
In this issue

AIS CUSTOMER SUPPORT

Bulletin 5
October 16, 1987

HOTLINE! is published periodically by the Customer Support
group of Xerox Artificial Intelligence Systems to assist its
customers in using the Xerox Lisp environment. Topics covered
include answers to questions that are most frequently asked of
Customer Support, suggestions to help you work in the Xerox
Artificial Intelligence Environment (XAIE) as well as
announcements of known problems that may be encountered.

Feel free to make copies of individual bulletin pages and insert
them in the appropriate place(s) in your Interlisp Reference
Manual, Usp Library Modules manual or other relevant manual.
The documentation reference at the end of each topic can be
used as a filing guide.

For more information on the questions or problems addressed in
this or other bulletins please call us toll-free in the Continental
United States 1-800-228-5325 (or in California 1-800-824-
6449). Customer Support can also be reached via the ArpaNet by
sending mail to AISUPPORT.PASA@Xerox.com, or by writing to:

Xerox AIS Customer Support
250 North Halstead Street
P.O. Box70iS
Pasadena, CA 91109-7018
MIS 5910-432

In response to use~ requests this issue of HOTLINE! answers
many of the questions we have received related to Packages in
the Lyric Release. The following topics are covered:

• Creating and interning symbols

• Accessing symbols in packages

• Packages and Readtables

• Difference between MAKE-PACKAGE, IN-PACKAGE and
DEFPACKAGE

• Exporting symbols using DEFPACKAGE

• Building a file that exports symbols on loading

• Creating and interning symbols

• Package prefix for symbols and their values

• Exporting symbols in name-conflict

• Importing symbols that have name-conflict

• Deleting a package

HOTLINE!

Terminology

Terminology used in this HOTLINE! bulletin:

CLtL - Common Lisp: the Language, by Guy Steele, Jr.

AR - Action Request. a Xerox problem tracking number (e.g.
AR 8321)

IRM - Interlisp Reference Manual

BULLETIN 5.1

Creating and interning symbols

Release Lyric

Keywords Packages, Symbols, Interned, Creating Symbols

Question What are the different categories of symbols used by the package
system? In particular, what is an interned symbol? When and how
is a symbol interned?

SYMBOL

Answer in the context of packages, symbols can be classified into the
following types:

UN-INTERNED

< ~INTERNAL
INTERNED ~

_________ EXTERNAL __ _

UNINTERNED:

INHERITED

An uninterned symbol is a symbol that is not owned by any
package; its package cell does not point to any existing package.
Uninterned symbols are generally only used as data. An
uninterned symbol with print-name SYM can be created with the
make-symboi command in the XCL exec:

(make-symbol "SYM")

and this symbol SYM is printed as: #:SYM

Note that if you type the symbol twice, it's two different symbols
because #:SYM is not EO to #:SYM, i.e.,

(eq '#:SYM '#:SYM) returns NIL.

INTERNED:

A symbol that is accessible in a package (say PKG-1) and
"owned" by PKG-1 or any other package is said to be interned.
A package is said to "own" a symbol if the symbol resides in the
package's symbol table. A symbol is said to be "accessible" in a
package if it can be referenced without a package qualifier prefix.
If a symbol is previously unowned, then the package it is being
interned in becomes its owner (home package); but if the symbol
was previously owned by another package, that other package
continues to own the symbol. There are two types of interned
symbols: internal and external. The third type, i.e., inherited
symbols, are analogous to external symbols: only the symbols
specified as external in a package can be inherited by another
package that uses the first package

External: An external symbol is a symbol for public use, declared
exportable with:

(export 'symbolname)

and can be referenced (accessed) in any other package using:

owner-package-name:symbolname

HOTLINE!

AIS CUSTOMER SUPPORT

x

y

z

BULLETIN 5.1

if the package doing the access doesn't import the symbol, or:

symbolname

if the package doing the access imports "symbolname".

All documented symbols, as well as all Interlisp (IL) symbols, are
external.

Internal: An internal symbol is a symbol that has not been
declared exportable, and is hidden from other packages.
However, an internal symbol can be accessed in a package other
than the owner package by the owner-package prefix with a
double colon as follows:

owner-package-name::symbolname

All system variables are internal (hidden from users).

Inherited: An inherited symbol (say L) is a symbol that is
accessible in a package (say PKG-1) by virtue of the fact that
PKG-1 uses the package (say PKG-2) that has declared its
interned symbol L to be exported. If PKG-2 is deleted (using
delete-package) or removed from the use-list of PKG-1 (using
unuse-package), the inherited symbol L no longer exists in
PKG-1, because inherited symbols (unlike imported symbols)
are not interned to the inheriting package

THIS FIGURE DOES NOT REFLECT THE ACTUAL
IMPL.EMENTA nON OF SYMBOLS/PACKAGES

PKG-l

Symbol

L

N

PKG-2

Symbol
Table

Export

'--_...1- Table

;:;:;:;A:::::::
:-:-:.:-:.:-:.:-:-: ...

Use
Export

Use

Import

~
Symbol
Table

..

I-------'~::::::: A:::::::
....

Export
c

Use

PKG-3

For example, in the diagram above, symbols X, Y, and Z are
accessible only in PKG-1, and are owned by package PKG-1.
Thus, symbols X, Y, and Z are interned in package PKG-1 only.
Similarly, symbols L, M, N, P, 0 and R are interned in package
PKG-2. However, package PKG-1 uses PKG-2 and therefore
the exported symbols P, 0, and R interned in PKG-2 are
inherited by PKG-1. Symbols L, M, and N of PKG-2 are only
available to PKG-1 as internal symbols of PKG-2. All of the

HOTLINE!

BULLETIN 5.'

symbols of PKG-2 are unavailable to PKG-1 if PKG-2 is
deleted, or PKG-1 unuses PKG-2.

PKG-1 imports the external symbols A and B interned to PKG-
3. Thus, A and B are interned in both packages PKG-1 and
PKG-3, whereas C is interned in package PKG-3 only.
Deleting PKG-3 leaves A and B interned in PKG-1. Symbol C,
an internal symbol of PKG-3, is lost forever.

An un prefixed symbol (i.e., a symbol without a package qualifier)
is interned in the default (current) package whenever it is
encountered by the Lisp Reader, for example when a symbol is
typed in, or when a symbol is referenced in any manner (such as
INSPECT foo). So anytime we type in or create a symbol, it gets
interned to the package we are in. If we want to get rid of this
symbol, for example in a case where we may have made a typing
error, we must do an unintern.

Note that package names are case-sensitive. Thus, the package
"MM1" is different from package "mm1".

References Common Lisp: the Language, by Guy Steele, Jr., pages 168, 172,
176-77.
Xerox Common Lisp Implementation Notes, pages 18-20.

HOTLINE!

BULLETIN 5.2

Accessing symbols in packages

Release Lyric

Keywords Packages, Symbol, Access

Question What are the rules for accessing symbols in packages?

Answer For the discussion below, let P2 be the package that owns the
symbol SYM, and P1 be the package that is trying to access the
symbol SYM from package P2. Then:

Symbols can be accessed in the package in which they exist
simply by their name, without any prefix. This is the case if the
symbol is interned in the package, by either of these two ways:

• the package owns the symbol, i.e., the package is the symbol's
home package, or

• the symbol is exported by the home package P2, and imported
by the using package P1.

Symbols can also be accessed by their name, without any prefix,
if the symbol is inherited in the package from some other package
(by using use-package), i.e., P1 has declared (USE-PACKAGE
'P2).

If the symbol SYM has been exported from P2, but has not been
imported into P1, then we must use P2:SYM to access the
symbol SYM in package P1.

If the symbol SYM has not been exported from P2, then SYM is
an internal symbol of package P2 and we must use P2:: SYM to
access it in package P1.

These statements are summarized in the following table:

Accessing a sy.bol SYM o.ned by package PZ in a package PI

CASE
Relationship of symbol ACCESS for

SYM with PI/P2 SYM in PI
P2 PI

SYM is an external interned
Exports SYM Uses P2 symbol in P2. SYM

SYM is inherited in PI.

SYM is an external interned
Exports SYM Imports SYM symbol in P2. SYM

SYM is interned in PI.

Doesn't import SYM is an external interned
Exports SYM symbol in P2. P2:SYM SYM SYM is non-existent in PI.

Doesn't SYM is an internal interned
export SYM Not Applicable symbol in P2. P2: : SYM

SYM is non-existent in PI.

References Common Usp: the Language, by Guy Steele, Jr., pages 174-
176.
Xerox Common Usp Implementation Notes, pages 18-20.

HOTLINE!

BULLETIN 5.3

Packages and Readtables

I\IC riICTf"IM~g CllDDf"IgT

Release Lyric

Keyworks Packages, Readtable

Question What are the default packages and readtables available in the
Execs?

Background An Exec is simply an extension of the basic read-eval-print
loop of the Lisp language. Packages are a mechanism for
providing modularity in large systems by permitting multiple name
spaces (symbol tables). Each package has its own name space.
Readtable is a data structure that is used to control the reader
and contains information about the syntax of each character.
Packages govern the interpretation of symbols, whereas
readtables govern the interpretation of characters.

Answer Each Exec has a local binding of *readtable* and *package* as
follows:

Exec *package * *readtable *

XCL XCL-USER XCL

CL USER LISP

IL INTERLISP INTERUSP

OLD-IL INTERLISP OLD-INTERLlSP-T

When typing to the system, you must be aware of the
environment in force. The two most important sets of bindings
governing the environment are the *package* and *readtable*. The
readtable and package for an Exec can be changed without
getting a new Exec.

References Xerox Common Lisp Implementation Notes, page 17.
Common Lisp: the Language, by Guy Steele, Jr., pages 183,
360-61.
Xerox Lisp Release Notes - Integration of Languages: File
Package, pages 23-35.

HOTUNE!

BULLETIN 5.4

Difference between MAKE-PACKAGE, IN-PACKAGE, and DEFPACKAGE

J11c\ n IC\TOMF=R c\IIPPORT

Release Lyric

Keywords Packages, Make-package, In-package, Defpackage

Question What are the differences among MAKE-PACKAGE, IN
PACKAGE, and DEFPACKAGE ?

Answer MAKE-PACKAGE and IN-PACKAGE are standard Common
Lisp functions (described in CLtL) , whereas DEFPACKAGE is a
Xerox Common Lisp function (not part of the CL standard). Thus,
it is more appropriate to refer to these as CL:MAKE-PACKAGE,
CL:IN-PACKAGE, and XCL:DEFPACKAGE. XCL provides the
function DEFPACKAGE to enable easy interaction with the File
Manager. Because most of the file-related operations are done
in the IL exec, DEFPACKAGE also exists in the Interlisp package
(i.e., you can refer to DEFPACKAGE in the IL package without
any package prefix).

MAKE-PACKAGE creates and returns a new package with the
specified package name. If the package already exists, a
correctable error is signalled. MAKE-PACKAGE does not change
the default package:

make-package package-name &key :nicknames :use
:prefix-name :internal-symbols :external=symbo!s
:external-only

Note that MAKE-PACKAGE does not allow selective import or
export of symbols: all this must be done explicitly after the
package has been defined. However, if :external-only is set to T
(true), then all symbols interned in the package will be exported;
all symbols from all package(s) in the :use are imported.

IN-PACKAGE is the function to change the default package:

in-package package-name &key :nicknames :use

IN-PACKAGE may be placed in a file containing a subsystem
that is to be loaded into some package other than the default
package. If the package referred to by IN-PACKAGE does not
already exist, the function IN-PACKAGE is similar to MAKE
PACKAGE and DEFPACKAGE, except that after the new package
is created, *package* is set to it This binding remains in effect
until changed by the user or until the *package* variable reverts to
its old value at the completion of a LOAD operation. If the
package referred to by IN-PACKAGE already exists, it is
assumed that the user is re-Ioading after making some changes.
The existing package is augmented to reflect any new nicknames
or new packages in the :USE list, and *package* is then set to this
package.

DEFPACKAGE defines a package. If the package does not
already exist, DEFPACKAGE creates it; if the package does
exist, DEFPACKAGE tries to match its deSCription, producing an

HOTLINEI

BULLETIN 5.4

error if a match is not found. DEFPACKAGE does not change the
default package. However, when a file is loaded, the loader
temporarily sets *package* to the package declared by
DEFPACKAGE in the DEFINE-FILE-INFO of the file, reverting
back to the old value of *package* at the termination of the LOAD.

DEFPACKAGE extends the capabilities of MAKE-PACKAGE by
providing four additional keywords for importing and exporting
symbols, :shadow, : export , :import, and :shadowing-import.
Note that a symbol must be interned in the package doing the
export before it can be exported:

defpackage package-name &key :nicknames :use :prefix
name :internal-symbols :external-symbols :external-only
:shadow :export :import :shadowing-import

DEFPACKAGE has been provided to enable easy interaction with
the File Manager. DEFPACKAGE can be used in a file's
IL:MAKEFILE-ENVIRONMENT property to define the package in
which the file is to be read and written. For example, typing the
following in the IL exec:

(PUTPROP 'faa 'MAKEFILE-ENVIRONMENT '(:PACKAGE
(DEFPACKAGE "MYRACKAGE" (:USE "XCL" "USER"))
:READTABLE "XCL "))

and then using:

(FILES?)

to save this property (as well as any other functions and
variables) to the variable FOOCOMS. Instead of doing (FILES?).
one can edit the FOOCOMS and put:

(PROP MAKEFILE-ENVIRONMENT FOO)

in the FOOCOMS for saving the MAKEFILE-ENVIRONMENT
property.

References Xerox Common Lisp Implementation Notes, pages 18-20, 30-
32.
Common Lisp: the Language, by Guy Steele, Jr., page 183.
Xerox Lisp Release Notes - Integration of Languages: File
Package, pages 23-35.

AIS CUSTOMER SUPPORT HOTLINE!

BULLETIN 5.5

Exporting symbols using DEFPACKAGE

Release Lyric

Keywords Packages, Export, Defpackage

Question I can't seem to export symbols using DEFPACKAGE at the top
level. Why?

Background DEFPACKAGE defines a package, but does not bind *package;' to
this defined package. Thus, any symbols declared in the
:EXPORT option in DEFPACKAGE are not interned to the
package defined by DEFPACKAGE, but to the current package
(usually INTERLlSP, XCL-USER, or USER) in which
DEFPACKAGE is called. In order to do the export, the symbols
must be interned to the package doing the export. Therefore,
DEFPACKAGE cannot be used directly to do the export, unless
we are in the package being defined by DEFPACKAGE.

Answer Most likely, DEFPACKAGE failed because you were not in the
correct package. At the top level (in an EXEC window),
DEFPACKAGE can be employed to do an EXPORT by setting
the *package* variable to the package being defined by
DEFPACKAGE. In order to do this binding, you can use an IN
PACKAGE command. As an example, consider the following:

In the XCL package, evaluate:

(defpackage "MM1" (:use "L1spn "XCL") (:export m-sym1
m-sym2»

you will get the error message:

"These symbols aren't in package MM1; can't export them
from it:

M-SYM1 M-SYM2"

even though the package "MM1" already exists. If you evaluate
the above defpackage expression when MM 1 is the current
package, the symbols will be exported:

(in-package "MM1")

(defpackage "MM1" (:use "LISP" "XCL") (:export m-sym1
m-sym2»

returns:

"MM1 "

signalling that the export has been done.

Reference Xerox Common Lisp Implementation Notes, pages 18-20 .

.6.1~ ("I1~TnM~R ~IIPPORT HOTLINE!

BULLETIN 5.6

Building a file that exports on loading

Release Lyric

Keywords Packages, Export, Defpackage

Question How do I build a file that exports symbols on loading?

Background Assuming you have created a package (say MM1) and defined
some functions, you want to build a file so that it will export
symbols upon loading in a fresh sysout. In the example below,
when the file is loaded, the loader binds *package* to the package
"MM1" being declared by DEFPACKAGE in the file's DEFINE
FILE-INFO; at the end of the LOAD, *package* is reset back to
its original value. A second DEFPACKAGE statement in the body
of the filecoms, relying on the first statement having bound
package to "MM1", can now do the EXPORT as follows:

(DEFPACKAGE "MM1" (:USE "LISP" "XCL") (:EXPORT
M-SYM1 M-SYM2)

Instead of the second DEFPACKAGE statement, one can simply
use the EXPORT command inside a P statement in the file as
follows:

(P (EXPORT '(M-SYM1 M-SYM2) "MM1")

Putting the package-name "MM1:' in the E';(PORi command
ensures that the correct symbol is exported.

DEFPACKAGE is preferable because it allows other functionalities
to be put in a single statement, preserving consistency in the file
and package environments.

Answer The following sequence of steps can be followed in the IL exec in
order to build a file that exports symbols on loading:

1. Make sure that the exporting package will exist at load time.
Most commonly, a DEFPACKAGE is put in the file's
MAKEFILE-ENVIRONMENT property. This is typically done by
typing the following in the IL exec:

(PUTPROP 'filename 'MAKEFILE-ENVIRONMENT
'(:PACKAGE (DEFPACKAGE "MM1" (:USE "LISP"
"XCL")) :READTABLE "XCL"»

On the subsequent MAKEFILE (see Step 4), a DEFINE
FILE-INFO expression will be written into the file which will
result in the package MM1 being created when the file is
loaded in a fresh sysout.

2. Save this property (as well as any other functions and variables
that you have created) to the file by doing a (FILES?). Actually
all this does is add the symbois to the variable filenamecoms.
For example, if in response to (FILES?) you start saving
symbols on the file FOO, these are added to the variable
FOOCOMS. Call DV filenamecoms (for example, DV

HOTLINE!

AIS CUSTOMER SUPPORT

BULLETIN 5.6

FOOCOMS) so that you can see and verify that the property as
well as all other symbols are there.

Instead of (FILES?), you can directly edit the filecoms and
put:

(PROP MAKEFILE-ENVIRONMENT filename)

in the filenamecoms for saving the MAKEFILE
ENVIRONMENT property. Note that the corns of a file (i.e., the
FOOCOMS for a file FOO) must be in the IL package, though
the file may not be.

Note that we are assuming that the package MM1 exists.
However, if it doesn't exist, one can create the package MM1
using CL:MAKE-PACKAGE, DEFPACKAGE, or CL:IN
PACKAGE at the top level (in an exec window), or using
(MAKEFILE 'filename) in the IL exec.

3. Call the editor (such as SEdit) from the IL exec for editing the
filenamecoms. Put the second DEFPACKAGE statement in a P
(file) statement in the filenamecoms as follows:

(P (DEFPACKAGE "MM1" (:USE "LISP" "XCL")
(:EXPORT MM1 ::M-SYM1 MM1 ::M-SYM2)))

Note that the symbols to be exported in the second
DEFPACKAGE statement, "M-SYM1" and "M-SYM2", must
be typed in the editor window as:

MM1 ::M-SYM1 and MM1 ::M-SYM2

respectively. Otherwise "M-SYM1" and "M-SYM2" will be
interned to the default value of *package* which will be
INTERLISP for the IL exec from which the editor has been
called. Look at the title bar of the editor window to see and
verify the package you are in.

Instead of putting the package prefix in the symbols to be
exported, one can, alternatively, set the default package to be
the package "MM1" by using the SET-PACKAGE command
in the SEDIT window. In this case, however, P, DEFPACKAGE,
and keywords such as EXPORT, etc. must be preceded by
their respective package qualifiers. Either way, the key idea is
to intern the symbols to the correct package.

4. In the IL exec, do:

(MAKEFILE 'filename)

to create and save the file filename with package MM1 set up
for exporting symbols when the file is loaded.

References Xerox Common Lisp Implementation Notes, pages 18-20, 30-
32.
Xerox Lisp Release Notes - Integration of Languages: File
Package, pages 23-35.

HOTLINE!

BULLETIN 5.7

Creating and interning symbols

Release Lyric

Keywords Packages, Symbol, Interned. Creating Symbols

Question By mistake, I typed in CREA TEW in the XCL Exec. I then tried to
import IL:CREA TEW from the IL package into the XCL package,
and got an error message which says that "Importing this symbol
into package XEROX-CaMMON-LISP causes a name conflict".
I never really created CREATEW in the XCL exec. Then why did
this happen?

Answer Anytime we type in or create a symbol, it gets interned to the
package we are in. When CREATEW is typed in in the XCL exec,
a symbol XCL-USER:CREATEW is created in the XCL-USER
package. Subsequent attempts to import IL:CREA TEW will result
in a symbol name conflict error, because the erroneously typed
in symbol CREATEW continues to exist in the XCL-USER
package.

To get rid of the erroneously typed-in CREATEW and use the
IL:CREA TEW symbol, first unintern CREA TEW from the XCL
USER package by typing in the following in the XCL exec:

(UNINTERN 'CREATEW)

Then import IL:CREATEW from the IL package into the XCL
USER package, as follows:

(IMPORT 'IL:CREATEW)

Reference Common Lisp: the Language, by Guy Steele, Jr., pages 168, 172,
Questions 1 and 2.

AIS CUSTOMER SUPPORT HOTLINE!

BULLETIN 5.8

Package prefix for symbols and their values

AII:' rl I I:'TI"'\ A II I: 0 1:'1 I DDI"'\OT

Release Lyric

Keywords Packages, Access symbols, Access values, Prefix

Question I created a symbol in the IL package. I now want to use it in an
XCL exec. How do I strip off the package prefix from my symbol?

Answer Symbols do not have prefixes. Prefixes are used to identify
symbols with identical print-names in different packages. Note
that such symbols are not EQ, i.e., IL:NAME is not EQ to XCL
USER:NAME.

Whenever a function or a symbol is created in a given package, it
is interned to that package. In order to access these
symbols/functions across packages, it is necessary to put the
package prefix so that the symbol/function is looked up in the
correct location. If this is not done, then the default behavior in
Common Lisp is to create this symboVfunction in the package that
is trying to access it (other than the package to which the
symbol/function is interned).

Following is an example of a situation that can arise from falsely
equating two symbols.

Example In the IL exec type:

Reference

(SETQ L1ST1 '(NAME»

Then in the XCL exec type:

(setq a (make-hash-table))
(setf (gethash 'name a) 'TOM)

Then in the XCL exec, typing:

(gethash 'name a) returns TOM.
(car IL:L1ST1) returns IL:NAME,

whereas:

(gethash (car IL:LlST1) a) returns NIL.

This is because the value TOM is associated with the hash key
XCL-USER:NAME and not IL:NAME. Note again that IL:NAME is
not EQ to XCL-USER:NAME.

Now, if we do the following in the XCL exec window:

(setf (gethash 'il:name a) 'DUM) then:
(gethash (car IL:LlST1) a) returns DUM.

Further:

(gethash 'IL:NAME a) returns DUM, while:

(gethash '''IA.,t1:~ ... \
..... ' .. UVIc:: OJ returns TOM.

Common Lisp: the Language, by Guy Steele, Jr., pages 174-
176, Question 2.

HOTLINE!

BULLETIN 5.9

Exporting symbols in name-conflict

.... "",.. .. ,. ,.... .. .- "' .. ,... """~

Release Lyric

Keywords Packages, Export, Use-package, Unuse-package, Name
conflicts, Unintem

Question How do I export a symbol (say X) from a package (say P1) in a
case where it is in name-conflict with another package (say P2)
that uses the package P 1 ?

Background If you try to load a module that exports a symbol that is in name
conflict with another package you will get a break:

In IL:RESOLVE-EXPORT-CONFLICT:
Exporting these symbols from the Pi package:
X
results in name conflicts with package(s):
P2

112(debug)

The PROCEED menu in the BREAK window for the conflicting -
symbols error under EXPORT comes out to be garbaged, as
shown below:

- • 41 • -

Unintern all conflicting symbols in package(s)P2
1ft; .UQ~efi! :&~ 3~ ~ .A~ap' m b 0 I s fro rn pac k.aQ e P 1

One of the choices offered, to UNINTERN all the conflicting
symbols in P2, doesn't have the desired result when picked: it
gets you out of the BREAK, but it does not unintern any symbol
and it does not do the export.

Answer In the XCL Exec window, do:

(UNUSE-PACKAGE 'P1)

Now do the export:

Reference

(EXPORT 'X)

Then call USE-PACKAGE P1 again:

(USE-PACKAGE 'P1)

When you do the USE-PACKAGE P1, you get the same error,
but this time it will be under USE-PACKAGE. Also, the
PROCEED menu in the BREAK window is not garbaged, and
picking the UNINTERN-FROM-P2 choice works and the USE
PACKAGE succeeds. Notice that the USE-PACKAGE menu has
warnings like "VERY DANGEROUS" attached to the UNINTERN
options.

AR #9029

HOTLINE!

BULLETIN 5.10

Importing symbols that have name-conflict

A I~ r. I~TnI\JII:D C'I IDDnDT

Release Lyric

Keywords Packages, Import, Name-conflict

Question How do I import symbols that have name-conflict?

Answer Importing a symbol that causes a name conflict will result in a
break. In the break window, select PROCEED, which brings up a
two-item menu:

Import symbols with shadowing-import instead
Abort import into package "package-name"

In this menu, select:

"Import symbols with shadowing-import instead"
the import.

to enable

Shadowing-import makes the imported symbol shadow (or hide)
the symbol with the same name already present in the package,
thereby resolving the name conflict. The symbol being imported is
put on the shadowing-symbols list of the package importing the
symbol with the shadowing-import command. Because this is a
destructive operation on the symbol being shadowed out, it must
be used with caution.

Note that selecting OK from the break window does not change
the bindings in the computation, and will not give the desired
result.

References Xerox Common Usp Implementation Notes, pages 20, 23, 24.
Common Usp: the Language, by Guy Steele, Jr., pages 179, 186.

HOTLINE!

Deleting a package

BULLETIN 5.11

Release Lyric

Keywords Packages, Unuse-package, Delete-package

Question What happens when I delete a package?

Answer When a package (say p2) is deleted using the XCL:DELETE
PACKAGE command, all symbols interned in p2 are uninterned
and then the package structure itself is removed. Further, all
packages that use this package p2 unuse it before it is destroyed.
For example, in the XCL exec, do the following:

(make-package 'p1)
(make-package 'p2)
(make-package 'p3)

Then, let packages p1 and p3 use package p2:

(use-package 'p1 (find-package 'p2))
(use-package 'p3 (find-package 'p2))

Now, delete package p2:

(delete-package (find-package 'p2»

Then, look at the package-used-by-list for packages p 1 and
p3:

(package-used-by-list (find-package 'p1»
(package-used-by-list (find-package 'p3»

returns NIL
returns NIL

implying that p2 has been unused by packages p 1 and p3 before
being deleted.

If we have a USE "chain" between packages, i.e., p1 uses p2, p2
uses p3, then if we delete package p2:

(package-used-by-list (find-package 'p1» returns NIL
package p2 does not exist anymore.
package p3 exists as before.

If we have a circular USE "chain" between packages, i.e., p1
uses p2, p2 uses p3, p3 uses p 1, then if we delete package p2:

(package-used-by-list (find-package 'p 1)) returns NIL
(package-used-by-list (find-package 'p3)) returns p1
package p2 does not exist anymore.

The internal symbols of a deleted package are lost forever.
Symbols that are inherited from the deleted package (say p2)
into a package (say p1) by virtue of the fact that p1 uses p2 (ie,
the external symbols of p2) are also lost. However, the external
symbols of p2, if imported into p 1, continue to exist as interned
symbols in the package p 1.

Note that the function XCL:DELETE-PACKAGE is not a part of
the Common Lisp standard: it is a Xerox extension to Common
Lisp.

Reference Xerox Common Lisp Implementation Notes, page 18.

1\ Ie rl ICTnlUlCD C:I IDDnDT HOTLINE!

