~ €9

VA

COBOL Reference Manual

VS
COBOL Reference Manual

6th Edition — February 1984
Copyright ©® Wang Laboratories, Inc., 1984
800-1201-06

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL,MA 01851 TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the soft-
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

PREFACE

This reference manual explains and details the use of COBOL (COmmon
Business Oriented Language) for use in performing data processing
functions on the Wang VS. The VS Programmer's Introduction and the VS
Program Development Tools discuss how to log on to the system and enter
COBOL source code from the workstation; this manual assumes knowledge of
that material.

This manual has two parts: a tutorial section (Part I, Chapters 1
through 7), and a reference section (Part II Chapters 8 through 13 and
the appendices). The tutorial section discusses file processing and is
organized according to the different kinds of I/0 devices that the VS
uses. It also includes information about disk files, extended disk file
processing, workstation files, print files, tape files, and the
SORT-MERGE module.

The reference section provides a detailed discussion of all the
linguistic units of COBOL, their functions, and the rules governing their
use. The appendices present the following information:

Appendix A is a list if VS COBOL reserved words.
Appendix B 1lists and explains the available compiler options.

Appendix C 1lists and explains Field Attribute Characters for controlling
workstation screen display characteristics.

Appendix D describes the use if the workstation screen order area for
controlling screen and workstation actions.

Appendix E lists and explains File Status return codes.

Appendix F explains the hexadecimal characters used to control the
writing of a record to a printer file.

Appendix G explains the storing of the intermediate results of
arithmetic operations.

Appendix H describes the protocol required for passing parameters from
one COBOL program to another COBOL program.

Appendix I is a comparison of VS, ANSI, and FIPS COBOL standards.
Appendix J explains the use of extension rights.

Appendix K explains the rules for Segmentation.

iii

The user will find the following helpful for use in conjunction with

this manual.

Title

VS

COBOL Quick Reference

VA

COBOL Conversion Guide

VS

COBOL Coding Form

VS

DMS/TX Reference

Vs

Programmer's Introduction

VS

Program Development Tools

VS

Utilities Reference

VS

Procedure Langauge Reference

Vs

Procedure Language Pocket Guide

iv

Number

800-6200
800-1204
800-5206
800-1128
800-1101
800-1307
800-1303
800-1205
800-6201

/‘\

SUMMARY OF CHANGES

FOR THE 6TH EDITION OF THE VS COBOL REFERENCE MANUAL

TYPE AFFECTED COBOL FEATURES AFFECTED PAGES
Technical Explanation of the ANSI
Changes modules supported in

VS COBOL

Removal of ADMS references

Advanced Sharing changed
to DMS Sharing

BLOCK entry of FD
COPY Statement

CORRESPONDING phrase

DMS/TX

Extension-Rights
Lower Case Option

OCCURS

1-1

Chapters 1, 3, 8, 11,
Appendices A, I

1-5, 2-27 to 2-34
12-52

11-13, 11-14
12-33

11-7 to 11-8, 12-10

12-23, 12-24, 12-67,
12-68, 12-72, 12-90,
12-95, 12-99, 12-101,
12-102, 12-141, 12-142

v, vi, 1-5 to 1-6,
Chapter 3, 11-13,
11-20, 11-22 to
11-24, 12-50, 12-112,
12-148, 12-150, A-1,
A-3, I-22, I-25, J-1

Appendix J
Appendix B

11-35 to 11-36

SUMMARY OF CHANGES (continued)

FOR THE 6TH EDITION OF THE VS COBOL REFERENCE MANUAL

TYPE

AFFECTED COBOL FEATURES

AFFECTED PAGES

Editorial
Changes

Qualified data names

Relative File Support

SEARCH ALL Support

Segmentation

SORT-MERGE Support

STRING Support
UNSTRING Support

Miscellaneous editorial
changes

10-15, 10-18, 11-5 to
11-7, 11-10, 11-11,
11-20, 11-25, 11-34.
11-58, 11-63, 11-64,
11-66, 12-65, 12-94,

12-101, 12-104,
12-107, 12-110,
12-114, 12-127,
12-133, 12-135,
12-151, 12-154,

12-157, 13-2, I-4

1-1, 1-4, 2-1, 2-4,
2-24 to 2-27, 10-18
to 10-20, 11-19,
12-31, 12-38 to
12-39, 12-79 to
12-81, 12-98 to
12-100, 12-110 to
12-111, 12-135 to
12-136, 12-157 to
12-159, E-7 to E-8,
I-9

12-113, 12-117 to
12-122, I-22

Appendix K

1-1, Chapter 7,
10-21, 11-25, 11-26,
12-64 to 12-66,
12-101 to 12-103,
12-126 to 12-130,
I-11, 1-22, K-2, K-4

12-138 to 12-140
12-143 to 12-147
Chapters 1, 2, 3, 4,

7, 8, 9, 10,
Appendices A, B, G, I

vi

PART 1

CHAPTER 1

CHAPTER 2

CONTENTS

TUTORIAL

S Sr S
~N O U b

2.1

2.2

2.3

INTRODUCTORY CONCEPTS

Introduction to VS COBOLccovvvevenececnonses O
Structure of COBOL Programsccceceeeesccscasasas 1-2
Identification Divisioncivueennnns ceeesss 1-2
Environment Division Cecesssassessecssesseanas 1-2
Data DivisSioncieeevectvnncnnannns Ceteessane 1-3
Procedure DivisSioncceeeevencensnncens cecsas 1-3
Disk File Processing te et eeessecatetsstacannnan 1-4
DMS Sharing Enviromment cesesssasana . 1-5
DMS/TX tevvereosenaseoessosansoosannsnssossannss cevees 1-6
Workstation File ProcessSingceeeeseececcssonceaas 1-7
Print File Processing N Cheeeeseananns 1-8
Tape File ProCesSsSingcceeeeeeeeeesescecscsscncasas 1-8

FILE ORGANIZATION AND ACCESS

Introduction et ereseessetcnserrotanoans ceeses 2-1
Opening and Closing a Filecceveenecencccennns 2-1
File Organizationseeceeeeeesnccccssssnasnsns 2-2
Record Types Tesesrecssensssassossrescasenns 2-4

The COBOL File Processing Environment cecsss 2-B
FILE-CONTROL Clauses Required

for File ProcessSing ..eeeeeeseeeceseenovccsnnnns 2-7
FD Information Required for File Processing 2-8
Creating the Filecccvereenncoransess ceteseres 2-9
Using VALUE OF Clauses to Specify

File Locationceevtveeececrecerrenconcanns .o 2-9
Specifying Initial Space Allocationc..000.. 2-11
Suppressing OPEN MeSSagesccceeeececccnnonns 2-11

Consecutive File Processing in COBOL creeeenas 2-12
Sequential Access of a Consecutive

File in COBOL ...cvvesvecoasancessassscncssncnas 2-12
Random Access of a Consecutive

File in COBOLveveeeeaass tecesesesrecsssssees 2-15
Dynamic Access of a Consecutive

File in COBOL ...iciveeerecsvossassssossosssasas 2-16

Indexed File Processing in COBOLcceceenvenens 2-18

Alternate Indexed File Processing in COBOL 2-20

Relative File Processing in COBOLccc0eeveannn 2-24

DMS Sharing Environmentccceeiveeressccasanas 2-27

Shared Consecutive File (Log File) Support 2-27

vii

CONTENTS (continued)

Shared Indexed File Support Ceeesseasans . 2-29
Elemental Sharingceeceeceecesscsssccccess 2=29
DMS Sharing ..ceceeeeeess ceecsssssesnens eerees 2=-30
Holds for Update and for Retrieval 2-30
Preclaim Strategy Ceeesecesseasesasanns 2-31
Handling Resource Request Conflicts 2-31
HOLD Statementcce0vveeeeenes ceseesses 2-31
Holding a Generic Key of Records ceseen 2-32
HOLD LIST Statementcicecivevencoccccns 2-33
FREE Statement ceecscaens seesecane 2-34
2.8 File Performance Options in COBOL creetanea .. 2-34
Large Buffer Strategy for Consecutive Files 2-34
Buffer Pooling Strategy for Indexed Files 2-35
Setting the Index and Data Packing Densities 2-37
2.9 Handling File-Related Error Conditions in COBOL 2-39
CHAPTER 3 DMS/TX
3.1 Introductionec00.0n B ceeeses 3-1
Principle Featuresecceeviessencccccasa ceees 3-1
DMS/TX File Sharingcceeeeececccsaoncnas . 31
Transaction Rollback Recoveryceceeeeeeee 3-2
Structural Integrity Monitoring0000000. 3-2
3.2 Implementing DMS/TX in COBOL ceseesenss ceesoss 32
The VALUE OF RECOVERY-BLOCKS IS Clause cesese 3-3
The VALUE OF RECOVERY-STATUS IS Clause000.... 3-3
The VALUE OF DATABASE-NAME IS Clauses000.... 3-4
Attaching File to a DMS/TX Databasecccevsse . 3-4
Opening and Closing Files ...cevvevvernccacsnas .«e. 3-5
Holding and Releasing Resources Cesearennnas 3-5
Deadlockcc0n. cecsescanreasasas cesesens ceesess 3-6
Program-Initiated Rollback sesesencsons 3-6
Rollback Following a Program Cancelcc0.. 3-7
3.3 Program Exampleceevecevoseoscesscsssscncnaas 3=7
3.4 DMS/TX VS DMS Sharing ceseeane cieesecsassns eess 3-10
CHAPTER 4 WORKSTATION FILE PROCESSING
4.1 Interactive Processing with VS COBOLcceecevvecse 4-1
4.2 VS Interactive Extensionsecvceeeeeen ceeecenn 4-2
4.3 Coding Requirements for DISPLAY AND READcevnevns 4-3
Environment Division Requirements for DISPLAY
AND READccoeveneccscasconnssons Ceceetetaenans 4-3
Data Division Requirements for
DISPLAY AND READc000000000 seescsserssacses 4-4
Procedure Division Requirements for
DISPLAY AND READcccouvveescesnsscccccssnsans 4-19
Coding Requirements for Addltlonal Workstatxon
File Control ceeereenan eerecsssessena ceess 4-23

viii

CHAPTER 5

CHAPTER 6

CHAPTER 7

PART II

CHAPTER 8

CONTENTS (continued)

4.4 Programming the Workstation Through
Full Screen I/0 Cesessesssaenaen cessseasasss 4-30
4.5 Programming the Workstation Through
Row-Oriented I/0 ...civeeeroescecccncanosnsocananas 4-34
4.6 Coexistence of DISPLAY AND READ and
Full Screen I/0 ...cicvvnennn cesecisssscssssssees 4-37
PRINT FILE PROCESSING
5.1 Defining a COBOL Print File teesssscsssessaseass 9=1
5.2 Using the BEFORE/AFTER ADVANCING Clause for
Printer Controlcccceven. teseesrssssssses 5=2
5.3 Using Figurative Constants for Printer Control 5-4
TAPE FILE PROCESSING
6.1 Introduction et seessecseseasssressaanasnas 6-1
6.2 Tape Label Processing ceeececssetanns ceseess b-1
6.3 Use of LABEL RECORDS Clause for
Tape Label ProcesSingcccoee.e D
ANSI and IBM Tape Label Processing ceevas 6-2
Nonlabelled Tape Processing ceseesssses 6-3
SORT-MERGE PROCESSING
7.1 Introductionccciiiiveennennns thecesesseeannas 7-1
7.2 SOrtingeeeeeecsersorssssoscossassonssssassnsssss 1-1
7.3 Merging ..c..eceeoecesccsass cecessesssens ceesecsancas 7-2
7.4 Implementationceeceeeeennee Y B4
7.5 Collating Sequence and SORT-MERGE Limitations 7-3
7.6 Program Exampleccieeeesecssccssccssscacssaseassas 1—3
REFERENCE
GENERAL LINGUISTIC CONSIDERATIONS
8.1 Introductioncciiiiiiiiiiinnennn, Ceeecteaasanas 8-1
8.2 COBOL Charactersceoeveeeeesans ceesarenae seesevs 8-1
8.3 Character-strings and Separatorscceveeeeeess 8-2
8.4 Punctuationiiiiieritiitinrcecanannnn ceeees B-3
8.5 Divisional Componentsceeeeeveeessnsvcnasancas 8-3
Sections secesacssreesssens ceeerenans cesses B8-4
Paragraphscccceevececencecnsancacens ceesaees 8-4
Sentences Ceecreresanse Cetesrersseseccanes 8-4
Entries e tesesessssensssasanns tecessssseses 8-5

ix

CONTENTS (continue

Clauses .vcoese. sesssensas
Statements ceseene
Phrases cesessnsss
8.6 COBOL WOords ...coesececcaccns

User-defined Words

COBOL-defined Words

Literals ceeesecnens
8.7 Format and Notation

d)

tees 00 e

D R RN
LRI B]

® 00 e 0000
s 000 s e

e s e s s 000

* s e s e e

Definition of a General Format ceen

Definition of Syntax Rules
Definition of General Rule
Format Notation

COBOL Source-program Reference Format

Continuation Linesc.ceceveeeee cevaen
Comment LINES .ecieeccacercacncnacs
Blank Lines ...ceceeevees ceeietsecerentae

s..'............

eas s ee 00

®ec e es e

ooooooo

Division, Section, and Paragraph Formats

Data Division Entries

CHAPTER 9 IDENTIFICATION DIVISION

PROGRAM-ID Paragraph

1 General Description
.2 Organization ceeeseans

ooooooooo

e s e 000 e

Comment—entry Paragraphscceccevecnvcaccas
9.3 Example of Identification Division ...

CHAPTER 10 ENVIRONMENT DIVISION

10.1 General Description

10.2 Organization ceesens

L R A A)

®ee e ev e o e .
o0 ©e6s 6000000
LI NN s e e o e .
LR RN S Y s e e
LY e s ec e s
e e e e LR

Configuration Sectlon cetecsessestncssseareansen

SOURCE-COMPUTER Paragraphccoveceenen
aph

OBJECFT-COMPUTER Paragr
SPECIAL-NAMES Paragrap.

FIGURATIVE-CONSTANTS Paragraph ...ceceeeeeee

Input-Output Section

h sasee s

o600 0000

FILE-CONTROL Paragraph

FILE-CONTROL Entry -— for Consecutive

Files ..cevveenscans
FILE-CONTROL Entry --
FILE-CONTROL Entry ——
FILE-CONTROL Entry —-

I/0-CONTROL Paragraph

e 0 e0 0000

® e e 00

.

so s 0000

e e o

for Indexed Files
for Relative Files ...

for Sort, Merge
Files cecesenaene

S e v e e s 0000000000000

8-5
8-5
8-5
8-5
8-6
8-8
8-11
8-12
8-12
8-13
8-13
8-13
8-14
8-15
8-16
8-16
8-16
8-17

10-1
10-2
10-3
10-3
10-4
10-5
10-7
10-9
10-9

10-10
10-14
10-18

10-21
10-22

CHAPTER 11

CONTENTS (continued)

DATA DIVISION

11.1 Computer Independent Data Description 11-1
Logical and Physical Recordscceoveuees esess 11-1
Concept of Levelsceevrenacccenssanas cesssess 112
Classes of Data ceseseanns seesessssnsvenss 11-4
Character Representation and Radix 11-4
Algebraic Signscceeeceecenncnns cetsennnn .. 11-4
Standard Alignment Rulesccoveeenenee ceaeen 11-5
11.2 Methods of Data Referenceceeevvees cee .o 11-5

Qualification, The Corresponding Phrase
and Subscriptingccccecrncccaccens . 11-5
Indexingciviiiiieneacnnnnan Cecesesacisans .. 11-9
Condition Names ceeenen . ceseeess 11-10
Identifiers ceessesesanesas cetsesseeeas 11-11
11.3 Organizationcievevevevcennancns ceesssecesaens 11-12
File Sectionv0vveess teesesesssenns cesecess 11-12
File Description Entry cereeaans ee. 11-13
BLOCK CONTAINS Clause N ceeees 11-14
CODE-SET Clausece0eee. N eess 11-15
DATA RECORDS ClauSe +.sceeecsncscossesscssnns 11-16
LABEL RECORDS ClauSe ...ccecveessscossnccanna 11-17
RECORD CONTAINS ClauSe ...ocsessess tetessenas 11-18
VALUE OF Clausecoesvsenss sesseesssassaes 11-20
The SORT-MERGE File Description Entry 11-25
Working-Storage Sectionceceveevvnens ceaeans 11-27
Data Description Entry teeesesanenenn ees. 11-28
BLANK WHEN ZERO ClauSeceoeccaceveccsns .. 11-30
DATA-NAME or FILLER Clauseoc000c000ss.. 11-31
JUSTIFIED Clause B i £ X /]
LEVEL-NUMBER Clauseccccceveecccccccnss .o 11-33
OCCURS ClauSe .evveueocesorssceccsssossasosasaans 11-34
PICTURE ClauS€ ..oecesecoscccccsasacnanansass 11-36
REDEFINES ClauSe .eseescecoscsossscsscccocnscs . 11-46
SIGN ClauSe ...eoceceesccscccnsssscsossessssss 11-48
SYNCHRONIZED ClauSe ...ccceveceoscssecasssssss 11=-50
USAGE Clause teeecenane cresssasesanenn «e. 11-51
VALUE ClauSeccoesceeosscsssonsnns eeeess. 11-54
Workstation Screen Description Entry 11-57
COLUMN ClauSeocosevceocssscncnasaoss .. 11-59
ROW ClauSe ...cescececocsssccnosonssonsas eeees 11-61
PICTURE ClauSe@ «seeececscssccscsssssocnncanns 11-62
RANGE ClauSeccoeceeosccevscasaseassanssass 11-63
SOURCE or VALUE ClauSe ...c.evesevcnass ceeses 11-64
OBJECT ClauSe ...cvesvesvcaacnnsnna Geesesnaan 11-65
OCCURS ClauSe ...ioeevecsccncassaccossoassess 11-67
Linkage Sectionccccevvencncacnnans cecsesans 11-68
11.4 Example of Data Divisionceccvuene cessseanssss 11-70

xi

12.3

12.4

12.5

CONTENTS (continued)

PROCEDURE DIVISION

General Descriptioncescseeeercscsccssossssaas 12=1
Organization ...c.cciieecescesstoccencsnsescssansoss 12-1
Procedure Division Headerc.cicovcecccccces eee 12-1
Procedure Division Bodycvvoeveececsccanccees 12-2
Statements and Sentenceseccvveceesencasss 12=3
Arithmetic EXpressionscecceeeeeesccccoscessoss 12-6
Arithmetic Operatorsccceevseeencccns cresses 12-6
Formation and Evaluation Rules ceeeees 12-7
Arithmetic Statementscccoveenecrvcscscens 12-9
ROUNDED Phrasecceceecocaosscacnccs veesss 12-9
SIZE ERROR Phraseccveevevese cecsscsseses 12-9
Conditionsccevceenenas teseveans ceesenas ceeess. 12-10
Simple Conditions certseenenns eeseesess 12-10
Complex Conditionsceceeevsssevcccsnns eeeess 12-16
Condition Evaluation Rulescce0.. cetecraas 12-19
Procedure Division Statementscccc0eveenen ees 12-21
ACCEPT Statementvcceveecevencsncanecsss 12=21
ADD Statement ctessesneacas ceeesenn .o 12-24
ALTER Statementccc0ceivennes ceesessses 12-26
CALL Statementcicc000ens cesecscerenes 12-27
CLOSE Statement —-- for Consecutive Files 12-29

CLOSE Statement -- for Index
and Relative fileS ...cviveecnvccnsecconns 12-31
COMPUTE Statementcceeceescecsccveecses 12-32
COPY Statementcco0eevveeesencosccsaocss 12=33
DELETE Statement -- for Indexed Files 12-36
DELETE Statement -- for Relative Files 12-38
DISPLAY Statementcccveevcovccesoccococs 12-40
DISPLAY AND READ Statementcc00ceeeeees 12-41
DIVIDE Statementececeeeoeccccas ceesene 12-44
ENTER Statementccccvveecevcccceesecess 12-47
EXIT Statementccv0eeeeeecesccccsscsecsss 12-48
EXIT PROGRAM Statementcce000eeeeeseees 12-49
FREE Statementcc000etevesncessncesesass 12=50
GO TO Statementccceveveceenes eseesscess 12-51
HOLD Statementciccveeeeves cececnn eesss 12-52
IF Statementcciiiiveecnane ceseesescsees 12~54
INSPECT Statement cesecenans creseses 12-57
MERGE Statement ceevsscscasssass 12-64
MOVE Statementccc0eevvene ceessascsess 12=-67
MULTIPLY Statementcccecececcceconcccocs 12-73
OPEN Statement — for Consecut;ve Files 12-74
OPEN Statement -- for Indexed Files 12-77
OPEN Statement -- for Relative Files 12-79
PERFORM Statementcc00teeerveecacaess 12-82
READ Statement -~ for Consecutive Files 12-88
READ Statement -- for Indexed Files 12-93
READ Statement -- for Relative Files 12-98

xii

CHAPTER 13

APPENDICES
APPENDIX A

APPENDIX B
APPENDIX C

APPENDIX D

CONTENTS (continued)

RELEASE Statementci000cvees cesnses e
RETURN Statementcc000.. cesetecesennses
REWRITE Statement —- for Consecutive Files .
REWRITE Statement -- for Indexed Files
REWRITE Statement -- for Relative Files
ROLLBACK Statementvcceveeeecrccsccnne .o
SEARCH Statementcceevececceccnannocse
SET Statement ceesnanae Cesesecncnes]
SORT Statement ceesecscsrsescasanae .o
START Statement -- for Consecutive Files ...
START Statement -- for Indexed Files
START Statement -- for Relative Files
STOP Statement seecsissserasoasenns
STRING Statementcccveeeces. ceeeseanan
SUBTRACT Statementcveeeececenccncenas
UNSTRING Statementcccceceneeccocccacns
USE Statement ceeesesessanns .o
WRITE Statement -- for Consecutlve Files ...

WRITE Statement —— for Indexed Files
WRITE Statement —-- for Relative Files

DEBUG FEATURES

VS Debug Facility ..eveeveerienesoeecssnecoonncensns
Displaying Subscripted and Qualified Data names ...
ANST Debug Modulececeveeennencentsocsnnness
DEBUG-ITEM ...v0cteeecosecessosacasoscasssasssans
Compile Time Swltch——WITH DEBUGGING MODE
Object Time Switchiveieiiiieeiinninenees
USE FOR DEBUGGING Statement evens
Debugging Linesc.v00ene Ceesesctesasan oo
READY TRACE and RESET TRACE Statements

Reserved Wordscceeeeecceccsocnncncns creceaae .o
COBOL Compiler OpPtiONS ..ceeeecseccnssssssssacnsons
Field Attribute Charactersccceeeerciecinnenn
FACs and FAC Values cesene cescecsseneanean
Display Characteristics for
Workstation Screen Fields ceesane
List of Field Attribute Charactersc...
Workstation Screen Order Areacccceeeveccocaces
Use of the Order Areacceteeercencnocnnvas
Interpretation of the Write Control
Charactericciiiieeneencessasessennnsna
Interpretation of the Order Area
on a READciiiieeneescanessnssannnns

xiii

12-101
12-102
12-104
12-107
12-110
12-112
12-113
12-123
12-126
12-131
12-132
12-135
12-137
12-138
12-141
12-143
12-148
12-151
12-154
12-157

13-1
13-2
13-2
13-3
13-3
13-4
13-4
13-7
13-8

A-1
B-1
C-1
C-1

C-2
Cc-4
D-1
D-1

D-2

CONTENTS (continued)

Interpretation of the Order Area

on a REWRITE cecssens crsessens . D-4

Mapping Area Control ceseseen .o D-5

Displayable Characters ceeeeas D-5

APPENDIX E File Status Key Valuesceeeecevresasacosrnssans E-1
I/0 Status Cesesenssne teeene B 5 |

Consecutive Files ceesenens ceeaes cesesses BE-1

Status Key 1 ...cvivennnnnn seseecsccaaas ceseas E-1

Status Key 2 ..ceveceesscesnsncnnnans ceeeseaans E-2

Indexed FileS ...ceeeteconnesnan ceeens cessssseeses E-4

Status Key 1 cevesens Ceecsseacsssassacnns E-4

Status Key 2 ccvveivrrenvoascsannaans ceetesnnae E-S

Relative FileS .cceeececcsnanss ceeesenns ceeseseas . EBE-7

Status Key 1ivevnnn e scesecsacessnseanans E-7

Status Key 2 e aanenaas creeses ... E-8

INVALID KEY Condition cesenns Cehreersessanaas E-8

AID Characters cesteceesseasensrans cecessnaa . E-10

APPENDIX F Printer Control Characterscoeeeeeveecncennons F-1
APPENDIX G Intermediate Resultsccceviviveecnccaronnnns .. G-1
APPENDIX H Passing Parameters to COBOL Subroutlnes ceseanan H-1
APPENDIX I A Comparison of VS, ANSI, and FIPS COBOL Standards .. I-1
APPENDIX J Extension-Rightscicieiennen ceecesa ceceenae J-1
Introductioncceveveeceeeccessacnes ceesessases Jd=1

FREE EXTENSICN-RIGHTS Statement cesencane cesecesss J-4

HOLD EXTENSION-RIGHTS Formatccccceveeecncces J-5

FREE EXTENSION-RIGHTS Formatceveeeeeeeees J-6

APPENDIX K Segmentationc00. chesseesressanse ceessesse K-1
Introduction ceecsessasescssennaann seesesses K-1

Fixed Portion Ceeesrecsssesceaann K-1

Independent Portion teceanssens ceeeeanean K-1

Segmentation Classification cesees K=2

Segmentation Controlccievvunnes seees K-2

Segment-Numbers Ceecesssssesesctcassrnaas K-3

Segmentation Restrictions cesesssasssass K-3

ALTER Statementciciveveenennne eeeees K-3

PERFORM Statement P < X

SORT and MERGE Statemetscc00uenan.. K-4

DOCUMENT HISTORY

Summary of Changes for the Fifth Edition DH-1

Summary of Changes for the Fourth Edition DH-2
Summary of Changes for the Third Edition DH-5
INDEX ooooooooooooooooooooooooooo 60600000000 v 000 et et e e s 000 o o0 INDEX—I

xiv

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

FIGURES

File Creationccceecveeeeccscconsssscsasasssccans 2=7
Sequential Access of a Consecutive Filec.c... 2-13
Random Access of a Consecutive File seess 2-15
Dynamic Access of a Consecutive Filecc0c000000s. 2=17
Indexed File ProceSSingccieeeceeescecsccsccccesss 2-19
Alternate Indexed File ProceSSingceceeeceeen .o 221
Relative File ProcessSing ...cecieeeecccccsssssssceess 2—25
Processing a Log File With the

Write-Through Optionc.cc... sesecesensesens . 2=-28
Holding Multiple Resources in COBOL ceeetescececcanas ees 232
Buffer Pooling for Two Indexed Filesccc.... .. 2=-36
Multiple Buffer Poolsicvvvvenennes cerenes eeeo. 2-38
File Error Handling ...c.ccceevveecoesavcenanconss ee. 243
Use of DMS/TX in VS COBOL ..ccvevevcnnes cecans cernans 3-8
Screen for Displaying Four Fields Across a Row 4-10
Displaying Elements Across a Row cescessesses 4-11
Screen for Displaying Four Fields Down a Row 4-12
Displaying Elements Down a Row Ceseseesesessenn 4-13
Screen For Displaying Table Across and Down 4-14
Displaying Table Elements Across and Down 4-15
Sample Order Entry SCreenceeeeeeeceescasss eee. 4-16
Producing Sample Order Entry Screen ceseess 4-17
Control of Order Area Using

the ORDER-AREA OF PhrasSeeoceveceecsscscens .o 4-26
Displaying Elements Across
a Row Using Full Screen I/0ccccveevees seeessssss 4-30
Setting the Cursor, Checking the PF Key,

and Sounding the Alarmcceeeeesscecssccccces . 4-35
Use of BEFORE/AFTER ADVANCINGccceveveccanacconns 5-3
Use of Figurative Constants to Control

the Printer cesescens -
SORT Processing ceesacsnsens ceesssens ceenseas 1-3
PICTURE Character Precedence Chart 11-45
Flowchart for the VARYING Phrase of the PERFORM

Statement ceeans teseeseccecassctcenennnene .. 12-85
Flowchart for the SEARCH Statement 12-117
SEARCH ALL Example Geteesscaeacesanrensanon . 12-119
Calling Program Passing Table Entry Parameter ceseses H-3
Called Program Receiving Table Entry Parameter H-4

Holding Extension Rights in COBOLcc00000esses J-3

Xxv

Table

Table

Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table

4-1

12-1

12-2

12-3
12-4
12-5
12-6
12-7
C-1
D-1
D-2
E-1
F-1
F-2

I-2

TABLES

Effects of VALUE, SOURCE, and OBJECT Clauses on

USAGE IS DISPLAY-WS Screen Elementsee 4-6
Combination of Symbols in

Arithmetic EXpressionsceceeeescvesccscsanes 12-8
Combinations of Conditions, Logical Operators, and
Parenthesescvcveveennes cresseresasenne eeses 12-18
Permissible Moves Between Data Categories 12-71
Permissible Statements -- Consecutive Files 12-75
Permissible Statements -- Indexed Fileso 12-78
Permissible Statements -- Relative Files ceees 12-80
Valid Operands for the SET Statement ees 12-125
Field Attribute Character Valuescevcevevacs Cc-2
Write Control Characterccceveveeeesncennanss D-2
Displayable Characterseceeeecencccarenans e D-6
Attention ID (AID) Configurationscc... .. E-10
Printer Control Characters ceesescsssenns cos F-1
Figurative-Constant Settings for

Printer Controliicovveverenrocsocncnnnans cene =2
Federal Information Processing Standardo I-2
Summary of Differences in Language Concepts I-3

xvi

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used
herein,

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVAC(R) I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in

the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

Xvii

PART I

TUTORIAL

CHAPTER 1
COBOL CONCEPTS

1.1 INTRODUCTION TO VS COBOL

COBOL is an acronym for COmmon Business-Oriented Language. This
programming language is wused in business applications that require
repetitious updating of files, applications whose goal is to maintain
up-to—-date information that can be used as input by other processing
tools, such as report generation. Some benefits of COBOL as a
programming language are:

e COBOL is subject to industry-wide standards administered by the
American National Standards Institute (ANSI). Therefore, COBOL
is highly compatible among manufacturers.

e COBOL programs are relatively easy to read, as compared to
programs in other languages.

e COBOL provides record formatting, data manipulation, and file
handling capabilities that are important in data processing
applications.

e Because COBOL is a major programming language, there is a large
pool of trained programmers and analysts.

Level 1 of the following ANSI standard modules is available on the
Wang VS: The Nucleus, Table Handling, Sequential I-O, Indexed I-O,
Segmentation, Library, Debug, and Inter-program Communication. Full
Level 2 support is provided for the Relative I/0 module. VS COBOL os
further enhanced with many other higher 1level features, including
SORT/MERGE and Qualified Names. Refer to Appendix J for a comparison of
VS, ANSI, and FIPS COBOL standards.

VS COBOL is enhanced with a number of extensions that support the
interactive capabilities of the VS and advanced data management
operations. These extensions, together with other VS features provide
additional benefits to the COBOL programmer, such as:

e Easy-to-follow menus facilitating interactive communication with
the VS.

1-1

e The user can enter, validate, and correct data and can enter
edit, compile, debug, and run programs directly from the VS
workstation, Results appear on the workstation screen
immediately. This reduces programming time.

e The user can invoke a complete set of system utilities directly
from the workstation to perform common functions such as sorting,
copying, and program linking.

e An interactive symbolic debugger allows run-time debugging from
the workstation. The user can inspect and modify data by
referencing data names rather than addresses in memory.

e VS COBOL enhances standard COBOL with a transaction recovery
system providing multiple user sharing and rollback recovery of
indexed data files.

e The COBOL programmer can use the VS Procedure language to

communicate with the system. This capability reduces the
syntactical complexity typical of command or job control
languages.

1.2 STRUCTURE OF COBOL PROGRAMS

COBOL has rules for organization and syntax. Every COBOL source
program has four divisions, each of which has specific mandatory and
optional elements. These elements include sections, paragraphs, entries,
statements, clauses, phrases, and sentences. Section 8.5 describes these
elements.

The programmer must write the divisions in proper sequence, and each
must begin with the proper division header. 1In sequence, the division
headers are

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

1.2.1 Identification Division

The Identification Division defines a unique name that identifies the
program. It can also include comments about the program, such as the
author's name, the installation, and the date it was written and/or
compiled.

For a detailed discussion of the Identification Division, refer to
Chapter 9.

1-2

1.2.2 Environment Division

The Environment Division contains two sections: the Configuration
Section and the Input-Output Section.

The Configuration Section describes the characteristics of the
particular computer(s) to be used to the compiler. It can also contain a
SPECIAL-NAMES paragraph and, in VS COBOL, a paragraph that defines
figurative constants.

The Input-Output Section provides information the system needs to
control transmission and handling of data between I/0 devices and the
object program. In this section, the programmer identifies and assigns
files for the program to use and assigns them to particular devices.
During subsequent program operations, these files are used with the
device types specified in this section.

For a detailed discussion of the Environment Division, refer to
Chapter 10.

1.2.3 Data Division

The Data Division contains the names and format descriptions of all
data to be used in the program. The Data Divison, like the Environment
Division, is composed of sections.

The File Section describes the format of each file and each record
within each file the program uses. Level numbers delineate the
hierarachy of elements within a file.

The Working-Storage Section describes all data items that do not
exist as part of a file, but are used by the object program for specific
program processing. Working-Storage records can also be described in
terms of a hierarchy of levels.

The Linkage Section is required in a program invoked by another
program. A CALL...USING statement in the Procedure Division of the
calling program accomplishes the call. This section describes the data
that the called program receives from the calling program.

For a detailed discussion of the Data Division, refer to Chapter 11.

1.2.4 Procedure Division

The Procedure Division of a COBOL program controls the processing of
data. The Procedure Division consists of two main sections: an optional
Declaratives Section and a required section containing nondeclarative
procedures. Each of these sections can contain other sections and
paragraphs the programmer names. The Procedure Division statements that
control data processing include input/output, arithmetic,
decision-making, and program control statements. For a detailed
discussion of the Procedure Division, refer to Chapter 12.

1.3 DISK FILE PROCESSING

VS COBOL supports three types of disk file organization: consecutive,
relative and indexed. A consecutive organization allows a programmer
access to that file's records in the same order that they are written.
Thus, a request for record number 3 retrieves the third record written to
the file. Records in an indexed file are accessed through the value of a
field of the record called the "record key". Records in an indexed file
can have both primary and alternate record keys. Thus, a request for the
record whose primary key is 3 causes the retrieval of the record with
that value in its primary key data field, no matter when the record was
written to the file or in what order. 1In addition, programmers can
access an alternate indexed file by referencing the file's primary or
alternate keys.

Relative files consist of records uniquely identified by an integer
value greater than zero which specifies the record's 1logical ordinal
position in the file. This value is the relative record number and
controls access to the record. Records can be accessed by sequential,
random, or dynamic mode. The sequential mode allows the programmer to
access records in the ascending order of the relative record numbers of
all the records currently existing in the file. The random mode allows
the programmer to access a record by placing its relative record number
in a relative key data item, and dynamic access allows the programmer to
change mode from sequential to random and back again.

The ORGANIZATION IS (SEQUENTIAL or INDEXED) clause of the
FILE-CONTROL entry in the Environment Division specifies the file type
within a COBOL program. For indexed files, the RECORD KEY IS clause must
also be included: for alternate indexed files, the ALTERNATE RECORD KEY
clause must be included as well.

Each of these file types can be accessed by the programmer in one of
three ways: sequentially, randomly, or dynamically. Sequential access
of a consecutive file means the programmer accesses the records in the
order in which they were written. Random access of a consecutive file
allows him to access records in any order by reference to a "relative
record number" that represents the order in which a record was written to
the file.

Sequential access of indexed files retrieves the records in the
ascending order of their record key (primary or alternate) values. Using
random access for indexed files, a programmer retrieves the desired
record by placing the value of its primary or alternate record key in the
data item defined in the RECORD KEY IS or ALTERNATE RECORD KEY clause.

For consecutive or indexed files, the dynamic access mode allows the

programmer to employ both sequential and random access of the same file
within one program.

1-4

VS COBOL allows three record formats for files: fixed-length,
variable-length, and compressed. If a program specifies variable-length
records, the number of characters in the records of the file may vary: if
the program specifies fixed-length records, the number of characters must
be the same. Compressed records can save space because characters that
repeat three or more consecutive times are stored in two bytes, one for
the character and one for the number of times it repeats. The RECORD
CONTAINS clause of the File Description (FD) paragraph determines the
record format for a file.

The following four Procedure Division verbs designate the
Input/Output operations that can be performed by a program on disk
files: READ, WRITE, REWRITE, and DELETE. A file's organization
determines the kinds of operations that a program can perform on that
file. Before these operations can take place, an OPEN statement must
prepare the file for processing. The OPEN statement specifies the mode
in which the file is opened. The operations a program can perform on a
file are determined by the file's organization and the mode the program
uses to open the file. These modes are: OUTPUT, for creating a file;
INPUT, for reading from an existing file; I-0, for any Input/Output
operation on an existing file; EXTEND, for writing new records to the end
of an existing file; and SHARED, a VS COBOL extension that allows several
users to update the same file concurrently.

VS COBOL offers a number of options for enhancing file processing
efficiency. For consecutive files, the BUFFER SIZE clause of the
FILE-CONTROL entry can increase the size of the buffers set aside for
file processing. For indexed files, the RESERVE n AREAS clause of the
FILE-CONTROL entry and the SAME AREA FOR statement of the I-O-CONTROL
paragraph specify that more than one file is to share a buffer of a
certain size; this is called buffer pooling. The VALUE OF DATA AREA and
VALUE OF INDEX AREA clauses of the FD paragraph can reduce the number of
operations required when records are added to an indexed file.

Additionally, VS COBOL allows a programmer to exclusively hold
resources for update or retrieval. Holding resources is applicable to
indexed and alternate indexed files only. Resources can be identified by
the file name and by generic key. Generic key is the value of the first
N characters of a record's primary key. Resource holding is a feature of
both the DMS Sharing enviromment (discussed in Subsection 1.3.1) and the
DMS/TX environment (discussed in Section 1.4).

For a detailed discussion of disk file handling, refer to Chapter 2.

1.3.1 DMS Sharing Environment

The Wang VS offers the DMS Sharing environment in which an
application program can hold more than one record at one time. DMS
Sharing was referred to as Advanced Sharing in prior versions of this
manual. Many of the features of DMS Sharing are incorporated into the
DMS/TX environment discussed in Section 1.4 and presented more fully in
Chapter 3. A chart comparing the DMS Sharing and DMS/TX functions is
also presented in Chapter 3.

1-5

Under DMS Sharing, holding requests are made in wunits called
resources. Resources can be either a record, a generic range of keys for
an indexed or alternate indexed file, or an entire file. Program
initiated requests can be processed by the system either by using a
pre-claim strategy., in which all resources are claimed at once, or a
claim-as-needed strategy., in which resources are claimed as required by
the application.

VS COBOL continues to support all aspects of the DMS Sharing
environment. Discussions on specific functionality is presented in
Section 2.6.

1.4 DMS/TX

DMS/TX 1is a transaction recovery system. An extension of DMS
Sharing, DMS/TX provides multiple user sharing and rollback recovery of
indexed data files processed in Record Access Method (RAM). Files used
with DMS/TX are organized into a named set of indexed data files called a
database. DMS/TX file updates performed by a VS COBOL program are
grouped into units called transactions. A transaction is a related set
of record updates that are posted as a group to preserve database
consistency.

File sharing under DMS/TX is fully compatible with DMS Sharing.
DMS/TX file sharing features include:

¢ Multiple users are allowed simultaneous access to the same files,

® Programs holding resources for update do so on a claim-as-needed
basis.

¢ Any resource held for update by one task can be read without hold
by another task. Any resource held for update cannot be held by
any other task.

] More than one task can hold a resource for retrieval.

e Fach task can exclusively hold multiple resources for the
duration of a transaction.

e The system automatically releases all resources held by a task at
the conclusion of a transaction.

® Any deadlock situation is automatically resolved by the system.
DMS/TX safeguards against damage caused by a program or system

failure occuring during file wupdated through Trangaction Rollback
Recovery. Rollback recovery features include the following:

¢ Transactions are fully applied or not applied at all, i.e.,
rolled back.

1-6

e If a transaction is rolled back, all updates made to the data
files are removed, returning each file to its previous consistent
state.

¢ Consistency is maintained both within a file and between files
whose updates must be coordinated.

e Rollback is automatically performed by the system when necessary
and can be initiated as a program-invoked function.

For a detailed discussion on using DMS/TX in VS COBOL, refer to
Chapter 3.

1.5 WORKSTATION FILE PROCESSING

Because the VS is an interactive system, the user can communicate
directly with the system through the workstation, responding to prompts
from the system or querying it and receiving an immediate reply. Wang
has implemented extensions to COBOL that facilitate, and take advantage
of, these interactive capabilities. These extensions allow the user to
format the contents of the workstation screen, to move data to and from
the system and to the screen, and to determine display characteristics
(uppercase or lowercase, alphanumeric or numeric, bright or dim,
modifiable or protected, underlined or not underlined, blinking or not
blinking, blank or not blank).

The VS COBOL extensions provide two approaches to interactive data
handling. The wuser can combine these approaches within the same
program. Both approaches treat the screen syntactically as if it were a
file. Thus, a programmer assigns a file name for the screen in a SELECT
clause. The programmer also assigns a device type of "DISPLAY" and
includes a File Description entry for it in the Data Division.

The Procedure Division statement for the first method of interactive
data handling is DISPLAY AND READ. In addition to moving information
from internal storage to the workstation screen and vice versa, DISPLAY
AND READ automatically performs operations such as setting default
display characteristics, initializing fields, and validating data. In
order for the programmer to use DISPLAY AND READ, he must describe the
screen format with a Working-Storage entry, including a USAGE IS
DISPLAY-WS clause.

The second method of interactive data handling is more complex. It
uses REWRITE statements to move information to the screen, and READ
statements to transfer information from the screen to storage. This
method requires that the programmer write code to perform those
operations automatically performed by the DISPLAY AND READ statement.

1-7

Both methods can use a number of VS COBOL extensions to control
screen formatting and display characteristics. Each field displayed on
the screen has a byte preceding it that contains its Field Attribute
Character (FAC). A FAC is a hexadecimal numeral that represents a set of
display characteristics (uppercase, numeric, blinking, and so on). 1In
order to manipulate and test FACs within a program, data names can be
assigned to them by the programmer in the FIGURATIVE-CONSTANTS paragraph
of the Environment Division.

A 4-byte area in storage, called the "order area", exists for each
workstation screen display. The order area controls such workstation
features as keyboard locking (the cursor disappears and data cannot be
entered by a user from the workstation), alarm sounding (if, for example,
a user enters invalid data) and cursor positioning. As with FACs, data
names associated with hexadecimal characters in the FIGURATIVE-CONSTANTS
paragraph can reference the contents of the order area for modification
and testing.

Another VS COBOL extension, the MOVE WITH CONVERSION statement,
facilitates the processing of data entered by an interactive user through
the workstation. It converts character representation of numbers or
numeric edited data into numbers that can be used by the program for
computation.

For a detailed discussion of workstation files, refer to Chapter 4.

1.6 PRINT FILE PROCESSING

Print files and several extensions of the WRITE statement control the
content and format of printed output in VS COBOL. Designating the device
type as "PRINTER" in the FILE-CONTROL entry creates print files. The
length specified in the record description for this file is the length of
the line to be printed.

The programmer specifies the number of lines the printer skips before
or after writing a print file record by coding the BEFORE or AFTER
ADVANCING clause of the WRITE statement with an integer, a data name
having an integer value, or a data name for a hexadecimal character
(defined in the FIGURATIVE-CONSTANTS paragraph). The BEFORE or AFTER
ADVANCING clause also controls when the printer is to end one page and go
to the next. User-defined figurative constants in the WRITE statement
can control printer alarm sounding and the use of expanded print
characters, functions that some printers support.

For a detailed discussion of print control, refer to Chapter 5.

1.7 TAPE FILE PROCESSING

The VS also supports magnetic tape files. Naming the device type
"TAPE" in the SELECT statement identifies a file as a magnetic tape
file. Consecutive file organization is the only kind available for tape
files.

1-8

To make a tape file available to a COBOL program, the programmer must
specify its physical location on the tape. To do this, the programmer
can either reference labels that mark the beginning of the file on the
tape or indicate the relative position of the file on the tape with a
file number. The LABEL RECORDS ARE (STANDARD or OMITTED) clause of the
FD paragraph indicates whether the file has labels.

The VALUE OF FILENAME, LIBRARY, AND VOLUME clauses of the FD
paragraph reference tape labels. If relative position is used to locate
the file, the VALUE OF POSITION clause must be coded.

For a detailed discussion of tape files, refer to Chapter 6.

1-9

CHAPTER 2
FILE ORGANIZATION AND ACCESS

2.1 INTRODUCTION

This chapter discusses the process of creating and maintaining files
in VS COBOL. The discussion will focus on file organization (the
physical structure of the file) and file access (the program-determined
method of obtaining and storing records) for disk files. The following
VS COBOL statements maintain records on files.

READ Retrieves a record from the file.

WRITE Stores a record into the file.

REWRITE Replaces a record that has been previously READ, storing
the modified record into the file.

DELETE Removes a record from the file.

START Positions the file so that subsequent READs can retrieve

the desired group of records.

Each of these basic operations has many variations, depending on the
file organization and the precise action desired.

2.1.1 Opening and Closing a File

Before operations can be performed on records in the file, the file
must be prepared for processing. The OPEN statement, coded in the
Procedure Division, will accomplish this. In addition to recording the
fact that a file is open, the VS operating system also must know how
records will be processed. This is accomplished by coding a modifier to
the OPEN statement. This modifier is called the "open mode". Valid open
modes are as follows:

2-1

OPEN Statement Meaning

OPEN QUTPUT file-name The file does not exist. It will be
created; that is, space will be made
available for it.

OPEN INPUT file-name Records will be read from the file by
one or more users, but no modifications
will occur.

OPEN I-O file-name Records will be modified on the file.
The file is reserved for exclusive use
by the program.

OPEN EXTEND file-name The file already exists and will be
prepared for writing records at the end
of the file.

OPEN SHARED file—name Records will be modified on the f£file,
as in OPEN I-O. However, many users
can modify different records

concurrently. Records are held for
modification by the program as
requested.

To signal that the program will do no further I-O operations on the
file, the program should close the file. Closing the file releases it from
program control. To close a file, code CLOSE file-name in the Procedure
Division.

Another use of closing a file is to allow the file to be reopened in
another mode. For example a file being created must be opened in output
mode. However, WRITE is the only operation allowed in output mode. To allow
other operations, the file should be closed and reopened in I-0 or shared
mode. To create a file called FILEl and then allow all operations on it, code
the following statements.

OPEN OUTPUT FILEL.
CLOSE FILEl.
OPEN I-O FILEl.

2.1.2 File Organizations

VS COBOL supports three file organizations: consecutive, indexed and
relative files.

Consecutive Files

Consecutive files consist of records that are stored on the file in the
order they are written:; a consecutive file is specified by coding ORGANIZATION
IS SEQUENTIAL in the FILE-CONTROL entry for the file. A WRITE of a record to
a consecutive file adds a record to the end of the file. Consecutive files
are discussed in Section 2.3.

Consecutive files can be processed in one of three ways, depending on
the ACCESS MODE IS clause in the FILE-CONTROL entry for the file:
sequentially (ACCESS MODE IS SEQUENTIAL), randomly (ACCESS MODE IS
RANDOM), or a combination of sequentially or randomly (ACCESS MODE IS
DYNAMIC). Sequential access of a consecutive file is accessing records
in the order they were written. The first record is read and processed,
then the next record, and so on. Sequential access of a consecutive file
is described in Section 2.3.1.

In random access of a consecutive file, a record is accessed by its
"relative record number", which is an indicator of the ordinal position
of the record within the file. To access the 15th record in the file,
request relative record number 15 by moving 15 to the data name
referenced in the RELATIVE KEY IS phrase. Random access of a consecutive
file is described in Section 2.3.2.

In dynamic access of a consecutive file, records are accessed either
in order (sequentially) or by relative record number (randomly). Dynamic
access of a consecutive file is described in Section 2.3.3.

Indexed Files

Indexed files consist of records that are stored on the file
according to a field in the record. For each record, a field is
designated as containing a unique wvalue that identifies the record:; for
example, an employee number field in an employee record. This field is
called the "primary key". Records in an indexed file can be accessed
either in primary key order (sequentially) or by a particular primary key
value (randomly). Random access of an indexed file means that a record
may be read without reading all the records preceding it. This is an
efficient method of obtaining a record directly, since it is directly
accessible by the primary key value. Storing records in indexed files
thus provides added flexibility over sequential files (in which records
must be read in order) for record access.

Indexed files can also be processed in one of three ways, depending
on the ACCESS MODE IS clause in the FILE-CONTROL entry for the file:
sequentially (ACCESS MODE IS SEQUENTIAL), randomly (ACCESS MODE IS
RANDOM), or a combination of sequentially or randomly (ACCESS MODE IS
DYNAMIC). Sequential access of an indexed file accesses the records in
ascending primary key order. The record with the lowest primary key in
the ASCII collating sequence is read and processed, then the next record,
and so on. Before reading the record with EMPLOYEE-NUMBER = 12345, all
records with EMPLOYEE-NUMBER less than 12345 must be read.

In random access of an indexed file, however, a record is accessed by
its primary key value. This value is found in the data name referenced
in the RECORD KEY IS clause. The RECORD KEY IS data name is a field in
the FD entry for the file; its location in the record indicates the
primary key for the record. To obtain the record having this primary key
value, move the value to the RECORD KEY IS data name and issue the READ,
Therefore, to read the record with EMPLOYEE-NUMBER = 12345, the record
can be accessed without reading any other records in the file.

In dynamic access of an indexed file, records are accessed either in
primary key order (sequentially) or by a primary key value (randomly).
Indexed files are discussed in Section 2.4.

Alternate indexed files are extensions of indexed files to allow for
access of a record along up to 16 alternate paths, or alternate keys. In
addition to accessing the record along the primary key path (the standard
indexed file capability) the record can be accessed along the other
paths. The COBOL program issues a START along the desired path;
subsequent READ instructions obtain records along that particular
alternate path. The effect of alternate indexed file processing is that
the file is presorted based upon as many as 17 fields. Alternate indexed
files are discussed in Section 2.5. The use of relative files requires
Release 6.20 or greater of the VS Operating System and any VS wmachine
other than a VS50 or VS80.

Relative Files

Relative files consist of records uniquely identified by an integer
value greater than zero which specifies the record's logical ordinal
position in the file. A relative file is composed of a serial string of
areas. Each area has a relative record number and is capable of holding
a logical record. Records are stored and retrieved according to the
relative record number. For example, the tenth record is the one
addressed by relative record number 10 and is in the tenth record area,
whether or not records are written in the first nine record areas.

Relative files can be accessed in one of three modes, sequential,
random, or dynamic. In the sequential mode, records are accessed in the
ascending order of the currently existing relative record numbers. The
random access mode allows the programmer to control access to the file's
records. A desired record is accessed by the programmer placing that
record's relative record number in a relative key data item. Dymnamic
access allows the programmer to change mode from sequential to random and
back again at will. Relative files are discussed in Section 2.6.

2.1.3 Record Types

VS COBOL supports three record types: fixed-length records,
variable-length records, and compressed records. Most record types are
allowed in all file organizations. Compressed records are not allowed
for relative files. The specification of record type for a file is
accomplished by variations on the RECORD CONTAINS clause in the FD entry
for the file and is established when the file is c¢reated. The record
type specification cannot be changed after the file is created.

Fixed-Length Records

Fixed-length records, the default, means that all of the records have
the same length. Coding of the RECORD CONTAINS clause is unnecessary if
fixed-length records are desired. However if you code the RECORD
CONTAINS clause, the COBOL compiler will check the record length
specified in the RECORD CONTAINS clause against the computed record size
in the record description entry: if they disagree, the compiler will
produce a warning diagnostic for information purposes only. This
checking facility 1is particularly useful if the record structure is
complex and verification of the record size is required.

To specify fixed-length records with record-length checking, for the
file FILEl, code in the FILE SECTION as shown.

FILE SECTION.

FD FILEl
RECORD CONTAINS 100 CHARACTERS.
01 RECORD1 PICTURE X(100).

The Procedure Division statement WRITE RECORD1 will write a 100-byte
fixed-length record to the file FILEl.

Variable-Length Records

Variable-length records mean that the record length will wvary. The
size of the record area being written or rewritten determines the record
size. Variable-length records are specified by the RECORD CONTAINS N TO
M CHARACTERS clause in the FD entry for the file. M specifies the
maximum record size, while N specifies the minimum record size. When a
file is created, it contains a maximum record size; any record size equal
to or less than the maximum record size can be written. Therefore in the
variable-length records specification M cannot be greater than the record
size specified when the file was created.

To specify variable-length records for the file FILEl, code in the
FILE SECTION as shown.

FILE SECTION.

FD FILEl
RECORD CONTAINS 50 TO 100 CHARACTERS.
01 FIFTY-BYTE-RECORD PICTURE X(50).

01 ONEHUNDRED-BYTE-RECORD PICTURE X(100).

To write a 50-byte record to FILEl, code in the Procedure Division as
shown.

WRITE FIFTY-BYTE-RECORD.

To write a 100-byte record to FILEl, code in the Procedure Division
as shown.

WRITE ONEHUNDRED-BYTE-RECORD.

To write a record of any other length (up to 100 characters) add a
record description entry for a record of the desired length, and issue
the WRITE for that record description entry.

Compressed Records

Compressed records are stored on disk in a manner that, for most
files, will economize space. Compressed records are stored so that:

e If a character repeats for 3 or more times (for up to 128 times),
the character is stored in 1 byte and another byte is used to
store the number of times the character repeats.

e Every nonrepeating sequence of up to 128 characters requires an
extra byte to store the number of nonrepeating characters.

Compression is useful when many characters repeat in the record. For
example, COBOL source files contain many repeating spaces. For such a
file, compression can save much disk space -- 50 per cent and more in
many cases.

To specify a compressed file, code in the FILE SECTION as shown.
RECORD CONTAINS 100 COMPRESSED CHARACTERS.

The COBOL reserved word COMPRESSED defines a file with compressed
records. When the file is opened in output mode (OPEN OUTPUT file-name),
it will be created as a compressed file. Even though the RECORD CONTAINS
clause in the previous example does not indicate variable-length records,
the file is also created as a variable-length record file because all
files with compressed records are variable-length record files. If the
file is opened in any other mode, the COMPRESSED option may be omitted,
since the file is already defined to have compressed records and this
fact is recorded in the file label.

2.2 THE COBOL FILE PROCESSING ENVIRONMENT

Figure 2-1 is a complete COBOL program that creates an indexed file
(with no records) on disk.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. CRESFILE.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT FILEl

000007 ASSIGN TO "EXTFILE", "DISK",

000008 ORGANIZATION IS INDEXED

000009 ACCESS MODE IS DYNAMIC

000010 RECORD KEY IS THE-PRIMARY-KEY.

000011 DATA DIVISION.
000012 FILE SECTION.
000013 FD FILEl

000014 LABEL RECORDS ARE STANDARD.

000015 01 FILE1-RECORD.

000016 03 THE-PRIMARY-KEY PIC X(10).
000017 03 FILLER PIC X(70).

000018 PROCEDURE DIVISION.
000019 START-PROGRAM.

000020 OPEN OUTPUT FILEL.
000021 CLOSE FILEl.
000022 STOP RUN.

Figure 2-1. File Creation

Files are defined in COBOL by the FILE-CONTROL entries in the
Environment Division and the FD entries in the File Section of the Data
Division. Each clause in the FILE-CONTROL entry has a default; if a file
is to use the default, coding is not necessary. Only those clauses in
the FILE-CONTROL and FD necessary for the file need to be coded.

2.2.1 FILE-CONTROL Clauses Required for File Processing

In Figure 2-1, the FILE-CONTROL entry is coded on Lines 6 - 10.
Referring to this FILE-CONTROL entry, the clauses for defining a VS COBOL
file provide the following information.

e The logical file-name (the file name as known to the COBOL
program), coded on Line 6. The logical file name is FILEl.
Subsequent statements referring to the file in the program use
the logical file name.

e The parameter reference name (PRNAME) of the file, coded on Line
7. This is the external name of the file. The PRNAME is
EXTFILE. The parameter reference name is used by the VS as an
external tag when the file is opened. The COBOL program may not
have specified all the information necessary to open the file; in
that case, the VS will display a message at open time requesting
additional information. The VS uses the parameter reference name
to display a screen (the OPEN GETPARM) requesting the additional
information.

The device on which this file resides, coded on Line 7. The
device is DISK. VS COBOL supports files on disk (DISK), tape
(TAPE), printer (PRINTER), and the workstation (DISPLAY).
Specification of device type 1is optional, with DISK as the
default.

The file organization, coded on Line 8. The organization is
INDEXED. VS COBOL supports consecutive (ORGANIZATION IS
SEQUENTIAL), relative, and indexed files. For consecutive files,
records are written at the end of the file. For relative files,
records are written according to a relative record number. For
indexed files, records are written in the order determined by the
value in the primary key field. FILEl is an indexed file.

The mode by which records can be accessed, coded on Line 9. The
access mode is DYNAMIC. VS COBOL supports access of records in
the order that they were written (ACCESS MODE IS SEQUENTIAL),
random access by a value in a key field (ACCESS MODE IS RANDOM),
or a combination of sequential and random access (ACCESS MODE IS
DYNAMIC).

For indexed files, the primary key field, coded on Line 10. The
primary key is THE-PRIMARY-KEY. When a record of an indexed file
is written, the value in the primary key field determines the
placement of the record in the file. THE-PRIMARY-KEY is a field
in the record; it is defined in the record description entry as
part of the FD.

2.2.2 FD Information Required for File Processing

Referring to Figure 2-1, the FD (File Description) information
required for COBOL file processing includes:

1.

The logical file name (FILEl), coded on Line 13. This is the
same name as the logical file name specified in Line 6 of the
FILE-CONTROL entry. For every file defined in a FILE-CONTROL
entry, there must exist a corresponding FD entry; for every FD
entry, there must be a corresponding FILE-CONTROL entry. This
allows the COBOL compiler to relate information specified in the
FD entries to information specified for the FILE-CONTROL entry.

The labels attached to the corresponding physical file (LABEL
RECORDS ARE STANDARD), coded on Line 14. The LABEL RECORDS
clause is primarily used for tape files to indicate whether ANSI,
IBM, or nonlabelled tapes are being used. The LABEL RECORDS
clause is optional for disk files; LABEL RECORDS ARE STANDARD is
the default.

3. The record description entry, coded on Lines 15 - 17. The record
description entry describes the record and fields associated with
the record. The record description entry starts with the record
name FILE1-RECORD), coded on Line 15. Fields subordinate to the
record description entry are identified with level numbers
greater than 0l1. The record description entry can be implicitly
redefined in a subsequent record description entry.

For indexed files, one of the fields in the record must be specified
as a record key. The RECORD KEY clause, on Line 10 of the FILE-CONTROL
entry, identifies a field to be used as the primary key in the record.
The field THE-PRIMARY-KEY has been defined in the FILE-CONTROL entry as
the primary key for the file. The field THE-PRIMARY-KEY, specified on
Line 16, is located at the first 10 bytes of the record. If a file is
indexed, it must have a RECORD KEY clause, and the data name specified as
the record key must be defined in the record description entry.

FILEl is a file containing fixed-length records. The record size for
FILEl is computed by the COBOL compiler by adding the sizes of each of
the fields in the record description entry. In this case, the record
size is 80 bytes (10 bytes for THE-PRIMARY-KEY added to 70 bytes for
FILLER).

2.2.3 Creating the File

In the Procedure Division, FILEl is created by opening the file in
output mode, thereby creating a file label. This is done by successful
execution of the OPEN statement on Line 20. Output mode, specified by
the OUTPUT modifier of the OPEN statement, implies that the file does not
exist. OPEN OUTPUT FILE1l issues an OPEN GETPARM, with a parameter
reference name of EXTFILE, requesting the file name, library name, and
volume name, as well as the number of records the file is to have. This
information is used by the VS operating system to allocate space on the
disk. After you have entered the number of records, the file label will
be created. The CLOSE statement on Line 21 closes the file, updating the
file label. The STOP RUN statement on Line 22 terminates the program.

The OPEN GETPARM screen can be suppressed by either running the
program from a VS Procedure (refer to the VS Procedure Language Reference
manual for information on writing VS Procedures) or by supplying the file
information within the program itself. The program supplies the
necessary information to open the file, by coding the NODISPLAY option in
the FILE-CONTROL entry for the file, or by coding VALUE OF clauses in the
FD for the file.

2.2.4 Using VALUE OF Clauses to Specify File Location

A VS disk file must be uniquely defined at program execution time to
the VS operating system. A unique specification of the location of a VS
disk file is obtained by specifying three location attributes: file,
library, and volume. A disk volume may contain many libraries, which in
turn may contain many files. A VS disk file is wuniquely defined by
specifying a file name, a library name, and a volume name.

If the VS COBOL program does not specify the file location when the
file is opened, OPEN will display a message (the OPEN GETPARM) requesting

this information. However, VS COBOL provides the facility -- through
VALUE OF clauses in the FD for the file and the NODISPLAY option of the
FILE~CONTROL entry —-—- for the program to £fill in file location

information so that the OPEN GETPARM does not appear. The VALUE OF
FILENAME, VALUE OF LIBRARY, and VALUE OF VOLUME clauses allow
specification of a data name or a 1literal for the name of the file,
library, and volume respectively. For example, to define the location
attributes of the file PAYROLL in the library EMPLIB on the volume SYSTEM
for a file with an FD name of PAYFILE, code the FD clauses as shown.

FD PAYFILE
VALUE OF FILENAME IS "PAYROLL"
LIBRARY IS "EMPLIB"
VOLUME IS "SYSTEM"
LABEL RECORDS ARE STANDARD.

When the file is opened, the VS operating system will attempt to
locate the file PAYROLL in the library EMPLIB on the volume SYSTEM. If
the file has the NODISPLAY option in its FILE-CONTROL entry, only in the
case of an error (for example, the disk volume is not mounted) will the
OPEN GETPARM (requesting respecification of file parameters) appear.

The VALUE OF clauses will also accept a data name. Specifying a data
name in the VALUE OF clauses may be necessary if the actual file,
library, and volume names will be determined in the Procedure Division by
moving appropriate values in the data-name specified in the VALUE OF
clauses. To specify a file PAYROLL in EMPLIB on SYSTEM by this method,
code the FD clauses as shown.

FD EMPFILE
VALUE OF FILENAME IS FILE-NAME
LIBRARY IS LIBRARY-NAME
VOLUME IS VOLUME-NAME
LABEL RECORDS ARE STANDARD.

In Working-Storage, code the entries as shown.

WORKING-STORAGE SECTION.

77 FILE-NAME PICTURE IS X(8) VALUE IS "PAYROLL".
77 LIBRARY-NAME PICTURE IS X(8) VALUE IS "EMPLIB".
77 VOLUME-NAME PICTURE 1S X(6) VALUE IS "SYSTEM".

If any file-related information is changed when the file is opened,
the correct information is stored in .the VALUE OF data names.

2-10

2.2.5 Specifying Initial Space Allocation

When a file 1is <created, the VS operating system requires
specification of the number of records to be written to the file. This
number is used to allocate initial disk space, or "primary extent" for
the file. If the file fills up the primary extent with records, the VS
operating system will automatically allocate another disk area, or
"secondary extent”, for the file. If additional disk areas are needed,
up to 12 additional secondary extents are automatically allocated as
required. Therefore, the number of records actually on the file can
exceed the space for the number of records requested at file creation
time.

The VALUE OF SPACE clause is used to specify the number of records
for initial space allocation. VALUE OF SPACE requires a data name.
Therefore, to request space for 100 records for a file, code in the FD as
shown.

VALUE OF SPACE IS SPACE-PARAMETER
In Working-Storage, code as shown.
77 SPACE-PARAMETER PICTURE IS 9(3) VALUE IS 100.

If the file already exists, SPACE-PARAMETER is set to the actual
number of records in the file. This information is useful for processing
in which the count of records in the file is important. SPACE-PARAMETER
should be initialized to a wvalue, even though its value is replaced by
the acutal record count. If the VALUE OF SPACE data item is not
initialized, results are unpredictable.

2.2.6 Suppressing OPEN Messages

When a file is opened, the default action is for the OPEN statement
to produce a message (the OPEN GETPARM) requesting verification of the
accuracy of file parameters. In production environments this is
frequently undesirable because it interferes with smooth job execution
and permits undesired operator modifications. If the program is to be
run as a background job, the OPEN GETPARM must be suppressed because a
background job cancels if it encounters an OPEN GETPARM that cannot be
satisfied. To suppress OPEN messages (except for error conditions), do
one of the following.

1. Write a Procedure to run the program, coding an ENTER statement
for each PRNAME. Under normal conditions, this suppresses the
OPEN GETPARM. Refer to the VS Procedure Language Reference
manual for information on the ENTER statement.

2-11

2. Code the NODISPLAY option for the file in the FILE-CONTROL entry.
and the relevant VALUE OF clauses in the FD. The VALUE OF
FILENAME, VALUE OF LIBRARY, VALUE OF VOLUME, and VALUE OF SPACE
clauses, in conjunction with the NODISPLAY option of the
FILE-CONTROL entry, will fill in the required information for
OPEN. If the information is correct and OPEN can successfully
open the file, no message will be displayed.

2.3 CONSECUTIVE FILE PROCESSING IN COBOL

2.3.1 Sequential Access of a Consecutive File in COBOL

Figure 2-2 is a complete COBOL program that creates a consecutive
file and processes it sequentially.

The FILE-CONTROL entry for the consecutive file CONSEC is specified
on Lines 6 - 9. If all of the information required to open the file
successfully is specified, the OPEN GETPARM will not display when the
file is opened because the NODISPLAY option is specified on Line 7.
Consecutive file organization is defined by specifying ORGANIZATION IS
SEQUENTIAL on Line 8. Sequential access —- reading records in the order
in which they were written —- is defined by specifying ACCESS MODE IS
SEQUENTIAL on Line 9.

The FD entry for CONSEC is specified on Lines 12 - 20, The contents
of the data names referenced in the VALUE OF clauses is used to specify
information required to open the file successfully. The VALUE OF
FILENAME clause on Line 14 specifies that the contents of the data name
FILE-NAME is the name of the file on the disk or other external medium.
FILE-NAME, defined on Line 22, has a value of "CONSEC". Therefore, the
external file name for CONSEC is "CONSEC".

The VALUE OF LIBRARY clause on Line 15 specifies that the contents of
the data name DATA-LIBRARY contains the external library name for the
file. DATA-LIBRARY, defined on Line 23, has a value of "DATA".
Therefore, the external library name for CONSEC is "DATA".

The VALUE OF VOLUME clause on Line 16 specifies that the contents of
the data name DATA-VOLUME contains the external volume name for the
file. DATA-VOLUME, defined on Line 24, has a value of "SYSTEM".
Therefore, the external volume name for CONSEC is "SYSTEM".

The VALUE OF SPACE clause on Line 17 specifies that the contents of
the data name SPACE-PARAMETER contains the number of records for initial
space allocation for the file. SPACE-PARAMETER, defined on Line 25, has
a value of 3. Therefore, CONSEC will be created with an initial space
allocation of 3 records.

The RECORD CONTAINS 1 TO 100 COMPRESSED CHARACTERS clause on Line 18
specifies that when CONSEC is subsequently opened in output mode, it will
be created as a file with variable-length, compressed records. The
phrase "1 TO 100" specifies variable-length records, with maximum record
size of 100 bytes: the word "COMPRESSED" specifies compressed records.

2-12

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. CONSEC.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT CONSEC

000007 ASSIGN TO "CONSEC", "DISK", NODISPLAY,
000008 ORGANIZATION IS SEQUENTIAL
000009 ACCESS MODE IS SEQUENTIAL.

000010 DATA DIVISION.
000011 FILE SECTION.
000012 FD CONSEC

000013 LABEL RECORDS ARE STANDARD

000014 VALUE OF FILENAME IS FILE-NAME

000015 VALUE OF LIBRARY IS DATA-LIBRARY

000016 VALUE OF VOLUME IS DATA-VOLUME

000017 VALUE OF SPACE IS SPACE-PARAMETER

000018 RECORD CONTAINS 1 TO 100 COMPRESSED CHARACTERS.

000019 01 ONEHUNDRED-BYTE-RECORD PIC X(100).

000020 01 FIFTY-BYTE-RECORD PIC X(50).

000021 WORKING-STORAGE SECTION.

000022 77 FILE-NAME PIC X(8) VALUE "CONSEC".
000023 77 DATA-LIBRARY PIC X(8) VALUE "DATA".
000024 77 DATA-VOLUME PIC X(6) VALUE "SYSTEM".
000025 77 SPACE-PARAMETER COMP PIC S9(3) VALUE 3.

000026 PROCEDURE DIVISION.
000027 CREATE-CONSECUTIVE-FILE.

000028 OPEN OUTPUT CONSEC.

000029 MOVE "THIS IS A 100 BYTE RECORD" TO ONEHUNDRED-BYTE-RECORD.
000030 WRITE ONEHUNDRED-BYTE-RECORD.

000031 MOVE "THIS IS A 50 BYTE RECORD" TO FIFTY-BYTE-RECORD.
000032 WRITE FIFTY-BYTE-RECORD.

000033 CLOSE CONSEC.
000034 ADD-TO-CONSECUTIVE-FILE.

000035 OPEN EXTEND CONSEC.

000036 MOVE "THIS IS A 100 BYTE RECORD ADDED IN EXTEND MODE" TO
000037 ONEHUNDRED-BYTE-RECORD.

000038 WRITE ONEHUNDRED-BYTE-RECORD.

000039 CLOSE CONSEC.

000040 OPEN INPUT CONSEC.

000041 CONSECUTIVE-FILE-READS.

000042 READ CONSEC NEXT AT END CLOSE CONSEC STOP RUN.
000043 DISPLAY ONEHUNDRED-BYTE~RECORD.

000044 GO TO CONSECUTIVE-FILE-READS.

Figure 2-2. Sequential Access of a Consecutive File

2-13

Two record description entries are specified: an entry for a
100-byte record called ONEHUNDRED-BYTE-RECORD (coded on Line 19), and
another entry for a 50-byte record called FIFTY-BYTE-RECORD (coded on
Line 20). When a record is written to CONSEC using the WRITE statement,
one of these record description entries will be specified. If the WRITE
is specified for ONEHUNDRED-BYTE-RECORD, a 100-byte record is written; if
the WRITE is specified for FIFTY-BYTE-RECORD, a 50-byte record is written.

In the Procedure Division, the program creates a file with two
records (one record 100 bytes long, the other 50 bytes long). Then the
file is opened in extend mode and a record is added to the end of the
file. Finally, the file is opened in input mode and the three records
written to the file are read. A file processed by ACCESS IS SEQUENTIAL
can be opened in the following modes.

e Qutput mode, implying that the file does not exist and is to be
created. In the paragraph CREATE-CONSECUTIVE-FILE (Lines 27 -
33), the file CONSEC is opened in output mode, two records are
written to the file, and the file is closed. The only valid
operation on a file opened in output mode is WRITE. On Line 30,
a 100-byte record with the value THIS IS A 100 BYTE RECORD is
written; on Line 32, a 50-byte record with the value "THIS IS A
50 BYTE RECORD" is written. The file is closed on Line 33.

e Extend mode, implying that the file does exist and records are to
be appended to it. A file cannot be opened in extend mode unless
it already exists. In the paragraph ADD-TO-CONSECUTIVE-FILE
(Lines 34 - 40) the file CONSEC is opened in extend mode, one
record is written to the file, the file is closed and reopened in
input mode. The only valid operation on a file opened in extend
mode is WRITE. CONSEC is opened in extend mode on Line 35, a
100-byte record with a value of "THIS IS A 100 BYTE RECORD ADDED
IN EXTEND MODE" is added to the file on Line 38, the file is
closed on Line 39, and the file is reopened in input mode on Line
40.

¢ Input mode, implying that records are to be read from the file,
and that no updates are to be done to it. The paragraph
CONSECUTIVE-FILE-READS (Lines 41 - 44) reads the three records
written to the file in the order in which they were written. The
largest record description entry is displayed if a record was
read successfully. This guarantees that the largest record will
be displayed. When the end-of-file condition is encountered, the
AT END exit of the READ statement (coded on Line 42) is executed;
here, CONSEC will be closed and the program will terminate
normally.

2-14

2.3.2 Random Access of a Consecutive File in COBOL

Figure 2-3 is a complete COBOL program illustrating the facilities of
random access of a consecutive file.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. RANDOM.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT RNDFILE

000007 ASSIGN TO "RNDFILE", "DISK", NODISPLAY,
000008 ORGANIZATION IS SEQUENTIAL

000009 ACCESS MODE IS RANDOM

000010 RELATIVE KEY IS THE-RELATIVE-KEY.

000011 DATA DIVISION.
000012 FILE SECTION.
000013 FD RNDFILE

000014 LABEL RECORDS ARE STANDARD.

000015 01 RANDOM-FILE-RECORD-AREA PIC S9(5) COMPUTATIONAL.
000016 WORKING-STORAGE SECTION.

000017 01 THE-RELATIVE-KEY PIC 9(5).

000018 PROCEDURE DIVISION.
000019 GET-THE-FIFTH-RECORD.

000020 OPEN INPUT RNDFILE.

000021 MOVE 5 TO THE-RELATIVE-KEY.

000022 READ RNDFILE INVALID KEY DISPLAY "RECORD NOT FOUND".
000023 CLOSE RNDFILE.

000024 UPDATE-RECORD-NUMBER-3.

000025 OPEN I-O RNDFILE.

000026 MOVE 3 TO THE-RELATIVE-KEY.

000027 READ RNDFILE WITH HOLD INVALID KEY

000028 DISPLAY "RECORD NOT FOUND".
000029 MOVE 55 TO RANDOM-FILE-RECORD-AREA.

000030 REWRITE RANDOM-FILE-RECORD-AREA.

000031 CLOSE RNDFILE.

000032 STOP RUN.

Figure 2-3. Random Access of a Consecutive File

The FILE-CONTROL entry for the file RNDFILE is coded on Lines 6 - 10.
RNDFILE is specified as a consecutive file by the ORGANIZATION IS SEQUENTIAL
clause coded on Line 8 and is specified as being accessed randomly by the
ACCESS MODE IS RANDOM clause coded on Line 9. The relative record number —
the number corresponding to the order of the record on the file -- is to be
found in the data name THE-RELATIVE-KEY, as specified by the RELATIVE KEY IS
THE-RELATIVE-KEY phrase on Line 10. THE-RELATIVE-KEY is defined on Line 17 of
the program as a numeric field in Working-Storage.

2-15

The FD for RNDFILE, coded on Lines 13 - 14, specifies a record area
containing one packed decimal field of three bytes.

In the Procedure Division, the program attempts to get the fifth
record on RNDFILE. The program then attempts to update the third record
to contain a value of 55. A file processed by ACCESS IS RANDOM can be
opened in the following modes.

¢ TInput mode. Records are read from the file by relative record
number. In the paragraph GET-THE-FIFTH-RECORD (Lines 19 - 23),
an attempt is made to read the fifth record on the file by moving
the value 5 to THE-RELATIVE-KEY (the data name specified in the
RELATIVE KEY IS phrase of the FILE-CONTROL entry) on Line 21, and
then issuing the READ on Line 22. If the file does not have a
fifth record because there are less than five records on the
file, the INVALID KEY exit is taken and the message RECORD NOT
FOUND is displayed.

¢ I-0 mode. Records are read by relative record number, updated,
and rewritten in place. In the paragraph UPDATE-RECORD-NUMBER-3
(Lines 24 -~ 32), an attempt is made to read the third record on
the file by moving the value 3 to THE-RELATIVE-KEY on Line 26 and
the READ is issued on Lines 27 - 28, The WITH HOLD option of the
READ indicates that the record is held for updating. The value
55 is moved to the record area, RANDOM-FILE-RECORD-AREA, on Line
29. The record is rewritten using the REWRITE on Line 30.
Finally the file is closed and the program terminates.

Consecutive files processed using ACCESS MODE IS RANDOM must have
fixed-length records. Files with variable-length or compressed records
cannot be processed randomly.

2.3.3 Dynamic Access of a Consecutive File in COBOL

Dynamic access of a consecutive file combines sequential and random
access in one program. Dynamic access is indicated by ACCESS MODE IS
DYNAMIC in the file's FILE-CONTROL entry.

A modifier has been added to the READ statement for dynamic access to
indicate whether sequential or random reads of the records is desired. A
READ statement without the NEXT modifier implies a random read, while a
READ statement with the NEXT modifier implies a sequential read. The
program in Figure 2-4 illustrates the diffences in the coding of the READ
statement for random and sequential reads.

Dynamic access is specified on Line 9 by coding ACCESS MODE IS
DYNAMIC in the FILE-CONTROL entry. Dynamic access supports all of the
features of consecutive and random access, with the addition that records
can be read either randomly or sequentially.

2-16

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. DYNAMIC.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT DYNFILE

000007 ASSIGN TO "DYNFILE", "DISK", NODISPLAY,
000008 ORGANIZATION IS SEQUENTIAL

000009 ACCESS MODE IS DYNAMIC

000010 RELATIVE KEY IS THE-RELATIVE-KEY.

000011 DATA DIVISION.
000012 FILE SECTION.
000013 FD DYNFILE

000014 LABEL RECORDS ARE STANDARD.

000015 01 RANDOM-FILE-RECORD-AREA PIC S9(5) COMPUTATIONAL.
000016 WORKING—-STORAGE SECTION.

000017 01 THE-RELATIVE-KEY PIC 9(5).

000018 PROCEDURE DIVISION.
000019 GET-FIFTH-RECORD.

000020 OPEN INPUT DYNFILE.

000021 MOVE 5 TO THE-RELATIVE-KEY.

000022 READ DYNFILE INVALID KEY DISPLAY "RECORD NOT FOUND.".
000023 READ-THE-SIXTH-RECORD.

000024 READ DYNFILE NEXT AT END DISPLAY "END OF FILE REACHED.".
000025 DISPLAY RANDOM-FILE-RECORD—-AREA.

000026 CLOSE DYNFILE.

000027 STOP RUN.

Figure 2-4. Dynamic Access of a Consecutive File

In the paragraph GET-FIFTH-RECORD (Lines 19 - 22), an attempt is made
to read the fifth record of the file by moving the value 5 to the
RELATIVE KEY IS data name (THE-RELATIVE-KEY) on Line 21 and issuing the
READ on Line 22. This sequence of operations is equivalent to a READ
using ACCESS MODE IS RANDOM. Refer to the program illustrated in Figure
2-3, which contains a similar attempt to read the fifth record of a
consecutive file.

In the paragraph READ-THE-SIXTH-RECORD (Lines 23 -~ 27), an attempt is
made to read the sixth record of the file. This attempt is made by
executing the READ NEXT statement on Line 24. If the attempt to get the
fifth record in the paragraph GET-FIFTH-RECORD is successful, an
indicator recording that fact is established. This indicator is known as
the "current record pointer". A READ NEXT issued after establishment of
the current record pointer will attempt to read the next record in the
file — in this case, the sixth record. 1If either: (a) the attempt to
get the fifth record had failed, thereby failing to establish a current
record pointer; or (b) exactly 5 records exist on the file, the execution
of the READ NEXT statement on Line 24 would invoke the AT END exit.

2-17

2.4 INDEXED FILE PROCESSING IN COBOL

Indexed files contain records that can be accessed by referring to
the contents of a field in the file. This field is known as the "primary
key". Since the contents of the primary key field uniquely identify a
particular record, the primary key value must not duplicate a primary key
value for any other record; an attempt to write a record having a
duplicate primary key value will produce an error.

To specify an indexed file in COBOL, code the ORGANIZATION IS INDEXED
clause in the FILE-CONTROL entry. The primary key field is identified by
the RECORD KEY IS data name in the FILE-CONTROL entry. The RECORD KEY is
data name must be a field in the record as defined in the File Section.
All COBOL access modes (SEQUENTIAL, RANDOM, and DYNAMIC) are permitted
for indexed files. COBOL supports all indexed file I-O operations (READ,
WRITE, REWRITE, DELETE, and START) on all record formats.

Figure 2-5 is a complete COBOL program that illustrates processing of
an indexed file. The program creates an indexed file containing address
records for the following two hypothetical employees.

NUMBER NAME ADDRESS CITY STATE
1 William Shakespeare 555 Madison Ave. New York NY
2 Christopher Marlowe 555 Madison Ave. New York NY

The FILE-CONTROL entry for EMPLOYEE-ADDRESS-FILE, the file containing
these two records, is coded on Lines 6 - 10. EMPLOYEE-ADDRESS-FILE is an
indexed file because its FILE-CONTROL entry contains the ORGANIZATION IS
INDEXED clause, coded on Line 8. The primary key, EMPLOYEE-NUMBER, is
specified in the RECORD KEY is clause on Line 10.

EMPLOYEE-NUMBER is defined in the record description entry for
EMPLOYEE-ADDRESS-FILE on Line 16 as the first field in the record. The
Procedure Division paragraph CREATE-RECORDS-FOR-2-EMPLOYEES, coded on Lines 22
-~ 36, creates EMPLOYEE-ADDRESS-FILE and writes an address record for
EMPLOYEE-NUMBER 1 (William Shakespeare), and for EMPLOYEE-NUMBER 2
(Christopher Marlowe).

In the paragraph UPDATE-EMPLOYEE-2, coded on Lines 37 - 42, assume that
EMPLOYEE-NUMBER 2 (Christopher Marlowe), has moved from 555 Madison Avenue to
508 West 85th Street and that his address record is to be updated to reflect
the new address. NAME-AND-ADDRESS-FILE is opened in I-0 (or update) mode on
Line 38. To access the record for EMPLOYEE-NUMBER 2, the contents of the
RECORD KEY IS data name (EMPLOYEE-NUMBER) must be the correct employee number,
which is 2. This initialization of EMPLOYEE-NUMBER to Christopher Marlowe's
employee number is accomplished by successful execution of the MOVE statement
on Line 39, The record of EMPLOYEE-NUMBER 2, with the old address
information, is read by successful execution of the READ statement on Line
40. Since the access mode is dynamic, this READ statement is a random read by
the record key. The WITH HOLD option signifies that the record will be either
modified or deleted. The record is modified by moving the new address (585
West 85th Street) to the EMPLOYEE-ADDRESS field on Line 41, and the record is
updated using the REWRITE statement on Line 42.

2-18

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044
000045
000046
000047
000048
000049
000050
000051
000052

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXED.
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-ADDRESS-FILE

ASSIGN TO "NAMEADDR", "DISK", NODISPLAY,
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EMPLOYEE-NUMBER.

DATA DIVISION.

FILE SECTION.

FD EMPLOYEE-ADDRESS-FILE

LABEL RECORDS ARE STANDARD.
01 EMPLOYEE-ADDRESS—-RECORD.
03 EMPLOYEE-NUMBER PIC S9(5) COMPUTATIONAL.
03 EMPLOYEE-NAME PIC X(20).
03 EMPLOYEE-ADDRESS PIC X(20).
03 EMPLOYEE-CITY PIC X(20).
03 EMPLOYEE-STATE PIC X(2).

PROCEDURE DIVISION.
CREATE-RECORDS—-FOR-2-EMPLOYEES.
OPEN OUTPUT EMPLOYEE-ADDRESS-FILE.
MOVE 1 TO EMPLOYEE-NUMBER.

MOVE "WILLIAM SHAKESPEARE" TO EMPLOYEE-NAME.
MOVE "555 MADISON AVENUE" TO EMPLOYEE-ADDRESS.
MOVE "NEW YORK" TO EMPLOYEE-CITY.
MOVE "NY" TO EMPLOYEE-STATE.
WRITE EMPLOYEE-ADDRESS-RECORD.

ADD 1 TO EMPLOYEE-NUMBER.

MOVE "CHRISTOPHER MARLOWE" TO EMPLOYEE-NAME.
MOVE "555 MADISON AVENUE" TO EMPLOYEE-ADDRESS.
MOVE "NEW YORK" TO EMPLOYEE-CITY.
MOVE "NY" TO EMPLOYEE-STATE.

WRITE EMPLOYEE-ADDRESS-RECORD.

CLOSE EMPLOYEE-ADDRESS-FILE.
UPDATE-EMPLOYEE-2.

OPEN I-O EMPLOYEE-ADDRESS-FILE.

MOVE 2 TO EMPLOYEE-NUMBER.

READ EMPLOYEE-ADDRESS-FILE WITH HOLD.

MOVE "508 WEST 85 STREET" TO EMPLOYEE-ADDRESS.

REWRITE EMPLOYEE-ADDRESS-RECCRD.
GET-THE-FIRST-RECORD.

MOVE 0 TO EMPLOYEE-NUMBER.

START EMPLOYEE-ADDRESS-FILE KEY > EMPLOYEE-NUMBER

INVALID KEY DISPLAY "NO RECORDS IN FILE".

READ EMPLOYEE-ADDRESS-FILE NEXT.
DELETE-EMPLOYEE-1.

MOVE 1 TO EMPLOYEE-NUMBER.

READ EMPLOYEE-ADDRESS-FILE WITH HOLD.

DELETE EMPLOYEE-ADDRESS-FILE.

STOP RUN.

Figure 2-5. Indexed File Processing

2-19

The START statement enables logical positioning of a file by a
particular primary key. After the successful execution of a START
statement, a group of records can be read sequentially either by issuing
READ NEXTs for files having ACCESS MODE IS DYNAMIC or READs for files
having ACCESS MODE IS SEQUENTIAL, The START statement is useful in
reading a group of records related by their primary key values; for
example, if the city of residence is the first field of a primary key, a
START, using the name of a particular city, positions the file so that
subsequent sequential READs obtain employees residing in that particular
city.

In Figure 2-5, the paragraph GET-THE-FIRST-RECORD, coded on Lines 43
- 47, gets the first record of EMPLOYEE-ADDRESS-FILE. On Line 43, zeroes
are moved to EMPLOYEE-NUMBER, the RECORD KEY IS data name. Assuming no
employees can have negative employee numbers, the START statement on
Lines 45 - 46 will position the file to the first record, except for the
case in which no records have been written to the file. If no records
have been written to the file, the INVALID KEY exit would be taken, and
the program would display the fact that no records had been written to
the file. The START statement really means '"position the file to the
first record having EMPLOYEE-NUMBER greater than 0". The READ NEXT, on
Line 47, will read the first record with EMPLOYEE-NUMBER greater than O,
which 1is the record of EMPLOYEE-NUMBER 1, or William Shakespeare's
address record.

Assume that William Shakespeare has left the company and that his
address record is to be deleted. The paragraph DELETE-EMPLOYEE-1, coded
on Lines 48 - 52, deletes his record and ends the program. The record
with EMPLOYEE-NUMBER 1 (that of William Shakespeare) is read randomly by
moving 1 to the primary key data name EMPLOYEE-NUMBER on Line 49 and
issuing the READ on Line 50. The WITH HOLD option of the READ indicates
that the record will subsequently be either modified or deleted. In this
case, the record is deleted after successful execution of the DELETE
statement on Line 51. Finally, the program ends after successful
execution of the STOP RUN statement on Line 52.

2.5 ALTERNATE INDEXED FILE PROCESSING IN COBOL

As an extension of indexed file support, VS COBOL supports processing
of files by up to 16 alternate access paths, or alternate indices. This
powerful facility is the equivalent of having a file presorted on up to
16 different fields.

Alternate indexed file processing is used in situations where access
of a record by one of several key fields is desired. For example, a
company maintains a file of employees. Each employee has a unique
employee number. However, for reporting or updating purposes, it might
be necessary to read the employee file by city of residence. If the CITY
field is specified as an alternate index (or alternate access path), the
file (by use of the START statement) can be positioned on the alternate
path CITY. After a successful START, sequential reads will obtain
records as if they had been sorted by city.

2-20

Further, if processing all employees who lived in the city of Lowell,
the file could be positioned (using START), with the value LOWELL in the
CITY field. Sequential reads would obtain employees living in Lowell, in
employee-number order. The primary key values must be unique for every
record (every employee must have a unique employee identification
number). However, alternate key values may or may not be unique (more
than one employee may live in Lowell): the WITH DUPLICATES phrase on the
alternate key specification in the FILE-CONTROL entry for the file
specifies the option. Thus, alternate indexed file processing can
provide a quick method of referencing a particular record or group of
records.

Figure 2-6 is a complete COBOL program illustrating the features of
alternate indexed file support in COBOL.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. SHOWALTX.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT EMPLOYEE-ADDRESS-FILE

000007 ASSIGN TO "NAMEADDR", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED

000009 ACCESS MODE IS DYNAMIC

000010 RECORD KEY IS EMPLOYEE-NUMBER
000011 ALTERNATE RECORD KEY

000012 01 IS EMPLOYEE-NAME

000013 01 IS EMPLOYEE-NAME-1

000014 02 IS EMPLOYEE-CITY WITH DUPLICATES
000015 02 IS EMPLOYEE-CITY-1 WITH DUPLICATES
000016 03 IS EMPLOYEE-STATE WITH DUPLICATES.

000017 DATA DIVISION.
000018 FILE SECTION.
000019 FD EMPLOYEE-ADDRESS-FILE

000020 LABEL RECORDS ARE STANDARD.

000021 01 EMPLOYEE-ADDRESS-RECORD.

000022 03 EMPLOYEE-NUMBER PIC S9(5) COMPUTATIONAL.
000023 03 EMPLOYEE-NAME PIC X(20).

000024 03 EMPLOYEE-ADDRESS PIC X(20).

000025 03 EMPLOYEE-CITY PIC X(20).

000026 03 EMPLOYEE-STATE PIC X(2).

000027 01 ALTERNATE-ADDRESS-RECORD.

000028 03 EMPLOYEE-NUMBER-1 PIC S9(5) COMPUTATIONAL.
000029 03 EMPLOYEE-NAME-1 PIC X(20).

000030 03 EMPLOYEE-ADDRESS-1 PIC X(20).

000031 03 EMPLOYEE-CITY-1 PIC X(20).

000032 03 EMPLOYEE-STATE-1 PIC X(2).

Figure 2-6. Alternate Indexed File Processing

2-21

000033 PROCEDURE DIVISION.
000034 CREATE-RECORDS-FOR-2-EMPLOYEES.

000035 OPEN OUTPUT EMPLOYEE-ADDRESS-FILE.

000036 MOVE 1 TO EMPLOYEE-NUMBER.
000037 MOVE "WILLIAM SHAKESPEARE" TO EMPLOYEE-NAME.
000038 MOVE "1 ADMAN LANE" TO EMPLOYEE-ADDRESS.
000039 MOVE "PALM SPRINGS" TO EMPLOYEE-CITY.
000040 MOVE "CA" TO EMPLOYEE-STATE.
000041 WRITE EMPLOYEE-ADDRESS-RECORD.

000042 ADD 1 TO EMPLOYEE-NUMBER-1.
000043 MOVE "CHRISTOPHER MARLOWE" TO EMPLOYEE-NAME-1.
000044 MOVE "555 MADISON AVENUE" TO EMPLOYEE-ADDRESS-1.
000045 MOVE "NEW YORK" TO EMPLOYEE-CITY-1.
000046 MOVE "NY" TO EMPLOYEE-STATE-1.
000047 WRITE ALTERNATE-ADDRESS-RECORD.

000048 CLOSE EMPLOYEE-ADDRESS-FILE.

000049 PUT-MARLOWE-ON-STATE-PATH.

000050 OPEN I-O EMPLOYEE-ADDRESS-FILE.

000051 MOVE 2 TO EMPLOYEE-NUMBER.

000052 READ EMPLOYEE-ADDRESS-FILE WITH HOLD.

000053 REWRITE EMPLOYEE-ADDRESS-RECORD.

000054 READ-LOWEST-CITY-RECORD.

000055 MOVE LOW-VALUES TO EMPLOYEE-CITY.

000056 START EMPLOYEE-ADDRESS-~FILE KEY EMPLOYEE-CITY > EMPLOYEE-CITY
000057 INVALID KEY DISPLAY "NO RECORDS ON CITY PATH".
000058 READ EMPLOYEE-ADDRESS-FILE NEXT.

000059 DELETE~SHAKESPEARE.

000060 MOVE 1 TO EMPLOYEE-NUMBER.

000061 READ EMPLOYEE-ADDRESS-FILE WITH HOLD.

000062 DELETE EMPLOYEE-ADDRESS-FILE.

000063 STOP RUN.

Figure 2-6. Alternate Indexed File Procesing (continued)

The FILE-CONTROL entry for EMPLOYEE-ADDRESS-FILE, coded on Lines 6 -
16, specifies an alternate indexed file, because the ORGANIZATION IS
INDEXED clause is coded on Line 8. The primary key, specified in the
RECORD KEY IS clause on Line 10, is EMPLOYEE-NUMBER. As is the case for
indexed files, the primary key value must be unique for each record. The
clauses on Lines 11 - 16 specify the alternate paths. Each data name
used as an alternate path is identified in the ALTERNATE RECORD KEY IS
clause, which specifies:

¢ The ordinal number (from 1 to 16) of the path. This number
identifies the order of the path.

¢ The data name associated with the path. The data name must be
defined in the record description entry for the file.

2-22

¢ Whether duplicates are allowed. Optionally, duplicate values for
alternate keys are allowed. If the WITH DUPLICATES phrase is
coded, duplicate alternate key values are allowed; if the WITH
DUPLICATES phrase is not coded, duplicate alternate key values
are prohibited.

For example, on Line 12, ordinal path 1 (EMPLOYEE-NAME) does not
allow duplicate values because the WITH DUPLICATES phrase is omitted; on
Line 14, ordinal path 2 (EMPLOYEE-CITY) does allow duplicate values
because the WITH DUPLICATES phrase is coded.

The record description entry for EMPLOYEE-ADDRESS-FILE is coded on
Lines 19 - 32. Two records, EMPLOYEE-ADDRESS-RECORD (coded on Lines 22 -
26) and ALTERNATE-ADDRESS-RECORD (coded on Lines 27 - 32), are
specified. Three alternate paths (EMPLOYEE-NAME, EMPLOYEE-CITY, and
EMPLOYEE-STATE) are associated with the EMPLOYEE-ADDRESS-RECORD record.
These paths were identified in the FILE-CONTROL entry as paths 1, 2, and
3. Two alternate paths (EMPLOYEE-NAME-1 and EMPLOYEE-CITY-1l) are
associated with the ALTERNATE-ADDRESS-RECORD record. When a record is
written to the file, the record is also written along all the path(s)
associated with that record.

The Procedure Division paragraph CREATE-RECORDS-FOR-2-EMPLOYEES,
coded on Lines 34 - 48, creates EMPLOYEE-ADDRESS-FILE with the records
for William Shakespeare and Christopher Marlowe. The Shakespeare record
is written on Line 41 using EMPLOYEE-ADDRESS-RECORD -- a record
containing the three alternate paths EMPLOYEE-NAME, EMPLOYEE-CITY, and
EMPLOYEE-STATE. The Marlowe record is written on Line 47 using
ALTERNATE-ADDRESS-RECORD —-- a record containing the two alternate paths
EMPLOYEE-NAME-1 and EMPLOYEE-CITY-1. The Marlowe record is not written
along the state path.

The Marlowe record is written along the state path through successful
execution of the paragraph PUT-MARLOWE-ON-STATE-PATH, coded on Lines 49 -
53. The record of EMPLOYEE-NUMBER 2 (the Marlowe record) is randomly
READ with the HOLD option on Line 52. The record is rewritten using
EMPLOYEE-ADDRESS-RECORD; i.e., the record containing all three paths.
The Marlowe record was originally written using ALTERNATE-ADDRESS-RECORD,
which contained only two paths; however, by rewriting the record using a
record area containing all three paths, the record is accessible along
the third path (EMPLOYEE-STATE) as well.

The use of the START statement to position the file along a
particular path of an alternate indexed file is illustrated in the
paragraph READ-LOWEST-CITY-RECORD, coded on Lines 54 - 58. The START
statement functions like the START statement for indexed files (refer to
Figure 2-5) except that here, a particular alternate path is identified.
The sequence of statements on Lines 55 - 57 first initializes the
EMPLOYEE-CITY path to LOW-VALUES on Line 55, and then issues the START
statement using the key of EMPLOYEE-CITY. Since EMPLOYEE-CITY contains
LOW-VALUES, the START statement will position the file at the first
record containing a key higher than LOW-VALUES; which is to say., the
record on the file containing the lowest value for EMPLOYEE-CITY. The
READ NEXT statement on Line 58 will actually read this record.

2-23

The paragraph DELETE-SHAKESPEARE, coded on Lines 59 - 63, deletes the
employee address record for William Shakespeare and terminates the
program. The method is identical to the deletion of a record from an
indexed file (refer to Figure 2-5, paragraph DELETE-EMPLOYEE-1). The
record of EMPLOYEE-NUMBER 1 is READ with the HOLD option on Line 61, and
the record is deleted on Line 62. Records of an alternate indexed file
are deleted only by primary key; to remove a record from a path, the
record must be READ with HOLD and then rewritten using a record
description that does not specify the path.

When an alternate indexed file is opened in output mode, the
alternate index paths for the records that are written are not created
until the file is closed. When an alternate indexed file is opened in
I-0 mode, the alternate index paths for the records that are written are
created immediately. This dynamic creation of the index paths may
produce a noticeable delay in response time; the benefit for the cost
incurred is that the record is immediately accessible along many access
paths.

2.6 RELATIVE FILE PROCESSING IN COBOL

Relative files consist of records uniquely identified by an integer
value greater than zero which specifies the record's logical ordinal
position in the file. A relative file is composed of a serial string of
areas. Each area has a relative record number and is capable of holding
a logical record. Records are stored and retrieved according to the
relative record number. For example, the tenth record is the one
addressed by relative record number 10 and is in the tenth record area,
whether or not records are written in the first nine record areas.

Figure 2-7 is a complete COBOL program illustrating relative file
processing. The program sequentially reads the input file, TRANS-FILE,
(line 5900), moves the record key information into the relative file key
field (line 6100), and then retrieves the record in question from the
relative file (line 7300) and writes it to the output print file (line
8300).

This program example illustrates random access of a relative file.
The FILE~CONTROL entry for the relative file, lines 1600 through 2000,
details the organization, access mode, and relative key. In this
example, the records will be accessed and printed according to the order
of records in the input file, TRANS-FILE.

2-24

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. RELO0O1.
000300 ENVIRONMENT DIVISION.

000400 CONFIGURATION SECTION.
000500 SOURCE-COMPUTER. WANG-VS.
000600 INPUT-OUTPUT SECTION.

000700 FILE-CONTROL.

000800 SELECT PRINT-FILE

000900 ASSIGN TO "PRINT1" "PRINTER".
001000

001100 SELECT TRANS-FILE

001200 ASSIGN TO "T-FILE" "DISK"
001300 ORGANIZATION IS SEQUENTIAL
001400 ACCESS MODE IS SEQUENTIAL.
001500

001600 SELECT REL-FILE

001700 ASSIGN TO "R-FILE" "DISK"
001800 ORGANIZATION IS RELATIVE
001900 ACCESS MODE IS RANDOM

002000 RELATIVE KEY IS WS-RELATIVE-KEY.
002100

002200 DATA DIVISION.
002300 FILE SECTION.

002400

002500 FD PRINT-FILE

002600 LABEL RECORDS ARE STANDARD.

002700 01 PRINT-REC PIC X(132).
002800

002900 FD TRANS-FILE

003000 LABEL RECORDS ARE STANDARD

003100 RECORD CONTAINS 80 CHARACTERS.
003200 01 TRANS-RECORD.

003300 05 TRANS-KEY-FIELD PIC X(10).
003400 05 TRANS-DATA PIC X(70).
003500

003600 FD REL-FILE

003700 LABEL RECORDS ARE STANDARD

003800 RECORD CONTAINS 80 CHARACTERS.
003900 01 REL-RECORD.

004000 05 REL-KEY-FIELD PIC X(10).
004100 05 REL-DATA PIC X(70).
004200

004300 WORKING-STORAGE SECTION.

004400

004500 01 WS-RELATIVE-KEY PIC X(10).
004600 01 WS-PRINT-LINE.

004700 05 WS-PRINT-KEY-FIELD PIC X(10).
004800 05 WS-PRINT-DATA PIC X(70).
004900

005000

Figure 2-7. Relative File Processing

2-25

005100 PROCEDURE DIVISION.

005200

005300 INITIAL-RIN.

005400 OPEN INPUT TRANS-FILE.
005500 OPEN I-O REL-FILE.
005600 OPEN OUTPUT PRINT-FILE.
005700

005800 PROCESS-RIN.
005900 READ TRANS-FILE NEXT

006000 AT END GO TO END-OF-JOB.

006100 MOVE TRANS-KEY-FIELD TO WS-RELATIVE-KEY.
006200 PERFORM PROCESS-A-RELATIVE THRU PROCESS-EXIT.
006300 GO TO PROCESS-RIN.

006400

006500 END-OF-JOB.

006600 CLOSE TRANS-FILE

006700 REL-FILE

006800 PRINT-FILE.

006900 STOP RUN.

007000

007100

007200 PROCESS-A-RELATIVE.

007300 READ REL-FILE

007400 INVALID KEY DISPLAY "RECORD NOT FOUND"
007500 GO TO PROCESS-EXIT.

007600 MOVE REL-KEY-FIELD TO WS-PRINT-KEY-FIELD.
007700 MOVE REL-DATA TO WS-PRINT-DATA.

007800 PERFORM PRINT-ONE THRU PRINT-EXIT.

007900 PROCESS—EXIT.
008000 EXIT.

008100

008200 PRINT-ONE.

008300 WRITE PRINT-REC FROM WS-PRINT-LINE AFTER ADVANCING 1 LINE.
008400 PRINT-EXIT.

008500 EXIT.

008600 N

Figure 2-7. Relative File Processing (continued)

Relative files can also be accessed by the sequential and dynamic
access modes. When accessing a relative file sequentially, programmers
can use both the READ and START statements. The READ statement makes
available the next logical record of the file, while the START statement
provides a basis for logical positioning within the file for subsequent,
sequential retrieval. After . the successful execution of a START
statement, records can be read sequentially by issuing READ statements.

2-26

Dynamic access mode allows a programmer to employ both random and
sequential access in a single program. For instance, random access is
accomplished by issuing a READ statement, while sequential acccess can be
accomplished by issuing a READ NEXT statement following the successful
execution of a START statement.

2.7 DMS SHARING ENVIRONMENT

The DMS Sharing environment allows multiple programs to access and
update the same file concurrently. Consecutive, indexed, and alternate
indexed files can be opened in shared mode. The functions provided for
shared consecutive files ("log files") differ from the functions provided
for shared indexed or alternate indexed files. These differing functions
will be discussed in this section, along with program examples.

DMS Sharing is implemented in COBOL by means of the OPEN SHARED,
HOLD, HOLD LIST, and FREE ALL statements. The programmer can code the
WITH KEYS and INITIAL phrases with HOLD and HOLD LIST to request a
generic range of records. Resource conflicts can be handled by coding
the TIMEOUT and HOLDER-ID phrases with the HOLD, READ, and WRITE
statements.

2.7.1 Shared Consecutive File (Log File) Support

A shared consecutive file, or log file, provides the facility of
logging information regarding file-related updates required for an
application program. A log file can be used to provide a user-defined
audit trail of additions, updates, and deletions to a file or files. For
example, many users can update a data file concurrently by opening the
file in shared mode. By writing a record to the log file recording the
change to the data file at the time of the change, a history of changes
to the file is preserved. This may be useful for reporting purposes, or
for restoring a file to a previous state.

A log file is a consecutive file created in shared mode. If a log
file is not opened in shared mode, it is processed as a consecutive
file. Therefore, by opening a consecutive file in shared mode, a program
can process it as a log file; subsequently, another program, by opening
the same consecutive file with an open mode other than shared, can
process it as a consecutive file.

In some applications, it is necessary to write a record immediately
to the log file; in other applications, it is not necessary to do so. If
the application includes procedures that require the log file to reflect
every change to the data files at the moment they have been made, the log
file record must be written to disk immediately. If no such requirement
exists, records to be written to the log file are temporarily stored in a
buffer and written to the file only when the buffer is full (refer to
Section 2.8 for a discussion of buffering). The facility for writing a
record immediately to the log file is called the "write-through" option.

2-27

The VS distinguishes between a log file with the write-through option
and a log file without the write-through option by examining the first
character of the file name. 1If the first character of the file name is
an at-sign (@) and it is opened as a shared consecutive file, records
will be written immediately to the disk —— in other words, it will have
the write-through option. Otherwise, if the first character of the file
name is not an at-sign (@), and it is opened as a shared consecutive
file, records will be buffered and the block written to the disk only
when the block is full -- in other words, records will be buffered.
without the write~through option.

The only valid operation on log files is WRITE. Since the purpose of
a log file is to record information based on updates to other files
(indexed or alternated indexed shared files), it is assumed that while
the updates are being done the file will be opened in shared mode, to
allow many users to log their activity to the file. However, if a report
of such activity is to be produced, or if the data file is to be restored
based on information recorded in the log file, the file should be opened
using an open mode other than shared and processed as a consecutive file.

The log file need not exist before being opened in shared mode. The
operating system will create a log file with a default record count of
1000.

Figure 2-8 is a complete COBOL program that writes a record to a log
file using the write-through option.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. LOGFILE.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT LOGFILE

000007 ASSIGN TO "LOGFILE", "DISK", NODISPLAY,
000008 ORGANIZATION IS SEQUENTIAL

000009 ACCESS MODE IS DYNAMIC.

000010 DATA DIVISION.

000011 FILE SECTION.

000012 FD LOGFILE

000013 VALUE OF FILENAME IS "@LOGFILE"

000014 LABEL, RECORDS ARE STANDARD.

000015 01 LOG-FILE-RECORD-NUMBER PIC S9(5) COMPUTATIONAL.
000016 PROCEDURE DIVISION.

000017 OPEN-THE-LOGFILE,

000018 OPEN SHARED LOGFILE.

000019 WRITE-RECORD-IMMEDIATELY.

000020 MOVE 1 TO LOG-FILE-RECORD-NUMBER.
000021 WRITE LOG-FILE-RECORD-NUMBER.
000022 STOP RUN.

Figure 2-8. Processing a Log File with the Write-Through Option

2-28

The FILE-CONTROL entry for LOGFILE, coded on Lines 6 - 9, specifies a
consecutive file, because the ORGANIZATION IS SEQUENTIAL clause is coded
on Line 8, to be processed in dynamic access mode, because ACCESS MODE IS
DYNAMIC is coded on Line 9. At this point, the log file cannot be
distinguished from any other consecutive file to be processed in dynamic
access mode.

The record description entry for LOGFILE is coded on Lines 12 - 15.
As specified, this could be a record description entry for a consecutive
file.

Only when the file is opened in shared mode, by the OPEN statement on
Line 18, does the file become a log file. If LOGFILE had been opened in
any mode other than shared (for example, in I-0) mode, it would not have
become a log file.

The only valid operation on a log file is WRITE. A record containing
the value 1 is written to LOGFILE on Line 21. 1In addition, since the
first character of the file name is an "@" (the VALUE OF FILENAME clause
on Line 13 specified the mname "@LOGFILE") the record is written
immediately to the disk. If the first character of the file name had not
been an "@", the record would have been written only if the buffer was
full.

2.7.2 Shared Indexed File Support

The DMS Sharing environment offers two levels of functionality for
indexed (or alternate indexed) files opened in shared mode. The first
level, Elemental DMS Sharing, allows a program to hold one record at a
time. The second level, DMS Sharing, allows a program to hold more than
one record at a time. Holding a record reserves that record for
subsequent modification. Opening a file in shared mode provides the
programmer with the same functions as opening a file in I-O mode. These
functions are READ, WRITE, REWRITE, DELETE, and START. To open a file in
shared mode, the programmer codes the OPEN statement as follows:

OPEN SHARED file—name.

To reserve a record for subsequent modification, the programmer codes
the READ statement with the HOLD phrase as follows:

READ WITH HOLD

Elemental Sharing

Elemental DMS sharing allows a program to hold only one record at a
time. No program can hold a record currently being held by another
program. Therefore, another program issuing a READ with the WITH HOLD
phrase must wait until the program holding the record releases it.
Releasing the record is done implicitly by successful execution of the
following statements:

2-29

e A REWRITE of the record
] A DELETE of the record

¢ A READ WITH HOLD of another record (even if the record is in
another file)

e A CLOSE on the file.

Because other programs must wait for a held record to be released, it
is recommended that a record be held only where necessary. A READ with
HOLD must be issued previous to issuing a REWRITE or a DELETE, regardless
of whether the file is opened in I-O or shared mode. A REWRITE or a
DELETE issued without a previous READ with the WITH HOLD phrase will
produce an error.

DMS Sharing

DMS Sharing allows a program to hold more than one record and/or file
at a time. The data being held is referred to as resources. Resources
are held as a group. This allows a program to perform related updates or
retrieval, with options for handling conflicting resource requests.
Requests for resources may be made on either a preclaim or
claim-as-needed basis.

Resources can be a record, a range of records in an indexed file
(identified by a generic primary key), or a f£file. Resources are
identified by the primary key as follows:

e A record resource is identified by the value of the record's
primary key.

e A generic_key resource is identified by the wvalue of the first N
characters of the records' primary key. For example, if the
primary key is five characters 1long, the user can specify a
generic key with the first three characters of the primary key
equal to "100". In this case, all records which have the first
three characters of the primary key equal to "100" are included
in the resource.

¢ A file resource is identified by the name of the indexed or
alternate indexed file.

Holds for Update and for Retrieval

A resource can be held either for update or for retrieval depending
upon the level of concurrent access that is desired.

When a resource is held for update, records within the resource can
be modified (by WRITE, REWRITE, or DELETE) only by the program issuing
the hold. Other programs can read the data in the resource:; however, no
other programg can either hold or update the resource. This restriction
guarantees the integrity of the data in the resource.

2-30

When a resource is held for retrieval, no program, including the one
holding the resource, can modify the resource, but any program can read
the resource. This ensures that no records within the resource are
modified until the resource is released. If this precaution is not
taken, it is possible that a program will read a record which does not
reflect the most recent modifications to it. More than one program can
hold the same resource for retrieval.

A program holding a resource in one hold class, retrieval or update,
must release the resource before it can hold that resource or any items
within it in the other hold class.

Preclaim Strategy

Programs c¢laiming resources using the preclaim strategy hold all
resources at once. The object program issues a HOLD statement, which
requests that all resources specified in the HOLD statement and in any
HOLD LIST statements issued after a previous HOLD statement (or after the
start of the program, if no HOLD statements have yet been issued) be held
as a group. The system must be able to hold all the resources at once:
if any resource cannot be held, the entire HOLD request is denied. When
a HOLD request is denied, the 1list of desired resources must be built
again before issuing another HOLD statement. In the preclaim strategy.
in order to request additional resources, previously held resources must
first be released by means of the FREE ALL statement.

Handling Resource Request Conflicts

A request to hold resources for update will not be honored while
another program is holding the resources for update. The requesting
program must wait for the holding program to release the rights or
resources. The programmer can specify, through the TIMEOUT phrase, how
many seconds (0 to 255) to wait for a hold request to be granted. If the
request cannot be granted within the specified period, the program can
examine the HOLDER-ID data name to determine the ID of the user holding
the requested items. Without the TIMEOUT phrase, the length of the wait
is unbounded.

HOLD Statement

The HOLD statement is the COBOL method for requesting holding of
specified resources (records, a generic key, and/or files). The resource
can be held either for retrieval purposes (using the FOR RETRIEVAL
phrase) or for update purposes (using the FOR UPDATE phrase). The number
of seconds (0 to 255) which the program will wait can be specified in the
TIMEOUT phrase. If the HOLD request cannot be satisfied within the
specified number of seconds, the data name associated with the HOLDER-ID
phrase contains the ID of the user who is running the program preventing
the HOLD request from being granted.

2-31

Figure 2-9 is a complete COBOL program illustrating the VS COBOL
statements that support the holding of multiple resources. Lines 51 to
56 illustrate the HOLD statement with the TIMEOUT phrase. In this
example, the program requests that records of PERSONNEL-FILE be held for
retrieval. If this request cannot be honored (for example, another
program is holding all or part of PERSONNEL-FILE for update), the program
waits 5 seconds (specified in the TIMEOUT phrase). If the request is not
honored within 5 seconds, the 3-character field name WHO-HAS-IT contains
the ID of the user whose program is preventing the request from being
honored, and a message indicating that WHO-HAS-IT is holding
PERSONNEL-FILE is displayed.

Holding a Generic Key of Records

A COBOL program can hold a generic range of records of a shared
indexed file. The WITH KEYS option of the HOLD statement defines the
range as those records having a particular primary key. Coding the
INITIAL phrase defines the range as those records having a specified
value in the first N characters of the primary key.

Lines 48 to 51 of Figure 2-9 illustrate how to hold a range of
records of an indexed file. EMPLOYEE-FILE is an indexed file with a
primary key, EMPLOYEE-NUMBER, of 5 characters. Data name DEPARTMENT
references the first three characters of EMPLOYEE-NUMBER. To hold the
records of employees in department 100, move "100" to DEPARTMENT on line
48 and specify WITH KEYS INITIAL 3 CHARACTERS OF EMPLOYEE-RANGE-NUMBER on
line 50. When the HOLD is issued (line 51), all records of EMPLOYEE-FILE
whose primary key start with 100 are held.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. HOLDEXMP.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT EMPLOYEE-FILE

000007 ASSIGN TO "EMPLOYEE", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED

000009 ACCESS MODE

000010 IS DYNAMIC

000011 RECORD KEY IS EMPLOYEE-NUMBER.

000012 SELECT PERSONNEL-FILE

000013 ASSIGN TO "PERSONS", "DISK", NODISPLAY,
000014 ORGANIZATION IS INDEXED

000015 ACCESS MODE IS DYNAMIC

000016 RECORD KEY IS PERSONNEL-RECORD-NUMBER.

000017 DATA DIVISION.

000018 FILE SECTION.

000019 FD EMPLOYEE-FILE

000020 LABEL. RECORDS ARE STANDARD.

Figure 2-9. Holding Multiple Resources in COBOL

000021 01 EMPLOYEE-RECORD.

000022 03 EMPLOYEE-NUMBER.

000023 05 DEPARTMENT PIC XXX.

000024 05 FILLER PIC XX.

000025 03 EMPLOYEE-NAME PIC X(20).
000026 FD PERSONNEL-FILE

000027 LABEL RECORDS ARE STANDARD.
000028 01 PERSONNEL-RECORD.

000029 03 PERSONNEL-RECORD-NUMBER PIC 9(5).
000030 03 PERSONNEL-DATA PIC X(20).
000031 WORKING-STORAGE SECTION.

000032 77 WHO-HAS-IT PIC X(3).

000033 PROCEDURE DIVISION.
000034 START-PROGRAM.

000035 PERFORM HOLD-RESOURCES THRU END-~HOLD.

000036 STOP RUN.

000037 HOLD-RESOURCES.

000038 OPEN SHARED EMPLOYEE-FILE.

000039 OPEN SHARED PERSONNEL-FILE.

000048 MOVE "100" TO DEPARTMENT.

000049 HOLD LIST RECORDS OF EMPLOYEE~FILE

000050 WITH KEYS INITIAL 3 CHARACTERS OF EMPLOYEE-NUMBER.

000051 HOLD RECORDS OF PERSONNEL~FILE FOR RETRIEVAL

000052 TIMEOUT OF 5 SECONDS

000053 HOLDER-ID IN WHO-HAS-IT

000054 DISPLAY WHO-HAS-IT

000055 " is holding PERSONNEL-FILE and records with first 3 charac
000056- "ters of '100' in EMPLOYEE-FILE."

000057 GO TO CLOSE-FILES.

000058 DISPLAY "PERSONNEL-FILE and records with first 3 characters
000059~ "of '100' in EMPLOYEE-FILE are held by this program.".
000061 FREE ALL.

000062 CLOSE-FILES.

000063 CLOSE EMPLOYEE-FILE, PERSONNEL-FILE.

000064 END-HOLD.
000065 EXIT.

Figure 2-9. Holding Multiple Resources in COBOL (continued)

HOLD LIST Statement

A program in the DMS Sharing environment can build a 1list of
resources using the HOLD LIST statement. Execution of the HOLD LIST
statement does not hold any resources; the resource request is merely
added to a 1list. When a HOLD statement (without the LIST option) is

encountered, the program attempts to hold all the resources on the list.

If it is impossible for any resource on the list to be held, none of the
resources are held, and the list must be rebuilt before being requested

again.

2-33

The ability to construct a list of resources to hold can be useful in
many applications. For example, when customer orders are being
processed, it is usually desirable to update both the order file and the
inventory file at the same time. The following code can hold two such
files for simultaneous updating.

HOLD LIST RECORDS OF INVENTORY-FILE FOR UPDATE.
HOLD RECORDS OF ORDER-FILE FOR UPDATE.

When the HOLD for records in ORDER-FILE is executed, an attempt is made
to hold both INVENTORY-FILE (the resource requested in HOLD LIST) and
ORDER-FILE (the resource requested by the HOLD).

The HOLD LIST statement is illustrated on lines 49 and 50 of Figure
2-9. ‘

FREE Statement

A program should release resources when the need for them has been
satisfied. This is done by coding the FREE statement. If the program
does not code the FREE statement, other programs are prevented from
obtaining needed resources. The program will release all resources at
once if FREE ALL is coded.

2.8 FILE PERFORMANCE OPTIONS IN COBOL

Relative to processing 1logical records in memory, transferring
physical blocks from the disk to memory is a time consuming process: the
more disk I/O operations, the slower the file performance. The VS
provides strategies for tuning file performance. These strategies are the
large buffer strategy for consecutive files, the buffer pooling strategy
for indexed files, and the specification of index and data packing
density. These strategies are not guaranteed to increase file
performance. For example, if the size of the buffers is enlarged (an
action that should theoretically enhance performance), other unintended
consequences that reduce performance can result (such as an increase in
the paging rate). The file performance options provided by COBOL are
tools that should be used with care.

2.8.1 Large Buffer Strategy for Consecutive Files

A buffer is a memory area that temporarily holds blocks transferred
from the disk. The 1larger the buffer, the more data that can be
transferred per disk I/O operation. The minimum buffer size for a disk
file is 2K, or one physical disk block. For processing consecutive
files, VS COBOL provides the option of increasing the buffer size to a
maximum of 18K. To increase the buffer size, code the BUFFER SIZE IS
clause in the FILE-CONTROL entry for the file.

2-34

2.8.2 Buffer Pooling Strateqy for Indexed Files

Multiple Files in a Buffer Pool

For indexed files opened in I-O mode, file performance may be
enhanced by use of the "buffer pooling" strategy. Buffer pooling is
automatically used for indexed files opened in shared mode. In buffer
pooling, one buffer area is used by many indexed files. When a disk
block is read, the VS operating system will determine what block in the
buffer pool has been least recently used, and overlay that block. This
means that buffer areas that have been recently referenced will remain in
memory, thus saving disk I/0 operations. A buffer pool of up to 120K (60
areas of 2K each) can be allocated; any number of indexed files in the
same program can participate in the pool.

To specify buffer pooling, perform the following operations.

1. Specify the size of the buffer pool. This is accomplished
through the RESERVE NN AREAS clause of the FILE-CONTROL entry for
one (and only one) of the indexed files participating in the
buffer pool.

2. Specify the files sharing the buffer pool. This is accomplished
through the SAME AREA FOR filel, file2, ... clause in the
I-O-CONTROL section of the Environment Division.

The buffer pool is allocated when one of the files specified in the
SAME AREA clause is opened in I-O mode. The buffer pool is deallocated
when all the files in the buffer pool have been closed. After a file in
the buffer pool has been opened in I-O mode, buffer pooling statistics
can be shown by pressing HELP, PF3 and PF2. The buffer pooling
statistics will show buffer hit counts and buffer miss counts, which are
counts of whether a requested record to be read was found in the buffer
(hit count), or whether it was not found in the buffer (miss count). The
buffer pooling statistics are a tool for monitoring file access
performance. Recompiling the program after enlarging the buffer pool
{coding a larger number in the RESERVE NN AREAS clause) or altering the
number of files in the buffer poolmay enhance file processing performance.

Figure 2-10 is a complete COBOL program showing buffer pooling
implementation for two indexed files. The indexed files EMPLOYEE-FILE
and PERSONNEL-FILE participate in a buffer pool. This participation is
specified by the SAME AREA clause coded on Line 18. The size of the
buffer pool is 20 areas (10 areas of 2K bytes each). This size is
specified by the RESERVE 10 AREAS clause of the FILE-CONTROL entry for
EMPLOYEE-FILE, as coded on Line 11.

The buffer pool is actually allocated when one of the files is opened
in I-O0 mode. After EMPLOYEE-FILE is successfully opened in I-O mode by
execution of the OPEN statement on Line 33, the buffer pool is in use.
The buffer pool is deallocated after successful execution of the CLOSE
statement on Line 37.

2-35

One File In A Buffer Pool

Buffer pooling can be specified for one file. A buffer pool for one
file should improve file performance because the program takes advantage
of the buffer replacement optimization provided by the VS operating
system. To specify buffer pooling for one file, repeat the file name in
the SAME AREA clause. To specify a buffer pool containing only the file
FILEl code in I-O-CONTROL as shown.

SAME AREA FOR FILEl FILEl.

Multiple Buffer Pools

Multiple buffer pools can be specified by the following procedure:

1. Repeat the SAME AREA clause for each buffer pool to be defined.
Specify the files to share the buffer pool after each SAME AREA
specification. For example, if FILEl and FILE2 share one buffer
pool, and FILE3 and FILE4 share another buffer pool, code in
I-O-CONTROL as follows:

I-O-CONTROL.
SAME AREA FOR FILEl FILE2
SAME AREA FOR FILE3 FILE4.

2. Specify the size of each buffer pool. One (and only one) file
referenced in each SAME AREA clause must have a RESERVE NN AREAS
clause coded, which declares the size of each buffer pool.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. BUFPOOL.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT EMPLOYEE-FILE

000007 ASSIGN TO "EMPLOYEE", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED

000009 ACCESS MODE IS DYNAMIC

000010 RECORD KEY IS EMPLOYEE-NUMBER

000011 RESERVE 10 AREAS.

000012 SELECT PERSONNEL-FILE

000013 ASSIGN TO "PERSONS", "DISK", NODISPLAY,
000014 ORGANIZATION IS INDEXED

000015 ACCESS MODE IS DYNAMIC

000016 RECORD KEY IS PERSONNEL-RECORD-NUMBER.
000017 I-O-CONTROL.

000018 SAME AREA FOR EMPLOYEE-FILE PERSONNEL-FILE.

000019 DATA DIVISION.

Figure 2-10. Buffer Pooling For Two Indexed Files

2-36

000020 FILE SECTION.
000021 FD EMPLOYEE-FILE

000022 LABEL RECORDS ARE STANDARD.

000023 01 EMPLOYEE-RECORD.

000024 03 EMPLOYEE-NUMBER PIC 9(5).
000025 03 EMPLOYEE-NAME PIC X(20).
000026 FD PERSONNEL-FILE

000027 LABEL RECORDS ARE STANDARD.

000028 01 PERSONNEL-RECORD.

000029 03 PERSONNEL-RECORD-NUMBER PIC 9(S).
000030 03 DEPARTMENT PIC X(20).

000031 PROCEDURE DIVISION.
000032 START-PROGRAM.

000033 OPEN I-O PERSONNEL-FILE.

000034 OPEN I-O0 EMPLOYEE-FILE.

000035 DISPLAY "BOTH FILES SHARE A 20K BUFFER POOL.".
000036 CLOSE PERSONNEL-FILE.

000037 CLOSE EMPLOYEE-FILE.

000038 NO-BUFFER-POOL.

000039 STOP RUN.

Figure 2-10. Buffer Pooling For Two Indexed Files (continued)

Figure 2-11 is a complete COBOL program specifying two buffer pools,
each with one file. The first buffer pool, specified in the SAME AREA
clause on Line 19, reserves a buffer pool for EMPLOYEE-FILE; the second
buffer pool, specified in the SAME AREA clause on Line 20, reserves a
buffer pool for PERSONNEL-FILE. As in the program in Figure 2-11, the
buffer pool is allocated when a file in it is opened, so that the first
buffer pool is allocated by the OPEN statement on Line 35 and the second
buffer pool is allocated by the OPEN statement on Line 36. The buffer
pool is deallocated when all files in it have been closed; therefore, the
first buffer pool is deallocated by the CLOSE statement on Line 38, while
the second buffer pool is deallocated by the CLOSE statement on Line 39.

To show statistics for the two buffer pools, press HELP, PF 3, and PF
2 when the DISPLAY statement on Line 37 appears.

2.8.3 Setting the Index and Data Packing Densities

All VS disk files are stored in 2K units, called blocks. Records of
indexed files are stored in a data block in primary key order. If more
records than can fit in a block are added, a new block is designated as a
data block and the record is added there. All data blocks contain a
pointer to the next data block. An index block contains pointers to the
data block containing the record; for a read by primary key, the index
block is scanned to obtain the block number for the data block containing
the record, and the data block, in turn, is scanned for the actual record.

2-37

If a record or an index does not fit in a block, because it has to be
added in the middle of a block, it is necessary to move the part of the
block that does not fit to another block, and to add the record in the
original block. This process is called "block splitting".

To reduce the need for block splitting and increase record access
performance on indexed files, VS COBOL provides a method for allocating
space for future record additions. The added records can fit in the
preallocated space and a new block need not be created. A percentage of
the index blotk and/or the data block can be filled with records; the
remainder of the block is not filled with records but available for
future additions. In the File Section, coding the following statements
for the file -- assuming EIGHTY and FIFTY are defined in Working-Storage
as numeric items with values of 80 and 50 -— when the file is opened in
output mode and records are written to it, only 80 per cent of the index
block and 50 per cent of the data block is filled with records: the rest
is available for future record additions.

VALUE OF INDEX AREA IS EIGHTY
VALUE OF DATA AREA IS FIFTY

Setting the index or data packing density in itself does not
guarantee improved file performance. The optimum index and data packing
density depends upon the amount and degree of randomness of record
updates and/or additions and, as such, is application-dependent.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. BUFPOOL2.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT EMPLOYEE-FILE

000007 ASSIGN TO "EMPLOYEE", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED

000009 ACCESS MODE IS DYNAMIC

000010 RECORD KEY IS EMPLOYEE-NUMBER

000011 RESERVE 10 AREAS.

000012 SELECT PERSONNEL-FILE

000013 ASSIGN TO "PERSONS", "DISK", NODISPLAY,
000014 ORGANIZATION IS INDEXED

000015 ACCESS MODE IS DYNAMIC

000016 RECORD KEY IS PERSONNEL-RECORD-NUMBER
000017 RESERVE 20 AREAS.

000018 I-O-CONTROL.

000019 SAME AREA FOR EMPLOYEE-FILE EMPLOYEE-FILE

000020 SAME AREA FOR PERSONNEL-FILE PERSONNEL-FILE.

000021 DATA DIVISION.

Figure 2-11. Multiple Buffer Pools

2-38

000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041

FILE SECTION.
FD EMPLOYEE-FILE
LABEL. RECORDS ARE STANDARD.
01 EMPLOYEE-RECORD.
03 EMPLOYEE-NUMBER PIC 9(5).
03 EMPLOYEE-NAME PIC X(20).
FD PERSONNEL-FILE
LABEL RECORDS ARE STANDARD.
01 PERSONNEL-RECORD.
03 PERSONNEL-RECORD-NUMBER PIC 9(5).
03 DEPARTMENT PIC X(20).
PROCEDURE DIVISION.
START-PROGRAM.
OPEN I-O PERSONNEL-FILE.
OPEN I-O EMPLOYEE-FILE.
DISPLAY "TWO BUFFER POCLS ARE IN USE.".
CLOSE PERSONNEL-FILE.
CLOSE EMPLOYEE-FILE.
NO-BUFFER-POOL.
STOP RUN.

Figure 2-11. Multiple Buffer Pools (continued)

2.9 HANDLING FILE-RELATED ERROR CONDITIONS IN COBOL

Occasionally, an operation on a file (OPEN, CLOSE, READ, WRITE,
REWRITE, DELETE, or START) may not be successful. This can be caused by:

An error in the COBOL program. A READ operation for a file
opened in output mode, or a REWRITE of a record that has not been
read with the hold option, are examples of typical COBOL
file-related programming errors.

An error in access of the data file. A sequential READ operation
on a file in which the end-of-file condition has been reached, or
a WRITE operation of a record of an indexed file that has a
duplicate primary key value, are examples of typical file-related
data access errors.

A system-related error. A WRITE operation to a file in which
there is no further room for expansion or a permanent I/0 error
on the file resulting from a hardware malfunction are examples of
typical system-related errors.

2-39

These errors can be treated as cancel conditions in which the only
option is to cancel the program after the system issues a message.
Options in VS COBOL, however, allow the program to intercept the error
conditions, allowing the program to continue with the possibility that
the operation can be reissued successfully. For example, in a data entry
application, the COBOL program displays a screen requesting information
regarding an employee. After the information has been validated, the
program issues a WRITE to the indexed file EMPLOYEE-FILE, which has a
primary key of EMPLOYEE-NAME. If a record having the wvalue in
EMPLOYEE-NAME already exists, this is a file-related error that will
produce a system message. At that point, the only option is to cancel
the program.

If, on the other hand, the program could recognize the error and, if
the error occurs, redisplay the screen with an error message and request
a different value for EMPLOYEE-NAME, a subsequent WRITE of the record of
EMPLOYEE-FILE may be successful and the program can proceed.

VS COBOL provides the following facilities for intercepting
file-related errors:

e The AT END exit for a sequential READ. For a sequential READ (a
READ for a file with ACCESS MODE IS SEQUENTIAL, or a READ NEXT
for a file with ACCESS MODE IS DYNAMIC), if the end-of-file
condition is encountered (there are no more records in the file),
the program will perform the imperative statement coded with the
AT END exit. For example, to display the number of records in
the file when the end-of-file condition is encountered for the
file FILEl, code the following statement: :

READ FILEl1 AT END DISPLAY "NUMBER OF RECORDS = " RECORD-NUMBER.

e The INVALID KEY exit for a random READ, a DELETE, a REWRITE, a
START, or a WRITE. If any operation other than a sequential read
is attempted and is unsuccessful because of a data file access
error, the program will perform the imperative statement coded
with the INVALID KEY exit. For example, to display a message
when a duplicate key value for a record is encountered for the
record EMPLOYEE-RECORD, code the following statement:

WRITE EMPLOYEE-RECORD INVALID KEY DISPLAY "Invalid key
encountered."

The INVALID KEY exit can be coded with READ, DELETE, REWRITE, START,
or WRITE to detect such data file access errors.

2-40

e A USE procedure in the DECLARATIVES for a system-related error on
the file. If a system-related error, such as a permanent I/O
error or a WRITE operation is attempted on a file which has no
room for expansion, or if an INVALID KEY or AT END exit is not
coded, a USE procedure in the DECLARATIVES (at the beginning of
the Procedure Division) can be coded to handle this condition.
The system message will still be produced. After the message is
produced, the program branches to the DECLARATIVES logic. For
example, to code statements handing I/0 errors 1if they are
detected on EMPLOYEE-FILE, code the following:

PROCEDURE DIVISION.
DECLARATIVES,
I-O-ERROR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.
INVALID-FUNCTION-PARAGRAPH.
* Code I/0 error logic here.
END DECLARATIVES.

The USE AFTER STANDARD ERROR PROCEDURE is executed only if a
system-related error is detected on EMPLOYEE-FILE as the result of an
operation (OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or START). The
system error message is first displayed, then a branch is taken to
INVALID-FUNCTION-PARAGRAPH, where the program-directed error handling is
executed. END DECLARATIVES signifies the end of the error 1logic and
causes a branch to the statement after the statement that caused the
branch to the DECLARATIVES.

Figure 2-12 is a complete COBOL program that demonstrates the use of
the INVALID KEY exit, the AT END exit, and the DECLARATIVES 1logic to
process file-related errors without causing the program to cancel.

The FILE-CONTROL entry and record description entry define an indexed
file FILEl. In all the COBOL programs analyzed up to this point, the
program starts executing the first statement in the Procedure Division.
The only exception is DECLARATIVES. DECLARATIVES are only executed in
case of system-related errors that are to be processed by the program.
In Figure 2-12, the DECLARATIVES start on Line 22 and end with the END
DECLARATIVES statement on Line 28. If DECLARATIVES appear in a program,
the first statement executed is the statement after END DECLARATIVES -—-
here, the paragraph GENERATE-INVALID-KEY, starting on Line 30.

The paragraph GENERATE-INVALID-KEY, coded on Lines 30 - 35, opens
FILEl in output mode, and then issues two WRITE statements. The first
WRITE statement, coded on Line 32, successfully writes a record to
FILEl. The second WRITE statement, coded on Line 33, generates an
INVALID KEY condition because the entire record, and thus the primary
key, is a duplicate of the record that was written to the file. Since
the INVALID KEY exit was coded for the WRITE statement, the imperative
statement associated with the INVALID KEY exit -- the DISPLAY statement
on Line 34 -- is executed, and the message "INVALID KEY condition
encountered." displays. After the message displays, if ENTER is pressed,
the next statement is executed and FILEl is closed. FILEl now contains
one record: the record written by the WRITE statement of Line 32.

2-41

The paragraph GENERATE-AT-END-CONDITION, coded on Lines 36 - 40,
demonstrates the use of the AT END exit. FILEl is opened in input mode
on Line 37. The READ NEXT statement, coded on Line 38, reads the first
(and only) record of FILEl successfully. The second READ NEXT statement,
coded on Lines 39 -~ 40, generates the end-of-file condition, since FILEl
contains only one record. The AT END exit is coded for this READ NEXT:
if the end-of-file condition is encountered, the imperative statement
associated with the AT END exit is executed; here, the DISPLAY statement
on Line 40 displays the message "AT END condition encountered.".

The paragraph GENERATE-DECLARATIVE-BRANCH, coded on Lines 41 - 44,
demonstrates a condition for forcing a branch to the DECLARATIVES. FILEl
was opened in input mode on Line 37 and remains open in input mode. A
WRITE statement is invalid for files opened in input mode. The WRITE
statement on Line 42 therefore cannot be executed for FILEl. This
file-related error causes a branch to the DECLARATIVES. In the
DECLARATIVES, the USE AFTER STANDARD ERROR statement specifies that, if
an error should occur on FILEl, the DECLARATIVES branch should be taken.
After the unsuccessful WRITE, the paragraph INVALID-FUNCTION-PARAGRAPH in
the DECLARATIVES is executed and the message "Invalid function file
status should = 95. It = 95" is displayed. If ENTER is pressed, the END
DECLARATIVES is encountered, the CLOSE statement on Line 43 is executed,
and the program terminates after successful execution of the STOP RUN on
Line 44.

Every file-related operation sets a 2-byte field called the File
Status. The FILE STATUS clause in the FILE-CONTROL entry for a file
specifies a 2-byte field to contain the value of the File Status after
every file-related operation. On Line 10 of the FILE-CONTROL entry for
FILEl, the data name FILE-STATUS (defined in Working-Storage on Line 20)
is to receive this value.

Appendix E describes the File Status in detail. A branch to the
DECLARATIVES occurs if the File Status has a value equal to or greater
than 30. The File Status for "invalid function" is 95; therefore, a
branch to the DECLARATIVES is taken. If a File Status equal to or
greater than 30 occurs in a COBOL program that does not have
DECLARATIVES, a system error message will appear and the program must be
cancelled.

2-42

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044

IDENTIFICATION DIVISION.

PROGRAM-ID.

FILEERRS.

ENVIRONMENT DIVISION.

INPUT-QUTPUT
FILE-CONTROL.

SECTION.

SELECT FILEl

ASSIGN TO "FILE1", "DISK",
ORGANIZATION
ACCESS MODE

FILE

RECORD KEY

NODISPLAY,

IS INDEXED
IS DYNAMIC

STATUS IS FILE-STATUS

DATA DIVISION.

FILE SECTION.
FD FILEl

IS RECORD-KEY.

LABEL RECORDS ARE STANDARD.
01 FILE1-RECORD.

03 RECORD-KEY

03 FILLER
WORKING-STORAGE SECTION.
77 FILE-STATUS
PROCEDURE DIVISION.

DECLARATIVES.

I-0-ERRCR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON FILEl.

INVALID-FUNCTION-PARAGRAPH.
DISPLAY "Invalid function file status should = 95.

FILE-STATUS.
END DECLARATIVES.
NON-DECLARATIVES SECTION.
GENERATE-INVALID-KEY.
OPEN OUTPUT FILEL.
WRITE FILE1-RECORD.
WRITE FILE1-RECORD INVALID KEY

DISPLAY "INVALID KEY condition encountered.".

CLOSE FILEl.

GENERATE-AT-END-CONDITION.

OPEN INPUT FILEl.
READ FILEl NEXT.

READ FILE1l NEXT AT END

PIC 9(010).
PIC X(070).

PIC XX.

DISPLAY "AT END condition encountered."”.
GENERATE-DECLARATIVE-BRANCH.
WRITE FILE1-RECORD.
CLOSE FILEl.

STOP RUN.

Figure 2-12.

File Error Handling

2-43

It

The FILE STATUS data name can also be tested directly after every
operation. In the program illustrated by Figure 2-12, FILE-STATUS is
updated after every file-related operation. Therefore, if testing of the
FILE STATUS data item for a particular operation is required, the test
must be performed before another file-related operation is issued.
FILE-STATUS contaings the following values after each file-related
operation.

FILE-RELATED OPERATION Value of FILE-STATUS

OPEN OUTPUT FILEL. 00 (This operation was
successful.)

WRITE FILE1-RECORD. 00 (This operation was
successful.)

WRITE FILE1-RECORD with INVALID 21 (Duplicate key value on

KEY exit. indexed file creation.)

CLOSE FILE1l. 00 (This operation was
successful.)

OPEN INPUT FILEL. 00 (This operation was
successful.)

READ FILE1l NEXT. 00 (This operation was
successful.)

READ FILE1l NEXT with AT END 10 (End of file on sequential

exit. read.)

WRITE FILE1-RECORD. 95 (Invalid function. A WRITE

is not permitted for a file
opened in input mode.)

CLOSE FILE1. 00 (This operation was
successful.)

2-44

CHAPTER 3
DMS/TX

3.1 INTRODUCTION

DMS/TX is a transaction recovery system. An extension of DMS
Sharing, DMS/TX provides multiple user sharing and rollback recovery of
indexed data files processed in Record Access Method (RAM). Files used
with DMS/TX are organized into a named set of indexed data files called a
database. A DMS/TX database can exist on more than one volume. DMS/TX
file updates performed by a VS COBOL program are grouped into units
called transactions. A transaction is a related set of record updates
that are posted as a group to preserve database consistency.

DMS/TX is available for all Wang VS computers that run a Release 6.0
or subsequent Operating System. This chapter is an overview of DMS/TX,
highlighting its use with VS COBOL. The user is advised to read the
DMS/TX Reference Manual before proceeding with this chapter.

3.1.1 Principal Features

Three main features of DMS/TX are DMS/TX File Sharing, Transaction
Rollback Recovery, and Structural Integrity Monitoring.

DMS/TX File Sharing

DMS/TX provides a high level of file sharing, allowing multiple users
simultaneous access to the same files. DMS/TX Sharing is more
sophisticated than, yet fully compatible with, DMS Sharing.

DMS/TX allows each task on the system to hold a number of resources
(records, groups of records, and/or files). Object programs hold these
resources for update on a claim-as-needed basis. The claim-as-needed
function allows:

e Any object program to claim records while already holding other
records

¢ More than one program to do this simultaneously.
Each program can hold multiple resources for the duration of a
transaction. All resources held by a program are released by the system

at the conclusion of a transaction, as identified by the execution of a
FREE ALL statement from within the program.

3-1

Transaction Rollback Recovery

Transaction rollback recovery ensures that transactions are fully
applied to the data file(s) or not applied at all (rolled-back). If a
transaction is rolled-back, all updates made to the data file(s) are
removed, returning the file(s) to its previous consistent state.
Consistency is maintained both within a file and between files whose
updates must be coordinated. Rollback is automatically performed by the
system when necessary and can be initiated as a program-invoked function.

Structural Integrity Monitoring

Structural integrity monitoring automatically monitors each update
made to a file to detect impaired structural integrity. A file has
structual integrity if, when a data record in an indexed file is updated,
needed updates to that record's primary and alternate key index blocks
are also performed.

DMS/TX performs this function by maintaining an indicator as part of
each DMS/TX file. The indicator 1is updated each time a record is
updated. If a system failure occurs, DMS/TX automatically checks each
file's record update indicator. The user must then reorganize any files
with impaired structural integrity before performing rollback recovery.

3.2 IMPLEMENTING DMS/TX IN COBOL

VS COBOL programs do not directly invoke DMS/TX. A program issues an
OPEN statement on a file attached to a DMS/TX database and the system
automatically initiates DMS/TX processing. The only requirement of the
program is that it define its transactions by means of FREE ALL
statements. The remaining DMS/TX related syntax is optional.

The same program can process files attached to a database, ordinary
DMS files, and files attached to different databases. VS COBOL
syntactical support for DMS/TX is as follows:

L Three VALUE OF clauses in the FILE SECTION of the DATA DIVISION.
The three clauses are:

VALUE OF RECOVERY-BLOCKS IS
VALUE OF RECOVERY-STATUS IS
VALUE OF DATABASE-NAME IS

The VALUE OF RECOVERY-BLOCKS IS clause allocates the Recovery
Blocks in output mode. All of the clauses retrieve the DMS/TX
file information for existing files. They are optional.

e The ROLLBACK statement returns DMS/TX files to their previous
consistent state if a transaction failed to complete. The
ROLLBACK statement is optional.

e The FREE ALL statement ends a transaction, releasing all held
resources. The FREE ALL statement is required.

¢ The Deadlock Declarative allows a task to override the system
default deadlock handling when a deadlock occurs, returning
control to the object program. The Deadlock Declarative is
optional.

3.2.1 The VALUE OF RECOVERY-BLOCKS IS Clause

The VALUE OF RECOVERY-BLOCKS IS clause serves two purposes. For
existing files, it returns the file's status with respect to DMS/TX. For
new files created in output mode, it specifies whether the file can be
attached to a DMS/TX database.

RECOVERY-BLOCKS can have three different values. They are:

N —— No Recovery Blocks
The file is a DMS file and cannot be attached to a DMS/TX

database.

A —— Recovery Blocks Allocated
The file is a DMS file and can be attached to a DMS/TX
database.

U —— Recovery Blocks Used
The file is part of a DMS/TX database.

For new files, the only acceptable values are N and A. Existing files
can have Recovery Blocks added through the DMS/TX utility. The correct
syntax is:

data—name
VALUE OF RECOVERY-BLOCKS IS 1literal

3.2.2, The VALUE OF RECOVERY-STATUS Clause

The VALUE OF RECOVERY-STATUS IS clause indicates whether the file is
opened with transaction recovery. This value is only returned if the
program opens the file in I-O or Shared mode. Possible values and their
meanings for this field are as follows:

N —- No recovery
S -- Softcrash recovery
F —— Full recovery

The correct syntax is:

VALUE OF RECOVERY-STATUS IS data—-name

The value of data-name must be alphanumeric with a declared length of one
character.

3.2.3 The VALUE OF DATABASE-NAME IS Clause

The VALUE OF DATABASE-NAME IS clause contains the name of the
database the file is attached to. The correct syntax is:

VALUE OF DATABASE-NAME IS data-name

The value of data-name must be alpha or numeric with a declared length of
six characters.

3.2.4 Attaching Files to a DMS/TX Database

Files can be attached to a DMS/TX database through the DMSTX utility
or through a program. To be attached, a file must first have Recovery
Blocks allocated. Though not directly supported in VS COBOL,
program-invoked attachment can be accomplished in two ways. Both methods
require a call to a subroutine.

In the first method, attachment is accomplished at run-time by using
an Assembler subroutine to call the SETRECOV SVC. The file to be
attached must be closed at the time of the SETRECOV execution. VS COBOL
programs access an Assembler subroutine containing SETRECOV with the CALL
statement. Refer to the DMS/TX Reference manual for information on
developing this subroutine.

Programs that create, attach, and use DMS/TX files should be written
to observe the following sequence at run time:

1. Create the file with Record Blocks by opening it in Output mode
2. Close the file

3. CALL the Assembler subroutine to use SETRECOV to attach the file
to a database with the SOFT recovery option

4. Re-open the file in I-O or Shared mode
5. Write records to the file

The second method of creating a DMS/TX file at run-time is for the
program to issue a CALL to a subroutine that uses the DMSTX utility to
attach a file to a database. With this method, a program first calls the
subroutine to create and attach the file. After control is returned to
the original program, it opens the file in I-O or Shared mode. The
program can then write to the file. Refer to the DMS/TX Reference manual
for details on the DMSTX utility.

3-4

3.2.5 Opening and Closing Files

The programming procedures for opening and closing files is the same
for DMS/TX files as it is for DMS files. Programs still open a file in
I-0 or Shared mode to update records, and use the CLOSE statement to
close it. In addition to terminating DMS/TX transactions, the CLOSE
statement invokes an implicit FREE ALL statement, ending the current
transaction.

3.2.6 Holding and Releasing Resources

DMS/TX allows each task to exclusively hold multiple resources.
DMS/TX uses the same function requests as DMS. Programs with files
opened in Shared mode can hold records or generic key groups of records
as needed.

Holding Resources

The READ WITH HOLD and HOLD FOR UPDATE statements hold resources
exclusively. The HOLD FOR RETRIEVAL statement provides a nonexclusive,
shared hold. A program can hold a number of records in shared files. A
READ statement without the HOLD option allows a program to read resources
without locking those resources. In addition, a READ statement without
the HOLD option allows a program to read resources currently locked by
another task. Because of this, care should be used when coding the READ
statement without the HOLD option.

DMS/TX support for resource holding provides additional support for
programs updating records in DMS/TX files which have alternate index keys
which do not allow duplicate values. In certain situations, exclusive
locks are automatically applied by the system to the alternate index
values as well as to the primary key values. If a task deletes a record
from a non-duplicate alternate key path -- either by deleting the record
or by removing the record from access by that key path —— the key value
is locked, i.e., the value itself is prevented from being written by any
other task.

Tasks check for locks on a nonduplicate alternate key value when they
add a record to the path. If the value is locked, the task is queued
until such time as the lock is removed or the time specified in the
TIMEOUT phrase is exceeded. This allows other tasks to read the value.
Tasks can add a record to the path by writing a record that is accessible
by that path to the file, or by rewriting an accessible record with a new
value for the alternate key, or with the record's bit mask reset to
enable accessibility by that key path.

Releasing Resources

A FREE ALL statement ends the current transaction and begins the next
transaction. It causes the system to commit all updates performed during
the current transaction and releases all resources held during the
transaction.

3-5

Resources are also released when a CLOSE statement for DMS/TX files
opened in I-0 or Shared mode is executed. When this occurs, the system
executes an implicit FREE ALL.

3.2.7 DEADLOCK

A deadlock occurs when two programs each request a resource held the
other program. The deadlock prevents both programs from proceeding. If
one of the tasks does not free the held resources in the allotted time
(as specified in the GENEDIT procedure), DMS/TX rolls back the current
transaction of the waiting task and frees its locks.

Following successful deadlock processing DMS/TX returns control to
the program if the programmer has included a deadlock exit routine in the
DECLARATIVES section of the PROCEDURE DIVISION. The Deadlock Declarative
is optional. If a deadlock situation is detected and the declarative is
not present in a program, the system issues an error message and
terminates the program run. Programs coded with the Deadlock Declarative
avoid the extra step of having to restart the program run.

The syntax for coding a deadlock exit in VS COBOL is as follows:
USE AFTER DEADLOCK.

This statement is followed by a user-designed routine to restart the
transaction or perform some other function.

3.2.8 Program-Initiated Rollback

DMS/TX offers the programmer the option of coding rollback recovery
in the program logic. Upon execution of a program-initiated ROLLBACK
statement, DMS/TX reverses updates, leaving files open and resources
held. At the conclusion of the rollback operation, control is returned
by the system to the program at the next instruction following the
ROLLBACK statement.

The capability to rollback a transaction from a program is
particularly wuseful for interactive data-entry applications. For
example, if a data entry transaction involves keying a number of updates
to a single screen, an error posted in one field could invalidate all of
that screen's updates.

The syntax for coding a rollback is as follows:
ROLLBACK [ON ERROR imperative-statement].

The ON ERROR clause provides an executable routine in case of an
unsuccessful execution of the ROLLBACK statement. Without the clause,
the system cancels a program upon unsuccessful execution of the ROLLBACK
statement.

Return codes for the ROLLBACK statement are contained in the special
register RETURN-CODE. Refer to the ROLLBACK entry of Chapter 11 for a
list of the return code values.

Programs containing rollback routines should be coded with the
-~ following considerations:

e All resources held by a transaction remain held following a
program-initiated rollback.

e Open and Close statements, and VIOC operations are not rolled
back. The programmer must be careful not to have these functions
performed twice if, for instance, a screen has to be reprocessed.

¢ The contents of the user record area are unaffected by the
rollback operation.

e Positional currency in database files opened for wupdate is
unpredictable. If the transaction performs consecutive
processing, the program should be coded to re-establish currency
by using a START statement.

3.2.9 Rollback Following a Program Cancel

If a program aborts or 1is cancelled by the wuser, the system
automatically rolls back the current transaction as part of the cancel
processing. During the rollback operation, the "File Cleanup in
Progress" message 1is displayed on the workstation screen. Upon
successful completion of the rollback, the system invokes a FREE ALL
statement, releasing all resources. The cancel processing then closes
the files based on the link level at which they were opened, invoking the

/“\ DMS/TX close processing as appropriate.

3.3 PROGRAM EXAMPLE

Figure 3-1 is a sample COBOL program demonstrating the DMS/TX
functionality. The program accesses two files attached to a database for
interactive update. The data name DBl, described in the Working-Storage
Section, is used by the program to reference the database the files are
attached to.

The program accepts and posts updates to the employee and payroll
files. The files are opened in the Shared mode, the new data is accepted
from the Workstation, and the resource (file) is held. The record is
then rewritten. The program then holds the payroll file, testing for an
invalid key. If an invalid key is returned, the update to the employee
file is rolled back, and the logic returns to the beginning of the
transaction after prompting the user to try again. If the read and hold
of the payroll file is successful, the payroll file is updated and the
transaction is complete.

3-7

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID, SAMPLE.
000300 ENVIRONMENT DIVISION.
000400 INPUT-OUTPUT SECTION.
000500 FILE-CONTROL.

000600 SELECT EMPLOYEE-FILE
000700 ASSIGN TO "EMP1" "DISK"
000800 ORGANIZATION IS INDEXED
000900 ACCESS MODE IS DYNAMIC
001000 RECORD KEY IS E-KEY-1.
001100

001200 SELECT PAYROLL-FILE
001300 ASSIGN TO "PAY1" "DISK"
001400 ORGANIZATION IS INDEXED
001500 ACCESS MODE IS DYNAMIC
001600 RECORD KEY IS P-KEY-1.
001700

001800 DATA DIVISION.
001900 FILE SECTION.
002000 FD EMPLOYEE-FILE

002100 LABEL RECORD IS STANDARD
002200 RECORD CONTAINS 55 CHARACTERS
002300 VALUE OF FILENAME IS "EMP1"
002400 LIBRARY IS "DWBS"

002500 VOLUME IS "ZENITH"

002600 RECOVERY-BLOCKS IS "A"

002700 RECOVERY-STATUS IS S1

002800 DATABASE-NAME IS DBL.
002900 01 EMP-REC.

003000 05 E-KEY-1 PIC 9(5).
003100 05 EMP-NAME PIC X(25).
003200 05 EMP-TITLE PIC X(25).
003300

003400 FD PAYROLL-FILE

003500 LABEL RECORD IS STANDARD
003600 RECORD CONTAINS 55 CHARACTERS
003700 VALUE OF FILENAME IS "PAY1l"
003800 LIBRARY IS "DWBS"

003900 VOLUME IS "ZENITH"

004000 RECOVERY-BLOCKS IS "A"

004100 RECOVERY-STATUS IS S2

004200 DATABASE-NAME IS DBI.

004300 01 PAY-REC.
004400 05 P-KEY-1 PIC 9(5).

004500 05 PAY-NAME PIC X(25).
004600 05 PAY-TITLE PIC X(25).
004700

Figure 3-1. Use of DMS/TX in VS COBOL

004800
004900
005000
005100
005110
005120
005200
005300
005310
005311
005312
005313
005320
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300
006310
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500

007600%

007700
007800
007900
008000
008100
008200

008300*

008400
008500
008600
008700
008800
008900

WORKING-STORAGE SECTION.

77 Sl PIC X(1).

77 82 PIC X(1).

77 DBl PIC X(6).

01 FLAG PIC X(3) VALUE "
01 WS-RECORD.

05 EMPID PIC 9(5).

05 EMPNAME PIC X(25).

05 EMPTITLE PIC X(25).

PROCEDURE DIVISION.
DECLARATIVES.
DEADLOCK-SEC SECTION.

USE AFTER DEADLOCK.
DLOCK-PAR.

DISPLAY "DEADLOCK HAS OCCURRED.

GO TO TRANS-START.
END DECLARATIVES.

MAIN-PROCESSING SECTION.
BEGIN.
OPEN SHARED EMPLOYEE-FILE
PAYROLL-FILE.

PLEASE REENTER."

PERFORM TRANS-START THRU TRANS-EXIT UNTIL FLAG = "END".

GO TO TRANS-END.

TRANS-START.
ACCEPT WS-RECORD.
IF EMPID = "99999"
MOVE "END" TO FLAG
GO TO TRANS-EXIT.

READ EMPLOYEE-FILE WITH HOLD
UPDATE EMP-REC
REWRITE EMP-REC FROM WS-RECORD
READ PAYROLL-FILE WITH HOLD
INVALID KEY
ROLLBACK

DISPLAY “"ERROR - TRY AGAIN"

GO TO TRANS—-START.
UPDATE PAY-REC .
REWRITE PAY-REC FROM WS-RECORD
FREE ALL
GO TO TRANS-START.

TRANS-EXIT.
EXIT.

Figure 3-1. Use of DMS/TX in VS COBOL (continued)

009000

009100 TRANS-END.

009200 CLOSE EMPLOYEE-FILE
009300 PAYROLL-FILE,
009400 STOP RUN.

Figure 3-1. Use of DMS/TX in VS COBOL (continued)

3.4 DMS/TX vs DMS SHARING

The following chart summarizes the functions of both DMS/TX and DMS

Sharing.

Syntax

VALUE OF
RECOVERY BLOCKS
RECOVERY-STATUS
DATABASE-NAME

HOLD

TIMEOUT

FOR RETRIEVAL

FOR UPDATE

ROLLBACK

DMS/TX

Function

Allocates Recovery blocks
Retrieves DMS/TX File Information

Requests resources (records and a
range of records and/or files) to be
held at once.

Used with HOLD, READ WITH HOLD, and
WRITE to specify how many seconds a
program will wait to acquire
resources.

Used with HOLD to acquire resources
for the purpose of reading only.
Other programs can also read the
resource simultaneously.

Used with HOLD to acquire resources
for a write, rewrite and/or delete
operation. Other programs can access
the resource for read without hold
operations, but are denied any
attempt to hold or update it.

Reverses a transaction

3-10

Syntax

FREE ALL

DEADLOCK DECLARATIVE

Syntax

HOLD

HOLD LIST

HOLD EXTENSION-RIGHTS

FREE ALL

FREE EXTENSION-RIGHTS

TIMEOUT

HOLDER-ID

DMS/TX (continued)

Function

Ends the transaction
Releases the held records

A user supplied deadlock exit address
which takes precedence over the
system's default deadlock handling,
returning control to the program.

DMS SHARING

Function

Requests resources (records, a range
of records and/or files) to be held
at once.

Adds a resource request to a list of
existing requests.

Requests exclusive right to
resources, on a claim-as-needed basis.

Frees all resources immediately.

Frees EXTENSION-RIGHTS only.

Used with HOLD, HOLD
EXTENSION-RIGHTS, READ WITH HOLD, and
WRITE to specify how many seconds a
program will wait to acquire
resources.

Used with HOLD and HOLD
EXTENSION-RIGHTS to identify the user
holding resources.

3-11

Syntax

FOR RETRIEVAL

FOR UPDATE

DMS/TX (continued)

Function

Used with HOLD to acquire resources
for the purpose of reading only.
Other programs can also read the
resource simultaneously.

Used with HOLD to acquire resources
for a write, rewrite and/or delete
operation. Other programs can access
the resource for read without hold
operations, but are denied any
attempt to hold or update it.

3-12

CHAPTER 4
WORKSTATION FILE PROCESSING

4.1 INTERACTIVE PROCESSING WITH VS COBOL

The Wang VS 1is an interactive system, which means that each
workstation user can communicate directly with the system. For the VS
COBOL programmer, such interactive communication greatly facilitates the
processes of program creation, compilation and testing. The interactive
capability is also useful when designing a system that requires on-line
processing. The operator can query or input information to the system
and get immediate response. Systems can be implemented that are operator
response-driven. On the VS, these systems can be written in BASIC,
RPGII, Assembler or COBOL.

This chapter describes the necessary steps for the COBOL programmer
to follow in order to define, use and control the workstation. Two
approaches to workstation processing are explained. The first approach
uses DISPLAY AND READ, a Wang extension to COBOL, to control
automatically the order and activity of information transfer. The
programmer may accept all the default conditions provided by DISPLAY AND
READ or override default values only for those cases where alternative
processing is desired. Display characteristics, cursor position, and
Field Attribute Characters are some of the workstation characteristics
that are under programmer control using DISPLAY AND READ.

The second approach is more complex, since it assumes no default
actions. The workstation area is treated as a record; REWRITEs are
igssued for screen displays from the record area, and READSs are issued
for the program to transfer screen information into the record area.
Whereas DISPLAY AND READ only requires fields used on the screen to be
defined, the READ/REWRITE method of controlling the workstation requires
either that definition of the entire screen (full screen I/0) or
definition of one screen row (row-oriented 1I/0). Error conditions
detected by DISPLAY AND READ induce automatic cursor positioning to the
first field in error, as well as automatic blinking of the field; under
the READ/REWRITE method the program must manually set the appropriate
bytes with the required hexadecimal figurative consgtants. In addition,
under the direct control method, the program is responsible for
initializing the screen area, whereas DISPLAY AND READ automatically
performs this housekeeping task.

4-1

4.2 VS INTERACTIVE EXTENSIONS

Wang has implemented extensions to the COBOL language that
accommodate the responsive programming environment of the VS. These
extensions are tailored to facilitate the full-screen programming
capabilities of the VS workstation. The entire screen can be programmed
at once, thereby allowing large blocks of information (an entire employee
record, for example) to be displayed or modified at one time on the
workstation.

The Procedure Division statement DISPLAY AND READ, with its
affiliated phrases, facilitates programming in the VS interactive
environment, providing such capabilities as controlling PF keys,
positioning the cursor, sounding the workstation alarm, and transferring
data between the program and the screen. DISPLAY AND READ uses the USAGE
IS DISPLAY-WS screen format description, defined in Working-Storage, to
format the screen.

Workstation coding requirements are grouped in this chapter according
to program division.

e The Environment Division may require a Figurative-Constants
paragraph if displaying nondefault attributes, controlling the
cursor, or sounding the workstation alarm are desired. Each
workstation file must have a FILE-CONTROL entry with a designated
device-type of DISPLAY. The Environmment Division requirements
for DISPLAY AND READ are discussed in Subsection 4.3.1.

¢ The Data Division must include a File Description (FD) for the
workstation file in the File Section, and USAGE IS DISPLAY-WS
screen format descriptions in the Working-Storage Section.
Modifying clauses are needed with these descriptions depending on
the field validation requirements (for example, for range or
table validation of fields). The Data Division requirements for
DISPLAY AND READ are discussed in Subsection 4.3.2,

e The Procedure Division statement for controlling the workstation
file is DISPLAY AND READ. The actions performed by it are
dependent on those clauses coded with the USAGE IS DISPLAY-WS
screen format descriptions in the Data Division. The Procedure
Division requirements for DISPLAY AND READ are discussed in
Subsection 4.3.3.

¢ An understanding of DISPLAY AND READ is all that is needed to
write an interactive VS COBOL program; however, the programmer
may want or need to control more workstation operations, such as
setting Field Attribute Characters (via the FAC OF phrase),
setting the order area (via the ORDER-AREA OF phrase), or testing
a Program Function Key after a DISPLAY AND READ (via the PFKEY
clause or the FILE STATUS clause). These additional Procedure
Division statements are discussed in Subsection 4.3.4.

An alternative to using DISPLAY AND READ is to issue READ and REWRITE
statements wusing the workstation file. Either full screen I/0 or
row-oriented I/0O can be used. Full screen I/0 is explained in Section
4.4; row-oriented I1/0 is explained in Section 4.5.

It is possible to code both DISPLAY AND READ and READ/REWRITE
statements in the same program. A program may require DISPLAY AND READ
for the majority of screen interactions; however, there may be an
occasional use for direct control of the workstation. The rules for
coexistence are described in Section 4.6.

4.3 CODING REQUIREMENTS FOR DISPLAY AND READ

An FD for the workstation file must be defined in the program. To
define an FD for the workstation, code a FILE-CONTROL entry for the
workstation, specifying device type as DISPLAY. In the File Section,
code an FD entry corresponding to the FILE-CONTROL entry. The
workstation file is coded as a consecutive file with one record of 1924
bytes: the first 4 bytes are the order area (used to control screen
attributes), while the remaining 1920 bytes are the mapping area (used to
display the screen).

The FD entry for the workstation is used by DISPLAY AND READ to open
the workstation. Screen formatting is performed by the special USAGE IS
DISPLAY-WS screen format description, specified in Working-Storage, which
pass information to DISPLAY AND READ.

When a DISPLAY AND READ is issued from the COBOL program, access is
automatically made to a subroutine that controls workstation processing.
If the workstation is not open at the time the DISPLAY AND READ is
issued, DISPLAY AND READ will automatically open the workstation. The
DISPLAY AND READ subroutine is automatically included at compile time in
the object program if a DISPLAY AND READ statement is encountered by the
COBOL compiler. The USAGE IS DISPLAY-WS screen format description, along
with DISPLAY AND READ and its associated phrases, define the screen
format and the actions to be taken when the DISPLAY AND READ statement is
executed.

4.3.1 Environment Division Requirements for DISPLAY AND READ

FILE-CONTROL Paragraph

If the workstation is wused, either by DISPLAY AND READ or by
READ/REWRITE, an FD for it must be defined within the program. Every
FILE-CONTROL entry for a workstation file must include ACCESS MODE IS
RANDOM and device type of DISPLAY. Since ORGANIZATION IS SEQUENTIAL is
the default, the ORGANIZATION IS clause need not be coded.

4-3

The minimum Input-Output Section for a workstation is as follows.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT THE-WORKSTATION
ASSIGN TO "SCREEN", "DISPLAY",
ACCESS MODE IS RANDOM.

Other clauses can be added to the FILE-CONTROL entry for controlling
the workstation, énabling the program to control such features as cursor
positioning, examining the PF key, and. testing the file status after
workstation I/0.

4.3.2 Data Division Requirements for DISPLAY AND READ

File Section

The workstation file must have a File Description (FD) entry. If
DISPLAY AND READ is used, the screen is formatted using the USAGE IS
DISPLAY-WS screen format description defined in Working-Storage. The
record description entry for the workstation, although required, is not
used by DISPLAY AND READ,

The USAGE IS DISPLAY-WS Screen Format Description

The screen format used by DISPLAY AND READ is specified by the USAGE
IS DISPLAY-WS screen format description. Each time a DISPLAY AND READ is
issued, a USAGE IS DISPLAY-WS screen format description is specified.
This screen format definition is used by DISPLAY AND READ to control
screen formatting and data transfer between the screen and the program
data area. Each element in the USAGE IS DISPLAY-WS screen format
description maps data to a particular row and column on the screen,
specifying type, contents, and entry characteristics. The USAGE IS
DISPLAY-WS screen format description contains modifying clauses that
offer control capabilities for Procedure Division actions.

The USAGE IS DISPLAY-WS screen format description is used in the
ORDER-AREA OF phrase in the Procedure Division to refer to the order area
of that screen format definition. The ORDER-AREA OF phrase moves the
specified figurative constant settings to the order area of the USAGE IS
DISPLAY-WS screen format description to control setting of the order area
before a DISPLAY AND READ. The USAGE IS DISPLAY-WS screen format
description can only be referenced in the Procedure Division by the MOVE
TO ORDER-AREA OF statement or by the DISPLAY AND READ statement.

Use of Data Name in a USAGE IS DISPLAY-WS Screen Format Description

A data name can be used to specify the name of a display element in
the USAGE IS DISPLAY-WS screen format description. If modification of
the FAC associated with the screen location is desired, specification of
a data name is necessary. A figurative constant representing the desired
Field Attribute Character can be moved using the FAC OF phrase in the
Procedure Division. FILLER can be used if reference to the data name is
not required.

4-4

The COLUMN Clause

The COLUMN clause specifies that the USAGE IS DISPLAY-WS screen
element starts at the designated column on the screen. Valid values in
the COLUMN clause are the integers are 1 - 80. The Field Attribute
Character is mapped to the column immediately preceding the specified
column; for example, the FAC of a screen element specified as starting in
Column 8 is in Column 7. If a field starts in Column 1, the FAC does not
actually occupy a screen location but is treated as if it were in the
preceding column. Correct specification of the COLUMN clause, using two
screen elements, and taking into account the column reserved for the FAC,
is as follows:

05 FILLER COLUMN 1 ROW 10 PIC X(7) VALUE IS "CORRECT".
05 FILLER COLUMN 9 ROW 10 PIC X(7) VALUE IS "EXAMPLE".

The word "CORRECT" appears starting at Row 10 Column 1 of the screen.
The word "CORRECT" has 7 letters; Row 10 Column 8 is reserved for the FAC of
the next screen element. The word "EXAMPLE" then appears starting at Row 10
Column 9 of the screen. The following example shows the result of not taking
the position for the Field Attribute Character into consideration.

05 FILLER COLUMN 1 ROW 10 PIC X(9) VALUE IS "INCORRECT".
05 FILLER COLUMN 10 ROW 10 PIC X(7) VALUE IS "EXAMPLE".

The word "INCORRECT" appears starting at Row 10 Column 1 of the screen.
The word "INCORRECT" has 9 letters; the screen element for "EXAMPLE" does not
take into account the FAC for the field. Therefore, the FAC for the screen
element for "EXAMPLE" overlays the final "T" in "INCORRECT", producing the
value "INCORREC EXAMPLE" displaying starting at Row 10 Column 1.

The ROW/LINE Clause

The ROW/LINE clause specifies that the USAGE IS DISPLAY-WS screen
element starts at the designated row on the screen. Valid values for row or
line number are the integers 1 - 24, Every screen element with a ROW/LINE
clause must have a COLUMN clause as well; however, if a field has a COLUMN
clause but no ROW/LINE clause, the element is assumed to start at the row
specified in the previous screen element. For the first USAGE IS DISPLAY-WS
screen element, if the ROW/LINE clause is not coded, Row 1 is assumed. If
more than one USAGE IS DISPLAY-WS screen element uses the same screen
position, the specification for the last element overlays all previous
specifications. The following entries

05 FILLER COLUMN 1 ROW 24 PIC X(13) VALUE IS
"NOT DISPLAYED".
05 FILLER coLuMn 1 PIC X(7) VALUE IS "EXAMPLE".

result in the value "EXAMPLE" overlaying the value "NOT DIS" in the first
screen element, producing the text "EXAMPLEPLAYED" starting at Row 24 Column 1.

4-5

The PICTURE Clause

The PICTURE clause for the USAGE IS DISPLAY-WS screen element has the
same capabilities as the PICTURE clause used for an elementary data
item. The PICTURE clause determines the format and length of the data as
it appears on the screen.

The VALUE, SOURCE, and OBJECT Clauses

The VALUE clause and the SOURCE clause must be used independently of
one another. Both specify the value to be displayed at a particular
screen location. While the VALUE clause specifies a literal, the SOURCE
clause specifies the contents of a particular data name to be displayed.

The OBJECT clause specifies the data name into which data is moved by
DISPLAY AND READ, If an OBJECT clause is not coded, then the contents of
the displayed screen field are not modifiable. SOURCE and OBJECT data
names may be the same. (Moving a modifiable Field Attribute Character to
the screen by using the FAC OF phrase makes the displayed screen field
modifiable; however, if no OBJECT clause is coded, the modifiable data is
not moved from the screen area into the program data area and it is
therefore lost.)

The VALUE, SOURCE, and OBJECT clauses can only be used in certain
combinations. The combination of SOURCE, OBJECT, and VALUE clauses
produce different effects, such as display characteristics, default FACs,
and data movement when DISPLAY AND READ reads the screen data into the
program. Table 4-1 describes the effects of combinations of SOURCE,
OBJECT, and VALUE clauses on screen display.

Table 4-1. Effects of VALUE, SOURCE, and OBJECT Clauses
on USAGE IS DISPLAY-WS Screen Elements

SOURCE OBJECT VALUE EFFECT
Yes Yes Yes Not permitted.
Yes Yes No Element displays at coded ROW and

COLUMN with data moved from the
SOURCE field to the element. A
modifiable FAC is placed in the
column before the element. DISPLAY
AND READ moves the element to the
OBJECT field.

Yes No Yes Not permitted.

Yes No No Element displays at coded ROW and
COLUMN with data moved from the
SOURCE field to the item. A
dim-protected FAC is placed in the
column before the element.

Table 4-1. Effects of VALUE, SOURCE, and OBJECT Clauses
on USAGE IS DISPLAY-WS Screen Elements (continued)

SOURCE OBJECT VALUE EFFECT

No Yes Yes Element displays at coded ROW and
COLUMN with VALUE 1literal and
modifiable FAC. DISPLAY AND READ
moves the element to the OBJECT
field.

No Yes No Element displays at coded ROW and
COLUMN with pseudoblanks for the
length of the element. DISPLAY
AND READ moves the element to the
OBJECT field.

No No Yes Element displays at coded ROW and
COLUMN with VALUE 1literal and
dim-protected FAC.

No No No Element <cannot be displayed or
modified. However a figurative
constant can be moved to the FAC of
the element by the FAC OF phrase.

Range Validation: The RANGE Clause

The RANGE clause provides, without programming effort, validation of
data entered at the workstation during program processing. If an error
occurs, the field in error blinks and the cursor is positioned to it. If
more than one error occurs, all fields in error blink, and the cursor is
positioned to the first field in error. Specification of a RANGE clause
implies that the field is modifiable; therefore, an OBJECT clause is
required when specifying a RANGE clause. Specification of a RANGE clause
for a field without an OBJECT clause results in a warning message from
the COBOL compiler.

The RANGE clause options for automatic data validation are as follows:

e Checking for negative values. For a numeric field, if RANGE IS
NEGATIVE is specified, only values less than zero are accepted.

e Checking for positive values. For a numeric field, if RANGE IS
POSITIVE is specified, only values greater than zero are accepted.

e Checking for a range of values. Range checking from one
particular value to another value can be specified. The value
can either be a literal or the contents of a data name. Checking
is performed according to the COBOL comparison rules.

4-7

® Checking for a 1list of wvalues. If RANGE IS table-name is
specified, the table is searched and the field is validated if
the value on the screen corresponds with a table element.

Only one validation criterion is permitted for a screen element. For
example, multiple ranges, multiple table checking, or a combination of
range and table lookups for a field are not allowed.

The FROM phrase is used to specify a range of values; that range
being defined either by the specific 1literals or by data names
representing the literals. Validation proceeds according to the rules
for COBOL comparison operations. For example, following code validates
data entered to guarantee that it is in the range "ABC" to "ABE".

01 SCREENREC USAGE IS DISPLAY-WS.

03 DISPRNGE ROW 3 COLUMN 10 PICTURE IS X(3)
SOURCE IS FIELDA OBJECT IS FIELDA
RANGE IS FROM "ABC" TO "ABE".

When the DISPLAY AND READ is issued for SCREENREC, the value in FIELDA
appears starting at Row 3 Column 10. Since DISPRNGE has a RANGE clause FROM
"ABC" TO "ABE", the only acceptable values are "ABC", "ABD", and "ABE". If
any other value is entered, SCREENREC is redisplayed with the FAC of DISPRNGE
(at Row 3 Column 9) set by DISPLAY AND READ to blinking, high intensity, and
modifiable. If a valid value is entered, the value is moved to FIELDA (the
OBJECT IS data name) by DISPLAY AND READ.

Table Validation: The RANGE IS TABLE-NAME Clause

The RANGE IS TABLE-NAME clause allows the programmer to specify a
predefined table of wvalues. If the value entered is not a table entry, the
value is rejected and the screen is redisplayed by DISPLAY AND READ with the
field in error blinking with high intensity.

To specify automatic validation of a 10-byte screen field that contains
one of five legitimate states (IDAHO, DELAWARE, NEW YORK, WYOMING, or OREGON),
code the following table in Working-Storage:

01 STATE-TABLE.

03 ENTRIES.
05 FILLER VALUE "IDAHO" PICTURE IS X(10).
05 FILLER VALUE "DELAWARE" PICTURE IS X(10).
05 FILLER VALUE "NEW YORK" PICTURE IS X(10).
05 FILLER VALUE "WYOMING" PICTURE IS X(10).
05 FILLER VALUE "OREGON" PICTURE IS X(10).

03 FILLER REDEFINES ENTRIES.
05 TABLE-ENTRIES OCCURS 5 TIMES PICTURE IS X(10).

The OBJECT field, containing the validated state name after DISPLAY AND
READ successfully finds the name in the table, is coded as follows:

01 VALIDATED-STATE PICTURE IS X(10).

/@\

Finally, the RANGE clause may be used with the screen element
STATE-VERIFY. The RANGE is the table TABLE-ENTRIES, as previously
defined. ‘

01 SCREENREC USAGE IS DISPLAY-WS.

03 FILLER ROW 3 COLUMN 8 PIC X(26)
VALUE IS "STATE VALIDATION BY TABLE.".
03 STATE-VERIFY ROW 5 COLUMN 8 PIC X(10)

OBJECT IS VALIDATED-STATE
RANGE IS TABLE-ENTRIES.

The DISPLAY AND READ for SCREENREC displays 10 bytes of pseudoblanks
starting in Row 5 Column 8 and waits for operator response. After the
operator responds, the value (after pseudoblanks have been changed to
spaces) in the field starting at Row 5 Column 8, for a length of 10
bytes, is compared with the entries in STATE-TABLE. If the value is on
the table, the validated field is moved to VALIDATED-STATE (the OBJECT
field); if the value is not on the table, a blinking-modifiable FAC will
be moved automatically to Row 5, Column 7 and the DISPLAY AND READ
redisplays SCREENREC.

Repetition of Fields: The OCCURS Clause for Screen Format Elements

The function of the OCCURS clause for screen format elements is to
display and validate repeating occurrences of fields across and down the
screen., Some examples of the use of the OCCURS clause for screen
formatting are as follows:

e Display and validate table elements across a screen row. Figure
4-1 is the screen to be produced; Figure 4-2 is the COBOL program
that produces the screen.

e Display and validate table elements down a screen row. Figure
4-3 is the screen to be produced; Figure 4-4 is the COBOL program
that produces the screen.

e Display and validate table elements both across and down a screen
row. Figure 4-5 is the screen to be produced:; Figure 4-6 is the
COBOL program that produces the screen.

e Use combinations of screen format elements containing the OCCURS
clause to produce a well-formatted screen. Figure 4-7 is an
example of an order entry screen; Figure 4-8 is the COBOL program
that produces the screen.

Using the OCCURS Clause to Repeat Fields Across

The program illustrated in Figure 4-2 produces the screen illustrated
in Figure 4-1. The screen consists of the title "FOUR FIELDS OCCURRING
ACROSS" starting on Row 5, Column 26, and of four fields, each field 8
bytes in length, occurring across Row 7, starting at Column 23.

4-9

In the program illustrated in Figure 4-2, the FILE-CONTROL entry for
the workstation is coded on Lines 6 - 8, while the File Description entry
for the workstation is coded on Lines 11 - 13. These entries are needed
by DISPLAY AND READ to open the workstation.

KRAKKAKKRKKKKKARKKAKKRKEAARAKK KA KRR KKARARARRRKRAKKAKKNKARAKREARARXKKRAXKARKKKNRAKRRKAKKARRARKNRNKK

xmn 1 2 3 4 5 6 7 g *xxx
®xxx 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ***x

ARKARKKRK IR KKK K KR IR K KKK KN KRR AR R KRR KKK TR IR R KK A KK 5K 7 K 30 0 3 3k 00K 0 3 0K 3 0% 0 K% K 0K % K

X x x %
LR L x 1%
x 9% x 9%
x 3% x 3%
X g% x gx
* g FOUR FIELDS OCCURRING ACROSS x 5
x g% x gx
x 7" ELEMENT) ELEMENT2 ELEMENT3 ELEMENT4 *7*
x gx x gx
9 *9*
10 *10%
x % x 1%
X 2% L1
X 3% x 3
X gx x gx
x gx x gx
X g% x gx
x 7% x 7%
x g% x gx
x gx * g%
20 *20%
L L x %
* 2% x 2%
x 3% x 3%
X 4% *x g4x
X X% x x
ARARAKKKKAAKKAXKARNKKAANREKKRLRRRKKRRKKARKKKKKKKNKRARKREKAKAKKKKKKRAKK KR K RKKKARRAKAKRRRAKRKKNRRKR
xuxx 1 2 3 4 5 6 7 g *xxx

*AXX 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ****

KERAXKKAKKRKRKKAKKEARR KRR KARARAERRARKRAARAARAARARRAKKKRREANKERARAERARKEKERRARKRRAKERAKRRNAARRAKRRRRRARRRKRK

Figure 4-1. Screen For Displaying Four Fields Across a Row

4-10

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ACRCSS.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT THE-WORKSTATION
000007 ASSIGN TO "WSFILE", "DISPLAY"
000008 ACCESS MODE IS RANDOM.

000009 DATA DIVISION.

000010 FILE SECTION.

000011 FD THE-WORKSTATION

000012 LABEL RECORDS ARE OMITTED.

000013 01 CRIREC PICTURE IS X(1924).
000014 WORKING-STORAGE SECTION.

000015 01 FOUR-FIELDS USAGE IS DISPLAY-WS.

000016 03 FILLER PICTURE X(28)
000017 ROW 5 COLUMN 26

000018 VALUE IS "FOUR FIELDS OCCURRING ACROSS".
000019 03 FILLER ROW 7.

000020 05 FILLER OCCURS 4 TIMES PICTURE X(8)
000021 ROW 7 COLUMN 23

000022 SOURCE IS ELEMENT-TABLE OBJECT IS ELEMENT-TABLE.
000023

000024 01 FILLER.

000025 03 ELEMENIS. :

000026 05 FILLER VALUE "ELEMENT1" PICTURE X(8).
000027 05 FILLER VALUE "ELEMENT2'" PICTURE X(8).
000028 05 FILLER VALUE "ELEMENT3" PICTURE X(8).
000029 05 FILLER VALUE "ELEMENT4" PICTURE X(8).
000030 03 ELEMENT-TABLE REDEFINES ELEMENTS

000031 OCCURS 4 TIMES PICTURE X(8).

000032 PROCEDURE DIVISION.

000033 DISPLAYIT.

000034 DISPLAY AND READ FOUR-FIELDS ON THE-WORKSTATION.
000035 STOP RUN.

Figure 4-2. Displaying Elements Across a Row

The USAGE IS DISPLAY-WS screen format description, FOUR-FIELDS, is
coded on Lines 15 - 22 and consists of two screen format elements. The
first element, coded on Lines 16 - 18, defines the literal "FOUR FIELDS
OCCURRING ACROSS" to display starting at Row 5, Column 26, for a length
of 28 bytes. The second element, coded on Lines 19 - 22, defines four
fields, each having a length of 8 bytes, to display starting at Row 7,
Column 23. The source of the data to be displayed is contained in the
table ELEMENT-TABLE. ELEMENT-TABLE, defined on Lines 30 - 31, is a table
that occurs four times, with each element 8 bytes long. The table is
initialized by redefinition to the wvalues "ELEMENT1", "ELEMENT2",
"ELEMENT3", and "ELEMENT4". The initialization is accomplished by the
entries on Lines 26 - 29.

4-11

The DISPLAY AND READ statement on Line 34 formats the screen
according to the description of FOUR-FIELDS. The first DISPLAY AND READ
statement in a program opens the workstation file THE-WORKSTATION -— an
OPEN statement for THE-WORKSTATION is not needed. The four fields
occurring across Row 7 each have a length of 8 bytes; however, an extra
byte 1is reserved for the Field Attribute Character for each field.
Therefore, each 8-byte table element maps onto a 9-byte screen area (the
extra byte being reserved for the FAC).

Since the OBJECT field is ELEMENT-TABLE, each of the 8-byte
modifiable screen fields are moved to ELEMENT-TABLE after the operator
selects the ENTER key.

Using the OCCURS Clause to Repeat Fields Down

The program illustrated in Figure 4-4 produces the screen illustrated
in Figure 4-3. The screen consists of the title "FOUR FIELDS OCCURRING
DOWN" starting on Row 5, Column 27, and of four fields, each 10 bytes in
length, occurring on 4 rows (Rows 7, 8, 9, and 10), with each occurrence
starting at Column 35,

KEAKKAKRAAKAAKAKRKKKR AKX RARKARRNAKARNALRAKRRAEARRRARARNRKRKER KRR RRLKR AR KRR KRRK KRR KRKKKRR KKK K KKK

X 1 2 3 4 5 6 7 g *xxx
xx 12345678901234567890123456789012345678901234567890123456789012345678901234567890 **

AXKKKKRKAKRAKRAARKARAAKKARKAARARKAARKRARKARAKRARAAR AR KRR RAKRKARAARKAAKA KRR ARNRAKRNNARRAKRKRARRRRKRARKRKKKK

x x ® x
x % x %
x 2% x g%
x 3% x 3%
x gx x gx
* 5* FOUR FIELDS OCCURRING DOWN x B*
x g% x g%
o ELEMENT1** x 7%
* 8> ELEMENT2** x g
-9 ELEMENT3** x gx
L ELEMENT4** x10%
* 1 LA £
x 2% x g%
x 3% x 3x
* g% * 4%
x g% * g%
6 te*
x g% x 7%
x g x gx
x g% * gx
*20% *20*
% x %
x g% x g%
x 3% x 3%
x g x g%
X % x %
AXERAAXKAKKKKKKARARXRRRRAARARARARAAREARERAKAKAKAKAAKKEAKKKKKKKAKRKARKRRKAAKKRAKANKANANRKRKKRAANKNRRNRKK
bl 1 2 3 4 5 6 7 g xxxx

wwxx 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ****

KEKRKARKARRXARRKAKARXKERKRAARRRRAARKARAREERAAREARREAARAKRKAAKRRAARAREARARARA R AR RARARKKRAARNRRARRRRKARRRKRKRR

Figure 4-3. Screen For Displaying Four Fields Down a Row

4-12

The program illustrated in Figure 4-4 is coded almost exactly 1like
the program illustrated in Figure 4-2 which produced the fields occurring
across the row, with the exception that the SOURCE field is the element
of the table, rather than the table itself, and that each element is
initialized in the Procedure Division. The specification of the table
element FIELDl1 as the SOURCE field produces repetition down the screen
when the DISPLAY AND READ is issued. In the Procedure Division, the
paragraph INIT-TABLE, performed four times, initializes the table
elements to "ELEMENT1", "ELEMENT2", "ELEMENT3", and "ELEMENT4". Then the
DISPLAY AND READ is issued for the screen format OCCURS-DOWN and the
fields repeat down the screen as shown in Figure 4-3.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. DOWN.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.

000006 SELECT THE-WORKSTATION
000007 ASSIGN TO "WSFILE", "DISPLAY"
000008 ACCESS MODE IS RANDOM.

000009 DATA DIVISION.

000010 FILE SECTION.

000011 FD THE-WORKSTATION

000012 LABEL RECORDS ARE OMITTED.

000013 01 CRTREC PICTURE IS ¥X(1924).
000014 WORKING-STORAGE SECTION.

000015 01 OCCURS-DOWN USAGE IS DISPLAY-WS.

000016 03 FILLER PICTURE X(26)
000017 ROW 5 COLUMN 27

000018 VALUE IS "FOUR FIELDS OCCURRING DOWN".
000019 03 FILLER OCCURS 4 TIMES ROW 7.

000020 05 FILLER PICTURE X(10)
000021 ROW 7 COLUMN 35

000022 SOURCE IS FIELD1 OBJECT IS FIELDI.
000023

000024 01 FILLER.
000025 03 FILLER OCCURS 4 TIMES.

000026 05 FIELD1.

000027 07 LITERAL1 PICTURE IS X(7).

000028 07 COUNTER PICTURE IS 9.

000029 77 SuUB PICTURE IS 9 VALUE IS 0.
000030

000031 PROCEDURE DIVISION.
000032 DISPLAYIT.

000033 PERFORM INIT-TABLE VARYING SUB FROM 1 BY 1 UNTIL SUB > 4.
000034 DISPLAY AND READ OCCURS-DOWN ON THE-WORKSTATION.

000035 STOP RUN.

000036

000037 INIT-TABLE.
000038 MOVE "ELEMENT" TO FIELDl1 (SUB).
000039 MOVE SUB TO COUNTER (SUB).

Figure 4-4. Displaying Elements Down a Row

4-13

Using the OCCURS Clause to Repeat Fields Across and Down

The program illustrated in Figure 4-6 produces the screen illustrated
in Figure 4-5. The screen consists of the title "DISPLAYING A TABLE
OCCURRING ACROSS AND DOWN" starting on Row 5, Column 17, and a
2—-dimensional table (3 rows by 6 columns) starting on Row 7, Column 8.
Each entry is 10 bytes in length and contains the value "ENTRY(n,m)"
where n is the first occurrence number and m is the second occurrence
number of the entry.

In the program illustrated in Figure 4-6, the SOURCE field is
LEVEL-2, an entry of a table (IWO-LEVEL-TABLE) with two 1levels of
OCCURS. The first level (LEVEL-1l) occurs three times and indicates the
number of repetitions of fields down the screen. The second level
(LEVEL-2) occurs six times and indicates the number of repetitions of
fields across the screen.

In the Procedure Division, the paragraph INIT-TABLE, coded on Lines
41 - 46, is performed 18 times, initializing each entry to the value
"ENTRY(n,m)" using two nestings of the PERFORM VARYING statement. The
DISPLAY AND READ of the USAGE IS DISPLAY-WS screen format
TWO-OCCURS-LEVELS, coded on Line 37, maps the table onto the screen 6
entries across and 3 entries down, producing the screen shown in Figure
4-5,

Since TWO-LEVEL-TABLE is also an OBJECT field, after the screen is
modified and the operator selects the ENTER key, each element on the
screen is moved to the corresponding element on the table by the READ
component of DISPLAY AND READ.

HREARKAKKARKAKKERA KKK EKNKAARAKARARAKEARAKKAARARARKRANRRAKARKRRKRRRARRERAKRKKARKKRAERARRNKRANRRKRRKRANKN

wnn 1 2 3 4 5 6 7 g mwwx
**** 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ****

AKX ARKAKAKEARRAKKAKAKAEKRAAKAAARKEKAAARARAKRARKEAKARKARRAKAKAARRARAREARRARRRKRRRRARRARKRKRRRKRKR

x X x %
LR L x %
L1 x 2%
x 3% x 3x
x g X g%
: 5: DISPLAYING A TABLE OCCURRING ACROSS AND DOWN * g*
6 x g

* 7 ENTRY(1,1) ENTRY(1,2) ENTRY(1,3) ENTRY(1,4) ENTRY(1,5) ENTRY(1,6) *7*
* g ENTRY(2,1) ENTRY(2,2) ENTRY(2,3) ENTRY(2,4) ENTRY(2,5) ENTRY(2,6) ~ g*
. o ENTRY(3,1) ENTRY(3,2) ENTRY(3,3) ENTRY(3,4) ENTRY(3,5) ENTRY(3,6) * gx
x10%

w]?* a]?x
L L x 9%
x 3% x 3
LA U x gx
nsk * g%
X gx x g
x g% x %
x gx * g*
x g=® x gx
20 *20*
LA L LB R
x 2K L1
x 3% ® 3%
x g% x g%
x K x X
RAARAKKAKARKKKKRRARARKKKRKKRKKNRRRKKARARRKAAAKKKRKAKKKKRKRKKRRAKARKRKRARKAKKKKKRKAKKARKKARKKRRK KKK KRR
xx 1 2 3 4 5 6 7 g xxxx

*RXX 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ****

AXEKAKXRKKRRRAXKAKRKAKKARRARKARARARERARKARNKEANKEANAAAARRARRARAKEARAKARARARA AN RARKARKARAKRALRRRARARKARRRRARARKRKRK
Figure 4-5. Screen For Displaying Table Across and Down
4-14

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044
000045
000046

IDENTIFICATION DIVISION.
PROGRAM-ID. ACRSDOWN.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT THE-WORKSTATION
ASSIGN TO "WSFILE", "DISPLAY"
ACCESS MODE IS RANDOM.
DATA DIVISION.
FILE SECTION.
FD THE-WORKSTATION
LABEL RECORDS ARE OMITTED.
01 CRTREC PICTURE IS X(1924).
WORKING—-STORAGE SECTION.
01 TWO-OCCURS-LEVELS USAGE IS DISPLAY-WS.
03 FILLER PICTURE X(45)
ROW 5 COLUMN 17
VALUE IS "DISPLAYING A TABLE OCCURRING ACROSS AND DOWN".
03 FILLER OCCURS 3 TIMES ROW 7.
05 FILLER OCCURS 6 TIMES ROW 7 COLUMN 8 PIC X(10)
SOURCE IS LEVEL-2 OBJECT IS LEVEL-2.

01 TWO-LEVEL-TABLE.
03 LEVEL-1 OCCURS 3 TIMES.
05 LEVEL-2 OCCURS 6 TIMES.
07 TABLE-ENTRY.
09 FILLER PICTURE IS X(6).
09 FIRST-INDEX PICIURE IS 9.
09 COMMA-LITERAL PICTURE IS X.
09 SECOND-INDEX PICTURE IS 9.
09 RIGHT-PAREN PICTIURE IS X.
77 SUBL PICTURE IS 9 VALUE IS 0.
77 SUB2 PICTURE IS 9 VALUE IS 0.
PROCEDURE DIVISION.
DISPLAYIT.
PERFORM INIT1 VARYING SUB1 FROM 1 BY 1 UNTIL SUBL > 3.
DISPLAY AND READ TWO-OCCURS-LEVELS ON THE-WORKSTATION.
STOP RUN.
INITI1.
PERFORM INIT-TABLE VARYING SUB2 FROM 1 BY 1 UNTIL SUB2 > 6.
INIT-TABLE. s
MOVE "ENTIRY(" TO TABLE-ENIRY (SUBl, SUB2).
MOVE SUB1 TO FIRST-INDEX (SUBl, SUB2).
MOVE "," TO COMMA-LITERAL (SUBl, SUB2).
MOVE SUB2 TO SECOND-INDEX (SUBl, SUB2).
MOVE ")" TO RIGHT-PAREN (SUB1l, SUB2).

Figure 4-6. Displaying Table Elements Across and Down

4-15

Using the OCCURS Clause for Complex Screen Formatting

The program illustrated in Figure 4-8 produces the screen illustrated
in Figure 4-7. The screen is a typical order entry screen that might be
required by a company's shipping department. No new concepts are
introduced here; the program uses screen formatting features already
discussed and illustrated. The purpose of the program is to illustrate
the flexibility of VS screen formatting in COBOL. Using one Procedure
Division statement, all the information required to process an order
(which may consist of multiple items, terms, and shipping dates) can be
formatted on the screen and automatically transferred to the program.

KAXKKEKKAAARKKKERAKRAKERARKKERRRKREKKAKKARARAKAKARAAARKKEKANKAREARAKAARAARRKRAKRRARRARRAKAARKXARKRKK N KK KK XK

xwnx 1 2 3 4 5 6 7 g wxxx
=x 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ****

ARXARAAXAARKAXAAXAKKXARKARXARARKKAAKAARRAARAKAAKARAKRARAARARXEARAAARARARREKXRARKKARNARRARARKERAKARNRRRERARRRRNRRRRKKK

* x x x
x]* x]t
x 2* x 2K
* 3 ORDER ENTRY SCREEN FOR ACME WIDGET COMPANY * 3
® 4* x 4*
] 5* x 5*
x 6# x 6*
] 7* SHIP TO: KK KK KK IR AR KKK KKK IR KR K R K K KK KK Kk x 7*
x 8! 0K AT IR KK AR KK NI KRN KR KT IR KKK KWK KN K x 8*
n 9! WA I AR AR AN R IR K AR KK A AR KRR KR KRR KRR RN N KK KKK RN x 9*
10 *10*
x ‘l x]*
= 2' ITEH: ARKRAXRAKKRAANARKNRRKRARNRKN TERMS: KKK XXX XXX SHIP DATE: RRRKKRRKKKX * 2X
= 3' ARAKKRRAARARARRNKEARRXRRARNRKK K AKX KXR AKX L2 2 2.2 2.2.3.1 x 3'
x 4! AKKARARKARRRAKXKKRARKNKARKNRK KKK KKK KXKX ARXRAKRKKN L] 4*
x sﬁ ARXRXXKXXKARKARNKRKKRRARNRRNKARK KRR KXNX AKX ARKRARKKN L] 5*
= 6! AAAXRKRARKARXKRRKRRKKARNKNKRK KR KKK XANX KRXKKXKKK ® 6*
L] 7“ x 7'
x 8* x 8*
] 9* x 9K
20 *20%
x ‘* x]K
x zl ® 2!
L4 3* x 3*
* gx DATE OF ORDER: MM-DD-YY * gx
x x x ®
AREARKEAKXXKARAAKXKERRKAXRKEARARKARKARKRKARXARRKRAARKERANAAARKERRAKLARRKARRARRRRXLA R ARKARNRARRARKRKRKNK
xnxn 1 2 3 4 5 6 7 g *xw

*axx 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ****

AAKRAKKAKAAAARRARAKRLAARREAKEKEARRKAKXRARKRARAARRARARARAANARRRAARRAARARARAEANALARAKRRRRRRRKARRRARNRRNNA KK

Figure 4-7. Sample Order Entry Screen

4-16

000001 IDENTIFICATION DIVISION.
000002 PROGRAM~ID. WSOCCUR.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT THE-WORKSTATION
000007 ASSIGN TO "CRT", "DISPLAY",
000008 ACCESS MODE IS RANDOM.
000009 DATA DIVISION.
000010 FILE SECTION.
000011 FD THE-WORKSTATION
000012 LABEL RECORDS ARE OMITTED.
000013 01 CRTREC PIC X(1924).
000014 WORKING-STORAGE SECTION.
000015*
000016 77 SHIP-NAME PICTURE IS X(46) VALUE SPACES.
000017 77 SHIP-CITY PICTURE IS X(46) VALUE SPACES.
000018 77 SHIP-STATE PICTURE IS X(46) VALUE SPACES.
000019 77 ORDER-DATE PICTURE IS X(08) VALUE SPACES.
000020*
000021 01 THE-TABLE.
000022 05 ITEM-NAME PICTURE IS X(24) OCCURS S TIMES.
000023 05 FILLER OCCURS 5 TIMES.
000024 07 TERMS PICTIURE IS 9(3) OCCURS 3 TIMES.
000025 05 SHIP-DATE PICTURE IS X(8) OCCURS S TIMES.
000026*
000027 01 DISPLAY-REC USAGE IS DISPLAY-WS.
000028 05 FILLER PICTURE IS X(42) ROW 03 COLUMN 25
000029 VALUE IS "ORDER ENTRY SCREEN FOR ACME WIDGET COMPANY".
000030 05 FILLER PICTURE IS X(08) ROW 07 COLUMN 11
000031 VALUE IS "SHIP TO:".
000032 05 ROW07-COL22 PICTURE IS X(46) ROW 07 COLUMN 22
000033 SOURCE IS SHIP-NAME OBJECT IS SHIP-NAME .
000034 05 ROW08-COL22 PICTURE IS X(46) ROW 08 COLUMN 22
000035 SOURCE IS SHIP-CITY OBJECT IS SHIP-CITY .
000036 05 ROW09-COL22 PICTURE IS X(46) ROW 09 COLUMN 22
000037 SOURCE IS SHIP-STATE OBJECT IS SHIP-STATE .
000038 05 FILLER PICTURE IS X(05) ROW 12 COLUMN 04
000039 VALUE IS "ITEM:".
000040 05 FILLER PICTURE IS X(06) ROW 12 COLUMN 35
000041 VALUE IS "TERMS:".
000042 05 FILLER PICTURE IS X(10) ROW 12 COLUMN 60
000043 VALUE IS "SHIP DATE:".
000044*
000045 05 FILLER OCCURS 5 TIMES ROW 12.
000046 07 FILLER PICTURE IS X(24) ROW 12 COLUMN 10
000047 SOURCE IS ITEM-NAME OBJECT IS ITEM-NAME.
000048 07 FILLER PICTURE IS 9(03) ROW 12 COLUMN 43
000049 OCCURS 3 TIMES

Figure 4-8. Producing Sample Order Entry Screen

4-17

000050 SOURCE IS TERMS OBJECT IS TERMS.

000051 07 FILLER PICTURE IS X(08) ROW 12 COLUMN 72
000052 SOURCE IS SHIP-DATE OBJECT IS SHIP-DATE.

000053*

000054 05 FILLER PICTURE IS X(14) ROW 24 COLUMN 12
000055 VALUE IS "DATE OF ORDER:".

000056 05 FILLER PICTURE IS X(08) ROW 24 COLUMN 28
000057 OBJECT IS ORDER-DATE

000058 VALUE IS "MM-DD-YY".

000059 PROCEDURE DIVISION.

000060 START-PROGRAM.

000061 MOVE SPACES TO THE-TABLE.

000062 DISPLAY AND READ DISPLAY-REC ON THE-WORKSTATION.
000063 STOP RUN.

Figure 4-8. Producing Sample Order Entry Screen (continued)

Up to three levels of OCCURS are allowed in USAGE IS DISPLAY-WS
screen definitions. These screen tables may have as SOURCE or OBJECT
fields a table defined in Working-Storage. Each element of a source
table is moved to the screen table so that the index of the table element
corresponds to the index of the screen element. Thus, the dimensions of
the source and object tables must match with the dimensions of the USAGE
IS DISPLAY-WS screen table, as shown in the previous illustrations.

Field Attribute Characters

When coding the screen definition entry, the programmer should be
familiar with the rules related to the Field Attribute Characters. Refer
to Appendix C for a detailed explanation of the rules for Field Attribute
Characters.

If DISPLAY AND READ is used, a FAC is automatically provided for each
screen format element depending upon what clauses are associated with
it. If a screen format element has no OBJECT clause, then it is not
modifiable, and the default FAC used is a hexadecimal "8C" (dim and
protected). If a screen format element has an OBJECT clause, then it is
modifiable. The default FAC allows for bright intensity with entry
characteristics corresponding to the picture of the screen format
element. If the screen format element has a numeric picture, the default
FAC used is a hexadecimal "82" (bright, modifiable, and numeric-only
input allowed):; if the screen format element has an alphanumeric picture,
the default FAC used is a hexadecimal "81" (bright, modifiable, and
uppercase only input allowed).

4-18

Since the default FAC for an alphanumeric screen format element
allows only uppercase input, to allow both uppercase and lowercase input,
the programmer must construct a figurative constant allowing both
uppercase and lowercase input and move the figurative constant to the FAC
of the screen format item using the FAC OF phrase. A FAC of hexadecimal
"80" allows both uppercase and lowercase input.

If an error is detected on a screen format item by DISPLAY AND READ
(for example, a RANGE validation is wviolated), the field in error
blinks. DISPLAY AND READ automatically sets the blink bit in the FAC of
the field in error and redisplays the screen format.

4,3.3 Procedure Division Requirements for DISPLAY AND READ

The events occurring during a DISPLAY AND READ are categorized into
the following five steps:

Format the screen.

Rewrite the screen.

Read the operator response.

Validate the data.

Transfer the data into the object field(s).

(8 I VS B S]

The following operations occur automatically with one invocation of
DISPLAY AND READ:

Step 1 —— Format the Screen

When the workstation screen is formatted, the 1literal values
specified in the VALUE clause and the values assigned to the data names
identified in the SOURCE clause for the USAGE IS DISPLAY-WS screen format
elements are moved to the workstation screen.

The screen formatting process moves one of the following to the
screen:

. If the screen format element has a VALUE clause, the VALUE IS
literal is moved.

. If the screen format element has a SOURCE clause, the contents of
the source field is moved.

™ If the screen format element has an OBJECT clause but no SOURCE
clause, pseudoblanks are moved.

. Default FACs are set for the screen format element.

Step 2 — Rewrite the Screen

After the screen record is formatted DISPLAY AND READ issues a
REWRITE to display the screen.

4-19

Step 3 —— Read the Operator Response

DISPLAY AND READ issues a READ, which waits for operator response.
The operator responds by entering data in any modifiable field(s) and
selecting any of the enabled PF keys or the ENTER key (if ENTER is
enabled). If the PFKEYS option of DISPLAY AND READ is not specified,
only the ENTER key is valid; selecting any other PF key results in
rewriting the DISPLAY AND READ screen and sounding the workstation
alarm. IF the PFKEYS option of DISPLAY AND READ is specified, those PF
keys specified in the PFKEYS option are valid; selecting any other PF key
results in rewriting the DISPLAY AND READ screen and sounding the
workstation alarm. DISPLAY AND READ will not proceed unless an enabled
PF key or the ENTER key (if ENTER is enabled) is selected.

The READ step next determines which PF key (or the ENTER KEY) was
selected. The ONLY phrase of DISPLAY AND READ is used to specify wvalid
PF key responses. If ONLY PFKEYS 1, 2, 3, 16 is coded, then only PF Keys
1, 2, 3, and 16 are acceptable responses. However, if PFKEYS 1, 2, 3, 16
is coded (the ONLY phrase without the keyword ONLY), then PF Keys 1, 2,
3, 16 and the ENTER key are acceptable responses.

If an ON phrase has been specified for any PF key, the READ step
causes transfer of control to the imperative statement associated with
the ON phrase after DISPLAY AND READ has determined that the PF key
associated with the ON phrase has been selected.

Step 4 —— Validate the Data

The response is validated to check agreement of the data type entered
by the operator with the usage defined in the PICTURE clause for the
modified field. 1If a RANGE clause is coded, the entered data is also
tested for the legal range limit; if a RANGE IS table-name clause 1is
coded, the data is tested for a value in the table. If invalid data is
entered, DISPLAY AND READ automatically returns control to the rewrite
step (Step 2) and the cycle repeats until valid data is entered. When
the screen containing invalid data is rewritten, the workstation alarm
sounds and the FACs of those invalid fields are changed to blink so the
field(s) in error can be identified. In addition, the cursor is
automatically positioned at the first field in error.

Step 5 —— Transfer the Data Into the Object Fields.

If the data is successfully validated, all modifiable fields are
moved from the screen area to OBJECT field. The transfer of data is in
accordance with the rules of the MOVE statement. The ALTERED option of
DISPLAY AND READ moves only those fields that have been changed and is
recommended if reducing the amount of data transfer from the screen area
to the program data area is a consideration.

4-20

DISPLAY AND READ Options

DISPLAY AND READ provides several options for enabling/disabling PF
Vaan key(s) and the ENTER key, and for program-controlled actions based on the
‘ selected PF key. These options are:

1.

2.

3.
-~

4.
=

DISPLAY AND READ DISPLAY-REC ON SCREEN.

A DISPLAY AND READ with no options displays the USAGE IS DISPLAY-WS
screen format description DISPLAY-REC on the workstation. The ENTER
key is enabled; if any PF key is selected, the workstation alarm
sounds and DISPLAY-REC is redisplayed.

DISPLAY AND READ DISPLAY-REC ON SCREEN
PFKEY 16.

This statement displays DISPLAY-REC on the workstation. The PFKEY
phrase enables PF 16 as well as the ENTER key; if any other key is
selected, the workstation alarm sounds and DISPLAY-REC is
redigplayed.

DISPLAY AND READ DISPLAY-REC ON SCREEN
ONLY PFKEY 16.

This statement displays DISPLAY-REC on the workstation. The
specification of the ONLY PFKEY phrase specifies that the ENTER key
is disabled and that only PFl6 is enabled. Selecting any PF key
other than PFl6 causes the workstation alarm to sound and
DISPLAY-REC to be redisplayed.

DISPLAY AND READ DISPLAY-REC ON SCREEN
PFKEY 16
ON PFKEY 16 DISPLAY "PF16 has been selected.".

This statement displays DISPLAY-REC on the workstation. The PFKEY
16 phrase, coded as in case 2, enables the ENTER key and PF1l6. The
specification of the ON PFKEY 16 phrase causes automatic transfer of
control to the imperative statement associated with the ON phrase.
Therefore, if PF1l6 is selected, the message "PF16 has been
selected." displays. Selecting the ENTER key causes DISPLAY AND
READ to continue with data validation and transfer; selecting any
other PF key causes the workstation alarm to sound and DISPLAY-REC
to be redisplayed.

The ON phrase specifies an immediate action to be taken if the PF
key is selected. This action overrides data transfer of screen
fields to any specified object fields in the USAGE IS DISPLAY-WS
screen format.

4-21

DISPLAY AND READ ALTERED DISPLAY-REC ON SCREEN
PFKEY 16
NO-MOD DISPLAY "No screen fields have been modified.".

This statement displays DISPLAY-REC on the workstation and
enables the ENTER key and PF16 (as in Case 2 and Case 4). The
ALTERED option of DISPLAY AND READ indicates that only those
screen fields modified by the operator are transferred from the
screen to the OBJECT field. The ALTERED option of DISPLAY AND
READ significantly reduces the amount of screen data to be
transferred to the program, since only screen items with OBJECT
fields that have been altered (changed) will be affected.

The NO-MOD phrase is a program-defined action to be taken if no
screen fields have been modified. In the previous example, if no
fields have been modified, the message "No screen fields have
been modified." displays.

Under DISPLAY AND READ ALTERED, VS COBOL provides a method of testing
whether a particular display item has been changed. This method uses the
following statement:

IF FAC OF display-item ALTERED imperative-—statement

Thus, the particular field(s) that have been changed can be tested
and program-defined actions based on the alteration of the field can be
implemented.

DISPLAY AND READ phrases have the following precedence rules:

1.

2.

If no DISPLAY AND READ options are coded, then execution falls
through to the next statement after an enabled PF key is selected.

If the ON phrase is coded, execution passes to the statement
indicated by the ON imperative statement and no transfer of data
occurs, even if a field has been modified. For example, if the
following statement is coded.

DISPLAY AND READ DISPLAY-REC ON SCREEN
ONLY PFKEY 2, 5
ON PFKEY 2 GO TO 100-EXIT.

selection of PF2 passes control to paragraph 100-EXIT, selection
of PF5 (the only other valid PF key) allows DISPLAY AND READ to
validate the screen data and transfer it to the program, and
selection of any other PF key causes the workstation alarm to
sound.

If the NO-MOD phrase is coded for a DISPLAY AND READ ALTERED,
then execution is passed to the NO-MOD imperative statement only
when no modification of displayed data has occurred. Although
ALTERED must be coded if the NO-MOD phrase is coded, ALTERED can
be coded without using the NO-MOD phrase.

4-22

4, If both the NO-MOD phrase and the ON phrase are coded, and no
modifications are made but a PF key associated with the ON phrase
is selected, the ON phrase has precedence and is executed. For
example, if the following statement

DISPLAY AND READ ALTERED DISPLAY-REC ON SCREEN
ONLY PFKEY 2, 4

ON PFKEY 2 GO TO 100-EXIT

NO-MOD GO TO 200-NEXT-LEVEL.

is executed, with no modifications made to modifiable screen
fields, and PF 2 is selected, then control passes to 100-EXIT
(the imperative statement associated with the ON phrase) rather
than to 200-NEXT-LEVEL (the imperative statement associated with
the NO-MOD phrase).

5. RANGE validation is performed before PF key validation, except
that PF key validation associated with the ON phrase is performed
immediately. Therefore, if a enabled PF key with no associated
ON phrase is selected, and at least one screen field has violated
a RANGE check, the field(s) in error blink and the screen is
redisplayed.

Therefore, any PF key that is enabled but has no ON PFKEY exit is
not honored unless all of the screen fields pass the RANGE
checks. If the PF key is enabled and has an associated ON
phrase, the imperative statement of the ON phrase will be taken.
If nothing has been modified, even if one of the fields violates
a RANGE check, the NO-MOD imperative statement is executed.

4.3.4 Coding Requirements for Additional Workstation File Control

All of the capabilities discussed thus far occur automatically and
give the programmer enough control over the workstation to handle most
application situations. If, however, the programmer wishes to exercise
more control in conjunction with the DISPLAY AND READ facilities, the
option does exist. These additional programming capabilities allow the
programmer to:

] Specify and test the Field Attribute Characters of any field that
is displayed on the workstation screen, implemented by the FAC OF
phrase.

e Specify and test order area bits for controlling keyboard
locking, alarm sounding, and cursor positioning, implemented by
the ORDER-AREA OF phrase.

e Determine location of cursor, implemented by examining the CURSOR
POSITION IS data name as specified 1in the workstation
FILE-CONTROL entry.

e Test user's PF key response, implemented by examining either the

PFKEY IS data name or the FILE STATUS IS data name as specified
in the workstation FILE-CONTROL entry.

4-23

Control of Field Attribute Characters Using the FAC OF Phrase

Field Attribute Characters, as described in Subsection 4.3.2, define
the attributes for each displayed field. The programmer can control the
characteristics of fields displayed on the workstation screen by
manipulating FAC values and thereby not accept the defaults provided by
DISPLAY AND READ. Each FAC is a l-byte character that can be altered by
moving a new value to it. The values must be provided in hexadecimal and
must be identified in the Environment Division as a figurative constant.
For an extensive discussion of Field Attribute Characters, refer to
Appendix C.

For example, to define a Field Attribute Character for a protected
field, displaying with bright intensity, a possible value is "86". The
FIGURATIVE-CONSTANTS paragraph would read:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FIGURATIVE-CONSTANTS.

PRO-BRITE IS "86".

Assume the following USAGE IS DISPLAY-WS definition:

01 DISPLAY-REC USAGE IS DISPLAY-WS.
05 DISP-FIELD PIC 9(5) ROW 10 COLUMN 7.

PRO-BRITE characteristics could be given to DISP-FIELD by moving
PRO-BRITE to the figurative constant associated with DISP-FIELD. This is
accomplished by coding the following statement in the Procedure Division:

MOVE PRO-BRITE TO FAC OF DISP-FIELD.

A FAC of a displayed data item can also be tested in an IF
statement. For example, to test whether DISP-FIELD has the PRO-BRITE
FAC, code the following:

IF FAC OF DISP-FIELD = PRO-BRITE
DISPLAY "This field is bright and protected.".

A FAC can also be tested to see if the field it describes had been
altered by a user responding to DISPLAY AND READ with the ALTERED
option. For example, to test whether the screen area associated with
DISP-FIELD had been altered by the previous DISPLAY AND READ, code the
following:

IF FAC OF DISP-FIELD ALTERED
THEN DISPLAY "This field has been changed.".

4-24

Control of the Order Area Using The ORDER-AREA OF Phrase

The order area is a 4-byte control area for the workstation and can,
if necessary, be manipulated under program control. The first byte of the
order area contains the row number at which screen processing is to
begin., The second byte is the Write Control Character (WCC) that
controls keyboard locking, alarm sounding, and cursor positioning. The
last two bytes contain the cursor column number and cursor row number,
respectively, after a READ; in addition, if the "position cursor" bit is
on in the WCC, these bytes indicate at what column and row the cursor is
to be positioned. Refer to Appendix D for a detailed discussion of the
order area.

The order area values may be provided or tested under program
control. To manipulate these hexadecimal values, the programmer can move
the appropriate figurative constants to the order area bytes.

The USAGE IS DISPLAY-WS screen format description is used in the
ORDER-AREA OF phrase as the order area of the screen. Each USAGE IS
DISPLAY-WS screen format description has, in effect, its own order area,
which is mapped onto the workstation order area when the DISPLAY AND READ
is issued. To illustrate, assume the following screen format description:

01 DISPLAY-REC USAGE IS DISPLAY-WS.

A 4-byte group item ORDERAREA, composed of four l-byte elementary
items, defines the actual order area. This is coded:

01 ORDERAREA.
03 ROW-NUMBER PICTURE IS X.
03 WRITE-CONTROL-CHARACTER PICIURE IS X.
03 CURSOR-COLUMN-ADDRESS PICTURE IS X.
03 CURSOR-ROW-ADDRESS PICTURE IS X.

After the appropriate figurative constants have been moved to the
elementary items composing ORDERAREA, the order area of the USAGE IS
DISPLAY-WS screen format description is set to the desired values by
coding the following:

MOVE ORDERAREA TO ORDER-AREA OF DISPLAY-REC.

Figure 4-9 is a complete COBOL program illustrating controlling the
cursor and sounding the workstation alarm using the ORDER-AREA OF phrase.
The figurative constants POSITION-CURSOR, SOUND-THE-ALARM, ONE,
TWENTY-FOUR, and EIGHTY, coded on Lines 4 - 9, define the hexadecimal
values that are to be moved into the order area for the appropriate USAGE
IS DISPLAY-WS screen format. The order area to be initialized
(ORDERAREA) is a 4-byte group item consisting of four 1l-byte elementary
items, which will be initialized in the Procedure Division by moving in
figurative constants.

4-25

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ORDRAREA.
000003 ENVIRONMENT DIVISION.
000004 FIGURATIVE-CONSTANTS.
000005 POSITION-CURSOR IS "AQ0",
000006 SOUND-THE-ALARM IS "CO",
000007 ONE IS "o1",
000008 TWENTY-FOUR IS 18",
000009 EIGHTY IS "50".
000010 INPUT-OUTPUT SECTION.
000011 FILE-CONTROL.
000012 SELECT SCREEN ASSIGN TO "SCREEN", "DISPLAY",
000013 ACCESS MODE IS RANDOM.
000014 DATA DIVISION.
000015 FILE SECTION.
000016 FD SCREEN
000017 LABEL RECORDS ARE STANDARD.
000018 01 CRTREC PICTURE X(1924).
000019 WORKING-STORAGE SECTION.
000020 01 CURSOR-CONTROL USAGE IS DISPLAY-WS.
000021 05 FILLER PICTURE IS X(35) ROW 04 COLUMN 08
000022 VALUE IS "The cursor is at row 24, column 80.".
000023 01 ALARM-SCREEN USAGE IS DISPLAY-WS.
000024 05 FILLER PICTURE IS X(34) ROW 04 COLUMN 08
000025 VALUE IS "The workstation alarm has sounded.".
000026 01 ORDERAREA.
000027 03 ROW-NUMBER PICTURE IS X.
000028 03 WRITE-CONTROL-CHARACTER PICTURE IS X.
000029 03 CURSOR—-COLUMN-ADDRESS PICTURE IS X.
000030 03 CURSOR-ROW-ADDRESS PICTURE IS X.
000031 PROCEDURE DIVISION.
000032 CONTROL-THE-CURSOR.
000033 MOVE ONE TO ROW-NUMBER.
000034 MOVE POSITION-CURSOR TO WRITE-CONTROL-CHARACTER.
000035 MOVE EIGHTY TO CURSOR-COLUMN-ADDRESS.
000036 MOVE TWENTY-FOUR TO CURSOR-ROW-ADDRESS.
000037 MOVE ORDERAREA TO ORDER-AREA OF CURSOR-CONTROL.
000038 DISPLAY AND READ CURSOR-CONTROL ON SCREEN.
000039 SOUND-ALARM.
000040 MOVE SOUND-THE-ALARM TO WRITE-CONTROL-CHARACTER.
000041 MOVE ORDERAREA TO ORDER-AREA OF ALARM-SCREEN.
000042 DISPLAY AND READ ALARM-SCREEN ON SCREEN.
000043 CLOSE SCREEN.
000044 STOP RUN.
Figure 4-9. Control of Order Area Using the ORDER-AREA OF Phrase

4-26

In

the paragraph CONTROL-THE-CURSOR, coded on Lines 32 - 38,

ORDERAREA is set as follows:

10

ROW-NUMBER is set to a hexadecimal figurative constant ONE ("01")
by the statement MOVE ONE TO ROW-NUMBER, coded on Line 33. This
setting of 'the row number instructs DISPLAY AND READ to display
the entire screen, starting at Row 1 (the default action of
DISPLAY AND READ).

WRITE-CONTROL-CHARACTER is set to the hexadecimal figurative
constant POSITION-CURSOR ("A0") by the statement MOVE
POSITION-CURSOR TO WRITE-CONTROL-CHARACTER, coded on Line 34.
This setting of the Write Control Character instructs DISPLAY AND
READ to position the cursor to the column and row address
specified in the next 2 bytes of the order area.

CURSOR-COLUMN-ADDRESS is set to the hexadecimal
figurative—-constant EIGHTY ("50") by the statement MOVE EIGHTY TO
CURSOR-COLUMN-ADDRESS, coded on Line 35. The value "S0" in
hexadecimal is "80" in decimal; therefore the setting of
hexadecimal 50 in CURSOR-COLUMN-ADDRESS will define a column
number of 80.

CURSOR-ROW-ADDRESS is set to the hexadecimal figurative-constant
TWENTY-FOUR ("18") by the statement MOVE TWENTY-FOUR TO
CURSOR-ROW-ADDRESS, coded on Line 36. The wvalue "18" in
hexadecimal is "24" in decimal; therefore, the setting of
hexadecimal 18 in CURSOR-ROW-ADDRESS defines a row number of 24.

Finally, the initialized order area (ORDERAREA) is moved to the order

area of

the USAGE IS DISPLAY-WS format definition CURSOR-CONTROL by the

MOVE statement using the ORDER-AREA OF phrase, coded on Line 37. The

DISPLAY
Row 24,

The
follows:

1.

AND READ of CURSOR-CONTROL, coded on Line 38, sets the cursor at
Column 80.

workstation alarm is sounded in the paragraph SOUND-THE-ALARM as

WRITE-CONTROL-CHARACTER is set to the hexadecimal figurative
constant SOUND-THE--ALARM ("Cco") by the statement MOVE
SOUND-THE-ALARM TO WRITE-CONTROL-CHARACTER, coded on Line 40.

ORDERAREA is moved to the USAGE IS DISPLAY-WS screen format
definition ALARM-SCREEN by the statement MOVE ORDERAREA TO
ORDER-AREA OF ALARM-SCREEN, coded on Line 41.

The DISPLAY AND READ of ALARM-SCREEN, coded on Line 42, causes
the alarm the alarm to sound. DISPLAY AND READ controls the
screen based on the Write Control Character; in this case, the
bit associated with sounding the alarm is set.

4-27

Determining Cursor Position Using the CURSOR POSITION IS Clause

As illustrated in Figure 4-9, setting the cursor on the screen can be
controlled through the ORDER-AREA OF phrase. However, determining the
position of the cursor after a DISPLAY AND READ can be accomplished by a
special clause in the FILE-CONTROL entry for the workstation. This
clause is the CURSOR POSITION IS clause.

The CURSOR POSITION IS clause in the FILE-CONTROL entry for the
workstation can be used to define a data name having the value of the
cursor column and the cursor row after the READ option of DISPLAY AND
READ. To define a data name called CURSOR-POS to receive the cursor
position value after a READ, code the following in the FILE-CONTROL entry
for the workstation:

CURSOR POSITION IS CURSOR-POS

CURSOR-POS is a group item composed of two elementary items, defined in
the Data Division as follows:

01 CURSOR-POS.
03 COLUMN-SETTING BINARY.
03 ROW-SETTING BINARY.

COLUMN-SETTING contains the cursor column number after a READ;
ROW-SETTING contains the cursor row number after a READ.

The CURSOR POSITION IS data name is assigned a value by the operating
system when a DISPLAY AND READ is issued. The value is in the form of
two 2-byte binary data items; the first value corresponds to a cursor
column location and the second corresponds to a cursor row location.
Valid column values are 1 - 80 (inclusive) and valid row values are 1 -
24 (inclusive). This clause only permits reading the current cursor
position. Setting the cursor to another position c¢an only be
accomplished through the ORDER-AREA OF phrase, as illustrated in Figure
4-9,

Testing PF Key Response Using the PFKEY or the FILE STATUS Clauses

Two special clauses in the FILE-CONTROL entry for the workstation are
used to direct action based upon user PF key response. They are the
PFKEY and FILE STATUS clauses.

The PF key can be tested by the PFKEY IS clause in the FILE-CONTROL
entry for the workstation file. To code a PFKEY clause, code the
following in the FILE-CONTROL entry for the workstation file:

PFKEY IS PF-KEY
In Working-Storage code the following:

01 PF-KEY PIC 99.

4-28

The PFKEY IS data name (PF-KEY) is a 2-character numeric field that
receives the numeric value of the selected PFKEY following execution of a
DISPLAY AND READ statement or of a workstation READ statement.

PFP-KEY can be tested in the Procedure Division to initiate action
based on selection of a particular PF key. After the READ function of
DISPLAY AND READ, the value of the PF key selected is stored in the PFKEY
IS data name. A number between 0 and 32 is stored, with 0 representing
the ENTER key and 1 through 32 representing the corresponding PF key.
For example, to perform a routine called CALCULATION based on selection
of the ENTER key, code the following:

IF PF-KEY = 0 PERFORM CALCULATION.

The PF key can also be tested after a workstation READ by examining
the workstation's file status. To define a FILE STATUS clause, code in
the FILE-CONTROL entry for the workstation as follows:

FILE STATUS IS FILE-STATUS
In Working-Storage code:

01 FILE-STATUS.
03 STATUS-BYTE-1 PICTIURE IS X.
03 PFK-BYTE PICTURE IS X.

The second byte of the data item associated with the FILE STATUS
clause holds the wvalue corresponding to the PF key of the operator's
response after a workstation READ. The rightmost character, PFK-BYTE,
will contain "@" if the ENTER key is selected, an uppercase letter in the
range A through P if one of the PF keys between 1 and 16 is selected, or
a lowercase letter in the range a through p if one of the PF keys between
17 and 32 is selected.

FILE-STATUS can be tested in the Procedure Division to initiate
action based on selection of a particular PF key. For example, to
perform a routine called CALCULATION based on selection of the ENTER key
being, code the following:

IF PFK-BYTE = "@" PERFORM CALCULATION.

The PFKEY IS clause and the FILE STATUS clause thus perform
equivalent functions (testing the PF key after a DISPLAY AND READ or a
workstation READ statement). However, use of the PFKEY IS clause is
recommended because the wvalue returned in the data item directly
corresponds to the number of the PF key selected (with 0 representing the
ENTER key): whereas the value returned in the FILE STATUS data name is a
letter returned in the second byte, and the letter must be translated
into the PF key number. The letter, called the AID character, is
discussed in detail in Appendix E. Using the FILE STATUS method makes
the code more difficult to read because the programmer must be conscious
of which letter in the FILE STATUS data name corresponds to which PF key
number.

4-29

In summary, the three methods of testing for a PF key value are:

1. Use of the ON PFKEY phrase of DISPLAY AND READ.

2. Testing the PFKEY IS data name after a workstation READ.

3. Testing the second byte of the FILE STATUS data name (after

translating the letter into a PF key number) after a workstation
READ.

4.4 PROGRAMMING THE WORKSTATION THROUGH FULL SCREEN I/0

The workstation can be treated as a file, affording the programmer
direct control of the screen area. The workstation is viewed as a
consecutive file in random access mode, each row being one record of the
file.

Figure 4-10 is a complete COBOL program illustrating the technique of
direct file processing of the workstation, using full screen I1I/0. The
program produces the screen (four fields occurring across) as shown in
Figure 4-1. The same screen is produced by the COBOL program illustrated
in Pigure 4-2, but whereas that program used DISPLAY AND READ to produce
the screen, this program uses full screen I/0. A comparison of the
programs illustrated in Figure 4-2 and Figure 4-10 demonstrates the
coding differences between DISPLAY AND READ and full screen I/O.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ACROSS.
000003 ENVIRONMENT DIVISION.
000004 CONFIGURATION SECTION.
000005 FIGURATIVE-CONSTANTS.

000006 POSITION-CURSCR IS "AQ",
000007 MODCHR Is "s1",
000008 DIM IS "8C".

000009 INPUT-OUTPUT SECTION.
000010 FILE-CONTROL.

000011 SELECT THE-WORKSTATION

000012 ASSIGN TO "WSFILE", "DISPLAY"
000013 RELATIVE KEY IS ROW-NUMBER
000014 ACCESS MODE IS RANDOM.

000015 DATA DIVISION.
000016 FILE SECTION.
000017 FD THE-WORKSTATION

000018 LABEL RECORDS ARE OMITTED.

000019 01 CRTREC.

000020 03 SCREEN-ORDER-AREA.

000021 05 ROWNUMBER PICTURE X.
000022 05 WCC PICTURE X.
000023 05 CURSOR-COLUMN PICTURE X.

000024 05 CURSOR-ROW PICTURE X.

Figure 4-10. Displaying Elements Across a Row Using Full Screen I/O

4-30

000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044
000045
000046
000046
000047
000048
000049
000050
000051
000052
000053
000054
000055
000056
000057
000058
000059
000060

03 SCREEN-MAPPING-AREA PICTURE X(1920).
WORKING~-STORAGE SECTION.

77 ROW-NUMBER PICTURE 9(2) VALUE 1.
01 FOUR-FIELDS.
03 ROWS-1-THRU-4 PICTURE X(320) VALUE SPACES.
03 ROW-5.
05 FILLER PICTURE X(25) VALUE SPACES.
05 FILLER PICTURE X(28)
VALUE IS "FOUR FIELDS OCCURRING ACROSS".
05 REST-OF-ROW-5 PICTURE X(27) VALUE SPACES.
03 ROW-6 PICTURE X(80) VALUE SPACES.
03 ROW-7.
05 FILLER PICTURE X(21) VALUE SPACES.
05 FILLER PICTURE X VALUE MODCHR.
05 FIELDl1 VALUE "ELEMENT1" PICTURE X(8).
05 FILLER PICTURE X VALUE MODCHR.
05 FIELD2 VALUE "ELEMENT2" PICTURE X(8).
05 FILLER PICTURE X VALUE MODCHR.
05 FIELD3 VALUE "ELEMENT3" PICTURE X(8).
05 FILLER PICTIURE X VALUE MODCHR.
05 FIELD4 VALUE "ELEMENT4" PICTURE X(8).
05 FILLER PICTURE X VALUE DIM.

PROCEDURE DIVISION.
OPEN-THE-WORKSTATION.
OPEN I-0 THE-WORKSTATION.
INITIALIZE-THE-ORDER-AREA.
MOVE POSITION-CURSOR TO WCC.
MOVE LOW-VALUES TO CURSOR-COLUMN CURSOR-ROW.
DISPLAY-THE-SCREEN.
MOVE FOUR-FIELDS TO SCREEN-MAPPING-AREA.
REWRITE CRTREC.
READ-THE-SCREEN.
READ THE-WORKSTATION MODIFIABLE.
MOVE-TO-WORKING-STORAGE.
MOVE SCREEN-MAPPING-AREA TO FOUR-FIELDS.
CLOSE THE-WORKSTATION.
STOP RUN.

Figure 4-10. Displaying Elements Across a Row
Using Full Screen I/0 (continued)

Comparing the program illustrated in Figure 4-10 with the program
illustrated in Figure 4-2, the differences between full screen I/0 and
DISPLAY AND READ are:

1.

The order area and the mapping area of the workstation must be
initialized. The record description entry for the workstation
(CRTREC), coded on Lines 18 - 24, defines the 4-byte order area
as well as the 1920-byte mapping area for the screen. The order
area (SCREEN-ORDER-AREA) is initialized by moving appropriate
figurative constants to the individual order area bytes. The
mapping area (SCREEN-MAPPING-AREA) is initialized by moving the
screen description.

4-31

2.

The entire screen must be initialized. Whereas using DISPLAY AND
READ only those screen areas that are to be used need to be
defined, using full screen I/0O the screen is treated as a record;
unused areas must be defined as FILLER and initialized to
SPACES. In Working-Storage, the group item FOUR-FIELDS, coded on
Lines 27 - 45, defines the screen format. The following coding
requirements should be noted.

a. Even though the first field (the 1literal "FOUR FIELDS
OCCURRING ACROSS'") appears on Row 5 Column 26, the previous
345 bytes are initialized to spaces by definition of the data
names ROWS-1-THRU-4 and FILLER on Lines 28 and 30.

b. All Field Attribute Characters (except for the dim-protected
FAC which is the default for the beginning of every screen
row) must be defined and initialized. The four elements
occurring across as well as their associated FACs, which in
the program illustrated in Figure 4-2 were defined by one
screen format item definition, are defined here using 9
coding lines (Lines 37 - 45). The Field Attribute Character
MODCHR, defined as a figurative constant on Line 6 as a
bright, modifiable field allowing uppercase input, must be
moved to the byte immediately before each element. In
addition, at the end of the last element, a "trailing FAC"
must be defined as dim-protected (DIM), to prevent the last
screen field from being modifiable to the end of the screen
row,

The workstation must be opened explicitly in the Procedure
Division. This is accomplished by the OPEN statement coded on
Line 48. The program in Figure 4-2 was not required to open the
workstation explicitly, since DISPLAY AND READ automatically
opens the workstation.

The order area must be initialized in the Procedure Division.
This is accomplished in the paragraph INITIALIZE-THE-ORDER-AREA,
coded on Lines 49 - 51. The figurative constants used position
the cursor to the first modifiable field by setting the "position
cursor" bit in the Write Control Character byte and setting
cursor column and cursor row addresses to zero. The row number
(the first byte of the order area) is set to 1 using the RELATIVE
KEY IS data name, ROW-NUMBER, defined on Line 26 with a value of
1, For full-screen I/0, the row number must be set to 1.

The mapping area must be initialized before the screen is
displayed using REWRITE. This is accomplished by the paragraph
DISPLAY-THE-SCREEN, coded on Lines 52 - 54.

A READ must be issued if operator response is required. (If the
screen is only to be displayed, the READ is omitted.) This is
accomplished by the READ statement on Line 56. The MODIFIABLE
option means that only modifiable portions of the screen are
transferred to the record description area.

4-32

/‘\

7. The record description area is moved to Working-Storage, thus
providing the equivalent of the transfer to the OBJECT fields
provided by DISPLAY AND READ. This is accomplished by the MOVE
statement on Line 58.

The one DISPLAY AND READ statement in the program illustrated by
Figure 4-2 performs the equivalent functions of steps 1 - 7. Using
DISPLAY AND READ is therefore the recommended method of programming the
workstation. Only in exceptional cases should full screen I/O be used.
The most common exceptional case is when only a display of the screen
(with no operator action required) is required. DISPLAY AND READ always
performs the READ, requesting operator response —— it does not have a
"display only" mode. Therefore, to display an entire screen without
requiring a read, a REWRITE of the screen, using full screen I/O as
described, is required.

Setting the Order Area Using Extensions to REWRITE

The REWRITE statement for the workstation contains options to set the
order area. These options allow setting the order area without the
tedious and error-prone procedure of defining the order area, specifying
figurative constants, and initializing the order area to the figurative
constants. Combinations of REWRITE options are allowed, permitting
virtually all combinations of order area settings at REWRITE time. The
REWRITE options are as follows:

. ALARM. Sound the workstation alarm.

e SETTING CURSOR COLUMN/ROW. Set the cursor to a designated column
(1 - 80) and row (1 - 24),

e ROLL DOWN, Copy each row to the next lower row. ROLL DOWN is
valid only for row-oriented I/0, to be discussed in Section 4.5.

e ROLL UP. Copy each row to the next higher row. ROLL UP is valid
only for row-oriented I/O, to be discussed in Section 4.5.

e ERASE PROTECT. Erase and protect the screen at and after the
cursor row address specified in the order area. The order area
must be initialized to the desired row address for ERASE PROTECT.

e ERASE MODIFY. Set all modifiable locations after the specified
row address to blanks. The order area must be initialized to the
desired row address for ERASE MODIFY.

An example of using the REWRITE extension for setting the cursor is the
following:

REWRITE CRTREC SEITING CURSOR COLUMN 1 ROW 8.

This statement both rewrites the workstation screen and sets the cursor
at Row 8 Column 1.

4-33

4.5 PROGRAMMING THE WORKSTATION THROUGH ROW-ORIENTED I/O

The workstation can be programmed to rewrite one or more rows at a
time. To do this, the 4-byte order area must be defined and initialized
correctly; the mapping area, however, is 80 bytes instead of 1920 bytes
long.

To specify the row for the workstation rewrite, specify a RELATIVE
KEY IS data name in the FILE-CONTROL entry, and move the desired row
number to the data name before issuing the REWRITE. For example, if one
80-byte row is to be rewritten on Row 11, move 11 to the RELATIVE KEY IS
data name before issuing the REWRITE of the 0l-level record area (84
bytes). For rollup or rolldown, the RELATIVE KEY IS data name specifies
at what row the function is to begin. Therefore to roll down all screen
rows starting with Row 11, move 11 to the RELATIVE KEY IS data name
before issuing the REWRITE with the ROLL DOWN option.

Figure 4-11 is a complete COBOL program that produces the same
results as the program using DISPLAY AND READ in Figure 4-9 -—-
positioning the cursor and sounding the workstation alarm. The program
additionally demonstrates the following features previously discussed:

¢ Use of row-oriented I/0.
¢ REWRITE options that allow setting the cursor position and
sounding the workstation alarm without having to set the order

area.

e Use of the PFKEY IS clause to determine which PF key was selected
after a workstation READ.

4-34

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044
000045
000046
000047
000048
000049
000050
000051
000052

IDENTIFICATION DIVISION.
PROGRAM-ID. ORDRAREA.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SCREEN ASSIGN TO "SCREEN", "DISPLAY",
CURSOR POSITION IS CURSOR-POSITION
RELATIVE KEY IS ROW-NUMBER
PFKEY IS PF-KEY
ACCESS MODE IS RANDOM.

DATA DIVISION.
FILE SECTION.
FD SCREEN
LABEL RECORDS ARE OMITTED.
01 WORKSTATION-REC.

03 FILLER PICTURE IS X(4).

03 WS-MAPPING-AREA PICTURE IS X(80).
WORKING-STORAGE SECTICN.
77 ROW-NUMBER VALUE IS 1 PICTURE IS 99.
01 CURSOR-POSITION.

03 COLUMN-SETTING BINARY.

03 ROW-SETTING BINARY.
01 CURSOR-LINE.

05 FILLER PICTURE IS X(8) VALUE SPACES.

05 FILLER PICTURE IS X(35)

VALUE IS "The cursor is at row 24, column 80.".

01 ALARM-LINE.

05 FILLER PICTURE IS X(8) VALUE SPACES.
05 FILLER PICTURE IS X(34)
VALUE IS "The workstation alarm has sounded.".
01 PFKEY-LINE.

05 FILLER PICTURE IS X(8) VALUE SPACES.

05 FILLER PICTURE IS X(7) VALUE "PF key".

05 PF-KEY PICTURE IS 99 VALUE 0.

05 FILLER PICTURE IS X(9) VALUE " was hit.".

PROCEDURE DIVISION.

CONTROL-THE-CURSOR.
OPEN I-O SCREEN.
MOVE 4 TO ROW-NUMBER.
MOVE CURSOR-LINE TO WS-MAPPING-AREA.
REWRITE WORKSTATION-REC SETTING CURSOR COLUMN 80 ROW 24.
READ SCREEN.

CHECK-PF-KEY.
MOVE PFKEY-LINE TO WS-MAPPING-AREA.
REWRITE WORKSTATION-REC.
READ SCREEN.

SOUND—-ALARM.
MOVE ALARM-LINE TO WS-MAPPING-AREA.
REWRITE WORKSTATION-REC ALARM.
READ SCREEN.
CLOSE SCREEN.
STOP RUN.

Figure 4-11. Setting the Cursor, Checking the PF Key,
and Sounding the Alarm

4-35

In the program illustrated in Figure 4-11, the FILE-CONTROL entry for
the workstation, coded on Lines 6 - 10, contains the CURSOR POSITION
clause (coded on Line 7), the RELATIVE KEY phrase (coded on Line 8), and
the PFKEY clause (coded on Line 9).

The CURSOR POSITION IS data name, CURSOR-POSITION, coded in
Working-Storage on Lines 20 - 22, is a group item containing two
elementary binary items, COLUMN-SETTING and ROW-SETTING. COLUMN-SETTING
contains the value of the cursor column after a READ; ROW-SEITING
contains the value of the cursor row after a READ.

The RELATIVE KEY IS data name, ROW-NUMBER, coded in Working-Storage
on Line 19, contains the row number (from 1 to 24) to be rewritten.
ROW-NUMBER should therefore be initialized to the value of the row to be
rewritten before the REWRITE is issued for the workstation.

The PFKEY IS data name, PF-KEY, coded on Line 34, contains the number
of the PF key after a READ. PF-KEY is embedded in a message indicating
the PF key number. The message is rewritten after the READ.

In row-oriented I/0, only one row of the screen need be defined. The
record description area for the workstation, WORKSTATION-REC, is defined
as an 84-byte area on Lines 15 - 17 —— four bytes of FILLER for the order
area and 80 bytes for the row to be rewritten.

In the Procedure Division the paragraph CONTROL-THE-CURSOR, coded on
Lines 37 - 42, after opening the workstation, sets the cursor at Row 24
Column 80 and displays the message "The cursor is set at Row 24, Column
80." on workstation Row 4. The RELATIVE KEY IS data name, ROW-NUMBER, is
set to 4, indicating that Row 4 is to be rewritten, on Line 39. The
message is moved to the mapping area on Line 40. Finally, the REWRITE is
isgued with the SETTING CURSOR option on Line 41. The SETTING CURSOR
option sets the cursor to Row 24, Column 80 before the REWRITE is issued.

The paragraph CHECK-PF-KEY, coded on Lines 43 - 46, checks the PF key
that was pressed. PF-KEY, the PFKEY IS data name, contains the PF key
number. The message containing the value "PF key nn was selected." is
moved to the mapping area on Line 44, and the REWRITE is issued. Since
the RELATIVE KEY IS data name, ROW-NUMBER, is still set to 4, the message
displays on Row 4.

The paragraph SOUND-ALARM, on Lines 47 - 52, sounds the workstation
alarm after the message "The workstation alarm has sounded." is moved to
the screen mapping area. The ALARM option of the REWRITE statement,
coded on Line 49, accomplishes sounding the alarm.

4-36

4.6 COEXISTENCE OF DISPLAY AND READ AND FULL SCREEN I/Q

It is possible to issue both DISPLAY AND READ, full screen I1/0, and
row—oriented I/0 operations (READ and REWRITE) in the same COBOL
program, DISPLAY AND READ and full screen I/0 require the same
FILE-CONTROL and File Section entries to define the workstation file.
DISPLAY AND READs and conventional READs and REWRITEs can be coded in any
order in the Procedure Division; in effect, the two methods of
workstation programming operate independently of each other. There are
some differences in the runtime operation of the two methods, however.
These are:

1. It is not necessary to open the workstation file using DISPLAY
AND READ. The first DISPLAY AND READ operation will
automatically open the workstation file. However, if the
workstation file is not opened before the first REWRITE (either
explicitly via the OPEN statement or implicitly wvia DISPLAY AND
READ), the REWRITE fails and the program cancels.

2. If workstation interaction is to be performed from more than one
module (either using DISPLAY AND READ or using full screen I/0),
the workstation must be explicitly closed before the CALL is
issued. Each module requires its own FILE-CONTROL entry for the
workstation. The FILE-CONTROL entry cannot be passed from one
module to another. Before workstation interaction can be
performed, the workstation must be opened by that module. If the
workstation is open when a module is called, and that module
attempts workstation I/0, the workstation will not be properly
opened for the called module.

3. DISPLAY AND READ both displays a screen and waits for a
workstation response, thereby requiring response using a PF key.
DISPLAY AND READ performs both the workstation read and the
rewrite. To display a message without requiring operator
intervention, REWRITE the workstation record after moving the
message to the screen record area.

4-37

CHAPTER 5
PRINT FILE PROCESSING

5.1 DEFINING A COBOL PRINT FILE

This chapter discusses print file processing in VS COBOL, and the
techniques for skipping 1lines before printing, skipping 1lines after
printing, and advancing to the next page. Producing well-formatted
reports is a requirement for many data processing applications; VS COBOL
provides, through extensions of the WRITE statement, powerful facilities
to accomplish this task.

VS COBOL treats a print file as a consecutive file with
variable-length records and device type of PRINTER. (For a discussion of
consecutive file processing in COBOL, refer to Section 2.3.) To specify
a COBOL print file, PRTFILE, code the following FILE-CONTROL entry:

SELECT PRTFILE ASSIGN TO "PRINT" "PRINTER".

Since the default file organization is a consecutive file, and the
other clauses are optional, this FILE-CONTROL entry is sufficient for
defining a print file.

The FD entry for a print file is also simple to specify. To specify
an FD entry for PRTFILE, code the following statement:

FD PRIFILE
RECORD CONTAINS 55 CHARACTERS
LABEL RECORDS ARE OMITTED.

01 PRTLINE PIC X(55).

The record description entry for PRTFILE actually defines a print
file containing records of 57 characters in length. The COBOL program
describes only the actual data portion of the print file. The WRITE
statement for a print file appends a 2-byte printer control area to the
data portion of the record. The statement WRITE PRTLINE in the Procedure
Division causes a 57 character print record to be written to the print
file PRTFILE: the 2-byte printer control area concatenated with the
55-byte print record defined in the record description entry for PRTFILE.

A print file is typically opened in output mode. The default library
used is the pound sign (#), concatenated with the user-ID, concatenated
with the characters "PRI"; the default volume is the spool volume (or the
system volume if SPOOLVOL is equal to spaces). The default number of
records is 1000. All of these defaults can be overridden using
appropriate VALUE OF clauses in the FD entry for the print file.

5-1

Options of the WRITE statement for print files allow setting of the
printer control area. To produce well-formatted reports, it is necessary
to control line spacing (how many lines to skip before or after printing
the 1line) and page advancing (whether to skip to the next page). VS
COBOL provides two methods of doing this. One method, discussed in
Section 5.2, is to use integers or data names with integer values in the
BEFORE/AFTER ADVANCING phrase of the WRITE statement. The other method,
discussed in Section 5.3, is to use hexadecimal figurative constants in
the BEFORE/AFTER ADVANCING phrase to specify print control information
and to activate printer hardware-dependent features (such as expanded
print).

The length of the print line depends on the printer used. The print
line cannot have a length greater than the number of characters-per-line
allowed by the printer. Since at compile-time the printer on which the
file will print is unknown, the COBOL compiler will not produce any
messages if a record length greater than the length supported on the
system printer(s) is specified. However, attempting to print a file with
a record length greater than that allowed by the printer will produce an
error condition that depends on the particular type of printer and
whether the file is being printed on-line or spooled.

5.2 USING THE BEFORE/AFTER ADVANCING CLAUSE FOR PRINTER CONTROL

The BEFORE/AFTER ADVANCING phrase of the WRITE statement enables
printer control by automatically setting the printer control area. The
following functions are available:

Function Clause

Write a print line, WRITE print-record BEFORE
then advance printer. ADVANCING integer LINES.
Advance printer, WRITE print-record AFTER
then write a print line. ADVANCING integer LINES.
Skip to next page WRITE print-record AFTER

ADVANCING PAGE.

In the BEFORE/AFTER ADVANCING phrase, "integer" can also be a data
name having an integer value, or a figurative constant. The use of
integers in the BEFORE/AFTER ADVANCING phrase is discussed in this
section; the use of figurative constants is discussed in Section 5.3.

A WRITE without the BEFORE/ADVANCING phrase will advance the printer
one line and print. Therefore, the following two statements are
equivalent:

WRITE PRTFILE AFTER ADVANCING 1 LINES.
WRITE PRTFILE.

Figure 5-1 is a complete COBOL program that illustrates the
BEFORE/AFTER ADVANCING options for printer control.

000001 IDENTIFICATION DIVISION.

000002 PROGRAM-ID. PRNTFILE.

000003 ENVIRONMENT DIVISION.

000004 INPUT-OUTPUT SECTION.

000005 FILE-CONTROL.

000006 SELECT PRTFILE ASSIGN TO "PRINT" "PRINTER".
000007 DATA DIVISION.

000008 FILE SECTION.

000009 FD PRIFILE

000010 RECORD CONTAINS 132 CHARACTERS

000011 LABEL RECORDS ARE OMITTED.

000012 01 PRTLINE PICTURE X(132).

000013 WORKING-STORAGE SECTION.

000014 01 LINEl PICTURE X(132) VALUE

000015 "THIS LINE PRINTS. THEN THE PRINTER ADVANCES 10 LINES.".
000016 01 LINE2 PICTURE X(132) VALUE

000017 "THE PRINTER WILL ADVANCE 25 LINES. THEN THIS LINE PRINTS.'.
000018 01 LINE3 PICTURE X(132) VALUE

000019 " THIS IS THE FIRST PART".

000020 01 LINE4 PICTURE X(132) VALUE

000021 "THE PRINTER WILL ADVANCE 1 LINE. THEN THIS LINE PRINTS.".

000022 PROCEDURE DIVISION.
000023 OPEN-PRINT-FILE.

000024 OPEN OUTPUT PRTFILE.

000025 WRITE-PRINT-LINES.

000026 WRITE PRTLINE FROM LINE1l BEFORE ADVANCING 10 LINES.

000027 WRITE PRTLINE FROM LINE2 AFTER ADVANCING 25 LINES.

000028 WRITE PRTLINE FROM LINE3 AFTER ADVANCING PAGE.

000029 MOVE " THIS IS THE SECOND PART "
000030 TO LINE3.

000031 WRITE PRTLINE FROM LINE3 AFTER ADVANCING O.

000032 WRITE PRTLINE FROM LINE4.

000033 CLOSE-PRINT-FILE.
000034 CLOSE PRTFILE.
000035 STOP RUN.

Figure 5-1. Use of BEFORE/AFTER ADVANCING

The FILE-CONTROL entry for PRTFILE, coded on Line 6, specifies a
consecutive file with device type of "PRINTER". The device type of
PRINTER identifies PRTFILE as a print file.

The record description entry for PRTFILE, coded on Lines 9 - 12,
specifies a print record with 132 print positions. The actual record
length is 134 bytes because two bytes are added for the printer control
area. Space for the printer control area is not defined in the record
description entry; rather, it is appended to the print record when the
WRITE is executed.

PRTFILE is opened in output mode by the successful execution of the
OPEN statement on Line 24. Since the BEFORE ADVANCING option of the
WRITE statement means "write the record, then advance the printer", the
WRITE statement on Line 26 prints LINEl and then advances the printer 10
lines. Since the AFTER ADVANCING option of the WRITE statement means
"advance the printer, then write the record,”" the WRITE statement on Line
27 advances the printer 25 lines, and then prints LINE2. Since the PAGE
option of the WRITE statement means "skip to the next page", the WRITE
statement on Line 28 advances the printer to the next page and prints
LINE3, which has the value "THIS IS THE FIRST PART".

Using the number 0 in the AFTER ADVANCING option of the WRITE
statement does not cause the printer to advance any lines; the next line
will overprint if 0 is used. The MOVE and WRITE statements coded on
Lines 29 - 31 print the second part of the heading, with the value "THIS
IS THE SECOND PART", to the same line. The message "THIS IS THE FIRST
PART THIS IS THE SECOND PART" appears on that line. This message is the
result of two WRITE statements -- the WRITE on Line 28 writes the first
part of the message, and the WRITE on Line 31 writes the second part of
the message.

The WRITE statement on Line 32 writes LINE4 after advancing to the
next line and is the equivalent of WRITE LINE4 AFTER ADVANCING 1 LINES,

5.3 USING FIGURATIVE CONSTANTS FOR PRINTER CONTROL

Another method of printer control is to define figurative constants
for wuse in the BEFORE/AFTER ADVANCING phrase. Use of figurative
constants enables program control of the printer control area. The
figurative constants define a wvalue for the printer control area, which
will be moved to the first two bytes of the printer record when a WRITE
statement is issued. In addition to printer spacing and page ejecting,
hardware-specific features, such as expanded print and sounding the
printer alarm, can be activated.

Not all VS printers support expanded print or the hardware alarm; if
a particular printer supports these attributes, using the figurative
constant method will activate these features. Refer to Appendix F for
the appropriate bits to set when defining the figurative constant.

In the Environment Division, construct a 2-byte figurative constant
to enable the functions desired. The printer must support the feature
(such as expanded print, actuating the hardware alarm, or channel
skipping) desired. For example, to sound the hardware alarm on a VS
printer that supports this feature, code the following:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

FIGURATIVE-CONSTANTS.
SOUND-THE-ALARM IS "1000".

5-4

As shown in Appendix F, Bit 3 of the first byte must be on to sound
the hardware alarm. The figurative constant SOUND-THE-ALARM has Bit 3 of
the first byte set. In the Procedure Division, to sound the alarm after
writing the line PRTLINE on the file PRTFILE, code the following:

WRITE PRILINE AFTER ADVANCING SOUND-THE-ALARM.

The figurative constant used in the WRITE statement determines all
the printer control, including control of printer advancing and advancing
to the next page. Therefore, the "BEFORE ADVANCING" and "AFTER
ADVANCING" phrases are ignored by the WRITE when figurative constants are
used. The setting of the "space before printing" or the '"space after
printing” bit in the figurative constant determines whether printing
precedes spacing or spacing precedes printing, regardless of whether the
"BEFORE ADVANCING" or "AFTER ADVANCING" phrase is used. In addition, the
words "PAGE" and "LINES" as WRITE statement options are ignored: page
skipping and line advancing are governed solely by the settings of the
figurative constant.

The program in Figure 5-2 is identical to the program in Figure 5-1,
with the exception of the figurative constants defined on Lines 4 - 8 and
their use in the WRITE statement options. The figurative constants
BEFORE-TEN, AFTER-25, TOP-OF-FORM, and ZERO-LINES, are constructed so
that when used in the WRITE statement, the record is written and the
printer advances 10 lines, the printer advances 25 lines and the record
is written, the printer skips to the top: of -the next page, and the
printer does not advance before or after the record is written. The
figurative constant values define 2 bytes to be moved to the printer
control area by the WRITE. Refer to Appendix F for further discussion of
definition of these values.

The paragraph WRITE-PRINT-LINES in the program of Figure 5-2
generates the identical output as the paragraph WRITE-PRINT-LINES in the
program of Figure 5-1 except that in Figure 5-2, the settings of the
figurative constants determine printer action. For example, the WRITE
statement on Line 31 prints LINEl and advances the printer 10 1lines
because the figurative constant BEFORE-TEN used in the WRITE statement is
set to the values that cause this action.

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041

IDENTIFICATION DIVISION.
PROGRAM-ID. PRNTFILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

FIGURATIVE-CONSTANTS.
BEFORE-TEN IS "400a"
AFTER-25 IS "0019"
TOP-OF-FORM IS "8001"
ZERO-LINES IS "0000".

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT PRTFILE ASSIGN TO "PRINT" "PRINTER".
DATA DIVISION.
FILE SECTION.
FD PRIFILE
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS ARE STANDARD.
01 PRTLINE PIC X(132).
WORKING-STORAGE SECTION.

01 LINEL PICTURE X(132) VALUE

"THIS LINE PRINTS. THEN THE PRINTER ADVANCES 10 LINES.".
01 LINE2 PICTURE X(132) VALUE

"THE PRINTER WILL ADVANCE 25 LINES. THEN THIS LINE PRINTS."
01 LINE3 PICTURE X(132) VALUE

" THIS IS THE FIRST PART".
01 LINE4 PICTURE X(132) VALUE
"THE PRINTER WILL ADVANCE 1 LINE. THEN THIS LINE PRINTS."

PROCEDURE DIVISION.

OPEN-PRINT-FILE.
OPEN OUTPUT PRTFILE.

WRITE-PRINT-LINES.
WRITE PRTILINE FROM LINEl BEFORE ADVANCING BEFORE-TEN.
WRITE PRTLINE FROM LINE2 AFTER ADVANCING AFTER-25.
WRITE PRTLINE FROM LINE3 AFTER ADVANCING TOP-OF-FORM.
MOVE " THIS IS THE SECOND PART

TO LINE3.

WRITE PRTLINE FROM LINE3 AFTER ADVANCING ZERO-LINES.
WRITE PRTLINE FROM LINE4.

CLOSE-PRINT-FILE.
CLOSE PRIFILE.
STOP RUN.

Figure 5-2. Use of Figurative Constants to Control the Printer

5-6

CHAPTER 6
TAPE FILE PROCESSING

6.1 INTRODUCTION

This chapter discusses the process of creating and maintaining tape
files using VS COBOL. Tape files are identified in the FILE-CONTROL
entry for the file by the device type "TAPE". Thus, to define a tape
file TAPEFILE, code the FILE-CONTROL entry as follows:

SELECT TAPEFILE
ASSIGN TO "TAPEIN", "TAPE".

Consecutive files are the only file organization supported on tape.
Any function supported for consecutive files is allowed for tape. For a
detailed discussion of consecutive file processing in COBOL, refer to
Section 2.3.

6.2 TAPE LABEL PROCESSING

Tape labels identify a tape file. Multiple files are allowed on a VS
tape volume; a tape label will identify which file is to be processed.
(The VS also supports nonlabelled tape files, in which case the file to
be processed is identified by the order in which the file is located on
the tape.)

To facilitate the transport of information from computers wusing
industry-standard tape file formats, the VS supports three methods of
tape label processing. These are:

1. ANSI Tape Labels. An ANSI labelled tape (AL) identifies a tape
label format in accordance with the standards of the American
National Standards Institute (ANSI). The ANSI standard tape
label format is intended to be a common industry standard,
facilitating file transfer across computers adhering to the
industry standard conventions.

2. IBM Tape Labels. An IBM labelled tape (IL) identifies a tape
label format in accordance with IBM 370 standards. The IBM tape
label standard differs from the ANSI tape 1label standard.
Therefore, to facilitate file transfer from IBM 370 systems to
the VS, IBM tape label formats are supported.

6-1

3. No Tape Labels. A nonlabelled tape (NL) identifies a tape volume
with no tape labels. The file to be processed is identified by
its order on the tape. Nonlabelled tapes are the common mode of
tape processing for some computer vendors. In instances where
file transfer between a computer supporting neither AL nor IL
tapes and the VS is required, the best alternative may be
creating an NL tape on the system and transporting it to the VS.

The VS utility TAPEINIT enables initialization of a tape volume and
specification of the type of tape label processing allowed. Through the
TAPEINIT wutility, the tape volume can be initialized as either an
ANSI-labelled tape (AL), an IBM-labelled tape (IL), or a nonlabelled tape
(NL). In VS COBOL, LABEL RECORDS ARE STANDARD implies either an AL or an
IL tape, while LABEL RECORDS ARE OMITTED implies an NL tape. Refer to VS
Utilities Reference Manual for further information on the TAPEINIT
utility.

6.3 USE OF LABEL RECCRDS CLAUSE FOR TAPE LABEL PROCESSING

6.3.1 ANSI and IBM Tape Label Processing

In the FD for the tape file, the LABEL RECORDS clause identifies
whether or not the tape has labels. If tape labels are present, code in
the FD for TAPEFILE as:

FD TAPEFILE
LABEL RECORDS ARE STANDARD.

In tape label processing, the program or procedure must supply the
file name. An additional specification of a library name will provide
qualification of the file name on the tape label. To specify the file
name, use the VALUE OF FILENAME clause; to specify the library name, use
the VALUE OF LIBRARY clause in the FD of the file. Refer to Section
2.2.4 for a detailed discussion on methods of supplying the file and
library names for the tape file.

If an existing tape file is opened, the tape volume is scanned for a
tape file name containing a match between the program-supplied tape file
name and the file name on the label. If there is no match, an error
message is displayed, giving the opportunity for respecifying the file,
library, and volume. If a file is being created (opened in output mode),
either an ANSI label or an IBM label is created.

The VS file naming convention permits up to three levels of name
qualification —- file name, library name, and volume name. Other file
naming conventions (for example, the convention for naming tape data sets
on the IBM 370) may support more than three 1levels of name
qualification. When the file label is read on the VS, the first three
levels of qualification are converted to file, library, and volume names:
any further qualification of names is ignored. For example, an IBM 370
tape data set with the name 111.222.333.444.555 is converted to a VS name
of VOLUME=111, LIBRARY=222 and FILE=333. The fourth and fifth levels of
qualification (444 and 555) are ignored.

(A\

If a tape contains files using a collating sequence different from
the VS collating sequence, code translation is the responsibility of the
programmer. This is primarily a consideration in conversion of IL tape
files. 1IBM 370 tape data sets frequently contain files using the EBCDIC
collating sequence. Such a file cannot be processed using the VS
collating sequence, which is the ASCII collating sequence. To translate
the file into the VS collating sequence, run the VS code translation
utility (TRANSL) before processing the tape file using the COBOL
program. Refer to VS Utilities Reference manual for detailed information
on the TRANSL utility.

6.3.2 Nonlabelled Tape Processing

If tape labels are not present, or if the tape label is to be
processed by the program as a file, code the following FD for TAPEFILE:

FD TAPEFILE
LABEL RECORDS ARE OMITTED.

Through the TAPEINIT utility, the tape volume has been initialized as
a nonlabelled tape (NL). In VS COBOL, LABEL RECORDS ARE OMITTED implies
an NL tape.

Since no identification for the file exists, it can be found only by
specifying a file number representing the position of the file on the
tape volume. Records are written to the tape file; when the file is
closed, an end-of-file marker is written to the tape volume signifying
the end of the tape file. By counting end-of-file markers, a particular
file can be located.

To specify the file number, VS COBOL provides a clause —-- the VALUE
OF POSITION clause. The data name in the VALUE OF POSITION clause is an
integer representing the ordinal number of the file to be processed. For
example, to specify that TAPEFILE is the fifth file on the tape volume,
code the following:

FD TAPEFILE
LABEL. RECORDS ARE OMITTED
VALUE OF POSITION IS POSITION-COUNTER.

In Working-Storage, code the following:

WORKING-STORAGE SECTION.
77 POSITION-COUNTER PIC S9 COMPUTATIONAL VALUE +5.

If a tape contains labels that do not adhere to ANSI or IBM label
processing, the tape label itself can be processed as a file and the
information contained in the label can be used by the program to process
the file. The tape can be processed as an NL tape and the program can
then access the label. This method should be used in conversion of
tapes, from systems that adhere neither to ANSI nor to IBM tape labelling
conventions, to the VS.

CHAPTER 7
SORT-MERGE PROCESSING

7.1 INTRODUCTICON

Applications often find it necessary to have a COBOL program sort or
merge data files while executing. Sorts and merges are performed in
COBOL by the SORT-MERGE module. Programmers can include a sort or merge
operation in a program by coding the procedures and syntax described in
this chapter. Formats, syntax and general rules are presented in Part II.

7.2 SORTING

COBOL programs perform sort operations by collecting the records from
the file or files to be sorted into a temporary file called a sort file.
Once created, the sort file is processed according to the instructions
defined in a SORT statement and released back to the program.

Sort processing can be accomplished by the SORT statement with the
USING and GIVING phrases, or by defining an input and output procedure.
The input procedure makes records available for sorting from the file or
files to be sorted by means of the RELEASE statement. The SORT statement
then arranges the entire set of records in the sort file. The reordering
is performed according to the keys specified by the programmer in the
SORT statement. When the reordering is complete, the output procedure
makes the sorted records available to the program by means of the RETURN
statement.

Sorting files within a VS COBOL program has an advantage over
external sorts in that the COBOL sort allows the programmer to manipulate
the individual records during the sort process. The manipulation may
consist of addition, deletion, creation, or editing of the individual
records. It may be necessary to apply the manipulation before or after
the records are reordered, or even in both places. This special
processing is applied to the records during execution of the input and
output procedures. Specific rules governing what the programmer can and
cannot do during these procedures are included in the RELEASE and RETURN
statement sections in Chapter 12.

A COBOL program may contain more than one sort, each of which can
have its own input and output procedures. The sort feature automatically
causes execution of these procedures at the point specified by the
programmer in such a way that extra passes over the sort file are not
required. Sort files are named by a file control entry and are described
by a sort or merge file description (SD) entry (refer to Chapter 11).
Sort files can never be accessed directly. They can only be accessed
from the input and output procedures. The SORT statement must name the
file or procedure from which the input procedure acquires the records to
be sorted and must name the file into which the sorted records are to be
placed.

7.3 MERGING

Merge processing in a COBOL program is similar to sort processing.
The major difference is that the MERGE function does not employ an input
procedure. Files to be merged are accessed by the MERGE statement.
Records from these files are placed into a temporary file (the merge
file). The merge is accomplished according to the key specified by the
programmer in th MERGE statement. With the reordering complete, the
merge file is made available to the program. This can be accomplished by
either a coding a GIVING phrase with the MERGE statement of by the RETURN
statement in an output procedure.

As is true for sort files, merge files are accessed and referred to
only by the MERGE statement.

7.4 IMPLEMENTATION

Implementation of a SORT or MERGE operation in a VS COBOL program
requires entries in the Environment, Data, and Procedure Divisions of
that program. The file to be sorted or merged is named and its
file-related characteristics defined in the FILE-CONTROL Section of the
Environment Division.

The SORT FILE DESCRIPTION (SD), is the Data Division entry. An SD
file description containg information about the size and the names of the
data records of the file(s) to be sorted or merged.

The Procedure Division statements are SORT, MERGE, RELEASE, and
RETURN. The SORT statement defines the sort function in the following
three steps:

1. Creates a sort file either by executing an input procedure or by
transferring records from some other file.

2. Sorts the records in the sort file on a set of user-specified
keys.

3. Makes available each record from the sort file in the sorted
order to either an output procedure or an output file.

The MERGE statement combines two or more identically sequenced files
on a set of user-specified keys. During this process the statement makes
the merged records available, in merge order, to either an output
procedure or an output file.

The RELEASE statement transfers records to the initial phase of a
SORT operation. The RETURN statement obtaing either sorted records from
the final phase of a SORT operation or merged records during a MERGE
operation.,

7.5 COLLATING SEQUENCE AND SORT-MERGE LIMITS

The COBOL SORT-MERGE module 1links to the VS SORT utility. As a
result, the collating sequence for a COBOL sort is the same as that of
the SORT utility (refer to the VS System Utilities Reference).

A SORT-MERGE file may have a maximum of 8 keys. The maximum key
length depends on the type of data. Binary data (USAGE BINARY) can have
2 positions. Character data (USAGE DISPLAY) can have from 1 to 256
character positions. Decimal data (USAGE DISPLAY) can have from 1 to 16,
as can Packed (USAGE COMP), Zoned Decimal (USAGE DISPLAY), and Zoned
Decimal sign leading (USAGE DISPLAY). Numeric data with USAGE DISPLAY or
USAGE COMP can have key lengths from 1 to 16.

7.6 PROGRAM EXAMPLE

Figure 7-1 is a program example that implements a number of SORT
operations.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. ST100.
000300 ENVIRONMENT DIVISION.
000400 INPUT-OUTPUT SECTION.
000500 FILE-CONTROL.

000600 SELECT FILEl

000700 ASSIGN TO "FILEl1l" "DISK"
000800 ORGANIZATION IS SEQUENTIAL
000300 ACCESS MODE IS SEQUENTIAL.
001000

001100 SELECT FILE2

001200 ASSIGN TO "FILE2" "DISK"
001300 ORGANIZATION IS SEQUENTIAL
001400 ACCESS MODE IS SEQUENTIAL.
001500

001600 SELECT FILE3

001700 ASSIGN TO "FILE3" "DISK"
001800 ORGANIZATION IS SEQUENTIAL
001900 ACCESS MODE IS SEQUENTIAL.

Figure 7-1. SORT Processing

002000
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500
003600
003700
003800
003900
004000
004100
004200
004300
004400
004500
004600
004700
004800
004900
005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300
006400
006500
006600
006700
006800

DATA
FILE
FD

01

FD

0l

FD

01

FD

01

SELECT FILE4

ASSIGN TO "FILE4" "DISK"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS FILE4-KEY.

SELECT SORT1
ASSIGN TO "FILEl" "DISK".

SELECT SORT2
ASSIGN TO "FILE2" "DISK".

SELECT SORT3
ASSIGN TO "FILE3" "DISK".

DIVISION.

SECTION.

FILEl

LABEL RECORDS ARE STANDARD

DATA RECORD IS FILE1-RECORD.
FILE1-RECORD PIC X(50).

FILE2
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE2-RECORD.

FILE2-RECORD.

05 FILE2-FIELD1 PIC X(5).
05 FILE2-FIELD2 PIC X(5).
05 FILLER PIC X(40).
FILE3

LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE3-RECORD.

FILE3-RECORD.

05 FILE3-FIELDl PIC X(5).
05 FILE3-FIELD2 PIC X(5).
05 FILLER PIC X(40).
FILE4

LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE4-RECORD.

FILE4-RECORD.

05 FILE4-KEY.
10 FILE4-FIELDl PIC X(5).
10 FILE4-FIELD2 PIC X(5).
10 FILE4-FIELD3 PIC X(5).

05 FILLER PIC X(35).

Figure 7-1. SORT Processing (continued)

006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200
008300
008400
008500
008600
008700
008800
008900
009000
009100
009200
009300
009400
009500
009600
009700
009800
009900
010000
010100
010200
010300
010400
010410
010420
010430
010440
010450
010455
010500
010600
010700
010800
010900
011000
011100
011200

SD SORT1
RECORD CONTAINS 50 CHARACTERS
DATA RECORD IS SORT1-RECORD.
01 SORT1-RECORD.

05 S1-SORTKEY1 PIC X(5).
05 S1-SORTKEY2 PIC X(5).
05 FILLER PIC X(40).
SD SORT2
RECORD CONTAINS 50 CHARACTERS
DATA RECORD IS SORT2-RECORD.
01 SORT2-RECORD.

05 S2-SORTKEY1 PIC X(5).
05 S2-SORTKEY2 PIC X(5).
05 FILLER PIC X(40).
SD SORT3
RECORD CONTAINS 50 CHARACTERS
DATA RECORD IS SORT3-RECORD.
01 SORT3-RECORD.

05 S3-SORIKEY1 PIC X(5).
05 S3-SORTKEY2 PIC X(5).
05 S3-SORTKEY3 PIC X(5).
05 S3-SORTKEY4 PIC X(5).
05 S3-SORTIKEYS PIC X(5).
05 FILLER PIC X(25).

WORKING-STORAGE SECTION.

01 WS-FILE1-RECORD.
05 WS-FILEl-FIELD1l PIC X(5).
05 WS-FILE1-FIELD2 PIC X(5).
05 FILLER PIC X(40).

PROCEDURE DIVISION.

OPEN-RTN.
OPEN OUTPUT FILE3 FILE4.

OPEN-RTN-EXIT.
EXIT.

FIRST-SORT.
SORT SORT1
ON ASCENDING KEY S1-SORIKEY1
USING FILEl
GIVING FILE2.
FIRST-SORT-EXIT.
EXIT.

Figure 7-1. SORT Processing (continued)

011300
011400
011500
011600
011700
011800
011900
012000
012100
012200
012300
012400
012450
012500
012600
012700
012800
012900
013000
013100
013200
013300
013400
013500
013600
013700
013800
013900
014000
014100
014200
014300
014400
014500
014600
014700
014800
014900
015000
015100
015200
015300
015400
015500
015600

SECOND-SORT.
SORT SORT2
ON ASCENDING KEY S2-SORTKEY1
ON ASCENDING KEY S2-SORTKEY2
WITH DUPLICATES IN ORDER
INPUT PROCEDURE IS BUILD-INDEX-FILE1 THRU BUILD1-EXIT
GIVING FILE3.
SECOND-SORT-EXIT.
EXIT.

THIRD-SORT.
OPEN INPUT FILE2.
SORT SORT3
ON ASCENDING KEY S3-SORTKEY4
ON ASCENDING KEY S3-SORTKEYS
INPUT PROCEDURE IS BUILD-INDEX-FILE2 THRU BUILD-2-EXIT
OUTPUT PROCEDURE 1S BUILD-INDEX-FILE3 THRU BUILD3-EXIT.
THIRD-SORT-EXIT.
EXIT.

EXIT-RIN. ,
CLOSE FILE2 FILE3 FILE4.
STOP RUN,

BUILD-INDEX-FILE1l.

READ FILE2 NEXT AT END

GO TO BUILD1-EXIT.

MOVE FILE2-FIELD1l TO S2-SORTKEY1,

MOVE FILE2-FIELD2 TO S2-SORTKEY2.

RELEASE SORT2-RECORD.

GO TO BUILD-INDEX-FILE1.
BUILD1-EXIT.

EXIT.

BUILD-INDEX-FILE2.
READ FILE3 NEXT AT END
GO TO BUILD2-EXIT.

MOVE FILE3-FIELD1l TO S3-SORTKEY1.

MOVE FILE3-FIELD2 TO S3-SORTKEY2.

RELEASE SORT3-RECORD.

GO TO BUILD-INDEX-FILE2.
BUILD2-EXIT.

EXIT.

Figure 7-1. SORT Processing (continued)

7-6

015700 BUILD-INDEX-FILE3.
015800 RETURN SORT3 AT END

015900 GO TO BUILD3-EXIT.

016000

016100 MOVE S3-SORIKEY1l TO FILE4-FIELD1.
016200 MOVE S3-SORTKEY2 TO FILE4-FIELDZ.
016300

016400 WRITE FILE4-RECORD.

016500 GO TO BUILD-INDEX-FILE3.

016600 BUILD3-EXIT.

016700 EXIT.

016800

Figure 7-1. SORT Processing (continued)

The sample program in Figure 7-1 performs three different SORT
operations. All input and output files are assumed to exist prior to
running the object program.

Lines 010500 through 011100 display a SORT operation employing the
USING and GIVING statements. These statements open both the input file
(FILE1l) and output file (FILE2). No other OPEN statements are necessary.

Lines 011300 through 012100 display a SORT operation employing an
input procedure and more than one sort key. Lines 012400 through 013100
display a SORT operation employing both an input and output procedure.

PART II

REFERENCE

CHAPTER 8
GENERAL LINGUISTIC CONSIDERATIONS

8.1 INTRODUCTION

PART II explains the form and function of the various 1linguistic
units of COBOL: characters, words, clauses, statements, sentences,
entries, paragraphs, sections, and divisions. This chapter deals with
the elements of COBOL, the combination of elements into more complex
forms, general formatting considerations, and the notation that is used
in subsequent chapters. The remainder of PART II will discuss the
components of each of the divisions of a COBOL program,

8.2 COBOL CHARACTERS

The most basic unit of the language is the character. The set of
characters used to form COBOL character-strings and separators includes
the letters of the English alphabet, Arabic digits, and special
characters. The complete VS COBOL character set consists of the
following characters:

VS COBOL Character Set

Character Meaning

o.,1,....9 digit

A,B,....,2 letter

space (blank)

plus sign

minus sign

asterisk

stroke (virgule, slash)
equal sign

currency sign

comma

semicolon

period (decimal point)
quotation mark

left parenthesis

right parenthesis
greater than symbol
less than symbol

Te e BN * |+

IN Vo

The following characters are used for punctuation: space [], comma
[,], semicolon [;], period [.], quotation mark ["], left parenthesis [(],
and right parenthesis [)].

8.3 CHARACTER-STRINGS AND SEPARATORS

A COBOL character-string is a character or a sequence of continuous
characters that forms a COBOL word, literal, PICTURE character-string, or
comment-entty. Separators are strings of one or more punctuation
characters that delimit a character-string. A character-string can only
be concatenated with a separator. A separator can be concatenated with
another separator or with a character-string. Concatenated separators
and character-strings form the text of a COBOL source program.

The rules for the formation of separators are:

1. The punctuation character space (blank) is a separator. Anywhere
a space is used as a separator, more than one space can be used.

2. The punctuation characters comma, semicolon, and period are
separators only when immediately followed by a space. However,
these particular separators are permissible only where designated
by the general formats (refer to Section 8.7.1, Definition of a
General Format), by format punctuation rules (refer to Section
8.7.4, Format Notation), by statement and sentence structure
definitions, or by reference format rules for source programs
(refer to Section 8.7.5, COBOL Source-Program Reference Format).

3. The punctuation characters left and right parentheses are
separators. Parentheses must appear in balanced pairs of left
and right parentheses delimiting subscripts, indices, arithmetic
expressions, or conditions.

4. The punctuation character quotation mark is a separator. An
opening quotation mark must be immediately preceded by a space or
left parenthesis. A closing quotation mark must immediately
precede a space, comma, semicolon, period, or right parenthesis.
Quotation marks can appear only in balanced pairs of opening and
closing quotes delimiting nonnumeric 1literals. The only
exception to this rule is line continuation (refer to Section
8.7.6, Continuation Lineg). To represent a single quotation mark
within a nonnumeric literal, two contiguous quotation marks must
be used.

5. The separator space (blank) can precede all other separators
except the closing quotation mark. A space preceding a closing
quotation mark is considered a part of the nonnumeric literal and
not a separator.

6. The separator space may immediately follow any separator except
the opening quotation mark. A space following an opening
quotation mark is considered a part of the nonnumeric literal and
not a separator.

7. PICTURE character-strings are delimited only by the separators
space, comma, semicolon, or period. (PICTURE character-strings
consist of combinations of COBOL characters used in the PICTURE
clause as symbols defining data categories and editing features.)

The above rules do not apply to punctuation characters that appear as
parts of numeric or nonnumeric 1literals, PICTURE character-strings,
comment entries, or comment lines. Such punctuation characters are not
considered separators.

8.4 PUNCTUATION

The following rules control punctuation in all four divisions of a
COBOL program to increase readability, provide special forms of data, and
delimit sentences.

1. The punctuation characters comma and semicolon are optional.
They can be used interchangeably. Neither one can immediately
precede the first clause of an entry or paragraph.

2. It is permissible to use a semicolon or comma between statements
in the Procedure Division.

3. Paragraphs within the Identification and Procedure Divisions and
entries within the Environment and Data Divisions must be
terminated by the separator period.

4. The parentheses provide for indexing and subscripting.

5. The quotation marks serve to delimit nonnumeric literals.

6. At least one space must appear between two successive words
and/or parenthetical expressions and/or literals. Two or more
successive spaces are treated as a single space, except within
nonnumeric literals.

7. A space must always precede and follow an arithmetic operator or
an equal sign.

8.5 DIVISIONAL COMPONENTS

A COBOL program is made up of four divisions. Each division must
begin with one of the division headers listed in Section 1.3, Structure
of COBOL Programs. The composition of a division is'as follows:

SECTIONS are composed of PARAGRAPHS, which are composed of

SENTENCES or ENTRIES, which are composed of

CLAUSES or STATEMENTS, which are composed of

PHRASES, which are composed of
USER-DEFINED and COBOL-DEFINED WORDS, which are composed of

COBOL CHARACTERS and PUNCTUATION.

8.5.1 Sections

The Environment, Data, and Procedure Divisions are organized into
sections. A section consists of a section header, which terminates with
a period, followed by =zero, one, or more successive paragraphs. A
section ends immediately before the next section or division, or at the
end of the program, or, in the Declaratives Section of the Procedure
Divison, at the key words END DECLARATIVES. Therefore, each section
consists of the section header and the related section body.

In the Environment and Data Divisions, a section header is composed
of reserved words, followed by a period and a space. The permissible
section headers are:

In the Environment Division,

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division,

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a header is composed of a section name,
followed by the reserved word SECTION, a period, and a space.

8.5.2 Paragraphs

A paragraph consist of a paragraph header followed by zero, one, or
more entries, or of a paragraph name followed by a period and a space and
by zero, one, or more sentences. Comment entries. may be included within
a paragraph. Each paragraph ends immediately before the next paragraph,
section, or division, or at the end of the program, or, in the
Declaratives Section of the Procedure Divison, at the key words END
DECLARATIVES.

8.5.3 Sentences

A COBOL sentence consists of one or more statements and is terminated
by a period followed by a space. Punctuation within sentences is
permitted in certain places to improve readability. Sentences occur only
in the Procedure Division.

8.5.4 Entries

An entry is any descriptive clause or set of consecutive descriptive
clauses terminated by a period and written in the Identification
Division, Environment Division, or Data Division.

8.5.5 Clauses
A clause is a group of words that specifies an attribute of an entry.

8.5.6 Statements

A statement is a syntactically valid combination of words and symbols
written in the Procedure Division beginning with a verb.

8.5.7 Phrases

A phrase is an ordered set of one or more consecutive COBOL
character-strings that forms a portion of a COBOL statement or clause.

8.6 COBOL WORDS

A COBOL word consists of a combination of one or more characaters
selected from the COBOL character set for words (0 through 9, A through
Z, and the hyphen). Each word contains no more than 30 characters and
neither begins nor ends with a hyphen.

The character space (blank) cannot appear in any word, although it
can be used as a separator between words. Two or more spaces can occur
anywhere a space serves as a separator.

A word is terminated by one of the following punctuation characters:

Character Meaning
space (blank)
. period
’ comma
H semicolon

In each case (except for space) the punctuation character must be
followed by a space.

There are two kinds of COBOL words: user—-defined and COBOL-defined.

8.6.1 User-defined Words

A user-defined word is a COBOL word that must be supplied by the user
to satisfy the format of a clause or statement. Thus, it has a meaning
specific to the program in which it is used.

There are 14 types of user-defined words. Except for level numbers,
each user-defined word can belong to one and only one of these types
within a given source program. All user-defined words, with the
exception of paragraph names, section names, and level numbers, must
contain at least one alphabetic character. Furthermore, all user-defined
words of each type must be unique.

The 14 types of user-defined words are:

Alphabet name Names a special character set and/or collating
sequence in the OBJECT-COMPUTER and SPECIAL-NAMES
paragraphs or the CODE-SET clause. Wang VS uses
the ASCII code.

Condition name Names a specific value, set of values, or range of
values, within a complete set of values that a data
item may assume. The data item itself is called a
conditional variable.

Condition—names are defined in the Data Division as
88 level items. For example,

01 END-OF-FILE-IND PIC X VALUE "O".
88 EOF VALUE "1".
88 NOT-EOF VALUE "Q".

EOF and NOT-EOF are condition-names.

Data name Names a data item described in a data description
entry in the Data Division. When used in the
general formats "data-name" represents a word that
can neither be subscripted, indexed, nor qualified
unless specifically permitted by the rules for that
format.

File name Names a file described in a file description entry
within the File Section of the Data Division.

Index name Names an index associated with a specific defined
table.
Level number Denotes the position of a data item in the

hierarchy of a data description or indicates
special properties of a data description entry.
Level numbers need not be wunique; a given
specification of a level number may be identical to
any other level number and may even be identical to
a paragraph name or section name.

Library name

Mnemonic name

Paragraph name

Program name

Record name

Routine name

Section name

User—figurative

constant

A level number is a 1- or 2-digit number chosen
from the numbers 1 through 49, 77, and 88. The
range of numbers 1 through 49 indicates the
position of a data item in the hierarchical
structure of a logical record. Level numbers 77
(refer to "Noncontiguous Working-Storage" in
Section 11.3.2 and "Noncontiguous Linkage Storage"
in Section 11.3.5) and 88 (refer to "Format 2" in
Section 11.3.3) identify special properties of the
associated data description .

Level numbers in the range 1 through 9 can occur as
single digits or be preceded by 2zero. In this
manual, the form 01, 02,....,09 is wused to
represent level numbers 1 through 9.

Names a COBOL 1library containing text to be
included in a given source program by the
compiler. It is used with the COPY statement.

Is associated with a specified implementor-name (a
COBOL-defined word) in the SPECIAL-NAMES paragraph
of the Environment Division.

Begins a paragraph of the Procedure Division.

Identifies a source program and all listings
pertaining to a particular program. It is assigned
to a source program in the PROGRAM-ID paragraph of
the Identification Divison.

Names a record described in a record description
entry in the Data Division.

Identifies a procedure written in a language other
than COBOL. A routine name is used with the ENTER
statement.

Begins a section of the Procedure Division.

Names a hexadecimal character. The user-figurative
constant is assigned in the FIGURATIVE-CONSTANTS
paragraph of the Environment Division. The
hexadecimal character can then be referenced in the
Procedure Division by means of the figurative
constant name. For example,

ENVIRONMENT DIVISION.
SOURCE~COMPUTER. WANG-VS.
OBJECT-COMPUTER. WANG-VS.
CONFIGURATION SECTION.
FIGURATIVE-CONSTANTS. ONE IS "0l1",
NOTAB IS "80", DIM IS "8C",
TAB IS "AO".
PROCEDURE DIVISION.
MOVE DIM TO FAC OF DATA-NAME-1.
MOVE ONE TO CONSTANT-ONE.

8.6.2 COBOL-defined Words

COBOL~defined words and names have the same meanings in all COBOL
programs and include words such as ADD, IS, or READ, COBOL-defined words
can be classified as either reserved words or system names. Within a
given source program, a COBOL word can belong to one, and only one, of
these classes.

A system name is a COBOL word that communicates with the physical
operating environment (hardware). There are two types of system names:
computer names and implementor names. A computer name is used in the
SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs of the Environment
Division to identify the computer on which a program is to be compiled or
run. The computer name recognized by the VS compiler is WANG-VS.
Implementor names refer to particular features of an implementor's
computing system.

A reserved word is one of a specified list of words (refer to
Appendix A, Reserved Words) that must not appear in programs as
user—-defined words or system names but can only be used as specified in
the general formats. However, reserved words can appear as nonnumeric
l