
Inter-Office Menlorandum

To Notetaker Working Group Date April 19, 1978
(

From Larry Tesler Location Palo Alto

Subject Distributed BitBlt Organization SSL

XEROX

(

Filed on: <Tesler>dBitBlt.press For Xerox Internal Use Only

Problem

There has been a question of whether the Notetaker I should do its BitBlts in the emulation
processor or in an I/O processor. If it is done in an I/O processor, then there can be some
overlap between emulation and character generation. If it is done in the emulation
processor, then it will be compatibie with the Notetaker II, which can do faster BitBlts in
custom LSI than Notetaker I could do on an 8086.

Alternatives

It is possible to involve two processors in the BitBlt, one fetching the source and one storing
into the destination rectangle. The two processors would communicate over three extra lines
on the motherboard. It would not be necessary to gain access to the system bus to use these
lines. The three lines would be: one serial data line; two handshake lines to control the
flow. (Maybe these lines could be multiplexed at a cost of logic at both ends, using phase
encoding or other tricks.)

If two I/O processors were employed, the emulation processor would be free during the
BitBlt. However, this would require the presence of both I/O boards at all times, or two
8086's on the same board with separate access to the system bus, requirements we don't
otherwise have. An alternative is to use the emulation processor and only one I/O
processor.

There is still a question of which processor should be source and which should be
destination. Since both the source and the destination processors must worry about the
cursor, the situation seems entirely symmetrical in Notetaker I. However, in Notetaker II.
the emulation processor will be faster. Therefore, it should have the larger share of the
work, which is the destination side.

The emulation processor would start a BitBlt by setting up a control block in main memory
and signalling the I/O processor by the interrupt mechanism. It would then start its own
Slore loop going, being sure to wait for each word of the source stream to be available
before doing the logical operation and the store. Hardware and software details of each side
are presented below. A block diagram of the hardware is appended.

(

(

Distributed BitBlt 2

The Source

The source processor would output 16-bit words into a 16-bit bidirectional shift register
(e.g., two 8-bit MSI TTL OM54198's, which shift at 35 MHz and dissipate 360 mW apiece,
or something better). Associated with the shifter would be a four-bit counter, a one-bit
direction register, and a decoder that maps this hardware into the 8086 address space.

The source rectangle would be serialized a horizontal line at a time. For example, to send a
line of a rectangle in left-to-right order whose x was 2 and whose width was 40, the source
processor would:

(1) Set the shifter mode to Left Shifts;
(2) Set the counter to 14;
(3) Load the first word (x = .0 to 15) shifted left 2 into the shifter;
(4) Wait until the shifter is empty (the counter is zero);
(5) Load the next word (x = 16 to 31) into the shifter;
(6) Wait until the shifter is empty (the counter is zero);
(7) Set the counter to 10;
(8) Load the last word (x = 32 to 47) into the shifter;
(9) Wait until the shifter is empty (the counter is zero).

Then, to provide zero padding needed by the destination processor, it would:
(10) Set the counter to the padding amount from the control block;
(11) Load zero into the shifter;
(12) Wait until the shifter is empty (the counter is zero).

When bits must be supplied right-to-Ieft, the shifter mode would be Right Shifts. Note that
the counter automatically resets itself to 16 (0) each time. .

To accomplish the above-listed steps, the source processor would output shifter data and
control words into memory-mapped locations. The control '.vord would have a 4-bit count
and a I-bit shift-direction. The act of storing a data word would set the shifter's mode
from the shift-direction register and would start the - counting and shifting.

The inner loop of a scan-line (steps 4-5 above) would thus be:

RPT MOVW ; (DI)+-(SI), step, loop

The loop would be preceded by a special case for left of line and by initialization of ex
(count). SI (source address), 01 (shifter address), OF (inc/dec flag). It would be followed by
a special case for right of line. The loop assumes that the shifter has been assigned at least
1024 consecutive memory addresses, since DI is incremented each time.

Execution time per word = (6+10) clocks or 2 microseconds, plus .8 microseconds waiting
for main memory, plus wait states added when the destination processor falls behind. Note
that interrupts can not happen during the wait states, so we have to guarantee that wait
states don't last too long (say, 12 us).

The source processor can pump out the fu1l bit map (19,200 words) in about 55 ms, less than
2 frame times. However, on Notetaker I, BitBIt is destination-bound, so this figure is
irrelevant. What is relevant is that up to .35 of the main memory bandwidth is consumed.

For constant sources, STOW is used instead of MOV\V. The speed is just 2 us per word
because no main memory bandwidth is consllmed.

(

(

(.

Distributed BitBlt 3

The Destination

The destination processor would input 16-bit words from a 16-bit bidirectional shift
register with counter etc. as above.

The source rectangle would be deserialized a horizontal line at a time. For example, to
receive a line of a rectangle in left-to-right order whose width was 40 and whose destination
x will be 7, the destination processor would:

(1) Set the shifter mode to Left Shifts and clear the shifter;
(2) Set the counter to 9 and initiate shift-in;
(3) Wait until the shifter is full (the counter is zero);
(4) Load the first snip (x = 7 to 15) from the shifter;
(5) [Load the destination word, and/or/xor with snip,] Store the result;
(6) Wait until the shifter is full (the counter is zero); .
(7) Load the next snip (x = 16 to 31) from the shifter;
(8) [Load the destination word, and/or/xor with snip,] Store the result;
(9) Wait until the shifter is full (the counter is zero).
(10) Load the last snip (x = 32 to 46 plus padding) from the shifter;
(11) [Load the destination word, and/or/xor with snip,] Store the result.

When bits must be supplied right-to-Ieft, the shifter mode wouid be Right Shifts. Note that
the counter automatically resets itSelf to 16 (0) each time.

To accomplish the above-listed steps, the destination processor would input shifter data and
output control words into memory-mapped locations as above. Shifting would be initiated
automatically after each snip is loaded.

The inner loop of a scan-line (steps 6-8 above) would thus be:

L: LODW
AND Shifter
MOV AX,(SI)
LOOPL

AX ~(SI) and inc SI while shift finishes
AX~AX AND Shifter
(SI)~AX
dec ex and loop

The loop would be preceded by a special case for left of line and by initialization of ex
(count), SI (source address), DF (inc/dec flag). It would be followed by a special case for
right of line.

Execution time per word = (12+15+14+17) clocks or 7.25 microseconds, plus 1.6 us waiting
for main memory, plus wait states added when the source processor falls behind. This is
within the 12 us limit suggested above.

The destination processor can operate on the full bit map (19,200 words) in about 170 ms,
or 5 frame times. OnIY.2 of the main memory bandwidth is consumed on Notetaker I.

For store mode, the inner loop is:

RPT MOVW

Execution time per word = (6+ 10) clocks or 2 microseconds, plus .8 us waiting for main
memory. plus wait states. Up to .35 of main memory bandwidth is consumed. The bit map
can be covered in less than 2 frame times.

(

Distributed BitBlt 4

Character Generation

The source processor executes something like the following code for each character on a line
(DX is the raster width of the font, OJ points at the shifter, OF is set to increment, CH is 0,
the shifter is ready to shift left, font and string are in main memory):

CLOOP: MOV CharPtr, BP
INC CharPtr
MOV O(BP), BL
MOV Font, SI
MOV Xtable(BX)(SI), AX
MOY Xtable+l(BX)(SI), BX
SUB AX, BX
MOY BX, Counter
ADD AX, BX
DEC BX
SR4, AX
SR4, BX
SUB AX, BX
INC BX
ADD Glyphs(SI), AX
MOV Padding, BH
MOY FontHeight, BP

VLOOP: MOV AX,SI
MOV BL,CL
RPT MOVW
MOV BH, Counter
MOY =O,Shifter
ADD OX,AX
DEC BP
JNZ VLOOP

DEC CharCount
JNZ CLOOP

;14 BP ... Addr of next char
;21 inc string ptr
;23 BL ... next character (BH already 0)
;14 SI ... Strike font
;26 AX ... starting X of character
;26 BX ... X of char+ 1
; 3 BX ... width of character
;14 Initialize counter modulo 4
; 3 restore BX
; 2 BX ... X of end of char
; 2 word offset of start of char
; 2 word offset of end of char
; 3 BX ... words to transfer -1
; 2 BL ... words to transfer
;24 AX ... addr of first source word
;14 Get padding ready
;14 Get font height ready

; 2 SI ... BitBlt source addr
; 2 CX ... words to transfer ("n")
; 2+22n Move n words to shifter
;15 Supply padding
;16
; 3 AX ... next scan line address
; 2 if any scan lines left
;16 loop

;21 any characters left
;16 loop

The time to send an h high by 15-or-fewer wide character (n=1 or 2, avg. 1.5) is thus:

244 + 88h clocks

or 162 us for a 12 point character.

Although I haven't written the code, I think the destination processor takes a comparable
amount of time. Since the loops are concurrent, the total character generation rate is about
6000 characters per second. This is three times faster than the Alto (a factor of two from
multi-processing and the rest from the special hardware). Since the Notetaker will display
fewer characters than the A I to, the apparent rate should be even faster.

Proposal

Because of the board space, power requirements, and multi-processor requirements of the
above scheme, it seems wisest in the beginning to implement a one-processor BitBIt. When
we have an expansion box, we could experiment with multi-processor schemes in it.

(

8086

(.

Distributed BitBlt

Block Diagram

April 19, 1978

Source Destination

Set Set

II II 4 -bit Counter III I 4-bit Counter

Data

count count

Please receive Bit

Did receive Bit

>
DT/R

o is control logic

driven off a 16 or 32 MHz clock

It starts shifting when Shifter is read or written

It decrements the counter at each shift

It handshakes with the other side

It stops shifting when the Counter is zero

It inhibits access to Shifter & Counter during above

Also can be reset and can report 1 bit of ready status

8086

LT

