

Mesa Language Manual

by James G. Mitchell
William Maybury
Richard Sweet

Version 5.0
April 1979

CSL-79-3

The Mesa language is one component of a programming system intended for developing and
maintaining a wide range of systems and applications programs. Mesa supports the
development of systems composed of separate modules with controlled sharing of information
among them. The language includes facilities for user-defined data types, strong compile
time checking of both types and interfaces, procedure and coroutine control mechanisms,
and control structures for dealing with concurrency and exceptional conditions.

XEROX
PALO ALTO RESEARCH CENTER
SYSTEMS DEVELOPMENT DEPARTMENT
3333 Coyote Hill Road / Palo Alto / California 94304

, I

@ Copyright 1979 by Xerox Corporation

CONTENTS
CHAPTER 1. INTRODUCTION

1.1. Syntax notation

CHAPTER 2. BASIC DATA TYPES AND EXPRESSIONS
2.1. A slice of Mesa code

2.1.1. Basic lexical structure
2.2. Simple declarations
2.3. The fundamental operations, .. , =, and #
2.4. Basic types

2.4.1. The numeric types INTEGER and CARDINAL

2.4.1.1. Numeric literals
2.4.2. Type BOOLEAN

2.4.3. Type CHARACTER

2.4.4. The numeric types LONG INTEGER and LONG CARDINAL

2.4.5. Type REAL

2.4.6. Relations among basic types
2.5. Expressions

2.5.1. Numeric operators
-.. 2.5.1.1. Domains of the numeric operators

2.5.1.2. The operator LONG

2.5.1.3. CHARACTER operators
2.5.2. Relational operators
2.5.3. BOOLEAN operators
2.5.4. Assignment expressions
2.5.5. Operator precedence

2.6. Initializing variables in declarations
2.6.1. Compile-time constants

2.7. More general declarations

CHAPTER 3. COMMON CONSTRUCTED DATA TYPES
3.1. The element types

3.1.1. Enumerated types
3.1.2. Subrange types

3.1.2.1. Subranges of numeric types
3.1.2.2. Range assertions

3.2. Arrays .
3.2.1. Declaration of arrays
3.2.2. Array constructors

3.3. Records
3.3.1. Field lists
3.3.2. Declaration of records
3.3.3. Qualified references
3.3.4. Record Constructors
3.3.5. Default field values
3.3.6. Extractors

3.4. Pointers
3.4.1. Constructing pointer types
3.4.2. Pointer operations
3.4.3. Long Pointers
3.4.4. Automatic dereferencing

i

I

1
2

4
4
5
6
6
7
7
8
8
9
9

10
10
11
12
13
14
15
15
16
17
17
17
18
19

20
22
22
24
26
26
27
29
30
31
31
32
34
35
36
38
39
41
42
43
44

3.5. Type determination
3.5.1. Type conversion
3.5.2. Balancing
3.5.3. Free conformance

3.6. Determination of representation

CHAPTER 4. ORDINARY STATEMENTS
4.1. Assignment statements

4.1.1. Assignment expressions
4.2. IF statements

4.2.1. IF expressions
4.3. SELECT statements

4.3.1. Forms and options for SELECT

4.3.2. The NULL statement
4.3.3. SELECT expressions

4.4. Blocks
4.4.1. GOTO statements
4.4.2. OPEN clauses

4.5. Loop statements
4.5.1. Loop control
4.5.2. GOTOS, LOOPS, EXITS, and loops

CHAPTERS. PROCEDURES
5.1. Procedure types

5.1.1. Procedure values and compatibility
5.2. Procedure calls

5.2.1. Arguments and parameters
5.2.2. Termination and results

5.3. Procedure bodies
5.3.1. RETURN statements

5.4. A package of procedures
5.4.1. The example
5.4.2. Invoking procedures in other modules

5.5. Nested procedures
5.5.1. Scopes defined by procedures

5.6. Inline procedures

CHAPTER 6. STRINGS, ARRAY DESCRIPTORS, RELATIVE POINTERS,
AND VARIANT RECORDS

6.1. Strings
6.1.1. String literals and string expressions
6.1.2. Declaring strings
6.1.3. Long strings

6.2. Array descriptors
6.2.1. Array descriptor types
6.2.2. Long descriptors

6.3. Base and relative pointers
6.3.1. Syntax for base and relative pointers
6.3.2. A relative pointer example
6.3.3" Relative pointer types
6.3.4. Relative array descriptors

6.4. Variant records
6.4.1. Declaring variant records
6.4.2. Bound variant types

ii

45
46
47
48
49

51
51
52
52
53
54
54
56
56
57
57
59
61
62
64

67
69
70
71
72
72
73
74
75
77
78
78
79
80

82

82
83
84
85
85
85
87
88
88
89
90
91
92
93
95

6.4.3. Accessing entire variant parts, and variant constructors
6.4.4. Accessing components of variants _

CHAPTER 7. MODULES, PROGRAMS, AND CONFIGURATIONS
7.1. Interfaces
7.2. The fundamentals of Mesa modules

7.2.1. Including modules: the DIRECTORY clause
7.2.1.1. Enumerating items from an included module: the USING clause

7.2.2. Accessing items from an included module
7.2.2.1. Qualification
7.2.2.2. OPEN clauses

7.2.3. Scopes for identifiers in a module
7.2.4. Implications of recompiling included modules

7.3. DEFINITIONS modules
7.3.1. Interface variables
7.3.2. Default fields in interfaces
7.3.3. Inline procedures in interfaces
7.3.4. Usage hints for inline procedures in interfaces

7.4. PROGRAM modules: IMPORTS and EXPORTS
7.4.1. IMPORTS, interface types, and interface records
7.4.2. Importing program modules
7.4.3. Exporting interfaces and program modules
7.4.4. IMPORTS in DEFINITIONS modules

7.5. Controlling module interfaces: PUBLIC and PRIVATE
7.5.1. Access attributes in declarations

7.5.1.1. Declared names
7.5.1.2. Names specified in field lists
7.5.1.3. Names for variant parts and for tags in variant records

7.5.2. Access attributes in TYPE definitions
7.5.3. Default global access
7.5.4. Accessing the PRIVATE predefined symbols of other modules

7.6. The Mesa configuration language, an introductory example
7.6.1. Lexicon: a module implementing LexiconDefs
7.6.2. LexiconClient: a client module
7.6.3. Binding, loading, and running a configuration: an overview
7.6.4. A configuration description for running LexiconClient

7.7. ClMesa: syntax and semantics
7.7.1. IMPORTS, EXPORTS, and DIRECTORY in C/Mesa
7.7.2. Explicit naming, IMPORTS, and EXPORTS
7.7.3. Default names for interfaces and instances
7.7.4. Multiple exported interfaces from a single component
7.7.5. Multiple components implementing a single interface
7.7.6. Nested (local) configurations

7.S. Loading modules and configurations: NEW and START
7.8.1. The NEW operation for making copies of modules
7.8.2. How the loader binds interfaces
7.8.3. STARTing, STOPping, and RESTARTing module instances
7.8.4. Loading and starting configurations

CHAPTER 8. SIGNALLING AND SIGNAL DATA TYPES
f.1. Declaring and generating SIGNALS and ERRORS

8.1.1. ERROR in expressions
S.2. Control of generated signals

8.2.1. Preparing to catch signals: catch phrases

iii

96
I

97

101
101
104
105
106
106
106
107
108
109
110
111
112
113
114
114
115
116
116
116
117
117
118
118
118
119
120
120
120
121
123
123
124
125
126
126
127
128
129
130
131
131
132
132
133

134
134
136
136
137

8.2.2. The scope of variables in catch phrases
8.2.3. Catching signals
8.2.4. RETRY and CONTINUE in catch phrases
8.2.5. Resuming from a catch phrase: RESUME

8.3. Sig~als within signals

CHAPTER 9. PORTS AND CONTROL STRUCTURES
9.1. Syntax and an example of PORTS

9.2. Creating and starting coroutines
9.2.1. The CONNECT statement
9.2.2. Low-level actions for a PORT call
9.2.3. Control faults and linkage faults
9.2.4. Saving arguments during faults

9.3. RESPONDING PORTS

CHAPTER 10. PROCESSES AND CONCURRENCY
10.1. Concurrent execution, FORK and JOIN

10.1.1. A process example
10.1.2. Process language constructs

10.2. Monitors
10.2.1. An overview of monitors
10.2.2. Monitor locks
10.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures
10.2.4. Interfaces to monitors
10.2.5. Interactions of processes and monitors

103. Condition variables
10.3.1. Wait, notify, and broadcast
10.3.2. Timeouts

10.4. More about monitors
10.4.1. The LOCKS clause
10.4.2. Monitored records
10.4.3. Monitors and module instances
10.4.4. Multi-module monitors
10.4.5. Object monitors
10.4.6. Explicit declaration of monitor locks
10.4.7. Inline ENTRY procedures

10.5. Signals
10.5.1. Signals and processes
10.5.2. Signals and monitors

10.6. Initialization

APPENDICES

A. Pronouncing Mesa

B. Programming Conventions
B.1. Names
B.2. Layout
B.3. Spaces

C. Alto/Mesa M~lchine Dependencies
C.1. Numeric limits
C.2. AltoDefs
C.3. ASCII character set and ordering of character values
C.4. Alto/Mesa STRING procedures

iv

138
139
141
141
142

144
145
146
147
148
149
150
151

152
152
152
153
154
155
156
156
157
158
158
158
161
161
161
162
162
163
165
166
166
166
166
166
168

169

170
170
170
171
172
172
172
173
174

D. Binder Extensions 175 I

D.1. Code packing 175
D.1.1. Syntax 175
D.1.2. Restrictions 176

D.2~Extemallinks 176
0.2.1. Syntax 176
D.2.2. Restrictions 177

E. Mesa Reserved Words 178

F. Collected Grammar 179

INDEX 185

v

Preface

This document describes the Mesa programming language. Its approach is tutorial, and it is
intended to be read somewhat as a textbook. It is neither a user's guide nor a reference manual.

'1·

The Elements of Mesa Style, by James Morris, is a recommended supplement to this manual. The
style manual contains several examples of well-constructed Mesa programs, with explanati~ns of their
development and commentary on using the language properly. Its purpose is to provide assistance
in using the features of Mesa to write programs that work reliably and are easily maintained.

Programmers should also read the Mesa Users Handbook, which provides an introduction to the use
of the Mesa system and a guide to other documentation. The Mesa System Documentation and
Mesa Debugger Documentation describe facilities available in the Alto implementation of the Mesa
programming system. These include input and output, which are done procedurally and are not
built into the language.

Suggestions, corrections and criticisms concerning the style and content of this manual are
encouraged and should be sent to your support group.

Acknowledgements

The Mesa language was designed and first implemented by the Computer Science Laboratory of the
Xerox Palo Alto Research Center. The principal participants were Butler Lampson, James Mitchell,
Edwin Satterthwaite, Charles Geschke, and Richard Sweet. Subsequent development and
maintenance of the language and compiler have been done by the Systems Development
Department of Xerox. In addition to the original participants. John Wick and Richard Johnsson
have made major contributions.

The original version of this manual was written by William Maybury and edited by James Mitchell.
To reflect changes in the language. many sections have since been added or revised. James Mitchell
and Richard Sweet have served as editors, with additional contributions by Edwin Satterthwaite.
John Wick and Richard Johnsson. David Redell wrote most of Chapter 10.

Vicki Parish, Gail Pilkington, Janet Farness, and Ode Binkley helped greatly with manuscript
preparation and formatting; Gail Pilkington, James Sandman, Barbara Koalkin, and Bruce Malasky
assisted in proofreading and indexing.

vi

1

CHAPTER 1.

INTRODUCTION

This manual concentrates on the Mesa programming language. Mesa is really a programming system
of which the language is but one part. Other components of the system are documented separately.
as are the details of preparing, compiling, debugging and running Mesa programs.

Each chapter of this manual discusses some aspect of the language, using examples as well as
descriptions of semantics and syntax. The chapters emphasize different language features and
provide different levels of detail. The complete treatment of some features requires more than one
chapter. Generally, earlier chapters introduce topics, and later ones supply additional detail. Titles
of chapters, sections and subsections indicate the language issues with which they deal.

In each major section, information is presented at three levels:

(1) Ordinary usage (motivation, forms and semantics), frequently with examples.

(2) Syntax equations (when appropriate).

(3) Fine points (if applicable): restrictions, special cases, references to later material. precise
semantics, etc.

Level (1) is intended to offer a basic understanding of Mesa. Reading only first level material
should be adequate to begin programming in the language. Levels (2) and (3) supply more detail
and provide information about the full power 'of Mesa.

As a rule, these levels of' discourse occur separately and in the indicated order. A section with a
heading followed by an asterisk (*) deals with specialized material that can be skimmed or skipped
entirely on first reading. Occasionally, fine points or syntactic details are presented within first-level
material. The reader will be able to distinguish between levels by their appearance. Fine points are
written in a small font, like this. Syntax equations and syntactic categories appear in the following font:
FontForSyntax.

Any italicized word or phrase is important If a Mesa technical term is being introduced, it will be in
italics; if a term is used before being defined, it will be italicized to warn the reader that it should
not be taken lightly and that it has a particular meaning in Mesa. Occurrences of a technical term,
once defined, are not distinguished. Lastly, names appearing in programs are italicized in both the
program text itself and the explanations of "that text

Programming examples are indented relative to the surrounding text to distinguish them.

, I

2 Chapter 1: Introduction

1.1. Syntax notation

Mesa's grammar is described by syntax equations written using a variation of Backus-Naur Fonn (or
BNF). For those unfamiliar with BNF, an explanation follows. Reading and understanding that
explanation is imperative for full use of this manual; in a first reading, details of the syntax
equations can safely be skipped. Those familiar with BNF should scan this section to discover the
particular variation being used.

An individual syntax equation defines a portion of the Mesa grammar. It specifies a rule for
fonning some class of phrases in the language. A phrase class has a name, e.g., Program, and is
defined by one or more syntax equations. Phrase names are always printed in the syntax font when
their use is meant to be technically accurate. For example, an Octal Digit, which can be any of 0,
I, 2, . . ., 7, is defined by the equation:

OctalDigit :: = 011121314151617

Each equation consists of a phrase name on the left. followed by the operator :: = (which should be
pronounced "is defmed to ben), in tum followed by a Jonnation rule for that phrase class A
fonnation rule consists of one or more alternatives, separted by the syntactic operator vertical bar, I
(which should be pronounced "or"). The ordering of alternatives is not important In the definition
of Octal Digit, "3" is an alternative.

Each alternative is a sequence of symbols. where a symbol is either a phrase name (in the syntax
font) or a syntactic literal. In a syntax equation, a literal symbol stands for itself. The reserved
words of Mesa, such as BEGIN, appear as literals; they are always written using upper-case characters
in the font shown. The digits 0, I, 2, etc. and special characters, such as =, + and 4-, also are used
to fonn literal symbols. Some composite symbols are fonned from more than one special character,
e.g., =>. Spaces in syntax equations are used only to separate the items in the rules and have no
special significance.

The phrase name empty is often used as one of the alternatives in a fonnation rule. It means that
the rule pennits an "empty" phrase as one of its alternatives (i.e., an actual phrase is optional; it
mayor may not occur in the result of applying the fonnation rule).

Comments embedded in syntax rules are preceded by a double dash, --, and appear to the right, e.g.,
Digit :: = OctalDigit 1819 -- a decimal digit is an Octal Digit or

an 80ra9

Often, only part of the total definition of a phrase class is given. To indicate that there are other
ways of fonning phrases of that class, an ellipsis (...) is used as an alternative within the rule. The
definition of Statement is distributed throughout much of the manual in this way. When a certain
statement fonn, such as the AssignmentStmt, is being discussed, the following partial rule
appears:

Statement - :: = AssignmentStmt I ... -- this is just an example.
'.~."

One can read this as, "A Statement is defined to be an AssignmentStmt, among other things."

Within a single alternative, the order of symbols is important. The alternative acts as a "template"
for fonning an actual phrase; literal names and literal characters are copied, while substitutions are
made for the phrase names. Consider the following example:

ReturnStmt :: = RETURN I RETURN Constructor

("A ReturnStmt is defined to be RETURN or RETURN followed by a Constructor.") The second
alternative means that RETURN and some actual phrase defined by Constructor occur in exactly
that order.

Mesa language Manual 3

Syntax equations can indicate recursive substitution; for example:
Idlist :: = identifier I identifier, Idlist

In a Mesa program, an identifier is basically a name. This equation defines an Idlist to be a list
of one or more names, with commas separating them if there is more than a single name in the list

This result is explained as follows. The formation rule for IdUst consists of two alternative rules:

Rule 1: (First alternative) "An IdList is defined to be an identifier", i.e., anyone name can replace an IdUst.

Rule 2: (Second alternative) "An IdUst is defined to be an identifier followed by a comma followed by another
IdUst", ie., name, IdList can replace an IdList.

To derive a single name, use Rule 1 as shown below. (Note: The substitutions are emphasized by writing
them in italics.)

IdList •• - name (by Rule 1)

To derive two names separated by a comma:

IdUst .. - name, 1dUst (by Rule 2)
name, name (by Rule 1)

To derive three names separated by commas:
IdUst .. - name, IdUst (by Rule 2)

name, name, IdUst (by Rule 2)
name, name, name (by Rule 1)

To derive n names separated by commas, use Rule 2 nl times and then use Rule 1.

The following syntax equation also relies on recursion:
StmtSeries :: = empty I Statement I Statement; StmtSeries

The equation is read as, "A StmtSeries is defined to be empty. or a single statement, or a series of
statements separated by semicolons; the last statement may be followed by a semicolon."

A trailing semicolon is possible because:

1) A StmtSeries may take the fonn specified by the third alternative, "Statement ; StmtSeries".

2) After some number of further substitutions using the third alternative, the recursive reference to StmtSeries
may take the "empty" fonn, i.e., Statement ; empty".

3) empty is replaced by nothing at all. i.e., Statement ;".

Commas and semicolons are used as major separators for a variety of constructs in Mesa. To
distinguish between such constructs, a convention is adopted that the suffix "list" on a phrase name
iniplies a sequence separated by commas, while "Series" implies a sequence separated by
semicolons. This convention is reflected by the phrase names Idlist and StmtSeries above.

4

CHAPTER 2.

BASIC DATA TYPES AND EXPRESSIONS

This chapter presents some of the fundamentals of Mesa. It discusses how to declare, initialize and
assign values to variables. It also describes the basic types for numeric, character and Boolean data,
as well as the operators used to construct expressions having these types.

The Mesa language is strongly typed. The programmer is given a collection of predefined types and
the ability to construct new ones; he is encouraged to choose or invent suitable types for each
particular application. Every variable used in a Mesa program must be declared to have one of
these types; every constant has a type; and every expression has a type derived from its components
and 'context. All types can be deduced by static analysis of the program, and the language requires
that each value be used in a way consistent with its type according to rules specified here and in
chapter 3. The type of an object determines its representation and structure as well as the set of
applicable operations. In addition, the type system can be used to partition the universe of objects
and avoid confusion, even among classes of objects that are represented identically.

2.1. A slice of Mesa code

The example below is an excerpt from a Mesa program. It assigns to gcd the greatest common
divisor (OeD) of a pair of integers, m and n (where m, nand gcd are integer variables in the
program from which this excerpt was taken; we assume their values need not be preserved). The
example uses the Euclidea!l Algorithm for finding the OeD of two numbers and works as follows:

If both m and n are zero, the OeD is zero (by convention).

Otherwise, repeat the following until n is zero: find the remainder of dividing m by n; set m
to the value of n; then set n to the remainder. The final value of m is the OeD of the
original m and n except that it may be negative; taking its absolute value gives the GeD.

Example. Slice of Mesa Code Using the Euclidean Algorithm
-- Given are integers m and n, which can be altered. (1)
IF m=O AND n=O THEN gcd ~ 0 -- by convention (2)
ELSE (3)

BEGIN (4)
r: INTEGER; (5)
UNTIL n=O (6)

00 m
r'" m MOD n; -- r gets remainder of min (8)
m ~ n; n ~ r; -- update variables (9)
ENDLOOP; (10)

gcd'" -- in case one of m or n was negative -- ABslm]: (11)
END; (12)

Mesa Language Manual 5

The example contains twelve lines of source code, including comments. The numbers in parentheses
at the right side are for reference only and are not part of the source code. Comments begin with
the symbol ft __ .. and tenninate at line endings. They may also be completely embedded within lines,
in which case they both begin and end with "--".

Line (2) begins an IF statement that uses the values of m and n to select between two alternatives. If
both values are zero, the assignment statement following THEN is executed; it assigns the value 0 to
gcd (the character is Mesa's assignment operator). If either is nonzero, the assignment is
skipped and the compound statement following ELSE (lines (4) through (12) inclusive) is executed.
(Distinguishing the two cases is actually unnecessary, but doing so illustrates more features of Mesa.)

The second alternative is a block, a series of declarations followed by a series of statements, all
bracketed by "BEGIN" and "END". Line (5) declares a variable r of type INTEGER for use within that
block. A semicolon separates the declaration from the statements that follow it

The iteration in the algorithm is perfonned by the loop (UNTIL n=O DO ••• ENDLOOP), which contains
three embedded assignment statements. The loop repeats until n is equal to zero. If it is zero at the
outset, the embedded statements are not e.xecuted at all. Statements are separated by semicolons. A
semicolon at the end of a statement series that is embedded in another statement (such as the series
in the loop) is optional; it is pennissible to write a semicolon after every statement in the series.

Within the loop, line (8) assigns to r the value of the expression "m MOD n", which gives the
remainder of dividing m by n. Line (9) updates m to contain the previous value of n and then
updates n for the next iteration, if any. Control transfers from the end of the loop, line (10), back to
line (6), where the new value of n is tested If it is not zero, the loop is repeated; otherwise,
execution continues with the first statement following the loop, line (11).

When control reaches the assignment statement in line (11), m either has its original value (if n was
zero) or contains the value n had just before it became zero. The expression "ABs[m]" has the fonn
used for calling a function and passing it one or more arguments; square brackets enclose the
argument list Nonnal parentheses, "(" and ")", are used only for nested expressions, e.g.,
"a*(b+cI(de)*j)." The assignment places the absolute value of minto gcd; this is the correct
result At this point, the reader is urged to trace through the example with initial values for m and
n of 15 and 12, respectively; the result should be gcd=3.

2 I. I. Basic lexical structure

The names gcd. m, n and r in the example are called identifiers. The general fonn of an
identifier is given by the following (informal) syntax:

An identifier is a sequence consisting of any mixture of upper-case letters, lower-case
letters or digits, the first of which is a letter. Upper and lower case letters are different and
do distinguish identifiers.

The following, valid identifiers are all distinct:

aBc Abc DiskCommandWord displayVector machl x32y40

Identifiers consisting entirely of capital letters are reserved for use by the Mesa language. Some,
such as IF, are punctuation symbols; others name built-in types, such as INTEGER, or functions, such
as ABS. All such words that have special meaning and are not to be defined by the programmer are
called reserved words. It is legal for the programmer to use fully capitalized identifiers, but he risks a
clash with a reserved word (possibly a new one in some future version of the language). To avoid
this, at least one digit or lower case letter should appear in any identifier. Appendix E lists the
current set of reserved words.

, I

6 Chapter 2: Basic Data Types and Expressions

Mesa uses the blank (or space) character to separate basic lexical units of the language (such as
reserved words and ideritifiers)~ Blanks are significant separators of lexical units. They may not be
embedded in identifie:rs, composite symbols (such as > =), or numeric literals (such as 1000).
Blanks are meaningful in STRING constants (section 6.1.1), and there is a CHARACTER constant for
space (section 2.4.3). As a separator, any sequence of contiguous blanks is equivalent to a single
blank. A TAB character also behaves exactly as a blank when used as a separator.

A carriage-return character behaves as a blank for separating lexical units also, but it has one extra
function: if the last part of a line is a comment, the carriage return acts as the terminator of that
comment. Thus, multiline comments (those containing carriage returns) must begin with "--" on
each new line. Line breaks have no significance as statement separators. For example, the single
loop statement in the example extends over a number of lines, and a semicolon is used to separate
two statements in a series.

Semicolons are used for separating declarations, for separating a series of declarations from following
statements, and for separating statements in a series from one another. They cannot be used with
abandon. however; care is necessary when writing IF statements (sec. 4.2.1) or SELECT statements (sec.
4.3.1). Multiple statements can be written on a single line, separated by semicolons.

2.2. Simple declarations

The example (Euclidean Algorithm) contains the following declaration:
r: INTEGER;

Thi~ declares r to be a variable of type INTEGER (sec. 2.4.1), one of Mesa's built-in types. More than
one variable can be declared at the same time. For instance,

x, y. divisor: INTEGER;

declares identifiers x. y and divisor as variables of type INTEGER. These examples reflect the two
primary purposes of every declaration:

to designate one or more identifiers as variables, and
to specify their type.

A declaration always begins with a single identifier or a list of identifiers. Conventionally, "list" is
used to denote a single item as well as multiple items separated by commas. An identifier list
(ldUst) is defined as follows:

IdUst .. - identifier I
identifier,ldUst

A declaration begins with an IdList followed by a colon. The colon is followed by a type
specification (INTEGER, for instance, is a type specification).

2.3. The fundamental operations: assignment, equality and inequality

The example contains the following five assignment statements:

gcd.- 0
r'-mMODn
m'-n
n'-r
gcd.- ABs[m]

Mesa Language Manual

An assignment statement has the following syntax:
AssignmentStmt .. - LeftSide'" RightSide I ...
LeftSide :: = identifier I. . . -- plus forms for array indexing, etc.
RightSide .. -.. - Expression

7

The RightSide may be any expression (section 2.5) provided that its type conforms to that of the
LeftSide. "Conforms" is defined in section 2.4.6 and is discussed further in section 3.5; for now, it
can be taken to mean: "is the same as." The LeftSide may be a simple variable or a component of
an aggregate variable (such as an element of an array). In any event, a LeftSide denotes a variable,
something capable of receiving values. A LeftSide cannot, for example, be a constant, while a
RightSide can.

The assignment operation (...), the equality operation (=) and the inequality operation (#) are
called the fundamental operations. They can be applied to values of most types (including, for
instance, entire arrays). The rules governing which pairs of operands may be used in a fundamental
operation are detailed in section 3.5.

2.4. Basic types

The, types of variables in a Mesa program fall into two broad classifications, built-in types and use,..
defined types. Chapter 3 describes how a programmer can define new data types using type
constructors. This section discusses the basic, built-in types. These include several numeric types
(INTEGER, LONG INTEGER, CARDINAL, LONG CARDINAL and REAL), a type for logical values (BOOLEAN),
and a type for individual character values (CHARACTER). The built-in type STRING (for sequences of
characters) is described in chapter 6.

24.1. The numeric types INTEGER and CARDINAL

Mesa provides two standard numeric types, one with values ranging over the signed integers; the
other, over the unsigned integers. Neither type completely mirrors the corresponding mathematical
abstraction (the integers ~ or the natural numbers N, respectively) because a finite representation is
used for values of each type. The range of the type INTEGER is (approximately) symmetric about
zero, and values of type' INTEGER are represented as signed numbers. The range of the type
CARDINAL is some finite interval of the natural numbers that includes zero, and values of type
CARDINAL are represented as unsigned numbers. "Signed" and "unsigned" are not types; rather, they
describe the machine representation of a numeric value.

The programmer must choose an appropriate type for each numeric variable. CARDINALS offer a
somewhat greater positive range than INTEGERS, and this is significant in a few applications, e.g.,
those that manipulate addresses that might be the same size as the word size. More importantly,
declaring a variable to have type CARDINAL asserts that its value is always nonnegative; the compiler
can use such assertions to perform more checking and to generate better code. Programmers are
encouraged to declare as much information about each variable as possible; the ranges of numeric
variables can be further constrained by using subrange types (section 3.1.2).

The types INTEGER and CARDINAL are distinct and not interchangable. They are, however, closely
related. Mesa allows most combinations of these types to occur within assignments and arithmetic
expressions (but not relational expressions). Care is necessary to avoid ambiguity and failures of
representation when values with different representations are mixed. This is discussed further in
sections 2.4.6 and 2.5:1.1.

8 Chapter 2: Basic Data Types and Expressions

2.4.1.1. Numeric literals

A numeric literal is an instance of the phrase class number, defined as follows:
A number is a sequence of digits. The digits may optionally be followed by the letter B or
D, which in tum may optionally be followed by another sequence of digits denoting a scale
factor. No spaces are allowed within numeric literals.

If D is specified explicitly, or if neither B nor D appears, the number is treated as decimal. The
letter B means the number is octal (radix 8). A scale factor indicates the number of zeros to be
appended to the first sequence of digits; the scale factor itself is always a decimal number. The
literals below all denote the same value:

6400 6400D 64D2 14400B 144B2

A numeric literal always denotes a nonnegative number (Le., 5 is considered to be an expression in
which the unary negation operator is applied to the literal 5 to produce an INTEGER value). To be
valid in a context requiring a CARDINAL, the value of the literal must be a valid CARDINAL number.
Similarly, if an INTEGER is required by context, the value must be a valid (positive) INTEGER. (See
section 2.4.4 for more details)

2.4.2. Type BOOLEAN

A BOOLEAN value can be either TRUE or FALSE, and these are the only literals of type BOOLEAN; i.e.,
BooleanLiteral :: = FALSE I TRUE

BOOLEAN expressions are used in conditional statements (following IF) and in certain loop constructs.
For instance, the following skeletal form describes the flow of control in Example 1:

IF m=O AND n=O THEN •••
ELSE

UNTIL n=O
DO

ENDLooP;

The expression "n=O" is a BOOLEAN expression; its value is TRUE if the value of n is zero and FALSE

otherwise. The expression "m=O AND n=O" is also a BOOLEAN expression; its value is TRUE just if
both relations are. The relational and logical operators discussed in sections 2.5.2 and 2.5.3 all yield
BOOLEAN values.

Variables of type BOOLEAN can be assigned values and appear as operands (although not of
arithmetic operators) just as any other Mesa variables. For example. the above program outline
could validly be replaced by the following:

mIsZero. nlsZero: BOOLEAN;

mlsZero t- (m=O); nIsZero t- n=O; -- compute whether m and n are zero
IF mlsZero AND nlsZero THEN •••
ELSE

UNTIL nIsZero=TRUE

DO

nIsZero t- n=O;
ENDLooP;

-- equivalent to just nIsZero by itself

-- recompute whether n is zero just before testing

Mesa Language Manual 9

2.4.3. Type CHARACTER

A value of type CHARACTER represents a single character of text CHARACTER values are ordered
(according to the order specified in appendix C) and can be compared using the normal arithmetic
relations. CHARACTER values arc distinct from numbers, and they cannot be assigned to variables
with numeric types. Limited arithmetic is, however, allowed on characters (section 2.5.1.2).

A characterLiteral is written as an apostrophe (') immediately followed by a single character
(which can be a blank, carriage-return, semicolon, apostrophe, or any other character) or as an octal
number followed by C. For example:

lowerCaseA to 'a;
mark to ' ;

endMarker to '; ;

asciiCR to 15C;

-- mark is set to be a blank. Here a blank is significant
-- endM arker is set to be a semicolon
-- an Ascii Carriage Return character;

2.4.4. The numeric types LONG INTEGER and LONG CARDINAL *

For some applications, the ranges of the numeric types introduced in section 2.4.1 are too limited.
Mesa provides both a predefined type LONG INTEGER, with signed representation, and a predefined
type LONG CARDINAL, with unsigned representation, for such applications. These types offer greater
ranges, l>ut their values occupy more storage and are generally more time-consuming to manipulate
than those of the previously introduced numeric types.

In an implementation, values of types INTEGER and CARDINAL are expected to be represented by
single machine words, while values of types LONG INTEGER and LONG CARDINAL are expected to
occupy two words. For this reason, INTEGER and CARDINAL will be referred to as short numeric
types; LONG INTEGER and LONG CARDINAL, as long numeric types. On a machine using two's
complement arithmetic and a word length of N bits, the following table indicates the range spanned
by each numeric type (" .. " replaces the mathematician's comma in this interval notation):

INTEGER [2N-l •• 2N-l)

CARDINAL [0 .. 2N)

LONG INTEGER

LONG CARDINAL

[22N-l •• 22N-l)

[0 .. 22N)

The actual ranges for these types are given in appendix C, the machine dependencies appendix.

Long numeric constants are denoted by numeric literals defined by the phrase class number
(section 2.4.1.1). The allowable type of any decimal or octal literal is determined by its value, as
summarized by the following table (using the conventions introduced in the preceding paragraph):

Range Allowable Types

[0 " 2N-l) INTEGER, CARDINAL, LONG INTEGER, LONG CARDINAL

[2N-l .. 2N) CARDINAL, LONG INTEGER, LONG CARDINAL

[2N .. 22N-l) LONG INTEGER, LONG CARDINAL

[22N-l •• 22N) LONG CARDINAL

As in the case of short numeric types, the types LONG INTEGER and LONG CARDINAL are distinct but
closely related. Mesa allows most combinations of these types and the types INTEGER and CARDINAL

to occur within assignments, arithmetic expressions and relational expressions, but care is necessary
when this is done (see sections 2.4.6 and 2.5.1.1).

10 Chapter 2: Basic Data Types and Expressions

2.4.5. Type REAL (interim) *

The values of Mesa's type REAL are approximations of mathematical real numbers. These
approximations are sometimes called floating-point numbers. For the current version of Mesa. a
standard representation for floating-point values has not been chosen. The language nevertheless
provides some help with floating-point computation. It allows declaration and assignment of REAL

values, and REAL expressions constructed using the standard infix operators are converted to
sequences of procedure applications by the compiler.

A REAL value is assumed to occupy the same amount of storage as a LONG INTEGER (Le., two words).
Beyond this, no assumptions are made about the representation of REALS. There are no literals with
type REAl. Users of real arithmetic must provide an appropriate set of procedures for performing
the arithmetic and relational operations.

Although Mesa provides no denotations of REAL literals, it does provide automatic conversion from
INTEGER, LONG INTEGER, CARDINAL or LONG CARDINAL to REAL (section 2.4.6). Thus numbers
(numeric literals) can appear in REAL expressions and provide denotations of certain REAL constants.

2.4.6. Relations among basic types *

If two types are completely interchangable, they are said to be equivalent. A value having a given
type' is acceptable in any context requiring a value of any other type equivalent to it; there is no
operational difference between two equivalent types. None of the basic types discussed in section
2.4 is equivalent to another basic type.

One type is said to conform to another if any value of the first type can be assigned to a variable of
the second type. A type trivially conforms to itself or to any type equivalent to itself. In more
interesting cases, an automatic application of a conversion function may be required prior to the
assignment. Conformance and its implications are discussed further in section 3.5.

There are nontrivial conformance relations involving the types INTEGER, LONG INTEGER, CARDINAL,
LONG CARDINAL and REAL. These relations allow certain combinations of the numeric types to be
mixed, not only in assignments but also in arithmetic and relational operations (section 2.5). They
also permit these types to share denotations of constants (section 2.4.4). The conformance relations
can be summarized as follows:

INTEGER and CARDINAL conform to INTEGER.

INTEGER and CARDINAL conform to CARDINAL.

INTEGER, LONG INTEGER, CARDINAL and LONG CARDINAL conform to LONG INTEGER.

INTEGER, LONG INTEGER, CARDINAL and LONG CARDINAL conform to LONG CARDINAL.

INTEGER. LONG INTEGER, CARDINAL, LONG CARDINAL and REAL conform to REAL.

Pairs of numeric types not on this list do not conform; e.g., it is not possible to assign a LONG
INTEGER to an INTEGER or a REAL to a CARDINAL.

Particular care is required when numeric types with different representations are intermixed.
Mathematically, ~ ~ N; however, it is not necessarily true that INTEGER ~ CARDINAL or that LONG
INTEGER ~ LONG CARDINAL. For instance, with the assumptions above, the intersection of INTEGER

and CARDINAL is [O .. 2N-1). Within this interval, the signed and unsigned representations agree, and
the interpretation of a short numeric value is unambiguous. If a CARDINAL value lies in this range, it
can validly be assigned to an INTEGER variable, and vice-versa: outside this range, the value represented
by a given word depends upon whether it is viewed as a CARDINAL or as an INTEGER. Similar

Mesa Language Manual 11

considerations apply to LONG CARDINAL and LONG INTEGER.

Example:

With the assumptions above and N=16, the unsigned value 177777B and the signed value 1
are encoded by the ~ame bit pattern.

Assignment of an unsigned value to an INTEGER variable, or of a signed value to a CARDINAL

variable, implicitly invokes a conversion function, which is just an assertion that the value to be
assigned is an element of CARDINAL n INTEGER. It is the responsibility of the programmer to ensure
that the conversion is valid. In many cases this is not too difficult, but programmers are urged to
avoid mixing signed and unsigned representations when this is possible. It almost always is.

Mesa does guarantee that LONG T d T for any type T and that LONG INTEGER:::> CARDINAL; thus it
is always valid to assign a short numeric value to a LONG INTEGER variable or a short unsigned value
to a LONG CARDINAL variable. The properties of conversion to type REAL are not specified by the
language.

Some fine points:

A user supplied procedure FLOAT is automatically applied to convert a value from type LONG INTEGER to
REAL. Short numeric values are converted first to LONG INTEGER and then to REAL.

Conversion from a short numeric value to a LONG INTEGER (and thus to a REAL) is substantially more
efficient when the value has an unsigned representation.

The conversion of a constant to type REAL occurs every time the containing expression is evaluated at run-time.

Neither BOOLEAN nor CHARACTER conforms to any other basic type.

Examples:

i: INTEGER; n: CARDINAL; ii: LONG INTEGER; x: REAL;

(valid) i ... 0;
ii ... 0;
x ... n;
x ... ii;

(invalid) i ... x;
n ... TRUE;

2.5. Expressions

Expressions are constructs describing rules of computation for evaluating variables and for generating
new values by the application of operators. The overall syntactic rule for an expression is given by

Expression :: = Disjunction I AssignmentExpr IIfExpr I SelectExpr I· ..

The Disjunction form includes all the numeric operations, relational operations, and BOOLEAN

(logical) operations and is discussed in this section. An AssignmentExpr allows one to write
multiple assignments in a single statement and is discussed in section 2.5.4. The IfExpr and
SelectExp r forms are discussed in chapter 4.

The basic unit from which expressions are built is called a Primary. This syntactic class includes
references to variables, literals, function calls (chapter 5), and any arbitrary expressions embedded in
parentheses:

12

Primary
Variable
Literal
FunctionCall

Chapter 2: Basic Data Types and Expressions

:: = Variable I Literal I (Expression) 1 FunctionCalil .•.
:: = LeftSide
:: = number 1 BooleanLiteral1 characterLiteral
.. - BuiltinCali1 Call -- defined in chapter 5

Recall thilt every expression has a well-defined type in Mesa. The general rules for determining the
type of an expression from the types of its constituent parts are given in section 3.5. In this section,
the types of the basic expression fonns (as functions of the types of their operands) will be outlined.
For example, the type of a Primary is the type of the Variable or Literal involved, or reduces to
the type of the Expression within parentheses, or is the type of the value returned by the
BuiltinCall (some of which are defined below) or the Call of a user-defined procedure (section
5.1).

A Primary can be of almost any type; this is not true of most of the expression forms built up
using Mesa's operators. Some operators are numeric and some are BOOLEAN. The next sections
discuss the numeric operations, the relational operations, and the operations applicable only to
BOOLEAN values. Consid~red together, the operators form a single hierarchy with respect to their
precedence, which is described with each operator class and summarized in section 2.5.5.

2.5.1. Numeric operators

The operations on numeric values are addition, subtraction, multiplication, division, modulus, and
arithmetic negation. The syntax for this group of operations is

Factor
Product .. -.. -

Primary 1- Primary -- negation

MultiplyingOperator :: =
Factor I Product MultiplyingOperator Factor
*I/IMOD

Sum
AddingOperator

.. -.. -.. -.. -
Product I Sum AddingOperator Product
+ 1-

These operators have their usual mathematical meanings. The division operation on integers, I,
always truncates toward zero; thus (ilj) = ilj= ilj. The MOD operator yields the remainder of
dividing one number by another (MOD is not applicable to REAL operands). MOD is defined by the
relation (ilj)*j+{i MOD j) == i, and the sign of the result of MOD is always the sign of the dividend.
(This is the reason that line 11 of Example 1 takes the absolute value of the computed gcd; if
m=12 and n=8 initially, the gcd would be 4 if its absolute value were not taken.)

The built-in function MIN computes the minimum value in a list of expressions; similarly, the MAX

function, the maximum value. The built-in function ASS computes the absolute value of its
argument. The syntax for calls on the built-in functions is

BuiltinCall MIN [Expression List]
MAX [ExpressionList]
ABS [Expression] I

-- other built-in functions later
ExpressionList :: = Expression 1 ExpressionList, Expression

For the arithmetic operators and built-in functions, the order in which the operands are evaluated is
undefined, but the syntax implies a precedence ordering that controls the association of operators
with their operands. In that ordering, unary negation precedes the multiplying operators, which in
tum precede the adding operators. Sequences of operators of the same precedence associate from left
to right (with the exception of the embedded assignment operator, section 2.5.4). Thus, an

Mesa Language Manual 13

expression such as a+ b*c does not specify the order of evaluation of a, band c but does require
that the operations be perfonned in the following order: negate c; then multiply the result by b;
finally, add that result to the value of a.

Examples:

~ j, k: INTEGER; m, n: CARDINAL;

Factors: n
15
(i+j+k)
15
MIN[i, j, k, 15]

Products: m*n

Sums:

illS
n MOD 8
mln*10
k*0 + 1)/2 MOD 3

i+l
i+j
j7
nh MOD 8
m -mln*n

2.5.1.1. Domains of the numeric operators *

same as (ml n)*10 because of left-associativity
same as «(k)*(i+ 1»/2) MOD 3

same as nen MOD 8) because of precedence
same as m MOD n

In principle, each arithmetic operator designates the corresponding mathematical function.
Unfortunately, the hardware underlying any implementation of Mesa docs not provide this function
but only a set of related partial functions. For each operator, the compiler must choose as
appropriately as possible from this set. The choice is' made by considering the types of the operands.

Example:

With the usual assumptions, 177777B and 1 are represented by the same bit pattern. The
value of 177777B > 0 is TRUE, but that of 1 > 0 is FALSE.

Mesa provides the operators +, ~ *, I, MIN, MAX and ABS for all the numeric types. The operation
MOD is defined for all numeric types except REAL; the operation of unary negation, for all but
CARDINAL and LONG CARDINAL. For each of these operators, the type of the result is the same as the
type of the operands. In addition, the result of the operation is considered to have signed
representation if all the operands have signed representation, and to have unsigned representation if
all the operands have unsigned representation. Thus, adding two INTEGER values yields an INTEGER
result, and dividing one CARDINAL by another yields a CARDINAL result.

Some fine points:

Division and modulus operations on short numeric values are substantially more efficient if their operands are
unsigned.

Addition, subtraction, and comparison of long numeric values are fast; multiplication and division are done by
software and are relatively slow.

Operations upon REAL values are implemented as calls on user-supplied procedures. These procedures must be
assignable to variables declared as follows (chapter 5):

FADD, FSUB, FMUL, FDIV: PROCEDURE [REAL, REAL] RETURNS [REAL];

FCOMP: PROCEDURE [REAL, REAL] RETURNS [INTEGER]:
-- returns a value that is: 0 if equal, negative jf the first is less, positive otherNise

FLOAT: PROCEDURE [LONG INTEGER] RETURNS [REAL]:

All other REAL arithmetic operations are fabricated from thcse primitives.

, I

14 Chapter 2: Basic Data Types and Expressions
I

Although the mathematical integers @ and real numbers are closed under all these operations
(except division by zero), the subranges defining the types INTEGER, LONG INTEGER, CARDINAL and
LONG CARDINAL generally are not. When the result of an operation falls outside the range of its
assumed type, a representational failure called overflow or underflow occurs. In the current version
of Mesa, it is the programmer's responsibility to guard against overflow and underflow conditions.

The implications of Mesa's conventions for subtraction are worth emphasizing. If both operands
have valid signed representations, the result has a signed representation. If both have only unsigned
representations, the result has an unsigned representation and is considered to overflow if the first
operand is less than the second.

Example:

i: INTEGER; m, n: CARDINAL;

i +- mil; -- should be used only if it is known that m > = n

i" IF m >= n THEN mil ELSE (nm); -- a safer form (section 3.6)

The arithmetic operations are defined for operands that all have the same type, but it is possible to
mix numeric types (and thus representations) within an expression. In this case, operands are
converted as necessary to the "smallest" type to which all the operands conform, the operation for
that type is applied, and the result also has that type. The rule for expressions involving type REAL

is easy to state:

If any operand has type REAL, the REAL operation is used.

The rules governing combination of numeric operands with differing representations involve some
additional concepts and are stated in section 3.6. Again, the programmer should try to avoid such
combinations when possible. (Recan that literals in INTEGER n CARDINAL have whatever
representation is required by context.)

2.5.1.2. The operator LONG *

The built-in function LONG converts any value with a short numeric type to a long numeric type. A
value with an unsigned representation is converted to LONG CARDINAL; one with a signed
representation, to LONG INTEGER. The syntax is as follows:

BuiltinCall :: = ... I LONG [Expression 1

This operation is necessary when the standard conversion rules do not give the desired result. It
can also be used to emphasize the conversion.

Example:

LONG[m*n)
LONG[m]*LONG[n1

Some fine points:

"short" multiplication, overflow lost
"long" multiplication

Lengthening a single-precision expression is substantially more efficient if that expression has an unsigned
representation.

The Mesa implementation provides standard procedures (not part of the language) for performing certain
multiplication and division operations in which the operands and results do not all have the same length. These
procedures provide less expensive equivalents of, e.g., LONG[mJ*LONG[n].

Mesa Language Manual 15

2.5.1.3. CHARACTER operators *

Limited CHARACTER arithmetic is possible and is sometimes useful for manipulating the cncodings
of CHARACTER values. The following arithmetic operations are defined for operands of type
CHARACTER:

A CHARACTER value plus or minus a short numeric ~alue yields a CHARACTER value.

Subtracting two CHARACTER values yields an INTEGER value.

No other arithmetic operations on characters are allowed. Since the results of character arithmetic
depend upon details of the character encoding, such arithmetic should be used with discretion.

Examples:

c: CHARACTER; digit: INTEGER;
digit .. c - '0;
c .. 'A + (c'"a) -- assumes c is lower case

2.5.2. Relational operators

The relational operators include = and #, <, <= (less than or equal), >= (greater than or equal), >,
and their negatives (e.g., NOT<, -<, ->=, etc.). These operators always yield BOOLEAN results,
depending on the truth or non-truth of the relation expressed. The operators = and, # apply to
most types; the others, to any ordered type (i.e., to any type whose values are considered to be
ordered). Ordered types include INTEGER, LONG INTEGER, CARDINAL, LONG CARDINAL, REAL,

BOOLEAN, CHARACTER (with the ordering given in appendix C), enumerated types (section 3.1), and
subranges of ordered types (section 3.1).

The relational operators also include the composite operator IN, which takes a numeric value as its
left operand and an interval as its right operand. Its value is TRUE if the left value lies in the
interval and FALSE otherwise. The syntax for relational operators is

Relation
RelationTaii

RelationalOperator

Not
SubRange
SubRangeTC
Interval

:: = Sum 1 Sum RelationTall
:: = RelationalOperator Sum 1

Not RelationalOperator Sum 1
IN SubRange 1
Not IN SubRange

:: = <I <= 1 = 1 # P p=
:: = -I NOT

:: = Su bRangeTC I. explained in chapter 3
:: = Interval I. explained in chapter 3
:: = [Expression .. Expression)

(Expression .. Expression)
(Expression .. Expression]
[Expression .. Expression 1

The extra syntax for SubRange and SubRangeTC is placed here to be consistent with later uses
of the class Interval in chapter 3. The syntax for intervals follows mathematical notation; a square
bracket indicates the inclusion of the respective end point in the interval, while a parenthesis
indicates its exclusion. For example, the following intervals all designate the range from 1 to 5
inclusive:

[1 .. 5] [1.. 6) (2.. 6) (2 .. ,51

, I

16 Chapter 2: Basic Data Types and Expressions

In the above examples, 1 is the lower bound of each interval; the upper bound is 5. The bounds of
an interval are its end points. regardless of whether the interval is written as a closed, half-open or
open one. The bounds are not required to be constants. An interval with an upper bound less than
its lower is said to be empty; no values lie in such an interval. For example, the following are all
empty intervals:

[1 .. 2] [1.. 1) (2.. 1) (2.. 2]

Examples:

Relations:

A fine point:

n = 15
m#n
; <= j
(Hj) = U< k)
nIN[l .. 5)
iNOTINr 1 .. 51

or m -= n

= with two BOOLEAN operands
n >= 1 and n < 5
only legal if i is signed (because - 1 is)

The relational operators, like the arithmetic operators, denote families of hardware operations when they have
numeric operands. Again. there is one operation for each numeric type. If there is a unique "smallest" type to
which all the operands conform. they are converted to that type as necessary and then the comparison is
performed. There is no unambiguous choice of such a type for numeric operands with different representations;
an attempt to compare two such values is an error. The precise rules appear in section 3.5.

2.5.3. BOOLEAN operators

The operators NOT (logical negation), AND and OR apply only to BOOLEAN values. The syntax is

Negation
Conjunction
Disjunction

.. -.. -

.. -.. -

.. -.. -
Relation I Not Relation
Negation I Conjunction AND Negation

Conjunction I Disjunction OR Conjunction

NOT negates the logical value of a BOOLEAN expression. p AND q has the value TRUE if and only if
both p and q are TRUE. p OR q is TRUE if at least one of p or q is TRUE.

When evaluating a Boolean expression, evaluation of primaries is guaranteed to take place from left
to right. In the operation AND or OR, the second operand is evaluated only if the first operand's
value does not determine the value of the expression.

A fine point:
"x AND y" is equivalent to the IfExpr "IF x THEN y ELSE FALSE"; i.e., when x is FALSE, y is not
evaluated.
"x OR y" is equivalent to the IfExpr "IF x THEN TRUE ELSE y"; i.e., when x is TRUE. y is not evaluated.
It is therefore safe to have expressions of the form "x AND y", where y is defined only when x is TRUE. e.g.,
"x#O AND clx > 2", or "p=NIL OR pJ=O".

Examples:

Negations: NOT ;=15
-q
-(p AND q)

Conjunctions: i < = j AND j < k
p AND -q

same as NOT(i = 15)
q must be of type BOOLEAN

i= 5 AND j NOT IN r 1..1]

Disjunctions: m>n OR m= 15
-p OR -q

Mesa Language Manual 17

2.5.4. Assignment expressions

The assignment operation can be embedded in other expression fonns. When it is, the result of the
operation has the type of the LeftSide and the value received by the LeftSide in the assignment.
The .. +-" operator has the lowest precedence of any operator. Its syntax is the same as that of the
AssignmentStmt: .

AssignmentExpr :: = LeftSide +- RightSide

If this form is used to perform multiple assignments, it is important to note that "+-" is right
associative. Thus, the assignment expression a+- b+- b+ 1 first assigns the value of b+ 1 to b and then
assigns b's new value to a.

Examples:

Assignment Expressions:
m+-lS
m+-n+-lS
m+-n+-n+l
i+-(j+-(j+ 1) MOD n)*2

-- same as m+-(n+-(n+ 1»
-- all these parentheses are necessary

Rules governing assignments of numeric values when the types are not identical are summarized in
section 2.4.6.

Fine point:
Because the order of evaluation of the primaries is not defined, expressons such as "(i+-) + (i+-k)" have
unpredictable values and should not be used.

2.5.5. Operator precedence

The following table summarizes the precedences of the unary and binary operators introduced in this
section. The order is from highest precedence (tightest binding of operands) to lowest; operators on
the same line have the same precedence.

*. I. MOD
+. -
=. #. <. <=. >. >=. IN
.... NOT
AND

OR

unary negation

subtraction

Parentheses can be used to explicitly control the association of operands with operators.

2.6. Initializing variables in declarations

A variable may be given an initial value in a declaration. For example, the Boolean variable
delimited could be set initially FALSE by using the declaration:

delimited: BOOLEAN +- FALSE;

• I

18 Chapter 2: Basic Data Types and Expressions

Variables (of the same type) can be initialized collectively:
n, nO: INTEGER ~ 1;

This declares two separate integer variables n and nO and initializes each to 7.

Any expression that could be used as the RightSide of an assignment can be used to initialize a
variable:

i: INTEGER ~ ABs[n]; -- this will set ito 7
is quared: INTEGER ~ i* i; -- iSquared is initialized to 49
j: INTEGER ~ iSquaredi+ 1; -- j is initialized to 491 + 1 = 43

All initializations shown so far have taken "assignment" (or "~") form. There is another form, the
"fixed" (or "= ") initialization. For example.

octalRadix: INTEGER = 8;

This means that actalRadix is to have a fixed value. It is never valid as the LeftSide of an
assignment. We call octalRadix a constant because its value can never change after it is initialized
(recall that the number 8 is called a literal). Normally, the term "constant" will include the term
"literal"; if the distinction is important, then "literal" will be used.

Initial values for fixed initialization can be arbitrary expressions. Paraphrasing the earlier example:

iO: INTEGER = ABs[octaIRadix]; iOSquared: INTEGER = iO*iO;
jO: INTEGER = iOSquarediO+ 1;

The initializing expression can use values that are not known at compile time. In this example. if
octalRadix did not have fixed initialization, the values of iO. iOSquared, and jO would be computed
and assigned at run-time. Variables are initialized in the order of appearance in a declaration, and
later declarations can use variables initialized earlier. as shown by the example.

2.6.1. Compile-time cqnstanls

Wherever possible, the Mesa compiler evaluates expressions containing only constants. If a variable
is initialized using the fixed form and the expression can be evaluated at compile time, then that
variable has a known value. Since it can never appear as the LeftSide of an assignment operator.
it too becomes a compile-time constant (the variables iO, iOSquared, and jO in the previous section
are all compile-time constants).

Example:
beta: INTEGER = 3;
alpha: INTEGER = beta1;

In this case, alpha is a compile-time constant (with the value 2), since the expression belat
involves only compile-time constants. Compile-time constants need not occupy memory at run-time;
the compiler can replace references to compile-time constants, such as alpha and beta, by their
known values.

Some fme points:

Knowledge of compile-time constant values can also be exploited when analyzing expressions. processing other
declarations, or generating object code.

One side effect of this propagation of constants is that the representation of a numeric constant is known at
compile-time. For instance, alpha above is declared to be an INTEGER, but because its value is 2, it may also
be used as a CARDINAL. However, declaring the type of alpha determines what kind of arithmetic (signed or
unsigned) will be used to compute its value, whether at compile-time or run-time (section 2.5.1).

Mesa Language Manual 19

In certain contexts, an expression is required to yield a compile-time constant value. A (sub)expression denotes
such a constant if all the operands are compile-time constants and the operation is not one of those listed below
(current restrictions):

Conversion of a numeric value to type REAL.

Any arithmetic or relational operation with operands of type LONG INTEGER, LONG CARDINAL or
REAL.

Application of any function (chapter 5) other than a built-in function.

The @ operation (section 3.4).

The SELECT operation (section 4.3.3).

2.7. More general declarations

Preceding sections have introduced all the syntactic components of a declaration. The general form
is defined as follows:

Declaration :: = IdUst: TypeSpecification Initialization;

For the moment, TypeSpecification is defined as one of the built-in types; chapter 3 describes
other forms of TypeSpecification.

TypeSpecification .. - PredefinedType I ...
PredefinedType :: = INTEGER I CARDINAL I

BOOLEAN I CHARACTER I
LONG INTEGER I LONG CARDINAL I REAL I
STRING I .0 see chapter 6
WORD I ,0 see fine point below
UNSPECIFIED -- see fine point below

An Initialization is formally defined as follows:
Initialization :: = empty

Fme points:

.. Exp ression
= Expression

--other forms are given later

The predefined type WORD is provided to describe values on which bit-by-bit logical operations are to be
performed. Currently. it is a synonym for CARDINAL.

The predefined type UNSPECIFIED is a device for bypassing most type checking. An UNSPECIFIED value is a
single machine word, and it matches the type of any object that occupies at most a single machine word,
including INTEGER. CARDINAL, CHARACTER, BOOLEAN. UNSPECIFIED. STRING. and any user-defined
type (chapter 3) that fits in a single machine word.

For numeric operations, its representation is similarly fluid. If a CARDINAL and an UNSPECIFIED value are
the operands of some arithmetic operation, then the UNSPECIFIED value is considered to be unsigned. If an
UNSPECIFIED is combined with a Signed value, it is treated as if it were signed too. If an UNSPECIFIED is
combined with an UNSPECIFIED, they are both treated as signed.

Less type checking is sacrificed by using LOOPHOLE (section 3.5.1) than by declaring variables with type
UNSPECIFIED.

20

CHAPTER 3.

COMMON CONSTRUCTED DATA TYPES

Mesa encourages the programmer to augment the collection of predefined types by constructing new
types. Types can be defined to describe objects that are structured collections of related values (e.g.,
a vector of Booleans, a table, or a complex number consisting of real and imaginary components).
Mesa's type system has other, perhaps less obvious applications. These include expressing some of
the programmer's knowledge about a class of variables (e.g., that all take on values restricted to some
known interval), separating variables with different semantics into different classes so that they
cannot be confused (e.g., to avoid "comparing apples and oranges"), and hiding implementation
details of abstractions (e.g., to prevent the user of a table-lookup package from depending upon the
internal organization of the table).

Programmer-created types have the same status as Mesa's built-in types. They can be used to
declare variables and to construct further new types. In addition, values of most constructed types
can be operands of the fundamental operations (.. , =, #).

A new type identifier is declared using the following syntax:
TypeDeclaration :: = idList: TYPE = TypeSpecification ;

Each identifier in the idList is thereby declared to name the type denoted by the
TypeSpecification. If this declaration form is compared to a normal declaration, i.e.,

Declaration :: = IdList: TypeSpecification Initialization;

it can be seen that "TYPE" fills the role of a TypeSpecification, and "= TypeSpecification"
plays the role of Initialization. In fact, the newly declared identifier has type "TYPE" and a value
(which must be constant, hence the "= It) that is a TypeSpecification.

Any predefined Mesa type (section 2.7) is a valid TypeSpecification; thus the following are valid
type declarations:

SignedNumber: TYPE = INTEGER;
Unsigned Number: TYPE = CARDINAL;
Truth Value: TYPE = BOOLEAN;
Char: TYPE = CHARACTER;

These type identifiers are now valid type specifications and can be used to declare variables:

t j: Signed Number;
n: U nsignedNumber;
b: Truth Value;
c: Char;

After this series of declarations. i and j have type SignedNumber, which is equivalent to INTEGER; n
has type UnsignedNumber, which is equivalent to CARDINAL; etc. This is a trivial way of defining

Mesa Language Manual 21

new types. A more interesting way uses a type constructor as the TypeSpecification and
generates a truly new type, not just an additional name for an existing one. A TypeSpecification
can be defined as

TypeSpecification :: = PredefinedType I
Typeldentifier I
TypeConst ructor

(TYPE itself is not a TypeSpecification; it can be used only to declare types.)

There is an important point worth emphasizing here. A TypeSpecification that is a
PredefinedType or a Typeldentifier denotes an existing type and yields the same type every
time it is used. A declaration such as the one of Signed Number introduces a synonym for the name
of an existing type. Synonyms can be more descriptive and thus improve readability. but they do
not partition the set of values. The types Signed Number and INTEGER are fully equivalent, and
values with these types can be used interchangably. On the other hand. a TypeConstructor
constructs a new type. The rules for equivalence and conformance of constructed types depend
upon the forms of their constructors and are discussed as the constructors are introduced. In some
cases, each appearance of a constructor generates a unique type, i.e., writing the same sequence of
symbols twice generates two distinct, incompatible types. For this reason, programmers usually
should name such a type, using a TypeDeclaration, and thereafter use the type's identifier. Of
course, introducing an identifier for a constructed type can make a program easier to read and
modify -in any case.

The predefined types are described in chapter 2 (except for STRING in chapter 6 and process related
types in Chapter 10). The simplest form of a Typeldentifier is given by

Typeldentifier :: = identifier I .. which is a declared type
.. other forms given in chapters 6 and 7

The rest of this chapter discusses the attributes and uses of some common constructed types:
enumerations, subranges. arrays. records, and pointers. The syntax for TypeConstructor is

TypeConsfructor :: = EnumerationTC I·· for enumerations
SubrangeTC II" for subranges
A rrayTC .. for arrays
RecordTC I .. for records
PointerTC I .. for pOinters
LongTC I .. for long pointers, etc
Procedu reTC
A rrayDesc ripto rTC
RelativeTC
SignalTC
PortTC
ProcessTC

I
I
I
I
I

.. see chapter 5

.. see chapter 6

.. see chapter 6

.. see chapter 8

.. see chapter 9

.. see chapter 10

(The suffix "TC" is to be understood as an abbreviation for "TypeConstructor".)

Enumerations define a set of values by giving a list of identifiers. These identifiers can be viewed as
members of an ordered set.

Sub ranges define types with values drawn from those of a larger, encompassing type but restricted to
lie in a specified interval. The subrange takes on the characteristics of the enclosing type; for
example, a subrange of INTEGER can be used to declare variables that behave as INTEGERS but are
constrained to take values within some interval.

22 Chapter 3: Common Constructed Data Types

Arrays are sequences of components that are homogeneous with respect to type and are accessed by
computed indices ("subscripting"). Records are sequences of components that have potentially
different types and are accessed using fixed component names ("selection"). Records and arrays are
Mesa's aggregate data types.

Pointers are scalar values used to access data objects indirectly. A pointer value is represented by an
address. Pointers can be used to build linked lists, tree structures, etc. Long pointers are pointers
capable of spanning a larger address space than ordinary pointers.

Chapter 3. concludes with a discussion of type detennination, the process by which Mesa decides
whether an expression has an acceptable type for a given operation. This is closely related to
questions of the equivalence and conformance of types.

3.1. The element types

This section describes a class of types called element types. Their common properties are the
following:

(1) They are ordered types; values of an element type can be operands of all the relational
operators (section 2.5.2).

(2) They are scalar types; a value with an element type does not have any visible or directly
accessible internal structure insofar as the language is concerned.

(3) They can be used to declare subrange types (section 3.1.2).

(4) They are the only types allowed as index types of arrays (section 3.2).

The element types are INTEGER, CARDINAL, CHARACTER, BOOLEAN, the types generated by
EnumerationTC, and the types generated by SubrangeTC. Because of (3) above, this definition
is recursive; subranges of subranges are allowed. The definition of the class ElementType is

ElementType :: = INTEGER I CARDINAL I CHARACTER I BOOLEAN I
EnumerationTC I
SubrangeTC

A fine point:

Note that LONG INTEGER and LONG CARDINAL, although ordered scalar types, are not element types. It is
not possible to declare subranges of these types or to use long numeric values as array indices.

3.1.1 Enumerated types

Consider the following declarations and a typical assignment:

channelS tate: INTEGER;
disconnected: INTEGER = 0;
busy: INTEGER = 1;
available: INTEGER = 2;

channelS tate f- busy;

Suppose channelState is a variable that is intended to range over a set of three "states" named
disconnected, busy, and available. which are represented by values 0, 1. and 2. These values have no
real significance; 5, 6, and 7 would serve equally well. Enumerated types are well suited to such an
application (where the underlying values are unimportant). The above declarations could be
replaced by a single declaration of a variable with an enumerated range:

Mesa Language Manual

channelState: {disconnected, busy. available};

channelState +- busy;

23

The effect is the same as before; channelState is a variable with values ranging over the same
"states", and similar assignment statements can be used.

The enumeration has some advantages over the original declarations:

It is more convenient; the programmer does not have to provide values for disconnected,
busy, and available.

It allows more type checking. In the INTEGER case, one could assign any short numeric
value to channelState.

It helps documentation; an enumeration shows all of its possible values.

An enumerated type is constructed by specifying a list of identifiers between braces, "{ ... }". These
identifiers are not variables, but constants of that enumeration called identifier constants. They
represent nothing more than their own names.

The type constructor EnumerationTC is defined as follows:
EnumerationTC :: = {ldUst}

The IdList supplies all the identifier constants for the enumeration, and duplication of identifiers is
illegal. Separately specified enumerations are distinct. Every appearance of an EnumerationTC
generates a new type that is not equivalent to, and does not conform to, any other enumeration.
Thus the declarations

foreground: {red, orange, yellow, green, blue, violet};
background: {red, orange, yellow, green. blue, violet};

specify two different enumerations. It is illegal to assign background to foreground, despite the fact
that the same identifier list appears in each declaration. Occasionally, the inability to declare any
further variables with the same type can be used to advantage by the programmer. Otherwise, the
best way to avoid such problems is first to declare a type and then to declare variables using the
identifier of that type; for example:

Color: TYPE = {red, orange, yellow, green, blue, violet};
foreground: Color,
background: Color,

This allows the assignment of background to foreground as well as the declaration of further variables
with the same type (perhaps initialized differently).

The identifier constants in two different enumerated types have no association whatsoever and do
not need to be distinct from one another. To identify unambiguously the enumeration from which a
constant is taken, one can, and sometimes must, qualify the identifier constant by the name of the
enumerated type. For example, given the additional declaration

Fruit: TYPE = {orange, lemon};

Color[orange] denotes a color and Fruit [orange] denotes a fruit More generally, the syntax used for
this form of qualification is

Primary :: = . __ I Typeldentifier [identifier]

(This adds a new case to the syntactic definition of Primary, which already allows an identifier
constant)

, I

24 Chapter 3: Common Constructed Data Types

Often qualification is not necessary; for instance, the following is permitted:
hue: Color;
hue .. orange; -- the type of hue implies Co7or[orange]

In the following situations, an identifier constant need not be qualified, because the intended
enumerated type is established by the context:

as the RightSide of an assignment

as an initializing Expression

as a component in an array or record constructor (sections 3.2.2 and 3.3.4)

as an argument of a procedure (chapter 5)

as an array index (section 3.2)

as the right operand of a Relation, including that part of a Relation used to label an arm
in a discrimination (section 4.3)

as the bounds in a SubrangeTC (section 3.1.2)

The values of an enumeration are ordered. The ordering is given by the order of appearance in the
IdUst used to construct the enumerated type. The leftmost identifier has the smallest value, and
values increase from left to right. The following relations all have the value TRUE:

Color[redJ (Color [orange]
Color[redJ (violet
hue IN [red .. yellow) assuming hue = orange

There are two additional built-in functions that· are applicable to enumerations:
FIRST [TypeSpecification] yields the smallest value of the specified enumeration; e.g.,
FIRST [CoI01i=red. Similarly, LAST [TypeSpecification] produces the greatest value in an
enumeration; e.g., LAST [Colori = violet. It is also possible to iterate over all values of an enumeration
(section 4.5).

The predefined type BOOLEAN is really an enumerated type, and its definition is

BOOLEAN: TYPE = {FALSE, TRUE};

Thus, FALSE(TRUE, FIRST[BOOLEAN]=FALSE, and LAST [BOOLEAN] =TRUE. Note, however, that the
BOOLEAN constants TRUE and FALSE may always be used without qualification.

3.1.2. Subrange types

In many cases. the values of a variable are inherently range-limited. For instance, a value for day
(of the month) lies in the range [1..31]. In other cases, the range is limited by design. For instance,
a value for year might be limited to the range [1900 .. 1999]. Mesa permits the user to declare such
variables in the following way:

day: CARDINAL (1 .. 31];
year: CARDINAL (1900 .. 1999];

Since these intervals cover a subrange of CARDINAL, the variables day and year are called subrange
variables. It is useful to think of day and year as having type CARDINAL with the additional
constraint that values are restricted to the specified intervals.

Mesa Language Manual 25

Sub range types have a number of advantages and uses. Subrange declarations unambiguously
document the range of values intended for a variable and thus aid software maintenance. The
compiler is able to optimize storage allocation when dealing with range-restricted variables (for
example, in arranging the fields of a record, section 3.3) and can take advantage of subrange
declarations to generate more efficient object code.

The general form of a SubrangeTC is

SubrangeTC :: = Typeldentifier Interval I
Interval

The Typeldentifier must evaluate to an ElementType. Thus, one can declare types that are
subranges of INTEGER, CARDINAL, CHARACTER, BOOLEAN, enumerated types, and other subrange types.
For example.

SymmetricRange: TYPE = INTEGER [1 .. 1];
Positivelnteger: TYPE = CARDINAL [l..LAST [INTEGER));
UpperCaseLetter: TYPE = CHARACTER [' A . .'Z];
DegenerateType: TYPE = BOOLEAN [TRUE •• TRUE];
CoolColor: TYPE = Colot(yellow .. LAST [Colotj]; -- excludes red. orange, yellow
AthroughM: TYPE = UpperCaseLetter[' A . .'M]; -- subrange of a subrange

The base type for a subrange is that type of which it is a subrange and which is not itself a
subrange; e.g., the base type for both UpperCaseLetter and AthroughM is CHARACTER.

The Expressions that define the end points of an interval must have types that conform to the
type denoted by the Typeldentifier (or yield short numeric values if the identifier is omitted).
Also, for the purpose of defining a subrange type, the end points must be compile-time constants.

A fine point:

It is permissable for the interval defining a subrange type to be empty. It is not legal to use a variable of such
a type, but an empty subrange is sometimes useful for specifying the bounds of an array in a record declaration
(section 3.2).

A sub range type conforms to its base type, and a base type conforms to any of its subrange types.
By extension, any two subrange types with the same base types are mutually conforming (even if
they do not overlap in any way). A more revealing point of view is that the value of a subrange
variable has the base type as its type, and an assignment of a value to a subrange variable makes an
associated assertion that the value is in the appropriate interval. A violation of such an assertion is
called a range error. It is the programmer's responsibility to guard against range errors. As implied
by this viewpoint, appropriate literals of the base type serve as literals of the subrange type, and any
operations defined on the base type automatically extend to the sub range type (but usually without
closure).

Examples:

n: CARDINAL [0 .. 10]; m: INTEGER [5 •• 5];

m ~ 0; n ~ 0;
n ~ n+1;
n~ m;

-- inherited literals
-- not valid if n = 10
-- only valid if m IN [0 .. 5]

The preceding discussion implies that subrange restrictions can be ignored in answering many type
related questions; in this sense, subrange types are "weak." Two subrange types are equivalent if
their base types are equivalent and if the corresponding bounds are equal. For these types,
equivalence is much stronger than conformance. Equivalence becomes important when subrange
types are used in the construction of other types.

, I

26 Chapter 3: Common Constructed Data Types

FIRST and LAST are applicable to all sub range types and yield the corresponding bound. For
example, FIRST [C oolC olor] = green and LAST [Athrough.M] = 'M. It is also possible to iterate over all
values in a subrange (section 4.5).

A fine point:

The operators FIRST and LAST are applicable to all element types, including INTEGER, CARDINAL and
CHARACTER, as well as LONG INTEGER and LONG CARDINAL. When applied to the numerL types, they
supply information about the range of values supported by a particular implementapon.

3.1.2.1. Subranges o/numeric types *

The description above applies to subranges of both enumerated and numeric types. Numeric
subranges introduce one further complication, which is the question of representation. Omission of
the initial Typeldentifier in a SubrangeTC is permissable if and only if each bound in the
Interval specifies a short numeric value. In that case, INTEGER or CARDINAL is the base type, and
the choice depends upon the representations of the bounds.

A numeric subrange type has a signed representation if both bounds are elements of INTEGER and at
least one is not an element of INTEGER n CARDINAL. Similarly, it has an unsigned representation if
both bounds are elements of CARDINAL and at least one is not an element of INTEGER n CARDINAL.

If both bounds are elements of INTEGER n CARDINAL, values of that sub range type are considered to
have both representations. Any other combination of bounds is illegal.

Examples:

sl: [10 .. 10];
s2: [100 .. 33000];
s3: [0 .. 10);

-- signed representation
-- unsigned representation (if 33000 > LAST [INTEGER])
-- both representations

With respect to the choice of signed or unsigned versions of arithmetic and relational operators, a
quantity with both representations is treated flexibly. When combined with an unsigned value, it is
considered to be unsigned; the unsigned operation and result are chosen. When it is combined with
a signed value, the operation and result are signed. The rules governing combinations of values with
both representations depend upon the context in which the result is used; the default is to choose
signed representation and INTEGER operations. The precise rules are discussed in Section 3.6.

Examples:

i: INTEGER; n: CARDINAL; -- plus the declarations above

(signed) sl + 1
sl + s3
s3 -i

(unsigned) s2 + 1
s2 + s3
s3* n

A fine point:

The representation assumed for a literal also depends upon context In fact, any short numeric constant c is
treated as if its type were [c .. c].

Mesa Language Manual 27

3.1.2.2. Range assertions *

Assignment to a subrange variable implies an assertion about the range of the expression being
assigned. The programmer may make such an assertion explicitly, for any expression, by using a
range assertion. If S is an identifier of a subrange type and e is an expression with a type T
conforming to S, the Primary S[e] has the same value as e and is additionally an assertion that e
IN [FIRST [Sn 7] .. LAST[Sn 7]1 is TRUE. In addition to user defined types, the basic types INTEGER
and CARDINAL may be used in range assertions.

A program that violates one of its range assertions is in e"or. In addition to providing
documentation and (optional) run-time checking, a sub range assertion affects the attributes attached
to an expression. For example, an assertion of an INTEGER range (or a signed subrange) forces the
result to be treated as a value with signed representation. This is useful for controlling the choice of
an operation when the intended one cannot correctly be inferred from the operands (section 3.6).

Examples:

i: INTEGER; n: CARDINAL; S: TYPE = [0 .. 10];

CARDINAL [,1
S[n]

3.2. Arrays

-- i is asserted to be nonnegative
-- asserts n IN [0 .. 10]

Arrays are indexable collections of homogeneous components. In other words. the components of a
given array all have the same type, and each corresponds to one index value in a range of indices
associated with that array. The range of indices (which is actually a type called the index type) and
the component type determine the array type. For example:

earningsPerQuarter: ARRAY [1..4] OF INTEGER;

declares a variable with a constructed array type having an index type of [1..4] and a component type
of INTEGER. Thus, earningsPerQuarter is an array of four integer elements: earningsPerQuarler[11
earningsPerQuarter[2] • earningsPerQuarter[4]. earningsPerQuarter by itself refers to the entire
array variable. (Aggregate variables and components of aggregates are generally called "variables".
If a distinction is needed, the term component is used and always means an item contained within an
aggregate.)

An index type must be an element type (other than INTEGER or CARDINAL). A one-to-one
correspondence exists between the components of an array and the values of the index type. This
allows array elements to be accessed via "indexed references". An indexed reference selects and
accesses the component corresponding to a particular index value. In its simplest form, it consists of
the name of an array followed by a bracketed Expression with a type conforming to the array's
index type.

An index type can be specified using a type identifier:

Quarter: TYPE = [1..4];
profit. loss, earnings: ARRAY QuarterOF INTEGER;
thisQuarter: Quarter;

earnings [thisQuarter] +- profit [thisQuarter] -loss [thisQuartelj;

The arrays profit. loss, and earnings have Quarter as their index types, and thisQuarter is a sub range
variable with type Quarter.

, I

28 Chapter 3: Common Constructed Data Types

Index types may also be enumerations or subranges thereof. For example.

Cal/Type: TYPE = {longDistance, tieLine, toll, local, inPlant};
nearbyCalls: ARRAY CallType[toll .. inPlant] OF CARDINAL;

nearbyCalls[loca~ 4- nearbyCalls[loca~+ 1;

Components may be of any desired type. In panicular, the component type may itself be an array
type. This allows an approximation of multidimensional arrays, which are otherwise absent in Mesa.
For example, a two-dimensional data structure can be declared and used as follows:

Matrix3by4: TYPE = ARRAY [1..3] OF ARRAY [1..4] OF INTEGER;
mxy: Matrix3by4;

mxy [3][4] 4- 0; -- clear last component.

In the assignment statement, mxy is an expression of array type (with index type [1..3] and
component type ARRAY [1..4] OF INTEGER). mxy[3] is an indexed reference to the third component
of mxy. This in tum yields an expression of array type (with index type [1..4] and component type
INTEGER). Thus, mxy[3][4] is an indexed reference to the fourth component of that subarray.
Because of left-associativity, mxy[3][4] is the same as (mxy[3])[4].

An amly 'constructor consists of an optional type identifier followed by a list of values (syntactically,
Expressions) enclosed in brackets. The list specifies values for components of an array in index
order. The declaration below uses an array constructor to initialize an array that can be used as a
translation table; i.e., octaIChar[n] holds the character denoting octal digit n:

octalChar: ARRAY [0 .. 7] OF CHARACTER = ['0, '1. '2, '3, '4, '5, '6, '7];

Note that the number of values in the list (eight) matches the number of indices in the index type.
This is required for amlY constructors. A special form using the replicator ALL is available for
abbreviating array constructors in which all components have the same value. For example, the
following two declarations are equivalent:

dashes: ARRAY [0 .. 7] OF CHARACTER 4- r-, '-, '-, '-, '-, '-, --, '-];
dashes: ARRAY [0 .. 71 OF CHARACTER 4- ALL ['oj;

Array variables may also be initialized using other array values. Consider the following example:

fresh Vector. ARRAY [0 .. 3) OF CARDINAL = ALL [0];
current Vector. ARRAY [0 . .3) OF CARDINAL 4- fresh Vector;

In this case, currenlVector is initialized with freshVectols value, i.e., all three of currentVeclols
elements are initially set to zero.

When the operands of any of the fundamental operations (4-, = . #) are arrays, the operation is
applied on a component-by-component basis. The initialization of current Vector above uses
assignment in this way. Similarly. the expression "current Vee/or = fresh Vector" yields the result
TRUE if and only if all three components of each array are equal (as they are in the above example).
Because the declaration of fresh Vector uses fixed initialization, assignment either to the entire array
or to one of its elements is illegal.

Mesa Language Manual 29

3.2.1. Declaration o/arrays

Anays are declared using the array type constructor, A rrayTC:
ArrayTC :: = PackingOption ARRAY IndexType OF ComponentType
Packing Option .. - empty I -- elements word aligned

PACKED -- elements potentially packed within words
IndexType .. - ElementType I

Typeldentifier
ComponentType .. - TypeSpecification

Two array types are equivalent if both their index types and their component types are equivalent
and if they are both packed or both unpacked (see below). An array type conforms to another if the
two types are equivalent Thus it is possible to assign or compare array variables with separately
constructed types if those types are structurally identical (see the assignment to current Vector above).

A fine point:

In additon, one array type freely conforms to another if the component type of the first freely conforms to that
of the second. the index types are equivalent, and they are both packed or both unpacked (see section 3.5).

Declarations of initialized array variables take the form
IdUst : A rrayTC Initialization

The initializing expression must have an array type conforming to the one being declared.

The previous section describes indexed references to array components. A formal definition follows:
Indexed Reference :: = Variable [Expression] I

(Expression) [Expression]
LeftSide :: = ... 1 Indexed Reference

The Variable or the parenthesized Expression must be of some array type, and the bracketed
Expression must conform to the index type for that array type. An Indexed Reference is itself
part of the definition of a Leftside (and therefore of a Variable, section 2.S).

Some fine points:

Unless an array is packed. each component is "aligned", i.e., begins on a word boundary. Currently, a byte is
the smallest unit into which the elements are packed. Thus a packed array of CHARACTER wastes no space,
but a packed array of BOOLEAN has considerable overhead.

Since packed array elements are not necessarily word aligned. one cannot use the @ operator (section 3.4) to
generate the address' of an element

The length of an array is the number of its elements. For variables with an array type, the length is fixed and
known at compile-time. (Dynamic arrays are possible in Mesa through the use of array descriptors, discussed in
section 6.2.L)

The IndexType of an array may legally be an empty interval. In this case, no storage is allocated for the
array. This is useful when the array appears as the last component of a MACHINE DEPENDENT RECORD
(section 3.3) and the user will be obtaining storage for each record plus some number of array elements from a
free storage manager. Note that [0 .. 0) is not equivalent to [1..1), since the intervals specify different initial
indices for the array.

Three function-like operators are relevant to arrays (and more relevant to array descriptors): LENGTH, BASE,
and DESCRIPTOR. These are discussed in section 6.2. but a brief summary is provided below. For this
summary, arg denotes an expression with some array type.

LENGTH [tVil
BASE [arg)
DESCRIPTOR [arg)

- yields the number of array elements.
-- yields a pointer value for locating the first array element
-- yields arg'sarray descriptor value (consisting of base and length).

, I

30 Chapter 3: Common Constructed Data Types

3.2.2. Array constructors

In the preceding examples, array constructors are used only for initialization. Actually, constructors
for arrays may be used in any RightSide context An array constructor is defined as follows:

Primary :: = Constructor I ...
Constructor .. - OptionalTypeld [Componentlist] I ALL [Component]
OptionalTypeld .. - Typeldentifier I empty
Component list PositionalComponentlist I

.. other forms for record constructors
PositionalComponentList :: = Component I

PositionalComponentlist , Component
Component :: = empty I .. elided component

Expression I
NULL

The empty components in a constructor are said to be elided, and NULL components are said to be
voided. The values of both elided and voided components are undefined. In the first form of array
constructor, the number of Expressions plus elided or voided components must match the length
implied by the array type. The type of each Expression must conform to the array's component
type. The expressions (and elided or voided components) are taken in order to form a sequence that
is the constructed array value.

Consider the following example:

Triple: TYPE = ARRAY [1..3] OF CARDINAL;
.. triplet: Triple +- Triple[11, 12, 13];

The declaration assigns 11 to triplet [1], 12 to triplet[2] and 13 to triplet [3].

When the array type is implied by context, the Typeldentifier may be omitted (see the discussion
of record constructOrs, section 3.3.4). Thus the declaration above could be written as

triplet: Triple +- [11, 12, 13];

Taken out of context, the constructor [11, 12, 13] is ambiguous; it could be assigned to any array of
three numeric elements; for example:

trio: ARRAY {Patty, Laverne, Maxine} OF LONG INTEGER +- [11, 12,13];

The second form of constructor, using ALL, is only valid when the array type is implied by context.
The type of the Exp ression must conform to the array's component type. The value of the
constructor is an array in which the specified value is replicated a number of times equal to the
length of the array. The expression is evaluated just once. In the case of an array of arrays, the
structure must. be mirrored by nesting in the constructor, as shown by the following example:

allOnes: Matrix3by4 +- ALL [ALL [1]];

Some fine points:

The value of an elided or voided component of an array constructor is not defined. but it will have some value.
In particular. if the statement

triplet .. [1. • 3];

is executed after the previous assignment to triplet. the value of triplet [2] is und~fined

Any array constructor in which all components are compile-time constants is a compile-time constant Also.
selection from an array that is a compile-time constant using a constant index yields a compile-time constant

Mesa Language Manual 31

3.3. Records

A record is an aggregate that allows a group of related data items of different types to be packaged
together. In the definition of a record type, the type of each individual component must be
supplied, as in the following example:

lvIilitaryTime: TYPE = RECORD [hrs: [0 .. 24), mins: [0 .. 60)];
oldTime, newTime: lvIilitaryTime;

Here, lvIilitaryTime is a newly defmed type, and oldTime and newTime are record variables of that
type. lvIilitaryTime is a two-component record type, where the first record component is named hrs
and the second mins. Every lvIilitaryTime record contains both components, but different record
objects have their own values for these components.

A constructor of a record type contains a field list after the word RECORD. Each element in the list
specifies one (or more) components of the record. For lvIilitaryTime, the field list is [hrs: [0 .. 24),
mins: (0 .. 60)]. The component names, hrs and mins. are called field names. They are used to refer
to components in any lvI ilitaryTime record. For instance, the first component of oldTime may be
selected using the qualified reference, "oldTime.hri'.

One can construct an entire record value using a record constructor. For instance, the constructors
below yield MilitaryTime values with hrs components that have the value 13 and mins components
that. have the value of the expression "y+1":

MilitaryTime[13, y+ 1]
MilitaryTime(hrs: 13, mins: y+1]

The second constructor is an example of a keyword constructor, since it specifies the name of the
component (e.g., as "hrs: It) with which a value is to be associated.

A default value can be specified for any field in the definition of a record type. The default is used
in constructing records of that type when no value is specified in the constructor. Defaults are
useful for suppressing detail and ensuring initialization of fields. In the following example, the two
constructors have the same value:

Datum: TYPE = RECORD

[.
value: INTEGER,
nReads: CARDINAL .. 0,
nWrites: CARDINAL .. 1
];

Datum [x]
Datum [value: x, nReads: 0, nWrites: 1]

The basic operations on (non-variant) record values include the fundamental operations (=, #, ..),
as well as qualification and extraction for accessing the record's components.

3.3. I. Field lists

There are two kinds of field lists, depending on whether the fields are "named" or "unnamed".
(Field lists used to construct multi-component record types are almost always named).

Syntax equations:
FieldList :: = [UnnamedFieldList] I [NamedFieldList]

UnnamedFieldList :: = TypeSpecification I
TypeSpecification ,UnnamedFieldList

32 Chapter 3: Common Constructed Data Types

NamedFieldList :: = IdList: FieldDescription DefaultOption I
NamedFieldList, IdList : FieldDescription DefaultOption

FieldDescription :: = TypeSpecification
DefaultOption :: = empty I +- DefaultSpecification -- section 3.3.5

Examples:

[i: INTEGER, b: BOOLEAN, e: CHARACTER]
[INTEGER, BOOLEAN, CHARACTER]
[17: CHARACTER, fl,}3: INTEGER]
[17: CHARACTER, fl: INTEGER,}3: INTEGER]

a named field list
a similar, but unnamed field list
components listed and declared together
equivalent to the above

Note that if one field is named, all must be named. Also, field names must be unique within a
given field list. (The same identifiers may be used as field names in other field lists, however, or as
names of declared variables.)

Field descriptions in a named field list contain a type specification, indicating the type of the field.
Any type may be specified, including an array type or (some other) record type.

Some fine points:

A field's type specification must not imply an infinite nesting of records. For instance, the following is illegal:

A: TYPE = RECORD [b: .8];
B: TYPE = RECORD [0: A);

field lists occur in constructors of types other than records, such as PROCEDUREs (chapter 5), SIGNALs
(chapter 8), and in variant record specifications (chapter 6).

Unnamed field lists are normally used when component names would be ignored if they were present This is
common for functions that return single-component results. Unnamed field lists are sometimes used in
specifying the input parameters for procedure variables that are to be set to one of several actual procedures.
(However, an unnamed field list does not allow Calls using such a procedure variable to refer to the parameters
by name.)

3.3.2. Declaration of records

The type constructor RecordTC is defined as follows:
RecordTC :: = RECORD FieldList I

00 plus variant records (chapter 6)

where FieldList is defined in the previous section. Separately declared record types are unique,
even if they look the same. Every appearance of a record constructor creates a new type that is not
equivalent to, and does not conform to, any other record type. In the example:

RecTypel: TYPE = RECORD [a,b: INTEGER];
reel: RecTypel;

RecType2: TYPE = RECORD [a,b: INTEGER];
ree2: RecType2;

red: RECORD [a,b: INTEGER];
rec4: RECORD [a,b: INTEGER];

the record variables reel, ree2, ree3, and rec4 all have different, non-eonforming types. None of
these can be assigned to any of the others (despite the similarity of their components). It is, of
course, legal to assign to a component any value with a conforming type. For example:

reel. a +- ree2.b +- red.a +- 5;
rec4.a +- reel.a; ree4.b +- recl.b;

Mesa Language Manual 33

Any single-component record type conforms to the type of its single component, but not vice versa.
The automatic conversion in this case requires no computation.

Example:

Bundle: TYPE = RECORD [value: INTEGER];
ree Var: Bundle;
intVar: INTEGER;

intVar'" reeVar;
intVar'" reeVar+l;
reeVar ... Bundle[intVaij;
ree Var. value ... int Var;

means intVar ... recVar.value
operand conversion
a constructor

This conversion simplifies dealing with functions that return single-component records (chapter 5).
It also provides a way of partitioning a set of variables that can be checked by the type system. In
the example above, a direct assignment of intVar to recVar is invalid Furthermore, no other single
component record type, such as

Prime: TYPE = RECORD [value: INTEGER];

can be confused with Bundle; assignment of a Bundle value to a Prime, or a Prime to a Bundle, is
illegal. Either a Bundle or a Prime can, however. appear as a numeric operand. Defining Bundle
and Prime as synonyms for INTEGER would not provide this additional checking.

Because of the uniqueness of constructed record types, record variables are typically declared in two
steps: first the record type. then the record variables. The general form is:

identifier: TYPE = RecordTC; -- define record type.
IdUst : identifier Initialization; -- same identifier as just defined

Record variables can also be declared directly:
IdUst : RecordTC Initialization ;

This form is not very useful because the (unnamable) record type is not available for purposes such
as declaring other records of the same type or writing constructors.

The Initialization shown in these general forms applies to the entire record variable, not to
individual components. Any Initialization must have the proper record type. Initialization of
record variables is shown in the next example.

noon: MilitaryTime.= [hrs:12. mins:O];
midnight: MilitaryTime = [hrs:O. mins:O];
time: MilitaryTime ... midnight; -- start time at midnight.

Some fine points:

The Mesa compiler packs record components into machine words The components may be arranged in an
order that differs from the left-ta-right order of the fields in the type constructor. All records of the same type
have the same component arrangement

Normally. the user is' unconcerned with the actual arrangement of record components. When component
arrangement is important, the user may specify "MACHINE DEPENDENT" records. An example is:

InterruptWord: TYPE = MACHINE DEPENDENT RECORD

[
device: DeviceNumber.
channel: [0 .. 7].
stopCode: {finished Ok. eTTOrStop. powerOJJJ.
command: ChannelCommand
];

34 Chapter 3: Common Constructed Data Types

In this case, the user takes full responsibility for component arrangement. Components are positioned exactly as
given, from left to right in machine words. In general, "fill" components are needed to ensure that no field
crosses a word boundary (unless it starts on one). Components (such as ChannelCommand) may themselves be
aggregates occupying more than one word

It is also the user's responsibility to "fill out" the record to a full word if the record crosses a word boundary.
(lnterruptWord might be correct for a 16-bit machine, but not for a machine having a larger word length).

Except in MACHINE DEPENDENT records, components are packed for storage efficiency. Some fields may be
aligned (to the beginning of a word boundary) and some may not. Components occupying a full word or more
are always aligned: arrays, INTEGERs and pointers, for example. Subrecords mayor may not be aligned,
depending on their size. Packed arrays are always aligned, even if there would have been space in the
preceding word for a byte-sized element

The function-like operator SIZE is often used to find the number of machine words occupied by a record of
some type. The general form is: SIZE [TypeSpecification]. The result is a CARDINAL value, the number of
words required by an object with the type specified by the argument. SIZE may be used to find the number
of words required for any type of object.

3.3.3. Qualified references

Qualification is used to refer unambiguously to a named component of some record. The general
form (which extends the definition of a LeftSJde) is

QualifiedReference :: = Variable. identifier I
(Expression). identifier

LeftSlde :: = ... 1 QualifiedReference

The field name is said to be "qualified by" the record value (the Variable or Expression) to the
left of the dot. The operator associates from left-to-right in the case of multiple qualification. For
example:

Latitude: TYPE = RECORD [degs: [0 . .360), mins, secs: [0 .. 60)];
Longitude: TYPE = RECORD [degs: [90 .. 90], mins, secs: [0 .. 60)];
Position: TYPE = RECORD [latitude:' Latitude, longitude: Longitude];
somePosition: Position;

Some of the possible qualified references to components of somePosition are listed below:

Qualified Reference

somePosition.latitude
somePosition.longitude
somePosition. latitude. degs
somePosition. longitude. secs

Refers To

1st sub-record
2nd sub-record
1st component of 1st sub-record
3rd component of 2nd sub-record

The association order for qualification means that names must occur in the proper sequence; e.g.,
somePosition.mins.longitude is incorrect. Also, a qualified reference must be complete, i.e., names
may not be skipped (as in somePosition.secs, which would be ambiguous in any event).

Qualified references and indexed references have the same precedence (the highest possible) and
may be intermixed. For example:

recordOfA"ays: RECORD [a,b: ARRAY [0 .. 100) OF CARDINAL];
a"ayOjRecord!- ARRAY [1..S} OF RECORD [iI,i2,i3: CARDINAL];

a"ayOjRecords[S].i3 ... recordOfArrays.a[O}; -- ("last" gets "first")

A fine point:

Qualification briefly opens up a given "name scope". For instance, in the record qualification, fec.X, the
qualified name, x, must name a field of rec and selects that field. Scope is treated more fully in chapter 7.

Mesa Language Manual 35

3.3.4. Record constructors

A record constructor assembles a record value from a set of component values. In the following
example, a constructor is used as a RightSide of an assignment.

MonthName: TYPE = Van, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};
Date: TYPE = RECORD

[
day: [1 .. 31].
month: MonthName.
year. [1900 .. 20(0)
];

birthDay: Date;
dd: [1..31]; mm: MonthName; yy: [1900 .. 2000); now: [1900 .. 20(0) .. 1976;
birthDay .. Date[25. Apr, now33];

This constructor yields a record value with type Date. The record assigned to birthDay contains the
following component values:

Component

day
month
year

Value

25
Apr
now33 (which is 1943)

A Constructor is a Primary and may not be used as the LeftSide of an . assignment

Record constructors are of two kinds: keyword constructors and positional constructors. Within both
kinds. the component value for a particular field may either be supplied or be omitted. If it is
omitted, the value of the field is determined by the DefaultOption appearing in the declaration of
the field (section 3.3.5).

Syntax equations:
Primary
Constructor
OptionalTypeld
ComponentList

.. -.. -

.. -

.. -

.. -.. -

••• 1 Constructor
OptionalTypeld [Component List]
Typeldentifier 1 empty
Keywo rdComponentList 1
PositionalComponentList

KeywordComponentList :: = KeywordComponent I
KeywordComponentList , KeywordComponent

PositionalComponentList :: = Component I

Keywo rdComponent
Component

PositionalComponentList , Component
.. - identifier: Component
.. - empty I .. elided component

Expression 1 .. explicit component
NULL •• voided component

The initial Typeldentifier, if present, must name the type of the record being constructed.

In keyword constructors. the correspondence between constructor components and record components
is strictly "by name". Keyword names may not be repeated in a constructor. but the order is
irrelevant For example, the following keyword constructors are equivalent:

Date[day: 25, month: Apr, year. now33]
Date[month: Apr. day: 25. year. now33]

• I

36 Chapter 3: Common Constructed Data Types

All of these keyword constructors specify values for all the components. In the following example.
the first keyword constructor elides the month component (the place for the component value is
specified, but no value is given); the second voids the month component (by specifying NULL instead
of a value):

Date[day: 25, month: ,year: now331
Date[day: 25, month: NULL, year: flow33]

_. month is elided
.- month is voided

The distinction between an elided and a voided a field arises in the treatment of defaults (section
3.3.5). Since the declaration of Date specifies no default value for month, both of these examples
construct records with a second component having an undefined value.

In a positional constructor, the correspondence between constructor components and record
components is strictly "by position". The first constructor component corresponds to the first record
component, the second value to the second component, etc. Positional constructors may be used for
both records and arrays (section 3.2.2). It does not matter whether or not fields are named in the
definition of the record type. The following three constructors are equivalent:

Date[day: 25, month: • year: now33] .• value of month is undefined
Date[25., now33] .- value of 2nd component is undefined (elided)
Date[25. NULL, now33] -. value of 2nd component is undefined (voided)

Positional constructors may elide or void components as shown above, but components not supplied
at the end of the list must be elided by supplying a sufficient number of trailing commas.

Keyword and positional notations may not be mixed in a single constructor. The order of evaluation
of components is not specified for either kind of constructor.

The initial Typeldentlfier in a constructor may be omitted when the constructor is used as:

the RightSide of an assignment (unless the LeftSlde is an extractor, section 3.3.5)

an expression in an Initialization

a component of an enclosing record or array constructor

an argument of a procedure

the right operand of a Relation.

In other cases, an initial Typeldentifie r must appear. It is never incorrect to supply the identifier,
and sometimes doing so improves readability.

A fine point:

Any record constructor in which all components are compile-time constants is a compile-time constant Also. a
field selected from a record that is a compile-time constant is itself a compile-time constant

3.3.5. De/ault field values

The definition of a record type may specify a default value for each field. These default
specifications are optional; if present, they are used in constructing records of that type when no
values for the corresponding fields are specified in constructors. An elided field, as discussed in the
preceding section, supplies no value. Specifying some default treatment of a field also allows
complete omission of that field in a constructor. In a keyword constructor, a field is omitted by
omitting the keyword entirely; in a positional constructor, trailing fields (only) can be omitted by
omitting the final commas. The positional constructor "[1" is considered to omit, not elide, its first
component (if any).

Mesa Language Manual

In the following example, all constructors have the same value.

Interval: TYPE = RECORD

[
range: INTEGER,
origin: INTEGER +- 0,
direction: {up, down} +- up
];

Interval[range: 10, origin: 0, direction: up]
Interval[range: 10, origin: , direction:]
Interval[range: 10]
Interval[lO]

-- all fields specified
-- origin, direction elided
-- origin, direction omitted
-- origin, direction omitted (positional form)

The syntax for specifying defaults in a NamedFieldList follows:
DefaultOption :: = empty I+- DefaultSpecification
DefaultSpecification :: = empty I

Expression I
NULL I
Expression I NULL

Note: In the final1ine, the vertical bar denotes itself and is embedded within an alternative.

37

Only named fields may have default values. In a DefaultSpecification, the Expression must
have a type that conforms to the type of the corresponding field.

Suppose that R is a record type with a field v of type T. The above syntax allows five forms for the
DefaultOption in the declaration of v. No matter which form is used, a constructor of an R may
explicitly specify a value for the field v. The various options control whether the existence of the
field must be made evident in the constructor, whether an explicit value must be supplied and, if
not, what action is taken. The options are interpreted as follows:

(1) v: T
In a constructor, the value of v can be left undefined, but that must be indicated explicitly.
by eliding or voiding the field. This rule also applies to an unnamed field.

(2) v: T +-

Every constructor must supply an explicit vahle (not NULL) for v.

(3) v: T +- e
If a constructor elides or omits v, the value of the expression e is used; voiding the field is
not permitted.

(4) v: T +- NULL
As in (1) above, except that the constructor may omit v entirely. If the field is omitted,
elided or voided, its value is undefined.

(5) v: T +- e I NULL
As in (4) above, except that a constructor may explicitly void v. If the field is omitted or
elided, the value of e is used; if it is voided, its value is undefined.

If the first or second form is used, the field cannot be omitted from a constructor; these forms are
useful when such omission is likely to indicate a programming error. Omission is permitted by the
other forms, which differ in the default action for an omitted or elided field. These forms are
appropriate when a field has some common and meaningful default value (the third and fifth cases)
or, alternatively, is relevant only in unusual circumstances (the fourth case). The last three forms are
particularly suitable for extending the definition of a record type; constructors in existing programs
need not be modified.

, I

38 Chapter 3: Common Constructed Data Types

Fine points:

The second form of field declaration guarantees that the field v has a well-defined value in any record created
by a constructor (but not otherwise).

If the Expression form of a default specification is used, that expression is evaluated at the time of
construction but in the' context of the declaration of the record, i.e., the expression is treated as a parameterless
procedure invoked by evaluation of the constructor (see chapter 5).

The default value of a field cannot be specified in terms of other fields in the same record.. Default values for
fields of record types defined in DEFINITIONS modules (section 7.3.2) must be compile-time constants.

Examples:

R: TYPE = RECORD

[
vI: CARDINAL,
v2: CARDINAL .. ,
v3: CARDINAL .. 3,
v4: CARDINAL .. NULL,
v5: CARDINAL .. 5 I NULL
];

-- the following are valid
R[v/: 1, v2: 2]
R[v/: , v2: 2, v5:]
R[v/: I, v2: 2, v5: NULL]

-- the following are not valid
R[]
R[v/: 1, v2: NULL, v3: NULL]

3.3.6. Extractors

-- means R[v/: 1, v2: 2, v3: 3, v4: NULL, v5: 5]
-- means R[v/: , v2: 2, v3: 3, v4: NULL, v5: 5]
-- means R[v/: 1, v2: 2, v3: 3, v4: NULL, v5: NULL]

-- neither vI nor v2 may be omitted
-- neither v2 nor v3 may be voided

Extractors are used to "explode" record objects and assign their components to individual variables
in a single statement. For example, the extractor below assigns the components of birthDay (defined
in the previous section) to the variables dd, mm, and yy, in that order:

[dd, mm, yy] .. birthDay;

This has the same effect as the following three separate assignments, except that birthDay is
evaluated only once:

dd .. birthDay. day; mm" birthDay. month; yy" birthDay.year,

An extractor resembles a constructor in form, but there are some important differences:

An extractor may only be used as a LeftSide, never as an Expression.

The "components" of an extractor specify LeftSides, not Expressions.

Extractors always begin with a left bracket, never with a Typeldentifier.

The type of the record value assigned to an extractor must be known to the compiler. This means
that the following (rather useless) statement is invalid because the constructor's type cannot be
determined:

[dd, mm, yy] .. [25, Apr. 1943]; -- invalid

The statement should specify the type of the constructed value:
[dd, mm, yy] .. Date[25, Apr, 1943]; -- valid

Mesa Language Manual 39

Extractors, like constructors, may use keywords. This allows an extractor to be written without
regard to the record's component order. For instance, the following statements are equivalent to the
first one in this section:

[day: dd, month: mm, year. yy] to birthDay;
[month: mm, day: dd, year. yy] to birthDay;

Extractors may elide or omit any item, in which case the corresponding record component is not
assigned. The extractors shown below are equivalent:

[day: dd. month: • year. yy] to birthDay; -- month elided
[day: dd, year. yy1 to birthDay; -- month omitted
[dd, ,yy] to birthDay; -- 2nd component elided

A positional extractor may omit trailing components without supplying trailing commas. The year
component of birthDay is omitted .below.

[dd, mm] to birthDay;

An extraction operation (unlike an ordinary assignment) yields no value. This means that an
extractor may not be embedded within an expression. For example, the first statement following is
illegal; the second is a valid alternative:

r to [x. y, z] to s;
lx, y!.z] to r to s;

Syntax equations:

-- invalid
-- valid

AssignmentStmt
Extractor

Keywo rdExt ractList

KeywordExtract
PositionalExtractList

Extractltem

.. -.. -

.. -.. -

.. -.. -

••• 1 Extractor to RightSide
[KeywordExtractList] I
[PositionalExtractList]
KeywordExtract I
KeywordExtract, KeywordExtractList
identifier: Extractltem
Extractltem I
Extractltem, PositionalExtractList
empty I .. component is ignored
LeftSide .. component is assigned to LeftSide

The identifiers in a KeywordExtractList must be field names for the record type. Note that
an extraction list can be empty, in which case the effect is to discard a record value. Extractors
cannot be nested.

I

3.4. Pointers

Pqinters allow efficient indirect access to objects. A pointer may refer to only one specific type of
item. For instance, the following pointer provides access only to objects of type INTEGER:

intPtr. POINTER TO INTEGER;

Another pointer might be specified to point only to BOOLEAN objects:
boolPtr. POINTER TO BOOLEAN;

These are different types of pointers since they have different reference types, INTEGER and BOOLEAN.
Furthennore, since INTEGER and BOOLEAN are incompatible types, these pointer types are also
incompatible; i.e., assignment of boolPtr to intPlr, or vice versa, is disallowed.

40 Chapter 3: Common Constructed Data Types

A pointer value is represented by the address of some data object. TIlis object is called the pointer's
referent. The postfix operator t may be applied to a pointer value of any type to yield that value's
referent. TIle process of "following" a pointer to its referent is called dereferencing.

A dereferenced pointer designates a variable. When the pointer is declared as above, the variable
can be used as a LeftSide or as a Primary. Thus inlPM' and boolPlrt are variables of type
INTEGER and BOOLEAN respectively. The statement

boolPlrt +- (intPtrt = 0);

is executed by following inlPlr to obtain a INTEGER value, testing that value, and assigning the result
to the BOOLEAN variable referenced by boolPlr.

Sometimes a pointer is created simply to identify an object or to allow indirect access to a value that
is not to be modified. Mesa provides readonly pointers for such applications. A value with a
readonly pointer type cannot be used to update its referent. For example, the declaration

ROintPtr. POINTER TO READONL Y INTEGER;

declares a readonly pointer. ROintPttt is a Primary with type INTEGER but not a valid LeftSide.

Any type specification is permitted as the reference type of a pointer type. The pointers declared
below reference a named record type.

Person: TYPE = RECORD
[
age: [0 .. 200],
sex: {male, female},
party: {Democratic, Republican}
];

candidatef, candidate2: Person;
winner, loser. POINTER TO Person;

Pointers to record ob~ects may be used to qualify field names. If record candidate} is the referent of
winner, then qualifications such as

winner. age lfinner.sex winner.party

select the corresponding components of candidatel. However, if candidate2 were the referent, these
same qualifications would select components of candidate2. When applied to a pointer, the
operation of selection implies dereferencing. For example, winner.age specifies dereferencing winner
to obtain a record variable of type Person and then performing normal field selection on that record.
Thus winner.age is an abbreviation of winnett.age.

It is common to define a record type containing components that are pointers referencing objects
with the same record type. For example, the type declared as follows:

FamilyMember. TYPE = RECORD
[
someone: Person,
mother. father. POINTER TO FamilyMember
];

might be used to create a tree of related persons in which the relations are expressed directly by
pointer linkages.

Mesa Language Manual 41

The fundamental operations (=, #, +-) applied to pointer values deal with the pointers themselves,
not with their referents. In the examples: .

winner +- loser,
willnert +- losert;

the first sets winner to point to the same Person as loser, the second assigns the referent of loser to
the referent of willner, and thus has a quite different effect. The full set of relational op·~rators can
be applied to pointers declared to be ordered; for example:

orderedPtr: ORDERED POINTER TO Person;

The ordering is determined by the memory addresses that represent the pointers, not by the
properties of the referents. Pointers not declared to be ordered can be only be compared using the
operators = and # .

There is one pointer literal, NIL. It conforms to any unordered pointer type and denotes a pointer
value that has no valid referent. For example:

IF inlPtr = NIL THEN boolPtr +- NIL;

A pointer with value NIL should not be dereferenced; the result is undefined

Pointer values are most commonly obtained from allocators that provide and manage storage for a
class of objects. The unary prefix operator @ also generates pointers. When applied to a variable
with type T, it yields a pointer to that variable with type POINTER TO T; for example:

winner +- @candidalel;

Pointer generation should be done with caution; it is possible for the reSUlting pointer to outlive the
referenced object. A non-NIL pointer value with no valid referent is said to be a dangling reference.
The language does not prevent dereferencing such a pointer. but doing so produces an undefined
result It is the user's responsibility to avoid dereferencing a dangling (or uninitia/ized) reference.

3.4.1. Constructing pointer types

The type constructor for pointers is defined as follows:

PointerTC :: = Ordered Base POINTER TO ReadOnly TypeSpecification I
Ordered Base POINTER Interval TO ReadOnly TypeSpecification

Ordered :: = empty ORDERED

Base

ReadOnly

.. -.. -

.. -.. -
empty

empty

BASE

READONLY

The TypeSpecification in a PointerTC specifies the reference type of the pointer type. Two
pointer types are equivalent if their reference types are equivalent and if their attributes ReadOnly
and Ordered are specified identically. Thus equivalent pointer types can be constmcted in separate
places, but they must have the same structure. One pointer type conforms to another if the two
reference types are equivalent, if either the ReadOnly attributes are identical or the second is
READONLY and the first is not, and if either the Ordered attributes are identical or the first is
ORDERED and the second is not. The Base attribute is ignored in determining conformance.

In the following examples. the first type in each pair confonns to the second, but the second does
not conform to the first:

POINTER TO FamilyMember
ORDERED POINTER TO Person
ORDERED POINTER TO Date

POINTER TO READONL Y FamilyM ember
POINTER TO Person
POINTER TO READONLY Date

, I

42 Chapter 3: Common Constructed Data Types

Fine points:

If one pointer type conforms to another. it conforms freely (section 3.5.3). Conformance of pointer types is
extended by the following rule: one pointer type conforms freely to another if the second is READONL Y. the
reference type of the first conforms freely to the reference type of the second. and the Ordered attributes
satisfy the restriction above.

The second form of PointerTC constructs a subrange of a pointer type. Subranges of pointers have the usual
properties of subranges; e.g .• a pointer subrange type and its base type mutually conform (but not freely). The
values of a subrange pointer are restricted to the given interval (and can potentially be stored in smaller fields).
Subrange pointer types are not recommended for general use. They are intended primarily for constructing
relative pOinter types (section 6.3) which. unlike the subrange types. do not allow dereferencing without
relocation.

The attribute BASE specifies that values with that pointer type are to be used as base values for relocating
relative pointers (section 6.3). Such values may also be used as ordinary pointers.

3.4.2. Pointer operations

The general form of an indirect reference is:
IndirectReference :: = Variable 1" I

(Expression) 1"

LeftSide .. -.. - .. ·llndirectReference

The postfix operator 1" performs explicit dereferencing of the pointer expression it follows. Its
precedence is the same as indexing and qualification (the highest possible), and these operations can
be intermixed. For example:

.. group: ARRAY [0 .. 10) OF POINTER TO FamilyMember,

group[i]t .mothert .someone -- « «group[i])1").mother)t).someone

If p is an arbitrary pointer expression, then pt can be read as "p's referent" or "referent of p".
Application of the t. operator produces a variable that may be used as a Primary. Unless p is a
readonly pointer. pt (or any of its components) may also be used as a LeftSide. The definition of
conformance implies that an ordinary pointer can be assigned to a readonly pointer, but not vice
versa. Thus the referent of a readonly pointer is not necessarily immutable; i.e., its value might
change during the lifetime of the readonly pointer. The Mesa language only prevents updates of the
object through those pointers to it that are declared to be readonly.

The syntax used for address generation is
Primary :: = ... 1 @ LeftSide

The prefix operator @ produces the address of its operand. If x is a variable of type T, the value of
@x is a pointer to x, and its type is POINTER TO T. @x can be read as "address of x". The
operand for @ must be a valid LeftSide (it cannot be a constant or an arbitrary expression. for
instance). The operator's precedence is lower than that of t; e.g., @xt is equivalent to @(xt) (or
simply x).

Some fine points:

There are variables that cannot be the referents of pointers and thus cannot be the operands of @. These
include all "variables" with fixed initialization and components of such variables. In addition. a pointer value is
represented by a word address. Therefore. a referent must lie on a word boundary; an object having this
property is called aligned. Variables are aligned except in the follOwing cases:

Elements of packed arrays are not aligned.

Any component of a record that occupies less than a single word is not aligned (but arrays. even if packed.
are always aligned).

Mesa Language Manual 43

Care must be taken so that a pointer to a declared variable does not exist longer than the variable to which it
points. Consider the following example (which assumes familiarity with procedures. local variables and global
variables):

pointer]. pointer2: POINTER TO INTEGER; -- two global variables

RiskyProc: PROCEDURE [i: INTEGER] == -- i is a' local variable
BEGIN
local: INTEGER; -- and so is local

pointerl ... @i;
pointer2 ... @local;

RETURN
END;

-- risky: i will disappear upon RETURN
-- also risky

-- the "risky" pointers are valid up to this point, but
- NOT after this statement is executed.

After the RETURN statement is executed. local storage is released for other purposes; thus the pointers will
reference unpredictable data when that storage is reused. One should use pointers with referents existing at least
as long as the pointers.

Pointers that are declared to be ORDERED may be used as operands of all the relational'operators
(section 2.5.1). For this purpose, they behave as unsigned numeric values. The definition of
conformance implies that an ordered pointer can be assigned to an unordered pointer variable, but
not vice versa. NIL is not a valid ordered pointer constant, and the relation of its value to other
pointer values is undefined. Also, the @ operator always produces an unordered pointer value.

The following fine points cover pointer capabilities that should be used with caution (and avoided when pOssible). Some
of these capabilities circumvent normal type-checking. and may result in unpredictable results if used.

The type POINTER TO UNSPECIFIED (or simply POINTER) can access actual data of any type. Pointers of
this type conform to any other pointer type, and vice-versa.

Limited arithmetic can be performed on pointers. but programmers are encouraged to use BASE and RELATIVE
pointers (chapter 6) if the purpose of the arithmetic is simple relocation. A short numeric value added to. or
subtracted from, a pointer produces another pointer with the same type. Also. the difference of two pointer
values with equivalent types is a CARDINAL.

3.4.3. Long Pointers *

Long pointers provide iJ.1direct access to objects having memory addresses that cannot be
represented within a single machine word. Like LONG INTEGERS, they are essentially concessions to
the limitations of hardware. Again, the long variant provides somewhat greater generality at
somewhat greater cost.

Long pointer types are constructed as follows:

LongTC ".. - LONG TypeSpecification

The type constructor LONG can be applied to INTEGER (chapter 2), any pointer type, or any array
descriptor type (chapter 6). No other type can be lengthened.

Long pointers are typically created by lengthening (short) pointers as described below. In
particular, NIL is automatically lengthened to provide a null long pointer when required by context.
The standard operations on pointers (dereferencing, assignment, testing equality, comparing ordered
pointers) aU extend to long pointers.

Both automatic and explicit lengthening (using the operator LONG) are provided for pointer types,
and the type POINTER TO T conforms to (but is not equivalent to) the type LONG POINTER TO T.
Lengthening an expression with the first of these types produces a value with the second; i.e., the
reference type and the Base, Ordered and ReadOnly attributes are unchanged.

44 Chapter 3: Common Constructed Data Types

The operator @ applied to a variable of type T produces a pointer of type LONG POINTER TO T if
the access path to that variable itself involves a long pointer and of type POINTER TO T otherwise.

Some fine points:

Two confonning pointer types confonn freely only if both are long pointers or both are not.

NIL is lengthened in a standard way and has a universal representation. All other pointers are lengthened in a
hardware dependent way. There is no nonnalization prior to operations on long pointers; and such pointers
constructed other than by lengthening may give anomolous results (e.g., in comparisons).

If either operand in a pointer addition or subtraction is long, all operands are lengthened and the result is long.

Examples:

R: TYPE = RECORD u: T, ... 1;
p, q: POINTER TO R;
pp, qq: LONG POINTER TO R;
pT: POINTER TO T;
ppT: LONG POINTER TO T;

-- the following are valid.

pp .. qq; pp" NIL; pp" p;
pp = qq, pp = NIL, pp = q;
pT .. @p.f, ppT.. @pp.f,
ppT .. @p.f,

-- the following are not valid.

pp = ppT;'
p .. pp; pT" @pp.f,

3.4.4. Automatic dereftrencing

long comparisons

pointer lengthened

incompatible types
no automatic shortening

Automatic dereferencing converts a pointer RighlSide of type POINTER TO T into one of type T if
that RightSide is followed by dot qualification (section 3.3.3), a bracketed array index, or a bracketed
argument list (the last two are syntactically identical). For example, in the following two statements,
the LeftSides are equivalent:

winner.party
winnert .party

.. Democratic;

.. Republican;

Automatic multilevel dereferencing is possible. Given the following declarations, the three final
assignment statements have the same effect:

actualArray: ARRAY [0 .. 20) OF INTEGER;
arrayPtr: POINTER TO ARRAY [0 .. 20) OF INTEGER" @actualArray;
arrayFinger: POINTER TO POINTER TO ARRAY [0 .. 20) OF INTEGER" @arrayPtr;
actualArray[l] .. 3;
arrayPtr[l] .. 3;
arrayFinger[11 .. 3;

A fine point:

-- arrayPtrt[l] .. 3
-- arrayFingert't[l] .. 3

The pointer attribute BASE inhibits automatic dereferencing in the context of subscript or argument brackets.
See section 6.3.

Mesa Language Manual 45

3.5. Type determination

Every expression in a Mesa program has a type that can be deduced by static analysis of the
program text. Such analysis is called type delemzination. The language imposes constraints on the
type of each expression according to the context in which it is used. A program that does not
violate any of these constraints is type-correct; every valid Mesa program must be type-correct.

In principle, every variable and every expression has an inherent type derived from its structure. 11le
inherent type of a variable is established by declaration; the form of a literal implies its type, and
each operator produces a result with a type that is a function of the types of the operands. Inherent
types of some expression forms are listed below:

Expression

34
NIL
x<y
X
array[i]
@x
(X ~ e)

Inherent Type of Expression

[34 .. 34]
POINTER TO UNSPECIFIED
BOOLEAN
declared type of X
type specified for the components of array
POINTER TO type of x
type of x

The ty~~ rules in Mesa take two general forms, which are the following:

The exact type required by the context is known, and a given type must conform to it. The
required type is called the target type.

The exact type required is not implied by context. but a relation that must be satisfied by a
set of types is known. The process of satisfying that relation is called balancing.

Situations in which the target type is known are simpler and more common; they will be discussed
first

All assignment-like contexts establish a target type for the expression to be assigned. These contexts
include not only assignment itself (where the target type is the type of the LeftSide) but also
initialization, record construction (where the target type for each component expression is the
declared type of the corresponding field), array construction, parameter list construction, and the
like.

Example:

LType: TYPE = RECORD[C: CType);
IVar: LType;

IVar ~ anyExp;
IVar +- LType[c: someExp);
IV ar.c ~ someExp;

target type of anyExp is LType
target type of someExp is CType
.. , which is more obvious here

The following rule applies to assignments:

There is never any automatic dereferencing or type conversion of any kind for the LeftSide of
an assignment, and the inherent type of the LeftSide is the target type of the right side. (Of
course, a LeftSide may contain subexpressions, such as array subscripts, that are themselves
right sides and subject to conversion.)

Certain other contexts imply a target type. For example, the target type for an array subscript is the
index type of the array. Also, the target type of the expression following IF, WHILE, etc., is BOOLEAN.

46 Chapter 3: Common Constructed Data Types

If the inherent type of an expression is equivalent to the target type, the use of that expression is
type-correct If it is not equivalent, it may still be possible to obtain conformance by applying
various type conversions, which are sometimes called coercions. In Mesa, there is at most one
sequence of conversions that can be applied automatically to convert a value from one type to
another. When implicit conversion from the inherent type to the target type is impossible, the
program is in error; e.g., assigning a BOOLEAN value to an INTEGER variable is never valid.

Some fme points:

When the target type is well defined, certain expression fonns may be abbreviated. Identifier constants need
not be qualified, and explicit identification of the type of a constructor is optional. The abbreviated constructs
have no inherent type when viewed out of context, and they cannot be used in situations requiring implicit
conversion. For example,

R: TYPE = RECORD [i: INTEGER];
v: R +- [R[3)); -- the second R cannot be omitted

An Ext rae to r never has an inherent type; the extraction is controlled by the inherent type of the RightSide,
which therefore cannot be abbreviated or converted. For example,

r: RECORD [inner: RECORD[j7, p: INTEGER));
[i, j] +- r.inner; -- the field selection cannot be omitted

3.5.1. Type conversion

There are four automatic type conversions that can be applied to establish type conformance. All
have been discussed in preceding sections. They are the following:

(1) A value with a subrange type may be converted to a value with its base type, and vice versa
(section 3.1.2).

(2) A value with a single-component record type may be converted to a value with the type of
that component (section 3.3.2).

(3) A value with a short numeric, pointer or array descriptor type may be lengthened to a value
with the corresponding long type (section 2.4.5),

(4) A value with any numeric type may be converted to type REAL (section 2.4.5).

The first of these is a somewhat special case; as mentioned in section 3.1.2, it is more accurate to
view this as a pair of conversions that are applied unconditionally when evaluating, and assigning to,
a subrange variable.

Examples:

r: RECORDffi INTEGER]:
i: INTEGER;
ii: LONG INTEGER;

i ... I";

iif-I";

Some fine points:

i ... r.f
ii ... LONG[rJ]

A number of the conversions used to achieve conformance require computation and cannot be applied
recursively to the constituents of constructed types. For example, INTEGER conforms to LONG INTEGER, but
ARRAY IndexType OF INTEGER does not conform to ARRAY IndexType OF LONG INTEGER. Section 3.5.3
discusses the concept of "free" conformance and the rules governing such cases.

There is one other automatic conversion, dereferencing, that is applied only in certain syntactic contexts (section
3.4.4). It is never applied automatically to achieve type conformance in an as.<;ignment

Mesa Language Manual 47

Sometimes it is necessary to subvert Mesa's type checking, particularly in programs that manipulate low-level
representations of objects. A Primary with the form

LOOPHOLE [Expression , TypeSpecification]

has the same value as the Expression (viewed as a sequence of bits) and the type denoted by
TypeSpecification. This "conversion" never requires any computation. The only restriction is that values
with the inherent type 'of Expression must be represented in the same number of machine words as values of
the type TypeSpecification. When the target type is well-defined, the TypeSpecification ma;; be omitted.
For example:

b: BOOLEAN; n: CARDINAL;
n .. LOOPHOLE [b, CARDINAL]; -- to discover the representation
n .. LOOPHOLE [b]; -- also acceptable

Since LOOPHOLE bypasses most checking. its use should be limited as much as possible.

3.5.2. Balancing *

Many of Mesa's operators are generic; i.e., the operation performed depends upon the types of the
operands. Examples are the fundamental operators = and #, which accept two operands with
arbitrary (but compatible) types and produce a BOOLEAN result In this case, neither operand has a
defined target type. Instead, it is necessary to find some type to which the inherent type of each
operand conforms; any automatic type conversions are applied to the operands as necessary to
produce values of that type; and the operation is then performed. The common type is the "least
upper bound", i.e., the one requiring the fewest conversions.

Examples:

R: TYPE = RECORD[fi INTEGER];
RR: TYPE = RECORD(ffi LONG INTEGER];
i: INTEGER;
ii: LONG INTEGER;
rl, r2: R;
rr. RR;

i = ii
rl = r2
rl =
rl = "

LONG[i] = ii
compared as records
rl.f = i
LONG[rl J] = ".f

Balancing is also applied to IF expressions (section 4.2.1), SELECT expressions (section 4.3.3), and the
arithmetic and relational operators.

Fine points:

Many generic operators do not propagate the target type of the expression in which they appear; instead, the
operands are balanced and combined to produce a result that is converted further if necessary. For example,

li"I+r; -- Ii .. LONG[i + rJ)
Ii .. LONG[i] + r; -- ii .. LONG[i] + LONG[rJ)

The current version of Mesa does not fully implement balancing when lengthening (or conversion to REAL) is
required. The restrictions are:

Operands of MIN and MAX and the alternatives of conditional expressions are lengthened to match the
expression's target type, if any, and otherwise to match the type of the first operand.

The endpoints of an interval in the right operand of IN are lengthened to match the type of the left
operand, but the left operand is never lengthened.

The expressions selecting the arms of a selection (section 4.3) are lengthened to match the type of the
selecting expression, but that expression is never lengthened.

48 Chapter 3: Common Constructed Data Types

3.5.3. Free con/onnance *

A number of the conversions used to achieve conformance require computation and cannot be
applied recursively to establish the conformance of types constructed from pairwise conforming
types. For example, INTEGER conforms to REAL. but the conversion from INTEGER to REAL

transforms the representation. Thus a POINTER TO INTEGER and POINTER TO REAL cannot validly
have the same referent, and these types do not conform.

The relation of free con/onnance is less restrictive than strict type equivalence but is defined so that
it can be computed recursively. Loosely speaking, one type freely conforms to another if a value of
the first can always be used as a value of the second without any computation or run-time check of
validity. The relations of equivalence, free conformance and conformance are not independent.
Equivalence always implies free conformance; if two types are equivalent, each freely conforms to
the other. Also, free conformance implies conformance; if one type freely conforms to another, the
first also conforms to the second.

Of the automatic conversions discussed in section 3.5.1, only a restricted form of the first (subrange
conversion) can be applied to establish free conformance. The restriction (which arises from the
representation of sub range values in Mesa) is the following:

The subrange type T(i.Jl conforms freely to T if i = FIRST[l1 and to T(i .. k] if j < k.

If automatic conversion (1) of section 3.5.1 must be applied in any other circumstance or if
application of conversion (2), (3) or (4) of that section is required to establish the conformance of
two types, they do not conform freely.

Of -the constructed types discussed in this chapter, array and pointer types also have rules for free
conformance less restrictive than equivalence. To summarize:

One array type conforms freely to another if the index types are equivalent and the
component type of the first freely conforms to the component type of the second (section
3.2.1).

One pointer type freely conforms to another whenever the first pointer type conforms to the
second as defined in section 3.4.1.

Free conformance is also important for procedure types (section 5.1) and variant records (section
6.4).

In the following pairs of types, the first conforms to the second (but does not freely conform):
[0 .. 100) [0 .. 10)
[5 .. 10) [0 .. 10)
INTEGER REAL
POINTER TO Person LONG POINTER TO Person

In the following pairs, the first
POINTER TO [0 .. 10)
POINTER TO READONL Y [0 .. 10)
ARRAY [0 .. 10) OF [0 .. 10)

Fine point:

type freely conforms to the
POINTER TO READONL Y [0 .. 100)
POINTER TO READONL Y [0 .. 100)
ARRAY [0 .. 10) OF CARDINAL

second (but is not equivalent):

Note that POINTER TO [0 .. 10) does not conform to POINTER TO [0 .. 100) so that the follOwing is illegal:

p: POINTER TO [0 .. 10); f[. POINTER TO [0 .. 100):

Mesa Language Manual 49

q f- p; qt f- 99; -- now pt ::: 99

3.6. Determination of representation *
lois section discusses the rules used by Mesa for choosing between signed and unsigned versions of
the numeric operations. These rules assume that there are conversion functions (taking the form of
range assertions. section 3.1.2.2) that convert values from CARDINAL to INTEGER (from LONG CARDINAL

to LONG INTEGER) and vice versa. In both directions. the "conversion" amounts to an assertion that
the value is an element of INTEGER n CARDINAL (LONG INTEGER n LONG CARDINAL). Such assertions
must be verified by the programmer.

For any arithmetic expression, the inherent representations of the operands and the target
representation of the result are used to choose between the signed and unsigned versions of the
arithmetic and relational operators.

The target type determines the target representation. The preceding section describes the derivation
of target types; in addition, a range assertion establishes the asserted type as the target type of its
operand. If all valid values of the target type are nonnegative, the target representation is unsigned;
otherwise, it is signed. The arithmetic operators propagate target representations unchanged to their
operands, but the target representation of an operand of a relational operator is undefined. The
target representation is also undefined in all other cases in which the target type is undefined. Thus
each (sub)expression has at most one target representation.

The inherent representation of a Primary is determined by its type (if a variable, function call,
etc.), by its value (if a compile-time constant), or explicitly (if a range assertion). Possible inherent
representations are signed and unsigned; in addition, a compile-time constant in INTEGER n
CARDINAL or a Primary with an inherent type that is a sub range of INTEGER n CARDINAL is
considered to have both inherent representations. Inherent representations of operands are
propagated to results as described below.

The operation denoted by a generic operator is chosen by considering first the inherent
representations of its operands, next the target representation, and finally a preferred default If the
operation cannot be disambiguated in any of these ways, the expression is considered to be in error.
The exact rules follow: .

If the operands have exactly one common inherent representation, the operation defined for
that representation is selected (and the target representation is ignored).

If the operands have no common inherent representation but the target representation is
well-defined, the operation yielding that representation is chosen, and each operand is
"converted" to that representation (in the weak sense discussed above).

If the operands have both inherent representations in common, then
if the target representation is well-dermed it selects the operation;
otherwise the signed operation is chosen.

If the operands have no representation in common and the target representation is ill
defined, the expression is in error.

In all cases, the inherent representation of the result is determined by the selected operation.

The unary operators require special mention. Unary minus converts its argument to a signed
representation if necessary and produces a signed result.

50 Chapter 3: Common Constructed Data Types

Example:

If m and n have unsigned representation, both the following are legal and assign the same bit
pattern to i, but the first overflows if m < n.

i +- mil; i +- IF m > = n THEN mil ELSE (nm);

ABS is a null operation on an operand with an unsigned representation; it always yields a value with
unsigned representation. The target representation for the operand of LONG (or. of an implied
lengthening operation) is unsigned.

Examples:

i, j: INTEGER; m, n: CARDINAL; s, t: [0 .. 77777B); b: BOOLEAN

-- the statements on each of the following lines are equivalent

i +- m+n; i +- INTEGER[m+n] -- unsigned addition
i +- j+n; i +- n+j; i +- j+INTEGER[n] signed addition
i +- s+t; i +- INTEGER[S]+INTEGER[t) signed (overflow possible)
n +- S+ t; n +- CARDINAL[S]+CARDINAL[t] -- unsigned (overflow impossible)
S +- sl; S +- CARDINAL[S]CARDINAL[t] -- unsigned (overflow possible)
b +- sl> 0; b +- INTEGER[S]INTEGER[/] > 0 signed (overflow impossible)

i +- m; i +- INTEGER[m]

i +- m+n*U+n); i +- INTEGER[m] + (lNTEGER[n]*U+INTEGER[nD)
n +- m+n*U+n); n +- m + (n*(cARDINALU]+n»
i +- m+n*(s+n); i +- INTEGER [m+ (n*(CARDINAL [s] + n»]

b +- S IN [/1 .. t+ 1]; b +- INTEGER[S] IN [INTEGER [/1] .. INTEGER[t+ In
FOR S IN [/1 •. t+ 1] .•. ; FOR S IN [CARDINAL [tl] .• CARDINAL[t+ 1]] ..•

The following statements are incorrect because of representational ambiguities.

b +- i > n; b +- i+ n IN [s •• j]

SELECT i FROM m => ... ; I => ... ; ENDCASE

51

CHAPTER 4.

ORDINARY STATEMENTS

Statements are the units of action in Mesa; they control the flow of execution and the updating of
variables. This chapter treats ordinary statements: those statements having wide applicability (such as
assignment statements); later chapters cover the remaining statements. The following syntax lists the
phrase names of all the statement forms covered in this chapter:

Statement :: = AssignmentStmt IIfStmt I SelectStmt I NullStmt 1
Block I GotoStmt I LoopStmt I ExitStmt I ...

Some statements have expression counterparts, with the same general purposes but slightly different
constraints. For instance, assignment can be performed by an expression as well as a statement
The expression forms covered in this chapter are

Expression :: = ... 1 AssignmentExpr IIfExpr I SelectExpr

In Mesa, certain statement forms such as the IF statement contain other statements. These statements
in turn may contain still other statements, and so forth. Consequently, the term "statement" should
be understood to encompass the large and small alike.

lbe dynamic successor of a statement embedded within another depends upon the embedding form.
For simplicity, the discussion assumes that most statements occur in the middle of a hypothetical
series of statements. Execution paths within a statement are described for each form of control
statement, and the successor is described in terms of a postulated "Next-Statement". Next-Statement
represents nothing more than completion of a given statement; another statement mayor may not
appear at that point in an actual program.

Although execution of a statement can be aborted prior to its normal completion, the discussion of
statement sequencing also assumes normal termination of each statement unless otherwise stated.

In the examples, Stmt-O, Stmt-I, Stmt-2, etc. denote arbitrary statements, the details of which are
irrelevant.

4.1. Assignment statements

Syntax:

AssignmentStmt :: = LeftSide +- RightSide I
Extractor +- RightSide

The RightSide must be an expression with a type conforming to the type of the left-hand side.
The left-hand side must be a valid recipient of data such as a declared variable or a component. For
assignment statements, a left-hand side may also be an extractor (section 3.4.5).

52 Chapter 4: Ordinary Statements

Examples:

i .- 3; a'- b+c;
birthDay. month . .- Apr,
[mm. dd, yy] .- birthDay;

4.1.1. Assignment expressions

birlhTable[Tom].year .- 1955;
-wan extractor as the LeftSide

Assignment operations may be carried out by expressions, as well as by assignment statements. The
syntax for an assignment expression is

AssignmentExpr :: = LeftSide'- RightSide

Assignment expressions can be used for performing multiple assignments in a single statement, and
for saving the value of an intermediate expression without having to write a separate statement:

x2 .- xl .- xO .- v; set xO, xl, and x2 to the value in v
a"ay (j .- j+ 1] .- x [i]; -- j is changed while changing the a"ay component

Evaluation of the first statement proceeds as if it were written:

x2 .- (xl .- (xO .- v»
Note that x2 .- (...) is an assignment statement. The assignment expression, xO .- v, yields the value
assigned to xO, this becomes the RightSide value for the other assignment expression, and so on.

There are two differences between an assignment expression and an assignment statement:

The expression yields a value (in addition to performing assignment).

The LeftSide of an assignment expression cannot be an extractor.

An AssignmentExpr is an Expression. Its type is the type of the LeftSide, and its value is the
value actually assigned (possibly after type conversion) of the RightSide. The assignment operator
has the lowest possible precedence. As a rule, an assignment expression embedded in another
expression is enclosed in parentheses.

A fme point:

In an expression such as the following:

a[k+-k+l} + b[k};

the order of evaluation is undefined. and the embedded assignment may be executed either before or after
evaluation of b[k}. Such use of embedded assignments should be avoided.

4.2. I F statements

An IF statement is a control statement that functions as a two-way switch:

IfStmt
Predicate

ThenClause
ElseClause

:: = IF Predicate ThenClause ElseClause

:: = Expression

:: = THEN Statement
:: = empty I ELSE Statement

A simple IF statement is shown below.

IF v =0 THEN WriteString[nDone."] ELSE v .- vI;
Next-Statement

Mesa Language Manual 53

The BOOLEAN expression (v = 0) is called the Predicate of the IF statement. The Predicate is
evaluated first, and if TRUE, the Statement in the ThenClause is executed (in this case a call on
the procedure WriteString). Upon its completion, execution continues at Next-Statement. If the
Predicate value is FALSE, the Statement in the ElseClause, "v 4- vl", is executed; if there is
no ElseClause control goes directly to Next-Statement.

Other examples:

IF (flag = on) AND i IN [m .. n] THEN i 4- i + iDelta ELSE i ... m;

IF winner - = NIL THEN
BEGIN -- this Statement is a block (section 4.4)
totalAge 4- totalAge + winner.age;
IF winner.party = Democratic THEN demoScore ... demoScore+ 1
ELSE gopScore ... gopScore+ 1;
END; -- end of the ThenClause

Note that a semicolon cannot follow a ThenClause when an ElseClause is present.

If the Statement in a ThenClause is a second IF statement, then the outer IF may have an
ElseClause only if the inner one does; i.e., an ElseClause "belongs" to the innermost possible IF.
For example:

IF a >= 0 THEN
IF a > 0 THEN b ... 1
ELSE b ... 0;

a > 0 means set b to 1
a = 0 means set b to 0
no action if a < 0

It is recommended that "IF ... THEN IF" combinations be avoided entirely unless the second IF has an
ElseClause. Often, a single IF statement is sufficient. For example. let pI and p2 be arbitrary
predicates. Then the following two statements have identical effect:

IF pI AND p2 THEN Stmt; recommended form (see section 2.5.3)

IF pI THEN IF p2 THEN Stml; -- longer form

Fine point:

If the Predicate is a compile-time constant, the compiler does not produce object code for the text that would
never be executed. This also holds for IF expressions.

4.2.1. IF expressions

The IF statement has a counterpart that is an expression. Its syntax is similar to that of an IfStmt:

IfExpr :: = IF Predicate THEN Expression ELSE Expression

There are two differences between an IfExpr and an IfStmt:

The clauses of an IF expression contain expressions. not statements;

An IF expression must have an ELSE-clause.

Examples:

slope'" IF y = 0 THEN max ELSE x/y; -- avoid division by zero.
b'" IF a >= 0 THEN (IF a> 0 THEN 1 ELSE O) ELSE 1;

, I

54 Chapter 4: Ordinary Statements

Evaluation of an IF expression begins with evaluation of the Predicate (in the first example, y =0).
If it is TRUE, the expression in the ThenClause (Le., max) is evaluated, and its value becomes the
value of the IF expression. If the predicate is FALSE, the ElseClause expression (Le., x/y) is
evaluated, and its value becomes the value of the IF expression. The second example sets the value
of b to 1, 0, or + 1, depending on whether a is negative, zero, or positive, respectively.

The TheilClause and ElseClause expressions must confonnto some common type (possibly
after type conversion, as outlined in section 3.5.3). The type to which they confonn is the IF
expression's inherent type.

An IF operator has the same precedence as an assignment operator, i.e., the lowest possibie
precedence. IF expressions should be enclosed in parentheses when embedded in other expressions.

4.3. SELECT statements

The SELECT statement chooses for execution at most one statement from an ordenid list of
statements. The choice is based upon the relation between a given expression and expressions
associated with each selectable statement Thus, this statement fonn pennits multiway branching,
not just the two way branching of an IF statement

A SELECT statement is shown below. The separator "= >" should be read as "chooses.". The entire
statement may be read as follows: "Select, using x's value, from the comparisons preceding the
substatements. First. (x's value) 'equal to zero' chooses Slmt-I. Second, 'in subrange m through n'
chooses Stmt-2. Third, 'less than m' chooses Slml-3. Otherwise, choose nothing."

.. SELECT x FROM

= 0 => SImI-I;
IN [m .. n] => Stmt-2;
< m => Stmt-3;
ENOCASE

The next four sections cover various fonns of SELECT, their precise syntax, and the expression
counterpart of the SELECT statement The tenn "SELECT", used by itself, includes both statement
and expression fonns.

4.3.1. Forms and options for SELECT

Syntax equations:

SelectStmt

Leftltem

StrritChoiceSe ries

FinalStmtChoice

TestList

Test

:: = SELECT Leftltem FROM
StmtChoiceSeries
ENOCASE FinalStmtChoice
I···

:: = Expression

.. (the head)

., (the arms)

.. (the foot)

:: = TestList => Statement; I
StmtChoiceSeries TestList => Statement;

.. - empty I
=> Statement

:: = Test I TestList , Test

.. - Expression I .. no operator implies an equality test
RelationTaii

Mesa Language Manual 55

Example:

i: [0 •. 5];

SELECT i FROM

o => i (- HI;
< 3 => BEGIN j (- i; i (- 11 END;
=5 => i (- 0;
ENDCASE => i (- 2;

Next-Statement

i=O
i=1 or i=2
i=5
i=3 or i=4 (none of the above)

In the execution of a SELECT statement, the Leftltem is evaluated first; a sequence of comparisons
then follows. Each arm of the SELECT statement begins with one or more Tests. The Expression
in each Test is evaluated and compared with the value of the Leftltem. The evaluation occurs in
order, from left to right, and continues until a comparison succeeds or the TestList for that
particular arm is exhausted. If a test succeeds, control passes immediately to the statement following
the TestList in that arm (no further Tests are evaluated, even in that same list). If all Tests in a
given arm fail, the next arm in the series is tried. After a test succeeds and its associated statement
is executed, control passes to Next-Statement. Thus at most one statement can be chosen in a given
execution of a SELECT statement

When combined with the Leftltem (perhaps with an implied "="), each Test must be a valid
Relation. The type of the Exp ression in a Test must conform to the type of the Leftltem. If
a Test uses "IN Subrange", the base type of the sub range must conform to the type of the
Leftltem.

A single SELECT arm may specify more than one test:

SELECT i*j+k FROM
1, IN [7 .. 10] => Stml-I; -- values: 1, 7, 8, 9, 10
2,5, > 10 => Stml-2; values: 2, 5, 11, 12, ...
ENDCASE;

A final choice may be appended to a SELECT to handle all remaining cases; it follows ENDCASE. For
example:

PriorityState: TYPE = RECORD[iO, ii, i2, B: BOOLEAN];
old State, newState: PriorityState;

SELECT TRUE FROM
oldState.iO

-- picks
=>
=>
=>
=>
=>

oldState.iI, newStale.iO
oldState.i2, newState.iI
oldState.B, newState.i2
ENDCASE

the first TRUE state:
Slmt-O;
Stmt-I;
Stmt-2;
Stmt-3;
Stmt-99;

If this SELECT statement does not choose one of the first four statements, the final statement (Stmt-
99) is executed.

Fine points:

If all SELECT anns (or those in some contiguous subseries) specify constant values in each Test, the compiler
can produce code using a "jump table" for efficient selection.

The other alternatives for SelectStmt apply to variant records and are discussed in Chapter 6.

56 Chapter 4: Ordinary Statements

4.3.2. The NULL statement

The NULL statement, which serves only as a placeholder, is often useful as the statement in an arm of
a SELECT statement:

NullStmt

For example:

:; = NULL

--Handle digits.
SELECT currentChar FROM

IN ['0 . .'9] => Stmt-/;
IN ('A . .'Z] => Stmt-2; --Handle capital letters.
IN ['a . .'z] => Stml-3; --Handle small letters.
SP => NULL; --Ignore blanks.
ENDCASE => Stmt-99; --Handle all other chars.

4.3.3. SELECT expressions

The SELECT statement has an expression counterpart. There are three differences between the
expression and statement fOImS of SELECT:

(1) The choices in each arm must be expressions, not statements.
(2) The arms are terminated by commas, not semicolons.
(3) ENDCASE must be followed by "=)" and a final (expression) choice.

Its syntax is defined by

SelectExpr :: = SELECT leftltem FROM
Exp rChoicelist
ENDCASE = > Exp ression
I ...

.. (the head)

.- (the arms)
-. (the foot)

Exp rChoiceList .. -.. - TestList => Expression, I
ExprChoicelist TestList => Expression,

leftltem and TestList are defined in section 4.3.1.

For example:
pI: INTEGER; -- Point on a line.
/0, hi: INTEGER +- 0; -- Bounds for a line segment, initially a null segment

PointPosition: TYPE = {leftMargin, rightMargin, inside, outside, degenerate};
position: PointPosition;

position +- SELECT pI FROM

IN (lO .. hl) = > inside,
NOT IN [lo .. hl] = > outside,
< hi = > leftM argin,
>10 => rightMargin,
ENDCASE = > degenerate;

-- =10 but # hi
_. = hi but #10
-- = 10 and = hi

A SELECT expression is executed just as a SELECT statement, except that the selected arm yields a
value, which becomes the value of the SELECT expression as a whole. The inherent type of a SELECT

expression is the one t9 which all the expressions in the arms conform (section 3.5.3).

A SELECT operator has the same precedence as an assignment operator, i.e.. the lowest possible
precedence. SELECT expressions should be enclosed in parentheses when embedded in other
expressions.

Mesa Language Manual 57

4.4. Blocks

A block is a way of packaging a series of statements so that they can be used where only a single
statement is permitted syntactically. In its simplest form a block is a pair of "brackets", BEGIN and
END, with a series of statements (of any form) between them. The general syntax is

Block .. - BEGIN
OpenClause
EnableClause
Decla rationSe ries
StatementSe ries
ExitsClause
END

StatementSeries .. - empty I
Statement I

-- optional; section 4.4.2
-- optional; section 8.2.1
-- optional

-- optional; section 4.4.1

Statement; StatementSeries
DeclarationSeries .. - empty I DeclarationSeries Declaration
A fine point:

A semicolon tenninates every declaration and therefore is not mentioned as a separator here.

In the following IF statement, a block takes the place of the single Statement normally allowed in
a ThenClause:

IF /0 > hi THEN
BEGIN -- Exchange /0 and hi.
temp: INTEGER +- 10;
10 +- hi;
hi +- temp;
END

A semicolon must separate each statement in the StatementSeries but is optional after the last
statement.

The optional DeclarationSeries in a block introduces new identifiers, such as temp above, with
scope smaller than an entire procedure (or module) body. Scope is discussed further in sections
4.4.2 and 5.5.1 and in chapter 7.

Fine point:

During the execution of a Mesa program, frames are allocated at the procedure and module level only (section
5.2). Any storage required by variables declared in an internal Block (one used as a Statement) is allocated
in the frame of the smallest enclosing procedure or module. When such internal blocks are disjoint, the areas
of the frame used for their variables overlay one another.

Ordinarily, when a block is executed, every statement in its StatementSeries is executed, and
Next-Statement is the successor of the entire block. It is possible, however, to jump out of a block,
as described in the next section on GOTOS.

4.4.1. GOTO statements

A more general form of a block allows a series of labeled statements to be written immediately
preceding its END. One can jump to anyone of these statements from within the block only, using a
GOTO statement There are two consequences of this way of constraining the GOTO:

A GOTO may only jump forward in the program, never backward.

A GOTO may only jump out of a block, never into one.

The syntax for the ExitsClause of a block and for the GOTO statement is the following:

58

ExitsClause

ExitSeries

LabelList
Label
GotoStmt

Chapter 4: Ordinary Statements

.. - empty I
EXITS ExitSeries I
EXITS ExitSeries ; -- optional final semicolon

:: = LabelList => Statement I
ExitSeries; LabelList => Statement

:: = Labell LabelList , Label
:: = identifier
:: = GOTO Labell GO TO Label

A simple example:

IF inpuLstatus # open THEN

BEGIN

IF input.fileHandle = defaultlnpUtTHEN GOTO useDefault;
-- processing for non-default file

IF input.fileNumber = ttyNumberTHEN GOTOfileIsDefault;
IF input. length = 0 THEN GOTO newFile;

-- compute number of pages in the file
EXITS

useDefault.fileIsDefault => -- multiple labels are allowed
BEGIN input+- ttylnput; pages+- maxPages END;

newFile = > pages+- 0;
END;

Next-Statement
-- end of the ThenClause and the IF statement

The Labels in this example are useDefault. fileIsDefault, and newFile (it is helpful to view the labels
as the names of conditions or reasons for which the block is being left). If anyone of the GOTOS is
executed, control transfers immediately to the statement labeled with the identifier used in the GOTO.

The normal successor of anyone of the labeled statements is Next-Statement, which is also the
normal successor of the last statement in the main body of the block (i.e., the one just before EXITS).

Since one block can appear within the body of anpther, a GOTO can jump directly out of one (or
more) blocks to the ExitsClause of an enclosing block. For example,

BEGIN outer block

BEGIN

IF i = iM ax THEN GO TO endOfArray;

END;

i +- i+ 1;
EXITS

endOfArray => +- 0;
END;
Next-Statement

inner block

-- jump to end of outer compound

-- end of inner

-- end of outer

If the GOTO statement is executed, control jumps to the exit labeled endOfArray. The chosen
statement (i+-O) is executed and control then goes to Next-Statement. The identifiers used as Labels
are only known inside the block in which they appear, and it is possible to use the same identifier as
a label in a number of blocks. If this is done in nested blocks, a GOTO naming that identifier will
always go to the statement with that label in the smallest enclosing block. Generally, using the same
label in nested blocks is a bad idea.

Mesa Language Manual 59

Since Mesa allows declarations in any block, it is possible to declare a procedure (section 5.5) within
the scope of the La be Is of a block. Jumping out of a procedure into a surrounding block is
disallowed. Such a result may be obtained, however, by use of the SIGNAL machinery (see chapter
8). For example, the following is illegal:

BEGIN

p: PROCEDURE =
BEGIN
. .. GOTO panicExi/; -- illegal GOTO -- •••
END;

p[];
EXITS

panicExit = > ...
END

The desired result is achieved with the following program (see chapter 8 for a description of signals
and catch phrases):

BEGIN
Panic: SIGNAL = CODE;

p: PROCEDURE =
BEGIN
... SIGNAL Panic;
END;

p[I Panic = > GOTO panicExit];
EXITS

panicExit = > ...
END

A statement in an ExitsClause may contain a GOTO, but the label in the GOTO can only refer to
labels in surrounding blocks, not to labels in the same ExitsClause as the GOTO. For example, the
following is legal:

BEGIN -- outer

BEGIN -- inner

EXITS

endOjFileReached = > BEGIN ••• GOTO outOjData END;

END; -- end ofinner

EXITS

outOjData => ... ;
END

4.4.2. OPEN clauses

-- end of outer

An OPEN clause allows more convenient reference to the fields of a record. In the simplest form, it
allows fieldname as an abbreviation for recordname.fieldname. If the name of the record is
complicated (e.g., candidateList{tableOjObjects[i]]), this can make programs much more readable.
The programmer should be cautioned, however, that this is merely a syntactic shorthand; the code
generated is actually recordname.fieldname. Thus in the example above, if i or tableOjObjects is
changing within the scope of the OPEN, each reference to a field can potentially access a different
element of candidateList. The syntax for OPEN follows:

60

OpenClause

Openlist
Open Item

Chapter 4: Ordinary Statements

empty I OPEN Openlist ; -- note the tenninal semicolon
Open Item I Open list • Open Item

AlternateName : Expression I
Expression

AlternateName :: = identifier

The scope of an OPEN clause (the portion of the program over which the synonym can be used) is
the body of a block or loop. including the optional exits clause (section 4.5). The following diagram
summarizes the scope of the various parts of a Block. The scope of each phrase extends over
others with greater indentation.

BEGIN

OpenClause
EnableClause

Declaration5eries
Statement Series

ExitsClause
END

An Open Item using an AlternateName allows a simple identifier to replace an expression as the
designator of some record object For example, the two blocks below are equivalent:

PersonChain: TYPE = RECORD [p:POINTER TO Person, next: POINTER TO PersonChain]
candidateList: POINTER TO PersonChain; -- Person is defined in section 3.5

BEGIN OPEN c: candidateList.p;
IF c.party = Republican AND c.age < 30 THEN youngRepublicans .. youngRepublicans+ 1;

-iF c.sex = Female THEN women" women + 1; .

END

BEGIN
IF candidateList.p:party = Republican AND candidateList.p.age < 30 THEN

youngRepublicans .. youngRepublicans+ 1;
IFcandidateList.p.sex = Female THEN women" women+1;

END

The OPEN statement does not provide a general renaming capability; it merely allows more
convenient access to the fields of a record. Each Expression in an OpenList must either have a
record type or be a pointer to a record. When the AlternateName fonn is used, the alternate
identifier always designates the opened record, even if the Expression is a pointer to that record.

The fonn of OpenClause without an AlternateName allows access to the fields of a record
object as though they were simple variables. For example, using this feature in the above example
allows omission of the "c. "s:

BEGIN OPEN candidateList.p;
IF party = Republican AND age < 30 THEN youngRepublicans .. youngRepublicans+ 1; .
IF sex = Female THEN women" women+1;

END

Note, if the AlternateName form is used. qualification of record fields using the alternate name is
mandatory.

Mesa Language Manual 61

Besides record objects, one can open a module (chapter 7) to simplify access to the identifiers
available from the module.

If an Open Clause contains multiple Open Items, the opened expressions might refer to records
having some selector names the same. In the example below, x is a selector name for two records,
recVar and recVar.subRecord. An unqualified occurrence of x is taken to be the x component of the
rightmost opened record (recVar.subRecord). To refer to an earlier opened record, explicit
qualification is necessary (the AlternateName form should be used).

i,j: INTEGER;
ReeordType: TYPE = RECORD

[
a, b, x: INTEGER,
subReeord: RECORD [x, y: INTEGER]
];

ree Var: ReeordType;

BEGIN OPEN rl: reeVar, recVar.subRecord;
i'- rl.a + rl.b * rl.x; j'- xji;
END;

The above block is equivalent to:

.BEGIN
i'- reeVar.a + recVar.b * recVar.x; j'- recVar.subRecord.xrecVar.subRecord.y;
END;

Fine points:

The range of text affected by an Open Item includes any further items in the OpenList. The OpenClause
itself may use implied qUalification or alternate names (from earlier Openltems).

Opened expressions are evaluated at eoch use, whether used implicitly or explicitly under an alternate name.
This is essential for dealing with relocating allocation schemes. To avoid confusion, however, it is recommended
that ordinary pointers be updated before entering the statement sequence headed by an OpenClause. In that
way, names in the statement sequence will remain consistent, i.e.. will apply to the same objects throughout

4.5. Loop statements

In Mesa, a loop is a statement containing a series of statements that are to be executed repeatedly.
All the ways of controlling how many times a loop should be repeated include the ability to repeat it
zero times: i.e., to bypass it entirely. Example 1 in section 2.1 contains the following loop statement:

UNTIL n = 0
DO
r .- m MOD n; -- r gets remainder of min
m'- n; n'- r;
ENDLOOP

"UNTIL n=O" is the loop control for this loop. A variety of loop controls are available in Mesa: they
include control by a Boolean expression, as above, and control by iteration over a subrange, as in the
following example:

FOR i IN [O .. N) DO ali] .- ali] +. b[i] ENDLOOP

This will execute the assignment N times, with i taking the values 0, 1, ... , M on successive
iterations. If N = 0, the assignment is not executed at all.

62 Chapter 4: Ordinary Statements

The fonnal syntax of loop statements is

LoopStmt :: = LoopControl
DO
OpenClause
EnableClause
StatementSe ries
LoopExitsClause
ENDLOOP

-- optional; may be empty

-- optional (section 4.4.2)
-- optional (section 8.2.1)

-- optional; may be empty

The portion between DO and ENDLOOP is the body of a loop. Subsequent sections discuss the forms
of LoopControl, the LoopExitsClause and GOTOS in loops.

The scopes of identifiers introduced in the various components of a loop are summarized by the
following diagram (cf. Block, section 4.4.2):

LoopControl
DO
OpenClause

EnableClause
StatementSe ries

LoopExitsClause
END LOOP

As in the case of a block, any exit labels are visible within the EnableClause, and any catch
phrase in the EnableClause is not enabled within the LoopExitsClause.

4.5.1. Loop control

The syntax for LoopControl is

LoopControl :: = IterativeControl ConditionTest .. either may be empty

ConditionTest :: = empty I WHILE Expression I UNTIL Expression

If both the IterativeControl and the ConditionTest are missing from a loop, it will repeat
indefinitely (unless terminated by an embedded GOTO or EXIT, section 4.5.2).

If a LoopControl includes a ConditionTest, the Boolean expression in the test is (re)evaluated
before each execution of the loop body, including the first. If the ConditionTest succeeds, the
body of the loop is executed; if it fails, the loop is finished (tenninates conditionally) and control
continues at Next-Statement (or at a FINISHED clause, see section 4.5.2). A WHILE test succeeds if the
value of the expression is TRUE. In the following example, i has the values 1, 2, 3, ... , 9 in successive
executions of the body of the loop, and the value 10 when Next-Statement is reached (assuming that
there are no other assignments to i):

i +- 1; -- this statement is not part of the loop
WHILE i< 10

DO ••• i +- HI;
Next·Statement

••• ENDLOOP;

An UNTIL test succeeds if the value of the expression is FALSE: i.e., it is the opposite of WHILE. The
following loop is equivalent to the one above:

i +- 1; -- this statement is not part of the loop
UNTIL i >= 10

DO ••• i +- i + 1; ... ENDLOOP;

Next-Statement

Mesa Language Manual 63

An IterativeControl provides a way of executing a loop (no more than) a precomputed number of
times. It may be followed by a ConditionTest. It optionally updates a specified
ControlVariable prior to each iteration so that, e.g., statements in the body have access to (a
simple function of) the number of iterations. A loop that finishes by satisfying the implicit test
associated with an Iteration or a Repetition is said to terminate normally.

lterativeControl :: = empty I Repetition I Iteration I Assignation

Repetition

Iteration

LoopRange

Direction

Assignation

ControlVariable

InitialExpr

NextExpr

:: = THROUGH LoopRange

:: = FOR ControlVariable Direction IN LoopRange

:: = SubrangeTC I Typeldentifier I
BOOLEAN I CHARACTER

•• - empty I DECREASING

FORControlVariable ~ InitialExpr, NextExpr

identifier

:: = Expression

:: = Expression

In the Repetition form of IterativeControl, a LoopRange specifies how many times the loop
body is_ .. to be executed. For example,

THROUGH [1..100] DO ... ENDLooP

executes the body 100 times. A loop range can have any element type (section 3.1) except INTEGER
or CARDINAl. The bounds of a sub range can be arbitrary expressions and do not have to be
compile-time constants (as they do in a SubrangeTC used to define a type).

A Repetition and a ConditionTest may be combined in a single loop control. For example,

THROUGH [low .. high] WHILE linelsConnectedoo ... ENDLooP

Normal termination occurs after hightow+ 1 iterations; conditional termination can occur sooner if
linelsConnected is FALSE prior to some iteration. Note that if low> high, the interval [low .. high] is
empty and the loop body is not executed.

Iteration and Assignation, the two forms of IterativeControl that include a
ControlVariable, begin with the keyword FOR. The control variable must be a variable declared
separately in the program. Its type becomes the target type for the various expressions in the
remainder of the lterativeControl.

An Iteration steps through a subrange much as a Repetition, which is described above. In
addition, it may specify a Direction: whether to begin at the lower bound of the range and step
up (empty) or at the upper bound and step down (DECREASING). In any case, the size of the step is
always one; for (a sub range of) an enumerated type, this really means stepping from an element to
its successor (if the direction is increasing) or to its predecessor (if the direction is DECREASING). The
control variable is assigned the current control value each time around the loop.

When a loop terminates normally, the final value of the control variable is not defined. The only
way to ensure that the control variable final value is well defined is to terminate the loop
conditionally or forcibly (e.g., using EXIT or GOTO, section 4.5.2).

64 Chapter 4: Ordinary Statements

The following examples shift the components of an array vec left or right one position, leaving one
element unchanged:

FOR i IN [l..LENGTH [vec]}
00
vee[z1] ... vec[i]; -- "Left-shift" vee's clements.
ENDLOOP;

FOR ; DECREASING IN [l..lENGTH [vec])
DO
vec[;] ... vec[11]; -- "Right-shift" vec's elements.
ENDLOOP;

In the second case, i is initially set to the value LENGTH [vec]! and decremented by one for each
subsequent iteration. During the last execution of the loop, ; has the value 1.

Bounds expressions in a LoopRange are evaluated exactly once, before the first execution of the
loop body. Subsequent alteration of variables used in those expressions does not affect the number
of iterations. When an Iteration is combined with a ConditionTest in a single loop control, the
control variable is updated and tested before the ConditionTest is evaluated.

I
In an Assignation, the value of the InitialExpr is assigned to the control variable prior to the
first iteration. Before each subsequent iteration, the NextExpr is (re)evaluated and assigned to that
variable. There is no implicit test associated with an Assignation as there is for an Iteration;
thus, the user must either use a GOTO (section 4.S.2) to terminate the loop or include a
ConditionTest in the LoopControl with the A~signation. As with an Iteration, the control
variable is updated for each iteration before any ConditionTest is evaluated. This form is useful
for scanning a list structure, as in the followiQ.g example:

NodeL;nk: TYPE = POINTER TO Node;
node, headOjList: NodeLink;
Node: TYPE = RECORD

[
list Value: SomeType.
next: NodeLink -- either NIL (end oflist) or pointer to next element
];

FOR node'" headOjList,' node. next UNTIL node= NIL

00 • •• ENDLOOP;

A fine point:

'{he control variable can be altered within a loop, but this is not recommended. An iterative loop control
updates the variable according to its current value. If the statement sequence assigns a new value to the control
variable, the expected series of values may be disrupted (by omission or duplication).

4.5.2. GOTOs. LOOPs, EXlT.~ and loops

A loop may be forcibly terminated by a GOTO (or an EXIT, see below). The LoopExitsClause
serves the same purpose as the ExitsClause in a Block; there are just three differences:

(1) The LoopExitsClause is bracketed by REPEAT and END LOOP instead of EXITS and END;

(2) The LoopExitsClause may contain a final statement labeled with the keyword FINISHED;

this statement is executed if the loop terminates normally or conditional1y, but not if it is
forcibly terminated.

(3) There' is a special case of the more general GOTO, called EXIT, which simply terminates a
loop forcibly without giving control to any statement in the LoopExitsClause.

Mesa Language Manual 65

There is another kind of GOTO statement, LOOP, which does not terminate the loop but skips the
remainder of the loop body in the current iteration.

Syntax equations:

LoopExitsClau s~

LoopExits

FinishedExit

LoopCloseStmt

ExitStmt

.. - empty I REPEAT LoopExits

.. - ExitSeries I
ExitSeries;
FinishedExit I
ExitSeries; FinishedExit

:: = FINISHED => Statement
FINISHED => Statement;

:: = LOOP

:: = EXIT

The LOOP statement is used when there is nothing more to do in the iteration, and the programmer
wishes to go on to the next repetition, if any. For example,

stuff. ARRAY [0 .. 100) OF PotentiallyInterestingData;
Interesting: PROCEDURE [PotentiallyInterestingData] RETURNS [BOOLEAN];
i: CARDINAL;

FOR i IN [0 .. 100) DO
-- some processing for each value of i

IF - Interesting[stuffIi]] THEN LOOP;
-- process stuffIi}

ENDLooP;

The example used in the previous section to illustrate ConditionTests can be rewritten using a
GOTO and a LoopExitsClause as follows:

i+- 1;
00
IF i > = 10 THEN GOTO quit;
... i+- HI; ...
REPEAT

quit => NULL;
ENDLooP;

Next-Statement

-- first statement in the body

-- do nothing but exit the loop

Frequently, forcible loop termination requires no special processing in the LoopExitsClause. The
EXIT statement simplifies this case by not requiring a labeled statement in that clause; in fact, no
LoopExitsClause need be present. The above example can be further rewritten to use EXIT, as
follows:

i +-1;
00
IF i > = 10 THEN EXIT;
... i+-H1; •..
ENDLooP;

Next-Statement

-- first statement in the body

• I

66 Chapter 4: Ordinary Statements

An EXIT is less general than a GOTO. For instance, if one has a loop nested within another and
wants to exit from both, EXIT cannot be used because it terminates only the inner loop. A GOTO can
jump to the ExitsClause of any enclosing loop or block. The ExitsClause of either a block or a
loop is considered to be outside of the block or loop. Thus, an EXIT can appear in any
ExitsClause (provided there is an outer loop), and it causes forcible termination of the smallest
surrounding loop.

The following example shows a typical loop that is terminated only by execution of an EXIT

statement.

Bufl ndexType: TYPE = [1..max);
buf ARRAY BuflndexTypeoF INTEGER;
i, x: Bufl ndexType;

FOR i'" x, (IF i = max THEN 1 ELSE i+ 1)
DO

IF buj[i] = 0 THEN EXIT;
buj[i] ... 0;
ENDLOOP;

-- Starting at point x,

-- do something and then
-- quit on a "clear" entry, or
-- clear until one is found.

The NextExpr, "IF i = max THEN 1 ELSE HI", makes buf behave as a ring buffer.

Sometimes one must detect normal (as opposed to forcible) termination of a loop, perhaps to take
some "finishing" action. A final labeled statement with the label FINISHED (which may not appear as
the identifier in a GOTO) provides this facility. For example, I

I
FOR i IN [O .. nEntries) DO

IF ali] = X THEN GO TOjound;
REPEAT

found =) old'" TRUE;
FINISHED =) BEGIN a[i'" nEntries] 4- x; nEntries 4- nEntries + 1; old'" FALSE END;

ENDLOOP;

The FINISHED exit is taken if and only if the loop terminates normally or conditionally (Le., when the
loop range is exhausted in the case above). Upon entry to a FINISHED exit, the value of the
ControlVariable is undefined. Note that if an EXIT statement is executed, the FINISHED statement
is not executed.

67

CHAPTER 5.

PROCEDURES

Procedures provide one of the most important abstraction mechanisms available in Mesa. The
definition of a procedure assigns a name to a function or action. The computation performed by a
procedure is specified by a series of statements and can be expressed in terms of parameters of the
procedure. In addition, a procedure can produce one or more values, called its results. To invoke
or call a procedure, the programmer simply names it and supplies arguments corresponding to the
parameters. He need not be concerned with the internal workings of the procedure and can use a
meaningful name to denote the function or action.

The' GCD computation in section 2.1 is of limited use as it stands because it depends upon (and
changes) variables m. n and gcd declared somewhere in its environment It might usefully be
packaged as a procedure with parameters m and n. Such a procedure is declared as follows:

Gcd: PROCEDURE [m, n: INTEGER] RETURNS [CARDINAL] =
BEGIN
r: INTEGER;
UNTIL n=O

DO
r ... m MOD n; m'" n; n'" r;
ENDLOOP;

RETURN [ABs[mll
END;

The parameters of a procedure constitute the fields of a record. called the parameter record of the
procedure. When calling a procedure, the arguments are evaluated and assembled into an argument
record using a constructor (section 3.3.4.). "Applying" a procedure value to that argument record
invokes the procedure. Consider the procedure call Gcd[x+ 1. y). This evaluates x+ 1 and y,
constructs an argument record from these values, and then calls procedure Gcd, passing it the
argument record.

Within the procedure, the argument record is assigned to the parameter record, and fields of the
parameter record are accessed as simple variables (Le., that record is OPENed). Thus the effect of the
call above is to assign the value of x+ 1 to m and the value of y to n before the statements within
Gcd are executed.

A procedure may return values to the point of its call. These results constitute a result record.
There may be any number of results, and their types may differ. Within a procedure, a RETURN
statement assembles the results into a record and then returns control to the caller. The procedure
Gcd returns a result record with one component, of type CARDINAL. Thus the form Gcd[x+ I, y] is
an expression with a record type; because of the automatic conversion from a single-component
record to the component (section 3.5.1), it can also be used in any context accepting a value of type
CARDINAL.

, I

68 Chapter 5: Procedures

The following assignment has an effect similar to that of the entire example in section 2.1:

gcd +- Gcd[m, n]

Note that arguments are always passed by value in Mesa. The arguments m and n (for which
declarations must exist at the point of call in this case) are completely distinct from the parameters m
and n, and execution of Gcd does not change the values of the former.

A procedure declaration with the form illustrated above is said to define an actual procedure. It
introduces an identifier, supplies some procedure type for that identifier, and defines the computation
to be performed by specifying a block called the procedure body. Such a declaration uses fixed form
Initialization and closely parallels the declaration of an ordinary variable with = initialization, e.g.,

octalRadix: CARDINAL = 8;

Other declaration forms may also be used, and this allows one to have procedure variables with
values that can be updated to designate different actual procedures. In Mesa. procedures are foll
fledged data objects.

A procedure type is defined by specifying its parameter and result records. For example, the type of
Gcd is

PROCEDURE [m, n: INTEGER] RETURNS [CARDINAL]

Procedure types constructed with different parameter and result records are different; thus the type
system helps to guarantee that, even when procedure variables are used, a proper argument record is
constructed for each procedure call (i.e., that the number and types of the arguments are correct)
and that the result record is used correctly in the text surrounding the procedure call.

Since a procedure body is a block, it may contain declarations. These declare local variables for that
procedure, variables that are created when the procedure is called, may be directly accessed only
from within it, and are destroyed when the procedure returns. Within a procedure body, the named
fields of the parameter and result records are also considered local variables; they have the same
lifetimes and can be referenced without qualification. The local variables of Gcd are m, n and r.

Because this local storage is allocated and released dynamically, any Mesa procedure can be invoked
recursively and used in a reentrant fashion. Thus the following alternative declaration of Gcd, which
directly mirrors a recursive definition of the greatest common divisor, is valid:

Gcd: PROCEDURE [m, n: INTEGER) RETURNS [CARDINAL] =
BEGIN
RETURN [IF n = 0 THEN ABs[m] ELSE Gcd[n, m MOO n]]
END;

A fine point:

Although both versions of Oed compute the same function, the recursive one is extravagant in its use of time
and space (especially since an iterative version is so easy to derive). This demonstrates an advantage of
procedural abstraction; the second definition of Gcd could be replaced by the first without effect on any caller
of Gcd Examples in section 5.4 demonstrate more appropriate uses of recursion.

A procedure body may also access variables declared outside of the actual procedure. Such variables
are non local to the procedure; they exist longer than any single invocation of the procedure and
must be defined in the enclosing program text

Mesa also has extensive facilities supporting the separate compilation of packages of procedures and
variables; these packages are called modules (chapter 7). Some of these facilities allow one module
to name and use the procedures in another, but the type-correct usage of argument and result
records is still checked at compile-time.

Mesa Language Manual 69

If a procedure is called from many places, the "packaging" of code provided by the procedure body
makes a program more compact. Procedure calls and returns do, however, introduce some runtime
overhead. If a procedure is called from exactly one place, that overhead is unnecessary; if it is
called from time-critical code or if the body of the procedure is very simple, the overhead can be
unacceptable. Mesa provides inline procedures for such applications. The call of an inline
procedure is replaced by a modified copy of its body. This mechanism eliminates most of the
overhead but retains many of the advantages of procedures, such as introducing structure, improving
readability and isolating detail.

The foregoing discussion is only an introduction to procedures. The rest of this chapter provides
further detail.

5.1. Procedure types

Procedure types are constructed by the syntactic form ProcedureTC, which is defined as follows:
ProcedureTC .. - PROCEDURE ParameterList ReturnsClause
ParameterList :: = empty I FieldList
ReturnsClause .. - empty I RETURNS ResultList
ResultList :: = FieldList

The ParameterList and ResultList are FieldLists and define record types. If either is missing,
the corresponding record type is "empty". A procedure type is fully determined by its parameter
and result record types.

Default specifications are permitted for fields of a ParameterList, but every field in a ResultList
must have an empty DefaultOption, i.e., no default value can be specified for a result

Some fine points:

Notice that constructors of procedure types require specification of the field lists; it is not possible to use a
separately defined record type to specify the complete parameter or result record.

These records. unlike regular records, are not packed; every component is aligned (begins on a word boundary)
to allow efficient passing of arguments and results.

A few typical procedure types are shown below:

PROCEDURE
PROCEDURE [x: INTEGER, flag: BooLEAN1
PROCEDURE RETURNS [i: INTEGER]
PROCEDURE RETURNS [i: INTEGER, b: BOOLEAN]
PROCEDURE [x: INTEGER] RETURNS [y: INTEGER]

-- takes no arguments; returns no results
-- takes two arguments
-- returns a single value
-- returns two results
-- takes and returns one value

These are all distinct types; none conforms to any of the others.

Values with procedure types are allowed in Mesa; one may have procedure variables, arrays of
procedures, records with components that have procedure types, and procedures with procedure
parameters or results. The fundamental operations =, # and .. may be applied to procedure values
with conforming types.

Constructors of procedure types appear most commonly in the declarations of actual procedures, but
they may occur wherever a TypeSpecification is valid. Thus a ProcedureTC can appear in
such constructs as:

A variable declaration:

ErrorHandler: PROCEDURE [which: ErrotCode] .. De/aultHandler;

70 Chapter 5: Procedures

A type declaration:

ListProc: TYPE = PROCEDURE [in: List] RETURNS [out: List];
First. Rest, Last: ListProc;

A field list (notice the parameters lessThan and swap):

Sort: PROCEDURE [

first, last: CARDINAL,
lessThan: PROCEDURE [CARDINAL, CARDINAL] RETURNS [BOOLEAN].
swap: PROCEDURE [CARDINAL, CARDINAL]
];

An array declaration:

tOps: ARRAY OpNamesOF PROCEDURE [T, 11 RETURNS [11;

5.1.1. Procedure values and compatibility *

Equivalence and conformance of procedure types are defined in terms of relations between fields of
their ParameterLists and ResultLists. If the number of parameters or results differs, one
procedure type neither conforms to, nor is equivalent to, another. Otherwise, corresponding fields,
matched according to position, are considered. Two procedure types are equivalent if, for each pair
of fields, the names are identical (or both are unnamed), the types are equivalent, and both
Def'aultOptions are empty. One field is compatible with another if the names are identical or if
either is unnamed, and if the types are equivalent A procedure type conforms to another if all
corresponding fields are compatible. Default specifications do not affect conformance.

All the assignments in the following example are valid because the types of the procedures conform:

Handle: TYPE = POINTER TO Person;
Signed Number. TYPE = INTEGER;

Int: TYPE = INTEGER;

ProcA: PROCEDURE [h: Handle, v: Signed Number];
ProcB: PROCEDURE [h: Handle, v: In/];
ProcC: PROCEDURE [POINTER TO Person, INTEGER];

ProcA .- ProcB; ProcA.- ProcC;
ProcC .- IF flag THEN ProcA ELSE ProcB;

Fine points:

In the current version of Mesa, the name of the component of a single-element parameter or result record is
ignored when comparing two procedure types for conformance.

If one procedure type conforms to another, it also conforms freely (section 3.5.3). Free conformance of
procedure types is actually defined by the following less restrictive rule: One field is compatible with another if
the names are identical or either is unnamed, and if the type of the first freely conforms to the type of the
second. One procedure type freely conforms to another if, for the ParameterList. each field of the second is
compatible with the corresponding field of the first and, for the ResultList, each field of the first is compatible
with the corresponding field of the second.

In the following example. recall that Handle conforms freely to ReadOnlyHandie but not vice versa:

ReadOnlyHandle: TYPE = POINTER TO READONL Y Person;

ProeX: PROCEDURE [in: ReadOnlyHandle] RETURNS [out: /landle]:
ProeY: PROCEDURE [in: ReadOnlyHandle] RETURNS [out: ReadOnlyHandle];
ProeZ: PROCEDURE [in: Handle] RETURNS [out: ReadOniyllandie];

-- valid assignments
ProeY +- ProeX; ProeZ +- PreeY;

-- invalid assignments
ProeX +- Proe Y; ProcX +- ProcZ; Pree Y +- PreeZ;

Mesa Language Manual 71

In determining the conformance of two procedure types, any default specifications are ignored.
Thus it is possible to assign a procedure value to a procedure variable with differently specified
defaults. In a procedure call, the type of the variable appearing in the call, not the declaration of
the actual procedure, determines the treatment of defaults. Thus the initializing declarations in the
following example are valid. Note that the declaration of Proc2 declares a procedure constant that is
indistinguishable from Procl except for the default value of its argument.

Which: TYPE = {procl, proc2, proc3};

Procl: PROCEDURE [p: Which +- procl] =
BEGIN

END;

Proc2: PROCEDURE [p: Which +- proc2] = Procl;

Proc3: PROCEDURE [p: Which] +- Procl;

-- some calls
Procl[];
Proc2[];
Proc3[proc3];

5.2. Procedure calls

The syntax for calling
CallStmt
Call

-- equivalent to Procl[procl]
-- equivalent to Procl[proc2]
-- note that Proc3[J is not legal

a procedure is
:: = Variable 1 Call
:: = Variable [ComponentList] I ...

where the Variable has some procedure type. Other forms of Call are discussed in chapter 8. These specify
"catch phrases" for dealing with signals (or errors) that are generated because of the call

ParameterLists and ResultLists are FieldLists (section 3.4.1). In a call of a procedure, the
arguments are packaged into a record. Therefore, a procedure call may use all the syntax for record
constructors in passing arguments. Components (arguments) may be specified using either keyword
or positional notation; arguments not explicitly specified may be supplied by default. The following
calls of Gcd are equivalent:

Gcd[x+ I, yJ Gcd[m: x+ I, n: y] Gcd[n: y, m: x+ 1]

If the Retu rnsClause in a Procedu reTC is not empty. then its ResultList specifies the number
and types of the results returned by a procedure of that type. It may be a named or an unnamed
FieldList (section 5.3.1 on the RETURN statement discusses how it is used).

Procedures that return results must be called from within Exp ressions that use the results in some
way. Such junction references are valid Expressions. Procedures that do not return results are
used in call statements. A procedure that does not return results is called by simply writing a
CallStmt as a statement by itself. For example,

group: ARRAY [l..N] OF POINTER TO Person;
Younger: PROCEDURE [first, second: CARDINAL] RETURNS [BOOLEAN] =

, BEGIN RETURN [group[firs/].age < group[second].age]] END;
Exchange: PROCEDURE [first, second: CARDINAL] =

BEGIN
t: POINTER TO Person;
t +- group[firS/J; group[firstJ +- group[second]; group[second] +- t
END;

Sort [first: 1, last: N, less Than: Younger, swap: Exchange];

72 Chapter 5: Procedures

A call statement is ordinarily used to obtain side effects. Most often, these take the form of changes
to variables that are not local to the invoked procedure, but they may also involve input or output
A function may also have side effects as well as return results. On occasion, only the side effects are
important, and the user wishes to ignore the returned results. An easy way to do this is to assign the
result record to an empty extractor:

[] +- flx]; -- call F and discard its result record.

A call that supplies no arguments is written with an empty constructor, "[]". When such a call is
itself a statement, the empty brackets may be omitted.

A fine point:

When the call is used as an expression, the empty brackets are mandatory; otherwise, the value of the
expression is the value of the procedure, not the value of its results. For example, consider the two procedure
variables in the following:

Prod: PROCEDURE RETURNS [INTEGER];
Proc2: PROCEDURE RETURNS [INTEGER1;

-- here the program assigns values to the procedure variables
IF Prod =Proc2 THEN. . . - compare the procedure variables

IF Procl[]=Proc2[] THEN ... - compare their results (integers)

At the time a call occurs, a specific activation is executing, the caller's activation. The effect of a call
is to suspend execution of the caller, to create a new activation of the called procedure (including
new storage for all parameters and local variables), and to begin execution of that activation. An
important consequence of this structuring of procedure control is that all Mesa procedures are
inherently capable of being recursive and reentrant.

5.2.1. Arguments and parameters

Arguments are values supplied at call-time; parameters are variables that are local to a given
activation. The as~iation of arguments with their parameters amounts to assignment, much as if
the following were written:

InRec: REcoRD[argJ: TypeI, arg2: Type2, ...];

InRec +- [argJ: vall, arg2: vaI2, ...]; -- in the caller

paramJ: TypeJ;
param2: Type2;
[paraml, param2, ...] +- InRec; -- in the called procedure

This is not just an idle analogy. The semantics of assignment accurately describe how arguments are
associated with parameters. The following are direct consequences of this:

An argument of a procedure need only conform to its parameter, just as for assignment

All arguments are passed by value in Mesa: i.e., the value of an argument, not its address. is
assigned to the parameter. Of course, this value itself can be an address (e.g., if Typel were
POINTER TO TypeX). .

5.2.2. Termination and results

A procedure terminates by executing a RETURN statement, which constructs a (perhaps empty) result
record. The return operation then terminates execution of the current procedure activation and

Mesa Language Manual 73

restarts the caller from the point at which it was suspended by the call. As part of the return,
storage for the parameters and local variables of the returning procedure is released

Since the value of a procedure is its result record, the components of that record can be assigned to
variables using an extractor; alternatively, any single component (if named) can be referenced by a
field selector. The procedure ReturnExample returns three integer results and may be used as
indicated:

ReturnExample: PROCEDURE [!Jption: [1..411 RETURNS [a, b, e: INTEGER] =
BEGIN ••• -- body defined lfi section 5.1.1 -- ... END;

x, y, z: INTEGER;
case: [1..41;

X" ReturnExample[ease].a;
[b: y, e: z) .. ReturnExample[ease];
x .. (ReturnExample[ease).e+ 1) MOD 10;

-- get a component only
-- assign results by extractor
-- use e component

If a procedure returns an empty result record, the call does not have a value and can only be used
as a statement

If a procedure returns a single-component result record, extraction and selection are valid. In
addition, the component may be (and usually is) accessed directly because of the automatic coercion
from a single-component record to its single component In the following example, the first two
calls of Ged are valid and equivalent; the third illustrates typical use within an expression:

ged" Ged[m, n];
[ged] .. Ged[m, n);
relPrime" Ged[m, n)=1;

Some fine points:

-- (coercion)
-- (explicit extraction)
-- (coercion)

In the declaration of ReturnExampie. [a, b, c: INTEGER] defines a unique type for the result record Because
of the confonnance rule for record types (section 3.3.2), it is impossible to declare a variable with that type. If
a procedure is to return a record value with a particular type T, it must return a single-component record where
that component is a record of type T.

For similar reasons, the result record of G below is not acceptable as the argument record of F.

F: PROCEDURE [x. y. INTEGER);
G: PROCEDURE [i: INTEGER) RETURNS [x. Y. INTEGER];

With these declarations, the call F(6T.iD is not legal; it would be with the following declarations:

1'. TYPE = RECORD [x, y. INTEGER):
F: PROCEDURE [in: 1');
G: PROCEDURE [i: INTEGER) RETURNS [our. 1');

5.3. Procedure bodies

An actual procedure declaration looks like the declaration of a procedure variable followed by a
special kind of = initialization, a ProcedureBody. The TypeSpecification appearing in the
declaration determines the type of the body as well as that of the procedure identifier. It may be
any TypeSpecification equivalent to a ProcedureTC. ProcedureBody is a special form of
initialization defined as follows:

Initialization :: = ... 1 = ProcedureBody I" ProcedureBody
Procedu reBody :: = InlineOption Block .• see section 4.4 for Block

InlineOption •. - empty IINLINE

, I

74 Chapter 5: Procedures

If the attribute INLINE appears, the procedure body is an inline one; any call of the procedure is
replaced by a modified copy of the body (section 5.6).

Only a procedure initialized with = to a ProcedureBody is called an actual procedure; its
meaning cannot change because it cannot be assigned to. If, however, it is initialized to a
Procedu reBody using '+- initialization, its value can be changed by assignment, and it is
considered a procedure variable. Initialization using +- is not permitted for an inline procedure.

In addition to other statement forms, a procedure body can contain RETURN statements (described in
the next section). There is an implicit RETURN at the end of each procedure body if one does not
appear explicitly.

A ProcedureBody defines a scope for declarations; i.e., identifiers declared within it are local to
the procedure and are unknown outside it. There must be no duplicates among the names in a
procedure's ParameterList, ResultList and local variables. Names in the ParameterList can
be used to write a keyword constructor (section 3.3.4) in a call of a procedure. Similarly, names in
the ResultList can be used in keyword extractors (section 3.3.5) and as qualifiers (section 3.3.3) to
access the results returned by a procedure. Within a procedure, any named fields of parameter and
result records act just as local variables; the former are initialized with the values of the actual
parameters. A Pa ramete rList for an actual procedure should be a named field list so that the
procedure body can reference the parameters.

A fine point:

Although the parameters and results act as local variables within the block that is the procedure body, the
scopes are slightly different The scope of the named parameters and results includes any OpenClause,
EnableClause or ExitsClause of that block; the scope of the local variables does not (section 4.4.2).

5.3.1. RETURN statements

There are two basic forms of RETURN statement: RETURN and RETURN followed by a constructor.
When either form is executed, control returns to the point from which the procedure was called. In
addition, the RETURN can supply results in the form of a constructor conforming to the type of the
procedure's ResultList:

ReturnStmt :: = RETURN I RETURN [ComponentList]

There may be any number of RETURN statements in a procedure body. The form of a RETURN

statement depends upon the Retu rnsClause in the definition of the procedure type. There are
three cases to be considered:

no ReturnsClause (empty result record)
an unnamed field list as the ResultLlst
a named field list as the ResultList

If there is no ReturnsClause, the ReturnStmt must be just "RETURN". An explicit RETURN

statement can be omitted at the end of the procedure in this case.

If an unnamed field list is used for the ResultList, each Retu rnStmt must include a positional
constructor .. That constructor must match the field list exactly, with one component for every field
(omission, elision and voiding are not allowed). In this case, there is no implied return at the end of
the procedure.

If the ResultList is a named field list, either form of Retu rnStmt is acceptable. If no explicit
constructor appears, the current values of the named result variables define the value of the result
record. An explicit constructor may use either positional or keyword notation; again, omission,
elision and voiding are disallowed. A RETURN statement is optional at the end of the procedure; if
omitted, an implicit RETURN of the result variables is provided. An example follows:

Mesa Language Manual

ReturnExample: PROCEDURE [option: [l.A]} RETURNS [a, b, c: INTEGER] =
BEGIN
ai- bi-Ci-O;
SELECT option FROM

1 =) RETURN (a: 1, b: 2, c: 3];
2 =) RETURN 1, 2, 3];
3 =)RETURN;
ENDCASE = > bi-4;

ci-9;
END;

5.4. A package of procedures

-- keyword parameter list
-- positiona version of option 1
-- a=b=c=O

-- implicit return: a=O, b=4, c=9

75

This section contains an example of a simple module, BinaryTree, which is designed to create and
manage a data base structured as a binary tree. It is typical of the ways in which related procedures
are packaged together. The example illustrates many of the issues discussed in the previous sections
and also introduces the use of modules and interfaces in Mesa.

The binary tree implemented by the example is a data structure containing nodes linked by pointers.
Any node points to at most two others (its sons), and a node is pointed to by exactly one other node
(its parent). A special root node exists and is referenced by a pointer not in the tree. Every node
also contains a value, which for simplicity in the example is just an INTEGER. When the program
starts, the tree is empty, and any call to Seek Value will return a count of zero.

The nodes in this particular binary tree are records with four components:

value an integer value (with unspecified interpretation),
count the number of duplications of the value in the data base,
left pointer to a "left" son node (or NIL), and
right pointer to a "right" son node (or NIL).

There are rules of. association between the values and the nodes:

The first supplied value is entered into the root node.
A given value may exist in only one node; duplications are counted

If node E points to "left" son L, then all the values in the subtree rooted at L are less than
the value in E. If node E points to "right" son G, then the values in the subtree.rooted at
G are greater than the value in E.

When the module is started, the tree is initialized to be empty. Thereafter, the module itself
executes no code, but its procedures can be called to alter the tree that it manages. For instance,
other modules call PutNewValue to insert new values into the tree.

PutNewValue calls another of BinaryTree's procedures, FindValue, which traverses the tree seeking a
node that already has a given value. FindValue may find such a node, or it may fail by reaching a
higher-valued node with a NIL left son or a lower-valued node with a NIL right son. If FindValue
finds a node with the given value, PutNewValue increments that node's count. Otherwise,
PutNewValue sets up a new node and attaches it to the node returned by FindValue.

This strategy is chosen for simplicity, but it can be a poor way to construct a binary tree. For
instance, if the values are entered in strictly decreasing order, the tree becomes a linear list of left
nodes. To find the lowest-valued node, every node must be examined.

The reader should read tlle explanation following the example in conjunction with the example itself.

76

1:
2:
3:
4:
5:
6:
7:

Chapter 5: Procedures

Example 2. A Package of Procedures

DIRECTORY
Storage: FROM "storage" USING [Allocate],
OrderedTable: FROM "orderedtable" USING [UserProc];

BinaryTree: PROGRAM IMPORTS Storage EXPORTS OrderedTable =
BEGIN

8: -- type definitions and compile-time constants
9: Node: TYPE = POINTER TO BinaryNode;
10: BinaryNode: TYPE = RECORD[value: INTEGER, count: CARDINAL,left, right: Node];
11: nodeSize: CARDINAL = slzE[BinaryNode];
12:
13: -- a global variable
14: root: Node;
15:
+6: -- public (exported) procedures:
17: Seek Value: PUBLIC PROCEDURE [val: INTEGER] RETURNS [count: CARDINAL] =
18: BEGIN
19: nod~ Node,
20: found: BOOLEAN;
21: [found node] +- FindValue[va/]; -- see if it is in the tree
22: RETURN [IF found THEN node.count ELSE 0]
23:· END;
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

PutNewValu~ PUBLIC PROCEDURE [val: INTEGER] =
BEGIN
node, nextNode: Node;
alreadyI nTree: BOOLEAN;
-- Use FindValue to find where to put val:
[alreadyInTree, node] +- FindValue[val];
IF alreadyInTree THEN node. count +- node.count+ 1
ELSE BEGIN -- name "external" procedure Allocate by qualification

nextNode +- Storage.AlIocate[nodeSize];
nextNodet +- BinaryNode[val, l, NIL, NIL1; -- initialize the new node
IF root = NIL THEN root +- nextNode
ELSE IF vaKnode.valueTHEN node.1efi +- nextNodeELSE node.right +- nextNode,
END; •

END;

EnumerateValues: PUBLlCPROCEDURE[userProc: OrderedTable.UserProc] =
BEGIN
-- a local procedure (sec. 5.6)
Walk: PROCEDURE [node: Node] RETURNS [keepGoing: BOOLEAN] =

BEGIN -- walk through the tree in order by increasing value using recursion
RETURN [node = NIL .- don't examine empty (sub)trees

OR(
Walk[node.left)

»)

AND userProc[node. value, node.count]
AND Walk[node.right]

.- enumerate the lesser-valued nodes first
-- enumerate this node
-- then enumerate the greater-valued nodes

END; -- of Walk
Walk[root); -- just start enumerating at the root
END;

Mesa Language Manual 77

54: ~~ a procedure that is private to this module
55: FindValue: PROCEDURE [val: INTEGER] RETURNS [inTree: BOOLEAN, node: Node] =
56: BEGIN

57: nextNode: Node ~ root; -- always start at the root
58: IF root = NIL THEN RETURN [FALSE. NIL];
59: UNTIL nextNode=NIL
60: DO
61: node ~ nextNode:
62: nextNode +- SELECT val FROM
63: < node. value = > node.left.
64: > node. value => node.right,
65: ENDCASE => NIL;
66: ENDLOOP;
67: RETURN [val= node. value, node]
68: END;
69:
70: ~- mainline statements
71: root ~ NIL; -- make tree initially empty
72: END.

5.4.1. The example

Each line of the source code in Example 2 is numbered for convenient reference; other than that,
the code could be compiled as it stands.

The body of a PROGRAM module resembles a procedure body: BEGIN. followed by declarations, then
some statements, and finally END. The declarations and statements are both optional, but it would
be unusual to omit the declarations.

In this example, the module BinaryTree declares five actual procedures: SeekValue (lines 17-23).
PutNewValue (lines 25-38). EnumerateValues (lines 40~53), Walk (lines 43-51) and FindValue (lines
55-68). It also declares two types (Node and BinaryNode), a constant (nodeSize), and a single global
variable (root). The scope of these declarations is the entire body of the module (lines 6~72). For
example, PutNewValue, EnumerateValues and FindValue all reference the global variable root.

When a module is created and started (chapter 7), the global variables are created and any
statements in its body are executed. BinaryTree has just one such statement (line 71), which creates
the initial empty tree by assigning NIL to root. Storage for activations of modules is not released
when control reaches the end of the main body. Global variables such as root continue to exist and
may be used to retain data shared by the actual procedures in the module.

The procedure EnumerateValues has two major distinguishing features: it takes a procedure value as
a parameter, and it contains the declaration of a nested procedure (Walk). For each node in the
tree, EnumerateValues calls the procedure value userProc that it received as an argument, passing it
the value in that node and its replication count If userProc returns TRUE, the enumeration of the
values continues; if it returns FALSE, EnumerateValues terminates and returns to its caller. The
values are generated in order from least to greatest

The nested procedure Walk is recursive and traverses the tree by first traversing the left subtree,
then visiting the root, and finally traversing the right subtree. This postorder traversal delivers the
values in increasing order (the reader should convince himself that it does). The expression in lines
47~50 depends upon the definitions of AND and OR (section 2.5.3) to terminate the traversal as soon
as userProc returns FALSE. The first procedure call occurs only if node is not NULL; the second only
if the first is called and returns TRUE; the third only if the first and second are called and both
return TRUE. Section 5.6 treats local procedures in more detail.

78 Chapter 5: Procedures

5.4.2. Invoking procedures in other modules

The DIRECTORY section at the beginning of a module associates identifiers with file names. The
identifier Storage, for example, must be the name of a (DEFINITIONS) module that is stored on the
file named "storage". Such modules allow the independent development of interface definitions and
the sharing of such definitions. Storage and OrderedTable are said to be included by BinaryTree.
The optional USING clause provides compiler-checked documentation of exactly which identifiers are
used in a module but defined in the associated interface.

The IMPORTS list (section 7.4.1) on line 5 allows BinaryTree to access a procedure (Allocate) defined
in the interface Storage, which has the following (skeletal) form:

Storage: DEFINITIONS =
BEGIN

Allocate: PROCEDURE (size: CARDINAL] RETURNS [POINTER TO UNSPECIFIED];

END.

The example uses explicit qualification (dot notation) to name the Allocate procedure (line 33).

The EXPORTS list (section 7.4.3) names the single interface Orderefffable, which is defined as follows:

Orderefffable: DEFINITIONS =
BEGIN

-- types
UserProc: TYPE = PROCEDURE [val: INTEGER, count: CARDINAL] RETURNS [continue: BOOLEAN];

-- the interface
Seek Value: PROCEDURE [val: INTEGER] RETURNS [count: CARDINAL];

PutNewValue: PROCEDURE [val: INTEGER];

EnumerateValues: PROCEDURE (userProc: UserProc];
END.

Other modules access the PUBLIC procedures in BinaryTree (Seek Value, PutNewValue and
EnumerateValues) by importing this interface Gust as BinaryTree imports Storage); they have no
other access to BinaryTree. For example, FindValue is private to BinaryTree, so it is only called
from within the module (lines 21 and 30). The definition of the type UserProc is included in the
interface so that it is publicly available for defining procedures to be passed to Enumerate Values.
Note that BinaryTree also obtains the definition of this type from the interface (line 40).

5.5. Nested procedures

Actual procedures may be declared within procedure bodies. A nesied procedure is one declared
within (and local to) some enclosing procedure. Nesting of procedure declarations restricts the scope
of the names of the inner procedures. In addition,the enclosing procedure establishes an
environment for the inner; this is especially useful when the inner procedure is passed as a
parameter.

The value of a nested procedure (and any activation of that value) is "tied" to the local variables of
the enclosing procedure and, indirectly, to the local variables of the procedure or module in which
the enclosing one is declared, etc. An activation of the nested procedure references those variables
available at its point of declaration. A different activation of the enclosing procedure declares a
nested procedure with a different value, one with its nonlocal variables tied to that other instance of
the enclosing procedure.

Mesa Language Manual 79

The following example uses the interface OrderedTable defined in section 5.4 and illustrates a typical
application of a nested procedure.

AverageValue: PROCEDURE RETURNS [INTEGER] =
BEGIN
sum, n: INTEGER;

AddValue: OrderedTable. UserProc = -- a nested procedure
BEGIN
n ... n + count; sum'" sum + counl*va/;
RETURN [continue: TRUE]
END;

sum ... n'" 0;
OrderedTable. Enumerate Values[AddValue]
RETURN [IF n= 0 THEN 0 ELSE (IF sum(O THEN sum 1nl2) ELSE sum + (nl2»/n]
END;

The procedure AverageValue computes the average value of the value fields in the binary tree. It
declares and initializes a pair of local variables (n and sum) that are updated by the nested procedure
AddValue but must have a greater lifetime than any individual activation of AddValue. Note that a
similar effect could be achieved by making n and sum global variables in this case; the suggested
solution restricts their scope (and thus the opportunity for accidental misuse).

Execution of AverageValue involves a second nested procedure, the procedure Walk within
Enumerate Values. The latter'S parameter userProc serves a purpose similar to that of sum or n in
Average Value. Since there is nothing to prevent a recursive call of EnumerateValues from some
actual procedure corresponding to userProc. making userProc a global variable in the module
BinaryTree could be disastrous.

A fine point:

Because a nested procedure is tied to an activation of the enclosing procedure (even when it references no
nonlocal variables). the value of a nested procedure should not be assigned to a variable with a lifetime greater
than that of the enclosing procedure instance. .

In a sense, all procedures are '10ca1" procedures. They are either local to some enclosing procedure
or local to some module (recall that static variables are local to the module declaring them). This
nesting can continue to an arbitrary number of levels. (The level is important only to the extent
that it influences name scopes, a topic covered in the next section.)

5.5.1. Scopes defined by procedures

Each procedure body defines a new scope for names declared in that procedure. Such names
represent variables that are local to the body. The scope for a local variable is such that:

(1) the local variable is unknown outside of that procedure body, and
(2) a non-local variable is unknown inside the procedure if its name matches some local

variable's name.

Within a procedure body. a block (section 4.4) can be used to further restrict the scope of a local
variable. In the following example. scopes for the procedures are indicated by comments:

80

SomeM odule: PROGRAM =
BEGIN
var: INTEGER;

Chapter 5: Procedures

. . . -- the var of INTEGER type is used here
OuterProc: PROCEDURE =

BEGIN
var: BOOLEAN;

LocalProc: PROCEDURE =
BEGIN
var: CHARACTER;

END;

END;

-- the varofBOOLEAN type is used here

-- the varofCHARACTER type is used here

-- the varofBOOLEAN type is used here

-- the var of INTEGER type is used here
END.

5.6. Inline. procedures *
An actual procedure is said to be inline if the attribute INLINE appears before the body in the
declaration of that procedure. Any call of the procedure is replaced by an intine expansion, which is
a modified copy of the procedure's body. The code of the procedure and any storage required for
local variables are merged with the code and storage of the calling procedure or module. Thus
inline procedures can be used to eliminate the overhead of a procedure call and return (usually at
the cost of a longer object program).

The rules for creating the expansion are defined so that the presence or absence of the INLINE
attribute has no effect upon the meaning of a program. Execution of the expansion must always
produce a result with the same logical behavior as the result of applying the following operations:

(1) For each argument, create a uniquely named variable local to the caller, and initialize that
variable with the value of the argument

(2) If there is a result record with named fields, enclose the body of the inline procedure in a
block containing a declaration of each such field.

(3) In the resulting block, replace each reference to a field of the parameter list by the identifier
introduced in the first step for the corresponding argument

Any global variables of the procedure body refer to the corresponding variables accessible at its
point of declaration, not the point of call.

Some fine points:

A catch phrase can be attached to the call of an inline procedure (section 8.2.1). The arguments are evaluated
outside the scope of the catch. phrase.

The Mesa compiler attempts to discover many of the common cases in which "call by name" is equivalent to
the "call by value" substitution described above. When it discovers such a case, the argument is substituted
directly for the corresponding parameter.

The attribute INLINE is never mandatory. Deleting INLINE is always valid, but adding it is not. No
intine procedure can be recursive, either directly or indirectly through a chain of inline procedure
calls. Consider a procedure Proc declared as follows:

Proc: PROCEDURE [v: INTEGER] RETURNS [INTEGER] = INLINE
BEGIN
RETURN [v*v + 3*v + 1]
END;

Mesa Language Manual 81

Because of its INLINE attribute. Proc cannot be used in any of the following situations:

When Proc itself is the operand of one of the fundamental operations of assignment
(procVar ... Proc. GeneratorProc[Proc]. etc.) or comparison (Proc = AnotherProc).

When Proc itself is used as an alternative in a conditional expression. e.g .•
(IF predicate THEN Proc ELSE AnotherProc)[x].

When Proc is the operand of FORK (section 10.1).

When Proc is to be exported to an interface (section 7.4.3).

Some fine points:

Since arguments are evaluated before procedures are called, usage such as Proc[Proc[xD does not make Proc
recursive.

Additional restrictions apply when ~ inline procedure is declared in a DEFINITIONS module (see section 7.3.3).

82

CHAPTER 6.

STRINGS, ARRAY DESCRIPTORS,
RELATIVE POINTERS, AND VARIANT RECORDS

This chapter introduces two new data types, strings and array descriptors, discusses relative pointers,
and also extends the definition of record types to include variant records.

In Mesa, the type STRING is really "POINTER TO StringBody"; a StringBody contains a length field
indicating how long the string currently is, a maxlength field giving the length of that array, and a
packed array of characters.

An array descriptor describes the location and length of an array. For ordinary arrays, these are
fixed at compile-time. Values of array descriptor type, however, have location and length items that
can vary. These array descriptors may represent arrays that are dynamic, but they may also
represent ordinary arrays. For efficiency. users often pass array descriptors to procedures instead of
passing the entire arrays themselves.

Relative pointers require the addition of a base pointer to obtain an absolute pointer. This allows
data structures with internal references that are independent of memory location.

Variant records contain a set of common fields and a variant portion with a specified set of different
possible interpretations.

6.1. Strings

In Mesa, a string represents a finite, possibly empty, sequence of characters. Associated with a string
are the following:

length the number of characters represented. The length may vary at run-time (except
for constant strings).

maxlength the maximum length. This guarantees that the string is finite. A string's length
may vary from zero up to its maximum length.

text an indexable sequence of characters.

STRING is a predefined type in Mesa. Each program contains the following relevent pre-declarations:

STRING: TYPE = POINTER TO StringBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD [

length: CARDINAL,
maxlength: --read only-- CARDINAL,
text: PACKED ARRAY [0 .. 0) OF CHARACTER];

Mesa Language Manual 83

Suppose s is a STRING variable. Then s.length and s.maxlength refer to the first two components of
the string structure currently pointed to by s. The type StringBody is "built into" the Mesa language
so that the ith character of the text array, s.text[i], may be abbreviated s[i1. The index type of text
in the declaration is used only to specify a starting index of O. It is better to think of a particular
STRING as having an index type [O .. s.maxlength).

The value of s.maxlength is assigned when a string structure is created and is a constant: it may not
appear as a LeftSide in the user's program. However, s.length can be used as a LeftSide. In fact,
the user is responsible for setting and changing the length when appropriate (i.e., s.length is meant to
reflect the "meaningful" length of the character sequence). Suppose, for instance, that s initially
points to an empty string. Then the user might append characters as follows:

s [s. length] 4- anothe1Char, s.length 4- s. length + 1;

Actually, characters are seldom appended in this manner. The recommended practice is to use string
handling procedures provided by the Mesa system. These are documented in the Mesa System
Documentation and in appendix C of this manual.

Since strings in Mesa are actually pointers to string bodies, several strings may refer to the same
body. Therefore, a change to that structure would manifest itself in all such strings. Keep the
following in mind:

When an item has type STRING, think "string-pointer",

A fine point:

While the programmer cannot assign to the maxlengtk field with an assignment statement, it can be set (along
with the length) in a constructor, i.e.

AllocateWords: PROCEDURE [n: CARDINAL] RETURNS [POINTER TO UNSPECIFIED];
s: STRING;
k: CARDINAL;

S .. AllocateWords[StringDe!s.WordsForString[kD;
Sf' .. StringBody[length: 0, maxlengtk: k, text:];

This is the way to initialize a StringBody when the space for it comes from some general storage allocator.
Note that the text field cannot be set with the constructor since the ARRAY is of length zero in the declaration.

6.1.1. String literals and string Expressions

String literals are written by enclosing the desired sequence of characters in quotation marks,
A quotation mark within a string constant is represented by a pair of quotation marks (""). Here
are some examples of string literals:

"The first example contains
some embedded
carriage-returns. "
"A quote mark (') isn't a quotation markC"') ... "

"!"
"" -- an empty string

A string literal is an Expression of type STRING. Its value is a constant pointer to a constant
SlringBody in which:

length = number of characters given, and
maxlength = length

, I

84 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

The fundamental operations are defined for string Expressions. They deal with them as pointer
values; e.g., .. assigns one string pointer to another string pointer, = compares two strings for the
same pointer value, and # compares two strings for different pointer values.

A fine point:

The body of a string literal is ordinarily placed in the global frame of the module in which the literal appears
(it is copied from the code when the module is STARTed). Pointers to that body (the actual STRING values)
can then be used freely with little danger that the body will move or be destroyed. Unfortunately. this scheme
can consume substantial amounts of space in the (permanent and unmovable) global frame area.

If a string literal is followed by 'L (e.g., "abc"L), a copy of the string body is moved from the code to the local
frame of the smallest enclosing procedure whenever an instance of that procedure is created. As a corollary, the
space is freed and the string body disappears when the procedure returns. This allows smaller global frames.
but it is important to insure that pointers to local string literals are not assigned to STRING variables with
lifetimes longer than that of the procedure. Programmers should avoid using local string literals until
performance tuning is necessary (except perhaps in calls of straightforward output procedures).

6.1.2. Declaring strings

String variables are declared like ordinary variables. but there is one additional form of initialization
(for strings only):

Initialization :: = [Expression] I = [Expression]

The Expression must be a compile-time constant Expression of type CARDINAL. At run-time,
Mesa creates a string structure with maxlength equal to this Expression's value, length equal to
zero, and text uninitialized. The declared string variable is then set to point to this string structure.
If an IdUst is declared with this form of initialization. all of the listed vanables initially point to the
same string structure.

Some examples:

cu"entLine: STRING .. [256];
slringBujftr: STRING .. [slringM ax+ someExtra);

This would cause allocation of two string structures in the frame of the program or procedure
containing the declarations. The string cu"entLine would point to one whose maxlength is 256.
The string slringBujJer points to the other string structure. (Note that stringMax and someExtra
must be compile-time constants.) Since the initialization is done with it is legal to assign new
pointer values to these string variables.

The following are examples of fixed form string initialization:

whatWasThat: STRING = "Eh?";
goofed: STRING = whatWasThat;

In this case, Mesa would allocate and fill in a string structure for string constant "Eh?".
whatWasThat and goofed, would be compile-time constants having the same string value: i.e., they
would both point to the same string structure. In fact. any other references to the same string literal
will point to the same string structure. . For example:

huh: STRING = "Eh?";

String variables can be declared with .. initialization or without any initialization:

stdErrorM sg: STRING .. "It seems that we have made a mistake."
jirstReply. reply: STRING" "Yes";
oldBujJer, newBujJer: STRING;

Mesa Language Manual

IF quickDialogTHEN stdErrorMsg .. whatWasThat;

IF reply [0] = '7 THEN
IF firstReply [0] = '7 THEN 11 elpaLot
ELSE H elpaLiUle;

oldBuffer .. newBuffer .. stringBujJerl;

IF stringBujJerl # stringBujJer2 THEN newBuffer .. stringBujJer2;

A fine point:

85

The Mesa system contains procedures you should use when allocating blocks of data. These procedures are
helpful for applications involving an arbitrary number of strings or strings of arbitrary length.· The procedures
are documented in the Mesa System Documentation.

6.1.3. Long strings *

A STRING is just a pointer, so LONG STRING is also a predefined type:

LONG STRING: TYPE = LONG POINTER TO StringBody;

It is perhaps curious to note that declaring a LONG string says nothing about its actual or potential
length.

6.2. Array descriptors

A full description of an array contains several items of information. Consider a typical array
declaration:

schedule: ARRAY [1..999] OF Date;

The following things are known about schedule:

base = @schedule[I],
index type = [1:.999] (a subrange of INTEGER or CARDINAL),
minI ndex = 1,
length = 999.
component type = Date

All of these items except base are compile time constants, and the value of base is the address of a
fixed place in the frame, chosen by the compiler. Mesa provides a mechanism for dynamic arrays.
where the base and length can vary at run-time. The implementation does not allow for a variable
minlndex. Dynamic arrays are implemented by means of A"ay descriptors.

6.2.1. A"ay descriptor types

An a"ay descriptor type

Oesc ripto rTC

ReadOnlyOption

PackingOption

is constructed much like an array type:

:: = DESCRIPTOR FOR ReadOnlyOption ArrayTC I
DESCRIPTOR FOR ReadOnlyOption Packing Option ARRAY OF

TypeSpecification

:: = empty I READONLY

:: = empty I PACKED

86 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

For example,

events: DESCRIPTOR FOR ARRAY [1..999] OF Date;

If READONL Y is specified, the contents of the array cannot be changed via the descriptor. In the
second form (where no Ind,exType is given) the index type is an integer sub range starting at zero.

A value for events is an array descriptor (a record-like object containing items similar to those
described previously for schedule except that the base is not fixed). The next declaration specifies an
array descriptor in which the base and the length are variable:

history: DESCRIPTOR FOR ARRAY OF Date;

Indexing can be used to access components of events and history as if they were actual arrays instead
of array descriptors (see sec. 3.2.1). Since no index type is specified for history, it has an indefinite
index type starting at zero with no specified upper bound.

Two array descriptor types are equivalent if they specify equivalent types for their array elements
and if they have equivalent index-sets (or if both index-sets are unspecified). Note that DESCRIPTOR
FOR ARRAY [0 .. 2] OF T and DESCRIPTOR FOR ARRAY [1..3] OF T are different types, even though the
lengths and element types are the same. Exp ressions of equivalent descriptor types may be
compared for equality (= or #).

The rules for assignment are somewhat more relaxed. If aJ has type DESCRIPTOR FOR ARRAY OF T,
and a2 has type DESCRIPTOR FOR ARRAY [0 .. 10) OF T, then the assignment al ... a2 is legal, but the
assignment a2 ... al is not

In any case, for assignments and comparisons, both operands must be array descriptors, and it is the
descriptors themselves, not the arrays that they describe which are the values operated on. It would
be an error to attempt to assign events to schedule because the first is a descriptor and the second is
an actual array.

There are three function-like operators relevant to array descriptors: DESCRIPTOR, BASE, and LENGTH.

DESCRIPTOR returns an array descriptor result and has three distinct forms which are treated
syntactically as built in functions:

BuiltinCall ::;: DESCRIPTOR [Expression] I
DESCRIPTOR [Expression, Expression] I
DESCRIPTOR [Expression, Expression, TypeSpecification] I
BASE [Expression] I
LENGTH [Expression] I ...

The first form takes an argument of some array type; e.g.,

events ... DESCRIPTOR[schedu[e];

The result is an array descriptor

base: POINTER TO UNSPECIFIED

length: CARDINAL

for schedule. The second form needs two arguments:

-- address of the minlndex component
-- number of components

This form may only be assigned to an array descriptor variable which was declared without an
explicit index type.

In those rare situations where the compiler cannot deduce the component type of the descriptor
from context, a form of the DESCRIPTOR construct is provided which takes three arguments. The
third one is a TypeSpecification, the component type.

Mesa Language Manual 87

The following example provides a fresh array of 64 Dates:

Allocate: PROCEDURE [blkSize: CARDINAL] RETURNS [POINTER TO UNSPECIFIED];

history +- DESCRIPTOR[Allocate[64*slzE[Date)), 64];

The expressions BASE[] and LENGTH[] take one argument (of array descriptor or array type). BASE

yields the base of the described array, and LENGTH yields its length. For example:

events +- DESCRIPToR[schedule]; -- describe the entire array
events +- DESCRIPTOR[BASE[schedule], 5]; -- describe the first 5 elements

There is no special form for constructing DESCRIPTORS for packed arrays. The PACKED attribute is
deduced from context In the two or three argument form of DESCRIPTOR for packed arrays, the
second argument (the LENGTH) is the number of elements.

It is usually more efficient to pass array descriptors as arguments, rather than arrays. Since
arguments are passed by value, an array argument causes a copy of the entire array to be made twice
(once to put it into an argument record, and once to copy it into a local variable in the called
procedure). The next example shows a case in which array descriptors must be used, since passing
by value would not work:

SortInPlace: PROCEDURE[Table]; -- sorts in situ
Table: TYPE = DESCRIPTOR FOR ARRAY OF INTEGER;
IhisArray: ARRAY [O •• this) OF INTEGER;
lhalArray: ARRAY [O •• that) OF INTEGER;
anyTable: Table'" DESCRIPTOR[thisArray);

-SortlnPlact{anyTable]; . -- sorts thisArray

SorllnPlact{DESCRIPTOR[lhatArray)); -- sorts lhatArray

A StringBody (sec. 6.1) contains an array, text, of characters. One must be careful when constructing
a DESCRIPTOR for this array. Recall that the bounds of text are [0 .. 0). This declaration is used since
the actua1length of text varies from STRING to STRING. For this reason, the "one argument" form
should not be used to construct a DESCRIPTOR for texL

textarray: DESCRIPTOR FOR PACKED ARRAY OF CHARACTER;
s: STRING;

lextarray +- DESCRIPTOR[s.text]; -- LENGTH[lextarray] is incorrect
textarray +- DESCRIPTOR[BASE[s.text], s.length]; -- correct

6.2.2. Long descriptors *

The BASE portion of an array descriptor is essentially a pointer.
LONG POINTER, it also allows the type LONG DESCRIPTOR.

TypeConstructor :: = ... 1 LongTC
LongTC :: = LONG TypeSpecification

TypeSpecification :: = ... IDescriptorTC

Just as the language allows the type
The syntax is straightforward:

All the standard operations on array descriptors (indexing, assignments, testing equality, LENGTH,

etc.) extend to long array descriptors. The type of BAsE[desc] is long if the type of desc is long. The
LENGTH of an array descriptor is a CARDINAL, whether the descriptor (i.e. its BASE) is LONG or short

Long array descriptors are created by applying DESCRIPTOR[] to an array that is only accessible

88 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

through a long pointer, or by applying DESCRIPTOR[,] or DESCRIPTOR[,,] to operands the first of
which. is long. Alternatively, when a short array descriptor is assigned to a long one, the pointer
portion is automatically lengthened. Consider the following examples:

d: DESCRIPTOR FOR ARRAY OF T;
dd: LONG DESCRIPTOR FOR ARRAY OF T;
i, n: CARDINAL;
pp: LONG POINTER TO ARRAY [0 .. 10) OF T;

dd .. DESCRIPTOR[Ppt];
dd" DESCRIPTOR[Pp, 5];
dd" d;
pp .. BASE[da];
n .. LENGTH[da];

6.3. Base and relative pointers

-- descriptor for the entire array
-- descriptor for half of the array
-- automatic lengthening
-- BASE oflong is long
-- LENGTH is always a CARDINAL

Mesa provides relative pointers, i.e., pointers that are relocated by adding some base value before
they are dereferenced. Relocation has the further effect of mapping a value with some pointer type
into a value with a possibly different pointer type. Relative pointers are expected to be useful in
such applications as the following:

Conserving Storage. Relative pointers can adequately identify objects stored within a wne
of storage if the base of that zone is known from context If the wne is of known and
relatively small maximum size, fewer bits are needed to encode the relative pointers. Since a
relative pointer and the corresponding base value can have different lengths, relative pointers
can be shorter than absolute pointers to the same objects. Overall storage savings are
possible when all the base values can be contained in a small number of variables shared
among many different object references.

Providing Movable Storage Zones. If all interobject references within a storage zone are
encoded as zone-relative pOinters, the zone itself can be organized to contain only location
independent values. Moving the wne, possibly via external storage, requires only that a set
of base pointers 'be updated.

Designating Record Extensions. Sometimes it is convenient to extend a record by appending
information (especially variable-length information) to it. Pointers stored in, and relative to
the base of, the extended record provide type-safe access to the extensions.

6.3.1. Syntax for base and relative pointers

The syntax for BASE and RELATIVE pointer type constructors is as follows:
PointerTC ::= Ordered BaseOption POINTER Optionallnterval PointerTaii
BaseOption ::= empty 1 BASE

TypeConstructor ::= ... 1 RelativeTC
RelativeTC :: = Typeldentifier RELATIVE TypeSpecification

In a PointerTC, a nonempty Optionallnterval declares a sub range ora pointer type, the values
of which are restricted to the indicated interval (and can potentially be stored in smaller fields).
Normally, such a subrange type should be used only in constructing a relative pointer type as
described below, since its values cannot span all of memory.

Mesa Language Manual 89

The BaseOption BASE indicates that pointer values of that type can be used to relocate relative
pointers. Such values behave as ordinary pointers in all other respects with one exception: subscript
brackets never force implicit dereferencing (see below). The attribute BASE is ignored in
detennining the assignability of pointer types.

A RelativeTC constructs 'a relative pointer or relative array descriptor type. The Typeldentifier
must evaluate to some (possibly long) pointer type which is the type of the base, and the
TypeSpecification must evaluate to a (possibly long) pointer or array descriptor type.

Relocation of a relative pointer is specified by using subscript-like notation in which the type of the
"array" is the base type and that of the "index" is the relative pointer type. Thus if base is a base
pointer and offset is a relative pointer (to 1), the form

base [offiet]

denotes an expression of type T, and the value of that expression is (LooPHOLE[base]+offset}t.

6.3.2. A relative pointer example

Consider the BinaryTree example from section 5.5. In this program, an ordered table is stored as a
binary tree. The tree is stored in the following Mesa data structure:

Node: TYPE = POINTER TO BinaryNode;
BinaryNode: TYPE = RECORD[value: INTEGER, count: CARDINAL, left, right: Node];

Suppose that the BinaryNode's are allocated from a contiguous region of memory. If the
programmer now wishes to put the current state of the ordered table on secondary storage, it is not
sufficient to simply write out the region of memory containing the BinaryNodeis. This is because
the data would make sense only if read back into exactly the same place in memory, a restriction
that is difficult to live with. The difficulty stems from the absolute pointers used in the nodes. 'The
problem can be solved by changing the definition of Node. If the BinaryNode's are allocated from a
region of type TreeZone. let

TZHandle: TYPE = BASE POINTER TO TreeZone;
Node: TYPE = TZHandleRELATIVEPOINTERToBinaryNode;

The procedure FindValue would be written as follows:

NullNode: Node = <some value never allocated>;
tb: TZHandle;
root: Node +- NullNode; --list is initially empty

FindValue: PROCEDURE [val: INTEGER] RETURNS [inTree: BOOLEAN, node: Node) =
BEGIN
nextNode: Node +- rool;
IF root = NullNodeTHEN RETURN [FALSE, NullNode];
UNTIL nextNode= NullNode DO

node +- nextNode;
nextN ode +- SELECT val FROM

< tb [node). value = > tb [node].left,
> tb[node).value => tb[node].right,
ENDCASE => Null Node;

ENDLooP;
RETURN[val= tb [node]. value, node];
END;

90 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

The other procedures of BinaryTree can easily be rewritten to use the new definition of Node. The
compiler would aid in the translation, since any unrelocated dereferencing of a Node would be a
compile-time error.

This new implementation of BinaryTree has the feature that the TreeZone could be moved around in
memory, or written and read on secondary storage, and only the base pointer tb need be updated to
reflect the new position of the TreeZone.

6.3.3. Relative pointer types

An important topic to consider is the interaction of the relative pointer constructs with the type
machinery of Mesa.

A RelativeTC constructs a relative pointer type whenever both the Typeldentifier and the
TypeSpecification evaluate to pointer types. Let a RelativeTC be

Typeldentifier RELATIVE TypeSpeciflcation.

where

Typeldentifier is of type

[LONG] BASE POINTER [SubRangeJJ TO [READONL v] Tb •

TypeSpecification is of type

[LONG] [ORDERED] [BASE] POINTER [SubRanger] TO [READONLV] Tr •

and the brackets indicate optional attributes. Relative pointer values must be relocated before they
are __ dereferenced. If base and offset are base and relative pointers respectively, ojJsett, offset.field,
etc. are compiler-time errors.

If the TypeSpecification says READONLV, a relocated pointer cannot be a LeftSide.

The base type must be designated by an identifier (rather than a TypeSpecification) to
avoid syntactic ambiguities. Note that the fonn

LONG Typeldentifier RELATIVE TypeSpecification

does not have the effect of lengthening the base type and furthennore is always in error,
since LONG cannot be applied to a relative type. The type designated by the
TypeSpecification can be lengthened (to give a relative long pointer) using the fonn

Typeldentifier RELATIVE LONG TypeSpeciflcation .

Short relative pointers are never made long automatically. With respect to other operations
(assignment, testing equality, comparison if ordered, etc.), relative pointers behave like ordinary
pointers. In particular, the amount of storage required to store such a pointer is determined by the
TypeSpecification.

Some fine points:

In some applications, there is no obvious type for the base pointer, i.e., it might not be possible or desirable to
describe a storage zone using a Mesa type declaration. In such cases, a declaration such as

BaseType: TYPE ::;:: BASE POINTER TO RECORD [UNSPECIFIED]

generates a unique type that will not be confused with other base types.

The declaration of a relative pointer does not associate a particular base value with that pointer, only a basing
type. Thus some care is necessary if multiple base values arc in use. Note that the final type of the relocated
pointer is largely independent of the type of the base pointer. Sometimes this observation can be used to help

Mesa Language Manual 91

distinguish different classes of base values without producing relocated pointers with incompatible types.
Consider the following declarations:

baseA: BaseA;
baseB: BaseB;
OJfsetA.' TYPE = BaseA RELATIVE POINTER TO r.
OffsetB: TYPE = BaseB RELATIVE POINTER TO 7!
oJfsetA: OJfsetA;
oJfsetB: OJfsetB •

If BaseA and BaseB are distinct types (see the preceding point), so are OJfsetA and OJfsetB. Expressions such
as baseA[oJfsetBJ and ojfsetA .. ojfsetB are then errM, but baseA[oJfsetA] and baseB[oJfsetB} have the same type
(1).

The base type must have the attribute BASE. Conversely. the attribute BASE always takes precedence in the
interpretation of brackets following a pointer expression. Consider the follOwing declarations:

p: POINTER TO ARRAY IndexType OF ... ;
q: BASE POINTER TO ARRAY IndexType OF

The expression p[e] will cause implicit dereferencing of p and is equivalent to pt[e]. On the other hand, q[el is
taken to specify relocation of a pointer, even if the type of e is IndexType and not an appropriate relative
pointer type. In such cases. the array must (and always can) be accessed by adding sufficient qualification, e.&..
qt[e]; nevertheless. users should exercise caution in using pointers to arrays as base pointers.

Mesa currently supplies no special mechanisms for constructing relative pointers. It is expected that
such values will be created by user-supplied allocators that pass their results through a LOOPHOLE or
from pointer arithmetic involving LOOPHOLES.

6.3.4. Relative a"ay descriptors

A RelativeTC constructs a relative array descriptor type whenever the Typeldentlfler evaluates
to a pointer type and the TypeSpeciflcatlon evaluates to an array descriptor type, Let a
RelatlveTC be

Typeldentlfier RELATIVE TypeSpeclflcation.

where

Typeldentlfter is of type

[LONG] BASE POINTER [SubRangeJ TO [REAOONLY] Tb •

TypeSpeciflcation is of type

[LONG] DESCRIPTOR FOR [READONL Y] ARRAY 1i OF Tc '

and the brackets indicate optional attributes. Relative array descriptor values must be relocated
before they are indexed. The relocation yields an expression with type

ARRAY 1i OF Tc .

Relative array descriptor types are entirely analogous to relative pointer types; indeed, values of such
types can be viewed as array descriptors in which the base components are relative pointers. If the
TypeSpecification says READONLY, the relocated array (or its elements) cannot be a LeftSide.

In the constructor of a relative array.descriptor type, the TypeSpecification must evaluate
to a (possibly long) array descriptor type.

In the notation introduced above, a reference to an element of the described array has the
form

92 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

base [offiet][i]

where i is the index of the element.

Currently, relative array descriptors must be constructed using LOOPHOLES.

6.4. Variant records

Section 3.4 discussed "ordinary" record types, where every record object of a single type has the
same number and types of components. Such records are not always adequate for programming
applications. For example, in the symbol table for a compiler, all the records could have certain
components in common: some standard linkage, a string representing the symbol, and a category
field indicating whether the symbol stands for an operator. constant. variable, label, etc. Different
categories of symbols would then need further components that were not the same in all the records.

Variant records are designed for such applications: a variant record consists of an optional common
part followed by a variant part. The common part contains components that are common to all
records of this type. The variant part contains the components of each variant of the record.

The specification of a variant record type has the outward appearance of an ordinary record
specification: RECORo(field list]. If the record has any common components, these are specified first;
then the variant part is specified. (The next section shows how this is done.)

The variant part really represents a set of alternative extensions to the common part. The record
type as a whole can be viewed as follows:

Common Part Variant Part

Field list for the common part ---- 1---- field list for variant 1
1---- field list for variant 2
1---- ...
1---- field list for variant n

Each individual variant is identified by one (or more) adjectives. Suppose defined record type
DeRec is declared to have a set of variants named class!, c1ass2, and class3. Then variables could be
declared as follows:

someClass: DeRec; -- sometimes one class, sometimes another

firstClass: class! DeRec; -- strictly a class! DeRec
secondClass: class2 DeRec; -- strictly a class2 DeRec
thirdClass: class3 DeRec; -- strictly a class3 DeRec

Types like class3 DeRec are bound variant types. DeRec and c1ass3 DeRec are both type
specifications. but the latter is bound to a particular variant A variable which is declared as a
bound variant contains a definite variant; these components can be accessed as if they were common
components.

The field list for any variant may, itself, have a variant part (and a variant in that part may have its
own variant part, etc.). It is possible to have a type like small c1ass3 DeRec (i.e., the field list for the
class3 variant has a variant part which, in tum, has a small variant).

The record, someClass, presents a. problem. During the course of execution. someClass might
contain a class!, c1ass2, or class3 variant record. (Mesa allocates enough storage to hold the largest
variant specified for DeRec type records.) The problem is to determine which variant applies at a
given time.

Mesa language Manual 93

To decide which kind of variant a record object contains, some form of tag is needed. This tag can
be specified as part of the record, in which case every such record object will contain an "actual tag"
denoting the variant it represents. Instead of storing a simple tag, it may be possible to "compute"
the tag value whenever it is needed (possibly by inspecting some values in the common part). Such
compuled lags are much less safe than explicit ones. For instance, you could refer incorrectly to a
"class2" component of so'meClass when it held a classl variant record. The result would be
undefined.

It is possible to construct an entire variant for the variant part (sec. 6.4.3) by qualifying a constructor
(for that variant) with the variant's name (an adjective, in other words). Suppose for example that
DeRec has common components cl and c2 followed by a variant part named vp, and that the classl
variant has components x and y. Then the record constructor below constructs an entire classl
variant:

DeRec[c1: vall, c2: val2, vp: classl[x: val3,y: val4]]

Components of an unbound variant can be accessed using the record's tag value (whether actual or
computed). A variation of SELECT beginning with the keyword WITH is used for this purpose (sec.
6.4.4). An example follows (given that DeRec has a computed tag):

WITH someClass SELECT currenlTag FROM

c1assl = > Slml-1; -- someClass is a bound c1assl variant here
class2 = > Slml-2; -- someClass is a bound class2 variant here
class3 => Slmt-3; -- someClass is a bound c1ass3 variant here
ENDCASE;

6.4.1. Declaring variant records

Variant records, like ordinary records, are usually declared in two steps:

identifier: TYPE = RecordTC ; .• define record type

IdList : Typeldentifier Initialization; •. declare the records

Initialization for variant records (sec. 6.4.3) is similar to that for ordinary records. The (now
complete) definition of RecordTC follows. It extends the partial definition given in section 3.4.2
and includes machine-dependent record types:

RecordTC :: = MachineDependent RECORD [VariantFieldList]
MachineDependent

. :: = empty I MACHINE DEPENDENT

VariantFieldList :: = CommonPart identifier: Access VariantPart
VariantPart I
NamedFieldList
UnnamedFieldList

CommonPart :: = empty I
NamedFieldList.

VariantPart :: = SELECT Tag FROM
VariantList
ENDCASE

Access :: = empty -- see section 7.4.
PUBLIC
PRIVATE

Tag :: = identifier: Access TagType I
COMPUTED TagType I
OVERLAID TagType

94 Chapter 6: Strings. Array Descriptors, Relative Pointers, and Variant Records

TagType

VariantUst
Variant

:: = TypeSpecification 1*
:: = Variant 1 VariantUst Variant

:: = IdUst => [VariantFieldUst] ,I
IdUst => NULL,

The TypeSpecification in TagType must be equivalent to some enumeration or enumerated
sub range type. If the CommonPart is not empty, it must be a NamedFieldUst. If there is no
CommonPart, the VariantPart itself need not be named.

The following example shows many of the possible variations resulting from the above syntax
definitions. It is unnecessarily complex for the application, but does show a number of features. It
would be worthwhile to parse the declaration yourself using the definitions given above. The
example might be used to describe the various "accounts" in a bank; there would supposedly be a
table of such entries, one per account.

Service: TYPE = {savings. checking. depositBox};
Account: TYPE = RECXlRD

[
number. CARDINAL,
specifics: SELECT type: Service FROM

];

savings => [tenn: [30 . .365], intRate: PerCent. balance: Money],
checking =>

[
balance: Money,
monthlyFee: SELECT COMPUTED {free, notfree} FROM

notfree => [monthlyFee: Money],
free = > NULL,
ENDCASE

1,
depositBox => [fee: Money, dueDate: Date,paid:. BOOLEAN],
ENDCASE -- no variant can be attached to the ENDCASE

Each arm of a VariantPart specifies a single variant. even if a list of adjectives precedes the "=}".
An arm may specify NULL (as in the case of a .free checking Account) if that variant needs no
components of its own. Note that all the anns, including the final one, must end with a comma.

The adjectives are identifier constants from some enumeration. Their type can be given explicitly, or
implicitly as an enumeration whose members are the adjectives used in the variant part. In any case,
the enumerated type is the "tag's" type for a variant part. There are three possible forms for the
tag, and they represent:

an actual tag with an explicit enumerated type (e.g., type in Account),
an actual tag implicitly defined (e.g., easyTag in NoCommon below), or
a computed tag (e.g., the monthlyFee for a checking Account).

If an actual tag is used. it is allocated in the common part of the record and may be accessed and
used like any other common component. but it may not appear as a LeftSide, since that would
compromise the type-safoness of such variant records. Not all possible values from the tag's
enumeration type have to be used in a variant part; some may be omitted

An asterisk, "*", is used to indicate that the type of an actual tag is being defined implicitly by the
set of adjectives naming the variants in that tag's variant part. For example, consider the record
declaration below:

NoCommon: TYPE = RECORD

[-- no common part

Mesa Language Manual

variantPart: SELECT easyTag: • FROM
i => [comp/: INTEGER1.
J, k => [x, compI: STRING],
ENDCASE1;

95

The implicit type of easyTag is {iJ.k}; note: you can't declare variables of the same type as easyTag.

Computed tags are always unnamed. In fact, they are not realty tags at all: when one needs to know
which variant a record with a computed tag contains, some computation must be done. Exactly how
the variant "tag" is computed is strictly up to the program using it. For instance, to determine
whether a checking Account was free or not, the program might look at some property of the
Account number (such as whether it was odd or even).

An OVERLAID tag is a special case of a computed tag. The differences occur in the ways in which
fields of the record are accessed. See section 6.4.4.

A fine point

Special care must be exercised when declaring a MACHINE DEPENDENT variant record. Recall that MACHINE
DEPENDENT records can contain no "holes" between fields. For variant records. this leads to the following
rules: If the minimum amount of storage required for each variant is a word or less. each variant must be
"padded" to occupy the same number of bits as the longest. Otherwise. each variant must OCCUpy an integral
number of words.

6.4.2. Bound variant types

The declaration of a variant record specifies a type, as usual. This is the type of the whole record.
The variant record type, itself, defines some other types: one for each variant in the record.
Consider the following example:

StreamType: TYPE = {disk, display, keyboard};
StreamHandle: TYPE = POINTER TO Stream:
Stream: TYPE = RECORD

[Get: PROCEDURE[StreamHandle1 RETURNs[Item),
Put: PROCEDURE[SlreamHandle, Item],
body: SELECT type: StreamType FROM
disk =>

(file: FilePointer,
position: Position,
SetPosition: PROCEDURE[POINTER TO disk Stream, Position],
buffer. SELECT size: • FROM

].

short => [b: ShortA"ay].
long => [b: LongAmzy),
ENDCASE

display =>
(first: DisplayControlBiock,
last: DisplayControlBiock.
height: ScreenPosition,
nLines: [0 .. 100]
].

keyboard = > NULL.
ENDCASE
];

96 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

The record type has three main variants: disk, display. and keyboard. Furthermore. the disk variant
has two variants of its own: short and long. The total l1umber of type variations is therefore six. and
they are used in the following declarations:

r: Stream;
rDisk: disk Stream;
rDisplay: display Stream;
rKeyb: keyboard Stream;
rShort: short disk Stream;
rLong: long disk Stream;

The last five types are called bound variant types. The rightmost name must be the type identifier
for a variant record. The other names are Adjectives modifying the type identified to their right.
Thus, disk modifies the type Stream and identifies a new type. Further. short modifies the type disk
Stream and identifies still another type. Names must occur in order and may not be skipped. (For
instance. short Stream would be wrong since short does not identify a Stream variant.)

The formal definition of Typeldentifier can now be completed (it is only partially defined in
Section 2.6.1):

Typeldentifier :: = •.. 1 Adjective Typeldentifier

Adjective :: = identifier

where Adjective is an adjective of the variant part in the type specified by Typeldentifier. Note
that the recursive use of Typeldentifier in the first line allows a sequence of adjectives.

6.4.3. Accessing entire variant parts. and variant construC!tors

This section considers accesses to entire variant records (e.g .• for initialization). common components
of the record (including an actual tag. if present). and the variant part of the record as a whole. The
next section covers accesses to individual components in a variant part.

The common parts of each of the variations of a Stream declared in the previous section can be
accessed by the normal means (qualification and extraction):

rDisk .- rLong;
rDisk.Get .- rShorl.Gel;
r.body'- rDisplay.body;
[rDisk. Get • • rDisk.body] .- rLong;

-- aggregate access
-- selector access
-- selector access
-- extractor access

The actual tag. type, in the body variant part maf also be accessed by qualification:

IF r.type= Stream Type [keyboard] THEN Stmt-l;

It is also possible to construct values of a variant record type. The syntax of a constructor for a
variant part is no different than a normal constructor' except that the identifier preceding the "["
must be present and must be one of the adjectives used in defining the variant For example. some
of the following declarations use constructors to initialize the variables (others use different forms of
initialization):

myDisplay: display Stream .- [myGet. myPut. display[dl.d.h.8]];
yourDisplay: display Stream .- myDisplay; ,
currentStream: Stream .- myDisplay;
s: Stream .- [SysGet. SysPut. disklfp. O. SysSetPos.long[al]]];

Mesa Language Manual 97

The keyboard variant of Stream is a NULL variant; so there are no components for that variant in a
keyboard constructor:

rKeyb +- Stream [Get: Kget, Put: Kput, body: keyboard []];

A side effect of assigning a bound variant value to a variable is that the actual tag of the record is
also changed. This is the only way to change the variant contained in a variable (except in the case of
a COMPUTED tag) -- it ensures type-safeness. For example, both the following assignments change the
type tag for r :

r.body +- keyboard [];
r.body +- rKeyb.body; -- always a keyboard variant

If one is assigning a completely bound variant value, bv, say (which could be a constructor, of
course) in an AssignmentExpr (section 2.5.4.), then the type of the AssignmentExpr is the type
of bv, not the type of the LeftSide, which might not be a bound variant

A fine point:

The Mesa compiler does not currently allow an entire variant part to occur on the right of an assignment as in
the fragment above. Thus, the only way to assign to an entire variant part is via a constructor, not by copying
the variant part of an already initialized record. This restriction should be lifted in a later release of Mesa.

6.4.4. AcceSSing components of variants

When a record is a bound variant:. the components of its variant part may be accessed as if they
were common components. For example, the following assignments are legal:

rDisplay.last +- rDisplay.first;
rDisk.position +- rShort.position;

If a record is not a bound variant (e.g., r in the previous section), the program needs a way to decide
which variant it is before accessing variant components. More importantly, however, this must be
type-safe. For this reason, the process of discriminating among possible variants and then accessing
within a variant part is combined in one syntactic form, called a discrimination, which is a
generalization of SELECT.

A discrimination closely mirrors the form of SELECT used to declare a variant part However, the
arms in a discriminating SELECT contain statements or Exp ressions, and, within a given arm, the
discriminated record value is. viewed as a bound variant. Therefore, within that arm, its variant
components may be accessed. The following syntax equations complete the earlier partial definitions
given in sections 4.3.1 and 4.3.3:

SelectVa riant

ChoiceSeries

Tagltem

FinalStmtChoice

.. -.. - WITH Open Item SELECT Tagltem FROM
ChoiceSeries
ENDCASE FinalStmtChoice
I···
AdjectiveList => Statement; I
ChoiceSeries AdjectiveList => Statement;
empty I .. the actual tag is used
Expression .. compute the tag value
empty I = > Statement

98 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

SelectExp rVa riant

ChoiceList

ChoiceList

Open Item

.. -.. -

.. -.. -

.. -.. -

.. -.. -

WITH Open Item SELECT Tagltem FROM
ChoiceList
ENDCASE => Expression
I···
AdjectiveList => Expression ,I
AdjectiveList => Expression, ChoiceList

Adjectivelist => Expression ,I
ChoiceList AdjectiveList => Expression,

Expression 1 AlternateName: Expression
.. from sec. 4.4.2

The value discriminated is the one given in the WITH clause, which behaves just like an OPEN clause
(sec. 4.4.2) to simplify naming the record value in the arms of the SELECT. The following example
discriminates on r:

WITH sInn: r SELECT FROM

display =>
BEGIN
stnn.jirst+-strmlast;
stnn.height+-73;
stnn.nLines+-4;
END;

disk = > WITH stnn SELECT FROM

short = > b [0] +-10;
long => b[O]+-l00;
ENDCASE;

ENDCASE => strmbody +- disk [GetFp["Alpha"], 0, SysSelPos, short[]];

In the first example, suppose r contains a variant record of display Stream type. Then the first arm
is chosen by this SELECT. Within it, sInn (but not r) is considered a record of display Stream type;
so all components of the display variant may be accessed in the statement chosen by that arm (as
they are in the example).

Suppose r contains a variant record of disk Stream type. Then the actual tag has the value disk, and
the second arm is chosen. In this example, only one of the disk components is accessed, its variant
part. The inner SELECT uses variant record stnn. Within the outer arm, Mesa knows ~at stnn is a
record of disk Stream type. Consequently, the tag implicitly used for this SELECT is the tag specified
for that type (namely, size).

If the tag value is short, then the chosen arm accesses component b in the short disk Stream variant
record; if it is long, then the chosen arm accesses component b in the long disk Stream variant
record.

However, the ENDCASE for the inner SELECT could have accessed components that are common to a
disk Stream (file, position, SetPosition, variant part buffor, and actual tag size; plus all the original
common components: Get, Put, variant part body, and actual tag type).

Suppose, lastly, that r does not contain a variant record of display Stream or disk Stream type. Then
the outer ENDCASE statement is chosen. This statement accesses the common component body (the
entire variant part is considered a common component), and gives the record a specific variant type
(short disk Stream) by wholesale assignment. An ENDCASE may only access common components; it
may not access components of variants in the given type.

Mesa Language Manual 99

If the labels on an arm of a descrimination identify more than one variant structure. the record is
not considered to be discriminated within that arm and only the common fields are accessible (cf.
ENDCASE).

Since the outer variant part of Stream was declared using an actual tag, the tag's value is obtained
from the record itself, and' no Expression follows the keyword SELECT (both SELECTS above have
this form).

The Expression in the WITH clause (actually in the Open Item) must represent either a variant
record or a pointer to a variant record (e.g., r in the above). The alternate name is essentially a
synonym for that Expression (e.g., sInn in the above). If it is a pointer, however, the alternate
name designates a record value, not a pointer value in each arm of the SELECT. In the following
example, the display arm is correct, and the disk arm is in error:

rp: StreamHandle;
proc: PROCEDURE [StreamHandle);
WITH sRec: rp SELECT FROM

display = > proc [@sRec); --CORRECf
disk => proc[sRec); --WRONG
ENDCASE;

An open item with no alternative name opens a name scope so that components can be accessed
with implicit qualification (as in the inner SELECT of the first example), but then no further levels of
WITH ••• SElECT using the same record can be done within such a WITH ••• SElECT. The type of the open
item's Expression indicates the nature of the record's variant part, including whether the tag is an
actual or computed tag, its enumerated type, and the names of each variant (i.e., the adjectives) in
the variant part.

If a computed tag had been used, the program would have to supply an Exp ression following
SELECT to determine the variant This Exp ression's value would have to be an adjective in the
applicable variant part For example, assume that tbl[i) in the following has type checking Account
(sec. 6.4.1); then this isa legal (if not very sophisticated) discrimination for it:

WITH this: tb/[i1 SELECT (IF (this. number MOD 2) = 0 THEN free ELSE noifi"ee) FROM

free = > NUll;
not/ree = > AddToBill[this.monthlyFee];
ENDCASE;

If a given arm of a discrimination is labelled by indentifier constants corresponding to more than
one variant of the record, only the common fields of the record are accessible within that arm.

The record value in a WITH clause must not represent a completely bound variant (which is really not
a variant at all). For example, a valid discrimination for a disk Stream record, aDiskStream. follows:

WITH aDiskStream SELECT FROM

short = > b [01.-10;
long => b[O).-lOO;
ENDCASE;

It would be illegal to rewrite this as follows:

WITH alt: aDiskSlream SELECT FROM -- WRONG!
disk = > WITH alt SELECT FROM

short = > b [01.-10;
long = > b [0] .-100;
ENDCASE;

ENDCASE;

, I

100 Chapter 6: Strings, Array Descriptors, Relative POinters, and Variant Records

An OVERLAID record is a special case of a computed variant record in that there is no explicit tag
field in the record. The fields of the individual variants may be accessed using a "computed" WITH

construct in the same manner as a COMPUTED record. In addition, any field name of a variant that is
unambiguous (i.e. it appears in only one variant) can be referenced without descrimination. In
essence, the programmer is telling the compiler "When I use a fieldname, you can trust me that the
record has the proper variant" Consider the following example:

TrustM e: TYPE = RECORD[
SELECT OVERLAID * FROM

one => [c: CHARACTER, i: CARDINAL, next: POINTER TO TrustMe],
two => [b: BOOLEAN, next: POINTER TO TrustMe],
three = > [s: STRING],
ENDCASE];

t: TrustMe;

Lc
Lb
Lnext

A fine point

--legal
--legal
-- illegal, both variants one and two contain such a field.

In the declaration of TrustMe above, the two next fields were of the same type, but occuppied different
positions within the record. Even if they did occupy the same position, one could still not refer to LnexL The
ambiguity is one of variant, not of value.

CHAPTER 7.

101

MODULES, PROGRAMS,
AND CONFIGURATIONS

Large programs in Mesa are constructed by linking or binding together individual modules. A
module is the basic unit of compilation and also the smallest, self-contained, executable program
unit Most of this chapter deals with how separate modules are put together to build large systems;
i.e., it deals with programming in the large as opposed to programming in the small (which is what
this manual has discussed so far).

There are two fairly distinct kinds of modules. Definitions modules serve primarily as "blueprints"
or specifications for how the parts of a system will fit together. During compilation they provide a
common (and therefore consistent) set of definitions which can be referenced by other modules
being compiled. The second kind of modules, called programs, contain actual data and executable
code. Program modules can be loaded and interconnected to form complete systems.

Mesa compiles a program module's source code (which is just a text file) into an object module. An
object module is a binary file containing object code, symbol table information, and data structures
to be used in connecting (also called binding) this module together with others. Compiling a
definitions module produces symbol table information only, which may then be used in compiling
other modules (either definitions or program modules).

7.1. Interfaces

An interface is a connector between programs; it allows code in one module to access parts of other
modules-specifically, procedures, signals (chapter 8) and variables. Interfaces are defined by
definitions modules (section 7.3). They contain declarations for public items and allows the compiler
to check for type matching across inter-module references. The interface, considered as a record,
also proves a convenient data structure for efficient binding together of programs.

The procedures that implement a given abstraction are often collected in a single interface. For
example, an interface for an allocator might consist of the names and types of the procedures for
allocating and freeing blocks of storage, and pointers to shared blocks of storage. The data types
required by these procedure types (for parameters and return values) are usually defined in the same
definitions module. Such non-interface types are available for reference when compiling other
modules, but are not considered part of the interface specified by that definitions module.

At compile time, a program module containing calls on procedures defined by some interface must
import the definitions module that specifies that interface. This enables the compiler to check the
agreement of types of parameters and return values on calls from that module with their
counterparts in the definitions module (i.e., as defined in the interface). Importing the interface at
compile time does not, however, link the procedure references in the program module to actual

102 Chapter 7: Modules, Programs, and Configurations

procedures in some other module(s). That actual binding occurs later when the compiled module is
linked with other compiled program modules to make a system (sec. 7.7).

The actual implementation of an interface is usually provided by a single program module, although
it may be realized by a group of modules, each supplying a part. In any case, if a program module
implements (all or part ot) the interface specified by a definitions module, it is said to export that
interface. The procedures and variables in that program corresponding to the ones in the exported
interface must be type-compatible with them (sec. 5.2). The compiler checks that this is so.

After compilation, a program module contains a set of virtual interface records, one for each
imported interface, and a set of export records, one for each exported interface (a single program
module can implement more than one interface). Binding a group of modules together into a
system then involves associating virtual interface records with exported interfaces for all the modules
in the group.

The following definitions module, IODe/s. provides a minimal (and unrealistic) interface to a
computer terminal:

IODe/s: DEFINITIONS =
BEGIN

-- Interface definitions
ReadChar. PROCEDURE RETURNS [CHARACTER];
ReadLine: PROCEDURE [input: STRING]; -- reads from terminal into input

WriteChar. PROCEDURE [ouput: CHARACTER];
WriteLine: PROCEDURE [output: STRING];

IOPkg: PROGRAM;

-- Non-interface definitions
CR: CHARACTER = 0l5C; -- an ASCII Carriage-Return character

END. -- IODejs

The interface record for IODe/s is imported by the following Copier program module. The program
reads lines from the terminal and retypes them. When the user types a line beginning with a period,
it writes a parting message and stops:

DIRECTORY

IODejs: FROM "IODefs";

Copier. PROGRAM IMPORTS IODe/s =
BEGIN OPEN IODe/s: -- allows simple references to items from IODe/s
input: STRING ~ [256]; -- 256-character string to hold input lines typed by user
-- the mainline part of the program starts here:

DO -- infinite loop; only left by EXIT
ReadLine[input]; -- read a line into input
IF input [0] = '. THEN EXIT; -- quit if first character is a period
WriteLine[input); -- otherwise copy it back to the user
ENDLOOP;

WriteLine["End of example."];
WriteChar [CR];
END. -- Copier

-- final output
-- leave terminal on a new line

Mesa Language Manual 103

The skeleton of a module that implements the IODejs interface follows. It EXPORTS IODejs and
IMPORTS nothing:

DIRECTORY

IODejs: FROM "IODefs";

IOPkg: PROGRAM EXPORTS IODejs =
-- this module contains the actual procedures for the interface specified by IODefs.
BEGIN
lerminalSlale: {off, on, hung} +- off, -- initial state of the terminal
ReadChar: PUBLIC PROCEDURE RETURNS [CHARACTER] = BEGIN ••• END;

ReadLine: PUBLIC PROCEDURE [input: STRING] = BEGIN ••• END;

WriteChar: PUBLIC PROCEDURE [ouput: CHARACTER] = BEGIN ••• END;

WriteLine: PUBLIC PROCEDURE [output: STRING] = BEGIN ••• END;
END. -- IOPkg

The next step towards running the above modules as a system requires binding them together.
Binding is the process of matching up virtual import records with real export records.

A separate language, C/Mesa, is used to describe binding. This language has a syntax similar to
Mesa's, but is much smaller. C/Mesa "programs" are compiled ("processed" might be more
accurate) by a program called the Binder. The C/Mesa source code is called a Configuration
Description (CD), and compiling one results in a Binary Configuration Description (BCD) fIle. An
object file produced by the Mesa compiler is actually a very simple BCD containing just one
module's object code and binding information.

BCD files can be loaded and run. (Actually, it is the individual modules in the BCD that are
loaded). This loading also alters all the BCD's virtual import records to hold real procedure
descriptors (sec. 5.2), signals, and pointers to program frames. Then the modules comprising the
BCD can all be started (details in sec. 7.8). The following CD describes a system of three modules:
Copier. IOPkg. and Driver.

MakeCopierSystem: CONFIGURATION
CONTROL Driver =

BEGIN Copier; IOPkg; Driver; END.

This configuration specifies how the Copier. IOPkg. and Driver object modules are to be bound
together. Simply listing their names is all that is usually required in a CD. Now the Mesa loader
could load the complete program using the BCD fIle for MakeCopierSystem. Driver is named as the
CONTROL module for the BCD, so starting the loaded BCD would actually result in starting Driver,
which follows:

DIRECTORY

IODejs: FROM "iodefs",
Copier. FROM "copier";

Driver. PROGRAM IMPORTS Copier. IODejs =
BEGIN
START IODejs.IOPkg; -- so its variables (e.g., terminalState) are initialized
START Copier; -- to initialize its variables and run its mainline code
END.

This example is simple, but MakeCopierSystem and Driver would still be simple even if the system
had 50 modules instead of just two. For this example, they seem like excess baggage, but for a
larger system, they are invaluable because:

104 Chapter 7: Modules, Programs, and Configurations

(a) they describe exactly how the various modules are bound together and initialized;

(b) C/Mesa allows Mesa's compile-time checks on types to extend to binding time;

(c) loading and linking with this scheme can be very efficient.

We can now give the details of Mesa DEFINITIONS and PROGRAM modules. Section 7.7 discusses
C/Mesa and how it is used.

7.2. The fundamentals of Mesa modules

The complete syntax for a module is the following:

Compilation Unit :: = Directory .. optional

Access
Directory
ExportsList
FileName

GlobalAccess
ImportsList

Includeltem

IncludeList
ModuleBody

ModuleHead

Interfaceltem
Inte rfaceList

LocksClause

ModuleName
ProgramTC

ShareList

ModuleName: ModuleHead = GlobalAccess
ModuleBody

:: = empty I PUBLIC I PRIVATE

:: = empty I DIRECTORY IncludeList ;
:: = empty I EXPORTS IdList .. sec. 7.4.6
:: = st ring Lite ral .. sec. 6.1.1
:: = Access .. sec. 7.4.3
:: = empty I IMPORTS InterfaceList

.. sec. 7.4.6
:: = identifier: FROM FileName I

identifier: FROM FileName USING [IdList]
:: = Includeltem Iinciudeitem , IncludeList
:: = Block. .. sec. 4.4

.. note the terminating period
:: = DEFINITIONS LocksClause ImportsList ShareList I

ProgramTC ImportsList ExportsList ShareList
:: = identifier I identifier: identifier

:: = Interfaceltem IlnterfaceList .Interfaceltem
:: = empty I .. sec. 10.4.1

LOCKS Expression I
LOCKS Expression USING identifier: TypeSpecification

:: = identifier

:: = PROGRAM ParameterList ReturnsClause I
MONITOR ParameterList ReturnsClause LocksClause

:: = empty I SHARES IdList .. sec. 7.4.6

A DEFINITIONS module can serve a twofold purpose: it can define an interface, and may contain
declarations of constants and types. Definitions modules are further discussed in section 7.3.

The text of a program module X implicitly defines a frame type, FRAME[X]. Values of this type are
created dynamically by loading X and can only be accessed indirectly; i.e., a program may have
variables of type POINTER TO FRAME[X), but never of type FRAME[X]. A module's frame contains
storage for its variables, along with some system overhead.

We will first deal with the initial syntactic unit which is common to all modules (the Directory
clause), then with DEFINITIONS modules as a whole .. After these sections there is a complete example

Mesa Language Manual

including

a DEFINITIONS module,
a PROGRAM module that implements it,
a client program thkt uses it, and
a configuration: that binds the programs together into a system.

7.2.1. Including modules: the DIRECTORY clause

105

The source code for a given module may tell the compiler to include previously compiled modules
for one or more of the following reasons:

It might need to use some of the symbols defined by those modules.

It may need to import the interfaces defined by those modules.

It might refer to instances of such modules after they are loaded in order to START them, to
make new instances! of them, or to access their data.

Suppose module A is included in module B. This means that when compiling B, the compiler must
have access to A's object file (i.e., A must have been compiled previously) in order to access its
symbol table to obtain information needed by B. Warning: including a module is not simply an
insertion of text from one module into another-it is important to read these sections carefUlly to use
this' capability co"ectly.

The following is a simple, but complete DEFINITIONS module:

SimpleDefs: DEFINITIONS =
BEGIN
limit: INTEGER = 86;
Range: TYPE = [timit .. limit);
Pair. TYPE = RECORD[first. second: Range];
PairPtr. TYPE = POINTER TO Pair,
END.

Suppose that the above source code is contained in a file named "SimpleDefs.mesa". After
compilation, anyone who. has a copy of the object file for SimpleDefs (which will be named
"SimpleDefs.bed" by the compiler), may then include it in other modules. The" .bed" portion of
the file name stands for Binary Configuration Description (sec. 7.6.3) of which a compiled module is
the simplest example. The ".bcd" part of the name need not be specified in the directory section
(see below).

A module that includes other modules begins with a Directory, which performs two functions:

(1) It associates a Mesa identifier with the name of an object module (which does not
necessarily look like a Mesa identifier).

(2) It checks that the given identifier matches the ModuleName in the module whose object
file is named.

Here is an example of a DIRECTORY:

DIRECTORY I

SimpleDefs: FROM "simpledefs",
StringDefs: FROM "stringdefs";

106 Chapter 7: Modules, Programs, and Configurations

7.2.1.1. Enumerating items/rom an included module: the USING clause

A module may list the symbols it expects to access from an included module in the USING clause of
an Includellem. If a USING clause is present, it must list all of the symbols to be included; the
compiler will not allow access to any symbol not in the list. Warnings will be issued for symbols
appearing in the list whiCh are not referenced in the module. In this way. the USING clause
accurately documents which symbols are defined in each included module.

Here is an example of a DIRECTORY with a USING clause:

DIRECTORY

SimpleDefs: FROM "simpledefs" USING [Range. PaiiJ.
SlringDefs: FROM "stringdefs";

A module with this DIRECTORY statement would be allowed to use the symbols Range and Pair
defined in SimpleDefs, but would not be allowed to use any other symbols defined in SimpleDefs.
Access to symbols defined in StringDefs is not restricted.

The USING clause only allows and restricts access to symbols. Actual references to the symbols must
be made in one of the ways described below.

7.2.2. Accessing items from an included module

This section describes the ways of accessing symbols defined in an included module:

An identifier, p, defined in a definitions module, Defs. can be named in an including module, User,
in one of two ways.

Explicit qualification: p can be named as Defs.p in User.

OPEN clauses: In the scope of an OPEN Clause of the form "OPEN Defs", the simple name p
suffices.

The remainder of this section gives more detail on these methods.

7.2.2.1. Qualification

In the following example. qualification is the only access method used:

DIRECTORY

SimpleDefs: FROM "SimpleDefs";
TableDefs: DEFINITIONS =
BEGIN
limit: INTEGER = 256; -- this has no connection with SimpleDe/s.limit
Index: TYPE = [O .. limit);
SlringTable: TYPE = ARRAY Index OF STRING;
PairTable: TYPE = ARRAY Index OF SimpleDefs.Pair;
END.

SimpleDe/s.Pair means "the item named Pair in SimpleDefs." As a rule, qualification provides more
readable code than do the other methods for specifying the use of predefined symbols. However. it
can be inconvenient if there are many such occurrences because two identifiers have to be written
instead of one.

No names are included automatically when only explicit qualification is used. For example, if

Mesa Language Manual 107

TableDejs had not declared limit, Mesa would not have used the one in SimpleDejs. An error would
then result when TableDejs was compiled (because limit is needed in the declaration of the type
Index).

Any module that includes TableDejs may use only the symbols defined by it, but to use Pair. that
module would have to include SimpleDejs (as in the next section's example). Declared symbols in
the included module do not include record component names: they are part of a record's type
specification and can be used wherever the record type is known.

A qualified name may denote a type defined in an included module (e.g., the type SimpleDejs.Pair
in the example in the previous section). Thus the syntax for Typeldentifier includes the case

Typeldentifier .. - ... 1 identifier. identifier

7.2.2.2. OPEN clauses

The following program, TableUser, includes both SimpleDejs and TableDejs. It accesses names from
SimpleDejs by qualification, but uses an OPEN clause to access items from TableDefs:

DIRECTORY
SimpleDejs: FROM "simpJedefs" USING [Pair],
TableDejs: FROM "tabledefs";

TableUser. PROGRAM =
BEGIN OPEN TableDefs;
vIndex: INTEGER ~ limit;
vStrin~StringTable.
vPair. PairTable;

-- (Notice the OPEN-clause.)
-- this is TableDefs.limit because of the OPEN

-StoreStrin~ PUBLIC PROCEDURE[S:STRING, v: Index] =
BEGIN
vString[v] ~ s;
vPair[vIndex~v] ~ NIL;
END' , .

StorePair. PUBLIC PROCEDURE[t: SimpleDejs.Pair) RETURNS[ok: BOOLEAN] =
BEGIN
ok ~ vIndex<= limit;
IF ok THEN vPair[vIndex] ~ t;
END;

END.

In the scope of the OPEN clause, the names limit. StringTable. PairTable, and Index are those in
TableDejs. The scope of these OPEN clauses follows the same rules as the OPEN clauses for records
described in section 4.4.2. In fact, a single OPEN clause can contain Open Items that open either
modules or records.

TableDejs could have been in an OPEN clause anywhere that one is permitted. This feature can be
used to help the readers of a program. For example, if the names from TableDejs were only needed
in the procedure StoreString, we could put an "OPEN TableDejs" on its BEGIN rather than on the
BEGIN for the whole module. This would localize the region of the program where a reader would
have to consider whether an identifier is from an included module or not

Fine point:

Note that qualification is still required to reference SimpleDe!s.Pair even though Pair appears in the USING
clause.

108 Chapter 7: Modules, Programs, and Configurations

7.2.3. Scopes for identifiers in a module

The use of identifiers appearing in modules falls into two broad categories, defining occurrences (e.g.,
to the left of the u:u in a declaration), and name references (such as the appearance of a name in an
Expression). Scope rules determine which defining occurrence goes with a given reference. In
Mesa, these rules are lexical, i.e., they depend only on the textual structure of the module at
compile-time.

A name scope is always a contiguous region of a module (e.g., everything between a BEGIN ••• END

pair, or between a [...] pair) and may contain other scopes nested within it The first scope rule is
the following:

Within a single scope (excluding scopes nested within it), there can be at most one defining
occurrence of a given identifier.

An important corollary of this rule is that a given identifier is either undefined in a scope or it has
exactly one meaning.

A qualified name reference demands an exact context for its qualified identifier. For example.

SimpleDejs.Pair -- (sec. 7.2.2.1) qualification by module name; context is SimpleDejs
rDisk. Gel -- (sec. 6.3.3) record qualification; context is disk Stream, the type of rDisk
winner.party -- (sec. 3.4) pointer qualification; context is Person, the reference type of

winner

The rule of scope is simple for a qualified reference:

The qualified identifier is associated with its symbol definition in the specified scope (if
there is no such defined name, the qualified identifier is undefined and there is an error).

An unqualified name reference occurs within a sequence of nested scopes (as indicated below). The
rule of scope is

Use the innennost scope that defines the referenced identifier (if none of the scopes do so,
the identifier· is undefined and there is an error).

New name scopes are created by the following:

OPEN clauses
Blocks with declarations
enumerated types and their subrange types
record types that use named field lists
procedure types that use named parameters or results
actual procedures
exit regions for loops and compound statements
the heads and arms of discriminating SELECT statements

OPEN clauses may introduce multiple name scopes, which are nested (inner-to-outer) in order from
right to left. Consider the following revision of the earlier TableUser module:

Mesa Language Manual

DIRECTORY

SimpleDefs: FROM "simpledefs",
TableDefs: FROM "tabledefs";

TableUser: PROGRAM =
BEGIN OPEN SimpleDefs, TableDefs;

StorePair: PUBLIC PROCEDURE[t: Pair] RETURNS[ok: BOOLEAN] =

109

Notice that we no longer need qualification for the parameter type of procedure StorePair. When
the compiler encounters identifier Pair, it finds the needed symbol definition in the symbol table for
included module SimpleDefs. The path by which it found this is the following: it looked for such a
definition in the current module, but failed there; it then tried the next outer scope, which according
to the OPEN was TableDefs; not finding Pair there either, it went on to the next (and outermost)
scope given by the OPEN, namely, SimpleDefs, at which point a defining occurrence was found.

Localizing the scope of identifiers from included modules is so important that we recommend the
following naming guidelines:

(1) Place a USING clause on items in the DIRECTORY. This collects in one place a list of all
symbols referenced from each included module. The list is always accurate because the
compiler checks it on each compilation.

(2) Use explicit qualification as the normal way of naming an external item.

(3) Use an OPEN clause on the smallest possible scope when explicit qualification becomes too
verbose. It is unusual for items from an included module to be accessed with high
frequency everywhere in a module; most often, there are clusters of references to them. An
OPEN clause takes advantage of this clustering and alerts a reader to it.

7.2.4. Implications of recompiling included modules

Consider a set of modules Adefs, User/, and User2 where Adefs is included in User/ and cfser2.
(For simplicity, assume User/ and User2 include only module Adefs.) Suppose Adefs and User/
have already been compiled, but before User2 is compiled, Adefs is recompiled for some reason.
Then User/ must also be recompiled.

In general, recompiling Adefs will invalidate the current version of User/. This is obvious when
Adefs undergoes significant change between compilations, but it may also be true when seemingly
innocuous changes are made. In fact, if User/ uses record or enumeration types defined by Adefs,
the current version of User/ is invalidated when Adefs is recompiled, even if no changes are made to
its source code!

For example, suppose Adefs defines RECORD type Account which is used by User/ as the type of r1
and by User2 for r2. Normally, one would expect these records to have the same type. If events
occur as follows, however, they will not:

Ade/s is compiled.
User/ is compiled including (old) Ade/s.
Adefs is recompiled
User2 is compiled including (new) Adefs.

Th~ record types for r1 and r2 will differ because of the way Mesa guarantees uniqueness for record
types. The compiler associates a "time stamp" (e.g., time of definition) with each record type. Old
Adefs defined Account at one time and new Adefs defined it a later time; this makes them different
(non-equivalent) record types which only "look" the same.

110 Chapter 7: Modules, Programs, and Configurations

Consider the case where Deft! is included in Deft2, and Deft2 is included in User!. (For simplicity.
assume that Deft2 includes only Deft! and User! only Deft2.) Suppose that Deftl is recompiled and
then Deft2 is recompiled. Theil User! should also be recompiled. The reason for this is the
uniqueness of record types defined in Deft2 and used by Userl.

The (re)compilations of Deft!, Deft2, and User! must occur in a specific order: first Deftl, then
Deft2, and finally Userl. Suppose, however, that Userl included Deft2 plus another module Deft3.
and suppose Deft3 included Deft!. The following diagram illustrates these dependencies. Modules
which are included are above modules which include them. The rule for avoiding errors due to
incorrect compilation order is the following: a module may not be (re)compiled until all the modules
above it have been.

D

I
Userl

Thus, Userl should be recompiled after Deft2 and Deft3 have both been (re)compiled. The order in
which Deft2and Deft3 are compiled is unimportant, however. Moral: There is an important partial
order defined on modules by their inclusion relations.

7.r DEFINITIONS modules

Generally, a DEFINITIONS module contains a set of related definitions. There are compile-time
constants, types, and procedure and signal definitions. There are also declarations of so called
interface variables (section 7.3.1). These definitions are used by the program(s) that implement those
procedures. and they are used by programs that only wish to call on those procedures. Separating
definitions from implementations allows programs that call those procedures to be independent of
changes in implementation. The definitions in a DEFINITIONS module fall into two classes:

Interface elements: definitions for interfaces (procedures, signals, programs and interface
variables), and

Non-interface elements: compile-time constants (this includes TYPE definitions)

There are no special rules about which valid compile-time constants may be used other than the
issues surrounding compilation order (sec. 7.2.4). External interface definitions, however, are
different. Normally, a declaration such as

SampleProc: PROCEDURE [i: INTEGER];

declares a procedure variable. In a DEFINITIONS module, however, its effect is to define the type and
name of a procedure component of the interface specified by that definitions module. Section 7.6
contains an example of a DEFINITIONS module that defines procedure interfaces.

In the same manner, signals, errors, and programs can be declared in a DEFINITIONS module as
elements of its interface type. A signal or error declaration is treated just like a procedure as an
interface element. A program definition as an interface element is discussed in section 7.4.3.

Mesa language Manual 111

7.3.!. Interface variables

Just as procedures are often declared in one program module and called from another. there are
often applications that require sharing of non-procedural variables, such as common data structures.
One means to allow common variables is via interface variables. These are variables that are defined
in a DEFINITIONS module. but must be exported by some implementing program before they actually
exist Variable declarations in interfaces are like those in programs. with one additional option.

Declaration IdUst : Access ReadOnlyOption EntryOption
TypeSpecification Initialization; I

ReadOnlyOption :: = empty I READONLY

The READONL Y option can be attached to a variable only in an interface. If this option is specified,
importers can read the variable but not update it; otherwise. importers are able to read and update
the variable freely. Note that a READONL Y variable is not necessarily constant; it can be changed
from within the program module exporting the variable. Consider the following example:

Deft: DEFINITIONS =
BEGIN

var!: T;
var2: READONL Y T;

END.

Impl: PROGRAM EXPORTS Deft =
BEGIN

var!: PUBLIC T;
var2: PUBLIC T;

var! ~ e!;

END.

var2 ~ e2;

User: PROGRAM IMPORTS Deft =
BEGIN

Deft.var! ~ e3;

IF Deft. var2 = e4 THEN •••

END.

In this example. the exporter (Imp!) provides storage for the variables var! and var2. Within Impl.
both are ordinary variables. e.g .• var2 can be updated. By importing Deft. the client (User) gains
access to the storage for var! and var2 but cannot update var2. Although Deft. var! and Deft. var2
are referenced indirectly. through pointers in User initialized by the binder or loader. those pointers
are invisible to the importer and are always automatically dereferenced.

An interface variable must be declared with the attribute PUBLIC in the exporter. It must not be
declared with fixed (" = ") initialization. Assignment (" +- ") initialization is permissible; note.
however, that such initialization is not performed until the exporting module is started. and
reference to an interface variable does not cause a start trap in the exporter (see section 7.8.3).

112 Chapter 7: Modules, Programs, and Configurations

A fine point: If an interface component has a PROCEDURE, SIGNAL, ERROR or PROGRAM type. any
importer expects that component to contain an actual value (e.g., a procedure descriptor). not a pointer to such
a value. Thus an interface variable cannot have one of these types. For example, if the declaration

Proc: PROCEDURE [•••];

appears in a DEFINITIONS module Deft. the declaration

Proc: PUBLIC PROCEDURE [•••] = BEGIN ••• END;

is valid in an exporter of DefS; the declaration

Proc: PUBLIC PROCEDURE [•••] +- SomeProcedure;

is not (In the latter case, a variable containing a pointer to Proc could be exported.)

In addition to providing common access to data structures, interface variables make default fields
(section 7.3.2) and inline procedures (section 7.3.3) more useful in DEFINITIONS modules; that is,
interface variables can be used within these definitions to access nonconstant information in the
exporter. Interface variables used for this purpose must be PUBLIC in the exporter but can be
declared with the attribute PRIVATE in the DEFINITIONS module. This convention is strongly
recommended to prevent unintended direct sharing of the variables by clients of the interface. Note
that code within an interface cannot update a READONL Y component of that interface.

We will see in section 7.4.2 another means of accessing the variables of another program module,
that of an implicit POINTER TO FRAME[•••], whose value is initialized by the loader. This offers an
alternative to interface variables, but leads to compilation dependencies such as those described in
section 7.2.4. In choosing between the two methods, note the following:

Each imported interface variable introduces a separate pointer in the link area of the
importer (see Section 7.7, page 125). On the other hand, each access to such a variable
generally requires less code and is faster than an access to a field of an imported frame.

The use of interface variables introduces less severe compilation dependencies;
recompilation of the exporter does not require recompilation of all importers.

Compromise positions are also possible. Information to be shared can be grouped into a smaller
number of variables with record or array types, and those variables can be exported. This reduces
the number of pointers but increases the amount of (potentially changing) structure in the interface.

7.3.2. Defoult fields in interfoces

One valuable use of interface variables is in default values for procedure argument records (section
5.1). Default arguments can contain references to procedures (INLINE or otherwise), signals and
interface variables that are components of the same interface. These references are bound to values
in the same instance of the imported interface as the one supplying the procedure definition itself.
References to non-constant components of other interfaces require that those interfaces be imported
by the DEFINITIONS module and all its users (see section 7.4.4). For example, an interface could
contain:

globalQ: PRIVATE Queue; -- an interface variable
Add: PROCEDURE [i: Item. q: Queue +- globaIQ];

This declaration allow users to Add items to globalQ. but not to access the variable directly. Thus
the statement

De/sl. Add [myltem];

Mesa Language Manual 113

is equivalent to

Defsl.Add[myltem. Defsl.globaIQ];

A fine point:

If a program imports two instances of DeftI. say DI and D2. the defaulted value for q will be from the same
instance as the called procedure. In other words.

Dl.Add[myltem] is equivalent to Dl.Add[myltem. DI.globaIQl.

D2.Add[myltem] is equivalent to DlAdd[myltem. DlgiobalQ1

In a program module, default arguments of exported procedures (and signals, etc.) require special
attention. Because of the assignment rule, the DefaultOptions specified in the exporter and in the
interface are not required to agree. If the implementer and the clients are to behave identically with
respect to defaults, the same DefaultSpecification must appear twice.

For example, if the interface has the declaration

Proc: PROCEDURE [x: T 4- e/];

and the exporter has the declaration

.Proc: PUBLIC PROCEDURE [x: T 4- e2] = BEGIN • •• END;

then within the exporter, Proc[] means Proc[e2]; within an importer of the interface, Proc[) means
Proc[el]. The langauge requires only that the types of el and e2 be compatible with T; if they
should also provide the same value, the programmer must ensure this.

7.3.3. I nline procedures in interfaces

An INLINE procedure can be declared within a DEFINITIONS module. Any caller of that procedure
must import an instance of the corresponding interface.

Within a DEFINITIONS module, the body of an INLINE procedure can contain references to procedures
ONLINE or otherwise), signals and interface variables that are components of the same interface.
These references are bound to values in the same instance of the imported interface as the one
supplying the inline procedure itself. References to non-constant components of other interfaces
require that those interfaces be imported by the DEFINITIONS module and all its users (see section
7.4.4).

Interface components with the attribute PRIVATE are visible to the bodies of inline procedures
declared within the same DEFINITIONS module. An inline procedure referencing such components
can be imported into a PROGRAM module in which those components are not visible. Interface
components used only as free variables or default arguments of imported procedures should not be
mentioned in the corresponding USING clauses. For example, suppose that an interface contains the
following declarations:

DomainFault: SIGNAL;

Proc: PROCEDURE [CARDINAL] RETURNS [1'];

N: CARDINAL = 100;

Table: PRIVATE ARRAY [0 .. N) OF POINTER TO T;

114 Chapter 7: Modules, Programs, and Configurations

[Proc: PROCEDURE [i: CARDINAL] RETURNS [11 = INLINE

BEGIN

IF i IN [0 .. N} THEN ERROR DomainFault;
RETURN [IF Table[i] = NIL THEN Proc[;] ELSE Table[i]1'1
END;

Note that the body of an INLINE procedure (lProc) can contain references to constants (Ni, interface
procedures (Proc), signals (DomainFault) and interface variables (Table) in the same interface. If
Deftl is an instance of this interface, Deftl.IProc references Deftl.Table, calls Deftl.Proc, etc. An
importer cannot reference Table directly because of the PRIVATE attribute but can reference it
indirectly through [Proc.

It is not legal for a PROGRAM module Progl to call an inline procedure defined in some other
PROGRAM module Prog2. even if Progl imports a POINTER TO FRAME[Prog2].

7.3.4 Usage hints for INLINE procedures in interfaces *

Expansion of inUne procedures can cause internal data structures of the compiler to grow rapidly;
indiscriminate use of the INLINE attribute can substantially degrade compiler performance or cause
tables to overflow. The current compiler has been organized so that inline expansion is particularly
efficient, and incurs little added overhead, in the following circumstances:

The INLINE procedure, with an arbitrarily complex body, is defined within a PROGRAM

module and called exactly once in that same module. (Thus introducing named procedures
for clarifying and structuring a program can be cheap when such procedures are called only
once.)

The INLINE procedure, defined either in a DEFINITIONS module or a PROGRAM module and
called an arbitrary number of times, is very simple. with no local variables, no named
output parameters, and no side effects.

The debugger cannot set breakpoints within, or display the expanded source text of, an INLINE
procedure (although it can display the local variables resulting from the expansion). Debugging can
be easier if the INLINE attribute is used only as needed and is specified after initial testing has been
successfully completed.

7.4. PROGRAM modules: IMPORTS and EXPORTS

A PROGRAM module may contain

definitions of constants and types Gust like a DEFINITIONS module},
declarations of variables,

actual procedures and signals (chapter 8). and

executable statements of its own (i.e., not part of procedure bodies within it).

At run time, a loaded module (also called an instance of the module-sec. 7.6.3) has a frame which
provides storage for its declared variables and for connections to other modules' procedures and
signals.

Mesa Language Manual 115

These connections are called interface records, and there is one for each interface imported by the
module. The Mesa binding process fills in these interface records with procedure descriptors, signal
codes, and pointers to program frames and exported variables in other modules.

7.4.1. IMPORTS, interface types, and interface records

The IMPORTS list for a program declares which interface records the program needs and associates
them with DEFINITIONS modules (called interface types). Interface records and interface types are
different! A program may only access non-interface elements using an interface type, but can acc;;ess
all elements (both interface and non-interface) when using an interface record

The names of interface records are declared in a PROGRAM module's IMPORTS list. The identifier
preceding a n:" in the list names an interface record, while the name following that same ":" must
name an interface type. In the following example, names ending with Rec specify interface records,
and names ending in Deft specify interface types:

DIRECTORY Deft/: FROM "defsl", Deft2: FROM "defs2";

Prog; PROGRAM IMPORTS IRec: Deft/. I2Rec: Defs2 =
BEGIN ••• END.

Within the body of Prog, references like Deftl.x are only valid if x is a non-interface element of
Deftl.However, IRec.x can refer to any element x of Deftl, whether interface or non-interface.
This distinction is necessary because a call on a procedure, proc. defined in Deftl, must refer to the
actual descriptor in the interface record IRec at run time, not just to its compile-time definitlon.

~~tting the name of an interface record in an IMPORTS list and giving only the name of an
interface type means that the record's name should be the same as the type's. For example, writing

Prog: PROGRAM IMPORTS IRec: Deftl. Deft2 = . .
is the same as writing

Prog: PROGRAM' IMPORTS IRee: Deftl. Deft2: Deft2 = . . .

Then, within the body of Prog, Deft2 refers to an interface record In fact, it is impossible thereafter
to refer to the interface type Deft2, although one can still refer to the interface type Deftl because
its name has not been reused

Sometimes one needs to have access to more than one instance of an interface record at run tipte.
For example, the Mesa compiler needs to access one instance of a symbol table package for the
program that it is compiling, and at least one for the symbol tables for modules included by that
program. This can be done by defining a number of interface records for a single interface type, as
in the following:

DIRECTORY SymDeft: FROM "SymDefs";
PartOjCompiler: PROGRAM IMPORTS mainSym: SymDefs, auxSym: SymDeft =

BEGIN ••• END.

Within the body of PartOjCompiler, one would access an interface element of SymDeft named
LookUp for the main symbol table as mainSym.LookUp, and for the auxiliary symbol table as
auxSym.LookUp.

116 Chapter 7: Modules, Programs, and Configurations

7.4.2. Importing program modules

Any module can include a program module X by naming X in its directory. One can use X to
declare program variables of type POINTER TO FRAME[X]. FRAME[X] is not a valid type because
frames cannot be embedded in other structures. One may obtain a value for POINTER TO FRAME[X]
is from a system procedure as described in the Mesa System Documentation, or by IMPoRTing.

A module can import a program X by naming it in its IMPORTS list. For example,

DIRECTORY XProgl: FROM "XProgl", XProg2: FROM "XProg2";

Prog: PROGRAM IMPORTS lramel: XProgl. XProg2 =
BEGIN ... END.

This has an effect similar to declaring

framel: POINTER TO FRAME[XProgl] = ;
XProg2: POINTER TO FRAME[XProg2] = ... ;

except that these constant frame pointers will be filled by the Mesa binder. (However, the
declaration for XProg2 could not actually be written as a valid Mesa statement because of the
ambiguity inherent in the two occurrences of XProg2 in it)

Such imported program constants are the analogs of interface records. More can be done with them
than with program types Gust as one can access more with an interface record than with an interface
type). In particular, one can access variables and procedures with a frame pointer (as well as the
compile-time constants to which a program type provides access). Also, one can execute the module
instance corresponding to a frame pointer using START and RESTART (sec. 7.8.2) and create additional
instances of it using NEW (sec. 7.8.1).

Accessing values in a program frame as described above treats the frame as a record with its
variables and its procedures as its components. The price paid for such close coupling with a
program is that the importer must be recompiled whenever the program is.

7.4.3. Exporting interfaces and program modules

A module can export an interface if it provides PUBLIC procedures. signals. errors. or variables whose
names and types match those of interface elements in a DEFINITIONS module. In addition. the
program can export itself as part of an interface if its name appears there with an appropriate
PROGRAM type. In all these cases, the compiler checks that the type of each exported element is
assignment compatible (sec. 2.3) with the type of the corresponding interface element.

A single program module need not provide implementations for all the jtems in an interface. This
allows two or more modules to cooperate in completely defining an interface. In such a case, it is
common for each of the cooperating modules to use interfaces elements provided by the others. It
can do so by importing and exporting the same interface.

7.4.4. IMPORTS in DEFINITIONS modules *

Recall from section 7.2 that a definitions module can contain an ImportsList. One interface. say
Deft2. must import another. Deftl. if Deft2 requires access to a nonconstant component of the latter,
e.g., to a procedure (inline or otherwise) or interface variable in Deftl. All interfaces mentioned in
the ImportsList of a DEFINITIONS module must be unnamed. Any importer of Deft2 must also
import an unnamed instance of Deftl; in establishing the final binding. all unnamed instances are
matched. For example:

Mesa Language Manual

Deft2: DEFINITIONS IMPORTS Deftl =
BEGIN

Proc2: PROCEDURE [•••] = INLlNE·
BEGIN
• •• IF Deftl. va,. # v THEN Deftl.Proc[...];
END;

END.

Prog: PROGRAM IMPORTS Deftl, Deft2, AnotherDeftl: Deftl =
BEGIN

Deft2.Proc~ ...]; -- expansion references' Deftl.Proc, not AnotherDeftl.Proc

END.

117

Note that Prog must import an instance of Deftl, even if it makes no other mention of it, and one
instance of Deftl must be unnamed.

7.5. Controlling module interfaces: PUBLIC and PRIVATE

Every name defined in a module possesses an Access attribute, either PUBLIC or PRIVATE (the
module in which a name is defined is called its home module). These are used to determine whether
a name may be referenced when its home module is included by some other module. A PUBLIC

name can always be used; a PRIVATE name cannot generally be used, except by modules which
specify that they SHARE the included (PROGRAM or DEFINITIONS) module. The former modules are
called non-privileged modules, and the latter are call~d privileged modules. A variable's home module
is, of course, privileged .

,
Generally speaking, an Access may be specified

(a) anywhere a name can be declared. This includes normal declarations, named field lists (for
records or parameter lists), preceding SELECT in a record's variant part, and the declaration
for an actual tag in a variant part.

(b) preceding the TypeSpecification in a: type definition.

In addition, an Access may be specified

(c) at the beginning of a module (the GlobaIAccess), to provide a default Access for any
identifier in that module when one is not given explicitly for the identifier.

I

The syntax in the following section is intended to supersede earlier definitions of the same constructs
only by showing where attributes may be inserted. Otherwise, the earlier versions are correct. Each
syntax definition is followed by examples of its use.

7.5.1. Access attributes in declarations

The following three subsections deal with the placement of Access options in declarations, field lists,
and in variant records.

118 Chapter 7: Modules, Programs, and Configurations

7.5.1.1. Declared names

The fonn of Declaration specifying an Access for its declared names is as follows:

Declaration :: = IdList: Access TypeSpecification Initialization;

Examples:
ql. q2: PUBLIC INTEGER ... 0;
Mine: PRIVATE TYPE = {yes, no, maybe};

Mine can only be used in (i.e., seen from) privileged modules. To non-priviliged modules it is not
visible at all.

7.5.1.2. Names specified infield lists

The fonns for specifying Access in a NamedFleldLlst (sec. 3.4.1) are as follows:
NamedFieldList :: =

Field Desc ription

Example:
blk: PUBLIC RECORD

[
a: INTEGER,

IdList: Access FieldDescription I
NamedFieldList, IdList : Access FieldDescrlptlon

.. -.. -
TypeSpecification I
TypeSpecification ... Expression

b: PRIVATE INTEGER'" 1234,
c, d; BOOLEAN,
e: PRIVATE BOOLEAN
];

A non-privileged module could only access components a. c, and d in this case, and then only using
qualified references such as blk.a. Within a non-privileged module, extractors and constructors
cannot be employed for a record type with any PRIVATE components.

7.5.1.3. Names for variant parts and for tags in variant records

The fonns for specifying Access in a VariantFieldList or Tag (sec. 6.3.1) are as follows:
VariantFieldList .. -.. -

CommonPart identifier: Access VariantPart I
VariantPart I
NamedFieldList
UnnamedFieldList

CommonPart :: = empty I
NamedFieldList ,

VariantPart :: = SELECT Tag FROM
VariantList -- same as in sec. 6.3.1
ENDCASE

Tag :: = identifier: Access TagType I
COMPUTED TagType

TagType :: = TypeSpecification I *

Mesa Language Manual

Example:
VarRec: PUBLIC TYPE = RECORD

[
link: POINTER TO VarRec, -- public common component
vpl: SELECT tg/: PRIVATE Etype FROM -- public variant. private tag

];

adjl =)
[
you Get: Thisltem,
iGel: PRIVATE SELECT tg2: * FROM -- a private variant part

ENDCASE

1
adj2 =) ..•
ENDCASE

119

Suppose a non-privileged module has a record of type VarRec. Then it could access variant part vpl
but neither tag tgl nor variant part iGel. This only prevents it from referring to tgl by qualification;
it may still use a discriminating SELECT (which implicitly accesses 19l) for records of type VarRec.
Thus, an adjl arm of such a WITH ••• SELECT could access component you Gel. However, it would be
unable to access component iGel in any case.

Notice that the only way that the tag of a variant can be changed is by writing a variarit constructor
(sec. 6.3.3).

7.5.2 Access attributes in TYPE definitions

The form for specifying a Typeldentifier whose defined type has an explicit Access is as follows:
Declaration :: = .. . lldList : TYPE = Access TypeSpecification ;

Example:

OurType: PUBLIC TYPE = PRIVATE RECORD[compJ.: INTEGER, comp2: BOOLEAN];

A non-privileged module could declare records of type OurType, but it could not access the record
components. The module could. however, pass values of type OurType as parameters, receive them
as results from procedures, and use them as operands of a fundamental operation (~, =, #).

The Access in this form could be specified as PUBLIC, but this would be pointless (if OurType is
PUBLIC then its type would be PUBLIC by default; if OurType is PRIVATE then its type attribute is
irrelevant). Note: Only names specified within the defined type are affected by this form of
attribute specification. Consequently, it is intended for use only when defining record types and is
just a factorization: the PRIVATE could have been written after each inner colon; also, specific fields
can be made accessible by writing PUBLIC internally, as shown below:

AlmostPrivateType: PUBLIC TYPE = PRIVATE RECORD

[
compl: PUBLIC INTEGER, .- overrides outer PRIVATE
comp2: BOOLEAN
];

120 Chapter 7: Modules, Programs, and Configurations

7.5.3. Default global access

If, as in section 7.4.1, a declaration specifies an Access for a name, then that unilaterally
determines its Access. If not, the given item receives a default Access. The default may be
specified by the programmer in the GlobalAccess for a module; otherwise one is assumed (for a
program module, the normal default is PRIVATE, for a DEFINITIONS module, it is PUBLIC). For
example.

M I: PROGRAM = PUBLIC
BEGIN

-- specified GlobalAccess

END.

M3: PROGRAM =
BEGIN

END.

-- PRIVATE (by default)

7.5.4. Accessing the PRIVATE predefined symbols of other modules *

A module may be privileged to use PRIVATE items in an included module by using a Shares clause:
this contains a list of the (included) module names whose PRIVATE symbols it needs to access.
Consider the Friendly module below:

DIRECTORY

SpeciaJDejs: FROM "specialdefs",
StandardDefs: FROM "standarddefs",
PrivaleDejs: FROM "private";

Friendly: PROGRAM SHARES PrivateDejs, SpeciaJDejs =
BEGIN

END.

In this case, Friendly can use PRIVATE symbols defined by PrivateDejs and SpeciaJDejs but not the
PRIVATE symbols of StandardDejs. There is no particular significance to the ordering of module
names listed after SHARES. Any kind of module may use SHARES (but it ought to be one that is
"friendly", to say the least).

7.6. The Mesa configuration language, an introductory example

This section discusses C/Mesa, the Mesa configuration language, first by example. and then more
rigorously by syntactic definition and detailed semantics. It ends with a number of detailed

. examples which explore some of the more intricate parts of C/Mesa.

We first present an example consisting of three Mesa modules:

An interface (a DEFINITIONS module),

an implementor for it (a PROGRAM module),

and a client for the implementation (also a PROGRAM module).

The example is presented here to show the relationships among definitions, implementors, and
clients. Following it will be a sequence of example configurations for systems constructed from this
implementor and client The line numbers in the left margin are provided for ease of reference and
are not part of the source code. First the interface:

Mesa Language Manual

dl: LexiconDefs: DEFINITIONS =
d2: BEGIN
d3: FindString: PROCEDURE [STRING] RETURNS [BOOLEAN];
d4: AddString: PROCEDURE [STRING];
d5: PrintLexicon: PROCEDURE;
d6: END.

7.6.1. Lexicon: a module implementing LexiconDefs

The following module (Lexicon) implements the LexiconDefs interface. That is,

121

(a) Lexicon declares PUBLIC procedures FindString. AddString, and PrinlLexicon, which have
procedure types conforming to their counterparts in the DEFINITIONS module;

(b) Lexicon EXPORTS the interface LexiconDefs.

Lexicon IMPORTS three interfaces: SystemDefs, IODefs, and StringDefs. The USING clauses of the
DIRECTORY note which procedures are defined in each.

Details on these and other Mesa system interfaces are contained in the Mesa System Documentation.

The code for Lexicon follows. For reading convenience, any references to procedures from imported
interfaces are in boldface.

il: DIRECTORY
i2: IODefs: FROM "iodefs" USING [WriteLine],
i3: LexiconDefs: FROM "lexicondefs",
i4: .. StringDefs: FROM "stringdefs" USING [AppendString],
is: SystemDefs: FROM "systemdefs" USING [AlIocateH eapNode, AlIocateH eapString];
i6:
i7: Lexicon: PROGRAM
i8: IMPORTS SystemDefs, IODefs, StringDefs
i9: EXPORTS LexiconDefs =
ilO:
ill: BEGIN
il2:
il3: Node: TYPE = RECORD [Ilink. rlink: NodePtr, string: STRING];
il4: NodePtr. TYPE = POINTER TO Node;
ilS: Comparative: TYPE = {lessThan, equalTo. greaterThan};
il6:
il7: root: NodePtr ~ NIL;
il8:
il9: FindString: PUBLIC PROCEDURE [s: STRING] RETURNS [BOOLEAN] =
i20: BEGIN RETURN [SearchForString[root. s]]; END;

i2l:
i22: SearchForString: PROCEDURE [n: NodePtr, s: STRING]
i23: RETURNS [found: BOOLEAN] =
i24: BEGIN
i2S: IF n = NIL THEN RETURN [FALSE];
i26: SELECT Lexica/Compare [SO n.string] FROM
i27: lessThan => found'" SearchForString[n.llink. s];
i28: equalTo => found'" TRUE;
i29: grealerThan => found'" SearchForString[n.rlink. s];
i30: ENDCASE;
Bl: RETURN [found];
B2: END;
i33:

122

i34:
i35:
i36:
i37:
i38:
i39:
i40:
i41:
i42:
i43:
i44:
i4S:
i46:
i47:
i48:
i49:
i50:
iSl:
iS2:
iS3:
i54:
iS5:
i56:
iS7:'
i58:
iS9:
i60:
i61:
i62:
i63:
i64:
i65:
i66:
i67:
i68:
i69:
i70:
i71:
i72:
i73:
i74:
i75:
i76:
i77:
i78:
i79:
i80:
i81:
i82:
i83:
i84:
i8S:
i86:
i87:
i88:
i89:
i90:
i9l:

Chapter 7: Modules, Programs, and Configurations

AddString: PUBLIC PROCEDURE [s: STRING] =
BEGIN InsertString[root. S]; END;

InsertString: PROCEDURE [n: NodePtr. s: STRING] =
BEGIN
NewNode: PROCEDURE RETURNS [n: NodePtiJ =

BEGIN OPEN SystemDe/s;
n 4- AllocateHeapNode[slzE [Node]];
nt 4- Node [string: AllocateHeapString[s.lenglh].llink: Nil. rlink: NIL];
SlringDe!s.AppendString[n.string. s];
RETURN;
END;

IF n = NIL THEN root 4- NewNode[] -- thenjustretum
ELSE

SELECT LexicalCompare[s. n.string] FROM

END;

lessThan => IF n.llink # NIL THEN InsertString[n.llink. s]
ELSE n.llink 4- NewNode[];

equalTo = > NULL; -- already there; just return
greaterThan => IF n.rlink # NIL THEN InsertString[n.rlink. $]

ELSE n.rlink 4- NewNode[];
ENDCASE;

LexicalCompare: PROCEDURE [sl, s2: STRING] RETURNS [c: Comparative] =
BEGIN
n: CARDINAL = MIN [sl.length. s2.1ength];
i: CARDINAL;
FOR i IN [O •• n) DO

SELECT LowerCase [sl [i]] FROM
<LowerCase[s2 [ill => RETURN [lessThan);
>LowerCase[s2[i]] => RETURN[greaterThan];
ENDCASE;

ENDLOOP;
c 4- SELECT sl.length FROM

<s2.1ength = > lessThan, -- sl is shorter than s2
>s2.1ength => greaterThan. -- s1 is longer than s2
ENDCASE == > equalTo; --lengths are the same

RETURN[C];
END;

lower: PACKED ARRAY CHARACTER[' A .. 'Z] OF CHARACTER =
['a,'b 'c 'd 'e 'f 'g 'h '}' 'J' 'k 'I'm 'n '0 'p 'q 'r 's 't,'u 'y 'w 'x 'y 'Z]· t , , , , , , , , " , , , , , " """

LowerCase: PROCEDURE [c: CHARACTER] RETURNS [CHARACTER] =
BEGIN RETURN [IF C IN ['A . .'Z] THEN lower[c] ELSE c); END;

PrintLexicon: PUBLIC PROCEDURE =
BEGIN PrinINode[rool] END;

PrintNode: PROCEDURE[n: NodePtiJ =
BEGIN

END.

IF n = NIL THEN RETURN;
PrintNode[n.llink];
IODe/s. WriteLine[n.string];
PrintNode [n.rlink];
END;

Mesa Language Manual 123

7.6.2. LexiconOient: a client module

The module, LexiconClient, below is a client for Lexicon and IMPORTS LexiconDefs. It is also a
client for the interface IODefs (and also uses the constant CR defined in IODefs in section 7.1).
The program provides a simple terminal interface to a user for testing Lexicon.

el: DIRECTORY
c2: IODefs: FROM "iodefs" USING [CR, ReadChar, ReadUne, WriteChar, WriteLine],
c3: LexiconDe/s: FROM "lexicondefs" USING [AddString. FindString, PrintLexicon];·
c4:
cS: LexiconClient: PROGRAM IMPORTS IODefs, LexiconDefs =
c6:
c7: BEGIN OPEN IODefs, LexiconDefs;
c8:
c9: s: STRING ... [80];
clO: ch:CHARACTER;
cll: DO -- loop until stopped by user typing q or Q (last case below).
el2: WriteChar[CR]; WriteLine["Lexicon Command: "];
c13: cil ... ReadChar[];
el4: WriteChar[ch];-- Echo the character (ReadChardoesn't).
cIS: SELECT ch FROM
c16: 'f. 'F =>
el7: BEGIN
c18: WriteLine["ind: "]; -- terminal will read: "find: "
c19: ReadLine[s]; -- s will contain the string read from the terminal
c20: IF FindString[s] THEN WriteLine[" -- found"]
c21: ELSE WriteLine[" -- not found"];
c22: END;
c23: 'a, 'A =>
c24: BEGIN
c25: WriteLine["dd: "]; -- terminal will read: "add: "
c26: ReadLine[s];
c27: AddString[s];
c28: END;
c29: 'p, 'P = >
c30: BEGIN
c3l: WriteLine ["rint lexicon"]; -- terminal will read: "print lexicon"
c32: WriteChar[CR}; PrintLexicon[];
e33: END;
e34: 'q, 'Q =>
e35: BEGIN
e36: WriteLine["uU"]; WriteChar[CR); -- terminal will read: "quit"
e37: STOP;
e38: END·
c39: ENDCASE = > WriteLine I" Commands are Find, Add, Print lexicon, and Quit"];
c40: ENDLOOP;
c41:
e42: END.

7.6.3. Binding, loading, and running a configuration: an overview

A configuration description, a "program" written in C/Mesa, describes how a set of Mesa modules
are to be bound together to form a configuration. This binding is accomplished by "compiling" the
configuration description (or, configuration for short) and results in a binary configuration deSCription
(a BCD).

124 Chapter 7: Modules, Programs, and Configurations

The simplest (or atomic) BCD is the object module for a Mesa program module. Thus, the Mesa
compiler produces the simplest BCDs, and the C/Mesa compiler (also called the Mesa Binder)
produces complex BCDs from simpler ones. Indeed, a configuration may combine both atomic and
non-atomic BCDs together into a single, new BCD. For these reasons, the object modules produced
by the Mesa compiler have the same form of names as the output of the Binder, i.e., names of the
form "BasicName.bcd".

Once a BCD has been created, it can be loaded and run.

Loading is a sequence of two actions. The first makes an instance of the configuration by allocating
a frame for each atomic module in the BCD. Each frame has space for the module's static variables
(those declared in the main body of the module) and some extra space for information used by the
Mesa system. Imported procedures and variables are accessed via links. Space for these links is
allocated either in the frame or in the code of the module.

The second part of loading completes the binding process by filling in the links for each module
instance in the configuration instance. Some of these links will "point to" procedures and variables
in the same configuration. Others will "point to" procedures and variables in the running system in
which the configuration is being loaded.

Once a configuration is loaded, each module instance in it has all its interfaces bound. However, no
code has been executed in the instances, so global variables are not initialized, and no mainline
statements have executed. STARTing (sec. 7.8.2) an instance executes any code for initializing static
variables and also executes its mainline code. For correct operation, this must occur before any of
its procedures are used or before any of its global variables are referenced. If a module is not
explicitly STARTed before one of its procedures is called, then a trap occurs, and it is automatically
started. Once it STOPS (sec. 7.8.2), the procedure call is allowed to proceed. Subsequent procedure
calls will not repeat this trap and auto-initialization sequence. Section 7.8 details how these
mechanisms generalize for configurations.

7.6.4. A configuration descriptionfor running LexiconQient

The following configuration will bind Lexicon. LexiconClient. and other necessary modules and can
be used to start the client program running. The comments to the right of each module name
indicate which interfaces are imported and exported by that particular module; they are not part of
Configl. This configuration is completely self-contained: all the needed imports are satisfied by
interfaces exported from modules which are part of the configuration.

Configl: CONFIGURATION
CONTROL LexiconClient =

BEGIN
Fsp;
IOPkg;
Strings;
Lexicon;
LexiconClient;
END;

EXPORTS SystemDefs
EXPORTS IODeft
EXPORTS S tringDefs

-- IMPORTS SystemDefs. IODefs. StringDefs EXPORTS LexiconDeft
IMPORTS IODefs. LexiconDefs

To see that this configuration is completely self-contained, notice that LexiconClient imports IODeft,
which is exported by IOPkg. and imports LexiconDeft, which is exported by the instance of
Lexicon. Similarly. the other instances' import requirements are satisfied by some exported interface
in Configl.

Mesa Language Manual 125

7.7 C/Mesa: syntax and semantics

The following is the complete syntax for C/Mesa. It bears strong resemblance to Mesa itself, but
this grammar describes a completely separate . language. A phrase class beginning with a C indicates
a syntactic unit that is unique to C/Mesa. All the other units have the same syntax (but not
necessarily exactly the same semantics) as they do in Mesa itself.

ConflgDescrlption :: = CDirectory .. optional
CPacking
Configuration. . note the final period

COl recto ry :: = .. same as in Mesa, only no USING clauses
Configuration :: = identifier: CHead =

CBody
CExports :: = empty I EXPORTS Itemllst
CExpresslon :: = CPrlmary I CExpresslon THEN CRlghtSlde
CleftSlde :: = Item I [Item list]
CBody :: = BEGIN CStatementSerles END

CHead :: = CONFIGURATION CLinks Imports CExports ControlClause
ControlClause :: = CONTROL Identifier I empty
Clinks :: = empty I LINKS: CODE I LINKS: FRAME

CPacklng :: = empty I CPackSerles i
CPacklist :: = PACK IdUst
CPackSerles :: = CPackUst I CPackSerles j CPackllst
CPrimary
CRlghtSlde

:: = CRlghtSide I CPrlmary PLUS CRlghtSlde
:: = Item litem [] CLinks litem [Idllst] Clinks

CStatement :: = CleftS Ide ... CExpresslon I
CRightSlde I
Configu ration

CStatementSerles :: = CStatement I

Imports
Item
Itemllst

CStatementSerles ; I
CStatementSeries ; CStatement

:-: = empty I IMPORTS Itemllst
:: = Identifier I identifier: Identifier
:: = Item IltemUst , Item

We will use the term "component" to refer to the parts of a configuration; i.e., for both atomic
modules and configurations containing several modules. When necessary, the kind of component
will be expressly given.

Similarly, we will use the term "interface" to stand for an interface record or a module instance (if
used in discussing imports or exports). and we will distinguish as necessary. However, "interface"
will never include or imply the term "interface type" (sec. 7.4.1).

Lastly. we will need to distinguish between instances of components and their prototypes (the BCD
files) from which such instances are made. Hence, a program prototype is the BCD file for a Mesa
program module. and a configuration prototype is the analog for configurations. If the term
prototype is used by itself, it includes both cases.

The CPacking and Clinks clauses in the syntax are directives to the Mesa Binder. CPacking
identifies modules whose code should be packed together for swapping purposes. Clinks specifies

126 Chapter 7: Modules, Programs, and Configurations

for a module or a configuration whether links to imported interfaces should be stored in the frame
or in the code. The use and implications of .these optional clauses is described in Appendix D.

7.7.1. IMPORTS, EXPORTS. and DIRECTORY in C/Mesa

For completely self-contained, simple configurations like Configl, a configuration dej;Cription is
primarily just a list of component names. An instance of each named component wiJI be part of the
configuration, and if a component imports any interfaces, they will be supplied by those exported
from other components of the configuration.

Configurations need not be self-contained, however, and may themselves import interfaces to be
further imported by their components. In this way, subsystems can be constructed with some
imported interfaces unbound. Loading such a configuration or naming it as a component in another
configuration will supply the necessary interfaces. Furthermore, a configuration can make exported
interfaces available for importation by other modules and configurations. For example, the
interfaces SystemDefs, IODefs, and StringDejs needed by Configl would normally be supplied by a
pre-existing Mesa system configuration. Therefore, it is really not necessary to include instances of
Fsp. IOPkg, and Strings in Configl. Instead, it can just import them:

c2.1: Config2: CONFIGURATION
c2.2: IMPORTS SystemDefs, IODefs, StringDejs
c2.3: CONTROL LexiconClient =
c2.4: BEGIN
c2.5: Lexicon;
c2.6: LexiconClient;
c2.7: END

The imports clause in a configuration serves the same purpose as in a program module. The rule
for importing is: If some component named in a configuration imports SomeDejs, and SomeDejs is
not exported by a component in the configuration, then it must be imported. For example,
SystemDejs did not have to be imported into Configl, but it did have to be imported into Config2.

The rule for exports is simpler: If a component in a configuration exports an interface, that
interface may also be exported another level from the configuration. It is not required that it be
exported, however. This important feature enables one to control what is exported from a
configuration and what is to be hidden from external view.

None of the example configurations given so far have had a DIRECTORY section. This is because the
default association of a component named Prog is to a file named "Prog.bcd" in which the
ModuleName is also Prog. Since this is often the case, the programmer normally does not need to
supply one. A DIRECTORY part would be needed if the file did not have such a defaultable name.
For example:

DIRECTORY
Prog: FROM "OldProgFile";

could not be omitted if the component named Prog is contained in the file "OldProgFile.bcd",
rather than in "Prog.bcd".

7.7.2 Explicit naming. IMPORTS. and EXPORTS *

In Mesa, names may be given to the interface records in an IMPORTS list (sec. 7.4.1); the same is true
in a configuration description. These names can then be used to supply the interfaces needed by
component instances in the configuration. The notation for explicitly supplying interfaces to a

Mesa Language Manual 127

component is similar to that for parameter lists in Mesa (except that there is no keyword notation for
explicit imports parameter lists). For example, lines c2.1 through c2.5 above could have been written
as

c2a.1: Config2A: CONFIGURATION
c2a.2: IMPORTS alloc: SystemDe/s, io: IODe/s, str: StringDeft
c2a.3: CONTROL LexiconClient =
c2a.4: BEGIN
c2a.5: Lexicon [aUoc. io, str];

The interfaces listed after Lexicon must correspond in order and (interface) type with the IMPORTS

list for Lexicon (look at Lexicon in sec. 7.6.1 to check this).

A name may also be given to each component instance in a configuration by preceding the instance
with "identifier :". This facility is necessary to distinguish multiple instances of the same
prototype from one another. For example, we could name the Lexicon instance in line c2a.S as
follows:

alex: Lexicon [alloe, io, st1j;

Lexicon exports an interface whose type is LexiconDeft, and that interface record can also be named.
The fol~(}wing further modification to line c2a.5 names it lexRec:

lexRec: LexiconDeft ... alex: Lexicon [alloc, io. st1j;

Here, as in Mesa, the type of lexRec follows the colon in the declaration, and lexRec is assigned the
(single) interface exported by Lexicon. However, the type LexiconDeft is not actually necessary (it is
inferred from Lexicon's EXPORTS list), and the line could have been shortened to

lexRec ... alex: Lexicon [alloe, io, st1j;

Using all these explicit naming capabilities, we can now write a new version of the configuration in
which none of the- C/Mesa default naming is used:

c3.1: Config3: CONFIGURATION
c3.2: IMPORTS alloc: SyslemDe/s, io: IODe/s, sir: StnngDeft
c3.3: CONTROL lexClient =
c3.4: BEGIN
c3.S: lexRec: LexiconDefs ... alex: Lexicon [alloe, io. st1j;
c3.6: lexClient: LexiconClient[io. lexRec];
c3.7: END.

An exported interface like lexRec need not always be set as the result of including a component
instance like alex in the configuration. One can also assign interface records to one another as in
the following two (equivalent) lines:

anotherLexRec: LexiconDefs ... lexRec;
anotherLexRec ... lexRec;

TIle form of CRightSide in these two statements only copies lexRec, whereas ones like line c3.5
above involve a "caU" on a component prototype. The result of that "call" is an instance of the
component, and a set of results, the interface records exported by it

7.7.3. Default names for inter/aces and instances *

A component instance that is not explicitly given a name is given a default name equal to the name

128 Chapter 7: Modules, Programs, and Configurations

of the component prototype. Thus, the body of Canfig2 is treated as if the programmer had written:

BEGIN
Lexicon: Lexicon:
LexicanClient: LexiconClient:
END.

Similarly, an unnamed interface is given a default name equal to the name of its interface type. So,
another equivalent body for Canfig2 is

BEGIN
LexicanDejs: LexiconDejs +- Lexicon: Lexicon []:
LexiconClient: LexiconClient:
END.

The empty imports parameter list in II Lexicon []" specifies that a new instance of the prototype
Lexicon is to be created. If the empty imports list were not there, the binder would interpret the
appearance of Lexicon (the one after the colon) as the name of an already existing interface (not of
an already existing module instance). When no assignment is specified, the empty imports
parameter list is not necessary, as shown in the earlier examples.

Normally, omitting an imports parameter list (or, equivalently, specifying an empty list) means that
the binder should use the default-named interfaces needed by that component instance. Thus, we
could rewrite a completely explicit (and very wordy, but equivalent) version of Conjig2:

c2x.l: Conjig2X: CONFIGURATION
c2x.2: IMPORTS SystemDejs: SystemDefs, IODejs: IODefs, SlringDejs: StringDejs
c2x.3: CONTROL LexicanClient =
c2x.4: BEGIN
c2x.5: LexicanDejs: LexiconDejs +- Lexicon: Lexicon [SyslemDejs, IODefs, SlringDejs];
c2x.6: LexicanClienl: LexiconClient[IODefs, LexiconDejs];
c2x.7: END.

Notice that the defaults greatly simplify a configuration, but that they also obscure a great deal of
machinery concerned with naming things. It is important that the programmer not completely forget
these details. Otherwise one could commit errors 'by not distinguishing between interface records
and interface types, or between component instances and prototypes. For instance, this could be a
problem if there are multiple component instances. Therefore. one is well advised to assign unique
names to the instances.

7.7.4. Multiple exported interfaces from a single component *

A component can export more than a single interface. Assigning these exported interfaces to
interface records is done using a Mesa-like extractor (sec. 3.4.5). For example. if we had a program
module StringsAndlO that exported both StringDejs and IODejs. we could use it in a modified
Conjig2 as follows:

c4.1: Config4: CONFIGURATION
c4.2: IMPORTS alloc: SystemDejs
c4.3: CONTROL LexicanClient =
c4.4: BEGIN
c4.5: [str: StringDefs, io: IODejs] +- StringsAndlO []:
c4.6: Lexicon [allac, ia, st1j;
c4.7: LexicanClient[io, LexiconDejs]:
c4.8: END.

Line c4.5 assigns the exported interfaces obtained by instantiating StringsAndlO (that is why it has

Mesa Language Manual 129

an explicit. although empty imports parameter list following it) and declares their types as well. It
would be equally correct to write instead

[str, io] ... StringsAndlO [];

In this case the types for. io and sir would be inferred from the types of the interface records
exported by SlringsAndlO. However, if the programmer had written instead,

rio, SIr] ... SlringsAndlO [];

with the positions of io and sir reversed. that would have been accepted. but would have caused
errors in both lines c4.6 and c4.7 because their inferred types would not match those explicit imports
parameter lists. Be cautious when doing this.

Default names could also have been used for the exported interfaces in line c4.5, and Conflg4 could
simply have been written as

c4a.l: Config4A: CONFIGURATION
c4a.2: IMPORTS SyslemDefs
c4a.3: CONTROL LexiconClient =
c4a.4: BEGIN
c4a.5: StringsAndlO;
c4a.6: Lexicon;
c4a.7: LexiconClient;
c4a.8: END.

This would assign the exported interfaces to the default-named records StringDefs and IODe/s and
would use them in the defaulted import parameter lists for Lexicon and LexiconClient. Line c4a.S
could also show what StringsAndlO exports using the default names for its exported records. This
would give rise to the statement:

[StringDefs, IODefs] ... StringsAndIO[];

Cases like this require that the user be aware of the distinction between interface records and
interface types: StringDefs names an interface record here, but in line c4.5, it names an interface
type.

7. 7.5. Multiple components implementing a single interface *

An exported interface can be the result of contributions by a number of components. Think of the
interface as a logical unit that may be implemented by a number of cooperating physical units (Le.,
modules and configurations). For example, assume that Lexicon is divided into two modules
LexiconF A and LexiconP, with LexiconF A providing the procedures FindString and AddSlring, and
LexiconP providing PrintLexicon. Each exports LexiconDefs, but neither fully implements that
interface. Still, LexiconClient will see a single interface in the following:

cS.l: Config5: CONFIGURATION
cS.2: IMPORTS SystemDefs, IODefs, StringDefs
cS.3: CONTROL LexiconClient =
cS.4: BEGIN
cS.S: lexRec: LexiconDefs ... LexiconFA []; -- use default imports
cS.6: lexRec ... LexiconP[]; -- merge interface contributions
cS.7: LexiconClient(IODefs, lexRec];
cS.8: END.

The two separate assignments to lexRec above actually merge the interface elements exported by the
two modules. This merging does not allow any duplication of elements, and if both modules
exported PrintLexicon. for example, an error would be generated during processing of Config5 by

130 Chapter 7: Modules, Programs, and Configurations

the Binder.

The user may control the merging of interfaces himself using the PLUS operator. To obtain the same
effect as above (but by explicit specification), one could write

lexRecF A +- LexiconF A []; one part
lexRecP +- LexiconP [); the other part
lexRec +- lexRecF A PLUS lexRecP; the merge
LexiconClient[IODefs, lexRec); same as line cS.7

If the programmer wanted to use the original Lexicon, but use LexiconPs PrintLexicon in the
interface instead of Lexicon's, he could use the THEN operator:

lexRec +- Lexicon []; defines a complete interface
lexRecP +- LexiconP []; defines one procedure
lexRecNew +- lexRecP THEN lexRec; this order is important
LexiconClient[IODefs, lexRecNew];

The THEN operator makes an interface that includes all the elements defined by lexRecP (the left
operand) together with those from lexRec (the right operand) that do not duplicate any in lexRecP.
This could be useful if one simply wanted to test a new version of PrintLexicon procedure without
altering Lexicon itself during the debugging period. Also, one could use THEN to provide a number
of alternative PrintLexicon procedures, with the standard one incorporated in Lexicon.

7. 7.6. Nested (local) configurations

Configurations may be defined within configurations, much like local procedures (sec. 5.7) may be
defined within other procedures in Mesa. They can then be instantiated and parametrized, and they
can export interfaces Gust like any configuration).

Nested configurations can be used to hide some of the interfaces exported by components in a
configuration. For ~xample, suppose that multiple instances of some component ProgMod were
needed in a configuration, and further suppose that ProgM od exports the interface ProgDefs. Even
if none of the exported ProgDefs interface records are needed in the configuration, they would each
have to be given a unique name to avoid an interface merging error (sec. 7.7.5).

This could be avoided by defining the following nested configuration:

NonexportingPM: CONFIGURATION = BEGIN ProgMod END.

Using NonexportingPM in place of ProgMod avoids the duplicate interface problem because the
local configuration does not export the interface ProgDefs produced by instantiating ProgM od within
~ .

Nested configurations can also be used to avoid writing sequences of ClMesa statements more than
once. By conecting such a sequence in a nested configuration, one can get the effect of writing the
whole sequence simply by instantiating the configuration.

The scope rules for names in C/Mesa allows a nested configuration to access interfaces and other
(also nested) configurations outside it. So, one configuration can make instances of others.
However, in its IMPORTS Jist, a nested configuration must name any interfaces that its components
import but which are not satisfied within it. That is, interfaces are never automatically imported into
a nested configuration.

Mesa Language Manual 131

7.8. Loading modules and configurations

This section describes how configurations are loaded and run. Simple, atomic modules are discussed
first, and then more general configurations.

Loading and running an atomic module is a sequence of four actions:

(1) loading its object code (from the .BCD file),

(2) allocating a frame for its static variables,

(3) filling in procedure descriptors for imported procedures and frame pointers for imported
modules,

(4) initializing the module's variables and executing its mainline code.

Actions (1), (2), and (3) are acomplished by system procedure, documented in the System
Documentation. Action (4) can be accomplished by explicitly starting the instance or by means of a
trap on the first call to any of its procedures (both of these methods are described below).

7.B.l. The NEW operation/or making copies o/modules

The, syntax for the NEW operation is
Expression :: = ••. 1 NEW Variable

The Variable may be the name of an imported frame pointer, a pointer to the frame of a program
module, a program variable, or the module name of the module containing the NEW statement For
example:

proglnst1, proglnsa: POINTER TO FRAME [Prog];

proglnsa ... NEW proglnst1;

The new instance is only a copy of the frame insofar as its interface records are concerned. lit all
other respects it is uninitialized, just like a new instance. In particular, it must be started to supply
its program parameters (if any) and to initialize its global variables. At the time the copy is made, it
will have exactly the same bindings as the original. If some of the globally available interface
records maintained by the loader (sec. 7.8.2) later change, the copy may be bound differently than
the original.

If a module imports a prograIll Pimpi (sec. 7.4.2), the operation "NEW Pimp!' copies Pimp/.

A program module's type may be declared in a definitions module in the same way as a procedure's
type is. Such a defined program is part of the interface defined by that definitions module and may,
therefore, be imported by another module as part of that interface. Then, copies of that module can
be made using the NEW operation. For example, assume that the following declaration appears in
the definitions· module, Deft:

ExportedProg: PROGRAM [i: INTEGER1;

Any program that imports Deft will then have access to a value named ExportedProg which will
have been bound (in step (3) of the loading process) to an instance of a program whose parameter
types conform with those of ExportedProg. The only operation that a program can perform using
this value is to START it, RESTART it, or make a copy of it using "NEW ExportedProg". In summary,
a program imported as part of an interface behaves like a value that is a pointer to a frame.

132 Chapter 7: Modules, Programs, and Configurations

If a program, say Prog. wishes to create a copy of itself, it can say:

copy: POINTER TO FRAME [Prog];

copy +- NEW Prog;

7.8.2. How the loader binds interfaces

Each instance of an atomic module or of a configuration may export some interfaces. To make
these exported interfaces available for importation by other instances, the loader maintains a single,
simple global table of all the exported interfaces. If any duplicates are created as the result of a
NEW, they are merged into the already existing interface records as if a THEN (sec. 7.7.5) had been
done.

The moral here is that complicated binding to hide interfaces, etc. must be done using the binder,
and only the simplest, most straightforward forms should be used at loading time.

7.8.3. STARTing. sToPping. and RESTARTing module instances

The START operation suspends the execution of the program or procedure executing it and transfers
control to a new, uninitialized instance of an atomic module. Additionally, if the program instance
being started requires parameters, they are supplied as part of the START. Similarly, if the program
being started is specified to return results (more details below), then the START operation may appear
in a RightSide context, and the returned value is the value of the operation. Its syntax is

StartStmt :: = START Calli . . .

StartExpr :: = START Calli . . .

The variable following the word START must represent a global frame pointer or program variable;
i.e., its type must conform to some POINTER TO FRAME type or PROGRAM type. Here are some
examples of its use:

START proglnst;
START ExportedProg[5+j);
x +- START progWithResu[t[firstArg: a. secondArg: b); --keyword parameter list

When a program is started, it first executes code to initialize any static variables that were declared
with initialization expressions. The initializations are done in the order in which the variables were
declared in the program. Also, they may call both local and imported procedures (since descriptors
for all imported procedures are filled in as part of the NEW operation - sec. 7.7.1).

After all initialization expressions are complete, the mainline statements of the program commence
executing. Control can then return to the caller (the program or procedure which initiated the
START) in one of two ways: the started program may STOP or it may RETURN with results (however.
it cannot use both).

A program that executes a STOP can be RESTARTed later. RESTART is distinct from START primarily
because it cannot pass parameters as START can. If a program does not return results, it either by an
explicit use of STOP or by running off the end of the program.

If a program declares (in its ModuleHeader) that it returns results, it uses RETURN statements just
as does a procedure (and it cannot use STOP). A RETURN from a program does not deallocate its
global frame. The· syntax for REST ART and STOP is

RestartStmt

StopStmt

Mesa Language Manual

:: = RESTART Variable I ...
:: = STOP I ...

133

The Variable following RESTART must be' a pointer to the frame for a program instance or a
program variable, just as for START. A program that RETURNS results or has run off the end cannot
be RESTARTed. Attempting to do so will result in a run time error.

A module instance can also be STARTed "automatically". If a call is made on a procedure in an
instance that has not yet been started, a start trap occurs. If the module does not take parameters
when started, then it is started· by the Mesa start-trap handler. When it STOPS or RETURNS, the trap
handler completes the procedure call that was in progress when the trap occurred. (See the next
section for further discussion of the start trap for configurations.)

Warning: A module must be STARTed either explicitly or implicitly before any attempt is made to
access its variables through a POINTER TO FRAME.

7.8.4. Loading and starting configurations

By using system routines, one can also make instances of configurations that are more than simple,
atomic modules. A non-atomic configuration cannot be STARTed (what would it mean to start
one?), but its CONTROL module can (if it has one). Basically, the CONTROL module acts as the
representative for the whole configuration (since a C/Mesa configuration description does not
contain executable Mesa statements). Thus, a program that STARTS the CONTROL module for a
configuration has essentially STARTed the configuration. If the order of starting some of the
instances in a configuration is important or if they take arguments when started, its CONTROL module
should START them explicitly.

The start trap works for configurations as well as for atomic modules. If a start trap occurs for a
module M in configuration C with control module eM, then the trap handler automatically starts eM
rather than M. If the handler discovers, however, that eM has already been started, it will start M
(since eM would have started M if it had intended to). In fact, if the handler starts eM but still
finds M unstarted when eM STOPS, it will start M itself before finally returning from the trap. Then
the procedure call that caused the trap will be allowed to go through.

Fme points:

If an attempt is made to REST ART a program which has not been started, a START trap will occur and then
the REST ART will proceed.

Other forms of START and STOP statements are used to catch signals. This is discussed in Chapter 8, but the
forms look roughly as follows:

START somelnstance [Component List ! CatchPh rase]
STOP [! CatchPhrase]

134

CHAPTER 8.

SIGNALLING AND SIGNAL DATA TYPES

Signals are used to indicate when exceptional conditions arise in the course of execution, and they
provide an orderly means of dealing with those conditions, at low cost if none are generated (and
they almost never are). For example, it is common in most languages to write a storage allocator so
that. if asked for a block whose size is too large, it returns a null (or otherwise invalid) pointer value.
Any program which calls the allocator then embeds the call in an IF statement, and checks the return
value to make sure that the request was satisfied. What that procedure then does is a very local
decision.

In Mesa, one would write the allocator as if it always returned a valid pointer to an allocated block,
and calls to it would simply assign the returned value to a suitable pointer, without checking whether
or not the allocation worked. If the caller needs to gain control when the allocator fails, the
programmer attaches a CatchPhrase to the call; then if the allocator generates the signal
BlockTooLarge. and the caller has indicated that it wants to catch that signal, it will.

This way of handling exceptions has two important properties, one for the human reader of the
program, and one for its execution efficiency:

Anyone reading a program with a calIon the allocator can see immediately that an
exceptional condition can arise (by the catch phrase on the call or nearby); he then knows
that this is an unusual event and can read pn with the normal program flow: IF statements
do not have this characteristic of distinguishing one branch from the other.

When the program is executing, the code to check the value returned by the allocator on
every call is not present and therefore takes no space or execution time. Instead, if a signal
is generated, there is more overhead to get to the catch phrase than a simple transfer; but
since it happens infrequently, the overall efficiency is much higher than checking each call
with an IF statement.

Signals work over many levels of procedure call. and it is possible for a signal to be generated by
one procedure and be handled by another procedure much higher up in the call chain. We later
discuss the mechanisms by which this is done; until then, examples show signals being caught by the
caller of the procedure which generated the signal.

S.l. Declaring and generating SIGNALS and ERRORS

In its simplest form. a signal is just a name for some exceptional condition. Often, parameters are
passed along with the signal to help a catch phrase which handles it in determining what went
wrong. It is also possible to recover from a signal and allow the routine which generated it to
continue on its merry way. This is done by a catch phrase returning a result; the program which
generated the signal receives this result as if it had called a normal procedure instead of a signal.

Mesa Language Manual 135

Therefore, from the type viewpoint, signals correspond very closely to procedures; in fact, the type
constructor for declaring signals is just a variation of the one for procedures:

SignalTC ., - SignalOrError ParameterList RETURNS ResultUst I
SignalO rErro r Pa ramete rUst I
SignalOrError RETURNS ResultUst I
SignalOrError

SignalOrError SIGNAL I ERROR

For example, the signal BlockTooLarge might be defined to carry along with it two parameters, a
Zone within which the allocator was trying to get a block, and the number of words needed to fill
the current request. The catch phrase that handles the signal is expected to send back (Le., return) an
array descriptor for a block of storage to be added to the zone. The declaration of BlockTooLarge
would look like

BlockTooLarge: SIGNAL[Z: Zone, needed: CARDINAL]
RETURNs[newStorage: DESCRIPTOR FOR ARRAY OF CARDINAL];

A signal variable contains a unique name at run time, which is a code identifying an actual signal.
just as a procedure variable must be assigned an actual procedure before it can be used. If a
procedure is imported from an interface (sec. 7.4), any signals that it generates directly are probably
contained in the same interface. Imported signals are bound by the same mechanisms as procedures.
In addition, one may have signal variables which can be assigned any signal value of a compatible
type.

The signal analog of an actual procedure is obtained by initializing a signal variable using the syntax
"= CODE" in place of "= BEGIN ••• END" for procedures. This causes the signal to be initialized to
contain a unique value. The following syntax describes the initialization for an actual signal:

Initialization :: = = CODE I ...

A signal is generated by using it in a SignalCall as shown in the syntax below:

Statement :: = SignaICalll ...

SignalCall

ErrorCall

:: = SIGNAL Calli ErrorCall

.. -.. - RETURN WITH ERROR Calli
ERROR Calli
ERROR •• special error

Call is defined in section 5.4, and the called Exp ression must have some signal type in this case.
A SignalCall can be used as an Expression as well as a Statement. For example,

newblock .. SIGNAL BlockTooLarge[zone. n];

Thus, generating a signal or error looks just like a procedure call, except for the additional word,
ERROR or SIGNAL.

Fine point:

Although it is not recommended. the keywords SIGNAL and ERROR may be omitted (except in the RETURN
WITH ERROR construct). This makes the Signal look exactly like a procedure call.

Initialization by SIGNAL = CODE produces a unique value that contains. in part. the global frame index of the
module containing the initialization. There are two points worth making. If one creates a copy of the module
with the NEW statement, signals raised by the two copies will be different If the signal is declared and
initialized in a procedure. recursive calls of the procedure will not generate different signal values.

136 Chapter 8: Signalling and SIGNAL Data Types

If a signal is declared as an ERROR, it must be generated by an ErrorCali. If, however. it is
declared as a SIGNAL, it can be generated by any SignalCall, including an ErrorCall. The
difference between the two is that a catch phrase may not RESUME a signal generated by an
ErrorCall (sec. 8.2.5).

Except for a slight difference in the way the error is started (sec. 8.2.3), the RETURN WITH ERROR

construct behaves like the ERROR statement Its primary use is in monitor ENTRY procedures
(chapter 10).

The "special error" in the above syntax is used to indicate that something has gone wrong, without
giving any indication of the cause; the statement

ERROR;

generates a system-defined error. It is provided to cover those "impossible" cases which should
never occur in correct programs but which it is always best to check for (such as falling out of a
loop that should never terminate normally, or arriving at the ENDCASE of a SELECT statement that
claims to handle all the cases). It can only be caught using the ANY option in a catch phrase (sec.
8.2.3). It is customarily handled by the debugger.

B.l.l ERROR in expressions

When an ERROR is declared to return values, this is purely for syntactic convenience, 'since one of
the principal features of an ERROR is that it does not "return". The reason for doing this it to allow
the ERROR to stand in an expression context considered invalid or impossible. Such declarations of
returned values are not necessary; if an expression has an ERROR type (or SIGNAL type raised as an
error) and returns no value, then that expression can be used wherever an expression of any type is
required. For example:

Color: TYPE = {reft orange. yellow. green. blue. violet};
c: Color;
button: [0 .. 2);

button ... SELECT C FROM

red => O.
yellow => I,
blue => 2,
ENDCASE = > ERROR;

In the example, the only valid colors for buttons are red. yellow. and blue. Any other value results in
an error (in this case, the unnamed system error). Such constructs allow an inexpensive way to get
to the debugger in those "impossible" cases that arise from program errors.

A fine point:

If the ERROR type is defined to return a value. any use of that expression must be type correct with respect to
the "returned" value.

8.2. Control of generated signals

Any program which needs to handle signals must anticipate that need by providing catch phrases for
the various signals that might be generated. During execution, certain of these catch phrases will be
enabled at different times to handle signals. Loosely speaking, when a signal S is generated. the

Mesa Language Manual 137

procedures in the call hierarchy at that time will be given a chance to catch the signal, in a last-in
first-out order. Each such procedure P, if it has an enabled catch phrase, is given the signal S in
turn, until one of them stops the signal from propagating any further (by mechanisms which are
explained below). P may decide to reject S (in which case the next procedure in the call hierarchy
will be considered), or P may decide to handle S by taking control and attempting to recover from
the signal.

8.2.1. Preparing to catch signals: catch phrases

A catch phrase has the following form:

CatchTaii :: = Catch I
ANY => Statement

Catch :: = ExpressionList => Statement
CatchSeries :: = CatchTaill

Catch; CatchSeries

The expressions in the ExpressionList (semantically restricted to a list of variables) must evaluate
to the names of signals (unless otherwise stated, we use signal to stand for both ERROR and SIGNAL).

The special identifier ANY will match any signal (sec. 8.2.3). Note that if ANY occurs, it must be last.

A catch phrase is written as part of an argument list, just after the last argument and before the right
bracket. Catch phrases may appear in a procedure call, SignalCall, NEW, START, RESTART, STOP,

JOIN, FORK, or WAIT (but not in a RESUME or RETURN). A catch phrase may also be appended to the
BEGIN of a block or the DO of a loop statement by means of an EnableClause. The applicable
syntax for a call and for a block or loop statement is

Call :: = Variable [ComponentList I CatchSeries] I
Variable [I CatchSeries] I

Block :: = BEGIN •• (from Section 4.4)
OpenClause
EnableClause
DeclarationSeries'
StatementSe ries
ExitsClause
END

EnableClause :: = empty I
ENABLE Catchltem ; I
ENABLE BEGIN CatchSeries END; I
ENABLE BEGIN CatchSeries ; END;

Note that the EnableClause is always followed by a semi-colon, and BEGIN ••. END must be used if
there is more than one Catch in an EnableClause.

The main difference between the two kinds of catch phrases (ENABLE and I) is the scope of their
influence. A catch phrase on a Call is only enabled during that call. A catch phrase at the
beginning of a compound or loop statement is enabled as long as control is in that block; it can
catch a signal resulting from allY call in the block (or generated in the block).

To clarify the scope of influence of ENABLE clauses, the following two diagrams are reproduced from
chapter 4. The scope of each phrase extends over others with greater indentation.

138 Chapter 8: Signalling and SIGNAL Data Types

BEGIN
Open Clause

END

EnableClause
DeclarationSeries

StatementSe ries
ExitsClause .

LoopControl
DO

OpenClause
EnableClause

StatementSe ries
LoopExitsClause

ENDLOOP

Note that catch phrases enabled in the EnableClause of a Block or LoopStmt are not in force
in the ExitsClause or LoopExitsClause.

Fme point:

Procedures declared in the DeclarationSeries (of any enclosed Block) do not inherit the catch phrases in the
EnableClause (this is not shown by the diagrams),

8.2.2. The scope of variables in catch phrases

Catch phrases are called to handle signals (the exact mechanisms are discussed in the next section).
The naming environment that exists when a catch phrase is called (in order of innermost to
outermost scope) includes any parameters passed with that signal (these are declared as part of a
signal's definition), and any variables to which the procedure or program activation containing the
catch phrase has access.

If a Catch has more than one label (or the label ANY), where the types of those labels are not
identical, then the signal's arguments are not accessible in the Statement chosen by that Catch.

If, however, there is exactly one type for the signals named in a Catch's ExpressionList, then the
signal's arguments are accessible in the statement following "=>". The names used are the
parameters given in the signal's declaration, just as for procedures. For example, a catch phrase for
signal BlockTooLarge (defined earlier) might be used in a section of code such as:

-- in StorageDefs
BlockTooLarge: SIGNAL [z: Zone, needed: CARDINAL]

RETURNs[newStorage: DESCRIPTOR FOR ARRAY OF CARDINAL];
GetMoreStorage: PROCEDURE [z: Zone, n: CARDINAL]

RETURNS [DESCRIPTOR FOR ARRAY OF CARDINAL]:

-- in a user program
p: POINTER TO Account;

p'" Allocate[SIZE[Account] !
Block Too Large => REsuME[GetMoreStorage[z, neededJ]];

The names z and needed in the catch phrase refer to the parameters passed along with the signal
from Allocate (see sec. 8.2.5 for a discussion of RESUME).

Mesa Language Manual 139

8.2.3. Catching signals

When a signal is generated, what really happens is that the signal code, and a descriptor for the
actual arguments of the signal, are passed to a Mesa run-time procedure named Signaller. Signaller's
definition is

Signaller. PROCEDURE[S: SignalCode, m: Message];

Here s identifies the signal being generated, and m contains its arguments. (Actually, different
procedures are used to distinguish between SIGNAL, ERROR, and RETURN WITH ERROR.)

Signaller proceeds to pass the signal and its argument record from one enabled catch phrase to the
next in an orderly fashion. The order, at the procedure level, follows the current call hierarchy,
from the most recently called procedure to least recently called, beginning with the procedure that
generated the Signal itself If the caller of a procedure is the outermost block of code for a program,
the Signaller will follow its return link to continue propagating, the Signal (the return link points to
the frame that last STARTed the module (sec. 7.8».

If, in place of SIGNAL or ERROR, a RETURN WITH ERROR is used, the procedure that generated the
error is first deleted (after releasing the monitor lock., if it is an ENTRY procedure), and propagation
of the error begins with its caller.

As Signaller considers each frame, it looks to see whether that frame has any enabled catch phrases;
if so, Signaller calls the innermost catch phrase as if it were a procedure, passing it the Signa/Code
and Message. The innermost catch phrase is defined to 'be

either the one after "'" attached to the currently incomplete procedure call for that frame, or

the one following an ENABLE in the innermost enclosing block that contains that call.

Because signals can be propagated right through the call hierarchy, the programmer must consider
catching not only signals generated directly within any procedure that is called, but also any
generated indirectly as a result of calling that procedure. Indirect signals are those generated by
procedures called from within a procedure that you call, unless they are stopped before reaching
you.

When a catch phrase is called, it behaves like a SELECT statement: it compares the signal code passed
to it with each signal value in the ExpressionList of each Catch in the catch phrase. If the
signal code matches one of the signal values, control enters the statement following the "=)" for
that Catch; if not, the next Catch is tried. A Catch consisting of "ANY => Statement"
automatically matches any signal code (and is the only way to catch the unnamed ERROR generated
by the standalone ERROR statement discussed in section 8.1).

Fine point:

The ANY catchall is intended primarily for use by the debugger, and should generally be avoided. It matches
any signal, including UNWIND and all system-defined signals that might indicate some catastrophic condition (a
double memory parity error, for example).

When a match is found, that Catch is said to have caught or accepted the signal. If no alternative
in a catch phrase accepts the signal, there may be another enabled catch phrase in some surrounding
block. If so, the first catch phrase sends control to the second one so that it can inspect the signal,
and so on until the last enabled catch phrase in that routine has had a chance at the signal. If no
catch phrase in the routine accepts the signal, control returns to Signaller with a value indicating that
the signal was rejected, and Signaller propagates the signal to the next level in the call hierarchy. In
fact, all catch phrases are called by Signaller as if they were procedures of the following type:

140 Chapter 8: Signalling and SIGNAL Data Types

CatchPhrase: PROCEDURE[S: SignalCode, m: Message]
RETURNs[{Reject, Unwind, Resume}];

The SELEcT-like statement associated with each Catch has an implicit Reject return as its ENDCASE;
hence, if control simply falls out of the statement, the signal is rejected.

Fine point:

If the same signal. joo, is enabled in several nested catch phrases in a procedure. each is given a chance to
handle joo if the inner ones reject the signal.

Signaller continues propagating the signal up the call chain until it is exhausted, i.e., until the root of
the process has considered and rejected the signal. At that point, an uncaught signal has been
generated, and drastic action must be taken.

Mesa guarantees that all signals will ultimately be caught and reported by the Debugger to the user.
This is helpful in debugging because all the control context which existed when the signal was
generated is still around and can be inspected to investigate the problem.

The declaration of CatchPhrase above indicates three reasons for returning to Signaller. The first,
Reject, has already been discussed. The third, Resume, is discussed in section 8.2.5.

The second reason, Unwind, is used when a catch phrase has accepted a signal and is about to do
some form of unconditional jump into the body of the routine containing it (this is the only form of
"non-local goto" in Mesa). The jump may be generated by a GOTO statement (sec. 4.4), an EXIT or
LOOP (sec. 4.5), or a RETRY or CONTINUE (see below). aslmmediately preceding such a jump, the
catch phrase returns to Signaller with result Unwind; it also indicates the frame containing the catch
phrase and the location for the jump. This causes Signaller to perform the following sequence of
actions:

(1) Beginning at the frame in which the original signal was generated (or its caller, if a
RETURN WITH ERROR was executed), it passes the signal UNWIND to each frame. This signal
tells that activation that it is about to be destroyed and gives it a chance to clean up before
dying, Signaller then deallocates the frame and follows the same path as it did for the
original signal to continue unwinding control. When it comes to the frame containing the
catch phrase, it stops.

(2) Signaller then arranges for the jump to take place, and simply does a return to that
frame, destroying itself in the process.

Every Mesa program contains the pre-declared value

UNWIND: ERROR = CODE;

Fine points:

One cannot say RETURN in a catch phrase to return from the enclosing procedure. This is an implementation
restriction that may be removed in the future. caused by the way in which a catch phrase is "called" like a
procedure itself.

The UNWIND sequence gives each .activation that is to lose control a chance to make consistent any data
structures for which it is responsible. There are no constraints on the kinds of statements that it can use to do
this: procedure calls, loops, or whatever are all legal, If, however, a catch for the UNWIND signal. such as.

START NextPhase[! UNWIND =>GOTO BailOut):

decides itself to perform a control transfer that would also initiate an UNWIND, this will override the original
UNWIND, and Signaller will stop right there, as if the second UNWIND catch had been the originator of the
UNWIND.

Mesa Language Manual 141

8.2.4. RETRY and CONTINUE in catch phrases

Besides GOTO, EXIT, and LOOP, there are two other statements, RETRY and CONTINUE, which initiate
an UNWIND. These can only be used within catch phrases.

RETRY means "go back to the beginning of the statement to which this catch phrase belongs";
CONTINUE means "go to the statement following the one to which this catch phrase belongs" (what is
called Nexl~Slalemenl in chapter 4).

For a catch phrase in a Call, the catch phrase "belongs" to the statement containing that Call.
Thus, if the signal NoAnswer is generated for the call below, the assignment statement is retried:

answer +- GetReply[Send["What next?"]! NoAnswer => RETRY];

On the other hand, if CONTINUE had been used instead, the statement after the assignment would be
executed next (and the assignment would not be performed). For example, suppose the procedure
ReadLine reads characters from a file up to a carriage return and appends them onto the string
buffer. If reading beyond the end of file raises the signal StreamError, the call

ReadLine[! StreamE"or => IF buffer.length > 0 THEN CONTINUE];

deals with the case of no carriage return after that last line in the file. If there is no such final line,
other chatch phrases higher on the call chain are given a chance to catch the. signal.

For a catch phrase after ENABLE, there are two cases to consider, blocks and loops. In a block, the
catch phrase "belongs" to that statement; the next section shows an example. In a loop, the catch
phrase "belongs" to the body of the loop, and CONTINUE really means "go around the loop again."
The following two examples are equivalent:

UNTILp=NIL
DO ENABLE TryList2 = > BEGIN p+-list2; CONTINUE END;

ENDLOOP;

UNTILp=NIL
DO

BEGIN ENABLE TryList2 = > BEGIN p+-list2; CONTINUE; END;

END;
ENDLOOP;

In any case, recall that an Unwind is initiated prior to completion of a RETRY or CONTINUE.

If a procedure call in the Initialization clause of a declaration contains a catch phrase, this catch
phrase cannot contain RETRY or CONTINUE since it is in no well dermed statement

8.2.5. Resuming from a catch phrase: RESUME

The third alternative available to a catch phrase, after Reject and Unwind, is Resume. This option is
invoked by using the RESUME statement to return values (or perhaps just control) from a catch
phrase to the routine which generated the signal. To that routine, it appears as if the signal call
were a procedure call that returns some results. The syntax for RESUME is just like that for RETURN:

Statement :: = ResumeStmt I RETRY I CONTINUE I ...
ResumeStmt :: = RESUME I

RESUME [Component List]

142 Chapter 8: Signalling and SIGNAL Data Types

When Signaller receives a Resume from a catch phrase, it simply returns and passes the
accompanying results to the routine that originally called it (i.e., that generated the signal). If the
signal was generated by an ErrorCali and a catch phrase requests a Resume, Signaller simply
generates a signal itself (which results in a recursive calIon Signaller); its declaration is

ResumeError: PUBLIC ERROR;

Since it is an ERROR, one cannot legally RESUME lit.

The ability to RESUME and return values gives the ability to deal with exceptional conditions in a
way that is quite inexpensive in the non-exceptional case, For example, consider the declaration

StringBoundsFault: SIGNAL [s: STRING1 RETURNS [ns: STRING];

This signal allows the user to deal with the situation where characters are to be added to a string
that is already "full", Thus the call

AppendChar[str, c ! StringBoundsFault = >
BEGIN

ns .. AllocaleString[s.maxlenglh+ 10];
AppendString[ns, s];
FreeString[s];
RESuME[str .. ns];
END);

allocates"a larger string and updates the local variable whenever the string is about to overflow. Of
course, the procedure AppendChar has to be written in such a way as to deal with the signal being
resumed with a new string value. This application of signals can cause errors if there are any
procedures between the signaller and the catcher that ~ave their own idea about the location of the
string. One possible fix (if such situations are possible) is to have a second signal

SlringMoved: SIGNAL [old new: STRING] = CODE;

that is raised by AppendChar after StringBoundsFault is resumed

The presence or absence of the ComponentList depends on whether the signal caught is declared
to return values. In a Catch whose ExpressionList contains more than one signal, one can
RESUME only if all signals have equivalent types. . For example:

ASig: TYPE = SIGNAL RETURNS [CARDINAL];

sig1: ASig;
sig2: ASig;
sig3: SIGNAL RETURNS [CARDINAL];

sig4: SIGNAL;

ENABLE

BEGIN

sig1, sig2 = > RESUME[3];

sig1, sig3 = > RESUME[O];

sigl, sig4 = > RESUME[1];

END;

8.3. Signals within signals *

--legal
--legal
-- illegal

What happens if, in the course of handling a signal, firstSignal, a catch phrase (or some procedure
called by it) generates another signal, second Signal? Handling nested signal generation is almost
exactly like non-nested signal propagation. Generating the signal will calt Signaller (recursively,
since the instance of Signaller responsible for the first signal is still around), and it propagates the

Mesa Language Manual 143

new signal back through the call hierarchy by calling a second activation of Signaller, say
"Signaller2". When in the course of doing this it encounters the previous activation of Signaller
(" Signallerl"), then something different .m.ust be done.

If firslSignal is not the same as second Signal, Signaller2 propagates it right through Signaller!, and
all the activations beyond it are also given a chance to catch second Signal.

On the other hand, if secondSignal = firstSignal, then all of the routines whose frames lie beyond
Signallerl, up to the frame containing the catch phrase called by Signallerl, have already had a
chance to handle firstSignal, so they are not given it again. In order to skip around that section of
the call hierarchy, Signaller2 simply copies the appropriate state variables from Signaller!. Next,
Signaller2 skips over the frame containing the catch phrase (by following its return link), and
continues propagating secondSignal nonnally.

For the programmer, the main import of nested signals is that one needs to consider, when writing a
routine, not only what signals can be generated, directly or indirectly, by the called procedures, but
also those which can be generated by catch phrases in that procedure or even the catch phrases of
any calling procedures, also both directly or indirectly.

144

CHAPTER 9.

PORTS AND CONTROL STRUCTURES *

Mesa has, in addition to procedures, another mechanism by which programs may transfer control.
lbis mechanism is called a PORT; PORTS allow separate modules or procedures to act as coroutines.
When one calls a procedure and it returns, the procedure is fmished; if the same operation is needed
again, another call will create a new activation of it to perform that action. However, when a
coroutine returns control, it does not finish and disappear. Calling it again only resumes it from
where it left off. The advantage of a this scheme is that the coroutine may keep some of its state
from call to call encoded in its program counter: i.e., if it is at a certain place in its code, then that
place does not need to be encoded somehow and saved as a variable in order to decide how to
proceed when next called.

Actually, as described later, PORTS are normally used in pairs, just like electrical plugs and sockets.
one for each side of the connection. If two coroutines A and B are connected, what is seen by A as
a call to B appears to B as a return from A, and vice-versa. Thus, both A and B regard the other as
a facility to be called to accomplish some processing task. For instance, if ReadFile is a coroutine
for reading characters from a file which are then given, one at a time, to another coroutine, its view
is that it reads characters from the file and calls the other coroutine to process them (in some
unspecified way). WriteFile, on the other hand, a coroutine for writing characters into a file, would
call a coroutine to get the next character to be written. Together these two coroutines could make a
file copying program.

A coroutine needs to be able to send arguments and to receive results. The language facilities for
doing this closely mirror procedure parameter and result lists. For example, a PORT over which
ReadFile could send a character would be declared by ReadFile as

Out: PORT[ch: CHARACTER];

The port over which WriteFile receives a character, and which could be connected to ReadFile's Out
PORT, is declared as

In: PORT RETURNS[CHARACTER);

There is only one other consequential difference between procedures and coroutines. A procedure
can be called at any time because a new activation is created, which will always consume the
arguments sent to it as soon as it begins. However, if two coroutines like ReadFile and WriteFile
communicate, in order for the transfer of control and arguments to go smoothly, WriteFile must be
prepared to receive a character when ReadFile sends it. Coroutines are not parallel processes, and
one has to be started before the other, so it is guaranteed that the first attempt at transferring control
between ReadFile and WriteFile will not work smoothly. Fortunately, Mesa provides a mechanism
for starting a whole set of interconnected coroutines to get them past this start-up transient (sec. 9.2).
The most important property of the mechanism is that the coroutines themselves need never be
concerned about the startup transient -- they are written as if it never happens.

Mesa Language Manual

9.1. Syntax and an example of PORTs

The syntax for declaring a port is the following:

PortTC :: =
PORT ParameterList ReturnsClause I
RESPONDING PORT ParameterList ReturnsClause

145

The ParameterList and ReturnsClause may both be empty. just as for procedures.
RESPONDING PORTS are covered in section 9.3. The syntax for making a call on a port is exactly the
same as for calls on procedures (both as statements and functions).

The following pair of program modules implement the coroutines ReadFile and WriteFile described
earlier; they use the ports Out and In, respectively:

DIRECTORY
FileDeft: FROM "filedefs" USING [

NUL, FileHandle, FileAccess. OpenFile, ReadChar, EndOjFile, CloseFile];

ReadFile: PROGRAM[name: STRING] IMPORTS FileDeft =
BEGIN OPEN FileDeft;
Out: PORT[ch: CHARACTER];
input: FileHandle;
input +- OpenFil4.name: name, access: FileAcces.s[ReadJ];
STOP;
UNTIL EndOjFil4.input]

DO
Out[ReadChar[input]]; -- PORT call: send a character from the file
ENDLOOP;

CloseFil4. input];
Out[NUL]; -- send a null character to indicate end-of-file
END.

DIRECTORY
FileDefs: FROM "filedefs" USING [

NUL, FileHandle, FileAccess. OpenFile, WriteChar, CloseFile];

WriteFile: PROGRAM[name: STRING] IMPORTS FileDefs =
BEGIN OPEN FileDefs;
In: PORT RETURNS[ch: CHARACTER];
char. CHARACTER;
output: FileHandle;
output +- OpenFil4.name: name, access: FileAccess[New]];
STOP;
DO -- until In sends a NUL

char +- In[];
IF char = NUL THEN EXIT;
WriteChar[output, chati;
ENDLOOP;

CloseFil4. output];
END.

-- PORT call: get a character
-- check for end of stream

-- write the character into the file

ReadFile first initializes its variables and opens the input file (with Read access). When it is
restarted, it loops. reading characters from the file and sending them over its Out PORT until it
reaches the end of the input file; then it sends a single NUL character. If it regains control, it
simply returns.

146 Chapter 9: Ports and Control Structures

WriteFile, after creating and opening a new output file, loops, reading characters from the port In
and writing them to the output. If it receives a NUL character, it closes the output file and returns.
Thus, if ReadFile and WriteFile's ports were connected so that they were working together as
coroutines, ReadFile would never regain control after sending the NUL character.

9.2. Creating and starting coroutines

To set up the above two programs as coroutines, their respective ports must be connected, and then
they must be started individually. with the start-up transient handled. This is usually done by
another. controlling program like the following:

DIRECTORY
TrapDefs:
IODefs:
ReadFile:
WriteFile:

FROM "trapdefs" USING [PortFault],
FROM "iodefs" USING [ReadLine, WriteString],
FROM "readfile",
FROM ttwritefile";

CopyMaker. PROGRAM IMPORTS IODefs. reader: ReadFile, writer. WriteFile =
BEGIN OPEN IODefs;
input: STRING'" [256];
output: STRING'" [256];
-- first ask the user for the names of the input and output files
WriteString[ttName ofinput file: ttl; ReadLimf.inputJ;
WriteString["Name of output file: ttl; ReadLine{output];
-- create and initialize instances of ReadFile and WriteFile;
START reader{input];
START write1{output);
-- connect their ports and then restart them to get them synchronized
CONNECT writer.ln TO reader.Out;
CONNECT reader. Out TO writer.ln;
RESTART write1{ ! TrapDejs.PortFault => CONTINUE];
RESTART reade1{ ! TrapDejs.·PortFault => ERROR];
END.

Logically. CopyMaker is a very simple program. However, it must know how to start ReadFile and
WriteFile and how to connect their ports (and it must handle the signal PortFault -- see below).
This is typical of the use of PORTS: the coroutines themselves do not know (nor should they care)
exactly which other program(s) they are connected to; each PORT is viewed as a virtual facility to be
called to perform some task, such as providing the next input or taking an output.

CopyMaker first requests the names for the input file to be copied and the output file to which it
should be copied. The names are read into the string variables input and output. Then an instance
of ReadFile is made and initialized. Similarly. an instance of WriteFile is created and STARTed.
When the NEWS are performed, pointers to the instances are stored (into reader and writer above).

After both instances have been created and initialized, CopyMaker performs the operations to get
them past the startup transient. First it connects writer.In (i.e., WriteFile's In PORT) to reader.Out:
this simply amounts to storing a pointer in writer.ln to the PORT reader. Out. Then it connects
reader. Out to writer.ln.

Fme point:

The STARTs must be performed before the ports are connected. In general, it is not legal to access a module's
variables before it has been started (and the variables have been initialized). Calls to procedures are allowed,
however; they are handled by the start trap mechanism (sec. 7.8.3).

Mesa Language Manual 147

Once the CONNECTS are done, all that remains is to get the two coroutines synchronized. First,
WriteFile is REsTARTed; it makes a port call on In to get the first character to be written into the
file.

The port call almost works because In is connected to another port. But, since ReadFile is not
waiting for control to return over its Out port, it doesn't quite work. This fact is detected because a
part of the underlying representation of Out indicates that no instance is pending on it (i.e., waiting
to receive control via Out). This results in a trap, which is quickly converted into the ERROR
PortFault. CopyMaker clearly anticipated this as part of the normal startup transient (as evidenced
by the presence of the catch phrase on the START statement). The CONTINUE in that catch phrase
means: "forget about this signal and continue execution at the next statement in CopyMaker."

The next action taken by CopyMaker is to RESTART ReadFile. ReadFile reads the first character
from the input file and attempts a port calIon Out, passing the character as its argument. This is
the end of startup transients: this port call works. It works because WriteFile was left pending on In
when it attempted to call it, even though that call did not go through completely. Since WriteFile is
pending on In, it resumes, stores the argument in char, and proceeds. From now on, port calls
between ReadFile and WriteFile will go smoothly, with no further intervention by CopyMaker.
(Moreover, a port call is more efficient than a procedure call because no frames are allocated and
deallocated in the process).

When there are no more characters in the input file, ReadFile sends a final NUL character which
causes WriteFile to close the output file and to return. This returns control to CopyMaker, who, in
this example, also returns.

The above description skipped one or two important details of the startup process and port calls.
The next section corrects those omissions and discusses the underlying representation of ports.

9.2.1. The CONNECT statement

The first CONNECT statement in CopyMaker is equivalent to the following (illegal) assignment:

writer.In.link +- @reader.Out;

This assignment is illegal because, at the language level, a PORT does not look like a record with a
link component. Nevertheless, the code produced by the compiler for the CONNECT statement in
CopyMaker performs exactly this assignment (the compiler is allowed to treat PORTS in terms of their
underlying representations, without regard to type - it implements type checking). Note that
CONNECT is not a symmetric operation: it only connects in one direction.

The syntax for CONNECT is the following:
ConnectStmt :: = CONNECT expression TO expression

These expressions must both be valid leftSides. The first expression must conform to some PORT
type, and the second may conform to either a PORT or a PROCEDURE type (see sec. 9.2.2 for a
discussion of ports connected to procedures).

The types of the two expressions must be port-compatible. To be port-compatible, the result list of
one must be compatible (see definition in sec. 5.2) with the parameter list of the other, and vice
versa. This basically says that the first port sends what the second expects to receive, and the second
sends what the first expects to receive.

Fine point:

In the present compiler, the CONNECT statement is not implemented

148 Chapter 9: Ports and Control Structures

9.2.2. Low-level actions during a PORT call

A PORT is represented as a record with two components, one of which is a pointer to another PORT,
and one of which points to a frame (the frame which is pending on that PORT). Its definition is:

Port: TYPE = MACHINE DEPENDENT RECORD
[I

frame: POINTER TO Frame, -- internal view of a frame
link: SELECT OVERLAID * FROM

];

null => [value: NullControlLink],
port = > [portDesc: POINTER TO Port],
procedure = > [procDesc: ProcedureDescriptoti,
ENDCASE

We will not discuss the internal format of the types Frame. ProcedureDescriptor, or NulICon"trolLink
here. The first two are the underlying representations for a frame and a procedure value,
respectively. The last is just a special value which is used to initiate a trap if the port is used
without having been connected first

I

The variant part of a Port distinguishes three cases (how these cases are identified is a function of
the underlying implementation). The null case is how a Port which has not been connected is
represented; it is what causes a trap if a calIon the port is made before it is connected (this is called
a linkage fault). If the Port is connected to another Port (the normal case), then the port variant
holds.

Procedure calls, port calls, and returns are all examples of control transfers: each suspends the
execution of one activation and transfers control to another. They also perform other actions, such
as creating or destroying frames, etc. Every control transfer from one activation to another has a
source control link and a destination control link. By control link we mean a procedure value, a
pointer to a port, or a pointer to a frame.

All the high level control transfers in Mesa are built from one common, low-level mechanism called
XFER, which effects the transfer from a source to a destination. In fact, it is possible to bind any
form of control link to any other; thus, if the program uses a port, it could be bound to a
procedure, and calls on the port would actually result in calls on the procedure. A RETURN from the
procedure would cause control to come back in through the port. Similarly, a procedure value could
contain a pointer to a port, in which case calls on that "procedure" would actually result in a port
transfer via the destination port to the coroutine pending on it

The common part of a Port record is used when control is returning over a PORT. When a coroutine
does a port call and is suspended, a pointer to its frame is assigned to the frame component of that
port. Then, when control returns over that port (usually because of a port call on the port to which
it is connected), the frame field is used to locate the instance which is to be resumed.

The value contained in the frame component may indicate that it is null. If so, a control fault trap
will be generated should a transfer using that port ever occur. This condition can arise for two
different reasons:

(1) Due to startup transients, the instance which would normally be pending on that port is not
I -

(2) There is a genuine error in the way that a configuration of coroutines has been constructed,
and control is attempting to ,"loop back" into a coroutine. The simplest example of this
situation is the following: consider a coroutine A with two ports, pi and p2. If pi were
connected to p2, then a port call on pi would dearly result in a control fault when p2 was
reached in the call, since A cannot be pending on both pi and p2 simultaneously.

Mesa Language Manual 149

The action taken on a control fault during a port call is described in the next section.

There is one last important detail about a port call: as part of the action of returning to a port, its
link is set to point at the source port if the return is actually part of a port call. This constitutes an
indirect return link. However, if the return is from a procedure to which the port is bound, then the
link field is not changed. This is so that the procedure value in the port is not destroyed; thus,
future calls on that port will always result in new activations of that procedure.

Storing an indirect return link in the link field of a destination port means that the next port calion
it will cause control to return via the port from which control most recently arrived Using this, one
can write coroutines that may be invoked by more than one coroutine connected to a given port:
control will always return to the last coroutine which sent control over that port For instance, the
coroutine WriteFile above could be given its input stream of characters from many sources. If the
system procedures ReadLine and WriteString both had ports connected to the port In in an instance
of WriteFile, then everything typed to the user and typed by him would be recorded in a typescript
of his interactions with the system.

9.2.3. Control faults and linkage faults

When a control or a linkage fault occurs, Mesa changes the trap into the ERROR PortFault or
LinkageFault, respectively. These signals are part of a Mesa system interface TrapDefs and should
be Imported from there by any program, such as CopyMaker, which configures coroutines. In
TrapDefs they are defined as follows:

PortFault, LinkageFault: ERROR;

Generally, programs should not handle the LinkageFault signal; ports should be properly connected
before they are used. We include it here only for completeness (the fine point at the end of this
section discusses LinkageFaults further).

These signals, unlike most other signals, are not passed initially to the instance which caused the
fault (call it the culprit), but rather are given first to its owner: the frame to which the culprit's
return link points. This is so that the owner may catch the signal and cause an UNWIND without the
culprit's frame being destroyed as it would normally be. In the previous example, CopyMaker is the
owner and ReadFile and' WriteFile are possible culprits.

Note: if the owner does not catch the PortFault or the LinkageFault signa~ it may possibly be
unwound itself. This would leave the culprit's return link pointing to an invalid address. because the
owner's frame would have been freed

The standard action taken by the owner when receiving a PortFault while starting a coroutine is to
press on and start the other members of the configuration. CopyMaker follows this pattern; when it
starts the instance of WriteFile and a control fault is generated, it simply exits the catch phrase for
PortFault and starts the instance of ReadFile. This is the recommended way to start configurations of
coroutines.

Fine point:

If the source port in a port call is unbound (i.e.. not connected). a LinkageFault ERROR is generated. This
cannot be handled in the same manner as a control fault If the catcher of this signal causes an UNWIND.
there wi\l be no way to restart the activation which caused the linkage fault: it will be pending on a port, and
RESTARTing it will cause an error. This difficulty makes starting coroutines before connecting their ports an
ill-advised thing to do. It is much better to do the CONNECTs first, and then start each activation.

150 Chapter 9: Ports and Control Structures

9.2.4. Saving arguments during faults

When a port call faults, the instance which attempted the call is left pending on the source port
before the trap is changed into the PortFault or LinkageFault signal. This is done by a Mesa
procedure called the FaultHandler, which is called in response to the trap. In the case of starting
writer above, this procedure did the following:

(1) It set the instance of WriteFile to be pending on its In port (the trap process provides
information about which instance caused the trap, and what the source port was);

(2) By some low-level control mechanisms, it invoked the Signaller (sec. 8.2) as if from the
owner of writer and simultaneously did a RETURN. Thus, that activation of FaultHandler
disappeared and the Signaller was invoked as a single action.

Later, when reader called Out, control returned to writer via In, which continued normally because it
was pending on In. To writer it appeared as if the first port call worked correctly.

Reader's calIon Out passed an argument along with control. If CopyMaker had started reader first.
what would have happened to that argument? Given the above description of FaultHandler, the
argument would have been lost: there were no provisions for buffering or saving arguments.

To handle this, the FaultHandler buffers any arguments passed over a port on which a fault occurs.
Instead of performing action (2) above, it actually does the following:

(2') It buffers the arguments for the port call, makes it appear that it (the FaultHandler itself) is
pending on the source port, then calls Signaller, but without destroying itself in doing so.

For the following discussion, assume that the startup sequence in CopyMaker had been written as
follows (the order of starting reader and writer has been inverted):

-- connect their ports and then restart them to get them synchronized
CONNECT reader. Out TO writer.In;
CONNECT writer.ln TO reader.Out;
RESTART reade1{ I TrapDe/s.PortFault => CONTINUE];
RESTART write1{ I TrapDefs.PortFault => ERROR];
END.

The revised version of FaultHandler would then do the following when writer was RESTARTed and
tried its first call on In:

The instance of FaultHandler which had left itself pending on Out would have been
resumed instead of reader. FaultHandler would then have set reader.Out.frame so that reader
was again pending on it Finally, it would have transferred control back through writer.ln
along with the arguments it had saved from the original call, destroying itself in the process.

The only remaining question is: "How does the FaultHandler know whether or not arguments
should be buffered?" This question is not trivial: for example, if every instance of FaultHandler
buffered arguments for every trapped port call, including those for ports like In, extra "ghost" port
calls would occur during startup. FaultHandler determines whether or not to save arguments by
inspecting information left by the compiler in the object code of every port call. This decision is
made by the compiler on the following basis:

Arguments should only be buffered for a port which is not a RESPONDING PORT and which
does have a non-empty Parameterlist.

The next section discusses RESPONDING PORTS.

Mesa Language Manual 151

9.3. RESPONDING PORTS *
The normal analogy between a port and a procedure in terms of passing arguments and receiving
results breaks down in one case. If a port is used both for sending arguments and for receiving
results, it might do so for either of the following two reasons:

It sends arguments to be processed, and the returned results of the port call indicate how
they were handled (this closely mirrors procedures).

It receives data to be processed, and, having done so responds by sending results of the
processing back over the same port (there is no procedure analog of this).

The second case can not be distinguished from the first by usage in a program because the actions of
sending and receiving over a port are intrinsically intertwined with the notation for a Call. Thus, it
would not be possible to determine whether BothWays was a normal or a responding port by
looking at the following (partial) module:

Both Ways: PORT[S: STRING] RETURNS[t: STRING];
aString: STRING;
bString: STRING;

aString +- BothWay.\{bString];
. . -."

To resolve this difficulty, the programmer may declare a port to be RESPONDING. For example,

[nOut: RESPONDING PORT[response: {okay, e"or}] RETURNS[input: STRING];

--
The module using [nOut responds with either okay or notOkay to each string it has received.

If InOut faults the first time it is used, the FaultHandler will not buffer the response value for that
call. Since InOut must, for type conformance, be connected to a port such as

OutIn: PORT[ouiput: STRING] RETURNs[response: {okay, error}],

both initial argument lists (the response for the flrst calIon InOut, and the output of the flrst call on
Outln) cannot be buffered. The keyword RESPONDING indicates which initial argument list should
be discarded (InOut's initial response, in this case). For similar reasons, a responding port may not
be connected to a procedure, and two responding ports may not be connected togetner.

Fine point:

In the current compiler, RESPONDING PORTs are not implemented

152

CHAPTER 10.

PROCESSES AND CONCURRENCY

Mesa provides language support for concurrent execution of multiple processes. This allows
programs that are inherently parallel in nature to be clearly expressed. The language also provides
facilities for synchronizing such processes by means of entry to monitors and waiting on condition
variables.

The next section discusses the forking and joining of concurrent process. Later sections deal with
monitors, how their locks are specified, and how they are entered and exited. Condition variables
are discussed, along with their associated operations.

10.1. Concurrent execution, FORK and JOIN.

The FORK and JOIN statements allow parallel execution of two procedures. Their use also requires
the""new data type PROCESS. Since the Mesa process facilities provide considerable flexibility. it is
easiest to understand them by first looking at a simple example.

JO.1.1. A process example

Consider an application with a front-end routine providing interactive composition and editing of
input lines:

ReadLine: PROCEDURE [s: STRING] RETURNS [CARDINAL] =
BEGIN
c: CHARACTER;

s.length ... 0;
DO

c ... ReadChaT[];
IF ControICharacter{c] THEN DoAction[c]
ELSE AppendChar[s,c];
IF c = CR THEN RETURN [s.ienglh];
ENDLOOP;

END;

The call

n'" ReadLine[buffer];

will collect a line of user type-in up to a CR and put it in some string named buffer. Of course, the
caller cannot get anything else accomplished during the type-in of the line. If there is anything else
that needs doing, it can be done concurrently with the type-in by forking to ReadLine instead of
calling it:

Mesa Language Manual 153

p +- FORK ReadLim,{bufJeiJ;

<concurrent computation>

n +- JOINp;

This allows the statements labeled <concurrent computation> to proceed in parallel with user typing
(clearly, the concurrent computation should not reference the string buffer). The FORK construct
spawns a new process whose result type matches that of ReadLine. (ReadLine is referred to as the
"root procedure" of the new process.)

p: PROCESS RETURNS [CARDINAL];

Later, the results are retrieved by the JOIN statement, which also deletes the spawned process.
Obviously, this must not occur until both processes are ready (Le. have reached the JOIN and the
RETURN, respectively); this rendevous is synchronized automatically by the process facility.

Note that the types of the arguments and results of ReadLine arc always checked at compile time,
whether it is called or forked.

The one major difference between calling a procedure and forking to it is in the handling of signals;
see 'section 10.5.1 for details. '

10.1.2. Process language constructs

TIle declaration of a PROCESS is similar to the declaration of a PROCEDURE, except that only the
return record is specified. The syntax is fonnally specified as follows:

TypeConstructor :: = ... I ProcessTC

ProcessTC

Retu rnsClause

ResultList

.. - PROCESS Retu rnsClause

empty I RETURNS ResultList

FieldList

-- from sec. 5.l.
-- from sec. 5.1.

Suppose that f is a procedure and p a process. In order to fork f and assign the resulting process to
p, the ReturnClause of f and that of p must be compatible, as described in sec 5.2.

The syntax for the FORK and JOIN statements is straightforward:

Statement

Expression

ForkCall

JOinCall

Call

:: = ... I JoinCall

:: = ... I ForkCali1 JoinCall

:: = FORK Call

:: = JOIN Call

:: = (see sections 5.4 and 8.2.1)

The ForkCall always returns a value (of type PROCESS) and thus a FORK cannot stand alone as a
statement. Unlike a procedure call, which returns a RECORD, the value of the FORK cannot be
discarded by writing an empty extractor. The action specified by the FORK is to spawn a process
parallel to the current one, and to begin it executing the named procedure.

154 Chapter 10: Processes and Concurrency

The JoinCall appears as either a statement or an expression. depending upon whether or not the
process being joined has an empty Retu rnsClause. It has the following meaning: When the
forked procedure has executed a RETURN. and the JOIN is executed (in either order),

the returning process is deleted. and

the joining process receives the results, and continues execution.

A catch phrase can be attached to either a FORK or JOIN by specifying it in the Call. Note,
nowever, that such a catch phrase does not catch signals incurred during the execution of the
procedure; see section 10.5.l for further details.

There are several other important similarities with normal procedure calls which are worth noting:

The types of aU arguments and results are checked at compile time.

There is no intrinsic mle against multiple activations (calls and/or forks) of the same
procedure coexisting at once. Of course, it is always possible to write procedures which will
work incorrectly if used in this way, but the mechanism itself does not prohibit such use.

One expected pattern of usage of the above mechanism is to place a matching FORK/JOIN pair at the
beginning and end of a single textual unit (Le. procedure, compound statement, etc.) so that the
computation within the textual unit occurs in parallel with that of the spawned process. This style is
encouraged. but is not mandatory; in fact, the matching FORK and JOIN need not even be done by
the same process. Care must be taken, of course, to insure that each spawned process is joined only
once, since the result of joining an already deleted process is undefined. Note that the spawned
process always begins and ends its life in the same textual unit (i.e. the target procedure of the
FORK).

While many processes will tend to follow the FORK/JOIN paradigm, there will be others whose role is
better cast as continuing provision of services, rather than one-time calculation of results. Such a
"detached" process is never joined. If its lifetime is bounded at all, its deletion is a private matter,
since it involves neither synchronization nor delivery of results. No language features are required
for this operation; see the mntime documentation for the description of the system procedure
provided for detaching a process.

10.2. Monitors

Generally, when two or more processes are cooperating, they need to interact in more complicated
ways than simply forking and joining. Some more general mechanism is needed to allow orderly,
synchronized interaction among processes. The interprocess synchronization mechanism provided in
Mesa is a variant of monitors adapted from the work of Hoare, Brinch Hansen, and Dijkstra. The
underlying view is that interaction among processes always reduces to carefully synchronized access
to shared data, and that a proper vehicle for this interaction is one which unifies:

- the synchronization

- the shared data

- the body of code which performs the accesses

The Mesa monitor facility allows considerable flexibility in its use. Before getting into the details,
let us first look at a slightly over-simplified description of the mechanism and a simple example.
The remainder of this section deals with the basics of monitors (more complex uses are described in
section 10.4); WAIT and NOTIFY are described in section 10.3.

Mesa Language Manual 155

10.2.1. An overview of monitors

A monitor is a module instance. It thus has its own data in its global frame, and its own procedures
for accessing that data. Some of the procedures are public, allowing calls into the monitor from
outside. Obviously, conflicts could arise if two processes were executing in the same monitor at the
same time. To prevent this, a monitor lock is used for mutual exclusion (Le. to insure that only one
process lliay be in each monitor at anyone time). A call into a monitor (to an entry procedure)
implicitly acquires its lock (waiting if necessary), and returning from the monitor releases it. 'The
monitor lock serves to guarantee the integrity of the global data, which is expressed as the monitor
invariant -- i.e an assertion defining what constitutes a "good state" of the data for that particular
monitor. It is the responsibility of every entry procedure to restore the monitor invariant before
returning, for the benefit of the next process entering the monitor.

Things are complicated slightly by the possibility that one process may enter the monitor and find
that the monitor data, while in a good state, nevertheless indicates that that process cannot continue
until some other process enters the monitor and improves the situation. The WAIT operation allows
the first process to release the monitor lock and await the desired condition. The WAIT is performed
on a condition variable, which is associated by agreement with the actual condition needed. When
another process makes that condition true, it will perform a NOTIFY on the condition variable, and
the waiting process will continue from where it left off (after reacquiring the lock, of course.)

For example, consider a fixed block storage allocator providing two entry procedures: Allocate and
Free. A caller of Allocate may find the free storage exhausted and be obliged to wait until some
caller of Free returns a block of storage.

StorageAllocator: MONITOR =
.. BEGIN

StorageAvailable: CONDITION;
FreeLisr. POINTER;

Allocate. ENTRY PROCEDURE RETURNS [p: POINTER] =
BEGIN
WHILE FreeList = NIL DO

WAIT StorageAvailable
ENDLOOP;

p +- FreeList; FreeList +- p.next;
END;

Free: ENTRY PROCEDURE [p: POINTER] =
BEGIN
p.next +- FreeList; FreeList +- p;
NOTIFY StorageAvailable
END;

END.

Note that it is clearly undesirable' for two asynchonous processes to be executing in the
StorageAllocator at the same time. The use of entry procedures for Allocate and Free assures
mutual exclusion. The monitor lock is released while WAITing in Allocate in order to allow Free to
be called (this also allows other processes to call Allocate as well, leading to several processes
waiting on the queue for StorageAvailable).

156 Chapter 10: Processes and Concurrency

/0.2.2. Monitor locks

The most basic component of a monitor is its monitor lock. A monitor lock is a predefined type,
which can be thought of as a small record:

MONITORLOCK: TYPE = PRIVATE RECORD [locked: BOOLEAN, queue: Queue];

The monitor lock is private; its fields are never accessed explicitly by the Mesa programmer.
Instead, it is used implicitly to synchronize entry into the monitor code, thereby authorizing access
to the monitor data (and in some cases, other resources, such as lIO devices, etc.) The next section
describes several kinds of monitors which can be constructed from this basic mechanism. In all of
these, the idea is the same: during entry to a monitor, it is necessary to acquire the monitor lock by:

1. waiting (in the queue) until: locked = FALSE,

2. setting: locked +- TRUE.

/0.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures

In addition to a collection of data and an associated lock, a monitor contains a set of procedures that
do operations on the data. Monitor modules are declared much like program or definitions modules;
for example:

M: MONITOR [arguments1 =
BEGIN

END.

The procedures in a monitor module are of three kinds:

Entry procedures

Internal procedures

External procedures

Every monitor has one or more entry procedures; these acquire the monitor lock when called, and
are declared as:

P: ENTRY PROCEDURE [arguments1 = ...

The entry procedures will usually comprise the set of public procedures visible to clients of the
monitor module. (There are some situations in which this is not the case; see external procedures,
below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply.

Many monitors will also have internal procedures: common routines shared among the several entry
procedures. These execute with the monitor lock held, and may thus freely access the monitor data
(including condition variables) as necessary. Internal procedures should be private, since direct calls
to them from outside the monitor would bypass the acquisition of the lock (for monitors
implemented as mUltiple modules, this is not quite right; see section 10.4, below). internal
procedures can be called only from an entry procedure or another internal procedure. They are
declared as follows:

Q: INTERNAL PROCEDURE [arguments] = ...

Mesa Language Manual 157

The attributes ENTRY or INTERNAL may be specified on a procedure only in a monitor module.
Section 10.2.4 describes how one declares an interface for a monitor.

Some monitor modules may wish to have external procedures. These are declared as normal non
monitor procedures:

R: PROCEDURE [arguments] = ...

Such procedures are logically outside the monitor, but are declared within the same module for
reasons of logical packaging. For example, a public external procedure might do some preliminary
processing and then make repeated calls into the monitor proper (via a private entry procedure)
before returning to its client. Being outside the monitor, an external procedure must not reference
any monitor data (including condition variables), nor call any internal procedures. The compiler
checks for calls to internal procedures and usage of the condition variable operations (WAIT, NOTIFY,

etc.) within external procedures, but does not check for accesses to monitor data.

A fine point:

Actually. unchanging read-only global variables may be accessed by external procedures; it is changeable monitor
data that is strictly off-limits.

Generally speaking, a chain of procedure calls involving a monitor module has the general form:

Client procedure -- outside module

'" External procedure(s) -- inside module but outside monitor

'" Entry procedure -- inside monitor

'" Internal procedure(s) -- inside monitor

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs and
increase the readibility of a monitor module is to structure the source text in the corresponding
order:

M: MONITOR =
BEGIN

<External procedures>
<Entry procedures>
<Internal procedures>
<Initialization (main-body) code>
END.

10.2.4. Inteifaces to monitors

In Mesa, the attributes ENTRY and INTERNAL are associated with a procedure's body, not with its
type. Thus they cannot be specified in a DEFINITIONS module. Typically, internal procedures are not
exported anyway, although they may be for a multi-module monitor (see section 10.4.4). In fact, the
compiler will issue a warning when the combination PUBLIC INTERNAL occurs.

From the client side of an interface, a monitor appears to be a normal program module, hence the
keywords MONITOR and ENTRY do not appear. For example, a monitor M with entry procedures P
and Q might appear as:

158

M Deft: DEFINITIONS =
BEGIN

Chapter 10: Processes and Concurrency

M: PROGRAM [arguments];
P. Q: PROCEDURE [arguments] RETURNS [results];

END.

10.2.5. Interactions of processes and monitors

One interaction should be noted between the process spawning and monitor mechanisms as defined
so far. If a process executing within a monitor forked to an internal procedure of the same monitor,
the result would be two processes inside the monitor at the same time, which is the exact situation
that monitors are supposed to avoid. The following rule is therefore enforced:

A FORK may have as its target any procedure except an internal procedure of a monitor.

A fine point:

In the case of a multi-module monitor (see section 10.4.4) calls to other monitor procedures through an interface
cannot be checked for the INTERNAL attribute. since this information is not available in the interface (see
section 10.2.4).

103. Condition Variables

Condition variables are declared as:

c: CONDITION;

The content of a condition variable is private to the process mechanism; condition variables may be
accessed only via the operations defined below. It is important to note that it is the condition
variable which is the basic construct; a condition (Le. the contents of a condition variable) should not
itself be thought of as a meaningful object; it may not be assigned to a condition variable, passed as
a parameter, etc.

10.3.1. Wait. notify. and broadcast

A process executing in a monitor may find some condition of the monitor data which forces it to
wait until another process enters the monitor and improves the situation. This can be accomplished
using a condition variable, and the three basic operations: WAIT, NOTIFY, and BROADCAST, defined by
the following syntax:

Statement

WaitStmt

NotifyStmt

:: = ... I WaitStmt I NotifyStmt

:: = WAIT Variable OptCatchPhrase

:: = NOTIFY Variable I BROADCAST Variable

A condition variable c is always associated with some Boolean expression describing a desired state
of the monitor data, yielding the general pattern:

Process waiting for condition:

WHILE ... BooleanExpression DO

WAIT C

ENDLOOP;

Mesa Language Manual 159

Process making condition true:

make BooleanExpression true;
NOTIFY c;

i.e. as side effect of modifying global data

Consider the storage allocator example from section 10.2.1. In this case, the desired
BooleanExpression is "FreeList # NIL". Therf! are several important points regarding WAIT and
NOTIFY, some of which are illustrated by that example:

WAIT always releases the lock while waiting, in order to allow entry by other processes,
including the process which will do the NOTIFY (e.g. Allocate must not lock out the caller of
Free while waiting, or a deadlock will result). Thus, the programmer is always obliged to
restore the monitor invariant (return the monitor data to a "good state") before doing a
WAIT.

NOTIFY, on the other hand, retains the lock, and may thus be invoked without restoring the
invariant; the monitor data may be left in in an arbitrary state, so long as the invariant is
restored before the next time the lock is released (by exiting an entry procedure, for
example).

A NOTIFY directed to a condition variable on which no one is waiting is simply discarded.
Moreover, the built-in test for this case is more efficient than any explicit test that the
programmer could make to avoid doing the extra NOTIFY. (Thus, in the example above, Free
always does a NOTIFY, without attempting to determine if it was actually needed.)

Each WAIT must be embedded in a loop checking the corresponding condition. (E.g.
Allocate, upon being notified of the StorageAvailable condition, still loops back and tests
again to insure that the freelist is actually non-empty.) This rechecking is necessary because
the condition, even if true when the NOTIFY is done, may become false again by the time the
awakened process gets to run. (Even though the freelist is always non-empty when Free
does its NOTIFY, a third process could have called Allocate and emptied the freelist before
the waiting process got a chance to inspect it.)

Given that a process awakening from a WAIT must be careful to recheck its desired
condition, the process doing the NOTIFY can be somewhat more casual about insuring that
the condition is actually true when it does the NOTIFY. This leads to the notion of a covering
condition variable, which is notified whenever the condition desired by the waiting process is
likely to be true; this approach is useful if the expected cost of false alarms (Le. extra
wakeups that test the condition and wait again) is lower than the cost of having the notifier
always know precisely what the waiter is waiting for.

The last two points are somewhat subtle, but quite important; condition variables in Mesa act as
suggestions that their associated Boolean expressions are likely to be true and should therefore be
rechecked. They do not guarantee that a process, upon awakening from a WAIT, will necessarily find
the condition it expects. The programmer should never write code which implicitly assumes the
truth of some condition simply because a NOTIFY has occurred.

It is often the case that the user will wish to notify all processes waiting on a condition variable.
This can be done using:

BROADCAST c;

This operation can be used when several of the waiting processes should run, or when some waiting
process should run, but not necessarily the head of the queue.

160 Chapter 10: Processes and Concurrency

Consider a variation of the StorageAllocator example:

SlorageAllocator. MONITOR =
BEGIN

S torageA vailable: CONDITION;

Allocate: ENTRY PROCEDURE [size: CARDINAL] RETURNS [p: POINTER1 =
BEGIN

UNTIL <storage chunk of size words is available> DO

WAIT StorageAvailable
ENDLOOP;

p +- <remove chunk of size words>;
END;

Free: ENTRY PROCEDURE [p: POINTER. size: CARDINAL] =
BEGIN

<put back storage chunk of size words>

BROADCAST StorageAvailable
END;

END.

In this example. there may be several processes waiting on the queue of StorageAvailable. each with
a different size requirement It is not sufficient to simply NOTIFY the head of the queue. since that
process may not be satisfied with the newly available storage while another waiting process might be.
TIlis is a case in which BROADCAST is needed instead of NOTIFY.

An important rule of thumb: it is always correct to use a BROADCAST. NOTIFY should be used instead
of BROADCAST if both of the following conditions hold:

It is expected that there will typically be several processes waiting in the condition variable
queue (making it expensive to notify all of them with a BROADCAST). and

It is known that the process at the head of the condition variable queue will always be the
right one to respond to the situation (making the multiple notification unnecessary);

If both of these conditions are met, a NOTIFY: is sufficient, and may represent a significant efficiency
improvement over a BROADCAST. The allocator example in section 10.2.1 is a situation in which
NOTIFY is preferrable to BROADCAST.

As described above, the condition variable mechanism, and the programs using it. are intended to be
robust in the face of "extra" NOTIFYS. The next section explores the opposite problem: "missing"
NOTIFYS.

A fine point:

When a program WAITs, it releases the monitor lock. When it returns from the wait, it reacquires the lock.
The address of the condition variable has to be calculated twice. If this address is obtained by a complicated
expression. there is a subtle restriction. The address calculation cannot do a WAIT in the same process. In
other words, consider the procedure

Mesa Language Manual

CondProc: PROCEDURE RETURNS [POINTER TO CONDITION];

If a program contains the statement

WAIT CondProcf]t

then the execution of CondProc cannot WAIT.

10.3.2. Timeouts

161

One potential problem with waiting on a condition variable is the possibility that one may wait "too
long." There are several ways this could happen, including:

- Hardware error (e.g. "lost interrupt")

- Software error (e.g. failure to do a NOTIFY)

- Communication error (e.g. lost packet)

To handle such situations, waits on condition variables are allowed to time out. This is done by
associating a timeout interval with each condition variable, which limits the delay that a process can
experience on a given WAIT operation. If no NOTIFY has arrived within this time interval, one will be
generated automatically. The Mesa language does not currently have a facility for setting the
timeout field of a CONDITION variable. See the runtime documentation for the description of the
system procedure provided for this operation.

The waiting process will perceive this event as a normal NOTIFY. (Some programs may wish to
distinguish timeouts from normal NOTIFYS; this requires checking the time as well as the desired
condition on each iteration of the loop.)

No facility is provided to time out waits for monitor locks. This is because there would be, in
general, no way to recover from such a timeout.

10.4. More about Monitors

The next few sections deal with the full generality of monitor locks and monitors.

10.4.1. The LOCKS clause

Normally, a monitor's data comprises its global variables, protected by the special global variable
LOCK:

LOCK: MONITORLOCK;

This implicit variable is declared automatically in the global frame of any module whose heading is
of the form:

M: MONITOR [arguments]
IMPORTS

EXPORTS ••• =

In such a monitor it is generally not necessary to mention LOCK explicitly at all. For more general
use of the monitor mechanism, it is necessary to declare at the beginning of the monitor module
exactly which MONITORLOCK is to be acquired by entry procedures. This declaration appears as part
of the program type constructor that is at the head of the module. The syntax is as follows:

162

ProgramTC

LocksClause

Chapter 10: Processes and Concurrency

.. -.. - ... I MONITOR ParameterList ReturnsClause LocksClause

empty I LOCKS Exp ression I
LOCKS Expression USING identifier: TypeSpecification

If the LocksClause is empty, entry to the monitor is controlled by the distinguished variable
LOCK (automatically supplied by the compiler). Otherwise, the LocksClause must designate a
variable of type MONITOR LOCK, a record containing a distinguished lock field (see section 10.4.2), or a
pointer that can be dereferenced (perhaps several times) to yield one of the preceding. If a
LocksClause is present, the compiler does not generate the variable LOCK.

If the USING clause is absent, the lock is located by evaluating the LOCKS expression in the context of
the monitor's main body; i.e., the monitor's parameters, imports, and global variables are visible, as
are any identifiers made accessible by a global OPEN. Evaluation occurs upon entry to, and again
upon exit from, the entry procedures (and for any WAITS in entry or internal procedures). The
location of the designated lock can thus be affected by assignments within the procedure to variables
in the LOCKS expression. To avoid disaster, it is essential that each reevaluation yield a designator of
the same MONITORLOCK. This case is described further in section 10.4.4.

If the USING clause is present, the lock is located in the following way: every entry or internal
procedure must have a parameter with the same identifier and a compatible type as that specified in
the USING clause. The occurrences of that identifier in the LOCKS clause are bound to that
procedure parameter in every entry procedure (and internal procedure doing a WAIT). The same care
is necessary with respect to reevaluation; to emphasize this, the distinguished argument is treated as
a read-only value within the body of the procedure. See section 10.4.5 for further details.

10.4.2. Monitored records

For situations in which the monitor data cannot simply be the global variables of the monitor
module, a monitored record can be used:

r: MONITORED RECORD [x: INTEGER, •••];

A monitored record is a normal Mesa record, except that it contains an automatically declared field
of type MONITORLOCK. A~ usual, the monitor lock is used implicitly to synchronize entry into the
monitor code, which may then access the other fields in the monitored record. The fields of the
monitored record must not be accessed except from within a monitor which first acquires its lock.
In analogy with the global variable case, the monitor lock field in a monitored record is given the
special name LOCK; generally, it need not be referred to explicitly (except during initialization; see
section 10.6).

A fine point:

A more general form of monitor lock declaration is discussed in section 10.4.6

CAUTION: If a monitored record is to be passed around (e.g. as an argument to a procedure) this
should always be done by reference using a POINTER TO MONITORED RECORD. Copying a monitored
record (e.g. passing it by value) will generally lead to chaos.

10.4.3. Monitors and module instances

Even when all the procedures of a monitor are in one module, it is not quite correct to think of the
module and the monitor as identical. For one thing, a monitor module, like an ordinary program
module, may have several instances. In the most straightforward case, each instance constitutes a

Mesa Language Manual 163

separate monitor. More generally, through the use of monitored records, the number of monitors
may be larger or smaller than the number of instances of the corresponding module(s). The crucial
observation is that in all cases:

There is a one-to-one co"espondence between monitors and monitor locks.

The generalization of monitors through the use of monitored records tends to follow one of two
patterns:

Multi-module monitors, in which several module instances implement a single monitor.

Object monitors, in which a single module instance implements several monitors.

A fine point:

These two patterns are not mutually exclusive; multi-module object monitors are possible. and may occasionally
prove necessary.

10.4.4. Multi-module monitors

In implementing a monitor, the most obvious approach is to package all the data and procedures of
the monitor within a single module instance (if there are multiple instances of such a module, they
constitute separate monitors and share nothing except code.) While this will doubtless be the most
common technique, the monitor may grow too large to be treated as a single module.

Typically, this leads to multiple modules. In this case the mechanics of constructing the monitor are
changed somewhat There must be a central location that contains the monitor lock for the monitor
implemented by the multiple modules. This can be done either by using a MONITORED RECORD or
by choosing one of the modules to be the "root" of the monitor. Consider the following example:

BigMonRoot: MONITOR IMPORTS ••• EXPORTS ••• =
BEGIN

monitorDatumI: .. .
monitorDatum2: .. .

pI: PUBLIC ENTRY PROCEDURE •••

END.

BigMonA: MONITOR

LOCKS root -- could equivalently say mot.LOCK
IMPORTS rool: BigMonRoot ... EXPORTS ••• SHARES BigMonRool =
BEGIN

p2: PUBLIC ENTRY PROCEDURE •••

x +-rool.monitorDatumI; -- access the protected data of the monitor

END.

BigMonB: MONITOR

LOCKS rool
IMPORTS root: BigMonRoot ... EXPORTS ••• SHARES BigMonRoot =
BEGIN OPEN rool;

p3: PUBLIC ENTRY PROCEDURE •••

164 Chapter 10: Processes and Concurrency

monitorDatum2 +- ••• ; -- access the protected data via an OPEN

END.

The monitor BigMon is implemented by three modules. The modules BigMonA and BigMonB have
a LOCKS clause to specify the location of the monitor lock: in this case, the distinguished variable
LOCK in BigMonRool. When any of the entry procedures pI, p2, or p3 is called, this lock is
acquired (waiting if necessary), and is released upon returning. 'The reader can verify that no two
independent processes can be in the monitor at the same time.

Note that since the LOCK field is private in BigMonRool, the modules BigMonA and BigMonB
must SHARE BigMonRoot. Another way to accomplish access to the lock would be to specify a
PUBLIC GlobalAccess (sec. 7.5) for BigMonRoot.

Another means of implementing multi-module monitors is by means of a MONITORED RECORD. Use
of OPEN allows the fields of the record to be referenced without qualification. Such a monitor is
written as:

MonitorData: TYPE = MONITORED RECORD [x: INTEGER, •••];

MonA: MONITOR (pm: POINTER TO MonitorData]

LOCKS pm
IMPORTS •••

EXPORTS ••• =
BEGIN OPEN pm;
P: ENTRY PROCEDURE [•••] =

BEGIN

x +- x+ 1; -- access to a monitor variable

END;

END.

The LOCKS clause in the heading of this module (and each other module of this monitor) leads to a
MONITORED RECORD. Of course, in all such multi-module monitors, the LOCKS clause will involve
one or more levels of indirection (POINTER TO MONITORED RECORD, etc.) since passing a monitor lock
by value is not meaningful. As usual, Mesa will provide one or more levels of automatic
dereferencing as needed.

More generally, the target of the LOCKS clause can evaluate to a MONITORLOCK (Le. the example
above is equivalent to writing "LOCKS pm.LOCK').

CAUTION: The meaning of the target expression of the LOCKS clause must not change between the
call to the entry procedure and the subsequent return "(Le. in the above example, changing pm would
invariably be an error) since this would lead to a different monitor lock being released than was
acquired, resulting in total chaos.

There are a few other issues regarding multi-module monitors which arise any time a tightly coupled
piece of Mesa code must be split into multiple module instances and then spliced back together. For
example:

If the lock is in a MONITORED RECORD, the monitor data will probably need to be in the
record also. While the global variables of such a multi-module monitor are covered by the

Mesa Language Manual 165

monitor lock, they do not constitute monitor data in the normal sense of the term, since they
are not uniformly visible to all the module instances.

Making the internal procedures of a multi-module monitor PRIVATE will not work if one
module wishes to call an internal procedure in another module. (Such a call is perfectly
acceptable so long as the caller already holds the monitor lock). Instead, a second interface
(hidden from the clients) is needed as part of the "glue" holding the monitor together. Note
however, tlIat Mesa cannot currently check that the procedure being called through the
interface is an internal one (see section 10.2.4).

A fine point:

The compiler will complain about the PUBLIC INTERNAL procedures, but this is just a warning.

10.4.5. Object monitors

Some applications deal with objects. implemented, say, as records named by pointers. Often it is
necessary to insure that operations on these objects are atomic, i.e., once the operation has begun.
the object will not be otherwise referenced until the operation is finished. If a module instance
provides operations on some class of objects, the simplest way of guaranteeing such atomicity is to
make the module instance a monitor. This is logically correct, but if a high degree of concurrency is
expected, it may create a bottleneck; it will serialize the operations on all objects in the class, rather
than on each of them individually. If this problem is deemed serious, it can be solved by
implementing the objects as monitored records, thus effectively creating a separate monitor for each
object. A single module instance can implement the operations on all the objects as entry
procedures, each taking as a parameter the object to be locked. The locking of the parameter is
specified in the module heading via a LocksClause with a USING clause. For example:

ObjectRecord: TYPE = MONITORED RECORD [• • •];

ObjectHandle: TYPE = POINTER TO ObjectRecord;

ObjectManager: MONITOR [arguments]
LOCKS object USING object: ObjectHandle
IMPORTS.
EXPORTS •
BEGIN
Operation:

BEGIN

END;

END.

. . -
PUBLIC ENTRY PROCEDURE [object: ObjectHandle, ...] =

Note that the argument of USING is evaluated in the scope of the arguments to the entry procedures,
rather than the global scope of the module. In order for this to make sense, each entry procedure,
and each internal procedure that does a WAIT, must have an argument which matches exactly the
name and type specified in the USING subclause. All other components of the argument of LOCKS
are evaluated in tile global scope, as usual.

As with the simpler form of LOCKS clause, the target may be a more complicated expression andlor
may evaluate to a monitor lock rather than a monitored record. For example:

LOCKS p.q.LOCK USING. p: POINTER TO ComplexRecord ..•

166 Chapter 10: Processes and Concurrency

CAUTION: Again, the meaning of the target expression of the LOCKS clause must not change between
the call to the entry procedure and the subsequent return. (I.e. in the above example, changing p or
p.q would almost surely be an error.)

CAUTION: It is important to note that global variables of object monitors are very dangerous; they
are not covered by a monitor lock, and thus do not constitute monitor data. If used at all, they must
be set only at module initialization time and must be read-only thereafter.

10.4.6. Explicit declaration 0/ monitor locks

It is possible to declare monitor locks explicitly:

myLock: MONITORLOCKj

The normal cases of monitors and monitored records are essentially stylized uses of this facility via
the automatic declaration of LOCK, and should cover all but the most obscure situations. For
example, explicit delarations are useful in defining MACHINE DEPENDENT monitored records. (Note
that the LOCKS clause becomes mandatory when an explicitly declared monitor lock is used.) More
generally, explicit declarations allow the programmer to declare records with several monitor locks,
declare locks in local frames, and so on; this flexibility can lead to a wide variety of subtle bugs,
hence use of the standard constructs whenever possible is strongly advised.

10.4.7 Inline ENTRY procedures

The syntax for definitions modules allows the specification of a LOCKS clause. This is to allow inline
ENTRY PROCEDURES to be declared in the interface. In order for this to make sense, the monitor
lock must be an interface variable, or the procedures must deal with an object style monitor. No
special restrictions (other than those that apply to all INLINE bodies) need be met when declaring
inUne ENTRY PROCEDURES within the program module of a monitor.

10.5. Signals

10.5.1. Signals and processes

Each process has its own call stack, down which signals propagate. If the signaller scans to the
bottom of the stack and finds no catch phrase, the signal is propagated to the debugger. The
important point to note is that forking to a procedure is different from calling it, in that the forking
creates a gap across which signals cannot propagate. This implies that in practice, one cannot
casually fork to any arbitrary procedure. The only suitable targets for forks are procedures which
catch any signals they incur, and which never generate any signals of their own.

10.5.2. Signals and monitors

Signals require special attention within the body of an entry procedure. A signal raised with the
monitor lock held will propagate without releasing the lock and possibly invoke arbitrary
computations. For errors, this can be avoided by using the RETURN WITH ERROR construct.

RETURN WITH ERROR NoSuchObject;

Recall from Chapter 8 that this statement has the effect of removing the currently executing frame
from the call chain before issuing the ERROR. If the statement appears within an entry procedure,

Mesa Language Manual 167

the monitor lock is released before the error is started as well. Naturally, the monitor invariant must
be restored before this operation is performed.

For example, consider the following program segment:

Failure: ERROR [kind: CARDINAL] = CODE;

Proc: ENTRY PROCEDURE [. . .] RETURNS [d, c2: CHARACTER] =
BEGIN

ENABLE UNWIND = > .

IF condl THEN ERROR Failurt{l];
IF cond2 THEN RETURN WITH ERROR Failurt{2];

END;

Execution of the construct ERROR Failurt{l] raises a signal that propagates until some catch phrase
specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND in Proc is executed
and then Proc's frame is destroyed. Within an entry procedure such as Proc, the lock is held until
the unwind (and thus through unpredictable computation performed by catch phrases).

Execution of the construct RETURN WITH ERROR Failurt{2] releases the monitor lock and destroys the
frame of Proc before propagation of the signal begins. Note that the argument list in this construct
is determined by the declaration of Failure (not by Proc's RETURNS clause). The catch phrase for
UNWIND is not executed in this case. The signal Failure is actually raised by the system, after which
Failure propagates as an ordinary error (beginning with Proc's caller).

When the RETURN WITH ERROR construct is used from within an internal procedure, the monitor lock
is not released; RETURN WITH ERROR will release the monitor lock in precisely those cases that
RETURN will.

Another important issue regarding signals is the handling of UNWINDS; any entry procedure that may
experience an UNWIND must catch it and clean up the monitor data (restore the monitor invariant):

P:ENTRY PROCEDURE [•••] =
BEGIN ENABLE UNWIND = > BEGIN <restore invariant> END;

END;

At the end of the UNWIND catchphrase, the compiler will append code to release the monitor lock
before the frame is unwound. It is important to note that a monitor always has at least one cleanup
task to perform when catching an UNWIND signal: the monitor lock must be released. To this end, the
programmer should be sure to place an enable-clause on the body of every entry procedure that
might evoke an UNWIND (directly or indirectly). If the monitor invariant is already satisfied,· no
further cleanup need be specified, but the null catch-phrase must be written so that the compiler will
generate the code to unlock the monitor:

BEGIN ENABLE UNWIND = > NULL;

This should be omitted only when it is certain that no UNWINDS can occur.

Another point is that signals caught by the OptCatchPhrase of a WAIT operation should be
thought of as occurring after reacquisition of the monitor lock. 'Thus, like all other monitor code,

168 Chapter 10: Processes and Concurrency

catch phrases within a monitor are always executed with the monitor lock held.

10.6. Initialization

When a new monitor comes into existence, its monitor data will generally need to be set to some
appropriate initial values; in particular, the moaitor lock and any condition variables must be
initialized. As usual, Mesa takes responsibility for initializing the simple common cases; for the cases
not handled automatically, it is the responsibility of the programmer to provide appropriate
initialization code, and to arrange that it be executed at the proper time. The two types of
initialization apply in the following situations:

Monitor data in global variables can be initialized using the normal Mesa initial value
constructs in declarations. Monitor locks and condition variables in the global frame will
also be initialized automatically (although in this case, the programmer does not write any
explicit initial value in the declaration).

Monitor data in records must be initialized by the programmer. System procedures must be
used to initialize the monitor lock and condition variables. See the runtime documentation
for the descriptions of appropriate procedures.

A fine point:

If a variable containing a record is declared in a frame, it is normally possible to initialize it in the
declaration (i.e. using a constructor as the initial value): however, this does not apply if the record
contains monitor locks or condition variables, which must be initialized via caIls to system procedures.

Since initialization code modifies the monitor data, it must have exclusive access to it The
programmer should insure this by arranging that the monitor not be called by its client processes
until it is ready for use.

169

APPENDIX A. Pronouncing Mesa

The following suggestions may be helpful in reading Mesa programs:

For Read

=> chooses
+- gets
n: T n is a T
m.field m's field

pt p's referent
@x address of x

[a..b] (the interval) a through b
[a.. b) (the interval) auptob
(a..b] (the interval) above a through b
(a.. b) (the interval) above a up to b
FORi+-j,k ••• for i getting first j. thereafter k

f[x. Y. z] f of x. y and z
enabling

We leave as an exercise for the reader the following statement, attributed to Oscar Hammerstein II.

i +- weary AND Sick[trying];

170

APPENDIX B. Programming Conventions

The Mesa compiler only uses blanks, TABS, and carriage returns as separators for basic lexical units
such as identifiers; extra ones do not hurt.' Furthermore, it allows you to write identifiers in any
combination of upper and lower case letters: the identifiers Alpha, ALPHA, alpha and AlphA are
a11 legal (but different) Mesa identifiers. It is recommended that you adhere to a standard set of
conventioas for constructing identifiers and laying out programs. The recommended conventions are
summarized below.

B.!. Names

Most identifiers should be written in lower case, except that the first letter of each new "word" in
the identifier should be capitalized. Thus,

line
firstLine
firstLinePos

This convention makes it easy to read identifiers which are made up of several words. (Note that
Mesa does not allow spaces in identifiers.)

Capitalize the first letter of type identifiers, procedure names, signal names, and module names.

The following convention for constructing names has been used successfully to reflect their types:

Choose a short (2-3 character) tag for each "basic type" you use: e.g., In for Line and co for Coordinate. You
can use the tag as the type name, or not, as you prefer. If you do, capitalize it.

Use the following prefixes to construct tags for "derived" types (most of them reflect the intended use of some
underlying type).

p - pointer; pLn = pointer to a line

i-index; iLn = index in an array of lines.

I - Jength

n - number of items (total or count)

Whether to use a prefix or to invent a new type tag, is a matter of judgment; depending on whether it is
better to emphasize the relationship of this type to another, or to emphasize its individuality.

If you need only one name of a given type in a scope, use the tag as its name:

In : Ln;
pLn : POINTER TO Ln.

If you need several names, append modifiers to the tag (avoid simple numbers like 1, 2, etc.):

InOld, InNew, InBuffer: Ln.

The advantages of this scheme are three-fold:

B.2. Layout

the reader spends less time looking up the types of identifiers;

the writer spends less time thinking up names;

if you have forgotten a name, there is a good chance you wilI be able to guess it correctly if you
know the tag vocabulary.

Write statements one per line, unless several simple statements which together perfonn a single
junction will fit on one line.

Indent the labels of a SELECT (including the ENDCASE) one level, and the statements a second level
(unless a statement will fit on the same line with the label).

Appendix 8: Programming Conventions 171

Indent one level for the statement following a THEN or ELSE (unless it fits on the same line). Put
THEN on the same line with IF, and don't indent ELSE with respect to IF. If the statement following
ELSE is another IF, write both on the ~e line.

Indent one level for each compound BEGIN· END, DO·ENDLOOP, or bracket pair in a record declaration.

When the rules for IF and SELECT call for indenting a statement, do not indent an extra level for a
BEGIN.

It is fine to put a compound statement or loop on a single line if it will fit

If a statement won't fit on a single line, indent the continuation line(s) by two spaces.

Among other things, these rules have the property that they allow a program to be easily converted
to a form in which the bracketing is implied by the indentation.

B.3. Spaces

The following rules for spaces should be broken when necessary, but are a good general guide:

A space after a comma, semicolon, or colon, and none before

No spaces inside brackets or parentheses

No spaces around single-character operations: *, -, etc., except for ~ .

172

APPENDIX C. Alto/Mesa Machine Dependencies

This appendix contains a number of machine-dependent constants and definitions for the Alto
implementation of Mesa.

C.l. Numeric limits

On the Alto, the numeric limits are the following:

FIRST[INTEGER] = 32768 = 215 and has internal representation
lAST[INTEGER] = 32767 = 2151 and has internal representation
lAST[CARDINAL] = 65535 = 2161 and has internal representation
FIRST[LONG INTEGER] = - 2147483648 = 231

lAST[LONG INTEGER] = 2147483647 = 2311
lAST[LONG CARDINAL) = 4294967295 = 2321

C.2. AltoDe/s

100000B
077777B
177777B

A module similar to the one below is a part of the Alto/Mesa system and defines several useful
constants.

A/toDefs: DEFINITIONS =
BEGIN

word/ength: INTEGER = 16; -- Alto word length (bits)
maxword: CARDINAL = 177777B; .- N.B. negative as 16 bit integer
maxinteger: INTEGER = 077777B; -- maximum positive number

·chariength: INTEGER = 8; -- Alto character size (bits)
maxcharcode: INTEGER = 377B;
BYTE: TYPE = [O .. maxcharcode];
BytesPerWord. CharsPerWord: INTEGER = word/engthlcharlength;
LogBytesPerWord, LogCharsPerWord: INTEGER = 1;

PageSize: INTEGER = 256; -- Alto page size (words)
LogPageSize: INTEGER = 8;
BytesPerPage. CharsPerPage: INTEGER = PageSize*CharsPerWord;
LogBytesPerPage. LogCharsPerPage: INTEGER = LogPageSize + LogCharsPerWord;

VMLimit: CARDINAL = 177777B; -- maximum Alto VM address
Address: TYPE = [O .. VMLimit);

MaxVMPage: INTEGER = 255; -- maximum Alto VM page number
MaxFilePage: CARDINAL = 077777B;

PageNumber: TYPE = [O .. MaxFilePage);
PageCount: TYPE = [O .. MaxVMPage + 1);

END.

Appendix C: Alto/Mesa Machine Dependencies 173

C.3. ASCll character set and ordering of character values

The following list gives the characters of the ASCII character set in increasing order, accompanied
by their literal representations. Control characters are represented as tao In addition, a number of
special characters such as SP (space), DEL (rubout) are denoted by their generally accepted names.

Octal Character Octal Character
Value Name(s) Value Name(s)

OOOC NUL lOOC '@
OOlC tA lOlC 'A
002C tB lO2C 'B
003C tC lO3C 'C
004C tD l04C '0
OOSC tE lOSC 'E
006C tF 106C 'F
007C tG, BELL lO7C 'G
OlOC tH, BS l10C 'H
011C 1'1 ll1C 'I
012C tJ, LF 112C 'J
013C tK 113C 'K
0l4C tL 114C 'L
OlSC tM,CR l1SC 'M
016C 1'N 116C 'N
0l7C to 117C '0
020C tP l20C 'P
02lC 1'0 l2IC :~ 022C tR 122C
023C tS l23C 'S
024C tT 124C 'T
025C tU 125C 'U
026C tV 126C 'V
027C tW 127C 'W
O3OC tX l30C 'X
03lC tY 13lC 'Y
032C tZ 132C 'Z
033C FSC 133C :~ 034C l34C
03SC 13SC :1, 036C 136C
037C 137C ' ..
040C

,
, SPace l40C

04lC '! l41C 'a
042C .. ,

l42C 'b
043C '# l43C 'c
044C 'S l44C 'd
04SC '% l4SC 'e
046C '& l46C 'f
047C n, a single quote 147C ~ OSOC :~ 150C
OSlC ISlC 'i
OS2C

,.
lS2C :t OS3C '+ 153C

054C
,

154C 'I ,
OSSC ,- 15SC 'm
OS6C l56C 'n
057C '/ 157C '0
O6OC '0 l60C 'p
06lC 'I l61C 'q
062C '2 l62C 'r
063C '3 I63C 's
064C '4 I64C 't
06SC 'S l65C 'u
066C '6 l66C 'v
067C '7 I67C 'w
070C '8 170C 'x
onc '9 I7lC 'y
onc '. I72C 'z
073C '. l73C '{
074C '(174C

:~ 07SC = I75C
076C ') I76C
077C '1 177C DEL

174 Appendix C: Alto/Mesa Machine Dependencies

CA. Alto/Mesa STRING procedures

A module similar to the one below is a part of the Alto/Mesa system and defines useful procedures
provided by the system for operating on strings. See the system documentation for its exact fOIln.

DIRECTORY AltoDefs: FROM "altodefs";

StringDefs: DEFINITIONS =
BEGIN

··COMPILE·TIME CONSTANTS AND TYPES

SubString Descriptor: TYPE = RECORD [
base: STRING,
offset, length: CARDINAL];

SubString: TYPE = POINTER TO SubString Descriptor;

··INTERFACE ITEMS

Overflow: SIGNAL;
InvalidNumber: SIGNAL;
StringBoundsFault: SIGNAL [s: STRING] RETURNS [ns: STRING];

WordsForString: PROCEDURE [nchars: CARDINAL) RETURNS [CARDINAL];

AppendChar: PROCEDURE [s: STRING, c: CHARACTER};
AppendString: PROCEDURE [to,from: STRING);
Equa/String, Equa/Strings: PROCEDURE [s1, s2: STRING) RETURNS [BOOLEAN];
Equiva/entString, EquivalentStrings: PROCEDURE [s1, s2: STRING] RETURNS [BOOLEAN];

AppendSubString: PROCEDURE[to: STRING, from: SubString];
Equa/SubString, Equa/SubStrings: PROCEDURE [s1, s2: SubString] RETURNS [BOOLEAN];
EquivalentSubString, EquivalentSubStrings: PROCEDURE [s1, s2: SubString) RETURNS [BOOLEAN];
DeleteSubString: PROCEDURE [s: SubString];
UpperCase, LowerCase: PROCEDURE [CHARACTER) RETURNS [CHARACTER};
StringToDecimal: PROCEDURE [STRING] RETURNS [INTEGER);
String To Octal: PROCEDURE [STRING) RETURNS [UNSPECIFIED);
StringToNumber: PROCEDURE [s: STRING, radix: CARDINAL) RETURNS [UNSPECIFIED];
StringToLongNumber: PROCEDURE [s: STRING, radix: CARDINAL) RETURNS [LONG UNSPECIFIED];
AppendDecimal: PROCEDURE [s: STRING, n: INTEGER];
AppendOcta/: PROCEDURE [s: STRING, n: UNSPECIFIED);
AppendNumber: PROCEDURE [s: STRING, n: UNSPECIFIED, radix: CARDINAL];
AppendLongDecima/: PROCEDURE [s: STRING, n: LONG INTEGER];
AppendLongNumber: PROCEDURE [s: STRING, n: LONG UNSPECIFIED, radix: CARDINAL];

END.

175

APPENDIX D. Binder Extensions

TIle Alto implementation of the Mesa bin~er provides two extensions for controlling the space
occupied by Mesa programs at runtime. These are specified with the CPacking and Clinks
clauses (section 7.7).

D.I. Code packing

It is possible to pack together the code for several modules into a single segment. This is useful for
two reasons:

Since the code is allocated an integral number of pages, there is some wasted space in the
last page ("breakage"). If several modules are combined into a single segment. the breakage
is amortized over all the modules, and there is less waste on the average.

All the modules will be brought into and out of memory together, as a unit; a reference to
any module in the pack will cause all the code to be brought in. Modules which are tightly
coupled dynamically are good candidates for packing (for example. resident code should
probably always be packed).

Of course, it is possible to "over pack" a configuration; the segments might become so large that
there will never be room in memory for more than one of them at a time (this should remind you of
an overlay system). Packing is a tradeoff, and should be used with caution.

D.l.I. Syntax

The segments are specified at the beginning of the configuration by giving a list of the modules
which comprise each one. Any number of PACK statements may appear. The scope of the packing
specification is the whole configuration, and not subconfigurations or individual module instances,
because there is at most one copy of a module's code in any configuration.

ConfigDesc ription
:: = Directory CPacking Configuration.

CPacking :: = empty I CPackSeries ;
CPackList

CPackSeries .. -.. -
PACK IdList

CPackList I CPackSeries ; CPackUst

Each PackList defines a single segment; the code for all the modules in the IdUst will be packed
into it. The identifiers in the IdList must refer to modules in the configuration. and not to module
instances; it is the code and not the global frames that are being packed (the frames are always
packed when they are allocated by the loader).

It is illegal to specify the same module in more than one PackList. Even though there may be
multiple instances of the module (i.e., multiple global frames) in the configuration, the code is
shared by all of them, and therefore can only appear in one pack.

Finally, it is perfectly fine to reach inside a previously bound configuration that is being instantiated
and single out some or all of its modules for packing. Of course, you must know something about
the structure of that configuration in order to do this.

176 Appendix 0: Binder Extensions

D.I.2. Restrictions

Obviously, the PACK statements apply only if the code is being moved to the output file; otherwise,
the pack lists are ignored (and no warning message is given). This allows the programmer to debug
the configuration without shuffling the code from file to file. thereby saving time. When making the
final version, the packing can be effected with a binder switch, without having to modify the source
of the configuration description.

Once some modules have been packed together, they cannot be taken apart and repacked with other
modules later on, when they are bound into some other configuration.

Fine point:

If a previously bound configuration contains a pack, referencing any module of the pack gets the whole thing.
So it is possible to pack a module. and a pack together, or even to pack two packs. It is never possible to
unpack a pack.

In general, code packing should be specified only to the extent that no unpacking will ever be
desired. Once the packing is done, it can't be undone, unless you start over with the individual
modules. .

D.2. External links

In previous Mesa systems, links to the externals referenced by a program (imported procedures,
signals, errors, frames, and programs) were always stored in the module's global frame. This allows
each instance of a module to be bound differently, and it allows binding to be done at runtime
without modification of the module's code segment However, it has two drawbacks:

The links are only referenced by the module's code, and are therefore not needed when the
code is swapped out Hence, the links logically belong in the code segment

If two instan.ces of a module are bound identically (the usual case), the links must be stored
twice.

Fine Point:

To determine the amount of space required for external links, see the compiler's typescript file. Each
link occupies one word.

The Mesa binder optionally places links in the code segment. This option is enabled by constructs
in the configuration language, and is further controlled by binder and loader switches.

D.2.I. Syntax

For each component of a configuration, the link location is specified using the LINKS construct
defined below. The default is frame links.

Clinks :: = empty I LINKS: CODE I LINKS: FRAME

A link specification can optionally be attached to each instantiation of a module, overriding the
current default, so that the link location can be different for each instance.

CRightSide .. - Item litem [] Clinks litem [IdList] Clinks

Appendix D: Binder Extensions 177

Alternately, the link option can be specified in the configuration header. This merely changes the
default option for the configuration; it will apply to all components (including nested configurations)
unless it is explicitly overridden.

CHead :: = CONFIGURATION Clinks Imports CExports ControlClause

This construction works much like the PUBLIC / PRIVATE options in Mesa, and it nests in the same
way. A link option attached to a configuration changes the default for all components within it, but
that default can be overriden for a particular module (or nested configuration) by specifying a
different link option.

D.l.l. Restrictions

This scheme has the consequence that, if a module with code links has multiple instances, each
instance must be bound the same.

As with code packing, the code links option takes effect only when the code is being moved to the
output file. At this point, the binder will make room for the links as it copies the code if any
module sharing that code has requested code links. Again, this allows a programmer to debug
without the expense of moving the code (using frame links), and then to effect the code links option
with a binder switch, without changing the source of the configuration description.

Fine point:

Once space for code links has been added to a configuration, it cannot be undone by a later binding. On the
other hand, space for code links can always be added to a (previously bound) configuration, even if it did not
specify code links in its description.

Using code links has one drawback: it slows down the binding and loading process, as the code must
be swapped in and rewritten. The binder must make room in the code segment for the links, as
described above. And because the loader resolves imports of previously loaded modules, as well as
the imports of the module being loaded, it may have to swap in (and perhaps update and swapout)
the code segment for every module in the system.

Because of the overhead involved, the loader will not automatically attempt to use code links, even if
the space is available in the code segment. A loader switch must be used to effect this option.

Documentation of binder and loader switches in in the Mesa User's Handbook.

178

APPENDIX E. Mesa Reserved Words

Listed below are all of the Mesa reserved words. Words marked with an astrisk are predeclared
rather than reserved. Predeclared identifiers can be redefined (but seldom should be).

ABS
ALL
AND
ANY
ARRAY
BASE
BEGIN
BOOLEAN
BROADCAST
CARDINAL
CHARACTER
CODE
COMPUTED
CONDITION
CONTINUE
DECREASING
DEFINITIONS
DEPENDENT
DESCRIPTOR
DIRECTORY
DO
ELSE
ENABLE
END
ENDCASE
ENDLooP
ENTRY
ERROR
EXIT
EXITS
EXPORTS
FALSE·
FINISHED.
FIRST
FOR
FORK
FRAME
FROM
GO
GOTO
IF
IMPORTS
IN
INLINE
INTEGER
INTERNAL
JOIN
LAST
LENGTH
LOCKS
LONG
LOOP
LOOPHOLE
MACHINE
MAX
MIN

MOD
MONITOR
MONITORED
MONITORLOCK
NEW
NIL-
NOT
NOTIFY
NULL
OF
OPEN
OR
ORDERED
OVERLAID
PACKED
POINTER
PORT
PRIVATE
PROCEDURE
PROCESS
PROGRAM
PUBLIC
READONLY
REAL·
RECORD
RELATIVE
REPEAT
RESTART
RESUME
RETRY
RETURN
RETURNS
SELECT
SHARES
SIGNAL
SIZE
START
STATE
STOP
STRING
StringBody·
THEN
THROUGH
TO
TRANSFER
TRUE-
TYPE
UNSPECIFIED·
UNTIL
UNWIND·
USING
WAIT
WHILE
WITH
WORD"

179

APPENDIX F. Collected Grammar

The Mesa grammar in this section is a collccted version of the grammar distributed throughout the
body of the Manual. There are some differences, primarily due to the Manual's grammar being
distorted for purposes of exposition. This one is intended to be internally consistent.

The grammar is divided into four parts, corresponding to the syntax for Compil~tionUnit,
TypeSpecification, Statement, and Expression. These four parts refer to .each other and
occasionally use syntax rules from other parts (such as LeftSide, which is used in an assignment
statement but defined under Expression). Where such cross references occur, a comment has been
added to indicate which part to refer to. Other than this, each part is self-contained, and the
productions within a part have been ordered alphabetically by their names, except that the
productions for Compilation Unit, TypeSpecification, etc. head their respective sections.

CompilationUnit .. -.. -
Directory

ExportsList

FileName
GlobalAccess

Idlist

ImportsList

IncludeList

Interfaceltem

InterfaceList

ModuleBody

ModuleHead

ModuleParams

Sharelist
UsingClause

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

Directory
identifier: ModuleHead = GlobalAccess
ModuleBody

empty I DIRECTORY IncludeList ;

empty I EXPORTS IdList

stringLiteral
Access .- in TypeSpecification

identifier IldList , identifier

empty ,IMPORTS InterfaceList
identifier: FROM FileName UsingClause I
IncludeList , identifier: FROM FileName UsingClause

identifier, identifier: identifier

Interfaceltem IlnterfaceList , Interfaceltem

Block. -- in Statement

ProgramTC ImportsList ExportsList Sharelist I
DefinitionTC ImportsUst ShareUst

empty, [NamedFieldUst] .- in TypeSpecification

empty I SHARES IdUst

empty, USING [IdList]

TypeSpecification ••

Access

Adjective

ArrayTC

BaseOption

ByteList

CommonPart

ConstantList

DefaultOption

DefaultSpecification :: =

DefinitionTC

PredefinedType
Typeldentifier I
TypeConstructor

empty, PUBLIC I PRIVATE
identifier
PackingOption ARRAY IndexType OF TypeSpecification

empty I BASE

Expression' ByteList, Expression

empty I NamedFieldList ,

Expression I ConstantList , Expression

empty I'" DetaultSpecification

empty I
Expression'
NULL I
Expression' NUll

DEFINITIONS I
DEFINITIONS LocksClause

180

DescriptorTC

ElementType

EnumerationTC
FieldList
IndexType
InlineOption

:: =
::::

InstructionSeries ::::

Interval •• _

LocksClause .. -
LongTC " -
MachineCode .. -
MachineDependent ::::
MonitoredOption .. -
NamedFieldList .. -
Optionallnterval .. -
Ordered .. -
PackingOption .. -
ParameterList .. -
POinterTaii .. -
PointerTC .. -
PortTC .. -
P redefinedType .. - .

P rocedu reBody .. -
ProcedureTC .. -
ProcessTC .. -
ProgramTC .. -
ReadOnlyOption .. -
RecordTC .. -
RelativeTC .. -
Retu rnsClause .. -
SignalOrError .. -
SignalTC .. -
SubrangeTC .. -
Tag .. -

TagType .. -
TypeConstructor .. -

Typeldentifier .. -

Appendix F: Col/ected Grammar

DESCRIPTOR FOR ReadOnlyOption TypeSpecification 1
DESCRIPTOR FOR ReadOnlyOption PackingOption ARRAY OF TypeSpecification

INTEGER, CARDINAL I CHARACTER, BOOLEAN 1
EnumerationTC I SubrangeTC
{ldList}

[UnnamedFieldList 11 [NamedFieldList]
ElementType 1 Typeldentifier
empty IINLINE
empty I ByteList 1 ByteList ; InstructionSeries

[Expression •• Expression] 1
[Expression •• Expression) 1
(Expression •• Expression] I
(Expression •• Expression)

empty I
LOCKS Expression I
LOCKS Expression USING identifier: TypeSpecification
LONG TypeSpecification
MACHINE CODE BEGIN InstructionSeries END •• not described in this manual
empty I MACHINE DEPENDENT
empty 1 MONITORED
IdList : Access TypeSpecification DefaultOption I
NamedFieldList , IdList : Access TypeSpecification DefaultOption

empty , Interval

empty 1 ORDERED
empty 1 PACKED
empty I FieldList
empty 1
TO ReadOnlyOption TypeSpecification 1
TO FRAME [identifier]
Ordered BaseOption POINTER Optionallnterval PointerTaii
PORT ParameterList ReturnsClause I
RESPONDING PORT ParameterList ReturnsClause

INTEGER I CARDINAL I LONG INTEGER 1
REAL I BOOLEAN I CHARACTER 1 STRING I
MONITOR LOCK ,CONDITION 1
UNSPECIFIED I WORD
InlineOption Block -. Block in Statement
PROCEDURE Pa ramete rList Retu rnsClause
PROCESS Retu rnsClause

PROGRAM ParameterList ReturnsClause I
MONITOR ParameterList ReturnsClause LocksClause

empty I READONL Y
MonitoredOption MachineDependent RECORD [VariantFieldList)
Typeldentifier RELATIVE TypeSpecification I
Typeldentifier RELATIVE LONG TypeSpecification
empty , RETURNS FieldList

SIGNAL I ERROR
SignalOrError ParameterList ReturnsClause

Interval, Typeldentifier Interval
identifier: Access TagType I
COMPUTED TagType 1
OVERLAID TagType

TypeSpecification I •
DescriptorTC I A rrayTC I EnumerationTC I LongTC 1
PointerTC I PortTC I ProcedureTC I ProcessTC I
RecordTC, RelativeTC I SignalTC, SubrangeTC

identifier I
identifier. identifier I

UnnamedFieldList :: =

Variant

VariantFieldUst

VariantUst

VariantPart

Statement

AdjectiveList

Assignation

AssignmentStmt

Block

Call

Catch
Catch Item
CatchSeries
ChoiceSeries

CompoundStmt

ConditionTest
ContinueStmt

Decla ration

.. -

.. -

.. -

.. -

" -

.. -
" -
" -

DeclarationSeries :: =
Direction

ElseClause
EnableClause

Appendix F: Collected Grammar

Adjective Typeldentifier

TypeSpecification I
UnnamedFieldList , TypeSpecification

IdUst := > [VariantFieldList I , I
IdUst := > NULL,

CommonPart identifier: Access VariantPart I
VariantPart I
NamedFieldList I
UnnamedFieldList I
empty

Variant I VariantList Variant
SELECT Tag FROM
VariantList
ENDCASE

.. -.. -
AssignmentStmt I Block I Calli
ContinueStmt I ExitStmt I GotoStmt IIfStmt I
JoinCall1 LoopCloseStmt I .. JoinCall in Expression
LoopStmt I Notify I NullStmt I
ResumeStmt I RetryStmt I ReturnStmt I SelectStmt I
SignalCali1 StartCall1 RestartStmt I
StopStmt I WaitStmt

Adjective I AdjectiveList , Adjective '- in TypeSpecification

FOR identifier" Expression, Expression

LeftSide" RightSide I .- LeftSide, RightSide in Expression
Extractor .. RightSide
BEGIN
OpenClause
EnableClause
Decla rationSeries
StatementSeries
ExitsClause
END
Variable l _. in Expression
Variable ComponentList 11 . .. ComponentList in Expression
Variable [ComponentList I CatchSeries 1
Variable [I CatchSeries I
ExpressionList := > Statement .. ExpressionList in Expression

Catch I ANY := > Statement
Catch Item I Catch; CatchSeries
AdjectiveList := > Statement; I
ChoiceSeries AdjectiveList = > Statement;

BEGIN
Body
ExitsClause
END
empty I WHILE Expression I UNTIL Expression
CONTINUE
IdUst:
Access .- Access in TypeSpecification

181

ReadOnlyOption EntryOption
TypeSpecification
Initialization; I

.. ReadOnlyOption in TypeSpecification

IdUst : Access TYPE = Access TypeSpecification ;

empty I DeclarationSeries Declaration

empty I DECREASING

empty I ELSE Statement

ENABLE Catch Item ; I
ENABLE BEGIN CatchSeries END; I

182

EntryOption

ErrorCall
ExitsClause

ExitSeries

ExitStmt
Extractltem

Extractor

FinalStmtChoice
FinishedExit

GotoStmt
IfStmt

InitExpr

Initialization
Iteration
Ite rativeCont rol
Keywo rdExt ract

., -

., -

., -

., -

., -

., -

., -

.. -

.. -

.. -

.. -

.. -

KeywordExtractList :: =

Label =
LabelList =
Leftltem =
LoopCloseStmt =
LoopCont rol =
LoopExits .. -
LoopExitsClause ., -
LoopRange .. -
LoopStmt .. -

NotifyStmt

NullStmt .. -
OpenClause .. -
Openltem .. -
OpenList .. -
OptCatchPh rase .. -

Appendix F: Collected Grammar

ENABLE BEGIN CatchSe ries ; END; I
empty

empty I ENTRY

ERROR Call I ERROR

empty I EXITS, EXITS ExitSeries, EXITS ExitSeries;
LabelList = > Statement I
ExitSeries; LabelList => Statement
EXIT

empty I LeftSide
[KeywordExtractList]1
[PositionalExt ractList

empty I = > Statement

FINISHED = > Statement I
FINISHED = > Statement;
GOTO Labell GO TO Label

IF Expression THEN Statement ElseClause

Expression'
P rocedu reBady, .. in TypeSpecification
MachineCode , .• in TypeSpecification
[Expression] , •. for STRING initialization
CODE .. for SIGNAL initialization

empty,+- InitExpr I = InitExpr
FOR identifier Direction IN LoopRange
empty, Repetition ,Iteration I Assignation
identifier: Extractltem
KeywordExtract I
KeywordExtractList, KeywordExtract

identifier

Label I LabelList , Label

Expression
LOOP
IterativeControl ConditionTest

ExitSeries, ExitSeries ; I FinishedExit, ExitSeries ; FinishedExit
empty, REPEAT LoopExits

SubrangeTC I Typeldentifier' BOOLEAN I CHARACTER
LoopContrOI
DO
OpenClause
DeclarationSeries
EnableClause
StatementSeries
LoopExitsClause
ENDLooP

NOTIFY Variable I '
BROADCAST Variable
NULL
empty, OPEN Open List ;
Expression I identifier: Expression

Open Item , Open List , Open Item

empty I [! CatchSeries]

Positional Ext ractList :: = Extractltem I

Repetition .. -
RestartStmt .. -
ResumeStmt .. -
RetryStmt .. -
ReturnStmt .. -

PositionalExtractList , Extractltem

THROUGH Sub range .. in Expression
RESTART Variable OptCatchPhrase .. Variable in Expression

RESUMEl
RESUME ComponentList] .• ComponentList in Expression

RETRY

RETURN I

SelectStmt
Select

SelectVariant

SignalCall
StartCall
StatementSerias

StmtCholceSeries :: =

StopStmt .. -
Tagltem .. -
Test .. -
Testlist .. -
WaitStmt .. -

Expression

AddlngOp .. -.. -
AssignmentExpr .. -
BuiltinCall

ChoiceUst .. -
Component .. -
Componentlist .. -
Conjunction .. -
Constructor .. -
Disjunction .. -
ExprChoiceList .. -
Exp ressionList .. -
Factor .. -
ForkCall .. -
FunctionCall .. -
IfExpr .. -
Indexed Access .. -
Indi rectAccess .. -
JoinCall .. -

Appendix F: Collected Grammar

RETURN [Componentlist] I .. Componentlist in Expression
RETURN WITH ERROR Call
Select I SelectVariant
SELECT Leftltem FRdM
StmtChoiceSeries
ENDCASE FinalStmtChoice
WITH Open Item SELECT Tagltem FROM
Choice Series
ENDCASE FinalStmtChoice
SIGNAL Calli ErrorCall
START Call
empty I Statement I
Statement j StatementSerles
Testlist = > Statement; I
StmtCholceSeries Testllst => Statement i
STOP OptCatchPhrase
empty I Expression
Expression I RelationTaii .. RelationTailln Expression

Test I Testlist , Test

WAIT Variable OptCatchPhrase

.. -.. -
AssignmentExpr I Disjunction I ForkCallllfExpr I
JoinCali1 NewExpr I SelectExpr I
SignalCall1 ··SignaICali in Statement
StartCall ··StartCali in Statement

+ 1-
leftSide .. RightSlde
MIN [Expressionlist] I MAX [Expressionlist] I ASS [Expression] I
lENGTH [Expression] I SASE [Expression] I
TypeOp [TypeSpecitication] I
DESCRIPTOR [Expression 11
DESCRIPTOR [Expression, Expression 11
DESCRIPTOR [Expression, Expression, TypeSpecification]
AdjectiveList = > Expression, I .. AdjectiveUst in Statement
Choice List Adjectivelist = > Expression,

empty I Expression I NUll
KeywordComponentlist I PositionalComponentList
Negation I Conjunction AND Negation
OptionalTypeld [Componentlist 1
Conjunction I Disjunction OR Conjunction

TestUst = > Expression, I .. Testlist in Statement
ExprChoiceList TestUst = > Expression,

Expression I ExpressionList , Expression

"Primary I Primary

FORK Call
BuiltlnCali1 Call .. Call in Statement
IF Expression THEN Expression ELSE Expression
(Expression) [Expression] I Variable [Expression]
(Expression) t I Variable l'
JOIN Call

KeywordComponent :: = identifier: Component
KeywordComponentList :: = KeywordComponent I

KeywordComponentUst , KeywordComponent

183

184

LeftSide

Literal .. -

MultiplyingOp .. -
Negation .. -
NewExpr .. -
Not .. -

Appendix F: Collected Grammar

identifier I Calli •• Call in Statement
IndexedAccess I QualifiedAccess IlndirectAccess I
LOOPHOLE [Expression] I
LOOPHOLE [Expression, TypeSpecification]

numericLiteral1 •. all defined outside the gramm&r
stringLiteral1
characterLiteral

* I/IMOD
Relation I Not Relation
NEW Variable OptCatchPhrase

-INOT
OptionalTypeld .. - empty I Typeldentifier .. in TypeSpecification
PositionalComponentList :: = Component I

Primary

Product

QualifiedAccess

Relation
RelationalOp
RelationTaii

Righ~Side •. -
SelectExpr •• -
SelectExprSimple :: =

SelectExprVariant :: =

Subrange .. -
Sum .. -
TypeOp ., -
Variable ., -

PositionalComponentList , Component

Variable, Literal, (Expression) I FunctionCali1
Constructor I ALL [Expression] I @ LeftSide I identifier [Expression]
Factor I Product MultiplyingOp Factor

(Expression) • identifier I Variable. identifier

Sum I Sum RelationTaii

I = ,<, <= I> 1>=
RelationalOp Sum I Not RelationalOp Sum I
IN SubRange I Not IN Subrange
Expression
SelectExprSimple I SelectExprVariant
SELECT Leftltem FROM .. Leftltem in Statement
ExprChoiceList
ENDCASE = > Expression

WITH Openltem SELECT Tagltem FROM •. Openltem, Tagltem in Statement
Choice List
ENDCASE = > Expression
SubrangeTC I .. in TypeSpecification
Typeldentifier .. in TypeSpecification
Product, Sum AddingOp Product
SIZE I FIRST I LAST
LeftSide

INDEX

In this index, bold face page numbers
indicate where the primary, defining
information can be found; plain page
numbers designate further examples.

137,138,140
.. 83

*
+

9
12,94,95
11

11
1,5,6

34,104,106-7
/ 12 .. -.. - 1

5-6,53,57,136,137
= > 54, 56, 94, 96, 136, 138, 140
~ 29,41,44,147
(] 125,130
l' 41
~ 5,17,63,76,130
ABS 5,11
Access 94,104,117-20
activation 72,137
actual procedure 68,74,78
actual tag 94, 97, 99
AddlngOperator 11
adjective 96
adjectives 91,97
aggregate type 22
aligned 19,41,69
ALL 30
AlternateName 60,98
ANY 136, 138-9
argument 72, 72
arguments 67, 144
arguments buffered 150
array 22, 27-8

constructor 28, 30
descriptor 85, 87

ARRAY 27-8, 29
Assignation 63,63
assignment 6, 51

expression 52
AssignmentExpr 11,17
AssignmentStmt 7, 51
automatic dcreferencing 44
B 8
balancing 45, 47
BASE 29,41,43-4,86,87,88,90-1
base type 25

BCD 103,113
BEGIN 57, 136
Binary Configuration Description
binding 101, 103, 123-4. 132
blank 6
block 57
Block 57,57,73,137,140
BNF 2
BOOLEAN 7-8, 16, 22, 24, 53
bound variant 97
bound variant type 93, 95, 96
bounds 64
BROADCAST

BulldlnCall
built-in type
C 9

159,16Q-l
12,11

7

C/~esa 103,120,125
call 67
Call 12,71,137,140
CallStmt 71 '
CARDINAL 7,7, 10, 2~, 26-7, 49
Catch 134, 136, 137-9
catch phrase 136, 139, 150, 154
CHARACTER 7,9,15,l2
characterLlteral ;9
client 120

module 123
CODE 125,135,141
coercion 46, 73
colon 6

56,94
5,6

comma
comment
common part
CommonPart

92
118

compatible 70
compilation order 110
CompilationUnit 104
compile-time 84, 104, 105

constant 18, 30, 53
completely bound variaf!.t 100
component 27,31,125
component type 27 .
components 97
ComponentType 29
COMPUTED 94, 100
computed tag 93,95,97,100
CONDITION 155, 158, 161
condition variable 155
ConditionTest 62,63
configuration 123
Configu ration 125
CONFIGURATION 125,126

185

103,123

Configuration Description 103,123-4

186

configuration prototype 125
conform 7, 10, 72
conforming 69
Conjunction 16
CONNECT 146, 147, 150
constant 18
constructed data type 20
constructor 35, 93
Constructor 30,35
CONTINUE 140, 141, 146, 150
CONTROL 103, 125
control fault 149

link 148
transfer 148
variable 64

ControlVariable 63,63
coroutine 144
covering condition variable 160
CR 6,141
D 8
Debugger 136, 139
declaration 68
Declaration 19
DeclarationSeries 57
DECREASING 63-4
default Access 120
default field 112
default field values 36
default-named interfaces 127-8
DefaultOption 37
DefaultSpecification 37
defining occurance 108
DEFINITIONS 78,104, lO5-6, 110, 117, 120
definitions module 101
DESCRIPTOR 29,85-6,87,91
detached process 154
determination of representation 49
Digit 2
DIRECTORY 78,104-5,106,126
discrimination 98, 100
Disjunction 11, 16
DO 5,62,136
element type 22
ElementType 22,25
elided 30
elided component
elides 36
ELSE 5,52,76
empty 3,30
empty

constructor
extractor
interval

35

72
39

16,29

Index

ENABLE 137,138,140-1
EnableClause 57
END 57, 76
ENDCASE 54,56,77,94,99
ENDLOOP 5,62,64
ENTRY 155,156
entry procedure 155
enumerated type 22
enumeration 21, 94
equality 6
equivalent 10
ERROR 135, 136, 141, 149
ERROR. unnamed 136
ErrorCali 135
exceptional conditions 134
EXIT 65, 66, 139, 141
ExitsClause 57,57, 137
expansion 80
expliCit

. component 35

. naming 126-7
qualification 109

export 102,117,126
record 102

EXPORTS 78, 103-4, 117, 121, 124-5, 126,
127

Exp ression 11, 51
ExpressionList 12
external procedure 157
extractor 38, 128
Extractor 51
Factor 12
FALSE': 8,24
Faultl1andler 150,151
field list 32
FieldDescription 118
FieldList 31,32
FINISHED 65,66,141
FIRST 24,26
floating-point 10
fonts 1
FOR 63,64
forcible termination 65, 66
FORK 136,152-3,153,154
formation rules 2
frame 57,148
FRAME 104,116,125,132,146
free conformance 48, 70
FROM 104, 146
FunctionCall 12
fundamental operation 6,20,41,69
Gcq 4
GlobalAccess 117,120

Index 187

GOTO 57,58-9,64,66,139 Labels 58
home module 117 LAST 24,26
identifier 21 LeftSide 7,29,38,42,45,51

constant 23, 94. length 82
list 6 LENGTH 29,86,87

identifier 5, 127 lengthening 43
IdList 3,6 lexical units 6
IF 5,52,76 link 124

expression 53
statement 52

IfStmt 52

LinkageFault 148,149,150
LINKS 125, 125
literal 18

implementing 121 Literal 12
implementor 120 loader 132
implicit qualification 99
import 101
imports 126

loading 123
local string literal 84
local variable 68

IMPORTS 78, 102-4, 115, 124-5, 126, 127 LOCK 161
IN 15,47,55,63 LOCKS 162,164,166
include 105 LocksClause 162, 165
IncludeList 104
indefinite index type 86

LONG 14,43,87,92
CARDINAL 7,9-10

inde,x type 27 INTEGER 7, 9-10
indexed reference 27 POINTER 43
IndexedReference 29 STRING 85
IndexType 29,85 long numeric type 9
inequality 6 LOOP 65,139
inherent loop control 61

representation 49 loop statement 61
type 45 LoopCloseStatement 65

initialization 18, 68, 84, l35 LoopControl 62
Initialization 19,33 LoopExitsClause 64
inUne 69, 73,80 LOOPHOLE 47
INLINE 80, 113-4 LoopRange 63,64
InlineOption 73 lower bound 16
instance 115, 124 lower-case 5
INTEGER 7,7,10,22,26-7,49 MACHINE DEPENDENT 33, 94, 95, 166
interface 101, 120, 125, l35, 158 MACHINE DEPENDENT RECORD 29

element 110
record 115, 116, 127
type 115, 116 .
variable 110,111-2,113-4

INTERNAL 157, 165
internal procedure 158
interval 15, 63
Interval 15

MAX 12,47
maxlength 82, 83
MIN 12,47
MOD 5
module 61,68,101
ModuieBody 104
monitor 154, 155

initialization 168
Ite ration 63, 63 lock 155
lterativeControl 63 MONITOR 156,162
JOIN 136, 152-3, 153, 154 MONITORED RECORD 162, 163-4
jump table 55 MONITORLOCK 156,162,166
keyword 39

constructor 31,35,35,74
extractor 74
name 35

Label 58

Multi-module monitor 163
multiple statements 6
MultiplyingOperator 12
name reference 108

188

name scope 34, 108
NamedFieldList 32,118
Negation 16
nested configurations 130

procedure 78
signals 142

NEW 116, 131-2, 136,146
Next-Statement 51, 55, 62
NIL 43, 44, 76
non-interface

element 110
type 101

non-local variable 68
non-privileged 117
NOTIFY 155, 157, 159, 160-1
NULL 56,94
number 8
numeric

literal 8
operators 12
type 7,26

object
file 103
module 101

Object monitor 165
objects 165
OctalDigit 2
omISSIon 36
OPEN 59,106,108-9
open

clause 98, 107
item 99

OpenClause 57,61
operator 12

precedence 17
ORDERED 41,43
ordered type 22 .
OVERLAID 94,100,148
overlaid tag 95
PACK 125
packed 69
PACKED 29,8~87
parameter 67, 134

record 67
pending 147,149-50
phrase class 2
PLUS 125, 130
pointer 22, 39

arithmetic 43
POINTER 41,43-4,88
POINTER TO FRAME 104, 116
PORT 144-5,146,148,151
port-compatible 148
PortFault 147,149,150

Index

positional constructor 35, 36
precedence 12,52,54
PredefinedType 19
Primary 12
PRIVATE lO4, 112-3, 117-20
privileged 117
procedure 67

body 68
calls 71
descriptor 148
type 69
value 70, 148
variable 74,110

PROCEDURE 69,76,148
Procedu reBody 73
process 166
PROCESS 153,153
Product 12
PROGRAM 104,115, 117, 120, 132, 145-6
program 101

prototype 116,125
variable 116

PUBLIC 76,103-4,113,117,117,118-9,121
qualification 34, 60, 106
qualified reference 31,108
qualifier 74
Queue 156
range

assertion 27
error 25

readonly 40
READONLY 41,111
REAL 7,10,10,46
recompiling 109
record 31

constructor' 31,35
single-component 73

RECORD 32, 76, 94, 95
recursive 72

substitution 3
reentrant 72
reference type 39
Reject 139
relational operators 15
RELATIVE 43, 88, 90-1
relative

array descriptor 89,91-2
pointer 88, 89

relocation 88 I

REPEAT 64,141
Repetition 63
reserved words 2, 5
RESPONDING 145,151
RESTART 116,132-3,136,146-7,150

result 67, 135, 144
record 73

Resume 139
RESUME 136, 136, 138, 140, 141
ResumeError 141
RETRY 140,141
RETURN 69,72,74,132,136,148
return link 138, 149
RETURN WITH ERROR 135,138,139,166-7
RETURNS 69,76
RightSide 7,51
scalar type 22
scale factor 8
scope 74,79,99,108,137
SELECT 54,54,56,77,93-6,98,99-100,141,

148
SELECT expressions 56
SelectExp r 56
SelectStmt 54
self-contained 124
Series 3
SHARES 104,117,120
short numeric type 9
SIGNAL 59,135,136,141
SignalCall 135
Signaller 138,139,142,150
signals 134

actual 135
catching 138
nested 142

signed number 7
single-component record 73
SIZE 34,76
SP ·141
space 6
START 83,116,124,132,133,136,138,144,

146-7
start trap 111, 133, 147
startup transient 144, 147
statement 51
Statement 51
StatementSeries 57
static variable 124
StmtSeries 3
STOP 124,132-3,136
STRING 7, 82, 83
string literal 83
String Body 82, 87
strongly typed 4
subrange 21

type 22,24
Sum 12
syntax notation 2

Index

TAB
tag
Tag
target

6,141
93

118

representation 49
type 45

TC 21
terminate

conditionally 62
forcibly 65
normally 63

text 82
THEN 5.52.76,125,130
THROUGH 63
timestamp 109
timeout 161
TRUE 8,24
TYPE 20,21
type

constructor 7
conversion 46
determination 45

type-correct 45
TypeConstructor 11
TypeDeclaration 10
Typeldentifier 21,96,107
TypeSpecification 11.90
unbound variant 93
unique type 91
UnnamedFieldLlst 31
unqualified 61
unsigned number 7,43
UNSPECIFIED 19. 43
UNTIL 5. 62, 140
Unwind 139
UNWIND 139, 140, 149-50, 167
upper bound 16
upper-case 5
user-defined type 7
USING 78, 106, 109, 162, 165-6
Variable 11
variant

part 92, 93, 97, 148
record 92

VariantFieldList U8
VariantPart U8
virtual interface record 102
voided component 35
voids 36
WAIT 136, 155, 157, 159, 160-1, 166, 168
WHILE 62
WITH 98
WORD 19
XFER 148

189

	Contents
	Preface and Acknowledgements
	1 Introduction
	2 Basic Data Types and Expressions
	3 Common Constructed Data Types
	4 Ordinary Statements
	5 Procedures
	6 Strings, Array Descriptors, Relative Pointers, and Variant Records
	7 Modules, Programs, and Configurations
	8 Signalling and Signal Data Types
	9 Ports and Control Structures
	10 Processes and Concurrency
	Appendices
	A Pronouncing Mesa
	B Programming Conventions
	C Alto/Mesa Machine Dependencies
	D Binder Extensions
	E Mesa Reserved Words
	F Collected Grammar

	Index

