# V7 VGA Technical Reference Manual

6/30/88



We make a clear difference.

# V7VGA Technical Reference Manual

6/30/88

Written by:

#### Dean A. Hays Video Seven Cupertino, California

with contributions from:

Michael Abrash Dave Miller Tom Wilson

IBM is a trademark of International Business Machines Corporation Hercules is a trademark of Hercules Computer Technology MS-DOS is a trademark of Microsoft, Incorporated MultiSync is a trademark of Nippon Electric Company MultiScan is a trademark of SONY

#### Copyright 1987, 1988

Video Seven Incorporated 46335 Landing Parkway Fremont, California 94538

(415) 656-7800

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior written consent from VIDEO SEVEN INCORPORATED.

# Table of Contents

| Chapter 1.0 | Intro                                                 | duction1-1                                               |
|-------------|-------------------------------------------------------|----------------------------------------------------------|
|             | 2.1<br>2.2<br>2.3                                     | Scope.1-1Chip Revisions Covered.1-1Intended Audience.1-1 |
| Chapter 2.0 | Over                                                  | view                                                     |
|             | 2.1                                                   | Features2-2                                              |
| Chapter 3.0 | Regis                                                 | ster Definitions                                         |
|             | 3.2<br>3.3<br>3.5<br>3.6<br>3.7<br>3.8<br>3.9<br>3.10 | I/O Port Summary                                         |
| Chapter 4.0 | BIOS                                                  | S 4-1                                                    |
|             | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6                | BIOS Overview                                            |
| Chapter 5.0 | Supp                                                  | ort Software                                             |
|             | 5.1<br>5.2                                            | Utilities                                                |
| (continued) |                                                       |                                                          |
|             |                                                       |                                                          |

-----

# Table of Contents

\*\*\*\*\*\*

| Chapter 6.0 | V7VGA Programming                 |
|-------------|-----------------------------------|
|             | 6.1General Information            |
| Appendix A  | Register Initialization TablesA-1 |
| Appendix B  | Character FontsB-1                |
| Appendix C  | Connector PinoutsC-1              |
| Appendix D  | Jumper / Switch Settings D-1      |
|             |                                   |

# List of Figures

| Figure 3-4 | Display Memory Plane Mapping 3-24            |
|------------|----------------------------------------------|
| Figure 3-5 | CRTC Timing Registers                        |
| Figure 3-6 | CRTC Cursor Programming Examples             |
| Figure 3-7 | CRTC Offset Register Operation               |
| Figure 3-8 | Split Screen Mode                            |
| Figure 6-1 | Text Mode Video Memory Mapping (Mode 3)6-2   |
| Figure 6-2 | Attribute Byte Layout                        |
| Figure 6-3 | Character Font Addresses                     |
| Figure 6-4 | Graphics Mode Video Memory Mapping (Mode 10) |
| Figure 6-5 | Common Color Values                          |
| Figure 6-6 | Split Screen Mapping                         |
| Figure 6-7 | V7VGA Write Data Path                        |

# List of Tables

| Table 4-1              | BIOS Functions (Functional Order)                              |
|------------------------|----------------------------------------------------------------|
| Table 4-2<br>Table 4-3 | BIOS Functions (Numerical Order)                               |
| Table 4-4              | VGA BIOS Data Area                                             |
| Table 4-5              | VGA BIOS Save Environment                                      |
| Table 4-6              | Secondary Save Pointer Data Area                               |
| Table 4-7              | Video Seven Extensions                                         |
| Table 4-8              | Video Parameter Mode Table Format                              |
| Table 4-9              | Standard Video Parameter Table 4-38                            |
| Table 6-1              | Text Character Attributes                                      |
| Table 6-2              | Common Color Value Calculation                                 |
| Table 6-3              | V7VGA User-Programmable Extension Register Summary 6-48        |
|                        |                                                                |
| Table A-2              | Analog Display Initialization Data                             |
| Table A-3              | Video Seven Proprietary Text Modes Initialization Data         |
| Table A-4              | Video Seven Proprietary Graphics Modes Initialization Data A-6 |
|                        |                                                                |
|                        |                                                                |
|                        |                                                                |
|                        |                                                                |
|                        |                                                                |
|                        |                                                                |
|                        |                                                                |
|                        |                                                                |
|                        |                                                                |

# CHAPTER Image: Image

# Introduction

#### 1.1 Scope of Document

This manual provides technical coverage of the V7 VGA chip. Topics include the modes of operation of the V7 VGA, the major components and registers, the BIOS functions, and programming information including examples. In addition, detailed information is presented on each of the V7 VGA registers.

The following definitions are used throughout this manual:

Industry Standard Enhanced Graphics Adapter. EGA Industry Standard Color Graphics Display Adapter. CGA Industry Standard Monochrome Display Adapter. MDA MGA Video-Seven Monochrome Graphics Adapter. Hercules<sup>™</sup> Graphics Card (MGA Compatible). HGC ED/ECD Industry Standard Enhanced Color Display. Industry Standard Color Display. CD Industry Standard Monochrome Display. MD AD/ACD Analog Display / Analog Color Display MS Multiple-Frequency Color Display (MultiSync<sup>™</sup>, MultiScan<sup>™</sup>, etc.)

#### **1.2** Chip Revisions Covered

This manual documents the following chip revisions:

| Revision 0 - Available Jan | 1988 | (L1Axxxx) |
|----------------------------|------|-----------|
| Revision 1 - Available Mar | 1988 | (L1A4080) |
| Revision 2 - Available Apr | 1988 | (L1A4152) |
| Revision 3 - Available May | 1988 | (L1A4199) |

#### **1.3 Intended Audience**

This manual is directed toward the technically sophisticated audience. It assumes the reader is familiar with assembly language programming on the 80286 or similar microprocessor, and understands the fundamentals of video display terminology.

# CHAPTER 2

# Overview

The V7VGA chip is hardware / software compatible with the IBM VGA and provides improved performance and additional functionality. The V7VGA supports high resolution graphics and alphanumeric display modes for both monochrome and color, and for high resolution displays such as the NEC Multisync<sup>™</sup> and Sony MultiScan<sup>™</sup> monitors. Additional functions are also available, including hardware cursor, highresolution 256-color modes, extended attribute control, masked-write capability (with V-Rams), and extensive enhancements to the ability to manipulate foreground / background data patterns.

The V7VGA implements all control and data registers of the VGA. It also implements all of the data manipulation capabilities and data paths of the VGA.

All memory cycles not used to refresh the display or video memory are allocated to process CPU memory requests. A one-to-one interleave can be achieved between CPU and display refresh accesses to the video memory for typical VGA-compatible modes using V-Rams. Various interleave settings from 1:1 to 1:4 may be programmed depending on dot clock frequency, mode of operation, and ram access time.

Hardware support is provided to display a 32x32 pixel pattern for use as a mouse pointer. Additional text cursor controls are provided (blink disable and OR/XOR mode control).

# 2.1 Features

The following is a list of the major features of the V7VGA:

- Fast host access to video memory: every cycle for all VGA standard modes using V-Rams
- 32-bit video ram access for display refresh
- 16-bit CPU access (memory, I/O, and BIOS)
- High speed operation (up to 65 MHz dot clock rate)
- Increased video resolutions:

Text: up to 132 columns or 60 lines 8 or 9-bit character widths

Graphics: up to 1024x768 four bit/pixel and 800x600 eight bit/pixel

- Allows up to eight fonts to be loaded simultaneously (any two selectable at once)
- Hardware graphics cursor (mouse pointer)
- Supports memory configurations of 256 KB, 512 KB or 1 MB using either 256Kb or 1Mb ram chips
- Supports both D-Ram and V-Ram configurations
- Supports multiple monitor types including NEC MultiSync<sup>™</sup> and Sony MultiScan<sup>™</sup>.
- Host CPU-readable registers for save/restore
- Scan-line doubling for improved readability of 200-line graphics modes on high-resolution monitors
- Data path enhancements for foreground / background data manipulation
- Extended underlining control
- Masked-write capability (with V-Rams)

CHAPTER



# **Register Definitions**

The following sections present information on the registers of the V7VGA chip. The register name is shown first (full name and an abbreviation), along with the port address and index if applicable. Below that is a figure illustrating the register configuration and a discussion of the register contents.

Note: In all register descriptions in this chapter, unused and reserved bits return 0 when read, except where specifically indicated otherwise. One general exception is that all reserved extension registers read back bits 3-0 as 1.

## V7VGA I/O PORT SUMMARY

| Port Address           | VGA Mode                              | <br>· · · · · · · · · · · · · · · · · · · |   |
|------------------------|---------------------------------------|-------------------------------------------|---|
|                        |                                       |                                           |   |
| 000 1000               |                                       |                                           |   |
| 2B0/3B0                |                                       |                                           |   |
| 2B1/3B1                |                                       |                                           |   |
| 2B2/3B2                |                                       |                                           |   |
| 2B3/3B3                | 0.201                                 |                                           |   |
| 2B4/3B4                | CRTC Index (RW)                       |                                           |   |
| 2B5/3B5                | CRTC Data (RW)                        |                                           |   |
| 2B6/3B6                |                                       |                                           |   |
| 2B7/3B7                |                                       |                                           |   |
| 2B8/3B8                |                                       |                                           |   |
| 2B9/3B9                |                                       |                                           |   |
| 2BA / 3BA              | Feature Ctrl(W), Display Status(R)    |                                           |   |
| 2BB/3BB                |                                       |                                           |   |
| 2BC / 3BC              |                                       |                                           |   |
| 2BD / 3BD              |                                       |                                           |   |
| 2BE / 3BE              |                                       | <br>                                      |   |
| 2BF / 3BF              |                                       |                                           |   |
|                        |                                       |                                           |   |
| 2C0 / 3C0              | Attr Ctrlr Index/Data (W), Index (R)  |                                           |   |
| 2C1 / 3C1              | Attr Ctrlr Index/Data (W), Data (R)   |                                           |   |
| 2C2 / 3C2              | Misc Output (W), Feature (R)          |                                           |   |
| 2C3 / 3C3              | Video Subsystem Enable (RW)           |                                           |   |
| 2C4 / 3C4              | Sequencer/Extensions Index (RW)       |                                           |   |
| 2C5 / 3C5              | Sequencer/Extensions Data (RW)        |                                           |   |
| 2C6/3C6                | Palette Pixel Mask (RW)               |                                           |   |
|                        | Palette Index Rmode(W), DACstate(R)   |                                           |   |
| 2C8/3C8                | Palette Index Wmode (RW)              |                                           |   |
| 2C9/3C9                | Palette Data (RW)                     |                                           |   |
| 2CA / 3CA              | Feature Control (R)                   |                                           |   |
| 2CB / 3CB              |                                       |                                           |   |
| 2CC / 3CC              | Misc Output (R)                       |                                           |   |
| 2CD / 3CD              |                                       |                                           |   |
| 2CE / 3CE              | Graphics Controller Index (RW)        |                                           |   |
| 2CF / 3CF              | Graphics Controller Data (RW)         |                                           | · |
|                        |                                       |                                           |   |
| 2D0/3D0                | · · · · · · · · · · · · · · · · · · · |                                           |   |
| 2D0/3D0                |                                       |                                           |   |
| 2D2 / 3D2              |                                       |                                           |   |
| 2D2 / 3D2<br>2D3 / 3D3 |                                       |                                           |   |
| 2D3 / 3D3<br>2D4 / 3D4 | CRTC Index (RW)                       |                                           |   |
| 2D4 / 3D4              | CRTC Data (RW)                        |                                           |   |
| 2D5/3D5<br>2D6/3D6     |                                       |                                           |   |
| 2D0/3D0<br>2D7/3D7     |                                       |                                           |   |
| 2D8/3D8                |                                       |                                           |   |
| 2D9 / 3D9              |                                       |                                           |   |
| 2D9 / 3D9<br>2DA / 3DA | Feature Ctrl(W), Display Status(R)    |                                           |   |
| 2DR/3DR<br>2DB/3DB     | a culture Cultury, Display Status(IV) |                                           |   |
| 2DB / 3DB<br>2DC / 3DC |                                       |                                           |   |
| 2DC / 3DC<br>2DD / 3DD | -                                     | L                                         | 1 |
| 2DD / 3DD<br>2DE / 3DE |                                       |                                           |   |
| 2DE / 3DE<br>2DF / 3DF |                                       |                                           |   |
| 20r / 30r              |                                       |                                           |   |

|              |                  | VGAC                                                      | OMP         | ATIBLER    | EGISTERS   |             |                        |                        |
|--------------|------------------|-----------------------------------------------------------|-------------|------------|------------|-------------|------------------------|------------------------|
| PAGE         | ABBREV           | VGA/EGA REGISTER NAME                                     | BITS        |            | READ/WRITE | INDEX       | MONO PORT              | COLOR PORT             |
| 3-6          | MISC             | Miscellaneous Output                                      | 8           | VGA        | RW         |             | 3C2(W),3CC(R)          | 3C2(W), 3CC(R)         |
| 3-7          | FC<br>FEAT       | Feature Control<br>Feature Read (Input Status 0)          | 3<br>4      | VGA<br>VGA | RW<br>R    |             |                        | 3DA(W),3CA(R)          |
| 3-9          | STAT             | Display Status (Input Status 0)                           | 7           | VGA<br>VGA | R          |             | 3C2<br>3BA             | 3C2<br>3DA             |
| 3-10         | DACMASK          | Color Palette Pixel Mask                                  | 8           | DAC        | RW         |             | 3C6                    | 3C6                    |
| 3-11         | DACSTATE         |                                                           | 2           | VGA        | R          |             | 3C7                    | 3C7                    |
|              | DACRX            | Color Palette Read-Mode Index                             | 8           | DAC        | W          |             | 3C7                    | 3C7                    |
| 3-13         | DACWX<br>DACDATA | Color Palette Write-Mode Index                            | 8<br>18     | DAC<br>DAC | RW<br>RW   | <br>00-FF   | 3C8<br>3C9             | 3C8                    |
|              |                  | Color Palette Regs 0-255                                  |             |            |            | 00-FF       |                        | 3C9                    |
| 3-15<br>3-16 | VSE<br>ALTVSE    | Video Subsystem Enable<br>Video Subsystem Enable (Alt)    | 1<br>1      | VGA<br>VGA | RW<br>RW   |             | 3C3<br>102             | 3C3<br>102             |
| 3-17         | ROMMAP           | Video Subsystem Control                                   | 5           | EXT        | W          |             | 46E8                   | 46E8                   |
| 3-18         | CACHE            | I/O Cache                                                 | 5+8         | IOU        | RW         | 0-F         | 4BC4-4BC5              | 4BC4-4BC5              |
| 3-5          | EXPAN            | Expansion Connector Ports                                 | 8           | EXT        | RW         |             | 2E9,AxE8               | 2E9,AxE8               |
| 3-20         | SRX              | Sequencer / Extensions Index                              | 7           | VGA        | RW         |             | 3C4                    | 3C4                    |
| 3-21<br>3-22 | SRO<br>SR1       | Reset<br>Clocking Mode                                    | 2<br>6      | VGA<br>VGA | RW<br>RW   | 00<br>01    | 3C5<br>3C5             | 3C5<br>3C5             |
| 3-24         | SR2              | Plane Mask                                                | 4           | VGA        | RW         | 02          | 3C5                    | 3C5                    |
| 3-25         | SR3              | Character Map Select                                      | 6           | VGA        | RW         | 03          | 3C5                    | 3C5                    |
| 3-26         | SR4              | Memory Mode                                               | 4           | VGA        | RW         | 04          | 3C5                    | 3C5                    |
| 3-27         | SR6<br>SR7       | Extensions Control<br>Reset Hor Character Counter         | 1<br>0      | VGA<br>VGA | RW<br>W    | 06<br>07    | 3C5<br>3C5             | 3C5<br>3C5             |
| 3-30         | CRX              | CRTC Index                                                | 6           | VGA        | RW         |             | 3B4                    | 3D4                    |
| 3-30         | CRA<br>CR0       | Horizontal Total                                          | в<br>8      | VGA<br>VGA | RW         | 00          | 3B4<br>3B5             | 3D4<br>3D5             |
| 3-32         | CR1              | Horizontal Display End                                    | 8           | VGA        | RW         | 01          | 3B5                    | 3D5                    |
| 3-33         | CR2              | Horizontal Blanking Start                                 | 8           | VGA        | RW         | 02          | 3B5                    | 3D5                    |
| 3-34<br>3-35 | CR3<br>CR4       | Horizontal Blanking End<br>Horizontal Retrace Start       | 5+2+1<br>8  | VGA<br>VGA | RW<br>RW   | 03<br>04    | 3B5<br>3B5             | 3D5<br>3D5             |
| 3-36         | CR5              | Horizontal Retrace End                                    | 5+2+1       | VGA        | RW         | 05          | 3B5                    | 3D5<br>3D5             |
| 3-37         | CR6              | Vertical Total                                            | 8           | VGA        | RW         | 06          | 3B5                    | 3D5                    |
| 3-38         | CR7<br>CR8       | Overflow<br>Screen A Preset Row Scan                      | 8<br>5+2    | VGA<br>VGA | RW<br>RW   | 07<br>08    | 3B5<br>3B5             | 3D5<br>3D5             |
| 3-40         | CR9              | Character Cell Height                                     | 5+2<br>5+3  | VGA<br>VGA | RW         | 08          | 3B5<br>3B5             | 3D5<br>3D5             |
| 3-41         | CRA              | Cursor Start                                              | 5+1         | VGA        | RW         | ŎÁ          | 3B5                    | 3D5                    |
| 3-42         | CRB              | Cursor End                                                | 5+2         | VGA        | RW         | 0B          | 3B5                    | 3D5                    |
| 3-43         | CRC<br>CRD       | Screen A Start Address High<br>Screen A Start Address Low | 8<br>8      | VGA<br>VGA | RW<br>RW   | 0C<br>0D    | 3B5<br>3B5             | 3D5<br>3D5             |
| 3-45         | CRE              | Cursor Location High                                      | 8           | VGA        | RW         | 0E          | 3B5                    | 3D5                    |
| 3-46         | CRF              | Cursor Location Low                                       | 8           | VGA        | RW         | 0F          | 3B5                    | 3D5                    |
| 3-47         | LPENH<br>LPENL   | Light Pen High                                            | 8           | VGA        | R          | 10          | 3B5                    | 3D5                    |
| 3-48<br>3-49 | CR10             | Light Pen Low<br>Vertical Retrace Start                   | 8<br>8      | VGA<br>VGA | R<br>W, RW | 11<br>10    | 3B5<br>3B5             | 3D5<br>3D5             |
| 3-50         | CR11             | Vertical Retrace End                                      | <b>4</b> +4 | VGA        | W, RW      | 11          | 3B5                    | 3D5                    |
|              | CR12             | Vertical Display End                                      | 8           | VGA        | RŴ         | 12          | 3B5                    | 3D5                    |
| 3-52         | CR13<br>CR14     | Offset<br>Underline Row Scan                              | 8<br>5+2    | VGA<br>VGA | RW<br>RW   | 13<br>14    | 3B5<br>3B5             | 3D5                    |
| 3-55         | CR14<br>CR15     | Vertical Blanking Start                                   | 3+2<br>8    | VGA<br>VGA | RW         | 14          | 3B5                    | 3D5<br>3D5             |
| 3-55         | CR16             | Vertical Blanking End                                     | 8           | VGA        | RW         | 16          | 3B5                    | 3D5                    |
| 3-56         | CR17             | CRT Mode Control                                          | 7           | VGA        | RW         | 17          | 3B5                    | 3D5                    |
| 3-58         | CR18<br>CR1F     | Line Compare<br>V7VGA Identification                      | 8<br>8      | VGA<br>VGA | RW<br>R    | 18<br>1F    | 3B5<br>3B5             | 3D5<br>3D5             |
| 3-60         | CR22             | Graphics Ctrlr Data Latches                               | 8           | VGA        | R          | 22          | 3B5                    | 3D5                    |
| 3-61         | CR24             | Attribute Ctrlr Index/Data Latch                          | 7           | VGA        | R          | 24          | 3B5                    | 3D5                    |
| 3-62         | CR3x             | Clear Vertical Display Enable FF                          | 1           | VGA        | W          | 3x          | 3B5                    | 3D5                    |
| 3-64         | GRX              | Graphics Controller Index                                 | 4           | VGA        | RW         |             | 3CE                    | 3CE                    |
| 3-65<br>3-66 | GR0<br>GR1       | Set/Reset<br>Enable Set/Reset                             | 4<br>4      | VGA<br>VGA | RW<br>RW   | 00<br>01    | 3CF<br>3CF             | 3CF<br>3CF             |
| 3-67         | GR2              | Color Compare                                             | 4           | VGA        | RW         | 02          | 3CF                    | 3CF                    |
| 3-68         | GR3              | Data Rotate                                               | 5           | VGA        | RW         | 03          | 3CF                    | 3CF                    |
| 3-69<br>3-70 | GR4<br>GR5       | Read Map Select<br>Mode                                   | 3<br>7      | VGA<br>VGA | RW<br>RW   | 04<br>05    | 3CF<br>3CF             | 3CF<br>3CF             |
| 3-70         | GR5<br>GR6       | Mode<br>Miscellaneous                                     | 4           | VGA<br>VGA | RW         | 05          | 3CF                    | 3CF                    |
| 3-73         | GR7              | Color Don't Care                                          | 4           | VGA        | RW         | 07          | 3CF                    | 3CF                    |
| 3-74         | GR8              | Bit Mask                                                  | 8           | VGA        | RW         | 08          | 3CF                    | 3CF                    |
| 3-76         | ARX              | Attribute Controller Index                                | 6           | VGA        | RW         |             | 3C0 (3C1)              | 3C0 (3C1)              |
| 3-77         | AR0-F            | Internal Palette Regs 0-15                                | 8<br>7      | VGA<br>VGA | RW<br>RW   | 00-0F<br>10 | 3C0 (3C1)              | 3C0 (3C1)              |
| 3-78<br>3-80 | AR10<br>AR11     | Mode Control<br>Overscan Color                            | 8           | VGA<br>VGA | RW         | 11          | 3C0 (3C1)<br>3C0 (3C1) | 3C0 (3C1)<br>3C0 (3C1) |
| 3-81         | AR12             | Color Plane Enable                                        | 6           | VGA        | RW         | 12          | 3C0 (3C1)              | 3C0 (3C1)              |
| 3-82         | AR13             | Horizontal Pixel Panning                                  | 4           | VGA        | RW         | 13          | 3C0 (3C1)              | 3C0 (3C1)              |
| 3-83         | AR14             | Color Select                                              | 4           | VGA        | RW         | 14          | 3C0 (3C1)              | <b>3C0</b> (3C1)       |
|              |                  |                                                           |             |            |            |             |                        |                        |

## **V7VGA EXTENSION REGISTERS**

|       |                   |                |     |                                                                         | -         |                 |            |                  |             |              |
|-------|-------------------|----------------|-----|-------------------------------------------------------------------------|-----------|-----------------|------------|------------------|-------------|--------------|
| PAGE  | ABBREV<br>ER80-82 | <u>IATIONS</u> |     | V7VGA REGISTER NAME<br>(TEST, GPOS1-2 in VEGA VGA)                      | BITS<br>0 | REG TYPE        | READ/WRITE | INDEX<br>80-82   | PORT<br>3C5 |              |
| 3-76  | ER83              | ARX            | *   | Attribute Controller Index                                              | 7         | EXTENSION       |            | 83               | 3C5         |              |
|       | ER84-86           |                |     | (WRC,TC,BWC in VEGA VGA)                                                | Ó         |                 |            | 84-86            | 3C5         |              |
| 1     | ER87-89           |                |     | (ROMC.HSPS, FONTC in VEGA VGA)                                          | Õ         |                 |            | 87-89            | 3C5         |              |
| 1     | ER8A              | SBHP           |     | -reserved- (Screen B H Pixel Pan)                                       | 3         | EXTENSION       |            | 8A               |             | *****000     |
| 1     | ER8B              | SBPR           |     | -reserved- (Screen B Preset Rowscan)                                    | 5         | EXTENSION       | •          | 8B               |             | xxx00000     |
|       | ER8C              | SBSH           |     | -reserved- (Screen B Start Address H)                                   | 8         | EXTENSION       |            | 8C               |             | 00000000     |
|       | ER8D              | SBSL           |     | -reserved- (Screen B Start Address L)                                   | 8         | EXTENSION       |            | 8D               |             | 000000000    |
| 3-86  | ER8E              | REV            |     | V7VGA Revision Code                                                     | 8         | EXTENSION       |            | 8E               |             | 01110000     |
| 3-86  | ER8F              | REV            |     | V7VGA Revision Code                                                     | 8         | EXTENSION       |            | 8E<br>8F         |             | 01110000     |
| 5-00  | ER90-93           |                |     | (CR10-11,LPENH/L in VEGA VGA)                                           | Ő         |                 |            | 90-93            | 3C5         |              |
| 3-87  | ER94              | PPA            |     | Pointer Pattern Address                                                 | 8         | EXTENSION       |            | 90-95            |             | 11111111     |
| 5-07  | ER94<br>ER95      | 114            |     | (CADJ in VEGA VGA)                                                      | Ő         |                 |            | 95               | 3C5         |              |
|       | ER95<br>ER96      | CW             |     | -reserved- (Caret Width)                                                | 8         | EXTENSION       | <br>R/W    | 96               | 3C5         |              |
|       | ER90<br>ER97      | CH             |     | -reserved- (Caret Height)                                               | 8         | EXTENSION       |            | 90<br>97         | 3C5         |              |
|       | ER97<br>ER98      | СХН            |     | -reserved- (Caret H Position High)                                      | 3         | EXTENSION       |            | 98               | 3C5         |              |
|       | ER98<br>ER99      | CXL            |     |                                                                         | 8         | EXTENSION       |            | 99               | 3C5         |              |
| 1     | ER99<br>ER9A      | CYH            |     | -reserved- (Caret H Position Low)<br>-reserved- (Caret V Position High) | 2         | EXTENSION       |            |                  | 3C5         |              |
| ł     | ER9A<br>ER9B      | CYL            |     | -reserved- (Caret V Position High)<br>-reserved- (Caret V Position Low) | 8         | EXTENSION       |            | 9A<br>9B         | 3C5         |              |
| 3-89  | ER9B<br>ER9C      | PXH            |     | Pointer Horizontal Position High                                        | 3         | EXTENSION       |            | 9С               | 3C5         |              |
| 3-90  | ER9C<br>ER9D      | PXL            |     | Pointer Horizontal Position Low                                         | 8         | EXTENSION       | R/W        | 9D               | 3C5         |              |
| 3-90  | ER9D<br>ER9E      | PYH            |     | Pointer Vertical Position High                                          | 2         | EXTENSION       | R/W        | 9E               | 3C5         |              |
| 3-91  | ER9E              | PYL            |     | Pointer Vertical Position Low                                           | 8         | EXTENSION       |            | 9E<br>9F         | 3C5         |              |
| 3-92  | ER9F<br>ERA0      | GRLO           |     | Graphics Ctrlr Memory Latch 0                                           | 8         | EXTENSION       |            | яг<br><b>А</b> 0 | 3C5         |              |
| 3-93  | ERAU<br>ERAI      | GRL1           |     | Graphics Ctrlr Memory Latch 1                                           | 8         | EXTENSION       |            | A0<br>A1         | 3C5         |              |
| 3-95  | ERA1<br>ERA2      | GRL2           |     | Graphics Ctrlr Memory Latch 1<br>Graphics Ctrlr Memory Latch 2          | 8         | EXTENSION       |            | A1<br>A2         | 3C5         |              |
| 3-96  | ERA2<br>ERA3      | GRL3           |     | Graphics Ctrlr Memory Latch 2<br>Graphics Ctrlr Memory Latch 3          | 8         | EXTENSION       | R/W        | A2<br>A3         | 3C5         |              |
| 3-90  | ERA4              | CLK            |     | Clock Select                                                            | 6         | EXTENSION       |            | A3<br>A4         |             | <br>xxx0xxxx |
| 3-98  | ERA5              | CURS           |     | Cursor Attributes                                                       | 3         | EXTENSION       |            | A5               |             | 0xxx0xx0     |
| 3-90  | ERA6-A9           |                |     | (ISR,SWITCH,NMI1-2 in VEGA VGA)                                         | 0         |                 |            | A6-A9            | 3C5         |              |
| 1     | ERAA-AC           |                |     | (unused,NSTAT1-2 in VEGA VGA)                                           | Ő         |                 |            | AA-AC            |             |              |
|       | ERAD-AF           |                |     | (PG256,CACHE,STATE in VEGA VGA)                                         |           |                 |            | AD-AF            | 3C5         |              |
|       | ERB0-BF           |                |     | (Scratch Registers 0-F in VEGA VGA)                                     | 0         |                 |            | B0-BF            | 3C5         |              |
|       |                   |                |     | -                                                                       |           |                 |            |                  |             |              |
|       | ERCO-E9           |                |     | -reserved for V7VGA extensions-                                         | 0         |                 |            | C0-E9            | 3C5         |              |
| 3-99  | EREA              |                | # # | Switch Strobe                                                           | 0         | EXTENSION       |            | EA               | 3C5         |              |
|       | EREB              | NMICTRL        |     | Emulation Control                                                       | 8         | EXTENSION       | R/W        | EB               |             | 00000000     |
| 3-102 |                   | FGLAT0         |     | Foreground Latch 0                                                      | 8         | EXTENSION       | R/W        | EC               | 3C5         |              |
| 3-102 |                   | FGLAT1         |     | Foreground Latch 1                                                      | 8         | EXTENSION       | R/W        | ED               | 3C5         |              |
| 3-102 |                   | FGLAT2         |     | Foreground Latch 2                                                      | 8         | EXTENSION       | R/W        | EE               | 3C5         |              |
| 3-102 |                   | FGLAT3         |     | Foreground Latch 3                                                      | 8         | EXTENSION       | R/W        | EF               | 3C5         |              |
| 3-103 |                   | FFGLD          |     | Fast Foreground Latch Load                                              | 8         | EXTENSION       |            | FO               | 3C5         |              |
| 3-104 |                   | FLLSTATE       |     | Fast Latch Load State                                                   | 4         | EXTENSION       | R/W        | F1               | 3C5         |              |
| 3-105 |                   | FBGLD          |     | Fast Background Latch Load                                              | 8         | EXTENSION       | R/W        | F2               | 3C5         |              |
| 3-106 |                   | MWCTRL         |     | Masked Write Control                                                    | 2         | EXTENSION       | R/W        | F3               |             | ******       |
| 3-107 |                   | MWMASK         |     | Masked Write Mask                                                       | 8         | EXTENSION       | •          | F4               | 3C5         |              |
| 3-108 |                   | FBPAT          |     | Foreground/Background Pattern                                           | 8         | EXTENSION       |            | F5               | 3C5         |              |
| 3-109 |                   | RAMBANK        |     | 1 Mb RAM Bank Select                                                    | 8         | EXTENSION       |            | F6               |             | 00000000     |
| 3-110 |                   | SWITCH         |     | Switch Readback                                                         | 8         | EXTENSION       | •          | F7               | 3C5         |              |
| 3-111 |                   | CLKCTRL        |     | Extended Clock Control                                                  | 8         | EXTENSION       | •          | F8               |             | xxx00x00     |
| 3-113 |                   | PGSEL          |     | Extended Page Select                                                    | 1         | EXTENSION       |            | F9               |             | ******       |
| 3-114 |                   | FGCOLOR        |     | Extended Foreground Color                                               | 4         | EXTENSION       | •          | FA               | 3C5         |              |
| 3-115 |                   | BGCOLOR        |     | Extended Background Color                                               | 4         | EXTENSION       |            | FB               | 3C5         |              |
| 3-116 |                   | COMPAT         |     | Compatibility Control                                                   | 8         | EXTENSION       |            | FC               |             | 0000x0x0     |
| 3-119 |                   | TIMING         |     | Extended Timing Select                                                  | 8         | EXTENSION       |            | FD               |             | 00000000     |
| 3-121 |                   | FBCTRL         |     | Foreground/Background Control                                           | 3         | EXTENSION       |            | FE               |             | xxxx00xx     |
| 3-122 | ERFF              | 16BIT          |     | 16-Bit Interface Control                                                | 8         | EXTENSION       | R/W        | FF               | 303         | xxx00000     |
| + D1  | uplicated V       | GAÆGA res      | eis | ter also accessible as extension register                               | for s     | tate save/resto | re         |                  |             |              |

\* Duplicated VGA/EGA register also accessible as extension register for state save/restore

\*\* Writes to this register cause the dipswitch settings on bus bits 15-8 to be strobed into the Switch Readback register (ERF7)

# Miscellaneous Registers

The miscellaneous registers are those not contained in the other major functional blocks (Sequencer, Attribute Controller, Graphics Controller, and CRT Controller).

| <u>Page</u><br>3-6<br>3-7            | <u>Abbreviation</u><br>MISC<br>FC                | Register Name<br>Misc Output Register<br>Feature Control Register                                                                                                                        | <u>Port Addresses</u><br>3C2 (W), 3CC (R)<br>3?A (W), 3CA (R) |
|--------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 3-8<br>3-9                           | FEAT<br>STAT                                     | Input Status Register 0 (Feature Read)<br>Input Status Register 1 (Display Status)                                                                                                       | 3C2 (R)<br>3?A (R)                                            |
| 3-10<br>3-11<br>3-12<br>3-13<br>3-14 | DACMASK<br>DACSTATE<br>DACRX<br>DACWX<br>DACDATA | Color Palette Pixel Mask<br>Color Palette State<br>Color Palette Read Mode Index Register<br>Color Palette Write Mode Index Register<br>Color Palette Data                               | 3C6 (RW)<br>3C7 (R)<br>3C7 (W)<br>3C8 (RW)<br>3C9 (RW)        |
| 3-15<br>3-16                         | VSE<br>ALTVSE                                    | Video Subsystem Enable<br>Alternate Video Subststem Enable                                                                                                                               | 3C3 (RW)<br>102 (W)                                           |
| 3-17                                 | ROMMAP                                           | ROM Mapping and Video Subsystem Control                                                                                                                                                  | 46E8 (W)<br>56E8 (W)<br>66E8 (W)<br>76E8 (W)                  |
| 3-18                                 | CACHE                                            | I/O Data Cache                                                                                                                                                                           | 4BC4-4BC5 (RW)                                                |
| -                                    | EXPANSION                                        | Expansion Connector (long-slot boards only)                                                                                                                                              | 2E9 (RW)                                                      |
|                                      |                                                  | Expansion Connector (long-slot boards only)<br>Expansion Connector (long-slot boards only)<br>Expansion Connector (long-slot boards only)<br>Expansion Connector (long-slot boards only) | A4E8 (W)<br>A5E8 (W)<br>A6E8 (W)<br>A7E8 (W)                  |
| Note: '                              | 2' in the above port                             | address is 'B' in monochrome mode and 'D' in col                                                                                                                                         | or mode (see MISC[0])                                         |

Note: '?' in the above port address is 'B' in monochrome mode and 'D' in color mode (see MISC[0]).

Note: the ports above indicated as 'expansion connector' ports are not defined in this document. The port address ranges indicated are decoded by boards that provide the expansion connectors (i.e., read accesses to 2E9 will drive the bus even if no expansion board is installed). This capability is provided for compatibility with the IBM 'Display Adapter' (VGA) designed for use in the PC/AT bus. Contact Video Seven for availability of future products for use with these connectors.

I/O Port 3C2 (W) Miscellaneous Output Register I/O Port 3CC (R) Bit # Description 3C2 Access **3CC Access** Reset By Reset State msb Vertical Retrace Polarity W Hard Reset 7 R 6 W Horizontal Retrace Polarity R Hard Reset 5 Page Select W R Hard Reset 4 -reservedreads back 0 . 3 W Clock Select Bit-1 R Hard Reset

This register was write-only at I/O port 3C2 in the EGA. Reading I/O port 3C2 returns the contents of the Feature Read Register (FEAT) (also called Input Status 0). For state save/restore and VGA compatibility, the V7VGA allows this register to also be read at I/O port 3CC.

W

W

W

R

R

R

#### **Bit Descriptions** Bit 7 Vertical Retrace Polarity: 0 = active high (positive), 1 = active low (negative)Bit 6 Horizontal Retrace Polarity: 0 = active high (positive), 1 = active low (negative)Bit 5 Page Bit for Odd/Even: This bit acts as the lsb of the display memory address when in the 'Odd/Even' modes (SR4 bit-2 = 1). Setting this bit to 0 selects odd memory locations; setting it to 1 selects even locations. This bit is set for modes 0, 1, 2, 3, and 7 (text modes). This bit has no effect if chain (GR6 bit-1) or chain4 (SR4 bit-3) are enabled.

#### Bit 4 Reserved (reads back 0)

Clock Select Bit-0

CRTC I/O Address

Enable Ram

2

1

0

lsb

#### **Bit 3-2** Clock Select: These bits select the clock source as follows:

| CIOCK SCIELI. THESE DIES SCIELT THE LIOCK SOUTCE AS                                                                                                                                                                                                                          | 10110w3.                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit-3         Bit-2         Clock Source (CLK[4]=0)           0         0         25.175 MHz (X25M pin)           0         1         28.332 MHz (X28M pin)           1         0         Feature Connector Input (FCLK pin)           1         1         0 MHz (XRESM pin) | Clock Source (CLK[4]=1)<br>50.350 MHz (XD0M pin)<br>65.000 MHz (XD1M pin)<br>Feature Connector Input (FCLK pin)<br>40.000 MHz (XD2M pin)                                                                                     |
| register (extension register ERA4). This field show                                                                                                                                                                                                                          | ald not be changed except during                                                                                                                                                                                             |
| processor. When this bit is set to 1, display RAM                                                                                                                                                                                                                            | will respond at addresses set by the                                                                                                                                                                                         |
| 0 sets the CRTC to 3BxH and the Input Status Reg<br>1 sets the CRTC to 3DxH and the Input Status Reg<br>In register descriptions, port addresses 3Bx or 3Dx<br>'3?x'. The registers affected by this bit are the Dis                                                         | gister 1 to 3BAH (monochrome mode).<br>gister 1 to 3DAH (color mode).<br>as selected by this bit are indicated as<br>play Status register, Feature Control                                                                   |
|                                                                                                                                                                                                                                                                              | Bit-3         Bit-2         Clock Source (CLK[4]=0)           0         0         25.175 MHz (X25M pin)           0         1         28.332 MHz (X28M pin)           1         0         Feature Connector Input (FCLK pin) |

MISC

0

0

0

-

0

0

0

0

Hard Reset

Hard Reset

Hard Reset

| I/O P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ort 3?                                                                                                                                                                                                                                                                                                                                                                                               | A (W) Feature C                                                                                       | ontrol Register                       |              |             | FC             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|-------------|----------------|--|
| I/O P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ort 30                                                                                                                                                                                                                                                                                                                                                                                               | CA (R)                                                                                                |                                       |              |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                       |              |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bit #                                                                                                                                                                                                                                                                                                                                                                                                | Description                                                                                           | 3?A Access                            | 3CA Acces    | s Reset By  | Reset State    |  |
| msb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                    | -unused-                                                                                              | -                                     | -            |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                    | -unused-                                                                                              | -                                     | -            |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                    | -unused-                                                                                              | -                                     | -            |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                    | -unused-                                                                                              | -                                     | -            |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                    | VSync Select                                                                                          | W                                     | R            |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                    | -unused-                                                                                              | -                                     | -            |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                    | Feature Control Bit 1                                                                                 | W                                     | R            |             |                |  |
| lsb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                    | Feature Control Bit 0                                                                                 | W                                     | R            |             |                |  |
| Displative | 7VGA                                                                                                                                                                                                                                                                                                                                                                                                 | tus Register (STAT) (also called Input S<br>A allows this register to also be read at I/C<br>tions    | tatus 1). For state sa<br>D port 3CA. | ve/restore a | ind VGA (   | compatibility, |  |
| Bit 7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4                                                                                                                                                                                                                                                                                                                                                                                                   | Unused                                                                                                |                                       |              |             |                |  |
| Bit-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | VSync Select - When this bit is so<br>of vertical sync and vertical displa                            |                                       | nc output b  | ecomes th   | e logical OR   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      | Vertical Disp<br>Vertical Sync (VSync<br>Expected Vertical Sync (VSync<br>Actual Vertical Sync (VSync | c Select=0)<br>c Select=1)            |              |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The 'expected' result would have matched what the old IBM CGA board produced,<br>which might have conceivably been useful. However, as it is, this is not a really<br>interesting capability. Some monitors have problems with this kind of waveform and<br>some don't, depending on how their internal circuitry is implemented. This capability<br>implemented strictly for IBM VGA compatibility. |                                                                                                       |                                       |              |             |                |  |
| Bit-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | Unused                                                                                                |                                       |              |             |                |  |
| Bit 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                    | These bits convey information to and feature control 0 pins of the f                                  |                                       | r. They driv | ve the feat | ure control 1  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                       |              |             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                       |              |             |                |  |

I/O Port 3C2 (R)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                     | Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reset By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vertical Interrupt                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Feature Code Bit-1                              | reads back as 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Feature Code Bit-0                              | reads back as 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Switch Sense                                    | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -unused-                                        | reads back as 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -unused-                                        | reads back as 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -unused-                                        | reads back as 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -unused-                                        | reads back as 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| vertical sync if it is set to 0. The interrupt is normally connected to IRQ2 in a PC/AT.<br>Note: In the IBM EGA, the CRT Interrupt status bit does not properly indicate that the CRT Controller is requesting service of a frame interrupt. IBM's EGA implementation has this signal connected directly to the IRQ2 Bus. If other boards use IRQ2, this bit might be a 1 even if a CRT interrupt is not pending. The V7VGA does <b>not</b> duplicate the behavior; this bit reflects the state of the interrupt flip-flop in the chip (which is held clear if CR11[4]=0 and set one scan line after vertical display enable ends). In the <u>VEC VGA</u> , this bit is independent of whether the interrupt is enabled or disabled (CR11[5]= disables the interrupt). In the <u>V7VGA</u> , this bit is 0 if the interrupt is disabled. |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| •3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pically con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nected to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7<br>6<br>5<br>4<br>3<br>2<br>1<br>0<br>escript | <ul> <li>6 Feature Code Bit-1</li> <li>5 Feature Code Bit-0</li> <li>4 Switch Sense</li> <li>3 -unused-</li> <li>2 -unused-</li> <li>0 -unused-</li> <li>0 -unused-</li> <li>0 -unused-</li> <li>CRT Interrupt: 0 indicates no interrupt is performed by the construction of the construction</li></ul> | 7       Vertical Interrupt       R         6       Feature Code Bit-1       reads back as 1         5       Feature Code Bit-0       reads back as 1         4       Switch Sense       R         3       -unused-       reads back as 0         2       -unused-       reads back as 0         1       -unused-       reads back as 0         0       -unused-       reads back as 0         0 | 7       Vertical Interrupt       R         6       Feature Code Bit-1       reads back as 1         5       Feature Code Bit-0       reads back as 1         4       Switch Sense       R         3       -unused-       reads back as 0         2       -unused-       reads back as 0         1       -unused-       reads back as 0         0       -unused-       reads back as 0         0 |  |  |

STAT

|     | Bit # | Description                       | Access          | Reset By | Reset State |  |
|-----|-------|-----------------------------------|-----------------|----------|-------------|--|
| msb | 7     | Not Vertical Retrace (Rev 4 only) | R               |          |             |  |
|     | 6     | -unused-                          | reads back as 0 |          |             |  |
|     | 5     | Diagnostic Use Bit-1              | R               |          |             |  |
|     | 4     | Diagnostic Use Bit-0              | R               |          |             |  |
|     | 3     | Vertical Retrace                  | R               |          |             |  |
|     | 2     | Fake Light Pen Switch             | reads back as 1 |          |             |  |
|     | 1     | Fake Light Pen Flip Flop          | reads back as 0 | Reset    | 0           |  |
| lsb | 0     | Display Disabled                  | R               |          |             |  |

When this register is read, the Attribute Controller index/data toggle is reset to index state.

## **Bit Descriptions**

- Bit 7 Not Vertical Retrace: 0 indicates that vertical retrace is in progress. This bit is not implemented prior to chip revision 4; it reads back 0 in chip revision 3 and earlier.
- Bit 6 Unused (reads back 0)
- Bit 5-4 Diagnostic Usage: These bits are connected to 2 of the 8 outputs of the Attribute Controller (video output data during display periods and overscan color during non-display periods). Selection of one of four pairs of bits is controlled by bits 5-4 of Color Plane Register AR12. Note that IBM's EGA had 01 and 10 reversed (IBM's EGA Technical Reference Manual matches the VGA but their hardware doesn't). In VGA mode, the V7VGA matches IBM's VGA documentation and hardware.

| Color Plane Register                                                                                                  | Display Status (IBM EGA Hardware)                                  | Display Status (V7VGA)                                             |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| $\begin{array}{c c} \underline{Bit \ 5} & \underline{Bit \ 4} \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$ | Bit 5Bit 4Video 2Video 0Video 3Video 1Video 5Video 4Video 7Video 6 | Bit-5Bit-4Video 2Video 0Video 5Video 4Video 3Video 1Video 7Video 6 |

'Video n' indicates the output of a pair of 4-bit Attribute Controller multiplexers that provide output for video pin 'n' through the final 8-bit output stage. This is equivalent to the values on pins V0-V7 in non-256-color modes. However, when MUX256 (GR5 bit-6) is 1, each lower nibble out of the Attribute Controller palette ram spends one dot clock in the V3-V0 position and one dot clock in the V7-V4 position, so can show up at either of two diagnostic muxing selections. In other words, in 256-color mode, the Display Status register diagnostic bits don't read back the 8-bit pixel value that goes out on V7-V0 every two dot clocks, but the two 4-bit intermediate values that get assembled one stage later into the 8-bit pixel value.

- Bit 3 Vertical Retrace: 1 indicates that vertical retrace is in progress.
- Bit 2 Fake Light Pen Switch: 1 indicates that the light pen switch is open (off). Since the light pen is not implemented in the V7VGA, this bit always reads as 1.
- Bit 1 Fake Light Pen Flip Flop: 0 indicates that a light pen trigger pulse has not been received. Since the light pen is not implemented in the V7VGA, this bit always reads as 0.

# Bit 0Display Disable:0 indicates that display of video data is enabled<br/>1 indicates that a vertical or horizontal retrace interval is in progress

I/O Port 3C6 (RW)

| 1   | Bit # | Description          | Access | Reset By | Reset State |
|-----|-------|----------------------|--------|----------|-------------|
| msb | 7     | Palette Pixel Mask 7 | RW     |          |             |
|     | 6     | Palette Pixel Mask 6 | RW     |          |             |
|     | 5     | Palette Pixel Mask 5 | RW     |          |             |
|     | 4     | Palette Pixel Mask 4 | RW     |          |             |
|     | 3     | Palette Pixel Mask 3 | RW     |          |             |
|     | 2     | Palette Pixel Mask 2 | RW     |          |             |
|     | 1     | Palette Pixel Mask 1 | RW     |          |             |
| lsb | 0     | Palette Pixel Mask 0 | RW     |          |             |

### **Bit Descriptions**

**Bits 7-0** The contents of this register are logically ANDed with the 8 bits of video data coming into the color palette. This provides a method of altering displayed colors without changing display memory or the contents of the color palette. By partitioning color information by one or more bits in the color palette, such effects as rapid animation, overlays, and flashing objects can be produced.

This register is physically located in the color palette chip.

## Palette State Register

|     | Bit # | Description     | Access | Reset By | Reset State |
|-----|-------|-----------------|--------|----------|-------------|
| msb | 7     | -unused-        | -      |          |             |
|     | 6     | -unused-        | -      |          |             |
|     | 5     | -unused-        | -      |          |             |
|     | 4     | -unused-        | -      |          |             |
|     | 3     | -unused-        | -      |          |             |
|     | 2     | -unused-        | -      |          |             |
|     | 1     | Palette State 1 | R      |          |             |
| lsb | 0     | Palette State 0 | R      |          |             |

## **Bit Descriptions**

Bits 7-2 Unused

# **Bits 1-0** Palette State - These bits are the saved lsbs of the last I/O write to ports 3C6-3C9. The interesting combinations are:

00 - the last I/O write was to 3C8, the color palette 'write-mode' index register 11 - the last I/O write was to 3C7, the color palette 'read-mode' index register

This register is implemented in the V7VGA chipset; the other registers in the 3C6-3C9 range are implemented in the color palette chip. Read accesses to 3C7 disable I/O decode of the palette chip and substitute the contents of this register.

This register is required for implementation of state save/restore, since the color palette chip automatically increments the index register differently depending on whether the index is written at 3C7 or 3C8 (and it doesn't provide the ability to read all required internal state information).

I/O Port 3C7 (W)

| 1   | Bit # | Description           | Access Re | set By Reset State |
|-----|-------|-----------------------|-----------|--------------------|
| msb | 7     | Color Palette Index 7 | W         |                    |
|     | 6     | Color Palette Index 6 | W         |                    |
|     | 5     | Color Palette Index 5 | W         |                    |
|     | 4     | Color Palette Index 4 | W         |                    |
|     | 3     | Color Palette Index 3 | W         |                    |
|     | 2     | Color Palette Index 2 | W         |                    |
|     | 1     | Color Palette Index 1 | W         |                    |
| lsb | 0     | Color Palette Index 0 | W         |                    |

### **Bit Descriptions**

**Bits 7-0** This register contains the index value for read access to the 256 registers of color palette. Each of the data registers are 18-bits in length (6 bits each for red, green, and blue), so must be read as a sequence of 3 bytes. After writing the index to this register, data values may be read from the DACDATA register (port 3C9) in sequence: 1) red, 2) green, 3) blue.

After writing the index value to this register, it is saved in an internal register then incremented automatically. The save register is used to point at the current data register until completion of the 3-byte read sequence. After reading the third value in the 3-byte sequence (the blue value), the save register is automatically updated from the previously incremented index register and the index register is again automatically incremented. This allows the entire palette (or any subset) to be read by writing the index of the first color in the set, then sequentially reading the values for each color, without having to reload the index every three bytes.

When writing the index for purposes of reading color data values, the index is written at 3C7; when writing the index for purposes of writing color data values, the index is written at 3C8. The color palette chip contains only one index register, but automatically increments it differently depending on whether reading or writing of data is being performed. Thus there are two ports for writing the index (3C7 and 3C8), but only one for reading it back (3C8). The color palette chip actually would read back the index value from 3C7 also if allowed, but read accesses to 3C7 are intercepted and the DACSTATE register contents are substituted instead. This is because the color palette chip doesn't save the state of whether the chip is being read or written and this information is required for saving and restoring the state of the video subsystem during interrupt service. The state of the RGB sequence is not saved, so the user must access the data values in uninterruptable sequences of 3 bytes. Whenever either color palette index register is written, any 3-byte read or write sequence in progress is aborted and a new one started.

The index registers are physically located in the color palette chip.

I/O Port 3C8 (RW)

#### Color Palette 'Write Mode' Index Register

DACWX

|     | Bit # | Description           | Access Reset By Reset State |
|-----|-------|-----------------------|-----------------------------|
| msb | 7     | Color Palette Index 7 | RW                          |
|     | 6     | Color Palette Index 6 | RW                          |
|     | 5     | Color Palette Index 5 | RW                          |
|     | 4     | Color Palette Index 4 | RW                          |
|     | 3     | Color Palette Index 3 | RW                          |
|     | 2     | Color Palette Index 2 | RW                          |
|     | 1     | Color Palette Index 1 | RW                          |
| lsb | 0     | Color Palette Index 0 | RW                          |

### **Bit Descriptions**

Bits 7-0 This register contains the index value for write access to the 256 registers of color palette. Each of the data registers are 18-bits in length (6 bits each for red, green, and blue), so must be written as a sequence of 3 bytes. After writing the index to this register, data values may be written to the DACDATA register (port 3C9) in sequence: 1) red, 2) green, 3) blue.

After reading the third value in the 3-byte sequence (the blue value), the index register is automatically incremented. This allows the entire palette (or any subset) to be written by writing the index of the first color in the set, then sequentially writing the values for each color, without having to reload the index every three bytes.

When writing the index for purposes of reading color data values, the index is written at 3C7; when writing the index for purposes of writing color data values, the index is written at 3C8. The color palette chip contains only one index register, but automatically increments it differently depending on whether reading or writing of data is being performed. Thus there are two ports for writing the index (3C7 and 3C8), but only one for reading it back (3C8). The color palette chip actually would read back the index value from 3C7 also if allowed, but read accesses to 3C7 are intercepted and the DACSTATE register contents are substituted instead. This is because the color palette chip doesn't save the state of whether the chip is being read or written and this information is required for saving and restoring the state of the video subsystem during interrupt service. The state of the RGB sequence is not saved, so the user must access the data values in uninterruptable sequences of 3 bytes. Whenever either color palette index register is written, any 3-byte read or write sequence in progress is aborted and a new one started.

The index registers are physically located in the color palette chip.

|     | Bit # | First Access        | Second Access         | Third Access         | Access | Reset By | Reset State |
|-----|-------|---------------------|-----------------------|----------------------|--------|----------|-------------|
| msb | 7     | -Reserved-          | -Reserved-            | -Reservecl-          | RW     |          |             |
|     | 6     | -Reserved-          | -Reserved-            | -Reserved-           | RW     |          |             |
|     | 5     | Color Palette Red 5 | Color Palette Green 5 | Color Palette Blue 5 | RW     |          |             |
|     | 4     | Color Palette Red 4 | Color Palette Green 4 | Color Palette Blue 4 | RW     |          |             |
|     | 3     | Color Palette Red 3 | Color Palette Green 3 | Color Palette Blue 3 | RW     |          |             |
|     | 2     | Color Palette Red 2 | Color Palette Green 2 | Color Palette Blue 2 | RW     |          |             |
|     | 1     | Color Palette Red 1 | Color Palette Green 1 | Color Palette Blue 1 | RW     |          |             |
| lsb | 0     | Color Palette Red 0 | Color Palette Green 0 | Color Palette Blue 0 | RW     |          |             |

## **Bit Descriptions**

Bits 7-0 The color palette contains 256 registers, each 18 bits in length (6 bits each for red, green, and blue). Each is accessed as a sequence of 3 bytes. After writing the index to the DACRX or DACWX register (port 3C7 or 3C8), data values may be read from or written to port 3C9 in sequence: 1) red, 2) green, 3) blue. The index register is automatically incremented for each 3-byte set to allow multiple color registers to be read or written, without having to reload the index every three bytes.

When writing the index for purposes of reading color data values, the index is written at 3C7; when writing the index for purposes of writing color data values, the index is written at 3C8. The color palette chip contains only one index register, but automatically increments it differently depending on whether reading or writing of data is being performed. Thus there are two ports for writing the index (3C7 and 3C8), but only one for reading it back (3C8). The color palette chip actually would read back the index value from 3C7 also if allowed, but read accesses to 3C7 are intercepted and the DACSTATE register contents are substituted instead. This is because the color palette chip doesn't save the state of whether the chip is being read or written and this information is required for saving and restoring the state of the video subsystem during interrupt service. The state of the RGB sequence is not saved, so the user must access the data values in uninterruptable sequences of 3 bytes. Whenever either color palette index register is written, any 3-byte read or write sequence in progress is aborted and a new one started.

The color palette registers are physically located in the color palette chip.

|     | Bit # | Description            | Access          | Reset By | Reset State |
|-----|-------|------------------------|-----------------|----------|-------------|
| msb | 7     | -unused-               | reads back as 1 |          |             |
|     | 6     | -unused-               | reads back as 1 |          |             |
|     | 5     | -unused-               | reads back as 1 |          |             |
|     | 4     | -unused-               | reads back as 1 |          |             |
|     | 3     | -unused-               | reads back as 1 |          |             |
|     | 2     | -unused-               | reads back as 1 |          |             |
|     | 1     | -unused-               | reads back as 1 |          |             |
| lsb | 0     | Video Subsystem Enable | RW              | Reset    | 1           |

This register may be used to enable or disable V7VGA memory and I/O addressing.

## **Bit Descriptions**

- Bits 7-1 Unused (read back as 1)
- Bit 0 Video Subsystem Enable When this bit is set to 0 and ARMVSE is 1 (bit-7 of extension register FCh), all I/O and memory accesses to the video subsystem are disabled (except for ports 102 and 3C3, which remain enabled to allow the Video Subsystem to be re-enabled). When this bit is set to 1 (the default state) and ARMVSE is 1, I/O and memory accesses to the video subsystem work as documented in this manual. If ARMVSE is 0, accesses of this port are ignored.

The ARMVSE bit described above is reset to 0 by a hardware reset (i.e., the default for this mechanism on powerup is **disarmed** and **awake**).

The ARM mechanism is set up so that bit-0 of the VSE register is prevented from changing unless ARMVSE is set to 1 (VSE armed). This is to prevent the VSE mechanism from being disarmed while disabled (in which case it would not be able to be rearmed or re-enabled without hardware reset).

Note that port 102 has the same capability to disable the V7VGA as port 3C3, except that port 3C3 is normally not implemented (ARMVSE should be set to 0 on the V7VGA chip) in Display Adapter (PC/AT Bus VGA Card) configurations. ARMVSE has no effect on port 102. Either 102 (if in setup mode) or 3C3 (if armed) may be used to disabled the V7VGA; both ports must be set to the enable state for the V7VGA to be enabled.

The DISABLE pin may also be used to disable the V7VGA; if DISABLE is 1, the V7VGA will be disabled, independent of the state of port 102 or 3C3. DISABLE is normally driven by the inversion of 46E8 bit-3 in PC/AT bus configurations.

The V7VGA continues to display video data while disabled (memory and registers are 'writeprotected'). When the V7VGA is dsabled, accesses to the DAC registers are also disabled. I/O Port 102 (RW)

| 1   | Bit # | Description            | Access          | Reset By | Reset State |
|-----|-------|------------------------|-----------------|----------|-------------|
| msb | 7     | -unused-               | reads back as 0 |          |             |
|     | 6     | -unused-               | reads back as 0 |          |             |
|     | 5     | -unused-               | reads back as 0 |          |             |
|     | 4     | -unused-               | reads back as 0 |          |             |
|     | 3     | -unused-               | reads back as 0 |          |             |
|     | 2     | -unused-               | reads back as 0 |          |             |
|     | 1     | -unused-               | reads back as 0 |          |             |
| lsb | 0     | Video Subsystem Enable | RW              | Reset    | 1           |

This register may be used to enable V7VGA memory and I/O addressing in setup mode.

## **Bit Descriptions**

- Bits 7-1 Unused (read back as 0)
- Bit 0 VGA Enable When in setup mode (SETUP\* pin = 0), setting this bit to 1 enables V7VGA memory and I/O addressing; setting this bit to 0 disables V7VGA memory and I/O addressing (except for ports 102 and 3C3 to allow the V7VGA to be re-enabled). This register is not accessable (accesses to port 102 are ignored) when not in setup mode (SETUP\* pin = 1).

In PC/AT systems where the VGA is implemented as an optional board (for installation in a slot on the bus), the SETUP\* pin is normally driven by bit-4 of I/O port 46E8h which is implemented as an on-board register external to the V7VGA chip. Port 46E8 is not implemented in PS/2 systems and is not documented in IBM VGA documentation.

In PS/2 systems where the VGA is implemented as a standard feature (as part of the motherboard logic), the SETUP\* pin is driven by bit-5 of I/O port 94h which is implemented as part of the motherboard logic. Port 94 is not implemented in PC/AT systems.

Note that port 3C3 has the same capability to disable the V7VGA as port 102, except that port 3C3 is normally not implemented (ARMVSE should be set to 0 on the V7VGA chip) in PC/AT bus configurations. ARMVSE has no effect on port 102. Either 102 (if in setup mode) or 3C3 (if armed) may be used to disabled the V7VGA; both ports must be set to the enable state for the V7VGA to be enabled.

The DISABLE pin may also be used to disable the V7VGA; if DISABLE is 1, the V7VGA will be disabled, independent of the state of port 102 or 3C3. DISABLE is normally driven by the inversion of 46E8 bit-3 in PC/AT bus configurations.

The V7VGA continues to display video data while disabled (memory and registers are 'writeprotected'). When the V7VGA is dsabled, accesses to the DAC registers are also disabled.

| 1   | Bit # | Description                                      | Access | Reset By | Reset State |
|-----|-------|--------------------------------------------------|--------|----------|-------------|
| msb | 7     | -unused-                                         | -      |          |             |
|     | 6     | -unused-                                         | -      |          |             |
|     | 5     | -unused-                                         | -      |          |             |
|     | 4     | Setup Mode (0 = normal, 1 = setup)               | W      | Reset    | 0           |
|     | 3     | Video Subsystem Enable (0 = disable, 1 = enable) | W      | Reset    | 0           |
|     | 2     | ROM Bank Control Bit-2                           | W      | Reset    | 0           |
|     | 1     | ROM Bank Control Bit-1                           | W      | Reset    | 0           |
| lsb | 0     | ROM Bank Control Bit-0                           | W      | Reset    | 0           |

This register may be used to control memory mapping of the BIOS ROM and V7VGA memory and I/O addressing. It is implemented external to the V7VGA chip in PC/AT bus configurations and is not implemented in PS/2 systems (and is therefore not documented in the PS/2 VGA documentation). In PS/2 systems, BIOS ROM mapping capability is not implemented (there is no BIOS ROM as the video BIOS is implemented as part of the motherboard BIOS). In PS/2 systems, setup mode is controlled by I/O port 94h bit-5 and video subsystem enable/disable capability is provided by ports 3C3 and 102 only. I/O port 46E8 is sparse decoded such that 56E8, 66E8, and 76E8 access the same register.

#### **Bit Descriptions**

- Bit 4 Setup Mode The inversion of this bit is used to drive the V7VGA SETUP\* pin. When this bit is 1, the V7VGA is in setup mode. When in setup mode (SETUP\* pin = 0), setting port 102 bit-0 to 0 disables V7VGA memory and I/O addressing (except for ports 102 and 3C3 to allow the V7VGA to be re-enabled). When this bit is 0, accesses to port 102 are ignored.
- **Bit 3** Video Subsystem Enable The inversion of this bit is used to drive the V7VGA DISABLE pin. When this bit is 0, the V7VGA will be disabled. When the V7VGA is disabled with this bit, all video memory and I/O port accesses will be ignored, including ports 102 and 3C3 and the DAC registers, but not including port 46E8. The V7VGA continues to display video data while disabled (memory and registers are 'write-protected').
- Bits 2-0 ROM Map Control These bits control which 4K bank of the 32KB BIOS ROM to map to C7000h to C7FFFh:

| Bits 2-0 (Bank) | ROM Segment mapped to C7000h to C7FFFh                    |
|-----------------|-----------------------------------------------------------|
| 0               | 1st 4K (C0000h to C0FFFh if the ROM were mapped linearly) |
| 1               | 2nd 4K (C1000h to C1FFFh if the ROM were mapped linearly) |
| 2               | 3rd 4K (C2000h to C2FFFh if the ROM were mapped linearly) |
| 3               | 4th 4K (C3000h to C3FFFh if the ROM were mapped linearly) |
| 4               | 5th 4K (C4000h to C4FFFh if the ROM were mapped linearly) |
| 5               | 6th 4K (C5000h to C5FFFh if the ROM were mapped linearly) |
| 6               | 7th 4K (C6000h to C6FFFh if the ROM were mapped linearly) |
| 7               | 8th 4K (C7000h to C7FFFh if the ROM were mapped linearly) |

The first 24KB of the BIOS ROM are mapped linearly from C0000 to C5FFF. Accesses to C6000-C67FF are ignored (this 2K section of the ROM is instead accessable at CA000h to CA7FFh). Accesses to C6800-C6FFF select the last 2KB of the BIOS ROM (the upper half of bank 7 if the ROM were mapped linearly).

This register is set to 0Eh during initialization by the video BIOS (normal mode, video subsystem enabled, and ROM bank 6). The value in 46E8 is not changed after initialization except for bit-3 which is changed by the BIOS call to enable/disable the video subsystem.

|     | Bit # | Description (port 4BC4) | Description (port 4BC4) | Access | Reset By Reset State |
|-----|-------|-------------------------|-------------------------|--------|----------------------|
| msb | 7     | Cache Enable            | Cache Data Bit-7        | -      |                      |
|     | 6     | -unused-                | Cache Data Bit-6        | -      |                      |
|     | 5     | -unused-                | Cache Data Bit-5        | -      |                      |
|     | 4     | -unused-                | Cache Data Bit-4        | -      |                      |
|     | 3     | Cache Index Bit-3       | Cache Data Bit-3        | RW     |                      |
|     | 2     | Cache Index Bit-2       | Cache Data Bit-2        | RW     |                      |
|     | 1     | Cache Index Bit-1       | Cache Data Bit-1        | RW     |                      |
| lsb | 0     | Cache Index Bit-0       | Cache Data Bit-0        | RW     |                      |

These registers may be used to save I/O port access information for use by CGA/MDA/Hercules emulation utility software. They are implemented external to the V7VGA chip using the Video Seven IOU chip.

I/O write caching capability is required due to the fact that 80286 and 80386 processors do not immediately respond to NMI requests, but continue to execute instructions from their prefetch queue until it is empty. This will result in as many as 3-4 I/O write operations executed before the NMI is serviced, depending on the exact code sequence.

Note that since the V7VGA chip TRAP\* pin is multiplexed with the Microchannel Bus ADL signal (address latch), that this capability cannot be used on a PS/2 bus card.

#### **Bit Descriptions**

- **4BC4 Bit 7** Cache Enable Setting this bit to 1 enables the cache to initiate a cache trap sequence (save I/O write address and data information in the cache) whenever the TRAP\* signal is generated.
- 4BC4 Bits 3-0 Cache Index - These bits provide an index which points to one of sixteen cache data registers at I/O port 4BC5h. This field may be programmed directly to read or write any of the cache data registers. It is normally programmed to 0 when enabling the cache so that cache data is saved starting at the first register of the cache. This field is automatically incremented in hardware when performing a 'cache trap sequence' (saving address and data information in the cache). A cache trap sequence is initiated for selected I/O write accesses, controlled by V7VGA extension register 0EBh (i.e., the detection of which I/O write accesses to cache is controlled by the V7VGA chip). I/O read accesses are ignored. The cache trap sequence first saves the 8 lsbs of the I/O address in the cache data register pointed to by the index field, increments the index to save the I/O data in the next cache data register, then increments the index again to set up for the next sequence. The index will not automatically increment past 13, leaving cache data registers 14 and 15 for use as scratch registers. This allows a minimum of six unambiguous I/O write operations to be stored in the cache. A seventh would be stored in registers 12 and 13, but if an eighth occurred, the seventh would be overwritten. No more than 3-4 should ever occur in normal operation.
- **4BC5 Bits 7-0** Cache Data These 16 registers provide storage for cache data. The register to be accessed is pointed to by the cache index field at I/O port 4BC4h. All 16 registers may be read/write accessed by the processor. I/O address/data write information is automatically written into pairs of registers in the range of 0-13 during 'cache trap sequences' when the cache is enabled by 4BC4 bit-7.

# Sequencer Registers

The Sequencer generates memory timing for the display RAMs and the character clock for controlling display memory refresh reads.

| PageAbbreviation3-20SRX       | Register Name                                                         | Port Address | Index          | Access   |
|-------------------------------|-----------------------------------------------------------------------|--------------|----------------|----------|
|                               | Sequencer / Extensions Index Register                                 | 3C4          |                | R/W      |
| 3-21 SR0                      | Reset                                                                 | 3C5          | 00             | R/W      |
| 3-22 SR1                      | Clocking Mode                                                         | 3C5          | 01             | R/W      |
| 3-24 SR2                      | Plane Mask                                                            | 3C5          | 02             | R/W      |
| 3-25 SR3                      | Character Map Select                                                  | 3C5          | 03             | R/W      |
| 3-26 SR4                      | Memory Mode                                                           | 3C5<br>3C5   | 04<br>05       | R/W      |
| - SK5<br>3-27 SR6<br>3-28 SR7 | -ignored-<br>Extensions Control<br>Reset Horizontal Character Counter | 3C5<br>3C5   | 05<br>06<br>07 | R/W<br>W |

### Sequencer Operation

The sequencer generates all display memory timing including RAS and CAS to the display memory chips. It also refreshes display memory. During each horizontal scan, display memory accesses alternate between CRT accesses and CPU accesses in a ratio controlled by the current timing state (see Extended Timing Select Register at extensions index FD). When display enable ends at the end of each horizontal scan line (after the proper number of displayed characters have been read), CRT accesses are not required until the start of the next scan line, so the cycles are free for other use. The first five are used by the Sequencer to generate refresh accesses to display memory; the next two are used if required to read graphics pointer pattern information; the remaining cycles are available for access by the CPU. The total number of cycles (character clocks) available during each horizontal blanking interval is 'CR0-CR1+4'. If the number of cycles drops below 7, the graphics pointer may not be used; if it drops below 5, display memory may not be adequately refreshed.

|     | Bit # | Description                              | Access | Reset By | Reset State |
|-----|-------|------------------------------------------|--------|----------|-------------|
| msb | 7     | Sequencer / Extensions Index Bit-7 (msb) | R/W    |          |             |
|     | 6     | Extensions Index Bit-6                   | R/W    |          |             |
|     | 5     | Extensions Index Bit-5                   | R/W    |          |             |
|     | 4     | Extensions Index Bit-4                   | R/W    |          |             |
|     | 3     | Extensions Index Bit-3                   | R/W    |          |             |
|     | 2     | Sequencer/Extensions Index Bit-2         | R/W    |          |             |
|     | 1     | Sequencer/Extensions Index Bit-1         | R/W    |          |             |
| lsb | 0     | Sequencer/Extensions Index Bit-0 (lsb)   | R/W    |          |             |

The Sequencer / Extensions Index Register points to the Sequencer registers and to the V7VGA Extension registers. The three least significant bits determine the Sequencer register which will be pointed to in the next register read/write operation. The seven least significant bits determine the Extension register which will be pointed to in the next register read/write operation.

If the msb of the Index register is set to 0, or access to the extension registers is disabled, the Sequencer registers will be accessed per the three lsbs of the index (the upper bits of the index will be ignored, mapping the first 8 sequencer registers repeatedly thoughout the range of indices from 0 to 7F). If the index register msb is set to 1 and write access to the extension registers is enabled, the V7VGA extension registers will be accessed per the 7 lsbs of the index.

In other words, if extensions access is disabled, sequencer registers SR0-7 may be accessed anywhere in the range of indices from 00 to FF (0 same as 8, 10, 18, etc.). If extensions are enabled, sequencer registers SR0-7 are accessed in 8-register blocks from 00 to 7F. Extension registers are accessed at 80-FF. If a value is written to the index register that points to SR0-7 (0-FF with extensions disabled or 0-7F with extensions enabled), then readback of the index register will return a value from 0-7 (as if index bits 3-7 are not implemented). If a value is written to the index register that points to the extension registers (80-FF with extensions enabled), readback of the index register will return the value written.

SRX

I/O Port 3C5 (RW)

#### Sequencer Reset Register

Index 00

|     | Bit # | Description          | Access | Reset By | Reset State |
|-----|-------|----------------------|--------|----------|-------------|
| msb | 7     | -unused-             | -      |          |             |
|     | 6     | -unused-             | -      |          |             |
|     | 5     | -unused-             | -      |          |             |
|     | 4     | -unused-             | -      |          |             |
|     | 3     | -unused-             | -      |          |             |
|     | 2     | -unused-             | -      |          |             |
|     | 1     | Synchronous Reset 1* | R/W    |          |             |
| lsb | 0     | Synchronous Reset 2* | R/W    |          |             |

## **Bit Descriptions**

Bit 1 Synchronous Reset 1\*: Setting this bit to 0 causes the Sequencer to clear synchronously and halt (disabling display memory refresh, display memory access, and H/V sync signals to the display). Setting this bit to 1 causes the Sequencer to run unless bit-0 (synchronous reset 2) is cleared to 0. Both Reset register bits must be 1 to allow the Sequencer to operate. In order to preserve display memory contents, this bit should be left set to 0 only for short periods of time (a few tens of microseconds at most). The following registers should not be changed unless this bit is 0:

Clocking Mode Register (SR1) bits 0 and 3 Misc Output Register bits 2-3 Extensions CLK Register bit 4 Extensions 'Extended Timing Select' Register bits 0-7

**Bit 0** Synchronous Reset 2\*: This bit performs the same function as bit-1 with the addition that when it transitions from 1 to 0, it also resets SR3 (character map select) to 0.

I/O Port 3C5 (RW)

## Index 01

|                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Description                                                                                                                                                                                                                                                                | Access                                                 | Reset By                      | Reset State                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|------------------------------|
| msb                                                                                                                                                                                                                                                                                                                                                                                                                               | 7      | -unused-                                                                                                                                                                                                                                                                   | -                                                      |                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6      | -unused-                                                                                                                                                                                                                                                                   | -                                                      |                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      | Full Bandwidth / Video Off                                                                                                                                                                                                                                                 | R/W                                                    |                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4      | Shift 32                                                                                                                                                                                                                                                                   | R/W                                                    |                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3      | Dot Clock (1 = divide master clock by 2)                                                                                                                                                                                                                                   | R/W                                                    |                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2      | Shift Load                                                                                                                                                                                                                                                                 | R/W                                                    |                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      | -unused-                                                                                                                                                                                                                                                                   | -                                                      |                               |                              |
| lsb                                                                                                                                                                                                                                                                                                                                                                                                                               | 0      | 8/9 Dot Clocks $(0 = 9 \text{ dots}, 1 = 8 \text{ dots})$                                                                                                                                                                                                                  | R/W                                                    |                               |                              |
| Bit De                                                                                                                                                                                                                                                                                                                                                                                                                            | escrip | tions                                                                                                                                                                                                                                                                      |                                                        |                               |                              |
| Bits 7                                                                                                                                                                                                                                                                                                                                                                                                                            | -6     | Unused                                                                                                                                                                                                                                                                     |                                                        |                               |                              |
| Bit 5                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Full Bandwidth / Video Off - Setting this bit to 1 black level, not overscan color). This also gives t cycles to the CPU.                                                                                                                                                  | blanks the scre<br>he maximum n                        | en (video c<br>umber of v     | outputs are a<br>ideo memor  |
| The blanking mechanism does not stop H and V sync, blanking signals. For example, the DE bit in the Display Status register blanking.                                                                                                                                                                                                                                                                                             |        |                                                                                                                                                                                                                                                                            |                                                        |                               |                              |
| Bit 4 Shift 32 - Setting this bit to 1 causes the to be reloaded every 4 character clocks. every 1 or 2 character clocks as determined is set, bit-2 is ignored). When shift-32 r '2:7' interleave.                                                                                                                                                                                                                               |        |                                                                                                                                                                                                                                                                            | t is not set, seria<br>to state of bit-2 c             | alizer loadi<br>of this regis | ng occurs<br>ter (if shift-: |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | This bit is typically only set for high resolution m<br>per CRTC memory access). It is not used by stan<br>by any currently defined IBM VGA graphics mod                                                                                                                   | dard IBM VG                                            |                               |                              |
| Bit 3 Dot Clock - Setting this bit to 0 selects the Sequencer master clock input to be output the Dot Clock output pin. Setting this bit to 1 causes the master clock to be divided b to generate the dot clock. As the dot clock is the primary clock used by the system, all other timings will be stretched as they are derived from the dot clock. Dot clock divide by 2 is used for 320 x 200 modes (except 256-color mode). |        |                                                                                                                                                                                                                                                                            |                                                        | divided by 2<br>system, all   |                              |
| Bit 2                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Shift Load - Setting this bit to 0 causes the display<br>Controller to be reloaded every character clock. S<br>serializers in the Graphics Controller to be reloaded<br>mode is useful when 16 pixels are fetched every<br>typically only set for monochrome graphics mode | Setting this bit t<br>ed every other of<br>CRTC memory | o 1 causes :<br>character cl  | the display<br>ock. This     |
| conti                                                                                                                                                                                                                                                                                                                                                                                                                             | nued   | on following page)                                                                                                                                                                                                                                                         |                                                        |                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                            |                                                        |                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                            |                                                        |                               |                              |

Bit 1 Unused (reads back as 0)

In the EGA, this bit selected the ratio of display memory accesses allowed by the CPU relative to accesses by VGA hardware to refresh the CRT display. The only allowable selections in the IBM EGA and VGA are via this bit: a setting of 0 indicates that a memory access by the CPU may occur only once for every 4 CRT accesses (referred to as 1:4 interleave) and a setting of 1 indicates that CPU memory accesses may occur 3 times for every 2 CRT accesses (3:2 interleave).

However, higher resolution modes must fetch more data from memory in a given period of time to refresh the CRT display, so allow the CPU to access display memory less often. To accomodate existing EGA and VGA modes plus new extended modes, additional timing states must therefore be provided to allow selection of the best possible performance for the current mode of operation. In the V7VGA, the bandwidth control mechanisms have been extended via the Extended Timing Select Register at extensions index FD. The new register allows a wider selection of timing states than are available in the standard EGA and VGA to accomodate new high resolution modes.

Refer to the Extended Timing Select register (extensions index FD) for additional detail.

Bit 0 8/9 Dot Clocks: Setting this bit to 0 causes the Sequencer to generate character clocks which are 9 dots wide. Setting this bit to 1 causes the sequencer to generate character clocks which are 8 dots wide. The IBM modes that use 9-dot wide character clocks are monochrome text mode (720 x 350 resolution), and the new VGA 400-line text modes (9x16 font, 40x25 and 80x25 text modes). All other standard modes use 8 dot wide character clocks.

## Index 02

|     | Bit # | Description             | Access | Reset By | Reset State |
|-----|-------|-------------------------|--------|----------|-------------|
| msb | 7     | Reserved for future use | -      |          |             |
|     | 6     | Reserved for future use | -      | \$<br>   |             |
|     | 5     | Reserved for future use | -      |          |             |
|     | 4     | Reserved for future use | -      |          |             |
|     | 3     | Enable Plane 3          | R/W    | -        |             |
|     | 2     | Enable Plane 2          | R/W    |          |             |
|     | 1     | Enable Plane 1          | R/W    |          |             |
| lsb | 0     | Enable Plane 0          | R/W    |          |             |

A "1" in any of the bits 0 through 3 enables the CPU to write to the corresponding memory planes 0-3. When this register is loaded with 0Fh, the CPU can do a 32-bit write operation in one memory cycle.

| Plane 0                      | Plane 1                      | Plane 2                      | Plane 3                      |                                                      |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------------------------|
| Character<br>Data            | Attribute<br>Data            | Font Data                    | Unused                       | Text Modes                                           |
| Pixel bit-0<br>Data          | Pixel bit-1<br>Data          | Pixel bit-2<br>Data          | Pixel bit-3<br>Data          | EGA & VGA 16-color<br>Graphics Modes                 |
| Pixel lsb<br>Data            | Ignored                      | Pixel msb<br>Data            | Ignored                      | EGA 640x350 4-Color<br>Mono Graphics Mode            |
| Pixel lsb<br>Data            | Pixel msb<br>Data            | Unused                       | Unused                       | CGA 320x200<br>4-Color Graphics Mode                 |
| Even Byte<br>Pixel Data      | Odd Byte<br>Pixel Data       | Unused                       | Unused                       | CGA/EGA 640x200 & MGA 720x348<br>Mono Graphics Modes |
| Byte 0<br>Pixel Data         | Byte 1<br>Pixel Data         | Byte 2<br>Pixel Data         | Byle 3<br>Pixel Data         | VGA 320x200<br>256-Color Graphics Mode               |
| 64Kx4 64Kx4<br>device device | 64Kx4 64Kx4<br>device device | 64Kx4 64Kx4<br>device device | 64Kx4 64Kx4<br>device device |                                                      |

Figure 3-4. Display Memory Plane Mapping

In EGA and VGA 4-bit per pixel graphics modes, this register should be set to 0Fh (planes 0-3 each contain 1 bit of the pixel value). In text modes, this register should be set to 3 (the CPU needs to access planes 0 and 1; the font information is retrieved directly by hardware independent of the contents of this register).

When odd/even modes are selected (by clearing bits 2 and 3 of Memory Mode register SR4) planes 0/1 and planes 2/3 should have the same plane mask value. In odd/even and chain4 modes, this register is still in effect, and is ANDed with the plane select generated by the odd/even circuitry. For example, in odd/even mode the odd/even circuitry causes planes 0 and 2 to be enabled on CPU writes to even addresses and planes 1 and 3 to be enabled on CPU writes to odd addresses. However, if the plane mask setting is 3, only plane 0 (even addresses) and plane 1 (odd addresses) can actually be written to.

# Index 03

|     | Bit # | Description                                | Access | Reset By | Reset State |
|-----|-------|--------------------------------------------|--------|----------|-------------|
| msb | 7     | -unused-                                   | -      |          |             |
|     | 6     | -unused-                                   | -      |          |             |
|     | 5     | Secondary Character Map Select bit-0 (lsb) | R/W    | SR0[0]=0 | 0           |
|     | 4     | Primary Character Map Select bit-0 (lsb)   | R/W    | SR0[0]=0 | 0           |
|     | 3     | Secondary Character Map Select bit-2 (msb) | R/W    | SR0[0]=0 | 0           |
|     | 2     | Secondary Character Map Select bit-1       | R/W    | SR0[0]=0 | 0           |
|     | 1     | Primary Character Map Select bit-2 (msb)   | R/W    | SR0[0]=0 | 0           |
| lsb | 0     | Primary Character Map Select bit-1         | R/W    | SR0[0]=0 | 0           |

This register (along with the character attribute value) determines where font information is located for EGA and VGA text modes.

# **Bit Descriptions**

Bits 3,2,5

Secondary Character Map Select - These bits select the bank used to generate text characters when attribute bit-3 is "1" according to the following table:

| SR3[3] | SR3[2] | SR3[5] | Font # | Table Location    |
|--------|--------|--------|--------|-------------------|
| 0      | 0      | 0      | 0      | 1st 8K of Plane 2 |
| 0      | 0      | 1      | 1      | 2nd 8K of Plane 2 |
| 0      | 1      | 0      | 2      | 3rd 8K of Plane 2 |
| 0      | 1      | 1      | 3      | 4th 8K of Plane 2 |
| 1      | 0      | 0      | 4      | 5th 8K of Plane 2 |
| 1      | 0      | 1      | 5      | 6th 8K of Plane 2 |
| 1      | 1      | 0      | 6      | 7th 8K of Plane 2 |
| 1      | 1      | 1      | 7      | 8th 8K of Plane 2 |

Bit 1,0,4 Primary Character Font Select - These bits select the plane used to generate text characters when attribute bit-3 is "0" according to the following table:

| SR3[1] | SR3[0] | SR3[4] | Font # | Table Location    |
|--------|--------|--------|--------|-------------------|
| 0      | 0      | 0      | 0      | 1st 8K of Plane 2 |
| 0      | 0      | 1      | 1      | 2nd 8K of Plane 2 |
| 0      | 1      | 0      | 2      | 3rd 8K of Plane 2 |
| 0      | 1      | 1      | 3      | 4th 8K of Plane 2 |
| 1      | 0      | 0      | 4      | 5th 8K of Plane 2 |
| 1      | 0      | 1      | 5      | 6th 8K of Plane 2 |
| 1      | 1      | 0      | 6      | 7th 8K of Plane 2 |
| 1      | 1      | 1      | 7      | 8th 8K of Plane 2 |

In text modes, bit-3 of the attribute byte normally turns the foreground intensity on or off. This bit may be redefined to be a switch between character sets. This function is enabled when there is a difference between the values of Primary and Secondary Character Map Select bits. Whenever the two values are the same, the character select function is disabled.

The format of Plane 2 font address bits 15-0 is: F2 F1 F0 C7 C6 C5 C4 C3 C2 C1 C0 R4 R3 R2 R1 R0 where F2-0 is the font # (bits 3/2/5 or bits 1/0/4), C7-0 is the character code, and R4-0 is the character row address. In the EGA, F0 is not implemented and is effectively always 0 (bits 4 and 5 of this register are ignored), limiting selection to only 4 of the 8 potential font storage areas of plane 2 (the even numbered fonts in the tables above).

Font changes take effect at the start of the next character line.

I/O Port 3C5 (RW)

#### Index 04

|     | Bit # | Description     |                                  | Access | Reset By | Reset State |
|-----|-------|-----------------|----------------------------------|--------|----------|-------------|
| msb | 7     | -unused-        |                                  | -      |          |             |
|     | 6     | -unused-        |                                  | -      |          |             |
|     | 5     | -unused-        |                                  | -      |          |             |
|     | 4     | -unused-        |                                  | -      |          |             |
|     | 3     | Chain4          |                                  | R/W    |          |             |
|     | 2     | Odd/Even*       | (0=Text/CGA, 1=MGA/EGA graphics) | R/W    |          |             |
|     | 1     | Extended Memory | (0=64KB ram, 1=256KB ram)        | R/W    |          |             |
| lsb | 0     | -unused-        |                                  | -      |          |             |

# **Bit Descriptions**

Bit 7-4 unused

Bit 3 Chain4 (double odd/even): This bit is used for implementation of 256-color modes to control the generation of display memory addresses. It only effects display memory accesses from the CPU; it has no effect on CRTC accesses.

When this bit is 1, A0 provides plane select bit-0 and A1 provides plane select bit-1. This is like odd/even mode, except that A1 is used as well as A0. This bit takes priority over bit-2 (odd/even\*) and GR5[4] (odd/even); when this bit is set to 1, those bits have no effect. There is no separate bit in the Graphics Controller to select chain4 (double odd/even) mode as is the case with odd/even mode; this bit is used for both.

The Graphics Controller Read Map register is ignored when this bit is 1. This bit controls plane selection for both reads and writes. The Plane Mask register (SR2) bit for planes selected by the chain4 mechanism must also be 1 for writes to go through. In other words, the plane select generated by the chain4 circuitry is logically ANDed with the Plane Mask register selects to generate the actual plane select.

Bit 2 Odd/Even\*: Setting this bit to 0 will put the sequencer into the odd/even mode. '0' directs even CPU addresses to access planes 0 and 2 while odd CPU addresses access planes 1 and 3. '1' causes CPU addresses to sequentially access data within a bit plane. The planes are accessed according to the value in the Plane Mask Register (SR2).

This bit should be set to 0 for text modes. This bit should also be set to 0 when emulating CGA graphics mode with EGA/VGA hardware. The function of this bit should track the function of bit-4 of the Graphics Controller Mode Register (GR5 Odd/Even bit). Note: the binary values will be opposite.

- Bit 1 Extended Memory: 256KB display memory is standard on the V7VGA board, so this bit is usually set to 1. This bit may, however, be set to 0 to allow emulation of IBM EGA modes which assume a display memory size of 64KB.
- Bit 0 Unused/Ignored. In the original EGA, this bit was programmed to indicate text mode versus graphics mode (1 indicated text mode). It enabled the Character Map Select Register (SR3). There are actually 2 other bits (GR6 bit-0 and AR10 bit-0) that indicate the same information but are the opposite polarity so this bit was eliminated by the VGA.

| I/O Port 3C5 (RV | V) |  |
|------------------|----|--|
|------------------|----|--|

#### **Extensions Control Register**

Index 06

| 1   | Bit # | Description              | Access | Reset By | Reset State  |
|-----|-------|--------------------------|--------|----------|--------------|
| msb |       | -unused-                 | -      | Reset Dy | Ttosor Build |
|     | 6     | -unused-                 | -      |          |              |
|     | 5     | -unused-                 | -      |          |              |
|     | 4     | -unused-                 | -      |          |              |
|     | 3     | -unused-                 | -      |          |              |
|     | 2     | -unused-                 | -      |          |              |
|     | 1     | -unused-                 | -      |          |              |
| lsb | 0     | Extensions Access Enable | R      | Reset    | 0            |

Access to the extended registers of the V7VGA chip set (registers pointed to by Sequencer indices 80-FF) is enabled and disabled by issuing write operations to port address 3C5 with an index of 6 stored in the Sequencer / Extensions Index Register. Access is enabled by writing hex 0EAH; access is disabled by writing 0AEH. Reading from 3C5 with an index of 6 stored in the index register returns the state of the access enable flag in the lsb (0 = disabled, 1 = enabled).

Access to the extension registers is disabled on reset. The capability to disable access to the extension registers is provided to allow the on-board BIOS to initialize the chip set to a particular mode of operation (especially one of the backwards-compatibility modes), with assurance that extension register contents won't be clobbered inadvertently by older non-V7VGA-aware user programs.

I/O Port 3C5 (W)

|     | Bit # | Description | Access | Reset By | Reset State |
|-----|-------|-------------|--------|----------|-------------|
| msb | 7     | -unused-    | -      |          |             |
|     | 6     | -unused-    | •      |          |             |
|     | 5     | -unused-    | -      |          |             |
|     | 4     | -unused-    | -      |          |             |
|     | 3     | -unused-    | -      | ,        |             |
|     | 2     | -unused-    | -      |          |             |
|     | 1     | -unused-    | -      |          |             |
| lsb | 0     | -unused-    | -      |          |             |

Writing to SR7 with any data will cause the horizontal character counter to be held reset (character counter output = 0) until a write to SR0-6 with any data value. The write to SR0-6 clears the latch that is holding the reset condition on the character counter.

The vertical line counter is clocked by a signal derived from horizontal display enable (which does not occur if the horizontal counter is held reset). Therefore, if the write to SR7 occurs during vertical retrace, the horizontal and vertical counters will both be zeroed. A write to SR0-6 may then be used to start both counters with reasonable syncronization to an external event via software control.

This register is implemented starting with V7VGA chip revision 4.

# **CRT Controller Registers**

The CRT Controller provides synchronization signals for the display monitor and addressing for non-CPU accesses of display memory. The registers are shown in the table below.

| <u>Page</u><br>3-30 | Abbreviation<br>CRX | Register Name<br>CRTC Index Register | <u>I/O Port</u><br>3?4 (RW) |
|---------------------|---------------------|--------------------------------------|-----------------------------|
| 3-31                | CR0                 | Horizontal Total                     | 3?5 Index 00 (RW)           |
| 3-32                | CR1                 | Horizontal Display End               | 3?5 Index 01 (RW)           |
| 3-33                | CR2                 | Horizontal Blanking Start            | 3?5 Index 02 (RW)           |
| 3-34                | CR3                 | Horizontal Blanking End              | 3?5 Index 03 (RW)           |
| 3-35                | CR4                 | Horizontal Retrace Start             | 3?5 Index 04 (RW)           |
| 3-36                | CR5                 | Horizontal Retrace End               | 3?5 Index 05 (RW)           |
| 3-37                | CR6                 | Vertical Total                       | 3?5 Index 06 (RW)           |
| 3-38                | CR7                 | Overflow                             | 3?5 Index 07 (RW)           |
| 3-39                | CR8                 | Screen A Preset Row Scan             | 3?5 Index 08 (RW)           |
| 3-40                | CR9                 | Character Cell Height                | 3?5 Index 09 (RW)           |
| 3-41                | CRA                 | Cursor Start                         | 3?5 Index 0A (RW)           |
| 3-42                | CRB                 | Cursor End                           | 3?5 Index 0B (RW)           |
| 3-43                | CRC                 | Screen A Start Address High          | 3?5 Index OC (RW)           |
| 3-44                | CRD                 | Screen A Start Address Low           | 3?5 Index 0D (RW)           |
| 3-45                | CRE                 | Cursor Location High                 | 3?5 Index 0E (RW)           |
| 3-46                | CRF                 | Cursor Location Low                  | 3?5 Index OF (RW)           |
| 3-47                | LPENH               | Light Pen High                       | 3?5 Index 10 (R)            |
| 3-48                | LPENL               | Light Pen Low                        | 3?5 Index 11 (R)            |
| 3-49                | CR10                | Vertical Retrace Start               | 3?5 Index 10 (W,RW)         |
| 3-50                | CR11                | Vertical Retrace End                 | 3?5 Index 11 (W,RW)         |
| 3-51                | CR12                | Vertical Display End                 | 3?5 Index 12 (RW)           |
| 3-52                | CR13                | Offset                               | 3?5 Index 13 (RW)           |
| 3-53                | CR14                | Underline Row Scan                   | 3?5 Index 14 (RW)           |
| 3-54                | CR15                | Vertical Blanking Start              | 3?5 Index 15 (RW)           |
| 3-55                | CR16                | Vertical Blanking End                | 3?5 Index 16 (RW)           |
| 3-56                | CR17                | CRT Mode Control                     | 3?5 Index 17 (RW)           |
| 3-58                | CR18                | Line Compare                         | 3?5 Index 18 (RW)           |
| 3-59                | CR1F                | V7VGA Identification                 | 3?5 Index 1F (R)            |
| 3-60                | CR22                | Graphics Ctrlr Data Latches          | 3?5 Index 22 (R)            |
| 3-61                | CR24                | Attr Ctrlr Index/Data Latch          | 3?5 Index 24 (R)            |
| 3-62                | CR3x                | Clear Vert Display Enable FF         | 3?5 Index 3x (W)            |

Note: '?' in the above port address is 'B' in monochrome mode and 'D' in color mode

Note: All CRTC registers except CRC-F (RW) and LPENH/L (R/O) are write-only in the original EGA. In addition, CRTC registers CR10-11 and LPENH/L are at conflicting locations in the EGA. The VGA provides software control (CR3 bit-7) of whether CR10-11 or LPENH/L are readable at indices 10-11.

|     | Bit # | Description      | Access Re | eset By | Reset State |
|-----|-------|------------------|-----------|---------|-------------|
| msb | 7     | -unused-         | -         |         |             |
|     | 6     | -unused-         | -         |         |             |
|     | 5     | CRTC Index Bit-5 | R/W       |         |             |
|     | 4     | CRTC Index Bit-4 | R/W       |         |             |
|     | 3     | CRTC Index Bit-3 | R/W       |         |             |
|     | 2     | CRTC Index Bit-2 | R/W       |         |             |
|     | 1     | CRTC Index Bit-1 | R/W       |         |             |
| lsb | 0     | CRTC Index Bit-0 | R/W       |         |             |

The CRTC Index register points to the internal registers of the CRT Controller. The six least significant bits determine which register will be pointed to in the next register read/write operation to I/O port 3B5/3D5.

Since only 6 bits of the index register are used, CRTC registers 0-3F may also be addressed using index ranges 40-7F, 80-BF, and CO-FF. This, however, is not recommended, as higher index ranges are reserved for future use and this may not be true in future chip revisions.

| Index | x 00  |                        | Wri    |          | d by EREB[:<br>and CR11[7 |
|-------|-------|------------------------|--------|----------|---------------------------|
|       | Bit # | Description            | Access | Reset By | Reset State               |
| msb   | 7     | Horizontal Total Bit-7 | R/W    |          |                           |
|       | 6     | Horizontal Total Bit-6 | R/W    |          |                           |
|       | 5     | Horizontal Total Bit-5 | R/W    |          |                           |
|       | 4     | Horizontal Total Bit-4 | R/W    |          |                           |
|       | 3     | Horizontal Total Bit-3 | R/W    |          |                           |
|       | 2     | Horizontal Total Bit-2 | R/W    |          |                           |
|       | 1     | Horizontal Total Bit-1 | R/W    |          |                           |
| lsb   | 0     | Horizontal Total Bit-0 | R/W    |          |                           |

**CRTC Horizontal Total Register** 

The Horizontal Total register defines the total number of characters in a horizontal scan line, including the retrace time. Together with the value in the Retrace Timing registers CR4 and CR5, the period of the retrace output signal is determined by the value in this register. The character clock input to the device is counted by a character counter. The value of the character counter is compared with the value in this register to provide the horizontal timing. All horizontal and vertical timing is based upon the contents of this register.

The value in the register = Total Number of Characters - 5

In the EGA, this register was programmed with the total number of characters - 2 instead of 5.

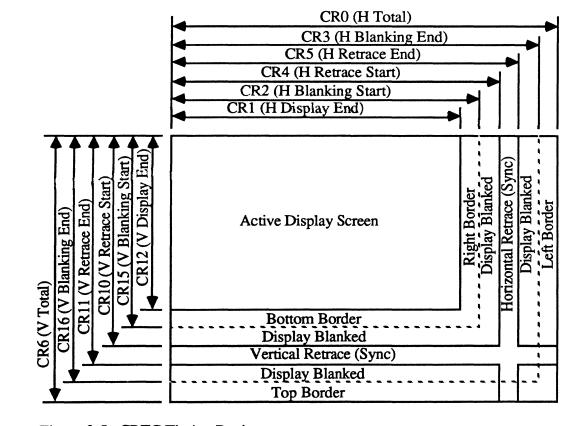



Figure 3-5. CRTC Timing Registers

I/O Port 3?5

CR0

# **CRTC Horizontal Display End Register**

Index 01

# Write Protected by EREB[5] and CR11[7]

|     | Bit # | Description                  | Access | Reset By | Reset State |
|-----|-------|------------------------------|--------|----------|-------------|
| msb | 7     | Horizontal Display End Bit-7 | R/W    |          | -           |
|     | 6     | Horizontal Display End Bit-6 | R/W    |          |             |
|     | 5     | Horizontal Display End Bit-5 | R/W    |          |             |
|     | 4     | Horizontal Display End Bit-4 | R/W    |          |             |
|     | 3     | Horizontal Display End Bit-3 | R/W    |          |             |
|     | 2     | Horizontal Display End Bit-2 | R/W    |          |             |
|     | 1     | Horizontal Display End Bit-1 | R/W    |          |             |
| lsb | 0     | Horizontal Display End Bit-0 | R/W    |          |             |

The Horizontal Display Enable End register defines the total number of displayed characters in a horizontal line.

The value in the register = Total Number of Characters - 1.

| I/O P    | ort 3? | 5 CRTC Horizontal Blanking Start Register | •      |              | CR2                         |
|----------|--------|-------------------------------------------|--------|--------------|-----------------------------|
| Index 02 |        |                                           | Wr     | ite Protecte | d by EREB[5]<br>and CR11[7] |
|          | Bit #  | Description                               | Access | Reset By     | Reset State                 |
| msb      | 7      | Horizontal Blanking Start Bit-7           | R/W    |              |                             |
|          | 6      | Horizontal Blanking Start Bit-6           | R/W    |              |                             |
|          | 5      | Horizontal Blanking Start Bit-5           | R/W    |              |                             |
|          | 4      | Horizontal Blanking Start Bit-4           | R/W    |              |                             |
|          | 3      | Horizontal Blanking Start Bit-3           | R/W    |              |                             |
|          | 2      | Horizontal Blanking Start Bit-2           | R/W    |              |                             |
|          | 1      | Horizontal Blanking Start Bit-1           | R/W    |              |                             |
| lsb      | 0      | Horizontal Blanking Start Bit-0           | R/W    |              |                             |

The contents of this register define the time when the horizontal blanking will start. The register is defined in terms of the number of horizontal character clocks assuming character positions are numbered 0-n where position 0 is the first displayed character position at the left side of the screen. The horizontal blanking signal becomes active when the horizontal character count is equal to the contents of this register.

Refer to Figure 3-4 (see register CR0) for a summary of CRTC timing registers.

I/O Port 3?5 Index 03

## **CRTC Horizontal Blanking End Register**

CR3

Write Protected by EREB[5] and CR11[7]

| 1   | Bit# | Description                       | Access | Reset By | Reset State |
|-----|------|-----------------------------------|--------|----------|-------------|
| msb | 7    | Compatibility Read                | R/W    |          |             |
|     | 6    | Display Enable Skew Control Bit-1 | R/W    |          |             |
|     | 5    | Display Enable Skew Control Bit-0 | R/W    |          |             |
|     | 4    | Horizontal Blanking End Bit-4     | R/W    |          |             |
|     | 3    | Horizontal Blanking End Bit-3     | R/W    |          |             |
|     | 2    | Horizontal Blanking End Bit-2     | R/W    |          |             |
|     | 1    | Horizontal Blanking End Bit-1     | R/W    |          |             |
| lsb | 0    | Horizontal Blanking End Bit-0     | R/W    |          |             |

The contents of this register define the time when the horizontal blanking will end. The register is defined in terms of the number of horizontal character clocks assuming character positions are numbered 0-n where position 0 is the first displayed character position at the left side of the screen.

### Bit Descriptions

| Bit 7 | Compatibility Read: If this bit is 1, CR10 and CR11 read back at indices 10 and | 11 |
|-------|---------------------------------------------------------------------------------|----|
|       | instead of the Light Pen Registers.                                             |    |

Bit 6-5 Display Enable Skew Control: Prior to displaying data on the screen, the CRT controller has to access the display buffer to obtain a character to be displayed, the attribute code for it, and the character generator font information. These accesses require the display enable signal to be skewed by one character clock to allow for synchronization with horizontal and vertical retrace. The display enable skew bits in this register allow for this skew. The skew can be programmed from 0-3 character clocks as follows:

| <u>Bit-6</u> | <u>Bit-5</u> | Skew in character clocks        |
|--------------|--------------|---------------------------------|
| 0            | 0            | $0 \ll 0 \leq 0$                |
| 0            | 1            | 1 <= typical setting in the EGA |
| 1            | 0            | 2                               |
| 1            | 1            | 3                               |

Bit 4-0

Horizontal Blanking End: The horizontal blanking signal width is determined as follows:

Value in Horizontal Blanking Start Register (CR2) + Width of Blanking Signal = value to be programmed into the Horizontal Blanking End register.

The lsb's of the horizontal character counter are compared with the contents of this register (plus bit-5 from CR5 bit-7). When a match occurs, the horizontal blanking pulse becomes inactive. The length of this register limits the length of the blanking pulse to 63 character clocks. In the IBM EGA, if the blanking interval extended beyond the end of the line, erratic behavior would result since the character counter got cleared after the number of character times programmed in the H Total register. This restriction was removed in the VGA.

| I/O Port 3?5 |       | CRTC Horizontal Retrace Start Register |        | CR<br>Write Protected by EREB[5<br>and CR11[7 |             |  |
|--------------|-------|----------------------------------------|--------|-----------------------------------------------|-------------|--|
| Index 04     |       |                                        |        |                                               |             |  |
| [            | Bit # | Description                            | Access | Reset By                                      | Reset State |  |
| msb          | 7     | Horizontal Retrace Start Bit-7         | R/W    |                                               |             |  |
|              | 6     | Horizontal Retrace Start Bit-6         | R/W    |                                               |             |  |
|              | 5     | Horizontal Retrace Start Bit-5         | R/W    |                                               |             |  |
|              | 4     | Horizontal Retrace Start Bit-4         | R/W    |                                               |             |  |
|              | 3     | Horizontal Retrace Start Bit-3         | R/W    |                                               |             |  |
|              | 2     | Horizontal Retrace Start Bit-2         | R/W    |                                               |             |  |
|              | 1     | Horizontal Retrace Start Bit-1         | R/W    |                                               |             |  |
| lsb          | 0     | Horizontal Retrace Start Bit-0         | R/W    |                                               |             |  |

This register defines the character position at which the Horizontal Retrace Pulse becomes active assuming character positions are numbered 0-n where position 0 is the first displayed character position at the left side of the screen. This register centers the monitor screen horizontally. The value in the register is the character count at which the Horizontal Retrace Pulse becomes active.

## **CRTC Horizontal Retrace End Register**

CR5

### Index 05

Write Protected by EREB[5] and CR11[7]

|     | Bit # | Description                    | Access Reset By Reset State |
|-----|-------|--------------------------------|-----------------------------|
| msb | 7     | H Blank End Bit-5              | R/W                         |
|     | 6     | Horizontal Retrace Delay Bit-1 | R/W                         |
|     | 5     | Horizontal Retrace Delay Bit-0 | R/W                         |
|     | 4     | Horizontal Retrace End Bit-4   | R/W                         |
|     | 3     | Horizontal Retrace End Bit-3   | R/W                         |
|     | 2     | Horizontal Retrace End Bit-2   | R/W                         |
|     | 1     | Horizontal Retrace End Bit-1   | R/W                         |
| lsb | 0     | Horizontal Retrace End Bit-0   | R/W                         |

This register defines the character position at which the Horizontal Retrace Pulse becomes inactive assuming character positions are numbered 0-n where position 0 is the first displayed character position at the left side of the screen.

| Bit Descriptions  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 7             | Horizontal Blank End Bit-5: This bit is an extension bit for H Blank End (H Blank End is 5 bits in the EGA and 6 bits in the VGA).                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | In the EGA, this bit was used for a different purpose. It determined whether CRT memory addresses started with even (0) or odd(1) values after a horizontal retrace. This was used in horizontal panning. The VGA now has different mechanisms to accomplish the same thing (see CR8[5-6]).                                                                                                                                                                                                                                                              |
| Bit 6-5           | Horizontal Retrace Delay: The skew of the horizontal retrace signal is controlled by these<br>bits. In some modes, it is necessary to provide a horizontal retrace signal that takes up<br>the entire blanking period. The horizontal retrace signal also triggers some internal<br>timings on the falling edge of the signal. To ensure that the signals are latched properly,<br>the retrace signal is started before the end of the display enable signal. It is then skewed<br>several character clock times to provide the proper screen centering. |
|                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bit 4-0           | End Horizontal Retrace: The horizontal retrace signal becomes inactive after the character count becomes equal to the count in these bits. The width of the retrace signal is determined as follows:                                                                                                                                                                                                                                                                                                                                                     |
|                   | Value in Retrace Start Register (CR4) + Width of Retrace Signal = 5-bit value to be programmed into the Horizontal Retrace End register.                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | The five lsbs of the horizontal character counter are compared to the contents of this register. When a match occurs, the horizontal retrace pulse becomes inactive. The length of this register limits the retrace signal to 31 character clocks. In the EGA, if the retrace interval extends beyond the end of the line, erratic behavior will result since the horizontal character counter gets cleared after the number of character times programmed in the Horizontal Total register. This restriction has been removed in the VGA.               |
| Refer to Figure 3 | -4 (see register CR0) for a summary of CRTC timing registers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| I/O Port 3?5 |       | 5                    | CRTC Vertical Total Register |        |          | CR6                         |
|--------------|-------|----------------------|------------------------------|--------|----------|-----------------------------|
| Index 06     |       |                      |                              | Wr     |          | d by EREB[5]<br>and CR11[7] |
|              | Bit # | Description          |                              | Access | Reset By | Reset State                 |
| msb          | 7     | Vertical Total Bit-7 |                              | R/W    |          |                             |
|              | 6     | Vertical Total Bit-6 |                              | R/W    |          |                             |
|              | 5     | Vertical Total Bit-5 |                              | R/W    |          |                             |
| 1            | 4     | Vertical Total Bit-4 |                              | R/W    |          |                             |
|              | 3     | Vertical Total Bit-3 |                              | R/W    |          |                             |
|              | 2     | Vertical Total Bit-2 |                              | R/W    |          |                             |
|              | 1     | Vertical Total Bit-1 |                              | R/W    |          |                             |
| lsb          | 0     | Vertical Total Bit-0 |                              | R/W    |          |                             |

The Vertical Total register defines the number of horizontal raster scans on the CRT screen, including the vertical retrace. The Vertical Total register contains the low order 8 bits of a 9-bit or 10-bit register. The ninth bit is located in the CRT Controller Overflow register (CR7 bit-0). In the VGA, a tenth bit is located in CR7 bit-5.

The value programmed into Vertical Total is the total number of scan lines - 2 for both EGA and VGA.

I/O Port 3?5 Index 07

# **CRTC Overflow Register**

# Write Protected by EREB[5] and CR11[7]

|     | Bit # | Description                                   |        | Write Protected By  | Access |
|-----|-------|-----------------------------------------------|--------|---------------------|--------|
| msb | 7     | Bit-9 of the V Retrace Start Register         | (CR10) | EREB[5] and CR11[7] | R/W    |
|     | 6     | Bit-9 of the V Display End Register           | (CR12) | EREB[5] and CR11[7] | R/W    |
|     | 5     | Bit-9 of the V Total Register                 | (CR6)  | EREB[5] and CR11[7] | R/W    |
|     | 4     | Bit-8 of the Line Compare Register            | (CR18) | EREB[5]             | R/W    |
|     | 3     | Bit-8 of the Vertical Blanking Start Register | (CR15) | EREB[5] and CR11[7] | R/W    |
|     | 2     | Bit-8 of the Vertical Retrace Start Register  | (CR10) | EREB[5] and CR11[7] | R/W    |
|     | 1     | Bit-8 of the Vertical Display End Register    | (CR12) | EREB[5] and CR11[7] | R/W    |
| lsb | 0     | Bit-8 of the Vertical Total Register          | (CR6)  | EREB[5] and CR11[7] | R/W    |

The CRT Controller Overflow register is used in conjunction with other control registers and contains the ninth and tenth bits of various other registers. Bits 0-4 of this register are the same as the original EGA; bits 5-7 were added in the VGA.

| Index | x 08  |                                | Write Protected by ERE |          |             |
|-------|-------|--------------------------------|------------------------|----------|-------------|
|       | Bit # | Description                    | Access                 | Reset By | Reset State |
| msb   | 7     | -unused-                       | -                      |          |             |
|       | 6     | Byte Pan Control Bit-1         | R/W                    |          |             |
|       | 5     | Byte Pan Control Bit-0         | R/W                    |          |             |
|       | 4     | Screen A Preset Row Scan Bit-4 | R/W                    |          |             |
|       | 3     | Screen A Preset Row Scan Bit-3 | R/W                    |          |             |
|       | 2     | Screen A Preset Row Scan Bit-2 | R/W                    |          |             |
|       | 1     | Screen A Preset Row Scan Bit-1 | R/W                    |          |             |
| lsb   | 0     | Screen A Preset Row Scan Bit-0 | R/W                    |          |             |

**CRTC Screen A Preset Row Scan Register** 

The 5 lsbs of this register specify the starting row scan count of the character cell after a vertical retrace (assuming the scan lines of a character row are numbered starting with 0). This is the start of the top half of the screen (referred to as 'Screen A') if split screen mode is in effect. The row scan counter is reset to 0 in the normal way when the count reaches the value programmed in CR9 (Character Cell Height). If this register is programmed with a value greater than the character cell height, the row scan counter will count up to 1Fh before rolling over. In text and certain graphics modes, this register can be used for smooth scrolling by setting the register value between 0 and the value in CR9. For example, by setting the Preset Row Scan to 1 instead of 0, the next frame will start at scan line 1 of the character cell, which will give the effect of shifting vertically by 1 row, or vertical scrolling. This register should be changed only during vertical retrace.

Refer also to the description of the 'Line Compare' register (CR18) for more information on how to implement split-screen mode.

In the VGA, bits 5 and 6 of this register were added to control byte panning. In the EGA, bits 5 and 6 were ignored.

| <u>Bit-6</u> | Bit-5 | Byte Panning                            |
|--------------|-------|-----------------------------------------|
| 0            | 0     | 0 bytes (display shifts 0 pixels left)  |
| 0            | 1     | 1 byte (display shifts 8 pixels left)   |
| 1            | 0     | 2 bytes (display shifts 16 pixels left) |
| 1            | 1     | 3 bytes (display shifts 24 pixels left) |

This field, in conjunction with AR13 (Horizontal Pixel Panning), allows pixel panning in word and doubleword modes, by up to 15 and 31 pixels, respectively.

When the line compare condition becomes true and the Pixel Panning Compatibility bit (AR10 bit-5) is 1, the outputs of bits 5 and 6 are forced to 0 until the start of the next vertical sync pulse.

I/O Port 3?5

CR8

enabled, each scan block is 2 scan lines high; with scan doubling disabled, each scan block is 1 scan line high. Thus, all row scan address counter-based timing (including character height and cursor and underline locations) double, as measured in scan lines, when scan doubling is enabled. Scan doubling only effects the way in which data is displayed; it does not effect display timing. If this bit is set without changing anything else, the data currently displayed will simply appear taller; horizontal and vertical sync, blanking, etc., will remain the same. This bit is only available in the VGA; the original EGA had no standard way of controlling scan doubling. Bit 6 Line Compare Bit-9 - This bit is bit-9 of the Line Compare register (CR18 contains bits 0-7 and CR7 bit-4 contains bit-8). In the EGA, this bit was ignored. Vertical Blank Start Bit-9 - This bit is bit-9 of the Vertical Blank Start register (CR15 Bit 5 contains bits 0-7 and CR7 bit-3 contains bit-8). In the EGA, this bit was ignored. Bit 4-0 Character Cell Height - This field specifies the number of scan lines per character row minus one.

# Bi

|       | 6     | Line Compare (CR18) Bit-9                                                                                                                                  | R/W                                                     |                                                   |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| F     | 5     | Vert Blank Start (CR15) Bit-9                                                                                                                              | R/W                                                     |                                                   |
|       | 4     | Character Cell Height Bit-4                                                                                                                                | R/W                                                     |                                                   |
|       | 3     | Character Cell Height Bit-3                                                                                                                                | R/W                                                     |                                                   |
|       | 2     | Character Cell Height Bit-2                                                                                                                                | R/W                                                     |                                                   |
|       | 1     | Character Cell Height Bit-1                                                                                                                                | R/W                                                     |                                                   |
| lsb   | 0     | Character Cell Height Bit-0                                                                                                                                | R/W                                                     |                                                   |
| -     |       |                                                                                                                                                            |                                                         |                                                   |
| it De | scrip | tions                                                                                                                                                      |                                                         |                                                   |
| it 7  |       | Scan Double: When this bit is 0, sc<br>normal EGA and VGA. When this bit<br>displayed twice in succession. In or<br>rather than scan lines, that clock the | bit is 1, every scan line in the words, it is the compl | the normal display is<br>letion of 'scan blocks', |

**CRTC Character Cell Height Register** 

Access

R/W

# Bi

# Write Protected by EREB[4]

Reset By

CR9

Reset State

I/O Port 3?5 Index 09

7

msb

Bit # Description

Scan Double

| I/O Port 3?5 CRTC Cursor Start Register |          |                    |        | CRA      |             |                            |  |  |  |
|-----------------------------------------|----------|--------------------|--------|----------|-------------|----------------------------|--|--|--|
| Index                                   | Index 0A |                    | x 0A   |          | Wr          | Write Protected by EREB[4] |  |  |  |
|                                         |          |                    |        |          |             |                            |  |  |  |
|                                         | Bit #    | Description        | Access | Reset By | Reset State |                            |  |  |  |
| msb                                     | 7        | -unused-           | -      |          |             |                            |  |  |  |
|                                         | 6        | -unused-           | -      |          |             |                            |  |  |  |
|                                         | 5        | Cursor Disable     | R/W    |          |             |                            |  |  |  |
|                                         | 4        | Cursor Start Bit-4 | R/W    |          |             |                            |  |  |  |
|                                         | 3        | Cursor Start Bit-3 | R/W    |          |             |                            |  |  |  |
|                                         | 2        | Cursor Start Bit-2 | R/W    |          |             |                            |  |  |  |
|                                         | 1        | Cursor Start Bit-1 | R/W    |          |             |                            |  |  |  |
| lsb                                     | 0        | Cursor Start Bit-0 | R/W    |          |             |                            |  |  |  |

This register specifies the scan line of the character row where the cursor is to begin assuming the scan lines of a character row are numbered starting with 0. This is true for both the EGA and VGA. Cursor operation is different between EGA and VGA modes in two ways:

- 1) Cursor wraparound (the EGA does, the VGA doesn't)
- 2) Cursor end value (EGA programmed value = end scan line + 1; VGA value = end scan line)

Some examples of VGA cursor operation are shown in the figure below:

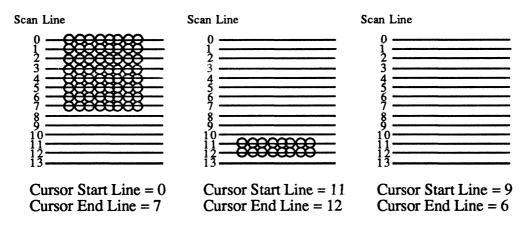



Figure 3-6. VGA-Mode CRTC Cursor Programming Examples

Note that in the EGA, if the cursor start register value was greater than the cursor end register value, the cursor wrapped around, resulting in a two-part cursor. This does not occur (no cursor is displayed), in the VGA. Note also that in the EGA, the end register value must be one greater than that required for VGA cursor programming. (Put another way, in the VGA the CRTC cursor is programmed just like a 6845 cursor).

If the cursor start value is the same as the cursor end value, a 1 line cursor will result. In the IBM EGA, only the 4 lsbs were compared, so that a one-line cursor would result if the start and end registers were identical or different by exactly 16. The 4-bit comparison is **not** duplicated by the V7VGA; a one-line cursor results only for the expected cases of the start and end registers being the same. In the VGA, the cursor size is always End-Start+1.

| 1   | Bit # | Description               | Access | Reset By | Reset State |
|-----|-------|---------------------------|--------|----------|-------------|
| msb | 7     | -unused-                  | -      |          |             |
|     | 6     | Cursor Skew Control Bit-1 | R/W    |          |             |
|     | 5     | Cursor Skew Control Bit-0 | R/W    |          |             |
|     | 4     | Cursor End Bit-4          | R/W    |          |             |
|     | 3     | Cursor End Bit-3          | R/W    |          |             |
|     | 2     | Cursor End Bit-2          | R/W    |          |             |
|     | 1     | Cursor End Bit-1          | R/W    |          |             |
| lsb | 0     | Cursor End Bit-0          | R/W    |          |             |

**CRTC Cursor End Register** 

The Cursor End register specifies the scan line of the character row where the cursor is to end assuming the scan lines of the character row are numbered starting with 0. This is one different than the EGA, which was programmed with the scan line of the character row where the cursor is to end <u>plus one</u>.

This register also controls cursor skew as described below:

# **Bit Descriptions**

Bit 6-5

These bits control the cursor skew as follows:

| <u>Bit-6</u> | <u>Bit-5</u> | Skew                | Comment                                      |
|--------------|--------------|---------------------|----------------------------------------------|
| 0            | 0            | Zero character skew |                                              |
| 0            | 1            | Zero character skew |                                              |
| 1            | <b>0</b>     | One character skew  | IBM EGA Cursor 2 characters wide in column 1 |
| 1            | 1            | Two character skew  | IBM EGA Cursor 3 characters wide in column 1 |

Programming this field with 0 or 1 in the IBM EGA and VGA will result in the cursor being located over the character pointed at by the cursor location registers CRE and CRF. This is the desired result. Programming this field, however, with 2 or 3 in the EGA, resulted in the cursor being located 1 or 2 characters to the right of that position in most cases, but resulted in a cursor that was more than one character wide when in column 1. This is usually non-interesting and is not emulated in the VGA, which does what you would expect.

Bit 4-0 These bits define the scan line of the character cell where the cursor is to end (plus 1 for the EGA). The 'plus 1' part of the definition for the EGA limited the maximum cursor height to 31 lines as compared to 32 for the VGA. An end value greater than the height of the character cell results in a full block cursor the same height as the character cell. An end value less than the start value results in a wrap-around cursor in the EGA and no cursor in the VGA.

> Refer to the definition of the CRTC cursor start register (CRA) on the previous page for CRTC cursor programming examples and further description of cursor programming and operation.



Write Protected by EREB[4]

CRB

### I/O Port 3?5 Index 0B

I/O Port 3?5 Index OC

### **CRTC Screen A Start Address Register High**

CRC

Write Protected by EREB[3]

|     | Bit # | Description                   | Access | Reset By | Reset State |
|-----|-------|-------------------------------|--------|----------|-------------|
| msb | 7     | Screen A Start Address Bit-15 | R/W    |          |             |
|     | 6     | Screen A Start Address Bit-14 | R/W    |          |             |
|     | 5     | Screen A Start Address Bit-13 | R/W    |          |             |
|     | 4     | Screen A Start Address Bit-12 | R/W    |          |             |
|     | 3     | Screen A Start Address Bit-11 | R/W    |          |             |
|     | 2     | Screen A Start Address Bit-10 | R/W    |          |             |
|     | 1     | Screen A Start Address Bit-9  | R/W    |          |             |
| lsb | 0     | Screen A Start Address Bit-8  | R/W    |          |             |

The Screen A Start Address register is a 16-bit value which specifies first display memory address after a vertical retrace at which the display on the screen begins on each screen refresh. This register contains 8 high order bits of the address, while the Screen A Start Address Low register (CRD) specifies the 8 low-order bits.

The reason that the name of this register is qualified with 'Screen A' is that under some circumstances, two logical screens may be present (split-screen mode). In this case, this register specifies the start address of the first of the two (the top one). The start address of screen B (the bottom one) is always 0. The bottom screen's start scan line on the screen is determined by the line compare register (CR18). Refer to the description of the line compare register for a diagram of split-screen mode.

Note: This register is also part of the mechanism used to identify the V7VGA chip. Any value written to this register can be read back exclusive-or'd with 'EA' hex (binary '11101010') at CRTC index 1F.

# Index 0D

|     | Bit # | Description                  | Access | Reset By | Reset State |
|-----|-------|------------------------------|--------|----------|-------------|
| msb | 7     | Screen A Start Address Bit-7 | R/W    |          |             |
|     | 6     | Screen A Start Address Bit-6 | R/W    |          |             |
|     | 5     | Screen A Start Address Bit-5 | R/W    |          |             |
|     | 4     | Screen A Start Address Bit-4 | R/W    |          |             |
|     | 3     | Screen A Start Address Bit-3 | R/W    |          |             |
|     | 2     | Screen A Start Address Bit-2 | R/W    |          |             |
|     | 1     | Screen A Start Address Bit-1 | R/W    |          |             |
| lsb | 0     | Screen A Start Address Bit-0 | R/W    |          |             |

The Screen A Start Address register is a 16-bit value which specifies the first display memory address after a vertical retrace at which the display on the screen begins on each screen refresh. This register contains the 8 low order bits of the address, while the Screen A Start Address High register (CRC) specifies the 8 highorder bits.

### CRE

# Index 0E

|     | Bit # | Description            | Access | Reset By | Reset State |
|-----|-------|------------------------|--------|----------|-------------|
| msb | 7     | Cursor Location Bit-15 | R/W    |          |             |
|     | 6     | Cursor Location Bit-14 | R/W    |          |             |
|     | 5     | Cursor Location Bit-13 | R/W    |          |             |
|     | 4     | Cursor Location Bit-12 | R/W    |          |             |
|     | 3     | Cursor Location Bit-11 | R/W    |          |             |
|     | 2     | Cursor Location Bit-10 | R/W    |          |             |
|     | 1     | Cursor Location Bit-9  | R/W    |          |             |
| lsb | 0     | Cursor Location Bit-8  | R/W    |          |             |

The Cursor Location register contains a 16-bit value which specifies the offset of the cursor location from the start of physical display memory in character positions. This register contains the 8 high order bits of the value, while the Cursor Location Low register (CRF) specifies the 8 low-order bits.

When the screen start address registers (CRC and CRD) contain 0, programming the cursor location registers (this register and CRF) to 0 positions the cursor over the upper left character of the screen (row 1, column 1); programming them to 1 positions the cursor over the character in the next column to the right (row 1 column 2), etc. If the screen start registers are changed, the cursor will remain pointed at the same character (i.e., the cursor will effectively move the same number of characters as the displayed screen contents to remain pointed at the same displayed character). The value in the cursor location registers is relative to the start of physical display memory, not to the start of the screen.

Since information is stored in display memory as character/attribute pairs, the address of the character under the cursor will be exactly two times the value in the cursor location registers (plus the base address of the screen).

Index OF

| 1   | Bit # | Description           | Access | Reset By | Reset State |
|-----|-------|-----------------------|--------|----------|-------------|
| msb | 7     | Cursor Location Bit-7 | R/W    |          |             |
|     | 6     | Cursor Location Bit-6 | R/W    |          |             |
|     | 5     | Cursor Location Bit-5 | R/W    |          |             |
|     | 4     | Cursor Location Bit-4 | R/W    |          |             |
|     | 3     | Cursor Location Bit-3 | R/W    |          |             |
|     | 2     | Cursor Location Bit-2 | R/W    |          |             |
|     | 1     | Cursor Location Bit-1 | R/W    |          |             |
| lsb | 0     | Cursor Location Bit-0 | R/W    |          |             |

The Cursor Location register contains a 16-bit value which specifies the offset of the cursor location from the start of physical display memory in character positions. This register contains the 8 low order bits of the value, while the Cursor Location High register (CRE) specifies the 8 high-order bits.

When the screen start address registers (CRC and CRD) contain 0, programming the cursor location registers (this register and CRE) to 0 positions the cursor over the upper left character of the screen (row 1, column 1); programming them to 1 positions the cursor over the character in the next column to the right (row 1 column 2), etc. If the screen start registers are changed, the cursor will remain pointed at the same character (i.e., the cursor will effectively move the same number of characters as the displayed screen contents to remain pointed at the same displayed character). The value in the cursor location registers is relative to the start of physical display memory, not to the start of the screen.

Since information is stored in display memory as character/attribute pairs, the address of the character under the cursor will be exactly two times the value in the cursor location registers (plus the base address of the screen).

CRF

|     | Bit # | Description              | 3?5 Access | Reset By | Reset State |
|-----|-------|--------------------------|------------|----------|-------------|
| msb | 7     | Light Pen Address Bit-15 | R          |          |             |
|     | 6     | Light Pen Address Bit-14 | R          |          |             |
|     | 5     | Light Pen Address Bit-13 | R          |          |             |
|     | 4     | Light Pen Address Bit-12 | R          |          |             |
|     | 3     | Light Pen Address Bit-11 | R          |          |             |
|     | 2     | Light Pen Address Bit-10 | R          |          |             |
|     | 1     | Light Pen Address Bit-9  | R          |          |             |
| lsb | 0     | Light Pen Address Bit-8  | R          |          |             |

In the EGA, the Light Pen High register contains the 8 high-order bits of the CRTC memory address counter at the time the light pen flip flop is set. The low order 8 bits are stored in the Light Pen Low register (LPENL at CRTC index 11).

In the VGA, the light pen 'register' is held in a transparent state, such that reading from LPENH at CRTC index 10 returns the 8 high-order bits of the free-running memory address counter at the time of the read. There is no way to latch the value read to make sure that the high and low readings match, or even to be sure that the memory address counter isn't in the process of changing during a read and hence temporarily invalid. This may not sound very useful, except for generating random numbers, but it emulates the IBM VGA exactly.

CRTC registers CR10-11 and LPENH/L are at conflicting locations in the EGA. The VGA provides software control (CR3 bit-7) of whether CR10-11 or LPENH/L are readable at CRTC indices 10-11.

|     | Bit # | Description             | 3?5 Access | Reset By | Reset State |
|-----|-------|-------------------------|------------|----------|-------------|
| msb | 7     | Light Pen Address Bit-7 | R          |          |             |
|     | 6     | Light Pen Address Bit-6 | R          |          |             |
|     | 5     | Light Pen Address Bit-5 | R          |          |             |
|     | 4     | Light Pen Address Bit-4 | R          |          |             |
|     | 3     | Light Pen Address Bit-3 | R          |          |             |
|     | 2     | Light Pen Address Bit-2 | R          |          |             |
|     | 1     | Light Pen Address Bit-1 | R          |          |             |
| lsb | 0     | Light Pen Address Bit-0 | R          |          |             |

In the EGA, the Light Pen Low register contains the 8 low-order bits of the CRTC memory address counter at the time the light pen flip flop is set. The high order 8 bits are stored in the Light Pen High register (LPENH at CRTC index 10).

In the VGA, the light pen 'register' is held in a transparent state, such that reading from LPENL at CRTC index 11 returns the 8 low-order bits of the free-running memory address counter at the time of the read. There is no way to latch the value read to make sure that the high and low readings match, or even to be sure that the memory address counter isn't in the process of changing during a read and hence temporarily invalid. This may not sound very useful, except for generating random numbers, but it emulates the IBM VGA exactly.

CRTC registers CR10-11 and LPENH/L are at conflicting locations in the EGA. The VGA provides software control (CR3 bit-7) of whether CR10-11 or LPENH/L are readable at CRTC indices 10-11.

### **CRTC Vertical Retrace Start Register**

|     | Bit # | Description                  | 3?5 Access | Reset By | Reset State |
|-----|-------|------------------------------|------------|----------|-------------|
| msb | 7     | Vertical Retrace Start Bit-7 | W or R/W   |          |             |
|     | 6     | Vertical Retrace Start Bit-6 | W or R/W   |          |             |
|     | 5     | Vertical Retrace Start Bit-5 | W or R/W   |          |             |
|     | 4     | Vertical Retrace Start Bit-4 | W or R/W   |          |             |
|     | 3     | Vertical Retrace Start Bit-3 | W or R/W   |          |             |
|     | 2     | Vertical Retrace Start Bit-2 | W or R/W   |          |             |
|     | 1     | Vertical Retrace Start Bit-1 | W or R/W   |          |             |
| lsb | 0     | Vertical Retrace Start Bit-0 | W or R/W   |          |             |

The Vertical Retrace Start register was a 9-bit register in the EGA, but is a 10-bit register in the VGA. It defines the position of the vertical retrace start signal in terms of horizontal scan lines. The programmed value assumes scan lines are numbered starting from 0 at the top of the screen. The low order 8 bits are programmed through this register, while the high order bits are programmed through the CRTC Overflow register (CR7 bit-2 is Vertical Retrace Start bit-8 and CR7 bit-7 is Vertical Retrace Start bit-9).

If the 'Compatibility Read' bit, CR3 bit-7, is 0, this register is write-only at CRTC index 10 (read-back at this index returns the Light Pen High Address Register). If the Compatibility Read bit is set, the Vertical Retrace Start register may be accessed read/write at CRTC index 10 (LPENH is not accessable via the CRTC in this state).

Refer to Figure 3-4 (see register CR0) for a summary of CRTC timing registers.

**CR10** 

### I/O Port 3?5 Index 11

### **CRTC Vertical Retrace End Register**

I/O Port 3C5 Index 91

| 1   | Bit # | Description                   | 3?5 Access | Reset By | Reset State |
|-----|-------|-------------------------------|------------|----------|-------------|
| msb | 7     | Write Protect CR0-7           | W          | Reset    | 0           |
|     | 6     | Refresh Cycle Select          | W          |          |             |
|     | 5     | 0 = Enable Vertical Interrupt | W          | Reset    | 1           |
|     | 4     | 0 = Clear Vertical Interrupt  | W          | Reset    | 0           |
|     | 3     | Vertical Retrace End Bit-3    | W          |          |             |
|     | 2     | Vertical Retrace End Bit-2    | W          |          |             |
|     | 1     | Vertical Retrace End Bit-1    | W          |          |             |
| lsb | 0     | Vertical Retrace End Bit-0    | W          |          |             |

If the 'Compatibility Read' bit, CR3 bit-7, is 0, this register is write-only at CRTC index 11 (read-back at this index returns the Light Pen Low Address Register). If the Compatibility Read bit is set, this register may be accessed read/write at CRTC index 11 (LPENL is not accessable via the CRTC in this state).

### **Bit Descriptions**

- **Bit 7** Write Protect CR0-7 When this bit is set to 1 in the VGA, CRTC registers 0-7 are write protected except for CR7 bit-4. This bit was a test bit in the EGA.
- **Bit 6** Refresh Cycle Select / Test In the VGA, this bit controls whether 3 or 5 display memory refresh cycles are generated at the end of each horizontal scan line (0 = 3 cycles, 1 = 5 cycles). In the EGA, setting this bit to 1 caused line counter bits 7-8 to be forced to 1's (sort of a '6845-compatibility' mode).
- Bit 5 Vertical Interrupt Enable This bit controls whether interrupts are generated on the CRTINT pin of the chip from the CRTINT status bit (Input Status Register 0: 3C2 bit-7). Setting this bit to 0 enables interrupts. If interrupts are disabled, the status bit still gets set if enabled by bit-4 below.
- Bit 4 Clear Vertical Interrupt Setting this bit to 0 clears the vertical interrupt flip-flop (and de-asserts the interrupt signal if it was asserted). Setting this bit to 1 allows the vertical interrupt flip-flop to be set at the start of the next vertical retrace interval (to be exact, one scan line after Vertical Display Enable goes away). The vertical interrupt flip-flop may be read at I/O port 3C2 bit-7 (Input Status Register 0 also called the 'Feature Read' register).
- **Bit 3-0** Vertical Retrace End: These four bits specify the horizontal scan line count at which the vertical retrace output pulse becomes inactive assuming the scan lines are numbered starting from 0 at the top of the screen. The four bits are compared with the four lsbs of the vertical scan line counter. When the four counter bits are equal to the contents in this register, the vertical retrace is terminated. The width, W, of the vertical retrace pulse is determined by the following algorithm:

Value in Vertical Retrace Start register (CR10) + W = 4-bit value to be programmed into the Vertical Retrace End register.

Note that the four lsbs of the algorithm result are to be programmed into this register. Thus the maximum retrace pulse width can be only 15 scan lines. Note also that in the EGA, if the blanking interval extended beyond the end of the screen, erratic behavior would result since the vertical scan line counter got cleared after the number of scan lines programmed in the vertical total register. In the VGA, this restriction has been removed.

# Index 12

|     | Bit # | Description                | Access | Reset By | Reset State |
|-----|-------|----------------------------|--------|----------|-------------|
| msb | 7     | Vertical Display End Bit-7 | R/W    |          |             |
|     | 6     | Vertical Display End Bit-6 | R/W    |          |             |
|     | 5     | Vertical Display End Bit-5 | R/W    |          |             |
|     | 4     | Vertical Display End Bit-4 | R/W    |          |             |
|     | 3     | Vertical Display End Bit-3 | R/W    |          |             |
|     | 2     | Vertical Display End Bit-2 | R/W    |          |             |
| :   | 1     | Vertical Display End Bit-1 | R/W    |          |             |
| lsb | 0     | Vertical Display End Bit-0 | R/W    |          |             |

The Vertical Display Enable End register defines 8 bits of a 9-bit register in the EGA and a 10-bit register in the VGA. It specifies the scan line position where the display on the screen ends. Scan lines are assumed to be numbered starting from 0 at the top of the screen. The ninth bit of the Vertical Display Enable End register is located in the CRTC Overflow register (CR7 bit-1). The tenth bit is also located in the CRTC Overflow register (CR7 bit-1).

**CR13** 

Index 13

| ĺ   | Bit # | Description                     | Access | Reset By | Reset State |
|-----|-------|---------------------------------|--------|----------|-------------|
| msb | 7     | Logical Screen Line Width Bit-7 | R/W    |          |             |
|     | 6     | Logical Screen Line Width Bit-6 | R/W    |          |             |
|     | 5     | Logical Screen Line Width Bit-5 | R/W    |          |             |
|     | 4     | Logical Screen Line Width Bit-4 | R/W    |          |             |
|     | 3     | Logical Screen Line Width Bit-3 | R/W    |          |             |
|     | 2     | Logical Screen Line Width Bit-2 | R/W    |          |             |
|     | 1     | Logical Screen Line Width Bit-1 | R/W    |          | 1           |
| lsb | 0     | Logical Screen Line Width Bit-0 | R/W    |          |             |

The Offset register contents define the logical line width of the screen. The starting address of the next character row is determined by the value in the Offset register.

The following figure is a functional diagram of how the Offset register is used. The register start address is sent to the memory address counter. When the memory address counter counts bytes, the next line address is the current line start address + 2 times the Offset register contents. This is shown in the figure by the fact that the adder has one of the input port's least significant bits forced to 0. When the memory address counter is counting words, the next line address is the current line start address + 4 times the Offset register contents. The byte or word mode for the memory address counter is selected by the Mode Control register (CR17), bit 6. The Start Address High and Low bytes in the figure correspond to the first address after a vertical retrace at which the display on the screen begins.

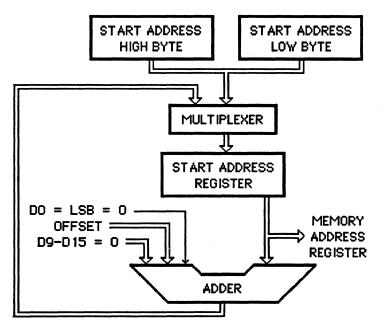



Figure 3-7. CRTC Offset Register Operation.

## **CRTC Underline Row Scan Register**

# Index 14

Write Protected by WRC[1]

**CR14** 

|     | Bit # | Description              | Access | Reset By | Reset State |
|-----|-------|--------------------------|--------|----------|-------------|
| msb | 7     | -unused-                 | -      |          |             |
|     | 6     | Doubleword Mode          | R/W    |          |             |
|     | 5     | Count by 4               | R/W    |          |             |
|     | 4     | Underline Row Scan Bit-4 | R/W    |          |             |
|     | 3     | Underline Row Scan Bit-3 | R/W    |          |             |
|     | 2     | Underline Row Scan Bit-2 | R/W    |          |             |
|     | 1     | Underline Row Scan Bit-1 | R/W    |          |             |
| lsb | 0     | Underline Row Scan Bit-0 | R/W    |          |             |

# **Bit Descriptions:**

- Bit 7 Unused
- **Bit 6** Doubleword This bit is provided for VGA compatibility and was ignored by the EGA. When this bit is set to 1, the CRTC memory address counter is shifted up two bits to provide the linear address to display memory (this is like 'word' mode except shifted up one more bit). In this mode, display memory address bit-0 is driven from CRTC memory address counter bit-12 and display memory address bit-1 is driven from CRTC memory address counter bit-13. When this bit is set, the CRTC Mode register 'Byte Mode' bit (CR17 bit-6) is ignored.

See CR17 bit-6 for further information.

- Bit 5 Count by 4 This bit is provided for VGA compatibility and was ignored in the EGA. When this bit is 1 and CR17 bit-3 (Count by 2) is 0, the memory address counter is clocked by the character clock / 4. When 'Count by 2' is 1, the memory address counter is clocked by the character clock / 2 and 'Count by 4' is ignored. When 'Count by 2' and 'Count by 4' are both 0, the memory address counter is clocked by the unmodified character clock.
- **Bits 4-0** Underline Row Scan The 5 lsbs of this register specify the horizontal row scan of the character cell at which the underline will occur. The scan lines of the character cell are assumed to be numbered from the top of the cell starting at 0.

Underlining occurs in text (alphanumeric) modes only when an attribute value of binary 'b000i001' is detected (where b indicates blink and i indicates intensified).

Underlining is normally only enabled while in monochrome modes (EGA/VGA mode 7 and Hercules/MGA text modes for example) by setting this register to 13 (the last scan line of the 8x14 character cell). For color modes, this register is normally programmed to a value larger than the size of the character cell to effectively disable underlining. This is due to bits 0-2 and 4-6 of the attribute value being used for foreground and background colors respectively in color modes (activating underlining when the character attributes are set to foreground color 1 and background color 0 is usually not desirable).

# Index 15

|     | Bit # | Description                   | Access | Reset By | Reset State |
|-----|-------|-------------------------------|--------|----------|-------------|
| msb | 7     | Vertical Blanking Start Bit-7 | R/W    |          |             |
|     | 6     | Vertical Blanking Start Bit-6 | R/W    |          |             |
|     | 5     | Vertical Blanking Start Bit-5 | R/W    |          |             |
|     | 4     | Vertical Blanking Start Bit-4 | R/W    |          |             |
|     | 3     | Vertical Blanking Start Bit-3 | R/W    |          |             |
|     | 2     | Vertical Blanking Start Bit-2 | R/W    |          |             |
|     | 1     | Vertical Blanking Start Bit-1 | R/W    |          |             |
| lsb | 0     | Vertical Blanking Start Bit-0 | R/W    |          |             |

This register contains the low order 8 bits of a 9-bit register in the EGA and a 10-bit register in the VGA which indicates the horizontal scan line count at which the vertical blanking pulse becomes active. Scan lines are assumed to be numbered starting from 0 at the top of the screen. The ninth bit is located in the CRTC Overflow register (CR7 bit-3). The tenth bit is located in the CRTC Character Cell Height register (CR9 bit-5).

Index 16

|     | Bit # | Description                 | Access | Reset By | Reset State |
|-----|-------|-----------------------------|--------|----------|-------------|
| msb | 7     | Vertical Blanking End Bit-7 | R/W    |          |             |
|     | 6     | Vertical Blanking End Bit-6 | R/W    |          |             |
|     | 5     | Vertical Blanking End Bit-5 | R/W    |          |             |
|     | 4     | Vertical Blanking End Bit-4 | R/W    |          |             |
|     | 3     | Vertical Blanking End Bit-3 | R/W    |          |             |
|     | 2     | Vertical Blanking End Bit-2 | R/W    |          |             |
|     | 1     | Vertical Blanking End Bit-1 | R/W    |          |             |
| lsb | 0     | Vertical Blanking End Bit-0 | R/W    |          |             |

This register specifies the horizontal scan line count at which the vertical blanking pulse becomes inactive assuming the scan lines are numbered starting from 0 at the top of the screen. The vertical blanking width (W) is determined from the following algorithm:

Value of Start Vertical Blanking register (CR15) + W = Value to be programmed into the Vertical Blanking End register.

The three most significant bits of this register were ignored in EGA mode. When the five (EGA) or eight (VGA) least significant bits of the vertical scan line counter are equal to the value in this register, vertical blanking is terminated. Note that the maximum vertical blanking interval is limited to 31 scan lines for the EGA and 255 for VGA.

In the EGA, if the blanking interval extended beyond the end of the screen, erratic behavior would result since the vertical scan line counter got cleared after the number of line times programmed in the vertical total register. This restriction has been removed in the VGA.

### Index 17

|     | Bit # | Description                                  | Access | Reset By | Reset State |
|-----|-------|----------------------------------------------|--------|----------|-------------|
| msb | 7     | H/V Retrace Enable                           | R/W    | Reset    | 0           |
|     | 6     | Byte Mode (1), Word Mode (0)                 | R/W    |          |             |
|     | 5     | Address Wrap                                 | R/W    |          |             |
|     | 4     | Unused (IBM EGA: CRTC Output Driver Control) | -      |          |             |
|     | 3     | Count by Two                                 | R/W    |          |             |
|     | 2     | Multiply Vertical by 2 (CR6,10,12,15,18)     | R/W    |          |             |
|     | 1     | Select Row Scan Counter                      | R/W    |          |             |
| lsb | 0     | Compatibility Mode Support                   | R/W    |          |             |

The Mode Control register is a multi-function register with each bit defining a different option. The following is a description of these bits:

### **Bit Descriptions**

- Bit 7 H/V Retrace Enable: 0 disables vertical and horizontal retrace. 1 enables vertical and horizontal retrace.
- Bit 6 Byte Mode: 1 selects byte mode. 0 selects word mode. Word mode causes the memory address counter bits to shift down one bit, and the most significant bit of the counter appears on the least significant bit of the memory address output. If CR14 bit-6 is set to 1 (Doubleword Mode), this bit is ignored. Doubleword mode causes the memory address counter bits to shift down 2 bits. For more information on how the two low order address bits are handled in doubleword mode, refer to the extension registers F6, F9, and FC.

### Internal Memory Address Counter/Output Multiplexer Relationship

| CRTC Out Pin | Byte Address Mode | Word Address Mode | Doubleword Address Mode |
|--------------|-------------------|-------------------|-------------------------|
| xA15         | MA15              | MA14              | MA13                    |
| xA14         | MA14              | MA13              | MA12                    |
| xA13         | MA13              | MA12              | MA11                    |
| •            | •                 | •                 | •                       |
| xA3          | MA3               | MA2               | MA1                     |
| xA2          | MA2               | MA1               | MA0                     |
| xA1          | MA1               | MA0               | MA13                    |
| xA0          | MA0               | MA13/MA15         | MA12                    |

- Bit 5 Address Wrap: This bit selects the correct memory address counter bit to be output on xA0 in word mode. MA13 is selected if this bit is 0 and MA15 is selected if this bit is 1. When byte mode is selected through bit-6 of this register, MA0 counter output appears on the xA0 output pin. This bit is set to 0 in the IBM EGA when less than 64K of memory is configured and to 1 if 256K of memory is configured. The V7VGA comes standard with 256K of memory configured, so this bit is normally always set to 1. If set to 0, MA14 and MA15 are forced to 0.
- Bit 4 Unused (this bit was programmed to 0 in the IBM EGA to enable the CRTC output drivers)

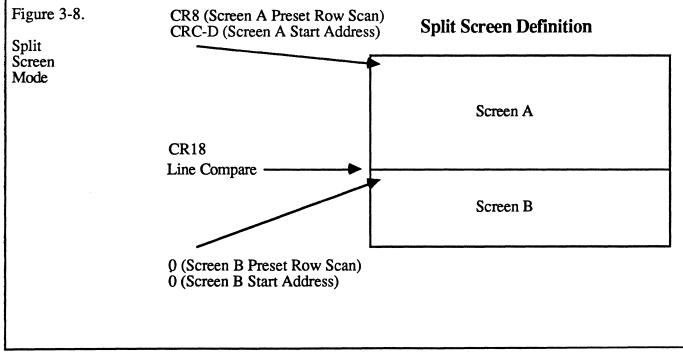
- **Bit 3** Count by Two: This bit defines whether the contents of the Offset register (CR13) are a word or a double word value. When this bit is 0, the memory address counter is clocked by the character clock. When this bit is 1, the memory address is clocked by the character clock divided by 2. This bit also creates either a byte or word refresh address for the display memory.
- **Bit 2** Multiply Vertical by 2: This bit controls the vertical resolution capability of the CRT Controller. In the EGA, the vertical counter had a maximum resolution of 512 scan lines as defined by the Vertical Total register (1024 in the VGA). If the vertical retrace counter is clocked with the horizontal retrace clock divided by 2, the vertical resolution is doubled to 1024 horizontal scan lines in the EGA (2048 in the VGA). Setting this bit to 0 selects the horizontal retrace clock; setting it to 1 selects the horizontal retrace clock divided by 2.

If this bit is set, the following vertical registers must be programmed to half their normal value to result in the same number of scan lines:

| CR6  | Vertical Total          |
|------|-------------------------|
| CKO  | vertical Total          |
| CR10 | Vertical Retrace Start  |
| CR12 | Vertical Display End    |
| CR15 | Vertical Blanking Start |
| CR18 | Line Compare            |

Note that these are the same registers that have overflow bits in the CRTC Overflow register CR7. (In the VGA, some also have additional overflow bits in CR9).

- **Bit 1** Select Row Scan Counter: This bit allows compatibility with the Hercules graphics card and other 400 line graphics systems. If this bit is set to 0, row scan counter bit-1 is substituted for memory address bit 14 during active display time. If this bit is set to 1, no such substitution takes place.
- Bit 0 Compatibility Mode Support: This bit allows compatibility with the IBM Color Graphics Adapter. When this bit is 0, row scan counter bit-0 is substituted for memory address bit-13 during active display time. When this bit is 1, no such substitution takes place.


#### Index 18

|     | Bit # | Description        | Access | Reset By | Reset State |
|-----|-------|--------------------|--------|----------|-------------|
| msb | 7     | Line Compare Bit-7 | R/W    |          |             |
|     | 6     | Line Compare Bit-6 | R/W    |          |             |
|     | 5     | Line Compare Bit-5 | R/W    |          |             |
|     | 4     | Line Compare Bit-4 | R/W    |          |             |
|     | 3     | Line Compare Bit-3 | R/W    |          |             |
|     | 2     | Line Compare Bit-2 | R/W    |          |             |
|     | 1     | Line Compare Bit-1 | R/W    |          |             |
| lsb | 0     | Line Compare Bit-0 | R/W    |          |             |

The Line Compare register is used to implement the split screen function. It was a 9-bit register in the EGA which has been expanded to a 10-bit register in the VGA. The 8 lsbs of the Line Compare are in this register, bit-8 is in the CRTC Overflow register CR7 bit-4, and in the VGA, bit-9 is in the Character Cell Height register at CR9 bit-6. When the horizontal scan line counter value is equal to the contents of the Line Compare register, the memory address generator and the character row scan count are cleared.

The screen area above where the Line Compare register points is called Screen A and the screen area below that point is called Screen B (see figure below). In the standard EGA and VGA, Screen A may be smooth scrolled vertically and panned horizontally, but Screen B cannot. The VGA provides a control over whether screen B pans with screen A or is stationary when screen A is panned (AR10 bit-5).

The Line Compare register determines the point where Screen A ends and Screen B begins. It is typically set to a value of FF (along with one bits in CR7 bit-4 and CR9 bit-6) to disable the split-screen feature (no comparison ever occurs so Screen B never starts).



# Index 1F

|     | Bit # | Description           |                             | Access | Reset By | Reset State |
|-----|-------|-----------------------|-----------------------------|--------|----------|-------------|
| msb | 7     | V7VGA Identification: | CRTC Register C bit-7 xor 1 | R      |          |             |
|     | 6     | V7VGA Identification: | CRTC Register C bit-6 xor 1 | R      |          |             |
|     | 5     | V7VGA Identification: | CRTC Register C bit-5 xor 1 | R      |          |             |
|     | 4     | V7VGA Identification: | CRTC Register C bit-4 xor 0 | R      |          |             |
|     | 3     | V7VGA Identification: | CRTC Register C bit-3 xor 1 | R      |          |             |
|     | 2     | V7VGA Identification: | CRTC Register C bit-2 xor 0 | R      |          |             |
|     | 1     | V7VGA Identification: | CRTC Register C bit-1 xor 1 | R      |          |             |
| lsb | 0     | V7VGA Identification: | CRTC Register C bit-0 xor 0 | R      |          |             |

This read-only register may be used to determine whether the graphics adapter supports the Video Seven extension registers. The value read back from this register is the current value in CRTC register C (Screen A Start Address High) exclusive-or'd with hex 'EA'. For example, if CRC contains 0, this register will read back hex 'EA'; if CRC contains hex 'FF', this register will read back hex '15'; and so forth. Any EGA, VGA, CGA, or MGA can safely be examined for presence of Video Seven extensions with no ill effects from programming on the CRTC index register, reading back CRTC data registers, and, if desired for absolute certainty, programming CRTC register C (which is a read/write register even in 6845s and old EGA CRTCs).

Once it is known that the Video Seven extension registers can safely be accessed, the chip revision registers (at extensions indices 8Eh and 8Fh) may be read to determine the exact nature and capabilities of the chip(s) installed.

Writes to this register are ignored.

Index 22

|     | Bit # | Description                            | Access | Reset By | Reset State |
|-----|-------|----------------------------------------|--------|----------|-------------|
| msb | 7     | Graphics Controller Data Latch N Bit-7 | R      |          |             |
|     | 6     | Graphics Controller Data Latch N Bit-6 | R      |          |             |
|     | 5     | Graphics Controller Data Latch N Bit-5 | R      |          |             |
|     | 4     | Graphics Controller Data Latch N Bit-4 | R      |          |             |
|     | 3     | Graphics Controller Data Latch N Bit-3 | R      |          |             |
|     | 2     | Graphics Controller Data Latch N Bit-2 | R      |          |             |
|     | 1     | Graphics Controller Data Latch N Bit-1 | R      |          |             |
| lsb | 0     | Graphics Controller Data Latch N Bit-0 | R      |          |             |

This register may be used to read the state of Graphics Controller Data Latch 'n', where 'n' is controlled by the Graphics Controller Read Map Select Register (GR4 bits 0-1) and is in the range 0-3.

Writes to this register are not decoded and will be ignored.

## Index 24

|     | Bit # | Description                  | Access | Reset By | Reset State |
|-----|-------|------------------------------|--------|----------|-------------|
| msb | 7     | Index (0) / Data (1)         | R      |          |             |
|     | 6     | -unused-                     | -      |          |             |
|     | 5     | Palette Address Source       | R      |          |             |
|     | 4     | Attribute Controller Index 4 | R      |          |             |
|     | 3     | Attribute Controller Index 3 | R      |          |             |
|     | 2     | Attribute Controller Index 2 | R      |          |             |
|     | 1     | Attribute Controller Index 1 | R      |          |             |
| lsb | 0     | Attribute Controller Index 0 | R      |          |             |

This register may be used to read back the state of the attribute controller index/data latch. In the V7VGA, reading from this CRTC index returns the same information as returned by extensions index 83 (note that ER83 is also writable, however).

Writes to this register are not decoded and will be ignored.

|   | _ |    | -  |   | - |    | - | - |
|---|---|----|----|---|---|----|---|---|
|   | - |    |    |   | - | -  |   |   |
| n | d | ex | ζ. | 3 | 0 | )[ | 3 | F |

| I/O Po | ort 3?5       |
|--------|---------------|
| Index  | <b>30-3</b> F |

|     | Bit # | Description                    | Access | Reset By | Reset State |
|-----|-------|--------------------------------|--------|----------|-------------|
| msb | 7     | -unused-                       | -      |          |             |
|     | 6     | -unused-                       | -      |          |             |
|     | 5     | -unused-                       | -      |          |             |
|     | 4     | -unused-                       | -      |          |             |
|     | 3     | -unused-                       | -      |          |             |
|     | 2     | -unused-                       | -      |          |             |
|     | 1     | -unused-                       | -      |          |             |
| lsb | 0     | Clear Display Enable Flip Flop | W      |          |             |

Writing odd data values to CRTC index 30-3F causes the vertical display enable flip-flop to be cleared. The flip-flop is automatically set by reaching vertical total. The effect of this is to force a longer vertical retrace period. There are two side effects of terminating vertical display enable early: first, the screen blanks early for one frame causing a minor visual disturbance and second, the sequencer gives more display memory cycles to the CPU because vertical display is not enabled.

Reads from this register are not decoded and will return indeterminate data.

## Graphics Controller Registers

The Graphics Controller directs data from the display memory to the Attribute Controller and the CPU. The Graphics Controller registers are listed in the following table:

| Page | <u>Abbrev</u> | Register Name                      | Read/Write Port |
|------|---------------|------------------------------------|-----------------|
| 3-64 | GRX           | Graphics Controller Index Register | 3CE             |
| 3-65 | GR0           | Set/Reset Register                 | 3CF Index 00    |
| 3-66 | GR1           | Enable Set/Reset Register          | 3CF Index 01    |
| 3-67 | GR2           | Color Compare Register             | 3CF Index 02    |
| 3-68 | GR3           | Data Rotate Register               | 3CF Index 03    |
| 3-69 | GR4           | Read Map Select Register           | 3CF Index 04    |
| 3-70 | GR5           | Mode Register                      | 3CF Index 05    |
| 3-72 | GR6           | Miscellaneous Register             | 3CF Index 06    |
| 3-73 | GR7           | Color Don't Care Register          | 3CF Index 07    |
| 3-74 | GR8           | Bit Mask Register                  | 3CF Index 08    |

|     | Bit # | Description                     | Access F | Reset By | Reset State |
|-----|-------|---------------------------------|----------|----------|-------------|
| msb | 7     | -unused-                        | -        |          |             |
|     | 6     | -unused-                        | -        |          |             |
|     | 5     | -unused-                        | -        |          |             |
|     | 4     | -unused-                        | -        |          |             |
|     | 3     | Graphics Controller Index Bit-3 | R/W      |          |             |
|     | 2     | Graphics Controller Index Bit-2 | R/W      |          |             |
|     | 1     | Graphics Controller Index Bit-1 | R/W      |          |             |
| lsb | 0     | Graphics Controller Index Bit-0 | R/W      |          |             |

The Graphics Controller Index Register points to other internal registers of the Graphics Controller. The four least significant bits determine the register which will be pointed to in the next Graphics Controller register read/write operation.

GRX

| I/O Po | ort 3C | F Graphics Controller Set/Reset Reg | Graphics Controller Set/Reset Register |          |             |  |  |  |
|--------|--------|-------------------------------------|----------------------------------------|----------|-------------|--|--|--|
| Index  | 00     |                                     |                                        |          |             |  |  |  |
|        |        |                                     |                                        |          |             |  |  |  |
|        | Bit #  | Description                         | Access                                 | Reset By | Reset State |  |  |  |
| msb    | 7      | -unused-                            | -                                      |          |             |  |  |  |
|        | 6      | -unused-                            | -                                      |          |             |  |  |  |
|        | 5      | -unused-                            | -                                      |          |             |  |  |  |
|        | 4      | -unused-                            | -                                      |          |             |  |  |  |
|        | 3      | Set/Reset Plane 3                   | R/W                                    |          |             |  |  |  |
|        | 2      | Set/Reset Plane 2                   | R/W                                    |          |             |  |  |  |
|        | 1      | Set/Reset Plane 1                   | R/W                                    |          |             |  |  |  |
| lsb    | 0      | Set/Reset Plane 0                   | R/W                                    |          |             |  |  |  |

The bits in this register define the value written to the corresponding memory planes when the processor does a memory write with Write Mode 0 selected and the Set/Reset mode enabled with the Enable Set/Reset Register. Note that this can be done on an individual memory plane with separate OUT commands to the Enable Set/Reset Register.

For example, if the Set/Reset register contents are 1101, then a write to display memory will result in the following:

|         | <u>7</u> | <u>6</u> | <u>5</u> | <u>4</u> | <u>3</u> | <u>2</u> | 1 | <u>0</u> |
|---------|----------|----------|----------|----------|----------|----------|---|----------|
| Plane 3 | 1        | 1        | 1        | 1        | 1        | 1        | 1 | 1        |
| Plane 2 | 1        | 1        | 1        | 1        | 1        | 1        | 1 | 1        |
| Plane 1 | 0        | 0        | 0        | 0        | 0        | 0        | 0 | 0        |
| Plane 0 | 1        | 1        | 1        | 1        | 1        | 1        | 1 | 1        |

This assumes the Enable Set/Reset register (GR1) contents are 1111, all planes are enabled (Sequencer SR2 = 1111) and all bits are unmasked (GR8 = FFh).

| I/O Po | ort 3C | F Graphics Controller Ena | Graphics Controller Enable Set/Reset Register |          |             |  |  |  |
|--------|--------|---------------------------|-----------------------------------------------|----------|-------------|--|--|--|
| Index  | 01     |                           |                                               |          |             |  |  |  |
| 1      | Bit #  | Description               | Access                                        | Reset By | Reset State |  |  |  |
| msb    | 7      | -unused-                  | -                                             |          |             |  |  |  |
|        | 6      | -unused-                  | -                                             |          |             |  |  |  |
|        | 5      | -unused-                  | -                                             |          |             |  |  |  |
|        | 4      | -unused-                  | -                                             |          |             |  |  |  |
|        | 3      | Enable Set/Reset Plane 3  | R/W                                           |          |             |  |  |  |
|        | 2      | Enable Set/Reset Plane 2  | R/W                                           |          |             |  |  |  |
|        | 1      | Enable Set/Reset Plane 1  | R/W                                           |          |             |  |  |  |
| lsb    | 0      | Enable Set/Reset Plane 0  | R/W                                           |          |             |  |  |  |

The bits in this register enable the Set/Reset function in conjunction with the Set/Reset Register. If the mode register is programmed to write mode 0, the contents of the Set/Reset register are written to the respective display memory planes. If the write mode is 0 and Set/Reset is not enabled on a plane, the plane is written with the data from the CPU data bus.

For example, if the Set/Reset register (R0) contents are 0100, the contents of the Enable Set/Reset register (R1) are 0101 (enable Set/Reset on planes 0 and 2) and a write of 11001101 is done to display memory, it will result in the following:

|         | 2 | <u>6</u> | <u>5</u> | <u>4</u> | <u>3</u> | 2 | 1 | <u>0</u> |
|---------|---|----------|----------|----------|----------|---|---|----------|
| Plane 3 | 1 | 1        | 0        | 0        | 1        | 1 | Ō | 1        |
| Plane 2 | 1 | 1        | 1        | 1        | 1        | 1 | 1 | 1        |
| Plane 1 | 1 | 1        | 0        | 0        | 1        | 1 | 0 | 1        |
| Plane 0 | 0 | 0        | 0        | 0        | 0        | 0 | 0 | 0        |

This assumes write mode 0, all planes enabled (Sequencer SR2 = 1111), and all bits unmasked (GR8 = FFh).

| I/O Po | ort 3C | F Graphics Controller Col | Graphics Controller Color Compare Register |                        |  |  |  |  |
|--------|--------|---------------------------|--------------------------------------------|------------------------|--|--|--|--|
| Index  | : 02   |                           |                                            |                        |  |  |  |  |
|        |        |                           |                                            |                        |  |  |  |  |
|        | Bit #  | Description               | Access R                                   | Reset By   Reset State |  |  |  |  |
| msb    | 7      | -unused-                  | -                                          |                        |  |  |  |  |
|        | 6      | -unused-                  | -                                          |                        |  |  |  |  |
|        | 5      | -unused-                  | -                                          |                        |  |  |  |  |
|        | 4      | -unused-                  | -                                          |                        |  |  |  |  |
|        | 3      | Color Compare Plane 3     | R/W                                        |                        |  |  |  |  |
|        | 2      | Color Compare Plane 2     | R/W                                        |                        |  |  |  |  |
|        | 1      | Color Compare Plane 1     | R/W                                        |                        |  |  |  |  |
| lsb    | 0      | Color Compare Plane 0     | R/W                                        |                        |  |  |  |  |

If the Mode Register has Read mode set, the data read from display memory planes 0 to 3 is compared to the bits 0 to 3 in the Color Compare Register. A match will cause a 1 to be output on the corresponding data bus bit.

For example, if the contents of the Color Compare register are 0011 (to compare planes 0 and 1) and the contents of the plane are as follows:

|         | <u>7</u> | <u>6</u> | <u>5</u> | <u>4</u> | <u>3</u> | <u>2</u> | 1 | <u>0</u> |
|---------|----------|----------|----------|----------|----------|----------|---|----------|
| Plane 3 | 0        | 0        | 0        | 0        | 0        | 0        | 0 | 0        |
| Plane 2 | 1        | 1        | 1        | 1        | 1        | 1        | 1 | 0        |
| Plane 1 | 0        | 0        | 0        | 0        | 0        | 0        | 0 | 1        |
| Plane 0 | 1        | 1        | 1        | 1        | 1        | 1        | 1 | 1        |

The data bus will contain the following:

This assumes the Color Don't Care register (GR7) = 1111.

| Inde          | ort 3C                         | F                                                                                              |                       |                                | G                     | rap                   | hics                         | Co                    | ntro                         | ller ]                       | Data          | Ro                 | tate               | Re         | gister | •       |     |            |      |       |              |
|---------------|--------------------------------|------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|-----------------------|------------------------------|------------------------------|---------------|--------------------|--------------------|------------|--------|---------|-----|------------|------|-------|--------------|
| mucz          | x 03                           |                                                                                                |                       |                                |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        |         | Wı  | rite Prote | cte  | d by  | WR           |
|               |                                |                                                                                                |                       |                                |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        |         |     |            |      |       |              |
|               |                                | Description                                                                                    |                       |                                |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        | Acce    | SS  | Reset By   | y    | Res   | et Sta       |
| msb           |                                | -unused-                                                                                       |                       |                                |                       |                       |                              |                       |                              | <u>ىي مىسىلىك مى</u>         |               |                    |                    |            |        | -       |     |            |      |       |              |
|               | 6                              | -unused-                                                                                       |                       |                                |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        | -       |     |            |      |       |              |
|               | 5                              | -unused-                                                                                       |                       |                                |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        | -       |     |            |      |       |              |
|               | 4                              | Function Se                                                                                    | lect                  | Bit-                           | 1                     |                       |                              |                       |                              | _                            |               |                    |                    |            |        | R/V     | V   |            |      |       |              |
|               | 3                              | Function Se                                                                                    | lect                  | Bit-                           | 0                     |                       |                              |                       |                              |                              |               |                    |                    |            |        | R/V     | V   |            |      |       |              |
|               | 2                              | Rotate Cour                                                                                    | nt Bi                 | it-2                           |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        | R/V     | /   |            |      |       |              |
|               | 1                              | Rotate Cour                                                                                    | nt Bi                 | t-1                            |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        | R/V     | 7   |            |      |       |              |
| lsb           | 0                              | Rotate Cour                                                                                    | nt Bi                 | it-0                           |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        | R/V     | V   |            |      |       |              |
|               |                                | on Select Bits                                                                                 |                       |                                |                       |                       |                              |                       |                              |                              | late          | ches               | to l               | be l       | logica | ully op | era | ited on by | r th | ne da | ita          |
|               | 0<br>0<br>1<br>1<br>1<br>may b | $ \begin{array}{c c} \hline 0 & No \\ 1 & Lo \\ 0 & Lo \\ 1 & Lo \\ \end{array} $ e any of the |                       | nge<br>I 'AN<br>I 'OF<br>I 'XC | R' bo<br>DR'<br>avai  | etwo<br>bet<br>labl   | een<br>wee<br>e w            | Dat<br>n D<br>ith t   | a an<br>ata a<br>ihe V       | d la<br>and l<br>Write       | tche<br>latcl | d da<br>ned<br>ode | ata<br>data<br>Reg | ı<br>çiste |        |         |     |            |      |       |              |
|               | play n<br>PC                   | kample, if th<br>hemory:<br>Data =<br>Result Store                                             |                       | 1                              | 110                   | 00                    | 10                           | 10                    | = C                          | CAh                          | -             |                    |                    |            |        |         |     | o the righ |      |       | •            |
|               |                                | nts of Data F<br>been loade                                                                    |                       |                                |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        |         |     |            | Gr   | aphi  | cs C         |
|               | Pla<br>Pla<br>Pla<br>Pla       | ne 3 Latch<br>ne 2 Latch<br>ne 1 Latch<br>ne 0 Latch                                           | 7<br>1<br>0<br>1<br>1 | 6<br>0<br>1<br>1<br>0          | 5<br>0<br>1<br>0<br>1 | 4<br>1<br>1<br>1<br>1 | <u>3</u><br>0<br>1<br>0<br>0 | 2<br>1<br>0<br>1<br>0 | $\frac{1}{1}$<br>0<br>0<br>0 | <u>0</u><br>1<br>1<br>1<br>0 |               |                    |                    |            |        |         |     |            |      |       |              |
|               |                                | e from the P<br>with a result                                                                  |                       |                                |                       |                       |                              |                       |                              |                              |               | ncti               | on w               | vill       | be p   | erform  | ed  | on the PO  | Cd   | lata  | and t        |
|               | Pla<br>Pla<br>Pla<br>Pla       | ne 3<br>ne 2<br>ne 1<br>ne 0                                                                   | 7<br>1<br>0<br>1<br>1 | 6<br>0<br>1<br>1<br>0          | 5<br>1<br>0<br>1<br>0 | 4<br>0<br>0<br>0<br>0 | <u>3</u><br>1<br>0<br>1<br>1 | 2<br>0<br>1<br>0<br>1 |                              | 0<br>1<br>1<br>1<br>0        |               |                    |                    |            |        |         |     |            |      |       |              |
|               |                                |                                                                                                |                       |                                |                       |                       |                              |                       |                              |                              |               |                    |                    |            |        |         |     | 1          |      |       |              |
| <b>Fhis</b> : | assum                          | es write moo                                                                                   | le 1,                 | all                            | plar                  | nes                   | enal                         | bled                  | (Se                          | que                          | ncei          | SR                 | 2 =                | 11         | 11) a  | nd all  | bit | s unmask   | ed   | l (Gl | <b>1</b> 8 = |

| I/O Po | ort 3C | CF Graphics Controller F | Graphics Controller Read Map Select Register |                  |  |  |  |  |  |
|--------|--------|--------------------------|----------------------------------------------|------------------|--|--|--|--|--|
| Index  | 04     |                          |                                              |                  |  |  |  |  |  |
| 1      | Bit #  | Description              | I Access   Reset                             | By   Reset State |  |  |  |  |  |
| msb    | 7      | -unused-                 | -                                            |                  |  |  |  |  |  |
|        | 6      | -unused-                 | -                                            |                  |  |  |  |  |  |
|        | 5      | -unused-                 | -                                            |                  |  |  |  |  |  |
|        | 4      | -unused-                 | -                                            |                  |  |  |  |  |  |
|        | 3      | -unused-                 | -                                            |                  |  |  |  |  |  |
|        | 2      | -unused-                 | -                                            |                  |  |  |  |  |  |
|        | 1      | Map Select Bit-1         | R/W                                          |                  |  |  |  |  |  |
| lsb    | 0      | Map Select Bit-0         | R/W                                          |                  |  |  |  |  |  |

The two least significant bits of this register designate the memory plane from which the CPU reads the data. This register does not effect the read operation performed through the Color Compare register. The four memory planes are selected as follows:

| <u>Bit-1</u> | <u>Bit-0</u> | Plane Selected |
|--------------|--------------|----------------|
| 0            | 0            | Plane 0        |
| 0            | 1            | Plane 1        |
| 1            | 0            | Plane 2        |
| 1            | 1            | Plane 3        |

If the double odd/even bit (SR4 bit-3, also called 'Chain4') is set, the contents of this register are ignored.

| ndex   | <u> </u>      |                                                                                                                                                                                                                                                                                                                               |                                                                | UIU                      |                              | ntroller N              | Touc Inc                     | gisici    |                              |                             | G                            |
|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------|------------------------------|-------------------------|------------------------------|-----------|------------------------------|-----------------------------|------------------------------|
| nuca   | 05            |                                                                                                                                                                                                                                                                                                                               |                                                                |                          |                              |                         |                              |           |                              |                             |                              |
|        |               |                                                                                                                                                                                                                                                                                                                               |                                                                |                          |                              |                         |                              |           |                              |                             |                              |
| Γ      | Bit #         | Descript                                                                                                                                                                                                                                                                                                                      | ion                                                            |                          |                              |                         |                              |           | Access                       | Reset By                    | Reset State                  |
| msb    | 7             | -unused                                                                                                                                                                                                                                                                                                                       | -                                                              |                          |                              |                         |                              |           | -                            |                             |                              |
|        | 6             | Shift 25                                                                                                                                                                                                                                                                                                                      | 6                                                              |                          |                              |                         |                              |           | R/W                          |                             |                              |
| Ļ      | 5             | Shift Re                                                                                                                                                                                                                                                                                                                      | gister                                                         |                          |                              |                         |                              |           | R/W                          |                             | ļ                            |
| Ļ      | 4             | Odd/Eve                                                                                                                                                                                                                                                                                                                       |                                                                |                          |                              |                         |                              |           | R/W                          |                             | ļ                            |
| Ļ      |               | Read M                                                                                                                                                                                                                                                                                                                        |                                                                |                          |                              |                         |                              |           | R/W                          |                             |                              |
| Ļ      | 2             | Test Co                                                                                                                                                                                                                                                                                                                       |                                                                |                          |                              |                         |                              |           | R/W                          |                             |                              |
| Ļ      | 1             |                                                                                                                                                                                                                                                                                                                               | lode Bit-1                                                     |                          |                              |                         |                              |           | R/W                          |                             | ·                            |
| lsb    | 0             | Write M                                                                                                                                                                                                                                                                                                                       | lode Bit-0                                                     |                          |                              |                         |                              |           | R/W                          |                             | <u> </u>                     |
| Bit 6  | <u>script</u> | SI<br>W                                                                                                                                                                                                                                                                                                                       |                                                                | t is 1, the              |                              |                         |                              |           |                              |                             | by the EGA                   |
| Bit 5  |               | SI<br>M                                                                                                                                                                                                                                                                                                                       | hift Registe                                                   | r - The da<br>7, M2D0-   | M2D7, a                      | and M3D                 | 0-M3D7                       | 7 respect | ively. W                     | sented as N<br>Then this bi | 10D0-M0D'<br>it is 1, the da |
|        |               |                                                                                                                                                                                                                                                                                                                               | <u>MSB</u>                                                     |                          |                              |                         |                              |           |                              | <u>LSB</u>                  | Output to:                   |
|        |               |                                                                                                                                                                                                                                                                                                                               | M1D0<br>M1D1<br>M3D0<br>M3D1                                   | M1D3                     | M1D4<br>M1D5<br>M3D4<br>M3D5 | M1D7                    | M0D0<br>M0D1<br>M2D0<br>M2D1 |           | M0D4<br>M0D5<br>M2D4<br>M2D5 | M0D7                        | ATR0<br>ATR1<br>ATR2<br>ATR3 |
|        |               | Т                                                                                                                                                                                                                                                                                                                             | he least sig                                                   | nificant b               | it is shift                  | ed out fi               | rst.                         |           |                              |                             |                              |
|        |               | sł<br>re                                                                                                                                                                                                                                                                                                                      | When this bin<br>ifted out we<br>espectively to<br>puts 0-3 in | ith bit-7 g<br>for the M | going out<br>D-M3 pla        | first in a<br>ines, and | Ill cases.                   | The ou    | tputs are                    | ATRO-AT                     |                              |
| Bit 4  |               | Odd/Even - Setting this bit to 1 will put the Graphics Controller in the Odd/Even<br>addressing mode. This option is used to emulate the CGA. The function of this bit<br>should track the function of bit-2 of the Sequencer Memory Mode register (note: the<br>binary values will be opposite).                             |                                                                |                          |                              |                         |                              |           |                              |                             |                              |
| Bit 3  |               | Read Mode - When this bit equals 0 the CPU reads the data from the display memory planes. The plane is selected through the Read Map Select register. When this bit is 1 the CPU reads the result of the logical comparison between the data from the four disp memory planes and the contents of the Color Compare register. |                                                                |                          |                              |                         |                              |           |                              |                             | this bit is 1                |
| contir | nued)         |                                                                                                                                                                                                                                                                                                                               |                                                                |                          |                              |                         |                              |           |                              |                             |                              |
|        |               |                                                                                                                                                                                                                                                                                                                               |                                                                |                          |                              |                         |                              |           |                              |                             |                              |
|        |               |                                                                                                                                                                                                                                                                                                                               |                                                                |                          |                              |                         |                              |           |                              |                             |                              |

| 3CF Index 05 |          | Graphics Controller Mode Register (continued) GR                                                                                                                                                                                                                                                                                      | 5 |
|--------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Bit 2        |          | dition - This bit is ignored by the V7VGA. Setting this bit to 1 in the IBM EGA various Graphics Controller outputs for chip testing.                                                                                                                                                                                                 | 4 |
| Bit 1-0      | Write Mo | de                                                                                                                                                                                                                                                                                                                                    |   |
|              | Mode 0:  | Each of the four display memory planes is written with the CPU data rotated<br>by the number of counts in the Rotate register. This is always true except<br>when the Set/Reset register is enabled for any of the four planes. In this case<br>the corresponding plane is written with the data stored in the Set/Reset<br>register. |   |
|              | Mode 1:  | Each of the four display memory planes is written with the data in the CPU latches. These latches are loaded during a previous CPU read operation. Bit mask values are over-ridden in this mode. The effect is the same as if the bit mask register is programmed to all zeroes.                                                      |   |
|              | Mode 2:  | Memory planes 0-3 are filled with the value of data bits 0-3, respectively. For example, memory plane 0 is filled with the value of data bit-0, memory plane 1 is filled with the value of data bus bit-1, etc.                                                                                                                       |   |
|              | Mode 3:  | This mode is implemented for VGA compatibility and is undefined in the IBN EGA. In this mode, the CPU data is rotated, ANDed with the Bit Mask register, and the result fed into the bit mask in place of the Bit Mask register. In addition, Set/Reset is enabled for all planes in this mode.                                       |   |

#### Index 06

|     | Bit # | Description            | Access | Reset By | Reset State |
|-----|-------|------------------------|--------|----------|-------------|
| msb | 7     | -unused-               | -      |          |             |
|     | 6     | -unused-               | -      |          |             |
|     | 5     | -unused-               | -      |          |             |
|     | 4     | -unused-               | -      |          |             |
|     | 3     | Memory Map Bit-1       | R/W    |          |             |
|     | 2     | Memory Map Bit-0       | R/W    |          |             |
|     | 1     | Chain Odd Maps to Even | R/W    |          |             |
| lsb | 0     | Graphics Mode          | R/W    |          |             |

#### **Bit Descriptions**

Bit 3-2 Memory Map - These bits control the mapping of the address memory buffers into the CPU address space.

| Memory Map 0: | A000h for 128K |
|---------------|----------------|
| Memory Map 1: | A000h for 64K  |
| Memory Map 2: | B000h for 32K  |
| Memory Map 3: | B800h for 32K  |

Bit 1 Chain Odd Maps to Even - When this bit is 1, CPU address bit A0 is replaced by a higher order address bit. The contents of A0 determine which memory plane is selected. Zero selects planes 0 and 2, one selects planes 1 and 3.

# Bit 0 Graphics Mode - When this bit is 1, graphics mode is selected. This will disable the character generator latches.

## Index 07

|      | Bit # | Description                | Access | Reset By | Reset State |
|------|-------|----------------------------|--------|----------|-------------|
| msb. | 7     | -unused-                   | -      |          |             |
|      | 6     | -unused-                   | -      |          |             |
|      | 5     | -unused-                   | -      |          |             |
|      | 4     | -unused                    | -      |          |             |
|      | 3     | Color Plane 3 = Don't Care | R/W    |          |             |
|      | 2     | Color Plane 2 = Don't Care | R/W    |          |             |
|      | 1     | Color Plane 1 = Don't Care | R/W    |          |             |
| lsb  | 0     | Color Plane 0 = Don't Care | R/W    |          |             |

## **Bit Descriptions**

Bit 3 0 indicates that color plane 3 is a "don't care" when the Color Compare register test is performed.

Bit 2 0 indicates that color plane 2 is a "don't care" when the Color Compare register test is performed.

Bit 1 0 indicates that color plane 1 is a "don't care" when the Color Compare register test is performed.

**Bit 0** 0 indicates that color plane 0 is a "don't care" when the Color Compare register test is performed.

For example, if the contents of the Color Compare register (GR2) are 0011 (to compare planes 0 and 1) and the contents of the Color Don't Care register (GR7) are 1011 (ignore plane 2)

|         | 7 | <u>6</u> | <u>5</u> | <u>4</u> | <u>3</u> | <u>2</u> | 1 | <u>0</u> |
|---------|---|----------|----------|----------|----------|----------|---|----------|
| Plane 0 | 1 | 1        | 1        | 1        | 1        | 1        | 1 | 1        |
| Plane 1 | 0 | 1        | 0        | 0        | 1        | 1        | 0 | 1        |
| Plane 2 | 1 | 1        | 0        | 1        | 0        | 1        | 1 | 0        |
| Plane 3 | 0 | 0        | 0        | 1        | 1        | 1        | 0 | 0        |

The data bus will contain the following:

GR8

Index 08

|     | Bit # | Description             | Access | Reset By | Reset State |
|-----|-------|-------------------------|--------|----------|-------------|
| msb | 7     | Write Enable Data Bit-7 | R/W    |          |             |
|     | 6     | Write Enable Data Bit-6 | R/W    |          |             |
|     | 5     | Write Enable Data Bit-5 | R/W    |          |             |
|     | 4     | Write Enable Data Bit-4 | R/W    |          |             |
|     | 3     | Write Enable Data Bit-3 | R/W    |          |             |
|     | 2     | Write Enable Data Bit-2 | R/W    |          |             |
|     | 1     | Write Enable Data Bit-1 | R/W    |          |             |
| lsb | 0     | Write Enable Data Bit-0 | R/W    |          |             |

Any bit programmed to 0 in this register will cause the corresponding bit in each of the four memory planes to be immune to change. The data written into memory in this case will be the data which was read in the previous cycle, and was stored in an internal latch on the Graphics Controller.

Any bit programmed to 1 will allow unrestricted manipulation of the data in the corresponding bit in each of the four memory planes.

The bit mask is applicable to any data written by the CPU, including rotate, logical functions (AND, OR, XOR), Set/Reset and No Change. The data to be preserved using the bit mask must be latched internally by reading the location. The bit mask applies to all the four planes simultaneously.

For example, if the contents of the Bit Mask register are 01101001 and the data latches have been loaded as follows:

|               | <u>7</u> | <u>6</u> | <u>5</u> | <u>4</u> | <u>3</u> | <u>2</u> | 1 | <u>0</u> |
|---------------|----------|----------|----------|----------|----------|----------|---|----------|
| Plane 0 Latch | 1        | 0        | 1        | 0        | 1        | 0        | 1 | Ō        |
| Plane 1 Latch | 1        | 1        | 0        | 0/       | 1        | 1        | 0 | 1        |
| Plane 2 Latch | 0        | 0        | 1        | 0        | 1        | 0        | 1 | 1        |
| Plane 3 Latch | 0        | 1        | 0        | 1        | 0        | 0        | 1 | 0        |

With a write from the PC with data 01100110, will result in display memory as follows:

| Plane 3<br>Plane 2<br>Plane 1<br>Plane 0 | 7<br>0<br>0<br>1 | <u>6</u><br>1<br>1<br>1 | 5<br>1<br>1<br>1 | $\frac{4}{1}$<br>0<br>0 | 0<br>0<br>0 | $\frac{2}{0}$<br>0<br>1 | 1<br>1<br>0 | $\begin{array}{c} \underline{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ |  |
|------------------------------------------|------------------|-------------------------|------------------|-------------------------|-------------|-------------------------|-------------|----------------------------------------------------------------------------------|--|
| Plane 0                                  | 1                | 1                       | 1                | 0                       | 0           | 0                       | 1           | 0                                                                                |  |
| Effect                                   | L                | В                       | В                | L                       | В           | L                       | L           | Β                                                                                |  |

(L=Latched data, B=Bus Data)

This assumes all planes are enabled (Sequencer SR2 = 1111).

## Attribute Controller Registers

The Attribute Controller provides a palette of 16 colors selectable from a possible 64. The Attribute Controller also controls blinking and underline operations.

The Attribute Controller registers are summarized in the following table:

| <u>Page</u> | <u>Abbrev</u> | Register Name                       | Port Address        | Port Address        |
|-------------|---------------|-------------------------------------|---------------------|---------------------|
| 3-76        | ARX           | Attribute Controller Index Register | 3C0 (R/W)           | 3C5 index 83 (R/W)  |
| 3-77        | AR0-F         | Palette Registers                   | 3C0 index 00-0F (W) | 3C1 index 00-0F (R) |
| 3-78        | AR10          | Mode Control                        | 3C0 index 10 (W)    | 3C1 index 10 (R)    |
| 3-80        | AR11          | Overscan Color                      | 3C0 index 11 (W)    | 3C1 index 11 (R)    |
| 3-81        | AR12          | Color Plane Enable                  | 3C0 index 12 (W)    | 3C1 index 12 (R)    |
| 3-82        | AR13          | Horizontal Pixel Panning            | 3C0 index 13 (W)    | 3C1 index 13 (R)    |
| 3-83        | AR14          | Color Select                        | 3C0 index 14 (W)    | 3C1 index 14 (R)    |

Note: The Attribute Controller Index register (ARX) is readable at extensions index 83 for state save and restore. An extra bit is available (the data/index pointer) when reads are performed at the extension port. This bit is not available when ARX is read at the 3C0 port. Writes to ARX at the 3C0 port toggle the data/index pointer; writes to ARX at 3C0 and read/write accesses at the extension port do not. In addition, the Attribute Controller Index register is also readable at CRTC index 24 for VGA compatibility.

|     | Bit # | Description                      | Access | Reset By | Reset State |
|-----|-------|----------------------------------|--------|----------|-------------|
| msb | 7     | -unused-                         | · •    |          |             |
|     | 6     | -unused-                         | -      |          |             |
|     | 5     | Palette Address Source           | R/W    |          |             |
|     | 4     | Attribute Controller Index Bit-4 | R/W    |          |             |
|     | 3     | Attribute Controller Index Bit-3 | R/W    |          |             |
|     | 2     | Attribute Controller Index Bit-2 | R/W    |          |             |
|     | 1     | Attribute Controller Index Bit-1 | R/W    |          |             |
| lsb | 0     | Attribute Controller Index Bit-0 | R/W    |          |             |

The Attribute Index Register points to the other internal registers of the Attribute Controller. The five least significant bits determine which data register is accessed on subsequent data port I/O operations. The index register is accessed at the same I/O port address as the data registers in the standard EGA/VGA; accesses to 3C0 are therefore directed to index and data on alternate accesses. The 3C0 I/O port index/data pointer may be initialized for access of the index register by reading the Display Status register (also called Status Register 1) at I/O port 3BA/3DA.

Attribute Controller operations are further complicated in the original IBM EGA by having only write access to both index and data. There is no provision in the standard EGA for determining the current state of the Attribute Controller registers or the flip flop which determines whether index or data registers are to be accessed next at port 3C0. To minimize these problems, the V7VGA Attribute Controller implements two extensions to the basic functionality of the standard EGA:

- 1) The Attribute Controller index may be read at 3C0; the data registers may be read at 3C1.
- 2) An alternate port (extensions index 83 of port 3C4/3C5) is provided to read or write the flip flop state which determines index or data access at 3C0. For convenience, the remainder of the Attribute Controller Index register bits may also be read or written at the extension port.

The data/index toggle indicates whether the Attribute Controller is ready to accept an access to its index register (0) or its data registers (1) for read or write accesses to I/O port 3C0. The toggle is cleared (to set the Attribute Controller for index accesses at port 3C0) by reading I/O port 3BA or 3DA (Status Register 1). The toggle is inverted by writes to I/O port 3C0 (and not by reads).

## **Bit Descriptions**

- Bit 7 This bit is unused.
- Bit 6 This bit is unused.
- **Bit 5** Video Enable When this bit is 0, the screen displays the color indicated by overscan register AR11 (normally black); when set to 1, normal video display is enabled. In the standard EGA/VGA, this bit also selects the address source for the palette registers (0 = CPU and 1 = Video), which requires that CPU writes to the palette registers only take place when this bit is 0 (or else the data will be written to random palette register locations as determined by the video data stream at the time of the write). The V7VGA duplicates this structure.
- Bit 4-0 These bits form a 5-bit field for storing an index to the data registers in the Attribute Controller.

AR0-F

### Index 00-0F

|     | Bit # | Description | Access | Reset By | Reset State |
|-----|-------|-------------|--------|----------|-------------|
| msb | 7     | Video 7     | R/W    |          |             |
|     | 6     | Video 6     | R/W    |          |             |
|     | 5     | Video 5     | R/W    |          |             |
|     | 4     | Video 4     | R/W    |          |             |
|     | 3     | Video 3     | R/W    |          |             |
|     | 2     | Video 2     | R/W    |          |             |
|     | 1     | Video 1     | R/W    |          |             |
| lsb | 0     | Video 0     | R/W    |          |             |

These sixteen 8-bit registers are pointed to when the contents of the Index register are 00h through 0Fh.

These registers allow a dynamic mapping between the text attribute or graphic color input and the display color on the CRT screen. In all modes except 256-color mode, raw (premapped) color values are 4 bits maximum. The 4-bit value becomes an address into the 16 Attribute Controller color registers. The actual color output is the <u>contents</u> of the selected register. In <u>256-color mode</u>, color values are 8 bits, and the Attribute Controller color registers are <u>bypassed</u>.

The standard IBM EGA and VGA have 6-bit palette registers. 6 bits, however, is not adequate for 8bit/pixel modes. To solve this problem in the VGA, instead of just increasing the width of the palette registers, IBM added the 'AR14' mechanism. In this mechanism, video bits 6-7 are supplied from AR14 bits 2-3. In addition, video bits 4-5 may come either from color palette register bits 4-5 or from AR14 bits 0-1 (controllable by AR10[7]). The V7VGA implements the AR14 mechanism.

To support 'analog' monitors, 8 bits of color value output from the Attribute Controller gets mapped again by the external color palette (also called the 'DAC' since it also performs the 'Digital-to-Analog Conversion' of the digital color information into the final analog video output signals). The DAC uses the 8 video output bits from the attribute controller as an index into a group of 256 registers, each of which contains three sixbit color values (one each for R, G, and B). This results in 256K displayable colors on <u>analog color</u> displays. <u>Analog monochrome</u> monitors connect to the G output only (R and B are ignored), so a maximum of 64 shades of gray are displayable.

I/O Port 3C0 Attribute Controller Mode Control Register **AR10** Index 10 Bit # Description Access Reset By **Reset State** msb 7 Alternate Video Source R/W 6 Pixel Width R/W 5 Pixel Pan Compatibility R/W 4 -unused-3 Blink Enable R/W 2 Line Graphics Enable R/W Monochrome Attributes Enable 1 R/W lsb 0 Graphics Mode R/W **Bit Descriptions** Bit 7 Alternate Video Source - This bit controls the source of video output bits 4-5. If this bit is 0, video output bits 4-5 are driven from Attribute Controller palette register bits 4-5. If this bit is 1, video output bits 4-5 are driven by Color Select Register AR14 bits 0-1. If 256-color mode is in effect, this bit is ignored and video outputs 4-5 are driven from the palette. Bit 6 Pixel Width - If this bit is set to 1, the video shift register is clocked at half speed for implementation of 256-color mode. In addition, the internal attribute controller color palette is bypassed (the 8 video bits are passed directly to the external palette). Bit 5 Pixel Panning Compatibility - If this bit is set to 1, the output of the Horizontal Pixel Panning register (AR13) is forced to 0 when the line compare condition comes true, and remains in that state until the next vertical retrace interval. Similarly, the output of bits 6 and 5 of the Preset Row Scan register (CR8) (the byte panning controls) are also forced to 0 between line compare and end of screen. The result of this is to allow panning of the top half of a split screen without panning the bottom half. If this bit is set to 0, both halves of a split screen will pan together. Note that the IBM VGA forces AR13's outputs to 0 even in 9-dot mode, which results in a 1-bit left shift in that mode. The V7VGA emulates this behavior. Bit 4 -unused-(continued)

| 3C0 Index 10                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | Attribute                                                                   | Controller Mode Control Register (continued) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R10                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| Bit 3                                                                                                                                                                                                                                                                                                                                                                                                         | current<br>the oth                                | t vertical re<br>er state). 7                                               | tting this bit to 1 enables character blink at a rate determined by the<br>strace frequency divided by 32 (16 frames in one state and 16 frames<br>This is approximately 1/4 of a second each at 60 Hz and about 1/3 of<br>This is the same rate as the cursor 'slow' blink.                                                                                                                                                                                                                                                           |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               | toggles                                           | s the palette<br>is register (                                              | mented by toggling data at the msb of the palette address input. This<br>e between registers 0-7 and 8-F. The action of this bit is effected by<br>Monochrome Attributes). Refer to the table below for additional                                                                                                                                                                                                                                                                                                                     |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               | This b                                            | it is effectiv                                                              | ve in both text and graphics modes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |  |  |
| Bit 2                                                                                                                                                                                                                                                                                                                                                                                                         | forcing                                           | g the ninth o                                                               | able - Setting this bit enables the special line graphics character code<br>dot of a line graphics character to be identical to the eighth dot of the<br>ne graphics character codes are C0h through DFh.                                                                                                                                                                                                                                                                                                                              |                       |  |  |  |
| For 9-bit wide character modes, the left-most 8 bits are determined by data from the font tables; a ninth bit is added on the right of the character cell. Clearing this bit makes the ninth dot the same as the background. For fonts which do not use the line graphics codes from C0h to DFh, this bit should be set to "0". If character widths of 8 dots or less are selected, this bit is a don't care. |                                                   |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               | This bi                                           | it is effectiv                                                              | ve in text mode only; it is ignored in graphics mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |  |  |  |
| Bit 1                                                                                                                                                                                                                                                                                                                                                                                                         | to cont<br>pixel p<br>(10), a<br>plane 2<br>and 2 | rol the way<br>patterns in a<br>nd intensifi<br>3 is off and<br>with planes | ributes - This bit is programmed to 1 for monochrome '4-color' mod<br>y blinking is handled (see bit-3 of this register). The meaning of the<br>graphics '4-color' mode (mode 'F') are black (00), white (01), blinki<br>ied white (11). These patterns map to palette entries 0, 1, 4, and 5 if<br>8, 9, C, and D if plane 3 is on (2 bits per pixel get mapped to planes<br>a 1 and $3 = 0$ ). The '10' pattern is caused to blink by placing differen-<br>tro palette entries corresponding to pixel pattern '10' (entries 4 and C) | ing<br>f<br>s O<br>nt |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               | This bi                                           | it works in                                                                 | graphics mode only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |  |  |
| Bit 0                                                                                                                                                                                                                                                                                                                                                                                                         | Graphi                                            | cs Mode -                                                                   | "1" selects graphics mode, "0" selects text mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |  |  |  |
| Summary of Oper                                                                                                                                                                                                                                                                                                                                                                                               | ration of                                         | <u>AR10</u>                                                                 | (in graphics mode, planes 0-2 select palette inputs A0-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |  |  |  |
| <u>Bit-3</u> <u>Bit-2</u> <u>Bit-</u><br>0 x x<br>1 x 0                                                                                                                                                                                                                                                                                                                                                       | 1 <u>Bit-0</u><br>1<br>1                          | Mode<br>Graphics<br>Graphics                                                | Description<br>Plane 3 selects palette A3<br>If plane 3 data = 0 then palette input $A3 = 1$<br>If plane 3 data = 1 then palette input A3 is blinked                                                                                                                                                                                                                                                                                                                                                                                   |                       |  |  |  |
| 1 x 1                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                 | Graphics                                                                    | Palette input A3 is blinked (toggled on/off at the blink rate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |  |  |  |
| BL LG x                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                 | Text                                                                        | If BL=0, characters don't blink (attribute bit-7 controls BG intensit<br>If BL=1, characters blink if attribute bit-7=1 (BG is non-intensified                                                                                                                                                                                                                                                                                                                                                                                         |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                             | Character blink toggles the character between foreground color (attribute bits 0-3) and non-intensified background color (attribute b 4-6).                                                                                                                                                                                                                                                                                                                                                                                            | oits                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |  |  |  |

| I/O P           | ort 3C          | 0 Attribute (                                                                                          | Controller Overscan Color Registe                                                                                       | er     |          | AR11        |
|-----------------|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------|----------|-------------|
| Index           | : 11            |                                                                                                        |                                                                                                                         |        |          |             |
|                 |                 |                                                                                                        |                                                                                                                         |        |          |             |
|                 | Bit #           | Description                                                                                            |                                                                                                                         | Access | Reset By | Reset State |
| msb             | 7               | Video 7                                                                                                |                                                                                                                         | R/W    |          |             |
|                 | 6               | Video 6                                                                                                |                                                                                                                         | R/W    |          |             |
|                 | 5               | Video 5                                                                                                |                                                                                                                         | R/W    |          |             |
|                 | 4               | Video 4                                                                                                |                                                                                                                         | R/W    |          |             |
|                 | 3               | Video 3                                                                                                |                                                                                                                         | R/W    |          |             |
|                 | 2               | Video 2                                                                                                |                                                                                                                         | R/W    |          |             |
|                 | 1               | Video 1                                                                                                |                                                                                                                         | R/W    |          |             |
| lsb             | 0               | Video 0                                                                                                |                                                                                                                         | R/W    | -        |             |
| displa<br>Refer | yed w<br>to the | hen both BLANK and DE (Dis<br>description of Palette Register<br>its 4-7 and how they interact w<br>DE | r color displayed on the CRT scr<br>splay Enable) signals are inactive<br>s 0-F for information on how the<br>ith AR14. |        |          |             |
|                 |                 |                                                                                                        |                                                                                                                         |        |          |             |

## Index 12

|     | Bit # | Description                                 | Access | Reset By | Reset State |  |
|-----|-------|---------------------------------------------|--------|----------|-------------|--|
| msb | 7     | -unused-                                    | -      |          |             |  |
|     | 6     | -unused-                                    | -      |          |             |  |
|     | 5     | Video Status Mux Bit-1                      | R/W    |          |             |  |
|     | 4     | Video Status Mux Bit-0/Cursor Blink Disable | R/W    |          |             |  |
|     | 3     | Enable Color Plane 3                        | R/W    |          |             |  |
|     | 2     | Enable Color Plane 2                        | R/W    |          |             |  |
|     | 1     | Enable Color Plane 1                        | R/W    |          |             |  |
| lsb | 0     | Enable Color Plane 0                        | R/W    |          |             |  |

## **Bit Descriptions**

Bit 5-4 Display Status Mux - These bits select two of the eight outputs of the Attribute Controller (video output data during display periods and overscan color during non-display periods).

| Color Plane Register | Display Status Register |              |  |  |
|----------------------|-------------------------|--------------|--|--|
| <u>Bit 5</u> Bit 4   | Bit-5                   | <u>Bit-4</u> |  |  |
| 0 0                  | Video 2                 | Video 0      |  |  |
| 0 1                  | Video 5                 | Video 4      |  |  |
| 1 0                  | Video 3                 | Video 1      |  |  |
| 1 1                  | Video 7                 | Video 6      |  |  |

This capability can be used to run diagnostics on the color subsystem card.

Setting bit-4 will also disable the cursor blink counter. Bit-4 must be clear for the cursor blink counter to function.

**Bit 3-0** Enable Color Plane - Setting any bit in this group to 1 enables the respective display memory color plane 0-3. A zero in any bit forces the corresponding display memory color plane bit to 0 at the address input of the color palette.

| 1   | Bit # | Description                                | Access | Reset By | Reset State |
|-----|-------|--------------------------------------------|--------|----------|-------------|
| msb | 7     | -unused-                                   | -      |          |             |
|     | 6     | -unused-                                   | -      |          |             |
|     | 5     | -unused-                                   |        |          |             |
|     | 4     | -unused-                                   | -      |          |             |
|     | 3     | Horizontal Pixel Panning Shift Count Bit-3 | R/W    |          |             |
|     | 2     | Horizontal Pixel Panning Shift Count Bit-2 | R/W    |          |             |
|     | 1     | Horizontal Pixel Panning Shift Count Bit-1 | R/W    |          |             |
| lsb | 0     | Horizontal Pixel Panning Shift Count Bit-0 | R/W    |          |             |

Bits 0-3 of this register select the number of picture elements (pixels) to shift the display data horizontally to the left. Pixel panning is available in both alphanumeric and graphics modes. The start address register specifies the byte of the upper left corner of the screen display, and pixel panning makes it possible to move it in portions of a byte, pixel by pixel.

The amount of shift varies with the character width according to the following table:

| <u>Count</u> | 9-bit Characters | 8-bit Characters | 256-Color Mode |
|--------------|------------------|------------------|----------------|
| 0            | 1 pixel left     | no shift         | no shift       |
| 1            | 2 bits left      | 1 pixel left     | no shift       |
| 2            | 3 pixels left    | 2 pixels left    | 1 pixel left   |
| 3            | 4 pixels left    | 3 pixels left    | 1 pixel left   |
| 4            | 5 pixels left    | 4 pixels left    | 2 pixels left  |
| 5            | 6 pixels left    | 5 pixels left    | 2 pixels left  |
| 6            | 7 pixels left    | 6 pixels left    | 3 pixels left  |
| 7            | 8 pixels left    | 7 pixels left    | 3 pixels left  |
| 8-F          | no shift         | 1 pixel right    | 1 pixel right  |

The Horizontal Pixel Panning register should be changed only during vertical retrace intervals to prevent distorting the display images.

The Offset Register (CR13) should be set to at least one more than normal when characters are not aligned with the character cell, since there is a partial character displayed on the left and the right (for 81 characters total, for example, in 80 column text mode).

Note: when the pixel panning compatibility bit (AR10[7]) is 1, the output (not the contents) of horizontal pixel panning register is forced to 0 (no shift) by a successful line compare and remains in that state until the end of vertical sync (i.e., for the rest of the screen). In other words, during split screen operation, if AR10[7] is not set, both screens pan per AR13; if AR10[7] is set, only the upper screen pans.

Note: cursor and underlining pan along with the character position they are associated with. The hardware graphics pointer does not pan (see extension registers 94, 9C-9F, and A5).

## I/O Port 3C0 Index 14

## Attribute Controller Color Select Register

#### -----

|     | Bit # | Description | Access | Reset By | Reset State |
|-----|-------|-------------|--------|----------|-------------|
| msb | 7     | -unused-    | -      |          |             |
|     | 6     | -unused-    | -      |          |             |
|     | 5     | -unused-    | -      |          |             |
|     | 4     | -unused-    | -      |          |             |
|     | 3     | Video 7     | R/W    |          |             |
|     | 2     | Video 6     | R/W    |          |             |
|     | 1     | Video 5     | R/W    |          |             |
| lsb | 0     | Video 4     | R/W    |          |             |

This register is used to provide video output information. Bits 2-3 of this register are used to drive video output bits 6-7. If AR10[7] is set to 1, bits 0-1 of this register are used to drive video output bits 4-5 instead of color palette register bits 4-5.

**AR14** 

| Page | Abbreviations   |      | Register Name                               | Port        | Index      | Access   |
|------|-----------------|------|---------------------------------------------|-------------|------------|----------|
|      | <b>ER80</b>     |      | -reserved-                                  | Port<br>3C5 | 80         |          |
|      | ER81            |      | -reserved-                                  | 3C5         | 81         |          |
|      | ER82            |      | -reserved-                                  | <u>3C5</u>  | 82         |          |
| 3-76 | ER83            | ARX  | * Attribute Controller Index                | 3C5         | 83         | R/W      |
|      | ER84            |      | -reserved-                                  | 3C5         | 84         |          |
|      | ER85            |      | -reserved-                                  | 3C5         | 85         |          |
|      | ER86            |      | -reserved-                                  | 3C5         | 86         |          |
|      | ER87            |      | -reserved-                                  | 3C5         | 87         |          |
|      | ER88            |      | -reserved-                                  | 3C5         | 88         |          |
|      | ER89            |      | -reserved-                                  | 3C5         | 89         |          |
|      | ER8A            |      | -reserved-                                  | 3C5<br>3C5  | 8A         |          |
|      | ER8B<br>ER8C    |      | -reserved-                                  | 3C5         | 8B<br>8C   |          |
|      | ER8D            |      | -reserved-                                  | 3C5         | 8D         |          |
| 3-86 | ER8E            | REV  | -reserved-<br>Chip Revision Level           | <u> </u>    | 8E         | R        |
| 3-86 | ER8F            | REV  | Chip Revision Level                         | 3C5         | 8E<br>8F   | R        |
| 3-00 | ER90            |      | -reserved-                                  | <u> </u>    | 90         | <u> </u> |
|      | ER91            |      | -reserved-                                  | 3C5         | 91         |          |
|      | ER92            |      | -reserved-                                  | 3C5         | 92         |          |
|      | ER93            |      | -reserved-                                  | 3C5         | 93         |          |
| 3-87 | ER94            | PPA  | Pointer Pattern Address                     | 3C5         | 94         | R/W      |
|      | ER95            |      | -reserved-                                  | 3C5         | 95         |          |
|      | ER96            |      | -reserved-                                  | 3C5         | 96         |          |
|      | ER97            |      | -reserved-                                  | 3C5         | 97         |          |
|      | ER98            |      | -reserved-                                  | 3C5         | 98         |          |
|      | ER99            |      | -reserved-                                  | 3C5         | 99         |          |
|      | ER9A            |      | -reserved-                                  | 3C5         | 9A         |          |
|      | ER9B            |      | -reserved-                                  | 3C5         | 9B         |          |
| 3-89 | ER9C            | PXH  | Pointer Horizontal Position High            | 3C5         | 9C         | R/W      |
| 3-90 | ER9D            | PXL  | Pointer Horizontal Position Low             | 3C5         | 9D         | R/W      |
| 3-91 | ER9E            | PYH  | Pointer Vertical Position High              | 3C5         | 9E         | R/W      |
| 3-92 | ER9F            | PYL  | Pointer Vertical Position Low               | 3C5         | 9F         | R/W      |
| 3-93 | ERA0            | GRL0 | GC Memory Latch 0                           | 3C5         | <b>A</b> 0 | R/W      |
| 3-94 | ERA1            | GRL1 | GC Memory Latch 1                           | 3C5         | A1         | R/W      |
| 3-95 | ERA2            | GRL2 | GC Memory Latch 2                           | 3C5         | A2         | R/W      |
| 3-96 | ERA3            | GRL3 | GC Memory Latch 3                           | 3C5         | A3         | R/W      |
| 3-97 | ERA4            | CLK  | Clock Select                                | 3C5         | A4         | R/W      |
| 3-98 | ERA5            | CURS | Cursor Attributes                           | <u>3C5</u>  | <u>A5</u>  | R/W      |
|      | ERA6            |      | -reserved-                                  | 3C5         | A6         |          |
|      | ERA7            |      | -reserved-                                  | 3C5         | A7         |          |
|      | ERA8            |      | -reserved-                                  | 3C5         | A8         |          |
|      | ERA9            |      | -reserved-                                  | 3C5         | A9         |          |
|      | ERAA            |      | -reserved-                                  | 3C5         | AA         |          |
|      | ERAB            |      | -reserved-                                  | 3C5         | AB         |          |
|      | ERAC            |      | -reserved-                                  | 3C5<br>3C5  | AC<br>AD   |          |
|      | ERAD            |      | -reserved-                                  | 3C5<br>3C5  | AD<br>AE   |          |
|      | ERAE<br>ERAF    |      | -reserved-                                  | 3C5<br>3C5  | AE<br>AF   |          |
|      | ERAF<br>ERB0-BF |      | -reserved-<br>-reserved-                    | 3C5         | B0-BF      |          |
|      |                 |      | atible registers are only accessable with e |             |            |          |

## V7VGA Extension Register Summary (continued)

The extension registers provide additional functions to the V7VGA beyond the standard EGA and VGA.

| Page         | Abbreviati   | ione     | Register Name                   | <u>Port</u> | Index     | Access |
|--------------|--------------|----------|---------------------------------|-------------|-----------|--------|
| <u>1 ago</u> | ERC0-F       | 10115    | -reserved-                      | <u>3C5</u>  | CO-CF     | 100035 |
|              | ERD0         |          | -reserved-                      | 3C5         | D0        |        |
|              | ERD0<br>ERD1 |          |                                 | 3C5         | D0<br>D1  |        |
|              |              |          | -reserved-                      | 3C5         | D1<br>D2  |        |
|              | ERD2         |          | -reserved-                      |             |           |        |
|              | ERD3         |          | -reserved-                      | 3C5<br>3C5  | D3        |        |
|              | ERD4         |          | -reserved-                      |             | D4<br>D5  |        |
|              | ERD5         |          | -reserved-                      | 3C5<br>3C5  | D5<br>D6  |        |
|              | ERD6         |          | -reserved-                      |             | D6        |        |
|              | ERD7         |          | -reserved-                      | 3C5         | D7        |        |
|              | ERD8         |          | -reserved-                      | 3C5         | D8        |        |
|              | ERD9         |          | -reserved-                      | 3C5         | D9        |        |
|              | ERDA         |          | -reserved-                      | 3C5         | DA        |        |
|              | ERDB         |          | -reserved-                      | 3C5         | DB        | 1      |
|              | ERDC         |          | -reserved-                      | 3C5         | DC        |        |
|              | ERDD         |          | -reserved-                      | 3C5         | DD        |        |
|              | ERDE         |          | -reserved-                      | 3C5         | DE        |        |
|              | ERDF         |          | -reserved-                      | 3C5         | DF        |        |
|              | ERE0         |          | -reserved-                      | 3C5         | E0        |        |
|              | ERE1         |          | -reserved-                      | 3C5         | E1        |        |
|              | ERE2         |          | -reserved-                      | 3C5         | E2        |        |
|              | ERE3         |          | -reserved-                      | 3C5         | E3        |        |
|              | ERE4         |          | -reserved-                      | 3C5         | E4        |        |
|              | ERE5         |          | -reserved-                      | 3C5         | E5        |        |
|              | ERE6         |          | -reserved-                      | 3C5         | <b>E6</b> |        |
|              | ERE7         |          | -reserved-                      | 3C5         | E7        |        |
|              | ERE8         |          | -reserved-                      | 3C5         | <b>E8</b> |        |
| <br>         | ERE9         |          | -reserved-                      | 3C5         | E9        |        |
| 3-99         | EREA         | SWSTB    | Switch Strobe                   | 3C5         | EA        | W      |
| 3-100        | EREB         | NMICTRL  | Emulation Control               | 3C5         | EB        | R/W    |
| 3-102        | EREC         | FGLAT0   | Foreground Latch 0              | 3C5         | EC        | R/W    |
| 3-102        | ERED         | FGLAT1   | Foreground Latch 1              | 3C5         | ED        | R/W    |
| 3-102        | EREE         | FGLAT2   | Foreground Latch 2              | 3C5         | EE        | R/W    |
| 3-102        | EREF         | FGLAT3   | Foreground Latch 3              | 3C5         | EF        | R/W    |
| 3-103        | ERF0         | FFGLD    | Fast Foreground Latch Load      | 3C5         | F0        | R/W    |
| 3-104        | ERF1         | FLLSTATE | Fast Latch Load State           | 3C5         | F1        | R/W    |
| 3-105        | ERF2         | FBGLD    | Fast Background Latch Load      | 3C5         | F2        | R/W    |
| 3-106        | ERF3         | MWCTRL   | Masked Write Control            | 3C5         | F3        | R/W    |
| 3-107        | ERF4         | MWMASK   | Masked Write Mask               | 3C5         | <b>F4</b> | R/W    |
| 3-108        | ERF5         | FBPAT    | Foreground / Background Pattern | 3C5         | F5        | R/W    |
| 3-109        | ERF6         | RAMBANK  | 1 Mb RAM Bank Select            | 3C5         | F6        | R/W    |
| 3-110        | ERF7         | SWITCH   | Switch Readback                 | 3C5         | F7        | R/W    |
| 3-111        | ERF8         | CLKCTRL  | Extended Clock Control          | 3C5         | F8        | R/W    |
| 3-113        | ERF9         | PGSEL    | Extended Page Select            | 3C5         | F9        | R/W    |
| 3-114        | ERFA         | FGCOLOR  | Extended Foreground Color       | 3C5         | FA        | R/W    |
| 3-115        | ERFB         | BGCOLOR  | Extended Background Color       | 3C5         | FB        | R/W    |
| 3-116        | ERFC         | COMPAT   | Compatibility Control           | 3C5         | FC        | R/W    |
| 3-119        | ERFD         | TIMING   | Extended Timing Select          | 3C5         | FD        | R/W    |
| 3-121        | ERFE         | FBCTRL   | Foreground / Background Control | 3C5         | FE        | R/W    |
| 3-122        | ERFF         | 16BIT    | 16-Bit Interface Control        | 3C5         | FF        | R/W    |
|              |              |          |                                 |             |           |        |

Note: The above V7VGA-specific registers are only accessable with extensions enabled (see SR6)

REV

Index 8E and 8F

|     | Bit # | Description         | Access | Reset By | Reset State            |
|-----|-------|---------------------|--------|----------|------------------------|
| msb | 7     | Chip Revision Bit-7 | R      |          | 0                      |
|     | 6     | Chip Revision Bit-6 | R      |          | 1                      |
|     | 5     | Chip Revision Bit-5 | R      |          | 1                      |
|     | 4     | Chip Revision Bit-4 | R      |          | 1                      |
|     | 3     | Chip Revision Bit-3 | R      |          | 0                      |
|     | 2     | Chip Revision Bit-2 | R      |          | 0                      |
|     | 1     | Chip Revision Bit-1 | R      |          | 0                      |
| lsb | 0     | Chip Revision Bit-0 | R      |          | 0 (rev 1-3), 1 (rev 4) |

The chip revision is determined by reading this register. The value returned is fixed for each chip revision.

The value returned is 070h for chip revisions 1-3. The value returned is 071h for chip revision 4.

The range of revision values from 70-7Fh is reserved for the V7VGA chip.

The range of revision values from 80-FFh is reserved for the VEGA VGA chip.

The range of revision values from 00-6Fh is reserved for future Video Seven products.

## Index 94

|     | Bit # | Description                    | Access | Reset By | Reset State |
|-----|-------|--------------------------------|--------|----------|-------------|
| msb | 7     | Pointer Pattern Address Bit-13 | R/W    | Reset    | 1           |
|     | 6     | Pointer Pattern Address Bit-12 | R/W    | Reset    | 1           |
|     | 5     | Pointer Pattern Address Bit-11 | R/W    | Reset    | 1           |
|     | 4     | Pointer Pattern Address Bit-10 | R/W    | Reset    | 1           |
|     | 3     | Pointer Pattern Address Bit-9  | R/W    | Reset    | 1           |
|     | 2     | Pointer Pattern Address Bit-8  | R/W    | Reset    | 1           |
|     | 1     | Pointer Pattern Address Bit-7  | R/W    | Reset    | 1           |
| lsb | 0     | Pointer Pattern Address Bit-6  | R/W    | Reset    | 1           |

This register contains the msbs of the address of the graphics pointer pattern in display memory. The format of the address into the 64Kx32 display memory are shown below:

| <u>Bit</u> | Description                           |
|------------|---------------------------------------|
| 17         | Extension Register FF bit-6           |
| 16         | Extension Register FF bit-5           |
| 15         | 1                                     |
| 14         | 1                                     |
| 13         | PPA bit-7                             |
| 12         | PPA bit-6                             |
| 11         | PPA bit-5                             |
| 10         | PPA bit-4                             |
| 9          | PPA bit-3                             |
| 8          | PPA bit-2                             |
| 7          | PPA bit-1                             |
| 6          | PPA bit-0                             |
| 5          | Mask (0 = 'and' mask, 1 = 'xor' mask) |
| 4          | Pattern line # bit 4 (msb)            |
| 3          | Pattern line # bit 3                  |
| 2          | Pattern line # bit 2                  |
| 1          | Pattern line # bit 1                  |
| 0          | Pattern line # bit 0 (lsb)            |

The Pointer Pattern Address register allows the user to place the 32 x 32 pointer pattern on any 64-byte boundary in the display memory linear address range 0C000h through 0FFFFh. The V7VGA's pointer is a graphics image that is displayed in front of normal video data (essentially in a different plane), and which consequently does not interfere with bit map manipulation, removing the time-consuming necessity to carefully preserve the integrity of both the pointer and the bit map while drawing. The V7VGA's pointer also makes it possible to implement a non-flickering pointer.

The pointer pattern takes up 256 bytes (but since it spans all four planes, it occupies only 64 bytes of address space in each plane) and its location defaults to the last 64 bytes of display memory. The pointer pattern consists of a 128-byte AND mask followed by a 128-byte XOR mask.

The patterns each consist of 32 consecutive 32-bit values which represent the 32 successive lines of the

pointer pattern. These 32-bit patterns are stored in display memory across all 4 planes so that they can be fetched from display memory with two memory read operations (one for the AND mask and one for the XOR mask) during the two successive memory accesses immediately following refresh during the horizontal non-display enable interval prior to the scan line on which they are required. For each scan line, the 32 bits of AND mask data and the 32 bits of XOR mask data provide the pointer information of 32 pixels, as follows: Bit 7 of plane 0 is shifted out first (for the leftmost pixel of the pointer), followed by bit 6 of plane 0; bit 0 of plane 3 is shifted out last.

The insertion of the pointer pattern into the video data stream occurs at the very end of the video data path, after the attribute controller palette RAM and other multiplexings (but before the RAMDAC color palette since it is external to the V7VGA chip). Consequently, the pointer pattern modifies the 8 bits of video data that would normally (in the absence of the pointer) appear on output pins V7-V0. For each pixel, one bit of the pointer pattern AND mask is ANDed with each of the 8 video data bits, and then one bit of the pointer pattern XOR mask is XORed with each of the 8 bits produced by the AND operation, and the resultant 8 bits go to output pins V7-V0. This is the mechanism for producing video data for the 32 x 32 pixel area covered by the graphics pointer.

Correspondence between the above display memory address and the location of the pattern in the system memory space is determined by the state of the Graphics Controller registers, but typically the pointer is loaded in a mode in which display memory is mapped as four linear planes in the range A000:0000 through A000:FFFF, with the pointer pattern AND mask (in the default case) loaded at A000:FFC0 through A000:FFDF and the pointer pattern XOR mask loaded at A000:FFE0 through A000:FFFF. Once the pointer pattern is loaded, the configuration of display memory becomes irrelevant; the sequencer always uses the contents of the Pointer Pattern Address register to construct a linear display memory address in order to fetch pointer pattern data.

The upper left corner of the 32 x 32 pixel region of the screen at which the pointer appears is controlled by extension registers 9C through 9F.

If the pointer is positioned so that its right or bottom edge is off the screen, that part of the pointer is not seen. The V7VGA guarantees that such portions of the pointer are suppressed in hardware.

Note: If double-scanning is enabled, the pointer double scans right along with other video data. However, the sort of double-scanning used by mode 13h of the VGA, where the maximum scan line is set to 1, does not affect the cursor. Basically, the pointer pattern scan line advances every time the row scan address counter counts or turns over.

The Pointer Pattern Address register is set to 0FFh at power-up.

The Pointer Pattern Address register is only accessible when access to the Video Seven extension registers is enabled by writing 0EAh to SR6.

## Index 9C

|     | Bit #. | Description                        | Access | Reset By | Reset State |
|-----|--------|------------------------------------|--------|----------|-------------|
| msb | 7      | -unused-                           | -      |          |             |
|     | 6      | -unused-                           | -      |          |             |
|     | 5      | -unused-                           | _      |          |             |
|     | 4      | -unused-                           | -      |          |             |
|     | 3      | -unused-                           | -      |          |             |
|     | 2      | Pointer Horizontal Position Bit-10 | R/W    |          |             |
|     | 1      | Pointer Horizontal Position Bit-9  | R/W    |          |             |
| lsb | 0      | Pointer Horizontal Position Bit-8  | R/W    |          |             |

This register contains the upper 3 bits of the pointer horizontal position in pixels from the left edge of the display screen. A value of 0 in horizontal position bits 0-10 would position the left-most pixel of the pointer pattern over the left-most pixel of the display screen.

#### **Extensions Pointer Horizontal Position Low Register**

#### Index 9D

|     | Bit # | Description                       | Access | Reset By | Reset State |
|-----|-------|-----------------------------------|--------|----------|-------------|
| msb | 7     | Pointer Horizontal Position Bit-7 | R/W    |          |             |
|     | 6     | Pointer Horizontal Position Bit-6 | R/W    |          |             |
|     | 5     | Pointer Horizontal Position Bit-5 | R/W    |          |             |
|     | 4     | Pointer Horizontal Position Bit-4 | R/W    |          |             |
|     | 3     | Pointer Horizontal Position Bit-3 | R/W    |          |             |
|     | 2     | Pointer Horizontal Position Bit-2 | R/W    |          |             |
|     | 1     | Pointer Horizontal Position Bit-1 | R/W    |          |             |
| lsb | 0     | Pointer Horizontal Position Bit-0 | R/W    |          |             |

This register contains the lower 8 bits of the pointer horizontal position in pixels from the left edge of the display screen. A value of 0 in horizontal position bits 0-10 would position the left-most pixel of the pointer pattern over the left-most pixel of the display screen.

| I/O P | ort 3C        | 5 Extensions Pointer Vertical Posit | ion High Register |          | РҮН         |
|-------|---------------|-------------------------------------|-------------------|----------|-------------|
| Index | 9 <b>E</b>    |                                     |                   | <u></u>  |             |
|       | · • • • • • • | <u> </u>                            |                   |          |             |
|       | B1t #         | Description                         | Access            | Reset By | Reset State |
| msb   | 7             | -unused-                            | -                 |          |             |
|       | 6             | -unused-                            | -                 |          |             |
|       | 5             | -unused-                            | -                 |          |             |
|       | 4             | -unused-                            | -                 |          |             |
|       | 3             | -unused-                            | -                 |          |             |
|       | 2             | -unused-                            | -                 |          |             |
|       | 1             | Pointer Vertical Position Bit-9     | R/W               |          |             |
| lsb   | 0             | Pointer Vertical Position Bit-8     | R/W               |          |             |

This register contains the upper 2 bits of the pointer vertical position in scan lines from the upper edge of the display screen. A value of 0 in vertical position bits 0-9 would position the upper-most pixel of the pointer pattern over the upper-most pixel of the display screen.

## Index 9F

|     | Bit # | Description                     | Access | Reset By | Reset State |
|-----|-------|---------------------------------|--------|----------|-------------|
| msb | 7     | Pointer Vertical Position Bit-7 | R/W    |          |             |
|     | 6     | Pointer Vertical Position Bit-6 | R/W    |          |             |
|     | 5     | Pointer Vertical Position Bit-5 | R/W    |          |             |
|     | 4     | Pointer Vertical Position Bit-4 | R/W    |          |             |
|     | 3     | Pointer Vertical Position Bit-3 | R/W    |          |             |
|     | 2     | Pointer Vertical Position Bit-2 | R/W    |          |             |
|     | 1     | Pointer Vertical Position Bit-1 | R/W    |          |             |
| lsb | 0     | Pointer Vertical Position Bit-0 | R/W    |          |             |

This register contains the lower 8 bits of the pointer vertical position in scan lines from the upper edge of the display screen. A value of 0 in vertical position bits 0-9 would position the upper-most pixel of the pointer pattern over the upper-most pixel of the display screen.

## Index A0

| 1   | Bit # | Description                              | Access | Reset By | Reset State |
|-----|-------|------------------------------------------|--------|----------|-------------|
| msb | 7     | Graphics Controller Memory Latch 0 Bit-7 | R/W    |          |             |
|     | 6     | Graphics Controller Memory Latch 0 Bit-6 | R/W    |          |             |
|     | 5     | Graphics Controller Memory Latch 0 Bit-5 | R/W    |          |             |
|     | 4     | Graphics Controller Memory Latch 0 Bit-4 | R/W    |          |             |
|     | 3     | Graphics Controller Memory Latch 0 Bit-3 | R/W    |          |             |
|     | 2     | Graphics Controller Memory Latch 0 Bit-2 | R/W    |          |             |
|     | 1     | Graphics Controller Memory Latch 0 Bit-1 | R/W    |          |             |
| lsb | 0     | Graphics Controller Memory Latch 0 Bit-0 | R/W    |          |             |

This register is actually the memory data latch which gets loaded from plane 0 data whenever video memory is read by the CPU. This register exists in a standard EGA and VGA, it just can't be accessed directly as it can in the V7VGA.

#### Index A1

|     | Bit # | Description                              | Access | Reset By | Reset State |
|-----|-------|------------------------------------------|--------|----------|-------------|
| msb | 7     | Graphics Controller Memory Latch 1 Bit-7 | R/W    |          |             |
|     | 6     | Graphics Controller Memory Latch 1 Bit-6 | R/W    |          |             |
|     | 5     | Graphics Controller Memory Latch 1 Bit-5 | R/W    |          |             |
|     | 4     | Graphics Controller Memory Latch 1 Bit-4 | R/W    |          |             |
|     | 3     | Graphics Controller Memory Latch 1 Bit-3 | R/W    |          |             |
|     | 2     | Graphics Controller Memory Latch 1 Bit-2 | R/W    |          |             |
|     | 1     | Graphics Controller Memory Latch 1 Bit-1 | R/W    |          |             |
| lsb | 0     | Graphics Controller Memory Latch 1 Bit-0 | R/W    |          |             |

This register is actually the memory data latch which gets loaded from plane 1 data whenever video memory is read by the CPU. This register exists in a standard EGA and VGA, it just can't be accessed directly as it can in the V7VGA.

## Index A2

|     | Bit # | Description                              | Access | Reset By | Reset State |
|-----|-------|------------------------------------------|--------|----------|-------------|
| msb | 7     | Graphics Controller Memory Latch 2 Bit-7 | R/W    |          |             |
|     | 6     | Graphics Controller Memory Latch 2 Bit-6 | R/W    |          |             |
|     | 5     | Graphics Controller Memory Latch 2 Bit-5 | R/W    |          |             |
|     | 4     | Graphics Controller Memory Latch 2 Bit-4 | R/W    |          |             |
|     | 3     | Graphics Controller Memory Latch 2 Bit-3 | R/W    |          |             |
|     | 2     | Graphics Controller Memory Latch 2 Bit-2 | R/W    |          |             |
|     | 1     | Graphics Controller Memory Latch 2 Bit-1 | R/W    |          |             |
| lsb | 0     | Graphics Controller Memory Latch 2 Bit-0 | R/W    |          |             |

This register is actually the memory data latch which gets loaded from plane 2 data whenever video memory is read by the CPU. This register exists in a standard EGA and VGA, it just can't be accessed directly as it can in the V7VGA.

### Index A3

|     | Bit # | Description                              | Access | Reset By | Reset State |
|-----|-------|------------------------------------------|--------|----------|-------------|
| msb | 7     | Graphics Controller Memory Latch 3 Bit-7 | R/W    |          |             |
|     | 6     | Graphics Controller Memory Latch 3 Bit-6 | R/W    |          |             |
|     | 5     | Graphics Controller Memory Latch 3 Bit-5 | R/W    |          |             |
|     | 4     | Graphics Controller Memory Latch 3 Bit-4 | R/W    |          |             |
|     | 3     | Graphics Controller Memory Latch 3 Bit-3 | R/W    |          |             |
|     | 2     | Graphics Controller Memory Latch 3 Bit-2 | R/W    |          |             |
|     | 1     | Graphics Controller Memory Latch 3 Bit-1 | R/W    |          |             |
| lsb | 0     | Graphics Controller Memory Latch 3 Bit-0 | R/W    |          |             |

This register is actually the memory data latch which gets loaded from plane 3 data whenever video memory is read by the CPU. This register exists in a standard EGA and VGA, it just can't be accessed directly as it can in the V7VGA.

## Index A4

| NOTE: O | nly change this | register with S | Sequencer Syncl | hronous Reset Active   |
|---------|-----------------|-----------------|-----------------|------------------------|
|         | my change this  | TOPROCE WILLIE  | sequences synce | II VIIVUS INUSCI MUITE |

|     |       |                    | -      |          |             |
|-----|-------|--------------------|--------|----------|-------------|
|     | Bit # | Description        | Access | Reset By | Reset State |
| msb | 7     | -unused-           | -      |          |             |
|     | 6     | -unused-           | -      |          |             |
|     | 5     | -unused-           | -      |          |             |
|     | 4     | Clock Select Bit-2 | R/W    | Reset    | 0           |
|     | 3     | -unused-           | -      |          |             |
|     | 2     | -unused-           | -      |          |             |
|     | 1     | -unused-           | -      |          |             |
| lsb | 0     | -unused-           | -      |          |             |

## **Bit Descriptions**

Bit 7-5 Unused

Bit 4 When this bit is set to 0, the MISC Output Register clock select bits (bits 2 and 3) are used to select clock sources as defined in the VGA. When this bit is set to 1, four additional clock sources can be selected (typically, the additional clock sources are set up for extended high resolution modes).

## Bit 3-0 Unused

This register may be used to select between two groups of four clock sources. The two clock select bits in the Misc Output Register (bits 2 and 3) are used to select one of the four clock sources from each group.

CLK MISC MISC

| <u>Bit-4</u> | <u>Bit-3</u> | <u>Bit-2</u> | Clock Source      | Comment         |
|--------------|--------------|--------------|-------------------|-----------------|
| 0            | 0            | 0            | 25.175 MHz        | VGA Standard    |
| 0            | 0            | 1            | 16.257 MHz        | VGA Standard    |
| 0            | 1            | 0            | Feature Connector | VGA Standard    |
| 0            | 1            | 1            | 00.000 MHz        | VGA Standard    |
| 1            | 0            | 0            | 50.350 MHz        | V7VGA Extension |
| 1            | 0            | 1            | 65.000 MHz        | V7VGA Extension |
| 1            | 1            | 0            | Feature Connector | VGA Standard    |
| 1            | 1            | 1            | 40.000 MHz        | V7VGA Extension |

| I/O Pe                    | ort 30 | C5 E                                                                                                                                                                                                         | xtensions Cursor A                                                                                           | Attributes Register                                                                                                                   |                                                                          | CUR                                                           |
|---------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|
| Index                     | A5     |                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                       |                                                                          |                                                               |
| 1                         | Bit #  | Description                                                                                                                                                                                                  |                                                                                                              | Acces                                                                                                                                 | s Reset By                                                               | Reset State                                                   |
| msb                       | 7      | Pointer Enable                                                                                                                                                                                               |                                                                                                              | R/W                                                                                                                                   | Reset                                                                    | 0                                                             |
|                           | 6      | -unused-                                                                                                                                                                                                     |                                                                                                              | -                                                                                                                                     |                                                                          |                                                               |
|                           | 5      | -unused-                                                                                                                                                                                                     |                                                                                                              | -                                                                                                                                     |                                                                          |                                                               |
|                           | 4      | -unused-                                                                                                                                                                                                     | ,                                                                                                            | -                                                                                                                                     |                                                                          |                                                               |
|                           | 3      | Cursor Mode                                                                                                                                                                                                  |                                                                                                              | R/W                                                                                                                                   | Reset                                                                    | 0                                                             |
|                           | 2      | -unused-                                                                                                                                                                                                     |                                                                                                              | -                                                                                                                                     |                                                                          |                                                               |
|                           | 1      | -unused-                                                                                                                                                                                                     |                                                                                                              | -                                                                                                                                     |                                                                          |                                                               |
| lsb                       | 0      | Cursor Blink Disable                                                                                                                                                                                         |                                                                                                              | R/W                                                                                                                                   | Reset                                                                    | 0                                                             |
| Rit 7                     |        | Pointer Enable - Setting                                                                                                                                                                                     | this hit to 1 enable                                                                                         | es the pointer logic to d                                                                                                             | solay the 32v?                                                           | l?_nivel                                                      |
| This r<br>Bit De<br>Bit 7 | •      | er is used to enable and dis<br>ptions<br>Pointer Enable - Setting<br>hardware mouse pointer<br>Vertical Position Regist<br>disables this feature. Th<br>at absolute location Ann<br>Position Address Regist | this bit to 1 enable<br>on the screen at a<br>ters (PXH/PXL and<br>the screen mask pat<br>h00 or Bnn00 for 1 | es the pointer logic to di<br>location determined by<br>d PYH/PYL). Setting<br>tern for the pointer is for<br>28 bytes where nn is th | the Pointer He<br>this bit to 0 (th<br>tched from dis<br>e contents of t | prizontal and<br>e default state<br>play memory<br>he Pointer |
|                           |        | video memory data at th<br>is fetched from display in<br>XORed with the results<br>output. This results in t<br><u>ScreenMask</u><br>0                                                                       | ne output of the col<br>memory at absolut<br>of the previous sci                                             | or palette. The pointer<br>e location Ann80 for 12<br>reen mask AND operation                                                         | mask pattern f<br>28 bytes. The<br>on to produce                         | or the pointer pointer mask                                   |
|                           |        | 0<br>1                                                                                                                                                                                                       | 1<br>0                                                                                                       | Same as original pi<br>Inverse of original                                                                                            |                                                                          | insparent)                                                    |

- Bits 6-4 Unused (read back as 0)
- Bit 3 Cursor Mode When this bit is 0, the text cursor replaces whatever pixels it is over. When this bit is 1, the text cursor is XORed with whatever pixels it is over.
- Bits 2-1 Unused (read back as 0)
- Bit 0 Cursor Blink Disable When this bit is 0, the text cursor blinks normally, as described under discussions of CR0A, CR0B, CR0E, CR0F, and AR10 bit-3. When this bit is 1, the text cursor is always on and does not blink.

| msb | 7 | -unus |
|-----|---|-------|
|-----|---|-------|

|     | Bit # | Description | Access | Reset By | Reset State |
|-----|-------|-------------|--------|----------|-------------|
| msb | 7     | -unused-    | W      |          |             |
|     | 6     | -unused-    | W      |          |             |
|     | 5     | -unused-    | W      |          |             |
|     | 4     | -unused-    | W      |          |             |
|     | 3     | -unused-    | W      |          |             |
|     | 2     | -unused-    | W      |          |             |
|     | 1     | -unused-    | W      |          |             |
| lsb | 0     | -unused-    | W      |          |             |

**Extensions Switch Strobe Register** 

This register has no read/write bits implemented, but is instead used to strobe the state of on-board switches into the extensions switch readback register (extensions index F7). If this register is written with any data value, the state of data bus bits 15-8 are written into this register. Data bus bits 15-8 are typically connected to on-board switches; during the write to SWSTB, the bus data buffer for bits 15-8 are disabled so that the state of the switches determines the state of the data pins connected to the V7VGA chip.

The Switch Strobe register is nothing more than an I/O decode, and is decoded only on I/O writes; the value written to the Switch Strobe register is ignored.

This register may be written at any time, but is usually done only once at BIOS initialization time to determine the initial state of various power-up configuration options.

The Switch Strobe register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

SWSTB

## I/O Port 3C5

Index EA

### Index EB

|     | Bit # | Description                       | Access | Reset By | Reset State |
|-----|-------|-----------------------------------|--------|----------|-------------|
| msb | 7     | Emulation Enable                  | R/W    | Reset    | 0           |
|     | 6     | Hercules Bit Map Enable           | R/W    | Reset    | 0           |
|     | 5     | Write Protect Range 2 (CR00-CR08) | R/W    | Reset    | 0           |
|     | 4     | Write Protect Range 1 (CR09-CR0B) | R/W    | Reset    | 0           |
|     | 3     | Write Protect Range 0 (CR0C)      | R/W    | Reset    | 0           |
|     | 2     | NMI Enable Range 2 (CR00-CR08)    | R/W    | Reset    | 0           |
|     | 1     | NMI Enable Range 1 (CR09-CR0B)    | R/W    | Reset    | 0           |
| lsb | 0     | NMI Enable Range 0 (CR0C)         | R/W    | Reset    | 0           |

The Emulation Control register provides backward-compatibility related controls. The compatibility circuitry is designed to work with the Video Seven IOU chip.

The Emulation Control register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## **Bit Descriptions**

Bit 7 Emulation Enable - When this bit is 1, a strobe to the IOU is generated on the TRAP\* pin whenever certain CGA/Hercules registers are written to. When bit 0 of 3C2h is 1 (CGA emulation), a strobe is generated on OUTs to 3D8h (color mode), 3D9h (color palette), and 3DEh (AT&T 6300); also, when any of bits 2-0 of this register are 1, then a strobe is generated on OUTs to 3D4h (color CRTC index). When bit 0 of 3C2h is 1, a strobe is generated on OUTs to 3B8h (monochrome mode) and 3BFh (Hercules configuration); also, when any of bits 2-0 of this register are 1, then a strobe is generated on OUTs to 3B4h (monochrome CRTC index).

When the Emulation Enable bit is 0, no strobes to the IOU are generated on accesses to 3B8h, 3BFh, 3D8h, 3D9h, and 3DEh.

Note: The Emulation Enable bit has no effect on the bit-map, write protects, and NMI enables provided by bits 6-0 of this register. IOU emulation is disabled by writing 0 to this register.

- Bit 6 Hercules Bit Map Enable When this bit is 1, the V7VGA is forced to decode a memory mapping at 0B0000h for 64K, regardless of the setting of bits 3 & 2 of GR6. When this bit is 0, bits 3 & 2 of GR6 determine the V7VGA's memory mapping.
- Bit 5 Write Protect Range 2 When this bit is 1, registers CR00-CR08 are write protected; that is, writes to those registers do not modify the contents of the registers. When this bit is 0, registers CR00-CR08 are writable or not according to the state of bit 7 of CR11; refer to the discussion of that bit for details.

Note: If both the Write Protect Range 2 bit and bit 7 of CRTC11 are 1, then registers CR00-CR08 are write protected.

- Bit 4 Write Protect Range 1 When this bit is 1, registers CR09-CR0B are write protected; that is, writes to those registers do not modify the contents of the registers. When this bit is 0, registers CR09-CR0B are writable.
- Bit 3 Write Protect Range 0 When this bit is 1, register CROC is write protected; that is, writes to that register do not modify the contents of the register. When this bit is 0, register CROC is writable.

(continued)

- Bit 2 NMI Enable Range 2 When this bit is 1, a strobe intended for the IOU's external event pin is generated on the TRAP\* pin on writes to any of registers CR00-CR08. When this bit is 0, no strobe is generated on access to any of registers CR00-CR08.
- Bit 1 NMI Enable Range 1 When this bit is 1, a strobe intended for the IOU's external event pin is generated on the TRAP\* pin on writes to any of registers CR09-CR0B. When this bit is 0, no strobe is generated on access to any of registers CR09-CR0B.
- **Bit 0** NMI Enable Range 0 When this bit is 1, a strobe intended for the IOU's external event pin is generated on the TRAP\* pin on writes to register CR0C. When this bit is 0, no strobe is generated on access to register CR0C.

Index EC-EF

| ·   | Bit # | Description            | Access | Reset By | Reset State |
|-----|-------|------------------------|--------|----------|-------------|
| msb | 7     | Foreground Latch Bit-7 | R/W    |          |             |
|     | 6     | Foreground Latch Bit-6 | R/W    |          |             |
|     | 5     | Foreground Latch Bit-5 | R/W    |          |             |
|     | 4     | Foreground Latch Bit-4 | R/W    |          |             |
|     | 3     | Foreground Latch Bit-3 | R/W    |          |             |
|     | 2     | Foreground Latch Bit-2 | R/W    |          |             |
|     | 1     | Foreground Latch Bit-1 | R/W    |          |             |
| lsb | 0     | Foreground Latch Bit-0 | R/W    |          |             |

The four Foreground Latch registers provide the CPU-side ALU input bytes for the four planes when bits 3 & 2 of extension register FE (Foreground / Background Control) are 1 & 0, respectively. Refer to the discussion of bits 3 & 2 of extension register FE for details.

Foreground Latch registers 0-3 are only accessible when access to the Video Seven extension registers is enabled by writing 0EAh to SR6.

## Index F0

|     | Bit # | Description            | Access | Reset By | Reset State |
|-----|-------|------------------------|--------|----------|-------------|
| msb | 7     | Foreground Latch Bit-7 | R/W    |          |             |
|     | 6     | Foreground Latch Bit-6 | R/W    |          |             |
|     | 5     | Foreground Latch Bit-5 | R/W    |          |             |
|     | 4     | Foreground Latch Bit-4 | R/W    |          |             |
|     | 3     | Foreground Latch Bit-3 | R/W    |          |             |
|     | 2     | Foreground Latch Bit-2 | R/W    |          |             |
|     | 1     | Foreground Latch Bit-1 | R/W    |          |             |
| lsb | 0     | Foreground Latch Bit-0 | R/W    |          |             |

The Fast Foreground Latch register provides a quick way to load the foreground latches for all four planes. Normally, the foreground latches must be loaded by performing four index/data OUTs to extension registers EC-EF. However, writes to the Fast Foreground Latch register are automatically routed to the foreground latch register for the plane selected by bits 5 & 4 of extension register F1 (the Fast Latch Load State Register), and the field composed of bits 5 & 4 of extension register F1 is automatically incremented modulo 4 after writes to the Fast Foreground Latch register. Moreover, bits 5 & 4 of extension register F1 are reset to 0 by a read from the Fast Foreground Latch register. This provides a very fast way, requiring only 1 IN, 4 OUTs, and no INCs and DECs, to load the foreground latch registers.

Note: There is no such physical register as the Fast Foreground Latch register; it is simply an I/O decode at which the foreground latch register pointed to by bits 5 & 4 of extension register F1 can be written to

The Fast Foreground Latch register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## Index F1

|     | Bit # | Description                       | Access | Reset By | Reset State |
|-----|-------|-----------------------------------|--------|----------|-------------|
| msb | 7     | -unused-                          | -      |          |             |
|     | 6     | -unused-                          | -      |          |             |
|     | 5     | Foreground Latch Load State Bit-1 | R/W    |          |             |
|     | 4     | Foreground Latch Load State Bit-0 | R/W    |          |             |
|     | 3     | -unused-                          | -      |          |             |
| !   | 2     | -unused-                          | -      |          |             |
|     | 1     | Background Latch Load State Bit-1 | R/W    |          |             |
| lsb | 0     | Background Latch Load State Bit-0 | R/W    |          |             |

The Fast Latch Load State register selects the foreground and background latch registers written to on I/O writes to the Fast Foreground Latch Load and Fast Background Latch Load registers.

The Fast Latch Load State register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## **Bit Descriptions**

Bits 7-6 Unused

Bits 5-4 Foreground Latch Load State - These bits select the foreground latch register written to on I/O writes to extension register F0, as follows:

| Bit-5 | <u>Bit-4</u><br>0 | Foreground Latch Loaded<br>Plane 0 Foreground Latch (extension register EC) |
|-------|-------------------|-----------------------------------------------------------------------------|
| 0     | 1                 | Plane 1 Foreground Latch (extension register ED)                            |
| 1     | 0                 | Plane 2 Foreground Latch (extension register EE)                            |
| 1     | 1                 | Plane 3 Foreground Latch (extension register EF)                            |

The Foreground Latch Load State bits are automatically incremented modulo 4 after I/O writes to extension register F0.

The Foreground Latch Load State bits are both reset to 0 by I/O reads from extension register F0.

#### Bits 3-2 Unused

**Bits 1-0** Background Latch Load State - These bits select the background latch register written to on I/O writes to extension register F2, as follows:

| <u>Bit-1</u> | <u>Bit-0</u> | Background Latch Loaded                          |
|--------------|--------------|--------------------------------------------------|
| 0            | 0            | Plane 0 Background Latch (extension register A0) |
| 0            | 1            | Plane 1 Background Latch (extension register A1) |
| 1            | 0            | Plane 2 Background Latch (extension register A2) |
| 1            | 1            | Plane 3 Background Latch (extension register A3) |
|              |              |                                                  |

The Background Latch Load State bits are automatically incremented modulo 4 after I/O writes to extension register F2.

The Background Latch Load State bits are both reset to 0 by I/O reads from extension register F2.

## Index F2

|     | Bit # | Description            | Access | Reset By | Reset State |
|-----|-------|------------------------|--------|----------|-------------|
| msb | 7     | Background Latch Bit-7 | R/W    |          |             |
|     | 6     | Background Latch Bit-6 | R/W    |          |             |
|     | 5     | Background Latch Bit-5 | R/W    |          |             |
|     | 4     | Background Latch Bit-4 | R/W    |          |             |
|     | 3     | Background Latch Bit-3 | R/W    |          |             |
|     | 2     | Background Latch Bit-2 | R/W    |          |             |
|     | 1     | Background Latch Bit-1 | R/W    |          |             |
| lsb | 0     | Background Latch Bit-0 | R/W    |          |             |

The Fast Background Latch register provides a quick way to load the background (Graphics Controller) latches for all four planes. Normally, the background latches must be loaded by performing four index/data OUTs to extension registers A0-A3. However, writes to the Fast Background Latch register are automatically routed to the background latch register for the plane selected by bits 1 & 0 of extension register F1 (Fast Latch Load State), and the field composed of bits 1 & 0 of extension register F1 is automatically incremented modulo 4 after writes to the Fast Background Latch register. Moreover, bits 1 & 0 of extension register F1 are reset to 0 by a read from the Fast Background Latch register. This provides a very fast way, requiring only 1 IN, 4 OUTs, and no INCs and DECs, to load the background latch registers.

Note: There is no such physical register as the Fast Background Latch register; it is simply an I/O decode at which the background latch register pointed to by bits 1 & 0 of extension register F1 can be written to.

The Fast Background Latch register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## Index F3

|     | Bit # | Description         | Access | Reset By | Reset State |
|-----|-------|---------------------|--------|----------|-------------|
| msb | 7     | -unused-            | -      |          |             |
|     | 6     | -unused-            | -      |          |             |
|     | 5     | -unused-            | -      |          |             |
|     | 4     | -unused-            | -      |          |             |
|     | 3     | -unused-            | -      |          |             |
|     | 2     | -unused-            | -      |          |             |
|     | 1     | Masked Write Source | R/W    |          |             |
| lsb | 0     | Masked Write Enable | R/W    | Reset    | 0           |

The Masked Write Control register enables masked writes to V-RAMs and controls the source of the mask on masked writes

The Masked Write Control register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## **Bit Descriptions**

- Bits 7-2 Unused (read back as 0)
- Bit 1 Masked Write Source When masked writes to V-RAMs are enabled by setting bit 0 of this register to 1, then the source of the byte mask applied to the byte written by each plane is selected by the Masked Write Source bit. When the Masked Write Source bit is 1, then the rotated CPU bit provides the masked write mask. When the Masked Write Source bit is 0, then extension register F4 provides the masked write mask.
- **Bit 0** Masked Write Enable The V7VGA supports V-RAM operation and V-RAMs support masked writes (write-per-bit writes), whereby selected bits of a memory byte can be modified without first reading the byte. When the Masked Write Enable bit is 1, masked write operation is selected. The source of the masked write mask is determined by bit 1 of this register: When bit 1 is 1, the rotated CPU byte is the mask for each plane; when bit 1 is 0, the contents of extension register F4 (MWMASK) is the mask for each plane. The 8-bit mask is applied equally to each of the four bytes going to the four planes.

When the Masked Write Enable bit is 0, masked write operation is disabled.

Masked write mode will only work when the V7VGA is driving V-RAMs. It will not work when the V7VGA is driving D-RAMs.

## Index F4

|     | Bit # | Description             | Access | Reset By | Reset State |
|-----|-------|-------------------------|--------|----------|-------------|
| msb | 7     | Masked Write Mask Bit-7 | R/W    |          |             |
|     | 6     | Masked Write Mask Bit-6 | R/W    |          |             |
|     | 5     | Masked Write Mask Bit-5 | R/W    |          |             |
|     | 4     | Masked Write Mask Bit-4 | R/W    |          |             |
|     | 3     | Masked Write Mask Bit-3 | R/W    |          |             |
|     | 2     | Masked Write Mask Bit-2 | R/W    |          |             |
|     | 1     | Masked Write Mask Bit-1 | R/W    |          |             |
| lsb | 0     | Masked Write Mask Bit-0 | R/W    |          |             |

The Masked Write Mask register provides the byte used to mask off bits in each plane during masked writes to V-RAM when masked write mode is enabled. (Masked writes are enabled when bit 0 of extension register F3 is 1.) When masked writes are enabled, for each bit of either the Masked Write register (if bit 1 of extension register F3 is 0) or the rotated CPU byte (if bit 1 of extension register F3 is 1) that is 0, the corresponding bit in each byte of display memory written to remains unchanged; for each bit of either the Masked Write register or the rotated CPU byte that is 1, the corresponding bit in display memory bytes is replaced with the data written by the V7VGA.

The Masked Write Mask register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## Index F5

|     | Bit # | Description                           | Access | Reset By | Reset State |
|-----|-------|---------------------------------------|--------|----------|-------------|
| msb | 7     | Foreground / Background Pattern Bit-7 | R/W    |          |             |
|     | 6     | Foreground / Background Pattern Bit-6 | R/W    |          |             |
|     | 5     | Foreground / Background Pattern Bit-5 | R/W    |          |             |
|     | 4     | Foreground / Background Pattern Bit-4 | R/W    |          |             |
|     | 3     | Foreground / Background Pattern Bit-3 | R/W    |          |             |
|     | 2     | Foreground / Background Pattern Bit-2 | R/W    |          |             |
|     | 1     | Foreground / Background Pattern Bit-1 | R/W    |          |             |
| lsb | 0     | Foreground / Background Pattern Bit-0 | R/W    |          |             |

The Foreground/Background Pattern register is one possible source of the basic 8-bit pattern used in solid foreground/background mode, which is active when bits 3 & 2 of extension register FE (Foreground / Background Control) are 0 & 1, respectively. See the description of bits 3 & 2 of extension register FE for details.

The Foreground/Background Pattern register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## Index F6

|     | Bit # | Description             | Access | Reset By | Reset State |
|-----|-------|-------------------------|--------|----------|-------------|
| msb | 7     | Line Compare Bank Reset | R/W    | Reset    | 0           |
|     | 6     | Counter Bank Enable     | R/W    | Reset    | 0           |
|     | 5     | CRTC Read Bank Select 1 | R/W    | Reset    | 0           |
|     | 4     | CRTC Read Bank Select 0 | R/W    | Reset    | 0           |
|     | 3     | CPU Read Bank Select 1  | R/W    | Reset    | 0           |
|     | 2     | CPU Read Bank Select 0  | R/W    | Reset    | 0           |
|     | 1     | CPU Write Bank Select 1 | R/W    | Reset    | 0           |
| lsb | 0     | CPU Write Bank Select 0 | R/W    | Reset    | 0           |

This register is used to control bank selection when using 1 Mb ram chips. It allows independent selection of the one of four 256 Kb banks in 1 Mb D-RAMs in which CPU reads, CPU writes, and CRTC reads take place. This register also allows use of bit-maps spanning banks in 1 Mb D-RAMs.

The contents of the 1 Mb D-RAM Bank Select register are automatically used when 1 Mb D-RAMs are attached.

When four banks of 256Kb each are attached and the 256K Bank Enable bit (bit 4 of extension register FF) is 1, then bank controls are provided in accordance with the settings of the bits of the 1Mb D-RAM Bank Select register. This supports up to four virtual VGAs or high-resolution modes that require more than 256K bytes. This mode of operation works with either D-RAMs or V-RAMs. Consequently, the name of this register is somewhat misleading.

The 1 Mb D-RAM Bank Select register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## **Bit Descriptions**

- Bit 7 Line Compare Bank Reset When this bit is 1, then when the line compare condition becomes true, bits 17 & 16 of the memory address counter are reset to 0. When the Line Compare Bank Load bit is 0, then when the line compare condition becomes true, bits 17 & 16 of the memory address counter are loaded from bits 5 & 4 of extension register F6. This allows line compare to either reset to the beginning of bank 0 of 1Mb DRAMs or to the start of the current bank.
- Bit 6 Counter Bank Enable When this bit is 1, address bits 17 & 16 presented to 1Mb D-RAMs or used to generate the one of four bank select are the output of bits 17 & 16 of the memory address counter. When this bit is 0, address bits 17 & 16 presented to 1Mb D-RAMs or used to generate the bank select are the output of bits 5 & 4 of extension register F6. This allows display memory scanning to either cross bank boundaries or wrap back to the start of the current bank.

Note: Font fetches are an exception to this. Address bits 17 & 16 always come from bits 5 & 4 of extension register F6 for font fetches. This is necessary since fonts can't stretch across bank boundaries like bit-maps can. You should generally set the Counter Bank Enable bit to 0 in text mode, so that font and character/attribute pairs both come from the same bank.

- Bits 5-4 CRTC Read Bank Select These bits select one of four 256Kb banks from which the CRTC fetches video data when fetching from display memory. Refer to the discussion of bits 7 & 6 of this register for additional information about CRTC scanning of 1Mb DRAMs and 256Kb banks.
- Bits 3-2 CPU Read Bank Select These bits select one of four 256Kb banks to which the CPU writes when writing to display memory.
- Bits 1-0 CPU Write Bank Select These bits select one of four 256Kb banks to which the CPU writes when writing to display memory.

#### Index F7

|     | Bit # | Description                    | Access | Reset By | Reset State |
|-----|-------|--------------------------------|--------|----------|-------------|
| msb | 7     | Switch Readback Register Bit-7 | R/W    |          |             |
|     | 6     | Switch Readback Register Bit-6 | R/W    |          |             |
|     | 5     | Switch Readback Register Bit-5 | R/W    |          |             |
|     | 4     | Switch Readback Register Bit-4 | R/W    |          |             |
|     | 3     | Switch Readback Register Bit-3 | R/W    |          |             |
|     | 2     | Switch Readback Register Bit-2 | R/W    |          |             |
|     | 1     | Switch Readback Register Bit-1 | R/W    |          |             |
| lsb | 0     | Switch Readback Register Bit-0 | R/W    |          |             |

The Switch Readback register can be used to determine the state of up to 8 switches connected to the CPU data line bits 15-8, as follows. Whenever a byte (8-bit) OUT is performed to the Switch Strobe register (extension register EA), the V7VGA turns off the buffer controlling CPU data lines 15-8, allowing switches attached to those lines through pull-down resistors to determine the state of the lines. The V7VGA then loads the state of those 8 lines into the Switch Readback register, rather than the CPU byte. This value can then be read normally from the Switch Readback register at any time. The Switch Readback register can be written at any time. The Switch Readback register is also directly writable at extensions index F7.

The Switch Readback register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## Index F8

|     | Bit # | Description                  | Access | Reset By | Reset State |
|-----|-------|------------------------------|--------|----------|-------------|
| msb | 7     | Extended Clock Output 2      | R/W    |          |             |
|     | 6     | Extended Clock Output 1      | R/W    |          |             |
|     | 5     | Extended Clock Output 0      | R/W    |          |             |
|     | 4     | Clock 3 On                   | R/W    | Reset    | 0           |
|     | 3     | External Clock Override      | R/W    | Reset    | 0           |
|     | 2     | Extended Clock Output Source | R/W    |          |             |
|     | 1     | Extended Clock Direction     | R/W    | Reset    | 0           |
| lsb | 0     | Clock 0 Only                 | R/W    | Reset    | 0           |

The Extended Clock Control register controls the multiplexing of clock inputs and the direction of the three high-order extended clock pins and the data that can be placed on them.

Note: Synchronous reset must be in effect when the current clock is changed by altering any of the bits in this register, or display memory may be randomly altered.

This register powers up with bits 4, 3, 1, and 0 set to 0.

The Extended Clock Control register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## **Bit Descriptions**

Bits 7-5 Extended Clock Output - When the Extended Clock Direction bit (bit 1 of this register) is 1, the XD2M, XD1M, and XD0M pins become outputs rather than inputs. In this case, the Extended Clock Output Source bit (bit 2 of this register) selects the data to be placed on those pins. When the Extended Clock Output Source bit is 1, then the Extended Clock Output bits are placed on the XD2M, XD1M, and XD0M pins, respectively. When the Extended Clock Output Source bit is 0, then clock select bits 2-0 (bit 4 of extension register A4 and bits 3 & 2 of 3C2h, respectively) are placed on the XD2M, XD1M, and XD0M pins, respectively, and the Extended Clock Output bits are ignored.

When the Extended Clock Direction bit is 0, the Extended Clock Output bits have no effect.

Bit 4 Clock 3 On - When the Clock 3 On bit is 0, the clock selected when bits 3 & 2 of the Miscellaneous Output register (3C2h) are both 1 (clock 3) is forced to be grounded, for IBM VGA compatibility, regardless of the mode of clock operation selected by the Extended Clock Select register and bits 2-0 of the Extended Clock Control register.

When the Clock 3 On bit is 1 and bits 3 & 2 of the Miscellaneous Output register are both 1, then whatever clock input is selected according to the Extended Clock Select register and bits 2-0 of the Extended Clock Control register is active.

Bit 3 External Clock Override - When this bit is 0, then whenever bits 3 & 2 of the Miscellaneous Output register (3C2h) are 1 & 0, respectively, the External Clock input is selected regardless of the mode of clock operation selected by the Extended Clock Select register and bits 2-0 of the Extended Clock Control register.

When this bit is 1 and bits 3 & 2 of the Miscellaneous Output register are 1 & 0, respectively, then whatever clock input is selected according to the Extended Clock Select register and bits 2-0 of the Extended Clock Control register is active.

| Bit 2 | Extended Clock Output Source - When the Extended Clock Direction bit (bit 1 of this register)<br>is 1, the XD2M, XD1M, and XD0M pins become outputs rather than inputs. In this case, this<br>bit selects the data to be placed on those pins. When this bit is 1, then the Extended Clock<br>Output bits (bits 7-5 of this register) are placed on the XD2M, XD1M, and XD0M pins,<br>respectively. When this bit is 0, then clock select bits 2-0 (bit 4 of extension register A4 and<br>bits 3 & 2 of 3C2h, respectively) are placed on the XD2M, XD1M, and XD0M pins,<br>respectively.<br>When the Extended Clock Direction bit is 0, this bit has no effect.                                                                                                                                                                                                                                              |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 1 | Extended Clock Direction - When this bit is 1, the XD2M, XD1M, and XD0M pins become outputs. In this case, the Extended Clock Output Source bit selects the data to be placed on those pins. When the Extended Clock Output Source bit (bit 2 of this register) is 1, then the Extended Clock Output bits (bits 7-5 of this register) are placed on the XD2M, XD1M, and XD0M pins, respectively. When the Extended Clock Output Source bit is 0, then clock select bits 2-0 (bit 4 of extension register A4 and bits 3 & 2 of 3C2h, respectively) are placed on the XD2M, XD1M, and XD0M pins, respectively.                                                                                                                                                                                                                                                                                                  |
|       | Also, when this bit is 1, the high bit of the 3-bit clock select field to the circuitry which selects the clock driving the V7VGA (which normally comes from bit 4 of extension register A4) is forced to 0, limiting selection among the clock input pins to the lower four clock inputs, X25M, X28M, FCLK, and XRESM. This makes sense because when the Extended Clock Direction bit is 1, the upper clock pins (XD2M, XD1M, and XD0M) are outputs. However, all three clock select bits, explicitly including bit 4 of extension register A4, are placed on XD2M, XD1M, and XD0M when the Extended Clock Output Source bit is 0. A maximum of 11 clocks could theoretically be accessed by selecting 8 clocks from an external clock generator on X25M (by turning on the Clock 0 Only bit, bit 0 of this register), and three additional clocks on X28M, FCLK, and XRESM (with the Clock 0 Only bit off). |
|       | When this bit is 0, the XD2M, XD1M, and XD0M pins become inputs. These clock inputs can be selected as the current clock driving the V7VGA via clock select bits 2-0, as described in the discussion of extension register A4 and I/O port 3C2h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bit 0 | Clock 0 Only - When the Clock 0 Only bit is 1, the current clock to the V7VGA is derived from the X25M pin (the pin normally selected when the clock select bits (bit 4 of extension register A4 and bits 3 & 2 of 3C2h) are 000b, or 0). This allows an external dot clock generator to be attached to X25M, with the clock select bits going out on XD2M, XD1M, and XD0M to program the external generator. To an application program, it will still appear as if several crystals are attached to the various clock pins as the program sets bits 3 & 2 of 3C2h.                                                                                                                                                                                                                                                                                                                                           |
|       | However, the Clock 0 Only bit can be overridden by two conditions. First, if the Clock 3 On bit (bit 4 of this register) is 0, then when bits 3 & 2 of 3C2h are both 1, the clock input to the V7VGA is grounded (no clock). Second, if the External Clock Override bit (bit 3 of this register) is 0, then when bits 3 & 2 of 3C2h are 1 and 0, respectively, then the clock input to the V7VGA comes from the FCLK pin. These two overrides provide the potential of full IBM VGA compatibility with a single external clock generator attached to X25M and driven by the clock select bits via XD2M, XD1M, and XD0M.                                                                                                                                                                                                                                                                                       |
|       | When the Clock 0 Only bit is 0, then the clock select fields and bits 4, 3, and 1 of this register determine which clock input drives the V7VGA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1

Index F9

|     | Bit # | Description          | Access | Reset By | Reset State |
|-----|-------|----------------------|--------|----------|-------------|
| msb | 7     | -unused-             | -      |          |             |
|     | 6     | -unused-             | -      |          |             |
|     | 5     | -unused-             | _      |          |             |
|     | 4     | -unused-             | -      |          |             |
|     | 3     | -unused-             | -      |          |             |
|     | 2     | -unused-             | -      |          |             |
|     | 1     | -unused-             | -      |          |             |
| lsb | 0     | Extended Page Select | R/W    | Reset    | 0           |

The Extended Page Select register provides additional CPU addressing control in some extended 256-color modes.

The Extended Page Select register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## **Bit Descriptions**

- Bits 7-1 Unused (read back as 0)
- Bit 0 Extended Page Select When the Extended 256-Color Enable bit (bit 2 of extension register FC) is 1, the Chain 4 bit (bit 3 of SR4) is 1, and the Extended 256-Color Mode bit (bit 1 of extension register FC) is 0, then the Extended Page Select bit is placed on linear address bit 0 during CPU accesses. This bit is used to support 640x400 256-color modes with all display memory mapped into a 64K CPU address space.

If any of the above conditions are not true, the Extended Page Select bit has no effect.

Index FA

|     | Bit # | Description            | Access | Reset By | Reset State |
|-----|-------|------------------------|--------|----------|-------------|
| msb | 7     | -unused-               | -      |          |             |
|     | 6     | -unused-               | -      |          |             |
|     | 5     | -unused-               | -      |          |             |
|     | 4     | -unused-               | -      |          |             |
|     | 3     | Foreground Color Bit-3 | R/W    |          |             |
|     | 2     | Foreground Color Bit-2 | R/W    |          |             |
|     | 1     | Foreground Color Bit-1 | R/W    |          |             |
| lsb | 0     | Foreground Color Bit-0 | R/W    |          |             |

The Extended Foreground Color register provides the foreground color used in solid foreground / background mode, which is active when bits 3 & 2 of extension register FE (Foreground / Background Control) are 0 & 1, respectively. See the description of bits 3 & 2 of extension register FE for details.

When bits 3 & 2 of extension register FE are not 0 & 1, respectively, the Extended Foreground Color register has no effect.

The Extended Foreground Color register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## Index FB

|     | Bit # | Description            | Access | Reset By | Reset State |
|-----|-------|------------------------|--------|----------|-------------|
| msb | 7     | -unused-               | -      |          |             |
|     | 6     | -unused-               | -      |          |             |
|     | 5     | -unused-               | -      |          |             |
|     | 4     | -unused-               | -      |          |             |
|     | 3     | Background Color Bit-3 | R/W    |          |             |
|     | 2     | Background Color Bit-2 | R/W    |          |             |
|     | 1     | Background Color Bit-1 | R/W    |          |             |
| lsb | 0     | Background Color Bit-0 | R/W    |          |             |

The Extended Background Color register provides the background color used in solid foreground / background mode, which is active when bits 3 & 2 of extension register FE (Foreground / Background Control) are 0 & 1, respectively. See the description of bits 3 & 2 of extension register FE for details.

When bits 3 & 2 of extension register FE are not 0 & 1, respectively, the Extended Background Color register has no effect.

The Extended Background Color register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## Index FC

|     | Bit # | Description                  | Access | Reset By | Reset State |
|-----|-------|------------------------------|--------|----------|-------------|
| msb | 7     | Internal 3C3 Enable (ARMVSE) | R/W    | Reset    | 0           |
|     | 6     | Extended Display Enable Skew | R/W    | Reset    | 0           |
|     | 5     | Sequential Chain 4           | R/W    | Reset    | 0           |
|     | 4     | Sequential Chain             | R/W    | Reset    | 0           |
|     | 3     | Refresh Skew Control         | R/W    | Reset    | 0           |
|     | 2     | Extended 256-Color Enable    | R/W    | Reset    | 0           |
|     | 1     | Extended 256-Color Mode      | R/W    |          |             |
| lsb | 0     | Extended Attribute Enable    | R/W    | Reset    | 0           |

The Compatibility Control register enables selection and aspects of operation of enhanced 256-color graphics modes, enhanced attributes in text mode, refresh and extended display enable skews, and masked V-RAM writes.

The Compatibility Control register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## **Bit Descriptions**

Bit 7 Internal 3C3 Enable (ARMVSE) - When this bit (ARMVSE) is 1, the DISABLE pin is 1, and bit 0 of 3C3h is 1, the V7VGA is mapped into the host's I/O and memory address space. When ARMVSE 1, the DISABLE pin is 1, and bit 0 of 3C3h is 0, 3C3h is the only I/O address at which the V7VGA answers, and all V7VGA memory addressing (to the CPU) is disabled. In both these cases, the V7VGA answers at I/O address 3C3h.

When ARMVSE is 0 and the DISABLE pin is 1, then bit 0 of 3C3h has no effect and 3C3h is not decoded as a V7VGA register.

When the DISABLE pin is 0, all V7VGA I/O and memory addressing is disabled.

(continued)

| Bit 6       | Extended Display Enable Skew - When this bit is 1, the display enable skew is 1 greater than the skew selected via bits 6 & 5 of CR03. When this bit is 0, the display enable skew is whatever skew is selected by bits 6 & 5 of CR03.                                                                                                                                                                                                                                                                                                                                                       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 5       | Sequential Chain 4 - When the Sequential Chain 4 bit is 1, the nature of chain 4 mode (selected when bit 3 of SR4 is 1) changes. On CPU accesses, instead of routing CPU address bits A15-A02 to linear address bits LA15-LA02 and substituting certain bits on LA01 and LA00, when the Sequential Chain 4 bit is 1 A15-A02 are routed to LA13-LA00, and the same certain bits are substituted on LA15 and LA14 rather than LA01 and LA00. The net effect of this is to cause chain 4 bit-maps to be stored at consecutive display memory addresses, where they can be scanned in byte mode. |
|             | For a full description of substitution of bits in chain 4 and sequential chain 4 modes, refer to the discussion under bit 1 of GR6.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | The reason for the existence of the Sequential Chain 4 bit is the need to support high-resolution doubleword modes, such as 256-color modes, with V-RAMs, which are not capable of working in word or doubleword mode with 1:2 or 1:4 interleave.                                                                                                                                                                                                                                                                                                                                            |
|             | When the Sequential Chain 4 bit is 0, chain 4 mode operates as described under bit 3 of SR4 and bit 1 of GR6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | The Sequential Chain 4 bit has no effect when the Chain 4 bit (bit 3 of SR4) is 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bit 4       | Sequential Chain - When this bit is 1, the nature of chain mode (selected when bit 3 of SR4 is 0 and bit 1 of GR6 is 1) changes. On CPU accesses, instead of routing CPU address bits A15-A01 to linear address bits LA15-LA01 and substituting certain bits on LA00, when the Sequential Chain bit is 1 A15-A01 are routed to LA14-LA00, and the same certain bits are substituted on LA15 rather than LA00. The net effect of this is to cause chain bit-maps to be stored at consecutive display memory addresses, where they can be scanned in byte mode.                                |
|             | For a full description of substitution of bits in chain and sequential chain modes, refer to the discussion under bit 1 of GR6                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | The reason for the existence of the Sequential Chain bit is the desire to support high-resolution word modes with V-RAMs, which are not capable of working in word or doubleword mode with 1:2 or 1:4 interleave.                                                                                                                                                                                                                                                                                                                                                                            |
|             | When the Sequential Chain 4 bit is 0, chain mode operates as described under bit 1 of GR6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | The Sequential Chain bit has no effect when the Chain 4 bit (bit 3 of SR4) is 1 or the Chain bit (bit 1 of GR6) is 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bit 3       | Refresh Skew Control - This bit controls whether the start of refresh occurs one character after<br>the end of the skewed display enable signal or one character after the end of the unskewed<br>display enable signal. When this bit is 1, refresh occurs one character after the end of the<br>skewed display enable signal (the skew of the display enable signal is controlled by bits 6 & 5<br>of CR03). When this bit is 0, refresh starts one character after the end of the unskewed<br>display enable signal.                                                                      |
|             | The IBM VGA starts refresh immediately after display enable end, which causes problems in shift 4 and shift load modes, where display enable must be skewed, making it impossible to support a border in these modes. The Refresh Skew Control bit makes it possible for refresh to operate properly in modes that use display enable skew.                                                                                                                                                                                                                                                  |
| (continued) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

- Bit 2 Extended 256-Color Enable This bit enables or disables the enhanced 256-color mode selected by bit 1 of this register. When this bit is 0, no enhanced 256-color mode is in effect: the standard IBM 256-color CPU address multiplexing is in effect whenever the Chain 4 bit (bit 3 of SR4) is set to 1, and the standard IBM 256-color CRTC address multiplexing is in effect whenever the Doubleword Mode bit (bit 6 of CR14) is 1.
  When this bit is 1, the enhanced 256-color mode selected by bit 1 of this register is in effect for CPU addressing whenever the Chain 4 bit is 1, and enhanced CRTC 256-color mode (whereby memory address counter bit 15 is placed on linear address bit 1 and memory address counter bit 14 is placed on linear address bit 0) is in effect for CRTC addressing whenever the Doubleword Mode bit is 1.
- **Bit 1** Extended 256-Color Mode This bit selects the type of extended 256-color CPU addressing mode that is in effect when the Extended 256-Color Enable bit (bit 2 of this register) is 1 and when the Chain 4 bit (bit 3 of SR4) is 1. The extended modes allow 256-color bit maps larger than 64K, supporting resolutions of 320x400 and 640x400, by contrast with the IBM VGA's 256-color mode, which allows only a 64K bitmap and hence a maximum resolution of 320x200.

When the Extended 256-Color Enable bit is 1, this bit selects extended 256-color modes as follows:

0 = 64K extended 256-color mode

1 = 128K extended 256-color mode

When bit 1 is 0, 64K Extended 256-Color Mode is in effect. In this mode, if the Chain 4 bit is 1, then during CPU reads and writes, CPU address bits 15 through 2 are placed on linear address bits 15 through 2, the <u>non-inverted</u> Page Select bit (bit 5 of the Miscellaneous Output register (3C2h)) is placed on linear address bit 1, and the Extended Page Select bit (bit 3 of this register) is placed on linear address bit 0. This mode supports 256-color modes with resolutions up to 640x400 mapped into a 64K address space.

When bit 1 is 1, 128K Extended 256-Color Mode is in effect. In this mode, if the Chain 4 bit is 1, for CPU addressing, CPU address bits 15 through 2 are placed on linear address bits 15 through 2, the <u>non-inverted</u> Page Select bit is placed on linear address bit 1, and CPU address bit 16 is placed on linear address bit 0. This mode supports 256-color modes with resolutions up to 640x400 mapped into a 128K address space.

Whenever the Chain 4 bit is 0, the selected extended 256-color mode has no effect on CPU addressing. The net effect of the extended 256-color modes is to substitute new CPU and CRTC address multiplexings in place of IBM's default (and only) 256-color multiplexings, which are normally selected by setting the Chain 4 and Doubleword bits to 1.

The Extended 256-Color Mode bit has no effect when the Extended 256 Color Enable bit is 0.

**Bit 0** Extended Attribute Enable - This bit enables or disables extended text attribute operation. When this bit is 1, extended text attributes are enabled. In this case, the extended attribute byte for each character is fetched from plane 3 at the same time and from the same address as the character code and attribute byte. This byte is ORed with the font data on the underline scan line, in the same way as the underline is inserted. This provides a means of underlining text with any and all normal attributes.

When this bit is 0, extended text attributes are disabled, and the extended attribute byte has no effect. This is the IBM VGA compatible mode of operation.

## Index FD

|     | Bit # | Description                              | Access | Reset By | Reset State |
|-----|-------|------------------------------------------|--------|----------|-------------|
| msb | 7     | Graphics 8-Dot Timing State Select Bit-3 | R/W    | Reset    | 0           |
|     | 6     | Graphics 8-Dot Timing State Select Bit-2 | R/W    | Reset    | 0           |
|     | 5     | Graphics 8-Dot Timing State Select Bit-1 | R/W    | Reset    | 0           |
|     | 4     | Graphics 8-Dot Timing State Select Bit-0 | R/W    | Reset    | 0           |
|     | 3     | Text 8-Dot Timing State Select Bit-3     | R/W    | Reset    | 0           |
|     | 2     | Text 8-Dot Timing State Select Bit-2     | R/W    | Reset    | 0           |
|     | 1     | Text 8-Dot Timing State Select Bit-1     | R/W    | Reset    | 0           |
| lsb | 0     | Text 8-Dot Timing State Select Bit-0     | R/W    | Reset    | 0           |

The Extended Timing Select register controls the operative timing mode in both text and graphics 8-dot sequencer modes of operation.

Note: In 9-dot mode (SR1 bit-0 = 0), this register is ignored and a 1:4 timing state is selected. This timing state is the only one supported in text and graphics 9-dot modes. This state supports maximum dot clocks of 33 MHz with 120 ns RAMs and 40 MHz with 100 ns RAMs.

Note: Synchronous reset must be in effect when either of the fields in this register is changed when that field is providing the current timing state selection, or display memory may be randomly altered.

The Extended Timing Select register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

In the tables on the following page, N:m interleave refers to n CPU accesses allowed per m character clocks.

(continued)

| <b>Bit Descr</b> | iptions |
|------------------|---------|
| Bits 7-4         | Gra     |

Graphics 8-Dot Timing State Select - The 8-Dot Graphics Timing Select bits select the timing state used in 8-dot graphics mode. 8-dot graphics mode is selected when bit 0 of SR1 is 1 and bit 0 of GR6 is 1. Timing state selection in 8-dot graphics mode operates as follows.

|          |          |                |            | M    | lax Dotcl | ock (MH | z)    |
|----------|----------|----------------|------------|------|-----------|---------|-------|
| Bits 7-4 | Ram Type | Timing State   | Interleave | 80ns | 100ns     | 120ns   | 150ns |
| 0        | D-Ram    | 8-dot Graphics | 1:4        | 45   | 35        | 29      | 20    |
| 1        | D-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 2        | D-Ram    | 8-dot Graphics | 1:2        | 38   | 30        | 25      | 18    |
| 3        | D-Ram    | 8-dot Graphics | Paged 1:4  | 65   | 50        | 41      | 29    |
| 4        | D-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 5        | D-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 6        | D-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 7        | D-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 8        | V-Ram    | 8-dot Graphics | 1:1        | n/a  | n/a       | 33      | 25    |
| 9        | V-Ram    | 8-dot Graphics | 1:2        | n/a  | n/a       | 50      | 40    |
| 10       | V-Ram    | 8-dot Graphics | 1:4        | n/a  | n/a       | 80      | 65    |
| 11       | V-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 12       | V-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 13       | V-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 14       | V-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |
| 15       | V-Ram    | invalid        | none       | n/a  | n/a       | n/a     | n/a   |

Note: In paged 1:4 interleave, 4 paged accesses by the CRTC are performed per CPU access. This causes panning and virtual screen sizes to be incompletely supported, since the start address can vary only by multiples of 4 and the Offset register can vary only by multiples of 2.

Note: The 8-dot 1:4 V-Ram and 8-dot Paged 1:4 D-Ram graphics timing states do not fully support byte panning (not all offset and start address settings work properly).

**Bits 3-0** Text 8-Dot Timing State Select - The 8-Dot Text Timing Select bits select the timing state used in 8-dot text modes. 8-dot text mode is selected when bit 0 of SR1 is 1 and bit 0 of GR6 is 0. Timing state selection in 8-dot text mode operates as follows:

|          |          |              |            | -    |            |         |       |
|----------|----------|--------------|------------|------|------------|---------|-------|
|          |          |              |            | M    | lax Dotcle | ock (MH | z)    |
| Bits 3-0 | Ram Type | Timing State | Interleave | 80ns | 100ns      | 120ns   | 150ns |
| 0        | D-Ram    | 8-dot Text   | 1:4        | 45   | 35         | 29      | 20    |
| 1        | D-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 2        | D-Ram    | 8-dot Text   | 1:2        | 38   | 30         | 25      | 18    |
| 3        | D-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 4        | D-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 5        | D-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 6        | D-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 7        | D-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 8        | V-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 9        | V-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 10       | V-Ram    | 8-dot Text   | 1:4        | n/a  | n/a        | 40      | 33    |
| 11       | V-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 12       | V-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 13       | V-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 14       | V-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |
| 15       | V-Ram    | invalid      | none       | n/a  | n/a        | n/a     | n/a   |

Note: The 8-dot 1:4 V-RAM text timing state does not fully support byte panning (not all offset and start address settings work properly).

## Index FE

|     | Bit # | Description                    | Access | Reset By | Reset State |
|-----|-------|--------------------------------|--------|----------|-------------|
| msb | 7     | -unused-                       | -      |          |             |
|     | 6     | -unused-                       | _      |          |             |
|     | 5     | -unused-                       | -      |          |             |
|     | 4     | -unused-                       | -      |          |             |
|     | 3     | Foreground / Background Mode 1 | R/W    | Reset    | 0           |
|     | 2     | Foreground / Background Mode 0 | R/W    | Reset    | 0           |
|     | 1     | Foreground / Background Source | R/W    |          |             |
| lsb | 0     | -unused-                       | -      |          |             |

The Foreground/Background Control register selects between three modes of foreground / background operation and use of the output from the set/reset circuitry, and the data source for one foreground / background mode.

The Foreground/Background Control register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.

## **Bit Descriptions**

Bits 7-4 Unused (read back as 0)

**Bits 3-2** Foreground / Background Mode - These bits select the source of the byte input to each of the four plane ALUs, as follows:

| <u>Bit-3</u> | <u>Bit-2</u> | Mode of CPU-Side ALU Input Operation |
|--------------|--------------|--------------------------------------|
| 0            | 0            | Set/Reset Output Mode (IBM VGA)      |
| 0            | 1            | Solid Foreground / Background Mode   |
| 1            | 0            | Dithered Foreground Mode             |
| 1            | 1            | Invalid                              |

Set/reset output mode simply means that the output of the set/reset circuity is the CPU-side ALU input, just as in the IBM VGA.

Solid foreground/background mode means that a byte is input into the foreground/background select circuitry, with each 1-bit of the byte selecting the foreground color stored in extension register FA and each 0-bit selecting the background color stored in extension register FB. The resultant byte for each plane becomes the CPU-side input to each plane's ALU. This provides the capability to generate a solid foreground against a solid background with a single write, basically expanding a binary (monochrome) pattern to a color pattern. The source of the selection byte in this mode is the Foreground/Background Pattern register (extension register F5) if bit 1 of this register is 0, and is the rotated CPU byte if bit 1 of this register is 1.

Dithered foreground mode means that the foreground latch byte for each plane (from extension registers EC-EF) is input directly to that plane's CPU-side ALU input. This provides the capability to support fully dithered foreground patterns, with dithered background patterns optionally stored in the normal latches and the two combined via the bit mask.

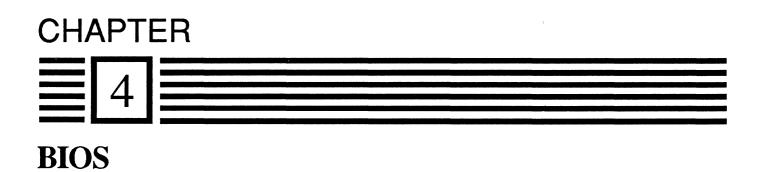
- Bit 1 Foreground / Background Source When the V7VGA is in solid foreground/background mode (when bits 3 & 2 of this register are 0 & 1, respectively), then the 8-bit pattern that selects between the foreground color in extension register FA and the background color in extension register FB can come either from the Foreground/Background Pattern register (extension register F5) or from the rotated CPU byte. When this bit is 1, the rotated CPU byte is the source; when this bit is 0, the Foreground/Background Pattern register is the source.
- **Bit 0** Unused (reads back as 0)

Index FF

|     | Bit # | Description                    | Access | Reset By | Reset State |
|-----|-------|--------------------------------|--------|----------|-------------|
| msb | 7     | 16-Bit Bus Status              | R      |          |             |
|     | 6     | Pointer Bank Select 1          | R/W    |          |             |
|     | 5     | Pointer Bank Select 0          | R/W    |          |             |
|     | 4     | 256K Bank Enable               | R/W    | Reset    | 0           |
|     | 3     | 16-Bit ROM Interface Enable    | R/W    | Reset    | 0           |
|     | 2     | Fast Write Enable              | R/W    | Reset    | 0           |
|     | 1     | 16-Bit I/O Interface Enable    | R/W    | Reset    | 0           |
| lsb | 0     | 16-Bit Memory Interface Enable | R/W    | Reset    | 0           |

This register is used to control 16-bit options in the interface of the V7VGA chip and associated components to the system bus. Internally, the V7VGA is an 8-bit device (because the VGA is inherently an 8-bit device), but presenting a 16-bit interface to the system and then breaking the 16-bit accesses into two 8-bit accesses internally can save a significant number of wait states, at least on the AT bus, by eliminating wait states inserted while performing 8-bit bus emulation.

The 16-Bit Control register is only accessible when access to the Video Seven extensions registers is enabled by writing 0EAh to SR6.


## **Bit Descriptions**

- Bit 7 16-Bit Bus Status This bit reads back 1 if the bus the V7VGA is installed in is a 16-bit bus, and reads back 0 if the bus the V7VGA is installed in is an 8-bit bus. This bit is read-only.
- Bits 6-5 Pointer Bank Select These bits provide linear address bits 17 & 16 used when addressing the pointer pattern. These bits go either to 1 Mb DRAMs or are the bits that select one of up to four banks of 256 Kb each, depending on the setting of bit 4 of this register.
- Bit 4 256K Bank Enable This bit enables operation of the V7VGA with up to four banks of 256K display memory attached. When the 256K Bank Enable bit is 1, RAS is generated on one of the four pins RAS0\*, RAS1\*, RAS2\*, or RAS3\* for the one of the four 256K banks selected by ERF6. (During refresh, all four lines are driven.) Also, additional controls for four banks of VRAMs are provided on the SOE0\*, SOE1\*, SOE2\*, SOE3\*, SCLK\*, and DTOE\* pins. 1 Mb DRAMs are not supported when the 256K Bank Enable bit is 1. When the 256K Bank Enable bit is 0, these above pins operate in their normal non-banked modes, and support for four banks of 256K each is not provided. However, four banks within 1 Mb DRAMs are supported (via the XRAD pin) when the 256K Bank Enable bit is 0.
- Bit 3 16-Bit ROM Interface Enable The V7VGA always accepts ROM decodes on the XRDN\* pin and generates the appropriate buffer enables. When the 16-Bit ROM Interface Enable bit is 1, the V7VGA generates MEM16\* when ROM decode occurs, and generates the appropriate buffer enables based on SHBE\* and A0. When the 16-Bit ROM Interface Enable bit is 0, the V7VGA always generates an enable for the lower byte of the data bus (for an 8-bit bus).

(continued)

Bit 2 Fast Write Enable - When the Fast Write Enable bit is 1, the address and data are latched internally on CPU writes and the CPU is released immediately, with the display memory write being completed whenever a CPU access becomes available. If the CPU attempts to access display memory again before a pending write is completed, only then is the CPU waited. This provides effectively zero-wait-state latency for CPU writes. When the Fast Write Enable bit is 0, the CPU is always held until the current display memory write is completed. Note: The Fast Write Enable bit has no effect on CPU reads. Bit 1 16-Bit I/O Interface Enable - The 16-Bit I/O Interface Enable bit controls whether the I/O interface the V7VGA presents to the system bus is an 8- or 16-bit interface. When this bit is 1, the V7VGA provides a 16-bit I/O interface. When this bit is 0, the V7VGA provides an 8-bit I/O interface. 16-Bit Memory Interface Enable - The 16-Bit Memory Interface Enable bit controls whether Bit 0 the memory the the V7VGA presents to the system bus is an 8- or 16-bit interface. When this bit is 1, the V7VGA provides a 16-bit memory interface. When this bit is 0, the V7VGA provides an 8-bit memory interface.

and the second second



The V7 VGA BIOS provides IBM VGA-compatible support for the V7 VGA chip. This includes display modes for increased color and resolution (see Chapter 2.5), predefined fonts for text and graphics modes, and power-on confidence tests to assure that the hardware is functioning properly.

# 4.2 BIOS Initialization and Power-up Diagnostics

The BIOS power-up sequence is as follows:

- Turn off the display
- Clear emulation state
- Set up interrupt vectors 10, 1F, 42, and 43
- · Read switches and feature adapter status and store in ram
- Set video state per the switches
- Check for co-resident video adapters
- Perform video adapter tests
  - Perform read/write tests on all registers
  - Set 40-column text mode and check vertical and horizontal timing
  - Test video output using video status mux
- Perform display memory tests
  - Determine size of memory planes
  - Write all byte values 0-FF at start of each 16K block
  - Write AAAA, 5555, FFFF, and 0000 at every location

# 4.3 BIOS Interrupt Vectors

## 02H - Non-maskable Interrupt (NMI) (Location = 0:0008H)

The NMI vector is used by the BIOS to provide CGA and MGA register-level compatibility.

## 05H - Print Screen (Location = 0:0014H)

The Alternate Select BIOS function can set the print screen vector so that it points to a routine that handles non-standard rows and columns.

## <u>**10H - Functions**</u> (Location = 0:0040H)

BIOS functions are accessed via this vector. Programs place a function code in AH and other calling parameters, if required, in other registers then execute an INT 10 instruction. When BIOS gains control, the appropriate code is executed to perform the function; return parameter values are left in processor registers on return to the calling program.

The functions supported by the V7 VGA BIOS allow the calling program to set the current mode, manipulate the cursor, place characters and individual pixels on the display screen, scroll the screen, load character fonts and color palette values, and read the light pen position. These functions are described in following chapters.

Functions 0-F are supported by the PC system BIOS. If an EGA/VGA board is present in the system, its BIOS takes over these functions from the system. Functions 10-FF are only available to programs if the V7 VGA board is present in the system. Of these additional functions, 10-13 are supported in the IBM EGA and VGA; functions numbered 14H and above are Vega specific. Function 6F is V7 VGA specific.

## $\underline{42H} - \underline{Reserved} \quad (Location = 0:0108H)$

When the EGA/VGA is installed, BIOS routines use INT 42 to re-vector the standard INT 10 video pointer. This is the original motherboard INT 10 vector.

#### <u>43H - Graphics Character Table</u> (Location = 0:010CH)

BIOS routines use this vector to point to a table of dot patterns that are used when graphics characters are displayed. This table is used for the first 128 characters in video modes 4, 5 and 6. This table is also used for 256 characters in all additional graphics modes (D, E, F, 10, 11, 12 and 13).

## <u>1D - 6845 Parameter Table</u> (Location = 0:0074H)

This is used as a pointer to the 6845 CRT controller parameters as used by the CGA. This vector is used for emulation only.

#### <u>**1F - Upper 128 Characters</u>** (Location = 0:007CH)</u>

This table is used for the upper 128 characters in modes 4, 5, and 6.

# 4.4 BIOS Standard Functions

V7 VGA BIOS-supported modes can be divided into two types, text and graphics. Some of the following functions only apply to one of these types, while others expect different parameters based on whether the current display mode is text or graphics.

V7 VGA BIOS functions are accessed using interrupt 10H. The function code is placed in register AH, and other information is placed in the corresponding registers as indicated. Table 4-1 summarizes the BIOS functions in the functional order in which they are presented in this chapter. Table 4-2 summarizes the BIOS functions in numerical order.

| Page #       | Func#  | Name                        | Entry Registers                      | Exit Registers |
|--------------|--------|-----------------------------|--------------------------------------|----------------|
| 4-7          | *0     | Set Mode                    | AH, AL                               | -              |
| 4-15         | F      | Get Video State             | AH                                   | AX, BH         |
| 4-9          | 5      | Set Active Page             | AH, AL                               | -              |
| 4-8          | 1      | Set Cursor Type             | AH, CX                               | -              |
| 4-8          | 2<br>3 | Set Cursor Position         | AH, BH, DX                           | -              |
| 4-8          | 3      | Read Cursor Position        | АН, ВН                               | CX, DX         |
| 4-12         | 9      | Write Character & Attribute | AH, AL, BX, CX                       | -              |
| 4-13         | Α      | Write Character Only        | AH, AL, BX, CX                       | -              |
| 4-12         | 8      | Read Character & Attribute  | AH, BH                               | AX             |
| 4-15         | E      | Write TTY                   | AH, AL, BL                           | -              |
| 4-23         | 13     | Write String                | AH, AL, BX, BP, CX,DX,ES             | -              |
| 4-10         | 6      | Scroll Up                   | AH, AL, BH, CX, DX                   | -              |
| 4-10         | 7      | Scroll Down                 | AH, AL, BH, CX, DX                   | -              |
| 4-14         | С      | Write Det                   | AU AL DU CY DY                       |                |
| 4-14<br>4-14 | D      | Write Dot<br>Read Dot       | AH, AL, BH, CX, DX<br>AH, BH, CX, DX | -<br>AL        |
|              | D      | Read DOI                    |                                      | AL             |
| 4-13         | В      | Set Color Palette           | AH, BX                               | -              |
| 4-16         | *10    | Set Palette Registers       | AH, AL, BX, DX, ES                   | -              |
| 4-18         | *11    | Load Character Font Info    | AH, AL, CX, ES, BP, BX, DX           | ES:BP, CX, DL  |
| 4-20         | *12    | Alternate Select            | AH, BL, AL                           | AL, BX, CX     |
| 4-9          | 4      | Read Light Pen Position     | AH                                   | BX, CX, DX     |
| .,           | •      | Roud Light i on i oblion    |                                      | 211, 011, 211  |
| 4-24         | **1A   | Return DCC Info             | AH, AL                               | AL, BX         |
| 4-24         | **1B   | Return Functionality Info   | AH, AL, ES: DI, BX                   | AL             |
| 4-28         | **1C   | Save/Restore State          | AH, AL, ES: BX, CX                   | AL, BX         |
|              |        |                             |                                      |                |
| 4-29         | 6F     | V7 Extended Functions       | AH, AL, BX                           | AX, BX, CX     |
|              |        |                             |                                      |                |

Table 4 - 1. BIOS Functions (Functional Order) (\* VGA Extensions; \*\* New VGA Functions)

| Table 4      | 4 - 2. BIO     | S Function    | Summary (Numerical Order) (* VGA Extension; ** New VGA Function)     |
|--------------|----------------|---------------|----------------------------------------------------------------------|
| Page         | Function       | Subfunction   | •                                                                    |
| 4-7          | *00h           |               | Set Mode                                                             |
| 4-8          | 01h            |               | Set Cursor Type                                                      |
| 4-8          | 02h            |               | Set Cursor Position                                                  |
| 4-8          | 03h            |               | Read Cursor Position                                                 |
| 4-9          | 04h            |               | Read Light Pen Position                                              |
| 4-9          | 05h            |               | Set Active Display Page                                              |
| 4-10         | 06h            |               | Scroll Active Page Up                                                |
| 4-10         | 07h            |               | Scroll Active Page Down                                              |
| 4-12         | 08h            |               | Read Character & Attribute at Current Cursor Position                |
| 4-12         | 09h            |               | Write Character & Attribute to Current Cursor Position               |
| 4-13<br>4-13 | 0Ah<br>0Bh     |               | Write Character Only to Current Cursor Position<br>Set Color Palette |
| 4-13         | 0Ch            |               | Write Dot                                                            |
| 4-14         | 0Dh            |               | Read Dot                                                             |
| 4-14         | 0Eh            |               | Write TTY-style to Active Page                                       |
| 4-15         | 0Fh            |               | Return Current Video State                                           |
| 4-16         | *10h           |               | Set Palette Registers                                                |
| 4-16         | 1011           | 00h           | Set Individual Palette Register                                      |
| 4-16         |                | 01h           | Set Overscan Register                                                |
| 4-16         |                | 02h           | Set All Palette Registers and Overscan Register                      |
| 4-16         |                | 03h           | Toggle Intensity / Blinking Bit                                      |
| 4-16         |                | **07h         | Read Individual Palette Register                                     |
| 4-16         |                | **08h         | Read Overscan Register                                               |
| 4-16         |                | **09h         | Read All Palette Registers and Overscan Register                     |
| 4-16         |                | <b>**</b> 10h | Set Individual Color Register                                        |
| 4-16         |                | <b>**</b> 12h | Set Block of Color Registers                                         |
| 4-17         |                | <b>**</b> 13h | Select Color Page                                                    |
| 4-17         |                | <b>**</b> 15h | Read Individual Color Register                                       |
| 4-17         |                | <b>**</b> 17h | Read Block of Color Registers                                        |
| 4-17         |                | **1Ah         | Read Current Color Page Number                                       |
| 4-17         |                | **1Bh         | Sum Color Values to Gray Scale                                       |
| 4-18         | *11h           |               | Load Font Info                                                       |
| 4-18         |                | 00h           | Load User Font                                                       |
| 4-18         |                | 01h           | Load ROM Monochrome Font                                             |
| 4-18         |                | 02h<br>03h    | Load ROM 8x8 Font<br>Set Block Specifier                             |
| 4-18<br>4-18 |                | **04h         | Set Block Specifier<br>Load ROM 8x16 Font                            |
| 4-18         |                | 10h           | Load User Font                                                       |
| 4-18         |                | 10h<br>11h    | Load ROM Monochrome Font                                             |
| 4-18         |                | 12h           | Load ROM 8x8 Font                                                    |
| 4-19         |                | **14h         | Load ROM 8x16 Font                                                   |
| 4-19         |                | 20h           | Load User Graphics Characters INT 1Fh (8x8)                          |
| 4-19         |                | 21h           | Load User Graphics Characters                                        |
| 4-19         |                | 22h           | Load Graphics Mode ROM 8x14 Font                                     |
| 4-19         |                | 23h           | Load Graphics Mode ROM 8x8 Font                                      |
| 4-19         |                | **24h         | Load Graphics Mode ROM 8x16 Font                                     |
| 4-19         |                | *30h          | Return Character Font Information                                    |
| 4-20         | *12h           |               | Alternate Select                                                     |
| 4-20         |                | 10h           | Return Video Information                                             |
| 4-20         |                | 20h           | Select Alternate Print Screen Routine                                |
| 4-20         |                | **30h         | Select Scan Lines for Text Modes                                     |
| 4-20         |                | **31h         | Default Palette Loading During Mode Set                              |
| 4-21         |                | **32h         | Video Enable / Disable                                               |
| 4-21         |                | **33h         | Summing to Gray Scales                                               |
| 4-21         |                | **34h         | Cursor Emulation                                                     |
| 4-22         |                | **35h         | Display Switch                                                       |
| 4-22         | 101            | **36h         | Video Screen On / Off                                                |
| 4-23         | 13h            |               | Write Text String                                                    |
| 4-24         | **1Ah<br>**1Ph |               | Return Display Combination Code (DCC)                                |
| 4-24         | **1Bh<br>**1Ch |               | Return Functionality / State Info                                    |
| 4-28         | **1Ch          |               | Save / Restore Video State                                           |

| Int 10 - Functio                    | n 0                                                                                                       |                                                                                                              |                           |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                  |           | Set Mode      |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
|                                     | e use of the predefined l<br>calling a Set Mode fund                                                      |                                                                                                              |                           |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                  | t mode to | use.          |
| Entry:                              | AH = 0<br>AL = mode value:<br>* Modes 0-3 are in<br>or 9x16 fonts deper<br>previously set scan            | 1*<br>2*<br>3*<br>4<br>5<br>6<br>7*<br>8<br>9<br>A<br>B<br>C<br>D<br>E<br>F<br>10<br>11<br>12<br>13<br>mpler | g on the v                | 640x200<br>80x25<br>d<br>d<br>d<br>d<br>320x200<br>640x200<br>640x350<br>640x350<br>640x480<br>320x200<br>sing 8x8, 8:<br>vertical reso | monochrome<br>monochrome<br>monochrome<br>16-color<br>16-color<br>2-color<br>16-color<br>256-color<br>x14, or 9x16 fo<br>lution available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | text<br>graphics<br>graphics<br>text<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics<br>graphics |           |               |
| Exit:                               | None                                                                                                      |                                                                                                              | ••                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                  |           |               |
| the display to be<br>change modes v | unction provides a mea<br>e erased. The no blanki<br>vithout changing the co<br>the colors to default col | ing oj<br>intent                                                                                             | ption (set<br>is of the d | ting bit 7 of<br>lisplay. It le                                                                                                         | f the AL registed<br>oads the appropriate or the second | er) allows to<br>oriate chara                                                                                                                                                                    | he progra | um to<br>into |

NOTE: If the high (MSB) bit of AL is set it prevents clearing of display memory.

## Function Differences Between Text and Graphics Modes

All of the text mode and scrolling functions described in later sections are also available in graphics mode. There are some differences, however.

- Attributes are not defined for graphics modes.
- Colors can be specified in the Write Character function and in scrolling the color of the area to be blanked can be provided.
- The Write TTY function is not capable of determining the attributes of the display and will assume the default of a black background when writing text in graphics mode.
- All the text mode functions assume a character position cursor definition. Because of this, if you have a 320 x 200 graphics mode display, you can only have 40 columns and 25 rows of text to which you can position the cursor.
- Characters in graphics modes can be XOR'ed to the screen.

## **Cursor Functions**

The cursor defines where the next character will be placed on the screen. This is often shown as a blinking underline. The shape of the cursor can be changed using the Set Cursor Type function as shown:

## Int 10 - Function 1

Set Cursor Type

Entry:

AH = 01h CH = Cursor start line (bits 4-0)CL = Cursor end line (bits 4-0)

None

Exit:

NOTE: Setting bit 5 or 6 in start line (CH) will cause erratic blinking or no cursor at all.

The shape of the cursor can be defined as anything between a blinking box and one line, or it can be turned off completely.

The BIOS, in order to maintain backwards compatibility, makes the display look like a Color Graphics Adapter. It defines the cursor shape as though it is an 8x8 character, which is the only possibility on a Color Graphics Adapter. In VGA text modes, the character can actually be a 9x16 character. The BIOS takes the cursor shape as though it was an 8x8 character, and makes it look proper for a 9x16 character definition.

Through the BIOS all characters written to the screen are placed at the current cursor position. The program must specify where the cursor is placed. The Set Cursor Position function performs this as shown:

| Int 10 - Func                                                                                                                                                                                                 | tion 2                                                               | Set Cursor Position  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|--|--|--|
| Entry:                                                                                                                                                                                                        | AH = 02h<br>DH = row<br>DL = column<br>BH = page number              |                      |  |  |  |
| Exit:                                                                                                                                                                                                         | None                                                                 |                      |  |  |  |
| When the cursor position is set, all character writes and reads will be at that position (0, 0 is the upper left<br>To determine the cursor position there is a Read Cursor Position function as shown below: |                                                                      |                      |  |  |  |
| Int 10 - Func                                                                                                                                                                                                 | ction 3                                                              | Read Cursor Position |  |  |  |
| Entry:                                                                                                                                                                                                        | AH = 03h<br>BH = page number                                         |                      |  |  |  |
| Exit:                                                                                                                                                                                                         | DH = row<br>DL = column<br>CX = current cursor type (see function 1) |                      |  |  |  |
|                                                                                                                                                                                                               |                                                                      |                      |  |  |  |
|                                                                                                                                                                                                               |                                                                      |                      |  |  |  |
|                                                                                                                                                                                                               |                                                                      |                      |  |  |  |

| Int 10 - Function 4                                 | Read Light Pen Position                                                                                                                                                                                                                                                   |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry:                                              | AH = 4                                                                                                                                                                                                                                                                    |
| Exit:                                               | AH = 0: Light pen switch not down/not triggered                                                                                                                                                                                                                           |
| The light pen is not                                | t supported in the VGA; this function always returns 0 in AH.                                                                                                                                                                                                             |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
| Int 10 - Function 5                                 | Set Active Page                                                                                                                                                                                                                                                           |
| order to use this me                                | ains 256K of memory, of which only a limited amount is displayed at any one time. In<br>emory, most display modes have several pages or screens that can be displayed. Only<br>active at a time, the other screens are accessible by the CPU but are not displayed on the |
| Entry:                                              | AH = 05h<br>AL = new page value                                                                                                                                                                                                                                           |
| Exit:                                               | None                                                                                                                                                                                                                                                                      |
| The EGA/VGA BI<br>the previous cursor<br>animation. | OS maintains the current cursor position for each page. When selecting the active page, position is retained. Paging can thus be used for rapidly changing the display or for                                                                                             |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                                                                                                                                                                                           |

#### **Scrolling Functions**

There are two scrolling functions, Scroll Up and Scroll Down. They are functionally similar, and are shown below:

|                                                                                            | Scroll Active Page Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry:                                                                                     | <ul> <li>AH = 06h</li> <li>AL = Number of lines (input lines blanked at bottom of window)<br/>(AL = 0 means blank entire window)</li> <li>BH = Attribute to be used on blank line</li> <li>CH,CL = Row, column of upper left corner of scroll</li> <li>DH,DL = Row, column of lower right corner of scroll</li> </ul>                                                                                                                                                                                                                          |
| Exit:                                                                                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Int 10 - Function 7                                                                        | Scroll Active Page Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Entry:                                                                                     | <ul> <li>AH = 07h</li> <li>AL = Number of lines (input lines blanked at top of window)<br/>(0 means blank entire window)</li> <li>BH = Attribute to be used on blank line</li> <li>CH,CL = Row, column of upper left corner of scroll</li> <li>DH,DL = Row, column of lower right corner of scroll</li> </ul>                                                                                                                                                                                                                                  |
| the display which w<br>window and the nu<br>(scrolled) off the sc<br>lines (0) to be scrol | e used only for the currently displayed active screen page, and allows defining an area of<br>will be moved. The program defines the top left corner and the bottom right corner of this<br>mber of lines to be scrolled. The lines that are moved and the ones that are being moved<br>reen will be lost. A special characteristic of the scroll functions is that if you specify no<br>led, the BIOS will clear the entire window, so that all characters within that window will<br>tribute to be saved into that window is loaded into BH. |

#### Character / Attribute Functions

Once a cursor position has been defined, the program can place text at the defined position. There are functions available to read and write characters and attributes.

The character codes are an extension of the standard ASCII character set. Some of the lower range characters which are normally control functions are also defined as displayable characters. Beyond the first 128 character codes there are extended characters that provide line drawing capability, foreign character definition, and mathematical symbols.

The attribute codes define the display characteristics. This includes blinking, foreground and background color, and in some instances, the character set used. Although the monochrome display mode allows normal video and intensified video, they are not entirely compatible with the Monochrome Display Adapter. Table 4-3 shows a listing of the color mapping / attribute codes.

| Attribute | IRGB | Monochrome | Color             |
|-----------|------|------------|-------------------|
| 00h       | 0000 | Black      | Black             |
| Olh       | 0001 | Underline  | Blue              |
| 02h       | 0010 | Video      | Green             |
| 03h       | 0011 | Video      | Cyan              |
| 04h       | 0100 | Video      | Red               |
| 05h       | 0101 | Video      | Magenta           |
| 06h       | 0110 | Video      | Brown             |
| 07h       | 0111 | Video      | White             |
| 08h       | 1000 | Black      | Dark Gray         |
| 09h       | 1001 | Underline  | Light Blue        |
| 0Ah       | 1010 | Video      | Light Green       |
| OBh       | 1011 | Video      | Light Cyan        |
| 0Ch       | 1100 | Video      | Light Red         |
| 0Dh       | 1101 | Video      | Light Magenta     |
| 0Eh       |      | Video      | Yellow            |
| OFh       |      | Video      | Intensified White |

 Table 4-3.
 Color Mapping / Attribute Codes

For read/write character functions while in CGA graphics mode (4, 5 and 6), characters are formed from a character generator image maintained in system ROM. Only the first 128 characters are maintained there. To read/write the second 128 characters, a pointer at interrupt 1Fh (memory location 0007Ch) points to a 1K byte table containing the code points for the second 128 characters (128-255).

For EGA graphics modes (D - 10) and the new VGA graphics modes (11h-13h), all 256 graphics characters are supplied in the system ROM. There is a pointer to these characters at int 43h (location 0:010C).

For the write character functions while in graphics mode, the replication factor contained in CX on entry will produce valid results only for characters contained on the same row. Continuation to succeeding lines will not produce correctly.

| Int 10 - Function 8                     | Read Character and Attribute                                                                                                                                                               |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry:                                  | AH = 08h<br>BH = page                                                                                                                                                                      |
| Exit:                                   | AL = Character read<br>AH = Attribute of character read (Alpha modes only)                                                                                                                 |
|                                         | and Attribute function returns a character and the associated attribute as shown at the he display. It does not need to be the current page so the character may not be visible on         |
| NOTE:                                   | Graphics modes must have a background color of 0 for the read back to work properly.                                                                                                       |
| Int 10 - Function 9                     | Write Character and Attribute                                                                                                                                                              |
| Entry:                                  | AH = 09h<br>AL = Character to write<br>BL = Attribute of character (Alpha mode)<br>BL = Color of character (Graphics mode)<br>BH = Display page<br>CX = Number of times to write character |
| Exit:                                   | None                                                                                                                                                                                       |
| NOTE:                                   | In graphics mode, if bit 7 of BL is 1, then the character is XOR'ed with the screen.                                                                                                       |
| Int 10 - Function A                     | Write Character Only                                                                                                                                                                       |
| Entry:                                  | AH = 0AH<br>AL = Character to write<br>BH = Display page<br>BL = Foreground color (Graphics ONLY)<br>CX = Count of characters to write                                                     |
| Exit:                                   | None                                                                                                                                                                                       |
| The Write Characte for that cursor posi | r Only function will only change the character definition and not the attribute definition tion.                                                                                           |
|                                         |                                                                                                                                                                                            |

#### **Color Palette Functions**

The V7 VGA BIOS provides the ability for a programmer to define different colors to be displayed on the screen. This is performed with the Set Color Palette and Set Palette Registers functions (see Function 10, page 16).

| Int 10 - Funct  | on B Set Color Pale                                                                                                                                                                                                      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry:          | AH = 0Bh<br>BH = Palette color ID being set (0-127)<br>BL = Color value to be used with that color ID                                                                                                                    |
| Where:<br>Exit: | Color ID = 0 selects the background color (0-15)<br>Color ID = 1 selects the palette to be used: $0 = \text{Green}(1)/\text{Red}(2)/\text{Brown}(3)$<br>1 = Cyan(1)/Magenta(2)/White(3)<br>None                          |
|                 | x25 text modes, the value set for palette color 0 indicates the border color (0-31, where 16-<br>gh-intensity background set.)                                                                                           |
| needed only fo  | s provided for compatibility with CGA BIOS code. For the EGA and VGA, this function is<br>r 320x200 (4-color) graphics. The new EGA/VGA palette function 10h (Set Palette<br>ides a super-set of the functionality here. |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                          |

#### Graphics Mode Functions

The BIOS capabilities for doing graphics is limited. They allow you to write or retrieve the current value of a pixel at a given row and column location of a specific page. These two functions are relatively slow and do not provide good support for doing extensive graphics. They are primarily there to provide easy access for drawing pixels on the screen.

| Int 10 - Func | tion C                                                                                       | Write Dot                             |
|---------------|----------------------------------------------------------------------------------------------|---------------------------------------|
| Entry:        | AH = 0Ch<br>BH = Page<br>DX = Row number<br>CX = Column number<br>AL = Color value for pixel |                                       |
| Exit:         | None                                                                                         |                                       |
|               | NOTE: If bit 7 of $AL = 1$ , then the color value is XOR'ed v                                | with the current contents of the dot. |

Using this function the program must specify a pixel row and pixel column, the page to write the pixel to, and the color value. The color value can range from 0 to 255 depending on the display mode. In a 4-color display, it can only use 0-3, in a 16-color display it can do 0-15, in a 256-color display it can do 0-255. All modes except mode 13h can also do an XOR on the current contents of the display. This is useful for changing the display temporarily for "rubber band" type operation and highlighting certain areas of the display.

| Int 10 - Fund | tion D                                                                                                                                                                                                                         | Read Do            |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| Entry:        | AH = 0Dh<br>BH = Page<br>DX = Row number<br>CX = Column number                                                                                                                                                                 |                    |  |
| Exit:         | AL = Color of dot read                                                                                                                                                                                                         |                    |  |
| from. The fi  | Inction the program must specify a pixel row and pixel column, and the punction will return the value of the color read in the AL register. The color 5 depending on the number of colors displayable by the current display n | or value can range |  |
|               |                                                                                                                                                                                                                                |                    |  |
|               |                                                                                                                                                                                                                                |                    |  |
|               |                                                                                                                                                                                                                                |                    |  |

| Int 10 - Function E       | Write TTY                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cursor position befo      | ction allows the program to display text on the screen without having to update the<br>ore each character write. As the cursor goes to the right side of the screen it will wrap to<br>a next line, and as the cursor goes off the bottom of the screen it will automatically scroll                                                                                                                 |
| Entry:                    | AH = 0Eh<br>AL = Character to write<br>BL = Foreground color in graphics mode                                                                                                                                                                                                                                                                                                                        |
| Exit:                     | None                                                                                                                                                                                                                                                                                                                                                                                                 |
| NOTE:                     | Screen width is controlled by the previous mode set.                                                                                                                                                                                                                                                                                                                                                 |
| The Write TTY fun         | ction has several predefined special characters which perform special action:                                                                                                                                                                                                                                                                                                                        |
| • CR (carria)             | ge return, ASCII 0Dh) will return the cursor to column 0 on the same line.                                                                                                                                                                                                                                                                                                                           |
|                           | ed, ASCII 0Ah) will leave the column position the same but go down one line, scrolling f the cursor is at the bottom of the screen.                                                                                                                                                                                                                                                                  |
| • BS (back s              | pace, ASCII 08h) will move the cursor position back one position.                                                                                                                                                                                                                                                                                                                                    |
| • BL (bell, A             | SCII 07h) will not change the cursor position but will cause the speaker to beep once.                                                                                                                                                                                                                                                                                                               |
| Int 10 - Function F       | Get Video State                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | Get Video State                                                                                                                                                                                                                                                                                                                                                                                      |
| In order to det           | ermine the current state of the EGA/VGA card, there is a Get Video State function.                                                                                                                                                                                                                                                                                                                   |
| In order to det<br>Entry: |                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | ermine the current state of the EGA/VGA card, there is a Get Video State function.                                                                                                                                                                                                                                                                                                                   |
| Entry:<br>Exit:           | ermine the current state of the EGA/VGA card, there is a Get Video State function.<br>AH = 0Fh<br>AL = mode currently set<br>AH = number of character columns on screen                                                                                                                                                                                                                              |
| Entry:<br>Exit:           | ermine the current state of the EGA/VGA card, there is a Get Video State function.<br>AH = 0Fh<br>AL = mode currently set<br>AH = number of character columns on screen<br>BH = current active display page<br>If the program uses the no blank option on the Set Mode function, this will be returned<br>in the Get Video State function. This flag (mode byte msb) will be set if the last call to |
| Entry:<br>Exit:           | ermine the current state of the EGA/VGA card, there is a Get Video State function.<br>AH = 0Fh<br>AL = mode currently set<br>AH = number of character columns on screen<br>BH = current active display page<br>If the program uses the no blank option on the Set Mode function, this will be returned<br>in the Get Video State function. This flag (mode byte msb) will be set if the last call to |
| Entry:<br>Exit:           | ermine the current state of the EGA/VGA card, there is a Get Video State function.<br>AH = 0Fh<br>AL = mode currently set<br>AH = number of character columns on screen<br>BH = current active display page<br>If the program uses the no blank option on the Set Mode function, this will be returned<br>in the Get Video State function. This flag (mode byte msb) will be set if the last call to |
| Entry:<br>Exit:           | ermine the current state of the EGA/VGA card, there is a Get Video State function.<br>AH = 0Fh<br>AL = mode currently set<br>AH = number of character columns on screen<br>BH = current active display page<br>If the program uses the no blank option on the Set Mode function, this will be returned<br>in the Get Video State function. This flag (mode byte msb) will be set if the last call to |
| Entry:<br>Exit:           | ermine the current state of the EGA/VGA card, there is a Get Video State function.<br>AH = 0Fh<br>AL = mode currently set<br>AH = number of character columns on screen<br>BH = current active display page<br>If the program uses the no blank option on the Set Mode function, this will be returned<br>in the Get Video State function. This flag (mode byte msb) will be set if the last call to |

#### **Color Palette Functions**

The V7 VGA BIOS provides the ability for a programmer to define different colors to be displayed on the screen. This is performed with the Set Color Palette and Set Palette Registers functions.

#### Int 10 - Function 10

Set Palette Registers

The Set Palette Registers function allows the program to make full use of the extended colors on the EGA/VGA.

| Entry:              | AH = 10h                                                                                                      |                                                                                                        |
|---------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| AL = 0:             | Set individual palette register:<br>BL = Palette register to be set<br>BH = Value to set                      |                                                                                                        |
| AL = 1:             | Set overscan register:<br>BH = Value to set                                                                   |                                                                                                        |
| AL = 2:             | Set palette registers and overscan:<br>ES:DX = Pointer to 17 byte table:                                      | Bytes 0-15 are palette values<br>Byte 16 is the overscan value                                         |
| AL = 3:             | Toggle intensify / blinking bit:<br>BL = 0: Enable intensify<br>BL = 1: Enable blinking                       |                                                                                                        |
| enabled it provides | of the bits in the attribute code to all<br>16 background colors and 16 foreg<br>plus a blinking character.   | ow for 16 colors in background. When intensify is round colors. When blinking is enabled it provides 8 |
| AL = 7:             | Read individual palette register<br>BL = Palette register to be read<br>BH = Value read                       |                                                                                                        |
| AL = 8:             | Read overscan register<br>BH = Value read                                                                     |                                                                                                        |
| AL = 9:             | Read all palette registers and overs<br>ES:DX = Pointer to 17 byte table:                                     |                                                                                                        |
| AL = 10:            | Set individual color register<br>BX = Color register number                                                   | CH = Green value<br>CL = Blue value<br>DH = Red value                                                  |
| AL = 12:            | BX = Number of first clolor regist<br>CX = Number of registers to be se<br>ES:DX = Pointer to a table of colo | et<br>or values.<br>color values be in the sequence:<(red, green, blue),                               |

| Entry: (cont'd) |                                                                                                                                                                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AL = 13:        | Select color page<br>BH = Paging mode or value<br>BL = 0, select paging mode:<br>BH = 0 selects four pages of 64 color registers                                                                                                                                                               |
|                 | BH = 1 selects 16 pages of color registers<br>BL = 1, select page:<br>BH = number of the required page (0- 3 or 0-15)                                                                                                                                                                          |
| AL = 15:        | Read individual color register<br>BX = Number of color register<br>CH = Green value                                                                                                                                                                                                            |
|                 | CL = Blue value                                                                                                                                                                                                                                                                                |
|                 | DH = Red value                                                                                                                                                                                                                                                                                 |
| AL = 17:        | Read block of color registers<br>BX = Number of first color register<br>CX = Number of registers to be read<br>ES:DX = Pointer to a table to receive the color values<br>The table should contain color values be in the sequence:<(red, green, blue),<br>(red, green, blue)(red, green blue)> |
| AL = 1A:        | Read current color page number<br>BH = Current page<br>BL = Paging mode                                                                                                                                                                                                                        |
| AL = 1B:        | Sum color values to gray scale<br>BX = first color register to be summed<br>CX = Number of registers to sum                                                                                                                                                                                    |
| Exit:           | None                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                |

Int 10 - Function 11

The V7 VGA provides loadable character set capability in text mode. The fonts are saved in plane 2 of display memory. When in text mode, character font information is automatically retrieved from plane 2 for each character and displayed at the proper position on the display.

Font table manipulation provides the ability to load fonts, use fonts contained within the BIOS ROM, or define fonts. There is room for the definition of eight 256-character fonts within the VGA, two of which can be displayed at any one time.

The character font load function should only be called after doing a set mode operation and before changing any of the characteristics of the display such as the cursor size. This is because the process of loading a character font causes the EGA/VGA registers to be reprogrammed so that the BIOS can load the font.

| Entry: | AH = 11h  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |
|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|        | AL = 0xh  | Initiate mode set, completely resetting the<br>but maintaining display memory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | video environment,                                                                      |
|        | AL = 00h  | Load User Font<br>ES:BP = Pointer to user table<br>CX = Count to store<br>DX = Character offset into table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
|        | AL = 02h  | BH = Number of bytes per characterHLoad ROM Monochrome Font:HLoad ROM 8x8 Double Dot Font:HSet Block SpecifierHBL = Font Block SpecifierD3-D2 Attr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |
|        | recomment | en using $AL = 3$ , a function call of $AX = 10$<br>ded to set the color planes resulting in 512 c<br>Load ROM 8x16 character set: BL = Targe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | characters and 8 consistent colors                                                      |
|        | AL = 1xh  | Similar to $(AL = 0x)$ functions except that:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |
|        |           | <ul> <li>Page 0 must be active</li> <li>POINTS (bytes/character) will be recalculated from: INT</li> <li>ROWS will be recalculated from: (RO</li> <li>CRT_LEN will be calculated from: (RO</li> <li>The CRTC will be reprogrammed as following the second seco</li></ul> | ((200, 350 or 400) / POINTS) - 1<br>WS + 1) * CRT_COLS * 2                              |
|        |           | CR09 = POINTS - 1 (only in mode 7)<br>CR0A = POINTS - 2<br>CR0B = 0<br>CR12 = ((ROWS+1)*POINTS)-1<br>CR14 = POINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Max Scan Line)<br>(Cursor Start)<br>(Cursor End)<br>(Vert Disp End)<br>(Underline Loc) |
|        |           | The above register calculations must be cloundetermined results will occur. The func-<br>be called immediately after a mode set or u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctions in this group should only                                                        |
|        | AL = 10h  | Load User Font<br>ES:BP = Pointer to user table<br>CX = Count to store<br>DX = Character offset into table<br>BH = Number of bytes per character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BL = Block to load                                                                      |
|        |           | Load ROM Monochrome Font:<br>Load ROM 8x8 Double Dot Font:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BL = Block to load<br>BL = Block to load                                                |

| Int 10 - Function | 11                                                     |                                                                                                                                                                                                                                                                                    | L                                    | oad Character Font (continued)                                 |
|-------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------|
| Entry (cont'd):   | htry (cont'd): $AL = 14h$ Load ROM 8x16 character set: |                                                                                                                                                                                                                                                                                    | BL = Target block                    |                                                                |
|                   |                                                        | Load user graphics characters int 1<br>Load user graphics characters<br>CX = Points (bytes per character)                                                                                                                                                                          | fh (8x8)                             | ES:BP = Pointer to user table<br>ES:BP = Pointer to user table |
|                   |                                                        | BL = Row specifier                                                                                                                                                                                                                                                                 | BL = 0<br>BL = 1<br>BL = 2<br>BL = 3 |                                                                |
|                   |                                                        | Load ROM 8x14 Font:<br>Load ROM 8x8 Font:                                                                                                                                                                                                                                          |                                      | w specifier<br>w specifier                                     |
|                   | AL = 24h                                               | Load Graphics mode ROM $8x16$ so $BL =$ Identifies the number of row                                                                                                                                                                                                               |                                      | creen: $BL = 1$ 14 rows<br>BL = 2 25 rows<br>BL = 3 43 rows    |
|                   | AL = 30h                                               | Get Font Information                                                                                                                                                                                                                                                               |                                      |                                                                |
|                   |                                                        | CX = Points<br>DL = Rows                                                                                                                                                                                                                                                           |                                      |                                                                |
|                   |                                                        | $\begin{array}{l} BH = 0  \text{Return Int 1Fh Pointer:} \\ BH = 1  \text{Return Int 44h Pointer:} \\ BH = 2  \text{Return ROM 8x14 Font H} \\ BH = 3  \text{Return ROM 8x8 Font H} \\ BH = 4  \text{Return ROM 8x8 Font H} \\ BH = 5  \text{Return ROM Alternate 9x} \end{array}$ | Pointer:<br>Pointer (To              |                                                                |
| Exit:             | BH = 6<br>BH = 7                                       | Return ROM 8x16 Font Pointer<br>Return 9x16 Replacement Font Pointer                                                                                                                                                                                                               | inter                                |                                                                |
|                   |                                                        |                                                                                                                                                                                                                                                                                    |                                      |                                                                |
|                   |                                                        |                                                                                                                                                                                                                                                                                    |                                      |                                                                |
|                   |                                                        |                                                                                                                                                                                                                                                                                    |                                      |                                                                |
|                   |                                                        |                                                                                                                                                                                                                                                                                    |                                      |                                                                |
|                   |                                                        |                                                                                                                                                                                                                                                                                    |                                      |                                                                |
|                   |                                                        |                                                                                                                                                                                                                                                                                    |                                      |                                                                |
|                   |                                                        |                                                                                                                                                                                                                                                                                    |                                      |                                                                |

| Int 10 - Function                                                          | 12 - Subfunction 1                                                                         | 0                                                                                                                                                                                                                                                                                                | Get EGA / VGA Info                                                                 |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Entry:                                                                     | AH = 12h<br>BL = 10h:                                                                      | Return EGA/VGA information                                                                                                                                                                                                                                                                       |                                                                                    |
| Exit:                                                                      | BH = 0:<br>BH = 1:<br>BL = Memory<br>CH = Feature B<br>CL = Switch Se                      |                                                                                                                                                                                                                                                                                                  |                                                                                    |
| present. The bes<br>is done, if CX is<br>EGA/VGA is in<br>can determine mo | t way to do this is to<br>0, there is no EGA/<br>color mode or in mo<br>emory size, though | in parameters from the EGA/VGA, or determine<br>o clear the CX register before calling this funct<br>VGA in the system. This also provides the ab<br>onochrome mode, and to check feature bits and<br>on the V7 VGA it will always show 256K of the<br>are no feature adapters currently in use. | tion. When the function<br>bility to find out if the<br>d switch settings. It also |
| Int 10 - Function                                                          | 12 - Subfunction 2                                                                         | 0                                                                                                                                                                                                                                                                                                | Select Alternate                                                                   |
| Entry:                                                                     | $\begin{array}{l} AH = 12h \\ BL = 20h \end{array}$                                        | Select Alternate Print Screen Routine                                                                                                                                                                                                                                                            |                                                                                    |
| Exit:                                                                      | None                                                                                       |                                                                                                                                                                                                                                                                                                  |                                                                                    |
| screen routine the 25 lines. This all Note that this fur                   | at will print all of th<br>ternate print screen                                            | defining an alternate print screen routine. This<br>e rows on the screen. Most system board BIC<br>function will print out however many number<br>text mode, not graphics mode. The default is<br>used.                                                                                          | OS ROMS only print out of lines are on the screen.                                 |
| Int 10 - Function                                                          | 12 - Subfunction 3                                                                         | 0                                                                                                                                                                                                                                                                                                | Select Scan Lines                                                                  |
| Entry:                                                                     | AH = 12h<br>AL = Number c<br>BL = 30h                                                      | of scan lines: $0 = 200$ lines, $1 = 350$ lines, 2<br>Select scan lines for alphanumeric modes                                                                                                                                                                                                   | = 400 lines                                                                        |
| Exit:                                                                      | AL = 12h                                                                                   | to indicate that this function is supported                                                                                                                                                                                                                                                      |                                                                                    |
| This function set                                                          | s the number of sca                                                                        | n lines in text mode, and takes effect in the ne                                                                                                                                                                                                                                                 | ext mode set.                                                                      |
| Int 10 - Function                                                          | n 12 - Subfunction 3                                                                       | 31                                                                                                                                                                                                                                                                                               | Default Palette Loading                                                            |
| Entry:                                                                     | AH = 12h<br>AL = 0<br>AL = 1<br>BL = 31h                                                   | Enable palette loading<br>Disable palette loading<br>Default palette loading during mode set                                                                                                                                                                                                     |                                                                                    |
| Exit:                                                                      | AL = 12h                                                                                   | to indicate that this function is supported                                                                                                                                                                                                                                                      |                                                                                    |
| When palette loa<br>or other BIOS ca                                       |                                                                                            | ither the internal palette nor the DAC will be r                                                                                                                                                                                                                                                 | nodified during mode sets                                                          |

| Int 10 - Functi | on 12 - Subfunction                                                                               | 32                                                                                                                                      | Video Enable/Disable   |
|-----------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Entry:          | AH = 12h $AL = 0$ $AL = 1$ $BL = 32h$                                                             | enable video<br>disable video<br>Select video enable or disable                                                                         |                        |
| Exit:           | AL = 12h                                                                                          | to indicate that this function is supp                                                                                                  | orted                  |
| When the vide   | o subsystem function                                                                              | n is disabled, all I/O and video memory                                                                                                 | y R/W are disabled.    |
| Int 10 - Functi | on 12 - Subfunction                                                                               | 33                                                                                                                                      | Summing To Gray Scales |
| Entry:          | AH = 12h $AL = 0$ $AL = 1$ $BL = 33h$                                                             | enable summing<br>disable summing<br>Selects summing enable or disable                                                                  | . 1                    |
| Exit:           | AL = 12h                                                                                          | to indicate that this function is supp                                                                                                  |                        |
| This function v | will calculate a relati                                                                           | ve shade of gray based on 30% red, 59                                                                                                   | 9% green and 11% blue. |
| Int 10 - Functi | on 12 - Subfunction                                                                               | 34                                                                                                                                      | Cursor Emulation       |
| Entry:          | AH = 12h $AL = 0$ $AL = 1$ $BL = 33h$                                                             | enable emulation<br>disable emulation<br>Selects emulation enable or disable                                                            |                        |
| Exit:           | AL = 12h                                                                                          | to indicate that this function is supp                                                                                                  | ported                 |
|                 |                                                                                                   | , the cursor start/stop will be set exactly s enabled, the following algorithm is in                                                    |                        |
|                 | Parameters<br>Bit 5 = 1<br>START < EI<br>START + 2 :<br>START = > :<br>START = < :<br>or END < ST | No cursor<br>ND = < 3<br>> = END<br>2<br>2<br>No cursor<br>Overbar cursor<br>Underline cursor<br>Half-block cursor<br>Full-block cursor |                        |

| Int 10 - Functi                                           | ion 12 - Subfunction                                         | 35                                                                                                                                                                | Display Switch                              |
|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Entry:                                                    | AH = 12h<br>AL = 0<br>AL = 1<br>AL = 2<br>AL = 3<br>BL = 35h | Inital switch off adapter video<br>Initial switch on planar video<br>Switch off active display<br>Switch on inactive display<br>Selects or deselects video device |                                             |
| Exit:                                                     | AL = 12h                                                     | to indicate that this function is supported                                                                                                                       |                                             |
| This function<br>address space                            |                                                              | the video device. It is used when two video boa                                                                                                                   | ards overlap in I/O                         |
| Int 10 - Funct                                            | ion 12 - Subfunction                                         | 36                                                                                                                                                                | Video Screen On/Of                          |
| Entry:                                                    | AH = 12h $AL = 0$ $AL = 1$ $BL = 36h$                        | enable video output<br>disable video output<br>Selects video on or off                                                                                            |                                             |
|                                                           |                                                              |                                                                                                                                                                   |                                             |
| Exit:<br>This function<br>since the CRT<br>screen quickly | C does not need to a                                         | to indicate that this function is supported<br>en output. The CPU will not be "waited" during<br>access video RAM when display is disabled. It i                  | writes to video RAM<br>s used to update the |
| This function since the CRT                               | will disable the scree<br>C does not need to a               | en output. The CPU will not be "waited" during                                                                                                                    | writes to video RAM<br>s used to update the |
| This function since the CRT                               | will disable the scree<br>C does not need to a               | en output. The CPU will not be "waited" during                                                                                                                    | writes to video RAM<br>s used to update the |

The Write String function allows writing more than one character at a time to the display. It also allows the program to write one fixed attribute for the whole screen or a character and an attribute for each position on the screen, so each character has its own attribute. It also provides the ability for the cursor position to be updated or left where it started.

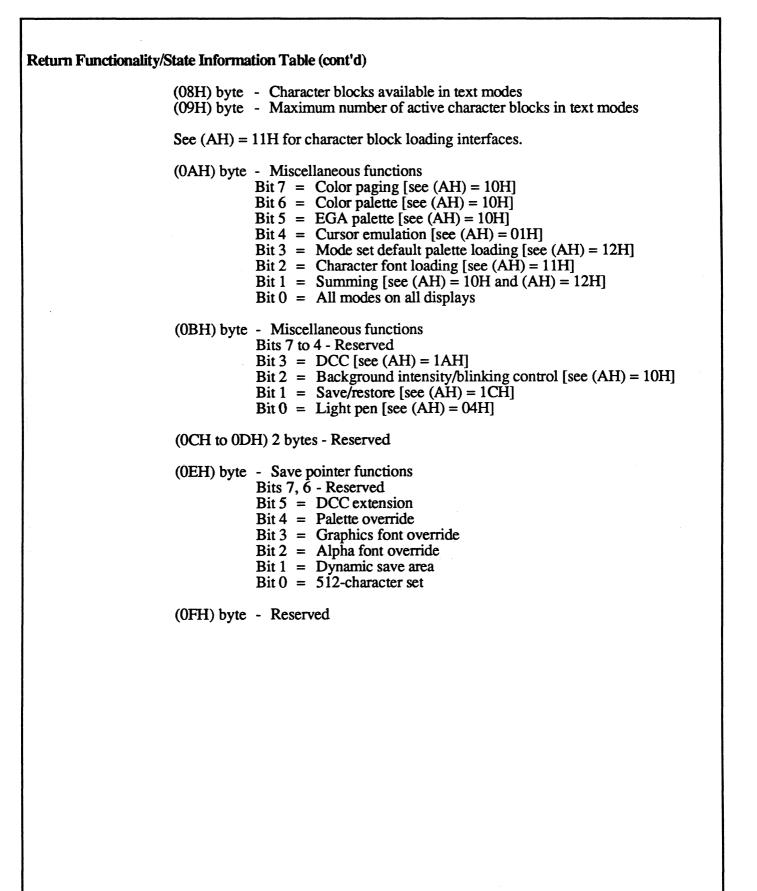
En

| Entry:  | AH = 13h<br>ES:BP = Pointer to string to be written<br>CX = Character only count<br>DX = Position to begin string, in cursor terms<br>BH = Page number |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AL = 0: | Fixed attribute, cursor not moved<br>BL = attribute                                                                                                    |  |  |
| AL = 1: | Fixed attribute, cursor is moved<br>BL = attribute                                                                                                     |  |  |

- AL = 2: String includes attributes, cursor not moved
- AL = 3: String includes attributes, cursor is moved

Exit: None

The format of the string is char, char, ... for AL = 0 and AL = 1. The format of the string for AL = 2 and AL = 3 is char, attr, char, attr, where an attribute follows each character.


This is an easier interface to use but it is only defined in the EGA/VGA and PC/AT BIOS. It is not found in the IBM PC and PC/XT motherboard BIOS. The Write String function also responds to the CR, LF, BS and Bell codes similar to the Write TTY function.

| VGA Extended           | unctions                                                                                                                                                                                                                                                 |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Int 10 - Function      | A Display Combination Code (DCC) Handling                                                                                                                                                                                                                |  |  |
| Entry:                 | $\begin{array}{ll} AH &= 1Ah \\ AL &= 0 \end{array}$                                                                                                                                                                                                     |  |  |
| Exit:                  | AL = 1Ah to indicate that this function is supported                                                                                                                                                                                                     |  |  |
|                        | BL = Active Display Device (see table below)<br>BH = Alternate Display Device (see table below)                                                                                                                                                          |  |  |
|                        | 00h = No Display $07h = VGA (mono)$ $01h = MDA$ $08h = VGA (color)$ $02h = CGA$ $09h = (reserved)$ $03h = (reserved)$ $0Ah = (reserved)$ $04h = EGA (mono)$ $0Bh = MCGA (mono)$ $05h = EGA (color)$ $0Ch = MCGA (color)$ $06h = PGA$ $07h = VGA (color)$ |  |  |
| This function wi       | return the display type.                                                                                                                                                                                                                                 |  |  |
| Int 10 - Function      | B Return Functionality / State Information                                                                                                                                                                                                               |  |  |
| Entry:                 | AH = 1Bh<br>BX = 0<br>ES:DI = Pointer to target buffer                                                                                                                                                                                                   |  |  |
| Exit:                  | AL = 1Bh to indicate that this function is supported<br>ES:DI = points to the table described in the table below.                                                                                                                                        |  |  |
| <b>Return Function</b> | ity/State Information Table                                                                                                                                                                                                                              |  |  |
| Entry:                 | BX = 00H<br>ES:DI = Buffer of size 40H bytes                                                                                                                                                                                                             |  |  |
|                        | (DI + 00H) word - Offset to static functionality information<br>(DI + 02H) word - Segment to static functionality information                                                                                                                            |  |  |
|                        | Video States: (The following information is dynamically generated and reflects the current video state.)                                                                                                                                                 |  |  |
|                        | (DI + 04H) byte - Video mode<br>(DI + 05H) byte - Columns on screen (character columns on screen)                                                                                                                                                        |  |  |
|                        | <ul> <li>(DI + 07H) word - Length of regenerator buffer (bytes)</li> <li>(DI + 09H) word - Starting address in regenerator buffer</li> <li>(DI + 0BH) word - Cursor position for eight display pages (row, column)</li> </ul>                            |  |  |
|                        | <ul> <li>(DI + 1BH) word - Cursor type setting (cursor start/end value)</li> <li>(DI + 1DH) byte - Active display page</li> <li>(DI + 1EH) word - CRT controller address (3BX-monochrome, 3DX-color)</li> </ul>                                          |  |  |
|                        | (DI + 20H) byte - Current setting of 3x8 register<br>(DI + 21H) byte - Current setting of 3x9 register                                                                                                                                                   |  |  |

Return Functionality/State Information Table (cont'd)

(DI + 22H) byte - Rows on screen (character lines on screen) (DI + 23H) word - Character height (scan lines per character) (DI + 25H) byte - Display combination code (active) (DI + 26H) byte - Display combination code (alternate) (DI + 27H) word - Colors supported for current video mode (DI + 29H) byte - Display pages supported for current video mode (DI + 2AH) byte - Scan lines in current video mode = 0 - 200 scan lines = 1 - 350 scan lines = 2 - 400 scan lines = 3 - 480 scan lines = 4 to 255 - reserved (DI + 2BH) byte - Primary character block = 0 - Block 0= 1 - Block 1= 2 - Block 2. . . . = 255 - Block 255 This information is based on block specifier. [See (AH) = 11H, (AL) = 03H] (DI + 2DH) byte - Miscellaneous state information Bits 7,6 - Reserved Bit 5 = 0 - Background intensity = 1 - BlinkingBit 4 = 1 - Cursor emulation active Bit 3 = 1 - Mode set default palette loading disabled Bit 2 = 1 - Monochrome display attached Bit 1 = 1 - Summing active Bit 0 = 1 - All modes on all displays active (DI + 2EH) byte - Reserved (DI + 2FH) byte - Reserved (DI + 30H) byte - Reserved (DI + 31H) byte - Video memory available = 0 - 64Kb = 1 - 128 Kb = 2 - 192 Kb= 3 - 256 Kb = 4 to 255 - Reserved

| Return Functionality/State Information Table (cont'd)                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(DI + 32H) byte - Save pointer state information<br/>Bits 7,6 - Reserved<br/>Bit 5 = 1 - DCC extension active<br/>Bit 4 = 1 - Palette override active<br/>Bit 3 = 1 - Graphics font override active<br/>Bit 2 = 1 - Alpha Font override active<br/>Bit 1 = 1 - Dynamic save area active<br/>Bit 0 = 1 - 512-character set active</li> </ul> |
| (DI + 33H) to $(DI + 3FH)$ 13 bytes - Reserved                                                                                                                                                                                                                                                                                                       |
| Format of static functionality table:<br>0 = Not supported<br>1 = Supported                                                                                                                                                                                                                                                                          |
| $\begin{array}{rcl} (00H) \ byte & - \ Video \ modes \\ Bit 7 & = \ Mode \ 07H \\ Bit 6 & = \ Mode \ 06H \\ Bit 5 & = \ Mode \ 05H \\ Bit 4 & = \ Mode \ 04H \\ Bit 3 & = \ Mode \ 03H \\ Bit 2 & = \ Mode \ 02H \\ Bit 1 & = \ Mode \ 01H \\ Bit 0 & = \ Mode \ 00H \end{array}$                                                                    |
| (01H) byte - Video modes<br>Bit 7 = Mode 0FH<br>Bit 6 = Mode 0EH<br>Bit 5 = Mode 0DH<br>Bit 4 = Mode 0CH<br>Bit 3 = Mode 0BH<br>Bit 2 = Mode 0AH<br>Bit 1 = Mode 09H<br>Bit 0 = Mode 08H                                                                                                                                                             |
| (02H) byte - Video modes<br>Bits 7 to 4 - Reserved<br>Bit 3 = Mode 13H<br>Bit 2 = Mode 12H<br>Bit 1 = Mode 11H<br>Bit 0 = Mode 10H                                                                                                                                                                                                                   |
| See (AH) = 00H for video mode information                                                                                                                                                                                                                                                                                                            |
| (03h) to (07H) 4 bytes - Reserved                                                                                                                                                                                                                                                                                                                    |
| (07H) byte - Scan lines available in text modes<br>Bit 7 to 3 - Reserved<br>Bit 2 = 400 scan lines<br>Bit 1 = 350 scan lines<br>Bit 0 = 200 scan lines                                                                                                                                                                                               |
| See $(AH) = 12H$ , $(BL) = 30H$ for text mode scan line selection.                                                                                                                                                                                                                                                                                   |



| Int 10 - Function                 | 1C                           | Save / Restore Video State                                                                                                                                                                                                                 |
|-----------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                              |                                                                                                                                                                                                                                            |
| Entry:                            | AH = 1CH<br>AL = 00H<br>CX - | Return size of save/restore buffer<br>Requested states (see supported save/restore states below)                                                                                                                                           |
| Exit:                             | AL = 1CH<br>BX               | to indicate that this function is supported<br>Save/restore buffer size block count [number of 64-bytes blocks for<br>saving requested states in (CX)]                                                                                     |
| Entry:                            | AL = 01H<br>CX -<br>(ES:BX)  | Save video state<br>Requested states (see supported save/restore states below)<br>Buffer pointer to save state                                                                                                                             |
| Exit:                             | AL = 1CH                     | to indicate that this function is supported                                                                                                                                                                                                |
| Entry:                            | AL = 1<br>CX -<br>ES:BX      | Restore video state<br>Requested states (see supported save/restore states below)<br>Pointer to save/restore buffer                                                                                                                        |
| Exit:                             | AL = 1CH                     | to indicate that this function is supported                                                                                                                                                                                                |
|                                   | Supported sa                 | ve/restore states:                                                                                                                                                                                                                         |
|                                   | Bit $2 = 1$<br>Bit $1 = 1$   | <ul> <li>Reserved and set to 0</li> <li>Save/restore video DAC state and color registers</li> <li>Save/restore video BIOS data area</li> <li>Save/restore video hardware state</li> </ul>                                                  |
| application pro<br>necessary spac | gram. The prog               | For restores a video state to or from a RAM buffer set aside by an gram should first call this function with $AL = 0$ and then allocate the video state is altered during a save state operation. To maintain the current state operation. |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |
|                                   |                              |                                                                                                                                                                                                                                            |

## 4.5 BIOS Extended Functions

| Int 10 - Function 6 | F                                                                                                                                                                                                                           | Extended Functions                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
| Entry:              | AH = 6Fh                                                                                                                                                                                                                    |                                                                                                                                    |
|                     | AL = 00h: Inquire $AL = 01h: Get Info$ $AL = 02h: (reserved)$ $AL = 03h: (reserved)$ $AL = 04h: Get Resolution$ $AL = 05h: Extended Set Mode$ $AL = 06h: Select Autoswitch Mode$ $AL = 07h: Get Video Memory Configuration$ | Page 30<br>Page 30<br>Not implemented in V7 VGA BIOS<br>Not implemented in V7 VGA BIOS<br>Page 30<br>Page 31<br>Page 31<br>Page 31 |
| Exit:               | If invalid subfunction, $AH = 2$<br>If valid subfunction, refer to individual subfunct                                                                                                                                      | tion descriptions on following pages                                                                                               |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |
|                     |                                                                                                                                                                                                                             |                                                                                                                                    |

| Int 10 - Fund | ction 6F - Subfunction 0 Inquire                                                                                                                                                                                                                                                               |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exit:         | BX = 'V7' (indicates extensions are present)                                                                                                                                                                                                                                                   |
| Int 10 - Fund | ction 6F - Subfunction 1 Get Info                                                                                                                                                                                                                                                              |
| Exit:         | AL = Reserved (used to return the monitor-type code in VEGA VGA)                                                                                                                                                                                                                               |
|               | AH = Status Register Information:                                                                                                                                                                                                                                                              |
|               | Bit-7-6:Diagnostic BitsBit-5:Display type:0=color, 1=monochromeBit-4:Monitor Resolution:0 = High Res (> 200 lines)1 = Low Res (<= 200 lines)1 = Low Res (<= 200 lines)Bit-3:Vertical SyncBit-2:Light Pen Switch ActivatedBit-1:Light Pen Flip Flop SetBit-0:Display Enabled0 = Display Enabled |
|               | 1 = Vertical or Horizontal Retrace in progres<br>Note that bits 0-3 are the same as the EGA/VGA status register bits 0-3                                                                                                                                                                       |
|               |                                                                                                                                                                                                                                                                                                |
| Int 10 - Fund | ction 6F - Subfunction 4 Get Mode and Screen Resolution                                                                                                                                                                                                                                        |
| Exit:         | AL = Current Video Mode (see Extended Set Mode: subfunction 5)<br>BX = Horizontal Columns/Pixels (Text/Graphics)<br>CX = Vertical Rows/Pixels (Text/Graphics)                                                                                                                                  |
|               |                                                                                                                                                                                                                                                                                                |

| Entry:                        | F - Subfunction 5                                                                                                                          | Extended Set Mode                                                                                    |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                               | BL = Mode Value:                                                                                                                           |                                                                                                      |
|                               | 00h - 13h: Standard IBM<br>14h - 3Fh: Reserved<br>40h - 5Fh: Extended Text                                                                 |                                                                                                      |
|                               | 40 = 80x4 41 = 132x2 42 = 132x4 43 = 80x6 44 = 100x6 45 = 132x2 46-4F = (reservent)                                                        | 25 (8x14)<br>43 (8x8)<br>50 (8x8)<br>50 (8x8)<br>28 (8x14)                                           |
|                               | 60h - 7Fh: Extended Grag                                                                                                                   | phics Modes (6xh = Color, 7xh = Monochrome)                                                          |
|                               | 65 10242<br>66 640x2<br>67 640x2<br>68 720x5                                                                                               | 540x16<br>600x16<br>x768x2<br>x768x4<br>x768x16<br>400x256<br>480x256<br>540x256<br>500x256 (Future) |
|                               | tion provides an alternative to the sta<br>ant way to set Video-Seven specific                                                             | andard BIOS Set Mode function. It is provided to and IBM standard video modes.                       |
|                               |                                                                                                                                            |                                                                                                      |
| Int 10 - Function             | F - Subfunction 6                                                                                                                          | Select Autoswitch Mode                                                                               |
|                               | <b>5F - Subfunction 6</b><br>BL = Autoswitch Mode Select:                                                                                  | Select Autoswitch Mode                                                                               |
| Int 10 - Function (<br>Entry: | BL = Autoswitch Mode Select:<br>00h: Select EGA/VGA-O                                                                                      | nly Modes<br>VGA/EGA/CGA/MGA Modes                                                                   |
|                               | BL = Autoswitch Mode Select:<br>00h: Select EGA/VGA-O<br>01h: Select Autoswitched<br>02h: Select 'Bootup' CGA                              | nly Modes<br>VGA/EGA/CGA/MGA Modes                                                                   |
|                               | BL = Autoswitch Mode Select:<br>00h: Select EGA/VGA-O<br>01h: Select Autoswitched<br>02h: Select 'Bootup' CGA<br>BH = Enable / Disable 0 = | nly Modes<br>VGA/EGA/CGA/MGA Modes<br>A/MGA Modes                                                    |

#### EGA / VGA BIOS Data Area

The BIOS data area in EGA / VGA mode is the same as the CGA and Hercules modes with the exception of the data areas described in Table 4-4. These variables are used by the EGA / VGA BIOS, and are located in the BIOS data area (RAM segment 40H).

#### Table 4 - 4. EGA / VGA BIOS Data Area

| Name                                                                                                                                                            | Address                                                                    | <u>Size</u>                                                                                    | Descript                                                                                           | ion                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| CRT Mode<br>CRT Cols<br>CRT Len<br>CRT Start<br>Cursor Posn<br>Cursor Mode<br>Active Page<br>Addr 6845<br>CRT Mode Set<br>CRT Palette<br>Rows<br>Points<br>Info | 49<br>4A<br>4C<br>4E<br>50<br>60<br>62<br>63<br>65<br>66<br>84<br>85<br>87 | Byte<br>Word<br>Word<br>Word*8<br>Word<br>Byte<br>Word<br>Byte<br>Byte<br>Byte<br>Word<br>Byte | Current BIOS video mode<br>Number of video columns<br>Size of video buffer<br>Offset of video page |                                                                                 |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 7:                                                                                             | High bit of mode (1 means don't clear)                                          |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 5-6:                                                                                           | 00 - 64KB memory<br>01 - 128KB memory<br>10 - 192KB memory<br>11 - 256KB memory |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 4:                                                                                             | 0 - Pure VGA Mode<br>1 - Video Extensions Allowed                               |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 3:                                                                                             | 0 - EGA/VGA active<br>1 - EGA/VGA inactive                                      |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 2:                                                                                             | 0 - Write any time<br>1 - Wait for retrace                                      |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 1:                                                                                             | EGA/VGA has monochrome                                                          |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 0:                                                                                             | Emulate cursor type                                                             |
| Info 3                                                                                                                                                          | 88                                                                         | Byte                                                                                           |                                                                                                    | Feature bits<br>Dip switches                                                    |
| VGA Info                                                                                                                                                        | 89                                                                         | Byte                                                                                           | Bit 7:                                                                                             | Reserved                                                                        |
|                                                                                                                                                                 |                                                                            | -                                                                                              | Bit 6:                                                                                             | 0 - Display switch, inactive<br>1 - Display switch, active                      |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 5:                                                                                             | Reserved                                                                        |
|                                                                                                                                                                 |                                                                            |                                                                                                | Bit 4:                                                                                             | 0 - 400 scan line text mode, inactive<br>1 - 400 scan line text mode, active    |
| V7 VGA Technical I                                                                                                                                              | Reference Manual                                                           | Δ                                                                                              | - 32                                                                                               | BIOS Data Structures and Tables                                                 |

| Table 4 - 4. EGA/ | VGA BIOS Data | Area (cont'd) |                  |                                                                                                      |
|-------------------|---------------|---------------|------------------|------------------------------------------------------------------------------------------------------|
|                   |               |               | Bit 3:           | 0 - Default palette loading, enabled<br>1 - Default palette loading, disabled                        |
|                   |               |               | Bit 2:           | <ul><li>0 - Monochrome monitor, inactive</li><li>1 - Monochrome monitor, active</li></ul>            |
|                   |               |               | Bit 1:           | 0 - Palette summing to gray shade, inactive<br>1 - Palette summing to gray shade, active             |
|                   |               |               | Bit 0:           | <ol> <li>All modes on all monitors, inactive.</li> <li>All modes on all monitors, active.</li> </ol> |
| DCC Code          | 8A            | Byte          | Display<br>4-35. | combination code. See description on page                                                            |
| Save PTR          | <b>A</b> 8    | Dword         | Addres           | s of table pointers to save areas                                                                    |

#### EGA/VGA BIOS Save Environment Layout

Variable "Save PTR" (address 0:04A8H) in the BIOS data area provides applications with specific video information while maintaining compatibility with the BIOS data area. At initialization, this table is located in ROM. Any changes must be made in a RAM copy. The details of this information are shown in Table 4-5.

#### Table 4 - 5. EGA/VGA BIOS Save Environment.

| <u>Offset</u> | <u>Size</u> | Description                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0000          | Dword       | Standard Video Parameter Table Pointer. This pointer is initialized to the IBM-Standard BIOS VGA parameter table, and must exist.                                                                                                                                                                                                                                        |  |  |  |
| 0004          | Dword       | Dynamic Save Area Pointer (initially 0). When non-zero, this pointer points to a RAM area in which certain dynamic values are stored. The VGA BIOS will automatically maintain the first 17 locations in the save area which contain the values of the 16 palette registers and the overscan color register. This save area must be at least 256 bytes long, if present. |  |  |  |
| 0008          | Dword       | Alpha Mode Auxiliary Character Font Pointer (initially 0). If this value is non-zero, then it must point to the following table:                                                                                                                                                                                                                                         |  |  |  |
|               |             | OffsetSizeDescription00ByteBytes/Character01ByteCharacter font block to load02WordNumber of character patterns to store04WordCharacter offset06DwordPntr to font table0AByteDisplayable rows, FF = display max.0BByteConsecutive bytes for mode value with which this font description is to be used, terminated with FF                                                 |  |  |  |
| 000C          | Dword       | Graphics Mode Auxiliary Character Font Pointer (initially 0). When non-<br>zero, this address must point to the following table:                                                                                                                                                                                                                                         |  |  |  |
|               |             | OffsetSizeDescription00ByteDisplayable rows01WordBytes/Character03DwordPointer to a font table07ByteConsecutive bytes for mode value with which this font description is to be used, terminated with FF                                                                                                                                                                  |  |  |  |
| 0010          | Dword       | Secondary Save Pointer. The pointer is initialized to the BIOS secondary save pointer. This address must contain a valid pointer and will point to Table 4 - 6 on page 35.                                                                                                                                                                                               |  |  |  |
| 0014          | Dword       | Pointer to Video Seven Extensions. This address must be a valid pointer and will point to Table 4-7 on page 36.                                                                                                                                                                                                                                                          |  |  |  |
| 0018          | Dword       | Reserved                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

| 0000 | Word  | Table Length. This pointer is initialized to the BIOS secondary save<br>pointer.Display Combination Code (DCC) Table Pointer. This is initialized to<br>ROM DCC table. Whis this value exists, it points to a table described as<br>follows:Size<br>Description<br>ByteDescription<br>Number of entries in table<br>ByteByte<br>DCC table version number<br>Byte<br>Maximum display type code<br>Byte00, 00<br>Byte<br>Byte00, 00<br>C Entry 0<br>0, 01<br>C Entry 1<br>0, 02<br>0, 02<br>C Entry 2<br>CGA<br>02, 01<br>Entry 3<br>MDPA + CGA<br>00, 04<br>Entry 4<br>EGA |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0002 | Dword | ROM DCC table. Whis this value exists, it points to a table described as follows:         Size       Description         Byte       Number of entries in table         Byte       DCC table version number         Byte       Maximum display type code         Byte       Reserved         00, 00       Entry 0       No Displays         00, 01       Entry 1       MDPA         00, 02       Entry 2       CGA         02, 01       Entry 3       MDPA + CGA                                                                                                           |
|      |       | Byte       Number of entries in table         Byte       DCC table version number         Byte       Maximum display type code         Byte       Reserved         00, 00       Entry 0       No Displays         00, 01       Entry 1       MDPA         00, 02       Entry 2       CGA         02, 01       Entry 3       MDPA + CGA                                                                                                                                                                                                                                    |
|      |       | 00, 01 Entry 1 MDPA<br>00, 02 Entry 2 CGA<br>02, 01 Entry 3 MDPA + CGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |       | 04, 01 Entry 5 EGA + MDPA<br>00, 05 Entry 6 MEGA<br>02, 05 Entry 7 MEGA + CGA<br>00, 06 Entry 8 PGC<br>01, 06 Entry 9 PGC + MDPA<br>05, 06 Entry 10 PGC + MEGA<br>00, 08 Entry 11 CVGA<br>01, 08 Entry 12 CVGA + MDPA<br>00, 07 Entry 13 MVGA<br>02, 07 Entry 14 MVGA + CGA<br>02, 06 Entry 15 MVGA + PGA                                                                                                                                                                                                                                                                 |
| 006  | Dword | Second Alpha Mode Auxiliary Character Generator Pointer. This pointer<br>is initialized to 00:00. When this value is non-zero, it points to a table<br>described as follows:<br><u>Size Description</u>                                                                                                                                                                                                                                                                                                                                                                   |
|      |       | DirectionByteBytes/CharacterByteBlock to load, should be non-zero for normal operationByteReservedDwordPointer to the Font tableByteConsecutive bytes of mode values for this font description.<br>The end of this stream is indicated by a code of 0FFH.                                                                                                                                                                                                                                                                                                                 |
|      | NOTE: | Attribute bit 3 is used to switch between primary and secondary fonts. It may be desirable to use the user palette profile to define a palette of consistent colors independent of attribute bit 3.                                                                                                                                                                                                                                                                                                                                                                       |

| <u>Offset</u><br>000A | <u>Size</u><br>Dword    | <b>Description</b><br>User Palette Profile Table Pointer. This pointer is initialized to 00:00.<br>When this value is non-zero, it points to a table described as follows.                                                                                                                                              |  |
|-----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                       |                         | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                    |  |
|                       |                         | Byte Reserved<br>Word Reserved<br>Word Internal palette count (0 - 17; 17 = normal operation)<br>Word Internal palette index (0 - 16; 0 = normal operation)<br>Dword Pointer to internal palette (Bytes 0-15 are palette values,<br>Byte 16 is the overscan value)                                                      |  |
|                       |                         | <ul> <li>Word External palette count (0-256; 256 = normal operation)</li> <li>Word External Palette Index (0-255; 0 = normal operation)</li> <li>Dword Pointer to external palette (The table should contain color values in the sequence: &lt;(red, green, blue), (red, green, blue) (red, green, blue)&gt;</li> </ul> |  |
|                       |                         | Byte Consecutive bytes of modes values for this font description.<br>The end of this stream is indicated by a byte code of 0FFH.                                                                                                                                                                                        |  |
| 000E<br>0002<br>0004  | Dword<br>Dword<br>Dword | Reserved<br>Reserved<br>Reserved                                                                                                                                                                                                                                                                                        |  |
| le 4 - 7. Vi          | deo Seven Ext           | tensions                                                                                                                                                                                                                                                                                                                |  |
| <u>Offset</u><br>0000 | <u>Size</u><br>Dword    | <b>Description</b><br>This is a pointer to an array of extended mode table structures. This m<br>be a valid pointer.                                                                                                                                                                                                    |  |
|                       |                         | <u>Size</u> <u>Description</u><br>Byte Mode number minus 40h<br>Byte Monitors in this mode works in                                                                                                                                                                                                                     |  |
|                       |                         | Bit 6, 7 = 1 - Reserved<br>Bit 5 = 1 - Variable frequency analog<br>Bit 4 = 1 - Fixed frequency analog<br>Bit 3 = 1 - Multisync<br>Bit 2 = 1 - Enhanced color monitor<br>Bit 1 = 1 - CGA color monitor<br>Bit 0 = 1 - Monochrome                                                                                        |  |
|                       |                         | <ul> <li>Byte Scan line type (0 = 200, 1 = 350, 2 = 400, 3 = 480)</li> <li>Byte Number of pages available in this mode</li> <li>Word Number of colors available in this mode</li> <li>Word Number of columns</li> <li>Word Number of rows</li> </ul>                                                                    |  |
|                       |                         | ByteValue of Timing State Register(SRFD)ByteValue of Clock Select Register(SRA4)Byte(reserved)(SRA4)                                                                                                                                                                                                                    |  |
|                       |                         | ByteValue of Compatibility Control Register(SRFC)ByteValue of Bank Select Register(SRF6)ByteValue of Extended Clock Select Register(SRF8)ByteValue of 16-Bit Interface Control Register(SRFF)                                                                                                                           |  |
|                       |                         | Byte (reserved)                                                                                                                                                                                                                                                                                                         |  |

| Table 4 - 7. Video Seven Extensions (cont'd) |                         |                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|----------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0004                                         | Dword                   | Reserved                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 0008                                         | Dword                   | This is a pointer to an array of extended register stuctures. This must be a valid pointer.                                                                                                                                                                                                                                              |  |  |  |
|                                              |                         | SizeDescriptionByteValue of Timing State Register(SRFD)ByteValue of Clock Select Register(SRA4)Byte(reserved)(reserved)ByteValue of Compatibility Control Register(SRFC)ByteValue of Bank Select Register(SRF6)ByteValue of Extended Clock Select Register(SRF8)ByteValue of 16-Bit Interface Control Register(SRFF)Byte(reserved)(SRFF) |  |  |  |
| 000C<br>0010<br>0014                         | Dword<br>Dword<br>Dword | Reserved<br>Reserved<br>Reserved                                                                                                                                                                                                                                                                                                         |  |  |  |

#### Video Parameter Table Format

The Video Parameter Tables contain the necessary EGA/VGA register values to support the various display modes. The parameter table is structured as a series of mode tables, each containing 64 bytes as defined in Table 4-8.

#### Table 4 - 8. Video Parameter Mode Table Format.

| Item        | <u>Size</u> | Definition                              |
|-------------|-------------|-----------------------------------------|
| Width       | byte        | Characters per row                      |
| Height      | byte        | Rows of text minus 1                    |
| Char Height | byte        | Height of character in pixels           |
| Page Size   | word        | Bytes per display page                  |
| Seq Regs    | byte*4      | Sequencer register values (SR1-SR4)     |
| Misc Reg    | byte        | Miscellaneous output register           |
| CRT Regs    | byte*25     | CRT controller registers (CR0-CR18)     |
| Attr Regs   | byte*20     | Attribute registers (AR0-AR13)          |
| Graph Regs  | byte*9      | Graphics controller registers (GR0-GR8) |

Total: byte\*64

Note: SR0 is not included in the table; it is always set to 3 on a mode set AR14 is not included in the table; it is always set to 0 on a mode set The VGA BIOS requires that the mode tables in the Standard Video Parameter Table be in the following sequence and define the VGA register values (given above) necessary for the IBM-standard display modes.

#### Table 4 - 9. Standard Video Parameter Table

| Entry                 | Mode                  | Characte | ristics        |           |          | <u>Comment</u> |         |
|-----------------------|-----------------------|----------|----------------|-----------|----------|----------------|---------|
| 0                     | 0                     | CGA      | 40x25          | Mono      | Text     | 8x8 Font       |         |
| 1                     | 1                     | CGA      | 40x25          | Color     | Text     | 8x8 Font       |         |
| 2                     |                       | CGA      | 80x25          | Mono      | Text     | 8x8 Font       |         |
| 2<br>3<br>4<br>5<br>6 | 2<br>3<br>4<br>5<br>6 | CGA      | 80x25          | Color     | Text     | 8x8 Font       |         |
| 5                     | 3                     | CGA      | 320x200        | Color     |          | 8x8 Font       |         |
| 4                     | 4<br>5                | CGA      |                |           | Graphics |                |         |
| 5                     | 5                     |          | 320x200        | Mono      | Graphics | 8x8 Font       |         |
| 7                     | 0<br>7                | CGA      | 640x200        | Mono      | Graphics | 8x8 Font       |         |
| 1                     | /                     | MDA      | 80x25          | Mono      | Text     | 8x14 Font      |         |
| 8<br>9                | 8                     | -        |                |           |          | Reserved       |         |
| 9                     | 9                     | -        |                |           |          | Reserved       |         |
| 10                    | Α                     | -        |                |           |          | Reserved       |         |
| 11                    | В                     | -        |                |           |          | Reserved       |         |
| 12                    | С                     | -        |                |           |          | Reserved       |         |
| 13                    | D                     | EGA      | 320x200        | 16-color  | Graphics | 8x8 Font       |         |
| 13                    | E                     | EGA      | 640x200        | 16-color  | Graphics | 8x8 Font       |         |
| 14                    | Ľ                     | LUA      | 0407200        | 10-00101  | Orapines | 0.01011        |         |
| 15                    | F                     | EGA      | 640x350        | Mono      | Graphics | 64KB Display   | Ram     |
| 16                    | 10                    | EGA      | 640x350        | 4-color   | Graphics | 64KB Display   | Ram     |
|                       |                       |          |                |           | -        |                |         |
| 17                    | F*                    | EGA      | 640x350        | Mono      | Graphics | >64KB Displa   |         |
| 18                    | 10*                   | EGA      | 640x350        | 16-color  | Graphics | >64KB Displa   | iy Ram  |
| 19                    | 0*                    | EGA      | 40x25          | Mono      | Text     | 8x14 Font      |         |
| 20                    | 1*                    |          | 40x25<br>40x25 |           | Text     | 8x14 Font      |         |
|                       | 1**<br>2*             | EGA      |                | Color     |          |                |         |
| 21<br>22              | 2*<br>3*              | EGA      | 80x25          | Mono      | Text     | 8x14 Font      |         |
|                       | 5**                   | EGA      | 80x25          | Color     | Text     | 8x14 Font      |         |
| 23                    | 0/1+                  | VGA      | 40x25          | Color     | Text     | 8x16 Font      |         |
| 24                    | 2/3+                  | VGA      | 80x25          | Color     | Text     | 8x16 Font      |         |
| 25                    | 7+                    | VGA      | 80x25          | Mono      | Text     | 9x16 Font      |         |
| 26                    | 11                    | VGA      | 640x480        | 2-Color   | Graphics | 8x16 Font      |         |
| 26                    | 12                    | VGA      | 640x480        | 16-Color  | Graphics | 8x16 Font      |         |
| 27                    | 13                    | VGA      | 320x200        | 256-Color | Graphics | 8x8 Font       |         |
| 20                    | 1.4                   |          | 752-410        | 16 Oalar  | Cranhian | 99 East        |         |
| 28                    | 14                    | VVGA     | 752x410        | 16-Color  | Graphics | 8x8 Font       |         |
| 29                    | 15                    | VVGA     | 720x540        | 16-Color  | Graphics | 8x8 Font       |         |
| 30                    | 16                    | VVGA     | 800x600        | 16-Color  | Graphics | 8x8 Font       |         |
| 31                    | 17                    | V7VGA    | 1024x768       | 2-Color   | Graphics | 8x16 Font      |         |
| 32                    | 18                    | V7VGA    | 1024x768       | 4-Color   | Graphics | 8x16 Font      |         |
| 33                    | 19                    | V7VGA    | 1024x768       | 16-Color  | Graphics | 8x16 Font      |         |
| 34                    | 1A                    | V7VGA    | 640x400        | 256-Color | Graphics | 8x16 Font      |         |
| 35                    | 1B                    | V7VGA    | 640x480        | 256-Color | Graphics | 8x16 Font      |         |
| 36                    | 1C                    |          | 720x540        | 256-Color | Graphics | 8x8 Font       |         |
| 37                    | 1D                    |          | 800x600        | 256-Color | Graphics |                | Future) |
|                       |                       |          |                |           | •        |                |         |

V7 VGA Technical Reference Manual

# CHAPTER 5


# **Support Software**

## 5.1 Utilities

| The following utilities are provided with all V7VGA-based boards: (Utility Disk Release 1.00) |                                                                                                                                                                                                                                                                            |                                                                                        |                                                                                                                                                                            |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| RAMBIOS.SYS:                                                                                  | Program to run the BIOS as a ram resident program for performance<br>improvement on 286 and 386-class machines. Note that in Compaq 386<br>systems, the BIOS automatically moves itself into 32-bit system ram, so use<br>of RAMBIOS.SYS is not required on those systems. |                                                                                        |                                                                                                                                                                            |  |  |
| V7VGA.COM:                                                                                    | Mode set utility:                                                                                                                                                                                                                                                          | mono: on/off<br>mono: full/half<br>pure: on/off<br>save: on/off<br>save: [n]<br>nosave | Monochrome/color select<br>Monochrome mode select<br>Enables strict IBM VGA compatibility<br>Screen-saver on/off<br>Screen saver enable for n minutes<br>Same as save: off |  |  |
| V7ANSI.SYS                                                                                    | Similar to DOS ANSI.SYS with support for high-resolution text modes                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                            |  |  |
| INSTALL.EXE                                                                                   | Utility to assist in installing drivers                                                                                                                                                                                                                                    |                                                                                        |                                                                                                                                                                            |  |  |
| DIAG.COM:                                                                                     | V7VGA diagnostic program (also reports ROM BIOS date & switch settings)                                                                                                                                                                                                    |                                                                                        |                                                                                                                                                                            |  |  |
| ESU.COM:                                                                                      | Text screen sizing utility:                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                            |  |  |
|                                                                                               | 120x25                                                                                                                                                                                                                                                                     | 80x43 80x6<br>120x43<br>132x43                                                         | 50 100x60                                                                                                                                                                  |  |  |
| DU.COM                                                                                        | Directory listing utility which recognizes extended text modes                                                                                                                                                                                                             |                                                                                        |                                                                                                                                                                            |  |  |
| CLR.COM                                                                                       | Clear screen utility which recognizes extended text modes                                                                                                                                                                                                                  |                                                                                        |                                                                                                                                                                            |  |  |
| README.TXT                                                                                    | Document file containing last-minute documentation changes and a list of all files on the disk and what they are                                                                                                                                                           |                                                                                        |                                                                                                                                                                            |  |  |
| README.COM                                                                                    | Displays README.TXT for review                                                                                                                                                                                                                                             |                                                                                        |                                                                                                                                                                            |  |  |

## 5.2 Drivers

| The following drivers have been developed by Video Seven for the V7VGA:                             |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                     | V7ADI2.COM<br>V7REL9.COM (Supports pull-down mer<br>V7INST.EXE (Modifies screen resolution                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| V7 AutoCAD drivers<br>support all resolutions<br>listed to the right:                               | 640x350x16 (AutoSketch, all boards)<br>640x480x16 (AutoSketch, all boards)<br>752x410x16 (AutoSketch, all boards)<br>720x540x16 (AutoSketch, all boards)<br>800x600x16 (AutoSketch, all boards)<br>1024x768x4 (AutoSketch, **)<br>1024x768x16 (AutoSketch, **) (** | 320x200x256 (AutoShade, all)<br>640x400x256 (AutoShade, all)<br>640x480x256 (AutoShade, *)<br>720x540x256 (AutoShade, **)<br>800x600x256 (AutoShade, **)<br>(* = not available on VGA-16)<br>* = available on V-RAM VGA only)                                                                                                                                                                                                                                       |  |  |  |
| Lotus 2.0, Symphony 1.1:                                                                            | GD640V20.DRV<br>GD752V20.DRV<br>GD720V20.DRV<br>GD800V20.DRV<br>VD132X25.DRV<br>VDMONO25.DRV<br>VD132x43.DRV<br>VDMONO43.DRV<br>VD80X60.DRV<br>VD100X60.DRV                                                                                                        | (640x480x16       Graphics)         (752x410x16       Graphics)         (720x540x16       Graphics)         (800x600x16       Graphics)         (132x25       8x14         Color Text)       (132x25         (132x43       8x8         Color Text)       (132x43         (132x43       8x8         Mono Text)       (132x43         (132x43       8x8         Color Text)       (100x60         8x8       Color Text)         (100x60       8x8         Color Text) |  |  |  |
| Microsoft Windows 2.0:                                                                              | VRAM640 .DRV,GRB,LGO<br>VRAM720 .DRV,GRB,LGO<br>VRAM800 .DRV,GRB,LGO<br>VRAM1024.DRV,GRB,LGO<br>VRAM1KM.DRV,GRB,LGO<br>DRAM640 .DRV,GRB,LGO<br>DRAM720 .DRV,GRB,LGO                                                                                                | (640x480x16 for V-RAM VGA)<br>(720x540x16 for V-RAM VGA)<br>(800x600x16 for V-RAM VGA)<br>(1024x768x16 for V-RAM VGA)<br>(1024x768x2 for V-RAM VGA)<br>(640x480x16 for F/W & VGA-16)<br>(720x540x16 for F/W & VGA-16)                                                                                                                                                                                                                                               |  |  |  |
| Microsoft Windows 386:                                                                              | DRAM800 .DRV,GRB,LGO<br>VRAM640 .DRV,GRB,LGO,386,3EX<br>VRAM720 .DRV,GRB,LGO,386,3EX<br>VRAM800 .DRV,GRB,LGO,386,3EX<br>VRAM1024.DRV,GRB,LGO,386,3EX<br>VRAM1KM.DRV,GRB,LGO,386,3EX                                                                                | (800x600x16 for F/W & VGA-16)<br>(640x480x16 for V-RAM VGA)<br>(720x540x16 for V-RAM VGA)<br>(800x600x16 for V-RAM VGA)<br>(1024x768x16 for V-RAM VGA)<br>(1024x768x2 for V-RAM VGA)                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                     | DRAM640 .DRV,GRB,LGO<br>DRAM720 .DRV,GRB,LGO<br>DRAM800 .DRV,GRB,LGO                                                                                                                                                                                               | (640x480x16 for F/W & VGA-16)<br>(720x540x16 for F/W & VGA-16)<br>(800x600x16 for F/W & VGA-16)                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| All Windows drivers include hardware cursor support<br>GEM3 / Ventura Publisher                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| PCAD                                                                                                | (in development)                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| The following is a partial list of products also supported on the V7VGA using standard VGA drivers: |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| VersaCAD<br>DGIS / VDI /<br>MetaWindows                                                             | PC Paint / GRASP EGA P<br>PC Paintbrush<br>Dr Halo / Halo Library                                                                                                                                                                                                  | ann                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |



# **V7VGA Programming**

NOTE: The examples in this chapter are provided for clarification only. Video-Seven assumes no responsibility for their functionality or fitness for a specific purpose.

Throughout this chapter, unless otherwise noted, all addresses refer to VGA modes, typically mode 3 for text display (80x25 text) and mode 10 for graphics display (640x350).

### 6.1 General Programming Information

#### **Text Memory Map**

All EGA and VGA-compatible text modes use video memory in the same format. Memory plane 0 stores the character, plane 1 stores the attributes, plane 2 stores the font tables, and plane 3 is not used. (Note: In the V7VGA, plane 3 is sometimes used to hold font or extended attribute information). This is shown in Figure 6-1.

In text mode the program writes two bytes to video memory to display a character; a character code and an attribute byte. The hardware uses the character code as an index into a lookup table (character ROM) to retrieve the actual bitmap that will form the character as each scan line is displayed. The attribute byte selects foreground and background colors for that particular character cell. Thus, when writing to memory, even addresses store the character, odd addresses store the attribute.

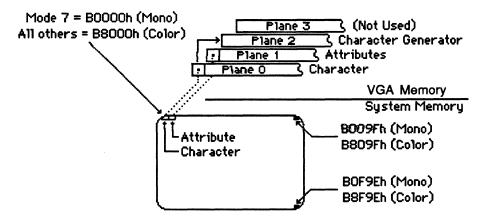



Figure 6-1. Text Mode Video Memory Mapping (Mode 3)

Memory plane 0 stores the character to be displayed on the screen. As shown in Figure 6-1 (color mode), the character at address B8000h is displayed at the top of the screen, the character stored at address B804Fh is displayed at the top right side of the screen. The character stored at address B87CFh is displayed at the bottom right side of the screen. The addresses for monochrome mode begins at address B0000h instead of B8000h, and ends at B07CFh instead of B87CFh. The character code stored at the location in VGA memory plane 0 is actually an address to the character generator in memory plane 2.

Memory plane 1 stores the attribute of the corresponding character. As shown in Figure 6-1, the attribute byte is divided into two parts, one controlling the foreground characteristics and one controlling the background characteristics.

Text Mode Character Attributes Palette Address Bit 3, Foreground Character Blinking 6 Palette Address Bit 2 Background 5 Palette Address Bit 1 Palette Address Bit 0 3 Palette Address Bit 3, Character Generator Select 2 Palette Address Bit 2 Foreground 1 Palette Address Bit 1 ۵ Palette Address Bit 0 Figure 6-2. Attribute Byte Layout Attribute bit 3 is used in conjunction with the Character Map Select Register in the Sequencer (SR3) to select one of the character fonts. When the bit is a '0' the character map pointed to by bits 1-0 of SR3 is selected. When the bit is a '1' the character map pointed to by bits 3-2 of SR3 is selected. Attribute bit 7 enables a blinking character mode on an individual character basis. This function is enabled with bit-3 of the Attribute Controller Mode Control Register (AR10). Refer to chapter 3 for further information on this register. As shown in Table 6-1, the attributes will have a different effect depending on the mode selected (7 for monochrome or 0-3 for color). Table 6-1. Text Character Attributes **Foreground Bits** Monochrome Monochrome 1 2 3 0 5 6 7 **Background Bits** 4 Color (foreground) (background) 0 0 0 0 Black Black Black 0 0 Blue White Black 1 0 White Black 0 1 0 0 Green White 1 1 0 0 Cyan Black Red 0 0 1 0 White Black 1 0 1 0 Magenta White Black 1 Brown White Black 0 1 0 1 1 0 White White White 1 Black 0 0 0 1 Grav Black Int. White Lt. Blue 0 0 1 Black 1 Int. White 0 1 Lt. Green Black

0 1

1 1

0

1

0 1

1 1 0 1

1 1

1 1

0 1 1

0 1 1

Lt. Cyan

Lt. Magenta

Lt. Yellow

Int. White

Lt. Red

Int. White

Int. White

Int. White

Int. White

Int. White

Black

Black

Black

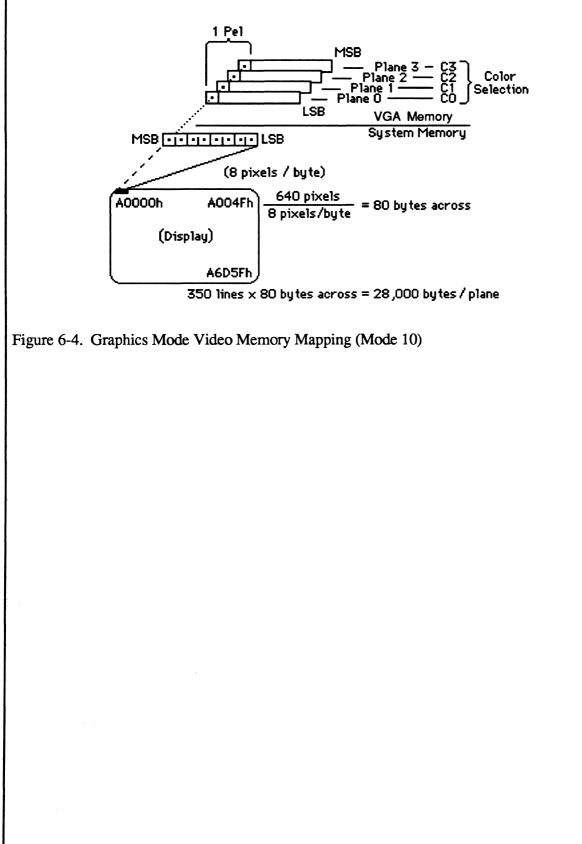
Black

Int. White

#### Character Generator

The character generator bit map is loaded from the BIOS ROM into plane 2. The addresses of the character generators are shown in Figure 6-3.

| 0000h | Character<br>Generator O | 1FFFh |
|-------|--------------------------|-------|
| 2000h | Character<br>Generator 1 | 3FFFh |
| 4000h | Character<br>Generator 2 | 5FFFh |
| 6000h | Character<br>Generator 3 | 7FFFh |
| 8000h | Character<br>Generator 4 | 9FFFh |
| A000h | Character<br>Generator 5 | BFFFh |
| C000h | Character<br>Generator 6 | DFFFh |
| E000h | Character<br>Generator 7 | FFFFh |


Figure 6-3. Character Font Addresses

The basic EGA only implements character generators 0, 2, 4, and 6 (the memory areas where character generators 1, 3, 5, and 7 are now located was unused in the EGA). To point to the four EGA character generators, Sequencer register 3 (SR3) bits 0-1 pointed to the primary character generator (character attribute bit-3 = 0) and bits 2-3 pointed to the secondary character generator (character attribute bit-3 = 1).

To implement VGA compatibility, the V7VGA adds new bits 4 and 5 to SR3 allowing selection of 2 of 8 fonts instead of 2 of 4. The new bit-4 of SR3 becomes the new lsb of the primary character generator pointer and bit-5 becomes the new lsb of the secondary character generator pointer. The 2 original font selection bits become bits 1 and 2 of the pointer. This scheme is EGA compatible if bits 4 and 5 are set to 0, as all values in SR3 point to the same locations in memory for fonts as before. The renumbering of the fonts shown in the figure above is only a documentation difference.

# **Graphics Memory Map**

Figure 6-4 shows the relationship between addresses in system memory and information in the V7VGA memory.



## **Global Programming Information**

The information in this section applies to all the programming examples in the following sections.

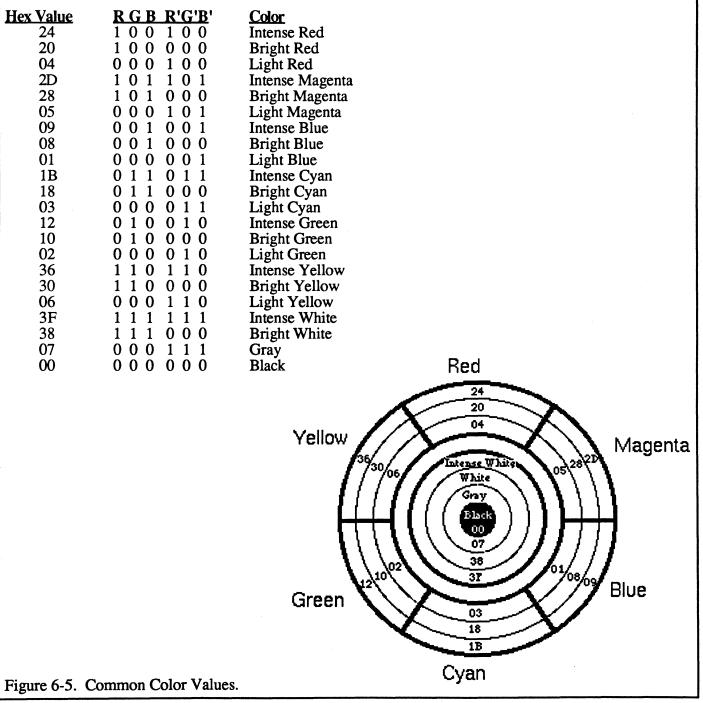
```
;
           Structure of a BIOS video parameter table for one mode
;
vid_prm struc
width db ? ; number of columns
height db ? ; number of rows
chr_ht db ? ; height of a character
pg_size dw ? ; size of a page in bytes
r_seq db 4 dup (?) ; sequencer registers
r_misc db ? ; miscellaneous register
r_crtc db 25 dup (?) ; crtc registers
r_attr db 20 dup (?) ; attr. cont. registers
r_graph db 9 dup (?) ; graphics registers
vid_prm ends
vid prm
                                              struc
                        ______
;
        Miscellaneous registers
;
;
MISCequ3c2h; miscellaneous outputFEATUREequ3dah; feature controlSTATUS_0equ3c2h; input status reg 0 (feature read)STATUSequ3dah; input status reg 1 (display status)
                  ___________
;
        Sequencer
;
SEQUENCER equ 3c4h ; sequencer index

RESET equ 0 ; reset

CLOCK equ 1 ; clocking mode

MAPMASK equ 2 ; map mask

CHARMAP equ 3 ; character map select


MODE equ 4 ; memory mode
;
          Crt Controller
;
CRTC
                              equ
                                              3d4h
                                                               ; CRTC index
         equ3d4n; CRTC IndexOVFLequ07h; overflow registerPRSequ08h; preset row scanHI_STRTequ0ch; start address highLO_STRTequ0dh; start address lowHI_CPOSequ0eh; cursor position highLO_CPOSequ0fh; cursor position lowVREequ11h; vertical retrace endLLWequ13h; offset registerLCRequ18h; line compare register
                                                                   ; line compare register
```

Graphics Controller ; ; GRAPHICS 3ceh ; graphics controller index equ HICSequ3cenSET\_RESequ0EN\_SETequ1CCMPequ2ROTATEequ3READMAPequ4GMODEequ5GMISCequ6CDONTCequ7BITMASKequ8 0 ; set/reset ; enable set reset ; color compare ; data rotate ; read map select ; graphics mode ; graphics mode ; miscellaneous ; color don't care ; bit mask Attribute Controller ; ; 3c0h ; attribute controller index ATTR equ PALETTE equ ; 0 - 15 palette registers 0 PALETTEequoAMODEequ10hOVRSCANequ11hPLANEequ12hPANequ13h ; attribute mode control ; overscan color register ; color plane enable ; horizontal panning ; color select COLOR equ 14h ; The following macro outputs a word value to two consecutive data ; ports. Its calling sequence is just as if we were outing ax to dx. ; The implementation must preserve both the arguments. ; PC 0 equ PC AT 1 equ outwrd macro port, value if PC out port, value endif if PC AT port,al ; index select out inc port ; data register
xchg ah,al ; data into al
out port,al ; data value
data ; restore port dec port xchg ah,al ; restore data endif endm

# 6.2 Setting the Palette Registers

This section shows how to set the colors in the attribute controller. The attribute controller contains 16 registers, 0 through F, which are addressed by the four color bits (C0-C3 as shown in Figure 6-4). These bits select one of 16 colors to be displayed at the specific location. The palette register provides a choice of 64 colors, and any of the 64 colors can be mapped into any of the 16 registers. Figure 6-5 shows a color wheel of the 6 most common colors, the varying shades from low intensity (middle circle) to high intensity (outer circle). Table 6-2 shows the common colors, their hex equivalent (to be loaded into the attribute controller register) and the R, B, B, R', G', and B' equivalents. From this you can calculate the hex value of any other colors.

Table 6-2. Common Color Value Calculation



The following example shows how to set the attribute in one of the 16 registers. This is summarized as follows:

- Disable the interrupts.
- The flip-flop in the attribute controller is set to address a specific register ([bp]).
- A value for that register is output to the register.
- Since this disables video, the flip-flop in the attribute controller is loaded with a 1 in bit 5 to re-enable video.

| mov | dx,3DAh    | ; status one                      |
|-----|------------|-----------------------------------|
| cli |            | ; don't want attr ctlr interupted |
| in  | al,dx      | ; set attr address flip/flop      |
| mov | dx,3C0h    | ; attr controller                 |
| mov | al,reg[bp] | ; disable palette + palette reg.  |
| out | dx,al      | ; select palette register         |
| mov | al,val[bp] | ; the color value                 |
| out | dx,al      | ; select palette value            |
| mov | al,20h     | ; palette address source          |
| out | dx,al      | ; enable palette                  |
| sti |            | ; ok to be interrupted now        |

# 6.3 Writing a Pixel

This section provides an example of how to write a pixel using the graphics controller. This is summarized as follows:

- Calculate the location of the pixel in the display buffer (video RAM). The byte offset (from A000:0000h) is first calculated and then the bit offset into the byte is determined.
- Select write mode 2 on the graphics controller.
- Shift the bit mask into position and set the bit mask register.
- Latch the current data by reading it (4 bytes).
- Write the color out. Seven bits in four planes get values from the latches (and are immune to change). Plane 0 gets bit 0 of al, plane 1 gets bit 1 of al, etc.

ax,80 mov ; bytes per scan line y[bp] ; times row number mul si,x[bp] ; column number mov ; lsb's in cl mov cx,si shr si,1 ; eight pixels per byte gives si,1 ; shr offset into row shr si,1 ; si,ax ; plus offset to row cl,00000111b ; offset into byte add and ; save caller's ds push ds ax,0a000h mov ; regen segment mov ds,ax ; into our data segment dx,3CEh ; graphics controller mov ax,0200h+GMODE ; write mode 2 mov dx,ax ; set it outwrd al, BITMASK ; bit mask register mov ; the mask ah,80h mov ah,cl ; shifted into place shr outwrd dx,ax ; set it ; latch old data mov al,[si] ax,c[bp] ; get the color mov mov [si],al ; set it ; restore caller's ds ds pop

# 6.4 Reading a Pixel

This section provides an example of how to read a pixel using the graphics controller. This is summarized as follows:

- Calculate the location of the pixel in the display buffer (video RAM). The byte offset (from A000:0000h) is first calculated and then the bit offset into the byte is determined.
- Since bh will accumulate results, put mask into bl.
- Select read mode 0 on the graphics controller.
- Read the plane (map) number into ah.
- Read a full byte from the plane number in ah.
- Make space for the new bit, test for bit "1", and if so OR it into the results.
- Loop back to pick up all the planes.
- Return the pixel value (palette register) as a word value in ax.

|           | mov<br>mul<br>mov<br>mov<br>shr<br>shr<br>shr<br>add<br>and<br>mov | <pre>ax,80 y[bp] si,x[bp] cx,si si,1 si,1 si,1 si,1 si,ax cl,00000111b bx,80h</pre> | <pre>; bytes per scan line<br/>; times row number<br/>; column number<br/>; lsb's in cl<br/>; eight pixels<br/>; per byte gives<br/>; offset into row<br/>; plus offset to row<br/>; offset into byte<br/>; bh gets results, bl is mask</pre> |
|-----------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | shr                                                                | bl,cl                                                                               | ; byte mask for this pixel                                                                                                                                                                                                                    |
|           |                                                                    | dx,3CEh<br>al,GMODE<br>ah,ah<br>dx,ax                                               | ; graphics controller<br>; graphics mode register<br>; read mode 0<br>; set read mode 0                                                                                                                                                       |
|           | push<br>mov<br>mov                                                 | ds<br>ax,0a000h<br>ds,ax                                                            | ; save caller's ds<br>; regen buffer segment<br>; into our data segment                                                                                                                                                                       |
|           | mov<br>mov                                                         | ah,3<br>al,READMAP                                                                  | ; start with map )plane) 3<br>; read map select                                                                                                                                                                                               |
| planes:   | outwrd<br>mov<br>shl<br>test<br>jz<br>or                           | <pre>dx,ax cl,[si] bh,1 cl,bl continue bh,1</pre>                                   | <pre>; select plane ; get regen byte, this plane ; make a spot for new bit ; this bit on ? ; nope ; set result bit</pre>                                                                                                                      |
| continue: | dec<br>jns                                                         | ah<br>planes                                                                        | ; more pixels to read ?<br>; yes                                                                                                                                                                                                              |
|           | mov<br>cbw                                                         | al,bh                                                                               | ; get result<br>; word return value                                                                                                                                                                                                           |
|           | рор                                                                | ds                                                                                  | ; restore caller's ds                                                                                                                                                                                                                         |

# 6.5 Enabling Vertical Retrace Interrupts

Sometimes events must be synchronized with vertical retrace, such as when performing a smooth pan or scroll.

- Use DOS function calls to get and set interrupt 0ah
- Two bits in one of the CRTC registers control the vertical retrace interrupt in the EGA and VGA, the others must be preserved, so look up the value in the BIOS. Note the testing for optional modes.
- Save the value above, because it will be needed in the interrupt service routine.
- Note that bit 5 of the vertical retrace control bits in CR11 is an interrupt enable. If it is set, interrupts are enabled (the interrupt output will be driven to an active state corresponding to the state of the interrupt flip-flop). If it is clear, interrupts are disabled and other devices can use IRQ2.
- Note that bit 4 of the vertical retrace control bits in CR11 is an interrupt flip-flop clear control. Clearing bit-4 holds the interrupt flip-flop in a cleared (inactive) state. Setting bit-4 enables the next vertical retrace to set the interrupt flip/flop.
- Finish with the normal PC hardware interrupt enable, i.e. 8259 interrupt controller

```
get the old vector
;
;
             sves[bp],es
                            ; save caller's es
    mov
             ax,350ah
                             ; get interrupt vector
    mov
                            ; DOS function call
             21h
     int
             oldoff[bp],bx ; save the offset
    mov
             oldseg[bp],es ; save the segment
    mov
             es, sves[bp]
                             ; restore es
    mov
 set the new vector
;
;
             sves[bp],ds
                             ; save caller's ds
    mov
                             ; new isr offset
             dx, isr[bp]
    mov
                             ; new isr segment
    mov
             ax,cs
             ds,ax
                                  into ds
                            ;
    mov
             ah,250ah
                            ; set interrupt vector
    mov
                             ; DOS function call
    int
             21h
```

; enable vertical retrace interrupt on the CRTC. We only want to change two bits of the vertical retrace end register on the CRTC ; ; and leave the rest alone. Since the register was write-only in the EGA, we look up the current value in the BIOS parameter table. ; ï mov ax,40h ; BIOS data segment mov ds,ax ; address BIOS data segment mov si,087h ; offset of info mov bl, [si] ; get "info" byte mov cx, vmod[bp] ; video mode bl,01100000b ; any optional memory ? test jz get parm ; nope, 64k card cl,3 ; hi-res alternates ? cmp ja chk f10 ; nope  $cl, \overline{1}3h$ ; alternate tables add jmp short get parm ; get the crtc parameter chk f10: cmp cl,0fh ; mode f or 10 ? jb get\_parm ; nope c1,2 add ; use alternate mode f, 10 get parm: ax,type vid prm ; sizeof(video parm struc) mov ; base of our mode table mul сх si,0a8h ; offset of save ptr mov si, [si] ; ds:si -> save table lds lds si,[si] ; ds:si -> video parameters add si,ax ; ds:si -> vid prm, our mode si,r\_crtc[si] ; ds:si -> crtc registers lea ; ds:si -> vertical retrace add si,011h ; end value ah, [si] ; value into ah mov ; enable + clear and ah,00001111b mov ds, sves [bp] ; restore ds ; save vertical retrace vr vre,ah mov ; end value dx, CRTC mov ; crtc address mov al,VRE ; vertical retrace end ah,10h ; enable vertical retrace or ; flip/flop cli ; don't want interrupts now ; enabled on crtc outwrd dx,ax enable IRQ2 on the 8259 interrupt controller ; in al,21h ; get enabled interrupts ; -> to old 8259 mask si,icmask[bp] mov ; save old mask mov [si],al al, not 04h ; IRQ2 enable mask and 21h,al ; and back out out ; vertical retrace enabled sti

# 6.6 Servicing Vertical Retrace Interrupts

Servicing the vertical retrace interrupt is a integral part of smooth scrolling and smooth panning. The following information and code example discusses proper servicing of the vertical retrace interrupt.

- The msb of status register zero is supposed to tell if it was the V7VGA that produced the interrupt, but since it is tied to IRQ2 on the bus all it shows is that an IRQ2 occurred, which we know since the code is running.
- Clearing bit 4 of the vertical retrace end register clears the interrupt condition (brings IRQ2 down).
- Clear the interrupt condition on the interrupt controller chip (8259)
- Re-enable vertical retrace interrupts by setting bit 4 of the vertical retrace end register.
- Test and set a reentrancy lock.
- Test a countdown timer.
- Establish the proper environment for the update routine and call it.
- Clear the re-entrancy lock.
- See if someone else had vertical retrace interrupts enabled.
- Return from the interrupt.

|    | push<br>push<br>mov<br>mov<br>assume | ds,ax             | <pre>; save ax ; save ds g ; value for our ds ; ds -&gt; to our data now ; and tell the assembler</pre> |
|----|--------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------|
|    | multiple h                           | ardware devices ( | errupt. A PC/AT can have<br>n IRQ2 (the cascaded 8259).                                                 |
|    | push<br>mov                          | dx<br>dx,STATUS 0 | ; save dx<br>; status register zero                                                                     |
|    |                                      | al, dx            | ; get status                                                                                            |
|    |                                      | al,80h            | ; CRTC interrupt?                                                                                       |
|    |                                      | ·                 | ; This is supposed to be the bit the VGA put                                                            |
|    |                                      |                   | ; onto IRQ2, but its actually IRQ2 itself,                                                              |
|    |                                      |                   | ; so we'll never take this branch since this                                                            |
|    |                                      | •                 | ; code is running because of an IRQ2                                                                    |
| ;; | jz                                   | exit              |                                                                                                         |
|    |                                      |                   |                                                                                                         |

dx,CRTC al,VRE ; crtc address mov mov ; vertical retrace end ah, vr vre ; get vert. retrace end value mov out dx,ax ; this brings IRQ2 down al,20h mov ; end of interrupt 20h,al out ; to the 8259 al,VRE ; vertical retrace end mov ah,10h or ; set vertical retrace f/f dx,ax ; and interrupt enabled out test lock,Offh ; already running ? exit jnz ; yes dec vr cnt ; count down yet ? jnz exit ; nope inc lock ; set entrancy lock sti ; enable int's on iAPX cld ; strings forward push bx сx push push si di push call vr upd dec lock ; ok to be reentered now di pop si pop pop сх bx pop ; see if someone else had IRQ2 enabled. ; If so, pass through to them. exit:pop dx test irq\_mask,04h ; was IRQ2 enabled before? jnz eoi ; nope pushf call old Oa ; next isr in chain eoi: pop ; restore interrupted ds ds pop ax ; and ax iret ; and return

# 6.7 Smooth Scrolling and Panning

#### **Programming Notes:**

- 1. The "smooth" in the following sections comes from the fact that these operations are performed under vertical retrace interrupts. Thus, they occur while the display is in vertical blanking, and at a rate that is fast enough to avoid visual perception.
- 2. The following sections assume text mode, such as mode 3.
- 3. When using either the preset row scan register or the pixel panning register, there will be more than the normal 80 by 25 characters displayed, i.e. part of the first character, 24 whole rows (or 79 whole columns), and part of the last character.

#### Smooth Scrolling

The preset row scan register can be used to scroll the screen by a single scan line, even though the CRT controller is in text mode. The screen can be scrolled as much as one less than the character height, i.e. 13 in high resolution text mode. Setting the preset row scan register to zero causes the display to begin with the topmost scan line of a character. Setting the preset row scan register to one causes the display to begin with the second scan line of the topmost character row and end with the topmost scan line of the 26th character row.

| mov    | dx,CRTC  | ; | crt con | ntrol | ller |          |
|--------|----------|---|---------|-------|------|----------|
| mov    | al,PRS   | ; | preset  | row   | scan | register |
| mov    | ah,n[bp] | ; | preset  | row   | scan | value    |
| outwrd | dx,ax    | ; | set it  |       |      |          |

#### Smooth Panning

| mov<br>cli<br>in                | •                                             | ;     | status one<br>don't want attr ctlr int'd<br>set attr address flip/flop                                                                          |
|---------------------------------|-----------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| mov<br>mov<br>out<br>out<br>sti | al,20h + PAN<br>dx,al<br>al,pels[bp]<br>dx,al | ;;;;; | attr controller<br>enable palette + pel panning<br>select panning register<br>panning value<br>select panning value<br>ok to be interrupted now |

#### Smooth Panning and Scrolling (Start Address High/Low)

The start address high/low in the CRTC determine the offset into the display memory buffer of the upper left corner of the display. This is how whole rows and columns of characters are scrolled.

| mov<br>shr                  | bx,buf[bp]<br>bx,1                      |    | starting offset in bytes<br>starting address (words)                      |
|-----------------------------|-----------------------------------------|----|---------------------------------------------------------------------------|
| mov<br>mov<br>mov<br>outwrd | dx,CRTC<br>al,LO_STRT<br>ah,bl<br>dx,ax | ;; | crt controller<br>start address low<br>lo byte of start address<br>set it |
| mov<br>mov<br>outwrd        | al,HI_STRT<br>ah,bh<br>dx,ax            | ;  | start address high<br>hi byte of start address<br>set it                  |

# 6.8 Split Screen

Figure 6-6. Split Screen Mapping.

When the scan line reaches the value in the line compare register, the row scan counter is cleared to zero. This the lower screen (on the display) begins at offset zero in the display memory buffer (plus any panning in effect).

|          | mov                                      | bx,n[bp]                                                  | ; line compare value                                                                                               |
|----------|------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|          | mov<br>mov<br>mov<br>outwrd              | dx,CRTC<br>al,LCR<br>ah,bl<br>dx,ax                       | ; crt controller<br>; line compare register<br>; lo byte of start address<br>; set it                              |
| st_ovfl: | mov<br>mov<br>test<br>jz<br>or<br>outwrd | al,OVFL<br>ah,Ofh<br>bh,O1h<br>st_ovfl<br>ah,10h<br>dx,ax | <pre>; overflow register ; default value ; more than 255 scan lines? ; nope ; set high bit ; out to the CRTC</pre> |

# 6.9 Performance Improvement Extensions

## V7VGA Extensions

V7VGA-based graphics adapters are fully compatible with the IBM VGA--and then some. The architectural enhancements and extended features of the V7VGA make it an extremely fast VGA, reducing wait states by as much as 90%. Thanks to reduced wait states, the V7VGA considerably speeds the performance of existing VGA code.

Peak performance comes with software that takes full advantage of the extended features of the V7VGA, however. These features include a hardware graphics pointer, the ability to modify selected bits in memory without a read cycle (masked writes), color text expansion capabilities, dithering support, extended underlining, and extended 256-color modes.

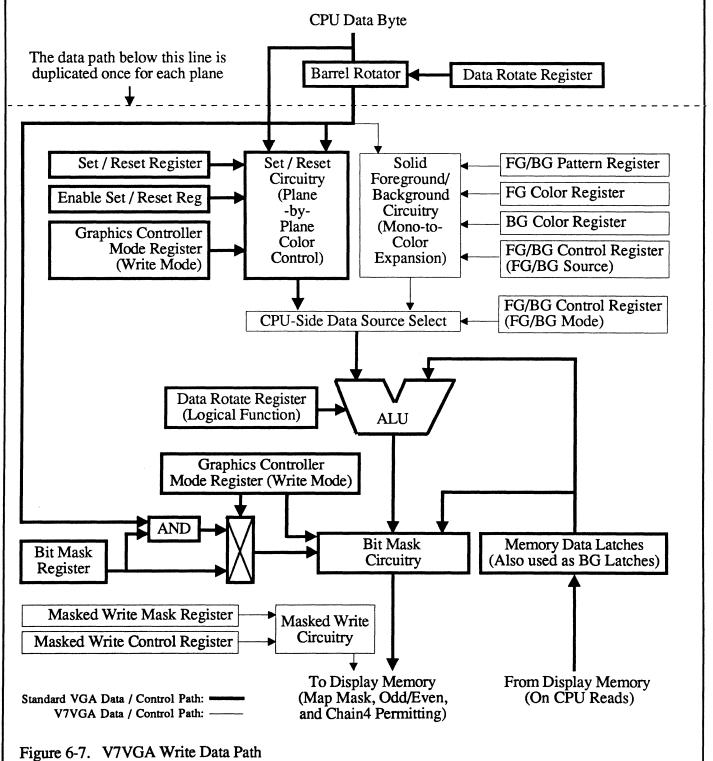
If you're only developing generic VGA software, you won't need to know about or use the extended features, since the V7VGA runs standard VGA software just as an IBM VGA does (except much faster). Even if this is the case, though, we suggest you read farther; you may well find that the extended features can greatly enhance your software's performance.

The baseline performance of the V7VGA--that is, the performance in VGA-compatible operation--far surpasses the IBM VGA. 16-bit memory, I/O, and ROM interfaces, a near-zero-wait-state mechanism on CPU writes, and more efficient timing states combine to improve CPU access to display memory by 350% or more in all VGA modes, with standard 120 ns D-RAMs. The V7VGA also supports V-RAMs transparently to all VGA software; with V-RAMs, CPU access to display memory is improved 700% or more over the IBM VGA.

The color and resolution capabilities of the V7VGA also far exceed the IBM VGA. 720x540 and 800x600 16-color modes are supported with 120 ns D-RAMs, 640x400 and 640x480 256-color modes are supported with 100 ns D-RAMs, and all the above modes plus 720x540 256-color and 1024x768 2- and 16-color modes are supported with V-RAMs.

We won't tell you how to program a VGA in this chapter; that's a book's worth and more. We're just going to tell you how to use the V7VGA's extended features. If you need more information about VGA programming, take a look at IBM's *Display Adapter Technical Reference*. (The same material is also found in a slightly different form in the technical reference manuals for the Model 50/60 and for the Model 80.) You might also want to look at *Programmer's Journal*, issues 5.1-5.4 and 6.1-6.2, which contain articles which cover a variety of VGA programming issues.

We will tell you how to take advantage of the V7VGA's performance-enhancing features. We'll cover: Data path enhancements, identifying the V7VGA and enabling the extended features, using masked writes, dithering, color text expansion, the hardware cursor, and 256 color mode.


# A Note About 16-Bit Outs

You can use 16-bit outs--out dx,ax--if you want. The problem is that this won't work in some PC clones, notably some of those made by Olivetti and sold by AT&T. If you know your code won't end up in such a machine, go for the faster and more compact 16-bit form.

## Data Path Enhancements

The data path followed from the CPU to display memory--the write data path---in the V7VGA is a superset of the IBM VGA's data path. (The read data path is functionally identical in the two chips.) Figure 6-7 below shows one plane's data path in the V7VGA.

In Figure 6-7, standard IBM VGA data paths and registers are shown with bold lines, and V7VGA extensions are shown with normal lines. (By the way, Figure 6-7 is quite useful for understanding normal VGA programming, since it shows all components of the VGA's write data path as well.) The following explanations will refer to Figure 6-7 frequently.



# Identifying the V7VGA and Enabling Extensions

Before you can use any of the V7VGA's extended features, you must enable access to the extension registers. Before you do that, you should check to make sure you're running on a Video Seven adapter.

Positively identifying the V7VGA is a two-stage process. First, see whether you're running on a Video Seven VGA. Then, see what Video Seven chip is installed. Both of these steps can be taken with extended BIOS calls. The following function does all the necessary identification.

#### V7VGA Identification & Information Code

```
Function to determine whether a Video Seven VGA is installed,
;
 and if so what its capabilities are.
;
;
 Input:
            none
;
;
            AL = 1 if a Video Seven VGA is installed, 0 otherwise
 Output:
;
            If AL = 1:
;
             AH = bits 6-0: # of 256Kb banks of RAM (1-4)
;
                  bit 7: 1 if V-RAM is installed, 0 if D-RAM is installed
;
             BH = chip revision (S/C chip rev # on VEGA VGA)
;
             BL = chip revision (G/A chip rev # on VEGA VGA)
;
             CX = 0 (reserved for future use)
;
;
VGA ID PROC NEAR
       mov ax,6f00h
       int
            10h
       sub al,al
       cmp bx,'V7'
                           ; is this a Video Seven VGA?
       jnz Done
       mov ax,6f07h
                           ;yes, check what kind
                           ;get revision code info to return to user
       int 10h
       mov al,1
                           ;mark that this is a Video Seven VGA
Done:
      ret
VGA ID ENDP
```

BIOS function 6Fh, subfunction 0, returns the character pair 'V7' in BX if a Video Seven VGA is installed.

On return from extended BIOS function 6Fh, subfunction 7, AH contains the number of 256K RAM banks installed (1-4), with bit 7 of AH set to 1 if this is a V-RAM board and 0 if this is a D-RAM board, and BH and BL both contain the revision number of the VGA chip. V7VGA chip revision numbers start at 70h, while VEGA VGA revision numbers are all greater than 80h. Practically speaking, if the chip revision number is in the range 70h-7Fh, the chip is a V7VGA. (BH and BL are both used because the VEGA VGA chipset has two chips, and hence two revision numbers).

CX is set to zero because it is "reserved for future use;" this is our way of saying, "we're going to trash CX now, so later when we decide to return some useful value in it, your code isn't going to blow up."

So, after you've called VGA\_ID, you know that if AL = 1, 70h <= BL < 80h, and bit 7 of AH is 1, then you're running on a V7VGA-based graphics adapter. Once you know that, you can enable access to the extensions registers (Sequencer registers 80h-FFh, also known as ER80-ERFF) by writing the value 0EAh to Video Seven Extensions Enable register, SR6. Once access to the extensions registers is enabled, SR6 reads back as 1. You can disable access to the extensions registers by writing 0AEh to SR6. When access to the extensions registers is disabled, SR6 reads back as 0. Here's how to turn extensions on and off:

# **Extension Enable & Disable Code**

```
dx, 3c4h
       mov
             al,6
       mov
       inc
             dx
       mov al, Oeah
       out
             dx,al
        :
   Extensions are now enabled.
;
        :
       mov
             dx, 3c4h
             al,6
       mov
       inc
             dx
       mov
            al,Oaeh
             dx,al
       out
        :
   Extensions are now disabled.
;
```

We suggest that you keep access to the extensions registers disabled as much as possible, to guard against the possibility of code accidentally writing to the extensions registers and wreaking havoc. Also, be aware that many BIOS calls turn off access to the extensions registers.

The extensions registers that you, as a graphics application/driver (as opposed to BIOS) programmer may need to use are:

- 94 Pointer Pattern Address
- 9C Pointer Horizontal Position High
- 9D Pointer Horizontal Position Low
- 9E Pointer Vertical Position High
- 9F Pointer Vertical Position Low
- A0 Graphics Controller Latch Plane 0
- A1 Graphics Controller Latch Plane 1
- A2 Graphics Controller Latch Plane 2
- A3 Graphics Controller Latch Plane 3
- A5 Cursor Attributes

- F1 Fast Latch Load State
- F2 Fast Background Latch Load
- F3 Masked Write Control
- F4 Masked Write Mask
- F5 Foreground/Background Pattern
- F6 1 Mb DRAM Bank Select
- F9 Extended Page Select
- FA Extended Foreground Color
- FB Extended Background Color
- FC Compatibility Control
- FE Foreground/Background Control

See Table 6-3 for a list of all bits in these extended registers. Remember, access to the extensions registers must be enabled by SR6 before you can read or write any of the above registers.

There are many other extended registers in the V7VGA. Don't touch them! The BIOS takes care of controlling the other extended registers, which are of no use to any other software (but which can easily scramble the screen if misprogrammed).

A final note: Please, please, please put any extensions registers you modify back to zero when your program ends. (Or, better yet, back to the state you found them in-they are readable, you know.) The BIOS does not force the state of the extensions registers on mode sets, so if you leave masked writes or color expansion on, the next program that runs is going to look mighty strange.

## Masked Writes (Write-Per-Bit)

On the IBM VGA, the Bit Mask register and the latches are used to make it possible to selectively alter bits within a byte of display memory. Unfortunately, the use of the Bit Mask always requires a read as well as a write, since the latches must be loaded from the target memory byte. This not only adds instructions, but also introduces many wait states; since CPU memory access slots are spaced evenly, the second (write) access of a paired read/write operation always ends up waiting the maximum possible time.

(To put this another way, the read access suffers the average access latency, which is 1/2 the time between successive CPU memory access slots--but the write access suffers the maximum access latency, since it always occurs immediately after the CPU read access has just been completed. If this makes no sense to you, don't worry about it-just take our word for it that a read/write access takes 3 times, not 2 times, as long as a standalone write access.)

There's no way around this limitation with D-RAMs. V-RAMs, however, support the modification of selected bits within a byte without any reads whatsoever. This is known as a masked write, or write-perbit, access. The V7VGA fully supports masked writes when V-RAMs are installed, with the masked write mask value coming either from the rotated CPU byte (think of this as being similar to write mode 3), or from the Masked Write Mask register (extension register F4). The Masked Write Control register (extension register F3) enables masked write operation as follows:

| Extension | Register | <b>F</b> 3 | bit 0: |
|-----------|----------|------------|--------|
| Extension | Register | F3         | bit 1: |
|           | -        |            |        |
|           |          |            |        |

1 to enable masked writes, 0 to disable masked writes. 1 to select the rotated CPU byte as the source for the masked write mask 0 to select the Masked Write Masked register (extension register F4) as the source for the masked write mask.

The masked write can be used like the bit mask, to keep selected bits in the target memory byte from being changed. Here's the D-RAM code for setting bit 4 of the byte at A000:0000 to 1, leaving all other bits unchanged (without masked writes):

#### DRAM (Non-Masked Write) Bit Setting Code

| mov | ax,0a000h |                                                                                                  |
|-----|-----------|--------------------------------------------------------------------------------------------------|
| mov | ds, ax    | ;point DS to display memory                                                                      |
| sub | bx,bx     | ;point to offset 0                                                                               |
| mov | dx,3ceh   | ;GC Index register                                                                               |
| mov | al,8      | ; index of Bit Mask register                                                                     |
| out | dx,al     | ;point GC Index to Bit Mask register                                                             |
| inc | dx        | ;GC Data register                                                                                |
| mov | al,010h   | ;Bit Mask pattern to allow CPU to modify only bit 4                                              |
| out | dx,al     | ;set Bit Mask register to preserve all bits but bit 4                                            |
| mov | al, [bx]  | ;read memory in order to load latches                                                            |
| mov | [bx],0ffh | ;write to the target byte-Bit Mask register preserves<br>; all bits but bit 4, which is set to 1 |

Here's the equivalent V-RAM code, using a masked write controlled by the Masked Write Mask register (assuming extensions are enabled):

#### VRAM (Masked Write Based on Masked Write Mask Reg) Bit Setting Code

| mov | ax,0a000h |                                                            |
|-----|-----------|------------------------------------------------------------|
| mov | ds,ax     | ;point DS to display memory                                |
| sub | bx,bx     | ;point to offset 0                                         |
| mov | dx,3c4h   | ;Sequencer Index register                                  |
| mov | al,Of3h   | ; index of Masked Write Control register                   |
| out | dx,al     | ;point Sequencer Index to Masked Write Control register    |
| inc | dx        | ;Sequencer Data register                                   |
| mov | al,1      | ;bit pattern to select masked writes sourced               |
|     |           | ;from Masked Write Mask register                           |
| out | dx,al     | ;enable masked writes sourced from the Masked Write Mask   |
| dec | dx        | ;Sequencer Index register                                  |
| mov | al,Of4h   | ;index of Masked Write Mask register                       |
| out | dx,al     | ;point Sequencer Index to Masked Write Mask register       |
| inc | dx        | ;Sequencer Data register                                   |
| mov | al,010h   | ;pattern to preserve all bits but bit 4                    |
| out | dx,al     | ;set Masked Write Mask to preserve all bits but bit 4      |
| mov | [bx],0ffh | ;write to the target register-masked write preserves       |
|     |           | ; all bits but bit 4, which is set to 1. No read is needed |

and here's the same thing with a masked write controlled by the CPU byte:

#### VRAM (Masked Write Based on CPU Byte) Bit Setting Code

| mov | ax,0a000h |                                                                |
|-----|-----------|----------------------------------------------------------------|
| mov | ds,ax     | ;point DS to display memory                                    |
| sub | bx, bx    | ;point to offset 0                                             |
| mov | dx,3c4h   | ;Sequencer Index register                                      |
| mov | al,Of3h   | ; index of Masked Write Control register                       |
| out | dx,al     | ;point Sequencer Index to Masked Write Control register        |
| inc | dx        | ;Sequencer Data register                                       |
| mov | al,3      | ;pattern to enable masked writes, source from the CPU byte     |
| out | dx,al     | ;enable masked writes sourced from the CPU byte                |
| mov | dx,3ceh   | ;Graphics Controller Index register                            |
| mov | al,0      | ;index of Set/Reset register                                   |
| out | dx,al     | ;point Graphics Controller Index to Set/Reset register         |
| inc | dx        | ;Graphics Controller Data                                      |
| mov | al,Ofh    | ;pattern for color 15, white                                   |
| out | dx,al     | ;set set/reset color to white                                  |
| dec | dx        | ;Graphics Controller Index                                     |
| mov | al,1      | ;index of Enable Set/Reset register                            |
| out | dx,al     | ; point Graphics Controller Index to Enable Set/Reset register |
| inc | dx        | ;Graphics Controller Data                                      |
| mov | al,Ofh    | ;pattern to enable set/reset for all planes                    |
| out | dx,al     | ;enable set/reset for all planes                               |
| mov | [bx],010h | ;write to the target register-CPU byte becomes the             |
|     |           | ; masked write mask & preserves all bits but bit 4,            |
|     |           | ; which is set to 1. No read is needed                         |
|     |           |                                                                |

Sure, I know this doesn't look *real* convenient, but we're only changing one bit here. Once you've set up the masked write mode, and enabled Set/Reset and so forth, you can just whiz along without doing any outs at all--and without doing any of those slow, slow, slow reads.

A particularly nifty aspect of masked writes is that while they can serve the same function as the bit mask, they don't keep the bit mask from working, if you need both the bit mask and masked writes at once. This means that you can, for example, use the masked write mask for clipping and the bit mask as a selector between a foreground color and a background pattern.

Here's a scenario: Suppose you're writing red text on a background dither pattern of blue and green, and you need to clip the memory access so that only the upper nibble of the display memory byte is changed. You can set the masked write mask to 0F0h to preserve the lower nibble of display memory, fill the latches with the dither pattern (we'll cover how to do this later), put the V7VGA into write mode 3, load the Set/Reset register with red, and write the character. That single write will do everything you need: Clip, mix foreground and dithered background, and modify display memory.

Here's the code (as usual, extensions must be enabled):

#### Masked Write-Based Clipped Text on a Dithered Background

Enable masked writes, with the mask coming from the Masked Write Mask register ; dx, 3c4h mov al, 0fch mov dx,al out dx inc al,1 mov dx,al out dec dx ; Set the Masked Write Mask reg to preserve the lower nibble of the target byte ; ; al, 0fdh mov dx,al out dx inc al, 0f0h mov dx,al out dec dx Load the latches with the dither pattern ; (note that the V7VGA lets you load the latches directly). ; ; mov al,0f2h out dx,al dx inc in al,dx al,55h ; blue plane's part of the dither pattern mov out dx,al ; set blue plane latch al,0aah ; green plane's part of the dither pattern mov dx,al ;set green plane latch out sub al,al ; red and intensity planes don't contribute to dither pattern dx,al ;set red plane latch out dx,al ;set intensity plane latch out (continued)

```
;
     Set to write mode 3
;
     mov
           dx, 3ceh
           al,5
     mov
           dx,al
     out
     inc
           dx
           al,dx
                       ;get current Graphics Mode setting
     in
           al,3
                       ;set the write mode field to 3
     or
     out
           dx,al
                       :now we're in write mode 3
     dec
           dx
;
     Set the Set/Reset color to red
;
;
    mov
           al,0
     out
           dx,al
     inc
           dx
           al,4
                       ; red is color 4
    mov
     out
           dx,al
                       ;the Set/Reset color is now red
;
;
    Write the character
;
           ax, 0a000h
    mov
                                      ; point ES to display memory
    mov
           es,ax
           di, [CharacterLocation]
                                      ;get the character's starting offset
    mov
                                      ; in display memory
                                      ;get the character's font pattern offset
           si,[CharacterFont]
    mov
           cx,[CharacterHeight]
                                      ;get the character's height in scan lines
    mov
     cld
                                      ;make string instructions count up
CharacterLoop:
    lodsb
                                      ;get the next character scan line
                                      ;write the character scan line to display
     stosb
                                      ; memory, with the Masked Write Mask
                                      ; clipping, the latches providing the
                                      ; background dither pattern, the Set/Reset
                                      ; register providing the text color, and
                                      ; the CPU byte selecting between foreground
                                      ; and background on a bit-by-bit basis
           di, SCREEN WIDTH-1
                                      ; point to the display memory offset for the
    add
                                      ; next scan line of the character
                                      ;do next character scan line
     loop CharacterLoop
```

Once again, this seems like a lot of trouble to go to just to write a single clipped character, but it's even more trouble (and slower) to do the same thing on a standard VGA. Besides, you'll want to do a whole column of clipped characters at a time for speed, and then the masked write approach *really* flies!

This is far from the only way to mix dithers, colors, and clips. If you spend some time understanding Figure 6-7, you'll see that Bullet's data path provides a remarkably rich set of possible data sources and combinations.

# Dithering

Dithering is the process of drawing with a pattern made of pixels of two or more colors, in order to approximate a color that the hardware does not support. Dither patterns are often used as backgrounds for windows and other objects, and sometimes for foregrounds (such as halftone text) as well.

The problem with dither patterns on a normal VGA is that, by definition, a dither pattern must be a full 32 bits wide--that is, 8 bits per plane, so each of the 8 pixels at a given address can be any color. Unfortunately, this means that there's no way to write an arbitrary dither pattern directly from the CPU (although a two-color dither pattern can be controlled directly by the CPU using the color text expansion feature of the V7VGA, discussed below).

On the other hand, it *is* possible to write a full 32-bit (8x4) dither pattern from the latches, since there's an 8-bit latch for each plane. Getting information into the latches is a real bear on a standard VGA, though, since there's no way for the CPU to write directly to the latches. You have to write each plane's dither pattern separately to an off-screen address, then read the address to latch the pattern.

The V7VGA's latches are (hallelujah!) directly readable and writable, at extension registers A0-A3. The latches can be accessed just like any other extension register. Better yet, all four latches can be loaded at a single I/O port, the Fast Background Latch Load register (extension register F2).

The way the Fast Background Latch register works is this: Each write to the Fast Background Latch register goes to the latch for the plane selected by bits 1 and 0 of the Fast Latch Load State register (extension register F1). If bits 1 & 0 of ERF1 are 0, the plane 0 (blue plane) latch is loaded, if bits 1 & 0 are 1, the plane 1 (red plane) latch is loaded, and so on. Each time the Fast Background Latch register is written to, the field made up of bits 1 & 0 of the Fast Latch Load State register is incremented by 1, modulo 4. When you *read* the Fast Background Latch register, bits 1 & 0 of the Fast Latch Load State register are reset to 0.

The normal way to load a dither pattern is to read the Fast Background Latch register, then write the blue, green, red, and intensity plane dither bytes to the Fast Background Latch register in succession. Here's a function to load the dither pattern in CX:BX on the IBM VGA:

#### IBM VGA Dither Pattern Load

```
;
      Load a dither pattern.
;
;
      Input: CH = intensity plane dither byte
                CL = red plane dither byte
;
                BH = green plane dither byte
;
                BL = blue plane dither byte
;
;
;
      Output: none
;
LoadDither proc
                          near
      push ds
             ax,0a000h
      mov
                          ; point DS to display memory
      mov
             ds,ax
             si,Offffh
                          ; point to the last byte of display memory
      mov
                          ; (which is presumably unused)
             dx,3c4h
      mov
             al,02h
      mov
             dx,al
      out
      inc
             dx
                          ;map mask pattern to select blue plane only
      mov
             al,1
             dx,al ;set map mask to allow writes to blue plane
[si],bl ;write blue plane dither byte to blue plane
mark mattern to select green plane only
                          ;set map mask to allow writes to blue plane only
      out
      mov
                          ;map mask pattern to select green plane only
     mov
                          ;set map mask to allow writes to green plane only
      out
             dx,al
                          ;write red plane dither byte to green plane
             [si],bh
      mov
```

V7VGA Technical Reference Manual

```
al,4
                        ;map mask pattern to select red plane only
     mov
            dx,al ;set map mask to allow writes to red plane
[si],cl ;write red plane dither byte to red plane
     out
                        ;set map mask to allow writes to red plane only
     mov
     mov
            al,8
                      ;map mask pattern to select intensity plane only
            dx,al
                       ;set map mask to allow writes to intensity plane only
     out
            [si], ch ; write intensity plane dither byte to intensity plane
     mov
     mov
                      ;load the dither pattern into the latches
            al, [bx]
     pop
            ds
     ret
LoadDither endp
and here's the code to do the same thing on the V7VGA, using the fast latch load capability:
                               V7VGA Dither Pattern Load
     Load a dither pattern
;
;
     Input:CH = intensity plane dither byte
;
            CL = red plane dither byte
;
            BH = green plane dither byte
;
            BL = blue plane dither byte
;
;
     Output: none
;
;
     Assumes extensions are enabled.
;
LoadDither proc near
     mov dx, 3c4h
     mov al,0f2h
     out dx,al ;point Sequencer Index to Fast Background Latch Load register
     inc dx
     in
          al,dx ;set background latch load state to select latch 0
     mov al, bl ; get blue plane dither byte
     out dx,al ;set blue plane dither byte
     mov al, bh ; get green plane dither byte
     out dx,al ;set green plane dither byte
     mov al, cl ; get red plane dither byte
     out dx,al ;set red plane dither byte
     mov al, ch ; get intensity plane dither byte
     out dx,al ;set intensity plane dither byte
     ret
LoadDither endp
```

Enough said. (Well, almost enough--note that because the V7VGA version doesn't access memory, no wait states are incurred, while wait states occur on each of the five memory accesses in the standard VGA version.)

# Color Text Expansion

One of the most annoying tasks on a standard VGA is simply turning a binary font pattern into colored text on an opaque, colored background. Most software handles this case by first drawing the character box with the background color, then drawing the text on top of the new background. This causes flicker and requires three memory accesses per byte of font pattern: One write to draw the background and a read/write pair to load the background into the latches, then mix in the foreground (text) pixels and write the final result to memory.

Astute programmers may immediately notice that we could load the background color into the latches, just as we did with the dither pattern in the last example, set the set/reset color to the desired foreground color and enable set/reset for all planes, and use write mode 3, and then we'd only have to do one write per font byte. Very ingenious...but the V7VGA has a better solution yet.

The V7VGA can expand 1-bits in either the CPU byte or the Foreground / Background Pattern (extension register F5) to one color, and 0-bits to another color. It's sort of like having one set/reset color for 1 bits and another set/reset color for 0 bits. The result: You can produce colored text on an opaque, colored background with a single write--and you can change either or both of the colors very easily.

Color text expansion is controlled by the Foreground/Background Control register (extension register FE). The bits in this register are:

Bits 3 & 2: 00 = normal IBM VGA operation

- $01 = \text{color} \exp(1)$
- 10 = reserved
- 11 = reserved
- Bit 1: 1 = select the rotated CPU byte as the data to be expanded
  - 0 = select the contents of the Foreground / Background register as the data to be expanded

Take another look at Figure 6-7, paying special attention to the foreground / background section toward the upper right. The box labeled "CPU-Side Data Source Select Circuitry" selects between the output of the set/reset circuitry (which may be the rotated CPU data byte, the set/reset value, or a byte-expanded bit of the CPU data, depending on the mode) and the output of the foreground / background circuitry (which for each bit is either the foreground color--for 1 bits--or the background color--for 0 bits). When bits 3 & 2 of extension register FE are 00, the set/reset output is selected; when bits 3 & 2 are 01, the foreground / background output is selected.

Fine. Now, where do the foreground and background colors come from, and how is one or the other selected? That's easy enough: The foreground color is stored in the Extended Foreground Color register (extension register FA), and the background color is stored in the Extended Background Color register (extension register FB). These two colors are selected between on a bit-by-bit basis by a byte from one of two sources: The rotated CPU byte or the Foreground / Background Pattern register (extension register F5). 1 bits in the selector byte choose the foreground color, and 0 bits choose the background color.

Here's code that draws yellow characters on a blue background, using the V7VGA's color expansion capabilities (assuming access to the extension registers is enabled):

#### An Example of Color Expansion

Set to color expansion mode

mov dx,3c4h mov al,0feh out dx,al inc dx mov al,6

V7VGA Technical Reference Manual

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the all conclusion made coursed by the CDU by the |                              |                                                                                                 |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | out<br>dec                                            |                              |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | ux                           |                                                                                                 |  |  |  |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Set the foreground color to yellow                    |                              |                                                                                                 |  |  |  |
| ,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Set the foreground color to yellow                    |                              |                                                                                                 |  |  |  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mov                                                   | al,Ofah                      |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | out                                                   | dx,al                        |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | inc                                                   | dx                           |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mov                                                   | al,14                        |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | out                                                   | dx,al                        |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dec                                                   | dx                           |                                                                                                 |  |  |  |
| •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Set the                                               | the background color to blue |                                                                                                 |  |  |  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mov                                                   | al,0fbh                      |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | out                                                   | dx,al                        |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | inc                                                   | dx                           |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mov                                                   | al,1                         |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | out                                                   | dx,al                        |                                                                                                 |  |  |  |
| ,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Write the character                                   |                              |                                                                                                 |  |  |  |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | a 0.a.000h                   |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mov                                                   | ax,0a000h<br>es,ax           | ; point ES to display memory                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mov<br>mov                                            | di,[CharacterLocation]       | ;get the character's starting offset in display memory                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mov                                                   | si,[CharacterFont]           | ;get the character's font pattern offset                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mov                                                   | cx,[CharacterHeight]         | ;get the character's height in scan lines                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cld                                                   |                              | ;make string instructions count up                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                              |                                                                                                 |  |  |  |
| Chara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | cterLoop:                    |                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lodsb                                                 |                              | ;get the next character scan line                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stosb                                                 |                              | ;write the character scan line to display memory,                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | A CODEEN MUDTLE 1            | ; with 1 bits converted to yellow and 0 bits converted to blue.                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | add                                                   | di,SCREEN_WIDTH-1            | ;point to display memory offset for next scan line of character<br>;do next character scan line |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loop                                                  | CharacterLoop                | , uo next character scan line                                                                   |  |  |  |
| As always, masked writes are still available to clip the data written to display memory; in fact, the bit mask<br>is available should you need to mix the foreground / background output with yet a third color or even a<br>dither pattern. You could, for example, put a pattern in the Foreground / Background Pattern register, and<br>set up the foreground and background color registers to the two colors you want associated with that<br>pattern. Then you could put a dither pattern in the latches (don't forget that neat fast latch load capability!),<br>nut the VIXCA is write reade 2, and was the returned CPL but to select the mixing of the two colors form |                                                       |                              |                                                                                                 |  |  |  |

put the V7VGA in write mode 3, and use the rotated CPU byte to select the mixing of the two colors from the color expansion with the dither pattern; in fact, since in write mode 3 the rotated CPU byte is ANDed with the Bit Mask register before serving as the bit mask, you could set the Bit Mask register to further adjust the mixing. Finally, you can use the Masked Write Mask register to clip the final result.

Or, you could route the CPU byte to the masked write circuitry, and use the Bit Mask register to control the dither mixing with the color expansion. Or, you could route the CPU byte to the color expansion...or you could use write mode 2 and route the CPU byte through the set/reset; and or course you can use set/reset too, if you wish. And don't forget that you can rotate the CPU byte.

The point? The V7VGA's data paths give you incredible data selection and mixing capabilities. The CPU data byte can go to five different places in the data path, performing a different function in each place. Whatever you want to do with color expansion, color mixing, rotation, and clipping, odds are you can come up with a clever way to get the V7VGA's data path to do it.

## Extended Underlining

One nuisance with the IBM VGA is that only text with attribute X000X001 can be underlined; this makes it impossible to support bold, blinking, underlined text (that is, text with arbitrary attributes). The V7VGA solves this by letting you store a specific underline pattern for each character in plane 3, the intensity plane, which is normally unused in text mode. This feature is known as extended attributes, although it might just as well be called extended underlining. (It's called extended attributes instead of extended underlining because the underline pattern resides at the same address as the normal attribute, but in plane 3, and because any texture of underline, rather than just solid, is supported.

Here's how extended attributes work. Normally, a character and its attribute are fetched from a given address in planes 0 & 1, and the character is used to look up font data in plane 2. However, you can enable extended attributes by setting bit 0 of extension register FC (the Compatibility Control register) to 1. Now, when each character and attribute is fetched from planes 0 and 1, the byte at the same address is fetched from plane 3. If the current row scan (character scan line within the character row) is the underline scan line, as selected by CRT Controller register 14, then the byte fetched from plane 3 is used as the font data in place of the byte looked up in the font plane. Basically, this means that at the underline scan line, the byte at the character's address in plane 3 provides the video data.

This means that you can solidly underline a character by putting 0FFh at the same address as the character's attribute, but in plane 3; you can also get a dotted underline by putting 55h in plane 3, or a half-underline by putting 0Fh in plane 3. Whatever 8-bit pattern you want to see for an underline for a given character, you can get it by putting that pattern in plane 3. (By the way, extended attribute pixels show up in the foreground and background colors specified by the normal attribute, just like any other character data.)

How do you write to plane 3? Just set the Map Mask register to 08h, and then write to the same address as you would write to if you were changing the attribute of the character that you're underlining. The Map Mask setting of 8 will make sure that the write ends up in plane 3. When you're done modifying the extended attributes in plane 3, put the Map Mask back to a value of 3 (or, better yet, its original value, which you read out before starting all this. Didn't you?)

**Important safety tip:** Always write to odd locations in plane 3 only, and only set the Map Mask to 8, not 0Ch or anything like that. Otherwise, you could wind up trashing your fonts, which is not a good idea. Also--you can't use extended attributes when you're in V-RAM 1:4 text mode (132-column on a 31.5 KHz monitor), because that mode requires the font to be duplicated in plane 3.

When extended attributes are enabled, normal underlining is disabled, so the fabled X000X001 attribute just gives you some sort of blue, and nothing more.

I realize that all this may not be 100% clear, so here's an example. (Not a very practical example, but it does illustrate all the actions needed to use extended attributes.)

#### An Example of Extended Attributes

```
Enables extended attributes, then puts a green "A" at column 0, row 0,
;
     with a dashed underline.
;
;
     Assumes extensions are enabled and that mode 3 is set.
;
;
     Set the underline scan line to 8,
;
     so we can see the extended attribute underline.
;
;
           dx, 3d4h
                       ;CRTC Index
     mov
           al,14h
                       ;Underline register index
     mov
           dx,al
                       ;point CRTC Index to Compatibility Control register
     out
                       ;CRTC Data
           dx
     inc
                       ;underline setting of scan line 8
           al,8
     mov
```

```
out
           dx,al
                       ;set underline to show up at scan line 8
;
     Enable extended attributes
;
;
           dx,3c4h
                       ;Sequencer Index
     mov
     mov
           al, 0fch
                       ;Compatibility Control register index
                       ;point Sequencer Index to Compatibility Control register
           dx,al
     out
     inc
           dx
                       ;Sequencer Data
     in
           al,dx
                       ;get extension register FC setting
     or
           al,1
                       ;set extended attributes enable bit
           dx,al
                       ;turn on extended attributes
     out
;
     Write the character & attribute
;
;
           ax,0b800h
     mov
     mov
           ds,ax
                       ; point to display memory (mode 3)
           bx,0
     mov
           al,'A'
     mov
           [bx],al
                       ;write character "A"
     mov
     inc
           bx
           al,2
     mov
                       ;color green
     mov
           [bx],al
                       ;set attribute for this "A" to green
     Write the extended attribute of dashed underline
;
;
           dx,3c4h
                       ;Sequencer Index
     mov
           al,2
     mov
                       :Map Mask register index
     out
           dx,al
                       ;point Sequencer Index to Map Mask register
     inc
           dx
                       ;Sequencer Data
           al,dx
                       ;get Map Mask setting
     in
                       ;save Map Mask setting to restore it later
     push ax
           al,08h
                       ;Map Mask setting to enable only plane 3
    mov
           dx,al
                       ;set Map Mask to allow writes only to plane 3
     out
     mov
           al,55h
                       ;dashed underline pattern
                       ;write dashed underline extended attribute
           [bx],al
    mov
                       ;get back original Map Mask setting
     pop
           ax
                       ;restore original Map Mask setting
           dx,al
     out
```

## Extended 256-Color Modes

To set a pixel in the 256 color graphics modes the software must compute the address of that pixel. For the 640x400, 640x480, and 720x540 resolution 256-color modes video memory is greater than 64 KBytes. The V7VGA allows the software to access the video memory in 64 KByte banks at A000:0. In order to get the proper 64K bank into the memory window at A000:0 the software must set the bank. The bank is usually determined by computing a 19-bit address into video memory and using the 3 msb's as the bank select. The 640x400 256-color mode only requires the use of 2 bits for the bank select, so some efficiency can be gained by ignoring the 19th bit.

These bank bits currently translate into the following register locations:

- bit 0 Extended page select bit bit 0 of extension register F9
- bit 1 Page select bit bit 5 of the Miscellaneous Output Register
- bit 2 CPU bank select bit 0 Extension register F6 bit-0 (W) and bit-2 (R)

The following code illustrates what must be done to set the correct bank:

```
;
      Set Bank for 256 color modes
;
;
      Routine: set 256 bank
;
      Entry: DX = bank to set and DS = CS.
;
      Exit:
                Correct bank set, AX, BX, DX are
;
                destroyed. SC_INDEX has been changed.
;
;
      Assume: Extensions are enabled. The active page
;
                variable has been properly initialized
;
                with a call to this routine while dx = 0.
;
                db
                        1
active page
SC INDEX
                        3c4h
                equ
ER PAGE SEL
                        0f9h
                equ
MISC INPUT
                equ
                        3cch
MISC OUTPUT
                equ
                        3c2h
ER BANK SEL
                        0f6h
                equ
```

(continued on following page)

```
set_256_bank
                proc
                        near
      push
                ds
      cmp
                active page,dl
                                      ; Is this the currently selected bank?
                sp_ext_256_support_10 ;yes, do nothing.
       je
      mov
                active page,dl
                                       ;no, set bank.
                bl,dl
      mov
                dx, SC INDEX
                                      ;bank bit 0
      mov
      mov
                ah,bl
                ah,1
      and
      mov
                al, ER_PAGE_SEL
                dx,ax
      out
                ah,bl
      mov
                                       ;bank bit 1
      and
                ah,2
                ah,1
      shl
      shl
                ah,1
                ah,1
      shl
      shl
                ah,1
      mov
                dx, MISC INPUT
                al,dx
      in
      and
                al, not 20h
                dx,MISC_OUTPUT
      mov
                al,ah
      or
                dx,al
      out
IFDEF 3_BANK_BITS
                dx,SC INDEX
                                       ;bank bit 2.
      mov
                al, ER BANK SEL
      mov
                                       ;get ER_BANK_SEL register
                dx,al
      out
      inc
                dx
                al,dx
      in
      mov
                ah,al
; duplicate bit 2 into bit 0 (set read and write bank equal)
      shr
               bl,1
               bl,1
      shr
      add
               b1,7
      not
               bl
      and
               bl,5
      and
               ah, Of Oh
                                       ;clear bank select bits
                ah,bl
      or
      mov
                al,ah
      out
                dx,al
ENDIF
sp_ext_256_support_10:
               ds
      pop
      ret
set_256_bank
               endp
```

## Hardware Graphics Cursor (Pointer)

This section shows how to program the V7VGA hardware cursor (also called the pointer). Routines are shown to turn the pointer on and off, read and write the current pointer pattern number (up to 256 patterns may be stored simultaneously in display memory), read and write the current pointer XY screen position, and load pointer patterns to display memory. In addition, a number of example pointer data patterns are listed at the end of the pointer pattern load routine.

Note that the pointer XY position on the screen is the position of the upper left corner of the pointer pattern. If the program requires that the pointer be located partially off the screen to the left or at the top, the programmer must adjust the pointer pattern in memory accordingly. No code is given in this section to handle these cases (this is left as an exercise for the reader). Since the XY position indicates the upper left of the pointer pattern, the V7VGA chip automatically handles cases where the cursor is located partially off the screen at the bottom or at the right side.

The following definitions are used in the code examples:

| ;;                                    | Display                                                                         | lay Memory Definitions                             |                                                                                                                                                                                                                                                  |  |
|---------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ;<br>RAMSEG<br>RAMSIZ                 |                                                                                 | <b>0</b> A000H<br>64*1024                          | ;Display memory start address<br>;Display memory size                                                                                                                                                                                            |  |
| ; 3Cx I/O Port Address Definitions    |                                                                                 |                                                    | finitions                                                                                                                                                                                                                                        |  |
| MISC<br>SEQ<br>;<br>;<br>FCRD<br>MSRD | EQU<br>EQU<br>EQU<br>EQU<br>EQU                                                 | 03C2H<br>03C4H<br>03C6H<br>03C8H<br>03CAH<br>03CCH | <pre>;Attribute controller<br/>;Feature read register<br/>;Misc output register write<br/>;Sequencer index reg (seq data is SEQ+1)<br/>;Color Palette<br/>;Color Palette<br/>;Feature Control register read<br/>;Misc output register read</pre> |  |
| GRC<br>;<br>;                         | RC EQU 03CEH ;Graphics Controller<br>V7VGA Extension Register Index Definitions |                                                    |                                                                                                                                                                                                                                                  |  |
| ;<br>GRL0<br>GRL1<br>GRL2<br>GRL3     |                                                                                 | 0A0H<br>0A1H<br>0A2H<br>0A3H                       | ;Graphics Controller Data Latch 0<br>;Graphics Controller Data Latch 1<br>;Graphics Controller Data Latch 2<br>;Graphics Controller Data Latch 3                                                                                                 |  |
| CURS<br>PPA                           | EQU<br>EQU                                                                      | 0A5H<br>094H                                       | ;Cursor Attributes<br>;Pointer Pattern Address                                                                                                                                                                                                   |  |
| PXH<br>PXL<br>PYH<br>PYL              | EQU<br>EQU<br>EQU<br>EQU                                                        | 09CH<br>09DH<br>09EH<br>09FH                       | Pointer X Position High<br>Pointer X Position Low<br>Pointer Y Position High<br>Pointer Y Position Low                                                                                                                                           |  |

The following code sequence should be executed before accessing any of the extension registers to enable access to the extension registers: MOV DX, SEQ MOV AL,6 OUT DX,AL ;Point at SR6 INC DT. AL, OEAH MOV OUT DX,AL ;Enable access to extensions The following routine turns the pointer on so that it will be visible on the screen: PTRON PROC NEAR MOV DX, SEQ MOV AL, CURS OUT DX,AL ;Point at the Cursor extension register INC DLIN AL,DX ;Read the current contents AL,80H OR ;Turn the pointer on OUT DX,AL ;Write it back RET PTRON ENDP The following routine turns the pointer off so that it will not be visible on the screen: PTROFF PROC NEAR MOV DX, SEQ MOV AL, CURS ; Point at the Cursor extension register OUT DX,AL INC DLIN AL,DX ;Read the current contents AL,7FH ;Turn the pointer off AND DX,AL ;Write it back OUT RET PTROFF ENDP The following code reads the current pointer number and returns with it in AL: GETPPA PROC NEAR DX, SEQ MOV MOV AL, PPA OUT DX,AL ; Point at Pointer Pattern Address register INC DL ;Read current pointer pattern number IN AL,DX RET GETPPA ENDP The following code loads a new pointer number from a value in AH. This should be a valid pointer number corresponding to a pattern that has been loaded into display memory (or will be before the pointer is enabled). Valid pointer numbers for the example pointer load routine at the end of this section are between 'MAXCNT' (255) and 'MAXCNT-PTRCNT' (PTRCNT is the number of pointers loaded at the end of display memory). GETPPA PROC NEAR MOV DX, SEQ MOV AL, PPA ;Point at Pointer Pattern Address register OUT DX,AL INC  $\mathtt{DL}$ AL,AH ;Get pointer pattern number MOV NXTPAT: OUT DX,AL ;Load it RET GETPPA ENDP

The following routine reads the current location of the pointer on the screen: \_\_\_\_\_ Get Pointer Position ; ; Call with: AL = Start Index (PXH); ; DX = I/O Address of Sequencer Index Reg ; Returns with: BX = X Position ; CX = Y Position ; AX, DX preserved ; GETPTR PROC NEAR PUSH AX OUT DX,AL ;Point at XH INC ;Bump I/O address DL ;Save for next req MOV AH, AL ;Program XH AL,DX IN MOV BH, AL ;Save XH value ;Reset I/O address to index reg DEC DLINC ;Bump index AH MOV AL,AH ;Get index ;Point at XL OUT DX,AL ;Bump I/O address INC DL;Program XL AL,DX IN ;Save XL value MOV BL,AL ;Reset I/O address to index reg DEC DLINC AH ;Bump index AL,AH MOV ;Get index OUT DX,AL ;Point at YH ;Bump I/O address INC DL;Program YH AL,DX IN ;Save YH value MOV CH,AL ;Reset I/O address to index reg DEC DL INC AH ;Bump index MOV AL,AH ;Get index OUT DX,AL ;Point at YL ;Bump I/O address INC DL;Program YL ;Save YL value IN AL,DX MOV CL,AL ;Reset I/O address to index req DLDEC POP AX RET GETPTR ENDP

The following routine updates the current location of the pointer on the screen: ; Update Pointer Position ; Call with: AL = Start Index (PXH); BX = X Position ; CX = Y Position ; DX = I/O Address of Sequencer Index Req ; ; Returns with: All registers preserved ; PUTPTR PROC NEAR PUSH AX OUT DX,AL ;Point at XH ;Bump I/O address ;Save for next reg INC DLMOV AH,AL ;Get XH value MOV AL,BH OUT DX,AL ;Program XH DEC ;Reset I/O address to index req DL ;Bump index ;Get index INC AH AL,AH MOV DX,AL ; Point at XL OUT ;Bump I/O address INC DL AL,BL ;Get XL value MOV OUT DX,AL ; Program XL DEC DL ;Reset I/O address to index reg ;Bump index ;Get index INC AH MOV AL,AH OUT DX,AL ;Point at YH ;Bump I/O address INC DL;Get YH value MOV AL,CH OUT DX,AL ; Program YH DEC DL;Reset I/O address to index reg ;Bump index INC AH ;Get index AL,AH MOV ;Point at YL DX,AL OUT ;Bump I/O address ;Get YL value INC DLMOV AL,CL DX,AL OUT ; Program YL & update screen position DEC ;Reset I/O address to index reg DL POP AX RET PUTPTR ENDP For example, a code sequence to move the pointer right one pixel would be: ;Point at sequencer index register ;Point at pointer position register group ;Get current X and Y location MOV DX, SEQ DX, SEQ AL, PXH MOV CALL GETPTR ;Bump X to move the pointer right one pixel INC BX CALL PUTPTR ;Load new location All four position registers should be updated as a group as the write of the last register of the group actually updates the position on the screen. The V7VGA chip pipelines the actual screen update like this so that the cursor does not appear at spurious positions on the screen during the update sequence.

The next three pages list a routine that may be used to load the pointer patterns into display memory. The first page (this page) is the start of the routine and shows code required to save the appropriate V7VGA registers and reprogram them appropriately for the actual pointer load routine which is listed on the next page. The page after the pointer load code lists the code required to put everything back the way it was before the routine is called.

The seven pages following the code for the routine list the data files used by the routine (a number of example pointer patterns).

This routine will work completely independent of what mode the V7VGA is in (text, graphics, monochrome, 4-plane color, byte-per-pixel 256-color, etc, makes no difference).

Load Pointer Patterns to Memory ; ; Entry: none ; Exit: AX, DX modified LOADPTR PROC NEAR MOV DX, GRC MOV AL,6 OUT DX,AL ;Point at GR6 INC DLAL,DX IN ;Read current value PUSH AX ;Save for later ;Mask all except text/graphics bit
;No chaining, mem map = A0000-AFFFF AND AL,1 AL,04H OR OUT DX,AL ; and put it back MOV DX, GRC MOV AL,5 DX,AL ;Point at GR5 OUT INC DLAL,DX ;Read current value IN ;Save for later AX PUSH ;Turn off odd/even bit & set to write mode 1 AL,1 MOV DX,AL OUT ; and put it back MOV DX, SEQ MOV AL,4 OUT DX,AL ;Point at SR4 INC DL ;Read current value IN AL,DX PUSH AX ;Save for later AL,7 ;Turn off odd/even and double odd/even MOV ; and put it back DX,AL OUT DX, SEQ MOV MOV AL,2 ;Point at SR2 OUT DX,AL  $\mathbf{DL}$ INC ;Read current value AL,DX IN ;Save for later PUSH AX AL, OFH MOV OUT DX,AL ;Set to write all planes

Now that the appropriate registers are saved away on the stack and everything set up for the pointer load, the following code is used to actually load the pointer patterns into display memory. The pointer patterns and a pointer table used to load the patterns are listed later in this section.

Note: The pointer patterns are loaded at the end of display memory (PPA register values starting from 255 and below). The routine loads pointer data until all pointers are loaded, then exits. So the pointers take up as much display memory as there are pointers in the table, starting from the end of display memory. More pointers can be added to or deleted from the table without changing any of the code. Also, in order to make the data patterns easy to edit, the data is entered as binary formatted double words. This places the data bytes in the 'wrong' order in memory, so the following code just loads them in the reverse order, starting with byte 3 instead of byte 0.

; Now load the pointers ; AX, RAMSEG MOV MOV ES,AX ; Point at display memory MOV AH,256-PTRCNT ;Calculate where to start in display memory MOV AL,0 SAR AX,1 SAR AX,1 MOV DI,AX ;Initialize display memory index SI, OFFSET PTRS ; Pointer Table Index MOV MOV CH, PTRCNT ;This many pointers LPOLUP: MOV CL,64 ;64 \* 4 (256) bytes per pointer LPLOOP: MOV AL, GRL3 CALL LDGRL ;Load data latch 3 MOV AL, GRL2 CALL LDGRL ;Load data latch 2 MOV AL, GRL1 ;Load data latch 1 CALL LDGRL MOV AL, GRLO CALL LDGRL ;Load data latch 0 MOV ES:[DI],AL ;Write 4 bytes to display memory INC DI ;Bump display memory index DEC CL ;Decrement pointer byte count JNZ LPLOOP ;Loop over this pointer DEC CH ;Decrement pointer count LPOLUP JNZ ;Loop over all pointers .TMP SHORT LDEXIT ;Done \_\_\_\_\_ \_\_\_\_\_ Support Subroutine for Pointer Load LDGRL PROC NEAR MOV DX, SEQ OUT DX,AL INC DX MOV AL,DS:[SI] ;Get pointer byte ;Write to data latch OUT DX,AL SI INC RET LDGRL ENDP

V7VGA Technical Reference Manual

| 1       | Restore    | original    | data | values                     |
|---------|------------|-------------|------|----------------------------|
|         | nebcore    | orrgrmar    | aaca | Varaes                     |
| LDEXIT: | MOV        | DX, SEQ     |      |                            |
| 1       | MOV        | AL,2        |      |                            |
|         | OUT        | DX,AL       |      | ;Point at SR2              |
| ]       | INC        | DL          |      |                            |
| ]       | POP        | AX          |      |                            |
|         | OUT        | DX,AL       |      | Restore original value;    |
|         | MOV        | DX, SEQ     |      |                            |
|         | MOV        | AL,4        |      |                            |
|         | OUT        | DX,AL       |      | ;Point at SR4              |
|         | INC        | DL          |      |                            |
|         | POP        | AX<br>DV DI |      | ·Destaus suising] ····]··· |
|         | OUT        | DX,AL       |      | ;Restore original value    |
| ļ       | MOV        | DX, GRC     |      |                            |
|         | MOV        | AL,5        |      |                            |
|         | OUT        | DX,AL       |      | ;Point at GR5              |
|         | INC        | DL          |      |                            |
| 1       | POP        | AX          |      | ·Destaus suising] uplus    |
|         | OUT        | DX,AL       |      | ;Restore original value    |
|         | MOV        | DX,GRC      |      |                            |
| ł       | MOV        | AL,6        |      |                            |
| ł       | OUT        | DX,AL       |      | ;Point at GR6              |
| [       | INC        | DL          |      |                            |
|         | POP        | AX          |      | ·Postoro original value    |
|         | OUT<br>RET | DX,AL       |      | ;Restore original value    |
|         |            |             |      |                            |
| LOADPTR | ENDP       |             |      |                            |
| l       |            |             |      |                            |
| l       |            |             |      |                            |
| 1       |            |             |      |                            |

1

| ;                                    | Graphic                                 | s Cursor (Pointer) Table                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
|--------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| PTRTAB:<br>PTRSIZ<br>PTRSIZ<br>PTRS: | DW<br>DW<br>DW<br>DW<br>DW<br>DW<br>EQU | OFFSET ARROW ;Type 00 - Arrow<br>OFFSET BOX ;Type 01 - Box<br>OFFSET BOX2 ;Type 02 - Box #2<br>OFFSET CROSS ;Type 03 - Cross<br>OFFSET INVBLK ;Type 04 - Inverse Bloc<br>OFFSET WHTBLK ;Type 05 - White Ploc<br>OFFSET BLKBLK ;Type 06 - Black Bloc<br>(\$-PTRTAB)/2 | (16x16)<br>(32x32)<br>(32x32)<br>(32x32)<br>(32x32)<br>ck (32x32)<br>ck (32x32)<br>ck (32x32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |
| ;                                    | Graphic                                 | s Cursor Pattern: Arrow (black with whi                                                                                                                                                                                                                              | te border)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
| ;<br>ÅRROW:<br>ARROWX:               |                                         | 0011111111111111111111111111111111111                                                                                                                                                                                                                                | AND 01<br>AND 02 0<br>AND 03 0<br>AND 03 0<br>AND 04 1<br>AND 05 1<br>AND 06<br>AND 06<br>AND 07<br>AND 08<br>AND 09<br>AND 10<br>AND 10<br>AND 12<br>AND 12<br>AND 12<br>AND 12<br>AND 14<br>AND 15<br>AND 14<br>AND 15<br>AND 16<br>AND 17<br>AND 18<br>AND 19<br>AND 22<br>AND 23<br>AND 31 | Result<br>Black<br>White<br>Clear<br>Invers |
|                                      |                                         | 10010000000000000000000000000000000000                                                                                                                                                                                                                               | ;XOR 02 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Black<br>White<br>Clear<br>Revers           |

| ;<br>BOX: | DD<br>DD | 00000000000000000000000000000000000000          | ; AND 00<br>; AND 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AND                | XOR  | Result                                      |
|-----------|----------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|---------------------------------------------|
|           |          | 01011111111111111111111111010b<br>011011111111  | AND 02<br>AND 02<br>AND 03<br>AND 04<br>AND 05<br>AND 06<br>AND 06<br>AND 07<br>AND 07<br>AND 10<br>AND 10<br>AND 11<br>AND 12<br>AND 11<br>AND 12<br>AND 14<br>AND 14<br>AND 14<br>AND 16<br>AND 16<br>AND 221<br>AND 221<br>AND 221<br>AND 221<br>AND 221<br>AND 221<br>AND 226<br>AND 226<br>AND 226<br>AND 227<br>AND 230<br>AND 231<br>AND 230<br>AND 231<br>AND 230<br>AND 231<br>AND 331<br>AND 331<br>AN | 0011               | 0101 | Black<br>White<br>Clear<br>Invers           |
| OXX:      |          | <pre>111111111111111111111111111111111111</pre> | ; XOR 00<br>; XOR 01<br>; XOR 02<br>; XOR 03<br>; XOR 04<br>; XOR 05<br>; XOR 06<br>; XOR 07<br>; XOR 07<br>; XOR 08<br>; XOR 10<br>; XOR 10<br>; XOR 11<br>; XOR 12<br>; XOR 11<br>; XOR 12<br>; XOR 14<br>; XOR 15<br>; XOR 16<br>; XOR 17<br>; XOR 18<br>; XOR 20<br>; XOR 21<br>; XOR 22<br>; XOR 23<br>; XOR 24<br>; XOR 26<br>; XOR 27<br>; XOR 30<br>; XOR 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AND<br>0<br>1<br>1 |      | Result<br>Black<br>White<br>Clear<br>Invers |

| BOX2: | DD<br>DD | d0000000000000000000000000000000000000          | ;AND 00<br>;AND 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND                     | XOR  | Result                                      |
|-------|----------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------------------------------------|
|       |          | 00000000000000000000000000000000000000          | AND 02<br>AND 03<br>AND 04<br>AND 05<br>AND 06<br>AND 06<br>AND 07<br>AND 08<br>AND 09<br>AND 10<br>AND 11<br>AND 12<br>AND 12<br>AND 12<br>AND 12<br>AND 14<br>AND 15<br>AND 15<br>AND 22<br>AND 221<br>AND 220<br>AND 221<br>AND 220<br>AND 220<br>AND 220<br>AND 23<br>AND 23<br>AND 30<br>AND 30 | 0011                    | 0101 | Black<br>White<br>Clear<br>Invers           |
| OX2X: |          | <pre>111111111111111111111111111111111111</pre> | ; XOR 00<br>; XOR 01<br>; XOR 02<br>; XOR 03<br>; XOR 04<br>; XOR 05<br>; XOR 06<br>; XOR 06<br>; XOR 07<br>; XOR 08<br>; XOR 10<br>; XOR 11<br>; XOR 12<br>; XOR 12<br>; XOR 14<br>; XOR 14<br>; XOR 15<br>; XOR 15<br>; XOR 16<br>; XOR 16<br>; XOR 19<br>; XOR 18<br>; XOR 21<br>; XOR 22<br>; XOR 23<br>; XOR 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AND<br>0<br>0<br>1<br>1 |      | Result<br>Black<br>White<br>Clear<br>Invers |

Γ

| CROSS:  | Graph:<br>DD | ics Cursor Pattern: Cross (32x32)<br>111111111111100111111111111111b | :AND 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | VOD                     | Result                                      |
|---------|--------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|---------------------------------------------|
|         |              | 1111111111111001111111111111111111111                                | AND 00<br>; AND 002<br>; AND 002<br>; AND 003<br>; AND 004<br>; AND 005<br>; AND 006<br>; AND 007<br>; AND 007<br>; AND 007<br>; AND 100<br>; AND 100<br>; AND 100<br>; AND 111<br>; AND 112<br>; AND 112<br>; AND 114<br>; AND 115<br>; AND 116<br>; AND 116<br>; AND 117<br>; AND 116<br>; AND 120<br>; AND 201<br>; AND 301<br>; AND 301 |                    |                         | Black<br>White<br>Clear<br>Invers           |
| CROSS2: |              | 00000000000000000000000000000000000000                               | ; XOR 00<br>; XOR 01<br>; XOR 02<br>; XOR 03<br>; XOR 04<br>; XOR 05<br>; XOR 06<br>; XOR 07<br>; XOR 08<br>; XOR 09<br>; XOR 10<br>; XOR 10<br>; XOR 11<br>; XOR 11<br>; XOR 12<br>; XOR 14<br>; XOR 15<br>; XOR 14<br>; XOR 15<br>; XOR 16<br>; XOR 17<br>; XOR 18<br>; XOR 20<br>; XOR 21<br>; XOR 22<br>; XOR 23<br>; XOR 24<br>; XOR 25<br>; XOR 27<br>; XOR 28<br>; XOR 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AND<br>0<br>1<br>1 | XOR<br>0<br>1<br>0<br>1 | Result<br>Black<br>White<br>Clear<br>Invers |

Г

| NVBLK: | A; AI                                                                                                                                                                                                                               | ND 00                                                                       | AND                | XOR                     | Result                                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------|-------------------------|---------------------------------------------|
|        | 111111111111111111111111111111111111                                                                                                                                                                                                | 01234567890112345678901223456789033<br>NDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | 0<br>0<br>1<br>1   | 0101                    | Black<br>White<br>Clear<br>Invers           |
| NVXOR: | 11111111111111111111111         ;X           11111111111111111111111111         ;X           11111111111111111111111111         ;X           1111111111111111111111111111         ;X           111111111111111111111111111111111111 | OR 0012034000000000000000000000000000000000                                 | AND<br>0<br>1<br>1 | XOR<br>0<br>1<br>0<br>1 | Result<br>Black<br>White<br>Clear<br>Invers |

Γ

|         | -                                      | ics Curso |  |  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |                                             |
|---------|----------------------------------------|-----------|--|--|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|---------------------------------------------|
| HTBLK:  | DD |           |  |  |                                       | ; AND 00<br>; AND 01<br>; AND 02<br>; AND 02<br>; AND 03<br>; AND 04<br>; AND 05<br>; AND 05<br>; AND 06<br>; AND 07<br>; AND 07<br>; AND 07<br>; AND 07<br>; AND 07<br>; AND 07<br>; AND 10<br>; AND 10<br>; AND 11<br>; AND 12<br>; AND 13<br>; AND 14<br>; AND 14<br>; AND 14<br>; AND 14<br>; AND 20<br>; AND 21<br>; AND 22<br>; AND 23<br>; AND 23<br>; AND 24<br>; AND 25<br>; AND 28<br>; AND 31 | AND<br>0<br>1<br>1 | XOR<br>0<br>1<br>0<br>1     | Result<br>Jlack<br>White<br>Clear<br>Invers |
| "HTXOR: |                                        |           |  |  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ; XOR 00<br>; XOR 01<br>; XOR 02<br>; XOR 03<br>; XOR 04<br>; XOR 05<br>; XOR 05<br>; XOR 06<br>; XOR 07<br>; XOR 08<br>; XOR 07<br>; XOR 10<br>; XOR 11<br>; XOR 12<br>; XOR 13<br>; XOR 14<br>; XOR 13<br>; XOR 14<br>; XOR 15<br>; XOR 16<br>; XOR 17<br>; XOR 18<br>; XOR 19<br>; XOR 22<br>; XOR 23<br>; XOR 27<br>; XOR 28<br>; XOR 30<br>; XOR 31                                                                                                                                                                                     | AND<br>0<br>1<br>1 | XOR<br><br>0<br>1<br>0<br>1 | Result<br>Black<br>White<br>Clear<br>Invers |

|         | Graph      | ics Cursor Pattern:  | Black Block                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                         |                                             |
|---------|------------|----------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|---------------------------------------------|
| BLKBLK: |            |                      | Black Block                                   | ; AND 00<br>; AND 01<br>; AND 02<br>; AND 02<br>; AND 03<br>; AND 04<br>; AND 05<br>; AND 06<br>; AND 06<br>; AND 07<br>; AND 09<br>; AND 10<br>; AND 10<br>; AND 11<br>; AND 11<br>; AND 11<br>; AND 12<br>; AND 13<br>; AND 14<br>; AND 15<br>; AND 16<br>; AND 16<br>; AND 19<br>; AND 221<br>; AND 221<br>; AND 221<br>; AND 221<br>; AND 223<br>; AND 225<br>; AND 225<br>; AND 226<br>; AND 227<br>; AND 226<br>; AND 227<br>; AND 226<br>; AND 227<br>; AND 237<br>; AND 230<br>; AND 300<br>; AND 300 | AND<br>0<br>1<br>1 | XOR<br>0<br>1<br>0<br>1 | Result<br>Black<br>White<br>Clear<br>Invers |
| BLKXOR: |            |                      | 00000000000000000000000000000000000000        | ; XOR 00<br>; XOR 01<br>; XOR 02<br>; XOR 02<br>; XOR 03<br>; XOR 05<br>; XOR 05<br>; XOR 05<br>; XOR 07<br>; XOR 08<br>; XOR 09<br>; XOR 10<br>; XOR 11<br>; XOR 11<br>; XOR 11<br>; XOR 11<br>; XOR 13<br>; XOR 14<br>; XOR 15<br>; XOR 16<br>; XOR 17<br>; XOR 18<br>; XOR 17<br>; XOR 18<br>; XOR 21<br>; XOR 22<br>; XOR 23<br>; XOR 24<br>; XOR 25<br>; XOR 29<br>; XOR 30<br>; XOR 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AND<br>0<br>1<br>1 |                         | Result<br>Black<br>White<br>Clear<br>Invers |
| TRCNT   | EQU<br>EQU | (\$-ptrs)/256<br>255 | ;Number of pointers<br>;Max pointer pattern # |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                         |                                             |

 Table 6-3:
 V7VGA User-Programmable Extension Register Summary

#### Index Description

- 94 Pointer Pattern Address: bits 13-6 of the address at which the currently displayed pointer pattern (hardware graphics cursor) is stored. Bits 15 & 14 are always 0, and each pointer pattern is 64 addresses long (accounting for bits 5-0).
- **9C Pointer Horizontal Position Low:** bits 7-0 of the X coordinate of the hardware graphics cursor (in pixels). The value in this register does not actually take effect on the screen until extension register 9F is written.
- **9D Pointer Horizontal Position High**: bits 10-8 of the X coordinate of the hardware graphics cursor (in pixels). The value in this register does not actually take effect on the screen until extension register 9F is written.
- **9E Pointer Vertical Position Low:** bits 7-0 of the Y coordinate of the hardware graphics cursor (in pixels). The value in this register does not actually take effect on the screen until extension register 9F is written.
- **9F Pointer Vertical Position High**: bits 9 & 8 of the Y coordinate of the hardware graphics cursor (in pixels). Writing this register updates the actual screen position.
- A0-A3 Graphics Controller Latches 0-3: the blue, green, red, and intensity plane latches, respectively.
  - Cursor Attributes: Bit 7: 1 to enable the hardware graphics cursor
    - 0 to disable
    - Bit 3: 1 to select XOR text cursor
      - 0 to select normal (overwrite) cursor
    - Bit 0: 1 to disable cursor blink,
      - 0 to enable cursor block (normal)
  - F1 Fast Latch Load State: Bits 1 & 0: the latch register (0-3 corresponds to A0-A3) written to by the next write to the Fast Background Latch Load register.
  - F2 Fast Background Latch Load: on reads, resets bits 1 & 0 of the Fast Latch Load State register to 0. On writes, data written to this register goes to the one of four latch registers (A0-A3) selected by bits 1 & 0 of the Fast Latch Load State register, and the field made up of bits 1 & 0 of the Fast Latch Load State register is incremented after the write is complete.

#### F3 Masked Write Control:

- Bit 1: 1 to select the rotated CPU byte as the masked write mask source 0 to select the Masked Write Mask register as the masked write mask source (No effect if bit 0 is 0.)
- Bit 0: 1 to enable masked writes (write-per-bit), 0 to disable masked writes. Masked writes only work with V-RAM.
- F4 Masked Write Mask: the bit pattern used for the masked write mask when bit 1 of the Masked Write Control register is 0 and bit 1 of that register is a 1.
- F5 Foreground/Background Pattern: the bit pattern to be expanded to a two-color pattern when bits 3 & 2 of the Foreground/Background Control register are 01 and bit 1 of that register is 0. 1 bits are expanded to the color in the Extended Foreground Color register, and 0 bits are expanded to the color in the Extended Background Color register.

#### (continued)

A5

| Table 6-3: | V7VGA Use                                         | er-Programmable Extension Register Summary (continued)                                                                                                                                                                                                                                             |
|------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F6         | 1 Mb DRAN                                         | A Bank Select                                                                                                                                                                                                                                                                                      |
|            | Bit 7:<br>Bit 6:                                  | 1 to reset the bank when line compare occurs<br>0 to load the bank select from bits 5 & 4 of this register when line compare occurs<br>1 to let banks turn over (scan into the next bank)                                                                                                          |
|            | Bits 3 & 2:                                       | 0 to keep the bank from turning over<br>Bank from which CRTC starts fetching video data at the start of a frame<br>Bank from which the CPU reads<br>Bank to which the CPU writes                                                                                                                   |
| F9         | Extended Pa                                       | age Select                                                                                                                                                                                                                                                                                         |
|            | 0 to                                              | select extended page 1<br>select extended page 0<br>effect when bit-2 of the Compatibility Control register is 0)                                                                                                                                                                                  |
|            | Exact action                                      | depends on the settings of bits 5, 4, and 1 of the Compatibility Control register.                                                                                                                                                                                                                 |
| FA         |                                                   | <b>breground Color</b> : Bits 3-0: color 1 bits are expanded to when bits 3 & 2 of the /Background Control register are 01.                                                                                                                                                                        |
| FB         |                                                   | <b>ackground Color</b> : Bits 3-0: color 0 bits are expanded to when bits 3 & 2 of the /Background Control register are 01.                                                                                                                                                                        |
| FC         | Compatibili                                       | ty Control:                                                                                                                                                                                                                                                                                        |
|            | Bit 4: 1 to<br>Bit 2: 1 to<br>0 to<br>Bit 1: 1 to | select sequential chain 4 mode (useful for hi-res V-RAM 256-color modes)<br>select sequential chain mode (useful for hi-res V-RAM 256-color modes)<br>enable extended 256-color modes<br>select normal 256-color operation<br>select 128K extended 256-color mode                                  |
|            |                                                   | select 64K extended 256-color modes<br>enable extended attributes (extended underlining).                                                                                                                                                                                                          |
| FE         | Foreground                                        | /Background Control:                                                                                                                                                                                                                                                                               |
|            | Bits 3 & 2:                                       | Foreground/background mode selection. 00 for normal IBM VGA operation,                                                                                                                                                                                                                             |
|            | Bit 1:                                            | <ul> <li>01 for color text expansion, 10 and 11 reserved.</li> <li>1 to select the rotated CPU byte as the color expansion source</li> <li>0 to select the FG / BG Pattern register as the color expansion source.</li> </ul>                                                                      |
| FF         | 16-Bit Interf                                     | face Control:                                                                                                                                                                                                                                                                                      |
|            | Bits 6 & 5:                                       | select the bank in which the pointer pattern<br>(hardware graphics cursor masks) resides.                                                                                                                                                                                                          |
|            | Bit 4:                                            | 1 to select banked operation with 256K of V-RAM or D-RAM<br>0 to select banked operation with 1 Mbit D-RAM chips                                                                                                                                                                                   |
| ***Importa | BIOS<br>write                                     | ot change any unused bits in any registers, since some of those bits are used by the<br>. To change selected bits, read the register, change just the bits of interest, and<br>the result back to the register. Failure to observe this could result in unreadable<br>type or reduced performance. |

## APPENDIX

**Register Initialization Tables** 

This appendix shows the default values for the registers when operating the V7VGA board in all modes. There are two tables: 1) VGA-Standard modes and 2) Video Seven proprietary modes. Standard Modes Displays 40x25 Color Text (8x8 font) AD, MS 0,1 Color Text (8x14 font) AD, MS 0,1\* 40x25 Note: MS = Multi-Frequency Display 40x25 Color Text (9x16 font) AD, MS 0.1 +Color Text AD. MS 2,380x25 (8x8 font) AD = PS/2-Type Fixed-2,3\* Color Text (8x14 font) AD, MS 80x25 Frequency Analog Display 2,3+80x25 Color Text (9x16 font) AD, MS (Color or Monochrome) (IBM 8512,8513,8514 80x25 Mono Text (9x14 font) AD. MS Color or IBM 8503 Mono 7+ 80x25 Mono Text (9x16 font) AD, MS or equivalent) AD, MS 6 640x200 Mono Graphics (2-color)F 640x350 Mono Graphics (4-color) AD, MS XL = MultiSync XL (19"),Nanao 9070S (16"), 11 640x480 Mono Graphics (2-color) AD, MS or equivalent 4,5 320x200 Color Graphics (4-color) AD, MS 320x200 Color Graphics (16-color) AD, MS D AD, MS E 640x200 Color Graphics (16-color) 640x350 Color Graphics (16-color)10 AD, MS 12 640x480 Color Graphics (16-color)AD. MS **BIOS Setmode:** 320x200 Color Graphics 13 (256-color) AD, MS mov ax.mode Proprietary Modes Displays 10h int Color Text (8x8 font) AD, MS 40 80x43 41 Color Text AD. MS 132x25 (8x14 font)42 132x43 Color Text (8x8 font) AD, MS 43 80x60 Color Text (8x8 font) AD. MS 44 100x60 Color Text (8x8 font) AD, MS 45 132x28 Color Text (8x14 font)AD, MS 46-5F (reserved) **BIOS Setmode:** 60 752x410 Color Graphics (16-color)AD, MS 61 720x540 **Color Graphics** (16-color)XL, MS mov ax,6f05h **Color Graphics** (16-color)XL, MS 62 800x600 mov bl,mode XL 63 1024x768 Color Graphics (2-color) 10h int 1024x768 Color Graphics XL 64 (4-color) 1024x768 Color Graphics 65 (16-color)XL 640x400 Color Graphics (256-color) AD, MS 66 Color Graphics (256-color) AD, MS 67 640x480 720x540 Color Graphics (256-color) XL, MS 68 69 (future) 800x600 Color Graphics (256-color) XL 6/27/88 (reserved) 6A-7F

| 6/27/88                              | Table A - 1.                                                                                                                       |                                                         |                                                        |                                                  |                                                       |                                                      |                                                |                                                |                                                       |                                                 |                                                                 |                          |                                                          |                          |                         |                                                       |                                                 |                                                       |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|--------------------------|----------------------------------------------------------|--------------------------|-------------------------|-------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|
| ı                                    | Characteristics<br>Text / Graphics<br>Colors                                                                                       | <b>0.1</b><br>Text<br>16                                | <b>2.3</b><br>Text<br>16                               | <b>4.5</b><br>Gr<br>4                            | <b>6</b><br>Gr<br>2                                   | <b>Д</b><br>Gт<br>16                                 | Е<br>Gr<br>16                                  | Z<br>Text<br>4*                                | E<br>Gr<br>2                                          | <b>10</b><br>Gr<br>16                           | 0.1*<br>Text<br>16                                              | 2.3*<br>Text<br>16       |                                                          | 2/3+<br>Text<br>16       | <b>7±</b><br>Text<br>4* | 11<br>Gr<br>16                                        | 12<br>Gr<br>16                                  | 13<br>Gr<br>256                                       |
| Pixels                               | H Resolution                                                                                                                       | 320                                                     | 640                                                    | 320                                              | 640                                                   | 320                                                  | 640                                            | 720                                            | 640                                                   | 640                                             | 320                                                             | 640                      | 360                                                      | 720                      | 720                     | 640                                                   | 640                                             | 320                                                   |
| Pixels                               | V Resolution                                                                                                                       | 200                                                     | 200                                                    | 200                                              | 200                                                   | 200                                                  | 200                                            | 350                                            | 350                                                   | 350                                             | 350                                                             | 350                      | 400                                                      | 400                      | 400                     | 480                                                   | 480                                             | 200                                                   |
| Chars<br>Rows                        | Text Columns<br>Text Rows                                                                                                          | 40<br>25                                                | 80<br>25                                               | -                                                | -                                                     | -                                                    | -                                              | 80<br>25                                       | -                                                     | -                                               | 40<br>25                                                        | 80<br>25                 | 40<br>25                                                 | 80<br>25                 | 80<br>25                | -                                                     | -                                               | -                                                     |
| Pixels                               | Character Width                                                                                                                    | 8                                                       | 8                                                      | 8                                                | 8                                                     | 8                                                    | 8                                              | 9                                              | 8                                                     | 8                                               | 8                                                               | 8                        | 8                                                        | 9                        | 9                       | 8                                                     | 8                                               | 8                                                     |
| Pixels                               | Character Height                                                                                                                   | 8                                                       | 8                                                      | 1                                                | 1                                                     | 1                                                    | 1                                              | 14                                             | 1                                                     | 1                                               | 14                                                              | 14                       | 16                                                       | 16                       | 16                      | 1                                                     | 1                                               | 2                                                     |
|                                      | Bandwidth (D-Ram)                                                                                                                  | 3:2                                                     | 1:4                                                    | 3:2                                              | 1:4                                                   | 3:2                                                  | 1:4                                            | 1:4                                            | 1:4                                                   | 1:4                                             | 3:2                                                             | 1:4                      | 3:2                                                      | 1:4                      | 1:4                     | 1:4                                                   | 1:4                                             | 1:4                                                   |
|                                      | Bandwidth (V-Ram)                                                                                                                  | 1:1                                                     | 1:1                                                    | 1:1                                              | 1:1                                                   | 1:1                                                  | 1:1                                            | 1:1                                            | 1:1                                                   | 1:1                                             | 1:1                                                             | 1:1                      | 1:1                                                      | 1:1                      | 1:1                     | 1:1                                                   | 1:1                                             | 1:1                                                   |
|                                      | Pixel Clock                                                                                                                        | 12                                                      | 25                                                     | 12                                               | 25                                                    | 12                                                   | 25                                             | 28                                             | 25                                                    | 25                                              | 12                                                              | 25                       | 14                                                       | 28                       | 28                      | 25                                                    | 25                                              | 25                                                    |
| KHz                                  | H Sync Rate                                                                                                                        | 31.5                                                    | 31.5                                                   | 31.5                                             | 31.5                                                  | 31.5                                                 | 31.5                                           | 31.5                                           | 31.5                                                  | 31.5                                            | 31.5                                                            | 31.5                     | 31.5                                                     | 31.5                     | 31.5                    | 31.5                                                  | 31.5                                            | 31.5                                                  |
| Hz                                   | V Sync Rate                                                                                                                        | 70                                                      | 70                                                     | 70                                               | 70                                                    | 70                                                   | 70                                             | 70                                             | 70                                                    | 70                                              | 70                                                              | 70                       | 70                                                       | 70                       | 70                      | 60                                                    | 60                                              | 70                                                    |
| Chars                                | H Displayed                                                                                                                        | 40                                                      | 80                                                     | 40                                               | 80                                                    | 40                                                   | 80                                             | 80                                             | 80                                                    | 80                                              | 40                                                              | 80                       | 40                                                       | 80                       | 80                      | 80                                                    | 80                                              | 80                                                    |
| Chars                                | H Total                                                                                                                            | 57                                                      | 100                                                    | 57                                               | 100                                                   | 57                                                   | 100                                            | 100                                            | 100                                                   | 100                                             | 57                                                              | 100                      | 57                                                       | 100                      | 100                     | 100                                                   | 100                                             | 100                                                   |
| Lines<br>Lines                       | V Displayed<br>V Total                                                                                                             | 400<br>449                                              | 400<br>449                                             | 400<br>449                                       |                                                       | 400<br>449                                           | 400<br>449                                     | 350<br>449                                     | 350<br>449                                            | 350<br>449                                      | 350<br>449                                                      | 350<br>449               | 400<br>451                                               | 400<br>449               | 400<br>449              |                                                       | 480<br>524                                      |                                                       |
|                                      | <u>Display Timing</u>                                                                                                              | <b>0.1</b>                                              | 2.3                                                    | <b>4.5</b>                                       | <b>é</b>                                              | D                                                    | E                                              | Z                                              | E                                                     | 10                                              | <u>0.1*</u>                                                     | 2.3*                     | <u>0/1+</u>                                              | <u>2/3+</u>              | 7±                      | 11                                                    | 12                                              | <b>13</b>                                             |
|                                      | Display Type                                                                                                                       | AD                                                      | AD                                                     | AD                                               | AD                                                    | AD                                                   | AD                                             | AD                                             | AD                                                    | AD                                              | AD                                                              | AD                       | AD                                                       | AD                       | AD                      | AD                                                    | AD                                              | AD                                                    |
| usec                                 | H Sync Delay                                                                                                                       | 4.5                                                     | 1.9                                                    | 4.5                                              | 1.9                                                   | 4.5                                                  | 1.9                                            | 1.9                                            | 1.9                                                   | 1.9                                             | 4.5                                                             | 1.9                      | 4.5                                                      | 1.9                      | 1.9                     | 1.9                                                   | 1.9                                             | 1.9                                                   |
| usec                                 | H Sync Width                                                                                                                       | 3.9                                                     | 3.8                                                    | 3.9                                              | 3.8                                                   | 3.9                                                  | 3.8                                            | 3.8                                            | 3.8                                                   | 3.8                                             | 3.9                                                             | 3.8                      | 3.9                                                      | 3.8                      | 3.8                     | 3.8                                                   | 3.8                                             | 3.8                                                   |
| usec                                 | V Sync Delay                                                                                                                       | 414                                                     | 413                                                    | 414                                              | 413                                                   | 414                                                  | 413                                            | 1207                                           | 1208                                                  | 1208                                            | 1210                                                            | 1208                     | 414                                                      | 413                      | 413                     | 254                                                   | 254                                             | 413                                                   |
| usec                                 | V Sync Width                                                                                                                       | 64                                                      | 64                                                     | 64                                               | 64                                                    | 64                                                   | 64                                             | 64                                             | 64                                                    | 64                                              | 64                                                              | 64                       | 64                                                       | 64                       | 64                      | 381                                                   | 381                                             | 64                                                    |
| FD<br>A4<br><br>FC<br>F6<br>F8<br>FF | Extensions<br>Timing State (D/V)<br>Clock<br>Sony Fixup<br>Compatibility Ctrl<br>Bank Select<br>Extended Clock<br>16-Bit Interface | <b>0.1</b><br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 | 2.3<br>22/82<br>00<br>00<br>00<br>08<br>00<br>00<br>00 | 4.5<br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 | <b>6</b><br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 | D<br>22/82<br>00<br>00<br>08<br>00<br>00<br>00<br>00 | E<br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 | Z<br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 | <b>F</b><br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 | 10<br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 | <b>9.1</b> *<br>22/82<br>00<br>00<br>00<br>08<br>00<br>00<br>00 |                          | <u>0/1+</u><br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 |                          |                         | 11<br>22/82<br>00<br>00<br>08<br>00<br>00<br>00<br>00 | 12<br>22/82<br>00<br>00<br>08<br>00<br>00<br>00 | 13<br>22/82<br>00<br>00<br>00<br>08<br>00<br>00<br>00 |
|                                      | Misc Info                                                                                                                          | <b>9.1</b>                                              | 2.3                                                    | 4.5                                              | <b>6</b>                                              | D                                                    | E                                              | <b>Z</b>                                       | <b>E</b>                                              | 10                                              | <b>9.1*</b>                                                     | 2.3*                     | <u>0/1+</u>                                              | 2/3+                     | 7 <u>+</u>              | 11                                                    | 12                                              | 13                                                    |
|                                      | Text Columns                                                                                                                       | 40                                                      | 80                                                     | 40                                               | 80                                                    | 40                                                   | 80                                             | 80                                             | 80                                                    | 80                                              | 40                                                              | 80                       | 40                                                       | 80                       | 80                      | 80                                                    | 80                                              | 40                                                    |
|                                      | Text Rows - 1                                                                                                                      | 24                                                      | 24                                                     | 24                                               | 24                                                    | 24                                                   | 24                                             | 24                                             | 24                                                    | 24                                              | 24                                                              | 24                       | 24                                                       | 24                       | 24                      | 29                                                    | 29                                              | 24                                                    |
|                                      | Font Height                                                                                                                        | 8                                                       | 8                                                      | 8                                                | 8                                                     | 8                                                    | 8                                              | 14                                             | 14                                                    | 14                                              | 14                                                              | 14                       | 16                                                       | 16                       | 16                      | 16                                                    | 16                                              | 8                                                     |
|                                      | Page Size                                                                                                                          | 0800                                                    | 1000                                                   | 4000                                             | 4000                                                  | 2000                                                 | 4000                                           | 1000                                           | 8000                                                  | 8000                                            | 0800                                                            | 1000                     | 0800                                                     | 1000                     | 1000                    | 9600                                                  | 9600                                            | FA00                                                  |
| SR1<br>SR2<br>SR3<br>SR4             | Sequencer<br>Clocking Mode<br>Plane Mask<br>Char Map Select<br>Memory Mode                                                         | <b>9.1</b><br>9<br>3<br>0<br>2                          | 2.3<br>1<br>3<br>0<br>2                                | <b>4.5</b><br>9<br>3<br>0<br>2                   | <b><u>6</u></b><br>1<br>1<br>0<br>6                   | <b>D</b><br>9<br>F<br>0<br>6                         | <b>E</b><br>1<br>F<br>0<br>6                   | <b>Z</b><br>0<br>3<br>0<br>3                   | E<br>5/1<br>F<br>0<br>0/6                             | <b>10</b><br>5/1<br>F<br>0<br>0/6               | 0.1*<br>9<br>3<br>0<br>2                                        | 2.3*<br>1<br>3<br>0<br>2 | <u>0/1+</u><br>8<br>3<br>0<br>2                          | 2/3+<br>0<br>3<br>0<br>2 | 7+<br>0<br>3<br>0<br>2  | 11<br>F<br>0<br>6                                     | 12<br>1<br>F<br>0<br>6                          | 13<br>1<br>F<br>0<br>E                                |
| MISC                                 | External Regs                                                                                                                      | <u>0.1</u>                                              | <u>2.3</u>                                             | <u>4.5</u>                                       | <b>6</b>                                              | <b>D</b>                                             | <b>E</b>                                       | Z                                              | E                                                     | <u>10</u>                                       | <u>0.1*</u>                                                     | 2.3*                     | <u>0/1+</u>                                              | <u>2/3+</u>              | <u>7+</u>               | 11                                                    | <u>12</u>                                       | <u>13</u>                                             |
|                                      | Miscellaneous                                                                                                                      | 63                                                      | 63                                                     | 63                                               | 63                                                    | 63                                                   | 63                                             | A6                                             | A2                                                    | A3                                              | A3                                                              | A3                       | 67                                                       | 67                       | 66                      | E3                                                    | E3                                              | 63                                                    |

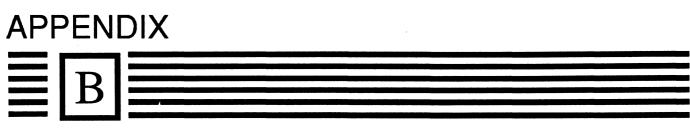
| 3/31/88      | Table A - 1. (co             | ntinu            | ied)             | Moo              | le of          | Ope            | ratio          | n (P     | S/2-T          | ype Ar          | nalog             | Displ             | ays)              |                   |                 |                 |                 |                 |
|--------------|------------------------------|------------------|------------------|------------------|----------------|----------------|----------------|----------|----------------|-----------------|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------|
|              | CRT Ctrlr                    | 0.1              | 2.3              | 4.5              | 6              | D              | E              | 2        | F              | <u>10</u>       | 0.1*              | 2.3*              | <u>0/1+</u>       | <u>2/3+</u>       | <u>7+</u>       | 11              | 12              | 13              |
| CR0          | H Total - 5                  | 2D               | 5F               | 2D               | 5F             | 2D             | 5F             | 5F       | 5F             | 5F              | 2D                | 5F                | 2D                | 5F                | 5F              | 5F              | 5F              | 5F              |
| CR1          | H Display End                | 27               | 4F               | 27               | 4F             | 27             | 4F             | 4F       | 4F             | 4F              | 27                | 4F                | 27                | 4F                | 4F              | 4F              | 4F              | 4F              |
| CR2          | H Blanking Start             | 28               | 50               | 28               | 50             | 28             | 50             | 50       | 50             | 50              | 28                | 50                | 28                | 50                | 50              | 50              | 50              | 50              |
| CR3          | H Blanking End               | 90               | 82               | 90               | 82             | 90             | 82             | 82       |                | 17/82           | 90                | 82                | 90                | 82                | 82              | 82              | 82              | 82              |
| CR4          | H Retrace Start              | 2B               | 55               | 2B               | 54             | 2B             | 54             | 55       | 54             | 64              | 2B                | 55                | 2B                | 55                | 55              | 54              | 54              | 54              |
| CR5          | H Retrace End                | <b>A</b> 0       | 81               | 80               | 80             | 80             | 80             | 81       |                | BA/80           | <b>A</b> 0        | 81                | <b>A</b> 0        | 81                | 81              | 80              | 80              | 80              |
| CR6          | V Total - 2                  | BF               | BF               | BF               | BF             | BF             | BF             | BF       | BF             | BF              | BF                | BF                | BF                | BF                | BF              | 0B              | 0B              | BF              |
| CR7          | Overflow                     | 1F               | 1F               | 1F               | 1F             | 1F             | 1F             | 1F       | 1 <b>F</b>     | 1 <b>F</b>      | 1F                | 1F                | 1F                | 1 <b>F</b>        | 1F              | 3E              | 3E              | 1F              |
| CR8          | Preset Row Scan              | 00               | 00               | 00               | 00             | 00             | 00             | 00       | 00             | 00              | 00                | 00                | 00                | 00                | 00              | 00              | 00              | 00              |
| CR9          | Char Cell Height             | C7               | C7               | C1               | C1             | <b>C</b> 0     | C0             | 4D       | 40             | 40              | 4D                | 4D                | 4F                | 4F                | 4F              | 40              | 40              | 41              |
| CRA          | Cursor Start                 | 06               | 06               | 00               | 00             | 00             | 00             | 0B       | 00             | 00              | 0B                | <b>0B</b>         | 0D                | 0D                | 0D              | 00              | 00              | 00              |
| CRB          | Cursor End                   | 07               | 07               | 00               | 00             | 00             | 00             | 0C       | 00             | 00              | 0C                | 0C                | 0E                | 0E                | 0E              | 00              | 00              | 00              |
| CRC          | Start Address H              |                  |                  |                  |                |                |                |          |                |                 |                   |                   |                   |                   |                 |                 |                 |                 |
| CRD          | Start Address L              |                  |                  |                  |                |                |                |          |                |                 |                   |                   |                   |                   |                 |                 |                 |                 |
| CRE          | Cursor Location H            |                  |                  |                  |                |                |                |          |                |                 |                   |                   |                   |                   |                 |                 |                 |                 |
| CRF          | Cursor Location L            |                  |                  |                  |                |                |                |          |                |                 |                   |                   |                   |                   |                 |                 |                 |                 |
| CR10 (R)     | Light Pen H                  |                  |                  |                  |                |                |                |          |                |                 |                   |                   |                   |                   |                 |                 |                 |                 |
|              | Light Pen L                  |                  |                  |                  |                |                |                |          |                |                 |                   |                   |                   |                   |                 |                 |                 |                 |
|              | V Retrace Start              | 9C               | 9C               | 9C               | 9C             | 9C             | 9C             | 83       | 83             | 83              | 83                | 83                | 9C                | 9C                | 9C              | EA              | EA              | 9C              |
|              | V Retrace End                | 8E               | 8E               | 8E               | 8E             | 8E             | 8E             | 85       | 85             | 85              | 85                | 85                | 8E                | 8E                | 8E              | 8C              | 8C              | 8E              |
| CR11(W)      | V Display End                | 8F               | 8F               | 8F               | 8F             | 8F             | 8F             | 5D       | 5D             | 5D              | 5D                | 5D                | 8F                | 8F                | 8F              | DF              | DF              | 8F              |
| CR12<br>CR13 | Offset                       | 14               | 28               | 14               | 28             | 14             | 28             | 28       |                | 14/28           | 14                | 28                | 14                | 28                | 28              | 28              | 28              | 28              |
| CR13<br>CR14 | Underline Row                | 14<br>1F         | 1F               | 00               | 00             | 00             | 00             | 0D       | 00             | 00              | 1F                | 1F                | 1F                | 1F                | 0F              | 00              | 00              | 40              |
| CR14<br>CR15 | V Blanking Start             | 96               | 96               | 96               | 96             | 96             | 96             | 63       | 63             | 63              | 63                | 63                | 96                | 96                | 96              | E7              | E7              | 96              |
| CR15<br>CR16 | V Blanking End               | B9               | B9               | <b>B</b> 9       | B9             | B9             | B9             | BA       | BA             | BA              | BA                | BA                | <b>B</b> 9        | B9                | B9              | 04              | 04              | B9              |
| CR18<br>CR17 | -                            | A3               | A3               | A2               | C2             | E3             | E3             | A3       |                | 8B/E3           | A3                | A3                | A3                | A3                | A3              | C3              | E3              | A3              |
|              | Mode Control                 | FF               | FF               | FF               | FF             | FF             | FF             | FF       | FF             | ob/E5           | FF                | FF                | FF                | FF                | FF              | FF              | FF              | FF              |
| CR18         | Line Compare                 | ГГ               | ГГ               | ГГ               | ГГ             | ГГ             | ГГ             | ГГ       | ГГ             | ГГ              | ГГ                | ГГ                | ГГ                | ГГ                | ГГ              | ГГ              | ГГ              | ГГ              |
| A.D.O        | Attribute Ctrlr              | <u>0.1</u><br>00 | <u>2.3</u><br>00 | <u>4.5</u><br>00 | <b>6</b><br>00 | <b>D</b><br>00 | <b>E</b><br>00 | Z<br>00  | <b>E</b><br>00 | <u>10</u><br>00 | <u>0.1*</u><br>00 | <u>2.3*</u><br>00 | <u>0/1+</u><br>00 | <u>2/3+</u><br>00 | <u>7+</u><br>00 | <b>11</b><br>00 | <u>12</u><br>00 | <u>13</u><br>00 |
| AR0          | Palette 00                   |                  |                  |                  |                |                |                | 00       | 00             |                 |                   |                   |                   | 00                | 00              | 3F              |                 |                 |
| AR1          | Palette 01                   | 01               | 01               | 13               | 17             | 01             | 01             |          |                | 01              | 01                | 01                | 01                |                   |                 |                 | 01              | 01              |
| AR2          | Palette 02                   | 02               | 02               | 15               | 17             | 02             | 02             | 08       | 00             | 02              | 02                | 02                | 02                | 02                | 08              | 3F              | 02              | 02              |
| AR3          | Palette 03                   | 03               | 03               | 17               | 17             | 03             | 03             | 08       | 00             | 03              | 03                | 03                | 03                | 03                | 08              | 3F              | 03              | 03              |
| AR4          | Palette 04                   | 04               | 04               | 02               | 17             | 04             | 04             | 08       | 18             | 04              | 04                | 04                | 04                | 04                | 08              | 3F              | 04              | 04              |
| AR5          | Palette 05                   | 05               | 05               | 04               | 17             | 05             | 05             | 08       | 18             | 05              | 05                | 05                | 05                | 05                | 08              | 3F              | 05              | 05              |
| AR6          | Palette 06                   | 06               | 06               | 06               | 17             | 06             | 06             | 08       | 00             | 14              | 14                | 14                | 14                | 14                | 08              | 3F              | 14              | 06              |
| AR7          | Palette 07                   | 07               | 07               | 07               | 17             | 07             | 07             | 08       | 00             | 07              | 07                | 07                | 07                | 07                | 08              | 3F              | 07              | 07              |
| AR8          | Palette 08                   | 10               | 10               | 10               | 17             | 10             | 10             | 10       | 00             | 38              | 38                | 38                | 38                | 38                | 10              | 3F              | 38              | 08              |
| AR9          | Palette 09                   | 11               | 11               | 11               | 17             | 11             | 11             | 18       | 08             | 39              | 39                | 39                | 39                | 39                | 18              | 3F              | 39              | 09              |
| ARA          | Palette 0A                   | 12               | 12               | 12               | 17             | 12             | 12             | 18       | 00             | 3A              | 3A                | 3A                | 3A                | 3A                | 18              | 3F              | 3A              | 0A              |
| ARB          | Palette 0B                   | 13               | 13               | 13               | 17             | 13             | 13             | 18       | 00             | 3B              | 3B                | 3B                | 3B                | 3B                | 18              | 3F              | 3B              | 0B              |
| ARC          | Palette 0C                   | 14               | 14               | 14               | 17             | 14             | 14             | 18       | 00             | 3C              | 3C                | 3C                | 3C                | 3C                | 18              | 3F              | 3C              | 0C              |
| ARD          | Palette 0D                   | 15               | 15               | 15               | 17             | 15             | 15             | 18       | 18             | 3D              | 3D                | 3D                | 3D                | 3D                | 18              | 3F              | 3D              | 0D              |
| ARE          | Palette 0E                   | 16               | 16               | 16               | 17             | 16             | 16             | 18       | 00             | 3E              | 3E                | 3E                | 3E                | 3E                | 18              | 3F              | 3E              | 0E              |
| ARF          | Palette 0F                   | 17               | 17               | 17               | 17             | 17             | 17             | 18       | 00             | 3F              | 3F                | 3F                | 3F                | 3F                | 18              | 3F              | 3F              | 0F              |
| AR10         | Mode Control                 | 08               | 08               | 01               | 01             | 01             | 01             | 0E       | <b>0B</b>      | 01              | 08                | 08                | 0C                | 0C                | 0E              | 01              | 01              | 41              |
| AR11         | Overscan Color               | 00               | 00               | 00               | 00             | 00             | 00             | 00       | 00             | 00              | 00                | 00                | 00                | 00                | 00              | 00              | 00              | 00              |
| AR12         | Color Plane Ena              | 0F               | 0F               | 03               | 01             | 0F             | 0F             | 0F       | 05             | 0F              | 0F                | 0F                | 0F                | 0F                | 0F              | 0F              | 0F              | 0F              |
| AR13         | H Pixel Pan                  | 00               | 00               | 00               | 00             | 00             | 00             | 08       | 00             | 00              | 00                | 00                | 08                | 08                | 08              | 00              | 00              | 00              |
|              | Graphics Ctrlr               | 0.1              | 2.3              | 4.5              | 6              | D              | E              | Z        | E              | 10              | 0.1*              | 2.3*              | 0/1+              | 2/3+              | 7±              | 11              | 12              | 13              |
| GR0          | Set/Reset                    | 0                | 0                | 0                | 0              | 0              | ō              | Ō        | ō              | 0               | 0                 | 0                 | 0                 | 0                 | 0               | Ō               | 0               | 0               |
| GR1          | Enable Set/Reset             | 0                | 0                | 0                | 0              | 0              | 0              | 0        | 0              | 0               | 0                 | 0                 | 0                 | 0                 | 0               | 0               | 0               | 0               |
| GR2          | Color Compare                | 0                | 0                | 0                | 0              | 0              | 0              | 0        | 0              | 0               | 0                 | 0                 | 0                 | 0                 | 0               | 0               | 0               | 0               |
| GR3          | Data Rotate                  | Õ                | Õ                | ŏ                | ŏ              | Õ              | 0              | Ő        | Õ              | Õ               | Õ                 | Õ                 | Ō                 | Ō                 | Ō               | Õ               | Õ               | Õ               |
| GR4          | Read Map Select              | 0                | ŏ                | ŏ                | Õ              | Ö.             | ŏ              | ŏ        | ŏ              | ŏ               | ŏ                 | Õ                 | Ö                 | ŏ                 | ŏ               | ŏ               | ŏ               | ŏ               |
| GR4<br>GR5   | -                            | 10               | 10               | 30               | 00             | 00             | 00             | 10       | -              | 10/00           | 10                | 10                | 10                | 10                | 10              | 00              | 00              | 40              |
|              | Mode                         |                  |                  |                  |                |                |                |          |                |                 | 0E                | 0E                | 0E                | 0E                | 0A              | 05              | 05              | 05              |
| GR6          | Miscellaneous                | 0E               | 0E               | 0F               | 0D             | 05             | 05             | 0A       | 7/5            | 7/5             |                   |                   |                   |                   |                 |                 |                 | 05<br>0F        |
|              | A1. B 6. A                   | ~~               | <u></u>          |                  |                |                |                |          |                |                 |                   |                   |                   |                   | nn              | <b>N</b> 1      |                 |                 |
| GR7<br>GR8   | Color Don't Care<br>Bit Mask | 00<br>FF         | 00<br>FF         | 00<br>FF         | 00<br>FF       | 0F<br>FF       | 0F<br>FF       | 00<br>FF | 0F<br>FF       | 0F<br>FF        | 00<br>FF          | 00<br>FF          | 00<br>FF          | 00<br>FF          | 00<br>FF        | 01<br>FF        | 0F<br>FF        | FF              |

**Register Initialization Tables** 

| 6/27/88                  | Table A - 2.                                                                                 | Mod                                | le of                                  | Oper                                   | ation                                  | ı (Vid                                 | leo Se                           | even F                                 | Proprietary Text Modes) |
|--------------------------|----------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|----------------------------------------|-------------------------|
| - <u></u>                | Characteristics<br>Text / Graphics<br>Colors                                                 | <b>40</b><br>Text<br>16            | <b>41</b><br>Text<br>16                | <b>42</b><br>Text<br>16                | <b>43</b><br>Text<br>16                | <b>44</b><br>Text<br>16                | <b>45</b><br>Text<br>16          | <b>46</b><br>Text<br>16                |                         |
| Pixels<br>Pixels         | H Resolution<br>V Resolution                                                                 | 640<br>350                         |                                        | 1056<br>350                            |                                        | 800<br>480                             | 1056<br>400                      | 720<br>540                             |                         |
| Chars<br>Rows            | Text Columns<br>Text Rows                                                                    | 80<br>43                           | 132<br>25                              | 132<br>43                              | 80<br>60                               | 100<br>60                              | 132<br>28                        | 80<br>67                               |                         |
| Pixels<br>Pixels         | Character Width<br>Character Height                                                          | 8<br>8                             | 8<br>14                                | 8<br>8                                 | 8<br>8                                 | 8<br>8                                 | 8<br>8                           | 9<br>8                                 |                         |
|                          | Bandwidth (D-Ram)<br>Bandwidth (V-Ram)<br>Pixel Clock                                        | 25                                 | 40                                     | 40                                     | 25                                     | 40                                     | 40                               |                                        |                         |
| KHz<br>Hz                | H Sync Rate<br>V Sync Rate                                                                   | 31.5<br>70                         | 31.5<br>70                             | 31.5<br>70                             | 31.5<br>60                             | 31.5<br>60                             | 31.5<br>70                       |                                        |                         |
| Chars<br>Chars           | H Displayed<br>H Total                                                                       | 80                                 | 132                                    | 132                                    | 80                                     | 100                                    | 132                              | 80                                     |                         |
| Lines<br>Lines           | V Displayed<br>V Total                                                                       | 344                                | 350                                    | 344                                    | 480                                    | 480                                    | 400                              | 540                                    |                         |
|                          | Display Timing                                                                               | 40                                 | 41                                     | 42                                     | 43                                     | 44                                     | 45                               | 46                                     |                         |
|                          | Display Type                                                                                 | AD                                 | AD                                     | ĀD                                     | AD                                     | AD                                     | AD                               | MS                                     |                         |
| usec<br>usec             | H Sync Delay<br>H Sync Width                                                                 |                                    |                                        |                                        |                                        |                                        |                                  |                                        |                         |
| usec<br>usec             | V Sync Delay<br>V Sync Width                                                                 |                                    |                                        |                                        |                                        |                                        |                                  |                                        |                         |
| FD<br>A4<br><br>FC<br>F6 | Extensions<br>Timing State (D/V)<br>Clock<br>Sony Fixup<br>Compatibility Ctrl<br>Bank Select | 40<br>22<br>00<br>00<br>08<br>00   | 41<br>22<br>00<br>00<br>00<br>08<br>00 | 42<br>22<br>00<br>00<br>00<br>08<br>00 | 43<br>22<br>00<br>00<br>00<br>08<br>00 | 44<br>22<br>00<br>00<br>00<br>08<br>00 | 45<br>22<br>00<br>00<br>08<br>00 | 46<br>22<br>00<br>00<br>00<br>08<br>00 |                         |
| F8<br>FF                 | Extended Clock<br>16-Bit Interface                                                           | 00<br>00<br>00                     | 00<br>00<br>00                         | 00<br>00<br>00                         | 00<br>00<br>00                         | 00<br>00<br>00                         | 00<br>00                         | 00<br>00<br>00                         |                         |
|                          | Misc Info<br>Text Columns<br>Text Rows - 1<br>Font Height<br>Page Size                       | <b>40</b><br>80<br>42<br>8<br>1B00 | 24<br>14                               | 42<br>132<br>42<br>8<br>2D00           | <u>43</u><br>80<br>59<br>8<br>2600     | 44<br>100<br>59<br>8<br>2F00           | 45<br>132<br>27<br>14<br>1D00    | 46<br>80<br>66<br>8<br>2A00            |                         |
| SR1                      | Sequencer<br>Clocking Mode                                                                   | <b>40</b><br>1                     | <b>41</b><br>1                         | <b>42</b><br>1                         | <b>43</b><br>1                         | <b>44</b><br>1                         | <b>45</b><br>1                   | <u>46</u><br>0                         |                         |
| SR2<br>SR3<br>SR4        | Plane Mask<br>Char Map Select<br>Memory Mode                                                 | 3<br>0<br>2                        | 3<br>0<br>2                            | 3<br>0<br>2                            | 3<br>0<br>2                            | 3<br>0<br>2                            | 3<br>0<br>2                      | 3<br>0<br>2                            |                         |
| MISC                     | External Regs<br>Miscellaneous                                                               | <u>40</u><br>A3                    | <b>41</b><br>AF                        | <u>42</u><br>AF                        | <u>43</u><br>E3                        | <b>44</b><br>E7                        | <u>45</u><br>6F                  | 46                                     |                         |

**Register Initialization Tables** 

10.000

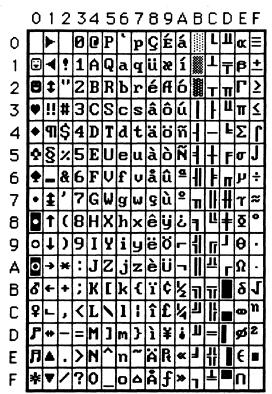

.

| 6/27/88      | Table A - 2. (con | tinue     | ed) M | lode      | of O <sub>l</sub> | perati     | ion ('     | Video      | Seven Proprietary Text Modes)  |
|--------------|-------------------|-----------|-------|-----------|-------------------|------------|------------|------------|--------------------------------|
|              | CRT Ctrlr         | <u>40</u> | 41    | 42        | 43                | <u>44</u>  | <u>45</u>  | <u>46</u>  |                                |
| CR0          | H Total - 5       | 5F        | 9C    | 9C        | 5F                | 7C         | 9C         |            |                                |
| CR1          | H Display End     | 4F        | 83    | 83        | 4F                | 63         | 83         |            |                                |
| CR2          | H Blanking Start  | 50        | 84    | 84        | 50                | 64         | 84         |            |                                |
| CR3          | H Blanking End    | 82        | 9F    | 9F        | 82                | 9F         | 9F         |            |                                |
| CR4          | H Retrace Start   | 55        | 89    | 89        | 55                | 6E         | 89         |            |                                |
| CR5          | H Retrace End     | 81        | 1C    | 1C        | 81                | 9D         | 1C         |            |                                |
| CR6          | V Total - 2       | BF        | BF    | BF        | 0B                | <b>0B</b>  | BF         |            |                                |
| CR7          | Overflow          | 1F        | 1F    | 1F        | 3E                | 3E         | 1F         |            |                                |
| CR8          | Preset Row Scan   | 00        | 00    | 00        | 00                | 00         | 00         | 00         |                                |
| CR9          | Char Cell Height  | 47        | 4D    | 47        | 47                | 47         | 4D         | 47         |                                |
| CRA          | Cursor Start      | 06        | OB    | 06        | 06                | 06         | 0B         | 06         |                                |
| CRB          | Cursor End        | 07        | 0C    | 07        | 07                | 07         | 0C         | 07         |                                |
| CRC          | Start Address H   |           |       |           |                   |            |            |            |                                |
| CRD          | Start Address L   |           |       |           |                   |            |            |            |                                |
| CRE          | Cursor Location H |           |       |           |                   |            |            |            |                                |
|              |                   |           |       |           |                   |            |            |            |                                |
| CRF          | Cursor Location L |           |       |           |                   |            |            |            |                                |
|              | Light Pen H       |           |       |           |                   |            |            |            |                                |
|              | Light Pen L       |           |       |           |                   |            |            |            |                                |
|              | V Retrace Start   | 83        | 83    | 83        | EA                | EA         | 9C         |            |                                |
|              | V Retrace End     | 85        | 85    | 85        | 8C                | 8C         | 8E         |            |                                |
| CR12         | V Display End     | 57        | 5D    | 57        | DF                | DF         | 87         |            |                                |
| CR13         | Offset            | 28        | 42    | 42        | 28                | 32         | 42         |            |                                |
| CR14         | Underline Row     | 1F        | 1F    | 1F        | 1F                | 1 <b>F</b> | 1 <b>F</b> | 1 <b>F</b> |                                |
| CR15         | V Blanking Start  | 63        | 63    | 63        | E7                | E7         | 90         |            |                                |
| CR16         | V Blanking End    | BA        | BA    | BA        | 04                | 04         | <b>B</b> 9 |            |                                |
| CR17         | Mode Control      | A3        | E3    | E3        | A3                | E3         | E3         |            |                                |
| CR18         | Line Compare      | FF        | FF    | FF        | FF                | FF         | FF         | FF         |                                |
|              |                   |           |       |           | - 10              |            |            |            |                                |
|              | Attribute Ctrlr   | <u>40</u> | 41    | <u>42</u> | 43                | <u>44</u>  | 45         | <u>46</u>  |                                |
| AR0          | Palette 00        | 00        | 00    | 00        | 00                | 00         | 00         | 00         |                                |
| AR1          | Palette 01        | 01        | 01    | 01        | 01                | 01         | 01         | 01         |                                |
| AR2          | Palette 02        | 02        | 02    | 02        | 02                | 02         | 02         | 02         |                                |
| AR3          | Palette 03        | 03        | 03    | 03        | 03                | 03         | 03         | 03         |                                |
| AR4          | Palette 04        | 04        | 04    | 04        | 04                | 04         | 04         | 04         |                                |
| AR5          | Palette 05        | 05        | 05    | 05        | 05                | 05         | 05         | 05         |                                |
| AR6          | Palette 06        | 14        | 14    | 14        | 14                | 14         | 14         | 14         |                                |
| AR7          | Palette 07        | 07        | 07    | 07        | 07                | 07         | 07         | 07         |                                |
| AR8          | Palette 08        | 38        | 38    | 38        | 38                | 38         | 38         | 38         |                                |
| AR9          | Palette 09        | 39        | 39    | 39        | 39                | 39         | 39         | 39         |                                |
| ARA          | Palette 0A        | 3A        | 3A    | 3A        | 3A                | 3A         | 3A         | 3A         |                                |
| ARB          | Palette OB        | 3B        | 3B    | 3B        | 3B                | 3B         | 3B         | 3B         |                                |
| ARC          | Palette OC        | 3C        | 3C    | 3C        | 3C                | 3C         | 3C         | 3C         |                                |
| ARD          | Palette 0D        | 3D        | 3D    | 3D        | 3D                | 3D         | 3D         | 3D         |                                |
| ARE          | Palette 0E        | 3E        | 3E    | 3E        | 3E                | 3E         | 3E         | 3E         |                                |
| ARF          | Palette OF        | 3F        | 3F    | 3F        | 3F                | 3F         | 3F         | 3F         |                                |
| AR10         | Mode Control      | 08        | 08    | 08        | 08                | 08         | 08         | 08         |                                |
| AR11         | Overscan Color    | 00        | 00    | 00        | 00                | 00         | 00         | 00         |                                |
| AR12         | Color Plane Ena   | 0F        | 0F    | 0F        | OF                | 0F         | OF         | 0F         |                                |
| AR12<br>AR13 | H Pixel Pan       | 00        | 00    | 00        | 00                | 00         | 00         | 08         |                                |
|              |                   |           |       |           |                   |            |            |            |                                |
|              | Graphics Ctrlr    | <u>40</u> | 41    | 42        | 43                | 44         | 45         | <u>46</u>  |                                |
| GR0          | Set/Reset         | 0         | 0     | 0         | 0                 | 0          | 0          | 0          |                                |
| GR1          | Enable Set/Reset  | 0         | 0     | 0         | 0                 | 0          | 0          | 0          |                                |
| GR2          | Color Compare     | 0         | 0     | 0         | 0                 | 0          | 0          | 0          |                                |
| GR3          | Data Rotate       | 0         | 0     | 0         | 0                 | 0          | 0          | 0          |                                |
| GR4          | Read Map Select   | 0         | 0     | 0         | 0                 | 0          | 0          | 0          |                                |
| GR5          | Mode              | 10        | 10    | 10        | 10                | 10         | 10         | 10         |                                |
| GR6          | Miscellaneous     | 0E        | 0E    | 0E        | 0E                | 0E         | 0E         | 0E         |                                |
| GR7          | Color Don't Care  | 00        | 00    | 00        | 00                | 00         | 00         | 00         |                                |
| GR8          | Bit Mask          | FF        | FF    | FF        | FF                | FF         | FF         | FF         |                                |
|              |                   |           | L     |           | <u> </u>          |            | L          |            | Pagister Initialization Tables |

| els       V Resolution       410       540       600       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768       768                                                                                                                                                                                              |                  | Characteristics<br>Text / Graphics<br>Colors                                                                             | <u>60</u><br>Gr<br>16                             | <u>61</u><br>Gт<br>16                             | <u>62</u><br>Gr<br>16                       | 63<br>Gr<br>2                               | <b>64</b><br>Gr<br>4                  | <u>65</u><br>Gr<br>16                 | <u>66</u><br>Gr<br>256             | <u>67</u><br>Gr<br>256           | <u>68</u><br>Gr<br>256           | <u>69</u><br>Gr<br>256           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| vs       Text Rows       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                  | Pixels<br>Pixels |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       |                                       |                                    |                                  |                                  |                                  |
| els       Character Height       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th="">       1</th1<></th1<>                                                                                                                                                                                                                                                                                  | Chars<br>Rows    |                                                                                                                          | -                                                 | -                                                 | -                                           | -                                           | -                                     | -                                     | -                                  | -                                | -                                | -                                |
| J:CRT       Bandwidth (V-Ram)       1:1       1:1       1:2       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4       1:4 <th1:4< th=""> <th1:4< th=""> <th1:4< t<="" td=""><td>Pixels<br/>Pixels</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1:4<></th1:4<></th1:4<>          | Pixels<br>Pixels |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       |                                       |                                    |                                  |                                  |                                  |
| V Sync Rate       70       60       60       60       60       60       60       60       60       60       53         ars       H Displayed<br>H Total       94       90       100       128       128       128       128       128       80       80       90       100         es       V Displayed<br>V Total       410       540       600       768       768       768       768       400       480       540       600         Display Timing<br>Display Type       60       61       62       63       64       65       66       67       68       69         M Sync Delay<br>H Sync Width       AD       MS       XL       XL       XL       XL       XL       AD       AD       MS       XL         Extensions<br>Timing State (D/V)<br>Clock       60       61       62       63       64       65       66       67       68       69         Out O       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00                                                                                                                                                                                                         |                  | Bandwidth (V-Ram)                                                                                                        | 1:1                                               | 1:1                                               | 1:2                                         | 1:4                                         | 1:4                                   | 1:4                                   | 1:4                                | 1:4                              | 1:4                              | 1:4                              |
| ITS       H Total       410       540       600       768       768       768       400       480       540       600         es       V Displayed<br>V Total       410       540       600       768       768       768       768       400       480       540       600         Display Timing<br>Display Type       60       61       62       63       64       65       66       67       68       69         H Sync Delay<br>H Sync Width       AD       MS       XL       XL       XL       XL       XL       AD       AD       MS       XL         Extensions<br>Timing State (D/V)<br>Clock       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0       0/0                                                                                                                                                                                    | KHz<br>Hz        |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       |                                       |                                    |                                  |                                  |                                  |
| es       V Total       60       61       62       63       64       65       66       67       68       69         Display Type       AD       MS       XL       X                                                                                                                                                                                                                                                    | Chars<br>Chars   |                                                                                                                          | 94                                                | 90                                                | 100                                         | 128                                         | 128                                   | 128                                   | 80                                 | 80                               | 90                               | 100                              |
| Display Type       AD       MS       XL       XL       XL       XL       AD       AD       MS       XL         H Sync Delay       H Sync Width       V       Sync Delay       V       V       Sync Width       Sync Width       V       V       Sync Width       V       V       Syn                                                                                                     | Lines<br>Lines   |                                                                                                                          | 410                                               | 540                                               | 600                                         | 768                                         | 768                                   | 768                                   | 400                                | 480                              | 540                              | 600                              |
| Display Type       AD       MS       XL       XL       XL       XL       AD       AD       MS       XL         H Sync Delay       H Sync Width       V       Sync Delay       V       V       Sync Width       Sync Width       V       V       Sync Width       V       V       Syn                                                                                                     |                  |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       |                                       |                                    |                                  |                                  |                                  |
| H Sync Width       V Sync Delay       V Sync Width         Extensions       60       61       62       63       64       65       66       67       68       69         Timing State (D/V)       0/0       0/0       0/90       0/A0                                                                                                                                                           |                  |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       |                                       |                                    |                                  |                                  |                                  |
| Extensions       60       61       62       63       64       65       66       67       68       69         Timing State (D/V)       0/0       0/0       0/90       0/A0       0/A0 <t< td=""><td>usec<br/>usec</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                      | usec<br>usec     |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       |                                       |                                    |                                  |                                  |                                  |
| Timing State (D/V)       0/0       0/0       0/90       0/A0       0/A       0/A       0/A </td <td>usec<br/>usec</td> <td></td> | usec<br>usec     |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       |                                       |                                    |                                  |                                  |                                  |
| Clock       00       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                        | FD               |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       |                                       | <u>66</u><br>0/A0                  |                                  | <u>68</u><br>0/A0                | <u>69</u><br>0/A0                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A4               | Clock                                                                                                                    | 00                                                | 10                                                | 10                                          | 10                                          | 10                                    | 10                                    | 10                                 | 10                               | 10                               | 10                               |
| Extended Clock<br>16-Bit Interface $00$ $00$ $10$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$ $00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>FC           |                                                                                                                          |                                                   |                                                   |                                             | 1                                           |                                       |                                       |                                    |                                  |                                  |                                  |
| 16-Bit Interface0000000010101010Misc Info<br>Text Columns60616263646566676869Text Columns<br>Text Rows - 19490100128128128128808090100Text Rows - 1<br>Font Height<br>Page Size50667495959524296674Sequencer<br>Clocking Mode<br>Plane Mask60616263646566676869Char Map Select0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F6<br>F8         |                                                                                                                          |                                                   |                                                   |                                             | ł                                           |                                       |                                       |                                    |                                  |                                  |                                  |
| Text Columns       94       90       100       128       128       128       128       80       80       90       100         Text Rows - 1       50       66       74       95       95       95       24       29       66       74         Font Height       8       8       8       8       8       8       16       16       8       8         Page Size       9700 BE00 EB00       6000 C000 >64K       FA00 >64K >64K >64K       56       66       67       68       69         Sequencer       60       61       62       63       64       65       66       67       68       69         Clocking Mode       1       9       1       5       5       1       1       1       1       1         Plane Mask       F       F       F       3       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F                                                                                                                                                                                                                                                                         |                  |                                                                                                                          |                                                   |                                                   |                                             |                                             |                                       | • •                                   |                                    |                                  |                                  |                                  |
| Text Rows - 1       50       66       74       95       95       95       24       29       66       74         Font Height<br>Page Size       8       8       8       8       8       8       8       16       16       8       8         Sequencer       60       61       62       63       64       65       66       67       68       69         Clocking Mode       1       9       1       5       5       1       1       1       1       1         Plane Mask       F       F       F       3       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F </td <td>FF</td> <td></td> <td></td> <td>61</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                            | FF               |                                                                                                                          |                                                   | 61                                                |                                             |                                             |                                       |                                       |                                    |                                  |                                  |                                  |
| Font Height<br>Page Size         8         8         8         8         8         8         8         16         16         8         8           Sequencer         60         61         62         63         64         65         66         67         68         69           Clocking Mode         1         9         1         5         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                      | FF               |                                                                                                                          | 60                                                | <u>v 1</u>                                        |                                             | 128                                         | 128                                   |                                       |                                    |                                  |                                  |                                  |
| Clocking Mode         1         9         1         5         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <                                                                                                                                                                                   | FF               | Text Columns                                                                                                             | 94                                                | 90                                                |                                             |                                             | 05                                    |                                       | 27                                 |                                  |                                  |                                  |
| Plane Mask         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F                                                                                                                                                                                                | FF               | Text Columns<br>Text Rows - 1<br>Font Height                                                                             | 94<br>50<br>8                                     | 90<br>66<br>8                                     | 74<br>8                                     | 95<br>8                                     | 8                                     | 8                                     |                                    |                                  | -                                | -                                |
| Char Map Select 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Text Columns<br>Text Rows - 1<br>Font Height<br>Page Size<br>Sequencer                                                   | 94<br>50<br>8<br>9700                             | 90<br>66<br>8<br>BE00                             | 74<br>8<br>EB00                             | 95<br>8<br>6000<br><u>63</u>                | 8<br>C000<br><u>64</u>                | 8<br>>64K                             | FA00                               | >64K                             | >64K                             | >64K                             |
| Memory Mode 6 6 6 2 2 6 E E E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SR1              | Text Columns<br>Text Rows - 1<br>Font Height<br>Page Size<br>Sequencer<br>Clocking Mode                                  | 94<br>50<br>8<br>9700<br><u>60</u><br>1           | 90<br>66<br>8<br>BE00<br><u>61</u><br>9           | 74<br>8<br>EB00<br><u>62</u><br>1           | 95<br>8<br>6000<br><u>63</u><br>5           | 8<br>C000<br><u>64</u><br>5           | 8<br>>64K<br><u>65</u><br>1           | FA00<br><u>66</u><br>1             | >64K<br><u>67</u><br>1           | >64K                             | >64k                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>.</u>         | Text Columns<br>Text Rows - 1<br>Font Height<br>Page Size<br>Sequencer<br>Clocking Mode<br>Plane Mask                    | 94<br>50<br>8<br>9700<br><u>60</u><br>1<br>F      | 90<br>66<br>8<br>BE00<br><u>61</u><br>9<br>F      | 74<br>8<br>EB00<br><u>62</u><br>1<br>F      | 95<br>8<br>6000<br><u>63</u><br>5<br>3      | 8<br>C000<br><u>64</u><br>5<br>F      | 8<br>>64K<br><u>65</u><br>1<br>F      | FA00<br><u>66</u><br>1<br>. F      | >64K<br><u>67</u><br>1<br>F<br>0 | >64K<br><u>68</u><br>1<br>F      | >64k                             |
| External Regs         60         61         62         63         64         65         66         67         68         69           SC         Miscellaneous         E7         E7         EF         E7         E7         C7         43         C3         C7         C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SR 1<br>SR 2     | Text Columns<br>Text Rows - 1<br>Font Height<br>Page Size<br>Sequencer<br>Clocking Mode<br>Plane Mask<br>Char Map Select | 94<br>50<br>8<br>9700<br><u>60</u><br>1<br>F<br>0 | 90<br>66<br>8<br>BE00<br><u>61</u><br>9<br>F<br>0 | 74<br>8<br>EB00<br><u>62</u><br>1<br>F<br>0 | 95<br>8<br>6000<br><u>63</u><br>5<br>3<br>0 | 8<br>C000<br><u>64</u><br>5<br>F<br>0 | 8<br>>64K<br><u>65</u><br>1<br>F<br>0 | FA00<br><u>66</u><br>1<br>. F<br>0 | >64K<br><u>67</u><br>1<br>F<br>0 | >64K<br><u>68</u><br>1<br>F<br>0 | >64k<br><u>69</u><br>1<br>F<br>0 |

| 6/27/88      | Table A - 3. (con                  | nt) M      | ode o     | of Op     | erati     | on (V            | /ideo      | Seve      | n Pr      | oprie      | tary      |
|--------------|------------------------------------|------------|-----------|-----------|-----------|------------------|------------|-----------|-----------|------------|-----------|
|              | CRT Ctrlr                          | 60         | 61        | 62        | 63        | 64               | 65         | 66        | 67        | 68         | <u>69</u> |
| CR0          | H Total - 5                        | 6D         | 6F        | 7F        | A3        | A3               | <b>A</b> 3 | C6        | C3        | E3         | F2        |
| CR1          | H Display End                      | 5D         | 59        | 63        | 7F        | 7F               | 7F         | 9F        | 9F        | <b>B</b> 3 | C7        |
| CR2          | H Blanking Start                   | 5E         | 5A        | 64        | 83        | 83               | 82         | A3        | A2        | <b>B6</b>  | CA        |
| CR3          | H Blanking End                     | 90         | 92        | 82        | A5        | A5               | A6         | 86        | 85        | 85         | 94        |
| CR4          | H Retrace Start                    | 61         | 5C        | 67        | 8D        | 8D               | 8D         | AA        | A8        | <b>B8</b>  | CB        |
| CR5          | H Retrace End                      | 8F         | 85        | 18        | 82        | 82               | 82         | 00        | 00        | 8A         | 8E        |
| CR6          | V Total - 2                        | BF         | 47        | 77        | 29        | 29               | 29         | E0        | 0B        | 47         | 70        |
| CR7          | Overflow<br>Descent Descent        | 1F         | F0        | F0        | FD        | FD               | FD         | 10        | 3E        | F0         | F0        |
| CR8          | Preset Row Scan                    | 00         | 00        | 00        | 00        | 00               | 00         | 00        | 00        | 00         | 00        |
| CR9          | Char Cell Height                   | 40         | 60<br>00  | 60        | 60        | 60               | 60         | 40        | 40        | 60         | 60        |
| CRA<br>CRB   | Cursor Start<br>Cursor End         | 00         | 00<br>00  | 00<br>00  | 00        | 00<br>00         | 00<br>00   | 00        | 00<br>00  | 00         | 00        |
| CRC          | Start Address H                    | 00         |           |           | 00        |                  |            |           |           | 00         | 00        |
| CRD          | Start Address H<br>Start Address L |            |           |           |           |                  |            |           |           |            |           |
| CRE          | Cursor Location H                  |            |           |           |           |                  |            |           |           |            |           |
| CRE          | Cursor Location L                  |            |           |           |           |                  |            |           |           |            |           |
|              | Light Pen H                        |            |           |           |           |                  |            |           |           |            |           |
|              | Light Pen L                        |            |           |           |           |                  |            |           |           |            |           |
|              | V Retrace Start                    | A2         | 26        | 5C        | 07        | 07               | 07         | CE        | EA        | 26         | <br>59    |
|              | V Retrace End                      | 8E         | 08        | 0E        | 8A        | 8A               | 8A         | 85        | 8C        | 08         | 0C        |
| CR12         | V Display End                      | 99         | 1B        | 57        | FF        | FF               | FF         | C7        | DF        | 1 <b>B</b> | 57        |
| CR12         | Offset                             | 2F         | 2D        | 32        | 20        | 20               | 40         | 50        | 50        | 5A         | 64        |
| CR14         | Underline Row                      | 00         | 00        | 00        | 00        | 00               | 00         | 00        | 00        | 00         | 00        |
| CR15         | V Blanking Start                   | AI         | 24        | 5C        | 07        | 07               | 07         | cc        | E7        | 24         | 59        |
| CR16         | V Blanking End                     | <b>B</b> 9 | 3F        | 74        | 22        | 22               | 22         | DC        | 04        | 3F         | 6Á        |
| CR17         | Mode Control                       | E3         | E3        | E3        | EB        | EB               | <b>E</b> 3 | E7        | E3        | <b>E</b> 3 | E3        |
| CR18         | Line Compare                       | FF         | FF        | FF        | FF        | FF               | FF         | FF        | FF        | FF         | FF        |
|              |                                    |            |           |           | L         |                  |            |           |           |            |           |
| ADO          | Attribute Ctrlr                    | <u>60</u>  | <u>61</u> | <u>62</u> | <u>63</u> | <u>64</u>        | <u>65</u>  | <u>66</u> | <u>67</u> | <u>68</u>  | <u>69</u> |
| AR0          | Palette 00<br>Palette 01           | 00         | 00        | 00<br>01  | 00<br>3F  | 00<br>3C         | 00         | 00        | 00        | 00         | 00        |
| AR1          | Palette 01<br>Palette 02           | 01         | 01        | 01        |           | 3C               | 01         | 01        | 01        | 01         | 01        |
| AR2          | Palette 02<br>Palette 03           | 02         | 02        | 02        | 3F        | 00               | 02         | 02        | 02        | 02         | 02        |
| AR3          | Palette 03<br>Palette 04           | 03<br>04   | 03<br>04  | 03        | 3F<br>3F  | 00<br>3A         | 03<br>04   | 03        | 03<br>04  | 03<br>04   | 03<br>04  |
| AR4<br>AR5   | Palette 04<br>Palette 05           | 04         | 04<br>05  | 04<br>05  | 3F<br>3F  | <i>э</i> а<br>3F | 04<br>05   | 04        | 04<br>05  | 04<br>05   | 04<br>05  |
| ARS<br>AR6   | Palette 05<br>Palette 06           | 14         | 05<br>14  | 14        | 3F<br>3F  | 3F<br>00         | 14         | 05        | 05        | 05<br>06   | 05        |
| ARO<br>AR7   | Palette 06<br>Palette 07           | 07         | 14<br>07  | 07        | 3F        | 00               | 07         | 07        | 07        | 07         | 07        |
| AR/<br>AR8   | Palette 07<br>Palette 08           | 38         | 38        | 38        | 3F<br>3F  | 00               | 38         | 07        | 07        | 07         | 07        |
| AR8<br>AR9   | Palette 08                         | 39         | 30<br>39  | 30<br>39  | SF<br>3F  | 00               | 30<br>39   | 08        | 08        | 08         | 08        |
| ARA          | Palette 0A                         | 39<br>3A   | 39<br>3A  | 39<br>3A  | JF<br>JF  | 00               | 39<br>3A   | 09<br>0A  | 09<br>0A  | 09<br>0A   | 09<br>0A  |
| ARB          | Palette OB                         | 3B         | 3B        | 3B        | 3F        | 00               | 3B         | 0B        | 0B        | 0B         | 0A<br>0B  |
| ARC          | Palette OC                         | 3C         | 3C        | 3C        | 3F        | 00               | 3C         | 0C        | 0C        | 0C         | 0D<br>0C  |
| ARD          | Palette 0D                         | 3D         | 3D        | 3D        | 3F        | 00               | 3D         | 0D        | 0D        | 0D         | 0D        |
| ARE          | Palette 0E                         | 3E         | 3E        | 3E        | 3F        | 00               | 3E         | 0E        | 0E        | 0E         | 0D<br>0E  |
| ARE          | Palette OF                         | 3F         | JE<br>3F  | 3F        | 3F        | 00               | 3E<br>3F   | 0E<br>0F  | 0E<br>0F  | 0E<br>0F   | 0E<br>0F  |
| AR10         | Mode Control                       | 01         | 01        | 01        | 01        | 01               | 01         | 41        | 41        | 41         | 41        |
| AR10<br>AR11 | Overscan Color                     | 00         | 00        | 00        | 00        | 00               | 00         | 00        | 00        | 00         | 00        |
|              | Color Plane Ena                    | 00<br>0F   | 00<br>0F  | 00<br>0F  | 01        | 05               | 00<br>0F   | 00<br>0F  | 00<br>0F  | 00<br>0F   | 00<br>0F  |
|              | H Pixel Pan                        | 00<br>00   | 0r<br>00  | 00        | 00        | 00               | 0F<br>00   | 00        | 0r<br>00  | 0r<br>00   | 0r<br>00  |
|              |                                    | 50         |           | 00        | 00        | 50               |            | 00        |           | ~~         |           |
| C.D.C        | Graphics Ctrir                     | <u>60</u>  | 61        | <u>62</u> | <u>63</u> | 64               | <u>65</u>  | <u>66</u> | 67        | <u>68</u>  | <u>69</u> |
| GR0          | Set/Reset                          | 0          | 0         | 0         | 0         | 0                | 0          | 0         | 0         | 0          | 0         |
|              | Enable Set/Reset                   | 0          | 0         | 0         | 0         | 0                | 0          | 0         | 0         | 0          | 0         |
|              | Color Compare                      | 0          | 0         | 0         | 0         | 0                | 0          | 0         | 0         | 0          | 0         |
|              | Data Rotate                        | 0          | 0         | 0         | 0         | 0                | 0          | 0         | 0         | 0          | 0         |
|              | Read Map Select                    | 0          | 0         | 0         | 0         | 0                | 0          | 0         | 0         | 0          | 0         |
|              | Mode                               | 00         | 00        | 00        | 10        | 10               | 00         | 40        | 40        | 40         | 40        |
|              | Miscellaneous                      | 05         | 05        | 05        | 07        | 07               | 05         | 05        | 05        | 05         | 05        |
|              | Color Don't Care                   | 0F         | 0F        | 0F        | 0F        | 0F               | 0F         | 0F        | 0F        | 0F         | 0F        |
| GR8          | Bit Mask                           | FF         | FF        | FF        | FF        | FF               | FF         | FF        | FF        | FF         | FF        |

|            |                               |         |        |         |        |                |            |          | erence on | <b>.</b> y) |            |
|------------|-------------------------------|---------|--------|---------|--------|----------------|------------|----------|-----------|-------------|------------|
|            |                               | Mode 0  | Mode 1 | Mode 2  | Mode 3 | Bricks<br>Mode | Mode 4     | Mode 5   | Mode 6    | Mode 7      |            |
|            |                               | CGA     | CGA    | CGA     | CGA    | CGA            | CGA        | OGA      | CGA       | MDA         | Herc       |
|            |                               | 40x25   | 40x25  | 80x25   | 80x25  | 160x100        | 320x200    | 320x200  | 640x200   | 720x350     | 720x348    |
|            |                               | Mono    | Color  | Mono    | Color  | 16-Color       | Mono       | 4-Color  | Mono      | Mono        | Mono       |
|            |                               | Text    | Text   | Text    | Text   | Graphics       | Graphics   | Graphics | Graphics  | Text        | Graphic    |
|            | Mode                          | 2C      | 28     | 2D      | 29     | 09             | 0E/2A      | 0A/2E    | 1E        | 28/29       | 0A         |
|            | Color                         | 30      | 30     | 30      | 30     | 30             | 30         | 30       | 3F        | n/a         | n/a        |
|            | Config (Full)                 | n/a     | n/a    | n/a     | n/a    | n/a            | n/a        | n/a      | n/a       | 02          | 03         |
|            | Config (Half)                 | n/a     | n/a    | n/a     | n/a    | n/a            | n/a        | n/a      | n/a       | 00          | 01         |
| 6845:      |                               |         | •      | •       | •      | •              | •          |          | •         |             |            |
|            | H Total - 1                   | 38      | 38     | 71      | 71     | 71             | 38         | 38       | 38        | 61          | 35         |
|            | H Displayed                   | 28      | 28     | 50      | 50     | 50             | 28         | 28       | 28        | 50          | 2D         |
|            | H Sync Pos                    | 2D      | 2D     | 5A      | 5A     | 5A             | 2D         | 2D       | 2D        | 52          | 2E         |
| R3         | Sync Width                    | 0A      | 0A     | 0A      | 0A     | 0A             | 0 <b>A</b> | 0A       | 0A        | 0F          | 07         |
| <b>n</b> / |                               |         |        |         |        |                |            |          | 35        |             | <b>6</b> D |
|            | V Total - 1                   | 1F      | 1F     | 1F      | 1F     | 7F             | 7F         | 7F       | 7F        | 19          | 5B         |
|            | V Adjust                      | 06      | 06     | 06      | 06     | 06             | 06         | 06       | 06        | 06          | 02         |
|            | V Displayed                   | 19      | 19     | 19      | 19     | 64             | 64         | 64       | 64        | 19          | 57         |
| R7         | V Sync Pos - 1                | 1C      | 1C     | 1C      | 1C     | 70             | 70         | 70       | 70        | 19          | 57         |
| R 8        | Display Mode                  | 02      | 02     | 02      | 02     | 02             | 02         | 02       | 02        | 02          | 02         |
|            | Cell Height - 1               | 07      | 07     | 07      | 07     | 01             | 01         | 01       | 01        | 0D          | 03         |
|            | Cursor Start                  | 06      | 06     | 06      | 06     | 06             | 06         | 06       | 06        | <b>0B</b>   | 00         |
|            | Cursor End                    | 07      | 07     | 07      | 07     | 07             | 07         | 07       | 07        | 0C          | 00         |
| DC         | Course Andrea II              | 00      | 00     | 00      | 00     | 00             | 00         | 00       | 00        | 00          | 00         |
|            | Start Addr H                  | 00      | 00     | 00      | 00     | 00             | 00         | 00       | 00        | 00          | 00         |
|            | Start Addr L<br>Cursor Addr H | 00      | 00     | 00      | 00     | 00             | 00         | 00       | 00        | 00          | 00         |
|            | Cursor Addr L                 | 00      | 00     | 00      | 00     | 00             | 00         | 00       | 00        | 00          | 00         |
| •••        |                               |         |        |         |        |                |            |          |           | •••         |            |
|            | Page Size                     |         |        |         |        |                |            |          | 4000      | 4000        |            |
| Pixels     | Cell Size                     | 8x8     | 8x8    | 8x8     | 8x8    | 8x2            | 8x2        | 8x2      | 16x2      | 9x14        | 16x4       |
| Chars      | H Displayed                   | 40      | 40     | 80      | 80     | 80             | 40         | 40       | 40        | 80          | 45         |
|            | H Total                       | 57      | 57     | 114     | 114    | 114            | 57         | 57       | 57        | 98          | 54         |
| <b>.</b> . |                               | • • • • |        | • • • • |        |                | •••        | • • • •  |           |             |            |
|            | V Displayed                   | 200     | 200    | 200     | 200    | 200            | 200        | 200      | 200       | 343         | 348        |
| Lines      | V Total                       | 262     | 262    | 262     | 262    | 262            | 262        | 262      | 262       | 370         | 370        |
| MHz        | Dot Clock                     | 14.318  | 14.318 | 14.318  | 14.318 | 14.318         | 14.318     | 14.318   | 14.318    | 16.257      | 16.257     |
|            | H Freq                        | 15.70   | 15.70  | 15.70   | 15.70  | 15.70          | 15.70      | 15.70    | 15.70     | 18.43       | 18.82      |
|            | V Freq                        | 59.92   | 59.92  | 59.92   | 59.92  | 59.92          | 59.92      | 59.92    | 59.92     | 49.82       | 50.85      |

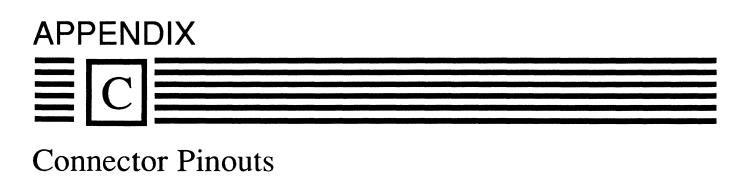



## **Character Fonts**

VEGA VGA Technical Reference Manual B - 1

## **Character Fonts**

The following figure shows the 8x14 character set.




The following figure shows the monochrome (9x14) supplement to the 8x14 character set.

| 1D |    | 54 <b>T</b> | 5A Z        | 98 ¢ |
|----|----|-------------|-------------|------|
| 22 | •• | 56 V        | 6D m        | 9D ¥ |
| 2B | Ŧ  | 57 W        | 76 🗸        | 9E 🖪 |
| 2D |    | 58 🗙        | 77 w        | F1 🛨 |
| 4D | M  | 59 <b>Y</b> | 91 <b>æ</b> | F6 🕂 |

The following figure shows the 8x8 character set.

|   | 0 | 1  | 2        | 3   | 4 | 5 | 6 | 7 | 8 | 9  | A               | В   | С  | D | Ε | F        |  |
|---|---|----|----------|-----|---|---|---|---|---|----|-----------------|-----|----|---|---|----------|--|
| 0 |   |    |          | 0   | e | P | ٩ | P | S | É  | á               |     | L  | π | α | Ξ        |  |
| 1 | Ξ | ◀  | •        | 1   | A | Q | a | q | ü | æ  | ī               | 鱡   | T  | Ŧ | ß | ±        |  |
| 2 | ٦ | \$ |          | 2   | B | R | Ъ | r | ė | A  | ö               | 8   | Т  | Π | Г | 2        |  |
| 3 | ۲ | !! | #        | 3   | Ĉ | S | C | 5 | 8 | (0 | ū               |     | F  | u | Π | <u>۲</u> |  |
| 4 | ۲ | P  | \$       | 4   | D | T | d | t |   | ö  | ñ               | -   |    | F | Σ | ſ        |  |
| 5 | ÷ | Ş  | <b>%</b> | 5   | E | U | e | u | ā | ō  | Ñ               | 1   | +  | F | 6 | J        |  |
| 6 | ŧ |    | æ        | 6   | F | V | f | V | á | û  | đ               | -11 | F  | Π | μ | ÷        |  |
| 7 | ٠ | ŧ  | ,        | 7   | G | H | g | W | 5 | ū  | 0               | Π   | ł  | Ŧ | r | ~        |  |
| 8 | O | Ť  | (        | 8   | H | X |   | × |   | ÿ  | Ċ               | 7   | Ľ  | + | Ø | 0        |  |
| 9 | 0 | ∔  | >        | 9   | I | Y | ï | y | ë | •  | -               | 11  | F  | 7 | Φ | •        |  |
| A | 0 | 7  | *        | :   | J | Z | Ĵ | Z | è | Ü  | -               |     | 4  | L | Ω | ·        |  |
| В | 2 | +  | +        | ••• | K | [ | k | ₹ | ï | ¢  | 5               | า   | זר |   | δ | J        |  |
| С | ₽ | L  | ,        | <   | L | 1 | 1 | : | Î | £  | 5               | 1   | lł |   | 8 | n        |  |
| D | P | +  | 1        | Ш   | M | נ | £ | 7 | 1 | ¥  | i               | ш   | l  |   | ø | 2        |  |
| E | P |    |          | >   | N | ^ | n |   | Ä | R  | ~               | E   | ł  |   | E |          |  |
| F | ¥ | •  | /        | ?   | 0 | _ | 0 | ۵ | Å | £  | <b>&gt;&gt;</b> | ٦   | -  |   | N |          |  |



| Analog Video Connector                                                                                                                                                                                                                                                                                                                          |                             |                                                                           |                                                                                                     |                        |                                                                   |                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------|-------------------------------------------------------|
| PinName1Red(Analog 07V)2Green(Analog 07V)3Blue(Analog 07V)4MonID[2]5-reserved-                                                                                                                                                                                                                                                                  | Dir<br>Out<br>Out<br>In<br> | 8 Blue F<br>9 (no pi                                                      | Return<br>Return                                                                                    | <u>Dir</u><br><br><br> | PinName11MonID[0]12MonID[1]13Hsync (TTL)14Vsync (TTL)15-reserved- | Dir<br>In<br>In<br>Out<br>Out<br>                     |
| Feature Connector                                                                                                                                                                                                                                                                                                                               |                             |                                                                           |                                                                                                     |                        |                                                                   |                                                       |
| Pin         Name           1         C0           2         C1           3         C2           4         C3           5         C4           6         C5           7         C6           8         C7           9         FEATCLK           10         BLANK*           11         HSYNC           12         VSYNC           13         Gnd |                             | Dir<br>1/0<br>1/0<br>1/0<br>1/0<br>1/0<br>1/0<br>1/0<br>1/0<br>1/0<br>1/0 | PinName14Gnd15Gnd16Gnd17VIDENA18SYNCEN19CLKENA20-reserved21Gnd22Gnd23Gnd24Gnd25-reserved26-reserved | NA<br>4<br> -          |                                                                   | Dir<br><br><br>In<br>In<br>In<br><br><br><br><br><br> |

PCB Component Side

PCB Solder Side

Note: The lowest numbered pin on each side of the board is located on the end nearest the Video Connector

| Pin Name                          | Direction        |            | Name          | Direction  |
|-----------------------------------|------------------|------------|---------------|------------|
| B1 GND                            | In               |            | NMI*          | Out        |
| B2 RESET                          | In               | A2         | D7            | I/O        |
| B3 +5V                            | In               | A3         | D6            | I/O        |
| B4 IRQ2 (PC/AT IRQ9)              | Out              | A4         | D5            | I/O        |
| B5 -5V                            | n/c              | A5         |               | I/O        |
| B6 DRQ2 (Floppy)                  | n/c              | A6         |               | I/O        |
| B7 -12V                           | In               | A7         |               | Ī/Ō        |
| B8 CARDSEL* (PC/AT OWS)           | Out              | A8         |               | Ī/Ŏ        |
| B9 +12V                           | In               | A9         |               | Ĩ/Ŏ        |
| B10 GND                           | In               |            | WAIT*         | Out        |
| B11 MEMW*                         | In               |            | AEN           | In         |
| B12 MEMR*                         | In               |            | Al9           | In         |
| B13 IOW*                          | In               | A12<br>A13 |               | In         |
| B14 IOR*                          | In               | A13        |               | In         |
|                                   |                  | 1 1        |               |            |
| B15 DACK3*                        | n/c              | A15        |               | In         |
| B16 DRQ3 (Lowest Priority)        | n/c              | A16        |               | In         |
| B17 DACK1*                        | n/c              | A17        |               | In         |
| B18 DRQ1 (Highest Priority)       | n/c              | A18        |               | In         |
| B19 DACK0* (PC/AT REFRESH*)       |                  |            | A12           | In         |
| B20 CLK (4.772727 MHz)            | n/c              | A20        |               | In         |
| B21 IRQ7 (Lowest Priority - LPT1) |                  | A21        |               | In         |
| B22 IRQ6 (Floppy)                 | n/c              | A22        |               | In         |
| B23 IRQ5                          | n/c              | A23        |               | In         |
| B24 IRQ4 (Serial I/O 1)           | n/c              | A24        |               | In         |
| IB25 IRQ3                         | n/c              | A25        |               | In         |
| B26 DACK2* (Floppy)               | n/c              | A26        | A5            | In         |
| B27 TC                            | n/c              | A27        | <b>A</b> 4    | In         |
| B28 ALE                           | n/c              | A28        | A3            | In         |
| B29 +5V                           | In               | A29        | A2            | In         |
| B30 OSC (14.31818 MHz)            | In               | A30        | A1            | In         |
| B31 GND                           | In               | A31        | <b>A</b> 0    | In         |
| Din Name                          | Direction        |            | Nome          | Dimetion   |
| Pin Name<br>D1 MEMCS16*           | Direction<br>Out |            | Name<br>SUDE* | Direction  |
| D2 IOCS16*                        | Out<br>Out       |            | SHBE*         | In<br>In   |
|                                   |                  |            | LA23          | In         |
| D3 IRQ10                          | n/c<br>n/c       |            | LA22          | In         |
| D4 IRQ11                          | n/c              |            | LA21          | In         |
| D5 IRQ12                          | n/c              |            | LA20          | In         |
| D6 IRQ13                          | n/c              |            | LA19          | In         |
| D7 IRQ14                          | n/c              |            | LA18          | In         |
| D8 DACK0*                         | n/c              |            | LA17          | In         |
| D9 DRQ0                           | n/c              |            | XMEMR*        | n/c        |
| D10 DACK5*                        | n/c              | C10        | XMEMW*        | n/c        |
| D11 DRQ5                          | n/c              | C11        | D8            | I/O        |
| D12 DACK6*                        | n/c              | C12        |               | Ι/O        |
| D13 DRQ6                          | n/c              |            | D10           | Ī/O        |
| D14 DACK7*                        | n/c              | C14        |               | Ĩ/Ŏ        |
| D15 DRQ7                          | n/c              |            | D12           | I/O        |
|                                   |                  |            |               | I/O<br>I/O |
|                                   | In               | 1 11 16    | 1115          |            |
| D16 +5V<br>D17 MASTER*            | In<br>n/c        | C16        | D13<br>D14    | I/O<br>I/O |

Note: The C/D connector is only available on PC/AT-class systems (not on PC and PC/XT systems)

| <u>Pin</u>  | Name          | <u>Direction</u> | Pin        | Name            | Directio   |
|-------------|---------------|------------------|------------|-----------------|------------|
| <b>B</b> 01 | AUDIO GND     |                  | A01        | CDSETUP*        | In         |
| B02         | AUDIO         |                  | A02        | MADE24          | In         |
| B03         | GND           | GND              | A03        | GND             | GND        |
| B04         | 14.31818MHZ   |                  | A04        | A11             | In         |
| B05         | GND           | GND              | A05        | A10             | In         |
| B06         | A23           | In               | A06        | A09             | In         |
| B07         | A22           | In               | A07        | +5V             | +5V        |
| <b>B</b> 08 | A21           | In               | A08        | A08             | In         |
| B09         | GND           | GND              | A09        | A07             | In         |
| <b>B</b> 10 | A20           | In               | A10        | A06             | In         |
| B11         | A19           | In               | A11        | +5V             | +5V        |
| B12         | A18           | In               | A12        | A05             | In         |
| B13         | GND           | GND              | A13        | A04             | In         |
| B14         | A17           | In               | A14        | A03             | In         |
| B15         | A16           | In               | A15        | +5V             | +5V        |
| B16         | A15           | In               | A16        | A02             | In         |
| B17         | GND           | GND              | A17        | A01             | In         |
| B18         | A14           | In               | A18        | A00             | In         |
| B19         | A14<br>A13    | In               | A19        | +12V            |            |
| B20         | A13<br>A12    | In               | A19<br>A20 | ADL*            | In         |
| B20<br>B21  | GND           | GND              | A20        | PREEMPT*        |            |
| B21<br>B22  | IRQ09*        |                  | A21<br>A22 | BURST*          |            |
| B22<br>B23  | IRQ03*        |                  | A23        | -12V            |            |
| B23<br>B24  |               |                  | A23        | ARB00           |            |
| B24<br>B25  | IRQ04*<br>GND | GND              | A24<br>A25 | ARB01           |            |
|             |               | GIND             | A25<br>A26 |                 | •          |
| B26         | IRQ05*        |                  | A20<br>A27 | ARB02           |            |
| B27         | IRQ06*        |                  |            | -12V            |            |
| B28         | IRQ07*        |                  | A28        | ARB03           |            |
| B29         | GND           | GND              | A29        | ARB/GNT*        |            |
| B30         | -reserved-    |                  | A30        | TC*             |            |
| B31         | -reserved-    |                  | A31        | +5V             | +5V        |
| B32         | CHCK*         |                  | A32        | S0*             | In         |
| B33         | GND           | GND              | A33        | S1*             | In         |
| B34         | CMD*          | In               | A34        | M/IO*           | In         |
| B35         | CHRDYRTN      |                  | A35        | +12V            |            |
| <b>B</b> 36 | CDSFDBK*      | Out              | A36        | RDY             | Out        |
| B37         | GND           | GND              | A37        | D00             | I/O        |
| B38         | D01           | I/O              | A38        | D02             | I/O        |
| B39         | D03           | I/O              | A39        | +5V             | +5V        |
| <b>B</b> 40 | D04           | I/O              | A40        | D05             | I/O        |
| <b>B</b> 41 | GND           | GND              | A41        | D06             | I/O        |
| B42         | RESET         | In               | A42        | D07             | I/O        |
| B43         | -reserved-    |                  | A43        | GND             | GND        |
| B44         | -reserved-    |                  | A44        | DS16RTN*        |            |
| B45         | GND           | GND              | A45        | <b>REFRESH*</b> | In         |
| <b>B</b> 46 | -key-         | no pin           | A46        | KEY             | no pin     |
| B47         | -key-         | no pin           | A47        | KEY             | no pin     |
| <b>B</b> 48 | D08           | I/O              | A48        | +5V             | +5V        |
| B49         | D09           | I/O              | A49        | D10             | I/O        |
| B50         | GND           | GND              | A50        | D11             | I/O        |
| <b>B</b> 50 | D12           | I/O              | A50        | D11<br>D13      | 1/O<br>1/O |
| B52         | D12<br>D14    | 1/O<br>1/O       | A51<br>A52 | +12V            |            |
|             |               |                  | A52<br>A53 |                 |            |
| B53         | D15           |                  |            | -reserved-      | <br>I      |
| B54         | GND           | GND              | A54        | SBHE*           | In         |
| B55         | IRQ10*        |                  | A55        | CDDS16*         | Out        |
| B56         | IRQ11*        |                  | A56        | +5V             | +5V        |
| B57         | IRQ12*        |                  | A57        | IRQ14*          |            |
| B58         | GND           | GND              | A58        | IRQ15*          |            |

.

# 

## Jumper / Switch Settings

| Sw1 Sw2 Sw3 Monitor                                                 | Modes Availab         | le Max Res | Pitch   | <u>V (Hz)</u> | H (KHz)                  | V/H Rtro     | c (use |
|---------------------------------------------------------------------|-----------------------|------------|---------|---------------|--------------------------|--------------|--------|
| Automatic Detect Color/Mono PS/2                                    |                       | -          | -       | -             | -                        | -            |        |
| on MultiSync (NEC), Nanao 8060S                                     | all<br>Iitsubishi all |            |         |               | 15.5-35 NP<br>15.5-34 NP | 50/2         |        |
| - on - MultiScan (Sony), JVC, Thompson, M<br>on on - MultiSync Plus | all                   |            |         |               | 15.5-54 NP<br>21.8-45 NP | 50/1<br>50/1 |        |
| on on - MultiSync Plus<br>on ACD (Analog Color Display)             | 0-7. D-13             |            |         | 50-30 NP      | 31.5 NP                  | 50/1         | *****  |
| on - on                                                             | · · <b>,</b>          |            |         |               |                          |              |        |
| - on on                                                             |                       |            |         |               |                          |              |        |
| on on on                                                            |                       |            |         |               |                          |              |        |
| Dipswitch 4: 16-Bit I/O Enable (fu                                  | -                     |            | SA ch   | ip revisi     | ion 3 bas                | ed boa       | rds    |
| on = Enabled                                                        | off = Disa            | bled       |         |               |                          |              |        |
| on = Enabled                                                        | off = Disa            | bled       |         |               |                          |              |        |
| Dipswitch 6: 16-Bit ROM Enable                                      |                       |            |         |               |                          |              |        |
| on = Enabled                                                        | off = Disa            | bled       |         |               |                          |              |        |
|                                                                     |                       |            |         |               |                          |              |        |
| Dipswitch 7: 16-Bit Memory Enab                                     | le                    |            |         |               |                          |              |        |
| on = Enabled                                                        | off = Disa            | bled       |         |               |                          |              |        |
|                                                                     |                       |            |         |               |                          |              |        |
| Dipswitch 8: Pure Mode                                              |                       |            |         |               |                          |              |        |
| •                                                                   |                       |            |         |               |                          |              |        |
| Dipswitch 8: Pure Mode<br>on = Pure VGA Mode                        | off = V7V             | GA Exten   | sions l | Enabled       |                          |              |        |

### PCB Jumper Settings:

TST1 - DCLK / CCLK Test Connector - for factory test only, no jumper installed Pin 1 = DCLK (dotclock), Pin 2 = Gnd, Pin 3 = CCLK (character clock)

| JMP4 - Memory Enable    | 1-2: Enable  | 2-3: Disable | Default = 1-2 |
|-------------------------|--------------|--------------|---------------|
| JMP3 - ROM Enable       | 1-2: Enable  | 2-3: Disable | Default = 1-2 |
| JMP2 - Port 2E9 Enable  | 1-2: Enable  | 2-3: Disable | Default = 1-2 |
| JMP1 - Interrupt Enable | 1-2: Disable | 2-3: Enable  | Default = 2-3 |

Note: pin 1 is not connected for all jumpers JMP1-JMP4

P/N 700-0242