
Assembly Language
Programmer Reference

Mini-Computer Operations

2722 Michelson Drive
P.O. Box C-19504
Irvine, California 92713

ASSEMBLY LANGUAGE
PROGRAMMER REFERENCE MANUAL

98A 9952 452

FEBRUARY 1978

The statements in this publication are not intended to create any warranty, express or implied.
Equipment specifications and performance characteristics stated herein may be changed at any time
without notice. Address comments regarding this document to Sperry Univac, Mini-Computer
Operations, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine, California,
92713.

@ 1978 SPERRY RAND CORPORATION

Sperry Univac is a division of Sperry Rand Corporation Printed in U.S.A:

CHANGE RECORD

Page Issue Change Descri ption Number Date

all 10-76 original issue

misc. 5-77 minor revisions/corrections

misc. 2-78 deleted references to Varian

Change Procedure:

When changes occur to this manual, updated pages are' issued to replace the obsolete
pages. On each updated page, a vertical line is drawn in the margin to flag each
change and a letter is added to the page number. When the manual is revised and
completely reprinted, the vertical line and page-number letter are removed.

96A0130-000A

III

LIST OF EFFECTIVE PAGES

Page Number Change in Effect

All Complete Revision

96A0731-000B

IV

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

1.1 SPERRY UNIVAC 70 SERIES ASSEMBLY LANGUAGE 1-1
1_2 DAS ASSEMBLERS _._ ... _ ... ___ ._ ... 1-2
1.2.1 DAS SA Assembler ... 1-3
1.2.2 DAS MR Assembler .. 1-,3
1.3 BIBLIOGRAPHY ... 1·3

SECTION '2
STATEMENTS

2.1 CHARACTER SET ... 2-1
2.2 STATEMENT FORMAT ... 2-2
2.2.1 Label Field ... 2-3
2.2.2 Operation Field .. 2·4
2.2.3 Variable Field .. 2-4
2.2.4 Comment Field .. 2-5
2.3 CONSTANTS ... 2-5
2.3.1 Decimal Integers ... 2-5
2.3.2 'Octal Integers .. 2-6
2.3.3 Floating Point Numbers ... 2-6
2.3.4 Character Constants ... 2-8
2.3.5 Address Constants .. 2-8
2.3.6 Indirect Address Constants .. 2-8
2.3.7 Literals ... ", 2-8
2.4 EXPRESSIONS .. 2-9
2.4.1 Operators .. 2-10
2.4.2 Expression Evaluation ... 2·10
2.4.3 Address Expressions ... 2-11
2.4.3.1 Absolute Expressions ... 2-11
2.4.3.2 Relocatable Expressions (DAS MR Only) 2-12
2.4.4 Mode Determination ... 2·13
2.5 SYMBOLS .. 2·14
2.5.1 User Symbols ' ... 2-14
2.5.2 Assembler·Defined Symbols ... 2-15
2.5.2.1 Operation Field Symbols ... 2·15
2.5.2.2 Location Counter Symbols ... 2-15
2.5.3 Symbol Values ... ,2·16
2.5.4 Address Symbols and Relocatability ... 2·16
2.5.4.1 Relocatability (DAS MR Only) , 2-16
2.5.4.2 Absolute Symbols ... 2·17
2.5.4.3 Relocatable Symbols (DAS MR Only) 2·18
2.5.5 Symbol Modes ... 2·19

v .

SECTION 3
INSTRUCTION SUMMARY

3.1 TYPE 1 INSTRUCTIONS .. 3·2
3.2 TYPE 2 INSTRUCTIONS .. ·3·5
3.3 TYPE 3 INSTRUCTIONS .. 3·6
3.4 TYPE 4 INSTRUCTIONS .. 3·9
3.5 TYPE 5 INSTRUCTIONS .. 3·13
3.6 MULTIPLE 'REGISTER INSTRUCTIONS 3·16
3.6.1 Register-To-Memory Instructions .. 3-17
3.6.2 Byte Instructions ... 3-17
3.6.3 Jump·lf Instructions ... 3·18
3.6.4 Double·Precision Instructions ~ ... 3·18
3.6.5 Immediate Instructions .. 3·18
3.6.6 Register-To·Register Instructions .. 3·19
3.6.7 Single Register Instructions ... 3·19

SECTION 4
ASSEMBLER DIRECTIVES

4.1 ,SYMBOL DEFINITION DIRECTIVES .. 4-3
4.1.1 EQU Directive: ... 4·3
4.1.2 SET Directive ... 4·4
4.1.3 MAX Directive (DAS 8A Only) ... 4·4
4.1.4 MIN Directive (DAS 8A Only) .. 4·5
4.2 INSTRUCTION DEFINITION DIRECTIVE .. 4·6
4.2.1 OPSY Directive .. 4·6
4.3 LOCATION COUNTER CONTROL DIRECTiVES 4·6
4.3.1 ORG Directive .. 4·7
4.3.2 LOC Directive .. 4·8
4.3.3 BEGI Directive (DAS 8A Only) ... 4-9
4.3.4 USE Directive (DAS 8A Only) .. 4-10
4.4 DATA DEFINITION DIRECTiVES : ... 4-10
4.4.1 DATA Directive .. 4-11
4.4.2 PZE Directive ... 4-12
Lt.lL3 MZE Directive .. 4·13
4.4.4 FORM Directive ... 4·14
4.5 MEMORY RESERVATION DIRECTIVES ... 4·14
4.5.1 BSS Directive ... 4·15
4.5.2 BES Directive .. 4·15 '
4.5.3 DUP Directive .. 4·16
4.6 CONDITIONAL ASSEMBLY DIRECTiVES · 4·17
4.6.1 1FT Directive .. 4-17
4.6.2 IFF Directive .. 4-18
4.6.3 GOTO Directive .. 4·18

'4.6.4 CONT Directive ... 4-19

vi

S'ECTION 4 (continued)

4.6.5 NULL Directive .. 4·19
4.7 ASSEMBLER CONTROL DIRECTiVES .. 4·20 '
4.7.1 MORE Directive (DAS 8A Only) ... 4·20
4.7.2 END Directive ... 4·21
4.8 SUBROUTINE CONTROL DIRECTIVES ... 4·21
4.8.1 ENTR Directive .. 4·21
4.8.2 RETU* Directive .. 4·22
4.8.3 CALL Directive ... 4·22
4.9 LIST AND PUNCH CONTROL DIRECTIVES 4·24
4.9.1 LIST Directive .. 4·24
4.9.2 NLIS Directive ... 4·24
4.9.3 SMRY Directive ... 4·24
4.9.4 DETL Directive .. 4·24
4.9.5 PUNC Directive (DAS 8A Only) ... 4·25
4.9.6 NPUN Directive (DAS 8A Only) .. 4·25
4.9.7 SPAC Directive .. 4·25
4.9.8 EJ EC Directive ... 4·25
4.10 PROGRAM LINKAGE DIRECTiVES ... 4·26
4.10.1 NAME Directive ... 4·26
4.10.2 EXT Directive .. 4·26
4.10.3 COMN Directive ... 4·27
4.11 MACRO DEFINITION DIRECTIVES (DAS MR ONLy) 4·28
4.11.1 MAC Directive (DAS MR Only) .. 4·28 .
4.11.2 EMAC Directive (DAS MR Only) .. 4·29
4.11.3 Macro Calls .. 4·29

SECTION 5
OPERATING THE ASSEMBLER

5.1 ASSEMBLER PROCESSING .. 5-1
5.1.1 Assembler Input Media ... 5-1
5.1.2 Pass 1 . Symbol Table ... 5-3.
5.1.3 Pass 2 . Assembler Output ... 5·4
5.1.4 Error Messages ... : 5-5
5.2 ASSEMBLER OPERATING PROCEDURES 5-7
5.2.1 DAS MR Operation (VORTEX I/VORTEX II) 5-7·
5.2.2 1 DAS M R Operation (MOS) ... 5·15
5.2.3 DAS MR Operation (Stand·Alone) ... 5-18
5.2.4 DAS 8A Operation .. 5-21

vi i

SECTION 6
STAND·ALONE FORTRAN/DAS MR LIBRARIES

6.1 COMPLEX MATH FUNCTIONS (FORTRAN CODED) 6-1
6.2 DOUBLE PRECISION MATH FUNCTIONS (FORTRAN CODED) ... 6-1
6.3 SINGLE PRECISION MATH FUNCTIONS (FORTRAN CODED) 6-1
6.4 DOUBLE PRECISION ARITHMETIC (DAS CODED) 6-2
6.5 SINGLE PRECISION ARITHMETIC (DAS CODED) 6-2
6.5.1 Hardware Multiply/Divide ... 6-2
6.5.2 SOFTWARE MULTIPLY IDIVIDE .. 6-3
6.6 RUN·TIME 1/0 (DAS CODED) _ 6-3
6.7 RUN·TIME UTILITIES (DAS CODED) .. 6-4

APPENDIX A
INDEX OF INSTRUCTIONS

APPENDIX B
V70 SERIES ASCII CHARACTER CODES'

LIST OF TABLES

Table 2-1. Standard DAS 8A Location Counters 2-11
Table 2-2. Arithmetic Operation Results (DAS MR only) 2-16
Table 3·1. Assembler Instruction Type Characteristics 3-1
Table 3·2. Summary of Assembler Instruction Types 3-2
Table 3·3. JIF/JIFM/XIF Code Conditions ~ 3-7
Table 3·4. Standard Device Addresses ... 3-13
Table 4·1. Directives Recognized by DAS Assemblers 4-2
Table 5·1. DAS Symbol Table Capacities ... 5-3
Table 5·2. DAS Error' Codes .. 5·5
Table 5·3. DAS MR Options for Background Operation 5-8
Table 5·4. List of Peripheral Assignments for Stand·Alone DAS MR 5-20
Table 5·5. Acceptable 1/0 Devices .. 5·21
Table 5·6. Device Names for Magnetic Tape Transports : 5-23

viii

LIST OF ILLUSTRATIONS

Figure 2·1. Format for Source Statement Records : 2-3
Figure 4·1. Sample DATA Directive Us~ge ... 4-12
Figure 4·2. Sample PZE Directive Usage ... 4-13
Figure 4·3. Sample MZE Directive Usage ... 4-13
Figure 4·4. Sample FORM Directive Usage .. 4-14
Figure 4·5. Sample DU P Directive Usage .. 4·17
Figure 4·6. Sample Conditional Assembly Directives Usage 4-20
Figure 4·7. Sample CALL Directive Usage ... 4-23
Figure 4·8. Sample Macro Usage .. 4-30
Figure 4-9. Output Listing Obtained by Calling P(O) 4-30
Figure 5-1. Field Placement Summary .. 5-2
Figure 5·2. Output Listing Format .. 5-5
Figure 5-3. Example of Assembled and Executed DAS MR Program
Under VORTEX Control , .. 5·9
Figure 5-4. Example of Assembled and Executed DAS MR Program
Under MOS Control .. 5-15
Figure 5-5. Coding Example .. 5-24
Figure 5-6. Example of an Assembled DAS SA Program 5-24
Figure 5-7. Example of an Assembled DAS SA Program with Errors,5-27

ix

SECTION 1

INTRODUCTION

This manual describes the assembly language and assembler processing used to write,
assemble, and execute programs for the SPERRY UNIVAC V70 series computers.

1.1 V70 SERIES ASSEMBLY LANGUAGE

The assembly language is a symbolic representation of the programmable capabilities of the
V70 series computers. Using assembly language, the programmer is able to specify the
machine instruction codes symbolically and to address memory locations by alphanumeric
symbols of his own choosing, providing a flexibility not attainable with absolute addressing.

Internally, the computer obeys instructions kept in its memory in 16-bit binary format. For
example, the instruction:

001000000001111

when executed causes the A register to be loaded with the contents of location 15 (decimal).
In octal the same instruction is written:

010017

However, it is not necessary to learn the octal or binary representation of the computer's
instruction repertoire. Instead, a user can write his program using a symbolic language and
then use another computer program, the DAS (Data Assembly System) assembler, to convert
the instructions to binary upon input. The instruction given previously is then written:

LOA 017

or, if decimal working is preferred:

LOA 15

which is read as "Load the A register with the contents of location 15 (decimal)."

The DAS assembler translates the statement "LOA 15" into its binary machine language
equivalent, i.e.:

LOA 15 ------l ... ~ DAS ASSEMBLER ----.-; 001000000001111

Similarly:

STX 0177

is translated by the DAS program to form the instruction "Store the X register contents in
location 0177."

The DAS assembler has many other capabilities than translating source instructions one-for-

1-1

INTRODUCTION

one into their binary equivalents. A primary feature is allowing the programmer to represent
memory locations with symbolic labels instead of requiring .absolute addresses. Another
feature allows the programmer to define data constants and character constants without
prior conversion to binary or octal values. For example, suppose the user wishes to load the A
register with the value 64 at some point in his program. He could do this with the following
statements:

VALU DATA 64

LOA VALU

The first statement defines a word of data having the value 64; "VALU" is a symbolic label
that can be used to address that data word. The second statement is an instruction to load
the A register with the contents of memory location "VALU". The programmer need not be
concerned with the absolute location of the data word.

An even simpler version··requiring only one statement··can be written using a "literal"
constant:

LOA -64

In this version, the assembler itself will designate a location' in which the value 64 is to be
placed.

DAS assembly language allows the user to give directions to the assembler, called assembler
directives, to perform such functions as defining program loading addresses, data locations
(such as the DATA directive above), subroutine linkage, and input/output functions; further
control features include conditional assembly directives and a macro capability. Comments
can be added between symbolic source statements or appended to the statements themselves
to enable easier checkout and program documentation.

By using the DAS assembly language, the programmer is able to write functional application
programs an'd control the operation of the assembler. Symbolic coding reduces machine
language bookkeeping and fully utilizes the computer capabilities without a corresponding
increase in the time required for programming.

1.2 DAS ASSEMBLERS

The principal objective of any assembler is to translate source programs written in a
symbolic machine language into the more precise numeric language of the computer. The
assembler (DAS) achieves this objective by converting programmer-prepared symbolically
coded instructions, directives, and data (the source program) into their binary machine
language equivalents (the object program).

DAS processes source programs in two passes. The first pass defines user·designated
symbols. The second pass produces an assembly listing and the object program.

Two versions of DAS are available: DAS 8A and DAS MR, described in the following
subsections.

1-2

INTRODUCTION

1.2.1 DAS 8A Assembler

DAS SA is a stand-alone program that can operate on a minimum system (SK of memory). It
produces absolute object code that can be loaded by the stand-alone binary load/dump
program (BLO II).

Because DAS 8A was designed to operate in a restricted environment, it does not provide
some of the features described in this book, principally the macro directives (section 4.11).
Appropriate error messages are generated if a source program contains statements not rec
ognized by the DAS 8A assembler.

1.2.2 DAS MR Assembler

DAS MR is a macro assembler which produces relocatable object code that can be loaded
into any area of memory. It is available either as a free-standing program or as an integral part
of the MOS or VORTEX I/VORTEX II operating system. DAS MR includes all of the features
described in this book.

1.3 BIBLIOGRAPHY

The following manuals contain information on Sperry Univac hardware and software that
would be helpful to the 70 series computer user (the x at the end of each document number is
the revision number and can be any digit 0 through 9):

Title

V70 Architecture Reference Manual
VORTEX I Reference Manual
VORTEX II Reference Manual
MOS Manual

Manual Number

98 A 9906 OOx
98 A 9952 10x
98 A 9952 24x
98 A 9952 09x

SECTION 2

STATEMENTS

Input to the assembler is supplied by the user in the form of source statements. A statement
constitutes one input record and may be in either a position-dependent fixed format or free
format.

Each statement can be classified, according to its operation field entry, into one of the
following three groups:

a. Computer instruction statement

b. Assembler directive statement

c. Macro call statemen t

Computer instructions are instructions whiCh are translated into machine-executable code on
a one·to-one basis.

Assembler directives are requests to the assembler to perform certain operations during the
assembly. These directives may define symbols, reserve and/or initialize data areas, control
the listing, and alter the normal processing of statements. The FORM directive allows the user
to symbolically define a bit:placement pattern whose name may subsequently appear in the
operation field.

A macro call statement represents a predefined block of statements (usually a block of
instructions). The macro allows the entire block to be included, with varying parameters, each·
time the macro name appears in the operation field of a source statement.

This section describes the syntax of composing source statements. A summary of instructions
is given in section 3. Assembler directives and macros are described in section 4.

2.1 CHARACTER SET

Source statements are written with the following DAS character set:

Alphabetical characters

Numerical Characters

Teletype characters

Special characters'

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

CR (carriage return)
LF (line feed)

+ (plus sign)
(minus sign)

* (asterisk)
/ (slash)

(period)

2·1

STATEMENTS

@
[
]
<
>

=

(
)
I

"

%
&

?
$

(blank)
(at sign)
(left bracket)
(right bracket)
(less than)
(greater than)
(up arrow)
(left arrow)
(equal sign)
(comma)
(prime)
(left pa renthesis)
(right parenthesis)
(backslash)
(exclamation point)
(quotation mark)
(pound sign)
(percent sign)
(ampersand)
(colon)
(semicolon)
(question mark)
(dollar sign)

In addition, any of the 128 ASCII characters (see appendix 8) may be used anywhere that
characters appear between paired apostrophes or brackets, in comments, literals, and in
instruction operands.

2.2 STATEMENT FORMAT

A DAS source program consists of a sequence of source statements. Each source statement is
input as one record. A punched card is one record, as is one line punched to paper tape and
terminated by a carriage return and line feed.

A source statement may contain a maximum of 80 characters. If a source record contains
more than 80 characters, then the record is truncated to 80 characters. If a record contains
less than 80 characters, the assembler supplies blank characters to fill out 80 character
positions. If an assembler source record is completely blank, the source record is ignored by
the assembler.

Each source statement comprises a combination of label, operation, variable, and comment
fields, depending on the requirements of the computer instruction or assembler directive. One
computer instruction is generated by each instruction source statement. None, one, or more
words of object code may be generated by each assembler directive, depending on the
operation and variable field entries. A standard format for DAS source statements, where
each field is separated by one or more blanks and begins in a standard line position, is shown
in figure 2-1. Alternative formats may be used, prime among them being the use of commas
as field separators. A detailed treatment of statement item placement for various input media
is given in section 5.

2-2

LABEL
1

ILOOP

OPERATION
678

I ISTAE

COMMENT
30

VARIABLE
15 16

ITEN,COUNT

STATEMENTS

29

IDENTIFICATION
\- 72 73 80

INITIALIZE WORD COUNT (\-----'! ______ ---,OO 11
\

Figure 2·1. Format for Source Statement Records

The fields are described further in the following subsections.

2.2.1 Label Field

The Label Field is the leftmost field on each source statement. It is either blank (no label), or
it is used to contain a symbol (section 2.4) created by the programmer. If a label is present, it
must begin in character position 1.

For DAS 8A, symbols in the label field comprise one to four alphanumeric characters; for
DAS MR there may be from one to six such characters. The first character of a symbol is an
alphabetic character, pound sign (#), or dollar sign (the dollar sign and pound sign are used
in the Sperry Univac software and should not be use.d in normal user programs).

Examples

..
:
: .•.. : .. :· ... :1.:::-.1: .. ;:: •. ::'.:; :.:.:1.:.·.::::.:.·.·: .. ·.II.:~ ~ {'::::::}::8
:;.,.

1 .. ::~:m~ .•. : . .Il:::.:.:.·::.:.'t!I.·~ ..•. ; .. :.D.Jt.'~.·; .•. :.ii
~< w.;~ ~ ;~iI!/

IiI

16 30

valid label (DAS MR)
valid label (DAS 8A)
valid label
valid label
valid label
valid label
invalid--must begin in position 1
invalid--cannot begin with a number
invalid characters

An entry in the label field is always optional for instruction statements. It is optional for most
assembler directives; however, certain assembler directives (EQU, SET, etc.) require a label
field entry.

The programmer generally labels a statement to identify the statement. Symbols in the label
field identify program points for reference by other parts of the program. They make a
program point or particular numeric value more easily identifiable. The first appearance of a
symbol in the label field establishes its identity (most commonly a relative or absolute

2-3

STATEMENTS

address) throughout the remainder of the program. A previously established symbol is
referenced by placing it in the variable field of the source statement. When the symbol is
used, the DAS assembler substitutes the previously assigned value from its symbol table.

Example

START JMPM FETC~
DAR
JANZ START

Call Fetch routine.
Decrement counter in A.
Loop back if A not zero.

I n this example, the label field is used in the first statement to establish a user symbol for the
location of the first statement in a loop. This label, START, is later referenced in the third
statement as the return point for another loop iteration.

Label field entries are also used to establish the name of a user-written macro definition
(section 4.11).

2.2.2 Operation Field

The Operation Field is to the immediate right of the label field. The entry in this field
describes to the assembler the specific type of statement that has been entered, thus
determining how it should be processed. Entries in this field are composed of from one to six
alphanumeric characters that may describe a machine instruction, assembler directive, or a
macro call. An asterisk may follow certain instruction mnemonics to specify indirect
addressing (see section 3). It is possible to redefine mnemonics with OPSY assembler
directives (section 4.2.1).

An entry in the operation field is always required, and if not supplied by the programmer, will
cause an "undefined operation" error code to be generated.

Examples

1

<>efJ~xl.Q.:l.1
FIELD

8. •·••·••··•····•· •••• ••· •• • •• · ••••• ·;·: ·1.6

2.2.3 Variable Field

30

The Variable Field is to the immediate right of the operation field. The purpose of this field
varies according to the requirements of the operation defined by the source statement. The
variable field can contain none, one or more symbols, constants or expressions combining
symbols and constants. Multiple entries are separated by commas.

The types of entries that may appear in the variable field are described in section 2.3
(constants), section 2.4 (symbols), and section 2.5 (expressions).

2-4

Examples

1 8

LDA
ADDI
JMP
STXE*
LSRA
IAR

2.2.4 Comment Field

STATEMENTS

30

Load A register with contents of TAB.
Add 16 to the A register.
Jump to program location PILL.
Store X register indirect, indexed by B.
Logical shift right A register 7 bits.
Increment A register (has no variable).

An optional comment field follows the variable field in all source statements. This field is used
for programming notes. An entire line of comment may be entered if an asterisk is coded in
the first position. The assembler ignores all comments in the object code production process,
but lists comments and comment lines with the program listing output.

On punched cards, the comment field generally extends from position 30 to position 72.
Positions 73 through 80 can be used to sequence cards, simplifying collation if a card deck is
accidentally dropped.

Examples

8 16

LOA*
AODE LINK
INR M1
JMP *SUBL

2.3 CONSTANTS

A constant is a number, or character string, whose value is specified directly by the
programmer in the variable field of a source statement. DAS recognizes decimal integers,
octal integers, floating point numbers, and character constants.

I n the following descriptions of DAS constants, unsigned numbers are considered positive.

2.3.1. Decimal Integers

A decimal integer is a signed (+, -) or unsigned string of from one to five decimal digits (0
.through 9). The first digit must not be a zero, since a leading zero signifies an octal number.

2-5

STATEMENTS

Decimal integers are converted to a right-justified 15-bit value, in the range -32,768 through
+ 32,767, with the high order bit representing the sign (0 = positive, 1 = negative). Negative
numbers are stored in twos complement representation.

Examples

1
20
-3
-9000
6,099
144000

Decimal integer + 1
Decimal integer + 20
Decimal integer - 3
Decimal integer - 9000
Invalid--no commas may appear
Invalid--out of range

2.3.2 Octal Integers

An octal integer is a string of from one to six octal digits (0 through 7), preceded by a leading
zero. The conversion from octal to binary is straightforward. The number is right-justified in
the 16-bit word and may have a range of 0 through 0177777. Octal numbers may optionally
be signed (although they normally are not) and will be represented in twos complement form.

Examples

07
023
0123
0677
0177777
5612
07581

Octal constant 7
Octal constant 23
Octal constant 123
Octal constant 677
Octal constant 177777
Invalid octal--no leading zero
Invalid digit

2.3.3 Floating Point Numbers

Floating point numbers may be specified in the following format:

)t integer.fractionE±exponent

where:

±

integer

2-6

the right parenthesis indicates a floating
point number.

is a minus sign (negative number) or an
optional plus sign (positive number).

is the integer portion of the number (if
any).

is the decimal point and must appear.

fraction

Et exponent

is the fractional portion of the number
(if any).

is the signed (optional if positive)
exponent (if any). The letter "E" may
be omitted in the exponent if desired.

At least one digit must appear in the number.

The number is stored in one of the following formats:

Single Precision
15 14 13 12 11 10 9 8 7 6 5 4 3

S Exponent I Fraction (high)

0 Fraction (low)

Double Precision
15 14 13 12 11 10 9 8 7 6 5 4 3
0 0 0 0 0 0 0 01 Exponent

S Fraction (high)

0 Fraction (mid)

0 Fraction (low)

STATEMENTS

2 1 o

2 1 o

The exponent is represented in an excess 128 format 'so that the smallest exponent
representable contains all zeros. An exponent field containing 128 (0200) corresponds to an
exponent value of O. The largest exponent representable contains all ones.

The fraction is expressed in a modified sign-magnitude format. Rather than inverting the sign
bit for negative numbers, the complete word in which the sign appears is inverted . .In single
precision, this inverts the exponent, the sign, and the high 7 bits of the fraction. In double
precision, the sign and the high 15 bits of the fraction are inverted.

The number IS zero represented by all zeros. All other numbers are normalized.

Examples

)5.5
)60.00079
)6. + 10
)09.E-2
).IE-12
)-4. +20
16.E2
)16E2
)E2

The real number 5.5 (five and a half)
The real number 60.00079
The real number 60000000000.
The real number .09
The real number .0000000000001
The real number -400000000000000000000.
Invalid--no right parenthesis.
Invalid--no decimal point.
Invalid--no digit.

2-7

STATEMENTS

2.3.4 Character Constants

A character constant consists of one, two, or more ASCII characters enclosed by primes (').
Any of the 128 ASCII characters may appear in a character term. To code a prime character
in DAS MR, use two primes in succession; this cannot be done in DAS 8A, however. Note that
blanks are also recognized as characters.

When a single alpha constant is defined by the DATA directive (section 4.4.1), DAS MR left
justifies it in the field and fills the remaining positions with blanks. In other DAS MR and all
DAS 8A statements, a single alpha constant is right justified with leading zeros.

Examples

'STRING'
'THIS'
'IS'
'A'

'I CAN' 'T'
KKK

2.3.5 Address Constants

Valid character constant.
Valid character constant.
Valid character constant.
I-character constant: = 'A ' in DAS MR,

= 'OA' in DAS 8A.
(DAS MR only)--coded as I CAN'T.
Invalid--surrounding primes missing.

An address constant is a symbol, numer, or expression which may be enclosed. in paren
theses. It generates a 15-bit direct address (bit 15 = 0).

Examples:

A Address constant
(31)

where A is an address symbol whose value is taken from the symbol table by DAS.

2.3.6 Indirect Address Constant

An indirect address constant is an address constant enclosed in parentheses followed by an
asterisk. It generates a 15-bit indirect address (bit 15 = 1).

Examples:

(A+2)* (3)* (A)*

2.3.7 Literals

A literal term or simply, literal, is a constant or expression preceded by an equal sign (=). A
literal represents data, rather than an address of data. The appearance of a literal directs the

2-8

STATEMENTS

assembler to assemble the data specified in the literal, store this data in an assembler
maintained literal pool, and assemble the address of the data into the current instruction.
The literal pool is assigned addresses starting with the value of the literal's location counter
when the END directive is processed. Duplicate values are discarded in the literal pool. In
general, literals can be used whenever an address is permitted in the variable field.

NOTE

The literal pool may not be assembled into COMMON areas. Any attempt to place
literals into COMMON areas is flagged as an error and the mode of the location
counter is changed to program relocatable.

Literals may contain undefined symbols, although use of undefined -symbols in literals may
cause extraneous words to be allocated within the literal pool.

The use of literal terms allows the programmer to both define and reference a constant word
in the same machine instruction statement.

Examples

LDA -5

ADD -255

ORA -07077

ERA -07077

2.4 EXPRESSIONS

Load A register with the constant
5. The value 5 is placed in
the literal pool, and its address
(in the pool) coded in the LOA
instruction.

Add the value 255 to the A register.
The value 255 is placed in the
literal pool, and its address
coded in the ADD instruction.

Inclusive OR with the A register.
The indicated value is placed
in the literal pool. For the
ERA (Exclusive OR instruction)
the same literal pool location
is addressed, thus minimizing
storage required for the mask
word.

An expression is a single constant, a single symbol, or any combination 01 constants and
symbols connected by operators. Operators are described in section 2.4.1.

A discussion 01 multi-term expression evaluation is given in section 2.4.2 (expression
evaluation), section 2.4.3 (address expressions), and section 2.4.4 (mode determination).
Section 2.4.5 describes literals.

2-9

STATEMENTS

2.4.1 Operators

The following operators are allowed in expressions:

Operator
+

*

/

Meaning
Addition

Subtraction

Multiplication

Division

Arithmetic operations always involve all 16 bits of the computer words, and are performed
from left to right, with multiplication and division occurring before addition and subtraction.
Thus, A + BIC * D in DAS is equivalent to A + (B/C) * D in conventional notation.

The rules for coding expressions are:

a. An expression cannot contain two terms or two operators in succession.

b. An expression with a leading minus sign (-) is evaluated as though a zero preceded the
minus sign.

c. An expression with a leading plus sign (+) is evaluated as though a zero preceded the plus
sign.

d. A multi-term expression cannot contain an external symbol. If it does, an "invalid
relocation" error message is printed.

e. Character constants used in mulit-term expressions may contain only one or two
characters.

Examples

A+1
'A'+1
'A'-'B'
6443/2
-1*2
10/5*2
6+6+6-0MS

'A'++'B'
'ASM'+2

2.4.2 Expression Evaluation

Valid expression
Valid expression
Valid expression
Valid expression (evaluates to 3221)
Valid expression (evaluates to - 2)
Valid express!on (evaluates to 4)
Valid expression (evaluates to 18 minus
the value of OMS)
Invalid--adjacent operators
Invalid--contains a long character string.

A single-term expression takes on the value of the term involved.

A multi-term expression is reduced to a single value, as follows:

2-10

STATEMENTS

a. Each term is evaluated.

b. Arithmetic operations are performed from left to right.

c. Division always yields an integer result; any fractional portion of the result is dropped.

d. Division by zero is permitted and yields a zero result.

Negative values are carried in twos complement form. The value of the expression must be in
the range - 32,768 to 32,767 or the results may be meaningless.

2.4.3 Address Expressions

In addition to its evaluated numerical value, the relocatability of an expression is determined.
The relocatability of an expression depends upon the term(s) in the expression. The
expression is absolute if it contains a single absolute value. The expression is relocatable if it
contains a single relocatable value. A multi·term expression may be absolute or reloca~ble.

Absolute and relocatable expressions are derived from the term or combination of terms
composing them, and the way in which these terms are combined. Table 2·2 shows, for each
arithmetic operation, whether the result is absolute (abso), relocatable (relo), or illegal.

Table 2·2. Arithmetic Operation Results (DAS MR only)

A abso A abso A = relo A relo
B = abso B relo B = abso B relo

A+B abso relo relo illegal

A-B abso illegal relo abso

A*B abso illegal illegal illegal

AlB abso illegal illegal illegal

2.4.3.1 Absolute Expressions

An absolute expression is a constant, an absolute symbol, or any arithmetic combination of
absolute terms. An expression may be absolute even though it contains relocatable terms,
alone or in combination with absolute terms, under the following conditions:

a. There must be an even number of relocatable terms in the expression and the terms must
be paired. Otherwise, an "invalid relocation" error message will result.

b. Each pair of terms must have opposite signs and the same relocatability. (Program, blank
COMMON or the same named COMMON). The paired terms do not have to be
contiguous.

2-11

STATEMENTS

c. Relocatable terms entering into multiply or divide operations are considered absolute
terms, with the same value.

The pairing of relocatable terms with the same relocatability and opposite signs cancels the
effect of the relocation, since both symbols would be relocated by the same amount. Thus, the
value represented by the paired terms remains constant, regardless of program relocation.

An absolute expression reduces to a single absolute value.

Example~

If A and Bare relocatable symbols and X and Yare absolute symbols or terms, the following
are absolute expressions:

x
A-B
A-B+X
X+Y
x*y
x/l
A*B

abs = abs
rei-rei = abs
rei-rei + abs = abs
abs + abs = abs
abs~~abs = abs
abs/abs = abs
rel*rel is interpreted as abs*abs = abs
(see discussion below under Relocatable
Expressions).

2.4.3.2 Relocatable Expressions (CAS MR Only)

A relocatable expression is a relocatable term or a combination of relocatable and absolute
terms under the following conditions:

a. There must be an odd number of relocatable terms with the same relocatability.

b. All the relocatable terms but one must be paired (see the description of pairing under
ABSOLUTE EXPRESSIONS).

c. The unpaired term must not be directly preceded by a minus sign (-).

If the above conditions are not met, an "invalid relocation" error message will result.

Relocatable terms entering multiply or divide operations are considered absolute terms with
the same value. A relocatable expression reduces to a single relocatable value. This value is
the value of the expression, with the relocatability attributes of the unpaired relocatable term.

Examples

If A and Bare relocatable symbols and X and Yare absolute symbols, the following are
relocatable expressions:

2·12

A
A+X
X+B
A-B+A
A+2
X+B+Y
A*B+A

rei = rei
rei + abs = rei
abs + rei = rei
rei-rei + rei = rei
rei + abs = rei
abs + rei + abs = rei
rel*rel + rei is interpreted as
abs*abs + rei = rei

STATEMENTS

2.4.4 Mode Determination

The mode of an expression is determined by the mode of the symbols in the expression. The
mode is determined by the following rules:

a. If the expression contains any mode E or C symbol, the expression is mode E.

b. If the expression contains only mode A symbols, the expression is mode A.

c. If the expression contains mode A and R symbols, the mode of the expression is R if there is
an odd number of mode R symbols. Otherwise, the mode of the expression is A.

The following restrictions apply only to DAS MR and to FORTRAN-compatible output assembly
with DAS SA.:

a. No expression can contain symbols of t;>oth modes E and C.

b. A mode E expression comprises a single mode E symbol.

c. No mode E, C, or R expression can multiply or divide a mode E or C symbol.

d. No expression can add or substract a mode C and a mode R symbol, or a mode E and a
mode R symbol.

e. No expression can add two or more mode E, C, or R symbols.

f. A mode A symbol can be added to or subtracted from a mode C or R symbol.

Examples

The following program code illustrates expression mode determination rules.

EEEE EXT Defines mode E.
CCCC COMN 6 Defines mode C
RTN ENTR Defines a symbol (RTN) as mode R.
TBL BSS 50 TBL is mode R.
ABL BSS 'A'+5 ABL is mode R.
LENG EQU *-TBL LENG is mode A (defines area length).

CALL EEEE,TBL,LENG
LDA *+6 Legal, one-word relative forward.
LDA CCCC+6 Illegal, one-word not R or A.
LDXI CCCC+6 Legal, two-word instruction.
LDA 0, 1 Legal, loads ecce + 6 in A register.

DATA EEEE+4 Illegal, value not zero.
DATA CCCC+4 Legal.
DATA CCCC+LENG Legal.
DATA TBL+LENG Legal, mode is R.

2-13

STATEMENTS

2.5 SYMBOLS

A symbol is a character or combination of characters used by the programmer to symbolically
define instruction addresses, data addresses, general purpose registers, and arbitrary values.
Through their use in label fields and in operand fields they provide the programmer with an
efficient method to name and reference program elements. The assembler creates a symbol
table and assigns to each of the symbols written in t~e source program a value and a
relocation bias (DAS MR only); it also provides indicator flags when required by the program.
This relieves the programmer of having to know the absolute address locations of code and
data areas.

Symbols are formed from the following three classes of characters:

a. Alphabetic characters: A through Z

b. Numeric characters: o through 9

c. Special character: pound sign (#)

A symbol is formed from one to six characters (DAS MR) or one to four characters (DAS SA)
in length, chosen from the preceding classes. The first character must not be numeric.
Symbols cannot contain imbedded blanks.

Symbols may be classified as user symbols (section 2.5.1) and assembler-defined symbols
(section 2.5.2).

2.5.1 User Symbols

User symbols are defined and used by the programmer to symbolically reference instruction
and data area addresses, the general purpose registers, and arbitrary values.

Although it is possible for the user to define user symbols that begin with the pound sign, he
should not do so to avoid conflict with V70 series system software, which uses the pound sign.

Examples

2-14

A
MAIN
BETA 11
BUFFER
READ1
CON90
128B
CODE1
RECORD1
RCD+A
IN AREA

User symbol.
User symbol.
User symbol (DAS MR).
User symbol (DAS MR).
User symbol (DAS MR).
User symbol (DAS MR).
Invalid--first character is numeric;
Invalid--more than 4 characters (DAS SA).
Invalid--more than 6 characters (DAS MR).
Invalid character in symbol.
Invalid--contains an imbedded blank character.

STATEMENTS

2.5.2 Assembler-Defined Symbols

Assembler-defined symbols are of a specialized nature and are used primarily to control the
assembly process. They are unique in that they are not defined by the programmer, but by
the assembler itself. All symbols that are not assembler-defined symbols must be properly
defined by the user in his source program.

2.5.2.1 Operation Field Symbols

All instruction mnemonics and assembler directives appearing in the operation field are
predefined by the assembler and control the processing of the source statement.

CAUTION

DAS assemblers recognize the complete instruction sets of all SPERRY UNIVAC 70
series computers, even when the system on which they operate lacks the hardware for
executing a particular instruction. The programmer, therefore, must have a thorough
knowledge of the instructions applicable to his system before attempting to assemble a
program.

Any other operation symbols are user symbols; these are comprised of OPSY-defined
instruction mnemonics (section 4.2.1), FORM-defined symbols (section 4.4.4), and macro call
names (section 4.13).

2.5.2.2 Location Counter Symbols

Current Location Counter (*). The assembler maintains a location counter to assign storage
addresses to program statements. It is the assembler's equivalent of the computer's program
counter. As machine instructions and data areas are assembled, the location counter is
incremented to reflect the length of the assembled code or data. Thus, it always contains the
address of the next available word.

The location counter also has an associated relocatability mode, either absolute, program
relocatable, or named FORTRAN COMMON relocatable. Modification of the current value and
mode of the location counter is accomplished with the ORG directive. The location counter is
never negative and is always less than 216.

The programmer can reference the current value of the location counter by using the asterisk
C') character as a term in an operand. The asterisk term represents the word address of the
beginning of the current instruction or data area. Use of the asterisk term in a literal
address constant results in the assembler using the word address of the instruction
containing the literal.

The relocatability mode of the asterisk term--absolute, program relocatable, or named
FORTRAN COMMON relocatable--is dependent on the current mode of the location counter.

2·15

STATEMENTS

Examples

JMP

LDA

*+4

*

Jump to the location 4 words down.

Load A with the word at the
current location counter (Le.,
the "LDA" instruction itself).

DAS 8A Location Counters. DAS 8A has five standard location counters that have predefined
names, as described in table 2-1. These location counter names may be used in location
counter control directives (section 4.3) for controlling the location counter values used during
the DAS 8A assembly process. These names have special significance only in the location
counter control directives; if used in instruction statements or other directives, they are
considered user symbols.

These five location counters are not applicable in DAS MR programs.

2.5.3 Symbol Values

Associated with every symbol is a value. The value is in the range - 32,768 through + 32,767.
This value is substituted in place of the symbol whenever the symbol appears in the variable
field of other source statements.

A symbol's value is defined when it appears in the label field of a statement. The value
assigned is one of two types:

For all instruction mnemonics and most assembler directives, the symbol is assigned the
value of the current location counter.

In certain assembler directives, the symbol is assigned the value of the variable field entry;
these directives are: EQU, SET, MAX, MIN, OPSY, ORG, LOC, and BEGI. In addition,
special purpose symbols are used in the label field for FORM and MAC directives. (All of
these directives are described in detail in section 4.)

2.5.4 Address Symbols and Relocatability

2.5.4.1 Relocatability (CAS MR Only)

In addition to having names and values, all symbols are associated with a set of attributes.
These attributes describe how the symbol is handled by the assembler.

The most important attribute is that of relocatability. A relocatable program (DAS MR only) is
one that has been assembled with its instruction and directive locations assigned in such a
manner that it can be loaded and executed anywhere in memory. When such a program is
loaded, the beginning memory address is specified, and a value (known as the relocation
bias) is added to the addresses of subsequent relocatable instructions. The relocatable
loader is used to load a program in any area of memory and modify the addresses as it loads
so that the resulting program executes correctly.

2·16

STATEMENTS

Programs can contain absolute addresses, relocatable addresses, or both. Symbols which
refer to addresses that will change during program loading are relocatable. Other symbols,
such as register numbers or buffer lengths, do not change with program loading and are
called absolute symbols. Programs are usually assembled with a zero relocation bias on the
first instruction.

The assembler's location counter contains the (relative) address of the instruction or,directive
currently being executed. The location counter is absolute when it contains the actual address
of the instructions, and relocatable when it contains an address relative to the start of the
program.

Symbols can be absolute or relocatable. If a symbol is equated to the location counter, it is .
relocatable if the location cou nter is relocatable. Otherwise, the symbol is absolute.
Expressions (section 2.5), since they contain symbols, can be absolute or relocatable.
Constants are always absolute.

At the beginning of each instruction or data word generated by the assembler, the
relocatability can be set by the ORG directive. On encountering an ORG directive, the
assembler makes the location counter absolute if the corresponding expression is absolute, or
relocatable if the corresponding expression is relocatable.

Table 2-1. Standard DAS SA Location Counters

Counter Initial Value Description

COMN 002000 Controls assignment of memory
within an interface area common
to two or more programs.

IAOR 000200 Control assignment of memory
to indirect pointers.

LTOR 001000 Controls assignment of memory
to literals.

SYOR 000000 Controls assignment of memory
to all system parameters.

(blank) 004000 Used initially and normally
by the assembler for memory
assignments until/unless over-
ridden by the use of . the ORG
directive

2.5.4.2 Absolute Symbols

Absolute symbols are those whose values are independent of the execution address. These
symbols are used to represent such things as register numbers, fixed memory locations,
buffer lengths, or bit masks.

STATEMENTS

These symbols can be defined in the following two ways:

a. By appearing in a label field when the location counter is in the absolute mode.

b. By being defined as equivalent to some absolute value in directives (EQU, ORG, etc.).

Examples

START

TEN

ORG
LDA

EQU

0500
VSYS

10

(Specifies absolute address origin.)
The label START is assigned an
absolute value of 0500.

The label TEN is assigned an
absolute value of 10.

2.5.4.3 Relocatable Symbols (DAS MR Only)

Values of relocatable symbols are dependent upon the execution address of the program.
They can represent such things as instruction addresses, data addresses, and addresses of
other programs.

Relocatable symbols may be defined in the following ways:

a. By appearing in a label field while the location counter is in the relocatable mode.

b. By being defined as equivalent to some relocatablevalue in direc.tives (EQU, ORG, etc.)

There are four major types of relocatable symbols:

a. Program relocatable symbols, whose values depend on the program location.

b. Blank COMMON relocatable symbols, whose values depend on the locatron of FORTRAN
blank COMMON.

c. Named COMMON relocatable symbols, whose values depend on FORTRAN named
COMMON.

d. External symbols, whose values depend on the location of separately assembled programs.

Examples

2-18

*NO ORG DIRECTIVE IN DAS MR ASSEMBLES AS RELOCATABLE.
START LDA MERF The label START is assigned

a value of relocatable zero.

HERE EQU * Where the program counter is
relocatable, assigns the
relocatable value to the label
HERE.

STATEMENTS

2.5.5 Symbol Modes

Each symbol has one of the following modes assigned by the assembler:

a. External (E)

b. Common (C)

c. Relative (R)

d. Absolute (A)

The mode of a symbol is determined by the following rules:

a. If the symbol is in an EXT directive, the mode is E.

b. If the symbol is defined by a COMN directive, the mode is C.

c. If the symbol is a symbol in a program, or if * is the current loc~tion counter value, the
mode is R.

d. If the symbol is a number (numerical constant), the mode is A.

e. If the symbol is defined by an EQU, SET, or similar directive, the mode of the symbol is that
of the variable field expression in the directive.

Examples

EXT

UNIV COHN

START ENTR

CONS DATA

TIME EQU

EDAT

41

1,2,3

24

Symbol EDA T has mode E.

Symbol UNIV has mode C.

Symbol START has mode R (location
counter relocatable) or mode
A (location counter absolute).

Symbol CONS has mode R (location
counter relocatable) or mode
A (location counter absolute).

Symbol TIME has mode A.

2-19

SECTION 3

INSTRUCTION SUMMARY

For use with DAS, SPERRY UNIVAC 70 series instructions are divided into six categories:
types 1 through 5 and multiple register. Tables 3-1 and 3-2 list the characteristics and
mr)emonics of the instruction types.

A complete list of V70 series instructions, arranged alphabetically by mnemonic, is given in
appendix A. The details of the 16-bit configuration of each individual instruction word are
given in 'the applicable system handbook. Also refer to the handbook for a complete
description of addressing modes.

Computer instructions have the general format for source statements described in section 2.
A label is always optional in instruction statements. In the following descriptions of the
individual instruction groups, the field format:

Operation Variable

is used, with the optional label being understood to precede the operation field when used,
and the optional comment field to follow the variable field when used. In cases where the
variable field contains more than one item or expression, these are always separated by
commas. Mandatory elements of the field are in bold type, and optional items, in italic type.

Table 3-1. Assembler Instruction Type Characteristics

Parameter Type 1 Type 2 Type 3 Type 4 Type 5 Multiple
Register

Words generated 1 2 2 1 2 (Varies
with

Memory addressed Yes Yes* Yes No Yes instruc-
tion

Indirect addressing Yes Yes* Yes No Yes group)

Indexing Yes No No No Yes

Variable field 1 or 2 1 2 o or 1 1 to 3
expressions

Microcoding No No Yes Yes No

I) Except for immediate instructions.

3-1

INSTRUCTION SUMMARY

Table 3·2. Summary of Assembler Instruction Types

Type 1 Type 2 Type 3 Type 4 Type 5 Multiple
Register

ADD ADD I JS3N BT AOFA LLRL AD DE AD
ANA ANAl JS3NM IME AOFB LLSR ANAE ADI
DIV DIVI JXNZ JOF AOFX LRLA DIVE ADR
ERA ERAI JXNZM JIFM ASLA LRLB ERAE COM
INR INRI JXZ OME ASLB LSRA IJMP DADD
LDA JAN JXZM SEN ASRA LSRB INRE DAN
LOB JANM LOAI XIF ASRB MERG JSR DEC
LOX JANZ LDBI CIA NOP LDAE DER
MUL JANZM LDXI CIAB OAB LDBE DLD
ORA JAP MUll CIB OAR LDXE INC
STA JAPM ORAl COMP OBR MULE JDNZ
STB JAZ STAI CPA ROF ORAE JDZ
STX JAZM STBI CPB SEL SRE IN
SUB JBNZ STXI CPX SEL2 STAE LBT

JBNZM SUBI DAR SOF STBE LD
JBZ XAN DBR SOFA STXE LDI
JBZM XANZ DECR SOFB SUaE SB
JMP XAP DXR SOFX SBR
JMPM XAZ EXC TAB SBT
JOF XBNZ EXC2 TAX ST
JOFM XBZ HLT TBA T
JOFN XEC IAR TBX
JOFNM XOF IBR TSA
JSSI XOFN INA TXA
JSS2 XSI INAB TXB
JSS3 XSIN INB TZA
JSIM XS2 INCR TZB
JSIN XS2N IXR TZX
JSINM XS3 LASL ZERO
JS2M XS3N LASR
JS2N XXNZ
JS2NM XXZ
JS3M

3.1 TYPE 1 INSTRUCTIONS

An assembler type 1 instruction occupies one computer word and is memory-addressing. It
may optionally specify indirect or preindexed addressing.

3-2

INSTRUCTION SUMMARY

Assembler type 1 instructions are:

Normal Load/Store

Arithmetic

Logic

LDA
LDB
LDX
STA
STB
STX
ADD
SUB
MUL
DIV
INR
ANA
ORA
ERA

Load A register
Load B register
Load X register
Store A register
Store B register
Store X register
Add memory to A register
Subtract memory from A register
Multiply
Divide
Increment memory
AND memory and A register
Inclusive OR memory and A register
Exclusive OR memory and A register

The format of type 1 instructions varies according to the type of addressing, as follows:

Operation Variable

xxx address Direct addressing

xxx* address Indirect addressing
or

xxx (address)*

xxx incr,i Indexed addressing

where:

xxx is a type 1 instruction mnemonic

address is an address expression

incr is an indexing increment, < 0512

specifies an index register: 1 = X, 2 = B

If the direct form of instruction is used, DAS selects the addressing mode of the generated
computer instruction according to the following rules:

a. Direct Addressing: If the specified address is 2047 or below, direct addressing is used.

b. Relative Addressing: If the specified address is above 2047 but not more than 512 and not
less than one word beyond the current instruction, the mode of addressing is relative to
the program counter.

c. Indirect Addressing: If neither of the preceding conditions for direct or relative addressing
is true, an address within the range 0 through 511 (called indirect pointer) is generated
and the indirect pointer address will be used in the instruction in the indirect mode.

3-3

INSTRUCTION SUMMARY

. Indirect addressing is specified by an asterisk after the mnemonic or after -a variable field
expressed in parentheses, e.g.:

LOA* address

LOA (address)* NOTE CAUTION BELOW.

The instruction will be coded to addr~ss a location in lower core containing the address of the
word to be accessed. Indirect addressing to five levels is permitted and is accomplished by
setting the high-order bit at the indirect address localion(s).

CAUTION

Only the first form should be used in DAS SA (i.e., LDA*). In the second form (i.e.,
address)~' DAS SA will force bit 15 to a 1, changing the instruction.

Indexing is specified by two expressions in the variable field. The first is the indexing
increment and is less than 512. The second specifies the indexing register: X register = 1,
and B register = 2. Preindexing is used. (Type 1 instructions cannot be postindexed.)

Examples

TIN

INDl
IND2
IND3

3-4

LOA

LDA

LDA

LDA*

DATA

LDA*

DATA
DATA
DATA

0500

*+12

070000

TIN

05100

IND1

(IND2)*
(IND3)*
050

Load A register with the contents
of memory location 0500. Addressing
is direct.

Load A register with the contents
of the word 12 locations down
from the LDA instruction.
Addressing is program counter
relative.

Load A register with the contents
of memory location 070000. An
indirect address is generated
pointing to, a location in lower
core containing the address
(070000).

Load A register with the contents
of the location whose address
is contained at TIN, i.e., load
A register with the contents of
location 05100. Addressing is
indirect.

This shows an example of multiple
indirect addressing to 3 levels.
The A register is loaded with
the contents of memory location
050.

INSTRUCTION SUMMARY

LDA 0300,1

3.2 TYPE 2 INSTRUCTIONS

Load A register with the contents
of the memory address specified
by the sum of the X register
contents and 0300. Thus, if
the X register contains 0200,
the operand for this instruction
is in memory address 0500.

An assembler type 2 instruction occupies two consecutive computer words and is memory
addressing. The second word is the address of a jump, jump-and-mark, or execution
instruction; or the operand specified by an immediate instruction. .

Assembler type 2 instructions are:

Immediate
Load/Store LDAI Load A register immediate

LOBI Load B register immediate
LDXI Load X register immediate
STAI Store A register immediate
STBI Store B register immediate
STXI Store X register immediate

Arithmetic ADDI Add to A register immediate
SUBI Subtract from A register immediate
MUll Multiply immediate
DIVI Divide immediate
INRI Increment immediate

Logic ANAl AND immediate
ORAl Inclusive OR immediate
ERAI Exclusive OR immediate

Jump-
Jump and-Mark Execute
JMP JMPM XEC Unconditionally
JOF JOFM XOF If overflow set
JOFN JOFNM XOFN If overflow not set
JAP JAPM XAP If A register positive
JAN JANM XAN If A register negative
JAZ JAZM XAZ If A register zero
JBZ JBZM XBZ If B register zero
JXZ JXZM XXZ If X register zero
JANZ JANZM XANZ . If A register not zero
JBNZ JBNZM XBNZ If B register not zero
JXNZ JXNZM XXNZ If X register not zero
JSSI JSIM XSI If SENSE switch 1 set
JSS2 JS2M XS2 If SENSE switch 2 set
JSS3 JS3M XS3 If SENSE switch 3 set
JSIN JSINM XSIN If SENSE switch 1 not set
JS2N JS2NM XS2N If SENSE switch 2 not set
JS3N JS3NM XS3N If SENSE switch 3 not set

3-5

INSTRUCTION SUMMARY

The immediate instructions have the following format:

Operation Variable

xxxi value

where:

xxxi is an immediate instruction mnemonic

value is any expression value

The format of type 2 program control transfer instructions is the same as for type 1 direct or
indirect addressing. Since a full word is allocated to the address, the assembler will never
need to code an indirect address pointer for the purpose of reaching a specified location

. otherwise out-of-range. The programmer may code an indirect address. With two-word
instructions, indirect addressing is limited to four levels. Type 2 instructions cannot be
indexed.

Examples

LOAI 19

JMP THERE

JXNZ* SM

XAZ IMP

Load A register with the value
19. The value is coded in
the second word of the instruction.

Unconditionally jump to the
instruction with the label
THERE.

If the X register is not zero,
jump to the instruction whose
address is contained in location
SM (may be multi-leveled).

If the A register is zero,
execute the instruction at
location IMP. In either case,
control passes to the instruction
following XAZ.

3.3 TYPE 3 INSTRUCTIONS

An assembler type 3 instruction occupies two consecutive computer words and is memory
addressing. It differs from an assembler type 2 instruction in that the variable field contains
two expressions instead of one.

Assembler type 3 instructions are:

Jump

J ump-and-Mark
Execution
I/O

3·6

JIF
BT
JIFM
XIF
SEN
IME
OME

Jump if condition(s) met
Jump if bit condition met
Jump and mark if condition(s) met
Execute if condition(s) met
Program sense and jump if true
Input to memory
Output from memory

,INSTRUCTION SUMMARY

The format of type 3 instructions is as follows:

where:

xxxx

yyyy

code

address

Operation Variable

xxxx code, address Direct addressing

yyyy* code,address Indirect addressing
or

yyyy . code,(address)*

is any type 3 instruction mnemonic

is any type 3 instruction mnemonic except
IME or OME

is a condition code (see below)

is an address expression

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions. Note that IME and OME
cannot specify indirect addressing.

The code parameter entries are described in detail below.

JIF, JIFM, and XIF Instructions

For the JIF, JIFM, and XIF instructions, the expression code specifies the conditions required
for the jump, jump·and·mark, or execution. The conditions are summarized in table 3·3; they
are described in detail in the system handbook. Multiple conditions can be specified by
setting additional bits.

Table 3·3. J I F / J I FM / XI F Code Conditions

Variable Field Jump/Execute if:

0001 Overflow indicator is set.

0002 A register contents are positive.

0004 A register contents are negative.

0006 NOT test of specified conditions.

0010 A register contents are zero.

0020 B register contents are zero.

0040 X register contents are zero.

0100 SENSE switch 1 is set.

0200 SENSE switch 2 is set.

0400 SENSE switch 3 is set.

3·7

INSTRUCTION SUMMARY

8T Instruction

For the BT instruction, the expression code is a 6-bit value that specifies the register and bit
to be tested, in the form:

5 4 3 2 1 0
IZ'Zlb'b'b'bl

where:

zz 00 Specified bit in A register is 1
= 01 Specified bit in 8 register is 1

10 Specified bit in A register is 0
11 Specified bit in 8 register is 0

bbbb specifies the bit to be tested, from bit
o (low-order bit) to bit 15 (high-order
bit)

SEN Instruction

For the SEN instruction, the expression code is a 9-bit value that specifies the device address
and liD function, in the form:

876543210 I q iii eta · i I
where:

q is a line number (0 to 7)

da is the device address

Standard device addresses are listed in section 3.4.

IME and OME Instructions

For IME and OME instructions, the expression code is the device address.

Examples

JIF

3-8

0222,ALFA In this example, the next
instruction is taken from
symbolic address ALFA if the
A register contains a positive
number (0002), the B register
contains zero (0020), and
SENSE switch 2 is set (0200);
i.e., 0002 + 0020 + 0200 =
0222.

INSTRUCTION SUMMARY

BT 056,ADDR In this example the next instruction
from symbolic address ADDR is fetched
if bit 14 of the A register contents
is zero.

SEN
JMP

0101,ADDR
*-2

In this example, the next instruction
is fetched from symbolic address AD DR
if the write register of the Teletype

AD DR OME 01, Loe

3.4 TYPE 4 INSTRUCTIONS

is ready; OME is executed, which outputs
the data in symbolic address LOC to
the Teletype. Otherwise, the next
instruction in sequence (JMP) is executed,
which returns the program to the SEN
command.

An assembler type 4 instruction occupies one computer word and does not address memory.
These instructions take none or a single variable operand.

Assembler type 4 instructions are:

Register Transfer

Register Modification

TAB
TAX
TBA
TBX
TXA
TXB
TZA
TZB
TZX
TSA
IAR
IBR
IXR
DAR
DBR
DXR
CPA
CPB
CPX
AOFA
AOFB
AOFX
SOFA
SOFB

no SOFX
Control opera~nd ~g:

SOF
HLT

Transfer A register to B register
Transfer A register to X register
Transfer B register to A register
Transfer B register to X register
Transfer X register to A register
Transfer X register to. B register
Transfer zeros to A register (clear A)
Transfer zeros to B register (clear B)
Transfer zeros to X register (clear X)
Transfer switches to A register
Increment A register
Increment B register
I ncrement X register
Decrement A register
Decrement B register
Decrement X register
Complement A register
Complement B register
Complement X register
Increment A register if overflow set
Increment B register if overflow set
I ncrement X register if overflow set
Decrement A register if overflow set
Decrement B register if overflow set
Decrement X register if overflow set
No operation
Reset overflow indicator
Set overflow indicator
Halt

3-9

INSTRUCTION SUMMARY

Shift/Rotation

1
ASRA

operand

. ASRB
ASLA
ASLB
LASR
LASL
LSRA
LSRB
LRLA
LRLB
LLSR
LLRL

Arithmetic shift right A register
Arithmetic shift right B register
Arithmetic shift left A register
Arithmetic sh ift left B register
Long arithmetic shift right

Combined Register
Transfer IModification

lID

MERG
INCR
DECR
COMP
ZERO
EXC
SEL
EXC2
SEL2
CIA
CIB
CIAB
INA
INS
INAB
OAR
OBR
DAB

Long arithmetic shift left
Logical shift right A register

. Logical shift right B register
Logical rotation left A register
Logical rotation left B register
Long logical shift right
Long logical rotation left

Merge source to destination registers
Increment source to destination registers
Decrement source to destination registers
Complement source to destination registers
Zero (dear) registers.
External control
External control
Auxiliary external control
Auxiliary externa.1 control
Clear and input to A register
Clear and input to B register
Clear and input to A and B registers
Input to A register
Input to B register
Input to A and B registers
Output from A register
Output from B register
Output from A and B registers

The format of type 4 instructions appears as follows:

where:

xxxx

yyyy

expression

Operation Variable

xxxx No variable field

yyyy expression

is any of the register transfer, register
modification, or control instructions
(except HL T) listed above. These instruc
tions take no operand.

is any of the remaining instructions
listed above. Theses instructions take
one operand.

is an expression value

The expression value is described below for each group that uses it.

3-10

INSTRUCTION SUMMARY

HL T Instruction

The HLT variable field expression is optional; if present, it becomes the coded value' of the
instruction (otherwise zero). The HLT number can be displayed from the I register whenever a
halt occurs to determine which halt was reached.

Shift Instructions

For the shift instructions, the variable field expression is the shift count (31 maximum).

Combined Register Transfer I Modification Instructions

For the combined register transfer Imodification instructions, the variable field expression is a
number of the form:

Oxsd

composed as shown below:

x
8 7 6 5 43210

j

o

1

I '0 i 0 I
execute
unconditionally
execute if OF is set Ukt L Ll A reg

~l = Breg
1 = X reg

1 = A reg
1--____ 1 B reg

1-------- 1 X reg

For the ZERO instruction, the code must be of the form "OxOd".

1/0 Instructions

For EXC, SEL, EXC2, and SEL2, the expression specifies the 1/0 function and the device
address in the form:

8 7 6 543 2 1 0 I 'f Ii, d'a I
where:

f is the control function

da is the device address

3-11

INSTRUCTION SUMMARY

.For the remainder of the I/O instructions in this group, the expression is the device address
only (the I/O function being specified by the mnemonic).

Examples

HLT 066

ASLA

COMP 035

CIB 030

Codes an instruction of the
operand value that may be displayed
when a halt at this location
occurs.

Arithmetic left shift A register
1 bit (equivalent to multiplying
by 2).

Unconditionally takes the
inclusive OR and complements
the contents of the A (0010)
and B (0020) registers, and
places the result in the A
(0001) and X (0004) registers.
Note that if bit 8 were one
in the operand, the instruction
would execute only if the
overflow indicator is set.

Clears the B register and loads
it from the peripheral specified
by device address 030.

Standard device addresses are given in table 3-4.

NOTE

SEL/SEL2 are identical to EXC/EXC2 instructions.

3-12

INSTRUCTION SUMMARY

Table 3·4. Standard Device Addresses

Class Code Addresses Option or Peripheral

00-07 01-07 Teletype or CRT device

010-017 010-013 Magnetic tape unit
014 Fixed-head rotating memory

·015 Movable-head rotating memory
016-017 Movable-head rotating memory

020-027 020,021 First BIC
022,023 Second BIC
024,025 Third BIC
026,027 Fourth BIC

030-037 030 Card reader
031 Card punch
032 Digital plotter
033 Electrostatic plotter
034 Second paper tape system
035,036 Line printer
037 First paper tape system

040-047 040-043 PIM
044 All PIM enable/disable
045 MP/PARITY
047 RTC

050-057 050-053 Special applications, and
Digital-to-analog converter

through
054-057 Analog system

060-067 060-067 Digital I/O controller, or
Buffered I/O controller

070-077 070-073 Data communications system
074-076 Relay I/O controller, or

Special applications
077 Computer control panel

3.5 TYPE 5 INSTRUCTIONS

An assembler type 5 instruction occupies two consecutive computer words and is memory
addressing. All of these instructions have indirect addressing as an option. Most can be
preindexed or postindexed.

3-13

INSTRUCTION SUMMARY

Assembler type 5 instructions are:

Extended Load/Store

Arithmetic

Logical

Jump

LDAE
LOBE
LDXE
STAE
STBE
STXE
ADDE
SUBE
MULE
DIVE
INRE
ANAE
ORAE
ERAE
IJMP
JSR
SRE

Load A register extended
Load B register extended
Load X register extended
Store A register extended
Store B register extended
.Store X register extended
Add memory to A register extended
Subtract memory from A register extended
Multiply extended
Divide extended
Increment memory extended
AN 0 memory and A register extended
Inclusive OR memory and A register extended
Exclusive OR memory and A register extended
I ndexed jump
Jump and set return in index register
Skip if register equals memory

These instructions have the following formats:

where:

address

post

Operation

xxxx

xxxx*
or

Variable

address, i, post

address,i,post

xxxx (address)* ,i,post

is an address expression

if present, is an index specification,
described further below

Optional indexed
addressing

Indirect addressing

if present, is a postindex specification
for all extended addressing instructions.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions.

Preindexing is specified as described for the type 1 instructions. Note that IJMP and SRE
cannot be preindexed.

Postindexing is specified by three expressions in the variable field. The first expression is the
data address, the second specifies the indexing register (X register = 1, and B register = 2),
and the third is logically ORed with the instruction word to set bit 7 (which specifies
postindexing). The assembler does not check the validity of the third expression; thus, the
value 0200 should always be used. There is no purpose to postindexing unless indirect
addressing is involved.

3-14

INSTRUCTION SUMMARY

Variations in the interpretation of the variable field entries are discussed below.

Extended Instructions

For extended instructions, the variable field may contain one operand (direct addressing), two
operands (preindexing), or three operands (postindexing). The instructions may also include
indirect addressing. .

address
or

address,i
or

address,i ,0200

IJMP Instruction

Direct addressing

Preindexed addressing

Postindexed addressing

The IJMP instruction may have direct, indirect, and postindexed addressing, i.e., variables of:

address
or

address,i

IJMP cannot be preindexed.

JSR Instruction

Direct addressing

Postindexed addressing

The JSR instruction, like IJMP, is not preindexed, nor is it postindexed. A variable field of the
form:

address,i

is used to specify the jump address and the index register into which the return address is to
be placed.

SRE Instruction

For the SRE instruction, the first expression in the variable field is the data address, the
second specifies the type of addressing, and the third is logically ORed with the instruction
word to control bits 3-5 to specify the register to be compared. The format may be illustrated
as:

where:

address

address, t,reg

is the memory location to be compared
to the specified register

3·15

INSTRUCTION SUMMARY

t

reg

Examples:

LDAE*

IJMP

JSR

SRE

specifies the type of addressing and may
be any of the following:

1 index with X register
2 index with B register
7 not indexed

is a register code of the register to be
compared, as follows:

010
= 020

040

A register
B register
X register

ADDR,2,0200

GO,1

MOM,2

ADDR,7,020

Loads the A register extended,
indirect and postindexed with
the B register.

Indirect jump through location
GO, postindexed by the X
register.

Jump to location MOM and set
return in B register.

Compares the contents of the
B register with the directly
addressed word at ADDR, and,
if equal, skips the next two
locations

3.6 MULTIPLE REGISTER INSTRUCTIONS

It should be noted that from the earliest Sperry Univac 620 software, the assembler syntax
uses the convention that the X register is index register 1 and the B register is index register 2.
However, the V70 emulation microprograms use hardware register R1 for the B register and
hardware register R2 for the X register. The VORTEX DAS Assemblers resolve this by
mapping references to register R1 into references to hardware register R2 and vice versa.
Thus, for V70 series instructions, references to the X register generate instructions
referencing hardware register R2 (X register). Since the programmer is usually indifferentto
the hardware register number assigned the X and B registers (except possibly a diagnostic
programmer), this should cause no programming problems. If a diagnostic programmer
does want to reference a particular hardware register, the register designation in his
assembly statements should be written as follows:

a. To reference register RO (A), write O.

3-16

INSTRUCTION SUMMARY

b. To reference register Rl (B), write 2.

c. To reference register R2 (X), write 1.

d. To reference registers R3 through R7, write 3 through 7, respectively.

NOTE

The multiple register instructions generally require more time for execution;
therefore, the standard instruction should be used whenever possible.

3.6.1 Register-lo-Memory Instructions

Assembler mnemonics for the register-to· memory instructions are:

Example

AD Add
LD Load
SB Subtract
ST Store

LD,O 0300,3

3.6.2 Byte Instructions

Register RO is loaded with
the contents of the memory
address specified by the sum
of 0300 and the contents of
register R3. Thus, if R3
contains 0200, the operand
for this instruction is in
memory address 0500.

Assembler mnemonics for the byte instructions are:

Example

LBT Load Byte
SBT Store Byte

SBT 0200,3 The contents of the right byte
of register RO are stored at
the I address specified by the
sum of 0200 and the contents
of register R3 (shifted right
one bit). Thus, if R3 contains
041, the operand is stored in
the right byte at address 0220.

3·17

INSTRUCTION SUMMARY

3.6.3 Jump-If Instructions

Assembler mnemonics for the jump-if instructions are:

JDNZ
JDZ
IN
JNZ
JP
JZ

Jump If Double-Precision Register Not Zero
Jump If Double-Precision Register Zero
Jump If Register Negative
Jump If Register Not Zero
Jump If Register Positive
Jump If Register Zero

Example

,JZ ,3 ADDR The program jumps to the symbolic
address ADDR if register R3
contains zero. If register R3
does not contain zero, the next
instruction in sequence is
executed.

3.6.4 Double-Precision Instructions

Assembler mnemonics for the double-precision instructions are:

Double Add
Double AND

DADD
DAN
DER
DLD
DOR
DST
DSUB

Double Exclusive OR
Double Load
Double OR
Double Store
Double Subtract

Examples

OST , 4 0200

OST,O 0200

3.6.5 Immediate Instructions

The contents of double-precision
register R4-R5 a re stored at
the two consecutive memory
locations starting at address
0200.

Same as above except register
RO-RI contents are stored.

Assembler mnemonics for the immediate instructions are:

3-18

ADI Add Immediate
LDI Load Immediate

INSTRUCTION SUMMARY

Example

ADI,S 0642 The immediate operand value
of 0642 is added to the contents
of register R5.

3.6.6 Register-lo-Register Instructions

Assembler mnemonics for the register-to-register instructions are:

ADR Add Registers
SBR Subtract Registers
T Transfer Registers

Example

T,3,4 The contents of register R3
are transferred to register
R4.

3.6.7 Single Regist(!r Instructions

Assembler mnemonics for the single register instructions are:

COM Complement
DEC Decrement
INC Increment

Example

INC,3 The contents of register R3
are incremented by 1.

3·19

INSTRUCTION SUMMARY

Example

ADI,S 0642 The immediate operand value
of 0642 is added to the contents
of register R5.

3.6.6 Register-To-Register Instructions

Assembler mnemonics for the register-to-register instructions are:

ADR Add Registers
SBR Subtract Registers
T Transfer Registers

Example

T,3,4 The contents of register R3
are transferred to register
R4.

3.6.7 Single Register Instructions

Assembler mnemonics for the single register instructions are:

COM Complement
DEC Decrement
INC Increment

Example

INC,3 The contents of register R3
are incremented by 1.

3·19

SECTION 4

ASSEMBLER DIRECTIVES

Assembler directives are requests to the assembler to perform certain operations during
program assembly, just as n:-achine instructions are used to request the computer to perform
operations during program execution.

Assembler directives are divided into the following functional groups:

Symbol definition

Instruction definition

Location counter control

Data definition

Memory reservation

• Conditional assembly

• Assembler control

Subroutine control

List and punch control

Program linkage

MOS I/O control

VORTEX I/0controi

Macro definition

Table 4-1 lists the assembler directives by function and shows which directives are recognized
by each assembler (DAS 8A and DAS MR).

Assembler directives have the same general format as the computer instructions. In the
following descriptions of the individual directives, the field format:

Label Operation Variable

is used, with the optional comment field being understood to follow the variable field when
used. In cases where the variable field contains more than one item or expression, these are
always separated by commas. Mandatory elements of the directive are in bold type, and
optional items, in italic type.

4·1

ASSEMBLER DIRECTIVES

Table 4·1. Directives Recognized by DAS Assemblers

Function Directive DAS SA DAS MR

Symbol definition EQU Yes Yes
SET Yes Yes
MAX Yes No
MIN Yes No

Instruction definition OPSY Yes Yes

location counter control ORG Yes Yes
lOC Yes Yes
BEGI Yes No
USE Yes No

Data definition DATA Yes Yes
PZE Yes Yes
MZE Yes Yes
FORM Yes Yes

Memory reservation BSS Yes Yes
BES Yes Yes
DUP Yes Yes

Conditional assembly 1FT Yes Yes
IFF Yes Yes
GOIO Yes Yes
CONT Yes Yes
NUll Yes Yes

Assembler control MORE Yes No
END Yes Yes

Subroutine control ENTR Yes Yes
RETU* Yes Yes
CAll Yes Yes

List and punch control LIST Yes No
NLiS Yes No
SMRY Yes Yes
DETl Yes Yes
PUNC Yes No
NPUN Yes No
SPAC Yes Yes
EJEC Yes Yes

Program linkage NAME Yes Yes
EXT Yes Yes
COMN Yes Yes

4·2

ASSEMBLER DIRECTIVES

Table 4·1. Directives Recognized by DAS Assemblers (continued)

Function

Macro definition

MOS I/O control

VORTEX I/O control

VORTEX EXEC requests

Directive

MAC
EMAC

DAS SA

No
No

DAS MR

Yes
Yes

Applicable to DAS MR only; refer
to the MOS Reference Manual.

Applicable to DAS MR only; refer
to the VORTEX I or VORTEX II
Reference Manual.

Applicable to DAS MR only; refer
to the VORTEX I or VORTEX II
Reference Manual.

4.1 SYMBOL DEFINITION DIRECTIVES

Symbol definition directives are used to assign values, specified in the variable field, to
symbols specified in the label field.

4.1.1 EQU Directive

The EQU directive assigns a value to a symbol. Once assigned by an EQU directive, the value
cannot be changed elsewhere in the program.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation Variable

EQU expression

is a symbol which must be present.

is any valid expression.

The assembler places the symbol in the symbol table and assigns it the value of the
expression. If the symbol has already been entered in the symbol table, DAS outputs an error
message, and the expression replaces the value in the symbol table. If a symbol is used as the
variable field expression, it must have been previously defined.

Examples

AID EQU 076000 AID is assigned the value 076000.

x EQU X is assigned the value 1.

4-3

ASSEMBLER DIRECTIVES

B EQU 2+10/5 B is assigned the value 4.

ADDR EQU 0500 ADDR is assigned the (absolute)
value 0500.

ADRS EQU * ADRS is assigned the value
of the current location counter
(absolute or relocatable).

BAM EQU SAD-*+1 BAM is assigned the expression
evaluation (absolute or relocatable).

NUM EQU 22 Double definition CC DD)--two
equate statements with the same
label should not appear in the
same program. If they do, the

NUM EQU 14 symbol table will contain the
last value used.

4.1.2 SET Directive

The SET directive operates the same as EQU except that a symbol may be defined without
error.

This directive has the following format:

where:

Label

symbol

symbol

expression

Examples

MONO

MONO

SET

SET

Operation Variable

SET expression

is a symbol which must be present.

is any valid expression.

400

500

Assign value of 400 to MOND;
for subsequent statements,
MOND has a value of 400.

Assign value of 500 to MOND;
for subsequent statements,
MOND has a value of 500.

4.1.3 MAX Directive (DAS SA Only)

The MAX directive assigns the largest (maximum) algebraic value among a string of values to
a symbol.

4-4

ASSEMBLER DIRECTIVES

This directive has the following format:

where

Label

symbol

symbol

expression

Operation Variable

MAX expression,expression(s)

is a symbol which must be present

is any valid expression. The field may
contain multiple expressions, separated
by commas.

The assembler assigns the largest algebraic value found among the expressions to the symbol.
If a symbol is used as a variable field expression, it must have been previously defined. The
value of the symbol may be redefined, if desired, via the SET directive.

Examples

MOST MAX 1,2,3,4,5

SYM MAX HARRY, JOE, 3

4.1.4 M IN Directive (DAS SA Only)

Assigns the value 5 to MOST.

Assigns to SYM the value of
the symbol HARRY, the value
of the symbol JOE, or 3,
depending on which has the
highest value. Both symbols
must have been previously
defined.

The MIN directive assigns the smallest (minimum) algebraic value among a string of values to
a symbol.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation Variable

MIN expression,expression(s)

is a symbol which must be present.

is any valid expression. The field may
contain multiple expressions, separated
by commas.

MIN is the same as MAX, except that the symbol is assigned the smallest algebraic value
found among the expressions.

4·5

ASSEMBLER DIRECTIVES

Examples

TRV

IN
lOB
MAPN

MIN

EQU
EQU
MIN

50000

10
2+10/2*6

Assigns the value 50000 to TRV.

IN, 10, lOB Assigns the value 10 to MAPN
(note that both label IN and
constant 10 have this value).

4.2 INSTRUCTION DEFIN ITION DIRECTIVE

4.2.1 OPSY Directive

The OPSY directive allows the user to optionally define his own mnemonic names for
instructions.

This directive has the following format:

Label

symbol

where:

symbol

mnemonic

Operation Variable

OPSY mnemonic

is a symbol which must be present.

is any standard instruction mnemonic.

The assembler makes the symbol a mnemonic name with the same definition as the variable
field mnemon ic.

Examples

CLA

J123

OPSY
LDA
CLA

OPSY

LDA Define CLA as equivalent to
0300 LDA mnemonic; in subsequent
0300 program statements, CLA and

LDA may be used interchangeably
as the "Load A register"
instruction mnemonic.

JIF,0700 Invalid--variable field must
contain only a standard instruction
mnemonic.

4.3 LOCATION COUNTER CONTROL DIRECTIVES

Location counter control directives control the program location counter(s), which control
memory area assignments and always point to the next available word.

DAS 8A Location Counter Control. DAS 8A recognizes directives to modify or preset the values
of any of its location counters (refer to table 2-1). In addition, up to eight other location

4·6

ASSEMBLER DIRECTIVES

counters can be created, thus providing the possibility of constructing complex relocation and
overlay programs within a single assembly.

There are no user-created location counters at the beginning of an assembly. The assembler
uses three location counters for program location assignment. Thus, IAOR (indirect pointer
assignments) and L TOR (literal assignments) are always in used, as is a third counter used to
assign locations to generated instructions and data. The blank location counter performs this
task until the USE directive specifies another counter.

In a straightforward program using only one location counter, the ORG and LOC directives
completely control the counter.

DAS MR Location Counter Control. DAS MR utilizes only one location counter. This location
counter normally has a relocation bias of zero. DAS MR is most commonly used with an
operating system and a relocating loader. Normally DAS MR programs are relocatable, and
therefore location counter control should not be used.

The ORG directive may be used in DAS MR to change the current location counter value
(relocatable or absolute). The LOC directive may be used in DAS MR for assembly of programs
that are to be moved under program control. Attempts to use ORG or LOC with DAS MR
programs to be run under the operating system 5hould be done with care so as not to overlay
any system tasks.

4.3.1 ORG Directive

The ORG directive is used to specify the beginning location counter value.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation Variable

ORG expression

is an optional user symbol.

is an address expression.

The assembler sets the location counter currently in use to the value of the expression. If a
symbol is present in the label field, it is also set to the value of the expression (note that this
is the current location counter value also).

Any symbol used as the variable field expression must have been previously defined.

For DAS MR, the address origin defaults to relocatable zero if no ORG directive is given. For
DAS BA, it defaults to absolute 04000 if no ORG directive is given.

4-7

ASSEMBLER DIRECTIVES

Example

The left-hand column below shows the value of the location counter at each program
statement when origined as shown.

Location
Counter
05000
05000 STRT
05001
05002
05003
05004
05005 A
05006 C
05007 D

AID

4.3.2 LOC Directive

ORG
LDA
ADD
SUB
JMP

DATA
DATA
DATA
EQU
END

05000 Origin at 05000.
A
C

D
AID

5
4
3
076000

The LOC directive is used to assemble a block of program code that is to be relocated during
program execution.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation Variable

LOC expression

is an optional user symbol.

is an address expression.

LOC is used if the data and instructions following this LaC address are to be moved to the
LOC address by the object program before executing the moved block, i.e., to keep a block of
data or instructions undisturbed by assembly. Data or instructions following LaC are
generated as if an ORG directive had changed the current location counter value. However,
this value is not actually changed.

The location counter used for codihg the block is specified by the expression. If a symbol is
present in the label field, it is also set to the value of the expression.

Any symbol used as a variable field expression must have been previously defined. LaC
cannot be used in a relocatable program.

Example

The following program code illustrates the use of the LOC directive on the program counter
values, as shown in the left-hand column.

4-8

Location
Counter Contents
OOjOOO
00300U 010001
OOjOUl 1~0002

OO.)Ou~ 14u00S
U03u0.) 001000
00,50U4 0031114

U0.5(;0'.)
OU05uu
U00':)OU UOuvUl
uu0~ul UUUv02
(JUU~02 UOUOU~
u0u':)u,5 iJUOOU4
UOU':)u4 uuuOO':)
uU0505 00U000
UOO~U6 OOuuO/
0u3014
uu3014 uuu010
OO~ul':) (JOOOl!

A

t.NUA
d

c

O~b

LIJA
A lH)
SUd
JMP

tQU
LUC
UA1A
uAlA
I..JA or A
IJATA
UATA
DATA
UA1A
u~(,

UA1A
I)AlA
I:.Nt)

03000
1
2
3
C

"I\'

O~OO

1
t:
.3
4
5
o
7
tNUA+*-tj
8
'1

ASSEMBLER DIRECTIVES

Origin at 03000.
Instructions assembled
from 03000.

Last address must jump.

ENDA - 03005.
set assemble-origin at 0500.
These data or instructions
will be assembled for run
ning at location 0500. They
will be loaded into core at
locations ENDA plus. You
must move them to location
0500 before running.

This is the next available
location after program B.

4.3.3 BEG I Directive (DAS SA Only)

The BEGI directive may be used in DAS 8A programs to define an initial value for any of the
location counters.

This directive has the following format:

Label

symbol

where:

symbol

expression

Operation Variable

BEGI expression

is COMN, IAOR, L TOR, or SYOR (see table 2-1);
or a user symbol to create a new location
counter.

is an address expression.

BEGI creates a new location counter, or redefines the value of any location counter before the
counter has been used. Up to eight user location counters may be created. BEGI gives the new
or redefined location counter the value of the expression, but has no effect on the current
location counter.

BEGI is used to define initial values only. It cannot redefine the value of any location counter
that has already been used for location assignment.

Any symbol used as a variable field expression must have been previously defined.

Examples

IAOR BEGI 050 Redefine standard counter IAOR
to begin at location 050.

4-9

ASSEMBLER DIRECTIVES

LTOR BEGI

UCNT BEGI

075

06500

Redefine standard counter
L TOR to begin at location
075.

Create a user location counter
called UCNT.

4.3.4 USE Directive (DAS 8A Only)

The USE directive activates a specified location counter.

This directive has the following format:

where:

Label

(none)

Operation

USE

Variable

counter

counter is a blank, COMN, or SYOR (see table 2-1);
PREV; or a user-created location counter
label.

. The USE directive causes the assembler to switch to the current value of the indicated
location counter for assembly of subsequent source statements. If PREV is given, the
previously used location counter is recalled, with the restriction that only the last-used
counter can be so recalled.

Examples

USE

USE

USE
LDA*

COMN

SYOR

*
USE COMN

USE SYOR

USE PREV

Switch to COMMON location counter.

Switch to standard location counter.

Switch to system location counter.
(Loads a' system parameter.)

Switch back to COMN location
counter.

4.4 DATA DEFINITION DIRECTIVES

Data definition directives allow the user to create words of data as part of his source program.

4·10

ASSEMBLER DIRECTIVES

4.4.1 DATA Directive

The DATA directive generates one or more words of data that are output with the object
program code.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation

DATA

Variable

expression,expression(s)

if present, is assigned the value of
the current location counter.

is any valid expression.

DATA generates data words with the values specified by the expression(s} in the variable field.
DATA assigns the symbol, if used, to the memory address of the first generated word. In the
absence of a symbol, an unlabeled block of data is generated.

Examples

D DATA 5 Creates data word of value 5
and assigns the current location
counter value to the symbol D.

DATA FF Creates data word of the value
of symbol FF (absolute or
relocatable).

DATA 'COMMENT' Creates 4 data words of 2 ASCII
character bytes per word.

DATA D-5 Creates data word of the value
of the expression (absolute or
relocatable).

DATA 1+2 Creates data word of value 3.

DATA Creates data word of value 1.

Figure 4-1 shows a source listing to illustrate the object code generated by the above data
expressions. The first column shows the location counter (beginning at relocatable zero), and
the second column shows the object code generated. Refer to section 5 for a detailed
description of the source listing.

4-11

ASSEMBLER DIRECTIVES

oo~ooo t ORG 08000
006aoO 000005 A 2 D DATA 5,'F,'COMMENT',O.S,t+2,t
OOtOOI ftOSOtl • 00'002 t41717 • 005003 t4e7t5 A
00'004 t.2716 A
001005 1522AO A
0010015 n047'3 • U05()07 000003 • 0 08 010 000001 A
OO~Ott f't1000 r 3 ", L.,r>A 0

4 ENO

Figure 4·1. Sample DATA Directive Usage

4.4.2 PZE Directive

The PZE directive can be used to generate positive-only data words.

This directive has the following format:

Label Operation Variable

symbol PZE expression,express;on(s)

where:

symbol

expression

if present, is assigned the value of the
current location counter.

is any valid expression.

PZE is similar to DATA except that the sign bit of the generated data word is always forced to
zero (positive).

Examples

Figure 4-2 shows a source listing illustrating data words (in the second column) generated by
the PZE directive. Note that the sign bit (high-order bit) is always zero, contrasted to the
DATA directive generations.

4-12

ASSEMBLER DIRECTIVES

oo~ooo
006000 177777 •
001001 1177704
006002 GOO GO' •
006n03 t407f.'2 •
00100. tOeail A
00'005 071177 A
008008 fJ11718 4
001 007 000007 •
'00 6 0 1 ~ "40102 ~
008(\lt nOft8t2 •

t
2

ORG
OAT.

08000
-1,-2,7,'A8',01088t2

3 PZI .

4 END

Figure 4·2. Sample PZE Directive Usage

4.4.3 M ZE Directive

The MZE directive can be used to generate negative-only data words.

This directive has the following format:

Label Operation Variable

symbol MZE expression,express;on(s)

where:

symbol

expression

if present, is assigned the current location
counter value.

is any valid expression.

MZE is similar to DATA except that the sign bit of the generated data word is always forced to
one (negative).

Examples

Figure 4-3 shows a source listing illustrating the use of MZE.

00 7000
00 1 000 100001 A
0010nJ tOOOOO A
QOi002 t00002 •
001n03 t06812 ,

1
2

END

Figure 4·3. Sample MZE Directive Usage

01000
1.,2,06812

4·13

ASSEMBLER DIRECTIVES

4.4.4 FORM Directive

The FORM directive specifies the format of a bit configuration of a data word.

This directive has the following format:

where:

symbol

term

Label

symbol

Operation

FORM

is a user symbol.

Variable

term, term (s)

is an absolute expression.

The symbol is the name of the format. The terms specify the length in bits of each field in the
generated data word, where the sum of their values is from one to the number of bits in the
computer word.

FORM is ignored if there are any errors in the variable field, except that an error is flagged
when a term cannot be represented in the number of bits specified when FORM is applied (by
placing its name in the operation field of a symbolic source statement) to another statement.
A FORM symbol can be redefined.

Examples

Figure 4-4 shows sample usage of the FORM directive.

a. Without error:

OOQOOO t)t"01 A
OOOOot 106612 A

b. With error:

000002 000005 A
-Sl
'.Sl

Label

t BYTE
2 BCD
J P,.B
4 ABC!
5
e

Label ,
8

Operation

FORM
FnRM
FORM
FORM
.ec
BVTe:

Operation

PTA!

ENO

Figure 4·4. Sample FORM Directive Usage

4.5 MEMORY RESERVATION DIRECTIVES

Variable

8,8
4,.,A.4
1,2,3,4
6,2,8
atc3,1.'"
0215,0212

Variable

2,4,e

Memory reservation directives control the reservation of memory addresses and areas.

4-14

ASSEMBLER DIRECTIVES

4.5.1 BSS Directive

The BSS directive is used to reserve a block of memory locations for use by the program
during its execution.

This directive has the following format:

where:

symbol

expression

Label

symbol

Operation Variable

BSS expression

if present, is assigned the current location
counter value.

is an absolute expression.

BSS reserves a block of memory addresses by increasing the value of the current location
counter the amount indicated by the expression. The symbol, if used, is assigned the value of
the counter prior to such an increase, thus referencing the starting address of the reserved
block.

If the variable field expression value is zero, the symbol is assigned the next available address
(i.e., BSS 0 = BSS 1).

Examples

B BSS

MO BSS
MP BSS
MQ BSS

4.5.2 BES Directive

050 Reserve a block of 050 words
and assign the beginning loca-
tion address to B. On completion,
the location counter will
be at B + 050. The locations
can be accessed as B, B + 1,
B+2, ... , B+047.

These three statements reserve
3 words of storage, each
separately labeled.

The BES directive, like BSS, is used to reserve a block of memory locations.

This directive has the following format:

where:

Label

symbol

Operation Variable

BES expression

4·15

ASSEMBLER DIRECTIVES

symbol

expression

if present, is assigned the current location
counter value.

is an absolute expres~ion.

The BES directive is similar to BSS, except that if there is a symbol it is assigned to the
address one less than the incremented location counter.

If the variable field expression is zero, the symbol is assigned the last address used (i.e., BES
o has no effect).

Example

B BES 050 Same as BSS above, except that
the label B is assigned a
value of the end of the
block. Thus, the locations
can be accessed as B-1, B-2,
B-3, ... , B-047.

4.5.3 DUP Directive

The DUP directive can be used to duplicate source statements input only once.

This directive has the following format:

where:

symbol

n

m

Label

symbol

Operation Variable

DUP n,m

if present, is assigned the current location
counter value.

is a constant that specifies the duplication
count.

if present, is a constant that specifies
the source statement count for duplication.
If omitted, it defaults to one.

DUP duplicates source statements that follow the DUP directive. An n-only format duplicates
the next source statement the number of times specified by n. An n,m format duplicates the
next 1,2, or 3 source statements (the number of which is specified by m) the number of times
specified by n, which m:s; 3 and n:s; 32,767. If n or m is zero, it is treated as if it were a one.

A DUP statement may not appear within the range of another DUP statement. The
statement(s) being duplicated should not contain any labels, as the labels will be duplicated
also and a "double definition" (* DD) diagnostic will result.

4-16

ASSEMBLER DIRECTIVES

Examples

B DUP 3 Dupl icate the next statement
ADD 3 (the ADD instruction) three

c EQU * times.

B DUP 2,2 Duplicate the next 2 statements
ADD 3 (the ADD instructions) two
ADD 4 times.

c EQU *
Complete source listings for these two examples are shown in figure 4·5. Note the
duplications.

Example 1

00400n
004000 A

004000 120003 A
00 4 001 12(')003 4
004002 120003 A

00400~ A

Example 2
~Onooo R

000000 t~OOO3 A
000001 120004 A
000002 120003 A
OOOOO~ t20004 A

000004 lit

1
2
3
4
4
4
5
6

t
2
3
4
3
A
5
,;

A
B

c

A
8

C

0'"
£QU
au,
ADD
AOD
ADD
t:QU
f.NO

fQU
OUP
ArlO
.00
Ar"O
AOO
fQU
ENO

Figure 4·5. Sample DUP Directive Usage

4.6 CONDITIONAL ASSEMBLY DIRECTIVES

0.000

* 3
3
3
l
.-

* 2,2
3
4
3
4

•

Conditional assembly directives assemble portions of the program according to the conditions
specified in the variable fields.

4.6.1 I FT Directive

The I FT directive assembles the next source statement if the specified relationships are true.

This directive has the following format:

Label

(none)

Operation Variable

1FT expression, expression (s)

4·17

ASSEMBLER DIRECTIVES

where:

expression is an absolute expression

1FT assembles the next source statement only if the first expression is less than the second,
and the second is less than or equal to the third, Le.:

1FT a for a :¢ 0

1FT a"b for a :¢ b

1FT a,b,b for a < b

1FT O,a,b for 0 < a~ b

1FT examples are given in section 4.6.5.

4.6.2 I FF Direc~ive

The IFF directive assembles the next source statement if the specified relationships' are false.

This directive has the following format:

where:

Label

(none)

Operation Variable

I FF expression, expression (s)

expression is an absolute expression

IFF is similar to 1FT (1FT = true) except that IFF (IFF = false) is the logical complement of
I FT, i.e.:

IFF a for a o

IFF a"b for a b

IFF a,b,b for a ~ b

IFF O,a,b for 0 ~ a > b

IFF examples are given in section 4.6.5.

4.6.3 GOlO Directive

The GOTO directive can be used to skip assembly of a block of source statements.

This directive has the following format:

4·18

ASSEMBLER DIRECTIVES

where:

symbol

integer

Label Operation Variable

[symbol
(none) GOTO

symbol,
integer
integer,

is a user symbol

is any integer

a comma following the variable field
entry is used to control output listing.

GOTO usually follows an IFF or 1FT directive. All source statements between the GOTO and the
statement containing the symbol/integer in its label field are skipped, and the instruction so
labeled is assembled next. GOTO carmot return to an earlier point in the program.

If the first and third GOTO formats are used, the skipped instructions are listed. If the second
and fourth formats (containing a comma after the variable field element) are used, they are.
not listed. This listing can also be suppressed by a SMRY directive (section 4.9.3).

GOTO examples are given in section 4.6.5.

4.6.4 CONT Directive

The CONT directive may be used in conjunction with GOTO as the destination statement.

This directive has the following format:

Label Operation Variable

SymbOl} CONT ()
integer none

where:

symbol is a user symbol

integer is any integer

CONT provides a target for a previous GOTO directive. The symbol/constant is not entered in
the assembler's symbol table.

CONT examples are given in section 4.6.5.

4.6.5 NULL Directive

The NULL directive may be used in conjunction with GOTO as the destination statement.

4-19

ASSEMBLER DIRECTIVES

This directive has the following format:

Label Operation Variable

symbol NULL (none)

NULL provides a target for a previous GOTO directive with the symbol entered in the symbol
table. NULL has the same effect as a BSS directive with a blank variable field.

Examples

The sample program in figure 4-6 illustrates use of the conditional assembly directives.

000022 A 1 NelT e:QU II
2 I" NeIT.,.
3 10TO ,., ,8 81TS
4 * 5 • Ie IX' INSTRUCTIONS
e I"~ NI!'.l. ., GOTa 111 te IITS

000000 001000 • 8 VVV NO'
g * 10 . t. erT INSTRUC'IONS

il * 000001 12 123 NUL,L ENTER INTO 8VMIOL TAllE
13 345 eONT !GNORE SYMleL
tA tNO

Figure 4·6. Sample Conditional Assembly Directives Usage

4.7 ASSEMBLER CONTROL DIRECTIVES

Assembler control directives signal the end or continuance of an assembly.

4.7.1 MORE Directive (DAS 8A Only)

The MORE directive is used in DAS 8A assembly when the input medium does not hold all of
the source statements at one time.

This directive has the following format:

Label

(none)

Operation

MORE

Variable

(none)

MORE halts the assembly process to allow additional source statements to be put in the input
device. Assembly resumes when the RUN or START switch on the computer control panel is
pressed. MORE is never listed.

4-20

4.7.2 END Directive

The END directive signals the end of the source program.

This directive has the following format:

where:

expression

Label

(none)

Operation Variable

EN 0 expression

is an address expression

ASSEMBLER DIRECTIVES

EN 0 is the last source statement in the program. The expression is the execution address of
the program after it has been loaded into the computer. A blank in the variable field yields an
execution address of zero.

4.8 SUBROUTINE CONTROL DIRECTIVES

Subroutine control directives create closed subroutines (i.e., internal to the main program)
and control their use.

4.8.1 ENTR Directive

The ENTR directive is the first statement in a closed subroutine.

This directive has the following format:

where:

symbol

Label

symbol

Operation

ENTR

Variable

(none)

is a user symbol which must be present.

The symbol is used as the name of the subroutine when called. ENTR generates a linkage
word of zero in the object program.

Example

The following program listing illustrates use of the ENTR directive as the first statement of a
closed subroutine.

000001 000000 • t "V'" INT"
OOOOftS tOttftt A 3 lIN 0101, •• 4
00000' 000007 " 000n05 001000 • ~ "M' •• 1
000008 000003 "

4·21

ASSEMBLER DIRECTIVES

4.8.2 RETU* Directive

The RETU* directive can be used to return from a closed subroutine.

This directive has the following format:

Label Operation Variable

symbol RETU· expression

where:

symbol if present, is assigned the current location
counter value.

expression is an address expression

RETU;:; returns from a closed subroutine, generating an unconditional indirect jump to the
address indicated by the value of the expression.

Example

The following program listing illustrates use of the RETU* directive to return from a closed
subroutine.

oooon1 008000 •
000010 OOlO()O A
000011 100001 "

4.8.3 CALL Directive

5
e ,

The CALL directive is used to call closed subroutines.

This directive has the following format:

Label Operation Variable

TTYW

symbol CALL name,paramefer(s),error(s)

where:

4-22

symbol if present, is assigned the current location
counter value.

name is the symbolic name of the subroutine
bei ng called.

parameters(s) if present, are one or more data parameters
being passed to the subroutine, separated
by commas.

error(s) if present, are one or more address
expressions, separated by commas, that
are to be used by the closed subroutine.

ASSEMBLER DIRECTIVES

CALL causes the program to jump and mark to the closed subroutine specified by name. The
parameter list, if present, is available to the subroutine. The error return list, if present,
provides the possibility of returning to locations other than the statement following the CALL
statement.

Examples

The sample program calls in figure 4·7 illustrate use of the CALL directive.

Example 1

ooonoo nOIOOO A ! CALL TTVW
000001 000002 q

Example 2

004000 I alit' 0.000
004000 000000 • 2 FUNC ENTR

3 * .. * FUNC WILL MAV! ACO-lae 0' PARAMETER
5 * WHIN CA~LING THII IU,.OUTINI.
8 * 00 4001 001000 A , R!TU* 'UNe

004001 104000 A
I •
9 *

tt) *

)(

004003 001000 A 11 CAI.L 'UNC,X,V+t,(!RR),fGOOP'.
004t)04 004000 4
OO~oo5 00.011 A
004008 oo'Ot~ A
004001 004011 A
004nlO 10'01' A

12 *
13 * MA!N BODV n, P~OIRAM
l' * 004011 oon005 A 1S)(DATA S

004011 00000' • 18 V DAT. e
004011 0001.' A l' ERR OA" 0'.'
004014 00072' A 18 coo, DATA 0127 ,9 ENO

Figure 4·7. Sample CALL Directive Usage

4·23

ASSEMBLER DIRECTIVES

4.9 liST AND PUNCH CONTROL DIRECTIVES

List and punch control directives control listing and punching during program assembly. They
are operative only during the second pass of the assembler, when the object program and
listings are produced.

4.9.1 liST Directive

The LIST directive is used to resume generating a source listing after a list-inhibiting directive
has been given.

This directive has the following format:

Label

(none)

Operation Variable

LIST (none)

LIST causes the assembler to start or resume output of a source program listing. The
assembler normally outputs a list of the source statements. The LIST directive is used to bring
the assembler back to this condition when the NLiS directive (section 4.9.2) has been issued
to change the listing status.

4.9.2 N liS Directive

The NLiS directive is used to inhibit the program listing.

This directive has the following format:

Label

(none)

Operation

NLiS

Variable

(none)

NLiS suppresses further listing of the program.

4.9.3 SM RY Directive

The SMRY directive may be used to inhibit listing of conditionally-skipped source statements.

This directive has the following format:

Label

(none)

Operation

SMRY

Variable

(none)

SMRY suppresses the listing of source statements that have been skipped under control of the
conditional assembly directives.

4.9.4 DETl Directive

The DETL directive is used to cancel the effect of the SMRY directive.

4-24

ASSEMBLER DIRECTIVES

This directive has the following format:

label

(none)

Operation

DETl

Variable

(none)

DETL removes the effect of SMRY, i.e., causes listing of all source statements, including those
skipped by conditional assembly directives.

4.9.5 PUNC Directive (DAS SA Only)

The PUNC directive is used in DAS 8A programs to cancel the effect of the NPUN directive.

This directive has the following format:

label

(none)

Operation

PUNC
Variable

(none)

PUNC causes the assembler to produce a paper tape punched with the object program. The
assembler normally outputs such a tape. PUNC returns the assembler to this condition when
the NPUN directive (section 4.9.6) changes the punching status.

4.9.6 NPUN Directive (DAS SA Only)

The NPUN directive may be used to inhibit further punching of the object program to paper
tape.

This directive has the following format:

Label

(none)

Operation

NPUN
Variable

(none)

NPUN suppresses further production of paper tape punched with the object program.

4.9.7 SPAC Directive

The SPAC directive can be used to insert blank lines in the source listing.

This directive has the following format:

Label

(none)

Operation

SPAC
Variable

(none)

SPAC causes the listing device to skip a line. The SPAC directive itself is not listed.

4.9.S EJEC Directive

The EJ EC directive causes a page eject.

4·25

ASSEMBLER DIRECTIVES

This directive has the following format:

Label

(none)

Operation

EJEC

Variable

(none)

EJEC causes the listing device to move to the next top of form. The EJEC directive itself is not
listed.

4.10 PROGRAM LINKAGE DIRECTIVES

Program linkage directives establish and control links among programs that have been
assembled separately but are to be loaded and executed together.

4.10.1 NAME Directive

The NAME directive establishes linkage definition points among separately assembled
programs.

This directive has the following format:

Label

(none)

Operation Variable

NAME symbol,symbol(s)

where:

symbol is any symbolic expression

With the NAME directive, each 'symbol can then be referenced by other programs. Each
symbol also appears in the label field of a symbolic source statement in the body of the
program to give it a value. Undefined NAME symbols cause error messages to be output.

Examples

NAME A

NAME A,B

NAME EX,WHY,ZEE

4.10.2 EXT ·Directive

Provide value of symbol A to
other programs.

Provide values of symbols A
and B to other programs.

Provide values of symbols
EX, WHY, and ZEE to other
programs.

The EXT directive allows separately assembled programs to obtain the values of symbols
defined in other program NAME directives.

This directive has the following format:

4·26

where:

symbol

Label Operation Variable

label EXT symbol(s)

is a value to be obtained from other
programs.

ASSEMBLER DIRECTIVES

In linking separately assembled programs, EXT declares each symbol not defined within the
current program. Each symbol, in both the label and variable fields, is output to the
relocatable loader with the address of the last reference to the symbol for the loader to supply
the value to the program when the value is known.

If a symbol is not defined within the current program and is not declared in an EXT directive,
it is considered undefined and causes an error message output. If a symbol is declared in EXT
but not referenced within the current program, it is output to the loader for loading, but no
linkage to this program is established. If a symbol is both defined in the program and
declared to be external, the EXT declaration is ignored.

Examples

EXT AY Declare A Y to be external.

BEG EXT BE, SEE Declare BE and SEE to be external;
the value of BEG is passed

EXT DEE,EE,FF,GEE

to the loader.

Declare the indicated symbols
to be external.

4.10.3 COMN Directive

The COMN directive defines an area in blank common for use at execution time.

This directive has the following format:

where:

symbol

expression

Label Operation Variable

symbol COMN expression

if present, is assigned the current location
counter value

is an absolute expression

COMN allows an assembler program to reference the same blank common area as a
FORTRAN program. The common area is cumulative for each use of COMN, i.e., the first
COMN defines the base area of the blank common, the second COMN defines an area to be
added to the already established base, etc.

4·27

ASSEMBLER DIRECTIVES

Examples

AAA COHN

COHN

BBB COHN

3

9

Allocate 3 words of common, the
first word addressable by AAA.

Allocate' 12 words of common; if
following the above statement,
this would be the fourth through
sixteenth common locations.

Allocate 9 words of common, the
first word addressable by BBB;
if following the above 2 state
ments, this would be the
seventeenth through twenty-fifth
locations of common.

4.11 MACRO DEFINITION DIRECTIVES (DAS MR ONLY)

The V70 series macro language is an extension of the V70 assembler language. It provid~s a
convenient way to generate a desired sequence of assembly language statements many
times in one or more programs. The macro definition is written only once, and a single macro
call statement used each time a programmer wants to generate the desired sequence of
statements. This method simplifies the coding of programs, reduces the chance of
programming errors, and ensures that standard sequences of statements are used to
accomplish desired functions.

Every defined macro is associated with a four- or six-character symbolic name. The defined
macro is called when this name appears in the operation field of an assembler source
statement.

A Macro Definition is a set of statements that provides the assembler with the symbolic name
of the macro and the sequence of statements that is to be generated when the macro is
called. Macro definitions start with the MAC directive and are ended with the EMAC directive.

The macro is the assembly equivalent of the execution subroutine. It is defined once and can
then be "called" from the program. The macro is an algorithmic statement of a process that
can vary according to the arguments supplied. It is assembled with the resultant data
inserted into the program at each point of reference, whereas the subroutine executed during
execution time appears but once in a program.

4.11.1 MAC Directive (DAS MR Only)

The MAC directive is used to mark the beginning of a macro definition and specify the name
of the macro. .

This directive has the following format:

Label Operation

symbol MAC

4-28

Variable

(none)

· ASSEMBLER 01 RECTIVES

MAC introduces a macro definition. The symbol is the name of the macro.

The use of the MAC directive is shown in the program example given in section 4.11.3.

4.11.2 EMAC Directive (DAS MR Only)

The EMAC directive is used to signal the end of a macro.

This directive has the following format:

Label

(none)

Operation

EMAC

Variable

(none)

EMAC terminates the definition of a macro.

The use of the EMAC directive is shown in the program example given in section 4.11.3.

4.11.3 Macro Calls

A Macro Call statement is a source program statement with the symbolic name of a defined
macro written in the operation field. The assembler generates a sequence of assembly
language statements for each occurrence of the same macro call statement. The generated
statements are then processed like any other assembly langauge statement.

A macro is called by the appearance of its name in the operation field of a source statement.
The variable field of this statement contains expression(s) P(l), P(2).",P(n), which are then
processed with the values in the table being substituted for the respective values of the
expressions in the source statement variable field. For example, if the variable field of the
symbolic source statement contains:

2,8,9 +8, =63

then within the generated macro P(1)=2, P(2)=the value of 8, P(3) = 17, and P(4) is the
address of the value 63. All terms and expressions within the macro-referencing symbolic
source statement parameter list are evaluated prior to calling the macro.

If the label field of such a source statement contains a symbol, the symbol is assigned the
value and relocatability of the location counter at the time the macro is called but before data
generation.

A macro definition can contain references to machine instruction mnemonics or to assembler
directives other than DUP. Macros can be nested within macros to a depth limited only by the
available memory at assembly time.

Figure 4-8 illustrates the use of macros.

4·29

ASSEMBLER DIRECTIVES

t SINS! MAC
fit U, ... 4 } Macro • SIN

I JMII ._1 Definition

• IMAt
5 IINS! OIOt } Macro Call

000000 t 01 20" • 000001 00000. R Macro

OOOnnl nntoOO • Expansion

OOOOC)S 000000 R
OOOOO~ IOlent • • ct. OS

'1 SENSE OtOI
000005 10ttOl A
000008 000011 R
ono",O' OCIOnO • oOOntO 000001 " OOO()\t tOStnt • • OA .. Ot

• END

Figure 4·8. Sample Macro Usage

P(O) can also be accessed by a normal call. P(O) is the first entry in the table formed by the
assembler and contains the number of entries in that table. Figure 4-9 shows the output
listing obtained by calling peO).

000001
000002
000003
000004
000005
000006

4-30

1 A
2
3

OOOOOOA 4
000001A 5
000002A 6
000003A 7
000004A 8
000005A 9

10

MAC
DATA
EMAC
A
A
A
A
A
A

' END

p(O)

1 ,2
1,2,3
1,2,3,4
1,2,3,4,5

Figure 4·9. Output Listing Obtained by Calling P(O)

SECTION 5

OPERATING THE ASSEMBLER

DAS MR and DAS 8A are two-pass assemblers that may be scheduled by job central
directives. Assembler processing during the two passes is described in section 5.1.
Operation of DAS MR under VORTEX I/VORTEX II is described in section 5.2, fOllowed by
operation descriptions of DAS MR under MOS, as stand-alone, and of DAS 8A (also stand
alone).

5.1 ASSEMBLER PROCESSING

This section describes the general features of DAS assembler processing. Specific operating
procedures and output listing examples for various DAS/operating system combinations are
given in section 5.2.

5.1.1 Assembler Input Media

The source program may be input to the assembler on punched cards, paper tape, or any
other source input medium. Details regarding source statement field placement are given
below.

Fixed Format. Fixed format, normally used with punched cards, used as input to the DAS
assemblers contains four fields corresponding to the instruction and directive fields:

a. The label field is in columns 1 through 6. Its use is governed by the requirements of the
instruction or directive.

b. The operation field is in columns 8 through 14. It contains the instruction or directive
mnemonic. Indirect addressing is specified by an asterisk following the mnemonic.

c. The variable field begins in column 16 and ends with the first blank that is not part of a
character string. Its use depends on the instruction or directive. If two or more subfields
are present, they are separated by commas.

d. The comment field fills the remainder of the card. If the variable field is blank, the
comment field begins in column 17.

An asterisk in column 1 indicates that the entire card contains a comment.

The fixed format is 'shown in figure 5-1. Note that columns 7 and 15 are always unpunched
(blank).

Free Format. Free format (normally used with paper tape) used as input to the DAS
assemblers contains source statements of up to 80 characters each (not incuding the carriage
return and line feed characters). Each punched statement contains four fields corresponding
to the instruction and directive fields. The label, operation and variable fields are separated
by commas, and the comment field starts after the first variable field blank that is not part of

5-1

(]'I

N

"'11
ciQ'
C
C;
U'I

~
"'11
$'
a:
."
ii)

~
3
CD
:::s ...
CA c
3
3
C»

~

A. FIXED FORMAT (STANDARD COLUMNS)

LABEL OPERAT'ION VARIABLE COMMENT* IDENTIFICATION

1 6 8 14 16 28 30 7273 80

B. FIXED FORMAT (MINIMUM SPACING)

LABEL OPERATION VARIABLE COMMENT

~)pac;:r less"

LABEL OPERATION COMMENT _-_../'0-__ _
r 8 spaces or more -,

C. FREE FORMAT (COMMAS FOR' SEPARATORS)

LABEL ,OPERATION ,VARIABLE COMMENT*

,OPERATION ,COMMENT FORMAT FOR NO LABEL OR VARIABLE FIELD.

* The comment can start anywhere after a blank following the
variable field.

,

o
."
1"11
::a

~
z
C)

-t
::z::
1"11

>
CA
CA
1"11
3:
m
~
1"11
::a

OPERATING THE ASSEMBLER

a character string. Each statement is term,inated by a carriage return (CR) followed by a line
feed (IF). '

The four fields used when free format input to the DAS assembler is, selected are:

a. Label field use is governed by the requirements of the instruction or directive. It is
terminated with a comma. If this field is not used, a comma appears as the first
character of the source statement.

b. The operation field contains the instruction or directive mnemonic. An asterisk following
the mnemonic specifies indirect addressing. This field begins immediately following the
label field terminator and is terminated by a comma.

c. The variable field can be blank, ,or contain one or more subfields separated by commas. It
must immediately follow -the instruction field terminator (,). Subfields can be voided by
using adjacent commas. This field is terminated by a blank that is not part of a
character string, or with a CR or IF.

d. The comment field fills the remainder of the statement (from the terminating blank of the
variable field to the next CR or LF).

If the first nonblank character of a source statement is an asterisk, the entire statement is a
comment.

The free format where commas are used as separators is shown in figure 5·1. Note that any
source input may use either free or fixed format.

5.1.2 Pass 1 . Symbol Table

During pass 1, the DAS assembler reads the source program and constructs a symbol table of
all symbols appearing in the source program. For each symbol in the table, there is a
corresponding value, usually an address in memory. Symbol table capacities are summarized
in table 5·1.

Table 5·1. 'DAS Symbol Table Capacities

Assembler 8K Memory Greater than 8K Memory

DAS BA 440 440 + n (BOO)

DAS MR 20 20 + n (800)

where n = number of 4K memory increments
above BK.

5-3

OPERATING THE ASSEMBLER

5.1.3 Pass 2 - Assembler Output

DAS produces a source/object listing of the assembled program, as well as an object program
in reloadable format. The object program may be output to any 80 device supported by the
operating system.

The listing can be obtained in whole or in part as the program is being assembled. The source
(symbolic) program and the object (absolute) program are listed side by side on the listing
device. This device can be any LO device supported by the operating system.

The listing is output according to the specifications given by the list and punch control
directives in the assembly (DAS 8A, DAS MR).

Error analysis during assembly causes error messages (section 5.1.4) to be output on the line
following the point of detection.

Figure 5-2 illustrates the format of the output listing. The columns are further described
below:

Address

Code

Mode

Line Count
(DAS MR only)

5-4

This column shows the current location
counter value in octal. It is incre·
mented for each word of object code.

Most entries in this column are words
of object code (in octal). The values
of symbols assigned via symbol definition
directives (EQU, SET, etc.) are also
shown in this column but are not part
of the object code.

An indication of the addressing mode,
as follows:

A Absolute value
C Common
E Externally defined
I Indirect Pointer
L Literal Pointer
R Relative address value

The assembler assigns a unique ascending
integer number to each non-blank input
statement in order of sequence in the
input source deck, starting with 1. This
statement number is listed in the fourth
column, and is used to cross reference
error messages to the statements which
caused the errors. Statements generated
by macro expansions are not assigned
a statement number. All statements
generated by a DUP directive have the
same line number.

'OPERATING THE ASSEMBLER

Symbolic Source
Statement

Address

014000
014000
014001
014002
014003
014004
014005

Reproduces the. source statements as
input, with additional lines showing
directive-duplicated statements and
macro expansion space.

Line Symbolic
Code Mode Count Source Statement

ORG 014000
000000 2 ABS ENTR
001002 3 JAP* ABS
114000 R

005211 4 CPA
001000 5 JHP* ABS
114000 R

000000 6 END

Figure 5-2. Output Listing Format

5.1.4 Error Messages

The assembler checks source statement syntax during both pass t and 2. Detectable errors
are listed during pass 2.

The error message appears in the listing line following the statement found to be in error.
Each line can hold up to four error messages.

The DAS error codes and their meanings are listed in table 5-2.

Table 5·2. DAS Error Codes

Code Meaning

*AD Error in an address expression

*DC Decimal character in an octal constant

*OD Illegal redefinition of a symbol or the
location counter

*E I ncorrectly formed statement

):tEX Illegally constructed expression

*FA Floating-point number contains a format
error

*IL First nonblank character of a source
statement is invalid (the statement
is not processed)

5·5

OPERATING THE ASSEMBLER

Table 5·2~ DAS Error Codes (continued)

Code Meaning

*MA Inconsistent use of indexing and
indirect addressing

*MQ Missing right quotation mark in
character string

)!CNR No memory space available for additional
entries in assembler tables

*NS
.

No symbol in the label field of a SET,
EQU, MAC, or FORM directive or no
symbol in the label or variable field of
an OPSY directive, or no symbol in the
variable field of a NAME directive.

*OP Undefined operation field (two No
Operation (NOP) instructions are
generated in the object program; the
remainder of the statement is not
processed), or illegal nesting of
DUP or MAC directives or DUP of a
macro call

~cQQ Illegal use of prime (')

>:<R Relocatable item where an absolute
item should be defined

~cSE Synchronization error: symbol value
in pass 2 is different from that
found in pass 1

)''(SY Undefined symbol in an expression

*SZ Expression value too large for a
. subfield, or a DUP directive specifies
that more than three statements are to
be assembled (m parameter)

)!'TF Undefined or illegal indexing specification

>:cUC Undefined character in an arithmetic
expression

*UD Undefined symbol in the variable
field of a USE directive

OPERATING THE ASSEMBLER

Table 5-2. DAS Error Codes (continued)

Code Meaning

*VF Instruction contains variable subfields
either missing or inconsistent with
the instruction type

~CXR Address out of range for an indexing
specification

* = Invalid use of literal

*11 Implicit indirect reference when I
parameter is present on the IDASMR
directive.

5.2 ASSEMBLER OPERATING PROCEDURES

Since DAS MR operates under MOS or VORTEX and uses the MOS or VORTEX 1/0 control
system, the 1/0 devices can be defined as required.

DAS MR uses the secondary storage device unit for pass 1 output. It inputs the symbolic
source statements from the processor input (PI) logical unit in alphanumeric mode, and
outputs them in the same mode on the processor output (PO) logical unit. When DAS MR
detects the END directive, it terminates pass 1, returns to the beginning of the source
program, and begins pass 2. During pass 2, the source statements are the input from the
system scratch (SS) logical unit, a listing is output on the LO unit, and the binary object
program is output on the 80 unit.

Sections 5.2.1, 5.2.2, and 5.2.3 describe DAS MR operations in different environments. DAS
8A operation is described in section 5.2.4.

5.2.1 DAS MR Operation (VORTEX I/VORTEX II)

The IDASMR directive schedules the DAS MR assembler with the specified options for
background operation on priority level 1. It has the general form:

where:

each p(n)

IOASMR,p(l),p(2) ... ,p(n)

if any, is a single character
specifying one of the options
shown in table 5-3. The IDASMR
directive can contain up to six
sl:lch parameters in any order.

5-7

OPERATING THE ASSEMBLER

Table 5·3. DAS MR Options for Background Operation

Parameter Presence Absence

8 Suppresses binary object Output binary object

L Outputs binary object on GO Suppresses output of binary
file object on GO file

M Suppresses symbol-table listing Output symbol-table listing

N Suppresses source listing Outputs source listing

E Assembles multiple register Flags multiple register
instructions instructions with '*OP error'.

I Flags implicit indirect Assembles implicit indirect
instructions with ' >:< II error'. instructions.

The DAS MR assembler reads source records from the VORTEX PI logical unit on the first
pass. The PI unit must be set to the beginning of the source file before the IDASMR directive
is executed. This can be done with an IASSIGN, ISFILE, IREW, or IPFILE directives. A load
and-go operation requires, in addition, an IEXEC directive. Details of the preceding·
directives are given in the V70 VORTEX I or VORTEX II Operating System Reference Manual.

Shown below is an example for scheduling the DAS MR with no source listing but with the
binary object output on the VORTEX logical unit GO file:

IJOB,EXAMPLE
IDASMR,N,L,B

IJOB (as well as IENDJOB or IFINI) initializes the GO file to start of file. If BO is assigned to
a rotating memory partition, a IPFILE,BO"BO must precede the IDASMR directive to initial
ize the file (unless the assembly is part of a stacked job).

DAS MR uses the secondary storage device unit for pass 1 output. It reads a source module
from the PI logical unit and outputs it on the PO unit. The source input for pass 2 is entered
from the SS logical unit.

When an END statement is encountered, the SS unit is repositioned and reread. During pass
2, the output can be directed to the 80 and/or GO units for the object module and the LO
unit for the assembly listing. The SS or PO file, which contains a copy of the source module,
can be used as input to a subsequent assembly.

DAS MR has a symbol-table area for 175 symbols at five words per symbol. To increase this
area, input before the /DASMR directive a IMEM directive where each 512-word block
enlarges the capacity of the table by 100 symbols.

5-8 -

OPERATING THE ASSEMBLER

A VORTEX II physical record on an RMD is 120 words. Source records on RMD are blocked
three 40-word records per VORTEX II physical record, and object modules on RMD are
blocked two 60-word modules per record. However, in the case where 51 = PI = RMD,
records are not blocked but assumed to be one per VORTEX II physical record. When an input
file contains more than one source module each new source module must start at a physical
record boundary. Unused portions of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may be ensured by following the END
statement of the previous source module with two blan k records.

Figure 5-3 shows the listing output resulting from assembling and executing a sample DAS
MR program under VORTEX II.

1..11281.3
13128; .. 8
lJ'28'52

IJO"B, SWITCH"
IKPMDDE,G
IDASMR,L.,I

Figure 5·3. Example of Assembled and Executed DAS MR Program"
Under VORTEX Control

5·9

~~ PAG! 1 01 .. 16_'5 SWITCH VORTEX OASMR 1326 HOURS 0
"U

0 1"'1 :::a
NAME S..,tTCH t ~

000000 R 2 SWITCH EQU * z
3 e:XT PIFeB,L.OFeS G)

"'TI 000001 • ~)(!QU 1 -4
aQ' :t:
c ft00002 A 8 ! EQU a 1"'1
"'l
CD 00001. A e tauNT !QU 20 SWITCH COUNT »
(J1

(J)

~ 000050 • , REeL. EQU COUNT.CrJUNT RECDRD LENGTH (IN WDROS, (J)
1"'1

C:rr1 00000' A 8 'I lau • PROCESSOR IN'UT !:
:s >< 000005 4 • LQ EQU 5 L.ISTING OUTPUT III
Q. f»

r-
CD 3 000000 • to WAIT EQU 0 WAIf 'OR to

1"'1
"'l '0 :::a
<CD 000001 A 11 NowAtT IQU 1 IMMEDIATE R!TURN o 0 :::a_ 000001 A 12 ASCI! IOU 1 -4»

000000 " 13 .T •• T EQU • 1"'1 (I) >< (I) ,. JOLtNK P!,IU'F,R!CL. (") CD
o 3 000000 00'50! At :s g:
0+ CD 000001 000000 I a Do
- f» 000001 001.04 A .-.:s 000001 0000" It 8 Q.

at:' 00000' 000050 A
:J CD 1S IOl.tNK L.O,CNTRL,fte:eL+l c: n
CD c 000008 '00810' A Q.O+
--it 00000' 000001 !

c 000001 001.05 • »
(J) 000010 0000'. R
!: 000011 00008l A :::a
"U l' tf£AO READ pr,el,'I,NAtT,ASCll
"'l 000011 008505 A 0

OQ 000011 000000 I "'l
f»
3 00001' 100000 A

000018 Gl000' A
OOOOtl 000000 I
00001' 000000 A
000010 :000000 A

l' "£ADCR STAT REAO,!NO,!ND,END,R'ADtR

000011 008505 •
000021 000000 E
000023 GOOOt2 R
00001' 000071 R
00001' 00007' R

." OOO()28 0000" R
OQ'

0000" 000021 R c
~

000030 008030 • 18 LOX! COUNT CD

UI

~
c:~ PAS! 2 01.16-18 SwtTCH VORTEX DASH" 13'1 HOURS :3 At

t3
~'a

000011 00002. A <CD
0 0 :::0_ 000032 R ,t DOlT !QU * ~> 000031 008015 A .0 LOAf aUF'.t,x GET A NORD rr'lcn
><cn OOOOSI 0000" R
(")CD 00003' OO •• SO A 2'1 L.RI.A • Slrl!'C~ 8"IS o 3
:3 2: 00001' 00S2" A 2t C,. INY!R' 'DIN,r. CD o Q. 0000S8 00'018 A 2~ LOB! BU"._ECL.t,X GET INYERS, WORD -At
c;-~ 00001' 0001" It o Q.

OOOO~O 0010S5 • a4 STAt 8U".R£e~.1.X SAV! ORIG!NAL ,WITeMln WQRD ::l rr'I
:::t >< 0000.' 0001'" R ::::J CD
s:::: (")
<b C 0000.100.050 A 2S 1."1.1 8 SWITCH BY'eS OF INVERSI WORD Q.
--!. 0000.1 ftO!2" A 28 c,x A!ITQRE POINTER

c oooa.. OOl08e • I' STe! 8U,".t,)(SAYl INYIRTED INY!RS! waRD > 0 en 0000.5 '00001. R "'0

s: 00004' oos~.. A 28 OX .. COUNT DONN rr'I
:::0

:::0 0000.' 0010" It 2. JXN! DCIT RE'!AT t, MO"! >
"'0 :::!
0 000050 000012 " z

OQ 30 WR!T! ~RITE L"FCB,LO,WAtT,ASCII
C)

~
~ At

000051 ,001505 A 3 :::E:

00005. 0000t3 ! ."

> 000051 '00000 • en

00005' 010.08 A
en
rr'I

OOOOSS 000000 IE ~
U1 m
.:... 0000.". OO.~ooo • r-

~ - ."
:::0

• (J'l 000051 000000 A 0
...... 31 eUSY STAT WRITE,ENO.ENO.E NO,BU5V

"'U
N

1"11
:0

000080 00e505 • >
000081 000022 E

::! z
000081 000051 R Ci)

." 000013 0000" R
ciQ" 0000.' 00001' R

::l:

c
...,

~ 0000e5 000011 R):II
(1) fA
U'I 0000" 000080 R fA

W 1"11

0000" aOlOOO A 32 JM' READ READ lOME MORE 3l:
CI"I1 0000'0 000012 R

m
::::s >< r-
Co C» 33 END EXIT

...,
(1) 3 :0
~ "C

000011 006505 A <CD
o 0
:0- 0000'1 00000. •
....):11 0000" 000100 A
1"11 en >< en 0000" 1202.0 A 3" CNTRL DATA t , ""tNT CONTROL
(")(1)
o 3 OOOO'S 35 8u'F 8S1 RfCL
::::s !2:

000000 " 3ft ENO "ART - (1) (3 Co
- C»
O'::::s
o Co
::s 1"11 PA~! 3 0'·'16-'8 SWITCH VOR'rfX OASM~ 1326 HaUflt.
:t >< ::s (1)
c: n
~ c ENTity HAM!S Q.-
'-~ 000000 It SWITCH c

):II EXTIJtNAL NAMES
fA OOOOIS I LO'CI!II 00001' ! 'IFC! 000011 ! VIEXEC 000011 f VI Ice
3l:
::tJ 000011 r VI!O!~T

"'U ~Y"80LS
~

000001 A ASCI!~ 000002 , B 00007! ,. au" 000010 It 8USY 0
OQ
~ 000014 • eNTRL. 000024 A COUNT OOOOJt ~ DO!T 0000" ft IND C»
3 000008 A LO oe0051 ! LOFel 000001 A NOWAIT 00000 •• '1

00001' r '!'C!~ 000012 R REAO 00002t ~ R!ADCR 000050 A -eeL
000000 " IT AR'~ 000000 R SWITCH 0000'2 ! VI!X!C 000052 £ vlIOe
0000', ! VI!OST 000000 A WAtT 000·0'1 " WRIT! ooooot A x

o ERRORS lSSEMILY COMPLETE

U1 -w

~
GQ
c c;

~
c:C'
~ C»

t 3
~ "a
<CD
0 0 :::u_
-t:a:-
1"'1 fit

>< =
(") . 3 o c:r
~ -a l
- C»

-n-&,
acw
:r ~
:i c Q.;'
'-a.,

~
B:
:::u
'1J a
';
a

13'.'111 IIXIC

'Ie! 1 0 •• ,S.'8 SwtTCH

VI'M!. A '11~5
V"NRM A 70~07
VIAL'" "002

Ya,AI. A .3123
YI"U'A .258.
VICLDK A .2180
VI.,,,., , 78'0'
'ID"L A '52S1

V'IDC I .'2'a
SWITCH A 01000

YJ,"ca A 11335
10'00D A 7;()2t:t
VaSERy A fJ! •• e
V'!ROR A 8301'
VI"P A 82351
II,e, A 7SSt'

V'OPI'" A 75~3'
TIDI!R A ,ell'
VlrXle A ,~e ••
ritA" It 00800

YOIltT~)(L"GEN

Ville A 712~4 VIERR A 108S1
V"NR A 70013 VIT8SR A .7082

VI'N!I A 8515A YIE"' A 8se05
I'~A. A 11170 . VIP'DN A 120'5

V.MPER A .2287 VIM'''' A '.1"
SIFts , 7S.'0 V.G'CI A 15.'0

VITI A '5303 TIOILI It 7sse3
Ta!NTH , 7S18S VltO·S' A 71 II.
pt,el , "'" L,D,ea , 1550.

rlLtT' A 007'7 r.,£I)J A 011.0
"eT!NS

* BC'OL,eC'JP
t
t

TNUOC HCTIWS 02
,SD.OW NIt HTIN!L CROtER fNUOC ... 'NUDC

• TUftN! ROIIEeORP
TUPTUrJ'tlNITSIL I

as RO' TJAW 0
NRUTER !TAJDEMM! t

t

* LC£R,FfUI,I'
t+LC£R,LRTNt,OL

tICSA,T!AN,IP,BCFIP
RCCA!R,DN£,DNE,ONI,DAER

'NUDe
* O"OW A TEG X.S."U8

EMAN
UQ! MeTlw.
,XE
UQe: x
UQE I
UQE TNUOC
UQ! L~ER
UQf I'
UQr elL 0
UQ! TIAW '1J

1"'1

UQ! "AWON :::u :a:-
UtilE II'SA ::!
UQ! TRiTS z

G)

I<NILO! -t
KNILD! :::c

1"'1

OAc'. DA£R :a:-
TATS RCDAER fA

fA

.IDL 1"'1
B:

UQ£ "aD CD
~

IADL 1"'1
:::u

(Jl

......
+:>

."
iii'
c c;
U'I

~
C:I""I ::s)C
CL C»
CD 3
... "g

<ii'
0 0 ::0_
-4>
..., CIt

>< CIt
CD

n 3
o cr ::s _
.. CD a CL
- C»

....... ::s
8 CL
:::J 1'1'1 :t= :::J n
c: c

!z:
~
~

3:
::0

"0 ...
o
IQ ...
C»
3

IfTY" MCTIWS 8
R!TNJOP TREVNI

O~DW ESREVNI TEG X,l.LC£R~'FUe
DROW DfHCTIWI LANJ01RQ EVA! _,t+LC!R.fFUe

DROW !SREYNt '0 SE'" MeT!WS 8
RI'NIOP EROTSER

DROW £SREVNt DETREVN! EVAS X,1.fFU8
NWDD TNUDe

EROM '1 TAEPER ltOD
YICSA,T!AW,OL,eCFOl

YSUB,DN£,DN£,DN[,ETJRW
fROM EMDS OAER DAER

IORTNOr. 'N'IRP ,
·LeER

'RATS

ALRL 0
"0

)(PC ITI
::0

E80L. :.:-
::! EATS z

8LRL
G')

XPC -4 ::c
EeTS ITI

RXD >
~

ZNJCJ en
ITI

ET!RW ET1RW 3:
GJ

TATS VSUB r-
ITI

PMJ ::0

T!XE D~E
"AD LRTNC
sse f;UB
DNE

OPERATING THE ASSEMBLER

5.2.2 DAS MR Operation (MOS)

The DAS MR assembler may be loaded and executed under the Master Operating System
(MOS) using the following directives:

IASSEMBLE
I A,p(l),p(2), ... ,p(n)

This control directive directs the executive to load the assembler. The parameter string
specifies optional tasks for the assembler or executive to perform after the assembly "is
completed. These tasks are:

Parameter Definition Default Assignment
N No source listing Source listing

B No binary object Binary object program output

MAP Memory map on load-and-go No memory map on load-and-go

L Load-and-go after assembly No load·and-go after assembly

M No symbol table listing Symbol table listing

To read the same physical symbolic source statements for both assembly passes, input:

/ASSIGN po-nUM,SI-PI
/ASSEMBLE

The processor output listing serves as a copy of the program; it can be input for another
assembly.

During a DAS MR assembly operation, if logical unit SS is not a magnetic tape unit, a flag bit
is set in the peripheral control word pew. When the end of pass 1 is detected, this bit is
interrogated. If it is set, DAS MR does a status check on logical unit PO, prints the message
RELOAD SOURCE on the Teletype, and halts. When the computer is placed in the run mode,
DAS MR rewinds logical unit SS and begins pass 2 of the assembly. If the flag bit is not set
(SS not equal to magnetic tape), no status check is done on PO and DAS MR immediately
rewinds logical unit SS and begins pass 2.

Figure 5·4 illustrates a sample program assembly under MOS.

IJOI.!X'''''L! "
IDATf,OI.17.'8
IASS!~8L!,8,L

Figure 5·4. Example of Assembled and Executed DAS MR Program
Under MOS Control

5·15

~ PAGE 1 Ev PLE 08-11",16 0 - "V
Q') I'T1

:0
1 NAfI4E STRT >

106812 • 2 C'f'-' EQU ~ln6612
::! z

000000 3 STRT BIS (\ G')

." 000000 002000 • ~ WAlF !,36,NAME -I
ciQ' OOOOft t 000000 IE

:x:
c

I'T1 .. 000002 001005 A > CD CA
U1 000003 0000'. J' CA

~ I'T1

C::I'T1
000004 0000 tl1 iR 3:

00n.005 002"00 A 5 STAT e, ••• ,.+3, •• 2, •• e m
:s >< r-
0.1»

000008 000001 E
I'T1

CD 3 :0
"'''C
3:i" 000007 OOOOO! A
00 000010 ooOOt. " CA-

n> 000011 000014 R
o en OOootl 000014 R :s en _CD

OOoOt3 oooooe " '" 3 2.g: OOoot. 002000 A • eALL EX!T CD
0'0. 00«)015 000000 E o I»
~ :s 000018 10eel' A 1 NAM! DATA e~l'.'OD!AN J, GASTON' 5' 0.
t: I'T1 000011 1."04 •
(1) >< 000020 1.2101 A QCD
'-" (")

c 000021 1A7240 • -CD 000022 1.5258 A 0.

0 000023 12030' A > 000024 "0123 A CA

3: 000025 152311 A
:0 000018 1"240 A
"V 000027 IOee!! A 8 OATA . CRL','.7e N. GRAND' '" 0 000030 134S81 A OQ

'" I» 000031 132840 A 3
000031 ,.'Iee A
000033 120301 •
000034 l!l~Ol A
000035 l"~OA A
000ft36 tOfJ~lt' • g DATA CRL,.tORANGt! DRANGE'

001)03' '.47722 A
0000.0 1.,,718 A
0000'1 \'37015 A
0000'2 120240 •
0000'3 1~02'O A ..., 00"0'" 147722 A

ciQ" 00n045 140116 A c
-,:

0000'8 1.3'C!' A CD

U'I 000041 105612 A to nAT. CRLF,'CAlIF J2ee1 1 ,CRL',O ~
C:fI'I
:s >c a.C»
CD 3 PAG! 2 EXA""LE 08.17.'8 -':"0

3: CD
00 000050 141701 A tA-

n> 000051 1.831t A o (It
:s (It 000052 t'32~n A _CD -,: 3 000053 1202'0 A 2.2:

CD 00008A 1102"0 A O'a.
o C» 0000'5 13.88'- " ~:s :r a. 000058 133!88 A
~ t:' 000"" ,'3e.o A
Q..CD

000010 '08812 A '--"n c - 001.'08, oooo,,~ A CD a. 000081 11 L"T 8£8 " 0
> tl EXIT !)(T 0

" tA OOOGOO lit II !Nn STitT ITI
3: ;u

ENTRV NAM!I > ;u
:::!

-0 000000 ~ STIt' z -,: EXTrRNAL HAM!, G) 0
OQ
-,: 000015 E ExtT 000008 ! loes ~ C» ::c 3 S.VM.OLS ITI

10.812 A CRLP 00001! E EXIT 000006 E It}es 000081 ~ L.AS' >
tA

000018 R HAM! 000000 It ST"T tA
ITI o !~RORS ASS!M8LY COMPLfTf 3:
CD

U'I - ...,
'J ::a

OPERATING THE ASSEMBLER

II:J

2' ." C zC> __ cC)

(l)O.C\f
czo.
"'~ ac
-t!) ..,
.• al

ZZt!)L
c Z
u.a.n4....1
0,," ,*,4
o 0.'0~,

Figure 5-4. Example of Assembled and Executed DAS MR Program
Under MOS Control (continued)

5.2.3 DAS MR Operation (Stand-Alone)

DAS MR may be loaded and executed under control of the stand-alone FORTRAN IV loader.
The operating procedure is as follows:

a. Load the stand-alone loader using the binary load/dump program (BLD II). Set A register to
zero before loading to prevent execution of the stand-alone loader. At completion of
loading, the execution address of the stand-alone loader will be in the X register
(013260).

b. Make the following modifications to memory:

Location
5
6
7

New Contents
0210
0210
0210

c. Execute the stand-alone loader by setting the P register to the execution address
determined in step a and pressing RUN.

d. When executed, the stand-alone laoder will print "LN" on the Teletype. At this time,
peripheral device assignments may be altered by entering the one-digit number of the
old logical unit followed by the two-digit number of the substitute unit. DAS MR uses the
following logical units:

5-18

Logical
Unit
Number
3
4
2
6
8
9

Logical
Unit
Name
PI
LO
BO
GO
SS
PO

* Device Address 010
** Device Address 011

Default
Device
Assignment
Card reader
Line printer
Paper tape punch
Dummy
Magnetic tape* 00
Magnetic tape** 10

OPERATING THE ASSEMBLER

As an example of device reassignment:

LN
300400201806900

Would reassign:

PI = Teletype Keyboard
LO ;: Teletype Printer
80 = Teletype Paper Tape Punch
SS = Teletype Keyboard
PO = Dummy

For a complete list of peripheral assignments, see table 5-4.

Table 5-4. List of Peripheral Assignments for Stand-Alone DAS MR

Logical Assignment
Unit
Number

0 Teletype keyboard and printer

1 Teletype paper tape reader and punch

2 High-speed paper tape reader/punch

3 Card reader

4 Line printer

5 Dummy

6 Dummy

7 Card punch

8 Magnetic tape unit 0

9 Magnetic tape unit 1

10 Magnetic tape unit 2

11 Magnetic tape unit 3

12 Unformatted paper tape I/O (HSPT)

e. Following device reassignments, the stand-alone loader will print "IN" on the Teletype. At
this time, the operator should ready the DAS MR object on the input device and respond
by typing the proper designation on the Teletype:

5-19

OPERATING THE ASSEMBLER

5·20

P = Paper Tape Reader
T = Teletype Paper Tape Reader
0, 1, 2, 3 = Magnetic Tape Controller

0, 1, 2, or 3 respectively

To enable print out of a load map, the operator must type "M" immediately following the
device designator. Following the typed characters, the operator must type a CR (carriage
return) to initiate loading of the DAS MR object.

If an error is detected, the loader types a 2-character error message code and halts. To
continue, the operator should remove the cause of the error (refer to error messages),
ready the input device to read from the beginning of the object material, reload the
loader program, and repeat the above procedure.

Error Messages

The following 2-character error messages are output to the Teletype whenever the cor
responding error condition is detected:

Messages

PS

LS

CM

DA

TX

RD

RC

sa

CK

Meaning

Program Size Error. Program memory requirements exceed
available program/common storage.

Literal Size Error. Program literal requirements exceed
available literal storage.

Common Error. The program contains conflicting size
definitions for a common block.

Data Error. The program attempted to overlay the loader,
loader tables, or resident programs.

Text Error. The program object text contains an illegal or
erroneous loader code.

Read Error. The loader encountered a read error while
attempting input of object text.

Record Error. The loader inputs an invalid record type.

Sequence Error. The loader inputs an object text record
with an' invalid sequence number.

Check-Sum Error. The loader inputs an object text record
with an invalid check-sum.

f. After DAS MR is loaded, peripheral devices for logical units 3, 4, 2, 6, 8, and 9 must be
loaded from the Run-Time I/O tape. This is accomplished by placing the Run-Time I/O
tape on the input device and repeating step e.

OPERATING THE ASSEMBLER

g. After the Run-Time I/O is loaded, the I/O control program must be loaded from the Run
Time utility tape. This is accomplished by placing the Run-Time utility tape on the input
device and repeating step e.

h. When all externals have been satisfied the loader will halt with the P register = 3. To
execute DAS MR, the operator should press RUN.

Upon execution, DAS MR will input source statements from logical unit (PI), output source for
pass to logical unit (PO), input pass source from logical unit (SS), output binary object to
logical unit (BO), and output listing to logical unit (LO).

Source input to DAS MR terminates upon input of either an EOF or a source record containing
a slash (I) as the first character. A slash record will cause an end-of-file to be output to the
BO device.

5.2.4 CAS SA Operation

The DAS 8A assembler may be loaded and executed by the stand-alone procedure described
in the following paragraphs.

Loading the Assembler. Load the assembler program into memory using the binary load/dump
program (BLD II). Execute it by entering a positive, nonzero value in the A register during
loading, or by clearing all registers, pressing (SYSTEM) RESET and entering the RUN state.
(Set RUN indicator on and press START).

During execution, the program first determines the amount of memory required. It then
stores in address 000003 a value one less than the lower limit of BLD II. This is the highest
address that the assembler can use without destroying part of BLD II.

DAS 8A comprises two sections: The I/O section allows the specification of I/O devices for
assembler input and output. The second section is the assembler itself.

I/O Section Operation. The I/O section of DAS 8A, using the Teletype printer, makes three
requests for definitions of I/O devices:

ENTER DEVICE NAME FOR xx

where xx is one of the I/O function names: SI (source input), LO (list output), or BO (binary
output), respectively.

I/O Device Assignment. Assignment of I/O devices is accomplished by responding to each
request in turn by means of a Teletype keyboard input which names the desired device,
followed by a carriage return (CR). The acceptable device names for each request are listed in
table 5-5. If the default assignment is desired, press CR only.

If an incorrect device name is type, the message:

DEVICE NAME NOT VALID

is output and the request repeated.

5-21

OPERAtiNG THE ASSEMBLER

To terminate the output of any line to the Teletype, press RUBOUT. The error correction
feature can be used any time during I/O device specification.

When I/O assignments are complete, the I/O section uses BLD II to load the assembler
section into memory.

To restart the I/O section before the assembler section is loaded, set STEP indicator on, clear
all registers, press (SYSTEM) RESET, set RUN indicator on and press START.

Table 5·5. Acceptable I/O Devices

Assembly Device Description Default
Function Assignment

SI (source input) TR Teletype paper tape read TR
TY Teletype keyboard
PR High-speed paper tape

reader
CR Card reader (026 code)
CR1 Card reader (029 code)
MTnn Magnetic tape

LO(list output) TY Teletype printer TY
LP2 Line printer (70-6701)

BO (binary output) TP Teletype paper tape punch TP
PP High-speed paper tape

punch
CP Card punch
MTnn Magnetic tape

Assembler Section Operation. When BLD II relinquishes control to the assembler section, the
computer halts with 000001 in the program counter (P register). For an assembler pass 1, set
SENSE switch 1; for pass 2, reset SENSE switch 1 and set SENSE switches 2 and 3.

If pass 1 is selected, ready the SI device with the source input media and set RUN indicator
on and press START. '

For pass 2, ready the SI device with the source input media, ready the 80 and LO devices, set
RUN indicator on and press START.

The END directive terminates both passes 1 and 2. Pass 1 terminates with 000001 in the P
register and 0177777 in the A register. Pass 2 produces the binary object loader text and
program listing and terminates when END is encountered with the same register values as
pass 1. A MORE directive causes the computer to stop and wait until the SI unit prepared with
the additional source input media, and the RUN state is entered. MORE is indicated by
0170017 in the A register.

5·22

OPERATING THE ASSEMBLER

The program listing can be suppressed during pass 2 by resetting SENSE switch 2, and the
binary output, resetting SENSE switch 3. Error messages cannot be suppressed and are
output on the LO device as the error is detected during pass 2.

Synchronization errors halt the assembly with 000777 in the A register. To continue the
assembly, set RUN indicator and press START. The assembler resets the location counter
value to that assigned on pass 1, prints error message 'leSE, and continues the assembly.

Pass 2 can be restarted or repeated for extra copies of the assembled program without
repeating pass 1.

At the completion of pass 2, the assembler can accept another assembly using the same I/O
devices. For other I/O devices, reload the assembler program,starting with the I/O section.

To restart the assembler, set STEP indicator on, clear all registers, press (SYSTEM) RESET,
set RUN indicator on and press START. The assembler halts with 000001 in the P register
and is ready to accept another assembly.

Using Magnetic Tape. The DAS 8A assembler can communicate with any of the magnetic tape
transports on a controller. Up to four transports may be connected to each of the tape
controllers. A configuration may have one to four magnetic tape controllers.

The magnetic tape transport number and controller device address is specified in the device
name specification of the I/O Control Section. A listing of magnetic tape transport device
names with their corresponding tape transport number and address is given in table 5·6.

Table 5·6. Device Names for Magnetic Tape Transports

Device Transport
Name Number

MTOO 010 1
MTOI 010 2
MT02 010 3
MT03 010 4

MT10 011 1
MTII 011 2
MT12 011 3
MT13 011 4

MT20 012 1
MT21 012 2
MT22 012 3
MT23 012 4

MT30 013 1
MT31 013 2
MT32 013 3
MT33 013 4

5·23

Ul
N
.Po

" cO"
e
;;
U1
I

91
o
o
Q.

5"
co
m
)(
I»
3
"0
CD

DAS CODING FORM 1'1 ,'< 3

*fXAMPlE SQUARE R¢¢T PR0GRAM
Lf,B[L IOPERATION VA-FllilBL E AND COM','U;~ F ItCo loun ;FICATION

~·X lli;~~;:T~~~ri~tI~.;}~~Ji!~!~U~:!A~~~{ ~ ~~~~~ s S~~I/:~T~~~l --.-

*, , ·+-~t ~~r),+~2) .. ,NjOjSUtAJ __ ,JL~T JJJULF'tVi _S_Q_IJA-,~_E: _ _ R(i'>,¢T. IS ltTeAl L -4-. ,3, (h+3).,

~~_~~Ho;R~:i~l~ ~14~i~--8,~~~~-I~--~~-I\I~{-R ~.A{~-~/l~-s-~i-~-J\-~-~-·-f~¢-~-c 'T-A-i- L ~c •
~-,~Jm.-+--h-4Hj , . I •. ~ .. _______ . ._ . __ --~-_-_-_ __+~ _____ ._. - .. --------4--.---------, ... ___ .• ' _ +-"-. ____ ~ .. -

~-:: i -·trj:~£-:t~~~T---: • J:~,A~~-N~-D~-~-fS.-L-.-- u __ m __ ' ___ d ___ --____ -----, -----=t~--- -----~
--

~;~)cL . . L.jD;8;. c ~t 1L0;f4- iL.~.Lt~L.-.l<RJ--.- .. -.- -.--....... - . ~~,_. ; ,LIL: '._: .X .. s ... ~-~Q7,77S0:R-~-~-I,.~-Wl.rJL-JRR¢J~ .. --Kflt)-'~.N,
. .T!8i_. ~_ S_QR:L.L. , __ , Nt> MAL RETLIRN ST¢RE RESULT

- - . -- --- - t-

_ .~I= ~=~ -- ~-~=t=t==-:-~=~
!Jt .. '--1 • 'II' ~l."" L I h- i~rx~ --rrfJ' r :--' --=~-~-~ti!~D~x-()~i~fQ~;~1=N~~~i·~J .N~£ -

-J!r!-+-J.tL+-H-+--1f--f!-!~:'-lL,-_!___L--'-~-~_fR~:f~:.LT~U~R NF 0R! ;NifXT~_~_~-----u--- -- --------- ---: ,c-r+
J{MA:L_ JlAJJL~ _____ > __________________ _______ , ______________ I ___ ; ~! _1

I i

- - ___ -- - - -<1--- • __ ",, __

. --- •.. ---- - ---- -. ------

coo»
~ » (') o C/} 0 ., ~ en (X) _.

0· » cS
en "0 co
=r"x o 0 0>
=E <Q 3
::JI»"O
-.3 CD ::J _.
_eno
-·en -co =r 0>
coO
m=E»
O1::Jen
I _. (X)

:---J:.»
cO· "0
c .,
., 0
COco
Cf~
~3
» w·
::J en
CD=r
x 0
0> =E
3 ::J

"0 -.
-::J CD _
o cO·
-c
0> .,
::J (I)

0>01 en I
enOl CD·
3»
O"::J
-(I)
CD X
Coo>
03
»"0
C/}Cfi
0)0 »
"00>
., ::J
o 0> co en ., en
0> (I)

3 3
=EQ: _0 CO
:to.

o
."
m
~ »
::!
z
C)

-4
:J:
m
»
(I)
(I)
m s:
'(g
r
m
~

U1
N
U1

" iii
c
i
en
I

91
(')
o
c:t
5"

eQ

m
>C
m
3
'tJ
CD
no
::I -5"
c
CD
Q, -

OAS COOING FORM 12 "5

*
LABEL OPERAtfON VARIABLE--AND COMMENT FIELD

~~l:~rNJ.t~:c-=so ieo.-.. =~ ~~B:~~-:t:_:R;;L;:l ~::: l B:-::: I :.::~ .. ~ I M AT ION

~: ~ :lIit j)Cf+~~.F:Ll11~;";;;-~1P;;N<IiLL:--
If' J)[:!!L "~_}jli!!-TII: l"e"i8.Vi/lF,h.SQO!, R,E _~'¢J_:L_L" ___ T.!Lf~ __ 8 ___ ~_E.GLS.J_~_R_. T'1.E _.
~-r.l-tX+-.•.. $E" .. -'t~~R.' l;~._ ISA:V,EID; iAiH .D. _R.EP!~A~_~~ .. _.~~_ ~~.~JT·. _f~R¢g_.R_~r_f}_RN FtUt
*; i ~SJ !O feE IR:9S----'-~....:.'1' F 'N.flG!AIT:1 :"1:,; iN U MSER,S AT n 2 f ~c6M CAL L •

t~~-!i1r:~~.;t:y /l i ci_R~ F go i" -r--u l_-CW I TlL.sJ:IJ1J,~~:~g:US IPF ~N_ UN.B.E.~. ~
~ . I - .,

-'+-+-'+'---I----'r-t-+-+--+'-4 t-+-t--I.-r-+- -"--"-L...-f-+-t~-f-t--+-t-+--F-P....,,!L,,-+ (e 'w., E ~ 'ER i E T URN ·A I> 1) 1<1 ,S S A V E J)

________ "7 -'-+--fS'-t:~"-:.J:-M-p::~t-=~fs-f~§<~~= -=~~ ~=- ~~=-~--~ -- -. : ------
~-'-- 'I ~'MI*' . ~~~. , . . j "~JUl~Jt~ ~ET~!/lN~T!6 ~N+.2 ~ ~-'-'- - -
:. i jj~l:i , · .)i:~'::~ ___ '~ __ : ~'~;'~E~~t!~;g~!~T-AP-pi~-xi-NATI(/)N

lA~iII~
F+-'--F+-+-'--+-+-+""-j!--II-!--Ft--+-----'----'--...-J.--r-t-~~=--~"-----+---I-___,_,- ------- ----.. --.---- - .

IOENTIF ICATION

-.. ~-----

.+--

-------....,.

~---- ----

---- ---4-
51 52 53 jt·)5 ~ "7 :; "<;' ~~ 01 '.: !-; ~.: ~. 66 ~: 02 " OJ 71 72 n ;.c 75 ie; ;:' 78 79: eo

o
"'tI
m
:IJ
l>
:::!
2:
C)

~
::I:
m
l>
~
m
3:
to
r
m
:IJ

(J'1

N
(J)

~

cO'
e
(;
U1
I

PI
n o
Q.

S-ea
rn
>C m
:I

"C
CD -n o
:::s -S·
e
CD
Q. -

DAS CODING FORM 133

I~"" 10~"',,"N I I "","c' ,~o COMM"" ",eo I""."" ,no,

,. , c-;~l~~t 'f rRlC

- .. _", ' _., u.....:;!.~...;....!..:...L-:-'!'-'!!O'_-=-
efi:-II:~:;~~=-:~r:t~ ~:~~lJotATI(61\

: I '#!§M' !' t1")..1:+.-+ : I -fP-t---, _~_ J~~~____________ '. 1 ' _ AP_P.R~X~/·\ATI.o_N_-----,
E~-"',I-iI.J_ : ... Ll.D .. __ .pL __ . '---i_ ~_i.A.!YIE.' _-i-._-_........;._-_. _.:_ ; !, ..T$.B..£:.'R __ X.' .R ___ ,_ _____ _ ___ _ --'-- ~ 1.: _ INJ~j_,)'S~T " UPOA,Tr: ENT'RV TO n-t3

--i --'-~, -"~I 11,ir,!:V-~-4, f'..s..u.------' --=t=:..BA~JL-UL1AAI.N--~_G.RAM--NMB.R;-+ I j-___ ' ~_ , _ _

IA,PR,XI! 8IS:5: ' I

ls~,EIII18~islllll+!tP:.1 I ~i;!, iE:X.L,El~~,~~rm~~~U#\~P~~R-=E§i~
I! I fND I '1 I! I I! ! I I, ! . , I: ; I

I ' I , ' ___ . __ ._.1. .•.•

-+---- -

1--, I I I +--+-_~_._ . -I ,--
I ;

III i IIII1 ; ; I I : 11-t-H-i-U -l~~ I:: II i III :~:~; ~-=~j-,~.---------------------'----.'---

--- - -- - - ---,--- -~ -:~.;;;-., .. ,,;: ;, "-Cf.;~ ;-;;- ;-.. ";;,, • 0 " ., ,J~;:on ="-.-:;;

o ..,
m
::D
l>
:j
Z
G')

-I
:::J:
m
l>
(I)
(I)
m
3:
CD
r
m
:D

PAGE .1001'101

oC'o~oo
OOO~oo 006030
OOO~O' OOOf.\31
000502 025515
00050J 002000
0005";! 00062~ R
O(H'~()!5 000111
OOO~Of.i Oti!5566

000!'i01 0011'\40
01'0510 OO~!5\4 R
OOC\~11 0C'5J44
O('H')~12 001000
000513 000502 R
000!514 01'10"00
001'1515 000031
0(HI!516 00003fS
onO!'\t7 00{In44
00O~20 Ot'tOO~C'
on0521 117771
no0522 0'00144
onnS23 01'10001
on0524 000000
000525 0001'100
000~2~ IH'IO{\04
onO~21 000310
onO!53n 001750
01'10531 ocn700
OOO!\J~ 17773("1
O()0533 000062
onO~34 000074

'7/1-/17/

OPERATING THE ASSEMBLER

SQUA'E R~OT P~OGRAM

* * THIS A ~~UTINE T~ CAL~ TME SQUARE ~OOT (~S~T' 8UAROUTINE.
* E~ROR RETURN FOR SQUARE ROOT nF NEGATIVE NUMBERS IS IN tAL~
* +2 (N+2' NQRM'L RETURN FROM SDUARE ROOT IS AT CALL + 3 CN+3'
* THIS ROUTINE IS OEStGNE~ .TO TA~E THE SQUARE ROOT
* OF AO OCTAL NUMAERS AND STORE THE ANSWER IN 40 ~CTAL LOC,

* ,ORr; ,O~OO
,LD'(I ,OJ7

NEXT ,LOA ,LOC,'

*
*
* •

,CALL , ltStH, 0117

,STA ,SQRT,1

NOTE THAT THF. DATA
enTTOM TO Tt'P

,JXZ

,O)(R
,JMP

,HALT

,
,NE)'T

IS

STARTING AOORESS
ltR • COUNT • 1

BR • CLOC • ~FO
SUAR CAL.l. WITH ERROR RETURN

NO~MAL RETURN STOR! 'ESULT

RETR r EV EO 'N" STORED ,FROM

ltR • 0 END OF ROUTINE

INDEX • 1 • JNnEX
RETURN F~R NEXT NUMeE~

HAl,.T I.T , ~O~MAL HALT
I.nc ,OATA ,25.30,36,oeo,·',100,Ol,OO,O,A,200

,OATA

Figure 5-6. Example of an Assembled DAS SA Program

5·27

OPERATING THE ASSEMBLER

PAGE 000002

000535
OC"0536
000537
000~40
OOO~'1
OOO~'?
0()0~'3
000!54'
000~'5
0005.6
0005.7
0005~0
on055t
000552
000553
On055'
OOO~5~

. 000556
000~57
OOO~50
nn056!
000562
000563
0(\055'
oon585
00()568

OOOf)2e
000fi21
000630
00n"3\
000ft3~

,'111·11"2

onol06
0(,\0120
0(\0132
0001'6
on0170
000000
002000
on0002
000011
005e70
003noo
ooonl'
000021
00020'-
000001
0(\0204
000'"
000''18
000500
000512
000524
000!536
000820
0007tU
177756

000000
001020
l)on657 R
005"21
00100'

,DATA

,DATA

SQRT ,"SS RESE~Yf '0 DCTA~ LOCATIONS

* • INTEGER SQUARE ROOT SUBROUTiNE CALCULATED BY THE APPROXI"ATIO~
•
• 1/2 (X +..!..) - Xi + 1
• Xi * E~T!R WJTH NUMREA 'OR SQUARE ROOT IN THE B REGISTER. THE
• X REGISTER IS SAYED tND REPLACED ON EX!T. ERROR RETURN 'OR
* SQUARE RanT OF NEGATIYE NU~BERS AT N.2 FROM CALL.
* NORMA~ R!TURN AT N.3 'ROM eALL WITH SQUARE ROOT Of NUMBER.
* IN T~E B REGISTER
•
XSQT ,f.NTR , PLACE WHERE RETURN A"DR 18 SAY!O

,J8t ,ExtT.' SQ RT. OF 0-0

,TBA • NUM8ER • 8R • AR
,JAN. ,ltSQT f.RROR RETURN TO N.t

Figure 5-6. Example of an Assembled DAS SA Program (continued)

5·28

PAGE)('10003

on0833
OO(Hi3 ..
000635
0(,)0~36
000(11137
on0640
00(,)(III4t
000~42
OOOR4~
OO"~44
01,)('~4~
OOO~46
OOOfli41
OO('l~5('1
0('10651
OOO~!'52
000653
000654
0006!'55
000(11156
0001'357
000(11160
000661
1)00662
000663
000(11164

I.ITERAL.~

!'ntNTFR5

SV"'~OLS

100626 R
060f5fi2
0(111066:5
('110664
O(Hil')3n
ooonl)'
005001
Cl2066~
170663
."05n21
120663
O('l~012

004101
0~0~Hi3
005344
001040
000"'56 R
001000
on0641 R
0~0664
0401526
0~1000
100626 R

00001')0

0000"'4 R S~VE
O(H)6t;3 p .F'~X

('IOt'l61S2 R NI'18R
000/5!56 R E~IT

00nA41 R AGN
00Mi26 R l(S~T
n00566 R SQRT

VTII-1/73

PAGE 000004

000515 R L.oe
nO('l5.14 A H~L.T
000502 R NEXT

VTII·1I74

AGN

EXIT

NM8R
APRl(
SAVE

,STe
,STA
,8T)(
,LOX!

,T1A
,LOB
,nlv
,T8A
,AD"
,TAR
,ASRB
,ST8
,nXR
,J)('Z

,JMP

,LOX
,TN"
,RETU.

,RSS
,RSS
,PSS
,~Nn

.NME'R
,APRX
,SAVE
,7

,
,NMBR
,APRX ,
,A!'RX
,
,1
,A!'RX ,
,EXIT

,AGN

,5AVE
,XStH
,)(50T

, 1
• 1
,t

OPERATING THE ASSEMBLER

SAVE NUMBER
NUMBER • 1ST A!'PROXIMATION
SAVE)(R
tNITIA~IlE XR FOR APPR.

7ERO AP FOR nlvlDE
NUMBER - 8R
NUMBER I APPROXIMATION
A/X -8R -AR
A/X+X -AR
4/X+X -AR -8R
(A/X+X'1/2 .eR
NEWT APPROXIMATION
XR- taXR
S~ RT. -RR

COMPLETE APPRO~!MATInN

"ESTORE XR
UPOATE ENTRY T~ N+2
GO BACK TO MAI~ PRnG"4M

NO EXECUTION ADDRESS

Figure 5·6. Example of an Assembled DAS SA Program (continued)

5·29

OPERATING THE ASSEMBLER

PAGE JOOOO 1

OU500~
01!5~0" 0~!5n1t

*SZ
015001 005001

*00
01500'" 001 Al1

*Sl
015003 000777
015(')004 Ot503f11

*.0
Ot 50Mi on6nt~
Ot51'10ti 01503f11 R
0~5007 OMjO~O

01~(\1(\ 01!5(')311i R
1"15/')11 015non

*DD
01501~ OrlOOOA

*TF
015r11~ 015nO{l
01~Ot4 016000
Ot5n\~ 0141'120
015nl~ 006010

*SZ
o 1!5(') 17 027721
IH!5020 01'16010
015021 077777
015n'-2 01'161')1 n
015n2~ 077117
015024 0061'110
015t'l2~ 10nooo

*I"!P
015031'1 nt'ltn41'1
015031 015036 R
0,5n:i:? onl000

*SY
015033 f)t')OOI)O

015n:]4 0010~O
OU5('13~ 1)1 51'137 R
Ot~('I3f1; 000/')05
015037 01404~

VH/-II77

PAGE OOOtlO'-

onooon

LtT"RAL~

POINn"RS

SVHRt:lLS

o 015010" STP
1 01~n~7 R ~RAV
t 01~036 R ALFA
o 0151')01 R SEC

I'TII·1I71

*!)(AMPlF. L

SEC

SEC

ALFA
BRAV

STR

,C'I~G
,TIA

,T2A

,MLT

,lo4lT
,LOA

,LOAE

,LOXI

,LOA

,lOA

,LOA
,LDA
,lOA
,LDAI

,LOAI

,LOAl

,lOAl

,J21

,JXZ

,JMP

,JMP

,DATA
,DATA

,1)85
,END

,01!5000
,"10

,777

,0177
,AlFA,t

,AlJrA,l

,ALoFA

, " , 1

,O,A

, ('),1
,0,2
,AL.'A
,77777

,017777

,32767

,·-3P768

,ALFA

,AL.FA

,BRA

,8RAY

,5
,01'0.5

, t

EXAMPLE WITH ERRD~8

eANNOT Io4AYE A VAR. FIELD.

VARIABLE FIELD TD LARGE

EXP 1 TO LARGE

nOUBLE DFFJNITION

EXP ~ HAS TO BE A 1 OR 2

CR~ATE A REL ADDRESS
VAR FlflD TO lARGE

r~LEGAl OPERATION CODE

SRA UNDEFINED

Figure 5·7. Example of an Assembled DAS 8A Program with Errors

5·30

SECTION 6

STAND·ALONE FORTRAN/DAS MR LIBRARIES

There are eight libraries for the stand-alone FORTRAN/DAS MR system.

6.1 COMPLEX MATH FUNCTIONS (FORTRAN CODED)

This library consists- of programs collected, without modification, from the MOS. In order, they
are:

$9E
CCOS
CSIN
CLOG
CEXP
CSQRT
CABS
CONJG
$AK
$Al
,$AM
$AN

$AC
CMPlX
$8K
$8l
$8M
$8N
$ZD
AIMAG
$OC
REAL
$8F
$85

6.2 DOUBLE PRECISION MATH FUNCTIONS (FORTRAN CODED)

This library consists of programs collected, without modification, from the MOS. In order, they
are:

$XE DMINI
$YE DSIGN
$ZE $YK
DATAN2 $Yl
DlOGIO $YM
DMOD $YN.
DINT DBlE
DABS $XC
DMAXI

6.3 SINGLE PRECISION MATH FUNCTIONS (FORTRAN CODED)

This library consists of programs collected, without modification, from the MOS. In order, they
are:

TANH SNGl
ATAN2 MAXO
AlOGIO MAXI

6-1

'STAND-ALONE FORTRAN/DAS'MR LIBRARIES

AMOD MINO
AINT MINI
AMAXO MOD
AMAXI INT
AMINO IDIM
AMIN IFIX
DIM $JC
FLOAT

6.4 DOUBLE PRECISION ARITHMETIC (DAS CODED)

This library consists of programs collected from the MOS. The only modifications made were
the deleting or adding of control cards to define the object code for 16- or IS-bit machines. In
order, they are:

DSINCOS
DATAN
DEXP
DLOG
IF
POLY
CHEB
DSQRT
$DFR
IDINT

DMULT
DDIVIDE
DADDSUB
DNORMAL
DLOADAC
DSTOREAC
R LOA DAC
SINGLE
DOUBLE
DSLECOMP

6.5 SINGLE PRECISION ARITHMETIC (DAS CODED)

6.5.1 Hardware Multiply IDivide

This library consists of programs collected from the MOS. The only modifications made were
the deleting or adding of control cards to define the object code for 16- or IS-bit machines. In
order, they are:

$HE XDADD
Cl'nC' vncllc .p.L. ALJvVIJ

$QE XECOMP
ALOG $FLOAT
EXP $IFIX
ATAN lABS
SQRT·H ASS
SINCOS ISIGN
FMULDIV SIGN
FADDSUB $HN·H
SEPMANTI $HM·H
FNORMAL XMUL
XDDIV-H XDIV
XDMULT·H I$FA

6-2

STAND·ALONE FORTRAN/DAS MR LIBRARIES

6.5.2 SOFTWARE MULTIPLY/DIVIDE

This library consists of programs collected from the MOS. The only modifications made were
the deleting or adding of control cards to define the object code for 16- or 18-bit machines. In
order, they are:

$HE
$PE
$QE
ALOG
EXP
ATAN
SQRT-S
SINCO
FMULDIV
FADDSUB
SEPMANTI
FNORMAL
XDDIV-S
XDMULT-S

XDADD
XDSUB
XDCOMP
$FLOAT
$IFIX
lABS
ABS
ISIGN
SIGN
$HN-S
$HM-S
$XMUL
XDIV
I$FA

6.6 RUN·TIME I/O (DAS CODED)

This library consists of programs collected from the MOS. Control cards were added or deleted
to define the object code for 16- or 18-bit machines.

Two additional modifications were made to the MaS routines: the Teletype paper tape reader
and punch drivers were merged into a single driver, $OH/$OI; and the entry name of the
driver for the line printer was changed to $OR. In order, they are:

FORTIO
$00
$04
$08
$OC
$OG
$OH/$Ol
$00
$OM
CRIE
$OQ($OR)
$OQ
$OP
$OS
CPAE
MT$O
MT$1
MT$2

MT$3
MTAE
KNT$
RDC$
WRT$
STR$
SWR$
BL$P
FCH$
TCK$
$TC01
$HC37
HCK$
DIM$
LAS$
IOA$
lOOK
$BICD

6-3

STAND·ALONE FORTRAN/DAS MR LIBRARIES

6.7 RUN·TIME UTILITIES (DAS CODED)

This library, except for $BUF consists of MOS programs, some modified and some not. In the
following list, an asterisk(*) flags the programs which have more extensive modifications
than selecting the 16- or IS-bit word size; In order, they are:

6·4

$00
$CG
$3S
$SE
FORTUTIL

$EE
RSCB3*
RSCBIMTB*
$BUF

APPENDIX A
INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

AD 0072xx Add

ADD 12xxxx Add memory to A register

ADDE 00612x Add extended

ADI 00745x Add immediate

ADDI 006120 Add immediate

ADR 0075xx Add register

ANA 15xxxx AN D memory and A register

ANAE 00615x AN D extended

ANAl 006150 AND immediate

AOFA 005511 Add overflow to A register

AOFB 005522 Add overflow to B register

AOFX 005544 Add overflow to X register

ASLA 004200+n Arithmetic shift left A register

ASLB 004000+ n Arithmetic shift left B register

ASRA 004300+ n Arithmetic shift right A register

ASRB 004100+ n Arithmetic shift right B register

BT 0064xx Bit test

CIA 1025xx Clear and input to A register

CIAB 1027xx Clear and input to A and B registers

CIS 1026xx Clear and input to B register

COM 00743x Complement register

COMP 005xxx Complement source to destination
registers

A-l

INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

CPA 005211 Complement A register

CPB 005222 Complement B register

CPX 005244 Complement X register

DADO 004x2x Double add

DAN 004x4x Double AND

DAR 005311 Decrement A register

DBR 005322 Decrement B register

DEC 00742x Decrement register

DECR 0053xx Decrement source to destination
registers

DER 004x6x Double Exclusive OR

DVI 17xxxx Divide

DIVE 00617x Divide extended

DIVI 006170 Divide immediate

OLD 004xOx Double load

DOR 004x5x Double OR

DST 004x1x Double store

DSBU 004x3x Double subtract

DXR 005344 Decrement X register

ERA 13xxxx Exclusive OR memory and A register

ERAE 00613x Exclusive OR extended

ERAI 006130 Exclusive OR immediate

EXC 100xxx External control

EXC2 104xxx Auxiliary external control

FAD 105410 Add single precision memory to
floating point accumulator

A-2

INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

FADD 105503 Add double precision memory to
floating point accumulator

FDV 105401 Single precision floating point
divide

FDVD 105535 Double precision floating point
divide

FIX 105621 Reformat floating point accumulator
and store integer in memory

FLD 105420 Load floating point accumulator
with single precision number

FLDD 105522 Load floating point accumulator
with double preciSion number

FLT 105425 Reformat single preciSion integer
and load into floating point
accumulator

FMU 105416 Single precision floating point
multiply

FMUD 105506 Double precision' floating point
multiply

FSB 105450 Single precision floating point
subtraction

FSBD 105543 Double precision floating point
subtraction

FST 105600 Store floating point accumulator
in memory in single precision
format

FSTD 105710 Store floating point accumulator
in memory in double precision
format

HLT 000000 Halt

IAR 005111 Increment A register

IBR 005122 Increment B register

IJMP 0067xx I ndexed jump

A-3

INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

IME 1020xx Input to memory

INA 102lxx Input to A register

INAB 1023xx Input to A and B registers

INB 1022xx Input to B register

INC 00741x I ncrement register

INCR 0051xx Increment source to destination
registers

INR 04xxxx Increment memory and replace

INRE 00604x Increment memory and replace
extended

INRI 006040 Increment memory and replace
immediate

IXR 005144 I ncrement X register

JAN 001004 Jump if A register negative

JANM 002004 Jump and mark if A register negative

JANZ 001016 Jump if A register not zero

JANZM 002016 Jump and mark if A register not zero

JAP 001002 Jump if A register positive

JAPM 002002 Jump and mark if A register positive

JAZ 001010 Jump if A register ...zero

JAZM 002010 Jump and mark if A register zero

JBNZ 001026 Jump if B register not zero

JBNZM 002026 Jump and mark if B register not zero

JBZ 001020 Jump if B register zero

JBZM 002020 Jump and mark if B register zero

JDNZ 00677x Jump if double precision register
not zero

A-4

INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

JDZ 00676x Jump if double precision register
zero

JIF 001xxx Jump if conditions met

JIFM 002xxx Jump and mark if conditions met

JMP 001000 Jump unconditionally

JMPM 002000 Jump and mark unconditionally

IN 00674x Jump if register negative

JNZ 00673x Jump if register n.ot zero

JOF 001001 Jump if overflow indicator set

JOFN 001007 Jump if overflow indicator not
set

JOFM 002001 Jump and mark if overflow indicator
set

JOFNM 002007 Jump and mark if overflow indicator
not set

JP 00675x Jump if register positive

JSR 0065xx Jump unconditionally and set return
in X register

JSIM 002100 Jump and mark if SENSE switch 1
set

JS2M 002200 Jump and mark if SENSE switch 2
set

JS3M 002400 Jump and mark if SENSE switch 3
set

JS1N 001106 Jump if SENSE switch 1 not set

JS2N 001206 Jump if SENSE switch 2 not set

JS3N 001406 Jump if SENSE switch 3 not set

JSINM 002106 Jump and mark if SENSE switch 1 not
set

A~5

INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

JS2NM 002206 Jump and mark if SENSE switch 2
not set

JS3NM 002406 Jump and mark if SENSE switch 3
not set

JSSI 001100 Jump if SENSE switch 1 set

JSS2 001200 Jump if SENSE switch 2 set

JSS3 001400 Jump if SENSE switch 3 set

JXNZ 001046 Jump if X register not zero

JXNZM 002046 Jump and mark if X register not
zero

JXZ 001040 Jump if X register zero

JXZM 002040 Jump and mark if X register zero

JZ 00672x Jump if register zero

LASL 004400+ n Long arithmetic shift left

LASR 004500+ n Long arithmetic shift right

LBT 00746x Load byte

LO 0070xx Load

LOA Olxxxx Load A register

LOAE 00601x Load A register extended

LOAI 006010 Load A register immediate

LOB 02xxxx Load B register

LOBE 00602x Load B register extended

LOBI 006020 Load B register immediate

LOI 00744x Load immediate

LOX 03xxxx Load X register

LOXE 00603x Load X register extended

A-6

INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

LOXI 006030 Load X register immediate

LLRL 004440+ n Long logical rotation left

LLSR 004540+ n Long logical rotation right

LRLA 004240+ n Logical rotation left A register

LRLB 004040+ n Logical rotation left B register

LSRA 004340+ n Logical shift right A register

LSRB 004140+ n Logical shift right B register

MERG 0050xx Merge source to destination
registers

MUL 16xxxx Multiply

MULE 00616x Multiply extended

MUll 006160 Multiply immediate

NOP 005000 No operation

OAB 1033xx Output OR of A and B registers

OAR 1031xx Output from A register

OBR 1032xx Output from B register

OME 1030xx Output from memory

ORA 11xxxx OR memory and A register

ORAE 0061 Ix OR extended

ORAl 006110 OR immediate

ROF 007400 Reset overflow indicator

SB 0073xx Subtract

SBR 0076xx Subtract register

SST 00747x Store byte

SEN 101xxx Program sense

INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

SOF 007401 Set overflow indicator

SOFA 005711 Subtract overflow from A register

SOFa 005722 Subtract overflow from B register

SOFX 005744 Subtract overflow from X register

SRE 0066xx Skip if register equal

ST 0071xx Store

STA 05xxxx Store A register

STAE 00605x Store A register extended

STAI 006050 Store A register immediate

STB O6xxxx Store B register

STBE 00606x Store B register extended

STBI 006060 Store B register immediate

STX 07xxxx Store X register

STXE 00607x Store X register extended

STXI 006070 Store X register immediate

SUB 14xxxx Subtract memory from A register

SUBE 00614x Subtract extended

SUBI 006140 Subtract immediate

T {\{\77vv
VVIIA#\' Tiansfei

TAB 005012 Transfer A register to B register

TAX 005014 Transfer A register to X register

TBA 005021 Transfer B register to A register

TBX 005024 Transfer B register to X register

TSA 007402 Transfer switches to A register

TXA 005041 Transfer X register to A register

A-8

INDEX OF INSTRUCTIONS

Octal
Mnemonic Code Description

TXB 005042 Transfer X register to B register

TZA 005001 Transfer zero to A register

TZB 005002 Transfer zero to B register

TZX 005004 Transfer zero to X regis~er

XAN 003004 Execute if A register negative

XANZ 003016 Execute if A register not zero

XAP 003002 Execute if A· register positive

XAZ 003010 Execute if A register zero

XBNZ 003026 Execute if B register not zero

XBZ 003020 Execute if B register zero

XEC 003000 Execute unconditionally

XIF 003xxx Execute if conditions met

XOF 003001 Execute if overflow indicator set

XOFN 003007 Execute if overflow indicator not
set

XSI 003100 Execute if SENSE switch 1 set

XS2 003200 Execute if SENSE switch 2 set

XS3 003400 Execute if SENSE switch 3 set

XSIN 003106 Execute if SENSE switch 1 not set,

XS2N 003206 Execute if SENSE switch 2 not set

XS3N 003406 Execute if SENSE switch 3 not set

XXNZ 003046 Execute if X register not zero

XXZ 003040 Execute if X register zero

ZERO 00500 X Zero (clear) registers

NOTE: n = shift count

APPENDIX B
V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 '026 Description

200 128 NUL Null

201 129 SOH Start of Heading

202 130 STX Start of Text

203 131 ETX End of Text

204 132 EOT End of Transmission

205 133 ENQ Enquiry

206 134 ACK Acknowledge

207 135 BEL Bell

210 136 BS Backspace

211 137 HT Horizontal Tab

212 138 LF Line Feed

213 139 VT Vertical Tab

214 140 FF Form Feed

215 141 CR Carriage Return

216 142 SO Shift Out

217 143 SI Shift In

220 144 OLE Data Link Escape

221 145 DC1 Device Control 1

222 146 DC2 Device Control 2

223 147 DC3 Device Control 3

224 148 DC4 Device Control 4

225 149 NAK Negative Acknowledge

226 150 SYN Synchronous File

B·1

V70 SERIES ASCII CHARACTER CODES

Octal' Decimal Character ' 029 026 Description

227 151 ETB End of Transmission
Block

230 152 CAN Cancel

231 153 EM End of Medium

232 154 SUB Substitute

233 155 ESC Escape

234 156 FS File Separator

235 157 GS Group Separator

236 158 RS Record Separator

237 159 US Unit Separator

240 160 SP (blank) (blank) Space

241 161 11/2/8 11/2/8 Exclamation Point

242 162 7/8 0/5/8 Quotation Mark

243 163 # 3/8 0/7/8 Pound Sign

244 164 $ 11/3/8 11/3/8 Dollar Sign

245 165 % 0/4/8 11/7/8 Percent Sign

246 166 & 12 12/7/8 Ampersand

247 '167 5/8 4/8 Apostrophe (prime)

250 168 (12/5/8 0/4/8 Left Paren

251 169) 11/5/8 12/4/8 Right Paren

252 170 ~:c 11/4/8 11/4/8 Asterisk

253 171 + 12/6/8 12 Plus Sign

254 172 0/3/8 0/3/8 Comma

255 173 11 11 Minus Sign

256 174 12/3/8 12/3/8 Period

257 175 / 0/1 0/1 Slash

B-2

V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 026 Description

260 176 '0 0 0

261 177 1 r 1 1

262 178 2 2 2

263 179 3 3 3

264 180 4 4 4

265 181 5 5 5

266 182 6 6 6

267 183 7 7 7

270 184 8 8 8

271 185 9 9 9

272 186 2/8 5/8 Colon

273 187 11/6/8 11/66/8 Semi-Colon

274 188 < 12/418 12/6/8 Less Than

275 189 6/8 3/8 Equal Sign

276 190 > 0/618 6/8 Greater Than

277 191 ? 0/7/8 1212/8 Question Mark

300 192 @ 4/8 0/218 At

301 193 A 1211 12/1

302 194 B 12/2 12/2

303 195 C 12/3 12/3

304 196 0 12/4 12/4

305 197 E 12/5 12/5

306 198 F 12/6 12/6

307 199 G 12/7 12/7

310 200 H 12/8 12/8

311 201 12/9 12/9

B-3

V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 026 Description

312 202 J 11/1 11/1

313 203 K 11/2 11/2

314 204 L 11/3 11/3

315 205 M 11/4 11/4

316 206 N 11/5 11/5

317 207 0 11/6 11/6

320 208 P 11/7 11/7

321 209 Q 11/8 11/8

322 210 R 11/9 11/9

323 211 S 0/2 0/2

324 212 T 0/3 0/3

325 213 U 0/4 0/4

326 214 V 0/5 0/5

327 215 W 0/6 0/6

330 216 X 0/7 0/7

331 217 Y 0/8 0/8

332 218 Z 0/9 0/9

333 219 12/2/8 12/5/8 Left Bracket

334 220 \ 11/7/8 0/6/8 Backslash

335 221] , 0/2/8 11/5/8 Right Bracket

336 222 T or A 12/7/8 7/8 Vertical Arrow

337 223 ~ or- 0/5/8 2/8 Horizontal Arrow

340 224 Accent Grave

341 225 a

342 226 b

8-4

