledge" in
the inport could sinmply be the address of some systen
facility for copying the procedure and pointing the
procedure's RETURN port (which is copied as a
consequence of copying tne process 77) back at the
caller's port., Note that a RETURN operation from the

" ¢callee snould not resolve the caller's port to the
callee's RETURN port since that causes the problen
that the caller does not want to go lo the callee
copy which returned to him, dut LO a new copy.

‘A MODEL FOR MPS PROCESSES AND ENVIRONMENTS MPS 4.0 .
Mitchell : .22 JUN 72
SRI/XPARC : PAGE 6

Signal control:

Normally the SIGPATH context entry is altered in
conjunction with the RETURN entry, Wwhen a signal is o
generated bty a process, the innermost CATCH "procedure" 418
called with a local environment containing

{a) the signal code
(b) the paranlist which accomnpanies the signal code

The context within which the catch phrase 1s eXecuted
includes the part of the conteXt of the process in which
‘the catch phrase lives wnich is accessible Lo it.

A cateh phrase may do one of twWo things which affect-the
signal propagation:

It may allow the signal to continue propagating.
possibly stating the direction which it is to take
(SIGPATH for the process containing the catch phrase
defines the defaull directionj.

It may do a "non=local" transfer of control into the
body of its containing process S viz the port on which 8
is pending, prior to the actusl resumption of S,
another signal is passed from the point of generation of
the original signal. This new signal, called UNWIND,
destroys any processes which allow it tc propagate,

once it reaches S, the resumption takes place.

During the time it is deciding which of these iwo courses
to tazke, the body of a catch phrase may 4o any call or
other evaluation whicn it pleases, However, all "backward"
control transfers (RETURN, SIGNAL, ERROR, and EXITs which
are not 1ocal to the vouy of the catch phrase) are.
interpreted as performed on behalf of S.

PROCEDURES AND PROCESSES AS DIFFERENT MANIFESTATIONS OF THE SAME
PHENOMENON :

This section explores the similarities vbetween processes and
procedures (in the traditional sense),

Wwhen a procedure is called in Algol the following events take
place: : '

the caller constructs a parameter list

return linkage information is allocated in a2 vlace
accessible to both the callgr and the callee

the caller f£1ills in the return information

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS ; MPS L.O
Mitchell 22 JUN T2
SRI/XPARC " PAGE 7

_control passes to the entry point for the procedure in sone
body of ccde ’

the callee allocates space for local variables
when the callee is done, he deallocatles the local variabhles

control passes back to the caller via the return link
information

the paranmeter list is deallocated along with the return
linkage information :

In terms of our model for processes tpis paradign can be
restated as '

the caller constructs a parameter record

s copy of the callee protoprocess i8 created: this includes
nhis context information, and control/status

the callee's RETURN port is resolved back to the port which
S is using for the "call" ‘ :

the callee's context is altered to include the paranmeter
record : ‘

cohtrol passes to the callee
the callee creates an instahce‘of its activaticn record

when the callee is done, he allocates and constructs a
return record

the callee frees his activation record

centrol passes back to the caller over the process's RETURN
port and the callee copy is destroyea

PROCESS CREATION:

An instance of a process is nothing nore than a (Control,
context) pair, Processes can be created by copying an already
existing process (however, this is not quite what one would
1ike, namely copies of the data Structures createda by the
process itself == buUU See the next paragraph). Initially a
process is created from some virgin form which has usually
peen established from a file. We will call such an object a
protoprocess: it is not an executable entity, but holds a :
place in the naming environment and creating a process from iv

is a simple operation.

A ﬁrotobrocess consists of a partially initialized context and

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS , MPS 4.0
Mitchell | 22 JUN 72
SRI/XPARG | " PAGE 8

initial control information. If the records created by the
process for local variables, etc. could be created :
indevendently of one another, then making a copy of an already
existing process and the data structures owned by it would Dbe
a simple operation, In general this is not the case: records
contain references to other records, and hence, truly copying
a process is equivalent to copying a set of inter-referential
records. I don't think we should provide a built in facility
t0- do this == it is a Jjob for soneone using the systen,

Créating a new process S from some already existing process or
protoprocess P is simply a matter of copying tvhe control and
context information for P to S.

PROCESS NAMING ENVIRONMENTS:
compile Time:

The 1ocal variables for a process or procedure are those
declared following the header statement for the process,

The following example demonstrates this:

(Ex1) PROGRAM (al, bl);
DECLARE rl, sl, tl;
body-~1
(Ex2) PROGRAM (a2, b2);
DECLARE r2, s2, t2;
vody=2
END.

END.

When an incarnation of Ex1 is initially created. space
is allocated for al, bl, cl, rl, sl, and tl. Thereafter
whenever Ex2 is called (which is equivalent to creation
followed inmmediately by control transier), a2, 02, see,
t2 are allocated and will be deallocated only when EX2
does a RETURN. '

The prototype progran frbm which a process can be created
" is the following: '

(Example) PROGRAM (parameter=list);
local-variabie-aeclarations;
program-body |
END.
Any gathering of many progran brotctypesvin one source file

is simply a way of binding some contexts before process
creation time and of causing one CREATE operation to result

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS ' . MPS 4.0
Mitchell 22 JUN 72
SrRI/XPALEC : PAGE 9

ir the creation of & number of processes, Stated
Gifferently, a source module is a means of binding
processes into configurations before creation tine,

A local=variable~declaration may be

a progran geclaration: this allows Algol=-like bindings
of context.

an INCLUDE declaration: incarnations of any objects
declared in the INCLUDE module will have the sane
1ifetine as normal local variables,

Execution Tine:

The execution tine naning environment consists of a tree
whose nodes are processes and instantiations of data
modules, More than one instance of a process or data
rodule can reside at g node of the tree, Also, separate
instances of the same process nay reside at different nodes
in the naming tree. A given process resides at exactly one
node in the naming Utree,

The naning envirconment is not necessarily coupled with the
control or context ©of processes although it is often
convenient for them to be asscciated. All normal bindings
of names to objects use the compile time symbol table
associated with a process a8 the most local information,
and the naning tree as the next source ©of nanes,

We add tne following attributes to those listed above for
processes:

(Parent) Parent(s) is §'s ancestor in the naming tree,

(Sibiing) smbling(s) is a process such that
Parent(&) zparent (Sibling(s)) or SirvlingisS)sNIL

{Child) child(s) is the "first" descendant process of S
in the naming tree. The children of & process are
well=crdered, and the following loop will access all the
immediate descendants of St

child ¢ Child(3);
UNTIL child=NIL
DO BEGIN
process this chiid;
child € Sibling(cnlld),
END;

EXAMPLE!

R R RN N

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS ‘ © MPS 4.0
Mitcnell 22 JUN 72
SRI/XPARC _ PAGE 1O

Primitive operations for Process Creation and calling
Procedures:
(CreateFromFile) PROCEDURE(filename);
DECLARE POINTER(PORT) CalllInPort;
a & MapIn(filenanme); | map file into addressable memory
CallinPort ¢ Protorrocess(a.InitialFl, &,
self.ReturnPort.To); imake a protoprocess with initial

control from the file and parentv my caller

RETURN{GCallInport); | give back address of port by
which process can bhe called .

ENDe

(ProtoProcess) PROCEDURE(pc, codebase, parent);

make a protoprocess with inivial pc as given in the

codebasSe given and with the specified parent process
DECLARE POINTER(PROCESS) p3

p ¢ CopyProcess{8keletonProcess, parent); | make a
minimal, Virgin process

D._COI’!'@I‘OI & PC;

p.Context.Pending & S(p.ReturnPort); | initvial state 1is
Pending (ReturnPort)

p.Context.CodeBase « codebase;
Startip.To e p.ReturnPory;
xfer(startyp, Startlp, NIL);

RETURY(StartUp.To); | really not necessary since
StartUp belongs vo caller of ProtoProcess

END.
Samplé Program Outline:
(a) ROUTINE (pa, qal;
DECLARE xa, Yya, %23a;
{al) ROUTINE (pal, qall;

DECLARE xal, yal, zal;

A MODEL FOPR MPS PROCESSE3 AND ENVIRONMENTS : MPS b0
Mitchell : 22 JUN 72
SRI/XPARC ; : ' PAGE. 11

body of al;

END of al.
pody of a3
END of a.

The follOWing purperts to pe the code generaved by the MPL
compiler for the Sample progranmn above: .

Proto=code for a's protoprocess
{aProto)

DECLARE PROCESS b, POINTER(PEO@ESS) ap, POINTER(PORT)
caller; v

D ¢ CopyProcess(SkeletonProcess, self); Iprototype
process descriptor for a -

| set any of p's context which is desired
p.COntrol « $aBEGINS;
wxfer (ReturnPort, RKeturnport, self.inargs);

} Thé following loop handles creation and calling of
instances of a.

DO BEGIN | loop forever

ap « CopyProcess(p, self); lcopy of preset
_procesa descriptor for a

caller ¢ ReturnpPori.To;

~ ReturnPort.To ¢« ap.Returnport; iso can transfier
control to ap and leave aProto pending Return?ort,

xfer(ReturnPort, caller, self.inargs);
| aProto is left pending his ReturnPort and has
cut himself out of the control path from the
caller to the instance of a.
END;
" Code for the poutine a:

{(aBEGINS)

DECLARE xa, ya, 22, PORT CALLal;

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS ' " MPS L.O.
Mitchell ' . 22 JUKN 72

SRI/XPAKC ‘PAGE 12
CALLal.OwWner e salf;

CALLal.To ¢ ProLoProcess(alProto,»alProto, self);

body of a
code for al's protoprocess

{alProto)

DECLARE PROCESS 0, POINTER(PROCESS) 21p, POINTER(PORT)
caller;

p € CopyProcess(SkeletonProcess, self);

p.COntext.GLOBALS ¢ ReturnPort.To.o0wner.Contextv.LOCALS;
}1ocal variadvles of enclosing preear included in context
of any incarnation cf al.

p.COontrol ¢ $alBEGINSS
xfer(Returnport, Returnport, self.inargs);

| mhe following loop handles creation and calling of

.

instances of a.
DO BEGIN | loop forever

alp « CopyProcess(p, self); lcopy of preset
process descriptor for a

caller « ReturnPort.70;

‘RevurnPort.To € alp.ReturnbPoriy; lso can transfer
controi to albp and leave aProto pending
ReturnPorv. : »

xfer (Returnport, callier, self.inargs);

1 21Proto is left pending his ReturnPort and has

.

cut hinself out of the control path from the
caller to the instance of al, '

END;
code for al
(21BEGINS) | code for al

DECLARE xal, yal, zal; ! make local record for self.

‘body of al

