

DO }..{ idas Manual Edward R. Fiala 3 January 1980

10. Registers and Memories Known to Midas

Table 4: Memories

Memory Width Length Notes Comments
(octal) (octal)

1M 100 10000 Control store (virtual).
1MX 44 10000 4,5 Control store (absolute).
RM 20 400 4,5
T 20 20 1 Primary task-specific temporary register.
'!PC 20 20 1,2 Task-spedfic subroutine return link.
VM 20 222 4 Main storage (addressed through the MAP)

MAP 20 214 4 Maps VM to absolute storage.

BP 100 402 3 Breakpoint information used by Midas.

M1M 60 1000 3 Holds microinstructions used by Midas.
MOATA und 10 3 BITS-CHECKED etc. for testin.g.
MAOOR 40 20 3 LOOP-COUNT etc. for testing.

1 Task-specific register
2. ViItual/absolute stuff applies
3. Fake memory-artifact of stuff in Midas
4. Appears in Test menu.
5. Appears in TestAll menu.

Register Width
(octal)

APCI'ASK 4
APe 14
CfASK 4
CIA 14
CYCLECONTROL 10
PAGE 4
PARITY 4
BOOTREASON 10
PCXREG 4
PCFREG 4
DBREG 6
SBREG 6
MNBR 20
ALURESULT 4
SALUF 10
SSTKP 10
STKP 10
MEMSYNDROME 20

Table 5: Registers

Notes Comments

Next task.
2 Current task's subroutine retum link or next task's PC.
3 Task for which "T 20" and "TPC 20" apply.
2 Current instruction address.

See HW manual.
Current IMX page.

1 See HW manual.
1 See HW manual.

See HW manual.
See HW manual.
See HW manual.
See HW manual.
See HW manual.
See HW manual.
See HW manual.
See HW manual.
See HW manual.
See HW manual.

15

CALLER 14 2 Shows contents of APC-l (address of last subroutine call):
cannot infer this from APC in virtual mode.

AATOVA 20 3 Translate absolute address to virtual

1. Read-only to Midas.
2. Virtual/absolute stuff applies
3. Fake register--artifact of stuff in Midas

Most registers and memories listed .. above correspond to ones discussed in the "DO Hardware
Manual" .. Others are discussed in the sections which follow.

MDA T A and MADDR memories contain words used to repon or control the activity of the

DO Midas Manual Edward R. Fiala 3 January 1980 16

"Test" and-"Test-All" actions discussed later. MADDR also contains COMM-ERO, COMM-ER1,
COMM -ER2, and BOOT-ERR (error-reporting), which will be discussed later.

The BP and MIM memories are not expected to be of interest to programmers. BP holds the
information about breakpoints that is manipulated by the breakpoint actions discussed later. MIM
holds microcode overlays that are written into the DO microstore to operate the hardware.

, For approximately all registers and memories that contain 16-bit quantities, Midas will evaluate
input of the form "m"n", storing the value of "m" into bits 0:7 of the word and the value of "n"
into bits 8:15.

On DO. the items that accept "m .. n" are RM. T. VM. MAP. and MNBR.

11. The 1M Memory and Virtual Addresses

Because the placement transformations performed by MicroD make it difficult to correlate
microstore locations with positions in microprogram source files, the Dorado and DO Midas
implementations use a map to transform virtual addresses produced by Micro into absolute
microstore locations produced by MicroD.

Two memvries, IMX and 1M, each show the microstore. IMX is absolutely addressed; 1M
virtually addressed. When you fire up Midas, 1M is "empty"; when you load a microprogram, 1M
is filled with consecutive instructions from your source file, irrespective of where MicroD decides
to place these; the "value" displayed for an 1M word includes both the absolute address assigned
to it and the microinstruction.

In other words. if your microprogram is 10 words long. the meaningful part of· 1M is only 10 words long.
In this case, if you examine 1M addresses greater than 7, the printout will show an absolute address of 7777
and zeroes for the rest of the value.

Midas will not allow you to modify the mapping between virtual and absOlute addresses interactively-you
can only do this by loading a microprogram.

To facilitate dealing with virtual/absolute correspondences, Midas has a mode switch that controls
handling of registers and memories that normally contain microstore addresses. When you fire up
Midas, the display is in absolute mode and the "Absolute" action appears in the command menu;
when you load a microprogram, the display switches to virtual mode and the "Virtual" action
appears in the command menu. Test actions will switch to absolute mode. The current mode
always appears in the command menu.

In vinual mode, the display shows the virtual equivalent for the value in any register that
normally contains a microstare address. When the value is outside the virtual memory, it prints as
7777. To find the absolute value in this case, you have to switch to absolute mode.

On DO the registers affected by this are TPC. APe, CIA, and CALLER.

The general idea is that, if you suspect a hardware problem in the control section, you might work
in absolute mode, but in all other situations when a program is loaded you will work in vinual
mode, and the complications created by scrambled instruction placement will be concealed.

A fake register called AATOVA converts absolute addresses to virtual. For example, copying the
value in some RM word into AATOVA will show the virtual equivalent; this is useful when

DO Midas Manual Edward R. Fiala 3 January 1980

return links are saved in RM words.

TIle convenient way to use AA TOV A is to first right-button the value from an RM word that contains a
return link (which puts the value on the input text line); then left-button the value into AA TOV A, which
will prettyprint the virtual address on the conunent lines.

12. Registers and Memories that Contain Microinstructions

17

The n~, 1M, and MIM memories all contain microinstructions. A middle-button action over the
value will print these symbolically on the comment lines.

The value for an 1M word is shown as four fields on the display:

14fbit absolute address;
bits 40-438 of microinstruction;
bits 0-178 of microinstruction;
bits 20f378 of microinstruction.

The format of the bits is as shown in the hardware manual. You will note that the RSEL and J A
fields are scrambled in this arrangement; each of these has two bits in the main part of the -
1rucroiJrlstruction and two other bits in the 4-bit extension, and two of the RSEL bits are invetted.
This, together with the numerous fields in each microinstruction, makes octal interpretation and
modification of microinstructions somewhat tedious, so the symbolic pretty-print and input forms
discuss:ed below should generally be used.

IMX iand MIM are like 1M, but the 14s-bit absolute address field is absent from IMX.

The M[IM memory is an array in Alto core that contains microinstructions used by Midas when
operating the hardware; it should ordinarily be of no interest to users.

Note that the microinstruction pretty-print procedure does not have available all of the
information that the microassembler had when you assembled your program, so the printout is not
always beautiful. The following are deficiencies you should be aware of:

From the hardware manual, you will remember that the interpretation of some
instruction fields depends upon the task executing the instruction, so Midas will
disassemble correctly only when it is able to deduce the task that executes the
microinstruction.

TIlere are many possible assembler macros that you might use to generate constants to
control the shifter; for an instruction that does this, Midas might not choose the form
you used in the source file.

When you want to modify a microinstruction, a special form of input is available as follows: The
first character on the input text line should be "(" to change the values of several fields in the
instruction without clobbering other fields, or U[" to reconstruct the value beginning with a no-op
microinstruction. This is followed by a number of clauses of the form "Field+-integer" separated
by blanks and! or commas. The legal field names are:

RSEL, JA, MEMINST, F2, and JC for all instructions;

DO Midas Manual Edward R. Fiala 3 January 1980

RMOD, ALUF, BSEL, Fl, LR, and L T for regular instructions only; and
DF2, TYPE, and SRCDEST for memory instructions only.

18

In addition to "field"value" clauses, Midas interprets the standalone clause RETURN, and branch
clauses of the form GOTO[addr), CALL[addr), GOTO[addr,bc], GOTOP[addr), or CALLP[addr].
In these "addr" is interpreted as a virtual 1M address in virtual mode or as an absolute IMX
address in absolute mode; "be" is a symbolic branch condition.

The "addr" argument to GOTO, CALL, GOTOP, and CALLP will usually be a simple integer in
absolute mode but may be an expression such as FOO + 3, where FOO is an 1M address, in
virtual mode. Midas will give an error if the target for GOTO or CALL is off-page; in the event
that an off-page branch is legitimate because the predecessor did a LOADPAGE, then this error
check will thwart you--you have to use GOTOP or CALLP, which do not check for off-page, in
this situation.

On a conditional GOTO, Midas will check that the target is at an odd location for a "regular"
branch condition, or at an even location for an "inverted" branch condition. The branch
conditions are as follows:

Regular: ALU #0, CARRY, ALU<O, NOH2BIT8, R<O, ROOD, NOATI'N, MB,
INTPI:NDING, NOOVF, BPCCHK., SPARE, QWO, and TIMEOur;

Inverted: ALU =0, NOCARRY, ALU>+O, H2BITS, R>=O, REVEN, IOAnN,
NOMB, NOINTPENDING, OVF, NOBPCCHK., NOSPARa NOQWO, and
NOTIM:EOUT.

For parts of the microinstruction other than the control clause, Midas requires you to use the
awkward "field .. value" form.

13. Task-Specific Registers

Midas treats all task-specific registers (T and TPC) as 20-word memories. In other words, "T 6" is
the T -register for task 6.

In addition, a special kludge allows you to display the 21st word (i.e., "T 20" or "TPC 20") and
have that be interpreted as the register for the currently selected task. The currently selected task
is the value in cr ASK; cr ASK is initialized to the task which broke at breakpoints.

In other words, when a microprogram halts at a breakpoint or because of a mouse-abort, cr ASK
becomes the word number for the "T 20" and "TPC 20" items on the display; if cr ASK contains
6, these will show values for task 6. You can see the registers for another taks by modifying
CfASK on your display. CTASK is also the task started by "Go", "SS", etc. as discussed later.

APC contains either the subroutine return link for the current task or the PC for a task about to
be reactivated; when it is a subroutine return link, it holds the location of the last CALL or'ed
with 1. In virtual mode, because of the scrambled instruction placement, this will not readily
translate into the location of the caller, so Midas provides a variant of APe named CALLER,
which ~olds the value in APC less 1; in virtual mode this will show the 1M address of the last
CALL.

DO i'J idas Manual Edward R. Fiala 3 January 1980 19

14. Memory System Registers and Memories

VM accesses the virtual memory using the current contents of the MAP. Midas does not provide
any direct method of accessing storage; the user has to setup MAP with appropriate values and
then use VM to do this.

MAP, MEMSYNDROME, etc. to be fiIIed in

15. Loading Programs

The "Load", "LdSyms", and "LdData" actions are used to load micro-binary files into the
machine. These actions are executed by first typing a list of file names (default extension tt.mb")
separated by commas, then bugging "Load" or "LdSyms" (typing ";Ltt is equivalent to bugging
"Load"). These actions require confirmation by <cr>, "Y" , or "." iff a previously-loaded
program is being overwritten; in a command file where it is not known whether or not another
program is being overwritten, a "Confirm" action should precede the load action, as discussed
earUer.

"Load" loads the entire .mb file--symbols into the Midas symbol table, data into the hardware,
and breakpoints into the BP memory.

"LdSyms" loads only the address symbols and 1M mapping table from the .mb file; the BP
metIlory is not loaded and data are not loaded into the hardware.

"Ld])ata", (in command tiles but not available interactively), loads data blocks and the BP
men:lory from the .mb file; symbols and the 1M mapping table are not loaded.

On DO, the MADDR and MDATA memories are treated as exceptions by "LdData'·--symbols for these are
loaded anyway.

Midas uses several1024-word core buffers (about 12 on DO Midas) and the Swatee file to manage
its symbol table and virtual memory mapping information; the largest existing programs use 10
buffi~rs for VM information and about 20 more (out of 64 available on Swatee) for symbols. For
nearly all symbol and VM accesses, Midas will reference only one or two symbol blocks, so there
should be no appreciable slow down when handling large programs.

The symbol table management algorithm used by Midas is an extremely fast mel'le that works well when.
the symbol table is nearly empty at the onset of a load but suffers somewhat from block fragmentation
when the initial symbol table has many items.

To avoid fragmentation. don't load one microprogram on top of another-use "Run-Pros" to reset the
symbol table. then do the "Load". It is also a good idea to assemble microprograms as a single .MB file.
Although Midas can load multiple .MB files (typed as a list separated by commas). this will fragment the
symbol table and cause extra thrashina.

These recommendations follow because Midas takes advantaae of alphabetical address orderin& in .MB files
to pack its symbol buffers nearly full. But when subsequent files are loaded, the symbol buffers will
fragment to about half-full, symbol buffer swappin& will result. and symbol searches will be longer.

Midas uses the symbol table in two ways: lookinl up the value of a symbol, requiring at most one disk
access: and searching for the symbol in a particular memory which best matches a value, requiring at most
one access for RM or at most two accesses for 1M address symbols: the best matching value for addresses in
all other memories is determined by scanning every block. Searching every block requires about (.22
seconds' * no. symbol blocks) - (.15 seconds * no. blocks in core) or about 2.9 seconds for the largest
program thus far. However, since best matches for the two most important memories are obtained quickly,

DO Midas Manual Edward R. Fiala 3 January 1980 20

it will rarely be necessary to wait for a search.

In most situations where a "Load" is going to be done, many other actions will also be carried out
to setup the display appropriately for the program. For this reason, you will ordinarily want to
define a command file that does all these other actions as well as the "Load" and you will
ordinarily do "Run-Prog" on this command file; direct use of "Load" in the command menu will
be rare.

Midas/MicroD do not handle microprograms with overlays conveniently. At present, the system
microcode consists of an initial microstore image that contains both some resident code and
initialization code; the initialization code is executed and then overwritten by the rest of the
resident system. Midas/MicroD do not provide any clever features for setting up the symbol table
and 1M mapping table correctly in this situation. One method of handling this situation is to
create a "Run-Prog" command file which does the following:

1) A "Load" on the resident+initialization; then a "Go" at the starting address, which
runs up to a breakpoint at the end of initialization.

2) A "Run-Prog" on another command file; this clears the breakpoint, 1M mapping, and
symbol tables. The command file does a "Load" on the original resident+rest of
residex:t that replaces the initialization code and returns to the outer command file.

3) A "Go" at the starting address (or a "Continue" from the initialization breakpoint) to
start the system which then runs until it fails or halts.

Assuming that you are somehow able to build the two .Mb files needed by this sequence (It is
unclear how you will do this.), you will wind up with Midas containing the correct symbols and
1M mapping table for debugging. .

16. Dump and Compare

Both "Dump" and "Compare" require confimation by <cr>, Y, or "." They accept the name of
a microprogram (default extension ".mb It) on the input text line. If the input text line is empty,
then the file name is defaulted to the name of the program last loaded.

"Dump" deletes forward reference fixups left by Micro (which never occur on Dorado or DO
because MicroD does these) and compacts both data and addresses to use less disk space and load
more quickly later. Dumped files are about 20% smaller and can be loaded 10% to 15% faster
than undumped files, so it is desirable to load and then dump .mb files that will be used widely.

Also, if undumped .MB files contain forward references, they cannot be used with "Compare" (no
problem on Dorado or DO).

Note that only memory words loaded by Load are dumpeti--you cannot patch unused locations,
dump the program, and expect the patches to survive. rt ou might assemble extra locations as a
patch area with your microprogram, so that you can patch and dump during debugging, but
placement constraints will be difficult to satisfy.)

"Compare" compares data currently in storage against data in the file and reports differences on
the Midas.Compare file. .

DO A{ idas Manual Edward R. Fiala 3 January 1980

In microprograms, avoid loading initial values into memory words modified during execution. The
usefulness of "Compare" is enhanced when programs are clean, because no fictitious errors will be reported.

For diagnostics, "Compare" can report what has been smashed when something goes off the deep end--this
has frequently been helpful.

Following system microcode crashes, "Compare" may provide the only clue about the nature of an
intermittent storage failure.

17. Break, UnBreak, ClrAddedBPs, ClrAllBPs, and ShowBPs

21

"Brenk" inserts a breakpoint in the 1M or IMX address typed on the input text line. The address
must be typed--there is no default break address. You will normally find it faster to type
It address; B" to insert a breakpoint

"UnHreak" removes a breakpoint If no text is typed, the address defaults to the breakpoint that
caused the last program halt or to the address of the last breakpoint inserted. You will normally
find it faster to type "address;K" or ";K" to remove a breakpoint

"ClrAddedBPs" removes all the breakpoints inserted since the last "Load" and prettyprints the
addrE~es of the first 10 removed. "ClrAllBPs" clears all breakpoints, including those that were
loaded witht he program. "ShowBPs" prettyprints the addresses of all breakpoints added since the ~
last "'Load."

Br~:points are implemented by replacing the broken instruction by a special breakpoint
instrlllction. When the DO is halted, IMX contains the unbroken instructions, and Midas
remelnbers which places contain breakpoints; when you continue your program with "SS," "Go,"
or "Continue," Midas saves the instructions in its table (the BP memory), and stores breakpoint
instrlllCtiOns at those places; when the program halts, Midas restores the contents of IMX.

Sing1c~stepping is also implemented with breakpoints; Midas determines one or both possible
successors to the instruction being single-stepped, plants breakpoints there, starts the machine, and
then undoes the breakpoints after the machine halts; BP's 0 and 1 are used for this purpose.

A bn~point can be put on any instruction. However, there is a limit of 254 user breakpoints;
also, there are some restrictions on continuing discussed in a later section. You may be unable to
contillue from breakpoints on some instructions.

18. Go, SS, and. Continue

TheSE: are actions that result in the microprocessor resuming or starting execution at the selected
address. "Go" and "SS" accept an optional address argument on the input line that must evaluate
to an 1M or IMX address; a simple number is defaulted to an IMX address in absolute mode or
an I~[address in virtual mode. If the optional argument is omitted, Midas will continue from the
last break. "Continue" always continues from the last break, ignoring any text on the input text
line.

The keyboard equivalents for these commands are ";G" for "Go"; ";S" or ":" for "SS"; and
n;p" or ";C" for "Continue."

Whelil you start at a new address, the value in cr ASK (lower left-hand corner of the normal

DO M idas Manual Edward R. Fiala 3 January 1980 22

display) is the task activated. You must change cr ASK on the display before initiating execution
for a different task.

When the microprocessor halts after a breakpoint, due to an error, or because you aboned, Midas
prints the location of and reason for the halt and saves the information that it needs to continue.
The form of the printout is "task: address". Subsequently, if you attempt to continue, Midas
restores the hardware as nearly as possible to its state at the break before continuing.

There are some complications surrounding Midas' ability to restore the state of the program, after
doing other things, so that continuation is possible. These are discussed in the next section.

19. When Registers are ReadIWritteo··Restrictions 00 Continuing

When a microprogram. halts at a breakpoint or due to a mouse-halt, Midas has two objectives: to'
read the contents of registers and memory addresses so that they may be shown to the user, and to
be able to continue from the interrupt or breakpoint In terms of how the Midas read/write
procedures work, there are three cases:

Registers: The Kernel program running on DO saves registers in RM words reserved for the ~
purpose; Midas reads these special RM locations into a block of Alto storage when the machine
halts or when you do a "Boot" action. Subsequently, Midas displays the values from Alto storage,
and, when a register is written, modifies the Alto storage. The DO hardware is not affected by any
change in register values until you resume or start your DO program. At that time, the block of
Alto storage is rewritten into the Kernel's special RM locations, and the Kernel will transfer these
values into the registers just before releasing control to your program.

Memories: IM/IMX, RM, T, TPC, MAP, and VM addresses are read and written directly;
whenever you modify a word in one of these memories, Midas will write it (through the Kernel);
Midas always reads the values from the hardware, never from remembered values in Alto core.

ArtifiCial registers and memories: For cr ASK, AA TOV A, BP, MIM, MDATA, and MADDR,
Midas modifies/reads the Alto storage containing the value, so the DO hardware is not¢rected.

However, whenever any register, memory word, or artificial register or memory word is modified,
Midas rereads the value for every item on the display, going left-to-right and top-to-bottom
through the display. This is unimportant as long as the DO hardware is functioning correctly, but
if the hardware is unreliable, then displayed values of memory words may change, so be wary.

There are a number of situations that may prevent continuation from a breakpoint or interrupt;
Midas warns you about some of these when you try to continue but does not warn you about
others. Some of the ones that Midas does not warn you about are as follows:

Input/output tasks were not serviced properly due to the delay at the breakpoint, so these are not continued
correctly;

You break. on any of the three instructions involved in the "bypass kludge." when the instruction after a
memory operation expects to read the result of the memory addition instead of the value for which write is
pending into T or RM.

Some siruations that Midas does warn you about are as follows:

You broke at the instruction after a LoadPage. This happens either because you break on the instruction

DO AI idas Manual Edward R. Fiala 3 January 1980

after a LoadPage or because you break on the LoadPage instruction itself and Midas breaks on the
instruction after the LoadPage when restarting.

20. Hardware Failure Reporting

23

Midas checks for several kinds of hardware errors and reports them in COMM-ERO, COMM-ER1,
and COMM-ER2, which are addresses in the MADDR memory; these are shown in the upper
right··hand name-value menus of the normal Midas display. Values have two 16-bit fields; each
field counts errors of some type and can be prettyprinted for interpretation. Midas does not print
any special messages after these errors--the user will have to notice when they change.

A "Boot" action is carried out by first loading selected IMX words from a ROM; Midas can cause
the DO hardware to do this through its Diablo Printer interface, as discussed in the hardware
manual. When this part of the boot finishes, Midas transmits the Kernel into IMX by
COmDrlunicating with the boot loader. If Kernel transmission is successful, Midas then starts the
Kernel.

Four possible communication errors may be detected during Kernel transmission. If one of these
failures occurs, Midas reports the failure in BOOT-ERR (an address in the MADDR memory) and
reatte:mpts the boot, not giving up until the boot has failed 10 times. BOOT-ERR is shown on the'"
displuy as two 16-bit fields; the left-most field shows how many words were transmitted before the
(last) failure occurred; the right-most field contains four four-bit nibbles that count the number of
failure occurrences for each of the four reasons.

As soon as the Kernel has been successfully transmitted, Midas will attempt to start it running; if
this fails Midas will immediately report a failure without retrying.

M~[SYNDROME and BOOTREASON registers report failures detectd by the DO hardware, as
discussed in the hardware' manual.

21. Testing Directly From Midas

"Test" and "TestAll" allow the target machine to be tested directly from Midas. Although
diagnostic firmware can test faster and more thoroughly than is practical from Midas, Midas direct
testing permits the hardware to be ·checlced out well enough to get basic diagnostics loaded and
started. On Maxcl, which had.no direct testing in Midas, many hardware failures of the "nothing
works" variety were harder to fix than on Maxc2 and Dorado, where Midas test software is
availalble.

How~~ver, on DO and M68 implementations of Midast the test features in Midas are of doubtful
usefulness because the hardware is accessed through communication with a small "Kernel"
microprogram that only works when most of the hardware is functional.

On DO, only IMX and RM are presently testable, but the address ranges are limited so as not to
overwrite the parts of these memories used by the Kernel. Neither of these actions is expected to
be useful because most failures in these memories will prevent the Kernel from running. They
are 'described here anyway.

Data patterns for test actions are detennined from the first subsidiary menu, as follows:

DO M idas Manual

ZEROES
ONES
SHOULD-BE
CYCI

CYCO
RANDOM
SEQUENTIAL
ALTZO
ALT· SHOULI> BE

Edward R. Fiala 3 January 1980

Table 6: Test Data Pattern Actions

All-zeroes data
All-ones data
Constant test pattern equal to value in SHOULD-BE

24

Vector of the same size as the register containing zeroes with a single one-bit cycled left
one position each iteration
Cycled zero in vector of ones
Random numbers
O. 1. sequential numbers
Alternating all-ones and all-zeroes patterns
Alternating contents of SHOULI>BE with its ones-complement

The CYCO, CYC1, and SEQUENTIAL patterns vary according to the size and arrangement of the
data vector for the item being tested. CYCO, for example, starts off with leading 1's and a 0 in
the right-most bit of the data vector. The 0 is shifted left (bringing in 1's to its right) each
iteration; when the 0 is shifted out of the left-most bit in the data vector, the vector is reinitialized
to leading 1's and a 0 in the right-most bit The CYC1 pattern is like CYCO with 1's and O's
interchanged. The SEQUENTIAL pattern is initialized to 0 and is incremented by 1 in the right­
most bit of the data vector each iteration.

1bis treatment of CYCO, CYC1, and SEQUENTIAL patterns is conceptually correct for items that
are described inside Midas by dense, left-justified data vectors whose bits are displayed left-to­
right on the screen. On DO all testable items are handled this way.

Testing is controlled/described by 12 addresses on the display as follows:

SHOULD-BE
DATA-WAS
BITS-CHECKED
BITS-PICKED

BITS-DROPPED

LOOP-COUNT
NFAILURES

Memory tests only

LOW-ADDR
mGH-ADDR
CURRENT-ADDR
ADDR-INC

ADDR·INTERS
ADDR-UNION

~able 7: Test Items in the Name-Value Display

On a failure, the correct data; after control-C or Abort. the next pattern.
On a failure. what the data was; after control-C or Abort. the data read last time.
Mask of bits checked (see below).. .
Union of bits that should have been 0 but were erroneously 1 during testing. This
accumulates failure information when you continue a Test using <escape> or <cr>.
Union of bits that should have been 1 but were erroneously O.

32-bit iteration count at which failure occurred. or after which the test was aborted.
32-bit count of test failures.

32-bit addresses: If ADDR-INC (normally 1) is positive. the test starts at LOW-ADDR
and advances through the memory in stepS of ADDR-INC until CURRENT-ADDR is
greater than mGH-ADDR. If ADDR-INC is negative, the test starts at HIGH-ADDR
and goes by stepS of ADDR-INC until CURRENT-ADDR is below LOW-ADDR.
CURRENT -ADDR contains the last address tested.
Intersection of address bits where failures were detected.
Union of address bits where failures were detected.

SHOULD-BE, DATA-WAS, BITS-CHECKED, BITS-PICKEDt and BITS-DROPPED are
addresses in the MDATA memory; LOOP-COUNT, NFAILURES, LOW-ADDR, etc. are
addresses in the MADDR memory. These two memories (which are tables in Alto storage) exist
on all versions of Midas that implement the test actions.

DO Midas Manual Edward R. Fiala 3 January 1980 25

The h;mdling of the MOAT A memory is complicated by the fact that items in this memory have
to be :shown in the same format as the memory or register being tested. This is accomplished as
follows: When the selected test item is different from the last, the width and print-format of
MDAT A are set to be identical to the new item; in this case BITS-CHECKED is initialized to test
all bits in the new item. Then when the test is aborted or halts due to a failure, the display of
BITS-CHECKED, etc. is identical to that of the item tested. The user may then modify BITS­
CHECKED and continue, restart, or free-run the test, as discussed below; in this case the item
tested is identical to the last item tested, so BITS-CHECKED is not reset

The h;mdling of MADDR is also tricky. ADDR-INC is allowed to be any value except 0; if it is
0, Midas will reset it to 1 before testing. When HIGH-ADDR is initially greater than the largest
legal address in the memory, it is reset to memlength-I prior to testing. Then if LOW-ADDR is
greater than HIGH-ADDR, it is reset to 0 before testing. When the selected memory differs from
the last item tested, and when the length of the memory is less-than-or-equal to 100008 words
long, J~idas will reset LOW-ADDR to 0 and HIGH-ADDR to memlength-I prior to testing. This
is done because a common operational error is failure to reset the address range when switching
from one memory test to another. However, Midas does not reset the address range for very long
memories because they are normally tested with small address ranges that cannot be predicted in
advanc:e--full-length testing of long memories from the Alto is so slow as to be impractical.

"Test", after showing the data-pattern menu, shows a menu of register and memory names and
other ltest names, and executes a test of the one you select until the test fails or you halt the test
from the keyboard.

The t.estable registers and memories appear in the second sub-menu for the "Test" action.
Provisilon is also made for other machine-dependent tests, but there aren't any implemented for
the DO.

<esc> will continue a register or memory test that has halted; it restarts an OtherTest that has
halted. .

<cr> will continue a register or memory test that has halted but will free-run the test rather than
haltini: on the next failure. While free-running, LOOP-COUNT and NF AlLURES are reported
continuously on the display, and BITS-DROPPED, BITS-PICKED, ADDR-INTERS, and ADDR­
UNION accumulate failure information. When you stop the test by bugging "Abort" or typing
control-C, the accumulated failure information is displayed in these registers.

"TestAll" automatically loads BITS-CHECKED with a full-sized comparison mask prior to testing
each item; memories are tested with LOW-ADDR = 0, HIGH-ADDR = memory length-I, and
ADDR-INC = 1. It tests each register 200 times and makes 4 passes through each memory and
each OtherTest.

· DO M idas Manual Edward R. Fiala 3 January 1980 26

22. Command Files Used With "RdCmds"

At the time this was written, the following command files were in use:

Table 8: Command Files

midas-tests restore "normal" Midas display with the hardware testing items in the right display column.
svcrash write the Midas display followed by a pretty-print of most registers on the file Crash.Report.

tpc show 208 TPC registers in middle column.
t show 208 T registers in middle column.

AATOVA 177777 COMM-ER9 9 B
CYCLECONTROL 9 COMM-ERl B B
PCXREG. 1 COMM-ER2 B B
PCFREG 2 BOOT-ERR B B
DBREG 9 TPC B 1234
SBREG 9 TPC 1 5677

* MNBR 9 TPC 2 123
SSTKP 9 TPC 3 71B2
STKP 392 TPC 4 2274
ALURESULT 7 TPC 5 3331
SALUF 11 TPC 6 1255
T 29 123123 TPC 7 2771

TPC lB 1336
TPC 29 7992 TPC 11 7774

* CALLER 7193 TPC 12 1177
• PAGE 16 TPC 13 444

APC 7195 TPC 14 4B55
APCTASK 3 TPC 15 117 BOOTREASON 1
CIA 7194 TPC 16 6669 PARITY B
CTASK 3 TPC 17 7493 MEMSYNDROME B B

Loaded: KERNEL

Go at 9:BEGIN, BrkP after B:QERR+1 at B:QERR+2

Exit Boot Run-Prog Read-Cmds Break UnBreak ClrAddedBPs ClrAllBPs ShowBPs Go
SS Continue Load LdSyms Compare Test-All Test Dump Show-Cmds Write-Cmds
Absolute

BEGIN;

L-, ___ ~

Sample Midas Display

To:

From:

Subjec:t:

Filed On:

XEROX
PARe

14 June 1983

Microcode Developers

Edward Fiala

How to Debug Dolphin Microcode With Midas

[Indigo](DODocs)DebugWithMidas.Bravo, .Press

This is a short description of how to debug Pilot, Cedar, or AMesa microcode with Midas. It
handles any combination of microswitch/Star keyboards and CSL/LF monitors.
Documentation for Midas can be found on [lndigo](DODocs)DOMidas.Press. You should
read both the Midas document and the part of "Dolphin Booting and Maintenance Panel
CodE~s" ([lndigo]<DODocs)MPCodes.press) which describes booting.

Midas is a debugging program that runs under the Alto as on a different machine from the
one you are debugging. You can run it on an Alto or on the Alto partition of a Dolphin. In
eithE~r case, you need a special cable to connect the printer interface of the Alto or Dolphin
running Midas to the printer interf~ce of the Dolphin being debugged.

If you don't already have a Midas disk, you will need to build one:

1. Spin up a clean disk on your Alto. Boot the NetExec and invoke NewOS. Use the
long installation dialog and erase the disk. If you going to run Midas on a Dolphin, you
don't have to do this··just make sure there are 2000 free pages on your Alto partition.

2. Obtain the following files from the place where you get Alto subsystems (e.g.,
[Maxc]):

Micro.run
MicroD.run
Ftp.run
Bravo.cm
RunMesa.run
Empress.run
Find.run
Waterlily.run

(microcode assembler)
(microcode loader)

and execute this command file

3. Load DOMidasRun.dm and retrieve the other files below from [Indigo] with Ftp:

(DOSource)DOLang. Mc
(DO)DOMidasRun.dm
(DO)Midas.programs
(DO)MemErrors. midas
(DO)MakeLoaderFile.bcd (microcode boot file builder)

How to Use Midas with Pilot 2

Because of file name conflicts, you can only have one of the following dumps of
microcode sources loaded at-a-time (except that Initial can coexist with Pilot microcode
if Pilot microcode is loaded last):

<DOSource)CedarUCode,dm
<DOSource)PilotUCode,dm
<DOSource)AMesaSources.dm
<DOSource)lnitiaISources,dm

for Cedar microcode
for Pilot microcode
for AMesa microcode
for Initial microcode

4. Call Ed Fiala or send message to Fiala.Pa if you have problems with these
procedures.

There are several important limitations to the ways in which Midas can be used to debug a
Dolphin. The first is that you must BEGIN with Midas, If instead you attempt to attach to a
machine which is in an interesting state, then Midas will boot the machine while activating its
Kernel microcode, and all RM registers and the TPC's for the tasks will be reset (possibly
storage will survive booting, however).

The second limitation is that the various microcode systems that you run must all reserve
space for the Midas Kernel and have an appropriate linkage between the fault handler and
the Midas Kernel. Initial has an IMReserve for the Midas Kernel; if you assemble the Pilot
microcode with With Midas = 1 in GlobalDefs,Mc, then Pilot also has an IMReserve for the
Midas Kernel. SOD Pilot microcode at the present time is built with With Midas = 1, but the
Cedar and Tor variants are not, and the normallyreleased Alto emulator overwrites the Midas
Kernel, so you will need to obtain or create special debugging versions of these to debug
from Midas,

The third limitation is that you cannot activate Pilot directly from Midas by loading and
running .Mb files. Instead, you must install the Pilot germ and microcode on the Dolphin
SA4000, and then load the microcode by running the Initial microcode from Midas, The
microcode installed on the SA4000 must be the SAME as that on your Midas debugging disk.
In addition, you must have a Physical Boot Volume set.

Using Midas to Boot Pilot

Boot the Midas disk and type "Midas/i Pilot". The Pilot.Midas command file will first load
Initial.Mb, insert a breakpoint at RamLoaded, and start Initial at SAPiiotStart. If all goes
properly, Initial will read the Pilot microcode and all of its overlays from your SA4000 into
storage, and the breakpoint at RamLoaded will be hit after LoadRAM has loaded Pilot1 into
the microstore; then Pilot1 symbols are loaded by RunProg and the RamLoaded breakpoint
is reinserted in octal (at IMX 316); this is necessary because all previous symbols and
breakpoint information (which pertained to Initial) have been flushed by Run-Prog; since the
space occupied by the LoadRAM module in Initial has been IMReserved in Pilot, the
RamLoaded symbol is no longer available,

The Pilot.Midas command file pauses at this point with a message saying that Pilot1 is
loaded, and you may abort the command file or continue it. If you continue the command
file, it will pause again at BootEmulators in Initialize,Mc after comleting all device initialization
but before loading the Pilot2 overlay. If you continue from there, it will pause a final time
after loading the Pilot2 overlay; if you continue from there, your physical boot volume will be
started,

How 'to Use Midas with Pilot 3

Assuming that you abort the first time the Pilot.Midas command file pauses, then you have
the following options:

a) Kill the IMX 316 breakpoint and proceed, letting Pilot start normally. After it is running,
you can get control with Midas control-C (or by selecting and left-buttoning "Abort") and
establish a suitable debugging context as discussed below.

b) Ins'ert any breakpoints in Pilot1 that you wish and continue. This allows debugging
initiati~~ation and other Pilot1 microcode.

c) If you want to debug the terminal microcode, then the driver for the LF keyboard system is
included in Pilot1, so you can· insert breakpoints directly; for a CSL keyboard system (with
either a CSL or LF monitor), you must proceed from the RamLoaded breakpoint--the next
time you get to that breakpoint, the microcode for that terminal, obtained from the first or
second overlay in PiiotDO.Eb or CedarDO.Eb, will have been loaded into the microstore. See
below for establishing a debugging context.

To deibug Pilot2 microcode, you should continue the command file until it indicates that
Pilot2 has been loaded; then abort it.

Displ;aying Pilot Microcode Symbols From Midas

When Pilot has been loaded and started as described above, you can setup a debugging
conte:d by doing Run-Prog on PILOT1 SYMBOLS, PI LOT2SYMBOLS, CSLSYMBOLS, or
CSLFSYMBOLS. Run-Prog clears all previous symbols and breakpoints and loads'symbols
from lone of the four Pilot overlays--it is impossible to have symbols from more than one
overla.y concurrently active. PILOT1 SYMBOLS and PILOT2SYMBOLS also setup the middle
column of the Midas display with registers generally of interest when debugging Pilot
emulator code; CSLSYMBOLS and CSLFSYMBOLS setup the middle column with registers
generally interesting when debugging one of the display drivers.

At any time you can change the contents of the Midas display by doing Read-Cmds on a
variety of files in the menu with suggestive names. Among these are the following:

BBREGS

ROCREGS

GCDEBUG

MEMERRORS

TX·

Displays BitBlt registers in middle column.

Displays ROC registers in middle column.

Displays CedarGC registers.

Displays memory error registers in right column.

Various TextBlt registers.

Usin!~ Midas to Debug AMesa microcode

1. Obtain a special debugging version of the Alto emulator that contains an IMReserve for
the Midas Kernel--normal Alto microcode overwrites the Kernel and cannot be used.
[lndi~,o]<DO)NewAMesa.Mb with CSL keyboards or [lndigo]<DO)LFAMesa.Mb with LF
keyboards are suitable; put one of these on your Midas disk.

2. Boot th~ Midas disk and type "NewAMesa;L"; this loads the Alto microcode. Start the
Alto emulator with "EGO;G" "KGO;G" or "KGOP2;G" for ether boot, partition 1 boot, or

How to Use Midas with Pilot 4

partition 2 boot, respectively. The Alto Executive will appear shortly on the screen.

Eprom Microcode

Sources and other files for the Rev·L EPROM microcode are on
[lndigo]<OOSource)Proms)Rev-L)*. After you rebuild the .mb file for the EPROM microcode
from the sources, you can debug it from Midas as follows:

1. ,Select Run-Prog on the Midas menu.

2. When the Run-Prog menu appears, select EPROM.

When SA4000Boot is loaded and the next menu appears, you can select "CONTINUE" to
continue the boot sequence with the Initial microcode, obtained from the Initial microcode
area of the SA4000.

Loading Initial

To load the Initial microcode, use the Initial command file:

1. Select Run-Prog on the Midas menu.

2. When the Run-Prog menu appears, select INITIAL.

When the command file is finished, the display will show some symbols of interest for the
Memlnit.Mc module. The various starting addresses are on pages 1 and 2 of Initial.Mc; they
include the following:

SAAltoStart

SAPilotStart

Ether AltoStart

EtherPilotStart

Some interesting

RamLoaded

IMap

boots and starts AMesa from the SA4000.

boots and starts Pilot from the SA4000.

boots and starts AMesa from the 3 mb Ethernet.

boots and starts Pilot from the 3 mb Ethernet.

breakpoints in Initial are the following:

(lMX 316) where LoadRAM finishes.

beginning of the map and storage test.

imRepeatStorageTest after map test.; here you can change the contents of
the SoftQThreshold register to 100b if you want to make the storage
test put pages with correctable errors into service.

MemlnitDone end of storage test.

MicrocodeLoaded after loading microcode into the VM block at 1400b.

