2. Central Processor

The Central Processor (CP) emulates the Mesa Processor as defined by
the Mesa Processor Principles of Operation, and provides ALU service
for the integral /O controllers. The central processor is modeled
almost exactly after the architecture of the Dandelion, but executes a
slightly different version of the Dandelion microinstruction set. In
addition, a small part of the Dandelion Mesa Emulator has been
modified.

Figure 1.1 in Section 1 illustrates the relationship of the Mesa
Processor Board (MPB) to the rest of the system. Figure 2.1 illustrates
the MPB functional blocks that are described in this section.

[S m——— bl
D (0) <
& —ooMAIT i Memory | __
(Map | !
B le-pwamar ___CTTITIIIIN
U R |—»
b Next Al
§ . Address - N w
. > I > c # Control signals
—{ Generation A Control | 1 M > todeviceson
Store I . the board
I R 1>
0]
P
D
N E
I C Co‘;zetrql signals
to vices on
A 5 ° the board
- - E
- - -
1 MDC
X BUS
')])
4 'y 4 s VY 4
B | < YH BUS Y 4 y 4 164 16 4 16
Bl U
S Y
1[31 MBC
S | Con 1B || RH | |STKP
N on- SU Rotator 2901C
«—] T stants 16x8 VB E
E
» R A
F
A
’ir C of 16 sy 18 b
m E
5 4 Y YBUS

Central Processor

Figure 2.1. Mesa processor board logical blocks

-1

Daybreak Technical Reference Manual

2.1

General Board Hardware

2.1.1

The central processor is a microprogrammed, 16-bit general purpose
computer consisting of approximately 170 ICs of various sizes and
complexity. It resides on a 10.9-inch by 16-inch printed wiring board
assembly (PWBA), referred to as the Mesa Processor Board (MPB),
located in slot 3 of the backplane.

The MPB contains:

e 4K by 48-bit writable control store and associated registers for
loading and decoding microinstructions. Control store is
expandable to 8K by 48 bits. An 84-pin gate array provides
look-ahead decoding of certain microinstructions; the raw
microinstruction register (RAW MIR) stores microinstructions.

e Four 2901C LSI chips that make up the core of the central
processor. The 2901C is a 4-bit processor; the four chips are
cascaded to provide a 16-bit processor. Supporting the 2901C
are four register sets (U, RH, IB, and Link), a four-bit rotator,
and four emulator registers (stackP, ibPtr, pc16, and MInt).

e The 68-pin gate array that serves as the Mesa bus controller,
and the logic that interfaces the controller to internal buses (X
and Y) and to the Mesa bus and backplane.

e Support devices, such as the process timer and trap machine.

e A 16 MHz clock generator which distributes a clock signal
across the backplane.

e [OP address mapping, which is part of the I/O subsystem, and is
not discussed in this manual.

Note: Not all devices are shown in Figure 2.1.
Most devices are described in detail in the appropriate subsections of
Section 2. This subsection describes the overall MPB,; that is, board

layout, interfaces, power requirements, and internal clock generation.

Mesa Processor Board (MPB)

2-2

Figure 2.2 illustrates the layout of the Mesa Processor board.

Central Processor

Daybreak T-e-éhnical Reference Manual

Figure 2.2. Mesa Processor Board layout

2.1.2 Backplane Interface

Central Processor

Table 2.1 lists the Mesa processor board interface to the backplane.
On the backplane, pins are grouped in six rows of three columns each.
The table reflects the grouping.

The board interfaces to the Mesa processor or B bus and the 80186 or
Abus. Two interrupt lines connects the Mesa processor with the [OP.

Tables 2.2 and 2.3 list the pins and signals for the interfaces to the
Mesa bus and 80186 bus, respectively.

2-3

Daybreak Technical Reterence Manuat

Table 2.1. MPB Backplane Pin Assignment (Front View)

Qutmost Inmost
1) 86 Bus
Spare-1 J3.001 GND J3.002 Spare-2 J3.003
A/AD.QS (bi) J3.010 GND J3.011 A/AD.13 (bi) J3.012
\/AD.04 (bi 13.013 \/MemRdy 13.014 A/AD.12 (bi
/AD.03 (b 13.016 ALE’ (i 13.017 .
A/AD.02 (bi 13.019 AOPMemWr G 13.020 » u&m—.
A/AD.0L (hi 13.022 Spare-3 | 13.023 'E:!A!DNJMM'Q‘M_‘\!. I3
GND J3.028 A/CLK () J3.029 vCC J3.030
J3.031 GND J3.032 GND J3.033 GND
J3.034 (i) A/AA.19 J3.035) A/S2’ J3.036 (i) A/AA.23
J3.037 (i) A/AA.18 J3.038 (i) A/ST’ J3.039 (i) A/AA 22
J3.040 (i) A/AA.17 J3.041 (i) A/SO’ J3.042 (i) A/AA.21
J3.043 (i) A/AA.16 J3.044 (D) A/BHE’ J3.045 (i) A/AA.20
J3.046 A/UCS’ J3.047 GND J3.048 (i) A/IOR’
43.049 (o) Reserved-0 J3.050 (i) A/LocRamCS™ J3.051 Spare-4
J3.052 (1) A/IOPLock’ *J3.053 GND J3.054 (i) AIOW
J3.055 A/PCHoldAToArb* J3.056 (o) A/1OPMemRd’ J3.057 Spare-5
J3.058 -5V J3.059 -5V J3.060 -5V
2) MPB-DCM
GND _ J3.061 GND J3.062 GND J3.063
A/IQRdy* J3.064 AMA23 (o) J3.065 AMA22) J3.066
Spare? J3.067 AMA.21 (0) J3.068 AMA20 (o) J3.069 -
SparelD’ J3,070 AMAL9 () J3.071 AMAI8 (@) ~ J3.072
DBRK/Daigy™ J3.073 AMALTO J3.074 A/AALGB (0) J3.075
INT™ i 6 GND J3.077 MPB- -
A/VRETINT™ _ J3,082 o e m e
GND _ J3.085 | 3) Mesa Bus
ARawCLK(0) J3.088 GND J3.083 | BMWT (o) J3.081
MPB-DCM-spare3 J3.086 | Dawn-Mp-sparel J3.084
GND J3.089 I BMMRD' (0) J3.087
| vce J3.090
1
* not used

- maore-

Central Processor

Daybreak Technical Reference Manual

Table 2-1. MPB Backplane Pin Assignment (continued)

Outmost

J3.112 yccC

J3.115 vee

J3.118 \'{0])

GND

Inmost

] 3) MesaBus (continued)

I
1-43.003 GND

CSWREN*

§ 3096 (reserved)

3,008 ~ CSLOAD/SHIFT™ 1J3.099¢) Bilock
J3.101 CSBUFFEREN* 1J3.102 (o) BAOR’
J3.104 CODATAIN* 13,106 () B/MemRef
J43.107 CSSHIFTCLK® 3.108 (9) BAOW
J310 CODATAOUT® | L3l @ BRdy

r—————————-———-q———-——————J

GND

J3.121

GND

J3.124

GND

J3.127

INTDIS’

J3.130

B/A.23 (0)

J3.133

B/A.22 (0)

J3.136

B/A.21 (o)

J3.139

B/A.20 (o)

J3.142

B/A.19

J3.145

-12V

J3.148

J3.151 GND

J3.154 (bi) B/D.0T

J3.157 (bi) B/MD.0S

J3.160Gd BDO3
3163 GD BDOI

J3.113 YCC 1J3.114 VCC

J3.116 VCC LJ3117 () YCC

J3.119 YCC LJ3.120 YCC

I
GND J3.122 GND J3.123
GND J3.125 GND J3.126
GND J3.128 GND J3.129
B/A.18 (o) J3.131 B/ALE’ (0) J3.132
B/A.17 (0) J3.134 Dawn-Mp-Spare3J3.135
GND 43.137 B/D.11 (bi) J3.138
B/D.15 (bi) J3.140 B/D.10 (bi) J3.141
B/D.14 (bi) J43.143 B/D.09 (bi) J3.144
B/D.13 (bi) J3.146 B/D.08 (bi) J3.147
-12V J3.149 -12V J3.150
Do o o e, s o o s o i, o S, o o) o, o)

43.152 GND J3.153 GND

J3.155 (b B/MD.12 J3.156 (bi) B/D.06

J3,158 GND J3.159 (bi) B/D.04

J3.161 () A/Reset J3.162 (bi) B/MD.02

J3.164 GND _J3165 bi) BDO0

* Not used

Central Processor

Daybreak Technical Reference Manual

Table 2.2. Mesa (B) Bus Interface

Pin Signal Signal Description Pin Signal Signal Description

(Connector J1) (Connector J1)

J1.140 B/D.15 } J1.133 B/A23 }

J1.143 B/D.14 } J1.136 B/A22 }

J1.146 B/D.13 } J1.139 B/A21 }

J1.155 B/D.12 } J1.142 B/A20 } B-Bus Address line

J1.138 B/D.11 } J1.145 B/A.19 }

J1.141 B/D.10 } J1.131 B/A.18 }

J1.144 B/D.09 } B-Bus multiplexed J1.134 B/A.1T }

J1.147 B/D.08 } Address/Data line,

J1.154 B/D.07 } bidirectional data J1.105 B/MemRef B-bus Mesa memory reference

J1.156 B/D.06 } J1.087 B/MRD’ B-bus Memory Read

J1.157 B/D.05 } J1.081 BMWT’ B-bus Memory Write

J1.159 B/D.04 } J1.102 B/AOR’ B-bus [/O read

J1.160 B/D.03 } J1.108 B1OW’ B-bus [/O write

J1.162 B/D.02 } J1.099 B/Lock’ B-bus lock request to memory

J1.163 B/D.01 } J1.132 B/ALE’ Address Latch Enable

J1.165 B/D.00 } J1.111 B/Rdy Ready

Table 2.3. 80186 (A) Bus Interface

Pin Signal Signal Description Pin Signal Signal Description

(Connector J1) (Connector J1)

J1.065 A/MA23 } J1.088 A/RawCLK 16 MHz clock

J1.066 A/MA22 } J1.029 A/CLK 8 MHz clock (not used)

J1.068 AMAZ21 } A-bus J1.161 A/Reset’ System reset

J1.069 AMA20 } Mapped Address J1.109 A/Reset MPB’

J1.071 A/MA.19 } J1.103 A/Halt’

J1.072 A/MA18 } J1.041 A/SO’ A-bus status line

J1.074 AMA.1T } J1.038 A/SY’ A-bus status line

J1.075 A/A.16B } J1.035 A/S2’ A-bus status line

J1.017 A/ALE’ Address Latch Enable
J1.005 A/DT/R’ A Bus Data

Transmit/Receive

J1.036 A/A23)

J1.039 A/A 22 } J1.008 A/DEN’ Data Enable

J1.042 A/A21 } A-bus J1.020 A/IOPMemWr” Memory Write

J1.045 A/A20 '} Addressline J1.054 AIOW 10 Write

J1.034 A/A19 } J1.056 A/IOPMemRd” Memory Read

J1.037 A/A18 } J1.048 A/IOR’ I0 Read

J1.040 A/A17 } J1.044 A/BHE’ Byte High Enable

J1.043 A/A.16 } J1.097 A/MPIntIOP Mesa processor interrupts
[OP, A-bus—Mesa

J1.006 A/AD.15 } J1.094 A/1OPIntMP’ IOP interrupts Mesa,

J1.009 A/AD.14 '} Multiplexed Mesa«A-bus

J.1012 A/AD.13 } Address/Data J1.046 AGCS Upper Chip Select

J1.015 A/AD.12 } line, A-bus

J1.018 A/AD.11 } Address line,

J1.021 A/AD.10 } Dbidirectional data

J1.024 A/AD.09 }

J1.027 A/AD.08 }

J1.004 A/AD.OT }

J1.007 A/AD.06 }

41.010 A/AD.05 }

J1.013 A/AD.04 }

J1.016 A/AD.03 }

J1.019 A/AD.02 }

J1.022 A/AD.O1 i

J1.025 A/AD.00

2-6

Central Processor

Dayoreak lecnnical Reterence Manual

2.1.3 Power

Power consumption estimates for the Mesa Processor Board are:

Typical 8.187TA (40.94W)
max. 12.318 A. (61.59 W)
Average =

Typical + Max
2

10.253 A (51.26 W)
Table 2.4 lists power interface connections.

Note: For detailed dc power distribution, please see Section 1.3.

Table 2.4. Power Interface _

RAWSv J1.030 GND J1.002 GND J1.092
J1.090 J1.011 J1.093
J1.112 J1.026 J1.121
J1.113 J1.028 J1.122
J1.114 J1.03t J1.123
J1.115 J1.032 J1.124
J1.116 J1.033 J1.125
J1.117 J1.047 J1.126
J1.118 J1.061 J1.127
J1.119 J1.062 J1.128
J1.120 J1.063 J1.129
J1.077 J1.137
J1.083 J1.151
J1.085 J1.152
J1.089 J1.153
J1.091 J1.158
J1.164
2.14 Clock Generation

Figure 2.3 illustrates the relationship of the generated clocks to the
system clock.

| 22.5 nsec l §2.5nsec I 2‘25 nsec I 62.5 nsecl 62.5 nsec_I 62.5 nsecl

RAWCLK | .

2XCLK’ j« AN N N N N N N
2XCLK
CLKEnb

CLK

AN N A N
CLKA’,CLKB’,CLKC’
125 nsec 125 nsec 125 nsec

.
.

" 5

< >l

Figure 2.3. Internally generated clocks

Central Processor 2.7

Daybreak Technical Reference Manual

2.2

Microinstructions

2.2.1

Hardware

Dove microcode implements Mesa bytecodes, as defined by the Mesa
Processor Principles of Operation. The microcode does not control [/O
devices, which are controlled by the IOP, an Intel 80186
Microprocessor.

The microcode resides in RAM control store. The Mesa processor
interprets control store through one of two devices: a microinstruction
decoder gate array chip (MDC), and a microinstruction register (MIR).
Control store is written by the IOP; the IOP also reads control store,
but only the next instruction and only 8 bits at a time. During booting
or debugging, the IOP can load microcode into control store, initialize
the microcode program counter, and start and stop Mesa processor
execution.

Microcode source files consist of lists of microinstructions, assembler
macros, and comments. Microinstructions consist of a list of one or
more phrases. (Refer to the examples at the end of this subsection.)

In this and subsequent sections discussing microinstructions, the
following symbols are used:

~ logical complement
« assignment
,» (double comma) concatenation.

2.2.2

Microinstruction hardware is described in section 2.3 titled “Control
Architecture.”

Theory of Operations

2-8

Up to 8K microinstructions can be written into (or read from) the
control store RAM by the IOP.

Each microinstruction is decoded and executed in 125 nanoseconds, or
one cycle. Microinstructions are not pipelined over several cycles,
except that while one microinstruction is being executed, its successor
is being read from control store.

Cycles are enumerated in c1, ¢2, and ¢3 order, and then cl again. The
sequence is never interrupted or altered. Consequently, both targets
of a two-way branch must be specified with the same cycle number.
(Strictly speaking, this is necessary only if the target
microinstructions contain cycle-dependent operations.)

Three successful cycles, cl, ¢2, and ¢3, are grouped into one click. Five
consecutive clicks (numbered 0..4) are grouped into a round. Each
click of a round is permanently allocated to one or more of the /O
controllers. If an I/O controller does not request the service of its
corresponding task microcode, the emulator microcode task runs
during that click instead.

Microinstruction alignment, so that microinstructions execute in
successful cycles, is, therefore, a necessary outcome of the fixed-task
click structure. Moreover, when one desires code which is speed

Central Processor

Daybreak Technical Reference Manual

optimized, this structure requires the elimination of three
microinstructions instead of one.

Look-ahead decoding of microinstructions is done in the MDC for the
function fields fS, fX, fY, and fZ. The raw MIR stores the entire
microinstruction except the Immediate Next Instruction Address
(pINTIA) field and the fS field.

The pINIA field, together with the branching logic, generates the
Next Instruction Address inputs (pNIA) to the Next Instruction
Address register.

2.2.3 Programmer Interface

2.2.3.1
Microinstruction
Format

Central Processor

Microinstructions are executed from a 4K by 48-bit, writable control
store. Each 48-bit microinstruction contains the 12-bit address of the
next instruction. Throughout this section, the subsections titled
“Programmer Interface” are described in terms of microinstructions.
Microinstruction examples in subsection 2.2.3.2 illustrate how certain
elementary functions are accomplished.

Refer to Daybreak Microcode Reference Manual for detailed
microcode instructions.

Frequently applied operations are encoded in the smallest number of
bits, and most of the important Mesa Emulator operations execute in
one click.

The three major parts of a 48-bit microinstruction are: 1) the 2901
control bits (bits 0 through 15); miscellaneous function bits (bits 16-
35); and the ‘goto’ address field (bits 36-47).

2901 control bits occupy the first word. They control the R register
ports A and B, and specify ALU source address, function, and
destination address.

Miscellaneous function fields control carry input, enable the stack and
U registers, specify a memory operation, and specify functions (fX, fY,
and fZ).

The fS field controls the decoding of the fY and fZ function fields:

Depending on f30-1, fY field can

e specify a miscellaneous function (fYNorm)

e name a branch or multi-way dispatch (DispBr)
e name an [/O register to be loaded (I00ut)

e equal the high nibble of an 8-bit constant (Byte)

Depending on f33-4, fZ field can

e specify a miscellaneous function (fZNorm)

e equal the low half of a U register address (Uaddr)

e name an I/O register to be read (I0XIn)

e equal a 4-bit constant or the low half of an 8-bit constant (Nibble)

The ‘Goto’ address, INIA, occupies 12 bits and specifies a control store
address unless the previous microinstruction specifies condition bits.
Condition bits are ORed into INIA, resulting in a branch or dispatch.
Thus, every microinstruction is a potential jump instruction.

Daybreak Technical Reference Manual

Figure 2.4 illustrates the microinstruction format and describes the

* PCall when NIA7 = 0;
| PRet when NIA7 = 1

M o], i i o, o i i el e o o it o Ty

fields and subfields.
00 04 08 11 14 16 20 24 28 32 36 47
rA rB aS aF| aD | eP,Cin, fS (2.4 Y fZ INIA
enU,
mem
| Field Description i
ItA 2901 A reg addr, U addr [0-3] !
'rB 2901 B regaddr, RH addr)
1aS 2901 ALU source operand pair !
taF 2901 ALU function [
taD 2901 ALU desination/shift control !
| eP——Evenrparity 1
| Cin 2901 Carry in, shift ends, write U(ifenU = 1) ;
I mem MAR«(if c1), MDR«(if ¢2), «~MD (if c3) 1 2901 Control Bits
\ fS Function field selector :
'fX Xfunction = == em e em e e e e o - -
1 fY Y function ja8 RS qjaE E {§sh,aD rfrB] Qe Y bus«+ |
'fZ Zfunction | i " 0 no write F F i
1 INIA Nextinstruction address 0 AQ 0 R+S+Cin 1 no write nowrite F
ittt 1, A W1 s-r-ciw W2 F nowrite A |
2 o0Q N2 o0Q i3 F no write F |
13 0B |3 0B "} ;‘g vz : i
4 0A 4 OA Ne or v
5 DA 5 DA .
|6 D.Q "6 D.Q n 2F nowrite F |
l7 po W7 ppo i !
e o oo el o e A e e e e e e e e e -]
Function Field Selector and Function Fields
1£8[0-1] fY= f18023] fZ= SU addr{0-7] i
i 0 DispBr i 0 fZNorm 0,,stackP |
1 fYNorm 1 Nibble* 0,,stackP
I2 ioout Il 2 Uaddr{4-7] rA,fZIrA, Y[12-15]**iffZ = AltUaddr** |
13 Byte* "3 I0XIn rA,fZ1rA, Y(12-15]**if fZ = AltUaddr** |
I X[0-11]«0. . X[0-11]«0, **As executed by a previous pinstruction I
LX[8-15]~—fY,fZ U x(12.151z |
- - - -—---—-——_--———---——J
:-ﬁ fXNorm |:-f1 fYNorm DispBr I00ut |:-__ fZNor 10XIn I
0 pCall/Ret0* 0 CIrMPIntlOP NegBr DebA« 0
I1 peallRet1* Il] SetMPIntiOP ZeroBr ExCtri— 11 IBPtre1 I
12 pCall/Ret2* 112 CirintErr NZeroBr 12 IBPtr«<0 |
| I (ClrIntTrap) " |
3 pCall/Ret3* 3 IBDisp MesalntBr 3 Cinepcl6
l4 pCall/Retd* N4 MesalntRq PgCarryBr Iy |
|5 pCal/Ret5* f15 stackP« CarryBr 15 pop(popZ) |
| 6 pCall/Ret6* I 6 IB« XRefBr] 6 push(pushZ) «ExtStat |
7 pCall/Ret7* 7 cycle(cycleY) NibCarryBr 7 AltUaddr [0«
| 8 Noop H 8 Noop XDisp I 8 Noop «DebB |
19 RH«~ 19 Map—or YDisp K] «~IntStat |
| Tl (MapRefY) i i
A shift (shiftX) I A MAPA« XC2npcDisp I A CIrLOCK «—ErrnIBnStkp (Misc) 0
1B cycle (cycleX) IB push(pushY) XWtOKDisp IB SetlOCK «RH
]C Cinepcl6 lic 10+ XwdDisp [0« IIC LRoto «~ibNA |
| D l\gdap;;g(|0 Bank« XHDisp o LRot12 «~ib |
(Map)
TE pop (popX) g cuie XLDisp e LRo «ribLow |
|F push(pushX) IIF SetlE PgDrOvDisp IlF LRot4 «—ibHIgh |
|
|
d

Figure 2.4. Microinstruction format and subfield formats

Central Processor

Daybreak Technical Reference Manual

2.2.3.2
Microinstruction
Examples

Central Processor

The Central Processor hardware should be viewed in light of its
corresponding microcode. The following four examples of microcode
illustrate how and in what time frame certain elementary functions
are accomplished. See the Daybreak Microcode Reference Manual for
a description of the microcode format.

(1) The Mesa Emulator Load Local 1 (LL1) macroinstruction indexes
the local frame pointer and then pushes the addressed word from
memory onto the Stack. If the indexing operation does not cross a
page boundary, then the microinstruction executes in one click. If a
page cross occurs, then the microinstruction executes in three clicks.
If the Map flags must be updated (RMapFix), then another two clicks
are required.

@LL1: MAR «Q «(rhL,L+1),L1«L1 PopDec, push, cl,opcode(l'b};

LLn:STK « TOS, PC « PC +PC16, IBDisp, L2«<L2.LL, BRANCH(LLa,LLb,1], ¢2;
LLa:TOS « MD, push, fZpop, DISPNI{OpTable},c3;

LLb:Rx «UvL, ¢3;

LSMap: Noop, cl;
Q «~Q - Rx, L2Disp, c2;

Q «Q and OFF, RET{LSRtn], c3;

LLMap: Map «Q «(rhMDS, Rx+Q}, cl, at(3,10,LSRtn];
Noop, <¢2;
Rx «rhRx « MD, XRefBr, ¢3;

MAR «([rhRx,Q + 0], L0<L0.R, BRANCH[RMUD,$], cl;
[BDisp, GOTO[LLaj, c¢2;
RMUD: CALL[RMapFix}, c2;

(2) The Mesa Emulator Read 1 (R1) macroinstruction indexes the
virtual address on the top of stack and then pushes the addressed word
from memory onto the stack. The microinstruction executes in two
clicks. If the page has been read for the first time, then four clicks are
required; that is, the Map flags must be updated.

@R1: Map «Q «(rhMDS, TOS + 1], L1+L1.Dec, pop, cl, opcode[101b];
push, PC «PC + PC16,¢2;
Rx «rhRx « MD, XRefBr, ¢3;

MAR «([rhRx,Q + 0], LO<L0.R, BRANCH[RMUD,$], cl;
[BDisp, GOTO{LLal, ¢2;

Daybreak Technical Reference Manual

(3) The Mesa Emulator Jump 2 (J2) macroinstruction increments the
program counter by 2 bytecodes and then refills the instruction buffer.
The microinstruction executes in two clicks. If the jump crosses a page
boundary, then five clicks are required . ‘

@J2: MAR «PC «[rhPC,PC+1],push, c¢l,0pcode(201b};
STK «TOS, L2 « L2.Pop0IncrX, Xbus«0, XC2npcDisp, DISP2[jnPNoCross], ¢2;

jnPNoCross: B «MD, pop, DISP4[JPtriPop0, 2], ¢3,at{0,4,jnPNoCross];
jnP1Cross: Q «OFF + 1,L0 « L0.JRemap, CANCELBR([UpdatePC, 0F]), ¢3,
at{2,4,jnPNoCross];

JPtr1Pop0: MAR «(rhPC, PC + 1}, IBPtr«1, push, GOTO(Jgo], cl,
at{2,10,JPtr1Pop0}; y

JPtrO0Pop0: MAR «(rhPC, PC + 1], IBPtr«0, push, GOTO({Jgo}, cl,
at(3,10,JPtr1Pop0};

Jgo: TOS « STK, AlwaysiBDisp, L0 « LO.NERefill.Set, DISP2(NoRCross], ¢2;

(4) The Mesa Emulator instruction buffer refill code executes in one
click if the buffer was not empty. If the buffer was empty, then two
clicks are required. If the refill occurs across a page boundary, then
four to six clicks are required

{Buffer Empty Refill. Control goes from NoRCross to RefilINE since RefillE + 1 does not
contain an IBDisp.}
RefillE: MAR «{rhPC, PC], PC «PC-1,L0 « L0.ERefill, cl, at[400];

PC «PC +1, DISP2[NoRCross], c2;

{Buffer Not Empty Refill.} .
OpTable: {"Noop" location of Instruction Dispatch table}
RefilINE:MAR « [rhPC, PC + 1},cl, at[500];

AlwaysIBDisp, L0 « L0.NERefill.Set, DISP2[NoRCross], ¢2;

NoRCross: IB « MD, uPCCross « 0, DISPNI[OpTable], ¢3, at[0,4,NoRCross];
RCross: Q «OFF + 1, GOTO(UpdatePC], ¢3, at[2,4, NoRCross];

23

Microinstruction Control Architecture

2-12

Microinstructions are loaded into control store from the IOP via data
transfer on the 80186 bus. During the execution of a program,
microinstructions are read from control store RAM and stored in the
Raw Microinstruction register, except for the pINIA field and the pfS
field.

The pINIA field, together with the branching logic, generates the
pNIA inputs to the Next Instruction Address register.

The encoded pfS, pfX, pfY, and pfZ fields are fed to the MDC, decoded
into instruction commands, and stored in corresponding command
registers in the MDC. '

Because the Mesa processor is split into lower and upper bytes with no
propagated carry, the paS and paF fields are modified to provide
separate aShL and aFL for the low byte and aShH and aFH for the
high byte.

Figure 2.5 illustrates microinstruction control architecture.

Central Processor

Daybreak Technical Reference Manual

Bank(’,
Bank}-3
Y.12:15 2t _3lBank | Loty
rA.0-3
gxlNiA.oo-oa oo 4k x 48 R | sos
,1, Interrupt §7 = N A aShL.0-2
| pN1AGO-03 | 1 F.0,aFL.12
IBPtr.1 I |, Ntacoan | Control) W oor
7 > Store [» [~Cin, £U. Mom
A A)
pINIA.04-07 s X.0-3
1B.0-3 e M | wos
| DNIA04-07 ¥ 48 I .03
C.0-3 4 R
ya ey R
1B.4-7 oo CLK' N
r - S e
I 1 4kx48 | o b(/)[
o | D - aShH.0-2
P | Control | I 2fH1Z,
A/AD.11-00 [Store l‘/"" F CLK’ >
V o = - - Y
! M I
[| i Gresseeasseannanay
4
A A |] . MDC .
AALE N HUSOSTL] | ‘o
-] | VO — | « E e
pINIA.00-11 12 | c flip- | L [Conmat
- A—1 | O flops | = | Signais
|l D e
< /, 4 . E > .
A/AD.15-08 , 8 ‘ .
S Sensoevssfeassvsocan
L8
A
A/AD.07-00 , 8 = l
7
-€ < Transcetvers
pINTAQS-11
F.00 | 1
F=0 >
EE0 —¥
Interrupt | 2-way L4
8x4 g?&w—> braach 7 f /
»{ Link X.08 > .
Register NiCary o1 A
, : 125ns
_Xmxi0 3 CLK
- — | T 1 T
X.08, X.15 -
—PageCross. OVR] branch
X..12:15 -
_‘132_12_______; 16-way
X.12,X.13,C2.PC16___}
X89N10, 0 _] branch

Central Processor

Figure 2.5. Microinstruction control architecture

Daybreak Technical Reference Manual

2.3.1 Hardware

2.3.1.1
Control Store

2.3.1.2
Control Store
Interface

Control hardware described below consists of the control store, the
control store interface, the Microinstruction Decoder Chip (MDC), and
the Microlnstruction Register (MIR). Other control hardware,
consisting of the interface to the IOP, miscellaneous support logic, the
trap machine, and MInt and Link registers, is described elsewhere.

Two banks, each consisting of twelve 4K x 4 static RAM chips with a
55 ns access time, make up the 4K x 48 writable control store,
expandable to 8K x 48. Figure 2.6 illustrates the control store pins
and signals. For signal functions, refer to Figure 2.4, illustrating
microinstruction format.

NIA.00 16 § All /04 §12 (CSnny* (**)

NIA.O1 17 §A10 /03 §13 (CSnn) (**)

NIA.02 18 J A9 /02 §14 (CSnan) (**)

NIA.03 19 J A8 /01 J15 (CSnn) (**)

NIA.04 1 §A7

NIA.05 2 JA6

NIA.06 3 JAS WE’ §11 CntStWEnn™*

NIA.07 4 JA4 cs 9 Bank0’ (or

NIA.08 5 | A3 Bankl”)

NIA.09 6 A2

NALD] § mhiren = Couol i

NIA.11 8 JA0 example, 12 is CS00, 13 is CSO1,
14is CS02, 15 is CS03, etc.

** Control Store Assignments

T) IF THEN

CSis o4 /03 102 101 WE

is is is is is

0-3 prA.0 prAll prA2 prA3 O

4-7 prB.0 prB.1 prB.2 prB3 O

8-11 paS.0 paS.1 psS.2 paF.0 U’

As above (NIA.00:11) 12-15 paF.l paF.2 paDO paD.l U
for all > 16-19 || pEP pCin pEnU pMem 2’

20-23 pfS.0 pfS.1 pfS2 pfS3 2’
24-27 pfX.0 pfX.1 pfX.2 pfX3 3
28-31 pfY.0 pfY.1 pfY.2 pfY3 3

32-35 pfZ.0 pfZ.1 pfZ.2 pfZ3 4
36-39 || pINIAOO 01 02 .03 4
40-43 || p.INIAO4 05 06 07 5
-/ 4447 || p.INIAOS 09 100 11" 5

Figure 2.6. Writable control store pins and signals

The control store interface consists of a bank register, address
registers, and supporting logic. Table 2.5 summarizes control store
interface signals.

Central Processor

Daybreak lechnical fHeterence Manual

Table 2.5. Control Store Interface Signals

Interface to: Signal Function
Control Store 1. CntStWE0/1” 1. Control store Write Enable 0 (byte 0) and 1 (byte 1).
2. Bank07/1/2/3 2. Control store RAM bank select 0,1, 2, 3.
3.NIA.00-11 3. Next Instruction Address 00-11 - Control store RAM address.
Control store 00-03 | 4.prA.0-3 4. Pipelined microinstruction rA field.
04-07 |5.prB.0-3 5. Pipelined microinstruction rB field.
14-15 |6.paD.0-1 6. Pipelined microinstruction aD field.
11-13 | 7.paF.0-2 7. Pipelined microinstruction aF field.
08-10 |{8.paS.0-2 8. Pipelined microinstruction a8 field.
9. CntStWE2/3’ 9. Control store Write Enable2 (byte 2) and 3 (byte 3).
17 10. pCin 10. Pipelined microinstruction CarrylIn bit.
18 11, pEnU 11. Pipelined microinstruction Enable U register bit.
16 12. pEP 12. Pipelined microinstruction Enable Parity bit (not used).
19 13. pMem 13. Pipelined microinstruction Memory reference bit
20-23 | 14.pfS.0-3 14. Pipelined microinstruction fS field.
24-27 | 15. pfX0-3 15. Pipelined microinstruction fX field.
28-31 |16.pfY.0-3 16. Pipelined microinstruction fY field.
17. CntStWE4'/5’ 17. Control store Write Enable 4 (byte 4)and 5 (byte 5).
36-43 | 18. pINIA.00-07 18. Pipelined Immediate Next Instruction address 00-07.
44-47 | 19.pINIA.08-11’ 19. Pipelined Immediate Next Instruction address 08-11.
32-35 [20.pfZ.0-3 20. Pipelined microinstruction fZ field.
Mesa processor control | RunModeB’ Mesa processor Run mode
line
Next Address Register | NIA.00:11 Next Instruction Address 00:11.
80186 bus interface 1. A/AD.00:15 1. Address/Data bus 00:15.
2. A/BHE’ 2. Byte High Enable.
3. A/IOR’ 3. I/0 Read.
4. A/DEN’ 4. Data Enable.
5. A/DTR’ 5. Data Transmit/Receive (direction).
6. A/IOW’ 6. /O write.
7.A/S0-2 7. A bus Status bits 0-2
8. A/ALE 8. Address Latch Enable.
Internal logic signals | 1. A/A.11B:15B 1. Buffered A bus address 11-15.
2. A/DENPB’ 2. Buffered A bus Data Enable
3. A/DirB 3. Buffered A bus Direction control.
4. A/IOWB’ 4. Buffered A bus /O write.
5. CntStDen0’-5’ 5. Control store Data Enable 0’- 5"
6. CSMP’ 6. Control store or Mesa processor select.
7.DB.0-7 7. Transceiver-buffered A bus data (byte only).
8. I0PDisable 8. Disable signal from debugger.
(IOPDisable”
9. LdBankReg’ 9. Load Bank Register (A bus).
10. NIAEn’ 10. Next Instruction Address Enable (A bus side).
11. SelectMP’ 11. Select Mesa Processor (E000-E777).
12. EnNIA 12. Next Instruction Addresss enable (Mesa processsor side).
13. WriteBank 13. Write Bank register (Mesa processor).

Centl_'al Processor

Daybreak Technical Reference Manual

2.3.1.3

Microinstruction Decoder
Microinstructions are decoded via an 84-pin gate array chip (MDC).
Figure 2.7 illustrates the signals for the microinstruction decoder gate
array chip. Table 2.6 describes the signals.

Chip (MDC)

XLow«Const’ 1

(INPUD z_

(INPUT) i_

(INPUD 3__

(INPUT) ;__

(INPUD ﬁ_

(INPUT) z_
pfS.2 (INPUT) 8
pfS.3 (INPUT) 9
VCC 10
GND 11

(INPUT) 1 z_
RawCLKB (INPUT) 13
CLKEnb __ (INPUT) 14

(INPUT) 1 §_
_pfZ.0 (INPUT) 16
_pfZ.1 (INPUT) 17
pfZ.2 (INPUT) 18
pfZ.3 (INPUT) 19

(INPUT) 29_
ReadIB (OUTPUTD) 21
ReadRH’ (OUTPUT) 22
ReadMisc’ (QUTPUTD 23
RdIntStat’ (OUTPUT) 24
ReadDebB” (OUTPUT) 25
AltUAddr (QUTPUT) 26
PopZ (OUTPUT) 27
Cln«PC16Z (OUTPUT) 28
IBPtr«~Word (OUTPUT) 29
vCC 30
IBPtr—Byte (OUTPUT) 31

GND 32
GND 33
Push (OUTPUT) 34
IORef (OUTPUT) 35
IntEnb (OUTPUT) 36
MPIntIOP* (OUTPUT) 37
MapRef (OUTPUT) 38
Sh (OUTPUT) 39
Cln«~PC16X’ (OUTPUT) 40
PopX (OUTPUTD). 41
Shift’ (OUTPUT) 42

2-16

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20

P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P49
P41
P42

P84
P83
P82
P81
P80
P79
P78
P77
P76
P75
P74
P73
P72
P71
P70
P69
P68
P67
P66
P65
P64
P63
P62
P61
P60
P59
P58
P57
P56
P55
P54
P53
P52
P51
P50
P49
P48
P47
P46
P45
P44
P43

84 (OUTPUT) Xbus«Rot’
83 (OUTPUT) XLow«IB’
82 (OUTPUT) XHigh«0’
81 (OUTPUT) RdExtStat’
80 (OUTPUT IBHigh’
79 (OUTPUT Lock’
78 (OUTPUT) 1BitBrEn’
- :
76 (OUTPUD) 2BitBrEn’
75 (QUTPUT) 4BitBrEn’
T4 VCC
73 GND
72 (OUTPUT) XLow«Byte’
71 (OUTPUT) WriteBank
70 (OUTPUT) WriteMapA
69 (OUTPUT) WritelB
68 (OUTPUD WriteStkP
67 (OUTPUT) Setint
66 (OUTPUT) IBDisp
65 (OUTPUT) ClrIntTrap’
ﬁ- WrtExtCtrl
63 WriteDebA’
ﬂ. (INPUT)
_6_1. (INPUT)
g' (INPUT)
_5_9_- (INPUD
ﬁ. (INPUT)
57 (INPUT) pfY.0
56 (INPUT) pfY.l
55 (INPUT) pfY.2
54 (INPUT) pfY.3
53 VCC
52 (INPUT) pfS.1
51 (INPUT) pfS.0
50 (INPUT)
49 (INPUT) pfX.3
48 (INPUT) pfX.2
47 (INPUT) pfX.1
46 (INPUT) pfX.0
45 (INPUT) Test09
44 (INPUT)
43 (OUTPUT) WriteRH

Figure 2.7. MDC pins and signals

Central Processor

Daybreak Technical Reference Manual

Table 2.6. MDC Signal Description

Signal Function
1/2/4BitBrEn’ | 1 bit, 2 bit, 4 bit branch enable.
AltUAddr Select U address source from lower Y bus nibble.
CLKEnb Processor clock enable (8 MHz).
Cln«PC16Z° | PC16becomes the carry input of the 2901 (ALU).
Cln«PC16X’
ClrIntTrap’ Clear interrupt trap.
IBDisp Instruction buffer dispatch.
IBHigh’ Puts the high 4 bits of the IBFront onto X (12-15). High order X bus bits are zeroed.
IBPtr«Byte Instruction buffer pointer gets byte.
IBPtr«~Word | Instruction buffer pointer gets word.
IntEnb Enable interrupt.
[ORef [nput/Qutput reference.
Lock’ Memory lock by Mesa.
MapRef Memory map reference.
MPIntIOP’ Mesa processor interrupts IOP.
pfS.0-3 Pipelined microinstruction fS field.
pfX.0-3 Pipelined microinstruction fX field.
pfY.0-3 Pipelined microinstruction fY field.
pfZ.0-3 Pipelined microinstruction fZ field.
PopZ/X Pop from the stack.
Push Push to the stack.
RawCLKB 16 MHz system clock.
RdJExtStat’ Read External Status.
RdIntStat’ Read Interrupt Status.
ReadIB Read Instruction Buffer.
ReadMisc’ Read miscellaneous status information through the X bus.
ReadRH’ Read RH registers through X bus.
Setint Set interrupt.
Sh ALU destination control with shift up and down enable.
Shift’ Single, double, left, right shift enable.
Test09 Testability input, sets all outputs of MDC high.

- more -

Central Processor

-17

Daybreak Technical Reference Manual

Table 2.6. MDC Signal Description (continued)

Signal Function

WriteBank Write Bank selection data from Y-bus (Y12-15) to the bank register.

WriteDebA’ Write to the debugger mailbox from the X bus.

WritelB Write to instruction buffer.

WriteRH Write RH register enable.

WriteStkP Write to the stack pointer.

Xbus«Rot’ X bus gets Rotation.

XHigh«(0’ X bus high byte gets zero.

XLow«Byte’ | X buslow byte gets constant data such that X.08-11 = fY0-3.

XLow«Const’] X bus low byte gets constant, byte or nibble constant.

XLow«I[B’ X bus low byte gets ibFront. Either the full byte or nibble can be read into the X bus, such that

all other X bits are set to zero. :
2.3.1.4
Microlnstruction)
Register (MIR) The Microlnstruction Register (MIR) consists of five ALS374 chips.
The MIR stores microinstructions, except for fS and pINIA fields.
Table 2.7 summarizes MIR interfaces.
Table 2.7. Raw MIR Interfaces
Interface to: Signal(s) Function
ALU aD.0/1;aF.0; aFH.1/2; aFL.1/2; See Figure 2.4 for microinstruction field definitions.
aShH.0-2; aShL.0-2; rA.0-3; rB.0-3

ALU Carry & Shift | aD.0/1; aFL.1; Cln See Figure 2.4 for microinstruction field definitions.
Branch and Link £X.0-3; fY.1-3; fZ.0-1 See Figure 2.4 for microinstruction field definitions.
registers

Constants register

fY.0:3;Z.0:3

See Figure 2.4 for microinstruction field definitions.

Control store Bank0 [0-15}: paD.0/1; paF.0:2; See Figure 2.4 for microinstruction field definitions.
paS.0:2; pMem; prA.0-3;.prB.0-3
Bank0[16-31}: pCln;.pEnU; pEP;
pfX.0-3; pfY.0-3; pfZ.0-3; pMem
RH register rB.0-3 See Figure 2.4 for microinstruction field definitions
Rotator f2.2-3 See Figure 2.4 for microinstruction field definitions
U register EnU; Cin See Figure 2.4 for microinstruction field definitions
IB state control Mem Memory bit. If set and the instruction is executing in c1,
then MAR is loaded from YH, Y. If set in ¢2, then
memory write data register is loaded from the Y bus and
the memory location is written. If set in ¢3, then
returning memory data is placed onto the X bus.
MBC Cycle3 Mesa processor cycle 3.
CLKPB’ 8 MHz processor clock.
2-18 Central Processor

LAy MLOAn iUt al ALt Gall e rddiludd

2.3.2 Theory of Operations: Mode Control

2.3.2.1
Boot Mode

2.3.2.2
Run Mode

2.3.2.3
Stop Mode

Central Processor

The IOP interfaces with the CP both as a standard I/O controller and
as a boot loader/debugger. This subsection discusses the loading of
control store (Boot mode), the initial trapping of microprograms (Run
mode), and the reading of Next Instruction (Stop mode).

Either of the two reset signals, A/Reset’ or A/ResetMPB’, initializes
the CP to a quiescent condition. The first A/Halt’ signal puts the CP
into Boot mode.

In Boot mode, the IOP loads control store by writing to its /O space
8000H to DFFFH, 24 Kbytes (or 4K x 48 bits; that is, one bank). The
least six decoded numbers (000 - 101) of A bus address bits 14, 13, and
12, together with the A bus status bits A/S0-2 and Data Enable
(A/DEN), generate six enable signals (En0’ - 5’) to enable data to the
control store RAM. The corresponding six decoded write enables
(CntStWEQ’ - 5°) are applied to the appropriate control store RAM to
write in the data.

Data is enabled a byte at a time, with-the selection of high or low byte
controlled by the signal A/BHE’ (A bus Byte High Enable) and
A/A.00B (A bus Address bit 00 buffered), respectively. Direction of
data flow is controlled by A/DT/R’ (A bus Data Transmit/Receive
NOT), a high A/DT/R’ implying data transmitted from the IOP to the
control store and vice versa. Since control store is 48 bits wide and
data is enabled only 8 bits at a time, a software algorithm must be
exercised to load the correct byte into the correct location.

When the IOP finishes loading control store, it deactivates the A/Halt’
signal to put the CP into Run mode. As CP enters Run mode, the first
order of business is to generate an InitTrap (Initialization Trap)
signal, which in turn causes a trap to location 0.

In Run mode, the IOP is isolated from the Mesa processsor except for
the two reset signals (A/Reset’ and A/ResetMPB’), two mutual
interrupt lines (A/IOPIntMP’ and A/MPIntIOP’), and the A/Halt’

signal.

* An active A/Halt’ during the Run mode puts the processor in the Stop

mode.

In the Stop mode, the 8 MHz processor clock (CLK, CLKA, CLKB, and
CLKQ) is stopped, putting the Mesa processor in a hold state. At this
time, the IOP can activate the A/IOPRANIA (IOP Read Next
Instruction) signal, which enables the Next Instruction Address to the
control store RAM.

IOP then issues an A/IOR’ (A bus I/O Read) to read the “Next
Instruction.” This Next Instruction being read is addressed by the
Next Instruction Address register (not alterable by the IOP).
However, the byte to be read is selectable by the IOP and is controlled

Daybreak Lechnical iieterence vianuai

2.3.2.4
Mode Control
Timing

by the A bus address bits 14, 13, and 12. The signal A/IOPRdINIA
remains active for the entire duration of the IOP Read Next
Instruction process.

It must be pointed out that the IOP can only halt the Mesa processor
randomly and that only the Next Instruction, not the Next
Instruction Address, can be read back a byte at a time. The actual
Next Instruction Address has to be arrived at through certain
deductions from the information read back.

The IOP can restore the Mesa processor to its Run mode simply by
dropping the A/Halt signal.

Figure 2.8 illustrates mode control timing.

xee (UU U U UUUU U UV UV UUUUUUW

Halt l

SEEPENPIY TP, Np—

HaltSyn1 l

1

HaltSyn2 |

HaltSyn3

SUCNRSGNRIGIG B RPN [Py Qpseage (G ——

ket SR e A R ks St Rttt

U S STpi ISR S RV SRR S ——

e D T il et S RS BT PESE B

AR ey e SEEREEIERIIS s S SEESIUSIAREI) Ity PR mpa Jape

RunMode
RunDel]
InitTrap I I
: .
InitFF ! [
[}
BootMode InitFF Reset]
StopMode [nitFF Set
Figure 2.8. Mode (boot/run/stop) control timing
23.3 Programmer Interface
This section briefly discusses the algorithms that control the
execution of microinstructions. For each subsection, refer also to the
Daybreak Microcode Reference Manual. Refer also to Figure 2.4.
Figure 2.9 illustrates the location of the writable control store in the
I/O address space map.
2-20 Central Processor

ISAY WLCARN & Ly aiag L ALCACL CHI L aukii ek

64K - 1
62K
62K -1
60K
60K -1
58K
58K -1
56K
56K - 1

48K
48K - 1

40K
40K -1

32K
32K-1

0K

2.3.3.1

FFFFH

80186 Reserved 2K
I F800 H
Color Display 2K FTFFH
F000 H
Mono Display 2K EFFF H
E800 H
Mesa Processor 2K E7FF H
E000 H
Writable Control Store 8K DFFF H
CO000H
BFFF H
Writable Control Store 8K
AOOOH
9FFF H
Writable Control Store 8K
8000 H
7FFF H
0000 H

Figure 2.9. /O address space map

Conditional Branching

and Dispatching

Central Processor

Every microinstruction can potentially branch. During each cycle,
condition bits specified by the executing microinstruction are ORed
into the next instruction’s go-to-address field (INIA) being read from
control store. At the end of the cycle, the resulting addresss (NIA)
reads the next microinstruction. If the executing microinstruction
does not specify a branch function, then 0 is ORed into INIA, and a
branch does not occur. When a microinstruction specifies a dispatch
funection, up to 4 bits are ORed into the INIA field, selecting one of up
to 16 target microinstructions.

Thus, all branches and dispatches take two cycles to complete: one
cycle to specify the branch and one cycle to read out the target
microinstruction. The microinstruction bits required to specify a
branch are fS[0-1] = DispBr and the fY field that names the branch or
dispatch.

Table 2.8 lists branches and dispatches.

Daybreak Technical Reference Manual

Table 2.8. Conditional Branching and Dispatching

Mnemonic Source INIA | Remarks
NegBR F[0] 11 sign of ALU result (not necessarily Y{0])
ZeroBr F=0 11 ALU output equal to zero
NZeroBr F=0 11 ALU output not equal to zero
CarryBr Cout(0] 11 ALU carry out
NibCarryBr Cout{12] 11 ALU carry out from low nibble
PgCarryBr Cout[8] 11 ALU carry out from low byte
XRefBr X(11] 11 present & referenced Map bit
MesalntBr Interrupt 11 Emulator interrupt
XwdDisp X[9],,X{10] {10-11] write protect & dirty Map bits
XHDisp X[4],,X[0] {10-11] X (high) bus
XLDisp X(8],,X[15] (10-11] X (low) bus
PgCrOvDisp PgCross,,OVR (10-11] | pageCross & ALU overflow
XDisp X(12-15] [8-11] low nibble of X bus
YDisp Y[12-15] (8-11] low nibble of Y bus
XC2npcDisp X[12-13],,c2,,~pcl6 {8-11] X bus, cycle 2, inverse of pc16
XW + OKDisp 1,1,(X.08 and X.09 and X.10",0f (8-11} 1/0 branches (bp = backplane pin)
X.08 = ref; X.09 = dirty; X.10 = wp’
IBDisp ibFront [4-11] Instruction Buffer
LinDisp Linkn (8-11] Link register (n = 0..3)
Equivalent names: Ether Disp = YIODisp; XDirtyDisp = XLDisp
Both targets of a two-way branch must be specified with the same
cycle number.
The following notation is used to specify branching behavior:
¢ A microinstruction is located in control store at its Instruction
Address, IA.
e The Next Instruction Address, NIA, is the control store
address register.
e The Intermediate Next Instruction Address, INIA, is the 12-
bit goto address present in each microinstruction.
At every cycle, the condition bits specified by fY (DispBr) and the Link
register specified by fX are ORed into INIA, thereby producing the
NIA value used for the next cycle; that is,
NIA[0-11] « INIA[0-11] OR DispBr{0-3] OR Link[0-3]
For dispatches, target instructions for each possible outcome need not
be provided. A particular condition bit is ignored when its
corresponding position in INIA equals 1. This method can also cancel
unwanted, pending branches.
Note that, in some cases, there is more than one way to branch on a
particular bit; note also that a bit on the low half of the X bus can be
branched on. The NZeroBr allows code to be more readily shared.
2.3.3.2

Instruction Buffer
Dispatch

2-22

The instruction buffer dispatch (IBDisp) is a special dispatch, since
more than four bits are ORed into INIA. Consequently, IBDisp can
occur only in cl or c2, and is restricted by convention to ¢2. Refer to
section 2.4.3.7 for a discussion of the instruction buffer.

Central Processor

Daybreak Technical Reference Manual

2.3.3.3
Interrupt Register

2.3.3.4
Link Registers

Central Processor

Assuming that the instruction buffer is full, IBDisp can cause a 256-
way dispatch based on the value of ibFront. NIA[4-7] is set to the high
nibble of ibFront, and the low nibble of ibFront is ORed with INTA(8-
11]. Except for the four IB-Refill trap values, INIA[0-3] is unaffected
by the IBDisp. Therefore, up to twelve 256-way dispatch tables can be
used concurrently.

If the buffer is not full (ibPtr = full) when an IBDisp is executed, or if
an interrupt is pending, then an IB-Refill trap occurs. Refer to section
2.3.3.5.

A special version of IBDisp (AlwaysIBDisp) never traps to [B-Refill,
but dispatches on ibFront even if an interrupt is pending (MInt = 1) or
if the buffer is not full. AlwaysIBDisp is used in the emulator refill
and jump microcode to dispatch on ibFront while the buffer is still
being filled. AlwaysIBDISP is encoded:

fY = IBDisp and fZ = IBPtre1.

If the microinstruction executed before an IBDisp or AlwaysIBDisp
causes an [B-Empty Error trap, or if the microinstruction contains a
MAR« and the 2901 computation results in pageCross = 1, then the
IB dispatch (or possible IB-Refill trap) does not occur and ibPtr
remains unaffected. Since INIA is not modified in this case, control
transfers to the first entry of the macroinstruction dispatch table.
Accordingly, emulator opcode 0 should not be assigned to a
macroinstruction.

The 1-bit Interrupt Register interrupts the contiguous execution of
emulator macroinstructions. When it is set in an antecedent cycle,
[BDisp traps instead of dispatches. Interrrupt can be set from the
following sources:

e From microcode with fY = MesalntRq

e From the IOP (A/IOPIntMP’) or from the AI Interface
(IntExternal’)

oFrom Interval Timerl (TimerInt)

The interrupt register is reset by microcode with fY =ClrIntTrap.
Interrupt can also be enabled or disabled by microcode with fY =SetIE
or fY =CIrIE, respectively.

The central processor has eight 4-bit link registers which can be
loaded from the low four bits of the control store address. Generally,
link registers hold four bits of state information derived directly from
the flow of control. Thus, previously determined state information can
be easily recalled by dispatching on a link register. Moreover,
macroinstructions can share common code at various stages of their
execution, and link registers can be used for subroutine call and
return structures.

The link register addressed by fX is written with the low nibble of
NIAX (which equals NIA. A link register is written when fX is in
[0..7] and NIA[7]= 0; that is,

Link(fX] « NIAX8-11

Daybreak Technical Reference Manual

2.3.3.5
Microcode Traps

IB-Refill Traps

Error Traps

2.

24

A link register is ORed into the low nibble of INIA when fX is in [0..7]
and NIA[7]= 1, causing a potential 16-way dispatch. Since the link
register is designated by an fX function, the fY field is free to specify
other condition bits that can be ORed into INIA8-11.

If a preceding microinstruction does not specify a branch or dispatch
condition, then the link register is loaded with a constant. However, if
the prior instruction contains a branch or dispatch, then the value
loaded depends on the outcome of the branch or dispatch. The low four
bits of the IB dispatch value can be recorded in this way.

The two general classes of microcode traps are:

e IB-Refill - occurs as a result of IBDisp; hence, between
execution of macroinstructions.

e Error -occurs in any cycle and always traps to location 0 in cl.
Error traps have priority over IB-Refill traps and cannot be
disabled.

If an IBDisp is executed and ibPtr # full or MInt = 1, then the
ibFront dispatch does not occur; instead, an [B-Refill trap is caused.
Specifically, ibPtr is unaffected, INIA4-11 is not modified, and NIAO-3
is set to the 4-bit quantity 0,,1,,MInt,,ibPtr1.

Table 2.9 summarizes the interpretation of IB-Refill trap locations.

Table 2.9. IB-Refill Traps

NIA[0-3] | MInt IbPtr
4 0 empty
5 0 not empty (i.e., byte or word)
6 1 Empty or full
7 1 Byte or word

Note: If an IB-Refill trap occurs and MInt = 0, then ibPtr cannot
equal full.

AlwaysIBDisp does not trap to IB-Refill; a pageCross branch caused
by MAR« or an IB-Empty Error trap cancels a potential IB-Refill
trap.

Error traps result when one or more predefined error conditions are
detected in the central processor. All error traps cause the instruction
at microstore location 0 to be executed in ¢l by the emulator or
Kernel, depending on the error type. Error traps cannot be disabled.
Error traps are reset by the ClrintTrap command, which also resets
any pending interrupts.

Table 2.10 lists, in the order of their priority, the error types encoded
by Trap0-1 in the Trap Machine.

Note: The error traps, Trap0-1, are read onto X[8-9] respectively
with the ReadMisc¢’ or RdIntStat command.

Central Processor

Daybreak Technical Reference Manual

Table 2.10. Error Types

Trap0-1(X.08-09) Error Type
0 not used
1 Init trap
2 stackPointer overflow or underflow
3 IB-Empty error

Stack Pointer Overflow

or Underflow

IB-Empty Error

Central Processor

If a pop or push is executed with the values of the stackPointer given
in Table,2.11 then a trap to location 0 in c1 occurs. However, stackP is
still modified.

To improve detection of stack overflow or underflow, multiple pops
and pushes can be specified per microinstruction. For example, fXpop
(the pop in the fX field), fZpop, and push executed together leave the
stackPointer unmodified, yet simulate two pops with respect to stack
underflow detection. fXpop with push checks for stack overflow while
not moving the stackPointer, and, likewise, push and fZpop check for
underflow. Table 2.11 lists the cases.

Table 2.11. Stack Pointer Overflow or Underflow

functions stackP | Trapis if stackP is
pop -1 underflow 0
push +1 overflow 15
fXpop, push 0 underflow 0
push, fZpop 0 overflow 15
fXpop, fZpop -1 underflow Oorl
fXpop, fZpop, push 0 underflow Oorl

If the emulator top-of-stack (TOS) element is kept in an R register and
the rest of the stack is in the U registers, and if it is assumed that TOS
can always be stored away into the stack, then the values given in the
table imply a maximum stack size of 14 words.

If an «ib, «ibNA, «ibLow, or «ibHigh is executed when
ibPtr =empty, then an IB-Empty error trap occurs to location 0 in cl.
If the IB-Empty Error occurs in c1, then an MDR « in the next cycle is
canceled.

In normal operation, the instruction buffer is guaranteed to have
enough (two) operand bytes before a macroinstruction begins
executing. However, when the macroprogram counter points to the
last word of a page, the buffer is intentionally not refilled by the
Emulator refill microcode and the IB-Empty trap can occur, indicating
that control has actually proceeded across a page boundary.

If the IB-Empty error occurs in c1, then control transfers to location 0
in the next emulator ¢1. If the error occurs in ¢2 or ¢3, then the
hardware requires the execution of one additional emulator click
before the trap at location 0. Consequently, an emulator click can
intervene between the occurrence of the IB-Empty error in ¢2 or c3
and the trap code. In particular, if such a click executed an MDR«

Daybreak 'i'echnicai Reference Manual

InitTrap

with an address that was a function of an IB value read in the previous
c2 or ¢3, then a random memory location can be written.

The instruction buffer is not read during c2 or ¢3 of a
macroinstruction's last click. A memory write with an MAR« or
Map« address that is a function of the IB value read in ¢2 or ¢3 must
not immediately follow an «ib, «ibNA, «ibLow, or «ibHigh
function executed in c2 or c3.

Although InitTrap (Initialization Trap) is grouped with IBEmpty
Trap and Stack Pointer Trap and labeled “Error Traps,” it is not an
error. InitTrap is a signal generated by the MBC mode control logic
when it exits the Boot mode and enters the Run mode. The signal is
fed to the Trap Machine to cause a trap to location 0.

Note: The trap machine is a 512-word x 8-bit PROM with the
following signals:

ClrintTrap’ Clears error trap which has just been serviced.

Cyclel Signal from MCB indicaty cycle 1 of MBC state machine.

IBEmptyTrap’ Signifies an IB empty error.

[nitTrap’ Initial trap after booting.

StackTrap Signifies a stak pointer error.

Trap Traps next address to Bank 0 Location 0.

Trap.0’, 1’ Error trap bits enabled onto X bus 08 and 09, respectivcly, by
either a ReadMisc or a RdIntStat command. (see Section
2.3.2.5)

2.4 Registers and Data Paths

2.4.1 Hardware

The subsection titled “Hardware” briefly describes the central
processor registers and their interfaces. The subsection titled “Theory
of Operation” describes external and internal data paths. The
subsection titled “Programmer Interface” provides a detailed register
description at the microcode level.

24.1.1
Arithmetic Logic
Unit

Hardware consists of the Arithmetic Logic Unit (ALU), registers,
instruction buffer state control, and X and Y bus interfaces. Bus
interfaces are described in section 2.5 titled “Mesa Bus Control.”

The ALU is implemented with four 2901C bit slice microprocessor
chips. For a detailed description of the the 2901C, refer to the Bipolar
Microprocessor Logic and Interface 1983 Data Book, Advanced Micro
Devices.

Registers on the ALU are the R registers and Q register. The register
functions are discussed in more detail in section 2.4.3, titled
“Programmer Interface.”

R registers make up a 16-word, two-port register file. Output ports
are labeled A and B. R registers are the “fast” registers of the central

Central Processor

Daybreak Technical Reference Manual

processor, and hold temporaries, memory data and addresses, and
arithmetic operands.

The Q register is a 16-bit register which can be written with the ALU
output or with its old value single-bit shifted left or right.

Figure 2.10 illustrates the pins and signals for the four 2901C bit slice
processors. Table 2.12 describes ALU signals.

MSB LSB «2901s—
Bits Bits Bits Bits
0-3 4.7 8-11 12-15 2901C
rA.0 - - - 1 JA3 Q3
rA.l - - - 2 J A2 RAM3
rA.2 - - - 3 §AlL
rA.3 - - - 4 A0 Qo0
RAMO
rB.0 - - - 20 IB3
rB.1 - - - 19 § B2 Y3
rB.2 - - - 18 { B1 Y2
rB.3 - — - 17 | BO Y1
YO
X.00 X.04 X.08 X.12 22]D3
X.01 X.05 X.09 X.13 23 §D2 OF’
X.02 X.06 X.10 X.14 24 §D1
X.03 X.07 X.11 X.15 25 DO G’
P
ShDel - - — 6 JIC8
aD.0 - - - 7 }ICT OVR
aD.1 - - - 5 §ICé
aF.0 - - - 27 §I1C5
aFH.1 — aFL.1 - 28 | IC4 F=0
aFH.2 - aFL.2 - 26 §IC3
aShH.0 - aShL.0 - 14 IC2
aShH.1 - aShL.1 - 13 §IC1 F=3
aShH.2 - aShL.2 - 12 §ICO
12BitCarry 8BitCarry 4BitCarry Carryln 20 JCIN COUT
CLKA’ — - - 15§ CP

Central Processor

MSB LSB
Bits Bits Bits Bits
0-3 4-7 8-11 12-15

16

21

39
38
37
36
40

32

35

34

11

31

33

Q.00 Q.0304 Q.0708 Q.1112
R.00 R.0304 R.0708 R.1112

Q.0304 Q0708 Q.1112 Q.15
R.0304 R.0708 R.1112 R.15

Y.00 Y.04 Y.08 Y.12
Y.01 Y.05 Y.09 Y.13
Y.02 Y.06 Y.10 Y.14
Y.03 Y.07 Y.11 Y.15
TestOl — - -
n 12BitGen’ 8BitGen’ 4BitGen’
™ 12BitPrp’ 8BitPrp’ 4BitPrp’
Overflow H§ u L]
Feq0 - - -
F.00 ™] ™
CarryOut ™] []
=GND=VCC

30 10
GND +5V

Figure 2.10. 2901C pins and signals

-27

Daybreak Technical Reference Manual

Table 2.12. ALU External Signal Description

Slgn.al Type Function

(AMD signal)

4/8/12BitCarry { [nput Carry-in to the ALU, as named.

(CIN)

4(/}8; 12BitGen’” | OQutput | Carry-generate signal of the internal ALU for carry look-ahead.

G

4/8/12BitPrp’ { Output Carry-propagate signal of the internal ALU for carry look-ahead.

P :

aD0/D1 (IC7-6) { Input Indicates that aD0Q or aD1 is to be deposited in the Q register or in the register stack.

ﬂg % la/l; H.1/2 | input Designates the function to be performed (aF0, aFH.1/2 or aFL.1/2).

aFL.

(IC5-3)

82:3(?22 Input Instruction control lines identifying data source applied to the ALU.

aShL.0-

(I1C0-2)

CarryOut Output Carry-out from internal ALU.

(COUD

CLKA’(CP) Input Clock A input. The Q register and register stack outputs change on the clock low-to-high
transition. The clock "low” time is the internal write-enable to the 16 x 4 RAM that constitutes
the master latches of the register stack. While the clock is low, the slave latches on the RAM
outputs are closed, storing the data previously on the RAM outputs. This scheme ailows
synchronous master-slave operation of the register stack.

F.00 (F3) Output The most significant ALU output bit.

Feq0 (F=0) Output | Open collector that goes high when all data on the outputs F0-3 are low. In pesitive logic, F=0
indicates that the result ofan ALU operationis .

Overflow Output | XOR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the

(OVR) word, indicates that the result of an arithmetic two’s complement operation has overflowed into
the sign bit.

Q.0-15(Q3) 1700) Shift lines at the MSB of the Q register (Q3) and the register stack (RAM3). Electrically these

R.0-15 (RAM3) lines are three-state output connected to TTL inputs internal to the device. If [C6-8 indicates

e an up shift, then the three-state outputs are enabled; the MSB of the Q register is available on

the Q3 pin, and the MSB of the ALU output is available on the RAM3 pin. If IC6-8 indicates a
down shift, then the pins are used as data inputs to the MSB of the Q register and RAM.

rA0-3 (A0-3) Input Address inputs to the register stack for selection of the register which will have its contents
displayed through the A-port.

rB0-3 (B0-3) Input Address inputs to the register stack for selection of the register that will have its contents
displayed through the B-port. New data can be written into the selected register when the clock
goes low.

ShDel (IC8) Input Indicates that Sh is to be deposited in the Q register or register stack.

Test01 (OE”) For test. (If OE is high, then Y outputs are off. If OE is low, then Y outputs are active.)

X.00-15 (D0-3) | Input A 4-bit data field that can be selected as one of the ALU data sources for entering data into the
2901C. DO is the LSB.

Y.00-15(Y0-3) { Output | Three-state output lines. If enabled, they display either the four outputs of the ALU or the data

on the A-port of the register stack.IC6 =8 determines the display.

2-28

Central Processor

Daybreak Technical Reference Manual

2.4.1.2
Registers

2.4.1.3
Instruction Buffer
State Machine

Central Processor

In addition to the ALU registers, the central processor contains the
registers briefly described below. Section 2.4.3 discusses the registers
in more detail.

U _registers make up a 256-word register file which can be written
from the Y bus and read onto the X bus. These 16-bit, general
purpose, “slow” registers hold a 16-word stack, virtual page addresses,
temporaries, counters, and constants.

U registers are situated between main memory and the R registers.
They cannot be both read and written in the same cycle, nor can they
be used as an operand or destination register in 16-bit ALU
arithmetic.

The stackP register is a 4-bit stack pointer that addresses one location
from U register bank. The register can be incremented or
decremented independently of the 2901. Unlike the U and RH
registers, stackP can be read and written in the same cycle.

RH registers, an extension of the R registers of the 2901C, make up
the 16 x 8-bit register file located on the X bus. This small memory
holds the highest-order memory address bits, and can also be used as
general purpose storage for flags, counters, temporaries, and
subroutine return pointers.

The pcl6 register is a low-order, 1-bit extension of the R register that
holds the Mesa emulator's macroprogram counter (PC). pcl6 can be
used as the byte index of a PC memory address.

The Instruction Buffer registers consist of three 8-bit registers:
IB[0] - holds the even code segment byte
IB{1] - holds the odd code segment bytes
ibFront-shuffles bytes in even/odd, sequential order

Four states enumerate the location of data bytes among the holding
registers. The states are indicated by the 2-bit register ibPtr.

Constants that are 4- or 8-bit constants can be placed onto the X bus
for use in branching, can be loaded into X bus destination registers, or
can be an ALU operand. Constants greater than 8-bit can be
preloaded into U registers and, except for timing, are used like normal
constants.

Interrupt is a 1-bit control register used to interrupt the contiguous
execution of emulator macroinstructions (see 2.3.3.3).

A Link register is one of eight 4-bit registers that holds four bits of
state information derived directly from the flow of control.

Instruction Buffer (IB) state control is implemented on 512 by 8 fast
ROM. Figure 2.11 illustrates the pins and signals. Table 2.13
summarizes the B state control interfaces.

Daybreak Technical Reference Manual

S374 IBPtr.1 _
IBPtr.l 19| A8
Interrupt 17 | A6 06 {13 piBptr0 — >
EnC2Funs 16 | A5 05 |12 IBFront _
IBPtr«Byte 5| A4 04 {11 ReadIB1’ =
IBPtr—Word 4 | A3 03 |9 ReadIBQ’
WritelB 3| A2 02 |8 IBRefiliTrap
ReadIB 2 | A1 oL {7
IBDisp 1 | A0 00 |6 | pIBEmpty] S374 IBEmpty’ -
CS |15
5374 dGoodIBDisp
512 x 8 fast ROM
Test07 GoodIBDisp
Figure 2.11. IB state control pins and signals
Table 2.13. IB State Interfaces
Interface to: Signal Function
ALU Carry & Shift | PageCross Equals the XOR of pageCarry and aF.2, where pageCarry is the carry
out of the low 8 ALU bits.
Branch and Link MapPageCross’ Equals (mem . Cyclel . pageCross)
registers
IB registers 1. ReadIBO/1’ 1. Read instruction buffer register Q or 1.
2. Write IBFront 2. Write to the IBFront registers.
MBC L. Interrupt 1. Sent to Mesa processor. Mesa, IOP, and Timer interrupts are
grouped into one signal.
2. MemRef’ 2. Memory reference.
3.Cyclel 3. Cycle 1 of MBC state machine.
MDC 1. IBPtr<Byte 1. IB pointer gets byte.
2. IBPtr—Word 2. IB pointer gets word.
3. Read/WriteIB 3. Read from or write to instruction buffer operations.
4. IBDisp 4. Instruction buffer dispatch.
5. XLow+«IB’ 5. X bus lower bytes get ibFront, either the full byte or nibbles can be
read into the X bus, such that all other X bits are set to zero.
MIR (raw) Mem Mem bit. Ifcl, then MAR«; if c2, then MDR«; if ¢3, then «MD.
Next Address 1.IBPtr.1 1. Instruction buffer pointer bit 1.
register 2. IBRefillTrap 2. Instruction buffer refill trap.
3. GoodIBDisp 3. Good instruction buffer dispatch.
Stack Pointer IBPtr.1/0 Instruction buffer point bits 0 and 1. IBPtr(0:1}is encoded to indicate
register state of the instruction buffer.
Trap Machine IBEmptyTrap’ Signals instruction-buffer-empty error.
Enable Cycle2 1. enC2Funs 1. Enable Cycle2 functions.
Function Logic 2. IBEmpty’ 2. Instruction buffer empty.
CLKC’ 8 MHz processor clock.
2-30 Central Processor

LAyoredk Leliidileds seiereilCe nanudl

2.4.2 ALU Theory of Operations

Figure 2.12 illustrates the register and ALU data paths and is a
reference figure for the subsections that follow.

-
18
2901C) d
Y bus
D input
o A
A 16
Y bus LRotn 1
Y015 X bus
Y415, Y0-3
18 ¥8.15, Y0.7 Sl
Y11-15, Y0-12
X-bus branches:
216 o U a1 I XHDis X.4,X.0
4 cegiaters 4 - XLDis: X8.X.15
7] XwdDisp X.9,X.10
. XRefBr X.11
l— XDisp X12-18%
L4] £l >
— 2 l
| 24 >
stackP 7 Map refM
M
A ,17 B/A.23-17 ’,7
s RH ;’I A
7> registers]l > »
M
28 - A /7
7/ 1R 7
H | Mem/10 ref
—
8 | ™
7| A 216
,19 »| P M, ?
Mapre
o P
M
. 218
) A g
L Mem/10 ref]
Instruction Buffer]
M
1B0 D .
18 TR o
X071 |]
—ibHigh Ly byte swap B/D.15 - 00
7 L 1
b L bit rename MSB LSB
e
—tbLow . YAt 16
45 | A <~ Q‘_+
ibFront byte swap
IB1 bit rename
fZ iNibble constant) A
S
fY, {Z {Byte constant) A
y
10In o

Figure 2.12. Daybreak central processor data paths

Central Processor 2.31

Daybreak Technical Reference Manual

2.4.2.1

External Data

Paths

The X bus and the Y bus are the two major 16-bit data buses external
to the 2901. The YH bus, an 8-bit extension of the Y bus, addresses
memory.

The X bus is the major system bus and is connected to multiple drivers
and multiple receivers. The X bus sinks are : D inputs of the 2901, RH
registers, Instruction Buffer(IB), and branching logic. The X bus
sources include: U Registers, RH Registers, Instruction Buffer,
Rotator, constants, Stack Pointer, Trap Status, [B Pointer, and
Memory Data. The IB and the RH Registers receive data via the X
bus ; they can be loaded from memory in one click.

Figure 2.13 illustrates specific external paths to the ALU.

aShH.0-2/aShL.0-2 aF.0.aFL.1:2/aFH.1:2 sh.aD.0-1
X ALU ALU Destination Y

OverFlow :

Feq0 Source Function Control

B F.00
U Car_ryOut; CLKX’ B
s [adiien ey v

.8.4.Bit Prp - o

el 5 [mos .
z ¢
B Y.00-15
RO0I8 /18 oD Input Y Output <18 o
. __12.8.4 Bit Carry
Cin [s

16 arryin 16

2-32

Figure 2.13. ALU external data paths

Data is passed from the Y bus to the X bus via a 4-bit rotator (LRotn).
Data can be rotated zero, four, eight, or twelve positions to the left, as
specified by the fZ field. A zero rotation allows Y bus data to be placed
unaffected onto the X bus.

Eight- or four-bit constants are placed onto the X bus directly from the
fY and/or fZ fields. The upper 8 or 12 bits of the X bus are set to zero.

Table 2.14 lists the registers addressable by the central processor and
the buses to which they interface.

Table 2.14. Registers Addressed by the Central Processor

Register Inputs From{ Register Outputs To

MAR« YH, Y «~MD X Memory

Map« YH,Y

[Be X «ib, «ibNA X Instruction Buffer
«~ibLow, «ibHigh| X{12-15]
~ibPtr X[10-11]

RHe X[8-15] «~RH X(8-15]

U« Y «U X

stackP« | Y[12-15} ~stackP X

MDR« Y ErrTrap X(8-9]

MCtl« Y «MStatus X Memory

Central Processor

Daybreak Technical Reter-nce Manual

2.4.2.2
Internal Data
Paths Figure 2.14 illustrates internal data paths of the 2901C.
2901C Cin, pcl6
r A ¥
Cin’, pclﬁ" [|
T |
1 |
I > Y I o
1 aQ . U
t >1s |
Cin, Fl01, Q[0 § | s I
| B [— F Uy bus
| Ot | dispatch
| A »4 » R |YDlsp
Cin, F(15}, Cout | . l——* ALU |
R registers T A-bypass]
L Dinput | ALU branches
ZeroBr
e _..___l______.J GaroB
6 . NegBr
* NibCarryBr
X bus PgCarryBr
CarryBr
' PgCrOvDisp

Computations

Central Processor

Figure 2.14. ALU internal block diagram

Internally, the 2901 Arithmetic Logic Unit (ALU) has three inputs: R,
S, and Carryin (Cin). The R input can be set to the output of the A
port, to the value of the X bus, or to zero. The S input can be driven by
the output of the A or B ports, by the value of the Q register, or by zero.
Cin can be the value of the single-bit Emulator register (pc16) or can
beOorl.

The F output of the ALU can be written into an R register, loaded into
the Q register, or placed onto the Y bus.

The 2901 performs three arithmetic and five logical operations which
are specified by the ALU-Function (aF) field. Arithmetic follows two's
complement conventions. Three of the logical operations are
symmetrical with respect to R and S: logical OR, AND, and XOR. The
remaining two logical operations complement R: ~R XOR S and ~R
AND S.

Figure 2.15 illustrates ALU computations as a function of possible aS
and aF values.

Daybreak Technical Reference Manual

rA=rB=R
aS (A Q) (AB) 0,Q 0,B (0,A) DA (D,Q) (D,0) (A,B)
aF Cin
R+S 0 A+Q A+B Q B A X+A X+Q X 2R
1 A+Q+1 A+B+1 Q+1 B+l A+1 X+A+1 X+Q+1 X+1 2R+1
S-R 0 Q-A-1 B-A-1 Q-1 B-1 A-1 A-X-1 Q-X-1 X1 -1
1 Q-A B-A Q B A A-X Q-X -X 0
RS 0 A-Q-1 A-B-1 Q-1 -B-1 A1 X.Al X-Q-1 X-1 -1
1 A-Q B-A -Q -B -A X-A X-Q X 0
RORS AORQ AORB Q B A XORA XO0ORQ X R
RANDS AANDQ AANDB 0 0 0 XANDA XANDQ 0 R
~RANDS ~AANDQ ~AANDB Q B A ~XANDA ~XANDQ O 0
RXORS AXORQ AXORB Q B A XXORA XXORQ X 0
~RXORS ~AXORQ ~AXORB ~Q ~B ~A ~XXORA ~xXXORQ ~X -1
AXOR~Q AXOR~B X XOR~A XXOR~Q

Figure 2.15. ALU operations as a function of aS, aF, and Cin

A-Bypass Mode

A-bypass mode routes the output-port A of the R register file onto the
Y bus, which normally receives the F output.

The 2-bit ALU-Destination (aD) field, in combination with a 1-bit
value (sh), specifies whether R and/or Q is written and whether F or A-
bypass is placed on the Y bus. The sh field is defined by certain
functions of the microinstruction word (refer to Figure 2.4). In
general, when sh =1, the F output is shifted one bit position before
being written back into R or Q. The shift is accomplished inside the
2901 by 3-input multiplexers at the inputs to R and Q. The type of
shift is determined by what is shifted into the ends of Ror Q.

Table 2.15 lists the type of loading that occurs when sh is
concatentated with aD (sh,,aD).

Table 2.15. sh,,aD Actions

sh,,aD Register Loading Y bus Loading
000 Q- ALU output ALU output
001 No register loaded ALU output
010 R - ALU output A-bypass value
011 R - ALU output ALU output

Central Processor

Daybreak Technical Reference Manual

Shift Operations

xShiftl:

xRotl:

|,
DAxShiftl cou — F F—[> @ [|+~—<b— cin

DxShiftl:

2.4.2.3
Timing Limitations

Central Processor

Notes: When A-bypass is used, an R register must be written.
F cannot be written simultaneously to R and Q.

Figure 2.16 illustrates the two major types of shift operations: double-
word shift of F,,Q; and single-word shift of F alone. The two types of
shifting, combined with two directions, are named by the four values
ofaD whensh =1.

function aD fXorfY

Rshiftl 1 shift

Lshiftl 3 shift

RRotl 1 cycle

i i LRotl 3 cycle

Cin —— F <«—— Cin

DARShiftl 0 shift

DALShiftl 2 shift

?DLShiftl 0 cycle

F ?DRShift1 2 cycle

—

[y S

Cin —s) ‘ F '——_°l>—" Q. 4——<}°— Cin

Figure 2.168. CP single-bit shifting

When sh = 1, a single-bit shifting operation is performed on the ALU
output and/or Q. For single-word shifts the R register receives the
ALU output shifted one bit to the left or right; the Q register is
unaffected. The end of F, which is vacated by the shift operation, is
replaced by Cin or by the bit shifted out of the opposite side of F (a
single-bit rotate).

For double-word shifts, the ALU output and the Q register are shifted
together. The low-order bit of the ALU output is “connected” to the Q
register high-order bit to form a 32-bit quantity. The high-order bit of
F, which is vacated by a right double shift, can be written with Cin or
with the Carryout (Cout) of the current ALU computation.

Similarly, the low end of Q is written with the complement of Cin (~Cin
if the shift direction is left). Note that the high bit of Q is written with
the complement of the low bit of F. A general rule, then, is that shift
inputs into Q are complemented.

Note: A-bypass cannot be used with single-bit shifts or when
loading Q.

Single-bit rotates (LRot1l and RRot1) are applied to the output of the
ALU; the results can go only to an R register or to the Q register on
double length shifts. Single bit rotates use the fX or fY field.

The architecture of the central processor allows execution of
microinstructions which will not alway properly complete because of

2-35

Daybreak Technical Reference Manual

Figure Description

2-36

slow X bus operands or slow destination registers; that is, certain
sources cannot be loaded into certain destinations because the source
value is not stable in time. The delay time of the source plus the setup
time of the destination must be less than the cycle time of 125 ns. The
microcode assembler flags such instructions with a timing violation
error.

If the ALU operation uses an X bus operand (aS = D,A, D,Q, D,0),
then, depending on the register, the operation may not complete in
time. In general, all X bus sources can at least be loaded into an R
register, which is a logical operation (aS = D,0,aF = RORS).

All ALU internal register-to-register operations complete on time.
All Y bus destinations can be loaded as a result of any ALU operation
that does not use the X bus as an operand (except for the high 12 bits
of a U register).

Branching and dispatching have timing different from the basic ALU
operations, and a potential statement must meet both conditions. In
general, zero, negative, or overflow branching is not possible with an
X bus operand.

Figure 2.17 illustrates allowable X bus operations; use the figure to
determine whether a microinstruction is legal with respect to X bus
timing. The figure lists all possible X bus sources and destinations, X-
bus-source-to-X-bus-destination, X bus ALU operands, and X bus
branching and dispatching. In the figure,

- Intersections marked with a W (word), b (lower byte), or n
(lowest nibble) indicate legal source/destination combinations
or branching phrases.

- “X + R” represents the three arithmetic operations: aF =
R+S, S-R,R-S.

- “Xor R” represents the five logical operations: aF = RORS; R
ANDS; ~RANDS;RXORS; ~RXORS.

- Be implies the loading of an R register; Qe has the same
timing.

- pgCross refers to the automatic page cross branch with
MAR .

- pageCross and OVR refer to PgCrOvDisp.

The ALU performs arithmetic at three different speeds, depending on
which bits of the result are looked at. Thus, Figure 2.17 has three
numbers for arithmetic operations. ALUOQ-7 are the slowest bits, since
they depend on a carry from the lookahead unit. ALUB8-11 are faster,
since they depend on a ripple carry from the low nibble. ALU12-15
are fastest, since Cin arrives early relative to X bus sources. Thus, the
low nibble always has the timing of a corresponding ALU logic
operation.

Note: Some +1 or -1 operations do not necessarily imply use of the
X bus, but use Cin instead. Thus, R«R+1, NegBr is legal,
where R«R + 2, NegBr is not.

All arithmetic operations with the ALU internal zero as an operand
(aS = 0,Q,0,B, 0,A, or D,0) complete on time.

Central Processor

P S R T R S R VOOpR PO

D SV UgU

X Source
lock period = 125 ns X Constants (AORB) |(AANDB
Clock pert setup | U [MD | RH |—ibStkpA | LRotn | LRotn | LRotn
A |8 c D E F G
106.3
. 79.1 107.72] 72.8 57.75 75.3 80.3 106.3
X Source Time (61.8)(103.48) (67.28)| 47.27 80.3
B«~XorR 1] 21 w w w w w _— —_—
B«XorR,ZeroBr 2| 64(55) w w w S —
B«XorR,NZeroBr 3| 69(60)
B«XorR,NegBr 4} 56(47 w w w ——— —_
B«XorR,YDisp 5] 75(3) w — SE—
B <~ LShift1 (XorR) s 38 w w w
B«LRoti(XorR) 7} 52(46) w w w
MAR «XorR a] 40 —_— w
Map«~XorR 9f 40 _ w
X | MDR «XorR 10y 40 W | —| W w
Ue«XorR 1] 66 —_
0 53
P |B«X+R 12 53 n n b w n —_— —_
) 21
r | B«X+R,ZeroBr 13] 88(79) —_— _
: B—X+R,NegBr 14| 85(76) —_— -
i |B<X+R,0VR 15] 85(76) P A
0 |B«X+R,CarryBr 16} 83(74) w _— R
: B«X+R, NibCarryBr17| 63(74) n — | —
B+«X+R,PgCarryBr 18] 63(54) b b —_— —_—
B«X+R,pageCross 19§ 85(74) b _ o
MAR«X+R, pgCross20] 71.5(625) | b b* b E — _
B«X+R, YDisp 2f 75(53) ' b —_—
53
B«RShiftl (X+R) 22 5338 n n n
67(61)
B«RRotl1 (X+R) 23 67(61) |n n n
52 (46)
MAR«X+R 241 69 _— w
Map«~X+R 25] 69 —
69
MDR«X+R 26 69 n _— n
40
94
U«X+R 27 94 _—
65
Xbus « X, XDisp 28 | 45(23) W oW w w w w n
RH «X 29| 22 w we w w w w
IB«X 30 32(D w w w w w w
W = word b = low byte n = low nibble = not applicable
Number in parentheses is attained using higher-speed parts.
Figure 2.17. Allowable X bus operations
N Central Processor 2-37

Daybreak Technical Reference Manual

2.4.3 Programmer Interface

2.4.3.1
2901C Registers

R Registers

Q Register

2.4.3.2
Rotator

2.4.3.3
RH Register

This section describes the 2901C registers, the rotator, and other
registers of the central processor, as illustrated in Figure 2.12.

At each cycle, the contents of the R registers, selected by the rA and rB
fields of the microinstruction, are available at the respective A and B
ports. IfrA = rB, then the same data appears at both ports.

If the aD field (ALU destination) of the microinstruction specifies a
write back into an R register, then the rB field specifies which R
register. At the end of the cycle, register B is written with the ALU
output (F) or is written with F shifted one bit.

The Q register is implicitly referenced by the aS field of the
microinstruction and can be used for double-word shifting (refer to
section 2.4.2.2).

Figure 2.18 illustrates the data paths of the Rotator.

Y X
ROTATOR Y.00-15
B Y0015 . 16 .1 4BITROTATOR Y.04-15.Y.00.03 | g
U SHIFT REGISTER Y.08.15.Y.0007 | (o
fZ:2:3 -
S »| n=048.12 vazisyvoo11 § g
X Bus«+Rot’
>0 4x25810 16 \ X.00-15 _
LROTN < >
16 16

Figure 2.18. Rotator data paths

Data can be rotated zero, four, eight, or twelve positions to the left, as
specified by the fZ field.

Zero rotation allows Y bus data to be placed unaffected onto the X bus.

Four-bit rotations (LRot0, LRot4, LRot8, and LRot12) are done on
data being moved from the Y bus to the X bus. Four-bit rotations use
the fZ field. If the result of the rotation is destined for an R register,
then the data must have been placed onto the Y bus via A-bypass.
Four-bit rotations are abbreviated LRotn.

Figure 2.19illustrates the data paths of the RH register.

The RH registers are addressed by the rB field, and since this field
names the R register to be written, an RH register can only be written
into its corresponding R register (or into the Q register).

Central Processor

ayDreadh secanical nelerenlCe ianual

now L=<

A

2.4.3.4
pcl6 Register

Central Processor

X
X.08-15 4 8
DATA B
U
RH 5
REGISTERS o
=D < WriteRH'
16x8
rBO-3 4, Bipolar RAM
1A X.08:15, 8 _
ADDRESS Q > ALS244 . il
oﬂﬁﬂdﬁﬁ___
(227807
YH.00-07 ,s
/4

16
Figure 2.19. RH register data paths

RH registers cannot be both read and written in the same cycle. An
RH register is written from the low byte of the X bus when fX =
RH e~ and is read onto X8-15 when fZ = «RH. When the RH register
is read onto the X bus, the high half of the bus is set to zero.

At every cycle, the 8-bit YH bus is driven with the value of the
addressed RH register, thereby supplying the high order memory
address bits to memory. However, these bits are only used by the
memory if a MAR« or Mape is specified. An RH register cannot be
loaded if the microinstruction also executes a MAR« or Map«.

If fX or fZ is Cin«pcl6, then the pc16 bit becomes the carry input of
the 2901, and pcl6 is inverted at the end of the cycle. Thus,
Cinepcl6, in combination with ALU addition and subtraction,
adjusts the byte program counter (PC,,pc16) to 17 bits.

Since Cin is also the shift ends, Cin«pcl6 can shift pc16 into the low-
order bit of an R register in one cycle, thereby reconstructing a byte
program counter in an R register.

Because of the hardware implementation of the carry input, the fX
version of Cinepcl6 must be used when the Cin field of the
microinstruction is 0. If Cin = 1, then either the fX or fZ version of
Cin«pcl6 can be specified.

Daybreak Technical Reference Manual

2.4.3.5

U Register

nucw

Figure 2.20 illustrates the data paths of the U register.

16

Y00-15

detosd psana a REGISTER

M'—Oidi Uaddr4-7 ,4
4

4

prAQ-3 \ 4] UAddr0-7, 8 A

D U

7 DATA

| Caddr03

nwowm X

256x16 Q 16 X.00-15

A

4 X(256X4)

£ e

Bipolar RAM
F93422

pfZ0-3 (4 I

Y.12-15 4

16

AltUaddr

.

Normal Addressing

Mode

2-40

16
Figure 2.20. U register data paths

U registers are situated between main memory and the R registers.
They cannot be both read and written in the same cycle, nor can they
be used as an operand or destination register in 16-bit ALU
arithmetic. ‘ .

In addition to the microinstruction fields described below under
“addressing modes,” U registers are controlled by two other
microinstruction fields: enSU and Cin. The enSU bit is 1 for any cycle
that either reads or writes a U register. For writing, Cin must be 1,
for reading, Cin must be 0. Thus, if a U register is written and the
ALU function is addition or subtraction, then the computation
executes with Cin = 1. Note that normal two's complement
subtraction implies Cin = 1.

Figure 2.21 illustrates three ways to form an 8-bit U register address:
normal, stack pointer, and alternate. The addressing modes are
described in the following paragraphs.

3 4 i
rA [V Normal

0 stackP stackPointer

rA Y.12-15 Alternate

Figure 2.21. U register addressing modes

In the normal mode, true when fS[2] = 1, the U register address is
defined by the concatenation of the rA and fZ microinstruction fields.
In general, a U register can be loaded into any R register, since the rB
field defines the write address. However, an arbitrary U register and

Central Processor

Daybreak Technical Reference Manual

Stack Pointer
Addressing Mode

Alternate Addressing
Mode

2.4.3.6
stackP Register

an arbitrary R register cannot both be ALU operands unless the upper
four bits of the U register address equal the R register address. This
addressing mechanism partitions the U registers into sixteen, 16-
word banks such that, in one cycle, a U register of a bank can be
combined only with that bank's corresponding R register.

For reading or writing U registers, the fZ field can specify both a U
register address and another function; for example, fZ can take on
[0OXIn values when fS[2,3] = 3. (Applies also to alternate addressing
mode.)

In the stack pointer addressing mode, true when fS[2] = 0, the U
register is selected by the 4-bit stackPointer register (stackP) from the
low bank; that is, the address is 0,,stackP. The stackP is not explicitly
modified with this addressing mode. If an instruction uses this mode
and also executes a pop or push function, then the stackP before
modification is used to access the U register.

Note: When the stack pointer addressing mode is used, the fZ field can
be interpreted either as fZNorm or as a nibble.

The alternate addressing mode provides indirect addressing, and is
used when fS[2] = 1 and fZ = AltUaddr for the previously executed
microinstruction. In alternate mode, the low nibble of the U address
equals the least significant Y bus nibble for the previously executed
miroinstruction; that is, the same microinstruction for the AltUaddr.
Thus, the U address is rA,,Y[12-15] instead of rA, ,{Z.

Figure 2.22 illustrates the data paths of the stackP register.

NSTKP.0-3\4
>

BsHiCE 27529
(4] " i}
PopX.PopZ 0 X

Push NSTKP.0
. ‘3
+1 A S

-1

4

naow

16

Central Processor

Y.12-15
A

WriteStkP ALS244 <>

> STACK CONTROL

nCcw

X.12-15 4

StkP0-3 4 ReadMisc’
<> o—

25809

16
Figure 2.22, stackP data paths

stackP addresses one location from U register bank and can be
incremented or decremented independently of the 2901. The pop
function decrements (modulo 16) and the push function increments
(modulo 16) the stackP at the end of a cycle. Unlike the U and RH
registers, the stackP can be read and written in the same cycle.

The stackP is loaded from Y[12-15] with an fY function. One cycle
must intervene between a stackP« and a microinstruction that uses
the stack pointer addressing mode and that expects a new value. A

Daybreak Technical Reference Manual

2.4.3.7

Instruction Buffer

Registers

,8

X.00-07

pop or push can be used in the intervening instruction, and
appropriately modifies the value loaded.

Pop and push functions occur throughout the microinstruction
function fields to improve checking of stack overflow or underflow.
The push function occurs in all three function fields; the pop function
occurs in fX and fZ. Because of this arrangement, the stackP does not
change when push is specified in the same microinstruction as pop.
Multiple pops or pushes can be specified; as long as both are specified,
the stackP is unaffected. Multiple pops or pushes in the same
instruction do not decrement or increment the stackP by more than
one. Multiple pop and push functions check for stack overflow or
underflow.

The instruction buffer (IB) consists of three 8-bit registers: IB[0],
IB[1], and ibFront. IB[0] holds the even code segment byte; IB[1]
holds the odd code segment byte. The bytes are shuffled through
ibFront in even/odd, sequential order.

Figure 2.23 illustrates the data paths of the instruction buffer.

1B[0] INSTRUCTION BUFFER

ALS373

,8

ReadIB0Q’

X.08-15

» D
d OE’ Q
EN ibFront
ALS374

D Q

NIB.0-7 ,8_
VAN

~

—IB[1]
, 4 0

EN CK 7 »1X.08-11

4

ReadIBl’

d OF’ Q |-
ALS373

Wei
rite[BFront IB.4.7

IBHigh |
XLowelB'|

X.12-15)

X.08:15 8

16

7

Figure 2.23. Instruction buffer data paths

Four states enumerate the location of data bytes among the holding
registers. The states are indicated by the 2-bit register ibPtr.

Figure 2.24 illustrates the instruction buffer states. Cross-hatching
indicates the position of the data bytes.

The instruction buffer holds up to three Emulator macroinstructions
or data bytes, in a first-in, first-out queue. Data loaded into the IB
from the X bus can be read back onto the X bus, or can be used to

Central Processor

Daybreak Technical Reference Manuai

Operand Bytes for
Macroinstructions

Microinstruction
Functions

for the Instruction
Buffer

Central Processor

ibFront

ibPtr=full ibPtr =word ibPtr=byte ibPtr =empty

State Name BytesiniB ibPtr

full 3 2
word 2 3
byte 1 1
empty 0 0

Figure 2.24. Instruction buffer states

define a 256-way dispatch in control store. The IB is loaded by special
emulator “refill” microcode; the actual control of the registers is
accomplished by a hardware state machine.

The Mesa Emulator maintains the instruction buffer in such a way
that macroinstructions always find the necessary code segment
operands there.

In the instruction buffer the 256-way dispatch is made on the next
macroinstruction to be executed. The dispatch (IBDisp) occurs in ¢2 so
that the next macroinstruction begins in c1, thereby adjoining the
previous one.

When IBDisp is executed and the buffer is not full, a microcode trap
occurs, and the refill microcode loads the buffer with more bytes from
memory. If an IBDisp is executed and an interrupt (MInt = 1) is
pending, then special interrupt trap (IB-Refill) microcode runs instead
of the refill microcode.

The minimum number of bytes in the buffer required to prevent an IB-
Refill trap is three (the maximum size of a Mesa macroinstruction). A
trap occurs only between the execution of macroinstructions. If the
buffer requires two bytes, then the refill code completes in one click. If
four bytes are needed, then the refill code completes in two clicks.
Because the buffer is small, the only bytecodes that do not result in an
IB-Refill trap are single-byte opcodes executed from even memory
locations. Since the IB-Refill trap runs at memory speed, operand
bytes are efficiently supplied to the macroinstruction.

Eight microinstruction functions affect the IB. In general, the
functions maintain the original even/odd byte ordering while
updating ibPtr and ibFront. Table 2.16 lists the functions and their
effect on ibPtr, ibFront, and the X bus.

Daybreak Technical Reference Manual

2-44

Table 2.16. Effects of [B-Related Microinstruction Functions

Function New ibPtr New ibFront X bus «~
«ib ibPtr-1 IF ibPtr[1]=0 THEN 0,,ibFront
IB(0] ELSE IB(1}
«~ibNA unchanged unchanged 0,,ibFront
«ibHigh unchanged unchanged 0,.ibFront[0-3]
«~—ibLow unchanged unchanged 0,.ibFront(4-7]
[BDisp ibPtr-1 [BlibPtr{1]] unaffected
AlwaysIBDisp ibPtr-1 IB(ibPtr{1]] unaffected
IBe [F empty THEN word [F ibPtr=empty unaffected
ELSE full THEN X[0-7]
ELSE unchanged
[Be, [bPtr«1 IF empty THEN byte IF ibPtr =empty unaffected
ELSE full THEN X[8-15]
ELSE unchanged
IbPtr«0 word IB[0] unaffected
IbPtre1 byte IB[1} unaffected
«ErrnlBnStkp unchanged unchanged X[10-11}«—~ibPtr

Operating modes for the microinstruction functions listed in the table
are described below.

Load. The IB is loaded from the X bus. The high-order, even byte is
written into IB[0]; the low-order, odd byte is written into [B[1]. If the
buffer is empty, then the X bus byte passes through IB{0} or IB[1] and
is loaded directly into ibFront in one cycle. Thus, data can be used
immediately in the cycle following the IB load.

Write. The IB write operation defaults to writing ibFront with X0-7.
However, if IbPtr«1 is coincident with IB«, then ibFront is written
with X8-15, thereby discarding the even data byte. If one or two bytes
are in the buffer, then IB[0] and IB(1] are loaded, and no feed-through
into ibFront occurs.

Read. ibFront can be read onto the X bus. When «ib or «ibNA is
specified, ibFront is placed onto X8-15, and the high byte of the X bus
is set to zero.

The basic read can be varied. With the «ibHigh function, ibFront[0-
3] is placed onto X12-15. Analogously, «ibLow places ibFront[4-7]
onto X12-15. In both cases the upper 12 bits of the X bus are set to
zero.

Execution. When «ib is executed, a funneling process occurs.
ibFront is loaded with the next byte from either IB[0] or IB[1}, and
ibPtr is “decremented” by one; that is, ibPtr is gray-code decremented:
2,3, 1, and then 0. Thus, the low order bit of ibPtr divides the values
of ibPtr into two classes with respect to refill: empty and not empty.

Note: The execution scheme equates the empty and full states;
however, the buffer is not full when the IB-Refill trap occurs.

Microcode. Several of the microcode functions have no effect on the
state of the buffer. The «ibNA function (reads the IB without
advancing ibPtr), «ibHigh, and «ibLow do not change ibPtr.

As with the RH and U registers, simultaneous read and write of IB is
not possible. Therefore, the combination of IB« and «ib in the same
cycle does nothing.

Central Processor

Daybreak Technical Reference Manual

The functions I[BPtr«0 and IBPtr«1, when used alone, merely load
ibFront from IB[0] or IB[1], respectively. The functions typically
occur in the cycle after the IB has been loaded with a jump-target
bytecode, thereby selecting the even or odd destination opcode.

The complement of ibPtr can be read onto X[12-13] with the
«—ErrnIBnStkp function.

2.4.3.8
Constants Figure 2.25 illustrates the data paths for constants.
X
8 3 8
0 > X.00-07 F— B
XHighe0' . U
> ALS244 S
£Y0-3/0 4,
+
XLow<+Byte’ o
>4 X.08-11
XLow<«Const
5 : >g
ALS257 X.08-15 8 />
L X.12-15
£2.0-3 , 4 g
7
ALS244 16
Figure 2.25. Constants data paths
Four-bit constants (Nibble) use the fZ microinstruction field; 8-bit
constants (byte) use the fY and fZ field. The upper 12 or 8 bits,
respectively, are zeroed.
Larger constants can be preloaded into U registers and used like
normal constants. Zero is available inside the ALU and does not use
the X bus. ALU “+1” and “~1” operations are also possible without
the X bus, since they are an artifact of Cin.
Sixteen-bit constants with identical halves can be constructed in two
cycles instead of the three normally required in the general case.
2.5 System Memory Addressing

Central Processor

The central processor sends memory addresses to the system memory
controller by way of the Mesa bus. A custom gate array performs bus
controller functions for the Mesa processor board. This section
describes memory addressing and Mesa bus control.

Figure 2.26 illustrates data paths from the MPB through the Mesa
bus to main memory.

Daybreak Technical Reference Manual

Mﬁz_u'ef MPB MesaBus [DCM
r s (B Bus) Address
p [recognition
H
— B/A23-17)\ 7 s AST73 Address
M (. “ B/A.23L{ pere PBAH"
A vl B/ATTL >
LE
LH_]
Mem/IO ref MCC
M
A —‘:1> B/MemRefB’
P lcl8 >
L |7 T
Map ref

(] A 77
RAS CAS
a 216 Time-Divison ;
L IMultiplexed
—_—
MemiIO ref ~ |B/D.15:00 4 ¢ N Bf _] DRAM
— B/AL6-0] 7 >a
ol ey DO [
R (7 c »| DI
Write data
<l ¢ Address
“ MUX
Read data
ow B/1OW’
IOR’ 4 4 B/IOR’ ! 4 >
BMWT B/MWT’
MBC BALE N B/ALE’ 8 - Da—'
L f Write data
MB/MemRef [N\ B/MemRef .} 5 MUX
l/ " %
. B/Rdy A
= 10037 p— P
A
+5V
Lock’ B/Lock’
MDC ll> P P ASTT3 | _
 ———— PBDOCLK

Figure 2.26. Main memory addressing

2-46 Central Processor

2.5.1 Hardware

Daybreak Technical Reference Manual

This subsection describes the Mesa bus hardware, principally the
Associated hardware is the timer and

Mesa bus controller.

miscellaneous logic. The 80186 or A bus and A bus control logic is
described in “Dove IOP Board Technical Reference Manual.”

Bus interfaces to the backplane are listed in the Section 2.1.2 titled
“General Board Hardware.”

The Mesa Bus Controller (MBC) is a 68-pin gate array chip. Figure

2.27 illustrates the pins and signals for the chip. Table 2.17 describes

2.5.1.1
Mesa Bus
Controller Chip
the MBC signals.
TimerCS’ 1
.2_
« IOB/A.19 3
{ 10B/A.20 4
{ 10B/A.21 5
{ 10B/A.23 6
ﬁimerRC' 7
7 :
vCC 9
GND 10
«_ Timerlnt 11
{ (A/IOPIntMP +Int Externaly 12
{ Setlnt 13
; ClrIntTrap’ 14
- IntEnb 15
{ RdIntStat’ 16
Interrupt 17
X.15 IntStat.2 18
X.14 IntStat.1 19
X.13 IntStat.0 20
21
MBIdle 22 |
InitTrap’ 23
RunMode 24
VCC 25
GND 26
GND 27
MB/MemRef 28
EnbMAPL’ 29
EnbMARL’ 30
C1FH 31
Cycle3 32
Cycle2 33
Cyclel 34

P1
P2
P3
P4
P5
P6

P8

P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21

P23
P24

P25

P26
P27
P28
P29
P30
P31
P32
P33
P34

P68
P67
P66
P65
P64
P63
P62
P61
P60
P59
P58
P57
P56
P55
P54
P53
P52
P51
P50
P49
P48
P47
P46
P45
P44
P43
P42
P41
P40
P39
P38
P37
P36
P35

Figure 2.27. MBC pins and signals

Central Processor

68 Timer2Clk
67 Timer1Clk
66 T12Gate
65 T0Gate
64 IOWTimer’ (not used)
_@.
62 CLKEnb
61 VCC
60 GND.
59 IOW’
58 IOR’
57 MWT
56 MRD’
55 LoadMAL
54 LoadMAH
53 EnbWD’
52 LoadWD
51 ResetSync’
50 DebReset’
49 AReset’)
48 AResetMPB’ >
_41. N
46 Test 16 ,
45
44 RawCLKB ,
43 VCC A
42 MBCHalt’ _
41 B/Rdy >
40 IORef D
39 MapRef hr
38 MemRef D
37 N
10
136
35 BALE
2.47

Daybreak Technical Reference Manual

Table 2.17. MBC Signal Description

Signal Full Name. Function
(A/IOPIntMP | IOP Interrupt Mesa Processor or External Interrupt from Artifical Intelligence interface.
+IntExternal)
AReset’ Reset. (includes power up).
AResetMPB’ Reset MPB. Resets MPB after request through software.
12?'32/31\.19.20, Mesa Bus Address. 19, 20, 21, and 23 latched up and decoded, as follows:
B/A.23 B/A.21 B/A.20 B/A.19 Command

1 0 0 X Timer Chip select

1 0 1 0 Clear TO Gate

1 0 1 1 Set TO Gate

1 1 0 0 Clear T1-T2 Gate

1 1 0 1 Set T1-T2 Gate
BALE B Bus Address Latch Enable.
B/Rdy B bus Ready. From the DCM; indicates that the B bus is ready for data transfer,
CiFH Cycle One First Half. Goes into effect during the first half of cycle 1.
CLKEnb Clock Enable. Enables 8 MHz system clock.
ClrIntTrap’ Clear Interrupt Trap. Clears interrupt.
Cycle1/2/3 Corresponds to cycles 1, 2, and 3 of MBC state machine.
DebReset’ Debugger Reset. Used with Burdock to reset the Mesa processor.
EnbMAPL’ Enable Map Address Low 0-15. Enables low map address.
EnbMARL’ Enable Memory Address Low 0-15. Enables low memory address.
EnbWD’ Enable Write Data. Enables the write data on B bus.
IntEnb Interrupt Enable. Signal from the decoder chip (MDC) to enable Interrupt.
Interrupt Interrupt. Qutput of Interrupt Register.
InitTrap’ !nitial Trapping. Generated after the initial booting procedure. Traps the first microcode

instruction.
IOR’ /O Read. Generated by MBC; reads the timer on the MPB board.
IORef IO Reference. From the decoder chip (MDC) to indicate an [/O reference instruction.
ow’ I/O Write. Writes to the Mesa bus /O, including Timer.
LoadMAH Load Memory Address High. Loads the high order memory address 17-23.
LoadMAL Load Memory Address Low. Loads the low order memory address 00-15
LoadWD Load Write Data. Loads write data from Y bus into data register.
MapRef Map Reference. From MDC to inform the MBC that a map reference is occurring.
MBCHalt’ Halt. From the IOP to stop the MBC; occurs at the end of cycle 2 or at the beginning of cycle 3
when bus is idle.

- more -

Central Processor

Daybreak Technical Reference Manual

Table 2.17. MBC Signal Description (continued)

Signal Full Name. Function
MBIdle Mesa Bus Idle. Active when B bus is not performing a memory reference, an /O reference, or a
Map reference transaction. MBC can only be halted when MBIdle is active.
MB/MemRef | Mesa Bus Memory Reference. Sent to the DCM to indicate that Mesa bus is requesting a
memory or map reference.
MemRef Memory Reference. From MDC to signal a memory reference.
MRD’ Memory Read.
MWT Memory Write.
RawCLKB Raw Clock Buffered.
RdIntStat’ Read Interrupt Status. Enables interrupt status bits 0-2 onto X bus 13-15, respectively.
Interrupt status bit 0 = Mesa interrupt; bit 1 = IOP interupt or External Interrupt from Al
Interface (if used); bit 2 = timer interrupt.
ResetSync’ Reset Synchronized. Generated from three resets that are synchronized with the system
clock.
RunMode Run Mode. Indicates that the Mesa Processor is operating in the Run mode.
Setlnt Set Interrupt. Sets an interrupt from the decoder chip.
TOGate Timer 0 Gate. Enables timer 0 to begin counting. Note: First clock after gate goes active loads
the count.
T12Gate Timer 1 and 2 Gate. Enables timer 1 and 2 to begin counting. Note: as above.
Test 16 For testing.
Timer1Clk Clock input to Timer counter 0 and 1.
Timer2Clk Clock input to Timer counter 2.
TimerCS’ Timer Chip Select.
Timerint Timer Interrupt. An interrupt from timer 0 after one cycle.
TimerRC’ Timer 1 Ripple Carry. Derivation of clock input to timer 2.
X.13:15 When RdIntStat is true, interrupt status bits 0-2 are enabled onto X bus 13-15, as follows:
X.13 - IntStat.0, Mesa Interrupt
X.14 - IntStat.1, IOP or Al Interrupt
X.15 - IntStat.2, Timer Interrupt
2.5.1.2
Control Logic Figure 2.28 illustrates the Mesa bus interface and control logic. Table

2.18 describes the signals shown in the figure.

Central Processor 2-49

Daybreak Technical Reference Manual

Testl3’
ler’ l
Cycle sMam ‘ -
Cycle2Del ‘ D
CLKA’ & Qe
3 EnbRD’
Q
R'
Cyclel {}c C1MemIORef
| et
MemRef a
IORef b a g
C1FHDel b _SetMARH]
~d »
E> o @ EnbMARH
pr——— b ’
Reset R
Test14’ T
Truel
Cycle3Del S
c ¢ I ,
@ Cycle3Del et
R LJa r_
a >
SetMAPH| S
- c Qe
MapRef MapRef b Q EnbMAPH’
et R’
2XCLK’
Testl5’
Truel
Sv
‘ D
Q |=
A/Halt’ 2 A/Halt {>c Halt | C . [+24.7
o
ResetSync’ \ RstSynB’
=1 >
a
a MBCHalt’
*24.9 S |ug4g
MapRef >— D : b
Q
Truel —1¢ l— b
R’Q e
C1FHDel S]
2XCLK’ Q fa
| *24.5
Q
R.
Truel |
Figure 2.28. Mesa bus logic interface and control
2-50 Central Processor

Daybreak Technical Reference Manual

Table 2.18. B Bus Interface and Control Signals

Signal Function

C1FH From MBC. Goes active to indicate first half of MBC state machine cycle 1.

Cycle2 From MBC. Goes active to indicate cycle 2 of MBC state machine.

CLK, CLKC’, From MPB clock generation.

2XCLK’

EnbMAPH’ To address path logic. Enables high order (17-23) of MAP Address register.

EnbMARH’ To address path logic. Enables high order (17-23) of Memory Address register.

EnbRD’ To data path logic. Enables ReadData from B bus onto X bus. This signal is activated at the end
of cycle 2 if the cycle 3 "mem” bit is predicted to be true (pmem = 1) through the instruction
pipeline, signifying a memory read cycle,

IORef From MDC to MBC to indicate an I/O reference.

LoadMAL From MBC. Loads low order (00-15) of both Memory and Map Address registers.

LoadWD From MBC. Enables the CLK to load WriteData from Y bus into Write Data register.

MapRef From MDC to MBC to indicate a map reference.

MemRef To MBC to indicate a memory reference.

ResetSync’ From MBC. Synchronized reset signal.

Test13/14'/15° | For testing only.

2.5.1.3
Memory Address
Interfaces Figure 2.29 illustrates in detail the memory address registers shown

in Figure 2.26.

The figure also illustrates the interfaces between the Mesa bus and

the central processor X and Y buses.

Central Processor 2.

Daybreak Technical Reference Manual

EnbMAPH' | M B/A.17-23 7

X Hardwired "04"_| ‘3 A > M

B LoadMAH’ H E

U

S S
R EnbMARH' | M B/A.17-23 A
R R YHO70L_ | A
1] H - { R
1 1 LoadMAH | H
EERE O —
L 1|8 8
Lo EnbMAPL’ M | BD.08-15 U

e -
Lo YHOT00 | 3 (B/A.09-16) S
: : LoadMAL L
]]
t 1
] '
| | I
vt " EnbMAPL’ M
b o700 | - A B/D.00-07 N
: : [B]_ LoadMAL L (B/A.01-08)
|] T
e S
P E
b EnbMAPL’ M | B/D.08-15 R
P Yor00 R | (B/A09-16)
: : LoadMAL ‘ L F
| |
b A
1]
bt EnbMARL’ M C
L Yis0s | A |BMD.00-07
i . - R Yy r > /D.00-1 E
P Ldal | £ [BAOLOS R
]]
: : EnWData’
i3 Y.07-00 M B/D.00-07
P ToadWDCLRK Y
] t
1 |
! EnWData’
I Y.15-08 M B/D.08-15
P Load WDCLK a2
Voo
_ __ X.07-00 _~ B/D.00-07

X ["

’ |

vl xi1508 | Bm.os-15

S EnbRD’ [\‘

Figure 2.29. Mesa bus interface address/data paths

2.5% Central Processor

Daybreak Technical Reference Manual

2.5.1.4
Timer The process timeout and interval timer is an Intel 8254-2 interval
timer/counter. Figure 2.30 illustrates the timer. Table 2.19 describes
the signals.
|
B/A.18 20 | Al D7 |1 TimerD7
B/A.1T 19" | A0 D6 |o TimerD6 ___
D§ 3. TimerD5 t
D4 |4 TimerD4
TimerCS’ 21_|CS D3 |5 TimerD3
[OR’ 22 | RD’ D2 g_ TImerD2 :
ow 23| WR® D1 |7 TimerD1
DO E; TimerDO g
Timer1Clk 9 | CKO h
TOGate 11 GO OUTO |y0 Timerlnt
15: CK1 OUTL |13 TimerRC’' _ _
T12Gate 14 |Gl o
Timer2Clk 18 | CK2 oUT2 |12
16| G2
Figure 2.30. Process timeout and interval timer pins and signals
Table 2.19. Timer Signal Description
Signal .
(Intel Signal Name) Type Eunction
B/A.18,17 (A1, AO) Input Selects counter or control register, as follows:
Al AOQ Selects
0 0 Counter0
0 1 Counterl
1 0 Counter2
1 1 Control Word Register
Timer1Clk Input Clock (period =16 ms) input of counters 0 and 1. Note: First clock
after gate goes active loads count into counting element.
Timer2Clk Input | Clock input of counter 2. Derived from ripple carry (RC) of counter 1.
Note: as above.
TimerCS’ (CS") Input | Chip Select: enables RD’ and WR'; otherwise ignored.
TimerD0-7 (D0-7) vo Tri-state data bus lines, connected to system data bus.
TOGate, T12Gate (G0-2) { Input | Enable corresponding counters
TimerInt (OUTO0) Output § Output of counter 0
TimerRC’ Output § Output of counter 1
IOR’(RD") Input Low during CPU read I/O
[OW (WR) Input Low during CPU write [/O

Central Processor 2-53

Daybreak Technical Reference Manual

2.5.2 Theory of Operations: Mesa Bus Controller

This section describes the functions of the Mesa bus controller; that is,
state machine control of memory addressing, interrupt control, mode
control, and timer control.

-54

Figure 2.31 illustrates the functional blocks of the MBC chip.

INPUTS OUTPCTS
ResetSync’
CLKEnb
AReset’ Cyclel
Cycle2
AResetMPRB’
Cycle3
DebReset’ C1FH
MB/MemRef
M f
emRe LoadMAH
IORef MESA BUS LoadMAL
CONTROLLER LoadWD
MapRef
EnbWD’
B/Rdy STATE MACHINE MRD’
MWT
IOR’
oW’
BALE
EnbMARL’
EnbMAPL’
MBldle
D NN NN GEEE SIS G I S G
IntEnb
_SetInt
Interrupt
Timerlnt
N INTERRUPT CONTROL (nterrupt Status0) X.13
{A/TOPIntMP + IntExternal)’ |)
RdIntStat’ X 14
ClrintTrap’
In X1
PN GEEN GENE SNET D TGN S Taae aEa
MBCHalt’ [nitTrap’
RunMode
MODE CONTROL
IQB/A.23 TimerCS’
BOOT -RUN - STOP i
IQB/A.19 0 S Timerl1Clk
Timer2Clk
T12 Gate
I A,
QRIAIL TIMER CONTROL
TimerRC’ imer
Test16 (Testability)
RawCLKB

Figure 2.31. MBC functional block diagram

Central Processor

Daybreak Technical Reference Manual

2.5.2.1
States of the
State Machine

Central Processor

The MBC state machine is best described with reference to the
Memory Reference Timing Diagram, Figure 2.32.

All timing is referenced to the rising edge of 2xCLK’ unless otherwise
specified.

When a signal is stated to be set or reset, it is set or reset at the end of
the clock cycle. On the other hand, when a signal is said to be
generated, it is generated during the clock cycle.

Note also that some memory bus control signals are generated outside
the MBC chip, because of timing limitations.

Figure 2.33 illustrates state transitions of the Mesa bus controller.
The number at the top of each block is a state number for convenient
reference in the text and in the flow diagrams that further illustrate
the states of the state machine.

XZ

SHIFT 4

Central Processor

|

1
i
|

SHIFT 3

|
]
i
|

SHIFT 2

SHIFT 1

Daybreak Technical Reference Manual

T

1

|

T

L

2XCLK’

2XCLK

CLKEnb

CLK’
Cycles

States

LoadWDClk
B/A23-17,B/A.00

MRD’ MWR’

LoadMAH
LoadMAL
B/Memref”
EnbMARL’
EnbMAPL’
B/ALE
LoadWD
EnbWD’
EnWData’
RdySync
IOR’,IOW’
B/MWT’
EnbRD’
Mem/IORef
MapRef
EnbMARH(f
EnbMAPH{Yf
EnbMARH’
EnbMAPH’

B/Rdy

B/D.15-00

T
-
j _lll 1—’
IlVLIIIX IIIIIIIIII ol el i i ol i i o o P g
2 2
— booded <
n {217 =]
s .
2 Es &
w ||||||||||||||||||||||||| d-=-F--4--J-}F--4----F----4---4 SO [BUUY R, L - {-4- h] pa—
L] w
H E
= o z
@ > -
.m E3 el mm
S .] o
IIKI llllllllllll fIIOT IIIIII i - Y NS P I (R b ~ LI; lllllllllll RN N (N (I NEp—
& m
n %
= ~ 2
£ — mc
= -vWA||||r |||||||||| L --1 SR N I M E—— RN DU PESRUNDS PEDEDHY [P . o -G =]
: i g 3
g <
@ i ~
= e] m
~ Q =
HIE . B
O,
IITAIIIWA lllllllllllllll O (R S QNP - SR 10 ST S [N (NS, QNSNS S U . q---4
u H :
v ks
N O
8 L5
_——— s -llVA |||||||||||||||||||||||||||||| -
®
S <
sl |
o
M_:x::L B O\ S -

[}
i

SHFI

Figure 2.32. State machine memory reference timing

2-58

Daybreak Technical Reference Manual

\i

Ay

~ R
\

13 14 15
C1WFH C1WSH C2WFH

U

0 1 2 3 4 5
CIFH CISH C2FH C2SH C3FH C3SH

A

Boot Mode
State 0, State 6

Central Processor

7 8 9 10
RefC2FH RefC2SH R4C3FH RAC3SH

6
C1Wait

ANY STATE

L(WnteCSF’H>_>< WnteC3SH [/j

Figure 2.33. MBC state transitions

The MBC state machine is initialized to a no-state condition when one
of the following reset inputs is activated:

o AReset - hard reset from the IOP. It includes power-up reset
and system reset/boot button.

o AResetMPB - software reset from the [OP.
e DebReset - from the debugger.

The first Halt (A/Halt/MBCHalt’) signal puts the Mesa processor into
Boot mode. On entering Boot mode, the MBC state machine enters
the C1Wait (Cycle 1 Wait - state 6) state. In this state, the state
machine sets Cycle 1 and generates a Clear Command signal to clear
all pending commands. The state machine then enters C1FH (Cycle 1
First Half - state 0) state.

Daybreak Technical Reference Manual

Run Mode
States 1-5:

State 7

State 8

State 9

State 10

2-38

During booting, the state machine alternates between the C1Wait and
C1FH states. When Halt goes inactive, the processor exits Boot mode
and enters Run Mode.

In Run mode, when executing a non-reference (NOT memory-, Map-,
or I/O-reference) instruction, the state machine sequences through
Cycle 1 (C1), Cycle 2 (C2), and Cycle 3 (C3), where:

C1 encompasses Cycle 1 First Half (C1FH) and Cycle 1 Second
Half (C1SH - state 1),

C2 encompasses Cycle 2 First Half (C2FH - state 2) and Cycle 2
Second Half (C2SH - state 3);

and C3 encompasses Cycle 3 First Half (C3FH - state 4) and Cycle
3 Second Half (C3SH - state 5).

A CLKEnb signal is generated in the second half of every cycle to
enable the system clock.

For reference instructions, the state machine still sequences through
C1, C2, and C3, and C1 still encompasses C1FH and C1SH. However,
in C1FH, the signal LoadMAH is generated and B/ALE is set. For
Map references, the EnbMAPH flip-flop, EnbMAPL, and B/MemRef
are also set. For Memory references, the EnbMARH flip-flop,
EnbMARL, and B/MemRef are also set. For I/O references, the
EnbMarH flip-flop is also set. The state machine then enters C1SH.

In a reference C1SH, if the reference is an [/O reference, then the state
machine generates the signal LoadMAL and sets the /O Command.
The state machine then enters RefC2FH (Reference Cycle 2 First Half
- state 7) instead of C2FH.

In RefC2FH, the state machine resets B/ALE at 2xCLK (center of half
cycle). It also resets EnbMARL or EnbMAPL. In addition, if Mem bit
is active (MemRef = 1), then WtCmd (Write Command) is set; if Mem
bit is inactive (MemRef = 0), then RdACmd (Read Command) is set.
The state machine then enters RefC2SH (Reference C2 Second Half -
state 8).

In RefC2SH, if pMem = 1, then the state machine sets EnbRD
(EnableRead Data). Note: pMem = 1 in Cycle 2 signifies Mem = 1 in
Cycle 3, indicating a Read instruction.

If Mem = 1 (MemRef = 1), then the state machine sets EnbWD
(Enable Write Data) and generates LoadWD (Load Write Data) before
entering WtC3FH (Write Cycle 3 First Half - State 11). If Mem = 0,
then the state machine branches into RAC3FH (Read Cycle 3 First
Half - state 9).

ReadySyn is the Ready signal B/Rdy from memory which is internally
synchronized with 2xCLK’. It informs the MBC that a memory- or
map- reference instruction has been completed.

In RDC3FH, the state machine monitors the RdySyn and loops in
RdC3FH if RdySyn = 0. When RdySyn is active, the state machine
exits RAC3FH and enters RAC3SH (Read Cycle 3 Second Half - state
10).

Central Processor

Daybreak Technical Reference Manual

Write Operation
State 11

State 12

State 13

State 14

State 15

Stop Mode

Cycles of the
State Machine

Central Processor

In RAC3SH, the state machine resets EnbMARH or EnbMAPH flip-
flop (whichever is set) and, if RdySyn is true, then generates a Clear
Command signal. The state machine then returns to C1FH (state 0).

For a write operation, the state machine goes from WtC3FH into
WtC3SH (Write Cycle 3 Second Half - state 12).

In WtC3SH, the state machine resets EnbMARH or EnbMAPH flip-
flop (whichever is set). It then monitors the signal Ref+ Rdysyn,
where REF = any reference, memory, map, or [/O. If Ref+ Rdysyn is
true, then the machine generates a Clear Command signal and
returns to C1FH. If Ref+ Rdysysn is false, then the machine enters
C1WFH (Cycle 1 Wait First Half - state 13).

In CIWFH, if Ref = 1 and Rdysyn = 0, then the state machine loops
in C1IWFH.

If both Ref and Rdysyh are true, then the state machine generates
Clear Command and returns to C1FH.

If Ref = 0 and Rdysyn = 1, then the state machine generates Clear
Command and returns to C1SH.

If both Ref and Rdysyn are false, then the state machine enters
C1WSH (Cycle 1 Wait Second Half - state 14).

In C1WSH, if Rdysyn = 1, then the state machine generates Clear
Command and returns to C2FH. If Rdysyn = 0, then the state
machine enters C2ZWFH (Cycle 2 Wait First Half - state 15).

The state machine loops in C2WFH until Rdysyn becomes active. It
then generates Clear Command and returns to C2SH (state 3).

A Halt signal in Run mode puts the state machine in Stop mode.
However, in order not to affect the operation in progress, certain
conditions must be met before the state machine enters Stop mode:

1. The MBC bus‘must be idle (MBlIdle = 1, that is, no memory
reference, map reference, or I/O reference pending.

2. The state machine must enter Stop mode at the end of Cycle 2
and beginning of Cycle 3.

During Stop mode, CLKEnb is not generated; that is, all system clocks
(CLK,CLKA’, CLKB’, and CLKC’) are inhibited.

When Halt become inactive, the state machine re-enters Run mode
and resumes normal operation at the beginning of Cycle 3, exactly
where it had stopped.

The figures that follow illustrate the sequence of operations at each
memory cycle, including non-reference cycles. The circled numbers
refer to the numbered states illustrated in Figure 2.33 and described
in the text. The figures are:

2.34 Cyclel

2.35 Cycle2

2.36 Cycle 3 (Read)
2.37 Cycle 3 (Write)

Daybreak Technical Reference Manual

CYCLE-1 Enter Boot Mode =m<
(any state) v
C1WAIT
Set Cyclel
Clear Command
—pan (3)(0)(12) G ()
C1FH
Set Cyclel
Set ClkEnb
LoadMAH
Set B/ALE | LS \Rgp
' “
Set EnbMAPH ff MapRef
Set EnbMAPL
Set B/MemRef N
Set EnbMARH ff
Set B/MemRef L1 @
Set EnbMARL
N
Ty
__Em.m_@ =@ - ootMode
CiSH
Set Cycle2
Y N
LoadMAL ._® - ,
* C2FH

Set I0 Command

0

RefC2FH

Figure 2.34. Cycle 1: state machine flow

2-60

Central Processor

Daybreak Technical Reference Manual

Non-Reference Cycle-2 & -3 Reference Cycle-2
OO O
‘ C2FH RefC2FH
Set Cycle2 Set Cycle2
Set CLKEnb Set CLKEnb
Reset EnbMAR/PL
Reset B/ALE at 2XCLK

C2SH N
l ; v
. Set RdCmd Set WtCmd
Set Cycle3 .

il

A

| |
O, o,

C3FH

RefC2SH
Set Cycle3
Set CLKEnb Set Cycle3

l !
@ SetEnbRD |« @

C3SH

l N Y LoadWD
Set Cyclel SetEnbWD at 2XCLK

| l
(2) ()

CI1FH RdAC3FH WtC3FH

Figure 2.35. Cycle 2: state machine flow

Central Processor 2-61

Daybreak Technical Reference Manual

2.62

Read Cycle-3

N

From m ‘/9\ P
_/

RAC3FH

!

Set Cycle3

RdySync
Y

Set CLKEnb

RAC3SH

Reset EnbMARH ffif set
Reset ENBMAPH ffif set
Reset EnbRD
Set Cyclel

<&

Y

Clear Command

-

©

C1FH

Figure 2.36. Read Cycle 3: state machine flow

Central Processor

Daybreak Technical Reference Manual

>\ 11
WtC3FH

¥

Set Cycle3
Set CLKEnb

Y

()

Wt$3SH

Fromm _
—

Reset EnbMARH ffif set
Reset EnbMAPH ff if set
Set Cyclel

Set Cyclel

)

Set CLKEnb

__N_@

Ty

Clear Command

ClF

H

Write Cycle-3

Clear Command

C1WSH

¥

Set Cycle2

Y

C1SH

Clear Command

>

N

C2WFH

¥

Set Cycle2

X

C2FH

<

Clear Command
Set CLKEnb

Figure 2.37. Write Cycle 3: state machine flow

Central Processor

C2SH

-83

Daybreak Technical Reference Manual

2.5.2.2
Interrupt Control

2.5.2.4
Timer Control

2-64

The contiguous execution of emulator macroinstructions can be
interrupted if immediate action is required by the interrupting source.
Interrupt sources include :

e Microcode with fY = MesalntRq

e [OPor Al Interface

e Interval TImer

An interrupt request sets the 1-bit Interrupt Register. At the same
time, it also sets one bit in the Interrupt Status Register. Interrupt
Status bits are assigned as follows:

Interrupt Source Interrupt Status

Mesa microcode bit 0
[OP/AI Interface bit 1
Interval Timer bit 2

When microcode issues a RdIntStat (Read Interrupt Status) command,
the status bits are enabled onto the X bus as follows:

Interrupt Status X Bus
bit 0 X.13
bit 1 X.14
bit 2 X.15

After the interrupt (or interrupts) has been serviced, a ClrIntTrap
(Clear Interrupt Trap) is issued by microcode to clear both the 1-bit
Interrupt Register and the Interrupt Status Register.

Note: All three status bits are cleared by the ClrIntTrap whether or
not their corresponding interrupts have been serviced.

Interrupts can also be enabled or disabled by microcode with
fY =SetIE (Set Interrupt Enable) or CIrIE (Clear Interrupt Enable)
respectively.

Two Interval timers are implemented using the 8254 timer chips. As
part of the Mesa Processor I/O, both interval timers are clocked by a
16-microsecond input clock.

In normal applicaton, only Interval Timerl (TimerO of 8254) is
programmable and generates an interrupt (timer Interrupt) when the
programmed count is reached.

Interval Timer2 is implemented by cascading Timerl and Timer2 of
the 8254 Timer Chip into one modulo 232 counter. Timer2 input clock
is derived from the RC (Ripple Carry) output of Timerl. No interrupt
is generated by Interval Timer2.

Figure 2.38 illustrates Timer Gate and Timer Clock. Figure 2.39
illustrates Timerl Ripple Carry Clock and Fig.2.40 illustrates Timer2
Clock Timing.

Central Processor

Daybreak Technical Reference Manual

[OWSynl
[IOWSyn2
TimerlIOW’
GateSet

ow l i
]

GateSyn (with Timer01)

Timer01
75~ ’—‘—"+
Timer08 i l Py o
77 X 77 1 |
If set, Gate goes high at 1 |
leading edge of Timer08, T +
Gate satisfying Gate setup time l : :
] t
Timer08Syn1 [-_—-
Timer08Syn2 I-
]
TimerClk r‘

Figure 2.38. Timer gate and clock timing

ol UUUUUUU VU HUUU U Uuy

[} [} 1 (] ! !
1 | R R 754
T +
Timer08 | : . I I .r' !
T T 77 1 [} ! §
' [} 1 1 : | If cleared, Gate goes low
t i : [' at trailing edge of
: :] : : | ! Timer08, satisfying
! ! 2! ! ¢ Grate hold time
Gate I N T b
o ot
Timer08Synl ['L l i i : I
| L
Timer08Syn2 ! IR |
pa b
v
TimerClk r‘ 4 : :
F T
Timer1RC’ i : i :
|
ol |
RCSynl’ | |F T
e
RCSyn2’ { +
1
i
RCSyn3’ |
!
RCClk n

Central Processor

Figure 2.39. Timerl ripple carry clock

2-65

Daybreak Technical Reference Manual

-l UL UL U Uy uyyyyy
Timer08 | » [
77
Timer08Syn1 55
77
Timer(08Syn2 l L,
77
Gate I

TimerClk (Timer1 Clk)

R

yra i —

L I

LL [
77

F

Q___. -

1

!

!

LL. }

7’ I]
LL.

77

|

L
A

LL
77 I

LL
77

P el ok SNy G .

2L
77

1stTimerClk ff

*

1st TimerClk

s U e O 6 ENN N
O S S

TimerlRC’

e et ittt B EEL bl CEEE EETE ST

RCSyn1’

R R i it Satatatalak skl Sbebehate PRSP

RCSyn2’

RCClk

:_:L_l,

*

Timer2Clk

* First clock pulse after Gate goes high loads count into counting element

Figure 2.40. Timer2 clock timing

2.5.3 Programmer Interface: Main Memory Addressing

Refer also to Daybreak Microcode Reference Manual for detailed
information.

The memory system accepts two types of addresses: real and virtual.
Real references result in a read or write to the addressed location
itself. Virtual references cause the memory system to ignore the low
byte of the address. Using the remaining 16 bits, the memory system
then reads or writes the Map, located at real address 10000 hex.

For both reference types, a write occurs (MDR«) when the memory
operation (mem) field is set in ¢2; a read occurs («~MD) when the mem
field is set in ¢3. Read and write should not both be specified in the
same click. Furthermore, if a click specifies an MDR« or «MD
without a corresponding MAR«, then memory is not written, and a
potential memory error trap does not occur.

Microcode instructions for memory addressing are described in this
subsection. The memory system varies, depending on display memory
size. In this section, maximum size is assumed; that is, 20-bit real
addresses and 24-bit virtual addresses.

2-66 Central Processor

Daybreak Technical Reference Manual |

2.5.3.1
Real Address
References

Split 2901

Central Processor

The mem bit true incycle 1 causes a real reference. A real reference is
specified by using the MAR« macro in c1. The memory address is
sent to the DCM from the Y and YH buses via the B bus interface. The
Y bus can be driven either from the 2901 F bus or by A-bypass;
addresses can be either pre- or post-modified. The YH bus, which
supplies the high-order address bits, is always driven by the RH
register addressed by rB. YH[0-3] are ignored by memory.

With MAR« the following effects, described below, occur:

1. The 2901 is divided such that the high half executes a fixed
function;

2. aspecial "address-overflow” branch (pageCross) is enabled,

3. an MDR« or IBDisp in the next cycle is canceled if the branch
is taken.

If mem = 1 in cl, then the 2901 is divided such that the high half
executes with its aS and aF inputs equal to (0,B) and (aF OR 3), while
the low half executes with the aS and aF values given by the
microinstruction. This division causes the high byte of the ALU
output to equal the high byte of the R register addressed by rB (or its
complement if aF is in [4-7]).

As an outcome of the bipartition, a carry out from the low half does not
propagate into the high half; that is, the high byte of rB remains
unchanged after a MAR « (unless aF is in [4-7]), even when A-bypass
is used.

Figure 2.41 illustrates real address modes.

4 7 0 7 8 15
rhB rB[0-7] F(8-15] Normal
YH bus Y bus
rhB rA[0-15] A-bypass

Figure 2.41. MAR Address Types

If A-bypass is not specified, then the upper 12 bits of the memory
address (the page address) come from the Rh/R pair named by the rB
field. The lower 8 bits (the page displacement) are defined by the
desired ALU operation. Assuming the Y bus is driven from the F bus,
the 20-bit real address is rhB[4-71,,rB[0-7],,F[8-15].

Note: This feature can be used to combine the real page number, as
read from the Map in the previous cycle, with a displacement into the
page.

If A-bypass is specified, then the lowest 16 address bits come from the

R register addressed by rA. The 20-bit real address is rhB[4-7],,rA[0-
15].

2-67

Daybreak Technical Reference Manual

pageCross Branch

Cancellation of
¢2 Functions

2.5.3.2
Virtual Address
References

2-68

If the ALU operation results in a carry out from the low half, then
MAR« automatically specifies a pageCross branch; 1 is ORed into
INIA[10]. Thus, aithough the carry out from the low byte does not
propagate into the high byte, it can be detected as a transfer of control.
A true pageCross branch can imply that the real address is invalid,
and that a remapping of the virtual address originally generating the
real address is necessary. Since pageCross is not ORed into INIA[11],
other simple branches can be specified concurrently.

pageCross is defined as (pageCarry XOR aF[2]), where pageCarry is
the carry out from the low 2901 byte. For addition, pageCross equals
pageCarry. For subtraction, the XOR has the effect of toggling
pageCarry.

Notes: 1. The aF = (R-S) form of subtraction does not cause
pageCarry to be inverted, since aF[2] = 0. However, the aF =
(R-S) form covers the most common subtraction requirements.
2. A complication of pageCross branch is that pageCross can
equal 1 if the 2901 executes a logical function instead of an
arithmetic function.

If pageCross = 1 during a MAR«, then a following MDR«, lBDisp,
or AlwaysIBDisp in c2 is ignored. This effect increases the need to
avoid logic functions during a MAR«.

Note: The cancellation effect can be used to prevent writing into the
wrong page or to prevent dispatching on the next Emulator
instruction when the corresponding virtual address should be
remapped.

Translation of virtual to real address is done explicitly in microcode.
Figure 2.42 illustrates virtual-to-real address mapping.

YH bus Y bus
I L l |
0o 2 7 0 7 15
—\ J
virtu){Page
13FFF
rldjw]
10000
/ location within page
(not mapped)
{ v
01 2 3 7 0 7 8 15
r |d] w rpl0-4] rp(5-12] rp(5-12]
RH register R register

Figure 2.42. Virtual-to-real address mapping

Central Processor

Daybreak Technical Reference Manual

2.5.3.3
Memory Address
Register

Central Processor

When either the fX or fY field equals MAP« in cycle 1, a memory
reference to the virtual-to-real, page-translation map is caused. Map
is a 16 KWord table whose first entry is at location 10000 hex , just
after the display bank. During a Map reference, the memory system
uses the upper 16 bits of the virtual address (14 bits for a 22-bit virtual
address) to index into the table. Each entry of the table contains a 12-
bit real-page number and three flags pertaining to the virtual page.

Figure 2.43 illustrates map address types.

YH bus Ybus ,
rhB F[0-15] Normal
0 7 0 15
chB rA[0-15] A-bypass

Figure 2.43. Map address types

The virtual address is carried on the Y and YH buses. The low byte of
the Y bus is ignored, without affecting the ALU. Since the Y bus can
be driven from the 2901's bus or from A-bypass, addresses can be
either pre- or post-modified.

For 24-bit virtual reference, all of the YH bus is used.

Figure 2.44 illustrates the format of a Map entry. Refer to the
Daybreak Microcode Reference Manual for a description of how the
Map flag bits are maintained.

rp(5-12] r d |w rp(0-4]
0 7 8 9 10 11 12 15
rp[0-12] Real page Number
r Referenced and Present flag
w Write Protect flag
d Dirty flag

Figure 2.44. Map Entry Format

The mem field should not be set in ¢l along with a Map« unless the
side effects of MAR« are explicitly desired.

Figure 2.45 illustrates the memory address register (MAR). The
contents of YH[4-7],,Y[0-15] are used as the memory address.

Beow,

Daybreak Technical Reference Manual

2.5.3.4
Map Reference

2.5.3.5
Memory Data
Register
2.5.3.6 .
Memory Data
2-70

YH . Y Bus

ignored
0 4]15(6 |7 0 15

| 20-bit real address]

Figure 2.45. Memory Address Register address generation

MAR« [rhReg, <arithPhrase>] designates a real address reference
to memory. rhReg specifies the RH register that holds the two high
order address bits. The rB field is set to the value of rhReg;
<arithPhrase > can be any notation that occurs on the right side of an
arithmetic clause.

A map reference occurs when mem is set in ¢1. The action is the same
as for MAR« except that the physical address is derived differently.
An access is started in the 65K - 80K bank of memory; the location
accessed is specified by the page number.

Figure 2.46 illustrates the derivation of the physical address.

YH Bus " YBus
0 7 0 7{8 15
l 16-bit virtual page number

Figure 2.46. Map« address generation

The memory write data register (MDR) is loaded with the contents of
the Y bus when mem is set in ¢2. The contents are written into the
memory location specified by the contents of MAR loaded during the
first cycle of the click. If the low 64K bank is selected and is being
used by the display, then no write occurs.

Memory Read data (MD) is placed on the X bus when mem is set in ¢3.

Before the next memory read («~MD) is done, the status of a given
read operation can be found in MStatus .

Central Processor

