
SPE~Y~~ UNIVAC

w

Assembly Language
Programmer Reference

Mini-Computer Operations

2722 Michelson Drive
P.O. Box C-19504
Irvine, California 92713

UP-8682 Rev. 1

ASSEMBLY LANGUAGE

PROGRAMMER REFERENCE MANUAL
UP-8682 Rev. 1

98A 9952. 453

JANUARY 1980

The statements in this publication are not intended to create any warranty, expr~ss or implied.
Equipment specifications and performance characteristics stated herein may be changed at any time
without notice. Address comments regarding this document to Sperry Univac, Mini-Computer
Operations, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine, California,
92713.

COPYRIGHT © 1980 by
SPERRY CORPORATION
ALL RIGHTS RESERVED

Sperry Univac is a division of Sperry Corporation Printed in U.S.A.

PAGE STATUS SUMMARY

ISSUE: UP-8682 Rev. 1 (98A 9952 453)

------,

Part/ Section Page Update Part/ Section Page
Number

Update
Level

Part/ Section Page Update
Number Level Number Level

Cover

Title Page

PSS 1

CR 1

Contents l thru 5

l 1 thru 3

2 1 thru 20

3 l thru 23

4 l thru 33

5 l thru 30

6 l thru 4

A l thru 10

B 1 thru 4

•New pages

All the technical changes are denoted by an arrow (__.,..) in the margin. A downward pointing arrow (t) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow r-J painting to
a line indicates a tecllnical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines 01 rlttletions

P~Sl

D-

CHANGE RECORD

Change Issue
Designation Date

Change Description
1--- -+-------'------------------------------.,·---

All 10-76

Misc. 5-77

Misc. 2-78

Update A 10-79

Revision l 1-80

Original issue

Minor revisions/corrections

Deleted references to Varian

Added V77-800 Standard Extension Instructions
The following for users with DAS MR and
VORTEX I and II are also added: NOTE directive,
binary and hexadecimal constants, right and left
shift expressions, logic expressions, FLOW directive

Incorporated Update A and changes related to out
standing SURs, (1-80).

t-·-·· -----------··--' -·--·-----·-----------------------t
Change Procedure:

When changes are made to th is manual, updated pages are issued. These updated pages
are either added to th is manua I or used to replace obsolete pages. The specific
pages affected by each change are i~entified on the PAGE STATUS SUMMARY page.·

CR1
Printed on U S A

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

1.1 SPERRY UNIVAC V70 SERIES ASSEMBLY LANGUAGE 1·1
1.2 DAS ASSEMBLERS ... 1·2
1.2.1 DAS BA Assembler 1 ·3
1.2.2 DAS MR Assembler .. 1-3
1.3 BIBLIOGRAPHY ... 1-3

SECTION 2
STATEMENTS

2.1 CHARACTER SET ... 2-1
2.2 STATEMENT FORMAT ... 2-2
2.2.1 Label Field ... 2-3
2.2.2 Operation Field .. 2-4
2.2.3 Variable Field .. 2-4
2.2.4 Comment Field .. 2-5
2.3 CONSTANTS ... 2-5
2.3.1 Decirr1al Integers ... 2-5
2.3.2 Octal Integers .. 2-6
2.3.3 Floating Point Numbers ... 2-6
2.3.4 Character Constants ... 2-8
2.3.5 Address Constants .. 2-8
2.3.6 Indirect Address Constants .. 2-8
2.3. 7 Binary and Hexadecimal Constants (DAS MR with VORTEX I

and VORTEX II) ... 2-8
2.3.8 Literals .. 2-9
2.4 EXPRESSIONS.. 2-9
2.4.1 Right and Left Shift Expressions (DAS MR with VORTEX I and

VORTEX II) .. 2-10
2.4.2 Operators ... 2-10
2.4.3 Expression Evaluation ... 2-11
2.4.4 Address Expressions ... 2-11
2.4.4.1 Absolute Expressions ... 2-12
2.4.4.2 Relocatable Expressions (DAS MR Only) 2-13
2.4.5 Logic Expressions (DAS MR with VORTEX I and VORTEX II) 2-13
2.4.6 Mode Determination ... 2-13
2.5 SYMBOLS .. 2-14
2.5.1 User Symbols .. 2-15.
2.5.2 Assembler-Defined Symbols ... 2-15
2.5.2.1 Operation Field Symbols ... 2-15
2.5.2.2 Location Counter Symbols ... 2-16
2.5.3 Symbol Values ... 2· 17
2.5.4 Address Symbols and Relocatability ... 2-17
2.5.4.1 Relocatability (DAS MR Only) ... 2-17
2.5.4.2 Absolute Symbols ... 2· 18
2.5.4.3 Relocatable Symbols (DAS MR Only) 2· 19
2.5.5 Symbol Modes ... 2-19

T
l

i

!

i

SECTION 3
INSTRUCTION SUMMARY

3.1 TYPE 1 INSTRUCTIONS .. 3-2
3.2 TYPE 2 INSTRUCTIONS .. 3-5
3.3 TYPE 3 INSTRUCTIONS .. 3-6
3.4 TYPE 4 INSTRUCTIONS .. 3-9
3.5 TYPE 5 INSTRUCTIONS .. 3-13
3.6 MULTIPLE REGISTER INSTRUCTIONS ... 3-16
3.6.l Register-To-Memory Instructions .. 3-17
3.6.2 Byte Instructions ... 3-17
3.6.3 Jump-If Instructions ... 3-18
3.6.4 Double-Precision Instructions ... 3-18
3.6.5 Immediate Instructions .. 3-18
3.6.6 Register-To-Register Instructions .. 3-19
3.6. 7 Single Register Instructions ... 3-19
3.7 V77-800 STANDARD EXTENSIONS ... 3-19
3. 7.1 Double Word Move Instruction ... 3-20
3.7.2 Register Load and Register Store Instructions 3-21
3. 7.3 Decrement Register and Jump if the Initial Register Value is

Not Negative (DJP) .. 3-22
3.7.4 Block Move, Store Words, and Store Bytes Instructions 3-22

SECTION 4
ASSEMBLER DIRECTIVES

4.1 SYMBOL DEFINITION DIRECTIVES .. 4-3
4.1.1 EQU Directive .. 4-3
4.1.2 SET Directive ... 4-4
4.1.3 MAX Directive (DAS 8A Only) ... 4-4
4.1.4 MIN Directive (DAS 8A Only) .. 4-5
4.2 INSTRUCTION DEFINITION DIRECTIVE .. 4-6
4.2.1 OPSY Directive .. 4-6
4.3 LOCATION COUNTER CONTROL DIRECTIVES 4-6
4.3.1 ORG Directive .. 4-7
4.3.2 LOC Directive .. 4-8
4.3.3 BEGI Directive (DAS 8A Only) ... 4-9
4.3.4 USE Directive (DAS 8A Only) .. 4-10
4.4 DATA DEFINITION DIRECTIVES ... 4-10
4.4.1 DATA Directive .. 4-11
4.4.2 PZE Directive ... 4-12
4.4.3 MZE Directive .. 4-13
4.4.4 FORM [>irective ... 4-14
4.5 MEMORY RESERVATION DIRECTIVES ... 4-14 1

4.5.1 SSS Directive ... 4-15
4.5.2 BES Directive .. 4-15
4.5.3 DUP Directive .. 4-16
4.6 CONDITIONAL ASSEMBLY DIRECTIVES 4-17

Contents 2

SECTION 4 (continued)

4.6. l I FT Directive ... 4-17
4.6.2 IFF Directive .. 4-18
4.6.3 GOTO Directive .. 4-18
4.6.4 CONT Directive ... 4-19
4.6.5 NULL Directive .. 4-19
4.7 ASSEMBLER CONTROL DIRECTIVES .. 4-20
4.7.1 MORE Directive. (DAS 8A Only) ... 4-20
4.7.2 END Directive ... 4-21
4.8 SUBROUTINE CONTROL DIRECTIVES ... 4-21
4.8.l ENTR Directive .. 4-21
4.8.2 RETU>:< Directive .. 4-22
4.8.3 CALL Directive ... 4-22
4.9 LIST AND PUNCH CONTROL DIRECTIVES 4-24
4.9.1 LIST Directive .. 4-24
4.9.2 NLIS Directive ... 4-24
4.9.3 SMRY Directive .. 4-24
4.9.4 DETL Directive .. 4-24
4.9.5 PUNC Directive (DAS 8A Only) ... 4-25
4.9.6 NPUN Directive (DAS 8A Only) .. 4-25
4.9.7 SPAC Directive .. 4-25
4.9.8 EJEC Directive ... 4-25
4.10 PROGRAM LINKAGE DIRECTIVES ... 4-26
4.10.l NAME Directive ... 4-26
4.10.2 EXT Directive .. 4-26
4.10.3 COMN Directive ... 4-27
4.11 MACRO DEFINITION DIRECTIVES (OAS MR ONLY) 4-28
4.11.1 MAC Directive (DAS MR Only) .. 4-28
4.11.2 EMAC Directive (DAS MR Only) .. 4-29
4.11.3 Macro Calls .. 4-29
4.12 NOTE DIRECTIVE (DAS MR with VORTEX I and VORTEX 11) 4-30
4.13 FLOWCHART DIRECTIVE (DAS MR Only) 4-31
4.13.1 FLOW Directive (DAS MR Only) .. 4-31

SECTION 5
OPERATING THE ASSEMBLER

5.1 ASSEMBLER PROCESSING .. 5-1
5.1.1 Assembler Input Media .. 5-1
5.1.2 Pass 1 - Symbol Table ... 5-3
5.1.3 Pass 2 - Assembler Output ... 5-4
5.1.4 Error Messages .. 5-5
5.2 ASSEMBLER OPERATING PROCEDURES 5-8
5.2.1 DAS MR Operation (VORTEX I/VORTEX 11) 5-8
5.2.2 DAS MR Operation (MOS) ... 5 15
5.2.3 DAS MR Operation (Stand-Alone) ... 5 18
5.2.4 DAS 8A Operation .. 5-21

Contm11s 3

T

SECTION 6
STAND-ALONE FORTRAN/DAS MR LIBRARIES

6.1 COMPLEX MATH FUNCTIONS (FORTRAN CODED) 6-1
6.2 DOUBLE PRECISION MATH FUNCTIONS (FORTRAN CODED) ... 6-1
6.3 SINGLE PRECISION MATH FUNCTl_ONS (FORTRAN CODED) 6-1
6.4 DOUBLE PRECISION ARITHMETIC (DAS CODED) 6-2
6.5 SINGLE PRECISION ARITHMETIC (DAS CODED) 6-2
6.5.1 Hardware Multiply/Divide ... 6-2
6.5.2 SOFTWARE MULTIPLY /DIVIDE .. 6-3
6.6 RUN-TIME 1/0 (DAS CODED) .. 6-3
6.7 RUN-TIME UTILITIES (DAS CODED) .. 6-4

APPENDIX A
INDEX OF INSTRUCTIONS

APPENDIX B
V70 SERIES ASCII CHARACTER CODES

LIST OF TABLES

Table 2-1. Arithmetic Operation Results (DAS MR only) 2-12
Table 2-2. Standard DAS BA Location Counters 2-17
Table 3-1. Assembler Instruction Type Characteristics 3-1
Table 3-2. Summary of Assembler Instruction Types 3-2
Table 3-3. JIF/JIFM/XIF Code Conditions .. 3-7
Table 3-4. Standard Device Addresses ... 3-13
Table 4-1. Directives Recognized by DAS Assemblers 4-2
Table 5-1. DAS Symbol Table Capacities ... 5-3
Table 5-2. DAS Error Codes .. 5-5
Table 5-3. DAS MR Options for Background Operation 5-8
Table 5-4. List of Peripheral Assignments for Stand-Alone DAS MR 5-19
Table 5-5. Acceptable 1/0 Devices .. 5-22
Table 5-6. Device Names for Magnetic Tape Transports 5-23

Contents 4

LIST OF ILLUSTRATIONS

Figure 2-1. Format for Source Statement Records 2-3
Figure 4-1. Sample DATA Directive Usage ... 4-12
Figure 4-2. Sample PZE Directive Usage ... 4-13
Figure 4·3. Sample MZE Directive Usage ... 4-13
Figure 4-4. Sample FORM Directive Usage : 4-14
Figure 4-5. Sample DUP Directive Usage .. 4-17
Figure 4-6. Sample Conditional Assembly Directives Usage 4-20
Figure 4-7. Sample CALL Directive Usage .. 4-23
Figure 4·8. Sample Macro Usage .. 4-30
Figure 4-9. Output Listing Obtained by Calling P(O) 4-30
Figure 4-10. Sample FLOW Directive Usage (DAS MR Only) 4.33
Figure 5-1. Field Placement Summary .. 5-2
Figure 5-2. Output Listing Format .. 5·5
Figure 5·3. Example of Assembled and Executed DAS MR Program
Under VORTEX Control .. 5-10

Figure 5-4. Example of Assembled and Executed DAS MR Program
Under MOS Control .. 5-15
Figure 5-5. Coding Example .. 5-24
Figure 5-6. Example of an Assembled DAS 8A Program 5-27
Figure 5-7. Example of an Assembled DAS 8A Program with Errors 5-30

Contents 5

SECTION 1

INTRODUCTION

This manual describes the assembly language and assembler processing used to write,
assemble, and execute programs for the SP6~RY UNIVAC 1V70 series computers.

1.1 V70 SERIES ASSEMBLY LANGUAGE

The assembly language is a symbolic representation of the programmable capabilities of the
V70 series computers. Using assembly language, the programmer is able to specify the
machine instruction codes symbolically and to address memory locations by alphanumeric
symbols of his own choosing, providing a flexibility not attainable with abso·lute addressing.

Internally, the computer obeys instructions kept in its memory in 16-bit binary format. For
example, the instruction:

0001000000001111

when executed causes the A register to be loaded with the contents of location 15 (decimal).
In octal the same instruction is written:

010017

However, it is not necessary to learn the octal or binary representation of the computer's
instruction repertoire. Instead, a user can write his program using a symbolic language and
then use another computer program, the DAS (Data Assembly System) assembler, to convert
the instructions to binary upon input. The instruction given previously is then written:

LDA 017

or, if decimal working is preferred:

LDA 15

which is read as "Load the A register with the contents of location 15 (decimal)."

The DAS assembler translates the statement "LOA 15" into its binary machine language
equivalent, i.e.:

LDA 1 s ---- DAS ASSEMBLER -------- 0001000000001111

Similarly:

STX 0177

is translated by the DAS program to form the instruction "Store the X register contents in
location 0177."

The DAS assembler has many other capabilities than translating source instructions one-for-

1-1

INTRODUCTION

one into their binary equivalents. A primary feature is allowing the programmer to represent
memory locations with symbolic labels instead of requiring absolute addresses. Another
feature allows the programmer to define data constants and character constants without
prior conversion to binary or octal values. For example, suppose the user wishes to load the A
register with the value 64 at some point in his program. He could do this with the following
statements:

VALU DATA 64

LDA VALU

The first statement defines a word of data having the value 64; "VALU" is a symbolic label
that can be used to address that data word. The second statement is an instruction to load
the A register with the contents of memory location "VALU". The programmer need not be
concerned with the absolute location of the data word.

An even simpler version--requiring only one statement--can be written using a "literal"
constant:

LDA •64

In this version, the assembler itself will designate a location in which the value 64 is tQ be
placed.

DAS assembly language allows the user to give directions to the assembler, called assembler
directives, to perform such functions as defining program loading addresses, data locations
(such as the DATA directive above), subroutine linkage, and input/output functions; further
control features include conditional assembly directives and a macro capability. Comments
can be added between symbolic source statements or appended to the statements themselves
to enable easier checkout and program documentation.

By using the DAS assembly language, the programmer is able to write functional application
programs and control the operation of the assembler. Symbolic coding reduces machine
language bookkeeping and fully utilizes the computer capabilities without a corresponding
increase in the time required for programming.

1.2 DAS ASSEMBL.ERS

The principal objective of any assembler is to translate source programs written in a
symbolic machine lanquage into the more precise numeric language of the computer. The
assembler (DAS) achieves this objective by converting programmer-prepared symbolically
coded instructions, directives, and data (the source program) into their binary machine
language equivalents (the object program).

DAS processes source programs in two passes. The first pass defines user-designated
symbols. The second pass produces an assembly listing and the object program.

Two versions of DAS are available: DAS SA and DAS MR, described in the following
subsections.

1-2

INTRODUCTION

1.2.1 DAS 8A Assembler

DAS BA is a stand-alone program that can operate on a minimum system (BK of memory). It
produces absolute object code that can be loaded by the stand-alone binary load/dump
program (BLD II).

Because DAS 8A was designed to operate in a restricted environment, it does not provide
some of the features described in this book, principally the macro directives (section 4.11).
Appropriate error messages are generated if a source program contains statements not rec-·
ognized by the DAS 8A assembler.

1.2.2 DAS MR Assembler

DAS MR is a macro assembler which produces relocatable object code that can be loaded
into any area of memory. It is available either as a free-standing program or as an integral part
of the MOS or VORTEX I/VORTEX II operating system. DAS MR includes all of the features
described in this book.

1.3 BIBLIOGRAPHY

The following manuals contain information on Sperry Univac hardware and software that
would be helpful to the 70 series computer user (the x at the end of each document number is
the revision number and can be any digit O through 9):

Title

V70 Architecture Reference Manual
VORTEX I Reference Manual
VORTEX 11 Reference Manual
MOS Manual

Manual Number

98 A 9906 OOx
98 A 9952 10x
98 A 9952 24x
98 A 9952 09x

1-3

SECTION 2

STATEMENTS

Input to the assembler is supplied by the user in the form of source statements. A statement
constitutes one input record and may be in either a position-dependent fixed format or free
format.

Each statement can be classified, according to its operation field entry, into one of the
following three groups:

a. Computer instruction statement

b. Assembler directive statement

c. Macro call statement

Computer instructions are instructions which are translated into machine-executable code on
a one-to-one basis.

Assembler directives are requests to the assembler to perform certain operations during the
assembly. These directives may define symbols, reserve and/or initialize data areas, control
the listing, and alter the normal processing of statements. The FORM directive allows the user
to symbolically define a bit-placement pattern whose name may subsequently appear in the
operation field.

A macro call statement represents a predefined block of statements (usually a block of
instructions). The macro allows the. entire block to be included, with varying parameters, each
time the macro name appears in the operation field of a source statement.

This section describes the syntax of composing source statements. A summary of instructions
is given in section 3. Assembler directives and macros are described in section 4.

2.1 CHARACTER SET

Source statements are written with the following DAS character set:

Alphabetical characters

Numerical Characters

Teletype characters

Special characters

ABCDEFGH IJKLM NOPQRSTUVWXYZ

0123456789

CR
LF

+

*
I

(carriage return)
(line feed)

(plus sign)
(minus sign)
(asterisk)
(slash)
(period)

2-1

STATEMENTS

(blank)
@ (at sign)
[(left bracket)
] (right bracket)
< (less than)
? (greater than)

(up arrow)
(left arrow)
(equal sign)
(comma)
(prime)

((left parenthesis)
) (right parenthesis)
I (backslash)

(exclamation point)
(quotation mark)

(pound sign)
% (percent sign)
& (ampersand)

(colon)
(semicolon)

? (question mark)
$ (dollar sign)

In addition, any of the 128 ASCII characters (see appendix 8) may be used anywhere that
characters appear between paired apostrophes or brackets, in comments, literals, and in
instruction operands.

2.2 STATEMENT FORMAT

A DAS source program consists of a sequence of source statements. Each source statement is
input as one record. A punched card is one record, as is one line punched to paper tape and
terminated by a carriage return and line feed.

A source statement may contain a maximum of 80 characters. If a source record contains
more than 80 characters, then the record is truncated to 80 characters. If a record contains
less than 80 characters, the assembler supplies blank characters to fill out 80 character
positions. If an assembler source record is completely blank, the source record is ignored by
the assembler.

Each source statement comprises a combination of label, operation, variable, and comment
fields, depending on the requirements of the computer instruction or assembler directive. One
computer instruction is generated by each instruction source statement. None, one, or more
words of object code may be generated by each assembler directive, depending on the
operation and variable field entries. A standard format for DAS source statements, where
each field is separated by one or more blanks and begins in a standard line position, is shown
in figure 2-1. Alternative formats may be used, prime among them being the use of commas
as field separators. A detailed treatment of statement item placement for various input media
is given in section 5.

2·2

STATEMENTS

---------------------------------·---

LABEL OPERATION VARIABLE
1 6 7 8 15 16 29

L-1 L_o_o_P _____ l.___l._s_T_A_E _____ __._l _TE_N_, c_o_u_N_T ________ ~J

COMMENT
30

INITIALIZE WORD COUNT

IDENTIFICATION
\- 72 73 80

(___ !._____ _____ oo 1 j
\

Figure 2-1. Format for Source Statement Records

The fields are described further in the following subsections.

2.2.1 Label Field

The Label Field is the leftmost field on each source statement. It is either blank (no label), or
it is used to contain a symbol (section 2.4) created by the programmer. If a label is present, it
must begin in character position 1.

For DAS BA, symbols in the label field comprise one to four alphanumeric characters; for
DAS MR there may be from one to six such characters. The first character of a symbol is an
alphabetic character, pound sign(#), or dollar sign (the dollar sign and pound sign are used
in the Sperry Univac software and should not be used in normal user programs).

Examples .8 16
·~:;~t:.::::;::~::::::::::::::::·:·:·:·:·:···

30

valid label (DAS MR)
valid label (DAS BA)
valid label
valid label
valid label
valid label
invalid--must begin in position 1
invalid··cannot begin with a number
invalid characters

An entry in the label field is always optional for instruction statements. It is optional for most
assembler directives; however, certain assembler directives (EQU, SET, etc.) require a label
field entry.

The programmer generally labels a statement to identify the statement. Symbols in the label
field identify program points for reference by other parts of the program. They make a
program point or particular numeric value more easily identifiable. The first appearance of a
symbol in the label field establishes its identity (most commonly a relative or absolute

2-3

STATEMENTS

address) throughout the remainder of the program. A previously established symbol is
referenced by placing it in the variable field of the source statement. When the symbol is
used, the DAS assembler substitutes the previously assigned value from its symbol table.

Example

START JMPM
DAR
JANZ

FETCH

START

Call Fetch routine.
Decrement counter in A.
Loop back if A not zero.

In this example, the label field is used in the first statement to establish a user symbol for the
location of the first statement in a loop. This label, START, is later referenced in the third
statement as the return point for another loop iteration.

Label field entries are also used to establish the name of a user-written macro definition
(section 4.11).

2.2.2 Operation Field

The Operation Field is to the immediate right of the label field. The entry in this field
describes to the assembler the specific type of statement that has been entered, thus
determining how it should be processed. Entries in this field are composed of from one to six
alphanumeric characters that may describe a machine instruction, assembler directive, or a
macro call. An asterisk may follow certain instruction mnemonics to specify indirect
addressing (see section 3). It is possible to redefine mnemonics with OPSY assembler
directives (section 4.2.1).

An entry in the operation field is always required, and if not supplied by the programmer, will
cause an "undefined operation" error code to be generated.

Examples

30

2.2.3 Variable Field

The Variable Field is to the immediate right of the operation field. The purpose of this field
varies according to the requirements of the operation defined by the source statement. The
variable field can contain none, one or more symbols, constants or expressions combining
symbols and constants. Multiple entries are separated by commas.

The types of entries that may appear in the variable field are described in section 2.3
(constants), section 2.4 (symbols), and section 2.5 (expressions).

2-4

Examples

1 8 • LDA
ADDI
JMP
STXE*
LSRA
IAR

2.2.4 Comment Field

STATEMENTS

30

Load A register with contents of TAB.
Add 16 to the A register.
Jump to program location PILL.
Store X register indirect, indexed by 8.
Logical shift right A register 7 bits.
Increment A register (has no variable).

An optional comment field follows the variable field in all source statements. This field is used
for programming notes. An entire line of comment may be entered if an asterisk is coded in
the first position. The assembler ignores all comments in the object code production process,
but lists comments and comment lines with the program listing output.

On punched cards, the comment field generally extends from position 30 to position 72.
Positions 73 through 80 can be used to sequence cards, simplifying collation if a card deck is
accidentally dropped.

Examples

LOA* M1
ADDE LINK
INR M1
JMP *SUBL

Note: The assembler scans for data in columns 1-72 and ifthe record is not a comrnent, there must
be a valid operand defined prior to column 72.

2.3 CONSTANTS

A constant is a number, or character string, whose value is specified directly by the
programmer in the variable field of a source statement. DAS recognizes decimal integers,
octal integers, floating point numbers, and character constants.

In the following descriptions of DAS constants, unsigned numbers are considered positive.

2.3.1 Decimal Integers

A decimal integer is a signed (+, -) or unsigned string of from one to five decimal digits (0
through 9). The first digit must not be a zero, since a leading zero signifies an octal number.

2-5

l

STATEMENTS

Decimal integers are converted to a right-justified 15-bit value, in the range - 32,768 through
+ 32,767, with the high order bit representing the sign (0 = positive, 1 = negative). Negative
numbers are stored in twos complement representation.

Examples

1
20
-3
-9000
6,099
144000

Decimal integer + 1
Decimal integer + 20
Decimal integer - 3
Decimal integer - 9000
lnvalid--no commas may appear
lnvalid--out of range

2.3.2 Octal Integers

An octal integer is a string of from one to six octal digits (0 through 7), preceded by a leading
zero. The conversion from octal to binary is straightforward. The number is right-justified in
the 16-bit word and may have a range of 0 through 0177777. Octal numbers may optionally
be signed (although they normally are not) and will be represented in twos complement form.

Examples

07
023
0123
0677
0177777
5612
07581

Octal constant 7
Octal constant 23
Octal constant 123
Octal constant 677
Octal constant 177777
Invalid octal--no leading zero
Invalid digit

2.3.3 Floating Point Numbers

-+ Floating point numbers may be specified in the following formats:

-+) ±integer.fraction± exponent
)± integer.fractionE ± exponent

-+) ±integer.fractionD±exponent
where:

±

integer

2-6

the right parenthesis indicates a floating
point number.

is a minus sign (negative number) or an
optional plus sign (positive number).

is the integer portion of the number (if
any).

is the decimal point and must appear.

fraction

Et exponent

D±exponent

is the fractional portion of the number
(if any).

is the signed (optional if positive)
exponent (if any). The letter "E" may
be omitted in the exponent if desired.

generates a double precision constant.
A real constant is generated in all
other cases.

At least one digit must appear in the number.

The number is stored in one of the following formats:

Single Precision (Real)
15 14 13 12 11 10 9 8 7 6 5 4 3

s Exponent =r Fraction (high)

0 Fraction (low)

Double Precision
15 14 13 12 11 10 9 8 7 6 5 4 3

0 0 0 0 0 0 0 0 J Exponent

s Fraction (high)

0 Fraction (mid)

0 Fraction (low)

STATEMENTS

2 1 0

j
2 1 0

The exponent is represented in an excess 128 format so that the smallest exponent
representable contains all zeros. An exponent field containing 128 (0200) corresponds to an
exponent value of 0. The largest exponent representable contains all ones.

The fraction is expressed in a modified sign-magnitude format. Rather than inverting the sign
bit for negative numbers, the complete word in which the sign appears is inverted. In single
precision, this inverts the exponent, the sign, and the high 7 bits of the fraction. In double
precision, the sign and the high 15 bits of the fraction are inverted.

The number is zero represented by all zeros. All other numbers are normalized.

Examples

)5.5
)60.00079
)6. + 10
)09.0-2
)09.E-2
).lE-12
)-4. + 20
16.E2
)16E2
)E2

The real number 5.5 (five and a half)
The real number 60.00079
The real number 60000000000.
The double precision number .09

The real number .09
The real number .0000000000001
The real number - 400000000000000000000.
lnvalid--no right parenthesis.
lnvalid--no decimal point.
lnvalid--no digit.

2-7

1

i

STATEMENTS

2.3.4 Character Constants

A character constant consists of one, two, or more ASCII characters enclosed by primes (').
Any of the 128 ASCII characters may appear in a character term. To code a prime character
in DAS MR, use two primes in succession; this cannot be done in DAS 8A, however. Note that
blanks are also recognized as characters.

When a single alpha constant is defined by the DATA directive (section 4.4.1), DAS MR left·
justifies it in the field and tills the remaining positions with blanks. In other DAS MR and all
DAS 8A statements, a single alpha constant is right justified with leading zeros.

Examples

'STRING'
'THIS'
'IS'
'A'

I I CAN' IT I

MMM

Valid character constant.
Valid character constant.
Valid character constant.
1-character constant: = 'A ' in DAS MR,

= 'OA' in DAS 8A.
(DAS MR only)--coded as I CAN'T.
lnvalid--surrounding primes missing.

2.3.5 Address Constants

An address constant is a symbol, number, or expression which may be enclosed in parentheses. It
generates a 15-bit direct address (bit 15 = 0).

Examples:

A Address constant
(31)

where A is an address syrnbol whose value is taken from the symbol table by DAS.

2.3.6 Indirect Address Constant

An indirect address constant is an address constant enclosed in parentheses followed by an
asterisk. It generates a 15-bit indirect address (bit 15 = 1).

Examples:

(A+2)* (3) * (A)*

2.3.7 Binary and Hexadecimal Constants (DAS MR with VORTEX I and
VORTEX II)

Binary and hexadecimal constants occupy one word of main memory and are right justified.

Examples:

2-8

8'101101'
-8'101101'
X'AB9F'
X'AB9F'

Positive binary constant
Negative binary constant
Positive hexadecimal constant
Negative hexadecimal constant

STATEMENTS

2.3.8 literals

A literal term or simply, literal, is a constant or expression preceded by an equal sign (=). A
literal represents data, rather than an address of data. The appearance of a literal directs the
assembler to assemble the data specified in the literal, store this data in an assembler·
maintained literal pool, and assemble the address of the data into the current instruction.
The literal pool is assigned addresses starting with the value of the literal's location counter
when the END directive is processed. Duplicate values are discarded in the literal pool. In
general, literals can be used whenever an address is permitted in the variable tield.

NOTE

The literal pool may not be assembled into COMMON areas. Any attempt to place
literals into COMMON areas is flagged as an error and the mode of the location
counter is changed to program relocatable.

Literals may contain undefined symbols, although use of undefined symbols in literals may
cause extraneous words to be allocated within the literal pool.

The use of literal terms allows the programmer to both define and reference a constant word
in the same machine instruction statement.

Examples

LDA •5

ADD =2 55

ORA =07077

ERA =07077

2.4 EXPRESSIONS

Load A register with the constant
5. The value 5 is placed in
the literal pool, and its address
(in the pool) coded in the LOA
instruction.

Add the value 255 to the A register.
The value 255 is placed in the
literal pool, and its address
coded in the ADD instruction.

Inclusive OR with the A register.
The indicated value is placed
in the literal pool. For the
ERA (Exclusive OR instruction)
the same literal pool location
is addressed, thus minimizing
storage required for the mask
word.

An expression is a single constant, a single symbol, or any combination of constants and
symbols connected by operators. Operators are described in section 2.4.1.

A discussion of multi-term expression evaluation is given in section 2.4.2 (expression
evaluation), section 2.4.3 (address expressions), and section 2.4.4 (mode determination).
Section 2.4.5 describes literals.

2-9

l

T

STATEMENTS

2.4.1 Right and Left Shift Expressions (DAS MR with VORTEX I and
VORTEX 11)

The Right and Left Shift Expressions are used to right or left shift the bits in a word by the number of
bits specified in the command (X).

The expression for a Left Shift is .+-X where Xis an integer from 1 to 15. The. Xis placed to the
immediate right of the word which has its bits shifted first in the expression evaluation.

The expression for a Right Shift is .+-(-X) where Xis an integer from 1to15. The .+-(·-X) is placed to
the immediate right of the word which has its bits shifted first in the expression evaluation.

The bit shifted out of the O or 15 bit position is not rotated into the 15 or 0 bit position. The vacated bit
positions are filled with zerm~s.

Example:

ALPHA EQU 8'1001'
LDAI ALPHA .+-9

The events which occur are

• The bits in position 0 through 8 of ALPHA are left shifted nine bits.

• Bits 7 through 15 are lost.

• Bits 0 through 8 are zero.

• The A Register is loaded with the results of the left shift of the ALPHA field.

• After the shift, the A Register contains 0001001000000000.

2.4. 2 Operators

The following operators are allowed in expressions:

Operator
+

I

Meaning
Addition

Subtraction

Multiplication

Division

Arithmetic operations always involve all 16 bits of the computer words, and are performed
from left to right, with multiplication and division occurring before addition and subtraction.
Thus, A + B/C ~· D in DAS is equivalent to A + (B/C) >:• D in conventional notation.

The rules for coding expressions are:

2-10

STATEMENTS

a. An expression cannot contain two terms or two operators in succession.

b. An expression with a leading minus sign (-) is evaluated as though a zero preceded the
minus sign.

c. An expression with a leading plus sign (+)is evaluated as though a zero preceded the plus
sign.

d. A multi-term expression cannot contain an external symbol. If it does, an "invalid
relocation" error message is printed.

e. Character constants used in mulit-term expressions may contain only one or two
characters.

Examples

.A.+1
'.A.'+1
'A'-'B'
6443/2
-1•2
10/5•2
6+6+6-0MS

'A'++'B'
'ASM'+2

2. 4. 3 Expression Evaluation

Valid expression
Valid expression
Valid expression
Valid expression (evaluates to 3221)
Valid expression (evaluates to - 2)
Valid express~on (evaluates to 4)
Valid expression (evaluates to 18 minus
the value of OMS)
lnvalid--adjacent operators
lnvalid--contains a long character string.

A single-term expression takes on the value of the term involved.

A multi-term expression is reduced to a single value, as follows:

a. Each term is evaluated.

b. Arithmetic operations are performed from left to right.

c. Division always yields an integer result; any fractional portion of the result is dropped.

d. Division by zero is permitted and yields a zero result.

Negative values are carried in twos complement form. The value of the expression must be in
the range - 32,768 to 32,767 or the results may be meaningless.

2.4.4 Address Expressions

In addition to its evaluated numerical value, the relocatability of an expression is determined.
The relocatability of an expression depends upon the term(s) in the expression. The
expression is absolute if it contains a single absolute value. The expression is relocatable if it
contains a single relocatable value. A multi-term expression may be absolute or relocatable.

2· 11

STATEMENTS

Absolute and relocatable expressions are derived from the term or combination of terms
composing them, and the way in which these terms are combined. Table 2-1 shows, for each
arithmetic operation, whether the result is absolute (abso), relocatable (relo), or illegal.

Table 2-1. Arithmetic Operation Results (DAS MR only)

A abso A abso A relo A relo
B abso B relo B abso B relo

A+B abso relo relo illegal

A-8 abso illegal relo abso

A•:' B ab so illegal illegal illegal

AIB ab so illegal illegal illegal
~----------------------------------- ----------------------------------'

-+ 2. 4. 4. 1 Absolute Expressions

An absolute expression is a constant, an absolute symbol, or any arithmetic combination of
absolute terms. An expression may be absolute even though it contains relocatable terms,
alone or in combination with absolute terms, under the following conditions:

a. There must be an even number of relocatable terms in the expression and the terms must
be paired. Otherwise, ;rn "invalid relocation" error message will result.

b. Each pair of terms must have opposite signs and the same relocatability. (Program, blank
COMMON or the same named COMMON). The paired terms do not have to be
contiguous.

c. Relocatable terms entering into multiply or divide operations are considered absolute
terms, with the same value.

The pairing of relocatable terms with the same relocatability and opposite signs cancels the
effect of the relocation, since both symbols would be relocated by the same amount. Thus, the
value represented by the paired terms remains constant, regardless of program relocation.

An absolute expression reduces to a single absolute value.

Examples

If A and B are relocatable symbols and X and Y are absolute symbols or terms, the following
are absolute expressions:

2-12

x
A-B
A-B+X
X+Y
X•Y
x/Y
A•B

abs = abs
rel rel = abs
rel rel+ abs = abs
abs+ abs = abs
abs~'abs = abs
abs/abs = abs
rel'~ rel is interpreted as abs* abs = abs
(see discussion below under Relocatable
Expressions).

STATEMENTS

-+ 2.4.4.2 Relocatable Expressions (DAS MR Only)

A relocatable expression is a relocatable term or a combination of relocatable and absolute
terms under the following conditions:

a. There must be an odd number of relocatable terms with the same relocatability.

b. All the relocatable terms but one must be paired (see the description of pairing under
ABSOLUTE EXPRESSIONS).

c. The unpaired term must not be directly preceded by a minus sign (-).

If the above conditions are not met, an "invalid relocation" error message will result.

Relocatable terms entering multiply or divide operations are considered absolute terms with
the same value. A relocatable expression reduces to a single relocatable value. This value is
the value of the expression, with the relocatability attributes of the unpaired relocatable term.

Examples

If A and B are relocatable symbols and X and Y are absolute symbols, the following are
relocatable expressions:

A
A+X
X+B
A-B+A
A+2
X+B+Y
A*B+A

rel = rel
rel+ abs = rel
abs+ rel = rel
rel-rel+ rel = rel
rel+ abs = rel
abs+ rel +abs = rel
rel>:•rel +rel is interpreted as
abs':<abs +rel = rel

2.4.5 Logic Expressions (DAS MR with VORTEX I and VORTEX II)

There is a set of logic expressions that can be interfaced with the arithmetic expressions_ The logic
expressions operate on 16-bit values in the same manner as the arithmetic operators_

The logic expressions and their corresponding symbols are:

AND
Inclusive OR
Exclusive OR
NOT

.&

.!

.i or.

\

2.4.6 Mode Determination

The mode of an expression is determined by the mode of the symbols in the expression. The
mode is determined by the following rules:

a. If the expression contains any mode E or C symbol, the expression is mode E.

b. If the expression contains only mode A symbols, the expression is mode A.

2-13

l

i

STATEMENTS

c. If the expression contains mode A and R symbols, the mode of the expression is R if there is
an odd number of mode R symbols. Otherwise, the mode of the expression is A.

The following restrictions apply only to DAS MR and to FORTRAN-compatible output assembly
with DAS 8A.:

a. No expression can contain symbols of both modes E and C.

b. A mode E expression comprises a single mode E symbol.

c. No mode E, C, or R expression can multiply or divide a mode E or C symbol.

d. No expression can add or substract a mode C and a mode R symbol, or a mode E and a
mode R symbol.

e. No expression can add two or more mode E, C, or R symbols.

f. A mode A symbol can be added to or subtracted from a mode C or R symbol.

Examples

The following program code illustrates expression mode determination rules.

EEEE EXT Defines mode E.
cc cc COMN 6 Defines mode C
RTN ENTR Defines a symbol (RTN) as mode R.
TBL BSS 50 TBL is mode R.
ABL BSS 'A'+5 ABL is mode R.
LENG EQU *-'rBL LENG is mode A (defines area length).

CALL EE8E,TBL,LENG
LOA *+6 Legal, one-word relative forward.
LOA CCCC+6 Illegal, one-word not R or A.
LOX! CCCC+6 Legal, two-word instruction.
LOA 0 I 1 Legal, loads CCCC + 6 in A register.

DATA EEE:E+4 Illegal, value not zero.
DATA CCCC+4 Legal.
DATA CCCC+LENG Legal.
DATA TBL+LENG Legal, mode is R.

2.5 SYMBOLS

A symbol is a character or combination of characters used by the programmer to symbolically
define instruction addresses, data addresses, general purpose registers, and arbitrary values.
Through their use in label fields and in operand fields they provide the programmer with an
efficient method to name and reference program elements. The assembler creates a symbol
table and assigns to each of the symbols written in the source program a value and a
relocation bias (DAS MR only); it also provides indicator flags when required by the program.
This relieves the programmer of having to know the absolute address locations of code and
data areas.

2-14

STATEMENTS

Symbols are formed from the following three classes of characters:

a. Alphabetic characters: A through Z

b. Numeric characters: 0 through 9

c. Special character: pound sign (#)

A symbol is formed from one to six characters (DAS MR) or one to four characters (DAS 8A)
in length, chosen from the preceding classes. The first character must not be numeric.
Symbols cannot contain imbedded blanks.

Symbols may be classified as user symbols (section 2.5.1) and assembler-defined symbols
(section 2.5.2).

2.5.1 User Symbols

User symbols are defined and used by the programmer to symbolically reference instruction
and data area addresses, the general purpose registers, and arbitrary values.

Although it is possible for the user to define user symbols that begin with the pound sign, this
should not be done because conflicts can arise with V70 series system software, which uses
the pound sign.

Examples

A
MAIN
BETA 11
BUFFER
READ1
CON90
1288
CODE1
RECORD1
RCD+A
IN AREA

User symbol.
User symbol.
User symbol (DAS MR).
User symbol (DAS MR).
User symbol (DAS MR).
User symbol (DAS MR).
lnvalid--first character is numeric.
lnvalid--more than 4 characters (DAS 8A).
lnvalid--more than 6 characters (DAS MR).
Invalid character in symbol.
lnvalid--contains an imbedded blank character.

2.5.2 Assembler-Defined Symbols

Assembler-defined symbols are of a specialized nature and are used primarily to control the
assembly process. They are unique in that they are not defined by the programmer, but by
the assembler itself. All symbols that are not assembler-defined symbols must be properly
defined by the user in his source program.

2.5.2.1 Operation Field Symbols

All instruction mnemonics and assembler directives appearing in the operation field are
predefined by the assembler and control the processing of the source statement.

2-15

STATEMENTS

CAUTI~~
DAS assemblers recognize the complete instruction sets of all SPERRY UNIVAC 70
series computers, even when the system on which they operate lacks the hardware for
executing a particular instruction. The programmer, therefore, must have a thorough
knowledge of the instructions applicable to his system before attempting to assemble a
program.

Any other operation symbols are user symbols; these are comprised of OPSY-defined
instruction mnemonics (section 4.2.1), FORM-defined symbols (section 4.4.4), and macro call
names (section 4.13).

2.5.2.2 Location Counter Symbols

Current location Counter C'). The assembler maintains a location counter to assign storage
addresses to program statements. It is the assembler's equivalent of the computer's program
counter. As machine instructions and data areas are assembled, the location counter is
incremented to reflect the length of the assembled code or data. Thus, it always contains the
address of the next available word.

The location counter also has an associated relocatability mode, either absolute, program
relocatable, or named FORTRAN COMMON relocatable. Modification of the current value and
mode of the location counter is accomplished with the ORG directive. The location counter is
never negative and is always less than 2 16

•

The programmer can reference the current value of the location counter by using the asterisk
C<) character as a term in an operand. The asterisk term represents the word address of the
beginning of the current instruction or data area. Use of the asterisk term in a literal
address constant results in the assembler using the word address of the instruction
containing the literal.

The relocatability mode of the asterisk term-·absolute, program relocatable, or named
FORTRAN COMMON relocatable--is dependent on the current mode of the location counter.

Examples

JMP

LDA

•+4

*

Jump to the location 4 words down.

Load A with the word at the
current location counter (i.e.,
the "LOA" instruction itself).

DAS SA location Counters. DAS 8A has five standard location counters that have predefined
names, as described in Table 2-2. These location counter names may be used in location
counter control directives (section 4.3) for controlling the location counter values used during
the DAS 8A assembly process. These names have special significance only in the location
counter control directives; if used in instruction statements or other directives, they are
considered user symbols.

These five location counters are not applicable in DAS MR programs.

2-16

STATEMENTS

Table 2-2. Standard DAS 8A Location Counters

Counter Initial Value Description

COMN 002000 Controls assignment of memory
within an interface area common
to two or more programs.

IAOR 000200 Control assignment of memory
to indirect pointers.

LTOR 001000 Control~ assignment of memory
to literals.

SYOR 000000 Controls assignment of memory
to all system parameters.

(blank) 004000 Used initially and normally
by the assembler for memory
assignments until/unless over-
ridden by the use of the ORG
directive

2.5.3 Symbol Values

Associated with every symbol is a value. The value is in the range - 32,768 through + 32,767.
This value is substituted in place of the symbol whenever the symbol appears in the variable
field of other source statements.

A symbol's value is defined when it appears in the label field of a statement. The value
assigned is one of two types:

• For all instruction mnemonics and most assembler directives, the symbol is assigned the
value of the current location counter.

1111 In certain assembler directives, the symbol is assigned the value of the variable field entry;
these directives are: EQU, SET, MAX, MIN, OPSY, ORG, LOC, and BEGI. In addition,
special purpose symbols are used in the label field for FORM and MAC directives. (All of
these directives are described in detail in section 4.)

2.5.4 Address Symbols and Relocatability

2.5.4.1 Relocatability (DAS MR Only)

In addition to having names and values, all symbols are associated with a set of attributes.
These attributc~s describe how the symbol is handled by the assembler.

2-17 '

STATEMENTS

The most important attribute is that of relocatability. A relocatable program (DAS MR only) is
one that has been assembled with its instruction and directive locations assigned in such a
manner that it can be loaded and executed anywhere in memory. When such a program is
loaded, the beginning memory address is specified, and a value (known as the relocation
bias) is added to the addresses of subsequent relocatable instructions. The relocatable
loader is used to load a program in any area of memory and modify the addresses as it loads
so that the resulting program executes correctly.

Programs can contain absolute addresses, relocatable addresses, or both. Symbols which
refer to addresses that will change during program loading are relocatable. Other symbols,
such as register numbers or buffer lengths, do not change with program loading and are
called absolute symbols. Programs are usually assembled with a zero relocation bias on the
first instruction.

The assembler's location counter contains the (relative) address of the instruction or directive
currently being executed. The location counter is absolute when it contains the actual address
of the instructions, and relocatable when it contains an address relative to the start of the
program.

Symbols can be absolute or relocatable. If a symbol is equated to the location counter, it is
relocatable if the location counter is relocatable. Otherwise, the symbol is absolute.
Expressions (section 2.5), since they contain symbols, can be absolute or relocatable.
Constants are always absolute.

At the beginning of each instruction or data word generated by the assembler, the
relocatability can be set by the ORG directive. On encountering an ORG directive, the
assembler maKes the location counter absolute if the corresponding expression is absolute, or
relocatable if the corresponding expression is relocatable.

2.5.4.2 Absolute Symbols

Absolute symbols are those whose values are independent of the execution address. These
symbols are used to represent such things as register numbers, fixed memory locations,
buffer lengths, or bit masks.

These symbols can be defined in the following two ways:

a. By appearing in a label field when the location counter is in the absolute mode.

b. By being defined as equivalent to some absolute value in directives (EQU, ORG, etc.).

Examples

START

TEN

2-18

ORG
LOA

EQU

0500
VSYS

1 0

(Specifies absolute address origin.)
The label START is assigned an
absolute value of 0500.

The label TEN is assigned an
absolute value of 10.

STATEMENTS

2.5.4.3 Relocatable Symbols (DAS MR Only)

Values of relocatable symbols are dependent upon the execution address of the program.
They can represent such things as instruction addresses, data addresses, and addresses of
other programs.

Relocatable symbols may be defined in the following ways:

a. By appearing in a label field while the location counter is in the relocatable mode.

b. By being defined as equivalent to some relocatable value in direc.tives (EQU, ORG, etc.)

There are four major types of relocatable symbols:

a. Program relocatable symbols, whose values depend on the program location.

b. Blank COMMON relocatable symbols, whose values depend on the location of FORTRAN
blank COMMON.

c. Named COMMON relocatable symbols, whose values depend on FORTRAN named
COMMON.

d. External symbols, whose values depend on the location of separately assembled programs.

Examples

•NO ORG DIRECTIVE IN DAS MR ASSEMBLES AS RELOCATABLE.
START LDA MERF The label START is assigned

a value of relocatable zero.

HERE EQU *

2.5.5 Symbol Modes

Where the program counter is
relocatable, assigns the
relocatable value to the label
HERE.

Each symbol has one of the following modes assigned by the assembler:

a. External (E)

b. Common (C)

c. Relative (R)

d. Absolute (A)

The mode of a symbol is determined by the following rules:

a. If the symbol is in an EXT directive, the mode is E.

b. If the symbol is defined by a COMN directive, the mode is C.

2-19

STATEMENTS ·

c. If the symbol is a symbol in a program, or if * is the current location counter value, the
mode is R.

d. If the symbol is a number (numerical constant), the mode is A.

e. If the symbol is defined by an EQU, SET, or similar directive, the mode of the symbol is that
of the variable field expression in the directive.

Examples

EXT

UNIV COHN

START ENTR

CONS DATA

TIME EQU

2 20

EDAT

4 1

1 , 2, 3

24

Symbol EDAT has mode E.

Symbol UNIV has mode C.

Symbol START has mode R (location
counter relocatable) or mode
A (location counter absolute).

Symbol CONS has mode R (location
counter relocatable) or mode
A (location counter absolute).

Symbol TIME has mode A.

SECTION 3

INSTRUCTION SUMMARY

For use with DAS, SPERRY UNIVAC 70 series instructions are divided into six categories:
types 1 through 5 and multiple register. Tables 3-1 and 3-2 list the characteristics and
mnemonics of the instruction types.

A complete list of V70 series instructions, arranged alphabetically by mnemonic, is given in
appendix A. The details of the 16-bit configuration of each individual instruction word arc
given in the applicable system handbook. Also refer to the handbook for a complete
description of addressing modes.

Computer instructions have the general format for source statements described in section 2.
A label is always optional in instruction statements. In the following descriptions of the
individual instruction groups, the field format:

Operation Variable

is used, with the optional label being understood to precede the operation field when used,
and the optional comment field to follow the variable field when used. In cases where the
variable field contains more than one item or expression, these are always separated by
commas. Mandatory elements of the field are in bold type, and optional items, in italic type.

Table 3-1. Assembler Instruction Type Characteristics

Parameter Type 1 Type 2 Type 3 Type 4 Type 5 Multiple
Register

··-
Words generated 1 2 2 1 2 (Varies

with
Memory addressed Yes Yes•:• Yes No Yes instruc-

ti on
Indirect addressing Yes Yes•:• Yes No Yes group)

Indexing Yes No No No Yes

Variable field 1 or 2 1 2 0 or 1 1 to 3
expressions

Microcoding No No Yes Yes No

1--·
':~ Except for immediate instructions.

-

3.1

INSTRUCTION SUMMARY

Table 3-2. Summary of Assembler Instruction Types*
..-----~------------ --·-··--.----·-
Type 1 Type 2

ADD
ANA
DIV
ERA
INR
LOA
LOB
LOX
MUL
ORA
STA
STB
STX
SUB

ADDI
ANAi
DIVI
ERAI
INRI
JAN
JANM
JANZ
JANZM
JAP
JAPM
JAZ
JAZM
JBNZ
JBNZM
JBZ
JBZM
JMP
JMPM
JOF
JOFM
JOFN
JOFNM
JSSl
JSS2
JSS3
JSlM
JSlN
JSlNM
JS2M
JS2N
JS2NM
JS3M

JS3f
JS3N
JXN
JXN
JXZ
JXZM
LOA
LOB
LOX
MUL
ORA
STAI
STBI
STXI
SUB
XAN
XAN
XAP
XAZ
XBN
XBZ
XEC
XOF
XOFN
XSl
XSlN
XS2
XS2N
XS3
XS3N
XXN
xxz

\j

M
z
ZM

I
I
I
J
I

I

z

z

z

,___ ___ i_ ______________ -

----'

Type 3

BT
IME
JOF
JIFM
OME
SEN
XIF

Type 4

AOFA
AOFB
AOFX
ASLA
ASLB
ASRA
ASRB
CIA
CIAB
CIB
COMP
CPA
CPB
CPX
DAR
DBR
DECR
DXR
EXC
EXC2
HLT
IAR
IBR
INA
INAB
INB
INCR
IXR
LASL
LASR

Type 5--

LLRL ADDE
LLSR ANAE
LRLA DIVE
LRLB ERAE
LSRA IJMP
LSRB INRE
MERG JSR
NOP LDAE
OAB LOBE
OAR LDXE
OBR MULE
ROF ORAE
SEL SRE
SEL2 STAE
SOF STBE
SOFA STXE
SOFB SUBE
SOFX
TAB
TAX
TBA
TBX
TSA
TXA
TXB
TZA
TZB
TZX
ZERO

Multiple
Register

AD
ADI
ADR
COM
DADD
DAN
DEC
DER
OLD
INC
JDNZ
JDZ
JN
LBT
LD
LOI
SB
SBR
SBT
ST
T

_. * Instructions used only with the V77-800 computer are described in section 3. 7

3.1 TYPE 1 INSTRUCTIONS

i

An assembler type 1 instruction occupies one computer word and is memory-addressing. It
may optionally specify indirect or preindexed addressing.

3-2

INSTRUCTION SUMMARY

Assembler type 1 instructions are:

Normal Load/Store

Arithmetic

Logic

LDA
LDB
LDX
STA
STB
STX
ADD
SUB
MUL
DIV
INR
ANA
ORA
ERA

Load A register
Load B register
Load X register
Store A register
Store B register
Store X register
Add memory to A register
Subtract memory from A register
Multiply
Divide
Increment memory
AND memory and A register
Inclusive OR memory and A register
Exclusive OR memory and A register

The format of type 1 instructions varies according to the type of addressing, as follows:

Operation Variable

xxx address Direct addressing

xxx•:1 address Indirect addressing
or

xxx (address)::'

xxx incr,i Indexed addressing

where:

xxx is a type 1 instruction mnemonic

address is an address expression

incr is an indexing increment, < 0512

specifies an index register: 1 = X, 2 = 8

If the direct form of instruction is used, DAS selects the addressing mode of the generated
computer instruction according to the following rules:

a. Direct Addressing: If the specified address is 2047 or below, direct addressing is used.

b. Relative Addressing: If the specified address is above 2047 but not more than 512 and not
less than one word beyond the current instruction, the mode of addressing is relative to
the program counter.

c. Indirect Addressing: If neither of the preceding conditions for direct or relative addressing
is true, an address within the range 0 through 511 (called indirect pointer) is generated
and the indirect pointer address will be used in the instruction in the indirect mode.

3-3

INSTRUCTION SUMMARY

Indirect addressing is specified by an asterisk after the mnemonic or after ·a variable field
expressed in parentheses, e.g.:

LDA* address

LDA (address)* NOTE CAUTION BELOW.

The instruction will be coded to address a location in lower core containing the address of the
word to be accessed. Indirect addressing to five levels is permitted and is accomplished by
setting the high-order bit at the indirect address location(s).

CAUTION

Only the first form should be used in DAS BA (i.e., LOA*). In the second form (i.e.,
address)~' DAS BA will force bit 15 to a 1, changing the instruction.

Indexing is specified by two expressions in the variable field. The first is the indexing
increment and is less than 512. The second specifies the indexing register: X register = 1,
and B register = 2. Preindexing is used. (Type 1 instructions cannot be postindexed.)

Examples

TIN

IND1
IND2
IND3

3-4

LDA

LDA

LDA

LDA*

DATA

LDA*

DATA
DATA
DATA

0500

*+12

070000

TIN

05100

IND1

(IND2)*
(IND3)*
050

Load A register with the contents
of memory location 0500. Addressing
is direct.

Load A register with the contents
of the word 12 locations down
from the LOA instruction.
Addressing is program counter
relative.

Load A register with the contents
of memory location 070000. An
indirect address is generated
pointing to a location in lower
core containing the address
(070000).

Load A register with the contents
of the location whose address
is contained at TIN, i.e., load
A register with the contents of
location 05100. Addressing is
indirect.

This shows an example of multiple
indirect addressing to 3 levels.
The A register is loaded with
the contents of memory location
050.

INSTRUCTION SUMMARY

LDA 0300, 1

3.2 TYPE 2 INSTRUCTIONS

Load A register with the contents
of the memory address specified
by the sum of the X register
contents and 0300. Thus, if
the X register contains 0200,
the operand for this instruction
is in memory address 0500.

An assembler type 2 instruction occupies two consecutive computer words and is memory
addressing. The second word is the address of a jump, jump-and-mark, or execution
instruction; or the operand specified by an immediate instruction.

Assembler type 2 instructions are:

Immediate
Load/Store

Arithmetic

Logic

Jump-
Jump and-Mark
JMP JMPM
JOF JOFM
JOFN JOFNM
JAP JAPM
JAN JANM
JAZ JAZM
JBZ JBZM
JXZ JXZM
JANZ JANZM
JBNZ JBNZM
JXNZ JXNZM
JSSl JSlM
JSS2 JS2M
JSS3 JS3M
JSlN JSlNM
JS2N JS2NM
JS3N JS3NM

LDAI
LDBI
LDXI
STAI
STBI
STXI
ADDI
SUSI
MULi
DIVI
INRI
ANAi
ORAi
ERAI

Execute
XEC
XOF
XOFN
XAP
XAN
XAZ
XBZ
xxz
XANZ
XBNZ
XXNZ
XSl
XS2
XS3
XSlN
XS2N
XS3N

Load A register immediate
Load B register immediate
Load X register immediate
Store A register immediate
Store B register immediate
Store X register immediate
Add to A register immediate
Subtract from A register immediate
Multiply immediate
Divide immediate
Increment immediate
AND immediate
Inclusive OR immediate
Exclusive OR immediate

Unconditionally
If overflow set
If overflow not set
If A register positive
If A register negative
If A register zero
If B register zero
If X register zero
If A register not zero
If 8 register not zero
If X register not zero
If SENSE switch 1 set
If SENSE switch 2 set
If SENSE switch 3 set
If SENSE switch 1 not set
If SENSE switch 2 not set
If SENSE switch 3 not set

3-5

INSTRUCTION SUMMARY

The immediate instructions have the following format:

where:

Operation

xxxl

Variable

value

xxxl is an immediate instruction mnemonic

value is any expression value

The format of type 2 program control transfer instructions is the same as for type 1 direct or
indirect addressing. Since a full word is allocated to the address, the assembler will never
need to code an indirect address pointer for the purpose of reaching a specified location
otherwise out-of-range. The programmer may code an indirect address. With two-word
instructions, indirect addressing is limited to four levels. Type 2 instructions cannot be
indexed.

Examples

LDAI 19

JMP THERE

JXNZ* SM

XAZ IMP

Load A register with the value
19. The value is coded in
the second word of the instruction.

Unconditionally jump to the
instruction with the label
THERE.

If the X register is not zero,
jump to the instruction whose
address is contained in location
SM (may be multi-leveled).

If the A register is zero,
execute the instruction at
location IMP. In either case,
control passes to the instruction
following XAZ.

3.3 TYPE 3 INSTRUCTIONS

An assembler type 3 instruction occupies two consecutive computer words and is memory
addressing. It differs from an assembler type 2 instruction in that the variable field contains
two expressions instead of one.

Assembler type 3 instructions are:

Jump

Jump-and-Mark
Execution
1/0

3-6

JIF
BT
JIFM
XIF
SEN
IME
OME

Jump if condition(s) n:iet
Jump if bit condition met
Jump and mark if condition(s) met
Execute if condition(s) met
Program sense and jump if true
Input to memory
Output from memory

INSTRUCTION SUMMARY

The format of type 3 instructions is as follows:

where:

xx xx

yyyy

code

address

Operation

xx xx

Variable

code, address Direct addressing

yyyy* code.address Indirect addressing
or

yyyy code,(address)::~

is any type 3 instruction mnemonic

is any type 3 instruction mnemonic except
IME or OME

is a condition code (see below)

is an address expression

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions. Note that IME and OME
cannot specify indirect addressing.

The code parameter entries are described in detail below.

JIF, JIFM, and XIF Instructions

For the JIF, JIFM, and XIF instructions, the expression code specifies the conditions required
for the jump, jump-and-mark, or execution. The conditions are summarized in table 3-3; they
are described in detail in the system handbook. Multiple conditions can be specified by
setting additional bits.

Table 3-3. JIF/JIFM/XIF Code Conditions

Variable

0001

0002

0004

0006

0010

0020

~MO 0100

0200

0400

Field Jump I Execute if:

Overflow indicator is set.

A register contents are positive.

A register contents are negative.

NOT test of specified conditions.

A register contents are zero.

B register contents are zero.

X register contents are zero.

SENSE switch 1 is set.

SENSE switch 2 is set.

SENSE switch 3 is set.

3.7

INSTRUCTION SUMMARY

BT Instruction

For the BT instruction, the expression code is a 6-bit value that specifies the register and bit
to be tested, in the form:

5 4 3 2 1 0

jz'zlb 1 b1 b1 bj
where:

zz 00 Specified bit in A register is 1
01 Specified bit in B register is 1
10 Specified bit in A register is 0
11 Specified bit in B register is 0

bbbb specifies the bit to be tested, from bit
O (low-order bit) to bit 15 (high-order
bit)

SEN Instruction

For the SEN instruction, the expression code is a 9-bit value that specifies the device address
and 1/0 function, in the form:

8 7 6 5 4 3 2 1 0

I q I , da '

where:

q is a line number (0 to 7)

da is the device address

Standard device addresses are listed in section 3.4.

IME and OME Instructions

For IME and OME instructions, the expression code is the device address.

Examples

JIF

3-8

0222,ALFA In this example, the next
instruction is taken from
symbolic address ALFA if the
A register contains a positive
number (0002), the B register
contains zero (0020), and
SENSE switch 2 is set (0200);
i.e., 0002 + 0020 + 0200 =
0222.

INSTRUCTION SUMMARY

BT 056,ADDR In this example the next instruction
from symbolic address ADDR is fetched
if bit 14 of the A register contents
is zero.

SEN
JMP

0101, ADDR
*-2

In this example, the next instruction
is fetched from symbolic address ADDR
if the write register of the Teletype
is ready; OME is executed, which outputs
the data in symbolic address LOC to

ADDR OME 01 I LOC the Teletype. Otherwise, the next
instruction in sequence (JMP) is executed,
which returns the program to the SEN
command.

3.4 TYPE 4 INSTRUCTIONS

An assembler type 4 instruction occupies one computer word and does not address memory.
These instructions take none or a single variable operand.

Assembler type 4 instructions are:

Register Transfer

Register Modification

TAB
TAX
TBA
TBX
TXA
TXB
TZA
TZB
TZX
TSA
IAR
IBR
IXR
DAR
DBR
DXR
CPA
CPB
CPX
AOFA
AOFB
AOFX
SOFA
SOFB

no SOFX
Control opera~nd ~g~

SOF
HLT

Transfer A register to B register
Transfer A register to X register
Transfer B register to A register
Transfer B register to X register
Transfer X register to A register
Transfer X register to 8 register
Transfer zeros to A register (clear A)
Transfer zeros to B register (clear 8)
Transfer zeros to X register (clear X)
Transfer switches to A register
Increment A register
Increment B register
Increment X register
Decrement A register
Decrement B register
Decrement X register
Complement A register
Complement B register
Complement X register
Increment A register if overflow set
Increment B register if overflow set
Increment X register if overflow set
Decrement A register if overflow set
Decrement B register if overflow set
Decrement X register if overflow set
No operation
Reset overflow indicator
Set overflow indicator
Halt

3-9

INSTRUCTION SUMMARY

Shift/Rotation

l
operand

ASRA
ASRB
ASLA
ASLB
LASR
LASL
LSRA
LSRB
LRLA
LRLB
LLSR
LLRL

Arithmetic shift right A register
Arithmetic shift right B register
Arithmetic shift left A register
Arithmetic shift left B register
Long arithmetic shift right
Long arithmetic shift left
Logical shift right A register
Logical shift right B register
Logical rotation left A register
Logical rotation left B register
Long logical shift right
Long logical rotation left

Combined Register
Transfer /Modification MERG

INCR
DECR
COMP
ZERO
EXC
SEL
EXC2
SEL2
CIA
CIB
CIAB
INA
INB
INAB
OAR
OBR
OAB

Merge source to destination registers
Increment source to destination registers
Decrement source to destination registers
Complement source to destination registers
Zero (clear) registers.

1/0 External control
External control
Auxiliary external control
Auxiliary external control
Clear and input to A register
Clear and input to B register
Clear and input to A and B registers
Input to A register
Input to B register
Input to A and B registers
Output from A register
Output from 8 register
Output from A and B registers

The format of type 4 instructions appears as follows:

where:

xxxx

yyyy

expression

Operation

xx xx

yyyy

Variable

No variable field

expression

is any of the register transfer, register
modification, or control instructions
(except HL T) listed above. These instruc
tions take no operand.

is any of the remaining instructions
listed above. Theses instructions take
one operand.

is an expression value

The expression value is described below for each group that uses it.

3-10

INSTRUCTION SUMMARY

Hl T Instruction

The HL T variable field expression is optional; if present, it becomes the coded value of the
instruction (otherwise zero). The HLT number can be displayed from the I register whenever a
halt occurs to determine which halt was reached.

Shift Instructions

For the shift instructions, the variable field expression is the shift count (31 maximum).

Combined Register Transfer /Modification Instructions

For the combined register transfer /modification instructions, the variable field expression is a
number of the form:

Oxsd

composed as shown below:

x
8 7 6 5
I I 0 I 0 I

O execute
unconditionally

1 execute if OF is set

4
I

s

3 2 1 0

I
I I

I d

~t A reg
B reg
x reg

reg
1 B reg

-1 x reg

For the ZERO instruction, the code must be of the form "OxOd".

1/0 Instructions

For EXC, SEL, EXC2, and SEL2, the expression specifies the 1/0 function and the device
address in the form:

~8 __ 7 _6_____.;.5 4 _..;:;:..3-=2:.._...:1;;__..0.:;_
I f I -.- ' da '~

where:

f is the control function

da is the device address

3-11

INSTRUCTION SUMMARY

For the remainder of the I /O instructions in this group, the expression is the device address
only (the 1/0 function being specified by the mnemonic).

Examples

HLT 066

ASLA

COMP 035

CIB 030

Codes an instruction of the
operand value that may be displayed
when a halt at this location
occurs.

Arithmetic left shift A register
1 bit (equivalent to multiplying
by 2).

Unconditionally takes the
inclusive OR and complements
the contents of the A (0010)
and B (0020) registers, and
places the result in the A
(0001) and X (0004) registers.
Note that if bit 8 were one
in the operand, the instruction
would execute only if the
overflow indicator is set.

Clears the 8 register and loads
it from the peripheral specified
by device address 030.

Standard device addresses are given in table 3-4.

NOTE

SEL/SEL2 are identical to EXC/ EXC2 instructions.

3-12

INSTRUCTION SUMMARY

Table 3-4. Standard Device Addresses

Class Code Addresses Option or Peripheral

00-07 01-07 Teletype or CRT device

010-017 010-013 Magnetic tape unit
014 Fixed-head rotating memory
015 Movable-head rotating memory
016-017 Movable-head rotating memory

020-027 020,021 First BIC
022,023 Second BIC
024,025 Third ate
026,027 Fourth BIC

030-037 030 Card reader
031 Card punch
032 Digital plotter
033 Electrostatic plotter
034 Second paper tape system
035,036 Line printer
037 First paper tape system

040-047 040-043 PIM
044 All PIM enable/disable
045 MP/PARITY
047 RTC

050-057 050-053 Special applications, and
Digital-to-analog converter

through
054-057 Analog system

060-067 060-067 Digital 1/0 controller, or
Buffered 1/0 controller

070-077 070-073 Data communications system
074-076 Relay I /0 controller, or

Special applications
077 Computer control panel

1---.

3.5 TYPE 5 INSTRUCTIONS

An assembler type 5 instruction occupies two consecutive computer words and is memory
addressing. All of these instructions have indirect addressing as an option. Most can be
preindexed or postindexed.

3-13

INSTRUCTION SUMMARY

Assembler type 5 instructions are:

Extended Load/Store

Arithmetic

Logical

Jump

LDAE
LOBE
LDXE
STAE
STBE
STXE
ADDE
SUBE
MULE
DIVE
lNRE
ANAE
ORAE
ERAE
IJMP
JSR
SRE

Load A register extended
Load B register extended
Load X register extended
Store A register extended
Store B register extended
Store X register extended
Add memory to A register extended
Subtract memory from A register extended
Multiply extended
Divide extended
Increment memory extended
AND memory and A register extended
Inclusive OR memory and A register extended
Exclusive OR memory and A register extended
Indexed jump
Jump and set return in index register
Skip if register equals memory

These instructions have the following formats:

where:

address

post

Operation

xx xx

xxxx*
or

Variable

address, i, post

address,i,post

xxxx (address)i:' ,i,post

is an address expression

if present, is an index specification,
described further below

Optional indexed
addressing

Indirect addressing

if present, is a postindex specification
for ail extended addressing instructions.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions.

Preindexing is specified as described for the type 1 instructions. Note that IJMP and SRE
cannot be preindexed.

Postindexing is specified by three expressions in the variable field. The first expression is the
data address, the second specifies the indexing register (X register = 1, and B register = 2),
and the third is logically ORed with the instruction word to set bit 7 (which specifies
postindexing). The assembler does not check the validity of the third expression; thus, the
value 0200 should always be used. There is no purpose to postindexing unless indirect
addressing is involved.

3-14

INSTRUCTION SUMMARY

Variations in the interpretation of the variable field entries are discussed below.

Extended Instructions

For extended instructions, the variable field may contain one operand (direct addressing), two
operands (preindexing), or three operands (postindexing). The instructions may also include
indirect addressing.

address
or

address,i
or

address,i ,0200

IJMP Instruction

Direct addressing

Preindexed addressing

Postindexed addressing

The IJMP instruction may have direct, indirect, and postindexed addressing, i.e., variables of:

address
or

address,i

IJMP cannot be preindexed.

JSR Instruction

Direct addressing

Postindexed addressing

The JSR instruction, like IJMP, is not preindexed, nor is it postindexed. A variable field of the
form:

address,i

is used to specify the jump address and the index register into which the return address is to
be placed.

SRE Instruction

For the SRE instruction, the first expression in the variable field is the data address, the
second specifies the type of addressing, and the third is logically ORed with the instruction
word to control bits 3-5 to specify the register to be compared. The format may be illustrated
as:

where:

address

address,t,reg

is the memory location" to be compared
to the specified register

3-15

INSTRUCTION SUMMARY

t

reg

Examples:

LDAE*

IJMP

JSR

SRE

specifies the type of addressing and may
be any of the following:

1 index with X register
2 index with B register
7 not indexed

is a register code of the register to be
compared, as follows:

010 A register
020 B register
040 X register

ADDR,2,0200

GO, 1

MOM,2

ADDR,7,020

Loads the A register extended,
indirect and postindexed with
the B register.

Indirect jump through location
GO, postindexed by the X
register.

Jump to location MOM and set
return in B register.

Compares the contents of the
B register with the directly
addressed word at ADDR, and,
if equal, skips the next two
locations

3.6 MULTIPLE REGISTER INSTRUCTIONS

It should be noted that from the earliest Sperry Univac 620 software, the assembler syntax
uses the convention that the X register is index register 1 and the B register is index register 2.
However, tt1e V70 emulation microprograms use hardware register R1 for the B register and
hardware register R2 for the X register. The VORTEX DAS Assemblers resolve this by
mapping references to re~iister R1 into references to hardware register R2 and vice versa.
Thus, for V70 series instructions, references to the X register generate instructions
referencing hardware regi~;ter R2 (X register). Since the programmer is usually indifferent to
the hardware register number assigned the X and B registers (except possibly a diagnostic
programmer), this should cause no programming problems. If a diagnostic programmer
does want to reference a particular hardware register, the register designation in his
assembly statements should be written as follows:

a. To reference register RO (A), write 0.

3-16

INSTRUCTION SUMMARY

b. To reference register Rl (B), write 2.

c. To reference register R2 (X), write 1.

d. To reference registers R3 through R7, write 3 through 7, respectively.

NOTE

The multiple register instructions generally require more time for execution;
therefore, the standard instruction should be used whenever possible.

3.6.1 Register-To-Memory Instructions

Assembler mnemonics for the register-to-memory instructions are:

Example

AD Add
LO Load
SB Subtract
ST Store

LD,0 0300,3

3.6.2 Byte Instructions

Register RO is loaded with
the contents of the memory
address specified by the sum
of 0300 and the contents of
register R3. Thus, if R3
contains 0200, the operand
for this instruction is in
memory address 0500.

Assembler mnemonics for the byte instructions are:

Example

LBT Load Byte
SBT Store Byte

SBT 0200,3 The contents of the right byte
of register RO are stored at
the address specified by the
sum of 0200 and the contents
of register R3 (shifted right
one bit). Thus, if R3 contains
041, the operand is stored in
the right byte at address 0220.

3-17

INSTRUCTION SUMMARY

3.6.3 Jump-If Instructions

Assembler mnemonics for the jump-if instructions are:

JDNZ
JDZ
JN
JNZ
JP
JZ

Jump If Double-Precision Register Not Zero
Jump If Double-Precision Register Zero
Jump If Register Negative
Jump If Register Not Zero
Jump If Register Positive
Jump If Register Zero

Example

JZ,3 ADDR The program jumps to the symbolic
address ADDR if register R3
contains zero. If register R3
does not contain zero, the next
instruction in sequence is
executed.

3.6.4 Double-Precision Instructions

Assembler mnemonics for the double-precision instructions are:

Double Add
Double AND

DADD
DAN
DER
DLD
DOR
DST
DSUB

Double Exclusive OR
Double Load
Double OR
Double Store
Double Subtract

Examples

DST,4 0200

DST,O 0200

3.6.5 Immediate Instructions

The contents of double-precision
register R4-R5 are stored at
the two consecutive memory
locations starting at address
0200.

Same as above except register
RO-Rl contents are stored.

Assembler mnemonics for the immediate instructions are:

3-18

ADI Add Immediate
LOI Load Immediate

INSTRUCTION SUMMARY

Example

ADI,5 0642 The immediate operand value
of 0642 is added to the contents
of register R5.

3.6.6 Register-To-Register Instructions

Assembler mnemonics for the register-to-register instructions are:

ADR Add Registers
SBR Subtract Registers
T Transfer Registers

Example

T,3,4 The contents of register R3
are transferred to register
R4.

3.6.7 Single Register Instructions

Assembler mnemonics for the single register instructions are:

COM Complement
DEC Decrement
INC Increment

Example

INC,3 The contents of register R3
are incremented by 1.

3.7 V77-800 STANDARD EXTENSIONS

The V77-800 standard extensions include instructions for moving and storing blocks of data. These
extensions consist of the following seven instructions:

II

• •
II

•
II

11111

Double Word Move (DMOVSD,DMOVXD,DMOVSX,DMOVXX).
Registers Load (RGLD)
Registers Store (RGST)
Decrement register and Jump (DJP)
Block Move (BMOVW)
Store Words (STWRDS)
Store Bytes (STBYTS)

3-19

l

i

l

i

INSTRUCTION SUMMARY

3.7.1 Double Word Move Instruction

This instruction can be used with or without indexed addressing as shown by the following:

• Double Word Move (DMOVSD). - Neither the source nor the destination addresses are
indexed.

• Double Word Move (DMOVXD). - The source address is indexed by Register R2(X).

• Double Word Move (DMOVSX). - The destination address is indexed by Register R2(X).

• Double Word Move (DMOVXX). - The source and destination address are indexed by

Register R2(X).

Each of the double word move instructions moves up to seven double words.

The format for the double word move instructions is

name, words, source,destination

where

name is one of the V77-800 standard extension assembler mnemonics

words i~; the number of double word(s) to be moved

source i:; the address the double word(s) is/are located at

destination is the address that the double word(s) will be moved to.

Assembler mnemonics and the corresponding functions associated with the double word move
instruction are:

DMOVSD

DMOVXD

DMOVSX

DMOVXX

Example 1:

Addre~;s indexing is not used. Moves double word (s) from the source
address to the destination address.

The source address is indexed by the R2(X) Register and the destination
addre~:s is direct.

The source address is direct and the destination address is indexed by the
R2(X) Register.

Both the source and destination address are indexed by the R2(X) Register.

DMOVSD 1, LAB1, LAB2

This example moves one doi 1ble word from the source address (LAB 1) to the destination address
(LAB2)

3-20

INSTRUCTION SUMMARY

Example 2:

DMOVXD 3, LAB1, LAB2

This example moves three double words with the source address (LAB 1) indexed by the R2(X)
Register. The destination address (LAB2) is not indexed by the R2(X) Register.

3. 7. 2 Register load and Register Store Instructions

Assembler mnemonics for the Register Load and Register Store instructions are:

• RGLD Registers Load; Direct or Indexed Addressing
• RGST Registers Store; Direct or Indexed Addressing

The format for the Register Load and Register Store instruction is:

name,address,index register
where

name is one of the assembler mnemonics

address is the address to be indexed by the index register

index register is the register whose contents are used to index the address

Example 1:

RGLD LAB1 ,R7

Indexed; The address of LAB1 is indexed by R7. Registers 0 through 7 are loaded with the eight
sequential words starting with the word at the augmented LAB 1 address.

Example 2:

RGLD LAB1

Direct; Registers 0 through 7 are loaded with the eight sequential words starting with the word <=1t

the address of LAB 1.

Example 3:

RGST LAB1,R5

Indexed; The contents of registers 0 through 7 are sequentially loaded into eigl1t memory locations
starting with the destination address indexed by R5.

Example 4:

RGST LAB1

l

i

3-21

!

T

INSTRUCTION SUMMARY

Direct; The contents of registers 0 through 7 are stored into a block of eight sequential memory
locations starting with the address specified by LAB 1.

3. 7. 3 Decrement Register and Jump if the Initial Register Value is Not Negative

(DJP)

The assembler mnemonic for this instruction is:

DJ P Decrement Register and Jump

The format for the Decrement Register and Jump is:

name,index register,address

where

name

index register

address

is the mnemonic DJP

is the index register from which one will be subtracted. If the value in
tile register is non negative, the jump will occur.

is the address to which the jump may occur.

If the jump does not occur the next instruction is executed.

Example:

DJP R7, LAB1

This example subtracts on1) from the contents of R7 and, if the initial register value was not
negative, jumps to the address of LAB 1.

3. 7. 4 Block Move, Store Words, and Store Bytes Instructions

Assernbler mnemonics for 1 hese instructions are:

BMOVW Block Move
STWRDS Store Words
STBYTS Store Bytes

The forrnat for the Block Move, Store Words, and Store Bytes instructions is:

name

where

name 1s thE~ rnnernonic used

3-22

INSTRUCTION SUMMARY

Example 1:

BMOVW

This example moves up to 32K words, from the address stored in RO to the destination address
stored in R 1. The block length is stored in R6 and must be a value greater than zero.

Example 2:

STBYTS

This example stores the right byte of RO into a block of up to 32K bytes. The starting byte address of
the memory block is stored in R1. The block length, in bytes, is in R6. The block length stored in H6
must be greater than zero.

Example 3:

STWRDS

This example stores the word from RO into a block of up to 32K words. The initial address of thl-)
block is stored in R 1. The block length of the block is stored in R6. The length of the block stored in R6
must be greater than zero.

3-23

1

T

SECTION 4

ASSEMBLER DIRECTIVES

Assembler directives are requests to the assembler to perform certain operations during
program assembly, just as machine instructions are used to request the computer to perform
operations during program execution.

Assembler directives are divided into the following functional groups:

Symbol definition

Instruction definition

Location counter control

Data definition

Memory reservation

Conditional assembly

Assembler control

Subroutine control

List and punch control

Program linkage

MOS 1/0 control

VORTEX 1/0 control

Macro definition

Table 4-1 lists the assembler directives by function and shows which directives are recognized
by each assembler (DAS 8A and DAS MR).

Assembler directives have the same general format as the computer instructions. In the
following descriptions of the individual directives, the field format:

Label Operation Variable

is used, with the optional comment field being understood to follow the variable field when
used. In cases where the variable field contains more than one item or expression, these are
always separated by commas. Mandatory elements of the directive are in bold type, and
optional items, in italic type.

4-1

ASSEMBLER DIRECTIVES

Table 4-1. Directives Recognized by DAS Assemblers
- --

Function Directive DAS SA DAS MR

Symbol definition EQU Yes Yes
SET Yes Yes
MAX Yes No
MIN Yes No

Instruction definition OPSY Yes Yes

Location counter control ORG Yes Yes
LOC Yes Yes
BEGI Yes No
USE Yes No

Data definition DATA Yes Yes
PZE Yes Yes
MZE Yes Yes
FORM Yes Yes

Memory reservation BSS Yes Yes
BES Yes Yes
DUP Yes Yes

Conditional assembly IFT Yes Yes
IFF Yes Yes
GOTO Yes Yes
CONT Yes Yes
NULL Yes Yes

Assembler control MORE Yes No
END Yes Yes

Subroutine control ENTR Yes Yes
RETu•:• Yes Yes
CALL Yes Yes

List and punch control LIST Yes No
NUS Yes No
SMRY Yes Yes
DETL Yes Yes
PUNC Yes No
NPUN Yes No
SPAC Yes Yes
EJEC Yes Yes

Program linkage NAME Yes Yes
EXT Yes Yes
COMN Yes Yes

4-2

ASSEMBLER DIRECTIVES

Table 4· l. Directives Recognized by DAS Assemblers (continued)

Function Directive DAS 8A DAS MR

Macro definition MAC No Yes
EMAC No Yes

MOS 1/0 control Applicable to DAS MR only; refer
to the MOS Reference Manual.

VORTEX 1/0 control Applicable to DAS MR only; refer
to the VORTEX I or VORTEX 11

Reference Manual.

VORTEX EXEC requests Applicable to DAS MR only; refer
to the VORTEX I or VORTEX 11

Reference Manual.

4.1 SYMBOL DEFINITION DIRECTIVES

Symbol definition directives are used to assign values, specified in the variable field, to
symbols specified in the label field.

4.1.1 EQU Directive

The EQU directive assigns a value to a symbol. Once assigned by an EQU directive, the value
cannot be changed elsewhere in the program.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation

EQU

Variable

expression

is a symbol which must be present.

is any valid expression.

The assembler places the symbol in the symbol table and assigns it the value of the
expression. If the symbol has already been entered in the symbol table, DAS outputs an error
message, and the expression replaces the value in the symbol table. If a symbol is used as the
variable field expression, it must have been previously defined.

Examples

AID EQU 076000 AID is assigned the value 076000.

x EQU X is assigned the value 1.

4-·3

ASSEMBLER DIRECTIVES

B EQU

ADDR EQU

ADRS EQU

BAM EQU

NUM EQU

NUM EQU

4.1.2 SET Directive

2+10/5

0500

*

SAD-•+1

22

14

B is assigned the value 4.

ADDR is assigned the (absolute)
value 0500.

ADRS is assigned the value
of the current location counter
(absolute or relocatable).

BAM is assigned the expression
evaluation (absolute or relocatable).

Double definition C'DD)--two
equate statements with the same
label· should not appear in the
same program. If they do, the
symbol table will contain the
last value used.

--. The SET directive operates the same as EQU except that a symbol may be redefined without error.

l

i

This directive has the following format:

where:

Label

symbol

symbol

expression

Examples

MOND

MOND

SET

SET

Operation

SET

Variable

expression

is a symbol which must be present.

is any valid expression.

400

500

Assign value of 400 to MONO;
for subsequent statements,
MONO has a value of 400.

Assign value of 500 to MONO;
for subsequent statements,
MONO has a value of 500.

Since symbols defined by the SET directive do not become part of the set of program entry points
even if they are declared in a NAME directive (Section 4.10.1). the SET directive shoulrl not be used
to ass1qn Cl value to a vciriable which also appears in a NAME directive.

For exan·1ple. the statement

MONO SET 400

and the statement

NAME MONO

should not be used in the Silrne pro~rarn.

4-4

ASSEMBLER DIRECTIVES

4.1.3 MAX Directive (DAS 8A Only)

The MAX directive assigns the largest (maximum) algebraic value among a string of values to
a symbol.

This directive has the following format:

where

Label

symbol

symbol

expression

Operation

MAX

Variable

expression,expression(s)

is a symbol which must be present

is any valid expression. The field may
contain multiple expressions, separated
by commas.

The assembler assigns the largest algebraic value found among the expressions to the symbol.
If a symbol is used as a variable field expression, it must have been previously defined. The
value of the symbol may be redefined, if desired, via the SET directive.

Examples

MOST ·MAX 1,2,3,4,5

SYM MAX HARRY,JOE,3

4.1.4 MIN Directive (DAS SA Only)

Assigns the value 5 to MOST.

Assigns to SYM the value of
the svmbol HARRY. the value
of the symbol JOE, or 3,
depending on which has the
highest value. Both symbols
must have been previously
defined.

The MIN directive assigns the smallest (minimum) algebraic value among a string of values to
a symbol.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation Variable

MIN expression,expression(s)

is a symbol which must be present.

is any valid expression. The field may
contain multiple expressions, separated
by commas.

MIN is the same as MAX, except that the symbol is assigned the smallest algebraic value
found among the expressions.

4-5

ASSEMBLER DIRECTIVES

Examples

TRV

IN
IOB
MAPN

MIN

EQU
EQU
MIN

50000

10
2+10/2•6

Assigns the value 50000 to TRV.

IN, 1 o, roe Assigns the value 10 to MAPN
(note that both label IN and
constant 10 have this value).

4.2 INSTRUCTION DEFINITION DIRECTIVE

4.2.1 OPSY Directive

The OPSY directive allows the user to optionally define his own mnemonic names for
instructions.

This directive has the following format:

Label

symbol

where:

symbol

mnemonic

Operation

OPSY

Variable

mnemonic

is a symbol which must be present.

is any standard instruction mnemonic.

The assembler makes the symbol a mnemonic name with the same definition as the variable
field mnemonic.

Examples

CLA

J123

OPSY
LDA
CLA

OPSY

LDA Define CLA as equivalent to
0300 LDA mnemonic; in subsequent
o 3 o o program statements, CLA and

LOA may be used interchangeably
as the "Load A register"
instruction mnemonic.

JIF, 0100 lnvalid--variable field must
contain only a standard instruction
mnemonic.

4.3 LOCATION COUNTER CONTROL DIRECTIVES

Location counter control directives control the program location counter(s), which control
memory area assignments and always point to the next available word.

DAS SA Location Counter Control. DAS 8A recognizes directives to modify or preset the values
of any of its location counters (refer to table 2-1). In addition, up to eight other location

4-6

ASSEMBLER DIRECTIVES

counters can be created, thus providing the possibility of constructing complex relocation and
overlay programs within a single assembly.

There are no user-created location counters at the beginning of an assembly. The assembler
uses three location counters for program location assignment. Thus, IAOR (indirect pointer
assignments) and L TOR (literal assignments) are always in used, as is a third counter used to
assign locations to generated instructions and data. The blank location counter performs this
task until the USE directive specifies another counter.

In a straightforward program using only one location counter, the ORG and LOC directives
completely control the counter.

DAS MR Location Counter Control. DAS MR utilizes only one location counter. This location
counter normally has a relocation bias of zero. DAS MR is most commonly used with an
operating system and a relocating loader. Normally DAS MR programs are relocatable, and
therefore location counter control should not be used.

The ORG directive may be used in DAS MR to change the current location counter value
(relocatable or absolute). The LOC directive may be used in DAS MR for assembly of programs
that are to be moved under program control. Attempts to use ORG or LOC with DAS MR
programs to be run under the operating system should be done with care so as not to overlay
any system tasks.

4.3.1 ORG Directive

The ORG directive is used to specify the beginning location counter value.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation

ORG

Variable

expression

is an optional user symbol.

is an address expression.

The assembler sets the location counter currently in use to the value of the expression. If a
symbol is present in the label field, it is also set to the value of the expression (note that this
is the current location counter value also).

Any symbol used as the variable field expression must have been previously defined.

For DAS MR, the address origin defaults to relocatable zero if no ORG directive is given. For
DAS 8A, it defaults to absolute 04000 if no ORG directive is given.

4-7

ASSEMBLER DIRECTIVES

Example

The left-hand column below shows the value of the location counter at each program
statement when origined as shown.

Location
Counter
05000
05000 STRT
05001
05002
05003
05004
05005 A
05006 c
05007 D

AID

4.3.2 LOC Directive

ORG 05000 Origin at 05000.
LDA A
ADD c
SUB D
JMP AID

DATA 5
DATA 4
DATA 3
EQU 076000
END

The LOC directive is used to assemble a block of program code that is to be relocated during
program execution.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation

LOC

Variable

expression

is an optional user symbol.

is an address expression.

LOC is used if the data and instructions following this LOC address are to be moved to the
LOC address by the object program before executing the moved block, i.e., to keep a block of
data or instructions undisturbed by assembly. Data or instructions following LOC are
generated as if an ORG directive had changed the current location counter value. However,
this value is not actually changed.

The location counter used for coding the block is specified by the expression. If a symbol is
present in the label field, it is also set to the value of the expression.

Any symbol used as a variable field expression must have been previously defined. LOC
cannot be used in a relocatable program.

Example

The following program code illustrates the use of the LOC directive on the program counter
values, as shown in the left-hand column.

4-8

ASSEMBLER DIRECTIVES

location
Counter Contents
OU.SOOO LI~ 1.1 IJ3UOO Origin at 03000.
003000 0 l 0 (J 1) l A LUA l Instructions assembled
OO~OU1 12 i.1li0 2 Al) l) 2 from 03000.

UOjOU~ 14000~ SUo 3
uu3uv~ lJUlOUO J MiJ c Last address must jump.

00.SOU4 OU3lll4
tl\lUA vv~vln i::.~U * ENDA .. 03005.

ouusuv d LUC 0~00 Set assemble-origin at 0500.
uov~uu Li 0 v tj Ll i l)AlA 1 These data or instructions
Ouv'::ivl VUU•JlJC. u A I A ~ will be assembled for run-

(JU U'.)0 2 u0U0U..) l..1A ·r A 3 ning at location 0500. They

u (i u ':>ld vu 0 0 IJ ... I) AT A 4 will be loaded into core at

U0U':'>V4 uuuOO':> lJ Al A 5 locations ENDA plus. You

vU0".)05 0 U U l)l.)o DATA b
must move them to location
0500 before running.

UOU~vb ouuuo/ UAlA 7
0U~vl4 c Ut-<(., t.NUA+*-b

UU30l4 u u IJ \) l 0 UA1A 8 This is the next available
UU~Ul':) vo0011 l) Al A ~ location after program B.

t.. N l)

4.3.3 BEGI Directive (DAS SA Only)

The BEGI directive may be used in DAS BA programs to define an initial value for any of the
location counters.

This directive has the following format:

Label

symbol

where:

symbol

expression

Operation Variable

BEG I expression

is COMN, IAOR, L TOR, or SYOR (see table 2-1);
or a user symbol to create a new location
counter.

is an address expression.

BEGI creates a new location counter, or redefines the value of any location counter before the
counter has been used. Up to eight user location counters may be created. BEGI gives the new
or redefined location counter the value of the expression, but has no effect on the current
location counter.

BEGI is used to define initial values only. It cannot redefine the value of any location counter
that has already been used for location assignment.

Any symbol used as a variable field expression must have been previously defined.

Examples

IAOR BEGI 050 Redefine standard counter IAOR
to begin at location 050.

4-9

ASSEMBLER DIRECTIVES

LTOR BEG!

UCNT HEGI

075

06500

Redefine standard counter
L TOR to begin at location
075.

Create a user location counter
called UCNT.

4.3.4 USE Directive (DAS SA Only)

The USE directive activates a specified location counter.

This directive has the following format:

where:

Label

(none)

Operation

USE

Variable

counter

counter is a blank, COMN, or SYOR (see table 2-1);
PREV; or a user-created location counter
label.

The USE directive causes the assembler to switch to the current value of the indicated
location counter for assembly of subsequent source statements. If PREV is given, the
previously used location counter is recalled, with the restriction that only the last-used
counter can be so recalled.

Examples

USE

USE

USE
LDA*

COMN

SYOR

*
USE COMN

USE SYOR

USE PREV

Switch to COMMON location counter.

Switch to standard location counter.

Switch to system location counter.
(Loads a system parameter.)

Switch back to COMN location
counter.

4.4 DATA DEFINITION DIRECTIVES

Data definition directives allow the user to create words of data as part of his source program.

4-10

ASSEMBLER DIRECTIVES

4.4.1 DATA Directive

The DATA directive generates one or more words of data that are output with the object
program code.

This directive has the following format:

where:

Label

symbol

symbol

expression

Operation

DATA

Variable

expression,expression(s)

if present, is assigned the value of
the current location counter.

is any valid expression.

DATA generates data words with the values specified by the expression(s) in the variable field.
DATA assigns the symbol, if used, to the memory address of the first generated word. In the
absence of a symbol, an unlabeled block of data is generated.

Examples

D DATA 5 Creates data word of value 5
and assigns the current location
counter value to the symbol D.

DATA FF Creates data word of the value
of symbol FF (absolute or
relocatable).

DATA 'COMMENT' Creates 4 data words of 2 ASCII
character bytes per word.

DATA D-5 Creates data word of the value
of the expression (absolute or
relocatable).

DATA 1 +2 Creates data word of value 3.

DATA Creates data word of value 1.

Figure 4-1 shows a source listing to illustrate the object code generated by the above data
expressions. The first column shows the location counter (beginning at relocatable zero), and
the second column shows the object code generated. Refer to section 5 for a detailed
description of the source listing.

4 1 l

ASSEMBLER DIRECTIVES

ootlooo t ORG 05000
oo•oon 000005 • 2 n DATA ~,FF,•CnMMENT•,n.~,t+2,s
OOtjoot f>050tl A
00~002 \4lti't7 A
oorsoo:J t4'67t5 A
00500 .. 142719 A
001005 t522AO A
oo&noe nOA713 A
005(H'>7 000003 A\
oo!loto 000001 A
0050tt f't7000 I 3 FF L.OA 0

4 ENO

Figure 4-1. Sample DATA Directive Usage

4.4.2 PZE Directive

The PZE directive can be used to generate positive-only data words.

This directive has the following format:

Label Operation Variable

symbol PZE expression,expression(s)

where:

symbol if present, is assigned the value of the
current location counter.

expression is any valid expression.

PZE is similar to DATA except that the sign bit of the generated data word is always forced to
zero (positive).

Examples

Figure 4-2 shows a source listing illustrating data words (in the second column) generated by
the PZE directive. Note that the sign bit (high-order bit) is always zero, contrasted to the
DATA directive generations.

4-12

ASSEMBLER DIRECTIVES

oot>ooo
006000 \11111 A
006001 1'17116 •
OOd002 000007 A
oo6r,to3 1•0102 •
001004 t t')fStH 2 A
006005 011171 •
ooeooe 01111e A
ootsoo1 oonoo7 4
·o 0 ti O t ~ n. 4 0 1 0 2 A
0061'.'t t t l'HHHH 2 A

t
2

CIRG
DATA

06000
•t,~2,7,tAB•,01~6~1?

3 Pl!

4 ENO

Figure 4-2. Sample PZE Directive Usage

4.4.3 M ZE Directive

The MZE directive can be used to generate negative-only data words.

This directive has the following format:

Label Operation Variable

symbol MZE expression,expression(s)

where:

symbol

expression

if present, is assigned the current location
counter value.

is any valid expression.

MZE is similar to DATA except that the sign bit of the generated data word is always forced to
one (negative).

Examples

Figure 4-3 shows a source listing illustrating the use of MZE.

001000 1 ORG O'OOO
ooioon ionoot A 2 ~ze 1.,~,ncB1~
0070()1 tonooo 4

001002 100002 • oo1no3 \066!2 A
3 END

Figure 4-3. Sample MZE Directive Usage

4-13

ASSEMBLER DIRECTIVES

4.4.4 FORM Directive

The FORM directive specifies the format of a bit configuration of a data word.

This directive has the following format:

where:

symbol

term

Label

symbol

Operation

FORM

is a user symbol.

Variable

term,term(s)

is an absolute expression.

The symbol is the name of the format. The terms specify the length in bits of each field in the
generated data word, where the sum of their values is from one to the number of bits in the
computer word.

FORM is ignored if there are any errors in the variable field, except that an error is flagged
when a term cannot be represented in the number of bits specified when FORM is applied (by
placing its name in the operation field of a symbolic source statement) to another statement.
A FORM symbol can be redefined.

Examples

Figure 4-4 shows sample usage of the FORM directive.

a. Without error:

000000 t'14.1t')1 A
ooonot t08Bt2 4

b. With error:

000002 rioooo5 A
•SZ
•Sl

Label

1 Ry TE
2 i:tco
3 PTAB
4 ABC
5
~

Label

'
8

Operation

F{'lf\'M
f ORM
FORM
FO~~
ABC
BYTE.

Operation

PT AP,

ENO

Figure 4-4. Sample FORM Directive Usage

4.5 MEMORY RESERVATION DIRECTIVES

Variable

8,8
4,4,4,4
t,2,3,4
6,2,8
2*3,t,•At
0215 I ('.}2 l 2

Variable

2,4,5

Memory reservation directives control the reservation of memory addresses and areas.

4-14

ASSEMBLER DIRECTIVES

4.5. l BSS Directive

The BSS directive is used to reserve a block of memory locations for use by the program
during its execution.

This directive has the following format:

where:

symbol

expression

Label

symbol

Operation

BSS

Variable

expression

if present, is assigned the current location
counter value.

is an absolute expression.

BSS reserves a block of memory addresses by increasing the value of the current location counter by
the amount indicated by the expression. The symbol, if used, is assigned the value of the counter
prior to such an increase, thus referencing the starting address of the reserved block.

If the variable field expression value is zero, the symbol is assigned the next available address
(i.e., BSS 0 = BSS 1).

Examples

B

MO
MP
MQ

BSS

BSS
BSS
BSS

4.5.2 BES Directive

050 Reserve a block of 050 words
and assign the beginning loca·
tion address to 8. On completion,
the location counter will
be at B + 050. The locations
can be accessed as 8, 8 + 1,
8+2, ... , 8+047.

These three statements reserve
3 words of storage, each
separately labeled.

The BES directive, like BSS, is used to reserve a block of memory locations.

This directive has the following format:

where:

label

symbol

Operation

BES

Variable

expression

4-15

ASSEMBLER DIRECTIVES

symbol

expression

if present, is assigned the current location
counter value.

is an absolute expression.

The BES directive is similar to BSS, except that if there is a symbol it is assigned to the
address one less than the incremented location counter.

If the variable field expression is zero, the symbol is assigned the last address used (i.e., BES
0 has no effect).

Example

B BES 050 Same as BSS above, except that
the label B is assigned a
value of the end of the
block. Thus, the locations
can be accessed as B-1, 8-2,
8-3, ... , 8-047.

4.5.3 DU P Directive

The DUP directive can be used to duplicate source statements input only once.

This directive has the following format:

where:

symbol

n

m

Label

symbol

Operation Variable

DUP n,m

if present, is assigned the current location
counter value.

is a constant that specifies the duplication
count.

if present, is a constant that specifies
the source statement count for duplication.
If omitted, it defaults to one.

DUP duplicates source statements that follow the DUP directive. An n-only format duplicates
the next source statement the number of times specified by n. An n,m format duplicates the
next 1, 2, or 3 source statements (the number of which is specified by m) the number of times
specified by n, which m:::;; 3 and n:::;; 32,767. If n or m is zero, it is treated as if it were a one.

A DUP statement may not appear within the range of another DUP statement. The
statement(s) being duplicated should not contain any labels, as the labels will be duplicated
also and a "double definition" C:' DD) diagnostic will result.

4-16

ASSEMBLER DIRECTIVES

Examples

B DUP 3 Duplicate the next statement
ADD 3 (the ADD instruction) three

c EQU * times.

B DUP 2,2 Duplicate the next 2 statements
ADD 3 (the ADD instructions) two
ADD 4 times.

c EQU *

Complete source listings for these two examples are shown in figure 4-5. Note the
duplications.

Example 1

004000 1 ORG 04JOOO
oo•ooo A 2 • EQU * 3 B DUP 3

oo•ooo 120003 A • ADD 3
004001 t2~003 A 4 ADO 3
004002 120003 A 4 ADO 3

OOA003 ' 5 c EQU "' (5 END

Example 2
nooooo R 1 A EQU *

2 B OUP 2,2
000000 12noo3 A 3 AOO ~' ooonot t2oon4 A 4 AOO 4
000002 120003 A 3 Af"O 3
000003 t20004 A A ADO 4

OOOOtl~ "' 5 c E f)lJ * R ENO

Figure 4-5. Sample DUP Directive Usage

4.6 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives assemble portions of the program according to the conditions
specified in the variable fields.

4.6.1 I FT Directive

The IFT directive assembles the next source statement if the specified relationships are true.

This directive has the following format:

label

(none)

Operation Variable

IFT expression,expression(s)

4-17

ASSEMBLER DIRECTIVES

where:

expression is an absolute expression

I FT assembles the next source statement only if the first expression is less than the second,
and the second is less than or equal to the third, i.e.:

IFT a for a ¥- 0

IFT a,,b for a ¥- b

IFT a,b,b for a< b

IFT 0,a,b for 0 < a:s; b

I FT examples are given in section 4.6.5.

4.6.2 I FF Directive

The IFF directive assembles the next source statement if the specified relationships· are false.

This directive has the following format:

Operation Variable Label

(none) IFF expression,expression(s)

where:

expression is an absolute expression

IFF is similar to iFT (IFT = true) except that IFF (IFF
IFT, i.e.:

IFF a for a 0

IFF a,,b for a b

IFF a,b,b for a~ b

IFF O,a,b for 0 ~ a> b

IFF examples are given in section 4.6.5.

4.6.3 GOTO Directive

false) is the logical complement of

The GOTO directive can be used to skip assembly of a block of source statements.

This directive has the following format:

4-18

ASSEMBLER DIRECTIVES

where:

symbol

integer

Label Operation

(none) GOTO

is a user symbol

is any integer

Variable

symbol
symbol,
integer
integer,
absolute expression
absolute expression,

absolute expression is an expression (e.g. of the form A = B+C-3)

a comma following the variable field
entry is used to control output listing.

GOTO usually follows an IFF or IFT directive. All source statements between the GOTO and the
statement containing the symbol/integer in its label field are skipped, and the instruction so
labeled is assembled next. GOTO cannot return to an earlier point in the program.

If the symbol, integer, or arithmetic expression are not followed by a comma, the skipped
instructions are listed. If the symbol, integer, or arithmetic instructions (containing a comma after
the variable field element) are used, the skipped instructions are not listed. This listing can also be
suppressed by a SMRY directive (paragraph 4.9.3).

The GOTO with the absolute expression applies only to DAS MR used with the VORTEX I and
VORTEX II operating system.

GOTO examples are given in section 4.6.5.

4.6.4 CONT Directive

The CONT directive may be used in conjunction with GOTO as the destination statement.

This directive has the following format:

Label Operation Variable

symbol}
integer

CONT (none)

where:

symbol is a user symbol

integer is any integer

CONT provides a target for a previous GOTO directive. The symbol/constant is not entered in
the assembler's symbol table.

CONT examples are given in section 4.6.5.

4.6.5 NULL Directive

The NULL directive may be used in conjunction with GOTO as the destination statement.

4-19

t--

l

i

ASSEMBLER DIRECTIVES

This directive has the following format:

Label

symbol

Operation Variable

NULL (none)

NULL provides a target for a previous GOTO directive with the symbol entered in the symbol
table. NULL has the same effect as a BSS directive with a blank variable field.

Examples

The sample program in figure 4-6 illustrates use of the conditional assembly directives.

000022 A t NB!T EQU 18
2 l'T Nf'IT•US
3 GOTO VVY 18 BITS
'1 * 5 * t t5 B t 'r INSTRUCT JONS
e JF' Ne!T•tf5
7 GOTn 123 16 BITS

000000 009000 4 8 VVY NClP
g * to • 18 BIT INSTRUCTIONS

1t * 000001 t~ 123 NULL ENTER INTO SY~BOL TABLE
13 ~45 CONT tGNnRP.' SYMlfJL.
1A ENO

Figure 4-6. Sample Conditional Assembly Directives Usage

4.7 ASSEMBLER CONTROL DIRECTIVES

Assembler control directives signal the end or continuance of an assembly.

4.7.1 MORE Directive (DAS SA Only)

The MORE directive is used in DAS 8A assembly when the input medium does not hold all of
the source statements at one time.

This directive has the following format:

Label

(none)

Operation Variable

MORE (none)

MORE halts the assembly process to allow additional source statements to be put in the input
device. Assembly resumes when the RUN or START switch on the computer control panel is
pressed. MORE is never listed.

4-20

4.7.2 END Directive

The END directive signals the end of the source program.

This directive has the following format:

where:

expression

Label

(none)

Operation Variable

END expression

is an address expression

ASSEMBLER DIRECTIVES

END is the last source statement in the program. The expression is the execution addre'.,'.:> of
the program after it has been loaded into the computer. A blank in the variable field yields ar1

execution address of zero.

4.8 SUBROUTINE CONTROL DIRECTIVES

Subroutine control directives create closed subroutines (i.e., internal to the main program)
and control their use.

4.8.1 ENTR Directive

The ENTR directive is the first statement in a closed subroutine.

This directive has the following format:

where:

symbol

Label

symbol

Operation

ENTR
Variable

(none)

is a user symbol which must be present.

The symbol is used as the name of the subroutine when called. ENTR generates a linkage
word of zero in the object program.

Example

The following program listing illustrates use of the ENTR directive as the first statement o·f a
closed subrot ~tine.

OOOr.H')~ r.00000 " 2 TTVW ENTtt
000Ml3 t Ot UH ' 3 Sf!N 0101,•+4
ooonol! <'000~7 ~

onorrn!15 tHH one~ A 4 JMP •·2
000(H16 ('1)00003 Q

4-21

ASSEMBLER DIRECTIVES

4.8.2 RETU * Directive

The RETU >:• directive can be used to return from a closed subroutine.

This directive has the following format:

where:

Label

symbol

Operation

RETU*

Variable

expression

symbol if present, is assigned the current location
counter value.

expression is an address expression

RETLJ>:• returns from a closed subroutine, generating an unconditional indirect jump to the
address indicated by the value of the expression.

Example

The following program listing illustrates use of the RETU* directive to return from a closed
subroutine·.

oooon1 t'.'O!'ooo A
0000t0 0010(t0 A
000() t t t 00002 R

4.8.3 CALL Directive

5
fJ

'

NOP
"t!Tll *
ENO

The CALL directive is used to call closed subroutines.

This directive has the following format:

Operation Variable

TTVW

Label

symbol CALL name,parameter(s),error(s)

where:

4-22

symbol if present, is assigned the current location
counter value.

name is the symbolic name of the subroutine
being called.

parameters(s) if present, are one or more data parameters
being passed to the subroutine, separated
by commas.

error(s) if present, are one or more address
expressions, separated by commas, that
are to be used by the closed subroutine.

ASSEMBLER DIRECTIVES

CALL causes the program to jump and mark to the closed subroutine specified by name. The
parameter list, if present, is available to the subroutine. The error return list, if present,
provides the possibility of returning to locations other than the statement following the CALL
statement.

Examples

The sample program calls in figure 4-7 illustrate use of the CALL directive.

Example 1

000000 002000 A 1 CA~L TTVW
000001 000001 "

Example 2

004()0(1 1 ORG OAOOO
004000 000000 • 2 FUNC ENTR

3 * 4 • P'UNC WU,L MAVf: ADOIU:ss OF PARAMETER
s * WHIN CAL.LING TtitlS SU9PtOUTINE.
8 * 004001 001000 A ., R!TU• PUNC

OCYtfOOI t04000 4
8 * 9 •

10 *

)(

()04003 002000 A 11 CAL.L 'UNC 1 X,Y+t,(ERRJ,fGOOF)•
oo4oo4 004000 A
OOA009 00•011 A
004009 fH)AO i 3 A
004()01 004013 A
0040t0 ttUO t 4 A

12 * t3 * MAIN IODV OP PP OGRAM
l• •

004011 ooooot5 A 15)t DATA 5
0040 U'! 000001 A 1e v DATA 8
0040t3 000147 A 11 !RR DATA 0141
0040l4 000121 A 18 a;oo, DATA 0121

19 !NO J ·----~..._ __ ,..,.,,_.,,_,. . .., __ .,_ .. ______ ,.._~
Figure 4-7. Sample CALL Directive Usage

4-23

ASSEMBLER DIRECTIVES

4.9 LIST AND PUNCH CONTROL DIRECTIVES

List and punch control directives control listing and punching during program assembly. They
are operative only during the second pass of the assembler, when the object program and
listings are produced.

4.9.1 LIST Directive

The LIST directive is used to resume generating a source listing after a list-inhibiting directive
has been given.

This directive has the following format:

Label

(none)

Operation

LIST

Variable

(none)

LIST causes the assembler to start or resume output of a source program listing. The
assembler normally outputs a list of the source statements. The LIST directive is used to bring
the assembler back to this condition when the NUS directive (section 4.9.2) has been issued
to change the listing status.

4.9.2 NLIS Directive

The NUS directive is used to inhibit the program listing.

This directive has the following format:

Label

(none)

Operation

NLIS

Variable

(none)

NUS suppresses further listing of the program.

4.9.3 SM RY Directive

The SMRY directive may be used to inhibit listing of conditionally-skipped source statements.

This directive has the following format:

Label

(none)

Operation Variable

SMRY (none)

SMRY suppresses the listing of source statements that have been skipped under control of the
conditional assembly directives.

4.9.4 DETL Directive

The DETL directive is used to cancel the effect of the SMRY directive.

4-24

ASSEMBLER DIRECTIVES

This directive has the following format:

label

(none)

Operation Variable

DETL (none)

DETL removes the effect of SMRY, i.e., causes listing of all source statements, including those
skipped by conditional assembly directives.

4.9.5 PUNC Directive (DAS SA Only)

The PUNC directive is used in DAS 8A programs to cancel the effect of the NPUN directive.

This directive has the following format:

Label

(none)

Operation

PUNC

Variable

(none)

PUNC causes the assembler to produce a paper tape punched with the object program. The
assembler normally outputs such a tape. PUNC returns the assembler to this condition when
the NPUN directive (section 4.9.6) changes the punching status.

4.9.6 NPUN Directive (DAS 8A Only)

The NPUN directive may be used to inhibit further punching of the object program to paper
tape.

This directive has the following format:

Label

(none)

Operation

NPUN

Variable

(none)

NPUN suppresses further production of paper tape punched with the object program.

4.9.7 SPAC Directive

The SPAC directive can be used to insert blank lines in the source listing.

This directive has the following format:

Label

(none)

Operation

SPAC

Variable

(none)

SPAC causes the listing device to skip a line. The SPAC directive itself is not listed.

4. 9.8 EJ EC Directive

The EJ EC directive causes a page eject.

4.25

ASSEMBLER DIRECTIVES

This directive has the following format:

Label

(none)

Operation

EJEC

Variable

(none)

EJEC causes the listing device to move to the next top of form. The EJEC directive itself is not
listed.

4.10 PROGRAM LINKAGE DIRECTIVES

Program linkage directives establish and control links among programs that have been
assembled separately but are to be loaded and executed together.

4.10.1 NAME Directive

The NAME directive establishes linkage definition points among separately assembled
programs.

This directive has the following format:

where:

Label

(none)

Operation Variable

NAME symbol,symbo/(s)

symbol is any symbolic expression

With the NAME directive, each symbol can then be referenced by other programs. Each
symbol also appears in the label field of a symbolic source statement in the body of the
program to give it a value. Undefined NAME symbols cause error messages to be output.

Examples

NAME

NAME

NAME

4.10.2 EXT Directive

A

A,B

EX,WHY,ZEE

Provide value of symbol A to
other programs.

Provide values of symbols A
and B to other programs.

Provide values of symbols
EX, WHY, and ZEE to other
programs.

The EXT directive allows separately assembled programs to obtain the values of symbols
defined in other program NAME directives.

This directive has the following format:

4-26

where:

symbol

Label

label

Operation

EXT
Variable

symbo/(s)

is a value to be obtained from other
programs.

ASSEMBLER DIRECTIVES

In linking separately assembled programs, EXT declares each symbol not defined within the
current program. Each symbol, in both the label and variable fields, is output to the
relocatable loader with the address of the last reference to the symbol for the loader to supply
the value to the program when the value is known.

If a symbol is not defined within the current program and is not declared in an EXT directive,
it is considered undefined and causes an error message output. If a symbol is declared in EXT
but not referenced within the current program, it is output to the loader for loading, but no
linkage to this program is established. If a symbol is both defined in the program and
declared to be external, the EXT declaration is ignored.

Examples

EXT AY Declare AV to be external.

BEG EXT BE,SEE Declare BE and SEE to be external;
the value of BEG is passed

EXT DEE,EE,FF,GEE

to the loader.

Declare the indicated symbols
to be external.

4.10.3 COMN Directive

The COMN directive defines an area in blank common for use at execution time.

This directive has the following format:

where:

symbol

expression

Label

symbol

Operation Variable

COM N expression

if present, is assigned the current location
counter value

is an absolute expression

CCMN allows an assembler program to reference the same blank common area as a
FORTRAN program. The common area is cumulative for each use of COMN, i.e., the first
COMN defines the base area of the blank common, the second COMN defines an area to be
added to the already established base, etc.

4-27

ASSEMBLER DIRECTIVES

Examples

AAA COMN

COMN

BBB COMN

3

9

Allocate 3 words of common, the
first word addressable by AAA.

Allocate 12 words of common; if
following the above statement,
this would be the fourth through
sixteenth common locations.

Allocate 9 words of common, the
first word addressable by BBB;
if following the above 2 state
ments, this would be the
seventeenth through twenty-fifth
locations of common.

4.11 MACRO DEFINITION DIRECTIVES (DAS MR ONLY)

The V70 series macro language is an extension of the V70 assembler language. It provides a
convenient way to generate a desired sequence of assembly language statements many
times in one or more programs. The macro definition is written only once, and a single macro
call statement used each time a programmer wants to generate the desired sequence of
statements. This method simplifies the coding of programs, reduces the chance of
programming errors, and ensures that standard sequences of statements are used to
accomplish desired functions.

Every defined macro is associated with a four- or six-character symbolic name. The defined
macro is called when this name appears in the operation field of an assembler source
statement.

A Macro Definition is a set of statements that provides the assembler with the symbolic name
of the macro and the sequence of statements that is to be generated when the macro is
called. Macro definitions start with the MAC directive and are ended with the EMAC directive.

The macro is the assembly equivalent of the execution subroutine. It is defined once and can
then be "called" from the program. The macro is an algorithmic statement of a process that
can vary according to the arguments supplied. It is assembled with the resultant data
inserted into the program at each point of reference, whereas the subroutine executed during
execution time appears but once in a program.

4.11.1 MAC Directive (DAS MR Only)

The MAC directive is used to mark the beginning of a macro definition and specify the name
of the macro.

This directive has the following format:

Label Operation

symbol MAC

4-28

Variable

(none)

ASSEMBLER DIRECTIVES

MAC introduces a macro definition. The symbol is the name of the macro.

The use of the MAC directive is shown in the program example given in section 4.11.3.

4.11.2 EMAC Directive (DAS MR Only)

The EMAC directive is used to signal the end of a macro.

This directive has the following format:

Label

(none)

Operation

EMAC

Variable

(none)

EMAC terminates the definition of a macro.

The use of the EMAC directive is shown in the program example given in section 4.11.3.

4.11.3 Macro Calls

A Macro Call statement is a source program statement with the symbolic name of a defined
macro written in the operation field. The assembler generates a sequence of assembly
language statements for each occurrence of the same macro call statement. The generated
statements are then processed like any other assembly langauge statement.

A macro is called by the appearance of its name in the operation field of a source statement.
The variable field of this statement contains expression(s) P(l), P(2).,,,P(n), which are then
processed with the values in the table being substituted for the respective values of the
expressions in the source statement variable field. For example, if the variable field of the
symbolic source statement contains:

2,8,9 + 8, = 63

then within the generated macro P(l)=2, P(2)=the value of 8, P(3)= 17, and P(4) is the
address of the value 63. All terms and expressions within the macro-referencing symbolic
source statement parameter list are evaluated prior to calling the macro.

If the label field of such a source statement contains a symbol, the symbol is assigned the
value and relocatability of the location counter at the time the macro is called but before data
generation.

A macro definition can contain references to machine instruction mnemonics or to assembler
directives other than DUP. Macros can be nested within macros to a depth limited only by the
available memory at assembly time.

Figure 4-8 illustrates the use of macros.

4-29

i

ASSEMBLER DIRECTIVES

t SENSE MAC
2 SEN Pf 0, •+4} Macro
3 JMP *"'2 Definition
_. !MAC
B Sf!NSE OtOt -Macro Call

000000 101201 • 000001 00~004 R } Macro
000()02 notnoo • Expansion

00000~ 000000 R
ooono• tn25nt • fl CIA Ot

1 SENSE 0t01
ooonns UHUH A
oooooe 000011 R
ononn1 04' HH')O A
ooonto 0000()5 " ooonu t03UH A A OAR O!

9 ENO

Figure 4-8. Sample Macro Usage

P(O) can also be accessed by a normal call. P(O) is the first entry in the table formed by the
assembler and contains the number of entries in that table. Figure 4-9 shows the output
listing obtained by calling P(O).

1
2
3

000001 OOOOOOA 4
000002 000001A 5
000003 000002A 6
000004 00-0003A 7
000005 000004A 8
000006 OOOOOSA 9

1 0

A MAC
DATA
EMAC
A
A
A
A
A
A
END

P(O)

1 I 2
1 I 2 I 3
1I2 I 3 I 4
1,2,3,4,5

Figure 4-9. Output Listing Obtained by Calling P(O)

4.12 NOTE DIRECTIVE (DAS MR WITH VORTEX I AND VORTEX II)

The NOTE directive generates a listing when it is encountered in a macro expansion, unlike all
other instructions or pseudo operations.

This directive has the following format:

Label

Symbol
Integer

Operation

NOTE

The label is entered in the assembler's symbol table.

4-30

Variable

comment

ASSEMBLER DIRECTIVES

4.13 FLOWCHART DIRECTIVE (DAS MR ONLY)

4.13.1 FLOW Directive (DAS MR Only)

FLOW is used to generate flowchart boxes.

The sequence of lines printed by this directive are:

• A blank line
• A row of asterisks
• The FLOW directive line
• A bottom row of asterisks
fl A blank line

Box type, label and branches are placed in the appropriate places in the flowchart box borders

All labels and symbols used with the FLOW directive are not considered as part of the progrnrn
symbol table and can not be used either for any program label functions or as operands in other
parts of the program. The 2 blank lines and asterisk lines generated are not counted as assernhly
lines by the assembler.

Figure 4-1 O contains a sample of FLOW directive usage.

PROGRAM OUTPUT FLOWCHART FORMATS

Print Position

Top Box 1-29

30

31-32

33-40

41-45

46-69

Bottom Box 1-29

30

31-36

37-40

41-46

47-69

Contents

blank

asterisk

flow type

asterisks

optional flow label

asterisks

blank

asterisk

optional non-contiguous flow or
decision right symbol (based on decision
response, yes or no)

asterisks

optional decision non-contiguous
symbol

asterisks

4-31

1

i

i

4-32

ASSEMBLER DIRECTIVES

PROGRAM INPUT FORMAT

Columns

1-6

7

8-12

13-14

15

16-28

29

30

31

32-67

68

69

Contents

optional flowchart box label

blank

FLOW,

flowchart type:

EN =entry
EX= exit
PR = procedure
SU = subroutine
DY = decision, yes branch to right
ON = decision, no branch to right
10 = 1/0 process
CO = continuation flow

blank

optional branch labels of the form:

LABEL 1,LABEL2

where:

LABEL 1 = for DY or ON the branch on specified
condition; else for non-contiguous flow.

LABEL2 = for DY or ON to specify non-contiguous
flow

blank

asterisk

blank

comment line for flowchart box. If current flow is
a subroutine, the subroutine name begins in
column 32 and continues for up to 6 characters.
The name delimiter is a comma.

comma if comments continue into next line
otherwise blank

asterisk

ASSEMBLER DIRECTIVES

1 *

2 *DEMONSTRATION OF THE DAS MR 'FLOW' FLOWCHART DIREC'rIVE

3 *

4 SYMBl FLOW,EN

000000 000000 A 5 DATA 0
000001 000000 A 6 DATA 0

7 FLOW, SU

000002 000000 A 8 DATA 0
000003 000000 A 9 DATA 0

10 FLOW,DY LAB2

000004 000000 A 11 DATA 0
000005 000000 A 12 DA'rA 0

13 FLOW,DN LAB2,LAB3
14 FLOW,CO

000006 000000 A 15 DATA 0
000007 000000 A 16 DATA 0

17 LAB2 FLOW,PR

000010 000000 A 18 DATA 0
000011 000000 A 19 DATA 0

20 LAB3 FLOW,IO,LABl

000012 000000 A 21 DATA 0
000013 000000 A 22 DATA 0

23 FLOW,EX

24 END

ENTRY NAMES
EXTERNAL NAMES
SYMBOLS
ZERO ERRORS ASSEMBLY COMPLETE

*EN********SYMBl************************
* ENTRY BOX *
**

*SU*************************************
* SUBR, SUBROUTINE BOX *
**

*DY*************************************
* DECISION WITH BRANCH ON YES RESPONSE *
*LAB2***********************************

*DN*************************************
* DECISION WITH BRANCH ON NO RESPONSE *
* AND NONCONTIGUOUS FLOW ON YES *
*LAB2******LAB3*************************

*PR********LAB2*************************
* PROCESS TYPE BOX *
**

*IO********LAB3*************************
* NONCONTIGUOUS FLOW *
*LABl***********************************

*EX*************************************
* EXIT BOX *
**

Figure 4-10. Sample FLOW Directive Usage (DAS MR Only)

4-33

l

i

SECTION 5

OPERATING THE ASSEMBLER

DAS MR and DAS 8A are two-pass assemblers that may be sch-eduled by job central
directives. Assembler processing during the two passes is described in section 5.1.
Operation of DAS MR under VORTEX I/VORTEX II is described in section 5.2, followed by
operation descriptions of DAS MR under MOS, as stand-alone, and of DAS BA (also stand
alone).

5.1 ASSEMBLER PROCESSING

This section describes the general features of DAS assembler processing. Specific operating
procedures and output listing examples for various DAS/operating system combinations are
given in section 5.2.

5.1.1 Assembler Input Media

The source program may be input to the assembler on punched cards, paper tape, or any
other source input medium. Details regarding source statement field placement are given
below.

Fixed Format. Fixed format, normally used with punched cards, used as input to the DAS
assemblers contains four fields corresponding to the instruction and directive fields:

a. The label field is in columns 1 through 6. Its use is governed by the requirements of the
instruction or directive.

b. The operation field is in columns 8 through 14. It contains the instruction or directive
mnemonic. Indirect addressing is specified by an asterisk following the mnemonic.

c. The variable field begins in column 16 and ends with the first blank that is not part of a
character string. Its use depends on the instruction or directive. If two or more subfields
are present, they are separated by commas.

d. The comment field fills the remainder of the card. If the variable field is blank, the
comment field begins in column 17.

An asterisk in column 1 indicates that the entire card contains a comment.

The fixed format is shown in figure 5-1. Note that columns 7 and 15 are always unpunched
(blank).

Free Format. Free format can be used with any media but is normally used with paper tape Frer~

format used as input to the DAS assemblers contains source staternents of up to 80 characters
each (not including the carriage return and line feed characters). Each punched statement contains
four fields corresponding to the instruction and directive fields. The label, operation and variable
fields are separated by commas or blanks, and the comment field starts after the first variable field
blank that is not part of a character string. Each statement is terminated by a carriage return (CR)
followed by a line feed (LF).

5-l

l

T

U1
I\.)

..,,
~·

ii
-0
Qi"
n
CD
3
CD
:::s -
"' c
3
3
Q)

~

A. FIXED FORMAT (STANDARD COLUMNS)

LABEL OPERATION VARIABLE COMMENT* IDENTIFICATION

1 6 8 14 16 28 30 72 73 80

B. FIXED FORMAT (MINIMUM SPACING)

LABEL OPERATION VARIABLE COMMENT

LABEL OPERATION COMMENT

C. FREE FORMAT (COMMAS FOR. SEPARATORS)

LABEL ,OPERATION ,VARIABLE COMMENT*

,OPERATION ,COMMENT FORMAT FOR NO LABEL OR VARIABLE FIELD.

* The comment can start anywhere after a blank following the
variable field.

OPERATING THE ASSEMBLER

a character string. Each statement is terminated by a carriage return (CR) followed by a line
feed (LF).

The four fields used when free format input to the DAS assembler is selected are:

a. Label field use is governed by the requirements of the instruction or directive. It is
terminated with a comma or blank. If this field is not used, a comma appears as the first +-

character of the source statement.

b. The operation field contains the instruction or directive mnemonic. An asterisk
following the mnemonic specifies indirect addressing. This field begins immediately
following the label field terminator and is terminated by a comma or blank. +-

c. The variable field can be blank, or contain one or more subfields separated by commas or +-

blanks. It must immediately follow the instruction field terminator (comma or blank) +--

Subfields can be voided by using adjacent commas or blanks. This field is terminated by +-

a blank that is not part of a character string, or with a CR or LF.

d. The comment field fills the remainder of the statement (from the terminating blank of
the variable field to the next CR or LF).

If the first nonblank character of a source statement is an asterisk, the entire statement is a
comment.

The free format where commas are used as separators is shown in figure 5-1. Note that any
source input may use either free or fixed format.

5.1.2 Pass 1 - Symbol Table

During pass 1, the DAS assembler reads the source program and constructs a symbol table of
all symbols appearing in the source program. For each symbol in the table, there is a
corresponding value, usually an address in memory. Symbol table capacities are summarized
in table 5-1.

Table 5-1. DAS Symbol Table Capacities

Assembler SK Memory Greater than SK Memory

DAS SA 440 440 + n (800)

DAS MR 20 20 + n (SOO)

where n = number of 4K memory increments
above SK.

5.3

OPERATING THE ASSEMBLER

5.1.3 Pass 2 - Assembler Output

DAS produces a source/object listing of the assembled program, as well as an object program
in reloadable format. The object program may be output to any 80 device supported by the
operating system.

The listing can be obtained in whole or in part as the program is being assembled. The source
(symbolic) program and the object (absolute) program are listed side by side on the listing
device. This device can be any LO device supported by the operating system.

The listing is output according to the specifications given by the list and punch control
directives in the assembly (DAS SA, DAS MR).

Error analysis during assembly causes error messages (section 5.1.4) to be output on the line
following the point of detection.

Figure 5-2 illustrates the format of the output listing. The columns are further described
below:

Address

Code

Mode

Line Count
(DAS MR only)

5-4

This column shows the current location
counter value in octal. It is incre
mented for each word of object code.

Most entries in this column are words
of object code (in octal). The values
of symbols assigned via symbol definition
directives (EQU, SET, etc.) are also
shown in this column but are not part
of the object code.

An indication of the addressing mode,
as follows:

A Absolute value
C Common
E Externally defined
I Indirect Pointer
L Literal Pointer
R Relative address value

The assembler assigns a unique ascending
integer number to each non-blank input
statement in order of sequence in the
input source deck, starting with 1. This
statement number is listed in the fourth
column, and is used to cross reference
error messages to the statements which
caused the errors. Statements generated
by macro expansions are not assigned
a statement number. All statements
generated by a DUP directive have the
same line number.

OPERATING THE ASSEMBLER

Symbolic Source
Statement

Address

014000
014000
014001
014002
014003
014004
014005

Reproduces the source statements as
input, with additional lines showing
directive-duplicated statements and
macro expansion space.

line Symbolic
Code Mode Count Source Statement

ORG 014000
000000 2 ABS ENTR
001002 3 JAP* ABS
114000 R

005211 4 CPA
001000 5 JMP* ABS
114000 R

000000 6 END

Figure 5-2. Output listing Format

5.1.4 Error Messages

The assembler checks source statement syntax during both pass 1 and 2. Detectable errors
are listed during pass 2.

The error message appears in the listing line following the statement found to be in error.
Each line can hold up to four error messages.

The DAS error codes and their meanings are listed in table 5-2.

Table 5-2. DAS Error Codes

Code Meaning
1------------'-------·------------------~---

Error in an address expression

Decimal character in an octal constant

Illegal redefinition of a symbol or the
location counter

Incorrectly formed statement

Illegally constructed expression

Floating-point number contains a format
error

First nonblank character of a source
statement is invalid (the statement
is not processed)

5.5

OPERATING THE ASSEMBLER

5-6

Code

·~MQ -

•:•NR

•:•NS

Table 5-2. DAS Error Codes (continued)

Meaning

Inconsistent use of indexing and
indirect addressing

Missing right quotation mark in
character string

No memory space available for additional
entries in assembler tables

No symbol in the label field of a SET,
EQU, MAC, or FORM directive or no
symbol in the label or variable field of
an OPSY directive, or no symbol in the
variable field of a NAME directive.

Undefined operation field (two No
Operation (NOP) instructions are
generated in the object program; the
remainder of the statement is not
processed), or illegal nesting of
DUP or MAC directives or DUP of a
macro call

':'QQ Illegal use of prime (')

·:• R Relocatable item where an absolute
item should be defined

':'SE Synchronization error: symbol value
in pass 2 is different from that
found in pass 1

•:•sv Undefined symbol in an expression

':'SZ Expression value too large for a
subfield, or a DUP directive specifies
that more than three statements are to
be assembled (m parameter)

•:•TF Undefined or illegal indexing specification

•:•uc Undefined character in an arithmetic
expression

Undefined symbol in the variable
field of a USE directive

OPERATING THE ASSEMBLER

Table 5-2. DAS Error Codes (continued)

Code Meaning

·~vF Instruction contains variable subfields
either missing or inconsistent with
the instruction type

o(•XR

SE

SM

SG

SI

SS

Address out of range for an indexing
specification

Invalid use of literal

Implicit indirect reference when I
parameter is present on the /DASMR
directive.

Missing "END" card error (DAS MR with
VORTEX I and VORTEX II)

Missing "MEND" card error (DAS MR with
VORTEX I and VORTEX II)

Missing "GOTO" target error (DAS MR
with VORTEX I and VORTEX II)

Note: The resulting output listing may not
reflect the source code syntax correctly.
There may be erroneous missing symbol
errors, etc., since only a partial assembly
is performed on detection of a missing
target error. The listing is meant to be
used as an aid to locating the missing
target.

110 Error (DAS MR with VORTEX I and
VORTEX II)

Symbol overflow error (DAS MR with
VORTEX I and VORTEX II)

i

5-7

T

OPERATING THE ASSEMBLER

5.2 ASSEMBLER OPERATING PROCEDURES

Since DAS MR operates under MOS or VORTEX and uses the MOS or VORTEX 1/0 control
system, the 1/0 devices can be defined as required.

DAS MR uses the secondary storage device unit for pass 1 output. It inputs the symbolic
source statements from the processor input (Pl) logical unit in alphanumeric mode, and
outputs them in the same mode on the processor output (PO) logical unit. When DAS MR

detects the END directive, it terminates pass 1, returns to the beginning of the source
program, and begins pass 2. During pass 2, the source statements are the input from the
system scratch (SS) logical unit, a listing is output on the LO unit, and the binary object
program is output on the BO unit.

Sections 5.2.1, 5.2.2, and 5.2.3 describe DAS MR operations in different environments. DAS
8A operation is described in section 5.2.4.

5.2.1 DAS MR Operation (VORTEX I/VORTEX II)

The /DASMR directive schedules the DAS MR assembler with the specified options for
background operation on priority level 1. It has the general form:

where:

each p(n)

IDASMR,p(l),p(2) ... ,p(n)

if any, is a single character
specifying one of the options
shown in table 5-3. The /DASMR
directive can contain up to six
such parameters in any order.

Table 5-3. DAS MR Options for Background Operation

Parameter Presence
1--------1---------·. . .. __ ,. ________ --.--

B

L

M

N

Suppresses binary object

Outputs binary object on GO
tile

Suppresses symbol-table listing

Suppresses source listing

Flags implicit indirect
instructions with '~· 11 error'.

Absence

Output binary object

Suppresses output of binary
object on GO file

Output symbol-table listing

Outputs source listing

Assembles implicit indirect
instructions.

l
....... _ j

!

x (DAS MR with VORTEX I and VORTEX II) (DAS MR with VORTEX I and VORTEX 11)
Addressing and generated code lists are Addressing and generated code lists nrr~
printed in hexadecimal. printed in octal.

...._ _____ ___,_ _______ .. -----------------L-------------------1

5-8

OPERATING THE ASSEMBLER

The DAS MR assembler reads source records from the VORTEX Pl logical unit on the first
pass. The Pl unit must be set to the beginning of the source file before the /DASMR directive
is executed. This can be done with an /ASSIGN, /SFILE, /REW, or /PFILE directives. A load
and-go operation requires, in addition, an /EXEC directive. Details of the preceding
directives are given in the V70 VORTEX I or VORTEX 11 Operating System Reference Manual.

Shown below is an example for scheduling the DAS MR with no source listing but with the
binary object output on the VORTEX logical unit GO file:

/JOB,EXAMPLE
/DASMR,N,L,B

/JOB (as well as /ENDJOB or /FINI) initializes the GO file to start of file. If BO is assigned to
a rotating memory partition, a /PFILE,80,,80 must precede the /DASMR directive to initial
ize the file (unless the assembly is part of a stacked job).

DAS MR uses the secondary storage device unit for pass l output. It reads a source module
from the Pl logical unit and outputs it on the PO unit. The source input for pass 2 is entered
from the SS logical unit.

When an END statement is encountered, the SS unit is repositioned and reread. During pass
2, the output can be directed to the 80 and/or GO units for the object module and the LO
unit for the assembly listing. The SS or PO file, which contains a copy of the source module,
can be used as input to a subsequent assembly.

DAS MR has a symbol-table area for 175 symbols at five words per symbol. To increase this
area, input before the /DASMR directive a /MEM directive where each 512-word block
enlarges the capacity of the table by 100 symbols.

A VORTEX II physical record on an RMD is 120 words. Source records on RMD are blocked
three 40-word records per VORTEX II physical record, and object modules on RMD are
blocked two 60-word modules per record. However, in the case where SI = Pl = RMD,
records are not blocked but assumed to be one per VORTEX II physical record. When an input
file contains more than one source module each new source module must start at a physical
record boundary. Unused portions of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may be ensured by following the END
statement of the previous source module with two blank records.

Figure 5-3 shows the listing output resulting from assembling and executing a sample DAS
MR program under VORTEX 11.

1Jt261A3
tJ:2t\:49
tJ::H'=52

/JOB,SWJTC~
IKPMOOE,O
IDASMR.t,d0

Figure 5··3. Example of Assembled and Executed DAS MR Program
Under VORTEX Control

5.9

(Jl

.......
0

.,,
ciQ'
c
""I
ct>

U1

~
C:: ITI
::s ><
0.. Ql
ct> 3
""" "C
< (;"
0 0
:::0 -
-f)>
ITI en >< en
(") ct>
0 3
::s 5!:
- ct> 2. Q.

Ql
c:;' ::s
0 a.
:J ITI
::::?': ><
:J ct>
s:::: n
~ s. -- ~

"O

000000 R

000001 A
000002 A
000024 A
000050 ~
000004 •
00f)OMJ A
~0~000 •
000001 A
000001 •
no~ooo ~

00000«' ooe5o3 •
000001 oonooo E
000002 001404 A
000003 000075 lit
ooono4 000050 A

000005 0065f\5 •
oooooe oonoo1 E
000001 001405 •
000010 000074 R
000011 000051 •

a 000012 no~5o5 A
~ 000013 nooooo E
3 00001• 100000 •

000015 01000• A
00001~ 000000 !
0000t7 000000 A
000020 000000 A

VORTEX OASMR t326 HOURS

1
2 SWITCH
3
4)(
5 B
6 r:OtJNT
1 RECL.
8 ,. I
g LO

1(") WAIT
11 NOWAtT
12 ASCII
13 START
14

NAME
EClU
EXT
EQU
EQU
!QU
Et"JU
f QU
Eau
Er.JU
EOU
EDU
f QU
IOL!Nk

17 REAOC:R STAT

SW?TCH
*
PIFC.B,LOFC8
1
2
20
COUNT+COUNT
4
s
0
l
t
• Pt,eUfff ,RfCL

SWtTCM COUNT
RECORD LENGTH (IN
PROCESSt'JR lN,UT
LISTING OUTPUT
WAIT FOR IO
lMMEOtATE RETURN

PIFC8,PI 1 WA!T 1 ASCII

000021 006505 4
000022 000000 E
000tl23 000012 R
000024 000071 R
000025 t'0007l ~ ,, 000026 oon.('.)7t R

ciQ" 000021 000021 R c
""' 000rJ30 00~030 (I) • 18 ~OX! COUNT
U!

~
C:: ITI PAGE 2 oa,.t6•76 SWITCH VORTE~ OASMR 1326 HOURS ::I >< c.. cu
C1> 3
""' "C 000031 000024 A <(ii'"
Oo
::ti -

00003i R 1g DOIT EQU •
-I > 000032 OOSOt! A. 2n L..OAE 8UFFet 1 X GET A ~ORO
'" (fl >< en 000033 000074 A
(") C1>

000034 004250 ' 21 LRL,A 8 S"' ITC tic BYTES 0 3
::I E: 00003~ 00524• A 22 CPX ?NYERT P'D!Nf!" - (I) ~ c. 000038 008025 A 23 L.OBE BLIFF+RECL+t,X GET INVERSE WORD cu

.......... ::I 000031 000146 R 8 c.
:J ,,, ooon•o 006055 A 24 STAE BUFF•REC"'+1 1 X SAVE ORIGtNA\.. SWITCM!rt WORD
~ >< OOOn4t 000145 R :J (I)
c: n
ct> c OOOn42 004050 • 2~ L.RL! 8 SW!TCM BYT'S OF INVERSE WOtUJ
ct -'- ~ 000043 (')05244 A 2e CPX RES TOPE POINTER

0 000()44 008065 A 27 Sl'BE. BUFF•t 1 X SAY! INVERTED INVERSE Wl'IRO l> 0 ti> 00004! nono1• R "'O
s: 000046 005344 • 28 OXA COUNT DOWN

,,,
::ti :a 000041 001046 29 JXNl OOIT RF.Pf AT IF MtH~E > A ~ .,.,

000050 000032 R z ~

0 C) OQ 30 WRITE wRITE ~nFCB,L0 1 WAIT,ASCII ""' -I cu
0000~1 006505 A 3 :c
000052 (")()00 t 3 E

,,,
l> 000053 100000 A VJ en 000054 010405 A ,,,

000055 ~00000 E s:
<.!1 m

OOOn56 " r ()00000 fTi
::ti

~ 000()57 t'>OOOOO A 0
........ "'tJ
N 31 ausv STAT WRITE,ENO,ENO,ENO,BUSV ITI

::c
000060 f}06505 • >
000061 oono22 E ::!

z
000062 000051 R G')

'"T'I ooooe3 oono11 R -t
o'Q" 000064

:c
c: oono11 R ITI

""" 000065 000071 R > (1)

en
(J1 ooooee 000060 R en
?> ITI

000067 no1000 A 32 JMP Rf.AO REAO SOME MORE 3:
C: ITI 000010 OOOOt2 R

m
::::s >< r-c.. a> m
(1) 3 33 E'NO EXtT ::c
""" "C 000011 006505 ~ < CD"
0 0
::c - 000072 00~006 E
-t > 000073 (')00200 A ITI en
>< en 000~7• 1202410 A 34 CNTRL DATA ' ' PRINT CONTRnL.
(") (1)

0 3 000075 35 81JFF BSS Rf CL
::::s !2: 000000 R 3f5 ENO START - (1) 2. Q.

cu
-... ::::s g Q.

::3 ITI PAGE 3 08,..\6•76 :!': ><
::3 (1)

SWITCH VORTEX ~ASM" t326 HOURS
c: n
('!) c:

ENTRY NAMES 0. --- [000000 ~ S'1UTC,.. c
> ~XTERNAL NAMES en

000055 f bOFCB 000016 E PIFCB 000!"72 E VSE'.XEC 000052 E v11oe
3:
::c 000051 r VSIOST
"'tJ SV"BOLS
""" ooonot ASC?l onooo2 A B onoon~ R BUFF 000060 R BUSY 0 A OQ
""" 000014 R CNTRL 000024 A COUNT 000032 R DO?T ooon11 R END cu
3 000005 A LO 000055 E L.OFCS 000001 A NOWAIT 000004 A PI

00001e E PlFC0 000012 R READ 00002t R "!ADeR on on so A RECL
000000 R START ooooon ~ SWtTeH orion7~ f Vlf!Xf!C ooon~2 E VSIOC
000061 E VS I OST ooooon • WAtT ooons' R WRtTE ooonot A x

0 ERRORS ASSEMBLY COMPLETF

13ttf Ill llXIC

PAGE t 01~18•18 SW!TCH YORT!X L.MGEN

411 ,;Q.
VIFM!R A 7134S Vl,MCB A 71335 VSBtC A 71244 vairtR A 708~1 c: ..

(!> Vl,NRM A 70307 !OFOOD A 7if>213 YIFNR A 700l3 VITBSR A 17082
'{1 VIALTI A 61002 VIS!RV A 85149 VIFN!I A 8515A YS!MI' A 15205 !N

c: ,,, YSIAL A 53323 Vl!ROR A 6307! !Ft.•G A tt770 VIPfDN A 826,5
:3 >C VIPFUP A 12551 YIFPP A 62352 VIMPER A 82287 VIMt'J, A 11111
Q. I»
CD 3 YICLOK A 11180 LU,C8 A 75516 S!FtB A 7!5480 VIG,CI A 1!5480 .. "O

< ii" VIJ'I' A 79A01 VIOPBF A 7!~~· VITI A 75303 TtOSLI A 75303
0 0 :::g Tl DI IL A 15251 TI08£R A 75111 TB!NTM A 7Si95 Vl!CIST A 71194
-t > VIJOC ' e12ea Vl!XIC A e~e4e Pt,tl A 15•'1 L,D,CI ' 75504 rt1 UJ >< en SPIJTCH A OiOOO tStAPl A 00900 tlL1T3 A 00717 f11'£DJ A 01l•D (") CD
0 3 MCT!WS E.MAN
:s !:!
~l • UQE HCTlWS
2.. SCFOL,SCFIP 'XE I»

- :s 8 Q. t UQE)(

5: t:' 2 UQE B
;:, CD TNUOC HCThtS 02 UQE TNUOC s:: n
(1> c: ,SDROW NI(MTINEL DROCER TNUDCtTNUDC UQE L~ER Q. .. ._ fL TUPN! ltOSSfCORP • UQE !P

c TUPTUO GN!TSlL. 9 UQE Ot. > 0
VJ flt ROF T!AN 0 UQE TIAW "'O

'" 3: NRUTER !TAIDEMM! t UQ! TZAWDN ::a
::a >
"'O

t UQE I!CSA ::! .. • UQ! TR ATS z
0 G)

O'Q LCER 1 FFU8 1 IP KN!LO! .. -t
I»
3 ttL.CER,LRTNC,OL KNU.O! :t

'" !ICSA,T!AW,lP,eCFtP DAE ff OAER >
ftCDA!R,DN£ 1 DNE,ONf,DAER TATS RCDAER IJ)

(./)

TNUOC UCDL l"'I
3:

<:11 * UQE Tlf'O = ,....
.......
w DROW A TEG XalefFUB £AOL "" ::0

(Jl -.+:;:.
S!TY8 MCTIWS 8 ALRL 0 .,,

RETNJOP TREVN?)(PC ITI
::c

D~OW ESREVNI TEG X,t•l.C£R•fFU8 EBDL >
::!

DROW DfHCTIWI LANllIRD EVAS ~,t+L.C!R.FFUB EATS z
DROW !S-EVN? ,D SETYe MCT!WS 8 8LRL G)

R!fN?OP ·ERCJTSER XPC -f ::c
DROW ESREVNt DETREVNt !VAS x,1.FFUB E8TS ITI

NWOD TNUOC FUD >
CJ)

!RO~ f'I TAEPER T!OD ZNXJ CJ)
ITI

TICSA 1 T!AW 10L 1 !CFOL ET!RW ETlRW == m
YSUB,DNE 1 0Nf 1DNf 1ET!RW TATS vsus r-

ITI

£ROM EMOS DAER DAER PMJ ::ti

T!XE L>tJE
I ORTMOr TtHRP ' A'rAn LR'f NC

LtfR sse Ff-UB
TR ATS ONE

OPERATING THE ASSEMBLER

5.2.2 DAS MR Operation (MOS)

The DAS MR assembler may be loaded and executed under the Master Operating System
(MOS) using the following directives:

/ASSEMBLE
I A,p(l),p(2), ... ,p(n)

This control directive directs the executive to load the assembler. The parameter string
specifies optional tasks for the assembler or executive to perform after the assembly is
completed. These tasks are:

Parameter Definition Default Assignment
N No source listing Source listing

B No binary object Binary object program output

MAP Memory map on load-and-go No memory map on load-and-go

L Load-and-go after assembly No load-and-go after assembly

M No symbol table listing Symbol table listing

To read the same physical symbolic source statements for both assembly passes, input:

/ASSIGN PO•DUM,SI•PI
/ASSEMBLE

The processor output listing serves as a copy of the program; it can be input for another
assembly.

During a DAS MR assembly operation, if logical unit SS is not a magnetic tape unit, a flag bit
is set in the peripheral control word PCW. When the end of pass 1 is detected, this bit is
interrogated. If it is set, DAS MR does a status check on logical unit PO, prints the message
RELOAD SOURCE on the Teletype, and halts. When the computer is placed in the run mode,
DAS MR rewinds logical unit SS and begins pass 2 of the assembly. If the flag bit is not set
(SS not equal to magnetic tape), no status check is done on PO and DAS MR immediately
rewinds logical unit SS and begins pass 2.

Figure 5-4 illustrates a sample program assembly under MOS.

/.JOS,fXAMPLf
IOATE,OIS1117•18
/ASSf.~BLE,B,lr.

figure 5-4. Example of Assembled and Executed DAS MR Program
Under MOS Control

'.J· 15

OPERATING THE ASSEMBLER

PAGE

000000
000000
nooon1
00t)002
000003
oooo~A

OOt'.'n05
000006
000001
OO(tOtO
oooott
00".\0t2
00t')0!3
000()t4
oonnt5
{)ooo 1 e
oon.n t.,
000<'20
0000?.t
000022
ooon?.3
000024
00()0,5
00('026
nono21
oono3o
0000~1
oono~2
00()033
000()34
{)Or>n~5

00,,036
001')(')37
0000'1()
ooon11t
fJ0t')tU2
00"'04:\
00t")O.iti
oonnA~

OOO(iA~

000047

5-16

1 f)t01P'LE 08•17·'16

1 NA~E STFH

106612 A 2 CRL' EQU t\l(\6812
J STRT 8SS ('\

002000 A. • WAL.F !5,36,NAME
ooonon E

'"'" 005
A

000044 A
OOOOl" R
on2,,oo A ST~T 5,••41••3,•+2,•·6
OOOOOt f
000005 A
0(\t)t) t .4 p

000014 Q

0000\4 Q

000005 t:l

0021'.'0~ A 6 eALL fX!T
onooo" E
106612 A 7 NAME DATA rRL.F,. 'ODE AN J, GASTON'
147704 ..
t•270t A
1 .t724(') A
\A5~5~ A
1~0307 A
140723 A
\!523t7 A

14724{\ A

U'615t.?. A 8 DATA CRL.F,197!5 "' . GRANO'
134667 A

1J2e4('> A
l.412!51'.l A
1?0307 ' t!5t30t A
1473(')A A
tCH5ff\1~ A 9 OATA CRLF,tORANGE ORANGE'
147722 A
140716 A
\4370tr\ A
\?0240 A
1~02.4~ A
14772? A
1d07S~ A
tA370~ A
1 n5'.i t ~ A 10 raT~ C:Rl,.F, 't:ALIF g2ee1•,CA'LF,n

Figure 5-4. Example of Assembled and Executed DAS MR Program
Under MOS Control (continued)

OPERATING THE ASSEMBLER

PAGE 2 EXAMPLE

000050 t4t10t A
00()051 1 A63 lt A
000052 \A324n A
00()053 t2024n A
000094 t202A~ • oonoes5 t 346tH• A

000(')!56 133,68 A

OOt)t.'•'' t33e4o A

000060 106812 A

oo"oei noooon A
ooooes 11 LAST BES n

t.2 EXlT f)(T
000000 R t3 !Nr. !TRT

t:.NTRV NAMES
ooonoo R STAT

tltTE'.RNAL. tUME~
oooot5 E E•tT oooooe E toes

SYMBOLS
tOe6t2 A CRLF ooaots E EXlT nonon.6 E tncs
000016 R NAME nooooo R STRT

O ERRORS A~SEM5LY COMPLETE

OOEAN. J. GASTMN
91~ N. GRANI')
ORANGE ORANGE
CAL.IF 9?867

Figure 5~4. Example of Assembled and Executed DAS MR Program
Under MOS Control (continued)

s 17

OPERATING THE ASSEMBLER

5.2.3 DAS MR Operation (Stand-Alone)

DAS MR may be loaded and executed under control of the stand-alone FORTRAN IV loader.
The operating procedure is as follows:

a. Load the stand-alone loader using the binary load/dump program (BLD 11). Set A register to
zero before loading to prevent execution of the stand-alone loader. At completion of
loading, the execution address of the stand-alone loader will be in the X register
(013260).

b. Make the following modifications to memory~

Location
5
6
7

New Contents
0210
0210
0210

c. Execute the stand-alone loader by setting the P register to the execution address
determined in step a and pressing RUN.

d. When executed, the stand-alone laoder will print "LN" on the Teletype. At this time,
peripheral device assignments may be altered by entering the one-digit number of the
old logical unit followed by the two-digit number of the substitute unit. DAS MR uses the
following logical units:

5 18

Logical
Unit
Number
3
4
2
6
8
9

Logical
Unit
Name
Pl
LO
BO
GO
SS
PO

,:; Device Address 010
* •:• Device Address 011

Default
Device
Assignment
Card reader
Line printer
Paper tape punch
Dummy
Magnetic tape·~ 00
Magnetic tape~·~· 10

OPERATING THE ASSEMBLER

As an example of device reassignment:

LN
300400201806900

Would reassign:

Pl = Teletype Keyboard
LO= Teletype Printer
BO = Teletype Paper Tape Punch
SS = Teletype Keyboard
PO = Dummy

For a complete list of periphetal assignments, see table 5-4.

Table 5-4. list of Peripheral Assignments for Stand-Alone DAS MR

Logical Assignment
Unit
Number

0 Teletype keyboard and printer

1 Teletype paper tape reader and punch

2 High-speed paper tape reader /punch

3 Card reader

4 Line printer

5 Dummy

6 Dummy

7 Card punch

8 Magnetic tape unit 0

9 Magnetic tape unit 1

l
10

11

12

Magnetic tape unit 2

Magnetic tape unit 3

Unformatted paper tape 1/0 (HSPT)

e. Following device reassignments, the stand-alone loader will print "IN" on the Teletype. At
this time, the operator should ready the DAS MR object on the input device and respond
by typing the proper designation on the Teletype:

5-19

OPERATING THE ASSEMBLER

5-20

P Paper Tape Reader
T Teletype Paper Tape Reader
0, 1, 2, 3 = Magnetic Tape Controller

0, 1, 2, or 3 respectively

To enable print out of a load map, the operator must type "M" immediately following the
device designator. Following the typed characters, the operator must type a CR (carriage
return) to initiate loading of the DAS MR object.

If an error is detected, the loader types a 2-character error message code and halts. To
continue, the operator should remove.the cause of the error (refer to error messages),
ready the input device to read from the beginning of the object material, reload the
loader program, and repeat the above procedure.

Error Messages

The following 2-character error messages are output to the Teletype whenever the cor
responding error condition is detected:

Messages

PS

LS

CM

DA

TX

RD

RC

SQ

CK

Meaning

Program Size Error. Program memory requirements exceed
available program/common storage.

Literal Size Error. Program literal requirements exceed
available literal storage.

Common Error. The program contains conflicting size
definitions for a common block.

Data Error. The program attempted to overlay the loader,
loader tables, or resident programs.

Text Error. The program object text contains an illegal or
erroneous loader code.

Read Error. The loader encountered a read error while
attempting input of object text.

Record Error. The loader inputs an invalid record type.

Sequence Error. The loader inputs an object text record
with an invalid sequence number.

Check-Sum Error. The loader inputs an object text record
with an invalid check-sum.

f. After DAS:MR is loaded, peripheral devices for logical units 3, 4, 2, 6, 8, and 9 must be
loaded from the Run-Time 1/0 tape. This is accomplished by placing the Run-Time 1/0
tape on the input device and repeating step e.

OPERATING THE ASSEMBLER

g. After the Run-Time 1/0 is loaded, the 1/0 control program must be loaded from the Run
Time utility tape. This is accomplished by placing ·the Run-Time utility tape on the input
device and repeating step e.

h. When all externals have been satisfied the loader will halt with the P register 3. To
execute DAS MR, the operator should press RUN.

Upon execution, DAS MR will input source statements from logical unit (Pl), output source for
pass to logical unit (PO), input pass source from logical unit (SS), output binary object to
logical unit (80), and output listing to logical unit (LO) .

.
Source input to DAS MR terminates upon input of either an EOF or a source record containing
a slash (/) as the first character. A slash record will cause an end-of -file to be output to the
BO device.

5.2.4 DAS SA Operation

The DAS SA assembler may be loaded and executed by the stand-alone procedure described
in the following paragraphs.

Loading the Assembler. Load the assembler program into memory using the binary load/dump
program (BLD 11). Execute it by entering a positive, nonzero value in the A regist.er during
loading, or by clearing all registers, pressing (SYSTEM) RESET and entering the· RUN state.
(Set RUN indicator on and press START).

During execution, the program first determines the amount of memory required. It. then
stores in address 000003 a value one less than the lower limit of BLD 11. This is the highest
address that the assembler can use without destroying part of BLD 11.

DAS SA comprises two sections: The 1/0 section allows the specification of 1/0 devices for
assembler input and output. The second section is the assembler itself.

1/0 Section Operation. The 1/0 section of DAS SA, using the Teletype printer, makes three
requests for definitions of 1/0 devices:

ENTER DEVICE NAME FOR xx

where xx is one of the 1/0 function names: SI (source input), LO (list output), or BO (binary
output), respectively.

1/0 Device Assignment. Assignment of 1/0 devices is accomplished by responding to each
request in turn by means of a Teletype keyboard input which names the desired device,
followed by a carriage return (CR). The acceptable device names for each request are listed in
table 5-5. If the default assignment is desired, press CR only.

if an incorrect device name is type, the message:

DEVICE NAME NOT VALID

is output and the request repeated.

5-21

OPERATING THE ASSEMBLER

To terminate the output of any line to the Teletype, press RUBOUT. The error correction
feature can be used any time during 1/0 device specification.

When 1/0 assignments are complete, the 1/0 section uses BLD II to load the assembler
section into memory.

To restart the 1/0 section before the assembler section is loaded, set STEP indicator on, clear
all registers, press (SYSTEM) RESET, set RUN indicator on and press START.

Table 5-5. Acceptable 1/0 Devices

Assembly Device Description Default
Function Assignment

-

SI (source input) TR Teletype paper tape read TR
TY Teletype keyboard
PR High-speed paper tape

reader
CR Card reader (026 code)
CR1 Card reader (029 code)
MTnn Magnetic tape

LO (list output) TY Teletype printer TY
LP2 Line printer (70-6701)

BO (binary output) TP Teletype paper tape punch TP
pp High-speed paper tape

punch
CP Card punch
MTnn Magnetic tape

--'-·

Assembler Section Operation. When BLD 11 relinquishes control to the assembler section, the
computer halts with 000001 in the program counter (P register). For an assembler pass 1, set
SENSE switch l; for pass 2, reset SENSE switch 1 and set SENSE switches 2 and 3.

If pass 1 is selected, ready the SI device with the source input media and set RUN indicator
on and press START.

For pass 2, ready the SI device with the source input media, ready the BO and LO devices, set
RUN indicator on and press START.

The END directive terminates both passes 1 and 2. Pass 1 terminates with 000001 in the P
register and 0177777 in the A register. Pass 2 produces the binary object loader text and
program listing and terminates when END is encountered with the same register values as
pass 1. A MORE directive causes the computer to stop and wait until the SI unit prepared with
the additional source input media, and the RUN state is entered. MORE is indicated by
0170017 in the A register.

5-22

OPERATING THE ASSEMBLER

The program listing can be suppressed during pass 2 by resetting SENSE switch 2, and the
binary output, resetting SENSE switch 3. Error messages cannot be suppressed and are
output on the LO device as the error is detected during pass 2.

Synchronization errors halt the assembly with 000777 in the A register. To continue the
assembly, set RUN indicator and press START. The assembler resets the location counter
value to that assigned on pass 1, prints error message >:<SE, and continues the assembly.

Pass 2 can be restarted or repeated for extra copies of the assembled program without
repeating pass 1.

At the completion of pass 2, the assembler can accept another assembly using the same 1/0
devices. For other 1/0 devices, reload the assembler program, starting with the 1/0 section.

To restart the assembler, set STEP indicator on, clear all registers, press (SYSTEM) RESET,
set RUN indicator on and press START. The assembler halts with 000001 in the P register
and is ready to accept another assembly.

Using Magnetic Tape. The DAS 8A assembler can communicate with any of the magnetic tape
transports on a controller. Up to four transports may be connected to each of the tape
controllers. A configuration may have one to four magnetic tape controllers.

The magnetic tape transport number and controller device address is specified in the device
name specification of the I /0 Control Section. A listing of magnetic tape transport device
names with their corresponding tape transport number and address is given in table 5-6.

Table 5-6. Device Names for Magnetic Tape Transports

Device Transport
Name Number

MTOO 010 1
MTOl 010 2
MT02 010 3
MT03 010 4

MTlO 011 1
MTll 011 2
MT12 011 3
MT13 011 4

MT20 012 1
MT21 012 2
MT22 012 3
MT23 012 4

MT30 013 1
MT31 013 2
MT32 013 3
MT33 013 4

..__ __ --
5-23

£
N

0
w
Q")
N

!!
(,Q
c:
~
(!)

U1
I

YI
0
0
c.
:;

(Q

m
>C
I»
3

"C
;-

EXA PL E
: , 'I ! ' , .'. ~ ' ',;

I

HA.LT

. NJ~l<T
- .

25

DAS CODING FORM

!SQUARE R¢¢T PR¢GRAM
·~' ;, : ' ... 'l .. · '

SQUARE R~¢T (~SQT) SUB~0UTiNE.
F NEGATIVE NUMBERS IS IN CALL

RETURN FR~M SQUARt R0¢T rs AT CALL ~ 3 (h+3).
DESIGNED ~- TAKE THE SQUARE '~¢1

AND 5~ RE THE ANS ER IN 40 ¢CTAL L C.

IS TA R T I N G A D DR E SS

i C tJ Ni - I
j6R = (l¢C + 1.R)

1~UBR CALL .. WITH ~RR¢R RETURN
N RMAL ETVRN ST¢RE RESULT

_r_s_ J<.E.T~.I iEv f D .A,N.D S,T ~-R €.D F R.f>M

050

~R : 0 END ¢F R~~TINE
NDEX - I :: INDEX
ETURN F-R ~EXT NUMBER

N~RMA L HALT
1

- I 00

I D o.o J .o 10 0 , -4 0 I :5 0 6 0 } 7 0 # 8 0 I ct 0 I I I 0. I 2 0
.. ,.0_2000 1 ~ 1 q~ 30100 1 03000,.1.~, 11, 130.,.01 ~o .
~.2.~:'t,-~ ·~·~ o •. ~I.~!- ~F o. ~~ o 1 3~.o 1 ~-70 ~. lf ?~ '. ~o o > - '· o .

~ ',j • • l .\ T 'I ~..j

CD 0)> 0
~

)> (") -0 ~

0 (/)Q m ,
CX> 9: ::0 en l>

-·)> :J -i en co
en~ CD 2
::r 0 x G')
0 co Ol -i :E , 3 J: :J Ol
-· 3 "£ m
:J -·CD l>
-"' 0 (/)

-·en - (/)

cg ::r Ol m
,00 $
CD ~)> OJ

r 01 :J (/) m
I -·
~ :J a; :".'

-)> ~- "'O
c: -.:
""'I 0 ro co
c.n ""'I

I 0)

~3
)> c;;·
:J en
CD ::r
x 0
Ol :E
3 ::J

"'O -·
- :J
CD -0 -· _co
Ol c
:J (ti
!l:> 01 en I
en ~ CD
3)>
O"' :J
-CD
CD X a. !l:>

03
)> "'O
en co
ex>o
)> -

"'O Ol , :J
0 Ol co en , en Ol CD
3 3
~ £
;:::;: CD
::J" a.

U1

N
U1

"'" rE
c
""' Cl)

c.n
I

?"
0
0
Q.
5·
cc
m
>< m
3

"'C
(;' -(")
0
::I -5·
c:
ti)
Q. -

c
r:3
6
w

°' w

OAS CODING FORM 2

h--~..,..,..,.;,~;,~~.,-,,J-,_~...,...-.---~~-.-.-,,-"-,,--' •. ,~s-c=,,~-H,~f-,,--_,,---~-----~-----~-~-~--~i,-.. -... -,------1
I

SQ I? T

CA l C tJ L It 1' El> '(T ff E --'-A'--'P_P--=-5? _,_¢-'-'1.._t'-'M-'-"A~_,_T-=I'-'O'-N-'-------+-------i

.E"N_TIE"I~- 'ti.I.Tl+ ·Npr-t_B_~~-... F.OR.. _SQDAR.E R¢¢T IN T.ttE B REGISTER. THE
x ~,E'jGISIER. r's .SAVED AN.D REPLACED tDN EXIT. f~Rr/>R RfiVRN F(JI~
S OA~E R ~~ F NfGATIV~ UM ERS T n+2 F~ CALL.
N¢.~1MA.L .. R.E'TURN AT .tl+.3 FRON AL l WI TM SQvA'E Ro<hr ¢F NUMBE'R
I~ THE. 8 '~ 1$T.£~ .

¥

X sqT. E.N_T:R PLACE WHE~E RETURN ADDR IS SAvEP
.. s·Q ~r •. ·r/J.F ~o·=_o· _8~.

TBA

l.D.B.

Dl..V.
T.8.A.

'J.SQT
t jNMB_~

1A Pr?X
. S.A.V.E:'

7.

N.M.B~

A.PRX

l'l UM 8 c R : s·R = AR
ERR~~ RETURN T¢ N+Z
jS .AV E N U Mg E ~
~UM8ER = I ST APPR0~lMATI~N
SA'/.E XR
~NITIALIZE XR F¢R APPR.

E 0 IV DE
SR
APPR¢X IMATI¢N
= AR

0
"tJ
m
:::.0
)>
-4
2
G>
-4
:I:
m
)>
Cf)
Cf)

m s:
CD
r
m
::0

(J1

I\.)
O'\

!!
l.Q
c:
""' (I)

U1
I

~

0
0
Q.

s·
l.Q

m
)(
m
3
"C
CD' -n
0
:::J -s·
c:
(I)
Q. -

c
i'3
6
w
m
.+::>.

EXIT

~MBR.
IAtlX
ISAYE.

i---!!f,:.;,.;-.

iADD
:TAB
!As R8
'STB

DX.R
[XZ
~MP
LDX
lNR
RET.U*
B.S.S
Jas_s

. B:S.S;
lf :O_

t-+-,..- -- .. - ~ r - . - . - - - . . - . . .

... ·---. -·

!AP R.X

'
iJ

I JAPRX
! I
l in.IT
: TAGH
! l~A.\I E

XSQT

XSQ.T.
l.
I
I. .

i ~ J a 11.: : 1 ; l 1 J !.t ! ... ·.:: · ; • 1~ re ~·· • . • • -~ .

DAS CODING FORM

I

· .. ; ~ ·, ' '·" .'' ' ' i ' I : : '

~/Y.+X =AR
iA IX + X = A R • a R
k_41x+x1112 =BR
~~iT APPR¢XIMATI¢N
i;o~ - I =.)(R

ls_Q_ __R_T _._ =SR
~~~PLETE APPR~XIMATION 
·~EST¢RE X.R 
~PDATE ENTRY TO n+3 
~¢ SACK T¢ MAIN PR¢GRAM 

I 

~JS. _EX_E_curr.PlN_ ADD RE SS 

I .. I 
·- ·l 

3 3 

i 

i 

i 
j 

l 

0 
"ti 
m 
::0 
)> 
-I 
z 
C> 
-I 
:I: 
m 
)> 
(/) 
(/) 
m s 
tc 
r
m 
::0 



()('10"500 
ooo~on 

000~01 
000502 
000!'503 
00050"4 
000~1";!'5 

OOO~Of'i 

OOO!'.'i07 
OMH>10 
000!'511 
ono~u? 

ono513 
000514 
000515 
000516 
ono!"l 11 
00052('1 
000521 
1')00522 
0(')0523 
OC'l0!524 
0005?.5 
ono~2ic. 

0(')01527 
OOC\53C'I 
ono531 
00053t> 
01)0533 
000~34 

006030 
000(131 
025515 
002000 
0006215 R 
000777 
Ofl!55~6 

Of\ 11"140 
0(l('.'5t4 ~ 

0(1 5344 
001000 
(100502 R 
OliCt"lOO 
000031 
0000315 
Ot'l0044 
OC'I005Cl 
17 7717 
!')'001'14 
ooono1 
ocoooo 
000000 
(l('\0('.104 

Or>031 fl 
001'50 
000'.''00 
1'77Jf\ 
000062 
OC007" 

1·111.1171 

OPERATING THE ASSEMBLER 

SQUAPE ROOT PR~GRAM 

* TH!S A RnUTI~E T~ CAL~ THE SQUARF. ~onT (')IS~T' SUAROUTINE. 
* E~RDR RETURN FOR SQUARE ROOT nF NEGATIVE NU~BERS ts IN rALL 
* +2 (N+2, NQRM•L RETURN FR~M snUARE ROOT I~ AT CA~l + 3 tN•3' 
* TMIS ROUTINE IS DESIGNE~ TO TAKE TME ~QUARE RnOT 
* OF 40 OCTAL NUMRERS ANO STORE THE ANSWER tN 4~ ~CTAL LOC, 
tlr 

, t'.'IRG , (')500 STARTil'JG Al'JDPESS 
, LOU ,n37 XR • COUNT .. 1 

r~EX T ,LOR , L OC ,1 BR 81 CLOC ... XR' 
, CALl. , XSC'JT, 0777 ~UAR CAl..L WITH ERROR RETURN 

,STA , SQIH ,1 NORMAL RE TUR~ STMRE ~ESULT 

• 
• NOTE TH•T THf DATA 15 RETRJEVEO ANO STORED -FROM 
* BnT'f0"1 TO TC'P 

* 

HAL,. T 
L.nc 

,JXZ 

,DATA 

, l-IAL T 

, 
, NE)l'T 

)(R • 0 END OF ROUTINE 

INOEX • 1 • INOEX 
~ETUR~ FnR NEXT NUMBER 

, NORMAL HA~T 

,25,3o,~6,o50,-•,100,01,oo,o,4,'-00 

Figure 5-6. Example of an Assembled DAS SA Program 

5-27 



OPERATING THE ASSEMBLER 

PAGE 000002 

000!53!5 
onos3e 
oon!S37 
ono!540 
000~41 
00054'-
000~43 

. 000544 
000!545 
000!548 
000547 
0005!50 
0,,0!55t 
0005!52 
0005!53 
onn!5!54 
000!5!5!5 

. 000!556 
000!5!57 
0005GO 
nnoset 
000!562 
000!583 
oon!584 
000!585 
oon~ee 

0001;2(5 
OOCH527 
000830 
onnt'IJt 
OOOftl=.> 

S'l//-lr'1 

ono1oe 
000120 
000132 
OOC'l 58 
ono11n 
000000 
002000 
0(')0002 
000011 
00!5tl10 
003C')00 
ooon11 
000021 
00020'
onooo 1 
000204 
00041J4 
ooo•"" 
OOO!SOO 
000!512 
000!524 
0~0!536 
000920 
00071U 
177786 

OOOC\00 
001n20 
f)On8!51 A 
005,,21 
on100• 

,DAU 

,nATA 

SQRT ,040 RESERVf 40 OCTAL ~OCAT!ONS 

* • INTEGER SQUARE ROOT SUBROUTINE CALCUL•TED BY THE APPROXXMATIO~ 
• 
• • 
• 

1/2 ( x + ~ ) a xi + 1 
xi 

E~TER WITH NUMRER FOR •QUARE ROOT !N THE 8 
• X -EG!ST!R IS SAVED &ND REPLACED ON E~!T, 
• SQUARE AOnT OF NEGATIVE NUMBERS AT N+2 FROM 

NORMA~ AfTURN AT N+3 'ROM CALL WtTH SQUARE 
JN TME B ~EG!STER * 

* 
* 

REGISTER, TM£ 
ERR1'R RETURN 'OR 
CALL. 
ROOT nF NUMBER 

UQT 1 f.NTR , PLACF. WHERE RETURN AODR ts SAYED 
,JS? ,l!XlT+l SQ AT, OF O•O 

,TBA ' NUMBER • BR • AR 
1 JAN• ,)(SQT ~RROR RETURN TO N+t 

Figure 5-6. Example of an Assembled DAS SA Program (continued) 

5-28 



PAGF- JOOOO., 

onofi:.\3 10~526 R 
OOC'lR34 OR015R2 
000fi35 OM66:_, 
OOO~Jtl C\10664 
onolll37 O('H51'>3n 
ono640 00001)7 
OOOl'i4 t 005001 
000t'i42 020~6~ 
onofi4~ 170l563 
00,,~44 .iosn21 
0')0'545 1201563 
000646 0.1"5(') 12 
0001547 nri4t01 
000~50 060ti63 
ono651 l'.'05344 
0006!'12 001040 
000653 (H)Ql'i ;5 R 
000654 001000 
01')0655 Ot'l06 41 R 

OOOR56 0:710664 
01'10ei!57 04101'521'5 
non~5n OC1000 
0006151 1006215 R 
1)00662 
OOOti63 
000#;64 

OOOt'\00 

1..ITERAl..S 

PnINHR!li 

SVM~OLS 

1 000tit54 ~ SAVE 
1 00061'i;3 ~ APR)( 

1 0006152 R "PH3R 
1 0006!'56 R E ~Ii' 
1 OOM41 R AGN 
1 00 (')1526 R XS~T 

1 1'100!566 R SQRT 

J'fll-1173 

PAGE 000004 

001'.'515 R LOC 
noC'l514 R H4L'f 
000502 R NEXT 

VTll-1174 

,ST~ 
, STF\ 
,STX 
, LOX l 

AGN ,TiA 
,LOA 
,nxv 
,TBA 
, Aon 
,TAR 
,ASRB 
,STB 
, OXR 
, JXl 

,JMP 

EXIT , LD'IC 
,tNR 
,RETU• 

NMRR ,ASS 
APR)( , FISS 
SAVE ,PSS 

,ENn 

OPERATING THE ASSEMBLER 

I t-.IM~R SAVE NUMBER 
,APRX NUMBER • 15T APPROXI"1ATION 
,SAVE SAVE )(R , ., tNITIAL-IZE XR FOR APPR. 

, 7ERO AP FOR nIVIOE 
1 NM8R l\JUMBER • BR 
, APR)( NU"18ER I APPROX I MA TI CIN 
, A/'I.. •BR •AR 
, APRX A /'l..+X •AR , A /X+X •AR •BR 
' 1 tA/x+X~ 1/2 •RR 
,4PRX NEXT APPQOXlt.lATIC'IN , XR• t •XR 
, EXIT S~ RT. •RR 

,AGN COMPLEH: APPROX? MA iI nN 

,SAVE QESTORE YR 
,XSQT UPDATE ENT RV 'f('I N+~ 

, 'iCSClT GO BACK TO MAltJ PRnGRlM 

' 1 
' 1 
, 1 

NO EXECUTI"-N AOORE~S 

figure 5-6. Example of an Assembled DAS SA Program (continued) 

5-29 



OPERATING THE ASSEMBLER 

PAr;E 100001 

015001:1 
OU5t'l01'.'1 OM50 t l 

•SZ 
01!5001 005001 

•DO 
01500~ 001A11 

•S1 
015on~ ()()0771 
015004 ('1!503~ 

•1'0 
015005 on6nt !'; 
01!500tl o 15n3tl R 
01500'1 onl5n3t'l 
015t'l 1t" 01!5(')3'1 R 
IH5t'l11 015non 

•00 
01501? OCIOOOA 

•TF 
OU5Clt ~ 015,,0~ 
0U501 A 016000 
,, 151'1 \ ~ oi 4n2(1 
01501~ ()06010 

•5Z 
015017 02772t 
CH!H-,2('). (')(')60tr'I 
0150?.t 077777 
015n22 01'16010 
01 !5,,2~ 077777 
01502.d 006n10 
015,,2!5 1 nonoo 

•nP 
015030 (') t'l 11) 41"1 
015031 015036 R 
0!!50~2 001000 

•SY 
01503:3 ooon,.,o 
01!50'.34 001000 
0151"3~ Ot5n:p R 
01 ~("131'5 000t'l05 
015037 01404~ 

VTll-1177 

PAGE onOC'\O'-

POINTER! 

SYMROLS 

0 015"'0 q STP 
1 Ol5n~7 R ~RAV 
1 01~~36 R ALFA 
0 C'\t!5'l01 R SEC 

J'T//-1171 

•111'.)(AMPLf' L 

SEC 

SEC 

ALFA 
BRAV 

STR 

,nRG 
,TZA 

,TZA 

I HL. T 

1 MLT 
,LOA 

, L,.OAE 

1 LOX I 

,LDA 

,LOA 

,LOA 
1 LDA 
,LOA 
,LOAI 

,LDAI 

,LDAI 

,LDAI 

'JZZ 

, JXZ 

,JMP 

,JMP 

1 0AU 
,OATA 

•"SS 
,END 

,01!5000 
, I') 10 

, '171 

, 017'1 
,Al.FA,1 

1 ALll'A,1 

,AL,FA 

, ", t 

,n,id 

, (), t , (), ~ 

, Al.It A 
, '17'17' 

, ()7'1777 

,32767 

1·•3P7ti8 

1 Al.FA 

1 ALF'A 

, euu 

,RRAV 

.~ 
1 01AOA5 

, t 

EXAMPLE WITM ERRORS 

CANNOT HAVE A VAR. FIELD 

VARIABLE FIELD TO LARG! 

EXP 1 TO LARGE 

noUBLE OFFJNtT?ON 

EXP ' HAS TO BE A 1 OR 2 

CR~ATE A RF.L ADDRESS 
VAR FifLD TO LARGE 

ILLEGA~ OPERATtON conE 

BRA IJNOEFINEr> 

Figure 5-7. Example of an Assembled DAS SA Program with Errors 

5-30 



SECTION 6 

STANO .. ALONE FORTRAN/DAS MR LIBRARIES 

There are eight libraries for the stand-alone FORTRAN/DAS MR system. 

6.1 COMPLEX MATH FUNCTIONS (FORTRAN CODED) 

This library consists of programs, collected, without modification, from the MOS. In order, they 
are: 

$9E 
ccos 
CSIN 
CLOG 
CEXP 
CSQRT 
CABS 
CON JG 
$AK 
$AL 
$AM 
$AN 

$AC 
CMPLX 
$8K 
$8L 
$8M 
$8N 
$ZD 
AIMAG 
$0C 
REAL 
$8F 
$BS 

6.2 DOUBLE PRECISION MATH FUNCTIONS (FORTRAN CODED) 

This library consists of programs collected, without modification, from the MOS. In order, they 
are: 

$XE 
$YE 
$ZE 
DATAN2 
DLOGIO 
DMOD 
DINT 
DABS 
DMAXI 

DMINI 
DSIGN 
$YK 
$YL 
$YM 
$YN 
DBLE 
$XC 

6.3 SINGLE PRECISION MATH FUNCTIONS (FORTRAN CODED) 

This library consists of programs collected, without modification, from the MOS. In order, they 
are: 

TANH SNGL 
ATAN2 MAXO 
ALOGlO MAXl 

6-1 



'STAND-ALONE FORTRAN/DAS 'MR LIBRARIES 

AMOD MINO 
AINT MINI 
AMAXO MOD 
AMAX! INT 
AMINO IDIM 
AMIN IFIX 
DIM $JC 
FLOAT 

6.4 DOUBLE PRECISION ARITHMETIC (DAS CODED) 

This library consists of programs collected from the MOS. The only modifications made were 
the deleting or adding of control cards to define the object code for 16- or 18-bit machines. In 
order, they are: 

DSINCOS 
DATAN 
DEXP 
DLOG 
IF 
POLY 
CHEB 
DSQRT 
$DFR 
IDINT 

DMULT 
DDIVIDE 
DADDSUB 
DNORMAL 
DLOADAC 
DSTOREAC 
RLOADAC 
SINGLE 
DOUBLE 
DBLECOMP 

6.5 SINGLE PRECISION ARITHMETIC (DAS CODED) 

6.5.1 Hardware Multiply /Divide 

This library consists of programs collected from the MOS. The only modifications made were 
the deleting or adding of control cards to define the object code for 16- or 18-bit machines. In 
order, they are: 

6-2 

$HE 
$PE 
$QE 
ALOG 
EXP 
ATAN 
SQRT-H 
SINCOS 
FMULDIV 
FADDSUB 
SEPMANTI 
FNORMAL 
XDDIV-H 
XDMULT-H 

XDADD 
XDSUB 
XE COMP 
$FLOAT 
$1FIX 
IABS 
ABS 
ISIGN 
SIGN 
$HN-H 
$HM-H 
XMUL 
XDIV 
1$FA 



STAND-ALONE FORTRAN/DAS MR LIBRARIES 

6.5.2 SOFTWARE MULTIPLY/DIVIDE 

This library consists of programs collected from the MOS. The only modifications made were 
the deleting or adding of control cards to define the object code for 16- or 18-bit machines. In 
order, they are: 

$HE 
$PE 
$QE 
ALOG 
EXP 
ATAN 
SQRT-S 
SINCO 
FMULDIV 
FADDSUB 
SEPMANTI 
FNORMAL 
XDDIV-S 
XDMULT-S 

XDADD 
XDSUB 
XDCOMP 
$FLOAT 
$1FIX 
IABS 
ABS 
ISIGN 
SIGN 
$HN·S 
$HM-S 
$XMUL 
XDIV 
1$FA 

6.6 RUN-TIME 1/0 (DAS CODED) 

This library consists of programs collected from the MOS. Control cards were added or deleted 
to define the object code for 16- or 18-bit machines. 

Two additional modifications were made to the MOS routines: the Teletype paper tape reader 
and punch drivers were merged into a single driver, $0H/$01; and the entry name of the 
driver for the line printer was changed to $OR. In order, they are: 

FORTIO 
$00 
$04 
$08 
$0C 
$0G 
$0H/$01 
$00 
$OM 
CRlE 
$0Q($0R) 
$0Q 
$OP 
$OS 
CPAE 
MT$0 
MT$1 
MT$2 

MT$3 
MTAE 
KNT$ 
RDC$ 
WRT$ 
STR$ 
SWR$ 
BL$P 
FCH$ 
TCK$ 
$TC01 
$HC37 
HCK$ 
DIM$ 
LAS$ 
IOA$ 
lOOK 
$BICD 

6·3 



STAND-ALONE FORTRAN/DAS MR LIBRARIES 

6.7 RUN-TIME UTILITIES (DAS CODED) 

This library, except for $8UF consists of MOS programs, some modified and some not. In the 
following list, an asterisk (':<) flags the programs which have more extensive modifications 
than selecting the 16- or 18-bit word size. In order, they are: 

6-4 

$DO 
$CG 
$3S 
$SE 
FORTUTIL 

$EE 
Rscs3-=· 
RSCBIMTB':. 
$8UF 



APPENDIX A 
INDEX OF INSTRUCTIONS 

Octal 
Mnemonic Code Description 

AD 0072xx Add 

ADD 12xxxx Add memory to A register 

ADDE 00612x Add extended 

ADI 00745x Add immediate 

ADDI 006120 Add immediate 

ADR 0075xx Add register 

ANA 15xxxx AND memory and A register 

ANAE 00615x AND extended 

ANAi 006150 AND immediate 

AOFA 005511 Add overflow to A register 

AOFB 005522 Add overflow to 8 register 

AOFX 005544 Add overflow to X register 

ASLA 004200+ n Arithmetic shift left A register 

ASLB 004000+ n Arithmetic shift left B register 

ASRA 004300+ n Arithmetic shift right A register 

ASRB 004100+ n Arithmetic shift right 8 register 

BMOVW 007404 Block Move (V77-800 extended 
i 

instructions only) 
i 

BT 0064xx Bit test 

CIA 1025xx Clear and input to A register 

CIAB 1027xx Clear and input to A and B registers 

CIB 1026xx Clear and input to 8 register 

COM 00743x Complement register 

,L\-1 



INDEX OF INSTRUCTIONS 

Mnemonic 

COMP 

CPA 

CPB 

CPX 

DADD 

DAN 

DAR 

DBR 

DEC 

DECR 

DER 

DVI 

DIVE 

DIVI 

DJP 

OLD 

DMOVSD 

DMOVXD 

DMOVSX 

DMOVXX 

A-2 

Octal 
Code 

005xxx 

005211 

005222 

005244 

004x2x 

004x4x 

005311 

005322 

00742x 

0053xx 

004x6x 

17xxxx 

00617x 

006170 

00671x 

004x0x 

0065xN 

0065xN 

0065xN 

0065xN 

Description 

Complement source to destination 
registers 

Complement A register 

Complement 8 register 

Complement X register 

Double add 

Double AND 

Decrement A register 

Decrement 8 register 

Decrement register 

Decrement source to destination 
registers 

Double Exclusive OR 

Divide 

Divide extended 

Divide immediate 

Decrement Register and Jump (V77 · 
800 extended instructions only) 

Double load 

Double Word(s) Move (V77-800 
extended instructions only) 

Double Word(s) Move: Source Address 
Indexed (V77-800 extended instruc-· 
tions only) 

Double Word(s) Move: Destination 
Address Indexed (V77-800 extended 
instructions only) 

Double Word(s) Move: Source and 
Destination Address Indexed (V77-800 
extended instructions only) 

! 

i 

! 

i 



INDEX OF INSTRUCTIONS 

Octal 
Mnemonic Code Description 

DOR 004x5x Double OR 

DST 004xlx Double store 

DSBU 004x3x Double subtract 

DXR 005344 Decrement X register 

ERA 13xxxx Exclusive OR memory and A register 

ERAE 00613x Exclusive OR extended 

ERAI 006130 Exclusive OR immediate 

EXC lOOxxx External control 

EXC2 104xxx Auxiliary external control 

FAD 105410 Add single precision memory to 
floating ,point accumulator 

FADD 105503 Add double precision memory to 
floating point accumulator 

FDV 105401 Single precision floating point 
divide 

FDVD 105535 Double precision floating point 
divide 

FIX 105621 Reformat floating point accumulator 
and store integer in memory 

FLO 105420 Load floating point accumulator 
with single precision number 

FLDD 105522 Load floating point accumulator 
with double precision number 

FLT 105425 Reformat single precision integer 
and load into floating point 
accumulator 

FMU 105416 Single precision floating point 
multiply 

FMUD 105506 Double precision floating point 
multiply 

A-3 



INDEX OF INSTRUCTIONS 

Mnemonic 

FSB 

FSBD 

FST 

FSTD 

HLT 

IAR 

IBR 

IJMP 

IME 

INA 

INAB 

INB 

INC 

INCR 

INR 

INRE 

INRI 

IXR 

JAN 

JANM 

A-4 

Octal 
Code 

105450 

105543 

105600 

105710 

000000 

005111 

005122 

0067xx 

1020xx 

102lxx 

1023xx 

1022xx 

00741x 

005lxx 

04xxxx 

00604x 

006040 

005144 

001004 

002004 

Description 

Single precision floating point 
subtraction 

Double precision floating point 
subtraction 

Store floating point accumulator 
in memory in single precision 
format 

Store floating point accumulator 
in memory in double precision 
format 

Halt 

Increment A register 

Increment B register 

Indexed jump 

Input to memory 

Input to A register 

Input to A and B registers 

Input to B register 

Increment register 

Increment source to destination 
registers 

Increment memory and replace 

Increment memory and replace 
extended 

Increment memory and replace 
immediate 

Increment X register 

Jump if A register negative 

Jump and mark if A register negative 



Mnemonic 

JANZ 

JANZM 

JAP 

JAPM 

JAZ 

JAZM 

JBNZ 

JBNZM 

JBZ 

JBZM 

JDNZ 

JDZ 

JIF 

JIFM 

JMP 

JMPM 

JN 

JNZ 

JOF 

JOFN 

JOFM 

JOFNM 

Octal 
Code 

001016 

002016 

001002 

002002 

001010 

002010 

001026 

002026 

001020 

002020 

00677x 

00676x 

OOlxxx 

002xxx 

001000 

002000 

00674x 

00673x 

001001 

001007 

002001 

002007 

INDEX OF INSTRUCTIONS 

Description 

Jump if A register not zero 

Jump and mark if A register not zero 

Jump if A register positive 

Jump and mark if A register positive 

Jump if A register zero 

Jump and mark if A register zero 

Jump if B register not zero 

Jump and mark if B register not zero 

Jump if B register zero 

Jump and mark if 8 register zero 

Jump if double precision register 
not zero 

Jump if double precision register 
zero 

Jump if conditions met 

Jump and mark if conditions met 

Jump unconditionally 

Jump and mark unconditionally 

Jump if register negative 

Jump if register not zero 

Jump if overflow indicator set 

Jump if overflow indicator not 
set 

Jump and mark if overflow indicator 
set 

Jump and mark if overflow indicator 
not set 

A-5 



INDEX OF INSTRUCTIONS 

Mnemonic 

JP 

JSR 

JSlM 

JS2M 

JS3M 

JSlN 

JS2N 

JS3N 

JSlNM 

JS2NM 

JS3NM 

JSSl 

JSS2 

JSS3 

JXNZ 

JXNZM 

JXZ 

JXZM 

JZ 

LASL 

LASR 

A-6 

Octal. 
Code 

00675x 

0065xx 

002100 

002200 

002400 

001106 

001206 

001406 

002106 

002206 

002406 

001100 

001200 

001400 

001046 

002046 

001040 

002040 

00672x 

004400 + n 

004500 + n 

Description 

Jump if register positive 

Jump unconditionally and set return 
in X register 

Jump and mark if SENSE switch 1 
set 

Jump and mark if SENSE switch 2 
set 

Jump and mark if SENSE switch 3 
set 

Jump if SENSE switch 1 not set 

Jump if SENSE switch 2 not set 

Jump if SENSE switch 3 not .set 

Jump and mark if SENSE switch 1 not 
set 

Jump and mark if SENSE switch 2 
not set 

.Jump and mark if SENSE switch 3 
not set 

Jump if SENSE switch 1 set 

Jump if SENSE switch 2 set 

Jump if SENSE switch 3 set 

Jump if X register not zero 

Jump and mark if X register not 
zero 

Jump if X register zero 

Jump and mark if X register zero 

Jump if register zero 

Long arithmetic shift left 

Long arithmetic shift right 



Mnemonic 

LBT 

LO 

LOA 

LOAE 

LDAI 

LDB 

LOBE 

LDBI 

LDI 

LDX 

LDXE 

LDXI 

LLRL 

LLSR 

LRLA 

LRL.B 

LSRA 

LSRB 

MERG 

MUL 

MULE 

MULi 

NOP 

OAB 

Octal 
Code 

00746x 

0070xx 

Olxxxx 

00601x 

006010 

02xxxx 

00602x 

006020 

00744x 

03xxxx 

00603x 

006030 

004440+ n 

004540+ n 

004240+ n 

004040+ n 

004340+ n 

004140 + n 

0050xx 

16xxxx 

00616x 

006160 

005000 

1033xx 

INDEX OF INSTRUCTIONS 

Description 

Load byte 

Load 

Load A register 

Load A register extended 

Load A register immediate 

Load B register 

Load B register extended 

Load B register immediate 

Load immediate 

Load X register 

Load X register extended 

Load X register immediate 

Long logical rotation left 

Long logical rotation right 

Logical rotation left A register 

Logical rotation left B register 

Logical shift right A register 

Logical shift right B register 

Merge source to destination 
registers 

Multiply 

Multiply extended 

Multiply immediate 

No operation 

Output OR cf A and B registers 

A-7 



INDEX OF INSTRUCTIONS 

Mnemonic 

OAR 

OBR 

OME 

ORA 

ORAE 

ORAi 

RGLD 

RGST 

ROF 

SB 

SBR 

SBT 

SEN 

SOF 

SOFA 

SOFB 

SOFX 

SRE 

ST 

STA 

STAE 

STAI 

STB 

STBE 

A-8 

Octal 
Code 

103lxx 

1032xx 

1030xx 

1 lxxxx 

006llx 

006110 

00651x 

00653x 

007400 

0073xx 

0076xx 

00747x 

lOlxxx 

007401 

005711 

005722 

005744 

0066xx 

0071xx 

05xxxx 

00605x 

006050 

06xxxx 

00606x 

Description 

Output from A register 

Output from B register 

Output from memory 

OR memory and A register 

OR extended 

OR immediate 

Registers Load: Direct, Indexed (V77-
800 extended instructions only) 

Registers Store: Direct, Indexed (V77-
800 extended instructions only) 

Reset overflow indicator 

Subtract 

Subtract register 

Store byte 

Program sense 

Set overflow indicator 

Subtract overflow from A register 

Subtract overflow from 8 register 

Subtract overflow from X register 

Skip if register equal 

Store 

Store A register 

Store A register extended 

Store A register immediate 

Store 8 register 

Store B register extended 

l 

T 



Mnemonic 

STBI 

STBYTS 

STWRDS 

STX 

STXE 

STXI 

SUB 

SUBE 

SUBI 

T 

TAB 

TAX 

TBA 

TBX 

TSA 

TXA 

TXB 

TZA 

TZB 

TZX 

XAN 

XANZ 

XAP 

XAZ 

Octal 
Code 

006060 

007407 

007406 

07xxxx 

00607x 

006070 

14xxxx 

00614x 

006140 

0077xx 

005012 

005014 

005021 

005024 

007402 

005041 

005042 

005001 

005002 

005004 

003004 

003016 

003002 

003010 

INDEX OF INSTRUCTIONS 

Description 

Store 8 register immediate 

Store Bytes (V77-800 extended in
structions only) 

Store Words {V7.7-800 extended in
structions only) 

Store X register 

Store X register extended 

Store X register immediate 

Subtract memory from A register 

Subtract extended 

Subtract immediate 

Transfer 

Transfer A register to 8 register 

Transfer A register to X register 

Transfer 8 register to A register 

Transfer B register to X register 

Transfer switches to A register 

Transfer X register to A register 

Transfer X register to B register 

Transfer zero to A register 

Transfer zero to 8 register 

Transfer zero to X register 

Execute if A register negative 

Execute if A register not zero 

Execute if A register positive 

Execute if A register zero 

i 

A9 



INDEX OF INSTRUCTIONS 

Mnemonic 

XBNZ 

XBZ 

XEC 

XIF 

XOF 

XOFN 

XSl 

XS2 

XS3 

XSlN 

XS2N 

XS3N 

XXNZ 

xxz 

ZERO 

NOTE: n 

A-10 

Octal 
Code 

003026 

003020 

003000 

003xxx 

003001 

003007 

003100 

003200 

003400 

003106 

003206 

003406 

003046 

003040 

00500X 

shift count 

Description 

Execute if B register not zero 

Execute if B register zero 

Execute unconditionally 

Execute if conditions met 

Execute if overflow indicator set 

Execute if overflow indicator not 
set 

Execute if SENSE switch 1 set 

Execute if SENSE switch 2 set 

Execute if SENSE switch 3 set 

Execute if SENSE switch 1 not set 

Execute if SENSE switch 2 not set 

Execute if SENSE switch 3 not set 

Execute if X register not zero 

Execute if X register zero 

Zero (clear) registers 



APPENDIX B 
V70 SERIES ASCII CHARACTER CODES 

Octal Decimal Character 029 026 Description 

200 128 NUL Null 

201 129 SOH Start of Heading 

202 130 STX Start of Text 

203 131 ETX End of T ~xt 

204 132 EOT End of Transmission 

205 133 ENQ Enquiry 

206 134 ACK Acknowledge 

207 135 BEL Bell 

210 136 BS Backspace 

211 137 HT Horizontal Tab 

2·12 138 LF Line Feed 

213 139 VT Vertical Tab 

214 140 FF Form Feed 

215 141 CR Carriage Return 

2-16 142 so Shift Out 

2'17 i43 SI Shift In 

220 144 OLE Data Link Escape 

221 145 DC1 Device Control 1 

i"':!/°)f'l c:.-..r. 146 DC2 Device Control 2 

223 147 DC3 Device Control 3 

224 148 DC4 Device Control 4 

2.25 149 NAK Negative Acknowledge 

226 150 SYN Synchronous File 

B-1 



V70 SERIES ASCII CHARACTER CODES 

Octal Decimal Character 029 026 Description 

227 151 ETB End of Transmission 
Block 

230 152 CAN Cancel 

231 153 EM End of Medium 

232 154 SUB Substitute 

233 155 ESC Escape 

234 156 FS File Separator 

235 157 GS Group Separator 

236 158 RS Record Separator 

237 159 us Unit Separator 

240 160 SP (blank) (blank) Space 

241 161 11/2/8 11/2/8 Exclamation Point 

242 162 718 01518 Quotation Mark 

243 163 # 318 01718 Pound Sign 

244 164 $ 11/3/8 11/3/8 Dollar Sign 

245 165 % 01418 11/7/8 Percent Sign 

246 166 & 12 12/7/8 Ampersand 

247 167 518 418 Apostrophe (prime) 

250 168 121518 01418 Left Paren 

251 169 11/5/8 12/4/8 Right Paren 

252 170 .,. 11/4/8 11/4/8 Asterisk 

253 171 + 12/6/8 12 Plus Sign 

254 172 01318 01318 Comma 

255 173 11 11 Minus Sign 

256 174 12/3/8 12/3/8 Period 

257 175 I 0/1 011 Slash 

B-2 



V70 SERIES ASCII CHARACTER CODES 

Octal Decimal Character 029 026 Description 

260 176 0 0 0 

261 177 1 1 

262 178 2 2 2 

263 179 3 3 3 

264 180 4 4 4 

265 181 5 5 5 

266 182 6 6 6 

267 183 7 7 7 

270 184 8 8 8 

271 185 9 9 9 

272 186 218 518 Colon 

273 187 11/6/8 11/66/8 Semi-Colon 

274 188 < 12/4/8 12/6/8 Less Than 

275 189 618 318 Equal Sign 

276 190 > 01618 618 Greater Than 

27'7 191 ? 01718 121218 Question Mark 

300 192 @ 418 01218 At 

301 193 A 12/1 12/ 1 

302 194 B 12/2 12/2 

303 195 c 12/3 12/3 

304 196 D 12/4 12/4 

305 197 E 12/5 12/5 

306 198 F 12/6 12/6 

307 199 G 1217 1217 

310 200 H 12/8 12/8 

311 201 12/9 12/9 

B-3 



V70 SERIES ASCII CHARACTER CODES 

Octal Decimal Character 029 026 

312 202 J 11I1 11I1 

313 203 K 1112 11/2 

314 204 L 11/3 11/3 

315 205 M 11/4 11/4 

316 206 N 11/5 11/5 

317 207 0 11/6 11/6 

320 208 p 1117 1117 

321 209 Q 11/8 11/8 

322 210 R 11/9 11/9 

323 211 s 012 012 

324 212 T 013 0/3 

325 213 u 014 014 

326 214 v 015 015 

327 215 w 016 016 

330 216 x 017 017 

331 217 y 018 018 

332 218 z 0/9 019 

333 219 12/2/8 12/5/8 Left Bracket 

334 220 \ 11/7/8 01618 Backslash 

335 221 01218 11/5/8 Right Bracket 

336 222 1 or I\ 121718 718 Vertical Arrow 

337 223 - or - 01518 218 Horizontal Arrow 

340 224 Accent Grave 

341 225 a 

342 226 b 

B-4 


	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04

