
• var1an
software
handbook

Volume 1

Specificatio.ns Subject to Change Without Notice

~ varian data machines/a varian subsidiary
~ printed in USA © 1973

98 A 9952 201

June 1973

Contents

Introduction

DAS Assemblers

Binary Loader Programs

Debugging Program {Al D 11)

Source Program Editor {EDIT)

Mathematical Subroutines

FORTRAN IV

BASIC Language

Report Program Generator IV {RPG IV)

Master Operating System {MOS)

Introduction

Introduction i

TABLE OF CONTENTS

Introduction

Language Processors ... 1
Assemblers ... 1
Compilers .. , 2
Operating Systems .. 2
Organization of this Handbook .. 3
Related Documentation ... 3
System Configurations ... 3

Introduction iii

INTRODUCTION

Varian offers the computer user a wide range of systems configurations, processors, and
peripherals to perform a great variety of tasks.

For full use of this extensive hardware capability Varian also offers a choice of efficient
field-proven software packag~s for simplified programming and operations. These Varian
software packages provide language processors, operating systems and utility programs.
With these software packages a user can concentrate on his own particular applications
rather than managing the system's resources.

Language Processors

Languages developed for programming applications include those processed by
assemblers and compilers. The usual distinction between an assembler and a compiler is
generally made upon the closeness of the relation of the source-language statements to
the code they generate. An assembly language is closer to the executable code.

Assemblers

An assembler produces executable machine-language binary code from a symbolic form of
statements, but the ratio of assembly-language statements to machine is frequently one to
one instructions. This allows programming many of the machine's basic activities. A
predominant reason for using the assembly languages is to control the system at that
fundamental level.

The Varian 731620 system assemblers (called DAS for " Data Assembler System") are
available in three varieties. DAS 4A is designed for systems with only 4K words of central
memory. DAS 8A is a more extensive and efficient assembler to run on system with SK or
more of main memory. DAS MR is a " macro" assembler which provides further
extensions to the capablilties of the assembly language. All three handle the complete
instruction set of the system but differ in the amount of programming convenience
provided. For example, the DAS MR " macro" feature allows concise coding of elements
within a program.

Introduction 1

introduction

Comp!lers

In higher-level languages additional programming conveniences are available. In this
category the Varian computer user has a choice of the widely-used versions of FORTRAN
IV, BASIC or RPG IV. These languages are more removed from the machine instruction set
than assembly languages. Translation of the higher-level languages is done by a compiler.
The compilers produce many machine instructions for one statement so the programmers
have an extremely concise mode of expression for their problem solutions.

One simple, easy-to-learn programming language is BASIC. With only a few hours of
instruction, a person can program a Varian 73 or 620 computer and solve some simple
problems. With continued use and greater understanding, the BASIC language can be
applied to solve relatively sophisticated problems using its matrix operations.

FORTRAN IV is a widely-used problem-oriented language especially useful for scientific
and mathematical applications. Varian's FORTRAN IV is compatible with the American
National Standard Institute (ANSI) FORTRAN. Many routines and programs have been
developed in FORTRAN IV and will save the user duplicating the time and effort.

For business applications the Report Program Generator (RPG) IV programming language
provides several concise.methods for handling alphameric data, and convenient means to
do accounting and inventory programs.

All of Varian's higher-level languages provide interfaces with assembly-language routines.
Through use of a combination of assembly language and a higher-level language the user
retains the conveniences of the higher-level languages while gaining the particular control
of the system at the level available only in assembly languages. (For example, a FORTRAN
program could give a concise framework to DAS MR routines doing bit-level manipulation
not available in FORTRAN).

Operating Systems

Two comprehensive software operating systems, MOS and VORTEX, are available for use
with VARIAN 73 and 620 computers. Both systems incorporate a full repertoire of utility
programs, as well as DAS MR, FORTRAN IV, and RPG IV.

MOS (Master Operating System) is. specifically designed for batch-processing applications.
The system provides input and output interfaces, operator communication, debugging
aids, file maintenance and editing programs, and extensive reporting of systems errors
and status.

VORTEX (Varian Omnitask Real-Time Executive) is a multi-programming system with
special features for real-time applications. A number of different tasks may be stored in
the main memory or on rolating-memory devices such as disc or drum. The tasks are
scheduled by a resident executive program, which gives high priority to real-time

Introduction 2

introduction

" foreground" tasks and lower priority to " background" tasks to be executed when there
is time available. The scheduler uses the idle-time intervals embedded in most real-time
applications to optimize use of the processor.

VORTEX increases the efficiency of any installation in which a computer is required to run
a number of different programs in sequence. The us.er establishes the priority of the jobs
to be executed, and then VORTEX automatically schedules and runs the programs without
further operator intervention.

Organization of this handbook

This handbook is a compendium of manuals previously published as free-standing
documents and provides additional information about the assembler.

Related Documentation

Varian's system handbooks provide a definition of the machines' instruction set and
useful system information. The various handbooks and the document numbers are:

Handbook

Varian 73 System Handbook
Varian 620-100 Computer Handbook
Varian 620/f Computer Handbook
Varian 620/L Computer Handbook

Document number

98 A 9906 010
98 A 9905 003
98 A 9908 002
98 A 9905 000

Additional and more specific manuals can be located with the Publication Stock Number
Catalog (98 A 9949 005) which lists document numbers of all publications.

System Configurations

The following diagrams indicate the types of hardware that can be used with the various
software systems described in this volume.

Introduction 3

introduction

UP TO 24K I/O BUS
620 OR V73 ADDITION

*4K I 4K

1
TTY

620-06,
07, OS

---- - - - --.... -t----- -
PAPER TAPE
EQUIPMENT

1-- .,.._
620-51, 51A,
54, 55, 55A

LINE PRINTER
~ ~

620-77

....-

WV
*4K MEMORY REQUIRED FOR DAS 4A,
SK MEMORY REQUIRED FOR DAS SA,
DASMR WILL RUN IN SK MEMORY WITH
LIMITED CAPABILITIES. 121< IS RECOM
MENDED FOR MOST APPLICATIONS.

CARD READER
620-25

CARD PUNCH
620-27

MAG. TAPE
620-30 t 300 /

32, 32 A

REQUIRED

OPTIONS

DAS-4A - This is a basic absolute assembler which will run in any VDM 620-
series computer with 4K or more of memory. It includes a set of 1/0 drivers that
are selected at load time. Therefore, one version will run with many different
combinations of peripherals, as shown above.

DAS-SA - This assembler requires 8K or more of memory to run, and offers the
user greater control over the assembly processes. Like DAS-4A, it includes a set
of 1/0 drivers that are selected at load time.

DASMR - This is a free-standing version of the macro assembler used in MOS
and VORTEX systems. It produces object code compatible with MOS.
VTll-1892

DAS 4A, SA,. DAS MR Assemblers (Stand-alone)

Introduction 4

UP T 0 20 K t--
1
-/

0
-.-B-U-S

620 OR V73 ADDITION r---.....

I
TTY

620-06,
07 I 08

12K**

introduction

REQUIRED
-- - - - - - - -r -+-- - - - - -

CARD READER
620-25

PAPER TAPE
EQUIPMENT

620-51, 51A,
54, 55, 55A

* NOTE - CARD PUNCH IS
AVAILABLE TO USER PRO
GRAMS, BUT IS NOT USED
BY THE COMPILER.

** THE FORTRAN COMPILER l/Y\I
WILL RUN IN BK OF MEMORY
WITH LIMITED CAPABILITIES.
12K IS THE RECOMMENDED
MINIMUM FOR MOST APPLI
CATIONS.

CARD PUNCH
620-27

MAG. TAPE
620-30, 300,

32, 32A

LINE PRINTER
620-77

OPTIONS

FORTRAN IV - This is an integrated software package consisting of a single-pass
compiler, a relocating loader, and a set of runtime math and 1/0 routines. The
compiler is fully compatible with ANSI Standard Fortran, and produces object
code which is compatible with MOS.
VTll-1893

FORTRAN IV Compiler (Stand-alone)

Introduction 5

introduction

I
UP TO 24K

..L

620 OR V73 T 1/0 BUS ~ ADDITION l
T

1 HM/D l BK I

I I
I PAPER TAPE

TTY REQUIRED I OPTION SYSTEM

06, 07 I 08 ----1------ 620-55 I 55A
I

BASIC - This version of the popular Dartmouth self-teaching language will run
in any VDM 620-series computer with the hardware shown. It is applicable to a
variety of business and scientific applications.

VTJ.1-1894

BASIC (Stand-alone)

Introduction 6

introduction

DISC
. 620-36, 37 I 43A-D

l
620 OR V73

UP TO 20K
l/O BUS ADDITION BIC 620-20

HM/D l2K REQUIRED
- +-- --- -

l / OPTIONS

TTY / PAPER TAPE
620- 06, / EQUIPMENT
07, 08 / 1--

620-51, 51A,
/ 54, 55, 55A

/
/

/ DIGIT AL OUT. OSCILLOSCOPE
/ 620-830A, B, 1---1 ~ DISPLAY

-831A,B 620-738, c

GRAPHIC CASSETTE TAPE
CRT/KYBD r-- t----i A-970, -971

A-930

ANALOG IN.
620-85A, 850, X-Y PLOTTER

85 l, 860 I 860A,
t-- t----i A-935

861, 861A

ANALOG OUT. MAG. TAPE
620-770A I BI f----1 !-----' 620-30, 300,

871,A,B, 872,A,B, 32, 32A
873, 874, 875

I
Vv\ { BIC 620-20]

EXTENDED BASIC expands on the BASIC language with special commands to
control an external data acquisition and process control system, as shown in the
diagram. In addition, directives have been included to allow the creation and
control of files stored on a rotating memory device, and to facilitate chaining of
program overlay segments.
VTll-1895

Extended BASIC

Introduction 7

introduction

UP TO 28K I/O BUS
620 ADDITIOhJ

4K

t--
CARD READER

620-25

t-- CARD PUNCH
620-27

t--- LINE PRINTER
620-77

WvJ

RPG-IV - This is an integrated software package consisting of a compiler, loader,
and a set of runtime routines which provides a business language capability to
the mini-computer user. RPG-IV is available both as a unit-record-oriented free
standing system and as a language processor under MOS.
VTIJ./896

RPG-IV System

Introduction 8

l
UP TO 20K
ADDITION

1/0 BUST

620 OR V73
*4K

BK

l REQUIRED

TTY
DISCS 620-06,

07, 08 620-35,36, t--
37 I 43A-D

l
**BIC t--

620-'20

OR

AND/OR

MAG.
TAPE ~

620-30 I 32

I

H BIC }--
620-20

NOTE - ONE BIC MAY HANDLE UP TO
10 DEVICES, BUT FOR BEST SYSTEM PER
FORMANCE, HIGH-TRANSFER RATE
DEVICES SUCH AS DISCS SHOULD HAVE
THEIR OWN BICs.

620-35 DISC REQUIRES BTC (E-2026H)
INSTEAD OF BIC, AND MAY BE USED
ON PMA CHANNELS OF V73, 620/f,

AND 620/f-100 ONLY.

I
I
I
I

I
I

I
I
I
I
I
I

introduction

OPTIONS

PAPER TAPE

r----i
EQUIPMENT
620-51, 51A,
54, 55, 55A

I--
CARD READE-R

620-25

CARD PUNCH
t--

620-27

* **

r-- LINE PRINTER
620-74, -77

MOS CAN USE
ANY COMBINA-
TIONS OF
ABOVE DEVICES

1
' 8K REQUIRED FOR DASMR

12K REQUIRED FOR FOR
TRAN IV I RPG IV
16K REQUIRED FOR PERT

0""'BIC OPTIONAL

*** 620-74 SUPPORTED AS
LINE PRINTER ONLY

MOS - MOS is a disc-, drum-, or magnetic tape-based batch operating system,
which can be used with any VDM 620-series computer. It supports FORTRAN
IV, DASMR, and RPG-IV; and it provides the user with RMD file management
as well as automatic scheduling from the job stream.
VTll-1897

M.O.S.

Introduction 9

DAS Assemblers

DAS

TABLE OF CONTENTS

DAS ASSEMBLERS

Character Set ... 2
Format .. 3
Computer Instructions ... 6
Assembler Directives ... 12
Symbol and Expression Modes ... 30
Relocatability Rules .. 32
Assembler Input Media ... 33
Assembler Output Listing .. 34
Error Messages .. 34
Operating the Assemblers ... 36

DAS iii

DAS ASSEMBLERS

The Varian 73/620 assembler language (DAS) translates symbolically coded instructions,
directives, and data (source program) into their binary machine-language equivalents
(object program). DAS allows the programmer to specify instructions, addresses, address
modifications, and constants in a manner that is straightforward and meaningful to the
computer.

Using DAS, the programmer generates a source program by coding instruction and
directive mnemonics rather than numerical values. Memory addresses can be referenced
symbolically, thus providing flexibility not attainable with absolute addressing. Constants
can be used without prior conversion to binary or octal values. For ease in checkout and
program documentation, comments can be added between symbolic source statements, or
appended to the statements themselves.

DAS coding reduces machine-language bookkeeping to fully utilize computer capabilities
without a corresponding compromise of an increase in the time required for programming.

Three versions of DAS are available:

a. DAS 4A operates in a minimum-configuration Varian 73 system comprising the
computer, 4K of memory, and an on-line Teletype.

b. DAS 8A requires a minimum of 8K of memory and has extended capabilities compared
to DAS 4A. Both DAS 4A and DAS 8A can operate with additional system
peripherals.

c. DAS MR is a macro assembler, which produces relocatable object code, that can be
loaded into any area of memory. DAS MR is available either as a free-standing
program or as an integral part of the MOS or VORTEX operating system.

DAS processes source programs in two passes. The first pass defines user-designated
symbols. The second pass produces an assembly listing and the object program.

DAS 1

DAS assemblers

Character Set

The DAS character set comprises:

DAS 2

Alphabetical characters

ABCDEFGHIJKLMNOPQ
RSTIUVWXYZ

Numerical characters

012~J456789

Teletype characters

CR (Carriage return)
LF (line feed)

Special characters

+

@
[
]
<
>

(
)
\

%

&

?
$

(plus sign)
(minus sign)
(asterisk)
(slash)
(period)
(blank)
(at sign)
(left bracket)
(right bracket)
(less than)
(greater than)
(up arrow)
(left arrow)
(equal sign)
(comma)
(prime)
(left parenthesis)
(right parenthesis)
(backslash)
(exclamation point)
(quotation mark)
(pound sign)
(percent sign)
(ampersand)
(colon)
(semicolon)
(question mark)
(dollar sign)

DAS assemblers

Format

DAS source programs are sequences of source statements (records). Each source
statement compr.ises a combination of label, operation, variable, and comment fields,
depending on the requirements of the computer instruction or assembler directive, and
except in certain cases (described later in this section) generates one computer word.

Label Field

Symbols in the label field identify program points for reference by other parts of the
program. They make a program point or particular numeric value more easily identifiable.
The first appearance of a symbol in the label field establishes its identity throughout the
remainder of the program. A previously established symbol is referenced by placing it in
the variable field of the source statement, where DAS substitutes the previously assigned
value from its symbol table.

For DAS 4A and DAS 8A, symbols in the label field comprise one to four alphanumeric
characters for DAS MR there are from one to six such characters. The first character of a
symbol is an alphabetic character, pound sign (#), or dollar sign. The following characters,
if any, are chosen from the alphabetic, numeric subset, pound sign, and dollar sign. (The
dollar sign and pound sign are used in the Varian software and should not be used in
normal users programs). While only the given number of characters are recognized by
DAS, additional characters can be added for programming convenience and/or
documentation.

Symbols are usually attached only to those source statements referenced elsewhere in the
program, but this is not mandatory.

Operation Field

This source statement field contains mnemonics for computer instructions (section 16)
and assembler directives (defined later in this section). An asterisk following the
mnemonic specifies indirect addressing (section 15). The mnemonics can be redefined
with OPSY assembler directives (see below).

Variable Field

The purpose of this field varies according to the requirements of the operation defined by
the source statement. The variable field can cont(.!in a symbol, a constant, or an
expression combining symbols and constants.

DAS Expressions are similar to arithmetic expressions except that parentheses are not
used. The variable field can contain the following operators.

+

I

(addition)
(subtraction)

(multiplication)
(division)

DAS 3

DAS assemblers

Arithmetic operations always involve all 16 bits of the computer words, and are performed
from left to right, with multiplication and division occurring before addition and
subtraction. Thus, A + B/C • D in DAS is equivalent to A + (B/C) 0 D in conventional
notation.

Coding an asterisk in the first position of the variable field gives access to the then current
value of the program location counter. Such an asterisk immediately precedes another
operator, and this is the only case in which two adjacent operators are permitted in DAS.
The asterisk is translated as the current program location (i.e., '°' + 1 means the current
program location plus one).

In the following descriptions of DAS constants, unsigned numbers are considered positive
DAS recognizes decimal and octal integers; floating-point numbers; alpha, address, and
indirect address constants; and literals.

A decimal integer is a signed or unsigned string of from one to five decimal digits. the first
of which cannot be zero (so as not to be confused with octal integers).

Example:

29 -3 -9000

An octal integer is a signed or uinsigned string of from one to seven octal digits, the first
of which is zero.

Example:

07 - 044 + 022745

A floating-point number has the form:) ± integer.fraction ± exponent, where the right
parenthesis, at least one digit, and the decimal point are always present. Other items in
the format are optional.

Examples:

)0375.64E + 7
)-4. +20

)9.E - 2,).1 E + 12

Floating point numbers are not available under DAS 4A.

An alpha constant is a string of characters within primes ('),where, within DAS
each character is represented in eight-bit ASCII code. Thus, each 16-bit memory
address can hold two characters. Note that blanks are also recognized as
characters.

DAS 4

DAS assemblers

In DAS 4A and DAS 8A, an alpha constant can be a term in an arithmetic expression.
However, if more than one word is generated by the c~nstant, only the last word is subject
to arithmetic manipulation.

Examples:

'A'*0400 'AB'+ 1 'ABCD' + 011

where, in the last example, two words are generated and 011 added to the second word.

An address constant is a symbol, number, or expression enclosed in parentheses. It
generates a 15-bit direct address (bit 15 = 0).

Examples:

(aaaa + 2) (31) (aaaa)

where aaaa is an address symbol whose value is taken from the symbol table by DAS.

An indirect address constant is an addr~ss contant followed by an asterisk. It generates a
15-bit indirect address (bit 15 = 1).

Examples:

(aaaa +2)* (3)* (aaaa)*

Literals provide a method for creating and referencing data by expressing the value of the
information instead of its address. DAS determines the address and inserts it in the
referencing statement and generates a literal table, discarding duplicate values in the
table.

A literal is any format of a one-word constant preceded by an equal sign. In a statement
requiring more than one literal, they are separated by commas.

Examples:

= 29 =- 044 = (aaaa + 2)*
='GO' ='A'

Comments Field

This field is used for programming notes. An entire source statement can be commentary
if an asterisk is coded in the first position. The assembler ignores all comments in the
assembly process, but lists them with the program listing output.

DAS 5

DAS assemblers

Computer Instructions

DAS assemblers recognize the complete instruction sets of all Varian 731620 computers,
even when the system on which they operate lacks the hardware for executing a particular
instruction. The programmer, therefore, must have a thorough knowledge of the
instructions applicable to his system before attempting to assemble a program.

Computer instructions are described in detail in the system handbook for each particular
system.

In this section, all Varian 731620 instructions are divided into five types, according to
assembler format requirements.

All Varian 731620 instructions in DAS have the general field format

Label Operation Variable Communts

where the label field is optional and contains a symbol when used; the operation field
contains the instruction mnemonic; the variable field contains one, two, or three
expressions (separated by commas when there is more than one), and the comments field
is optional.

Addressing

If an assembler source statement specifies an address in the first 2,048 words of memory
without indirect addressing, the assembler generates an instruction with direct
addressing.

If indexing is specified, the assembler generates an indexed instruction.

Specifying indirect addressing with a data address lower than 512 generates an
instruction with indirect addressing and the specified effective memory address.

In all other cases, including indirect addressing with an address higher than 511, the
assembler generates an instruction with indirect addressing and the specified effective
memory address, stores the address in a table, and inserts the storage address in the
referencing instruction. Duplicate values in the table are discarded.

In the Varian 731620, indirect addressing is limited to five levels with one-word
instructions and to four levels with two-word instructions.

Instruction Types

Table 1 summarizes the characteristics of the five types of computer instructions for DAS
use. Instruction mnemonics are given in the applicable type description below and
summarized in table 2.

DAS 6

DAS assemblers

Table 1. Assembler Instruction Type Characteristics

Parameter Type 1 Type 2 Type 3 Type 4 Type 5

Words generated 2 2 2
Memory addressed Yes Yes* Yes No Yes
Indirect addressing Yes Yes* Yes No Yes
Indexing Yes No No No Yes
Variable field

expressions 1 or 2 2 1 to 3
Microcoding No No Yes Yes No

* Except for immediate instructions.

Table 2. Summary of Assembler Instruction Types

Type 1 Type 2 Type 3 Type 4 Type 5

ADD ADDI JS3NM BT AOFA LASR ADDE
ANA ANAi JXZ IME AOFB LLRL ANAE
DIV DIVI JXZM JIF AOFX LLSR DIVE
ERA ERAI. LDAI JIFM ASLA LRLA ERAE
INR INRI LDBI JMIF ASLB LRLB IJMP
LOA JAN LDXI OME ASRA LSRA INRE
LOB JANM MULi SEN ASRB LSRB JSR
LOX JANZ ORAi XIF CIA MERG LDAE
MUL JANZM STAI CIAB NOP LOBE
ORA JAP STBI CIB OAB LDXE
STA JAPM STXI COMP OAR MULE
STB JAZ SUBI CPA OBR ORAE
STX JAZM XAN CPB ROF SRE
SUB JBZ XANZ CPX SEL STAE

JBZM XAP DAR SEL2 STBE
JMP XAZ DBR SOF STXE
JMPM XBNZ DECR SOFA SUBE
JOF XBZ DXR SOFB
JOFM XEC EXC SOFX
JOFN XOF EXC2 TAB
JOFNM XOFN HLT TAX
JSSl XSl IAR TBA
JSS2 XSlN IBR TBX
JSS3 XS2 INA TXA
JSlM XS2N INAB TXB
JSlNM XS3 INB TZA
JS2M XS3N INCR TZB
JS2NM XXNZ LASL ZERO
JS3M xxz

DAS 7

DAS assemblers

Assembler type 1 instructions are:

ADD
ANA
DIV
ERA.
INR

LOA
LOB
LOX
MUL
ORA

STA
STB
STX
SUB

An assembler type 1 instruction ocoeupies one computer word and is memory-addressing.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expressed in parentheses.

Examples:

LOA* expression
LDA (expression)*

Indexing is specified by two expressions in the variable field. The first is the indexing
increment and is less than 0512. The second specifies the indexing register: X register
= 1, and B register = 2. These instructions cannot be postindexed.

Example:

LOA 0300,1

loads the A register with the contents of the memory address specified by the sum of the X
register contents and 0300. Thus, if the X register contains 0200, the operand for this
instruction is in memory address 0500.

Assembler type 2 instructions are:

DAS 8

ADDI
ANAi
DIVI
ERAI
INRI
JAN
JANM
JANZ
JANZM
JAP
JAPM
JAZ
JAZM
JBZ
JBZM
JMP
JMPM
JOF
JOFM

JOFN
JOFNM
JSSl
JSS2
JSS3
JSlM
JSlNM
JS2M
JS2NM
JS3M
JS3NM
JXZ
JXZM
LDAI
LDBI
LDXI
MULi
ORAi
STAI
STBI

STXI
SUBI
XAN
XANZ
XAP
XAZ
XBNZ
XBZ
XEC
XOF
XOFN
XSl
XSlN
XS2
XS2N
XS3
XS3N
XXNZ
xxz

DAS assemblers

An assembler type 2 instruction occupies two consecutive computer words and is memory
addressing. The second word is the address of a jump, jump-and-mark, or execution
instruction or the operand specified by an immediate instruction.

Indirect addressing is specified as with an assembler type 1 instruction. These instructions
cannot be indexed.

Assembler type 3 instructions are:

BT
IME
JIF

JIFM
JMIF
OME

SEN
XIF

An assembler type 3 instruction occupies two consecutive computer words and is memory
addressing. It differs from an assembler type 2 instruction in that the variable field
contains two expressions to implement instruction microcoding as described below.

For the JIF, JIFM, JMIF, and XIF instructions, the first expression specifies the conditions
required for the jump, jump-and-mark, or execution. The conditions(s) are specified
according to the rules given in section 16 and summarized below. As indicated, multiple
conditions can be specified by setting additional bits.

Variable Field Jump/Execute if:

0001 Overflow indicator is
set

0002 A register contents
are positive

0004 A register contents
are negative

0010 A register contents
are zero

0020 B register contents
are zero

0040 X register contents
are zero

0100 SENSE switch 1 is set
0200 SENSE switch 2 is set
0400 SENSE switch 3 is set

Example:

JIF 0222,ALFA

Takes the next instruction from symbolic address ALFA if the A register contains a positive
number (0002), the B register contains zero (0020), and SENSE switch is set (0200); i.e.,
0002 + 0020 + 0200 = 0222.

DAS 9

DAS assemblers

For the SEN instru:-tion, the first: expression specifies the device address and the 1/0
function; for IME and OME, the device address.

For the BT instruction, the first expression specifies the register and bit to be tested.

Example:

BT 056,ADDR

takes the next instruction from S) T1bolic address ADDR if bit 14 of the A register contents
is zero.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions. Note: IME and OME
cannot specify indirect addressing.

Assembler type 4 instructions are:

AOFA
AOFB
AOF:<
ASU~

ASLB
ASRA
ASRB
CIA
CIAB
CIB
COMP
CPA
CPB
CPX
DAR
DBR
DECR
DXR
EXC

EXC2
HLT
IAR
IBR
INA
INAB
INB
INCR
IXR
LASL
LASR
LLRL
LLSR
LRLA
LRLB
LSRA
LSRB
MERG
NOP
OAB

OAR
OBR
ROF
SEL
SEL2
SOF
SOFA
SOFB
SOFX
TAB
TAX
TBA
TBX
TXA
TXB
TZA
TZB
TZX
ZERO

An assembler type 4 instruction occupies one computer word and does not address
memory.

For COMP, DECR, INCR, MERG, and ZERO and the register transfer/modification
instructions, the assembler generates an instruction as specified by the value in the

DAS 10

DAS assemblers

variable field. This value is determined by coding the summed octal value of the possible
binary configurations described for these instructions in the systems handbook.

Example:

COMP 035

unconditionally takes the inclusive-OR and complements the contents of the A (0010) and
B (0020) registers, and places the result in the A (0001) and X (0004) registers. Note that
if bit 8 were one in the above example the instruction is executed only if the overflow
indicator is set.

For EXC, SEL, EXC2, and SEL2, the expression specifies the 1/0 function and the device
address; for the remainder of the 1/0 instructions in this group, the device address only
(the 1/0 function being specified by the mnemonic).

Example:

CIB 030

clears the B register and loads it from peripheral specified by the device address 030
(standard device addresses are given in the systems handbooks).

Note: SEL/SEL2 are identical to EXC/EXC2 instructions.

Assembler type 5 instructions are:

ADDE
ANAE
DIVE
IJMP
ERAE
JSR

INRE
LDAE
LDBE
LDXE
MULE
ORAE

SRE
STAE
STBE
STXE
SUBE

An assembler type 5 instruction occupies two consecutive computer words and is memory
addressing.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions.

Preindexing the V73 and 620 instructions is specified as described for the type 1
instructions. Note that IJMP and SRE cannot be preindexed.

Postindexing the V73 and 620 instructions is specified by three expressions in the variable
field. The first expression is the data address, the second specifies the indexing register (X
register = 1, and B register = 2), and the third is logically ORed with the instruction

DAS 11

DAS assemblers

word to set bit 7 (which specifies postindexing). The assembler does not check the validity
of the third expression, thus one :should always use the value 0200.

Example:

LDAE ADDR,2,0200

loads the A register extended and postindexed with the B register.

JSR can be neither preindexed nor postindexed.

For SRE, the first expression in thte variable field is the data address, the second specifies
the type of addressing (1 = indexed with X, 2 = indexed with B, and 7 = direct
/indirect), and the third is logically ORed with the instruction word to control bits 3-5 to
specify the register to be compared (010 = A register, 020 = B register, and 040 = X
register). Note that indirect addre·ssing is specified by an asterisk following the instruction
mnemonic.

Examples:

SRE ADDR,7,020

compares the contents of the B rngister with the directly addressed word at ADDR, and, if
equal, skips the next two locatiorn;.

SRE* ADDR,1,010

compares the contents of the A register with the word at ADDR, using indirect addressing
and postindexing with the X register.

Assembler Directives

Directives are instructions to the assembler. They are divided into the following functional
groups:

• Symbol definition
• Instruction definition
• Location counter control
• Data definition
• Memory reservation
• Conditional assembly
• Assembler control
• Subroutine control
• List and punch control
• DAS 8A interface to stand-alone FORTRAN
• Program linkage
• MOS I /0 control
• Macro definition

DAS 12

DAS assemblers

Assembler directives have the same general format as the computer instructions. In the
following descriptions of the individual directives, the field f_ormat

label operation variable

is used, with the optional comment field being understood to follow the variable field when
used. In cases where the variable field contains more than one item or expression, these
are always separated by commas. Mandatory elements of the directive are in bold type,
and optional items, in italic type.

Table 3 summarizes the assembler directives (arranged by function) and indicates those
recognized by each DAS assembler.

Table 3. Directives Recognized by DAS Assemblers

Function Directive DAS 4A DAS SA DAS MR
Symbol definition EQU Yes Yes Yes

SET Yes Yes Yes
MAX No Yes No
MIN No Yes No

Instruction definition OPSY No Yes Yes

Location counter control ORG Yes Yes Yes
LOC Yes Yes Yes
BEGI Yes Yes Yes
USE No Yes No

Data definition DATA Yes Yes Yes
PZE Yes Yes Yes
MZE Yes Yes Yes
FORM No Yes Yes

Memory reservation BSS · Yes Yes Yes
BES Yes Yes Yes
DUP No Yes Yes

Conditional assembly IFT No Yes Yes
IFF No Yes Yes
GOTO No Yes Yes
CONT No Yes Yes
NULL No Yes Yes

Assembler control MORE Yes Yes No
END Yes Yes Yes

DAS 13

DAS assemblers

Table 3. Directives !Recognized by DAS Assemblers (continued)

Function Directive DAS 4A DAS SA DAS MR

Subroutine control ENTR Yes Yes Yes
RETU* Yes Yes Yes
CALL Yes Yes Yes

List and punch control LIST No Yes No
NUS No Yes No
SMRY No Yes Yes
DETL No Yes Yes
PUNC No Yes No
NPUN No Yes No
SPAC No Yes No
EJEC No Yes Yes
READ No Yes No

Program linkage NAME No No Yes
EXT No No Yes
COMM No No Yes

MOS I /0 control See "MOS 110 Control" in MOS section

Macro definition MAC No' No Yes
EMAC No No Yes

Symbol Definition Directives

These directives assign arbitrary values to symbols in the symbol table. This table is a list
of symbols appearing in the source program. For each symbol in the table, there is a
corresponding value, usually an address in memory. symbol table capacities are
summarized in table 4.

Assembler

DAS 4A
DAS BA
DAS MR

Table 4. DAS Symbol Table Capacities

4K Memory

150

SK Memory

1,450
440

20

where n = number of 4K memory increments above BK.

DAS 14

>SK Memory

1,450 + n (1,300)
440 + n (BOO)

20 + n (BOO)

DAS assemblers

EQU (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol EQU expression

It places the symbol in the assembler's symbol table and assigns it the value of the
expression. If the symbol has already been entered in the symbol table, DAS outputs error
message ~oo (described later in this section), and the expression replaces the value in the
symbol table. If a symbol is used as the variable field expression, it must have been
previously defined. The label field symbol is mandatory.

SET (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol SET expression

It is the same as EQU, except that there is no error message output if the symbol has
already been entered in the symbol table.

MAX (DAS 8A)

This directive has the format

symbol MAX expression, expression(s)

It assigns the largest algebraic value found among the expressions to the symbol. If a
symbol is used as a variable field expression, it must have been previously defined. The
label field symbol is mandatory. Use SET to redefine the symbol.

MIN (DAS 8A)

This directive has the format

symbol MIN expression,expression(s)

It is the same as MAX, except that the symbol is assigned the smallest algebraic value
found among the expressions.

DAS 15

DAS assemblers

Instruction Definition Directive

This directive redefines a standard instruction mnemonic.

OPSY (DAS BA, DAS MR)

This directive has the format

symbol OPSY mnemonic

It makes the symbol a mnemoni1c with the same definition as the variable field mnemonic.

Example:

CLA OPSY LDA
CLA BETA

location Counter Control Direc:tives

These directives control the prngram location counter(s), which control memory area
assignments and always point to the next available word.

DAS BA has several location counters and directives to modify or preset their values. Table
5 lists the five standard DAS BA location counter symbols and their uses. They need not
be created by the user. However, up to eight other location counters can be created, thus
providing complex relocatable and overlay programs within a single assembly.
Relocatability rules are given lat1~r in this section.

There are no user-created location counters at the beginning of an assembly. The
assembler uses three location counters for program location assignment. Thus, IAOR
(indirect pointer assignments) and L TOR (literal assignments) are always in use, as is a
third counter used to assign locations to generated instructions and data. The blank
location counter performs this task until the USE directive specifies another counter.

In a straightforward program using only one location counter, the ORG and LOC directives
completely control the counter.

ORG (DAS 4A, DAS BA, DAS MR)

This directive has the format

symbol ORG expression

It sets the location counter currently in use to the value of the expression. If a symbol is
present in the label field, it is also set to the value of the expression.

Any symbol used as the variable field expression must have been previously defined.

DAS 16

DAS assemblers

Table 5. Standard DAS SA Location Counters

Counter

COMN

IAOR

LTOR

SYOR

blank

Initial Value

002000

000200

001000

000000

004000
000000 for 4A

Description

Controls assignment of memory within
an interface area common to two or
more programs

Controls assignment of memory to in·
direct pointers

Controls assignment of memory to
literals

Controls assignment of memory to all
system parameters

Used initally and normally by the as·
unless overridden by the USE or ORG
directive

LOC (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol LOC expression

It is used if the data and instructions following this LOC address are to be moved to the
LOC address by the object program before execution i.e., to keep a block of data or
instructions undisturbed by assembly. Data or instructions following LOC are generated as
if an ORG directive had changed the current location counter value. However, this value is
not actually changed.

Any symbol used as a variable field expression must have been previously defined. LOC
cannot be used in a relocatable·program.

BEGI (DAS 4A, DAS 8A)

This directive has the format

symbol BEGI expression

It creates a new location counter, or redefines the value of any location counter before the
counter has been used. BEGI gives the new or redefined location counter the value of the
expression, but has no effect on the current location counter.

DAS 17

DAS assemblers

BEGI cannot redefine the value of any location counter that has been used for location
assignment.

Any symbol used as a variable field expression must have been previously defined.

USE (DAS 8A)

This directive has the format

blank USE xxxx

where xxxx is a blank, COMN, SYOR, or a user-created location counter label.

The USE directive uses location counter xxxx to assign locations to data and instructions
(except literals and indirect pointers).

If xxxx is PREV, the previously used location counter is recalled with the restriction that
only the last-used counter can be so recalled.

Data Definition Directives

These directives control the sign and assignment of data words. In the descriptions, item
refers to a data item, which can be an expression or a direct or indirect address.

DATA (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol DATA item,item(s)

It generates data words with the values specified by the items in the variable field. DATA
assigns the symbol, if used, to the memory address of the first generated word. In the
absence of a symbol, an unlabeled block of data is generated.

When a single alpha constant is used in the variable, DAS 4A and DAS MR left-justify it in
the field and fill the remaining positions with blanks, and DAS 8A right-justifies it, filling
the remaining positions with zeros.

PZE (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol PZE item,item(s)

It is similar to DATA except that the sign bit of the generated data word is always zero
(positive).

DAS 18

DAS assemblers

MZE (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol MZE item,item(s)

It is similar to DATA except that the sign bit of the generated data word is always one
(negative).

FORM (DAS 8A, DAS MR)

This directive has the format

symbol FORM term,term(s)

where the terms are absolute terms or expressions.

FORM specifies the format of a bit configuration of a data word. The symbol, if used, is the
name of the format. The terms specify the length in bits of each field in the generated
data word, where the sum of their values is from one to the number of bits in the
computer word.

FORM is ignored if there are any errors in the variable field, except that an error is flagged
when a term cannot be represented in the number of bits specified when FORM is applied
(by placing its name in the operation field of a symbolic source statement) to another
statment. FORM can be redefined.

Example:

BYTE
BCD
PTAB

FORM
FORM
FORM

8,8
4,4,4,4
1,2,3,4

would, given the FORM definition

ABC FORM 6,2,8

and the FORM reference

ABC FORM

generate the binary data word

0 001 100 111 000 001

DAS 19

DAS assemblers

Memory Reservation Directives

These directives control the reservation of memory addresses and areas.

BSS (DAS 4A, DAS BA, DAS MR)

This directive has the format

symbol BSS expression

It reserves a block of memory addresses by increasing the value of the current location
counter the amount indicated by the expression. The symbol, if used, is assigned the
value of the counter prior to such an increase, thus referencing the starting address of the
reserved block.

The location counter always points to the next available word.

If the variable field expression value is zero, the symbol is assigned the next available
address.

BES (DAS 4A, DAS BA, DAS MR)

This directive has the format

symbol BES expression

It is similar to BSS, except that if there is a symbol it is assigned to the address one less
than the incremented location counter. If the variable field expression is zero, the symbol
is assigned the last available address.

This directive has the formats

blank DUP n
blank DUP n,m

DIUP (DAS BA, DAS MR)

It duplicates source statements following its use. The first format duplicates the next
source statement the number of times specified by n. The second format duplicates the
next source statement (the number of which is specified by m) the number of times
specified by n, where m, s 3 and n s 32,767. If nor m is zero, it is treated as if it were a
one.

DAS 20

DAS assemblers

Conditional Assembly Directives

These directives assemble portions of the program according to the conditions specified in
the variable fields.

IFT (DAS SA, DAS MR)

This directive has the format

blank IFT expression,expression(s)

It assembles the next symbolic source statement only if the first expression is less than
the second, and the second is less than or equal to the third.

Examples:

IFT a

for a =F- 0.

IFT a,,b

for a=F- b.

IFT a,b,b

for a< b.

IFT O,a,b

for O< a~ b.

IFF (DAS SA, DAS MR)

This directive has the format

blank IFF expression,expression(s)

It is similar to IFT (IFT = true), except that IFF (IFF = false) is the logical complement of
IF~ .

Examples:

IFF a

for a = 0.

IFF a,,b

for a = b.

IFF a,b,b

for a ;:::: b.

IFF O,a,b

for 0;:::: a > b.

DAS 21

DAS assemblers

This directive has the formats

blank GOTO symbol
blank GOTO symbol,
blank GOTO integer
blank GOTO integer,

GOTO (DAS 8A, DAS MR)

It skips more than one instructio111 and usually follows an IFF or IFT directive. All source
statements between the GOTO and the statement containing the symbol in its lable field
are skipped, and the instruction so labled executed next. GOTO cannot return to an earlier
point in the program.

If the first and third GOTO formats are used, the skipped instructions are listed. If the
second and fourth formats (containing a comma after the variable field element) are used,
they are not listed. This listing can also be suppressed by a SMRY directive.

CONT (DAS 8A, DAS MR)

This directive has the format

symbol CONT blank

It provides a target for a previous GOTO directive. The symbol is not entered in the
assembler's symbol table.

NULL (DAS 8A, DAS MR)

This directive has the format

symbol NULL blank

It provides a target for a previous GOTO directive with the symbol entered in the symbol
table. NULL has the same effect as a BSS directive with a blank variable field.

Assembler Control Directives

These directives signal the end or continuance of an assembly.

MORE (DAS 4A, DAS 8A)

This directive has the format

blank MORE blank

DAS 22

DAS assemblers

It halts the assembly process to allow additional source statements to be put in the input
device. Assembly resumes when the RUN or START switch on the computer control panel
is pressed. MORE is never listed.

END (DAS 4A, DAS 8A, DAS MR)

This directive has the format

blank END expression

It is the last source statement in the program. The expression is the execution address of
the program after it has been loaded into the computer. A blank in the variable field yields
an execution address of 000000.

Subroutine Control Directives

These directives create closed subroutines and control their use.

ENTER (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol ENTRblank

where the symbol is the name of the subroutine called. ENTR generates a linkage word of
zero i.n the object program.

RETU* (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol RETU * expression

It returns from a closed subroutine, generating an unconditional jump to the address
indicated by the value of the expression.

DAS 23

DAS assemblers

CALL (DAS 4A, DAS BA, DAS MR)

This directive has the format

symbol CALL name,parameter,error

where
name

parameter

error

is the symbolic name
of a subroutine

is an optional list
of parameters com
prising valid data
items

is an optional list
of error returns
comprising valid
data items

CALL causes the program to jump to the closed subroutine specified by name. Where a
symbol is used in the label field, it is entered in the symbol table and assigned the value
of the current location counter.

Example:

CALL FUNC,X,Y + 1,(ERR),(GOOF)*

produces a machine code identical to that obtained with

FUNC JMPM
DATA X,Y + 1,(ERR),(GOOF)*

List and Punch Control Directives

These directives, which are operative only during the second pass of the assembler (that
producing the object program and listings), control listing and punching during program
assembly.

List (DAS SA)

This directive has the format

blank LIST blank

It causes the assembler to produce a program listing. The assembler normally outputs a
lost of the source statements. The UST directive is used to bring the assembler back to
this condition when any of the following directives change the listing status.

DAS 24

DAS assemblers

NLIS (DAS 8A)

This directive has the format

blank NLIS blank

It suppresses further listing of the program.

SMRY (DAS 8A, DAS MR)

This directive has the format

blank SMRY blank

It suppresses the listing of source statements that have been skipped under control of the
conditional assembly directives.

DETL (DAS 8A, DAS MR)

This directive has the format

blank DETL blank

It removes the effect of SMRY, i.e., causes listing of all source statements, including those
skipped by conditional assembly directives.

PUNC (DAS 8A)

This directive has the format

blank PUNC blank

It causes the assembler to produce a paper tape punched with the object program. The
assembler normally outputs such a tape. PUNC returns the assembler to this condition
when the following directive changes the punching status:

NPUN (DAS 8A)

This directive has the format

blank . NPUN blank

It suppresses further production of paper tape punched with the object program.

DAS 25

DAS assemblers

SP'AC (DAS 8A, DAS MR)

This directive has the format

blank SPAC blank

It causes the listing device to skip a line. SPAC is not listed.

EJEC (DAS BA, DAS MR)

This directive has the format

blank EJEC blank

It causes the listing device to moVE! to the next top of form. EJEC is not listed.

READ (DAS BA)

This directive has the format

bland READ number

where
number is the number of char

acters (20 to 80)
from each source
statement to be pro
cessed by the as
sembler

Normally, the assembler processes BO characters per statement with 026 keypunch codes.
If number is outside the range 20 to BO, the assembler resets the number of characters to
BO and outputs error message *SZ.

Unless there is an *SZ error message, the SN)RY directive suppresses the listing of READ
during the second pass of the assembly process.

Program Linkage Directives

These directives establish and control links among programs that have been assembled
separately but are to be loaded and executed together.

This directive has the format

blank NAME symbol, symbol

DAS 26

DAS assemblers

It establishes linkage definition points among separately assembled programs. Each
symbol(s) can then be referenced by other programs. Each symbol also appears in the
label field of a symbolic source statement in the body of the program. Undefined NAME
symbols cause error messages to be output.

Examples:

NAME
NAME
NAME

A
A,B
EX,WHY,ZEE

This directive has the format

symbol EXT symbol, ... ,symbol

In linking separately assembled programs, it declares each symbol not defined within the
current program. Each symbol, in both the label and variable field, is output to the
relocatable loader with the address of the last reference to the symbol.

If a symbol is not defined within the current program and not declared in an EXT
directive, it is considered undefined and causes an error message output. If a symbol is
declared in EXT but not referenced within the current program, it is output to the loader
for loading, but no linkage to this program is established. If a symbol is both defined in
the program and declared to be external, the EXT declaration is ignored.

Examples:

BEG
EXT
EXT
EXT

AY
BE,SEE
DEE,EE,FF,GEE

This directive has the format

symbol COMN item

where item is an absolute item or expression.

COMN defines an area in blank common for use· at execution time. This allows an
assembler program to reference the same blank common area as a FORTRAN program.
The common area is cumulative for each use of COMN, i.e, the first COMN defines the
base area of the blank common, the second COMN defines an area to be added to the
already established base, etc.

Examples:

AAA

BBB

COMN
COMN
COMN

3
6•:•2
9

DAS 27

DAS assemblers

MOS l/O Control Directives

As a free-standing program or under MOS, DAS MR accepts the MOS control directives
listed below and explained in the Master Operating System section of this handbook.

Directive

RBIN
RALF

RBCD

WBIN
WALF

WBCD
WEOF
REW
SKFF
SKFR
SKRF
SKRR
FUNC
STAT
ION

Description

Read binary re!cord
Read alphanumeric re

cord
Read binary-coded dee·

imal (BCD) record
Write binary record
Write alphanumeric re·

cord
Write BCD record
Write end of file
Rewind
Skip files forward
Skip files reverse
Skip records forward
Skip records rnverse
Function
Status
1/0 driver reference

number

VORTEX 1/0 Control Directives

DAS MR accepts the VORTEX control directives that are listed below and explained in the
VORTEX Reference Manual (document number 98 A 9952 101).

Directive

OPEN
CLOSE
READ
WRITE
REW
WEOF
SREC
FUNC
STAT
DCB
FCB

DAS 28

Descriptnon

Open file
Close file
Read one record
Write one record
Rewind
Write end of file
Skip one record
Function
Status
Generate data control block
Generate file control block

DAS assemblers

Macro Definition Directives

These directives begin and end macro definitions. The macro is the assembly equivalent of
the execution subroutine. It is defined once and can then be called from the program. The
macro is an algorithmic statement of a process that can vary according to the arguments
supplied. It is assembled with the resultant data inserted into the program at each point
of reference, whereas the subroutine executed during execution time appears but once in
a program. Its definition comprises the statements between MAC and EMAC.

MAC (DAS MR)

This directive has the format

symbol MAC blank

It introduces a macro definition. The symbol is the name of the macro.

EMAC (DAS MR)

This directive has the format

blank EMAC blank

It terminates the definition of a macro.

A macro is called by the appearance of its name in the operation field of a symbolic source
statement. The variable field of this statement contains expression(s) P(l), P(2), ... P(n),
then processed with the values in the table being substituted for the respective values of
the expressions in the source statement variable field. For example, if the variable field of
the symbolic source statement contains

2,8,9 + 8, = 63

then within the generated macro P(l) = 2, P(2) is the value of 8, P(3) = 021, and P(4) is
the address of the value 63. All terms and expressions within the macro-referencing
symbolic source statement parameter list are evaluated prior to calling the macro.

If the label field of such a source statement contains a symbol, the symbol is assigned the
value and relocatability of the location counter at the time the macro is called but before
data generation.

DAS 29

DAS assemblers

A macro definition can contain references to machine instruction mnemonics or to
assembler directives other than DUP. Macros can be nested within macros to a depth
limited only by the available memory at assembly time.

Example: Define the macro.

SBR MAC
SEN 0200 P(l),* +3
JMP *-2
EMAC

Call the macro.

SBR 031

Expand the macro.

SEN 0231,* +3
JMP *-2

P(O) can also be accessed by a normal call. P(O) is the first entry in the table formed by
the assembler and contains the number of entries in that table. The following example
shows the output listing obtained by calling P(O): ·

1 A MAC
2 DATA P(O)
3 EMAC

000001 OOOOOOA 4 A
000002 000001A 5 A
000003 000002A I 6 A 1, 2
000004 000003A 7 A 1, 2, 3
000005 000004A 8 A 1, 2, 3, 4
000006 000005A 9 A 1,2,3,4,5

10 END

Symbol And Expression Modes

Each symbol or expression has one of the following modes assigned by the assembler:

a. External (E)

b. Common (C)

c. Relative (R)

d. Absolute (A)

The mode of an expression is determined by the mode of the symbols in the expression.

The mode of a symbol is determined by the following rules:

a. If the symbol is in an EXT directive, the mode is E. ·

b. If the symbol is defined by a COMN directive, the mode is C.
(continued)

DAS 30

DAS assemblers

c. If the symbol is a symbol in a program, or if "' is the current location counter value, the
mode is R.

d. If the symbol is a number (numerical constant), the mode is A.

e. If the symbol is defined by an EQU, SET, or similar directive, the mode of the symbol is
that of the variable field expression in the directive.

The mode of an expression is determined by the following rules:

a. If the expression contains any mode E or C symbol, the expression is mode E.

b. If the expression contains only mode A symbols, the expression is mode A.

c. If the expression contains mode and R symbols, the mode of the expression is R if there
is an odd number of mode R symbols. Otherwise, the mode of the expression is A.

The following restrictions apply only to DAS MR and to FORTRAN-compatible output
assembly with DAS 8A.

a. No expression can contain symbols of botti modes E and C.

b. A mode E expression comprises a single mode E symbol.

c. No mode E, C, or R expression can multiply or divide a mode E or C symbol.

d. No expression can add or subtract a mode C and a mode R symbol, or a mode E and a
mode R symbol.

e. No expression can add two or more mode E, c: or R symbols.

f. A mode A symbol can be added to or subtracted from a mode C or R symbol.

Figure 1 illustrates the above rules.

EEEE EXT
CCCC COMN
RTN ENTR
TBL BSS
ABL BSS
LENG EQU

CALL
LOA
LOA

LDXI
LOA

DATA
DATA
DATA
DATA

6

50
'A'+5
*-TBL
EEEE, TBL, LENG
*+6
CCCC+6

CCCC+6
0,1

EEEE+4
CCCC+4
CCCC+LENG
TBL+LENG 5

Defines mode E
Defines mode C
Defines a symbol (RTN) as a mode R
TBL is mode R
ABL is mode R
LENG is mode A (defines area length)

Legal, one-word relative forward
Illegal, one-word not R or A

Legal, two-word instruction
Legal, loads CCCC + 6 in A register

Illegal, value not zero
Legal
Legal
Legal, mode is R

Figure 1. Manipulation of Expression and Symbol Modes

DAS 31

DAS assemblers

Relocatability Rules

A relocatable program (DAS BA, DAS MR) is one that has been assembled with its
instruction and directive locations assigned in such a manner that it can be loaded and
executed anywhere in memory. When such a program is loaded, the beginning memory
address is specified, and a value (known as the relocation bias) is added to the addresses
of subsequent relocatable instructi1ons. The programs are usually assembled with a zero
relocation bias on the first instruction.

The location counter contains the (relative) address of the instruction or directive
currently being executed. The location counter is absolute when it contains the actual
address of the instruction, and relocatable when it contains the relative address (the
current address of the start of the program).

Symbols can be absolute or relocatable. Expressions, since they contain symbols, can be
absolute or relocatable. Constants are always absolute.

The following shows, for each arithmetic operation, whether the result is absolute (abso),
relocatable (relo), or illegal.

A= ab so A= ab so A= relo A= relo
B= ab so B= relo B= ab so B= relo

A+B abso relo relo illegal
A-8 abso illegal relo abso
A*B abso iliegal illegal illegal
A/B abso illegal illegal illegal

The relocatable loader can load a program in any area of memory and modify the
addresses as it loads so that the resulting program executes correctly. Programs can
contain absolute addresses, relocatable addresses, or both. At the beginning of each
instruction or data1word generated by the assembler, it can be set by the ORG directive.
On encountering an ORG directive, the assembler makes the location counter absolute if
the corresponding expression is absolute, or relocatable if the corresponding expressions
is relocatable.

If a symbol is equated to the location counter, it is relocatable if the location counter is
relocatable. Otherwise, the symbol is absolute.

DAS 32

DAS assemblers

Assembler Input Media

Punched Card Format

Punched cards used as input to the DAS assemblers contain four fields corresponding to
the instruction and directive fields:

a. The label field is in columns 1through6. Its use is governed by the requirements of the
instruction or directive. ·

b. The operation field is in columns 8 through 14. It contains the instruction or directive
mnemonic. Indirect addressing is specified by an asterisk following the mnemonic.

c. The variable field begins in column 16 and ends with the first blank that is not part of a
character string. Its use depends on the instruction or directive. If two or more
subfields are present, they are separated by commas.

d. The comment field fills the remainder of the card. If the variable field is blank, the
comment field begins in column 17.

An asterisk in column 1 indicates that the entire card contains a comment.
Note that columns 7 and 15 are always unpunched (blank).

Paper Tape Format

Paper tape used as input to the DAS assemblers contains source statements of up to 80
characters each (not including the carriage return and line feed characters). Each
punched statement contains four fields corresponding to the instruction and directive
fields. The label, operation, and variable fields are separated by commas, and the
comment field starts after the first variable field blank that is not part of a character
string. Each statement is terminated by a carriage return (CR) followed by a line feed (LF).

a. Label field use is governed by the requirements of the instruction or directive. It is
terminated with a comma. If this field is not used, a comma appears as the first
character of the source statement.

b. The operation field contains the instruction or directive mnemonic. An asterisk
following the mnemonic specifies indirect addressing. This field begins immediately
following the label field terminator and is terminated by a comma.

c. The variable field can be blank, or contain one or more subfields separated by commas.
It must immediately follow the instruction field terminator (,). Subfields can be
voided by using adjacent commas. This field is terminated by a blank that is not
part of a character string, or with a CR or LF.

d. The comment field fills the remainder of the statement (from the terminating blank of
the variable field to the next CR or LF).

If the first nonblank character of a source statement is an asterisk, the entire statement
is a comment.

DAS 33

DAS assemblers

Assembler Output Listing

DAS produces a source/object list1ing of the assembled program, as well as a paper tape
containing the object program in reloadable format.

The listing can be obtained in whole or in part as the program is being assembled. The
source (symbolic) program and the object (absolute) program are listed side by side on the
listing device. This device is either a Teletype or a line printer.

The listing is output according to the specifications given by the list and punch control
directives in the assembly (DAS 8A,. DAS MR).

Error analysis during assembly causes the error messages described below to be output on
the line following the point of detection.

The following example illustrates the format of the output listing. A line count appears only
on DAS MR listings. The addressung modes are: FORTRAN common reference = C,
externally defined E, indirect pointer = I, and absolute or relative = R.

Address Code Mode Line Count Symbolic Source Statement

014000 ORG 014000
014000 000000 ABS ENTR
014001 001002 JAP':' ABS
014002 114000 R
014003 005211 CPA
014004 001000 JMP~· ABS
014005 114000 R

000000 END

Error Messages

The assembler checks source statement syntax during both pass 1 and 2. Detectable
errors are listed during pass 1. During pass 2, the following information is listed:

a. Error code

b. Location counter value

c. Object code when the instruction is assembled

This information is suppressed by NLIS directives and list-suppression commas in GOTO
directives.

The error message appears in the listing line following the statement found to be in error.
Each line can hold up to four error messages.

DAS34

DAS assemblers

Table 6 lists. the DAS error codes and their meanings.

Code

*AD

.. ~oc

(•oo

*E

*EX

(•FA

*IL

*NR

*NS

*OP

*QQ

*R

*SE

*SY

*SZ

*TF

Table 6. DAS Error Codes

Meaning

Error in an address expression

Decimal character in an octal constant

Illegal redefinition of a symbol or the location counter

Incorrectly formed statement

Illegally constructed expression

Floating-point number contains a format error

First nonblank character of a source statement is invalid
(the statement is not processed)

No memory space available for additional entries in as
sembler tables

No symbol in the label field of a SET, EQU, MAC, or FORM
directive or no symbol in the label or variable field of
an OPSY directive, or no symbol in the variable field of
a NAME directive

Undefined operation field (two No Operation (NOP) instruc
tions are generated in the object program; the remainder
of the statement is not processed), or illegal nesting of
DUP or MAC directives

Illegal use of prime (')

Relocatable item where an absolute item should be defined

Synchronization error: symbol value in pass 2 is
different from that found in pass 1

Undefined symbol in an expression

Expression value too large for a subfield, or a DUP directive
specifies that more than three statements are to be assembled

Undefined or illegal indexing specification
(continued)

DAS 35

DAS assemblers

Tab~e 6. DAS Error Codes (continued)

Code Meaning

*UC Undefined character in an arithmetic expression

*UD Undefined symbol in the variable field of a USE directive

coxR Address out of a range for an indexing specification

'°'= Illegal use of a literal

Operating The Assemblers

DAS 4A and SA Operations

Load the assembler program supplied by Varian into memory using the binary load/dump
program (BLD II). Execute it by entering a positive, nonzero value in the A register during
loading, or by clearing all registers., pressing (SYSTEM RESET and entering the RUN state.
(Set RUN indicator on and press START).

During execution, the program first determines the amount of memory required. It then
stores in address 000003 a valw~ one less than the lower limit of BLD 11. This is the
highest address that the assembler can use without destroying part of BLD 11.

DAS 4A and 8A each contain two sections: The 1/0 section allows the specification of 1/0
devices for assembler input and output. The second section is the assembler itself.

1/0 Section Definitions

The 1/0 section of DAS 4A and 8A using the Teletype printer, makes three requests for
definitions of 1/0 devices:

ENTER DEVICE NAME FOR xx

where xx is one of the 1/0 function names: SI (source input,) LO (list output), or BO
(binary output), respectively.

Respond to each request in turn by typing, on the Teletype keyboard, the name of the
desired device, followed by a carriage return (CR). Table 7 lists the acceptable device
names in response to each request. If the default assignment is desired, merely press CR.

DAS 36

Assembly Function

SI (source input)

LO (list output)

BO (binary output)

Table7. Acceptable 1/0 Devices

Device

Teletype paper tape reader: TR
Teletype keyboard: TY
High-speed paper tape reader: PR
Card reader (model 620-22,

-23, or -25): CR
Magnetic tape: MT nn

Teletype printer: TY
Line printer (model 620-76): LP
Line printer (model 620-75): LPl
Line printer (model 620-77): LP2

Teletype paper tape punch: TP
High-speed paper tape punch: PP
Card punch (model 620-27): CPl

If an incorrect device name is typed, the message

DEVICE NAME NOT VALID

is output and the request repeated.

DAS assemblers

Def a ult Assignment

TR

TY

TP

To terminate the output of any line to the Teletype, press RUBOUT. This error correction
feature can be used any time during 1/0 device specification.

When 1/0 assignments are complete, the 110 section uses BLD II to load the assembler
section into memory.

To restart the 1/0 section before the assembler section is loaded, set STEP indicator on,
clear all registers, press (SYSTEM) RESET, set RUN indicator on and press START.

Assembler Section Definitions

When BLD II relinquishes control to the assembler section, the computer halts with
000001 in the program counter (P register). For an assembler pass 1, set SENSE switch 1;
for pass 2, reset SENSE switch 1 and set SENSE switches 2 and 3.

If pass 1 is selected, ready the SI device with the source input media and set RUN
indicator on and press START.

For pass 2, ready the SI device with the source input media, ready the BO and LO devices,
set RUN indicator on and press START.

DAS 37

DAS assemblers

The END directive terminates both passes 1 and 2. Pass 1 terminates with 000001 in the
P register and 0177777 in the A register. Pass 2 produces the binary object loader text
and program listing and terminates when END is encountered with the same register
values as pass 1. A MORE directive, causes the computer to stop and wait until the SI unit
is prepared with the additional source input media, and the RUN state is entered. MORE
is indicated by 0170017 in the A register.

The program listing can be suppre1ssed during pass 2 by resetting SENSE switch 2, and
the binary output, resetting SENSE switch 3. Error messages cannot be suppressed and
are output on the LO device as the ierror is detected during pass 2.

Synchronization errors (table 6) halt the assembly' with 000777 in the A register. To
continue the assembly, set RUN indicator and press START. The assembler resets the
location counter value to that assigned on pass 1, prints error message 0 SE, and
continues the assembly.

Pass 2 can be restarted or repeated for extra copies of the assembled program without
repeating pass 1.

At the completion of pass 2, the assembler can accept another assembly using the same
110 devices. For other 1/0 devices, reload the assembler program, starting with the 110
section.

To restart the assembler, set STEP indicator on, clear all registers, press (SYSTEM)
RESET, set RUN indicator on and press START. The assembler halts with 000001 in the P
register and is ready to accept another assembly.

The DAS 4A and BA assemblers can communicate with any one of the magnetic tape
transports on a controller. Up to four transports may be connected to each of the
magnetic tape controllers. A configuration may have one to four magnetic tape controllers.

The magnetic tape transport number and controller device address is specified in the
device name specification of the 1/0 Control Section based upon the following table:

Device Address Transport
Name (in octal) Number

MTOO 010 1
MTOl 010 2
MT02 010 3
MT03 010 4

MTlO 011 1
MTll 011 2
MT12 011 3
MT13 011 4

DAS 38

DAS assemblers

Device Address Transport
Name (in octal) Number

MT20 012 1
MT21 012 2
MT22 012 3
MT23 012 4

MT30 013 1
MT31 013 2
MT32 013 3
MT33 013 4

DAS MR Operations

Since DAS MR operates under MOS and uses the MOS 1/0 control system, the 1/0 devices
can be defined as required (refer to MOS section of this handbook).

DAS MR inputs the symbolic source statements from the processor input (Pl) logical unit
in alphanumeric mode, and outputs them in the same mode on the processor output (PO)
logical unit. When DAS MR detects the END directive, it terminates pass 1, returns to the
beginning of the source program, and begins pass 2. During pass 2, the source statements
are the input from the system scratch (SS) logical unit, a listing is output on the LO unit,
and the binary object program is output on the BO unit. Note that PO and SS must be the
same magnetic tape, drum, or disc unit.

For an assembly without a program listing, input the following directive to the MOS
executives when requesting the assembly:

/ASSEMBLE N

For a binary object program, input

/ASSEMBLE B

If the memory map portion (symbol table, external names, and entry names) is not
wanted, input

/ASSEMBLE M

To read the same physical symbolic source statements for both assembly passes, input

/ASSIGN
/ASSEMBLE

PO•DUM, SS•PI

DAS 39

DAS assemblers

The processor output listing serves as a copy of the program; it can be input for another
assembly.

With an operating system the DAS MR user gains the facilities provided in either MOS or
VORTEX. The features of MOS are described in detail in a later section in this handbook.

The standalone system is operated with procedures also used for the standalone
FORTRAN system (described in a later section).

DAS 40

Binary Loader Programs

Loader

TABLE ·OF CONTENTS

SECTION 1
BINARY LOAD/DUMP PROGRAM· (BLD_ II)

L'OADING THE BOOTSTRAP ROUTINE , .. .1-2

LOADING THE BLD 11 PROGRAM : .. 1-4

LOADING AN OBJECT PROGRAM ... 1-8
Verification ... 1-8
Load Program and Halt ... 1-10
Load Program and Execute ... 1-1 O

PUNCHING PROGRAM TAPES ... 1-10

PUNCHING MEMORY CONTENTS .. 1-11

SECTION 2
BINARY CARD LOADER (BCL I)

BOOTSTRAP ROUTINE ... 2-2

RELOCATING PRE-LOADER ... 2-2

BINARY CARD LOADER .. 2-2

OPERATING PROCEDURE FOR BCL 1 ... 2-6

RE-USING BCL I ... 2-6

ERROR INDICATIONS ... 2-7

Loader iii

BINARY LOADER PROGRAMS

Two stand-alone loader programs are available for the Varian 73 and 620
computer systems: Binary Load/Dump (BLD II) and Binary Card Loader
(BCL I). The BLD II program prepares the computer for the loading of non
relocatable object programs from a high-speed or Teletype paper tape reader. It
also allows a program stored in memory to be punched on paper tape in re
loadable format. For computer systems using card 1/0 devices, the BCL I program
loads binary information from either a model 620-22 or 620-25 card reader. No
memory dump feature is included in the BCL I program.

Loader 1·1

SECTION 1
BINARY LOAD/DUMP PROGRAM (BLD II)

BLD 11 is loaded using the bootstrap loader routine, which specifies the input reader. Once
loaded, BLD II automatically relocates itself into the upper part of the highest 4K memory
increment, unless the operator specifies another 4K increment. BLD II also dynamically
adapts itself to load object program tapes from the input device specified in the bootstrap
loader routine, and performs a check·sum of object program records.

After BLD II has been loaded into memory, it need not be reloaded for the entering of
subsequent object programs.

Initially, BLD II occupies addresses 007000 through 007755 of the first 4K memory
increment, where it does. not interfere with the bootstrap loader routine occupying
addresses 007756 through 007776. Immediately after loading, BLD II relocates to occupy
addresses Ox7400 through Ox775~>. where x denotes the highest, or operator specified, 4K
of memory.

x = Memory Increment

0 4K
1 BK
2 12K

3 16K
4 20K
5 24K
6 28K
7 32K

Entry to BLD 11 to load object program tapes is always Ox7600, and entry to punch binary
object tapes of memory contents is Ox7404.

LOADING THE BOOTSTRAP ROUTINE

Under normal conditions the bootstrap loader routine would be loaded automatically as
follows:

a. With the POWER switch in the ON position, place the computer in the run mode by
pressing the STEP/RUN switch (RUN indicator is blinking).

Loader 1-2

BLD II

b. Insert the BLD 11 tape in the reader with the first binary frame at the read station.

c. Press the boot switch (RUN indicator is now on). This transfers the bootstrap program
from the processor's control store to computer memory and executes loading of the
BLD 11 program.

For maintenance purposes it may be desirable to load the bootstrap .routine manually.

Table 1-1 lists the manual bootstrap loader routines. If the high-speed paper tape reader
is to be used for subsequent program loading, select the column headed High-Speed
Reader Code; for the Teletype paper tape reader, select the column headed Teletype
Reader Code.

To load the bootstrap loader routine:

a. Ensure that computer power is turned on and that the system is initialized.

b. Load the starting memory address ·of the bootstrap loader (007756) into the P register.

c. Press MEM switch momentarily.

d. Clear the console display (Press DISPL CLR).

e. Select the first bootstrap loader instruction from the appropriate column in table 1-1,
and load it into the console display.

f. Press ENTER to load the display contents into the address specified by the P register,
which is incremented by one after the instruction is loaded.

g. Clear the display (Press DISPL CLR).

h. Repeat steps d, e, f, and g for each bootstrap loader instruction.

Table 1-1. Bootstrap Loader Routines

High-Speed Teletype
Address Reader Code Reader Code Symbolic Coding

007756 102637 102601 READ CIB RDR
007757 004011 004011 ASLB NBIT -7
007760 004041 004041 LRLB 1
007761 004446 004446 LLRL 6
007762 001020 001020 JBZ SEL
007763 007772 007772 (Memory address)
007764 055000 055000 STA 0,1

(continued)

Loader 1-3

BLD II

Table l-1. Bootstrap Loader Routines (continued)

High-Speed Teletype
Address Reader Code Reader Code Symbolic Coding

007765 001010 001010 JAZ LHLT + 1
007766 007000* 007000* (Memory address)
007767 005144 005144 IXR
007770 005101 005101 ENTR INCR 1
007771 100537 102601 EXC** ROON
007772 101537 101201 SEL SEN IBFR,READ
007773 007756 007756 (Memory address)
007774 001000 001000 JMP * -2
007775 007772 007772 (Memory address)

NOTE

The bootstrap loader routine is always loaded into the specified ad
dresses of the first 4K memory increment, regardless of available
memory.

* Replace this code with 007600 if the test executive of MAINTAIN 11
(refer to document number 98 A 9952 06R) is to be loaded and executed.

i:s ° CIB instruction if TTY bootstrap.

To verify bootstrap loading:

a. Initialize the system by pressing (SYSTEM) RESET.

b. Load 007756 into the P register.

c. Select the memory for display by pressing MEM and press DISPL.

The contents of the memory addresses are displayed sequentially each time the DISPL
switch is pressed. If an error is found, load the correct instruction code into memory. Note
that the P register error address is always the error address plus one.

BLD II, and subsequent object programs, can now be loaded into memory.

LOADING THE BLD II PROGRAM

CAUTION

To adapt to the input devic1:i, BLD II examines address 000200 to determine if
the system includes the automatic bootstrap loader (ABL) option, then the

Loader 1-4

BLD 11

contents of the first address of the manual bootstrap loader routine, both of
which can indicate the input device. If address 000200 inadvertently contains
one of the two input device codes, and the device used is different, BLD II
malfunctions. ·

After the bootstrap loader routine has been successfully loaded into memory:

a. Clear the instruction register.

b. Load 007770 into the P register.

c. Load 007000 into the X register.

d. Set the SENSE switch(es) for the desired program option (table 1-2).

e. Turn on the paper tape reader specified by the bootstrap loader routine.

f. Position the BLD 11 program tape in the reader with the first data frame after the
position-8-only punches (figure 1-1) under the high-speed reader head or under the
reading station of the Teletype reader.

g. To load tape, press RUN, then START. Loading is complete when the computer changes
to step mode.

SENSE Switch

Table 1-2. BLD II SENSE Switch Options

When Set =

Allows selection of any 4K memory increment in which
BLD 11 is to operate, or specification of a nonstand
ard device address for the high-speed paper tape
punch.

After BLD II is loaded, the computer halts with
07014 in the P register.

To specify a 4K memory increment, load one of the
following in the A register:

A Register

000000
000001
000002
000003
000004
000005

Memory Increment

First 4K
Second 4K
Third 4K
Fourth 4K
Fifth 4K
Sixth 4K

(continued)

Loader 1-5

BLD II

Table 1-2. BLD II SENSE Switch Options (continued)

A Register

000006
000007

Memory Increment

Seventh 4K
Eighth 4K

The standard high-speed paper tape punch device
address is 037. To specify a nonstandard device
address, load it into the 8 register.

Result: Pressing START initiates the re-
location of 8LD 11 from the first 4K memory incre-
ment and implements the punch address. The computer
halts with zeros in the A, 8, and X registers and
Ox7600 in the P register, where x = the specified
increment as described above. Object program tapes
can then be loaded.

SENSE Switch When Set

2

3

Adjusts the program for Teletype paper tape punch
output (For use when input is from high-speed
reader, but a high-speed punch is not available.)

Result: 8LD II and the object program can be
loaded and executed without further operator inter
vention.

Allows splicing an object program to the 8LD 11
program tape.

NOTE

If no SENSE switches are set, the 8LD 11 program is loaded and
relocates automatically to the highest 4K memory increment. The
computer then halts with the entry address for reading object
program tapes in the P register (Ox7600) and zeros in the A,
8, and X registers.

If SENSE switch 1 was set:

a. Reset SENSE switch 1.

b. Clear the A register.

Loader 1-6

VTll-llJB9

.
•

.
• .
•

BLD II

FIRST BINARY FRAME

_:. __ - -.-:- -- . _/
• •• 100437

.
•

••••••• - -.- - -.- -•• • 006010 • •• -.--.--• • • 000223
- ~ -·- ._ ... ~ -• • • • • • •

002000 --.--.---
•••• •• 007320 • • • - 'i - -. - - -

• • • • 001100 • • -.--.---
•••• 007012 • • •• - .. - -. - -
• • • 005001 • • • - .- - .. -

• • • 001000 -·- -·- -• • •••• • • •• -.- - .- -
007014

• • 000007 -·- - .- -
• • • • 005111 -·- _ _,

• • : •• : 054310
• •• - .- - .-•• • • •• -.- .. -••••• • •

87654- 321

006010

Figure 1-1. BLD II Tape Format (Bootstrap-Loadable)

Loader 1-7

BLD II

c. Load the appropriate values, as defined in table 2-2, in the A and/or B registers.

d. Press START.

When BLD 11 loading is complete, the computer halts with Ox7600 in the P register unless
SENSE switch 3 was set (table 1-2), in which case the computer implements loading and
execution of the spliced object program.

Remove the BLD 11 program tape from the reader after loading, and reset SENSE switch 2,
if applicable.

LOADING AN OBJECT PR~OGRAM

Object programs can be loaded from the bootstrap-routine-specified device immediately
after BLD II. For all subsequent loadings, make sure that the P register is set to Ox7600.

Verification

To ensure that an object program tape contains no errors before it is loaded into memory,
BLD II has a check-sum error-checking option. To use this option:

a. Turn on the bootstrap-routine-specified reader.

b. Position the object program tape in the reader with leader at the reading head (figure
1-2).

c. Load minus value (0100000) into the A r·egister.

d. Clear the instruction register.

e. Set RUN indicator on and prnss START.

No errors are indicated by the computer halting with:

P register
A register
B register
X register

Ox7600
0100000
000000
execution address

If a check-sum error occurs, the computer halts with:

P register
A register
B register
X Register =

Loader 1-8

Ox7600
0100000
0177777

Address of last record

VTll-1888

• • • • • ..
• • • . ..
• • • • -...... -......

VISUAL AID ••••• • •••
RECORD MARK--- - _•Jt!~•-i !~• - ----.--.----

RECORD SIZE : . •: • 000011
- - .- - -.-.- - - -

ORIG IN ADDRESS • • • • • 027 400 • • --- ... --.- - --
DATA ••• • • 007400 • • - - - -.- - -.- - - - -

• • • 002000 • • - - - -.- - -. - .- - -
••••• 027434 •••••• ---.-- ... -----

• • 000007 - - - -·- - ~ ~ '-.•- - -
•••• :. 007401 • • • ----.---.-----
• • • 002000 • • - - - -.- - -. - ii - - -
••• •• 027434

- - - -1-·-· ~ ~ - - - -
• • • 001000 • • - - - -.- - - .- ... - - -

DATA ••• • • 027403 • • •• - - - .. - - -.- - - - -
CHECKSUM : ::. 001014

- - -..... -..... - -
VISUAL AID ••••• • •••

RECORD MARK -a= - -•-•-•~.!~~·-•- --
- - -.-- .-----

RECORD SIZE : • 000000
- - - -.- - -. - ii' - - -

EXECUTION ADDRESS •• • • • 027 400 • • - - - - - ... -.- --
c H EC KSUM • • • • • 027 400 • • - - -.- - - ... - - - - -

• • • • • •
87654 321

figure 1-2. Object Program Tape Format

BLD II

Loader 1-9

BLD II

To retry a check-sum error record, reposition the object program tape at the previous
visual aid and press START. If a check-sum, error is again read, visually check each
character in the record for an error in punching or damaged tape.

Load Program and Halt

To load the object program and halt before execution:

a. Turn on the reader and posit1ion the tape in the reading station.

b. Clear the A, B, X, and instruction registers.

c. Load Ox7600 into the P register.

d. Set RUN indicator on and prnss START.

Correct loading is indicated when the computer halts with:

P register
A register
B register
X register

Ox7600
000000
000000
execution address

A check-sum error is indicated by the conditions described for object program tape
verification described above.

Load Program and Execute!

Programs can be loaded and immediately executed using the steps described above for
the load-and-halt option, except in step b load 000001 (or any positive number) in the A
register.

PUNCHING PROGRAM TAPES

The BLD 11 program adapts to the input reader and the output punch devices by
interrogating the bootstrap loader routine. Setting SENSE switch 2 (table 1-2) prior to
loading BLD II program adjusts the program for Teletype punch output regardless of the
bootstrap-routine-specified devices ..

To punch reloadable object program tapes after the programs have been loaded into
memory, turn on the punch and:

a. Load the beginning address of the area to be punched in.to the A register.

Loader 1-10

BLD II

b. Load the final address to be punched into the B register.

c. Load the first instruction to be executed at load time into the X register,

OR

if noncontiguous memory areas are to be punched, load minus one (177777) into the X
register.

d. Load Ox7404 (entry address to BLD II to punch object tapes) into the P register.

e. Clear the instruction register.

f. Press (system) RESET, set RUN indicator on and press START.

The program punches the object tape and the computer halts with all registers unaltered.

If noncontiguous areas are to be punched, perform steps a through f. Prior to punching
the last area, load the first instruction to be executed at load time into the X register.

PUNCHING MEMORY CONTENTS

To punch a tape of the binary memory contents on the high-speed paper tape punch,
SENSE switch 2 must not be set when BLD II is loaded. To punch a tape from memory on
the Teletype punch, SENSE switch 2 must be set (if the input reader is a high-speed paper
tape device).

The operator can specify that tapes be punched in binary format for reloading using the
BLD II, or that the BLD II program be punched in bootstrap-loadable format.

To punch a tape in binary format, use the procedures described above for punching
program tapes.

To punch a bootstrap~loadable tape of BLD II itself:

a. Load Ox7400 into the P register.

b. Clear the A and B registers.

c. Load a nonzero value into the X register.

d. Press (system) RESET, set RUN indicator on and press START.

Loader 1-11

SECTION 2
BINARY CARD LOADER (BCL I)

The BCL I program loads and executes card object programs with a minimum of operator
involvement. The program automaticall~ aJlocates and positions the card loader routine in
an area at the top of ao.-operatOr-specified. memory module (16-bit word only). A job
stream containing the BCL I cards is shown in figure 2-1.

A bootstrap routine (table 2-1) performs the initial loading of the BCL I into main memory,
and then passes control to the relocating pre-loader portion of the BCL I program. The
relocating pre-loader loads the binary card loader into main memory and relocates it in an
area of memory for permanent residency. The relocating pre-loader then passes control to
the binary card loader, which in turn reads binary information from 16-bit data words on
cards and transfers it to memory.

BINARY END
RECORD

BINARY /-
OBJECT
PROGRAM ~~~~~~~~~~~~~~~~~~~

~~~L ~ BINARY CARD LOADER 2 OF 2 
GRAM 

~~~~~~~~~~~~~~~~~~~~ 

BINARY CARD LOADER 1 OF 2

RELOCATING PRE-LOADER

YTil-1898

Figure 2-1. Job Stream Containing BCL I Card

Loader 2-1

BCL I

BOOTSTRAP ROUTINE

A BCL I bootstrap routine (table 2-1) loads the BCL I program from punched cards into
memory and automatically initiates execution of the relocating pre-loader.

RELOCATING PRE-LOADER

The relocating pre-loader determines the highest address of physical memory and
computes a relocation address based on the upper-boundary address. If the highest
memory address is specified by the operator, the pre-loader will compute the relocation
address based on that value. After relocating the BCL to the memory area, the pre-loader
automatically transfers control to the BCL routine.

BINARY CARD LOADER

The binary card loader loads objed data from cards produced by DAS 4A or DAS 8A
assemblers. The data formats for the BCL I and object program cards are shown in figures
2-2 and 2·3, respectively. In the BCL I fortnat, each 16-bit word is contained in two
columns of rows 2 through 9. In thE~ object program format, the 16-bit words are arranged
serially beginning with row 12 of column 1. The first 16 bits on an object-program card
contain a count of the object words on the card; the second 16 bits contain the load
address. Object words begin in the· third 16 bits. As each object word is loaded the word
count is decremented. A 16-bit checksum, the last entry on the card, is compared with the
checksum computed by the loader. Any discrepancy causes the computer to stop
indicating a checksum error. An end record has its first 16 bits all ones. The loader
assembles the second 16 bit on the end-record card as an execution address. The end
record checksum is disregarded and control passes to the loaded object program at the
point specified by the execution address.

Address Octal
Code

000114 102530

000115 004250

000116 101130

000117 000122

000120 001000

Loader 2-2

Table 2-l. BCL I Bootstrap Routine

Label

BOOR

Symbolic Instruction

Operation

CIA

L.RLA

SEN

JMP

Variable Comment

030 Input card column

8 Position to high order

0130,BOOS Character ready

*-2 Wait until ready

(continued)

BCL I

Table 2-1. BCL I Bootstrap Routine (continued)

Symbolic Instruction

Address Octal Label Operation Variable Comment
Code

000121 000116

000122 102130 BOOS INA 030 Low order 8 bits

000123 055000 STA 0,1 Store word

000124 005144 IXR Increment store pointer

000125 001000 JMP BOOU Do again

000126 000131

000127 000000 BOOT DATA PLD

000130 100230 EXC 0230 Read a card

000131 101130 BOOU SEN 0130,BOOR Character ready

000132 000114

000133 101630 SEN* 0630,BOOT End of card, reader
now ready

000134 100127

000135 001000 JMP *-4

000136 000131

000137 000000 RLOD DATA 0 Loader start address

Loader 2-3

BCL I

COLUMNS..,._ 2 3 4 5"' 6

ROW 12

ROW 11

ROWO ,.

ROW l

ROW 2 215 27 215 27 215 27

ROW 3 214 26 2 14 26 214 26

ROW 4 213 25 2 13 25 213 25

ROW 5 212 24 2 1 :2 24 212 24

ROW 6 211 23 211 23 2 11 23

ROW 7 210 22 210 22 210 22

ROW 8 29 2 1 29 2 1 29 2 1

ROW 9 28 20 28 20 28 20

----~--'----~¥------------

L I WORD3
__ WORD2

WORD 1

YTll-1890

Figure ;!-2. Format of BCL I Card

Loader 2-4

BCL I

ROW 12 /1 215 23 27 2 11 215 23

ROW 11 214 22 26 210 214 22

ROW 0 213 2 l 25 29 213 2 l

ROW l 212 20 24 28 212 20
...--- ~

ROW 2 211 215 23 27 211

ROW 3 210 214 22 26 210

ROW 4 29 213 21 25 29

ROW 5 28 212 20 24 28
~

ROW6 27 211 215 23 27

ROW7 26 210 214 22 26

ROW 8 25 29 213 2 l 25

ROW 9 24 28 212 20 24

'-...--' l
I

WORD 4

WORD 3

WORD 2

WORD 1

WORD l COUNT OF OBJECT WORDS, OR ALL ONES IF AN END RECORD
WORD 2 LOAD ADDRESS, OR TRANSFER ADDRESS IF AN END RECORD
WORD 3 FIRST OBJECT WORDS
WORD 4 SECOND OBJECT WORD
THE LAST WORD IS A CHECKSUM (EXCLUSIVE OR)

YTll-1891

Figure 2-3. Format of Object Program Cards

Loader 2-5

BCL I

OPERATING PROCEDURE FOR BCL I

a. Using the computer control panel, load the bootstrap routine (table 2-1) into memory.

b. Load 000130 into the P register

c. Load zero into the X register

d. Load the B register with
1. zero if BCL I is to reside at the top of main memory, or
2. the octal value for the upp·er boundary of the memory module in which the loader is
to reside. The accepted values are

B-Register Desired 4K Memory
Value (octal Memory Module Boundary (decimal)

010000 1 4,096
020000 2 8,192
030000 3 12,288
040000 4 16,384
050000 5 20,480
060000 6 24,576
070000 7 28,672

e. Place the 3-card BCL I object program in the card reader followed by the binary object
deck to be loaded (figure 2-1).

f. Ready the card reader

g. Start the computer

Note: the contents of the A register are not significant.

RE-USING BCL I

When the procedure outlined above is followed, BCL I resides in the upper 80 words of the
4K memory module in which it is relocated. The procedure for operation of the stored BCL
I routine is:

a. Load Ox7660 into the P registEir, where x is 0 through 6 designating the 4K memory
module in which the loader resides.

b. Place the binary object deck in the card reader

c. Ready the card reader

d. Start the computer

Loader 2-6

BCL I

ERROR INDICATION

The only error condition indicated by BCL I is a checksum error. This error causes the
computer to halt with the P register set to Ox7767 and the instruction register set to
000525. For retry, re-feed the last card read. A repetition of the error suggests a faulty
assembly of the DAS 4A or DAS 8A.

Loader 2-7

Debugging Program (AID II)

AIDi

TABLE OF CONTENTS

AID II DEBUGGING PROGRAM

Loading AID 11 ... 2
Register and Memory Modification .. 2
Paper Tape Handling .. 5
Magnetic Tape Handling ... 6
Error Message and Correction .. 7

AID iii

AID II DEBUGGING PROGRAM

The Varian 73/620 AID II Debugging Program is available with Varian 73 and 620
systems to provide on-line program checkout an_d correction. By entering AID II commands
on the Teletype keyboard, the operator can:-

a. Display and alter the contents of registers and any memory address or group (block) of
addresses.

b. Transfer (trap) into or out of selected blocks of memory and search for specific
conditions.

c. Load, monitor, and alter any program.

As an added feature, data can also be transferred (dumped) from memory to magnetic
tape, punched out on paper tape, or printed on the Teletype printer. Object programs can
thus be converted from one media to another, simply and directly.

AID II is loaded into computer memory using the binary load/dump program (BLD II).
Once loaded, Al D II resides in memory addresses Ox6000 through Ox7377, where x
denotes the highest available 4K memory increment, as follows:

x = Memory Increment

0 4K
1 BK
2 12K
3 16K
4 20K
5 24K
6 28K
7 32K

The programmer is responsible for ensuring that a program to be debugged does not
interfere with those areas of memory containing BLD II and AID II.

AID 1

AID II

Loading AID II

To load AID II into memory:

a. Ensure that the bootstrap loader routine and BLD 11 are correctly loaded.

b. Turn on the reader used to load BLD II and position the AID II program tape with leader
at the reading station.

c. Clear the 8, X, and instruction registers, and load 000001 into the A register.

d. Load Ox7600 into the P register (i.e., the BLD II entry address for loading program
tapes; refer to BLD II section for the definition of x).

e. Place the computer in the run mode.

Loading is complete when the program outputs a carriage return (CR) and line feed (LF)
and rings the Teletype bell.

Programs to be debugged can be loaded either before or after AID II loading.

Register and Memory Modification

With Al D 11 and the program to be debugged entered, the computer in run mode, and the
Teletype operating on-line, the Teletype keyboard entries summarized in table 1 produce
the indicated results.

The pseudoregisters referred to in the following descriptions denote software bu'ffers that
duplicate the actual contents of the computers's operation registers. A command to
change register contents, in effect, changes the specified pseudoregister contents, which
are then transferred to the corresponding operation register.

Command

A
B
x

ex

AID 2

Table 1. AID II Register/l"emory Modification Commands

Operation

Displays (prints) the contents of the indicated pseudo
register on the Teletype printer. To change the contents,
type the desired octal number and a period; otherwise,
type only a period.

Displays (prints) the contents of memory address x on
the Teletype printer. To change the contents, type
the desired octal number, followed by a period to execute
the command or by a comma to request display of the next
sequential address contents. Otherwise, type only a
period. (continued)

Table 1. AID II Register/Memory Modification Commands (continued)

Command

Gx.

lx,y,z,.

Sx,y,z,m.

Ty,x.

Ty,.

Vx.

Operation

Loads the contents of the pseudoregisters into the re
spective A, B, and X registers and starts program execu
tion at address x.

Stores the value of z in all memory addresses starting
at address x and ending at address y.

Searches through memory starting at address x and end
ing at address y for the value of z masked by the value
of m. A masked-search compares the value of z with
each bit corresponding to a one in the m value. Each
time the values compare, the address and value are
printed on the Teletype printer. If an N is typed
instead of a mask value, the program searches for the
negative value of z. Omission of m assumes an all-ones
mask.

Transfers execution of an operational program to address
y when the program reaches the instruction in address x.
This trapping feature permits interrupting a program se
quence without internal patching. The program also dis
plays the transfer address and the contents of the A,
B, and X pseudoregisters, respectively.

Continues trap from last break point.

Displays the contents of memory on the Teletype printer
beginning at address x, continuing until a RUBOUT char
acter is typed. The display (dump) is printed in col
umns: the left column is the octal base address, and
the contents of eight memory addresses, in ascending
order, appear in the next eight columns. The first
number in succeeding lines. indicates the base address
for the next eight memory address contents.

AID II

AID 3

AID II

Usage Examples

NOTE

In the following examples, operator inputs are represented in bold type. Other
entries are program responses output to the Teletype printer.

Display the contents of a pseudoregister:

A 142340
B 001000
x 006003

Display and change the contents of a pseudoregister:

A 010454
B 006016
x 007413

10406.
10406.
10406.

Display the contents of memory address 002050:

C2050 102401

Display and change the contents of memory address 002050, then display the next two
addresses:

C2050 102401 103402,
(002051) 000067
(002052) = 177777

Display memory contents starting at address 006000:

V6000.
(006000) 010454 002000
(006010) 005145 004543
(006020) 005041 001000
(006030) 006217 001000

NOTE

When displaying memory contents, eight columns of data actually follow the
base address in the first column. Space limitations prohibit an actual
representation herein.

(Display terminated by entering RUBOUT.)

AID 4

Execute the program beginning at address 000500:

G500.

Store 0177777 in memory addresses 000200 through 000210:

1200,210, 177777 ,.
1200,210,-1

AID II

Search memory addresses 000200 through 000240 for a content of 0106213 masked by
0177777 and display addresses that compare:

S200,240,106213,177777.
(000220) 106213
(000235) = 106213

Trap to memory address 000204; start execution from address 000100; and display the
trap address and the A, B, and X register contents if the trap is reached. If not, reload the
original contents into both trap locations.

T204,100.
(000204) 142340 002000 010405

Paper Tape Handling

The Teletype paper-tape reader and punch can be controlled through AID II to read object
program tapes into, and punch program tapes from, computer memory.

With AID II entered, the computer in run mode, and the Teletype and its paper tape
system operational, the Teletype keyboard entries summarized in table 2 produce the
indicated results.

Command

Dx,y,z,.

Lm.

Table 2. AID II Paper Tape Commands

Operation

Punches a program tape from the contents of address x
through address y, specifying execution address z.

Reads an object program paper tape into memory.

If the value of m is 1 and no check-sum errors are en-
countered, the program is executed.

(continued)

AID 5

AID II

Command

Table 2. AID II Paper Tape Commands (continued)

Operation

If the value of m is 0 and no check-sum errors are en
countered, the contents of the A, 8, and X registers,
respectively, are output on the Teletype printer: A
register = 000000, 8 register = 000000, and X reg
ister = execution address.

If m is - 1, the operation is the same as zero
except the object tape is verified but not loaded into
core.

If the program detects a check-sum error, the printout
is the same as m = 0 except 8 register is = to A
0177777 and X register is == to the address of last
record read correctly.

Note

AID II utilizes BLD II to effect loading and punching.
For proper operation, BLD 11 must reside in the same 4K
increment of memory as AID II.

Magnetic Tape Handling

Data can be manipulated from and to magnetic tape through Al D 11 commands.

With AID II entered, the compute1r in run mode, the Teletype keyboard on-line, and the
selected magnetic tape unit operational, the Teletype keyboard entries summarized in
table 3 produce the indicated results.

In the following descriptions, x specifies the magnetic tape controller device address coded
as 0, 1, 2, and 3, where O == first system magnetic tape controller, 1 = second system
controller, etc. Note that each magnetic tape controller monitors up to four magnetic tape
units and that AID II communicates only with the first unit on each controller.

AID 6

Command

Ex.

Fn,x.

N.

Px.

Rx

Wa,b,c,x.

Table 3. AID II Magnetic Tape Commands

Operation

Writes a file mark ·on the specified unit tape.

Skips to file n on the specified unit tape.

Skips to the next file on the previously designated unit
tape.

Backspaces one record on the specified unit tape.

Reads an object magnetic tape into memory from the spec
ified magnetic tape unit. Terminating the command with
a period causes the program to be loaded and control re
turned to AID II. If the command is terminated with a
comma, the program is loaded and executed.

If AID II outputs an uparrow (t) on the Teletype printer,
a file mark was read on the tape.

The output of an octal number indicates the address of a
parity error.

Writes an object magnetic tape from memory, starting at
address a and ending at address b with an execution ad
dress of c, on the specified magnetic tape unit.

Error Message and Correction

AID II

If an AID II command is input incorrectly, AID II terminates further input by outputting a
CR and LF and ringing the Teletype bell. An example of incorrect input is an attempt to
type a nonoctal number (i.e., a decimal 8 or 9). Note that octal numbers need not be
preceded by a zero. To recover, correctly retype the entry.

An input command can be aborted before termination by the backslash (\)character.

Magnetic and paper tape error discriptions are included in tables 2 and 3.

AID 7

Source Program Editor (EDIT)

EDIT

TABLE _OF CONTENTS

SOURCE PROGRAM- EDITOR

Loading EDIT ... 1
EDIT Commands ... 2
Usage Example .. 5
Error Messages ... 6

EDIT iii

SOURCE PROGRAM EDITOR

Varian's 73/620 source program editor (EDIT) allows the computer programmer to create
and modify symbolic source programs on paper tape. Source programs can be loaded
directly into computer memory from an on·line Teletype keyboard, listed with identifying
line numbers on the Teletype printer, and modified using EDIT commands input from the
Teletype keyboard.

Source programs already formatted on paper tape can be loaded into memory, listed,
modified with EDIT generating a paper tape of the modified program ready for assembly
or compilation.

An added feature of EDIT is its ability to search through the source program and point to
a specific character or group of characters, as well as entire lines and groups of lines.

EDIT has two modes of operation: command and text. In command mode, EDIT accepts
inputs from the Teletype keyboard specifying the EDIT function and, optionally, line
numbers and searching parameters. In text mode, characters typed on the Teletype
keyboard or read from paper tape are stored in a text buffer for subsequent manipulation
and/or output. The text buffer represents available memory, i.e., those memory addresses
not occupied by the bootstrap loader routine, the binary load/dump program (BLD II), and
the EDIT program routines.

In text mode, EDIT runs without an operating system. Both MOS and VORTEX include
editing functions which are an alternative in their environments.

EDIT operates in the minimum configuration of a computer system (4K to 32K of memory)
and 33/35 ASR Teletype. However, EDIT determines the size of memory and uses of all
available memory for the editing buffer; only the binary loader at the top of memory is
served. Use of the high-speed paper tape reader and/or punch for input/output is
optional.

Loading EDIT

To load the EDIT program into memory:

a. Ensure that the bootstrap loader routine and BLD 11 are correctly loaded.

b. Turn on the reader used to load BLD II and position the EDIT program tape with leader
at the reading station. (continued)

EDIT 1

source program editor

c. Clear the 8, X, and instruction registers.

d. Load 000001 into the A register.

e. Load Ox7600 into the P register (i.e., the BLD II entry address for loading object
program tapes).

f. Place computer in the run mode.

Loading is complete when the EDIT program outputs, on the Teletype printer, the
message:

SOURCE PAPER TAPE PROGRAM

INPUT DEVICE (H OR T)

If the high-speed paper tape system is to be used for text input to EDIT, type H on the
Teletype keyboard, and type T if the Teletype is the input device. The program then
outputs

OUTPUT DEVICE (H OR T)

Respond as described above for defining the input device. EDIT dynamically adapts to use
the specified equipment and enters the command mode, outputting a carriage return (CR)
and line feed (LF), followed by an asterisk('°'), to the Teletype printer.

Once entered, EDIT can be restarted at any time by clearing all registers and pressing
RUN or START.

NOTE

To change input and output devices from those initially specified, EDIT must be
reloaded using the procedures described above.

EDff Commands

With EDIT loaded, the computer in run mode, and the Teletype operating on-line, the
Teletype keyboard entries summarized in table 1 produce the indicated results. Pressing
the RETURN key terminates and executes all EDIT commands.

EDIT 2

Command

A

nC

m,nc

nD

m,nD

F
xx xx

nf
xx xx

G

nG

nl

K

L

nl

m,nl

source program editor

Table 1. EDIT Cor1mands

Operation

Enter text mode and add the following text input from
the Teletype keyboard to the contents of the text buffer.

Delete the line specified by n, and replace it with new
text.

Delete and replace lines m through n.

Delete line n.

Delete lines m through n.

Search the entire contents of the text buffer for char
acter string xxxx (maximum number of characters, 72).
Output sequential text lines until the string is detected
and the line on which it appears is output. If the
string is not found; return to command mode, and output
CR, LF, and *.

Go to line n and search it and succeeding lines for char
acter string xxxx (see above).

List (output on the Teletype printer) the next sequential
line whose first character is alphabetic.

Go to line n and list the next line whose first char
acter is alphabetic;

Insert the following text before the first line in the
text buff er.

Insert the following text before line n.

Delete the entire contents of the text buffer.

List the entire contents of the text buffer, assigning
sequential line numbers (decimal), on the Teletype printer.

List line n.

List lines m through n.
(continued)

EDIT 3

source program editor

Table l. EDIT Commands (continued)

Command Operation

p

nP

m,nP

R

s

nS

m,nS

T

Punch the contents of the text buffer on paper tape using
the output device specified at edit loading time.

Punch line n.

Punch lines m through n.

Read (append) the following text input from the device
specified EDIT loading time to the contents of the text
buffer.

Search the contents of the text buffer for the character
input after RETURN. Output sequential text lines on the
Teletype printer until the line in which the character
appears is printed. If the character is not found, re
turn to command mode, and output CR, LF, and *.

Go to line n and search for the character input after
RETURN (s1:!e above).

Search lines m through n for the character input after
RETURN (see above).

Punch approximately 20 inches of leader/trailer on paper
tape using the output device specified at EDIT loading time.

NOTES

Line numbers when specified in EDIT commands are decimal integers
derived from the output of a listing command. The value of n must
be greater than that of 111.

Execution of all EDIT commands begins when the RETURN key is
pressed.

Table 2 lists EDIT functions that are controlled by the use of Teletype special-purpose
keys. Note that their use differs in the two modes of operation.

EDIT 4

Teletype Key

RETURN

RUBOUT

CTRL and C
(simultaneously)

. (period)

I (slash)

ESCAPE (ESC).;c

CTRL and TAB
(simultaneously)

source program editor

Table 2. Teletype Key EDIT Functions

Command Mode

Execute the instruction

Illegal

Cancel the instructioh

Remain in instruction
mode and output an as
terisk (*)

Current line number
(used alone or with
the minus sign and num
ber, e.g., 1. - 8
refers to the eighth
line preceding the cur
rent line)

Number of the last line
in the text buffer

Used with . and I
to obtain their values

List the next line

Illegal

Text Mode

Load the input line into
the text buffer

Delete one character to
the left and output

Delete all the line to the
left and output \

Return to instruction
mode and output an as
terisk (*)

Legal text character

Legal text character

Legal text character

Ignored

Interpreted as seven
spaces on the Teletype
printer output

* On the Model 35 Teletype, simultaneously press SHIFT, CTRL, and K.

Usage Example

To illustrate the use of EDIT commands and Teletype key functions, assume we wish to
search line 20 for the character A· and replace it with the character X. Note that the

EDIT 5

source program editor

Teletype keys are shown enclosed in parentheses where they are applicable and that the
simultaneous pressing of two or more keys is illustrated as follows: (SHIFT)(CTRL)(K).

a. To ensure that EDIT is in command mode, type

(CTRL) (C)

b. EDIT responds with a CR, LF; and~'°'. Type

20S(RETURH)

c. EDIT enters a delay loop and waits for input of the character for which it is to search.
Type

A(RETURN)

d. EDIT goes to line 20 and types it until an A is found:

XYZ LOA

then waits for input. Type

-X(RETURN)

Other editing options available for'use in step d are:

a. To delete the line to the left, type RUBOUT.

b. To delete the line to the right, type RETURN.

c. To delete the entire line, type the appropriate deletion command (table 1).

d. To delete characters from right to left, type - once for each character.

Error Messages

EDIT checks all commands input to it for valid parameters and correct formatting. When
an error is detected, EDIT:

a. Types a question mark on the Teletype printer.

b. Issues a CR and LF.

c. Types an asterisk.

d. Waits for a valid command.

EDIT 6

source program editor

lhe following conditions are recognized as errors:

a. Incorrect response to the I /0 device queries at loading time.

b. A nonexistent command code.

c. Commands terminated with any character other than RETURN.

d. A starting line number that is greater than an ending line number.

e. Transposition of command parameters.

f. Specifying a line number whose value is greater than the last line in the buffer.

g. A deletion command that does not specify a line number.

h. Pressing the ESCAPE (ESC) key to list the next line in the buffer when the buffer is
empty.

When text being loaded into the text buffer exceeds the capacity of the buffer, EDIT
outputs the message

BUF FULL

and returns to command mode. To save the buffer contents and continue processing:

a. Type a punch (P) command (table 1) and RETURN.

b. After punching is complete, restart EDIT by clearing all registers and pressing START.

The following options are also available:

a. List, modify, and punch the buffer contents before restarting EDIT.

b. Abort the current source program edit and continue processing with a new program.

EDIT 7

Mathematical Subroutines

Math i

TABLE OF CONTENTS

MATHEMATICAL SUBROUTINES

Fixed-Point Arithmetic .. 1
Floating-Point Arithmetic ... 2
Arithmetic Functions .. 3
Conversions ... 5
Execution Times .. 6

Math ii

MATHEMATICAL SUBROUTINES

In support of Varian 73/620 computer applications programs that require mathematical
computations, Varian provides a comprehensive Mathematical Subroutine Library with
complete, easily accessible subroutines.

The mathematical subroutines are grouped into four major categories: fixed-point
arithmetic, floating-point arithmetic, arithmetic functions (both real and complex), and
number and character conversions. The subroutines are called by other programs and fill
the mathematical requirements of virtually all computer applications.

The mathematical subroutine library is described in detail in the Varian 620 Subroutine
Descriptions Manual (document number 98 A 9902 044).

Fixed-Point Arithmetic

The fixed-point arithmetic subroutines are for applications that demand a high-speed
arithmetic package. They include:

a. Addition, subtraction, multiplication, and division (single- and double-precision)

b. Two's complement (double-precision)

c. Absolute value

d. Transfer of sign

Fixed-point, single-precision multiplication (XMUL) provides a software version of the
multiplication hardware. XMUL uses successive addition of the multiplicand with
appropriate left-shifts.

Fixed-point, single-precision division (XDIV) provides a software version of the division
hardware. XDIV uses an unsigned, nonrestoring division algorithm.

Math 1

mathematical subroutines

Fixed-point, double-precision addition (XDAD) adds the double-precision number whose
address is in the calling sequence to the double-precision number in the A and B registers.
The low-order halves of the numbers are added first, and, if there is a carry, it is added to
the high-order sum.

Fixed-point, double-precision subtraction (XDSU) subtracts the double-precision number
whose address is in the calling sequence from the double-precision number in the A and B
registers.

Fixed-point, double-precision multiplication · (XDMU) multiplies the double-precision
number whose address is in the callilng sequence by the double-precision number in the A
and B registers. XDMU uses double-precision addition of partial products.

Fixed-point, double-precision divisio1'11 (XDDI) divides the double,precision number in the A
and B registers by the double-precision number whose address is in the calling sequence.
XDDI returns the difference to the A and B registers.

Fixed-point, double-precision two's complement (XDCO) takes the two's complement of
the double-precision number in the A and B registers. XDCO complements the number,
then tests the low-order bits for a carry.

Fixed-point, integer absolute value (IABS) takes the absolute value of the signed integer in
the A register. If the number is negative, IABS one's complements it, then corrects it to
two's complement form.

Fixed-point, integer sign transfer (ISIG) applies the sign of the integer whose address is in
the calling sequence to the quantity in the A and B registers.

Floating-Point Arithmetic

The floating-point subroutines provide higher accuracy, more flexibility, and wider number
ranges than fixed-point arithmetic. Floating-point subroutines include:

a. Addition, subtraction, multiplication, and division

b. Absolute value

c. Sign copy

d. Mantissa separation

e. Normalization

Floating-point addition ($QK) algebraically adds the floating-point number in the A and B
registers to the floating-point number whose address is in the calling sequence.

Math 2

mathematical subroutines

Floating-point subtraction ($QL) computes the difference of the floating-point minuend in
the A and B registers and the floating-point subtrahend whose address is in the calling
sequence.

Floating-point multiplication ($QM) multiplies the floating-point number in the A and B
registers by the number whose address is in the calling sequence. $QM separates the
mantissa and calls XDMU to implement the arithmetic operation.

Floating-point division ($QN) divides the floating-point number in the A and B registers by
the number whose address is in the calling sequence. $QN separates the mantissa and
calls XDDI to implement the arithmetic operation.

Floating-point, real-number absolute value (ABS) takes the absolute value of the floating
point, real quantity in the A and B registers. If the number is negative, ABS one's
complements it and returns the result in the A and B registers.

Sign copy (SIGN) sets the sign of the floating-point number in the A and B registers equal
to the sign of the quantity whose address is in the calling sequence.

The mantissa separation subroutines ($FMS, $FSM) separate the floating-point number in
the A and B registers and return the mantissa in the A and B registers and the
characteristic in the X register.

Normalization ($NML) normalizes the floating-point, double-precision number in the A and
B registers. $NML tests the sign, two's complements the number using XDCO, and returns
the fixed-point result in the A and B registers an~ the sign flag in the X register.

Arithmetic Functions

Subroutines are provided for the following arithmetic functions:

a. Logarithm

b. Exponential function

c. Square root

d. Sine

e. Cosine

f. Arctangent

g. Polynomial

h. Exponentiation

Math 3

mathematical subroutines

Fixed-point, single-precision logarithm (XLOG) computes the natural logarithm of the
quantity in the A register. XLOG uses a Chebychev polynomial of the fifth degree.

Floating-point, double-precision logarithm (ALOG) computes the natural logarithm of the
quantity whose address is in the calling sequence, returning the result in the A and B
registers.

Fixed-point, single-precision exponential function, positive argument (XEXP) computes
the exponential of the absolute value in the A register. It computes ex divided by 4, where
x is a positive fraction (between O and 1).

Fixed-point, single-precision exponential function, negative argument (XEXN) computes
the exponential of the absolute value in the A register. It computes e-x , where x is greater
than zero and less than or equal to one.

:1oating-point exponential function (EXP) computes the exponential of the floating-point
tuantity whose address is in the calling sequence.

:ixed-point, single-precision square rout (XSQT) takes the unrounded square root of the
1uantity in the A register (if it is nonnegative) and returns the result in the A register.

:1oating-point square root (SQRT) takes the square root of the floating-point number
ihose address is in the calling sequene1~.

'ixed-point, single-precision sine (XSliN) computes the Sine of the quantity in the A
egister, returning the result in the A re1~ister.

loating-point sine (SIN) computes the sine of the floating-point quantity whose address is
l the calling sequence.

ixed-point, single-precision cosine (XCOS) takes the cosine of the quantity in the A
~gister and returns the result in the A register.

loating-point cosine (COS) takes the cosine of the floating-point quantity whose address
in the calling sequence.

xed-point, single-precision arctangent (XATN) computes the arctangent of the quantity
1 the A register, returning the result in the A register.

oating-point arctangent (ATAN) computes the arctangent of the floating-point quantity
1ose address is in the calling sequence.

xed-point, single-precision polynomial (POLY) supports the fixed-point, single-precision
athernatical subroutines that require the evaluation of a polynomial in one variable of
1y finite degree. The polynomial is evaluated in Horner form.

iced-point, integer exponentiation ($HE).

ath 4

mathematical subroutines

Integer /floating-point exponentiation ($PE).

Floating-point exponentiation ($QE).

Conversions

The number and character conversion subroutines include:

a. Fixed-point/floating-point

b. Binary/decimal

c. EBCDIC/Hollerith

d. EBCDIC/ASCII

e. Packed BCD/ASCII

Fixed-point, single-precision integer to floating-point conversion ($QS) converts the
signed integer in the A register to floating-point format.

Floating-point to fixed-point, single-precision integer conversion ($HS) converts the
floating-point number in the A and B registers to integer format.

Fixed-point, single-precision binary-to-decimal conversion (XBTD) converts the absolute
value of the integer in the A register to a four-digit decimal-coded integer in the B register.

Fixed-point, single-precision decimal-to-binary conversion (XDTB) converts the four-digit,
binary-coded-decimal integer in the A register to a pure binary integer in the B register.

EBCDIC-to-Hollerith conversion (SAOl) converts and eight-bit EBCDIC character in the A
register to its equivalent 12-bit Hollerith code, returning the result in the A register.

Hollerith-to-EBCDIC conversion (SBOl) converts a 12-bit Hollerith code in the A register to
its equivalent eight-bit EBCDIC character, returning the result in the A register.

EBCDIC-to-ASCII conversion (SCOl) converts an eight-bit EBCDIC character in the A
register to its equivalent eight-bit ASCII code, returning the result in the A register. This
subroutine can be modified to produce seven-bit ASCII codes.

BCD-to-ASCII conversion (MT2A, n, s, e) converts a packed BCD character string of
length n and beginning in location s, into a packed ASCII character string of length n
beginning in location e.

ASCII-to-BCD conversion (A2MT, n, s, e) converts a packed ASCII character string of
length n and beginning in location s into a packed BCD character string of length n
beginning in location e.

Math 5

mathematical subroutines

Execution Times

Execution times for various mathematical subroutines are contained in the following three
tables.

Operation

ADD
SUB
MUL
DIV
SQRT
SIN
cos
LOG
EXP
ATAN

Double Precision Floating Point (45-bit mantissa, 8-bit exponent)

Execution Time (in milliseconds)

620/f-100

0.615
0.618

20.8
22.5

295
109
109
461
334
371

620/L-100

0.768
0.762

26.0
28.2

369
136
136
564
417
463

620/L

1.477
1.486

50
54

644
261
261

1130
802
888

*Double precision math library does not utilize hardware multiply/divide.

Operation

ADD
SUB
MUL
DIV

Math 6

Hardware Multiply/Divide

Execution Time (in microseconds)

620/f-100 620/L-100

1.5 2.0
1.5 2.0
6.38 10.0
6.38 10.0 to 14.0

620/l

3.6
3.6

18.0
18.0 to 25.0

Operation

ADD
SUB
MUL
DIV
SQRT
SIN
cos
LOG
EXP
ATAN

mathematical subroutines

Single Precision Floating Point (22-bit mantisa, 8-bit exponent)

Execution Time (in milliseconds)

620/f-100 620/L-100 620/L

0.140 0.175 0.337
0.171 0.214 0.410
0.236 0.295 0.566
0.362 0.452 0.869
2.17 2.71 5.2

1.6 2.0 3.85
1.6 2.0 3.85
1.76 2.2 4.23
1.36 1.7 3.3
0.58 (min.) 0.72 (min.) 1.4 (min.)
3.25 (max.) 4.06 (max.) 7.8 (max.)

Math 7

FORTRAN IV

FORTRANi

SECTION 1
INTRODUCTION

FORTRAN IV

TABLE OF CONTENTS

CHARACTER SET ... 1-2

LINE FORMAT ... 1-3
Initial Line : ... 1-5
Statement Number ... 1-5
Continuation Line .. 1-6
Comment Line ... 1-6
End Line ... 1-6

SECTION 2
BASIC ELEMENTS

DATA TYPES .. 2-1

DATA NAMES .. 2·1

CONSTANTS .. 2-2
Integer Constants· .. 2-2
Real Constants .. 2-2
Hollerith Constants ... 2-5
Logical Constants ... 2-6

VARIABLES .. 2-7
Implicit Types .. 2-7
Arrays .. 2-8

SECTION 3

SPECIFICATION STATEMENTS

DIMENSION STATEMENT .. 3-1

COMMON STATEMENT .. 3-2

EQUIVALENCE STATEMENT .. 3-5

TYPE STATEMENT ... 3-5.

FORTRAN iii

SECTION 4

EXPRESSIONS AND ASSIGNMENTS

EXPRESSIONS ... 4-1

ARITHMETIC ASSIGNMENT STATEMENT ... 4-4

LOGICAL ASSIGNMENT STATEMENT .. 4-6

LOGICAL EXPRESSIONS ,, .. 4-7
Relational Expressions .. 4. 7
Logical Operators .. 4.9

SECTION 5
CONTROL STATEMENTS

GO TO STATEMENTS .. 5-1
Unconditional GO TO .. 5-1
Computed GO TO.-... 5·1
ASSIGN and Assigned GO TO .. 5·2

ARITHMETIC IF STATEMENT .. 5·4
Logical IF Statement .. 5.4

CALL STATEMENT .. 5·6

RETURN STATEMENT ... 5-6

CONTINUE STATEMENT ... 5.7

PAUSE STATEMENT ... 5-7

STOP STATEMENT ... 5-8

DO STATEMENT ... 5-8

SECTION 6
INPUT /OUTPUT STATEMENTS

INPUT /OUTPUT LISTS ... 6·1

SIMPLE LISTS .. 6-1

DO-IMPLIED LISTS ... : .. 6-2

FORTRAN iv

READ STATEMENTS .. 6-2

WRITE STATEMENTS .. 6-3

REWIND STATEMENT ... 6-4

BACKSPACE STATEMENT .. 6-4

ENDFILE STATEMENT ... 6-4

FORMAT STATEMENT ... 6-4

FIELD SPECIFICATIONS ... 6-5

F CONVERSION ... 6·6
Output ... 6-6
Input ... 6-7

E CONVERSION .. 6-7
Output ... 6-7
Input ... 6-8

D CONVERSION ... 6-8

I CONVERSION .. 6-8
Output .. 6-8
Input ... 6-9

A CONVERSION ... 6-9

H CONVERSION ... 6-10
Output .. 6-10
Input ... 6-10

>< SPECIFICATION .. 6-11

L FORMAT CODE .. 6-11

3 FORMAT CODE .. 6-11

r SPECIFICATION (VORTEX only) .. 6-13

~CALE FACTOR P .. 6-14
Input .. 6-15
Jutput .. 6-16

I SPECIFICATION ... 6·17

FORTRAN v

l~EPEAT SPECIFICATIONS .. 6-17

FORMAT CONTROL AND LINE INTERACTION .. 6-19

COMMA AS INPUT DELIMETER .. 6-20

SECTION 7

PROGRAMS AND SUBPROGRAMS

MAIN PROGRAMS .. 7-1

SUBPROGRAMS ... 7-2
Function ... 7-2
Subroutine Subprogram .. 7-4
Block Data Subprogram .. 7-5
Data lnitiatization Statement ... 7-6

STATEMENT FUNCTIONS ... 7-7

INTRINSIC FUNCTIONS ... 7-8

BASIC EXTERNAL FUNCTIONS ... 7-8

DUMMY ARGUMENTS .. 7-8

ADJUSTABLE DIMENSIONS .. 7.9

EXTERNAL STATEMENT .. 7·11

COMBINING FORTRAN AND DAS MR ... 7-15

SECTION 8

STAND-ALONE OPERATING PROCEDURE

CONFIGURATION .. 8·1

MOS FUNCTIONS ... 8·3

COMPILING A PROGRAM ... 8-4
110 Device Specifications ... 8-5
Compiler Input Records ... 8-5
Compiler Output Records .. 8-5
Notification Errors .. 8-6

FORTRAN vi

Terminating (Fatal) Errors .. 8-7
Optional Listing ... 8- 7
Maps .. 8-7

ASSEMBLING A PROGRAM ... 8-8

LOADING A PROGRAM ... 8-12
Loading the Loader .. 8-13
Error Messages _:"""'."_ .. 8-15
Loading the Support Libraries ... 8-16

PROGRAM EXECUTION AND ERROR MESSAGES .. 8-16

SECTION 9
MOS AND VORTEX OPERATING PROCEDURES

COMPILING WITH MOS ... 9-1

COMPILING WITH VORTEX ... 9-2

LOADING WITH MOS .. 9-2

LOADING WITH VORTEX ... 9-3
Non-Resident Programs ... 9-3
Resident Programs ... 9-3

1/0 .DEVICE CONTROL .. 9-3

COMPILER INPUT RECORDS WITH MOS ... 9-4

COMPILER INPUT RECORDS WITH VORTEX ... 9-4

COMPILER OUTPUT RECORDS WITH MOS ... 9-4

COMPILER OUTPUT RECORDS WITH VORTEX ... 9-4

ERROR MESSAGES ... 9-5

MAPS WITH MOS ... 9-5

MAPS WITH VORTEX .. 9-5

FORTRAN vii

SECTION 1 INTRODUCTION

Varian FORTRAN IV is a programming system for the Varian 73 and 620 computers and is
comprised of a language, a library of subprograms, a compiler, and a run-time package
(program). FORTRAN IV can be compiled and run as a stand-alone program, under the
Master Operating System (MOS), or under the Varian Omnitask Real-Time Executive
(VORTEX).

The FORTRAN IV language is especially useful in writing programs for scientific anj
engineering applications that involve mathematical computations. In fact, the name of the
language FORTRAN is derived from its primary use: FORmula TRANslating. Source
programs written in the FORTRAN language consist of a set of statements constructed
from the elements described in this publication. The FORTRAN compiler analyzes the
source program statements and transforms them into an object program that is suitable
for execution. In addition, when the FORTRAN compiler detects errors in the source
program, appropriate error messages are produced. The Varian FORTRAN IV language is
compatible with and encompasses the American National Standards Institute (ANSI)
FORTRAN (X3.9, 1966) including its mathematical subroutine provisions (except for the
vertical spacing character + which is not implemented and is described in section 7.1.3.4
of the ANSI specification). Any valid programs compiled and executed using basic
FORTRAN subset may also be compiled and executed by the FORTRAN IV compiler.
Equivalent results are ensured by:

a. Common data formats.

b. Common format code routines.

c. Common mathematical subroutines.

d. Common libraries.

The following are salient features of the Varian 73/620 FORTRAN IV:

a. Scale Factor: The scale factor allows modification of data during conversion between
internal and external representation.

b. Variable Attribute Control: The attributes of variables and arrays can be explicitly
specified by statements or directives that:
1. Specify the number of words assigned to an item.
2. Explicitly type a variable as integer, real, double precision, complex, or logical.
3. Specify the dimension of arrays.
4. Specify data initialization values for variables.

FORTRAN 1-l

introduction

c. Implied DO loops on DATA statements. An array can be easily preset to specific values.

d. Adjustable Array Dimensions: The dimensions of an array in procedure subprograms
can be specified as variabh3s. When the subprogram is called, the absolute array
dimensions are substituted.

e. Thr.ee Dimension Arrays: An array has one, two, or three dimensions.

f. Six Character Variable Names: The name of a variable contains up to six characters.

g. Function subprograms return results via the argument list.

The first and largest part of this manual is devoted to the constructs of the FORTRAN
language as implemented on Varian systems .. This discussion logically proceeds from the
most basic language elements to the general FORTRAN program structures.

The first subject presented is the characters, literals (constants and strings), and
variables, the most basic units in FORTRAN. From these the programmer forms
expressions and statements directing computation, storage and program control and the
constructed related to input and output.

CHARACTER SET

A FORTRAN program unit is written using the following letters, digits, and special
characters:

Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ$

Digits: 0 1 2 3 4 5 6 7 8 9

Special Characters:

+

*
I
(
)

blank or space
equals
plus
minus
asterisk
slash
left parenthesis
right parenthesis
comma
decimal point

With the exception of the specific uses indicated in the following sections of this manual, a
blank character has no meaning, and can be used freely by the programmer to improve
the readability of the FORTRAN program.

FORTRAN 1-2

i ntrod ucti on

The following special characters are classified as arithmetic operators and are significant
in the unambiguous statement of arithmetic expressions:

+

I

**

addition or positive value
subtraction or negative value
multiplication
division
exponentiation

The special characters equals (=), open parenthesis ((), close parenthesis ()), comma
(,), and decimal point (.), have specific application in the syntactical expression of the
FORTRAN statement. The following sections of this manual qualify their use in particular
statements and expressions.

In addition to the FORTRAN character set, the Varian 731620 FORTRAN IV system
accepts the following characters in Hollerith fields:

quotation mark \ back slash
t uparrow [left bracket
I exclamation] right bracket
number sign < less than
% percent > greater than
& ampersand ? question mark

apostrophe colon
semicolon

Any other characters selected from the ASCII character set can also be accepted by the
Varian 73/620 FORTRAN IV.

LINE FORMAT

A FORTRAN program consists of a series of statements divided into physical sections
called lines that must be coded to a precise grammatical format. FORTRAN statements
fall into two broad classes, executable and nonexecutable. Executable statements specify
program action; nonexecutable statements describe the use of the program, the
characteristics of the operands, editing information, statement functions, or data
arrangement. The statements of a FORTRAN source program are normally written on a
standard FORTRAN coding form.

Figure 1-1 is a sample FORTRAN coding form. The coding form includes 80 columns of
information. Columns 73 through 80 are reserved for sequencing information, and have no
effect upon the generated object program. Columns 1 through 72 contain program
information in the format described below.

FORTRAN 1-3

,,
0
::0
-I
::0
)>
z

.,,
!IQ'
c ...
CD

....

....
(/)
DI
3
"C
i;' .,,
0
:0
-t
:0
> z
(")
0 a.
::;·

Otl ,,
0

3

i
I !13

' {,

; I

FORTRAN Coding Form

PRO<,HAM 111/TRIX muL TIPLICflT!tPN

FORTRAN STATEMENT

; 0 1
7

1 o). ·JI I
I (f I J... 0) 1)

I ;

;·
'"' 0 c.
c
n s·
::::I

introduction

Initial Line

The first line of each statement is called an ·initial line. A statement line consists of three
fields: statement number field, continuation flag, and statement field. A statement can
include an initial line and continuation lines. Statements can have any number of
continuation lines as required subject to the foHowing restrictions: DO statements must
have the first comma contained on an initial line; and the equals character (=) of a
replacement statement or a statement function definition must appear on the initial line.
An initial line can contain a statement label in columns 1 through 5. In this case, column
6 must contain a zero digit, blank, or space character; and columns 7 through 72 may
contain all or part of a statement except for the restrictions noted.

Example

r ·ir 10 ,,

. 20 .. 25 30 35

I I I

Statement Number

Number permit statements to be referenced by other portions of a program. A statement
number is an integer value in the range 1 to 99999 (leading zeros or blanks are not
significant). The initial line of each statement may be given a unique number in columns
1 through 5. The same number cannot be given to more than one statement in a program
unit.

Example

~ 6 7 1 0 15 20 25 30 35

50 A:o.5"'C+D

879 A=.S"C+O

FORTRAN 1-5

introduction

Continuation Line

Continuation lines are used when additional lines of coding are required to complete a
statement originating on an initial line. There can be any number of continuation lines
per statement with the exceptions previously noted for initial lines. In a continuation line,
columns 1 through 5 are blank. Column 6 contains any character other than a zero, blank,
or space. The continuation of the statement is in columns 7 through 72.

Example

5 6 7 1 0 1 5 20 25 30 35

...1....1. ...l...l A = l _l_ ~

I . 5" l _L ~

...I. ..l
2. l + J

...1. 3 D ...1. ...1. l

Comment Line

Any line with the character C or an asterisk (*) in column 1 is identified as a comment
line. Comments can appear anywhere in a program. All comment lines are ignored by a
FORTRAN compiler, except for displlay purposes. Comments are in columns 2 through 72.

Example

I~. Tl' " , 5 20 25 30 35

. r.H.r.s1 .I.s .. A1 .c.o,M.M1E.N.T.s. 1L.I.tJ.E. 1 I I

End Line

Any line containing the character blank in columns 1 through 6 and having only the
character string END in columns 7 through 72, preceded by, interspersed with, or followed
by blank characters, is recognized by the processor as an end line to inform the processor
that it has reached the physical end of the program.

Example

I' 'Tl~.N,D,·~
1 5 20 25 30 35

I I I I I I I I

FORTRAN 1-6

SECTION 2 - BASIC ELEMENTS

Constants and variables are distinguished in FORTRAN to identify the nature and
characteristics of the values encountered in program execution. A constant is a quantity
whose value is explicitly stated. A variable is a numeric quantity referenced by name,
rather than by its explicit appearance in a program statement. During the execution of a
program, a variable can assume many different values.

DATA TYPES

The Varian 731620 FORTRAN IV compiler recognizes the following types of data: integer,
real, double-precision, complex, logical, and Hollerith. Integer data are precise
representations of integral values. Real data are approximations of real numbers. Both
integer and real data may assume positive, negative, or zero values as follows (zero is
considered neither positive nor negative):

Integer
Real

DATA NAMES

Range in
16-Bit Computers

± 32,767
Approx.10±33

Range in
18-Bit Computers

± 131,071
Approx.to±3 8

FORTRAN data (variables, arrays, and array elements) are identified by names made up
of letter or digit strings of one to six characters, the first character of which is a letter.
(The character $ is processed exactly like a letter, but it is reserved for Varian system
names. To avoid conflict, therefore, it is advisable not to use the $ character in names.)
Data so identified are implicitly specified as being of type integer or real by the first
character, although this can be changed by an explicit specification using a TYPE
statement. In the absence of such an explicit specification, names beginning with the
letters I, J, K, L, M, and N denote integers and other names denote real values.

Example of implicit integer names are:

12A MZXF N5

Examples of implicit real-number names are:

A 82 F5M79 AAA

FORTRAN 2-1

basic elements

CONSTANTS

Constant data are identified explicitly by giving their actual values. Constants do not
change in value during program execution. They are specified as integer, real, double
precision, complex, Hollerith, or logical constants.

Integer Constants

An integer constant is from one to five decimal digits without a decimal point. It can be
preceded by a plus (+) or minus (-) sign. If the constant has no sign, it is interpreted as
a positive value.

-217

Example

-32767

In memory, an integer is stored in the format (two's complement):

16-Bit Computers

1 5 1 4

s I Integer

18-Bit Computers

1 7 16

Is I Integer

Real Constants

+00327 512

0

0

A real constant may consist of from one to seven digits, a decimal point character, and an
optional sign, plus or minus, or it may consist of a representation written in scientific
notation. If a real constant is written in the latter form it must be formed from of one to
seven decimal digits, an optional decimal point character, an optional sign character,
followed by the letter E followed by oine or two digits designating an exponent which may
have an optional sign. In all case when a leading sign character is omitted, it is assumed
to be positive. In FORTRAN notation the E portion of a real constant denotes that the
value being represented is the number preceding the E multiplied by 10 raised 'to the
power denoted by the integer constant following the E. The format of a real constant is:

±m.n

where, ± denotes an optional sign character, and m and n represent strings of decimal
digits with a total combined characters not exceeding nine. Either m or n (but not both)
may be omitted. An alternative form for a real constant, similar to scientific notation is:

± mpnE± d

FORTRAN 2-2

basic elements

where± denotes an optional sign character, m and n represent strings of decimal digits, p
is an optional decimal point which may be omitted only if n is omitted, and d is a one- or
two-digit integer constant.

The following are equivalent real constants:

2E3
2.E3

+2.E +03

17.
51El
-479E-3

Examples

-25.620E- l
+.42

.35E02

The following are invalid real constants:

-1234

6.2E+99

6.2E-99

9.8E072

E5

l.2E3.4

3E4E5

5,432.1

No decimal point or E part; interpreted
as an integer literal

Exceeds maximum size limit

Smaller than minimum

Three-digit exponent part

Exponent part alone not allow; taken
as a variable name

Exponent part must be an integer

More than one exponent part

No commas or other punctuation allowed
in real constant

In memory, a real number is stored in the format:

16-Bit Computers

0.0
-:4-79

15 14 7 6 0
S Characteristic S' Mantissa (hi h)
0 Mantissa (low)

18-Bit Computers

17 16 9 8
s Characteristic S' Mantissa (hi h)
O Mantissa (low)

0

FORTRAN 2-3

basic elements

The characteristic is eight bits long with a bias of 0200. If the mantissa is negative, the
entire first word is one's complemented. To represent zero, both words are set to zero. The
bit S' indicates that the mantissa is normalized.

If a real constant is specified with more significant digits than the precision real data
allow, truncation occurs, and only the most significant digits within the range will be
represented. For a 16-bit computer, 6 + significant decimal digits are represented for a
single-precision real constant and 13 + significant decimal digits for a double-precision
real constant. For an 18-bit computer, the corresponding precisions are 7 + and 15 +
significant decimal digits.

Double-Precision Constants

A double-precision constant in a source statement is specified exactly as an E-format real
constant except that the letter E is replaced by D.

Example

-3476.20-4 28.DO .5780 + 3

In memory, a double-precision number is stored in the format:

16-Bit Computers

1 5 1 4 8 7

0 Zeros l Characteristic
s S' l Mantissa (hi_.2..h)
0 Mantissa (mid)
0 Mantissa (low)

18-Bit Computers

1 7 16 8 7

Zeros l Characteristic
Mantissa (high)
Mantissa (mid)
Mantissa (low)

0

0

The characteristic is eight bits long with a bias of 0200. If the mantissa is negative, the
high-order word of the mantissa is in one's complement form. All four words are zero for
the number zero. The bit S' indicates that the mantissa is normalized.

Complex Constants

A complex constant is formed by an ordered pair of signed or unsigned real single·
precision constants separated by a comma and enclosed in parentheses.

FORTRAN 2-4

basic elements

The real constants in a complex constant can be positive, zero, or negative (if unsigned,
they are assumed to be positive). The first real constant in a complex co11stant represents
the real part of the complex number; the second represents the imaginary part of the
complex number.

Examples

Valid Complex Constants

(- 5.0E + 03,.16E + 02)
(4.0E + 03,.16E + 02)
(4.0E + 03,.16E + 02)
(2.1,0.0)

where i equals the square root of - 1.

has the value - 5000. + 16.01
has the value 4000. + 16.01
has the value 4000. + 16.0i
has the value 2.1 + O.Oi

Invalid Complex Constants

(292704, l .697)

(l.2El 13.279.3)

(.00304,.00506)

In memory, a complex number is stored in the format:

16-Bit Computers

1 5 1 4

the real part does not contain a
decimal point
the real part contains an invalid
decimal exponent
double-precision constants are
invalid

7 6 0
Real s Characteristic Js'{Mantissa (hi_9'..h)
Part
Imaginary
Part

0
s
0

Mantissa
Characteristic

Mantissa

18-Bit Computers

Real
Part
Imaginary
Part

1 T 16
s Characteristic
0
s Characteristic
0

Hollerith Constants

The general format of a Hollerith constant is:

n Hs

9 8
ls'I

Mantissa

ls 'l
Mantissa

(low)
ls'lMantissa (high)

(low)

0
Mantissa (hi_gh)

(low)
Mantissa (hi__g_h)

(low)

FORTRAN 2-5

basic elements

Where n is a positive non-zero constant denoting the number of characters in the string s
which contains legal characters (see input formats) including blank.

Any blank characters within the~ string will be considered part of the string, and should be
counted. This is the only case in which embedded blanks are not ignored.

Examples

4HABCD
9HTEST CASE

In memory, a Hollerith constant is stored in the format:

16-Bit Computers

15

Character

Character

17 16 15

8 7

1 Character

3 Character

18-Bit Computers
8 7

2

4

0 0 Chclracter 1 Character

0 0 Chc:1racter 3 Character

0

0

2

4

For Hollerith constants containing an odd number of characters, the last word contains
the last character of the constant in the left byte and a blank in the right byte as
character 2.

Logical Constants

A logical constant specifies the logical value of a variable. There are two logical values:
.TRUE. and .FALSE.. Each must be preceded and followed by a period as shown. The
logical constants .TRUE. and .FALSE. specify that the value of the logical variable with
which they are associated is true or false, respectively.

In memory, a logical constant is stored in the format:

16-Bit Computers

15 0

Logical Constant

18-Bit Computers
17 0

Logical Constant

where .FALSE. is stored as zero aind .TRUE. is stored as minus one.

FORTRAN 2-6

basic elements

VARIABLES

A FORTRAN variable name is an identifier that consists of a string of one to six
alphanumeric characters (letters and digits) with the leading character being a letter
(including$). If the variable name is more than six characters long, then only the first six
characters are retained internally. Embedded blanks are permitted within variable names
but will be removed by the system.

Variables are classified into five basic types:
integer, real, double precision, complex, and logical.

A value represented by each of these types may be expressed by a literal of the same type.
For instance, the value represented by an integer variable may be expressed by an integer
constant. The value represented by each variable type must therefore comform to the
same standards governing that type of constant.

Implicit Types

Unless declared otherwise in an explicit type statement, the variable name is assigned one
of two types according to its initial letter. If the initial letter is I, J, K, L, M or N, the
variable is an implicit integer type. If the first character is any other letter (or a dollar
sign), the variable is an implicit real type.

The following are valid names of variables with their type implicitly assigned, (not
overridden by an explicit assignment is a TYPE statement):

Name

ABC123
A$1
INTEGER

1$A23
NO SUM

Real
Real

Type

Integer truncated to INTEGE
6 characters

Integer
Integer, interpreted as NOSUM

The following are examples of invalid names of variables.

. 34SUM

DATA-5

. $6.98

Cannot begin with a numberic
character

Cannot contain a character
other that letters, numbers
or a dollar sign.

Period cannot be embedded in
name

Note that double precision, complex and logical types are not assigned implicitly.

FORTRAN 2-7

basic elements

Arrays

FORTRAN variables can be grouped into two classes: simple variables that are identified
by a single name formed by the1 definition above, and array elements that are designated
by an array name followed by a subscript list enclosed in parentheses. An array is a
convenient way to reference variables.

An array is an ordered set such that each member or element can be referenced by the
array and subscripts can be used to denote the location in the dimensions.

The array name is formed by th1~ same definition as a simple variable name.

The proper format of an array element is:

v (s)

Where v is a variable name and s is a subscript list which is a series of integer constants,
variables, and arithmetic expressions.

A variable names is an array name only if it appears in an appropriate specification
statement, such as a DIMENSION, TYPE or COMMON statement as a declarator. The
declarator is used to set the maximum number and size of the dimensions allowed and
must precede the first appearance of the array name in an executable or DATA statement.
In a program, an identifier can be used as a simple variable name or an array name, but
not both.

Whenever an array name appears in a FORTRAN program, the name must be immediately
followed by a subscript list, except when it appears in:

a. A COMMON, DATA or type statement

b. The list of an 1/0 statement

c. The dummy argument list of a subprogram

d. The actual argument list of a subprogram reference

Each element of an array may be referenced by means of appropriate subscripts. Each
entry in a subscript list is evaluated to obtain an integer value. Normally, the minimum
value that the subscript of an a1rray element can have is one. The maximum is the value
specified in the array declarator.

FORTRAN 2-8

SECTION 3 - SPECIFICATION STATEMENTS

Every executable FORTRAN program consists of a sequence of specification statements.
These statements may be classified into executable and non-executable statements.

An executable statement causes an action at that point in the program when the program
is executed.

A non-executable statement supplies information to the compiler when it is processing the
FORTRAN statements. In general, these statements specify variable types, initial values,
storage allocation, and allow subprograms to be used as actual arguments.

Specification statements organize and classify data that will be referred to by other
statements in the FORTRAN program. Specification statements include:

DIMENSION

COMMON

EQUIVALENCE

TYPE

Names and declares the size of an array.

Assigns variable and/or named arrays to common
storage areas.

Assigns variables and named array to shared
storage areas.

Declares entities to be of type integer, real,
double precision, complex, or logical.

Specification statements must precede all other statements except TITLE, BLOCK DATA,
FUNCTION, SUBROUTINE, EXTERNAL and NAME.

DIMENSION STATEMENT

Form: DIMENSION Vl(il), V2(i2), ... , Vn(in), where each V(i), (called an array declarator),
is composed of a declarator name V (the name of the array), and a declarator subscript
(i). Each (i) is an unsigned integer constant, two unsigned integer constants separated by
a comma, or three unsigned integer constants separated by commas. Each constant must
have a value greater than zero.

A DIMENSION statement specifies that the declarator names listed are arrays in the
program unit. The number of dimensions and the maximum size of each dimension is
specified by the declarator subscript associated with each declarator name.

More than one DIMENSION statement can appear in a program.

FORTRAN 3-1

specification statements

An array element is referred to by the array name qualified by a subscript to identify the
desired element. If the value of this subscript is out of the range specified by the array
declarator, the derived computational results will be unpredictable.

Array elements are stored column-wise in computer memory from low to high address
storage. Therefore, one-dimension arrays are stored sequentially in the order A(l),
A(2), , A(n), while two-dimension arrays are stored with the first (leftmost) dimension
varying most rapidly, i.e, A(l,1), A(2,1), , A(m,1), A(l,2), A(2,2), , A(m,n).

Example

DIMENSION A(5), 11(3,6), C(5,10), BIG(l0,10,10)

This specification statement indicates that A is a real vector with five elements; 11 is an
integer matrix of size 3 X 6 == 18 elements; C is a real matrix of size 5 X 10 = 50
elements; and BIG is a real matrix of size 10 X 10 X 10 = 1000 elements.

COMMON STATEMENT

General Form

where:

COMMON /x/a,b, .. ./r/c,d, ...

a,b, ... ,c,d, ... are variable or array names or array
declarators.

/x/ .. .Ir I represents optional common block names consisting
of one through six alphanumberic characters, the first of
which is alphabetic. These names must always be embedded
in slashes.

Although the COMMON statement may be used to provide dimension information,
adjustable dimensions may never be used. In the stand-alone and MOS systems, though
not in VORTEX, the minimum size of any common memory block is 4095 words.

Variables or arrays that appear in a calling program or subprogram may be made to share
the same storage locations with variables or arrays in other subprograms by use of the
COMMON statements. For example, if one program contains the statement:

COMMON TABLE

as its first COMMON statement, and a second program contains the statement:

COMMON TREE

FORTRAN 3·2

specification statements

as its first COMMON statement and the two programs are loaded together, the variable
names TABLE and TREE refer to the same storage location.

If the main program contains the statement:

COMMON A, B, C

and a subprogram contains the statement:

COMMON X, Y, Z

then A shares the same storage location as X, B shares the same storage location as Y,
and C shares the same storage location as Z.

Common entries appearing in COMMON statements are cumulative in the given order
throughout the program; that is, they are cumulative in the sequence in which they appear
in all COMMON statements. For example, consider the following two COMMON
statements:

COMMON A, B, C
COMMON G, H

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H

Redundant entries are not allowed. For example, the following statement is invalid:

COMMON A, B, C, A

Consider the following example:

CALLING PROGRAM

COMMON A, 8, C, R(lOO)
INTEGER R

CALL MAPMY (...)

Example

SUBPROGRAM SUBROUTINE
MAPMY(...)

COMMON X, Y, Z, S(lOO)
INTEGER S

FORTRAN 3.3

specification statements

Explanation:

In the calling program, the statement COMMON A, B, C, R(IOO) would cause 206 storage
locations (two locations per variable) to be reserved in the COMMON area.

The statement COMMON X, Y, Z, S(lOO) would then cause the variables X, Y, Z, and
S(l) ... S(lOO) to share the same storage spaces as A, B, C, and R(l) ... R(lOO), respectively.

From the above example, it can be seen that COMMON statements serve an important
function: namely, as a medium to implicitly transmit data between the calling program
and the subprogram. That is, values for X, Y, Z, and S(l) ... (100), because they occupy the
same storage locations as A, B, C, and R(l) ... R(IOO), do not have to be transmitted in the
argument list of a CALL statement. Arguments passed through COMMON must follow the
same rules of presentation with regard to type, etc., as arguments passed in a list. (See
the section entitled SUBPROGRAMS.)

In the preceding example, the common storage area (common block) established is called
a blank common area. That is, no name was explicitly given to that area of storage (the
name COMMON is assigned internally to the blank common block and will appear on
maps). The variables that appeared in the COMMON statements were assigned locations
relative to the beginning of the blan~t common area. However, variables and arrays may be
placed in separate common areas. Each of these separate areas (or blocks) is given a
name consisting of one through six alphanumeric characters (the first of which is
alphabetic); those blocks which have the same name occupy the same storage space.

Those variables that are to be place!d in labeled (or named) common are preceded by a
common block name enclosed in slashes. For example, the variables A, B, and C will be
placed in the labeled common area, HOLD, by the following statement:

COMMON/HOLD/A, B, C

In a COMMON statement, blank common can be distinguished from labeled common by
preceding the variables in blank common by two consecutive slashes or, if the variables
appear at the beginning of the cornr:non statement, by omitting any block name. For
example, in the following statement:

COMMON A, 8, C!ITEMS/X, Y, ZI ID, E, F

the variables A, 8, C, D, E, and F will be placed in blank common in that order; the
variables X, Y, and Z will be placed in the COMMON area labeled ITEMS.

Blank and labeled common entries appearing in COMMON statements are cumulative
throughout the program. For example. consider the following two COMMON statements:

FORTRAN 3-4

COMMON A, 8, C/R/D, E/S/F
COMMON G, HIS/I, J/R/P//W

specification statements

These two statements have the same effect as the single statement:

COMMON A, 8, C, G, H, W/R/D, E, P/S/F, I, J

COMMON is allocated from low to high memory addresses within a common block.

EQUIVALENCE STATEMENT .

Form: EQUIVALENCE (kl), (k2), ... , (kn), where each (ki) is a list of two or more
nondummy variables and/or array element names, separated by commas. Subscript
expressions of array element names must be nonzero, unsigned integer constants. An
element of a two or three dimension array can be referred to by using a single subscript,
giving the element position within the array (section 2.6.3).

The effect of the EQUIVALENCE statement is to cause the same area of memory to be
shared by two or more entities. Each element of the ki list is assigned the same (or a part
of the same) storage area.

More than one EQUIVALENCE statement is permitted in a program.

Example

DIMENSION A(5), 11(3,3), 81(3)
COMMON 8, 81, 82
EQUIVALENCE (X, A(2), Y), (8, C2, F5), (11(5), 82)

The effect of an EQUIVALENCE statement upon COMMON assignments may be the
lengthening of COMMON. This lengthening is permitted only if it increases COMMON in
the same direction as additional COMMON elements would. Thus, in this example, the
equivalence (81(1), A(3)) would have been invalid. It is also invalid to equate two elements
of the same array to each other. Within a given list (Ki), no more than one element can be
defined in a COMMON statement.

TYPE STATEMENT

General Form:

TYPE a, b, , z

where:

TYPE is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL

a, b, ... , z represent variable or array names, array declarators, or function names

FORTRAN 3-5

specification statements

The TYPE statements declare the type INTEGER, REAL, DOUBLE PRECISION, COMPLEX or
LOGICAL of a particular variable or array by its name, rather than by its initial character.
This differs from the other way of spHcifying the type of a variable or array (i.e., implicit
type specification). LOGICAL and INTEGER types are internally indistinguishable.

Example 1

INTEGER ITEM, VALUE

Explanation:

This statement declares that the variables ITEM and VALUE are of type INTEGER.

Example 2

REAL ARRAY, HOLD, VALUE, ITEM (5, 5)
Explanation:

This statement declares that the varia1bles ARRAY, HOLD, VALUE, and the array named
ITEM are of type REAL. In addition, it declares the size of the array ITEM. The variables
~RRAY, HOLD, and VALUE have two storage locations reserved for each; and the array
1amed ITEM has 50 storage locations reserved (two for each variable in the array).

Example 3:

DOUBLE PRECISION C, D, E
::xplanation:

"his statement declares that the variables C, D, and E are of type DOUBLE PRECISION.
"hus, C, D, and E each have four storage locations reserved, one for the exponent and
hree for the mantissa (section 2.5.2.1).

Example 4

COMPLEX C, D, E

xplanation:

his statement declares that the variables C, D, and E are of type COMPLEX. Thus C, D,
nd E each have four storage locations reserved (two for the real part, two for the
naginary part).

)RTRAN 3-6

SECTION 4 - EXPRESSIONS AND ASSIGNMENTS

EXPRESSIONS

Expressions specify the procedure by which a data value is obtained. An expression is any
valid constant, variable, function reference, or a combination of these separated by
appropriate operators and parentheses.

Expressions can be divided into two types: arithmetic and logical. If the type of literal
which can represent the resulting value is true or false, then the expression is logical. An
expression which yields a numeric quantity is an arithmetic expression.

The operators that can be used by a FORTRAN expression are listed in the table below
with a relative precedence assigned to each operator by the compiler (the lowest number
has the highest precedence).

RELATIVE
OPERATOR PRECEDENCE FUNCTION

** 1 exponentiation
unary - 2 change of sign
I 3 division

* 3 multiplication
4 subtraction

+ 4 addition
.NE. 5 not equal to
.GE. 5 greater than or equal to
.GT. 5 greater than
.EQ. 5 equal to
.LE. 5 less than or equal to
.LT. 5 less than
.NOT. 6 logical negation
.AND. 7 logical conjunction
.OR. 8 logical disjunction

The occurrence of these operators indicates that an arithmetic, logical, or, relational
action is to be performed.

FORTRAN 4-1

expressions and assignments

The arithmetic elements are described by the following statements:

PRIMARY

FACTOR

TERM

SIGNED TERM

SIMPLE
ARITHMETIC
EXPRESSION

ARITHMETIC
EXPRESSION

An ARITHMETIC EXPRESSION enclosed in
parentheses, a constant, a variable
reference, an array element reference,
or function reference.

A FACTOR is a PRIMARY or a construct of
the form: PRIMARY**PRIMARY

A TERM is a FACTOR or one of the
forms:
TEl?M! FACTOR
TEl?M*TERM

A TERM immediately preceded by a + or
-sign.

A TERM or two SIMPLE ARITHMETIC
EXPRESSIONS separated by a + or - sign.

A SIMPLE ARITHMETIC EXPRESSION or a
signed TERM or either of the preceding
immediately followed by a + or - sign and
a SIMPLE ARITHMETIC EXPRESSION.

A PRIMARY of any type may be exponentiated by an INTEGER PRIMARY and the resulting
factor is of the same type as that of the element being exponentiated. A REAL or DOUBLE
PRECISION PRIMARY may be exponentiated by a REAL or DOUBLE-PRECISION PRIMARY.
The resultant FACTOR is of type REAL if both PRIMARIES are REAL, and otherwise of type
DOUBLE PRECISION. These are the only cases for which use of the exponentiation operator
is defined. Valid combinations for exponentiation are:

Base

REAL

INTEGER

DOUBLE PRECISION

Expci1nent

REAl., INTEGER or DOUBLE PRECISION

INTEGER (REAL and DOUBLE PRECISION
exponents are invalid)

REAL., INTEGER or DOUBLE PRECISION

3y use of the arithmetic operators other than exponentiation, any admissible element may
>e combined with another admissible element of the same type, and the resultant
ilement is of the same type.

'ORTRAN 4-2

expressions and assignments

Further, an admissible real element may be combined with an admissible double-precision
or complex element; the resultant element is of type DOUBLE PRECISION or COMPLEX,
respectively.

A part of an expression is evaluated only if it is necessary to establish the value of the
expression. The rules for formation of expressions imply the binding strength of operators.
The range of the subrtraction operator is the term that immediately succeeds it. The
evaluation may proceed according to any valid formation sequence. Use of an array
element name requires the evaluation of its subscript. The type of the expression in which
a function reference or subscript appears does not affect, nor is it affected by, the
evaluation of the actual arguments or subscript. An element whose value is not
mathematically defined cannot be evaluated.

The following rules represent the derivation of all permissible expressions:

A variable, constant, or function standing alone is an expression.

A(l)
JOB NO
217
17.26
SQRT(A + 8)

If E is an expression whose first character is not an operator, then + E and-E are
expressions.

-A(l)
+J08NO
-217
+ 17.26
-SQRT(A + 8)

If E is an expression, then (E) is an expression meaning the quantity E taken as a unit.

(-A)
-(+J08NO)
-(X + Y)
(A-SQRT(A + 8))

If E is an expression whose first character is not an operator, and F is an expression, then:
F + E, ~E. F*E, FIE and F**E are all expressions.

-(8(1,J) + SQRT(A + B(K,L)))
-(8(1 + E,3* J + K) +A)
1.7E-2**(X + 5.0)

FORTRAN 4-3

expressions and assignments

The mode of expression is determinHd by the modes of its elements, which must be the
same with the following exceptions:

a. A REAL quantity can appear in an INTEGER expression only as an argument of a
function.
I+ LFUNC(B)

b. An INTEGER quantity can appE!ar in a REAL expression only as an argument of a
function, or as a subscript or an exponent.
AFUNC(I +2)
A(l,J + 1)
B**N

The order of evaluation of expressions is established by the use of parentheses in the
statement. If parentheses are not indicated, the following conventions of mathematics
apply.

The hierarchy of operations, in order of precedence is: exponentiation, followed by
multiplication and division, followed by addition and subtraction.

Within the same hierarchy of operations, evaluation proceeds from left to right.

X+Y*Z
W*X/Y*Z
8**2-4*A*C
X-Y-Z
X/Y/Z

Examples

is interpreted as
is interpreted as
is interpreted as
is interpreted as
is interpreted as

ARITHMETIC ASSIGNMENT STATEMENT

General Form

a=b

where:

a is any subscripted or nonsubscripted variable.

b is any arithmetic expression.

X +(Y*Z)
((W*X)/Y)*Z
(8**2)- ((4. *A)*C)
(X-Y)-Z
(X/Y)/Z

fhis FORTRAN statement closely resembles a conventional algebraic equation; however,
:he equal sign specifies replacement rather than equivalence. That is, the expression to
:he right of the equal sign is evaluated, and the resulting value replaces the current value
>f the variable to the left of the equal sign.

;ORTRAN 4-4

If a is TYPE

INTEGER
INTEGER
INTEGER
INTEGER

REAL
REAL
REAL
REAL

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

COMPLEX
COMPLEX
COMPLEX
COMPLEX

*Notes

p =
Assign
Real assign

DP evaluate

Fix =

Float =
DP float

expressions and assignments

Rules for Assignment of b to a

and b is TYPE

INTEGER
REAL
DOUBLE PRECISION
COMPLEX

INTEGER
REAL
DOUBLE PRECISION
COMPLEX

INTEGER
REAL
DOUBLE PRECISION
COMPLEX

INTEGER
REAL
DOUBLE PRECISION
COMPLEX

prohibited combination

the assignment rule is*

Assign
Fix and Assign
Fix and Assign
p

Float and Assign
Assign
DP Evaluate and Real Assign
p

DP Float and Assign
DP Evaluate and Assign
Assign
p

p
p
p
Assign

transmit the resulting value without change
transmit as much precision of the most
significant part of the resulting value
as a REAL datum can contain
evaluate according to the most precise
rules, then DP float
truncate any fractional part and transform
to INTEGER
transform to REAL
transform to DOUBLE PRECISION retaining as
much precision as a DOUBLE PRECISION datum
can contain

Assume that the type of the following variables has been specified as:

Variable Names

I, J, W
A, B, C, D
E

Type

INTEGER variables
REAL variables
COMPLEX variable

FORTRAN 4-5

expressions and assignments

Then the following examples illustrate valid arithmetic statements using constants,
variables, and subscripted variables of different types:

Statement

A=B

W=B

A=I

I= I+ 1

A=C*D

E = (l.0,2.0)

Description

The value of A is replaced by the current
value of B.

The value of B is truncated to an integer
value, and this value replaces the value
of W.

The value of I is converted to a real value,
and this result replaces the value of A.

The value of I is replaced by the value of
I+ 1.

The most significant part of the product
of C and D replaces the value of A.

The value of the complex variable E is re
placed by the complex constant (1.0, 2.0).
Note that the statement E = (A,B) where A and
B are real variables, is invalid.

LOGICAL ASSIGNMENT STATEMENT

General Form

a=b

where:

a is a subscripted or nonsubscripted variable.

b is any logical expression.

Variable Name1; Type

G, H LOGICAL variables

FORTRAN 4-6

expressions and assignments

Examples of logical assignment statements are:

Statement

G=.TRUE.

H=.NOT.G

G=3 .. GT.I

Description

The value of G is replaced by the logical
constant .TRUE.. ,

If G is .TRUE., 'the value of H is replaced
by the logical constant .FALSE .. If G is
.FALSE., the value of H is replaced by the
logical constant .TRUE ..

The value of I is converted to a real value;
if the real constant 3. is greater than this
result, the logical constant .TRUE. replaces
value of G. If 3. is not greater than I, the
logical constant .FALSE. replaces the value
of G.

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical constant, logical
variable, logical subscripted variable, or logical function reference, the value of which is
always a truth value (i.e., either .TRUE. or .FALSE.).

More complicated logical expressions may be formed by using logical and relational
operators. These expressions may be in one of the three following forms:

a. Relational operators combined with arithmetic expressions whose mode is INTEGER,
REAL, or DOUBLE PRECISION.

b. Logical operators combined with logical constants (.TRUE. and .FALSE.), logical
variables, subscripted logical variables, or logical function references.

c. Logical operators. combined with either or both forms of the logical expressions
desr,ribed in items a and b.

Item a is discussed in the following section, Relational Operators; items b and c are
discussed in the section entitled Logical Operators.

Relational Expressions

A relational expression consists of two arithmetic expressions separated by a relational
operator and has the value .TRUE. or .FALSE. as the relation is true or false. Both
arithemtic expressions can be type INTEGER (or LOGICAL) or one may be type REAL or

FORTRAN 4-7

expressions and assignments

DOUBLE PRECISION and the other type REAL or DOUBLE PRECISION. If a real and a
double precision expression appear in a relational expression, the effect is the same as a
similar relational expression. This similar expression contains a double precision zero as
the right-hand arithmetic expression and the difference of the two original expressions (in
their original order) as the left. The relational operator is unchanged.

The six relational operators, each of which must be preceded and followed by a period, are
as follows:

Relational
Operator

.GT.

.GE .

. LT.

.LE.

.EQ .

. NE.

Definition

Greater than C>)
Greater than or equal to ~)
Less than (<)
Less than or equal to ('.$)
Equal to (=)
Not equal to ~)

The relational operators express an arithmetic condition which can be either true or false.
Only arithmetic expressions whose mode is INTEGER, REAL, or DOUBLE PRECISION can be
combined by relational operators. For example, assuming the type of variable has been
specified as follows:

Variable Names

ROOT, E, Q
A, I, F
L
c

Type

REAL variables
INTEGER variables
LOGICAL variable
COMPLEX variable

then, the following illustrates valid and invalid logical expressions using the relational
operators.

Example

Valid Logical Expressions Using Relational Operators:

(ROOT*Q).GT.E

A.LT.I

E'' *2.7.EQ.(5. *ROOT+ 4.)

57.9.LE.(4.7 + E)

.5.GE.9. *ROOT

E.EQ.27.3E + 05 (continued)

FORTRAN 4-8

expressions and assignments

Invalid Logical Expressions Using Relational Operators:

~.LT.ROOT

~.GE.(2.7,5.9E3)

L.EQ.(A+ F)

E**2.EQ97.1E9

.GT.9

Logical Operators

Complex quantities can never appear in logi
cal expressions.

Complex quantities can never appear in logi
cal expressions.

Logical quantities can never be compared to
real quantities by relational operators.

Missing period immediately after the rela·
tional operator.

Missing arithmetic expression before the re
lational operator.

The three logical operators, each of which must be preceded and followed by a period, are
as follows: (A and B represent logical constants or variables, or expressions containing
relational operators).

Logical
Operator

.NOT.

.AND.

. OR.

Definition

.NOT.A · if A is .TRUE., then

.NOT.A has the value .FALSE.;
if A is .FALSE., then .NOT.A
has the value .TRUE.

A.AND.B · if A and B are both
.TRUE., then A.AND.B has the
value .TRUE.; if either A or B
or both are .FALSE., then
A.AND.B has the value .FALSE .

A.ORB · if either A or B · or
both are .TRUE., then A.ORB
has the value .TRUE.; if both
A and B are .FALSE., then A.ORB
has the value .FALSE.

Two logical operators may appear in sequence only if the second one is the logical operator
.NOT..

FORTRAN 4-9

expressions and assignments

Only those expressions which, when evaluated, have the value .TRUE. or .FALSE. may be
combined with the logical operators to form logical expressions. For example, assume that
the type of variable has been specified as follows:

Variable Names Type

ROOT, E, Q
A, I, F

REAL variables
INTEGER variables
LOGICAL variables
COMPLEX variable

L, W
c

Then the following examples illustrate valid and invalid logical expressions using both
logical and relational operators.

Examples

Valid Logical Expressions:

(ROOT*Q.GT. E).AND. W

L.AND .. NOT.(l.GT.F)

(E + 5.9E2.GT.2. *E).OR.L

.NOT.W.AND .. NOT.L

L.AND .. NOT.W.OR.l.GT.F

(E**F.GT.ROOT).AND .. NOT.(l.EQ.A)

E.AND.L

. OR.W

NOT.(A.GT.F)

(C.EQ.l).AND.L

L.AND .. OR.W

.AND.L

FORTRAN 4-10

Invalid Logical Expressions

E is not a logical expression .

. OR. must be preceded by a logical expression .

missing period before the logical operator
.NOT.

a complex variable may never appear in a
logical expression.

the logical operators .AND. and .OR. must
always be separated by a logical expression .

. AND .. must be preceded by a logical expres
sion.

expressions and assignments

Order of Computations in Logical Expressions

Where parentheses are omitted, or where the entire logical expression is enclosed within a
single pair of parentheses, the order in which the operations are performed is as follows:

Operation

Evaluation of Functions
Exponentiation (**)
Multiplication and division (* and /)
Addition and subtraction (+ and ·)
.LT.,.LE.,.EQ.,.NE.,.GT.,.GE.
.NOT.
.AND.
.OR.

For example, the expression:

(A.GT.D**B.AND .. NOT.L.OR.N)

is effectively evaluated in the following order.

1. D**B Call the result W (exponentiation)
Call the result X (relational operator)

Hierarchy

1st (highest)
2nd
3rd
4th
5th
6th
7th
8th

2. A.GT.W
3 .. NOT.L Call the result Y (highest logical operator)
4. X.AND.Y
5. Z.OR.N

Call the result Z (second highest logical operator)
Final operation

Use of Parentheses in Logical Expressions

Parentheses may be used in logical expressions to specify the order in which the
operations are to be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is, the innermost pair of parentheses) is
effectively evaluated first. For example, the logical expression:

((l.GT.(B + C)).AND.L)

is effectively evaluated in the following order.

1. B+C
2. 1.GT.X
3. Y.AND.L

Call the result X
Call the result Y
Final operation

The logical expression to which the logical operator .NOT. applies must be enclosed in
parentheses if it contains two or more quantities. For example, assume that the values of

FORTRAN 4-11

expressions and assignments

the logical variables, A and B, are .FALSE. and .TRUE., respectively. Then the following two
expressions are not equivalent:

.NOT.(A.ORB)

.NOT.A.ORB

In the first expression, A.ORB is evaluated first. The result is .TRUE., but .NOT. (.TRUE.)
implies .FALSE.. Therefore, the value of the first expression is .FALSE ..

In the second expression, .NOT.A is evaluated first. The result is .TRUE.; but .TRUE.ORB
implies .TRUE.. Therefore, the value of the second expression is .TRUE..

FORTRAN 4-12

SECTION 5 - CONTROL STATEMENTS

Each statement in a FORTRAN program is executed in the order of its appearance in the
source program, unless this sequence is interrupted or modified by a control statement.
The control statements are: GO TO, IF, CALL, RETURN, CONTINUE, PAUSE, STOP, and DO.

GO TO STATEMENTS

GO TO statements transfer logical control from one section of a· program to another.
FORTRAN includes three forms of the GO TO statement: unconditional, computed, and
assigned GO TO.

Unconditional GO TO

An unconditional GO TO is of the form: GO TO k, where k is a statement label reference.

Execution of this statement causes the statement identified by the label k to be executed
next in sequence.

Example

GO TO 72

71 V7 = HQ(5) + Y**L

72 V7 = HQ(4) + X** J

In this example, execution of the GO TO 72 statement causes statement number 71 and
any succeeding statements to be bypassed. Execution is resumed with statement number
72.

Computed GO TO

The computed GO TO statement is of the form: GO TO (kl, k2, ... ,kn), i, where the k's are
statement label references, and i is an integer variable reference.

Execution of this statement causes the statement identified by the statement label kj to
be executed next in sequence, where j is the value of i at execution time. Valid execution of

control statements

this statement is dependent upon the value of the integer variable such that 1 is less than
or equal to j, and j is less than or equal to n.

Example

GO TO (98, 405, 3), n

Execution of the statement in the example will cause control to be transferred to the
statement labeled 98, 405, or 3 if the value of the variable integer n is 1, 2, or 3,
respectively.

ASSIGN and Assigned GO TO

General Form

where:

ASSIGN i TO m

GO TO m, (Xl, X2, X3, ... ,Xn)

is an executable statement number.

Xl,X2,X3, ... ,Xn are executable statement numbers.

m is a nonsubscripted integer variable that is assigned
one of the following statement numbers: Xl, X2, X3, ... Xn.

The assigned GO TO statement causes control to be transferred to the statement
numbered Xl, X2, X3, ... , or Xn, depending on whether the current assignment of m is Xl,
X2, X3, ... , or Xn, respectively. For exaimple, in the following statement:

GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement number 8, then the
statement numbered 8 is executed next. If the current assignment of N is statement
number 10, the statement numbered 10 is executed next. If N is assigned statement
number 25, statement 25 is executed next.

The current assignment of the integer variable m is determined by the last executed
ASSIGN statement. Only an ASSIGN statement may be used to initialize or change the
value of m. The value of m is not the integer statement number; ASSIGN 10 TO I is not the
same as I = 10.

FORTRAN 5-2

control statements

Example 1

ASSIGN 50 TO NUMBER

10 GO TO NUMBER, (35, 50, 25, 12, 18)

50 A=B+C

In the above example, statement 50 is executed immediately after statement 10.

Example 2

ASSIGN 10 TO ITEM

13 GO TO ITEM, (8, 12, 25, 50, 10)

8 A=B+C

10 B=C+D ·

ASSIGN 25 TO ITEM
GO TO 13

25 C=E**2

In the above example, the first time statement 13 is executed, control is transferred to
statement 10. On the second execution of statement 13, control is transferred to
statement 25.

FORTRAN 5-3

control statements

ARITHMETIC IF STATEMENT

It is often necessary to alter the logical flow of a program on the basis of the results of an
arithmetic test. The IF statement is a conditional transfer that will execute this level of
control, and is of the form:

IF (e) kl, k2, k3

The arithmetic IF is a three-way transfer. Execution of this statement causes the
expression (e) to be evaluated, following which the statement identified by the label kl,
k2, k3 is executed next in sequence, as the value of (e) is less than zero, equal to zero, or
greater than zero, respectively.

Example

IF (I) 10, 11, 12
10 V7 = HQ(5) + Y**L

GO TO 13
11 V7 = HQ(4) + X** J

GO TO 13

12 V7=HQ(3)+X**L

13 NEXT STATEMENT

In this example, execution of IF (I) 10, 11, 12 causes one of the following actions: for a
negative value of I, statement number 10 is executed in sequence; for a zero value of I,
statement number 10 and any succeeding statements are bypassed and statement
number 11 is executed; for a positive nonzero value of I, statements 10 through 11 and
any statement following statement 11 are bypassed, and statement number 12 is
executed.

Logical IF Statement

General Form

where:

IF (a)s

a is any logical expression.

s is any executable statement except a DO statement
or another logical IF statement

FORTRAN 5-4

control statements

The logical IF statement is used to evaluate the logical expression (a) and to execute or
skip statements depending on whether the value of the expression is .TRUE. or .FALSE.,
respectively.

Example

5 IF (A.LE.0.0) GO TO 25
10 C=D+E
15 IF (A.EQ.8) ANSWER 2.0*A/C
20 F=G/H

25 W=X**Z

In statement 5, if the value of the expression is .TRUE. (i.e., A is less than or equal to 0.0),
the statement GO TO 25 is executed next and control is passed to the statement
numbered 25. If the value of the expression is .FALSE. (i.e., A is greater than 0.0), the
statement GO TO 25 is ignored and control is passed to the statement numbered 10.

In statement 15, if the value of the expression is .TRUE. (i.e., A is equal to 8), the value of
ANSWER is replaced by the value of the expression (2.0*A/C), and statement 20 is
executed. If the value of the expression is .FALSE. (i.e., A is not equal to 8), the value of
ANSWER remains unchanged and statement 20 is executed next.

Example

5 IF (P.OR .. NOT.Q) A= 8
10 C=8**2

Assume that P and Qare logical variables. In statement 5, if the value of the expression is
.TRUE., the value of A is replaced by the value of 8 and statement 10 is executed next. If
the value of the expression is .FALSE., statement A= 8 is skipped and statement 10 is
executed.

control statements

CALL STATEMENT

The CALL statement causes a transfer of execution control to a subroutine-type
subprogram, and is of one of the forms: CALL s(al, a2, ... , an) and CALL s, wheres is the
name of a subroutine and the a's are actual arguments that will replace the dummy
arguments in the called subroutin1~. Arguments can be Hollerith constants, variable
names, array element names, array names, any other expression, or the name of an
external procedure. They must, however (except for Hollerith constants), be indicated in
order, number, and type with the corresponding dummy arguments of the subroutine.
External procedure names must be declared by an EXTERNAL statement.

Execution of the CALL statement transfers control to the designated subroutine. The
arguments declared in the statement line are associated with the dummy arguments that
are parameters of the executable statements of the subroutine. Control is then passed to
the first executable statement of the called subroutine. Control will be returned to the first
executable statement following the CALL statement upon execution of the RETURN
statement in the subroutine. Examples of calling sequences to subroutines are shown
below.

CALL TEST (A,I)
CALL EXIT

The first example will transfer execution control to the subroutine labelled TEST and
include the parameters or arguments A and I in the subroutine. The second example will
cause execution control to be transferred to the subroutine labelled EXIT. Any arguments
required for execution of exit are self-contained in the logic of the subroutine.

RETURN STATEMENT

The execution of a RETURN statement results in the exit from a subprogram, and is
expressed in the form: RETURN. A RETURN statement defines the logical end of a
procedure subprogram and, therefore, may appear only in a subprogram. Execution of the
statement returns logical control to the current calling program unit. Each subprogram
must contain at least one RETURN statement.

In the case of a subroutine subprogram, control is returned to the first statement
immediately following the CALL statement that released control to the subroutine. In the
case of a function subprogram, control is returned (with the value of the function
available) to the statement that called the function subprogram.

FORTRAN 5-6

control statements

CONTINUE STATEMENT

Form: CONTINUE.

The CONTINUE statement results in no action in an execution sequence; therefore, the
statement has no effect upon the program. This statement serves as a program unit
reference point and is frequently used at the end of a DO loop.

PAUSE STATEMENT

Example

IF (I) 10, 11, 12
10 V7 = HQ(5) + Y**L

GO TO 13
11 V7 = HQ(4) + x~·~·J

GO TO 13
12 V7 = HQ(3) + X**L

13 CONTINUE

Form: PAUSE n or PAUSE, where n is octal digit string of from one to five digits
designating the particular PAUSE.

A PAUSE statement causes a temporary cessation of program execution and displays
PAUSE n on the console device (logical unit SO for MOS and VORTEX). The statement
permits operator intervention for setup or control functions, such as changing data tapes.
For stand-alone and MOS systems, the computer executes a halt instruction, delaying
further execution until the computer is placed in the run mode. For VORTEX, a SUSPND
call is executed that suspends program execution until a RESUME call is made (see
VORTEX Reference Manual, 98 A 9952 101) for descriptions of SUSPEND and RESUME
calls. Execution will resume at the first executable statement following the PAUSE
statement.

Example

PAUSE 01

When executed under VORTEX, the task name precedes the PAUSE statement.

FORTRAN 5-7

control statements

STOP STATEMENT

Form: STOP n or STOP, where n is an octal digit string of from one to five digits·
designating the particular STOP.

A STOP statement causes termination of program execution and displays STOP n (see ·
section 8 for display format). The program then terminates.
MOS and VORTEX terminations occurs with exit calls. In the stand-alone system,
terminations occur with the execution of a hardware halt.

Example

STOP 0721

When executed under VORTEX, the task name precedes the STOP statement.

DO STATEMENT

The DO statement controls repetitive execution of a group of statements. The number of
repetitions depends on the value of a control variable. The statement assumes one of the
forms: DO n i = ml, m2, m3 and DO n i = ml, m2, where n is the statement label of an
executable statement. This statement, called the terminal statement of the associated DO
must physically follow and be in the same program unit as the DO statement. The
terminal statement may not be a GO TO of any form, arithmetic IF, RETURN, STOP,
PAUSE, or another DO statement, nor a logical IF statement containing one of these
forms.

Symbol i is an integer variable name, identified as the control variable.

Symbol ml, identified as the initial parameter, m2, as the terminal parameter, and m3, as
the incrementation parameter are each either an integer constant or integer variable
reference. If the second form of the DO statement is used, a value of 1 is implied for the
incrementation parameter. When the DO statement is executed, the values of ml, m2,
and m3 must be greater than zero.

Associated with each DO statement is a range that is defined to be those executable
statements from and including the first executable statement following the DO, to and
including the terminal statement defined by the DO. A special situation, called nesting,
occurs when the range of a DO contains another DO statement. In this case, the range of
the contained DO must be a subset of the range of the containing DO. There is no limit to
the nesting of DO statements.

FORTRAN 5-8

control statements

The control variable is assigned the value represented by the initial parameter. This value
must be less than or equal to the value represented by the terminal parameter.

The range of the DO is executed.

If control reaches the terminal statement after execution of the terminal statement, the
control variable of the most recently executed DO statement associated with the terminal
statement is incremented by the value represented by the associated incrementation
parameter.

If the value of the control variable is greater than the value represented by its associated
terminal parameter, the DO is said to be satisfied, and the control variable becomes
undefined.

If there were one or more other DO statements referring to the terminal ~tatements in
question, the control variable of the next most recently executed DO statement is
incremented by the value represented by the associated incrementation parameter until
all DO statements referring to the particular termination statement are satisfied, at which
time the first executable statement following the terminal statement is executed.

Upon exiting from the range of a DO by execution of a GO TO statement or an arithmetic
IF statement, that is other than by satisfying the DO, the control variable of the DO is
defined and is equal to the most recent attained value.

A GO TO or arithmetic IF statement may not cause control to pass into the range of a DO
from outside its range. When a procedure reference occurs in the range of a DO, the
actions of that procedure are considered to be temporarily within that range, i.e., during
the execution of that reference.

The control variable, initial, terminal, and incrementation parameters of a DO may not be
redefined during the execution of the range of that DO.

If a statement is the terminal statement of more than one DO statement, the label of that
terminal statement may not be used in any GO TO or arithmetic IF statement that occurs
anywhere but in the range of the most deeply contained DO with that terminal statement.

Example

DO 607 Kl =2, ID, 3

The foregoing statement would cause Kl, the control variable, to be set to the value of the
initial parameter, 2. Execution would proceed at the statement immediately following,
down to and including the statement identified by the label 607. After each execution of
the loop, Kl is incremented by the incrementation parameter, 3, and evaluated in relation
to the current value of the terminal parameter, ID. If the current value of Kl= ID,
execution control is transferred to the statement following that identified by the label 607;
otherwise, the DO cycle is repeated.

FORTRAN 5-9

control statements

Example illustrating DO nesting:

FORTRAN 5-10

WRITE (MX,8)
L=O
DO 150 J = 1,K
DO 140 I= 1,M
L=L+l

140 D(I) = V(L)
150 WRITE (MX,9)J,(D(l),I = 1,M)

CALL LOAD (M,K,R,V)
C PRINT FACTOR MATRIX

WRITE (MX,lO)K
DO 180 I= 1,M
DO 170 J = 1,K
L = M*(J-1) +I

170 D(J) = V(L)
180 WRITE (MX,11)1,(D(J),J = 1,K)

If (K·l) 185, 185, 188
185 WRITE (MX,19)K

GO TO 100
188 CALL VARMX (M,K,V,NC,TV,B,T,D)

SECTION 6 INPUT/OUTPUT STATEMENTS

Input statements provide a program with the means of receiving information from external
sources. Output statements allow the transmission of program data to external sources.
These external sources may be devices such as magnetic tape and paper tape handlers,
typewriters, and punch card processors.

There are two types of input/output statements.

READ and WRITE statements
AUXILIARY Input/Output statements

The first statement type causes the transfer of records of sequential files to and from the
program. These data may be formatted information consisting of strings of characters or
unformatted information consisting of binary word values in the form in which they
normally appear in storage. The second statement type consists of the BACKSPACE and
REWIND statements, which provide for positioning of devices and the ENDF/LE statement,
which provides for writing an end of file indicator.

Input/output statements reference input/output units, formatted information, and format
specifications. An input/output unit is identified by a FORTRAN unit number u that can
be an integer constant or a variable name (or array element) referencing an integer
constant. All input/output statements for stand-alone and MOS FORTRAN programs must
contain explicit references to unit numbers at compiling time (e.g., REWIND 7, READ (2,
6)). Under VORTEX, input/output statements may contain implied references to unit
numbers at compiling time (e.g., WRITE (J, 15), or REWIND M5).

The format specification f is defined by either a FORMAT statement having the statement
label f, or an array name. If f is a FORMAT statement label, the statement must appear in
the same program as the input/output statement.

INPUT /OUTPUT LISTS

The input list specifies the names of variables and array elements to which input values
are assigned. The output list specifies the names of variables and array elements whose
values are to be transmitted. Input and output lists are of the same form.

SIMPLE LISTS

Simple lists have the form: ml, m2, m3 , mn, where mi is the name of a variable or
array element. Commas separate each name in the list. The period signifies possible
additional list items. List elements can be enclosed in parentheses.

FORTRAN 6-1

input/output statements

Input Lists

A
C(26,L)
R, K, D, (I, J)

Example

Output Lists

B
1(10,10)
S, (R, K), F(l ,25)

An array variable in a list that is not subscripted is considered equivalent to the listing of
each successive element of the array. If B is an array, list B is equivalent to B (1, 1), B (2,
1), B (3, 1), , B (1, 2), B (2, 2), , B (j, k), where j and k are the subscript limits of B.

DO-IMPLIED LISTS

A DO-implied list is a simple list followed by a comma character and an expression of the
form: i = ml, m2, m3 or i = ml, rn2.

The elements i, ml, m2, and m3 have the same meaning as defined for the DO statement.
The DO implication applies to all simple list items enclosed in parentheses with the
implication. For input lists, i, ml, m2, and m3 may appear within this range only as
subscripts.

DO-Implied Lists:

Examples

(X (I), I = 1, 4)
(Q (J), R (J), J = 1, 2)
(G (K), K = 1,. 7, 3)
((A (I, J), I = 3, 5), J = l, 2)
(X (K), K = 1, 2), I, (R (J), J 3, 5)

Equivalent Simple Lists:
x (1), x (2), x (3), x (4)
Q (1), R (1), Q (2), R (2)
G (1), G (4), G (7)
A (3, 1), A (4, 1), A (5, 1)
A (3, 2), A (4, 2), A (5, 2)
X (1), X (2), I, R (3), R (4), R (5)

READ STATEMENTS

These statements are used to obtain data values from an external source. The data values
are input in either formatted or unformatted mode. The form of a formatted READ
statement is:

READ (u,f) k.

FORTRAN 6-2

input/output statements

The verb READ and the parentheses must appear in this form.

Execution of this statement causes information to be transmitted from the external source
whose FORTRAN unit number is defined by u. These data are scanned and converted as
specified by the format specification, f, and the resulting values are assigned to the
variable names defined in the list, k.

The form of an unformatted READ statement is: READ (u) k.

The verb READ and the parentheses must appear in this form.

This statement causes data to be input in binary form from the unit defined by u. The
values are assigned to the variable names defined in the list, k.

Examples

READ (1,44) A, B, C
READ (2) R, S
READ (N, 12) A, (R (I), I = 1, 10)
READ (L) S, (T (J), J = 1, N)

All information appearing on external sources is divided into records. Each time a READ
statement is executed, a new record is processed. The number of records input by a single
READ statement is determined by the list and format specification. If only part of a record
is input the remainder of the record is lost as the next READ processes the next record.
Records are read sequentially until the list is exhausted. Only enough values are read to
fill the list.

The list, k, in an unformatted READ statement may be left blank to skip a record.

Formatted and unformatted records are described in sections 8 and 9.

WRITE STATEMENTS

WRITE statements are used to transfer program data to external devices. These data may
be formatted or unformatted. The form of a formatted WRITE statement is: WRITE (u, f) k.

The verb WRITE and the parentheses must appear in this form.

Execution of this statement causes records to be written on the device referenced by u.
The contents of the records are the values taken sequentially from the list, k, converted
according to the format specification, f.

The form of an unformatted WRITE statement is:

WRITE (u) k.

FORTRAN 6-3

input/output statements

The verb WRITE and the parentheses must appear in this form.

Execution of this statement causes binary information from the list, k, to be written in
records on the unit defined by u.

!Examples

WRITE (1, 4) A, 8, C
WRITE (7) R, S, T
WRITE (K, 12) X, (Y (J), J
WRITE (N) W, Z, (F (K), K

1, M), I
1, 5)

Several records may be written with a single WRITE statement. The number of records is
determined by the list and format specifications. Successive records are written until the
data are exhausted; If the data do not fill a record, the record is filled with blanks.

REWIND STATEMENT

This statement is of the form:

REWIND u.

Execution of this statement causes the physical unit defined by u to be rewound.

BACKSPACE STATEMENT ..
This statement has the form:

BACKSPACE u.

The BACKSPACE statement causes the physical unit defined by u to be backspaced one
record.

ENDFILE STATEMENT

This statement has the form:

ENDFILE u.

When this statement is executed, an end of file indicator is written on the physical unit
defined by u.

FORMAT STATEMENTS

FORMAT statements, with input/output operations, specify conversion and editing of
information between program storage and external representation. FORMAT statements

FORTRAN 6-4

input/output statements

are nonexecutable and must have a statement label to be referenced by input/output
statements. Conversion performed according to a FORMAT statement during output is in
general the reverse of conversion performed during an input operation.

A FORMAT statement is expressed as:

n FORMAT (fl, f2, f3, ... , fn)

where

n is the statement label and the fn are field specifications

The noun FORMAT and the parentheses must appear in this form.

When formatted records are output to a printer, the first character of the record is not
printed but is processed as a printer vertical spacing control character as follows:

Character
blank
0
1

Vertical Spacing
One line
Two lines
To first line of next page

The ANSI no-advance character + is not implemented for the MOS and stand-alone
systems. Refer to the VORTEX Reference Manual for the devices that process the +
character.

FIELD SPECIFICATIONS

FIELD specifications describe the type of conversion and editing to be performed on each
variable appearing in the input/output list. FIELD specifications can be in any of the
following forms:

rAw rFw.d rEw.d rDw.d rlw nHs 's' nX rlw rGw.d

where:

a. The characters A, D, E, F, G, L, and I indicate the manner of conversion for variables in
the list.

b. The characters H, 's', and X represent characters to be input/output directly from the
format ('s' is used with VORTEX only).

c. The character I represents the end of a record.

d. wand n are nonzero integer constants defining the width of the field (including digits,
decimal points, and algebraic signs) in the external character string.

(continued)

FORTRAN 6-5

input/output statements

e. d is an integer specifying the number of fractional digits appearing in the external
string.

f. r is an optional, nonzero integer indicating that the specification is to be repeated r
times.

g. s is a string of acceptable FORT1RAN characters.

h. The T specification relocates the current position in the external record (VORTEX only).

i. Y is a non-zero integer constant specifying the character position in the external record.

F CONVERSION

General form:

rFw.d

Only real data may be processed by this form of conversion.

Output

The field is right-justified with as many leading blanks as necessary to fill w. Negative
values are preceded by a minus sign. Internal values are converted to fixed-point decimal
numbers and rounded to d decimal places.

For a field specification of Fl0.4:

368.4
12.0

-17.90767
-37.5E-2

is converted to
is converted to
is converted to
is converted to

368.4000
12.0000

-17.9077
.3750

If a value requires more positions than allowed by w, the most significant digits, including
sign if negative, are output. The error indication is designated by an asterisk in the least
significant character position.

For a field specification of F6.4:

FORTRAN 6-6

4739.76
-12.463

is converted to
is converted to

4740*
-12.5*

input/output statements

Input

Input strings are decimal numbers of length w with d characters in the fractional portion.
Blanks are treated as zeros. If a decimal point is present in a value, the fractional portion
of. the value is explicitly defined by that decimal point character.

For a field specification F8.3:

35
964372

0.53821
-16.402
-12
47.-4

E CONVERSION

General form:

rEw.d

is converted to
is converted to
is converted to
is converted to
is converted to
is converted to

Only real data may be processed by this form of conversion.

Output

Internal values are converted to decimal values of the forms:

where:

.ddd ... dE + ee and .ddd ... E-ee

ddd ... d represents d digits, and
ee is a decimal exponent.

0.035
964.372

0.53821
-16.402
-0.012

0.0047

The leading decimal point and E characters are present exactly as shown. Internal values
are rounded to d digits, and negative values are preceded by a minus sign. The external
field is right-justified and preceded by blanks to fill the width, w. This field width includes
the exponent digits, the sign of the exponent (minus or space), the letter E, the magnitude
digits, the decimal point, and the sign of the value (minus or space). This means that the
field width should correspond to the relation: w?! d + 6.

If w is less than (d + 6), the format is in error.

FORTRAN 6-7

input/output statements

For a field specification of E12.5:

Input

76.573
58796.341
-369.7583

0.006873
0.2

-0.0000054

is converted to
is converted to
is converted to
is converted to
is converted to
is converted to

.76573E 02

.58796E 05
-.36976E 03

.68730E-02

.20000E 00
- .5400E-05

Each external value is of field width w with d characters in the fractional part of the value.
The value is right-justified with all blanks counting as zeros. A minus sign may precede the
value of the exponent. A decimal point placed in the fractional part takes precedence over
the d specification. The character E may be present to separate the value and the
exponent.

For a field specification of El0.3:

123E3
12874E2

-563E-02
398EOO

5387601
5455-01

-6.7563E05

D CONVERSION

is converted to
is converted to
is converted to
is converted to
is converted to
is converted to
is converted to

123.0
1287.4

- 0.00563
0.398

538.76
0.5455

-675630.0

The D conversion is used for the input/output of double-precision numbers. It is used
exactly as the E conversion except the letter E is replaced by D.

I CONVERSION

General form:

rlw

Only integer data may be processed by this form of conversion.

Output

Internal values are converted to integer constants. Negative values are preceded by a
minus sign. Each field is right-justified and filled with leading blanks.

FORTRAN 6-8

For a field specification of 16:

281
-3567

is converted to
is converted to

input/output statements

281
-3567

If the data require more character positions than allowed by the width, w, only the most
significant w positions are output.

For a field specification of 13:

Input

281
-6374

is converted to
is converted to

3*
-6*

External input values are right-justified with the width, w. Blanks are counted as zeros.
Input values must be integer values. A preceding minus sign may be placed on a value.

For a field specification of 14:

120
-144

1 2
-3

A CONVERSION

is converted to
is converted to
is converted to
is converted to

120
-144

102
-3

An A format conversion is used in conjunction with a READ or WRITE statement for the
input/output of alphanumeric information to or from a REAL, INTEGER, or LOGICAL list
element. The general form is rAw, where r and w are unsigned integer constants. If r is
one, it can be omitted.

On input, rAw will be interpreted to mean that the next r successive fields of w characters
are each to be stored in the asscoiated REAL list elements. If w is greater than 9, where 9
is the number of characters a single list element can contain, only the 9 right-most
characters will be significant. If w is 9 or less, the characters will be left-justified, and the
word(s) filled with blanks, if necessary.

On output, rAw will be interpreted to mean that the next r successive fields of w
characters are each to be the result of alphanumeric transmission from the specified list
elements. If · w exceeds g, only g characters of output will be transmitted, preceded by w -
g blanks. If w is g or less, the w left-most characters of the specified storage element will
be tranismitted.

FORTRAN 6-9

input/output statements

H CONVERSION
In FORTRAN, Hollerith information consists of the legal FORTRAN character set plus the
additional characters

% & \ < > ?

Information input from the typewriter or paper tape is converted to an internal code used
by FORTRAN. When this information is output, the internal codes are converted to the
appropriate typewriter or paper tape? codes.

General form:
nHs

Or:
's' (VORTEX only)

Output

The number of characters, n; in the string, s,- should contain exactly the number of
characters specified so that characters from other fields are not taken as part of the
string.

Blanks are counted as characters in the string. The quote character (') can be output
using a pair of quotes in the 's' format description.

Input

Specification
lHR
8HbSTRINGb
llHX(l,3) = 12.0
'bA='
'bs=" A'"

Examples

b indicates a blank space

External Output
R
bSTRINGb
X(l,3) = 12.0
bA=
bs='A'

The w characters in the string, s, are replaced by the next w characters from the input
record. The result is a new string in the field specification. Each quote in a pair is
overlayed by an input character in the 's' format.

Specification
5Hl2345
7HbTRUEbb
8Hbbbbbbbb
'AB'
·x·
b indicates a blank space

Example

Input String
ABCDE
FALSEbb
MATRIXbb
i2
ABC

Resultant Specification
5HABCDE
7HFALSEbb
8HMATRIXbb
'12'
'ABC'

This feature can be used to change titles, dates, headings, etc., that are output with the
program data.

FORTRAN 6-10

input/output statements

X SPECIFICATION

General form: nX.

This specification causes no conversion. On output, n blanks are inserted in the external
record. On input, n spaces are skipped from the input record.

Specification

lHA, 4X, 2HBC
4X, 3HABC
lX, 3HABC, 3X

Output Example

Input Example

Output

AbbbbBC
bbbbABC
bABCbbb

Specification Input String Resultant Input

F4.l, 3X, F3.0 12.5RRR120 12.5,120.

The RRR characters are ignored by the 3X specification.

L FORMAT CODE

General form:

where:

rLw

r is optional and is an unsigned integer constant used to
denote the number of times the same format code is repeti
tively referenced.

w is an unsigned integer constant that specifies the number
of characters of data.

Logical variables may be read or written by means of the format code Lw.

On input, the first Tor F encountered in the next w characters of the input record causes
a value of .TRUE. or .FALSE., respectively, to be assigned to the corresponding logical
variable. If field w consists entirely of blanks, a value of .FALSE. is assumed.

On output, a Tor F is inserted in the output record as the value of the logical variable in
the 1/0 list. Tis a non-zero value and F is zero. The single character is preceded by w - 1
blanks.

FORTRAN 6-11

input/output statements

G FORMAT CODE

General form:

where:

rGw.d

r is optional and is an unsi1gned integer constant used to
denote the number of times the same format code is repeti·
tively referenced.

w is an unsigned integer constant specifying the total field
length.

d is an unsigned integer constant specifying the number of
significant digits.

The G format code is a generalized code in that it automatically selects an output format
appropriate to the magnitude of the real data.

Input processing is the same as for the F conversion.

The w portion of the G format code reserves the four right·most positions for a decimal
exponent field.

If the real data, n, are in the range 0.1 ~ n < lO**d, where d is the d portion of the
format code Gw.d, then this exponent field is blank. Otherwise, the real data are
transferred with an E or D decimal exponent depending on the type of the real data.

For the purpose of simplification, the following examples deal with the printed line.
However, the concepts apply to all input/output media.

Example 1

Assume that the variables A, B, C, and D are of type real whose values are 292.7041,
82.43441, 136.7632, 0.8081945, respectively.

FORTRAN 6· 12

1
2
3

FORMAT
FORMAT
FORMAT

WRITE

(Gl2.4,G12.5,G12.4,Gl2.7)
(Gl3.4,Gl3.5,G13.4)
(Gl3.4)

(0, n) A, B, C, D

input/output statements

Explanation:

a. If n has been specified as 1, the printed output would be as follows (b represents a
blank):

Print Position
I

bbb292. 7bbbbbb82.434bbbbbbb 136.8bbbb.8081945bbbb

b. If n has been specified as 2, the printed output would be:

Print Position 48

Print Position 1
I

Print Position 39

bbbb292. 7bbbbbbb82.434bbbbbbbb 136. 8bbbb
bbbb.8082bbbb

Line 1
Line 2

From the above example, it can be seen that by increasing the field width reserved (w),
blanks are inserted.

c. If n has been specified as 3, the printed output would be:

Print Position 1
I

bbbb292. 7bbbb
bbbb82.43bbbb
bbbb 136.Sbbbb
bbbb.8082bbbb

Line 1
Line 2
Line 3
Line 4

From the above example, it can be seen that the same format code is used for each
variable in the list. Each repetition of the same format code causes a new line to be
printed.

T SPECIFICATION (VORTEX ONLY)

General form:

where:

Ty

T is a specification that relocates the current position
in the external record.

y is a non-zero integer constant that specifies the
character position in the external record.

FORTRAN 6-13

input/output statements

On output, a T specification can be used to position column headers as follows (b
indicates a blank space):

FORMAT(T10,5HCOLb1 , T22 , SHCOLb2)

This example causes

COLb1

to be printed starting in column 10,. and causes

COLb2

to be printed starting in column 22.

On input, a T specification can be used to skip or re-read fields.

SCALE FACTOR P

The representation of the data, internally or externally, can be modified by the use of a
scale factor followed by the letter P preceding the F, E, G, and D format codes.

The scale factor affects the appropriate conversions in the following manner:

a. For F, E, G, and D input conversions (provided no exponent exists in the external field)
and F output conversions, the scale factor effect is as follows:

externally represented number equals internally represented number times the
quantity ten raised to the nth power.

b. For F, E, G, and D input, the scale factor has no effect if there is an exponent in the
external field.

c. For E and D output, the basic real constant part of the quantity is multiplied by ten to
the nth power and the exponent is reduced by the scale factor.

d. For G output, the effect of the scale factor is suspended unless the magnitude of the
datum to be converted is outside the range that permits the effective use of F
conversion. If the effective usEi of E conversion is required, the scale factor has the
same effect as with E output.

For example, if input data are in the form xx.xxxx and it is desired to use this internally in
the form .xxxxxx, the format code us1:id to effect this change is 2PF7.4.

FORTRAN 6-14

input/output statements

Input

As another example, consider the following input data:

27bbb-93.2094bb-175.804lbbbb55.3647

where b represents a blank.

The following statements:

5 FORMAT (12,3Fll.4)

READ (0,5) K,A,B,C

cause the variables in the list to assume the following values:

The following statements:

K: 27
A : -93.2094

B : - 175.8041
c : 55.3647

5 FORMAT (12,1P3Fl 1.4)

READ (0,5) K,A,B,C

cause the variables in the list to assume the following values:
K : 27 B : - 17.58041
A : - 9.32094 C : 5.53647

The following statements:

5 FORMAT (12,-1P3Fll.4)

READ (0,5) K,A,B,C

causes the variables in the list to assume the following values:

K : 27
A : -932.094

B : - 1758.041
c : 553.647

FORTRAN 6-15

input/output statements

Output

Assume the variables K,A,B, and C have the following values:

K : 27
A : -93.2094

then the following statements:

5 FORMAT

WRITE

B : - 175.8041
c : 55.3647

(12,1P3Fl 1.4)

(0,5) K,A,B,C

cause the variables in the list to output the following values:

K : 27
A : -932.094

B : - 1758.041
c : 553.647

The following statements:

5 FORMAT (12,-1P3Fll.4)

WRITE (0,5) K,A,B,C

cause the variables in the list to output the following values:

K : 27
A : -9.3209

B : -17.5804
c : 5.5365

For output, when scale factors are used, they have effect only on real data. However, this
real data may contain an E or D decimal exponent. A positive scale factor used with real
data that contains an E or D decimal exponent increases the number and decreases the
exponent. Thus, if the real data were in a form using an E decimal exponent and the
statement FORMAT (1X,12,3El3.3) used with an appropriate WRITE statement resulted in
the following printed line:

b27bbbb-.932Eb02bbbb-.175Eb03bbbbb.553Eb02

the statement FORMAT (1X,12,1P3El3.3) used with the same WRITE statement results in
the following printed output:

b27bbb-9.321Eb0lbbb-1.758Eb02bbbb5.536Eb01

FORTRAN 6·16

input/output statements

The statement FORMAT (1X,12,-1P3E13.3) used with the same WRITE statement results
in the following printed output:

27bbbb-.093Eb03bbbb-.018Eb04bbbbb.055EB05
The scale factor is assumed to be zero if no other value has been given. However, once a
value has been given, it will hold for all format codes following the scale factor within the
same FORMAT statement. This also applies to format codes enclosed within an additional
pair of parentheses.

I SPECIFICATION

Form

Each slash (/) specified in the format causes the termination of a record and processing of
the next record. Successive slashes (/I I ... I I) cause subsequent records to be ignored on
input, and successive blank records to be written on output. A slash separating two field
specifications removes the need for a comma separator. For example,

F5.4/ 4Fl 0.3.

Output Example

For a specification (lHA/lHB/lHC/lHD) the resultant output records are:

A
B
c
D

Input Example

Using the four records output from the previous example, an input specification (lHl/
1H2//1H3) produces the resultant specification (lHA/lHB//lHD).

REPEAT SPECIFICATIONS

The A, D, F, E, I, L, and G field specifications can be repeated by using the repeat count r
in the forms rAw, rDw, rFw.d, rEw.d, rlw, rlw, and rGw.d.

Examples

4Fl0.5,F3.6 is equivalent to Fl0.5,Fl0.5,Fl0.5,F10.5,F3.6

2F4.l,2E7.1 is equivalent to F4.1,F4.l,E7.l,E7.1

2F5.2,316,2E8.2 is equivalent to F5.2,F5.2,16,16,16,E8.2,E8.2

FORTRAN 6-17

input/output statements

Repetition of a group of field specifications is accomplished by enclosing the group in
parentheses preceded by an integer repeat count. If no repeat count is specified, the
count is taken as one.

Examples

2(Fl0.5,16) is equivalent to Fl0.5,16,Fl0.5,16

2(E9.3,F7.l/i4) is equivalent to E9.3,F7.l/14,E9.3,F7.l/14

3(4F5.0,2E8.2) is equivalent to 4F5.0,2E8.2,4F5.0,2E8.2,
4F5.0,2E8.2

Example

50 FORMAT (4X,2(15,6F8.2)//)

The use of additional parenthes1~s (up to two levels) within a FORMAT statement is
permitted to enable the user to repeat the same format code when transmitting data. For
example, the statement:

10 FORMAT (2(Gl0.6,G7.l),G4)

is equivalent to

10 FORMAT (G10.6,G7.1,Gl0.6,G7.l,G4)

If the data exists with a D decimal exponent, it is transferred with this D decimal
exponent.

If a multiline listing is desired such that the first two lines are to be printed according to a
special format and all remaining lines according to another format, the last format code in
the statement should be enclosed in a second pair of parentheses. For example, in the
statement:

FORMAT(G2,2G3.l/Gl0.8/(3G5.l))

If more data items are to be transmitted after the format codes have been completely
used, the format repeats from the last left parenthesis. Thus, the printed output would
take the following form:

FORTRAN 6-18

G2,G3.1,G3.l
Gl0.8

G5.l,G5.l,G5.1
G5. l ,G5. l ,G5.1

input/output statements

As another example, consider the following statement:

FORMAT(G2/2(G3,G6.l),G9.7)

If 13 data items are to be transmitted, the printed output on a WRITE statement takes the
following form:

G2
G3,G6.1,G3,G6. l,G9. 7
G3,G6. l ,G3,G6.1,G9. 7

G3,G6.1

FORMAT CONTROL AND LINE INTERACTION

Execution of a formatted READ or WRITE statement initiates format control. The
conversion performed on data depends on information jointly provided by the next
element of the input-output list and the next field specification of the FORMAT statement.
If there is a list, at least one field specification of type D, E, F, G, L, A, or I should be
present in the FORMAT statement.

Execution of a formatted READ statement causes one record to be input. Each D, E, F, G,
L, A, or I specification has a corresponding element in the list. Each H or X specification
has no corresponding element in the list and the format control communicates
information directly to the record. When a slash is encountered or the entire input record
is processed, the record is terminated. If more input is necessary, the next record is input.
Any unprocessed characters of a record are skipped when a slash is encountered.

A READ statement is terminated upon ending the list if:

a. The next specification is A, D, E, F, G, I, or L.

b. The format control has reached the last outer right parenthesis of the FORMAT
statement.

If the list ends and the next specification is an H or X, data are processed (with the
possibility of additional records being input) until one of the two above conditions is met.

If the format control reaches the right-most parenthesis of the FORMAT statement and
more list remains to be processed, the following steps are taken:

a. A new record is input and remaining data in the previous record ignored.

b. Format control reverts to the point immediately following the last left parenthesis.

FORTRAN 6-19

input/output statements

If group repeat specifications exist in the format, this point is at the right-most group of
the format. The repeat count is not taken into consideration. If no groups are present, the
format is started from the beginning.

When a formatted WRITE stat1~ment is executed, records are written each time 120
characters have been processed, a slash is encountered, or the format control terminates.
The format control terminates by one of the two methods described for READ termination.
Incomplete records ~re filled with blanks to maintain standard record lengths.

COMMA AS DELIMITER ON INPUT .

Varian 731620 FORTRAN allows a comma to be used as a delimiter between inputs. As an
example with the following format statement:

FORMAT (13, 14, F6.2)

Using the above format, the following values can be input with a READ statement: 13, 2,
12.60

The run-time 1/0 accepts this input and handles these values correctly, however you
cannot input more than the number of characters specified in the FORMAT statement.

FORTRAN 6-20

SECTION 7- PROGRAMS AND SUBPROGRAMS

An executable FORTRAN program consists of a main program and any required
subprograms. Subprograms may be defined by the programmer or contained in the
system library. Each program or procedure subprogram must contain at least one
executable statement.

Each VORTEX program or subprogram can contain as its first statement (except for
comment lines) a TITLE statement with the following format:

TITLE n

where:

n is the program module name that is included in the heading of the source listing, as well
as in the object program used by system maintenance and generation programs in
VORTEX.

MAIN PROGRAMS

A main program is a program unit consisting of a set of FORTRAN statements, comment
lines, and an END line. The program may be preceded by specification statements.

A main program cannot contain a subprogram definition statement, namely:

a FUNCTION statement
a SUBROUTINE statement
a BLOCK DATA statement

A main program may contain calls to other subprograms or may contain statement
function subprograms.

A main program can accept a main program entry name definition of the following format:

where:

NAME Nl, N2, ... , Nn

Nl, N2, ... , Nn are entry names by which the main program
can be referenced

A VORTEX main program must include specifications for all common blocks that are
referenced by the subprograms.

FORTRAN 7-1

programs and subprograms

SUBPROGRAMS

Subprograms are program units which may be called by other programs or subprograms.
Subprograms are categorized as one of the following:

PROCEDURE SUBPROGRAMS
FUNCTION subprogram
SUBROUTINE subprogram

SPECIFICATION subprogram
BLOCK DATA subprogram

Functions are programmed procedures that are often used to provide solutions to
mathematical functions. Function references may be used in the same manner as
references to variables in an expression. For example: X = AB*SIN (Y) - C*COS (r'Z),
where SIN is the name of the sine function, COS is the name of the cosine function, and
(Y) and (Y*Z) are their respective argument lists. The value returned for a function
reference is of the same mode as the function name, corresponding to the rules for real
and integer symbolic names.

Function Subprograms

A function subprogram is defined e:<ternal to the program unit by which it is referenced. A
function subprogram is defined by having as its first statement, other than comment
lines, a statement of the form:

FUNCTION f(al, a2, a3, ... , an)

where

f is the symbolic name of the function and

ai represent dummy arguments.

Each ai is either a variable name, array name, or an external procedure name. The ai
defines the type, number, and order of the FUNCTION arguments. A function subprogram
must have at least one argument.

A function subprogram is executHd at the first executable statement following the
FUNCTION statement. Specification statements (DIMENSION, COMMON, and EQUIVA
LENCE) may immediately follow the FUNCTION statement. If present, these must precede
any other statement, excluding comments. The symbolic names of the dummy arguments,
ai, may not appear in an EQUIVALENCE or COMMON statement.

A function subprogram must contain at least one RETURN statement, and the last
statement executed in a FUNCTION must be a RETURN statement. The function
subprogram is ended by an END line.

FORTRAN 7-2

programs and subprograms

The symbolic name, f, of the FUNCTION must appear as a variable name within the
subprogram. The value returned for a FUNCTION is the last value assigned to this name
prior to execution of a RETURN statement. The type of the FUNCTION value is as for a
variable (section 2.3.1).

The symbolic name of the function must not appear in any nonexecutable statement
within the subprogram.

Example

FUNCTION XP(A,B,I)
DIMENSION 8(10)
XP=O.
DO 1 J = 1,10
XP=(A*B(J))**I +XP
RETURN
END

A FUNCTION is executed with a function reference by a main program or another
subprogram. The actual arguments in the call must correspond in type, number, and
order with the FUNCTION dummy arguments.. If a dummy argument of a FUNCTION is an
array name, the corresponding actual argument must be an array name.

Example:

A call for the example FUNCTION shown above would be: W = XP(R,S,K), where
S is an array.

Type Specification of FUNCTION Subprogram

In addition to declaring the type of a FUNCTION name by the predefined convention, there
exists the option of explicitly specifying the type of a FUNCTION name within the function
statement.

General Form

where:

Type FUNCTION name (al, a2, a3, ... , an)

Type is integer, real, double precision, complex, or
logical.

name is the name of the FUNCTION subprogram.

al, a2, a3, ... ,an are nonsubscripted variables, or dummy
names of subroutine or other FUNCTION subprograms. (There
must be at least one argument in the argument list.)

FORTRAN 7.3

programs and subprograms

Explanation:

Example 1

REAL FUNCTION SOMEF (A,B)

SOMEF = A**2 + B**2

RETUi:;tN
END

Example 2

INTEGER FUNCTION CALC (X,Y,Z)

CALC ==X + Y +Z**2

RETURN
END

The FUNCTION subprograms SOMEF and CALC in Examples 1 and 2 are declared as type
REAL and INTEGER, respectively.

Subroutine Subprograms

A subroutine subprogram is defined external to the program unit that references it.
Subroutines, unlike functions, do not have values associated with them and cannot be
referenced in an expression. Subroutines are accessed by CALL statements.

A subroutine subprogram is defined by having as its first statement, other than comment
lines, a statement of the form: SUBROUTINE S (al, a2, a3, ... , an) or SUBROUTINE S,
where S is the symbolic name of the subroutine and ai represents dummy arguments of
the subroutine. Each ai is either a variable or an array name, or the name of an external
procedure. If no arguments are passed to the subroutine, the second form is used.

The symbolic name of the subroutine must not appear in any statement in the
subprogram. The symbolic names ·Of the dummy arguments may not appear in COMMON
or EQUIVALENCE statements.

A subroutine is executed at the first executable statement. Specification statements must
immediately follow the SUBROUTINE statement and precede any executable statement. A

FORTRAN 7-4

programs and subprograms

subroutine must have at least one RETURN statement. The last statement executed by a
subroutine must be a RETURN statement.

Example

SUBROUTINE R(A,l,Z)
DIMENSION A(lO)
z-o
DO 1 J == 1,10
Z == Z + A(J)**I
RETURN
END

A subroutine is referenced with a CALL statement. The argument list in the reference
must agree in type, number, and order with the dummy arguments of the subroutine. If a
dummy argument is an array name, the corresponding actual argument must be an array
name.

Example:

A call for the example SUBROUTINE above would be: CALL R (T,K,D) where T
is an array.

Block Data Subprogram

To intialize variables in a COMMON block, a separate subprogram must be written. This
separate subprogram contains only the DATA, COMMON, DIMENSION, EQUIVALENCE, and
TYPE statements associated with the data being defined. In the MOS and stand-alone
systems, COMMON blocks are assigned downward from the top of available memory, with
the blank block first and the others in the order they appear in the source text. The loader
is overlaid by these block; therefore, when using the BLOCK DATA statement, the
programmer must be aware of the block location to prevent data from being stored in
loader tables.

General Form

BLOCK DATA

END

a. The BLOCK DATA subprogram may not contain any executable statements.

b. The BLOCK DATA statement must be the first statement in the subprogram.

c;. All elements of a COMMON block must be listed in the COMMON statement, even
though they are not all initialized; for exarr'lle, the variable A in the COMMON

FORTRAN 7-5

programs and subprograms

statement in the following example does not appear in the data initialization
statement.

BLOCK DATA
COMPLEX C
COMMON/ELN/C,A,B/RMG/Z,Y
DATA C/(2.4.3.769)/

d. Data may be entered into more than one COMMON block in a single BLOCK DATA
subprogram.

e. An optional entry name n can follow the BLOCK DATA statement:

BLOCK DATA n

This causes output of n as an entry name so that the subprogram can be stored in a
library enabling it to be loaded with any module containing an EXTERNAL n statement.

Data Initialization Statement

General Form

where:

DATA kl, ... ,kn/jl *dl, ,jn*dn/,kn + 1, ... ,k/jn + 1 *dn + l, ... ,j*d/, ...

kl, ... ,k are variables and/or subscripted variables (in
which case the subscripts must be integer constants), or
array names, or implied DO lists

dl, ... ,d are values representing integer, real, double
precision, complex, logical or Hollerith data constants.

jl *, ... ,j* represent unsigned integer constants indicating
the number of consecutivEi variables that are to be assigned
the value of dl, ... ,dn.

A data initialization statement defines initial values of variables and array elements.
There must be a one-to-one corrnspondence between these variables (i.e., kl, ... , k) and
the data constants (i.e., dl, ... , d).

Example 1

DIMENSION 0(10)

DATA A,8,C/5.0,6.1,7.3/ ,D(l),D(2),D(3),D(4),D(5)/5* 1.0/

FORTRAN 7-6

programs and subprograms

Explanation:

The DATA statement indicates that the variables A, 8, and C are to be initialized to the
values 5.0, 6.1, and 7.3, respectively. In addition, the statement specifies that the first five
variables in array D are to be initialized to· 1.0.

Example 2

DIMENSION A(5),8(3),L(2)

DATA A(l),A(2),A(3),A(4),A(5)/5* 1.0/ ,8(1),8(2)/2*5.0/ ,L(l),L(2)/ .TRUE.,. FALSE./

Explanation:

The DATA statement specifies that all the variables in array A are to be initialized to 1.0
and the first two elements of array 8 are to be initialized to 5.0. The logical variables,
(L(l) and L(2)), in array Lare initialized to .TRUE. and .FALSE., respectively.

An initially defined variable, or any element, may not be in blank common. However, in a
labeled COMMON block, they may be initially defined only in a block data subprogram.
(See the Subprograms section.)

Example 3

DIMENSION A(3), 8(3,2)
DATA A/l.0,2.0,3.0/,((8(1,J),J = 1,2),1=1,3)/6~'5./

Explanation:

The DATA statement loads real numbers 1.0, 2.0, and 3.0 into array A. It also loads real
number 5. into every element of array 8. DATA statements must precede the first
executable statement or statement furiction, and must follow any specification
statements.

STATEMENT FUNCTIONS

A statement function is defined internal to the program unit in which it is referenced. All
statement functions must precede the first executable statement and must follow any
specification statements of the program unit.

A statement function is defined in a single'expression of the form: f(al, a2, a3, ... , an)
e, where f is the function name, ai represents arguments, and e is an expression. The
resultant value of the function is either ~ real or integer value corresponding to the
function name. The ai are distinct variable names and are called dummy arguments. They
serve to indicate the type, number, and order of the function arguments. The expression e
is an arithmetic expression and may contdin references to previously defined statement
functions.

FORTRAN 7-7

programs and subprograms

A statement function is referenced by a function call, f(al, a2, a3, ... ,an), a'ppearing in an
arithmetic expression. A statement function may be referenced only within the program
unit in which it is defined. The arguments used in the reference must agree in type,
number, and order with the corresponding dummy arguments.

Example

The statement function:

SF(X) = A*X**2 + B*X + C

can be referenced in the program by:

W = SF(Y)

INTRINSIC FUNCTIONS

Intrinsic functions are commonly used subprograms contained in the FORTRAN library.
The symbolic names and meanings of the intrinsic functions are shown in table 7-1.

An intrinsic function is referenced by a function call in an arithmetic expression. The
arguments in the argument list must agree in type, number, and order with those shown
in table 7-1.

Example

IF (SIGN(W,X)) 1,2,2
1 W = ABS(X)- ABS(Y)
2 S W*FLOAT(I* J)

K = IFIX(X) + J

BASIC EXTERNAL FUNCTllONS

Basic external FUNCTIONS are standard subprograms contained in the FORTRAN library.
These are referenced in the same manner as normal FUNCTIONS. The symbolic names
and meanings of the basic external FUNCTIONS are shown in table 7-2.

DUMMY ARGUMENTS

Dummy arguments provide a means of passing information between a subprogram and
the program or subprogram that c:alled it. Both function and subroutine subprograms may
have dummy arguments. A subroutine need not have any, while a function must have at
least one. Dummies provide de·finitions of the data type, number, and sequence of
subprogram parameters.

FORTRAN 7-8

programs and subprograms

A dummy can be classified within a subprogram as a variable, an array, or an external
procedure name. The actual arguments defined by a calling program or subprogram to
which a dummy can correspond are: Hollerith constants, variables, array elements, arrays,
expressions, and external procedure names.

Within a subprogram, a dummy can be used in much the same way as any other variable
or array. A dummy can not appear in a COMMON or EQUIVALENCE statement.

The actual arguments (except for Hollerith constants) used in a calling statement agree in
data type with the corresponding dummy arguments, that is, real to real, integer to
integer, and array to array. If an actual argument is an expression, the result of the
expression should correspond in data type to the dummy.

A dummy array is defined as an argument which appears in a DIMENSION statement in
the subprogram. A dummy array does not occupy any storage but tells the subprogram
that the argument supplied in the calling statement defines the first element of an actual
array. The calling argument need not have the same dimensions as the dummy array.
Useful operations can sometimes be performed by defining different dimens:ons for the
dummy and calling arguments.

Example

DIMENSION
CALL

SUBROUTINE
DIMENSION

A(l0,10)
FM(A(6,l))

FM(B)
8(50)

For this case, one-dimensional dummy array B corresponds to the last half of two
dimensional array A. If the calling statement were CALL FM (A), dummy array B would
correspond to the first half of array A.

ADJUSTABLE DIMENSIONS

As shown in the previous examples, the maximum value of each subscript in an array is
specified by a numeric value. These numeric values (maximum value of each subscript)
are known as the absolute dimensions of an array and may never be changed. However, if
an array is used in a subprogram (section 7.3) and is not in COMMON, the size of this
array does not have to be explicitly declared in the subprogram by a numeric value. That
is, the s'pecification statement, appearing in a subprogram, may contain integer variables
that specify the size of the array. These integer variables must be either actual or implicit
subprogram arguments. When the subprogram is called, these integer variables receive
their values from the calling program. Thus, the dimensions (size) of a dummy array
appearing in a subprogram are adjustable and may change each time the subprogram is
called. Integer variables that provide dimension information may not be redefined within
the subprogram.

FORTRAN 7-9

programs and subprograms

The absolute dimensions of an array must be declared in a calling program. The
adjustable dimensions of an arrciy, appearing in a subprogram, should be less than or
equal to the absolute dimensions of that array as declared in the calling program.

The following example illustrates the use of adjustable dimensions.

CALLING PROGRAM

DIMENSION A(5,5)

CALL MAPMY(... ,A,:2,3,. ..)

Explanation:

Example

SUBPROGRAM

SUBROUTINE MAPMY
(... ,R,L,M, ...)

DIMENSION ... ,R(L,M), ...

DO 100 I 1,L

The statement DIMENSION A(5,5) appearing in the calling program declares the absolute
dimensions of array A. When subroutine MAPMY is called, dummy argument R assumes
array name A and dummy arguments L and M assume the values 2 and 3, respectively.
The correspondence between the subscripted variables of arrays A and R is shown in the
following example.

R(l, 1)R(2,1)R(1,2)R(2,2)R(1,3)R(2,3)

A(l, 1)A(2,1)A{3,1)A(4, l)A{5, 1)A(1,2)A(2,2) ...

Thus, in the calling program the subscripted variable A{l,2) refers to the sixth subscripted
variable in array A. However, in subprogram MAPMY, the subscripted variable R{l,2)
refers to the third subscripted variable in array A, namely, A(3, l). This is so because the
dimensions of array R as declared in the subprogram are not the same as those in the
calling program.

If the absolute dimensions in the calling program were the same as the adjusted
dimensions in the subprogram, the subscripted variables R{l,l) through R(5,5) in the
subprogram would always refer to the same storage locations as specified by the
subscripted variables A(l,1) through A(5,5) in the calling program, respectively.

FORTRAN 7·10

programs and subprograms

The numbers 2 and 3, which became the adjusted dimension of dummy array R, could
also have been variables in the argument list or implicit arguments in a COMMON block.
For example, assume that the following statement appeared in the calling program.

CALL MAPMY (... ,A,l,J,. ..)

Then as long as the values of I and J are previously defined, the arguments may be
variables. In addition, the variable dimension size may be passed through more than one
subprogram level. For example, the subprogram MAPMY could have contained a call
statement to another subprogram in which dimension information about A could have
been passed.

Dummy variables (e.g., L and M) may be used as dimensions of an array only in a
FUNCTION or SUBROUTINE subprogram.

EXTERNAL STATEMENT

When an actual parameter list ·of a function reference or a subroutine call contains a
function or subroutine name, that name must appear in an EXTERNAL statement in the
program in which the reference or call appears.

The form of the EXTERNAL statement is

EXTERNAL s, s, s, ... s

where s is a function or subroutine name

The EXTERNAL statement must appear before the function or subroutine reference. A
statement function may not appear in an EXTERNAL statement.

The following are examples of valid EXTERNAL statements

EXTERNAL
EXTERNAL

SUBl, SINF
FRAIL

FORTRAN 7-11

""T'1 Table 7-1. Intrinsic Functions "O
0 '"'I

0 :;u (Q
-I '"'I
::u I»
)> Type of Type of 3 2 Intrinsic Function Definition Arguments Name Argument Function

en
I»

~ ::I
I\) c.

en
Absolute Value I al ABS Real Real c

O"
IABS Integer Integer "O

'"'I

DABS Double Double 0
(Q
'"'I
I»

Truncation Sign of a times largest AINT Real Real 3
en

integer $I a I INT Real Integer
IDINT Double Integer

Remaindering* a1 (mod a2) 2 AMOD Real Real
MOD Integer Integer

Choosing Largest Max (a 1 , a2 , ...) ~2 AMAXO Integer Real
Value AMAX I Real Real

MAXO Integer Integer
MAXI Real Integer
DMAXI Double Double

Choosing Smallest Min (a 1 , a2 , ...) ~2 AMINO Integer Real
Value AMINI Real Real

MINO Integer Integer
MINI Real Integer
DMINI Double Double

Float Conversion from integer FLOAT Integer Real
to real

Fix Conversion from real to IFIX Real Integer
integer

Transfer of Sign Sign of a2 times I a1 I 2 SIGN Real Real
ISIGN Integer Integer
DSIGN Double Double

Positive Difference al - min (a 1 , a2) 2 DIM Real Real
IDIM Integer Integer

Obtain Most Significant SNGL Double Real
Part of Double-
Precision Argument

Obtain Real Part REAL Complex Real
of Complex Argument

Obtain Imaginary 1 AIMAG Complex Real

Part of Complex
Argument

Express Single- DBLE Real Double
Precision Argument
in Double-Precision
Form

a1 +aJl
"C

Express Two Real 2 CMPLX Real Complex ""I
0

Arguments in Complex
r.Q
""I
I»

Form 3 en
I»

Obtain Conjugate of a Con jg Complex Complex :::s .,, Q.

0 Complex Argument en
::0 c
-I er
::0 "C
)> *The function MOD or AMOD (a 1 , a2) is defined as a1 - [a 1 /a 2] a2 , where [x] is the integer whose magnitude does not ""I

2 0
exceed the magnitude of x and whose sign is the same as x. r.Q

':"'
""I
I» - 3 w en

"T1 Table 7-2. Basic External Functions "C
0 '"'II

::u Type of Type of 0
(Q

-I External Functions Definition Arguments Name Argument Function '"'II ::u Q)
)> 3 z Exponential ea EXP Real Real en

':'-' DEXP Double Double
Q)

:I Q.
.i=- CEXP Complex Complex en

c
Natural Logarithm loge (a) ALOG Real Real er

"CS
DLOG Double Double

'"'II
0

CLOG Complex Complex
(Q
'"'II
Q)

Common Logarithm log (a) ALOGlO Real Real
3
en

10 DLOGlO Double Double

Trigonometric Sine sin(a) SIN Real Real
DSIN Double Double
CSIN Complex Complex

Trigonometric Cosine cos(a) cos Real Real
DCOS Double Double
ccos Complex Complex

Hyperbolic Tangent tanh(a) TANH Real Real

Square Root (a)Yz SQRT Real Real
DSQRT Double Double
CSQRT Complex Complex

Arctangent arctan(a) ATAN Real Real
DATAN Double Double

arctan(a 1 /a 2) 2 ATAN2 Real Real
DATAN2 Double Double

Remaindering* a1 (mod a2) 2 DMOD Double Double

Modulus CABS Complex Real

*The function DMOD (a 1 , a2) is defined as a1 - [a 1 /a 2] a2 , where [x] is the integer whose magnitude does not exceed
the magnitude of x and whose sign is the same as the sign of x.

programs and subprograms

COMBINING FORTRAN AND DAS MR

FORTRAN generates the following calling sequence for all implicit and explicit calls to
subprograms:

where

JUMP s
DATA Pl
DATA P2

DATA Pn

s is the subprogram name

n is the number of arguments

Pl, P2, and Pn are the addresses (not the value)
of the arguments; these addresses can be direct
or indirect.

If the above calling sequence is used, DAS MR programs can reference any program in the
system library or any FORTRAN coded subprogram.

DAS MR subprograms to be used with FORTRAN must process the above calling
sequence. The library program $SE can be used to transfer parameters by coding the DAS
MR subprogram entry as follows:

where

s ENTER
CALL $SE
DATA n
BSS n

s is the subprogram name

n is the parameter count

$SE transfers the n parameter addresses, resolving indirect addresses sequentially into
the block defined by BSS n. In addition, $SE increments the address in s so that the
program returns to the address following the calling sequence.

The above calling sequence does not define a parameter count so it is difficult to use with
subprograms that process a variable·length parameter list. The only library programs of
this type are the intrinsic functions that list maximum and minimum values. The
FORTRAN compiler detects calls to these values and outputs an absolute zero to mark the
end of the parameter list. DAS MR programs can reference these functions by terminating
the calling sequence with an absolute zero (not a pointer to zero).

FORTRAN 7 -15

SECTION 8 -STAND-ALONE OPERATING PROCEDURES

The Stand-Alone FORTRAN/DAS MR. system is a FORTRAN IV compiler and macro
assembler (DAS MR) with loader and math support routines. Using a minimum system
configuration containing 8K of memory and a 33135 ASR Teletype,* the stand-alone
system can generate relocatable binary output, and can load, link, and execute this
output. In addition, the generalized I /O_ structure defines peripherals at loading time.

CONFIGURATION

The stand-alone system is contained on 12 separate paper tapes. Table 1 lists the tapes in
numerical order along with their format and function. The various subroutines contained in
each of the support libraries on tape 5 through 12 are listed below in order as they appear on
each tape.

Tape 5. Run-time 1/0

FORTIO CRIE MT$3 TCK$
$00 $0Q ($OR) MTAE $TC01
$04 $0Q KNT$ $HC37
$08 $OP RDC$ HCK$
$0C $OS WRT$ DIM$
$0G CPAE STR$ LAS$
$0H/$01 MT$0 SWR$ IOA$
$00 MT$1 BL$P IOOK
$OM MT$2 FCH$ · $BICD

Tape 6. Run-time utility

$DO $SE RSCB3
$CG FORTUTIL RSCBIMTB
3 $EE $BUF

Tape 7. Run-time math, software MID, single precision

$HE SINCOS XDADD ISIGN
$PE FMULDIV XDSUB SIGN
$QE FADDSUB XDCOMP $HN-S
ALOG SEPMANTI $FLOAT $HM-S
EXP FNORMAL $1FIX XMUL
ATAN XDDIV-S IABS XDIV
SQRT-S XDMULT-S ABS 1$FA

* A preferable basic system is 12K of memory and a high-speed paper tape reader in addition
to the Teletype.

FORTRAN 8-1

stand alone

Tape 8. Run-time math, hardwall'e MID, single precision

$HE SINCOS XDADD ISIGN
$PE FMULDIV XDSUB SIGN
$QE FADDSUB XECOMP $HN-H
ALOG SEPMANTI $FLOAT $HM·H
EXP FNORMAL $1FIX XMUL
ATAN XDDIV-H IABS XDIV
SQRT-H XDMULT-H ABS 1$FA

Tape 9. Run-time math, double ,precision

DSINCOS CHEB DADDSUB DOUBLE
DATAN DSQRT DNOR'MAL DEBLECOMP
DEXP $DFR DLOADAC AC
DLOG !DINT DSTOREAC
IF DMULT RLOADAC
POLY DDIVIDE SINGLE

Tape 10. Complex math functio111s

$9E CABS $AC $ZD
ccos CON JG CMPLX AIMAG
CSIN $AK $8K $0C
CLOG $AL $8L REAL
CEXP $AM $8M $8F
CSQRT $AN $8N $8S

Tape 11. Math functions, single precision

TANH AMAX1 MAXO IDIM
ATAN2 AMINO MAXl IFIX
ALOGlO AMIN1 MINO $JC
AMOD DIM MINl
AINT FLOAT MOD
AMAXO SNGL INT

Tape 12. Math functions, double precision

$XE
$YE
$ZE
DATAN2
DLOGIO

DMOD
DINT
DABS
DMAXI
DMINI

FORTRAN 8-2

DSIGN
$YK
$YL
$YM
$YN

DBLE
$XC

Tape
Number

2

3

4

5

6

7

8

9

10

11

12

Format

BLD object

BLD object

MOS object
(see MOS
section)

BLD object

MOS object

MOS object

MOS object

MOS object

MOS object

MOS object

MOS object

MOS object

MOS FUNCTIONS

stand alone

Table 1. Stand·Alone Tapes

Function

FORTRAN IV compiler, is listed on Teletype

FORTRAN IV compiler, is listed on 620-77 line
p.rinter

DAS MR assembler

Relocatable loader, loads tapes in MOS object
format

Run-time 1/0

Run-time utility

Run-time math, software multiply/divide, single
precision

Run-time math, hardware multiply/divide, single
precision

Run-time math, double precision

Complex math functions

Math functions, single precision

Math functions, double precision

Since the stand-alone system is a subset of MOS, various MOS functions also apply to this
system. The following MOS items are applicable for the stand-alone system:

l/OCalls

Support Library

User-Coded I /0 Drivers

Object Module Format

Data Format

FORTRAN 8-3

stand alone

COMPILING A PROGRAM

The stand-alone FORTRAN IV compiler is supplied as an BLD object tape (tape 1 or 2). The
compiler is loaded into memory by the B LD 11 and occupies approximately 017400 words of
memory. Before loading the compiler, the SENSE switches on the computer control panel
should be set according to the following options:

a. With no SENSE switches set, both BLD II and AID II programs are preserved.

b. With SENSE switch 1 set, only the BLD 11 program is preserved.

c. With SENSE switch 2 set, the last 17 words of memory are preserved (the last 17 memory
locations normally contains the bootstrap loader).

The compiler is entered at location 0. It initializes itself, outputs the string 'DATE =' and
inputs an 8-character date string in the form DD/MM/VY, which will appear on the source
listing. It then inputs a 2-character compiler 1/0 specificaton (defined in a later paragraph)
and halts with P = 3 and B =largest address used by the compiler. B can be manually modified
at this time. The A register contents will be stored in the Processor Control Word ($PCW), so
bits may be manually set in it according to the format listed in table 2.

Upon pressing RUN, the compiler will input source records. If character 1 of the first
source record is a '!',this will be processed as a compiler control record: characters 7-14
will be stored as an 8-character program name, which will be output on the source listing;
characters from 16 to the first blank will be decoded as Processor Control Word flags
(table 2).

EXAMPLE:

The statement

/JOB PROGRAM1 B9

causes the name PROGRAM! to be output to the source listing device, and causes the
compiler to suppress binary output and read the input as 029 (EBCDIC code).

Character

B

D

E

L

s
x

9

FORTRAN 8·4

Table 2. Processor Control Word Bits

$PCW Bit

8

14

0

2

6

15

Function

Suppress binary output.

Allocate 2 words for integer and logical
items.

Suppress End-of -File on binary output device
after compilation.

Suppress list output.

Suppress post-compilation map.

Compile statements with first character 'X'.

Flag card input as in 029 (EBCDIC) code.

stand alone

1/0 Device Specifications

For each program to be compiled an - will be typed on the Teletype printer requesting
input/output selection. The operator must respond by typing one of the following
characters to indicate the input device:

C Card reader
K Teletype keyboard
P High-speed paper-tape reader
T Teletype paper-tape read
0-3 Magnetic tape unit # (device addresses 010 through 013)

followed by one of the following characters to indicate the output device:

P-T Paper tape
0-3 Magnetic tape unit # (device addresses 010 through 013)

Following initialization, source statements are read and object records are output through
the selected devices. Error diagnostics and selected list options are printed on the
Teletype or printer (if available). Upon detection of an END statement, the compiler
produces a program map listing all variables, constants (in octal), and required
subprograms.

Compiler Input Records

Input to the compiler is a series of FORTRAN statements, each of which appears in one or
more input records. Records can be fixed or variable length depending on the device;
however, only the first 72 characters of each record are used by the compiler.

Keyboard and paper tape records are variable length and are terminated by a carriage return
and line feed in that order. The character· > can be used to TAB to column 7, and the
character +-can be used to clear the input buffer and reset to column 1. For keyboard input
the Teletype bell is used to notify the operator that source input is required. Paper tape leader
must be less than 72 characters and terminate in +-. Source records input on the Teletype
paper tape must be separated by+-+-+-

Card records are a fixed length of 80 characters. Magnetic tape records must be card
images.

Compiler Output Records

Object records are output as they are created. Paper-tape object programs are punched
with leader and trailer records.

FORTRAN 8-5

stand alone

Notification Errors

Errors are logged during both compilation and execution.

All compilation error diagnostics are of the form

ERR xx a ... a

where

xx is a number from O to 18 (notification error), or TO to T9
(termination error)

a ... a represents the last (up to 12) characters encountered in the
statement being processed.

The rightmost character indicates the point where the error was discovered (the character+
indicates end of the statement). If a termination error is discovered, object output is
terminated, but source code is continued to detect any further errors.

The compilation error messages are:

1 Construction
2 Usage
3 Mode
4 Illegal DO termination
5 Improper statement number
6 COMMON base lowered
7 Illegal equivalence group
8 Reference to nonexecutable statement
9 No path to this statement

10 Multiply defined statement number
11 Invalid format construction
12 Spelling error
13 Format with no statement number
14 Function not used as variable
15 Truncated value
16 Statement out of order
17 More than 29 COMMON regions
18 Non-COMMON data

FORTRAN 8-6

stand alone

Terminating (Fatal) Errors

Terminating errors stop output of the object program. These errors are listed below.

TO
Tl
T2
T3
T4

1/0 error on compilation device
Construction
Usage
Data pool full
Illegal statement

Optional Listing

T5
T6
.l7
T.8
T9

Improper use of name
Improper statement number
Mode
Constant too large
Improper DO nesting

Source and object records can be listed. Source records are listed as they are input. Object
records are listed as they are created. Each object record consists of a varying number of
one to four-word object entries.

Both the MOS section of this handbook and VORTEX reference manuals contain further
details of the object language. Object listings display each object word delimited by a blank as
six octal digits. Each object entry occupies one record (line) on the LO unit.

Maps
The run-time memory map is shown in figure 1. In the following sample printout of a pro
gram map, the leftmost six-digit column is the value of the relative location counter of the
item to the right. The letter and name, value or variable identifies the item as a relocatable
(R), fixed-, or floating-point value or variable, or a subroutine entry name, the name of an
External (E) subprogram or the name of a region in COMMON (C). COMMON is the name for
blank or unlabeled COMMON under MOS.

Sample Program Map

ENTRY/COMMON BLOCK NAMES
000043 R TEST1
000004 c COMMON
000004 c xx
EXTERNAL NAMES
000020 E $SI
SYMBOL TABLE
000023 R 000001
000027 R 000002
000000 c A
000002 c B
000000 c c
000002 c D
000025 R I
000005 R 5
000031 R J

000035 R K
000033 R 000003
000012 R 10

FORTRAN 8-7

stand alone

Ox7777

Binary Load/Dump

Ox7600 optional

AID II

Ox6000

Logical Unit/Physical Unit Table

Common Area

Runtime

t Math

Runtime
Utility

Runtime
Input/Output ~

Subprograms

Main Program

00500

Program and Data Pointers

00000

YTl-1909

Figure 1. Run-Time Memory Map

ASSEMBLING A PROGRAM

The DAS MR assembler (tape 3) is loaded and executed as follows:

a. Load the loader (tape 4) using the binary load/dump program (BLD II). Before loading,
set the A register to zero to prevent execution of the loader. At completion of loading,
the execution address (013260) of the loader will be in the X register.

(continued)

FORTRAN 8-8

b. Make the following modifications to memory:

Location New Contents

5
6
7

To modify:

·0210
0210
0210

1. In STEP mode load 054000 into the instruction register.
2. Set REPEAT switch.
3. Load 000005 into P register.
4. Load 000210 into A register.

stand alone

5. Press STEP or START three times (loads A into address specified by P register,
which is automatically incremented by one after the instruction is executed).

c. Execute the loader by setting the P register to the execution address (013260) and
pressing RUN.

d. When executed, the loader will print LN on the teletype. At this time, peripheral device
assignments may be altered by entering the one-digit number of the old logical unit
followed by the two-digit number of the substitute unit. DAS MR uses the following
logical units:

Logical Unit
Number

2
3
4
6
8
9

*Device address 010

**Device address 011

Logical Unit
Name

BO
Pl
LO
GO
SS
PO

As an example of device reassignment:

LN
300400201800906

would reassign:

Pl = Teletype keyboard
LO = Teletype printer
80 = Teletype paper tape punch
SS = Teletype keyboard
PO = Dummy

Def a ult Device
Assignment

Paper Tape Punch
Card Reader
Line Printer (620-77)
Dummy
Magnetic Tape* 00
Magnetic Tape** 10

(continued)

FORTRAN 8-9

stand alone

Table 3 is a complete list of peripheral assignments for logical units.

Table 3. Logical Unit Assignments

Logical
Unit Number Assignnnent

0 Teletype keyboard and printer

Teletype paper tape reader and punch

2 High-speed paper tape reader/punch

3 Card reader

4 Line printer

5 Dummy

6 Dummy

7 Card punch

8 Magnetic tape unit 0

9 Magnetic tape unit 1

10 Magnetic tape unit 2

11 Magnetic tape unit 3

12 Unformatted paper tape 1/0 (HSPT)

e. Following device reassignments, the loader will print IN on the Teletype. At this time,
the operator should ready thEl DAS MR object program on the input device and
respond by typing the proper designation on the Teletype:

P = paper tape reader
T = Teletype paper tape reader
0, 1,2,3 == magnetic tape controller 0, 1,2 or 3, respectively.

To enable printing out of a load map, the operator must type M immediately following
the device designator. Following the typed characters, the operator must press the
carriage return key to initiate loading of the DAS MR.

(continued)

FORTRAN 8-10

stand alone

f. After DAS MR is loaded, peripheral devices for logical units 3,4,2, 6,8 and 9 must be
loaded from the run-time 1/0 tape. This.is accomplished by placing the tun-time 1/0
tape on the input device and repeating step e.

g. After the run-time 1/0 is loaded, the 1/0 control program must be loaded from the run
time utility tape. This is accomplished by placing the run-time utility tape on the
input device and repeating step e.

h. When all externals have been satisfied, the loader will halt with the P register equal to
000003. To execute DAS MR, place the computer in the run mode.

Upon execution, DAS MR will input source statements from logical unit 3 (Pl), output
source for pass 2 to logical unit 9 (PO), input pass 2 source from logical unit 8 (SS),
output binary object to logical unit 2 (BO), and output listing to logical unit 4 (LO).

Source input to DAS MR terminates upon input of either an EOF or a source record
containing a slash (/) as the first character. A slash record will cause an end-of-file
to be output to the BO device.

During a DAS MR assembly operation, if logical unit SS is not a magnetic tape unit, a flag
bit is set in the peripheral control word PCW. When the end of pass 1 is detected, this bit
is interrogated. If it is set, DAS MR does a status check on logical unit PO, prints the
message RELOAD SOURCE on the Teletype, and halts. When the computer is placed in the
run mode, DAS MR rewinds logical unit SS and begins pass 2 of assembly. If the flag bit is
not set (SS not equal to magnetic tape), no status check is done on PO and DAS MR
immediately rewinds logical unit SS and begins pass 2.

At the end of each assembly, DAS MR jumps to location 0520 to restart itself for another
assembly. Therefore, assemblies may be stacked. If, at any time, a source record is input
where the first character is a slash (/), DAS MR punches a trailer on logical unit BO and
exits to program RSCB3 in the run-time utility (tape 6). In RSCB3, any pending 1/0 is
executed and the computer halts with the A-register containing a current value of the
error-control word (ECW). Do not place the computer in the run mode at this point. This
halt is followed by a data area. To restart the assembler, go to location 0520.

Assembly Errors. The DAS MR calls EXIT when one of the following four conditions are
detected on the Pl device: end-of-file, beginning- or end-of-device, read error, or the first
character of a record is a slash (/). When EXIT is called, the computer halts at a high
memory location with the A-register indicating the following conditions:

A-Register Value

0100200
0100240
0100300
0100340

Indicated Condition

First character is a slash (/)
End-of -file detected
Read error detected
End or beginning of device detected

FORTRAN 8-11

stand alone

When the halt occurs, the error-control word (ECW) may contain more information about the
problem. The address of the ECW is stored in memory location 0476. The ECW format is
listed as follows:

Bit

Q .. 3

4

5-7

14

15

Meaning

Loader error value:
0 No error
1 Checksum eriror
2 Sequence error
3 Illegal record type error
4 Read error
5 Illegal loader text error
6 Data initialization error
J Common error

10 Missing program(s) error
11 Literal pool overflow error
12 Program size error

0
1

No loader initialization error
Loader initialization error

Processor error value:
0 No error
1 (Not used)
2 (Not used)
3 Pass 2 record! count not equal to pass 1 record count
4 A system executive control directive input at an

incorrect time
5 An end of file received from 1/0 control
6 An error received from I /0 control
7 An end of device or: beginning of device received

0
1

0
1

for 1/0 control
No 1/0 control error program execution
1/0 control error program execution
1/0 control errnr program execution

No errors in the assembled or compiled program
Error in the assembled or compiled program

LOADING A PROGRAM

This section describes loading thH loader (tape 4), error messages, and loading the
'support libraries (tapes 5 through 12).

FORTRAN 8-12

stand alone

Loadi.ng the Loader

The loader (tape 4) loads object programs in MOS format. Object-program input is from
either paper or magnetic tape selected at the Teletype keyboard. Maps and error
diagnostics are listed by the Teletype.

The loader is on BLD object tape and is loaded into memory by BLD 11.

The loader is read initially into an area extending downward from location 015777 of
memory. Upon execution, the loader performs the following operations:

a. Automatically adapts to the word size (16 or 18 bits) of the computer.

b. Relocates to upper memory of the computer in accordance with the following sense
switch options:
1. If no sense switches are set, relocates downward from location Ox5777; (x = 1, 2, 3,
4, 5, 6, 7 corresponding to memory sizes 8, 12, 16, 20, 24, 28, and 32K words,
respectively).
2. If sense switch 1 is set, relocates downward from location Ox7377.
3. If sense switch 2 is set, relocates to occupy downward from location Ox7755.

Before loader execution begins, the following loader parameters can be either modified
manually or with AID II:

Name Location Default value Function

$1AP 2 010 Start of indirect address pointer table.

$LIT 5 0500 Top address + 1 of literal table

$PED 7 0500 Initial loading location.

When loaded and executed, the loader types the message

LN

The operator may redefine any one or more of the first nine standard logical units (table
3) at this time by typing a string of sets of three digits for each redefinition, where:

a. first digit = the standard unit number to be changed

b. :second and third digits = the substitute logical unit assigned in the range from O
through 12 (decimal).

Only logical units 0 through 9 may be redefined. Their redefinition, however, may be any
value from 0 through 12. If an error is made in any transaction, the message

LN

FORTRAN 8-13

stand alone

is retyped and the operator may rnpeat the entry correctly. The carriage-return key may be
pressed at any time after the LN message to terminate further redefinition of logical units.
Following a carriage return, the loader type·s the message

IN

on the Teletype. The operator should ready the object program in the proper input device
and respond by typing one of the following designators depending on the desired input
device:

p

T

0, 1, 2, 3

High-speed paper-tape reader

Teletype paper.tape reader

Magnetic-tape controller 0, 1, 2, or
3, respectively.

To enable printout of the loader map, the operator must type

M

immediately following the device designator or, if the loader map is to be suppressed, the
operator presses the carriage-return key.

The M or carriage return following the device specification causes the loader to begin
loading the binary object data from the specified input device.

If an error is detected, the loader types a 2-character error message and halts.

To continue, the operator should remove the cause of the error, ready the input device to
read from the beginning of the object material, reload the loader program, and repeat the
above procedure from the beginning.

A loading operation is complete when all external references are satisfied. After each
normal EOF from the input device, a map of all external names is printed on the Teletype
(unless suppressed as an option by the operator). If the program that corresponds to the
external name has not been loaded, a

I

appears following the name in the printed map. Providing no error conditions have been
detected, the loader will again type

IN

on the Teletype. The operator should follow the same procedure described above.

FORTRAN 8-14

stand alone

When the loading operation is successful, the loader prints a map of all external names
(unless suppressed) and halts with

p • 3.

To execute the loaded program, the operator should press RUN.

The loader jumps to location 02 at the end of normal loading. Location 02 contains the
value for loader-parameter $1AP and is always less than 01000. Therefore, the computer
halts ~t location 03. When the computer is placed in the run mode, the computer performs
a inditect jump to location 06, which contains the execution address of the program.

Error ~essages

The following 2-character error messages are output to the Teletype whenever the
corresponding error condition is detected:

Messages

PS

LS

CM

DA

TX

RD

RC

SQ

CK

Meaning

Program Size Error. Program memory requirements exceed
available program/common storage.

Literal Size Error. Program literal requirements exceed
available literal storage.

Common Error. The program contains conflicting size
definitions for a common block.

Data Error. The program attempted to overlay the loader,
loader tables, or resident programs.

Text Error. The program object text contains an illegal
or erroneous loader code.

Read Error. The loader encountered a read error while
attempting input of object text.

Record Error. The loader inputs an invalid record type.

Sequence Error. The loader inputs an object text record
with an invalid sequence number.

Check-Sum Error. The loader inputs an object text record
with an invalid check-sum.

FORTRAN 8-15

stand alone

Loading the Support Libraries

For most efficient use of the loader, load the support libraries in the following order:

a. Run-time I /0 (tape 5)

b. Complex math functions (tap1;i 10)

c. Double-precision math functions (tape 12)

d. Single-precision math functions (tape 11)

e. Run-time math double-precisiion (tape 9)

f. Run-time math single-precisic1n (tape 7 or 8)

g. Run-time utility (tape 6)

Prepare and select the input unit for the main programs. The loader loads all required
subroutines until an end-of-tape rec:ord or an end-of-file is detected, at which time the list of
required subroutines is generated and input selection is again requested.

If two or more subroutines have the same name, only the first input is loaded. When all
required subroutines are loaded the loader halts with the P register containing 000003. To
execute the main program, place the computer in the run mode. Execution of the main
program can be initiated by running at location 03.

All programs are loaded at location $PED. Required subroutines are loaded as they are input
to successive blocks of memory. Common storage overlays the loader.

As in MOS, there are two 4-word buffers in the RSCBl program of the run-time utility
(tape 6). These buffers are labeled $TTL and $DAT and are used by the assembler and
compiler to hold the current job name and date. They may be externally referenced by any
user program.

All support libraries can be copied onto magnetic tape for loading if desired. In this case,
they should all be contained in one magnetic tape file. An end-of-file mark must be written
at the end of the last library copied.

PROGRAM EXECUTION AND ERROR MESSAGES

To execute a program, initialize the selected 1/0 devices, clear the registers, set the
program counter to 000003, reset the computer and place it in the run mode.

There are three types of programmed halts: STOP, PAUSE, and CALL EXIT. STOP causes
STOP to be output with the stop number, after which the computer performs a CALL EXIT.

FORTRAN 8-16

stand alone

STOP implies an end of job. PAUSE causes PAUSE to be output with the pause number,
and the computer going into the step mode. The program can be continued by placing the
computer in the run mode. CALL EXIT causes a HALT 07 with - 1 in the X and B registers,
and signifies the end of job.

The following error halts are generated by the support libraries. These errors give a
message on the Teletype. Execution will continue if the error is non-fatal; otherwise a CALL
EXIT is executed.

Message

FORMAT
MODE

DATA
1/0
GO TO RANGE
ARITH OVFL
FUNC ARG

Definition

Format error
Data mode error (floating
point versus integer)
Input data field error
1/0 error
Computed GO TO OtJt of range
Arithmetic overflow
Invalid function argument

Type

FATAL

} NON-FATAL

The paper-tape reader driver returns reading errors to a calling program (like DAS MR) if
characters not in the range 0240 to 0337 are in an ASC 11 record; for example, if they
come after the first character in that range but before a carriage return (0215) character.
Characters not in this range are allowed preceeding the record or following the carriage
return.

External record formats are identical to MOS. The model-33 Teletype paper-tape punch
must be turned on and off by the operator. Line printer records are 120 characters.
Print;ing is left-justified with unused positions set to blanks.

FORTRAN 8-17

SECTION 9 - MOS AND VORTEX

OPERATING PROCEDURES

This section contains operating procedures.for FORTRAN IV programming systems that
are used with MOS and VORTEX.

COMPILING WITH MOS

The initiation of the MOS FORTRAN IV compiler is accomplished by entering the control
directive:

/FORTRAN (or /F) Pl,P2, ... ,Pn.

This .control directive directs the executive program to call the system loader to load the
FORTRAN IV compiler and commence compilation. The parameter string specifies optional
tasks that are to be performed. These options are:

B · No binary object program output desired.

D Integer and logical items are assigned two words.

L . Load and go operation desired.

M' No memory map desired.

N No source listing desired.

0 Octal listing of object program desired.

X Conditional compilation desired. (Source records with an X in column 1 will be
compiled.)

Input/output assignments during compilation are made through the I ASSIGN control
direetive (see MOS section of this handbook). The FORTRAN IV compiler uses the following
logical units:

Source input
Object output
Listing
Load and go

Pl
80
LO
GO (optional)

FORTRAN 9·1

operating procedures

COMPILING WITH VORTEX

The VORTEX FORTRAN IV compiler is scheduled by the job-control processor (JCP) on
entry of the directive /FORT,Pl,P:2, ... Pn, where the acceptable parameters are the same
as described above for the MOS directive. The logical units used are the same as those for
MOS, and assignments are made using the JCP directives /ASSIGN and /PFILE.

LOADING WITH MOS

To run a program compiled unde'r MOS FORTRAN IV, initialize the MOS, and load the
compiled object program with the MOS directive:

/LOAD (or IL)

The error messages are the same as in the stand-alone version (section 8) and are listed
as follows:

Message

PS

LS

CM

DA

TX

RD

RC

SQ

CK

FORTRAN 9-2

Meaning

Program Size Error. Program memory requirements
exceed available program/common storage.

Literal Size Error. Program literal requirements
exceed available literal storage.

Common Error. The program contains conflicting
size definitions for a common block.

Data Error. The program attempted to overlay the
loader, loader tables, or resident programs.

Text Error. Tt1e program object text contains an
illegal or erroneous loader code.

Read Error. The loader encountered a read error
while attempting input of object text.

Record Error. The loader inputs an invalid record
type.

Sequence Error. The loader inputs an object text
record with an invalid sequence number.

Check-Sum Ermr. The loader inputs an object tex~
record with an invalid check-sum.

operating procedures

LOADING WITH VORTEX

Run-time error messages are the same as those listed above for MOS loading.

Non-Resident Programs

The object program output by the VORTEX compiler is input to the load module generator
(LMGEN). The job-control processor schedules LMGEN upon inputting the directive:
/LMGEN. LMGEN creates a load module on the system-workfile SW device on inputting
the following four directives:

TIDB,name, bf,s,DEBUG

LD,obj

LIB, lib

END.save

bf = 1 for background;
2 for foreground

s - Overlay count

DEBUG is optional and loads
the DEBUG routine when present

obj == specifier giving
object module logical unit
number and key, lun/key

lib - specifier giving
library lun/key

save is optional for speci·
fying the load module save
lun/key

The program can then be loaded and executed from SW by entering /EXEC on the System
Input (SI) device; or, if bf == 1 and save = BL,E, it can be executed by the JCP directive
/LOAO, name; or if bf == 2, it can be scheduled· by entering the OPCOM directive
;SCHED,name,level,save, or by another task, using the SCHED macro.

Resi~nt Programs
The o

1

bject program output by the VORTEX compiler is input to the SGt:N program and
made ;part of the VORTEX nucleus (see VORTEX reference manual 98 A 9952 101). All
requir,8d subroutines must be added at this time.

110 DEVICE CONTROL

The HO control components of MOS and VORTEX permit access to 1/0 devices through
the use of logical units. A logical unit is an 1/0 device or partition of a rotating-memory

FORTRAN 9-3

operating procedures

device (RMD). A program references an assigned number. The logical unit numbers
permit 1/0 operations independent of the phsyical·device configuration. For further
information on logical units, refor to the input/output control description in the MOS
section of this handbook or the VORTEX reference manual.

The FORTRAN IV compiler inputs source text from logical unit Pl, outputs listings and
maps on logical unit LO, and produces an object module (code and loading information)
on logical units BO and GO. For further information, refer to the FORTRAN IV compiler
description in the MOS section of the handbook or the VORTEX reference manual.

COMPILER INPUT RECORDS WITH MOS

The compiler requests 40-word (80-character) input records from the Input/Output Control
System (IOCS). For further information on IOCS, refer to the MOS section of this
handbook.

COMPILER INPUT RECORIOS WITH VORTEX

The compiler requests 40-word (:BO-character) input records from IOCS, if Pl is not a
rotating memory device (RMD) 01r if Pl - SI. Otherwise, the compiler inputs 120-word
records (three FORTRAN source records) from the RMD, and does its own deblocking.
FORTRAN RMD source modules must start on a record boundary.

COMPILER OUTPUT RECORDS WITH MOS

The compiler outputs 60-word (120-character) records to logical unit LO. An object module
produced on logical units BO and GO is in 60-word records for Varian 16-bit computers
and 53-word records for the 18-bit computers. The MOS section of this handbook
describes the object module format.

COMPILER OUTPUT RECORDS WITH VORTEX

Output records are 60 words long. An object module produced on an RMD is blocked two
records for each RMD record. FORTRAN object modules start on the RMD-record
boundary. The VORTEX reference manual (appendix A) describes the object module
format.

FORTRAN 9-4

operating procedures

ERROR MESSAGES

Error messages (notification and terminating) occurring under MOS and VORTEX are the
same as for the stand-alone version (section 8). For further information on error
messages, refer to the FORTRAN IV c~mpiler descriptions in the MOS section of this
handbook or the VORTEX reference manual.

MAP~ WITH MOS

Illustrations of a run-time memory map are provided in the description of the system
loader control directives in the MOS section of this handbook.

i

Prograin maps are the same as in the stand-alone version (section 8).

MAPS WITH VORTEX

The F'ORTRAN IV compiler is a level 1 background program in the VORTEX system.
Memo~y maps are generated by LMGEN and SYSGEN directives, and are the same as in the
stand-~lone version. Program maps are generated in the same manner as in the stand-alone
version (section 8).

FORTRAN 9-5

BASIC Language

BASIC i

TABLE OF CONTENTS

SECTION 1

A PRIMER IN BASIC

An Example ... 1-1
Formulas~ ... 1-7
Loops : .. 1-11
Arrays ' .. 1-13
Errors and Debugging ... 1-16

SECTION 2

ADVANCED BASIC

Logical tjperators .. 2-1
Special Runctions .. 2-2
Matrices~ .. 2-4

SECTION 3

STATE~ENTS IN BASIC

READ and DATA Statements .. 3-2
DIM (Dimension) Statement .. 3-3
MAT (Matrix) Statement .. 3-3

~~~ ~~~e~~~~-·st~-t~;;,·~~-t~·:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;~! 
IF/THEN Statement ............................................................................................................ 3-4 
GO TO Statements .............................................................................................................. 3-5 
GOSUB, :RETURN, and SUB Statements .......................................................................... 3-6 
PRINT Statements ............................................................................................................ 3-10 
IN PUT ~tatement ............................................................................................................. 3-15 
RESTORE Statement ......................................................................................................... 3-16 
REM (R~mark) Statement ................................................................................................ 3-17 
CALL Statement ................................................................................................................ 3-18 
WAIT S~atement ................................................................................................................ 3-18 
STOP Statement ................................................................................................................ 3-18 
END Statement ................................................................................................................. 3-19 

BASIC iii 



SECTION 4 

USING THE BASIC svs1:EM 

Operating Instructions ......................................................................................................... 4-1 
Control Commands .............................................................................................................. 4-3 
Program and Calculator Modes .......................................................................................... 4-4 

SECTION 5 

ERROR MESSAGES 

SECTION 6 

CALL STATEMENT DESIGN CONSIDERATIONS 

SECTION 7 

EXTENDED BASIC 

GETTING STARTED ............................................................................................................ 7-1 
Keyboard Input ................................................................................................................... 7-2 
Error Messages ................................................................................................................... 7-4 

ELEMENTARY BASIC ......................................................................................................... 7-4 
Assignment Statements ..................................................................................................... 7-5 
Data Pools ....................................................................................................................... 7-13 
Miscellaneous Statements ............................................................................................... 7-15 
Branching Statements ..................................................................................................... 7-16 
Input/Output Statements ................................................................................................ 7-18 
Writing Loops ................................................................................................................... 7 -22 
Subroutines ...................................................................................................................... 7-24 

ARRAYS.-............................................................................................................................ 7-29 
Array Subscript ................................................................................................................. 7 -30 
DIM .................................................................................................................................... 7-30 

MATRIX STATEMENTS ..................................................................................................... 7-31 
Use of Matrix. Operations ................................................................................................. 7 .33 
Restrictions ....................................................................................................................... 7 .33 
MATREAD .......................................................................................................................... 7-34 
MATPRINT ......................................................................................................................... 7-34 

VECTORS ........................................................................................................................... 7 .35 

BASIC iv 



BULK stoRAGE FILE HANDLING ................................................................................. 7-36 
Loading IEBASIC from the System File (RESTART) ...................................................... 7-37 
File Direlctory Listing (FUST, FUST A, FUST B) .; ....................................................... 7-40 
Initialization of Removable File Media (CLEAR A, CLEAR B) .................................... 7-42 
Storage ~nd Recovery of Program Files ...................................................................... 7-42 
Creation! and Use of Data Files .................................................................................... 7-43 
COPY .... ~ ........................................................................................................................... 7-48 
DELETE~ ........................................................................................................................... 7-49 
Program~ Overlays, Dynamic Use of LOAD ................................................................... 7-49 

PROGRAMMING THE INTERFACE CONSOLE ............................................................ , ... 7-51 
Analog ~nd Digital Channels: DATAI, DATIF, and DATO .................................. : ......... 7-51 
Control ~nd Status Line Operation (PULSE, STATUS) ................................................ 7-60 

INFORM~TION DISPLAY ON OSCILLOSCOPE ............................................................... 7-62 
; 

i 

INFORMiA.TION DISPLAY ON KEYBOARD OSCILLOSCOPE DISPLAY .......................... 7-68 

INFORMATION OUTPUT ON DIGITAL X-Y PLOTTER .................................................. 7-69 

UTILITY; SUBROUTINES ................................................................................................. 7-71 

NOTES 
In the eJ;<amples given in this manual, boldface type indicates obligatory items, and italics 
indicateioptional items. Capital letters indicate precisely the letters used, and small letters 
indicate~ that other letters and or numbers are to be substituted. 

BASIC v 



a primer in basic 

SECTION 1 - A PRIMER IN BASIC 

A program is simply a set of directions that tells a computer how to solve a problem. The 
computer takes the raw-data input. manipulates it according to the directions in the 
program, and, if there are no errors in the data or program. gives the answer required. 

For proper performance, any program must fulfill two requirements: 

a. The program must be in a language that is understood by the computer. just as 
problems presented to people must be in languages they understand. 

b. The program must be complete and precise because the computer. unlike 
human problem-solvers, cannot make inferences. The computer does what you 
order, not what you meant to order. 

A program in English would pose insurmountable difficulties for the computer. English 
and other human languages are rich in ambiguities and redundancies. qual1t1es that 
make poetry possible and computing impossible. Thus. you must present your program in 
a language that has many of the characteristics of ordinary mathematical 
notation: simple vocabulary and grammar, but with the ability to specify problem
solving steps completely and precisely. One such language is the Beginner's All-purpose 
Symbolic Instruction Code (BASIC), originally developed at Dartmouth College. 

In this manual, the rest of section 1 introduces you to the BASIC language and shows you 
how to write simple programs that can solve a wide variety of useful and interesting 
problems. Section 2 shows you how to apply the BASIC language to more advanced 
computer techniques. Section 3 shows you how to use and operate the BASIC system. and 
includes a variety of reference material. 

AN EXAMPLE 

Let us begin by seeing how the BASIC language is applied to the solving of a system of 
two simultaneous liner equations in two variables. and then to the solving of two different 
systems, each differing from the first only in the constants c and f. Given: 

ax + by c 

dx + ey 
Then 

x (ce - bf)/(ae - bd) 

y (at - cd)/(ae - bd) 

BASIC 1-1 



a primer in basic 

Note that, if ae - bd = 0, there is either no solution or an infinite number of solutions. 
but no solution that is unique. In any other case. there will be a unique solution. 

Whether or not you understand the manual solution of such systems 1s not important. For 
now, study the following example and explanation to learn how a BA.SIC program for 
solving the problem is developed. 

EXAMPLE 

10 READ A. B. D. E 
15 LET G = A ':' E - B D 
20 IF G = ·O THEN 65 
30 READ C, F 
37 LET X (C E - B F)/G 
42 LET Y = (A F - C ':' D)/G 
55 PRINT X, Y 
60 GO TO 30 
65 PRINT "NO UNIQUE SOLUTION" 
70 DATA 1, 2. 4 
80 DATA 2. ·- 7, 5 
85 DATA 1. .3, 4, - 7 
90 END 

Several things about the program can be noted: 

a. It uses only capital letters since the Teletype has only capital letters. A 
handwritten progra.m separates confusing pairs of characters by adhering to 
the following conventions: 

Numbers: 0 1'. 2 

Letters: ¢ I l 

Since these characters are on different Teletype keys. there 1s no confusion 
during typing. 

b. Each line of the program begins with a number called a line number that 
identifies the line. called a statement. and specifies the order in which the 
statement 1s to be processed by the computer. The program can be written 1n 
any order since the computer will sort it and edit it as specified by the line 
numbers. 

c Each statement has a word following the line number. This word specifies the 
type of statement. 

d. Each statement is free form. This is not obvious from the program printed above. 
but spaces have no effect on statements in BASIC. Thus. line 10 could have 
been typed as 

BASIC 1-2 



a primer in basic 

10READA,B,D,E 

nnd line 15 as 

15LETG=A*E-B*D 

The exception to this is the spacing in statements to be printed (e.g .. line 65) since they 
print just as written, including spacing. 

Now let us go through the example, statement by statement. 

The first statement, line 10, is a READ statement. READ statements must be 
accompanied by one or more DATA statements. which do not, as the example shows. have 
to be adjacent to the READ statement . in the program. Whenever the computer 
encounters a READ statement while executing a program, it assigns the next available 
values in the DATA statement(s) to the variables in the READ statement. Thus. the 
variable A in line 10 is assigned the value 1 from line 70. the first DATA statement.· 
Similarly, B is assigned the value 2, D the value 4, and E the value next available in the 
DATA statements, i.e .. the value 2 from line 80. The next READ statement will pick up 
DATA values from where this statement leaves off. This is further discussed below. 

The second statement, line 15, is a LET statement. LET statements contain formulas to 
be evaluated using mathematical notation slightly modified to meet the requirements of 
the computer, e.g., use of the asterisk (':'), which cannot be omitted. to denote 
multiplication. In line 15, we order the computation of AE - BD and call the result G. In 
general, a LET statement directs the computer to set a single variable equal to a 
mathematical expression, where the variable is to the left of an equal sign and the 
mathematical expression to the right. Note that in a LET statement the equal sign does not 
denote equality but replacement, and line 15 might best be read as "replace the quantity 
AE - BD with G" ; thus, formulas such as X = X + 1 are perfectly valid in LET statements. 

The next statement, line 20, is an IF /THEN statement. IF !THEN statements contain 
conditions that, if met, cause the execution of the program to go next to the statement 
designated after the THEN. In this example, we know that there can be no unique 
solution if G = 0, so we order the program to jump to line 65 if. and only if. G = 0. 

The statement in line 65 is a PRINT statement. PRINT statements 
cause the output of the material between quotation marks and ior of 
computed values. Thus, if G = 0 (line 20), the program prints the 
text 

NO UNIQUE SOLUTION 

and. since lines 70. 80. and 85 contain nonexecutable DATA 
statements. passes to line 90. an END statement. This terminates 
the execution of the program for the case where G = 0. 

BASIC 1-3 



a primer in basic 

However. in our example. G 'T- 0. Since the condition in line 20 is not met. the program 
continues to execute statements in the order of their appearance. rather than jumping to 
line 65. Thus. an IF, THEN statement tells the computer where to go for its next 
1nstruct1on when the IF condition 1s met. but. if the condition is not met. the computer 
passes to the next statement in sequence. 

The next statement. line 30. 1s another READ statement that assigns the next two 
available DATA values. - 7 and 5_ (both from line 80). to the variables C and F. 
respectively. This supplies the rest of the required constants to the original pair of 
equations to yield the system 

x + 2y = - 7 

4x + 2y = 5 

The next statements. lines 37 and 42. are LET statements that direct the computer to 
find the values of X and Y according to the formulas provided. Note the use of 
pCJrentheses to indicate that CE - BF is to be divided by G. Had the parentheses been 
orrntted. the computer would have divided only BF by G. solving 

x = ce - (bf/g) 

rather than the required 

x = (ce - bf)/g 

that is equivalent to the original 

x = (ce - bf)/(ae - bd) 

The next statement. line 55. is a PRINT statement that causes the output of the 
computed values of X and Y The values 4 and 5.5 are printed and the computer goes to 
the next statement. 

The next statement. line 60. 1s a GO TO statement. A GO TO statement causes the 
execution of the program to go next to the statement designated. There is no condition. 
When the computer encounters a GO TO statement. it always goes to the statement 
designated. 

The computer thus returns to line 30. which contains a READ statement. The next two 
<1vailable DATA values. 1 and 3 (from line 85). are assigned to the variables C and F. 
respectively. The old values of C and F are lost and replaced with the new values. This 
yields the system 

x + 2y = 1 

4x + 2y = 3 

BASIC 1-4 



a primer in basic 

As before. the computer finds the values according to lines 37 and 42. prints the results 
<1s directed in line 55. and returns to .line 30 as specified by line 60. 

Here the next two values of C and F. 4 and - 7. respectively (from line 85). are assigned 
;rnd the computer solves the system 

x + 2y = 4 

4x + 2y = - 7 

It prints the solutions and returns to line 30. However. there are no more DATA values for 
assignment to C and F. The computer informs us that it is out of data by printing on the 
Teletype 

ERROR 56 IN LINE 30 

(Error 56 does not indicate a mistake in the program, but merely conveys information 
from the computer concerning the lack of data. We will examine such error messages in 
detail later.) 

This terminates the execution of the program. Note that it is not necessary to reach an 
END statement to terminate. 

The program and the results are shown below just as they would appear on the Teletype. 
After typing in the program, type the word RUN and press the RETURN key. This directs 
the computer to execute the program. 

Program 

1 0 READ A, B, D, E 
15 LET G = A*E - B*D 
20 IF G = 0 THEN 65 
30 READ C, F 
37 LET X = (C*E - B*F)/G 
42 LET Y = (A*F - C*D)/G 
55 PRINT x, y 

60 GO TO 30 
65 PRINT "NO UNIQUE SOLUTION" 
70 DATA 
80 DATA 
85 DATA 
90 END 
RUN 

4 
0.666666 
-3.66666 

1 , 2, 4 
2, -7, 5 
1, 3, .4, 

ERROR 56 IN LINE 30 

-7 

Result 

-5.5 
0.166666 
3.83333 

BASIC 1-5 



a primer in basic 

Now that we have solved the problem. let us examine more closely certain characteristics of 
the program. · 

For example, omission of line 20 would not have affected the solution 1ust presented. 
However, in the case where ae - bd = 0. omission of line 20 would have required the 
computer to perform the impossible calculation of dividing by zero in lines 37 ;rnd 42 The 
computer would then merely print 

ERROR 69 IN LINE 37 

ERROR 69 IN LINE 42 

where ERROR 69 indicates an attempt to d1v1de by zero. 

Omission of line 55 would have been catastrophic. The computer would have milde the 
required calculations. but could not print them since it was not ordered to do so. The 
solutions would have remained the computer·s secret. Furthermore. there would have 
been no error message to signal that something was amiss. since there was no error in 
the format of the program, the data. or the computations. The Teletype would hClve simply 
remained blank. 

Omission of line 60 would not have affected the first set of solutions. but after the in1t1al 
values of X and Y were printed. the computer would have gone to line 65. printed 

NO UNIQUE SOLUTION 

and stopped. At least the curious juxtaposition of a set of solutions followed by this 
message would have brought the error to our attention. 

I he choice of ind1v1dual line numbers 1s arbitrary. but the lines must be numbered in the 
order to be followed during the execution of the program (disregarding jumps caused by 
GO TO and IF THEN statements). We could have numbered the lines 1. 2. 3 ..... 13 . 
. ilthough this 1s not recommended. Spacing between the numbers allows for insertions 
m.1de necessary by omissions or by mod1f1cat1ons. Thus. if we discover that we have left 
out two statements between lines 40 and 50. we can assign them numbers such as 44 
.rnd 46 so that the computer will place them in the proper order during the editing and 
sorting of the program. 

1 he d1v1s1on of data items among the DAT A statements 1s arbitrary. but the items must 
appear in the order in which they are to be read during the execution of the program Thus. 
in our example. the first data item 1s assLgned to the variable A. the second to B. the third 
10 D. the fourth to E. the fifth to C. the sixth to F. the seventh to C (replacing the fifth). 
etc Rather than the three lines 70. 80. and 85 given in the example. we might have 
written 

7 5 DATA 1, 2, 4, 2, - 7, 5, 1, 3, 4, - 7 

BASIC 1-6 



or perhaps more naturally 

70 DATA 1, 2, 4, 2 
75 DATA -7, 5 
80 DATA 1, · 3 
85 DATA 4, -7 

a primer in basic 

to indicate that the coett1c1ents appear in the first DATA statement and the various pairs 
of values for C and Fin the subsequent DATA statements. 

FORMULAS 

The computer computes by evaluating the formulas in a program. These formulas are 
similar to those used in standard mathematical notation. with slight modifications 
required by the nature of the computer. 

One general limitation in BASIC is that a formula must be written on a single line of the 
coding sheet or punched in a single card. However. long formulas can be broken down 
into two or more short formulas that meet this requirement. The limitation is thus one of 
writing and not one of computation. 

Operations 

BASIC uses the following five arithmetic operations in formulas. each indicated by the 
corresponding symbol. Note that the asterisk C:') used to indicate multiplication cannot 
be omitted. 1.e .. in ordinary mathematical notation AB is equivalent to A x B or A · B. but 
in BASIC this can be expressed only by A ':' B. 

Operation 

Add1t1on 

Subtract ion 

Mult1pl1cat1on 

D1v1s1on 

Exponentiation 

Symbol 

+ A + B 

A - B 

A B 

A I B 

A I B 

Example 

(Add B to A) 

(Subtract B 
from A) 

(Multiply 
A by B) 

(Divide A 
by B) 

(Raise A to the 
power of B) 

BASIC also provides tor evaluation of the following six arithmetic relationships in IF !THEN 
statements where such comparisons define the IF condition. 

RASlr 1-7 



a primer in basic 

Relationship 

Is equal to 

Is not equal 
to 

Is less than 

Is greater 
than 

Is not less 
than 

Is not greater 
than 

Symbol 

# 

< 

/= 

<= 

A B 

A# B 

A< B 

A/. 8 

A>= B 

A<= 8 

Example 

(A 1s equ,11 to 

B) 

(A 1s not equill 
to B) 

(A 1s less than 
B) 

(A 1s greilter 
than 8) 

(A 1s equ,11 to 
or gre,1ter than 
Bl 

(A 1s equ,11 to 
or less th;rn Bl 

The introductory example contained an instance of the use of an ar1thmet1c relat1onsh1p in 

the statement 

20 IF G = 0 THEN 65 

In addition to the arithmetic operations and relationships. the computer can evaluate 
several mathematical functions 1n BASIC: 

Function 

Find the sine of x 

Find the cosine of x 

Find the tangent of x I 
Find the arctangent of x 

Find e to the power of x 

Find the natural logarithm of :< (In x) 

Find the absolute value of x <I x I) 

f- ind the square root of x ( 1 x) 

Truncate x* 

R~~lr 1-R 

Where x is a number 
or 1s an angle 
measured in radians 

Coding 

SIN (X) 

COS (X) 

TAN (X) 

ATN (X) 

EXP (X) 

LOG (X) 

ABS (X) 

SQR (X) 

INT (X) 



a primer in basic 

Function Coding 

RND (X) 

Assign a sign to x ':' SGN (X) 

These functions. which are not self·ex'planatory. are discussed in section 2. 

In coding the above functions. we can·substitute any number or mathematical expression 
for X. For example. to find the square root of (4 + x · ), we would write 

SQR (4+Xt3) 

Parentheses 

To ensure that items in formulas are properly grouped together for correct execution of a 
program. BASIC requires careful use of parentheses. Such use gives attention to the order 
in which the computer performs the calculations. 

An expression inside parentheses is computed before the quantity is used in further 
computation. For example, in the expression A ,... (8 + C), the quantity B + C is first 
computed, and then the result subtracted from A. In the case of nested parentheses, the 
nests are computed from the inside out, e.g., in A - (8 - (C + D)), the quantity C + D is 
computed first. 

In the absence of parentheses in an expression or part of an expression. the computer 
performs its calculations according to the following three levels of priority: 

a. First, all exponentiation 

b. Next, multiplication and division 

c. Finally, addition and subtraction 

Within a level of priority, computations are performed from left to right. For example. if we 
type A + B ':' C t D, the computer first raises C to the power D. multiplies the result by 
B. and then adds A to the product. If this is not the order intended. we specify the 
desired order by the use of parentheses: to raise the product of B and C to the power 
D before addition to A, we write A + (B ':' C) 1 D; to multiply A + B by C and raise the 
product to the power D, we write ((A + 8) ':' C) 1 D. 

If there is any question in your mind about these priorities, add more parentheses to 
eliminate possible ambiguities. Thus,. the computer. faced with A - B - C. first subtracts 
B from A and then subtracts C from their difference. Faced with A I B I C. it first divides 
A by 8, then divides that quotient by C. Given A 1 B 1 C. the computer raises A to the 
power 8, then raises that result to the power C. Changing or clarifying this order of 
computation requires the use of parentheses. 

BASIC 1-9 



a primer in basic 

Parentheses permit easy formulation of complicated mathematical expressions. Thus. to 
find the arctangent of the quantity 

3x -2en + 8 

we write 

ATN (3 * x - 2 * EXP (N) + 8) 

Or, to find the value of (5/8) 17 
, simply write the two-line BASIC program 

10 PRINT (5/8) t 17 
20 END 

and the computer calculates the decimal form of the answer and prints it in less time 
than it took to type the program. 

!Numbers 

In BASIC, a number is a positive or negative decimal value of up to (approximately) seven 
significant digits. The following are thus valid numbers in BASIC: 2, - 3.675, 
1234567, - .7654321, and 483.4156. 

The following are not valid numbers in BASIC: 1413 and (7. These are expressions, 
not numbers, and must be converted by the computer to valid BASIC numbers before 
further manipulation or inclus~cin in a list of data. In the first case, the expression 
contains two numbers, 14 and 3. whose quotient in decimal form can be manipulated or 
included in a list of data. The second expression contains one number, 7, whose square 
root can be computed in BASIC by applying the appropriate mathematical function, SQR 
(7). to yield. a valid decimal number that can be used in further computations or in a list 
of data. 

Additional range and flexibility in the BASIC number system is attained by using the 
letter E (exponent), which is read" times ten to the power," e.g., 73E7 indicates 73 times 
10 to the power 7. Thus, we can write 0.001234567 in several forms acceptable in BASIC, 
e.g., .1234567E -2, 1234567E -9, 1234.567E -6. We can write ten million as 1E7 or 
1 E + 7, but we cannot write just E7 (this is a variable, section 1.2.4) since we must 
indicate 1 as the quantity that is to be multiplied by 10 • 

Variables 

In BASIC, a variable is denoted lby a single letter or by a single letter followed by a single 
digit. The following are thus valid variables in BASIC: E7, A, X, X9, and Q2. 

A variable in BASIC stands for a number, usually one whose value is not known when the 

BASIC 1-10 



a primer in basic 

program is being written. Variables are assigned numerical values by LET. READ. and 
INPUT statements. Values thus assigned do not change until the next such statement 
containing a new value for that variable is encountered. Then, the new value replaces the 
former value and is used in subsequent manipulations. 

A numerical value must be assigned to a variable before it can be used in a computation 
since all variables are undefined before each run. Failure to make such assignments 
results in the error message 

ERROR 50 IN LINE nn 

LOOPS 

Often programs contain portions to be performed repeatedly, sometimes with slight 
changes on each pass. Iterations and_ incrementations are examples of such cases. In 
BASIC, the loop simplifies the writing of such programs because the portion to be 
repeated is written only once. 

For example, a BASIC program to print a table of the first 100 positive integers and their 
square roots would be 101 lines long without the use of loops: 

10 PRINT 1, SQR (1) 
20 PRINT 2, SQR (2) 
30 PRINT 3, SQR (3) 

990 PRINT 99, SQR (99) 
1000 PRINT 100, SQR (100) 
1010 END 

However, the use of a loop reduces the 101-line program to five lines giving the same 
results: 

10 LET X = 1 
20 PRINT X, SQR (X) 
30 LET X x + 1 
40 IF X <• 100 THEN 20 
50 END 

Line 10 assigns X the value of 1. Line 20 prints this value of X and its square root. Line 30 
increases the value of X to 2 (the statement is read " let the new value of X be the old 
value of X plus one"). Line 40 asks if the new value of X is less than or equal to 100. and. 
since this is true, directs the computer back to line 20. Line 20 prints 2 and the decimal 
form of (2. Line 30 then increases the value of X to 3, line 40 returns the computer to 
line 20, etc., repeating the loop in this manner 100 times. On the lOlst pass. however. 
the relationship in line 40 is false since X is now 101. Therefore. the computer does not 
return to line 20, but goes to line 50 and ends the program. This example shows the four 

BASIC 1-11 



a p~imer in basic 

characteristics of a loop: 
and exit test (line 40). 

initialization (line 10), body (line 20). modification (line 30). 

Because the necessity for the use of loops of the type just illustrated arises so often. 
BASIC provides FOR and NEXT statements to specify such a loop even more simply. Our 
sample program then reduces to 

10 FOR X • 1 TO 100 
20 PRINT X, SQR lX) 
30 NEXT X 
50 END 

Line 10 specifies a range of values, and line 30 increments X and returns the computer to 
line 20. When the range specified in line 20 is exhausted, there is no " next X" and the 
computer goes to line 50 to terminate the program. 

The above illustration shows the simplest form of the FOR statement where the variable is 
incremented by one on each pass. However, other increments can be specified by a STEP 
clause in the FOR statement. Thus, the above example can be modified to increment in 
steps of 5 by writing 

10 FOR X • 1 TO 100 STEP 5 

where the computer would assign 1 to X on the first pass, 6 on the second, 11 on the 
third, etc .. up to 96. Since the next increment would be 101, which is out of the specified 
range, the program terminates after printing 96 and its square root. 

STEP can be negative. The abov·e example can be modified to print the table of square 
roots in reverse order by writing 

10 FOR X • 100 TO 1 STEP -1 

FOR statements can contain initial values, final values, and step sizes that are 
expressions of any required complexity. Thus, provided N and Z have been specified 
earlier in the program. we can write such statements as 

99 FOR A • N + 7 * z T0 (z - N)/3 STEP (N - 4 * z)/10 

The loop continues as long as the value of the control variable (i.e .. the variable to the left 
of the equal sign) is within the· specified range. This range can be specified by the 
conditions of an IF statement or by a FOR statement. If the initial value specified is 
already outside the range given in the IF statement, the body of the loop is not 
performed. The computer goes immediately to the line following the NEXT statement. 
Thus, in the following program for adding up the first n integers will give the correct 
result of zero when N is zero. 

BASIC 1-12 



a primer in basic 

10 READ N 
20 LET s - 0 
30 FOR K = TO N 
40 LET S • s + K 
50 NEXT K 
60 PRINT S 
70 GO TO 10 
90 DATA 3, 1 0, 0 
99 END 

Loops within loops are called nested loops and can be programmed with FOR and NEXT 
statements. However, nested loops must actually nest since loops that cross are invalid, 
as shown below. 

ARRAYS 

Allow~d 

FOR X 
FOR Y 
NEXT Y 
NEXT X 

Allowed 

FOR X 

~~~iz 
FOR W
NEXT W
NEXT Y

rFOR Z
LNEXT Z

NEXT X

Not Allowed

FOR X
FOR Y
NEXT X
NEXT Y

BASIC can generate arrays by the use of array variables that consist of a single letter and
are followed by subscripts in parentheses. The subscripts can be single, for example, to
specify the coefficients of a polynomial (a, , a~ , a_i, ...), or double, as in a two·
dimensional matrix (bn,m). In BASIC, the first is written A(l), A(2), A(3), ... and the
second B(l,l), B(l,2), ...

The letter used for an array variable can also be used as an ordinary BASIC variable
(section 1.2.4) without confusion. However, within the same program, a letter cannot be
used for both singly and doubly subscripted array variables.

The form of the subscript is flexible, and can be a number, variable, array variable, or
mathematical expression. Thus, BASIC permits array elements such as B(l,K) and
Q(A(3,7),B - C).

We can enter the one-dimensional array A(l), A(2), ... , A(lO) into a program very simply:

10 FOR I = 1 TO 10
20 READ A(I)
30 NEXT I

BASIC 1-13

a primer in basic

4 0 DATA 2 I 3 I - 5 I 5 I 2. 2 I 4 I -9, 12 3 I 4, -4

This simple form of array specification is· all that is required for singly subscripted arrays
in which no subscript is greater than ten. To specify larger arrays, use a DIM (dimension)
statement of the form

DIM x(n)

where x is the array variable and n is the highest subscript in the array x. The DIM
statement tells the computer to save sufficient space for the array. It is therefore
advisable to allow for the maximum possible number of entries when the size of the array
is not precisely known. For example, to enter a list of 15 numbers, we might write

10 DIM A(25)
20 READ N
30 FOR I = 1 TO N
40 READ A(I)
50 NEXT I
60 DATA 15
70 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
80 DATA 37, 41, 43, 4'7

Note that lines 20 and 60 could have been eliminated by writing FOR I = 1 TO 15, but
the longer form given allows for lengthening the array up to 25 elements by changing only
line 60. Of course, to extend the array beyond 25 elements requires, in addition. changing
line 10.

Similarly, we can write the two-dimensional array 8(1,1), 8(1,2), ... , 8(3.5) into a
program as:

10 FOR I . 1 TO 3
20 FOR J = 1 TO s
30 READ B (I, J)

40 NEXT J
50 NEXT I
60 DATA 2, 3 I -5, -9, 2
70 DATA 4, -7, 3, 4 I -2
80 DATA 3 I -3, 5, 7 I 8

No DIM statement is required as long as no subscript is greater than 10, i.e .. the above
entry could be expanded to include all entries up to 8(10, 10) without a DIM statement
An attempt to write an array with a subscript product greater than 100 without using a
DIM statement yields the error message

ERROR 49 IN LINE xx

The error can be corrected by entering the m~ssing DIM statement. To specify· a 20-by-30

BASIC 1-14

a primer in basic

table in the above program, write

5 DIM 8(20,30)

Since a DIM statement is merely a specification and is not executed during the program,
it can be entered on any line before the END statement. However, it is convenient to
place DIM statements near the beginning of the program.

The DIM statement is usually used to save more space than the ten subscripts
automatically allowed by- the computer, but in the special case of a long program
containing many short arrays, DIM can be used to allot less space to arrays in order to
l"'ave more for the program.

Below is a program using both a singly and a doubly subscripted array. It computes the
total sales of each of five salesmen, all of whom sell the same three products. Array P,
specified in lines 10 through 30, gives the price-per-unit of each product. Array S, specified
in lines 40 through 80, tells how many units of each product were sold by each salesman.
The program reads the price data from line 900 into the elements of array P, and the
sales data from lines 910 through 930 into the elements of array S. Thus, product 1 sells
for $1.25 per unit, product 2 for $4.30, and product 3 for $2.50; salesman 1 sold 40 units
of the first product, 10 of the second, etc. To enter th~ sales for the next month and reuse
the program for those data requires changing only lines 910 through 930. A price change
requires a change to line 900.

READY
10 FOR I = t TO 3
20 READ P(I)
30 NEXT I
40 FOR I = 1 TO 3
50 FOR J = 1 TO 5
60 READ S(I,J)
70 NEXT J
80 NEXT I
90 FOR J = TO 5
100 LET S = 0
110 FOR I = 1 TO 3

Program

120 LET S = S+P(I)*S(I,J)
130 NEXT I
140 PRINT "TOTAL SALES FOR SALESMAN" J; "$" S
150 NEXT J
900 DATA 1.25, 4.30, 2.5
910 DATA 40, 20, 37, 29, 42
9 2 0 DAT A 1 0 , 1 6 , 3 , 2 1 , 8
930 DATA 35, 47, 29, 16, 33
999 END
RUN

BASIC 1-15

a primer in basic

Result

TOTAL SALES FOR S11.LESMAN 1 $180.5
TOTAL SALES FOR S11.LESMAN 2 $2 11. 3
TOTAL SALES FOR S11.LESMAN 3 $131.65
TOTAL SALES FOR SALESMAN 4 $166.55
TOTAL SALES FOR S11.LESMAN 5 $169.4

ERRORS AND DEBUGGING

More often than not, the first running of a program will reveal errors. Program errors are
of two types:

a. A format (grammatical) error produces an error message (section 5) that informs
you of the type and location of the mistake so that you can correct it easily.

b. A logical error does not produce an error message since it does not have any
characteristics that appear to the computer as mistakes. A logical error can,
however, result in incorrect results, or no results at all. The logical error is thus
more difficult to detect and correct than the format error, particularly when the
results seem somewhat reasonable.

In either case. the error is first isolated and then it is corrected by inserting, deleting, or
changing lines in the program.

a. To insert a line in a program, type the new line using a line number between the
line numbers of the lines that are to precede and follow the new line; e.g., to
insert a line between lines 70 and 80, type the new line with a line number of
75.

b. To delete a line from a program. type only the line number and then press
RETURN.

c. To change a line, retype the line correctly using the same line number.

Such corrections can be made at any time because the computer sorts the line numbers
automatically.

The rest of this section is an illustration of the process of debugging (correcting) a
program based on the problem of finding that value of x between 0 and 3 for which the
sine of x is a maximum, and ask the machine to print out this value of x and the value of
its sine. If you have studied trigonometry, you know that 'TT 12 is the correct value, but we
shall use the computer to test successive values of x from 0 to 3, first using intervals of
0.1. then of 0.01, and finally of 0.001. Thus, we ask the computer to find the sine of 0, of
0.1. of 0.2, of 0.3, ... ,of 2.8. of 2.9, and of 3, and to determine which of these 31 values is
the largest. The computer does this by testing SIN(O) and SIN(O. l) to determine which is

BASIC 1-16

a primer in basic

larger, and calls the larger of these two numbers. M. It then picks the larger of M and
SIN(0.2) and this value is called M. This number rs checked against SIN(0.3), etc. Each
time a larger value of M is found, the value of x is remembered in XO. When the computer
completes this process, M will. have been assigned to the largest value. The search is
repeated; this time the computer checks the 31 numbers (0, 0.01, 0.02, 0.03, ... , 2.98,
2.99. and 3), finding the sine of each and determining which is the largest. After this, the
computer makes a third run using increments of 0.001. At the end of these three runs,
the computer is to print three values: (1) the value of XO that has the largest sine, (2)
the sine of that value, and (3) the interval used on the run that found the value. To solve
this problem, we begin by writing the program:

10 RE A[Q ~
20 LET XO : 0
3 o Fl(Zi R x = o rfQ 3 s r E P ID
40 IF SIN (X) ~= M THEN 100
50 LE[T X 0 = X
60 LET IM : SIN (XO)

-l-+=8+0+-fW~El'-'X+.T+--cFlX4il-=+-0+--+---1--+---1---<1---1-+ +-. _ +- f-~ . ~-+-
9 0 Glc.J T~ 2 0

70 PRINT XO~ X1t D

Now we are ready to enter the program on the Teletype. The sequence shown below is the
entire sequence that appears on the Teletype, followed by explanatory comments.

READY
10 READ D
20 LWR XO = 0
ERROR 11 IN LINE 20

20 LET XO = 0
30 FOR X = 0 TO 3 STEP D
40 IF SINE - (X) <= M THEN 100
50 LET XO = X
60 LET M = SIN (X)
70 PRINT XO, X, D
ERROR 36 IN LINE 70

70 PRINT XO, X, D
80 NEXT Z-XO
90 GO TO 20

BASIC 1-17

a primer in basic

100 DATA .1, .01, .001
110 END
RUN
ERROR 40 IN LINE 30

Comments: Line 2Q: The error message indicates that LET is mistyped. The correction is
made by retyping the line correctly.

Line 40: The letter E is incorrectly entered after SIN. Typing a backarrow deletes the
character immediately preceding. When an error is caught early enough to use this simple
corrective technique, it is employed. The incorrect character is then replaced by the
correct one (in this case, a blank) by typing it after the backarrow.

Line 70: The second error message indicates that XO is used for a variable rather
than the correct form XO. The correction is made by retyping the line correctly.

Line 80: Another use of the backarrow replaces the incorrect character Z with the
correct character X.

Last line: After typing the END statement, we try to run the program by typing RUN.
However, this causes another error message, this time to advise us that the program
contains a FOR statement without a corresponding NEXT. Upon checking, we see that this
is caused by having the variables in lines 40 and 80 different. This is corrected by
retyping line 80 using the same variable as that found in line 40. Furthermore, the IF I
THEN statement in line 40 directs the computer to a DATA statement instead of to line
80. Line 40 is thus also retyped and another attempt made to run the program.

80 NEXT X
40 IF SIN (X) <• M THEN 80
RUN
ERROR 50 IN LINE 40

The new error message indicates that M has never been assigned an initial value. (This
error came to the attention of the computer only after line 40 had been corrected.) We
assign M an initial value of - 1 and make another attempt to run the program.

20 LET M = - 1
RUN

Result

0 0 . 1
. 1 • 1 • 1
. 2 . 2 • 1
• 3 . 3 • 1
• 4 . 4 • 1
READY

BASIC 1-18

a primer in basic

We are now getting results, but they are incorrect. We are receiving every value of X, XO,
and interval size. Therefore, the printout is stopped by typing any character on the
Teletype while it is running. This error is corrected by typing:

70
85 PRINT XO, M, D
RUN

to move the PRINT statement outside the loop. Typing line number 70 followed by a
carriage return deletes that line. It is retyped using line number 85 and with the incorrect
variable X replaced by the correct variable M.

This attempt to run the program yields the following results:

1.59999 .999573 . 1
1.59999 .999573 . 1
1.59999 .999573 . 1
1.59999 .999573 .· 1
READY

because line 90 returns the computer to line 20, merely repeating the operation using the
same values, rather than to line 10 to pick up a new value for D. At the same time that
we make this correction, we decide to add headings for the columns of figures of the
results. Thus, we type:

90 GO TO 10
5 PRINT "X VALUE", "SIN", RESOLUTION"
ERROR 21 IN LINE 5

The new error message indicates the format error in line 5, in which there is no left
quotation mark for the third item. We retype line 5 correctly and run the program.

Result

5 PRINT "X VALUE", "SIN", "RESOLUTION".
RUN

X VALUE
1.59999
1.56998
1.5709

SIN
.999573
.999999
.999999

ERROR 56 IN LINE 10

RESOLUTION
• 1
1.00000E-02
1.00000E-03

Thus, we now obtain the correct results as specified in the original problem. (Remember
that ERROR 56 does not indicate a mistak·e. but merely that there are no more data.)
Having changed so many parts of the program, we request a list of the corrected program.
Periodic listing of the present state of the program is an important debugging aid. The
listing is requested merely by typing LIST. Typing PLIST at the end of the listing causes

BASIC 1-19

a primer in basic

the program to be punched on paper tape for later use. The correct listing appears on the
Teletype as:

LIST
5
10
20

PRINT "X VALUE",
READ D
LET M = -1

"SIN", "RESOLUTION"

30 FOR X = 0 TO 3 STEP D
40 IF SIN (X) <• M THEN 80
50 LET XO • X
60 LET M • SIN (X)
80 NEXT X
85 PRINT XO, M, D
90 GO TO 10
100 DATA . 1, 1. OOOOOE-02, 1. OOOOOE-03
110 END
PL I ST

One common debugging aid that we have not used is the insertion of a PRINT statement
to check that the computer is doing what we think we asked it to do. For example, if we
wondered about the computation 01' M in the above example, we could have inserted 65
PRINT M to have the values of M printed.

BASIC 1-20

advanced basic

SECTION 2 - ADVANCED BASIC

This section explains the following specialized aspects of the BASIC language:

Logical Operators

Special Functions

Matrices

LOGICAL OPERATORS

In addition to the arithmetic operations and relationships, and mathematical functions
already discussed (section 1.2.1), BASIC uses the Boolean logical operators AND, OR, and
NOT. With the exception of NOT, which takes the following operand as its single
argument, all of these are binary operators. In a formula, the binary operators have a
lower priority than any of the arithmetic operators (t , •:•, /, +,and -). Among the binary
operators, the priority in ascending order is OR, AND, and the relational operators (all of
equal priority). NOT has the same priority as unary + and unary - . Thus,

NOT A + B = C OR SGN(K) AND SGN(J)

1s equivalent to

(((NOT A) + B) = C) OR (SGN(K) AND SGN(J))

The relational operators take algebraic numbers as arguments and return 0 (false) or 1
(true) according to the relationship existing between their arguments. Thus, 3 < 2
evaluates to 0 and A ::::: 0 evaluates to 1 if A has a nonzero value. The Boolean operators
consider their arguments as zero (false) or nonzero (true) and return 0 and 1 as follows:

AND

Argument Argument 2 Result

nonzero nonzero
nonzero zero 0
zero nonzero 0
zero zero 0

BASIC 2-1

advanced basic

Argument 1

nonzero
nonzero
zero
zero

Argument

nonzero
zero

OR

Argument 2

nonzero
zero
nonzero
zero

NOT

Result

0
1

Result

0

Thus, 3 AND 1 evaluates to while NOT -3 AND 0 evaluates to 0. It is important to
realize the A < B < C is not equivalent to A < BAND B < C. If A = - 3, B = - 2. and
C = 1 /2, the former evaluates as (- 3 < - 2) < 1 /2 or 0 (false), whereas the latter
evaluates as (- 3 < - 2) AND (- 2 < 112) or 1 (true).

SPECIAL FUNCTIONS

This section explains the special functions INT, RND, and SGN (listed in section 1.2.1),
and the use of DEF to define other hmctions.

INT (Integer) Function

The INT function computes the value of x expressed by the algebraic notation as [x]. It
gives the greatest integer not greater than x for - 32768 :s; x < 32768. Thus, INT(2.35)
= 2, I NT(-2.35) = -3, and I NT(12) = 12. Note that' I NT(X) = 32768 for x ~ 32768
and INT(X) = -32768 for x ~-32768.

One use of the INT function is to truncate numbers. Use it to truncate to the nearest integer
by writing INT(X + .5). This will truncate 2.9, for example, to 3 by finding INT(2.9 + .5) =

INT(3.4) = 3. Thus, this function will truncate a number midway between two integers, up
to the larger of the integers.

It can also be used to round to any specific number of decimal places. For example,
INT(10 * X + .5)/10 rounds to one decimal place, and INT(10 t D * X + .5)/10 t D rounds to
D decimal places.

RND (Randomize) Function

The RND function produces a normal distribution of random numbers between 0 and 1.
The form of RND. RND(X) or RND(O), requires an argument, although the argument has
no significance. The argument can be a constant or a previously defined variable. The
example below produces 20 random six-digit decimals.

BASIC 2-2

RUN

READY
1 0
20
30
40

FOR L • 1 TO 20
PRINT RND(O);
NEXT L
END
RUN

advanced basic

Program

Result

6.80170E-02 .240643 .417191 .192204 .701485 .705105
1.80673E-02 .460499 .87426 .34657 .812546 .146031
~723061 .473629 .249848 .182393 .697106 1.98793E-02
.122941 .221928 READY

RUN
6.80170E-02 .240643· .417191 .192204 .701485 .705105
1.80673E-02 .460499 .87426 .34657 .812546 .146031
.723061 .473629 .249848 .182393 .697106 1.98793E-02
.122941 .221928 READY

Note that the second RUN gives exactly the same random numbers as the first. This
greatly facilitates the debugging of programs that use the random-number generator.

To produce 20 random one-digit integers, change line 20 to

20 PRINT INT(1O*RND(0)) I

Result

0 2 4 7 7 0 4 8 3 8
7 4 2 6 0 1 2 READY

To vary the type of random numbers (for example, to obtain 20 random numbers ranging
from 1 to 9 inclusive). change line 20 to

1
7

20 PRINT INT(9*RND(O) + 1);

3
5

4
3

2
2

7
7

7

Result

1
2

4
2

8 4
READY

8 2

To obtain random numbers that are integers between 5 and 24 inclusive, change line 20
to

BASIC 2-3

advanced basic

20 PRINT INT(20*RND(O) + 5);

6 9
, 9 , 4

, 3

9
8
8

SGN (Sign) Function

19
18

19
5

Result

5
7

14
9

22 11
READY

21 7

The SGN function assigns the valuie 1 to any positive number, 0 to zero, and - 1 to any
negative number. Thus, SGN(7.23) = 1. SGN(O) = 0, and SGN(- .2337) = - 1.

DEF (Define) Function

In addition to standard functions, any other function can be defined with DEF. The name
of the defined function comprises three letters, the first two of which are FN. A total of 26
functions can be defined, e.g., FNA, FNB, etc.

For example, DEF can be used in a program where the function exp(- x2 + 5) is needed
frequently:

30 DEFFN E(X) • EXP (-Xt2+5)

Various values of the function can be called by writing FNE(.l), FNE(3.45), FNE(A+2).
etc. Such a definition can be a great time-saver to produce values of some function for a
number of different values of the variable.

DEF can occur anywhere in .the program, and the expression to the right of the equal sign
can be any legal expression. It can contain a combination of other functions, including
those defined by other DEF state!ments. It can involve variables other than. the one
denoting the argument of the function.

For example, assume FNR is defined. by

7 0 DEFFN R (X) • SQR (2+LOG (X) - EXP (Y*Z) * (X + SIN(2*Z)))

If values have been previously assigned to Y and Z, FNR(2.7) can be requested. New
values can be assigned to Y and Z before the next use of FN.

The use of DEF is generally limited to those functions whose values can be computed
within a single BASIC statement.. More complicated functions or parts of a program are.
coded as subroutines accessible to GOSUB statements (section 3.8).

MATRICES

It is often convenient to interpret doubly subscripted arrays as matrices. Although matrix
computations can be worked out using conventional BASIC statements, the language
provides the following 12 matrix (MAT) statements to simplify program writing and

BASIC 2-4

increase the power of the language.

MAT c ZER

MAT c CON

MAT c ION

MAT PRINT a, b; c

MAT b = a

MAT c a + b

MAT c a -b

MAT c a * b

MAT c TRN(a)

MAT c (k) * a

MAT c I NV(a)

advanced basic

Fill matrix c with zeros

Fill matrix c with ones

Define c as an identity matrix

Print three matrices, in this example
with a and c in the regular format
and b closely packed (section 3.9.2)

Set matrix ·b equal to matrix a

Add the two matrices a and b and place
the result in matrix c

Subtract matrix b from matrix a and
place the result in matrix c

Multiply matrix a by matrix b and place
the result in matrix c

Transpose matrix a and place the result
in matrix c

Multiply matrix a by the number or
expression k (which must be in paren
theses)· and place the result in matrix c

Invert matrix a and place the result in
matrix c

BASIC matrices adhere to the following convention: if a MAT statement specifies a matrix
having the dimensions m-by-n, the rows are numbered 1, 2, M and the columns 1, 2 .

... , N.

MAT statements are used in conjunction with dimension (DIM) statements that indicate
the maximum dimensions of the matrices and cause the computer to save sufficient
space. (The assumed dimensions of 10 rows by 10 columns for matrices without DIM
statements do not apply for matrices involved in matrix computations. These must always
be described by a DIM statement.) For example, to save space for any matrix up to and
including 20 rows and 35 columns, we write

DIM M(20,35)

BASIC 2-5

advanced basic

The actual dimensions of a matrix can be defined either when first established (by using a
DIM statement), or by one of the four matrix statements MAT READ. MAT ZER. MAT
CON, or MAT IDN. Thus, to read a 20-by-7 matrix for x, write

10 DIM X(20, 7)

50 MAT READ X

To read a 17-by-30 matrix for y within maximum dimensions of 20-by-35, write

10 DIM Y(20,35)

SO MAT READ Y(17,30)

The elements of a matrix are stored by column in ascending locations in memory. using
two computer words for each element. Thus, the matrix dimensioned as DIM A(3.3) is
structured and stored as follows:

Columns

A(l, 1) A{l ,2) A(1.3)
Rows A(2, 1) A(2,2) A(2.3)

A(3, 1) A(3,2) A(3.3)

The elements would be stored in the· following order:

Element Position Memory Location Element

m A(1.1)
2 m+2 A(2,1)
3 m+4 A(3,l)
4 m+6 A(1.2)
5 m+8 A(2,2)
6 m + 10 A(3,2)
7 m + 12 A(l ,3)
8 m + 14 A(2,3)
9 m + 16 A(3.3)

Given the statement DIM A(M.N), the location m of any element A{i,j) of the matrix, with
respect to the first element A(1.1), is given by:

m =[location of A{l,l)] + 2[M(i -}.) + (j -1)]

BASIC 2-6

The three statements:

MAT M ZER
MAT M CON
MAT M IDN

advanced basic

set up the matrix M filled with zeros. filled with ones. or as an identity matrix,
respectively. Each acts as MAT READ as far as the dimensioning of the matrix is
concerned. For example,

MAT M == CON(7,3)

sets up a 7-by-3 matrix full of ones. but

MAT M • CON

sets up a matrix, also full of ones. according to dimensions previously specified by a DIM
statement. Thus.

10 DIM M(20,7)
20 MAT READ M(7,3)

35 MAT M CON

70 MAT M • ZER(15,7)

will first read in a 7-by-3 matrix for M and then set up a 7-by-3 matrix of ones for M as
specified in line 20. This results in an error message because line 70 calls for 105
components in a matrix limited to 21 components by line 20. The original dimensions can
be exceeded, however, provided the total number of components is within the set limit,
e.g.,

90 MAT M • ZER(25,5)

The MAT PRINT statement (see also section 3) prints matrix components row by row
across the page. Spacing between elements is controlled by typing commas or semicolons
after each component, where commas space the printing and semicolons close-pack it.
Each row starts on a new line. Rows containing more components than can be printed on
one line are continued on the next line. Thus, the statement

BASIC 2-7

advanced basic

MAT PRINT A, B; C

prints the matrices A and C in the normal format of five components per line. and matrix
B closely packed with up to 12 components per line.

Vectors

A singly subscripted array can be interpreted as a column vector. Vectors can be used in
place of matrices as long as the above rules are followed. Since a vector like V(J) is
treated as a column vector by BASIC, a row vector must be specified as a matrix with one
row, e.g.,

DIM X (7) , Y (·1, 5)

introduces a seven-component column vector and a five-component row vector. A column
vector is printed one element per line with double spacing between lines. A row vector is
printed as specified by the statement, e.g., where V is a row vector,

MAT PRINT V,

prints V as a row vector, five components to the line, while

MAT PRINT V;

prints Vas a row vector, twelve components to the line.

Manipulating Matrices

To set up a matrix B identical to the matrix A, provided that the dimensions previously
assigned to B are the same as thos(~ of A, write

MAT B • A

If matrices A, B, and C have the sarne dimensions, operations such as

MAT C • A + B
MAT C • A - B

are legal. The indicated operation is performed and stored in C. Only one operation per
statement is allowed, e.g., to perform MAT D = A + B - C two statements are required.

In the multiplication operation

MAT C = A * B

the number of columns in A is equcfl to the number of rows in 8, the number of rows in C
is equal to the number of rows in A, and the number of columns in C is equal to the
number of columns in B. For example, if A is 1-by-m, and B is m-by-n, then C is 1-by-n.

BASIC 2-8

advanced basic

(Note that even when MAT A = A + B is legal, MAT A = A •:• B results in nonsense
because, in multiplying matrices, components required to complete the computation are
destroyed before they can be used, whereas, in addition, the results are stored
immediately. However, MAT B = A•:• A is legal provided A is a square matrix.)

Matrices can also be multiplied by constants. In the operation

MAT C = (k) * A

each component of the matrix A is multiplied by k to form the components of the matrix
C. The constant k, which is enclosed in parentheses, can be a number or an expression.
The statement MAT A = (k) •:•A is legal.

To transpose the matrix A, write

MAT C = TRN(A)

where matrix C is matrix A transposed. Thus, if A is m-by-n, C is n-by-m. Since a matrix is
destroyed by transposition, it cannot be transposed into itself, i.e., dimensions cannot be
reversed by writing MAT A = TRN(A).

To invert the square matrix A, write

MAT C = INV(A)

where matrix C is the inversion of the square matrix A. Like transposition, a matrix
cannot be inverted into itself.

Sample Matrix Programs

EXAMPLE 1: This program reads in A •and B in line 30 and in so doing sets up the
correct dimensions. Dimensions for C are set up in line 35. Then, in line 40, A + A is
computed and the answer is called ·C. Note that the data in line 90 result in A being 2-by-
3 and B being 3-by-3. Both MAT PRINT formats are illustrated and one method of
labeling a matrix print is shown.

READY
10
20
30
35
40
50
60
70

Program

DIM A(15, 15), B (15, 15), C (15, 15)
READ M, N
MAT READ A(M,N),B(N,N)
MAT C = ZER(M,N)
MAT C = A + A
MAT PRINT C;
MAT C = A*B
PRINT

BASIC 2-9

advanced basic

75 PRINT "A*B=:"
80 MAT PRINT c,
90 DATA 2 I 3
91 DATA 1 I 2 I 3
92 DATA 4 I 5 I 6
93 DATA 1 I 0 I -1
94 DATA 0 I - 1 , -1
95 DATA - 1 , 0 I 0
99 END

Result

RUN
2 4 6
8 1 0 12

A*B ..
-2 -2 -3
-2 -5 -9

EXAMPLE 2: This program inverts an n-by-n Hilbert matrix:

112 113
112 113 114
113 114 115

l!n l/n + 1 l/n + 2

l/n
l!n + 1
l!n +2

l!n - 1

Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note that this
occurs after correct dimensions have been declared. Then a single instruction results 1n
the computation of the inverse matrix, and one more instruction prints 1t In this
example, we have supplied 4 for n in the DATA statement and have made a run for this
case.

Program

READY
5 REM THIS PROGRAM INVERTS AN N-BY-

N HILBERT MATRIX
1 0 DIM A(20,20), B(20,20)
20 READ N
30 MAT A CON(N,N)
40 MAT B CON(N,N)
50 FOR I 1 TO N
60 FOR J 1 TO N
70 LET A(I I J) =· 1/(I+J-1)

BASIC 2-10

advanced basic

80 NEXT J
90 NEXT I
100 MAT B = INV(A)
11 0 PRINT
11 5 PRINT "INV(A) •"
120 PRINT
125 MAT PRINT B;
190 DATA 4
199 END
RUN

Result

INV(A) =
15.9885 -119.877 239.713 -139.816
-119.877 1198.69 -1696.94 1678.04
239.713 -2696.94 6472.84 -4195.42
-139.816 1678.04 -4195.42 2797.07

Note: Because of severe rounding errors, Hilbert matrices are not inverted beyond
n = 7.

BASIC2-11

SECTION 3 - STATEMENTS IN BASIC

This section explains each type of BASIC statement and illustrates its use:

READ statement

DATA statement

DIM (dimension) statement

MAT (matrix) statements

LET statement

FOR statement

NEXT statement

IF/THEN statement (conditional GO TO statement)

GO TO statements
Unconditional GO TO statement
Computed GO TO statement

GOSUB (go to subroutine) statements
Unconditional GOSUB statem~nt
Computed GOSUB statement
GOSUB statement with parameters

RETURN statement

SUB (subroutine) statement

PRINT statement

IN PUT statement

RESTORE statement

REM (remark) statement

BASIC 3-1

statements in basic

CALL statement

WAIT statement

STOP statement

END statement

READ and DATA Statemcmts

The READ statement has the format

number READ var, var, ...

and the DATA statement has the format

number DAT A num,num, ...

where
var is a variable
num is a number

The sequences of variables and numbers in these statements can contain any number of
items as long as the statement itself does not exceed 72 characters.

A READ statement assigns values obtained from a DATA statement to the listed
variables. Neither statement is used without one of the other type. A READ statement
causes the variables listed in it to be given, in order, the next available numbers in the
collection of DATA statements. Before the program is run, the computer takes all of the
DATA statements in the order m which • they are numbered and creates a large data
block. Each time a READ statement is encountered anywhere in the program. the data
block supplies the next available number or numbers. If the data block runs out of data
with a READ statement still asking for more, the program is assumed to be done and we
get an OUT OF DATA error message:

ERROR 56 IN LINE nn

Since we have to read in data before working with it, READ statements normally occur
near the beginning of a program. The location of DATA statements is arbitrary. as long as
they are numbered in the com~ct order. A ~ommon practice is to collect all DATA
statements and place them just before the END statement.

Examples:

150 READ X, Y, Z, X1, Y2, Q9
3 3 0 DATA 4, 2, 1 . 7
3 4 0 DAT A 6 . 7 3 4 E - 3 , - 1 7 4 . 3 2 1 , 3 • 1 4 1 5 9 2 6 5

BASIC 3-2

statements in basic

234 READ B(K)

263 DATA 2 I 3 I 5, 7, 9, 11, 1 0, 8, 6, 4

1 0 READ R(I,J)
440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5
450 DATA 2. 7 65, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and that 1517 and /3 are
expressions, not numbers.

DIM fDimension) Statement

The DIM statement has the format

where

number DIM array

number
array

is the line number of the statement
1s the name of the array being dimensioned

followed by its subscript(s) in parentheses

The DIM statement is required for defining an array having any subscript greater than
10. The maximum subscript allowed is 255.

Examples:

20 DIM H (35)
35 DIM Q (5,25)

MAT (Matrix) Statement

The MAT statement is explained in the section on matrices.

LET Statement

This statement has the format

number LET var exp

or the format

number LET var voa exp

where
number
var

1s the line number of the statement
1s a variable

exp
voa

1s a number or an expression
1s a variable or an array

This statement assigns the value of the number or expression to one or more variables or
arrays.

BASIC 3-3

statements in basic

Examples:

100 LET X = X + 1
200 LET W7 = (W-X4t3)*(Z-A/(A-B))-17
333 LET X = Y3 = A(3,1) =
900 LET W = Z = 3•X-4*Xt2

FOR and NEXT Statements

The FOR statement has the format

number FOR var ex pi TO ex pf STEP exps

and the NEXT statement has the format

where

number NEXT var

number
var

expi

ex pf

exps

is the line number of the statement
is a simple (nonsubscripted) variable, identical in both

the FOR and NEXT statements of the couplet
is a number or expression whose value is the initial

value of var
is a numbel' or expression whose value 1s the final

value of var
is a number or expression .whose value is the increment

between successive values of var between
expi and expf (if omitted from the statement.
exps is assumed to be + 1)

The FOR statement enters a loop and the NEXT statement exits from the loop. directing
the computer back to the FOR statement until expf is reached. At this point the NEXT
statement allows the computer to exit from the loop and pass to the next statement in the
program.

Specifications and restrictions in the use of loops, as well as examples of FOR and NEXT
statements, are given in the discussion of loops.

IF /THEN Statement

This statement has the format

number IF exp rel exp THEN next

where
number
exp
rel

BASIC 3-4

is the line number of the IF !THEN statement
is a mathematical expression or number
is an arithmetic operation or relationship

statements in basic

exp is a mathematical expression or number used if and only
if re/ is present

next is the line number of the statement to be executed
next if the preceding conditions are met

The conditions of an IF /THEN statement are met when the logical argument exp r~/ exp
is true or if the single mathematical expression exp is nonzero. Any expression can be
considered a logical argument by evaluating the numbers represented in it by the logical
constants false = 0 and true = not 0.

Examples:

40 IF SIN (X) < • M THEN 80

where the computer jumps to line 80 if the sine of x is less than or equal to m, but
otherwise goes to the next line after 40.

20 IF G = 0 THEN 65

where the computer jumps to line 65 if G is zero, but otherwise goes to the next line after
20.

35 IF A THEN 83

where the computer jumps to line 83 if A is nonzero, but otherwise goes to the next line
after 35. ·

85 IF A + B - 5 THEN 302

where the computer jumps to line 302 if the value of the expression is nonzero, but
otherwise goes to the next line after 85.

90 IF -2 THEN 200

where the computer always jumps to line 200 since the value of the expression is always
nonzero, i.e., such a statement is equivalent to an unconditional GO TO statement.

GO TO Statements

There are two types of GO TO statements. The unconditional GO TO statement causes the
program execution to jump to the specified line every time the statement is encountered.
This statement has the format

number GO TO next

BASIC 3-5

statements in basic

where
number
next

1s the line number of the GO TO statement
1s the line number of the statement to be executed next

The computed GO TO statement specifies several lines for the jump. The one selected
depends on the value n of an expression in the statement, where the line number chosen
is the nth line number in the statement. This statement has the format

where

number GO TO exp OF next.next.next ...

number
exp
next

1s the line number of the GO TO statement
1s an expression
1s a line number of one of the statements that.

depending on the value of exp, is to be
executed next

Thus. exp 1s evaluated and the answer truncated to the integer value n that determines
the next to be used. e.g .. if n = 2. the second next is the valid line number.

The IF1THEN statement (section 3.6) is also called the conditional GO TO statement
because the program jumps to the specified line only if a certain relationship exists.

Examples: Uncondit1ona/ GO TO Statement:

150 GO TO 75

where the next statement to be executed in the one in line 75.

Computed GO TO Statement:

160 GO TO I-3 OF 10,30,100

where the next statement to be executed 1s the one in line 30 when I= 5. since 1-3 = 2.
selecting the second line number in the series.

Cond1t1onal GO TO Statement: See IF ;THEN statement (section 3.6).

GOSUB, RETURN, and SUB Statements

There are three types of SOSUB (Go To Subroutine) statements. All of them direct the
computer to a subroutine according to the specifications of the statement. and all of
them are used with the RETURN statement. which has the format

number RETURM

where number is the line number of the RETURN statement. The RETURN statement 1s

BASIC 3-6

statements in basic

the exit from the subroutine and returns the computer to the first line number greater
than that of the calling GOSUB statement. RETURN is the only exit from a subroutine. i.e ..
GO TO or IF /THEN statements cannot be used to exit from a subroutine. There can be
more than one RETURN statement in a subroutine, but only one of them can be used on
any given pass through the subroutine.

Subroutines can be nested, i.e., GOSUB statements can be used inside subroutines to call
sub-subroutines.

The unconditional GOSUB statement causes the program execution to jump to the
specified line every time the statement is encountered. Tt:lis statement has the format

where

number

number
subr

GOSUB subr

is the line number of the GOSUB statement
is the line number of the first statement in the

subroutine to be executed next

The computed GOSUB statement specifies several lines for the subroutine jump. The one
selected depends on the value n of an expression in the statement, where the line
number chosen is the nth line number in the statement. This statement has the format

where

number GOSUB exp OF subr,subr,subr, ...

number
exp
subr

is the line number of the GOSUB statement
is an expression
is the line number of one of the statements that,

depending on the value of exp, is the first
statement of the subroutine to be executed next

Thus, exp is evaluated and the answer truncated to the integer value n that determines
the subr that will be used, e.g., if n = 2, the second subr is the valid line number of the
first statement in the subroutine selected.

The GOSUB statement with parameters enters parameter values in the subroutine
specified. The statement has the format

where

number GOSUB subr,param,param, ...

number
subr

par am

is the line number of the GOSUB statement
is the line number of the first statement in the

subroutine to be executed next, i.e., that of
the SUB statement

is a parameter value to be entered into the
subroutine by the SUB statement

BASIC 3-7

statements in basic

The GOSUB statement with parameters is always used with a SUB statement that has the
format

where
subr SUB var, var, ...

subr is the line number of the SUB statement and is

var

identical with the subr in the corresponding
GOSUB statement

is a variable

The parameter values in the GOSUB statement are assigned to the corresponding
variables in the SUB statement; i.e., the first parameter value is assigned to the first
variable, etc. The effect of a SUB statement or the definition of variables is removed upon
execution of the corresponding FIETURN statement. A subroutine defined by a SUB
statement can be entered retrogressively (see example below).

Examples: Unconditional GOSUB Statement: This program for finding the greatest
common denominator (GCD) of three integers using the Euclidean algorithm illustrates
the use of the unconditional GOSUB statement. The first two numbers are selected in
lines 30 and 40 and their GCD is determined in the subroutine, lines 200 through 310.
This GCD is called X in line 60, th£? third number is called Y in line 70, and the subroutine
is entered from line 80 to find the GCD of these two numbers. The resulting GCD is the
greatest common divisor of the three given numbers and is printed with them in line 90.

Program

READY
10 PRINT "A" I "B", "C" I "GCD"
20 READ A, B, c
30 LET X = A
40 LET y = B
50 GO SUB 200
60 LET X -G
70 LET Y - c
80 GO SUB 200
90 PRINT A, B, c, G
100 GO. TO 20
1 1 0 DATA 60, 90, 120
120 DATA 38456, 64872, 98765
130 DATA 32, 38•4 I 72
200 LET Q - INT(X/Y)
210 LET R "" x - Q•Y
220 IF R - 0 THJ::N 300
230 LET X = y

240 LET y .. R

250 GO TO 200
300 LET G .. y

310 RETURN
320 END
RUN

BASIC 3-8

·statements in basic

Result

A B c GCD
60 90 120 30
38456 64872 98764 4
32 384 72 8
ERROR 56 IN LINE 20

Computed GOSUB Statement: The expression in the statement is evaluated and
truncated to the integer n, and program execution jumps to the nth line number in the
line number list. If, when z = 1.68, we want the program execution to jump to line 55. we
can write

20 GOSUB Z+1 OF 30,55,70

where the expression is computed to be equal to 2.68 and is truncated to the integer 2.
thus selecting the second line number. In this case, the computed GOSUB results in a
jump like that obtained with the unconditional GOSUB

20 GOSUB 55

GOSUB Statement with Parameters: To pass the two parameter values 5 and 10 into a
subroutine defined by a SUB statement in line 100, we can write

20 GOSUB 100, 5, 10

or, the same transfer results when we use a variable j when its value is 6 and we write

20 GOSUB 100, 5, J+4

GOSUB Statement with Parameters and SUB Statement for Retrogressive Subroutine
Entry: This program shows the use otthese statements for a simple incrementation.

LIST
1 0
20
30
40
50
100
105
11 0
120
130
140

Program

REM SHOW USE OF GOSUB WITH PARAMETER TRANSFER
LET N = 5
GOSUB 100, N
PRINT "MAIN PROGRAM"; N
END
SUB N
REM THIS EXAMPLE USES A RETROGRESSIVE SUBR. ENTRY
PRINT "SUBROUTINE GOT"; N
IF N = 0 THEN 140
GOSUB 100, N-1
RETURN

9999 END
RUN

BASIC 3-9

statements in basic

Result

SUBROUTINE GOT 5
SUBROUTINE GOT 4
SUBROUTINE GOT 3
SUBROUTINE GOT 2
SUBROUTINE GOT 1
SUBROUTINE GOT 0
MAIN PROGRAM 5
READY

PRINT Statements

The PRINT statements control the output and format of the results of BASIC programs.

General Types

There are four common uses of PHINT statement:

To print the results of computations

To print comments

To print a combination of the above

To skip a line

Each of these uses requires a particular format of PRINT statement.

To print the results of computations, use the format

where

number PRINT exp.exp

number
exp

is the line number of the statement
is a variable or expression whose computed value

is to be printed (up to 5 values per line)

The variables used must already have been given values.

Examples: To print the value of x and the value of its square root, we can write

100 PRINT X, SQR(X)

To print the values of the five expressions x, y, z, b~ - 4ac, and e to the power a - b, we
can write

135 PRINT X, Y, Z, B•B-4•A•C, EXP{A-B)

BASIC 3-10

To print comments, use the format

where

number PRINT "comment"

number
comment

is the line number of the statement
1s the material to be printed

statements in basic

Within comment blanks will be observed by the computer. If several comments are to be
printed on one line. e.g., for column headings, use the format

number PRINT "comment" , "comment" ,

where each comment is enclosed within quotation marks. In no case are the quotation
marks printed When used for column headings. the printout automatically aligns the
headings and the columns because the commas specify that the next heading be printed
in the next zone (section 3.9.2).

Examples:

100 PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUE" I "SIN" I "RESOLUTION"

To print a combination of results and comments, use the PRINT statement with the
comments in quotation marks, and with the variables or expressions whose values are to
be printed given as above.

Examples: Where x = 625, we can write

15 PRINT "THE VALUE OF X IS" X
30 PRINT "THE SQUARE ROOT OF" X; "IS" SQR(X)

and obtain the printout

THE VALUE OF X IS 625
THE SQUARE ROOT OF 625 IS 25

Note that no terminator (semicolon or comma) is required after quotation marks. but
they are required after variables or expressions (except as the final item in the
statement). The comma causes the item that follows to be printed in the next zone. while
a semicolon causes it to be printed closed-up (section 3.92).

To skip a line, use the format

number PRINT

where number is the line number of the statement.

BASIC 3-11

statements in basic

This statement simply requests that the computer print nothing and then activate the
carriage return, i.e., skip a line.

Manipulating the Printing Format

The Teletype line is divided into five printing zones, starting at positions 0. 15. 30. 45.
and 60, respectively. A terminator (comma or semicolon) controls the use of these zones.
A comma (,) moves printing to the next printing zone, or, if the fifth printing zone has
been filled, to the first printing zone of the next line. A semicolon (;) produces more
compact output since it inhibits spacing between printing zones, acting only to separate
quantities to be printed (e.g., A+ B;C/D}, or to suppress a carriage return at the end of a
print statement.

Spacing within a printing zone d1epends on the value and type of the number being
printed. A number is always printed in a zone larger than it needs, and is left-justified in
that zone. The zone size is determined as follows:

Value of Number

- 999 :5 n :5 + 999

- 999999 :5 n :5- 1000
+ 1000 :5 n :5 + 999999

0.1 :5n :5999999.5

n <:0.1
999999. 5 <: n

Type oJ Number

Integer

Integer

Real (normal
range)

Large integer
or real (extreme
range)

The carat (/\) represents a space typed on the Teletype.

For example, for the program

10 FOR I = 1 TO 15
20 PRINT I
30 NEXT I
40 END
RUN

BASIC 3-12

Format of Zone

vv xxxv

/\ xxxxxx /\/\/\
-99999 ~ n ~-1000 I NT
+1000 ~ n ~ 99999

vvvv xxxxxxx v

-999999 ~ n ~-10000 INT
+ 1 0000 ~ n ~ -999999
(decimal point
printed as one of
x·s; trailing zeros
suppressed)

~ x.xxxxx E ± ee AAA

statements in basic

the Teletype prints 1 at the beginning of a line, 2 at the beginning of the next line, etc.,
up to 15 on the 15th line.

By changing line 20 to read

20 PRINT I,
RUN

the numbers are printed in zon.es, reading

1
6
1 1

2
7
12

3

8
1 3

4
9
1 4

5
1 0
1 5

To print the numbers in more tightly packed zones, replace the comma in line 20 with a
semicolon

20 PRINT I;
RUN

and the result is

1 1
2
12

3
1 3

4
1 4

5
15

6 7 8 9 1 0

A character string in quotation marks is printed just as it appears. The end of a PRINT
line always signals a new line unless a comma or a semicolon is the last symbol. Thus. the
statement

50 PRINT X, Y

prints the two numbers and returns to the next line, while the statement

50 PRINT X,Y,

prints these two values but does not return. The next number is printed in the third zone.
following the values of X and Y in the first two zones.

Since the end of a PRINT statement signals a new line,

250 PRINT

skips one line. This can be used to put a blank line in the program to allow vertical
spacing of the results. It can also be used to complete a partially filled line:

50 FOR M
110 FOR J =

TO N
TO M+1

BASIC3-13

statements in basic

120 PRINT B(M,J);
130 NEXT J
140 PRINT
150 NEXT M

This program prints B(l, 1) followed by B(l ,2). Without line 140, the Teletype would
continue to print B(2,l), B(2,2), and B(2,3) on the same line, and then B(3, 1), B(3,2), etc.
Line 140 directs the Teletype to start a new line after printing the B(l ,2) value
corresponding to M = 1, and again after printing the value of B(2,3) corresponding to M
= 2, etc.

The instructions

50 PRINT "VARIAN BASIC ";
51 PRINT "LANGUAGE COMPILER"

print

VARIAN BASIC LANGUAGE COMPILER

Output formatting can be controlled even further by use of the function TAB. Insertion of
TAB(17) causes the Teletype to move to column 17 as 1f a tab had been set there. For this
purpose. line posit ions are numbered 0 through 71.

TAB can contain any expression as its argument. The value of the expression 1s
computed. truncated. and its integer part taken. The Teletype then moves forward to this
position. If the pos1t1on has already been passed. the TAB 1s ignored. If the result is
greater than 71. the Teletype moves to pos1t1on 0 of the next line.

for example. to insert the following line in a loop. we write

PRINT X; TAB(12); Y; TAB(27); Z

This prints the X value in column 0. the Y value 1n column 12. and the Z value in column
27

A comma following a TAB clause has no effect on Teletype positioning. The statement

PRINT TAB(7), A+B

prints the value of A + B starting at position 7. The statement

PRINT Z, A+B

prints the value of A + Bat pos1t1<1n 15 (second printing zone).

BASIC 3-14

statements in basic

The following rules for the printing of numbers will aid in interpreting printed results:

a. If the number is an integer with a value from - 999999 to + 999999. inclusive.
the decimal point is not printed.

b. If the number is real and has an absolute value between 0.1 and 999999.5. 1t is
rounded to six digits and printed with a decimal point. Trailing zeros after the
decimal point are suppressed.

c. A number either greater than 999999.5 or less than 0.1 is rounded to six places.
The Teletype then prints a space (if positive) or a minus sign (if negative). the
first digit, the decimal point, the next five digits, the letter E (exponent). the
sign of the exponent, and the value of the exponent. For example. 3.243.756 1s
printed as 3.243756E + 6.

The following program to print the powers-of-two shows how numbers are printed.

READY
10 FOR N • -5 TO 30
20 PRINT 2tN;
30 NEXT N
40 END
RUN

Program

Result

3.12501E-02 6.25002E-02 .125 .25 .5 1
1.99999 3.99999 7.9~997 15.9999 31.9998 63.9995
127.999 255.998 511.994 1023.99 2047.98 4095.94
8191.88 16383.7 32767.4 65535 131069 262138
524277 1.04855E+06 2.09790E+06 4.19422E+06 8.38839E+06
1.67768E+07 3.35536E+07 6.71068E+07 1.34213E+08 2.68427E+08
5.36854E+08 1.07370E+09 READY

IN PUT Statement
The INPUT statement has the format

where

number INPUT var.var, ...

number
var

is the line number of the statement
is a variable

The INPUT statement acts as a READ statement but does not draw data from DATA

BASIC 3-15

statements in basic

statements. Instead, it asks the user to supply the required data by outputting a question
mark. The user types the data, separating each number from the next with a comma, and
presses the RETURN key on the Teletype.

INPUT should be used only when small amounts of data are to be entered, or when it is
necessary to enter data during the running of the program, since data entry via INPUT is
slow. Furthermore, data entered via INPUT statements are not saved with the program.
Numbers used with INPUT must not exceed nine digits.

To retake control from the IN PUT processor, type a plus (+).

[xamples: If the user is to supply values for x and y, type

40 INPUT X, Y

before the first statement that uses either variable. When the computer encounters this
statement, it types a question mark. Type two numbers, separated by a comma and press
the RETURN key. The computer then goes on with the rest of the program.

Frequently, an INPUT statement is combined :-vith a PRINT statement to ensure that the
user knows what the question mark is asking for. You might type, for example,

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, Y, Z

and the computer will type

YOUR VALUES OF X, Y, AND Z ARE?

(Without the semicolon at the end of line 20, the question mark would have been printed
on the next line.)

RESTORE Statement

The RESTORE statement has the format

number RESTOHE

where number is the line number of the statement.

The RESTORE statement permits the reuse of data within a program. When RESTORE 1s
encountered in a program. the computer restores the data·block pointer to the first data
number. A subsequent READ statement then starts the reading of the data again from
the first data item.

If the desired data items are preceded by unwanted data. use extra READ statements to
pass over these numbers.

BASIC 3-16

statements in basic

Example: This program reads the data, restores the data-block pointer. and rereads the
data. Note the use of line 570 to pass over the already-known value of n.

100 READ N
110 FOR I = 1 TON
120 READ X

200 NEXT I

560 RESTORE
570 READ X
580 FOR I = 1 TO N
590 READ X

REM (Remark) Statement

The REM statement has the format

where

number REM comment

number
comment

is the line number of the statement
is any comment desired in the listing

The comment in the statement is printed in the listing just as written, including blanks. It
1s. however. otherwise ignored by the processor.

The line number of a REM statement can be used in a GO TO or IF/THEN statement.

Examples:

100 REM INSERT DATA IN LINE 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS

300 RETURN

BASIC 3-17

statements in basic.

520 GOSUB 200

CALL Statement

The CALL statement has the format

where

number CALL asubr,parameter,parameter

number
asubr

parameter

is the line number of the statement
is the name of an assembly-language subroutine

(1-6 alphanumeric characters)
is a variabh?, number, or expression

The CALL statement links absolute assembly-language subroutines to BASIC. Execution of
the CALL statement passes control to an assembly-language program appended to the
BASIC system. For internal design considerations of CALLed subroutines, see section 6.

Results can be returned to the BASIC program through the parameters. Care is necessary
to prevent an constant from being placed in a position in the CALL statement where the
subroutine attempts to return a value. This results in the value of the constant being
changed throughout the BASIC interpreter.

Examples:

100 CALL SUBA, AID, X, 3
200 CALL RESET
883 CALL POLY, A+l, B+4, C•DtS, E

WAIT Statement

The WAIT statement has the format

number WAIT delay

where
number
delay

STOP Statement

1s the line number of the statement
is a number. variable, or expression whose value

gives the number of milliseconds delay introduced
into the program at this point (maximum value
32,767)

The STOP statement has the format

number STOP

BASIC 3-18

statements in basic

where number 1s the line number of the STOP statement.

The STOP statement stops the computer execution of the program. Execution resumes
with the next BASIC statement when the RUN or ST ART key on the computer is pressed.

END Statement

The END statement has the format

number END

where number is the line number of the END statement.

The END statement returns control to the operator. A program can have more than one
END statement, but it is possible for a program to terminate without reaching an END
statement. e.g .. when there is no more data to process.

l3ASIC 3-19

SECTION 4 - USING THE BASIC SYSTEM

This section provides:

The operating instructions for the BASIC system

The control commands that the user inputs from the Teletype keyboard

An explanation of the two BASIC operating modes: program mode and
calculator mode

OPERATING INSTRUCTIONS

The minimum hardware configuration for using BASIC is a Varian 73 or 620-series com
puter with 8K of memory and a model 33/35 ASR Teletype.

Memory requirements for the various configurations are:

Basic BASIC 6224 words

BASIC with trig 6585 words
functions

BASIC with matrix 7421 words
functions

Binary Load/Dump 256 words
Program (BLD II)

Debugging Program 1024 words
(AID 11)

In an 8K system, AID II cannot be loaded in addition to a complete BASIC program.

To operate the BASIC system:

a. Manually enter the bootstrap loader program (refer to the applicable system
reference handbook).

b. Load the BASIC system tape with the Binary Load / Dump program provided.

c. Start the program at location 02. The program types:

PAPER TAPE: TYPE 1 FOR HI SPEED, ELSE TTY
(continued)

BASIC 4-1

using the basic system

d. If the high-speed paper tape reader !punch is desired, enter a I. Any other entry
assigns paper tape input/output to the Teletype. The program types:

MAT, TRIG: TO SAVE BOTH, 2 TO SAVE TRIG, ELSE
DELETE BOTH

e. The lower boundary of the BASIC table space is selected here. The program
space used by the matrix or trig functiqn can be deleted and used by BASIC for
working storage. If there 1s more than 8K or memory, the program types:

AID: 1 TO SAVE, ELSE WIPEOUT

The core space occupied by the utility program AID will be used by BASIC unless
there 1s a request that 1t be saved. In an BK system, AID is always lost. The
program types:

READY

and waits for input from the Teletype.

f. Start the input. which can be either a BASIC statement or a control command.

If, in the process of typing a statement, you make a typing error and notice it immediately,
you can correct it by pressing the backward arrow (shift key above the letter 0). This
deletes the character in the preceding space, and you can then type in the correct
character. Pressing this key a number of times will erase from a line the characters in that
number of preceding spaces. To dE!lete all of the present line, press RUBOUT. Programs or
data can be annotated by typing the remark and then deleting the line (as far as the
system is concerned) with a RUBOUT. BASIC types a backslash to show that a line has
been deleted.

lUter typing your complete program. type RUN, press the RETURN key. If the program 1s
free of errors. the computer will run 1t and type out any results that you requested in your
Pf~INT statements. This does not mean that your program is entirely correct, but that it
has no errors of the type known as grammatical errors.

If there are grammatical errors, the computer types an error code as soon as each error is
detected while the program is being typed. Errors detected after RUN are structural (loop
nesting, matching GOSUB and return) or arithmetic errors. A list of error codes with an
mterpretation of each is in appendix A.

If you receive an error message, correct the error by typing a new line with the correct
statement. For example, to eliminate the statement on line 110 from a program. type 110
and then press the carriage return. To insert a st ltement between those on lines 60 and
70, give it a line number between 60 and 70.

If it is obvious while the computer 1s running that the answers are wrong. press any
Teletype key and computation ceases. The system types

READY
and you can make your corrections.

BASIC 4-2

Example:

Program

REAE>Y
10 FOR N • 1 TO 7
20 PRINT N, SQR(N)
30 NEXT N
40 PRINT "DONE"
50 END
RUN

2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44948
7 2.64575
DONE

Result

using the basic system

At all times, there is only one device from which the BASIC interpreter will accept
information and only one device on which it will output data. These devices are fixed at
program initialization time.

CONTROL COMMANDS

The following are BASIC control commands:

Any key

RUN nnn

LIST nnn

PUST nnn

Stops program execution when the program is running.
Returns control to the Teletype.

Begins execution of the program starting at line
nnn. If no digits (nnn) are entered, 1 is assumed.

Outputs an up-to-date listing of the program on
the currently active listili\g device starting at
line nnn. Listing can be terminated by pressing
any key.

Same as LIST, but the output device is the high·
speed paper tape punch or Teletype, whichever was

·~rt

BASIC 4-3

using the basic system

PT APE

SCRATCH

Moves control to the high-speed paper tape reader
or Teletype, whichever was selected.

Deletes the current BASIC program from memory.

PROGRAM AND CALCULATOR MODES

The description of the BASIC system to this point has assumed that the definition and
execution of programs has occurred at different times, i.e., that one entered a set of
numbered BASIC statements that were checked for validity and stored, then entered the
control command RUN to start execution of the program defined by this set of
statements. This mode of operation is called the program mode.

Varian BASIC can also run in the calculator mode, which causes the computer to respond
immediately to a BASIC statement, just like a desk calculator. In this mode. one does not
enter a statement number, but only a statement, and the BASIC system executes it
immediately. Example:

BASIC 4-4

P~INT 5•4-3
1 7

error messages

SECTION 5 - ERROR MESSAGES

An error message is printed as soon as the error condition is detected. The format is as
follows:

Error Code xx

0

1
2
3

4
5
6
7
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

ERROR xx IN LINE nn

Meaning

Hardware M/D option missing

Statement ends unexpectedly
Input exceeds 72 characters
System command not recognized (can be missing

statement number)
Missing or incorrect statement type
Exponent of number is missing power
Symbol following MAT not recognized
LET statement has no store
Missing or incorrect function identifier in DEF
Missing parameter in DEF statement
Missing assignment operator
Missing THEN
Missing or incorrect FOR variable
Missing TO
Incorrect STEP in FOR statement
Called routine does not exist
Wrong number of parameters in CALL statement
Missing or incorrect constant in DATA statement
Missing or incorrect variable in READ statement
No closing quotation mark for PRINT string
Missing print delimiter or bad PRINT quantity
Illegal word follows MAT
Missing delimiter
Improper matrix function
No subscript where expected
Cannot invert or transpose matrix into itself
Missing multiplication operator
Improper matrix operator
Matrix cannot be both operand and result of matrix

multiplication

Missing left parenthesis

BASIC 5-1

error messages

Error Code xx

31
32
33
34
35
36

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
53
55
56
57
58
59
60
61
62
63
64

Meaning

Missing right parenthesis
Operand not recognized
Defined array missing subscript part
Missing array identifier
Missing or bad integer
Nonblank characters following statement's logical

end
Out of storage during syntax phase
Paper tape reader not ready or EOF on paper tape
Doubly defined function
FOR statement has no matching NEXT statement
NEXT statement has no matching FOR statement
Formal parameter finds no actual parameter
Array appears with inconsistent dimensions
Missing END statement or attempted execution of a

nonexecutable statement
Array doubly dimensioned
Number of dimensions not obvious
Array too large
Out of storage during array allocation
Subscript too large
Accessed operand has undefined value
Noninteger power of negative number
Missing statement
RETUl~N finds no address
Out oi data
Out of storage during execution
Dynamic array exceeds allocated storage
Dimensions not compatible
Matrix operand contains undefined element
Singular or nearly singular matrix
Trigonometric function argument too large
Attempted square root of negative argument
Attempted log of negative argument

The following errors are warnings only; program execution
continues:

BASIC 5-2

65
66
67
68
69
70

Numerical overflow: result taken to be ± infinity
Numerical underflow; result taken to be zero
Log of zero taken to be - infinity
EXP overflow: result taken to be +infinity
Division· by zero; result taken to be ± infinity
Zero raised to negative power: resu.lt taken to

be +infinity

SECTION 6 - CALL DESIGN CONSIDERATIONS

There are certain internal design considerations for CALL subroutines. Parameters are
passed to the called routine in the convention adopted by Varian: 1e. n list of the
addresses of the actual parameters immediately following the JMPM instruction to the
subroutine. All actual parameters are real (Varian floating-point format) numbers

Subroutine linkage to the BASIC interpreter is through a list containing the name of the
subroutine, the number of parameters it expects. and its entry address. The linkage list
contains five words per subroutine, construction as follows:

DATA 'NAME', 3, (ADR)

L L L Entry address
Number of parnmeters. - 1 if varinble

Six-character subroutine name. right-1ust1f1ed

The setting of the first word of the name field to zero signals the end of the list. A pointer
to the linkage list must be placed in location 010. Location 022 points to the highest
address used by BASIC, so this cell must be decremented to allow spnce for the linknge
list and the user subroutines to be loaded above the BASIC tables.

A set of address bounds are available if the programmer wishes to know what type of
parameter has been passed to him. By checking the parameters against these bounds. he
can ensure, for example. that he does not store into constants. These address bounds are
stored in the following location pairs (the first cell holds the first address of the block: the
second holds the last address + 1):

Simple variable
Expression
Constant

(011) 5 x <: (012)
(015)5 X<: (0117)
(017)5 X<: (020)

The following program shows a setup to make the two assembly language subroutines
SUBl and SUB2 available to a basic program.

To operate this program:

a. Load and initialize BASIC. selecting options as requested. u'nt1I READY 1s typed.

b. Load the subroutine package containing SUBl and SUB2 using the Bin(lry
Load/Dump program and overlaying locations 010 and 022.

c. Restart BASIC at location 02 to access the two subroutines

BASIC 6-1

CI1 n)> e!.. (J)

() c.
CD

O'I SYMBOLS Ill

r\> ce·
:l
n

015006 R TABL 0
:l

015003 R SUB2
Ill

s.:
015000 R SUB1 ~

015000 LOC ~ c;·
:l
Ill

*
*DEMONSTRATION OF TYPICAL SUBROUTINE ADDITION TO BASIC
*

015000 L'"',.. v~ ,EQU ,015000
015000 ,ORG ,LOC LOC OF SUBROUTINES
015000 000000 SUB1 ,ENTR ENTRY TO SUB1

*
* BODY OF SUB1

*
015001 001000 ,JMP* ,SUB1 RETURN FROM SUB1
015002 115000 R

015003 000000 SUB2 ,ENTR ENTRY TO SUB2

*
* BODY OF SUB2

*
015004 001000 ,JMP* ,SUB2 RETURN FROM SUB2
015005 115003 R

015006 R TABLE ,EQU , * LOC OF LINKAGE TABLE
015006 120240 ,DATA SUB 1 I , 0, (SUB 1) SUB1 ENTRY, ZERO PARA
015007 151725
015010 141261

OJ
)>
(/)

(5
O'I
w

015011
015012
015013
015014
015015
015016
015017
015020

000010
000010
000022
000022

LITERALS

POINTERS

SYMBOLS

000000
015000 R
120322
142723
142724
000002
015003 R
000000

015006 R

014777
000002

015006 R TABL
015003 R SUB2
015000 R SUB1
015000 LOC

,DATA RESET' ,2, (SUB2) SUB2 ENTRY, TWO PARA

,DATA I 0 **END FLAG FOR LINK TABLE**

*
*NOW SET POINTERS FOR INTERPRETER

*
,ORG
,PZE
,ORG
,PZE
,END

, 0 10
, (TABL)
, 022
,(LOC-1)
, 2

LOC OF INTERPRETER POINTERS
POINTER TO LINKAGE TABLE

POINTER TO LAST CELL

n
~
Q.
CD
Cll

cE'
:I
n
0
:I
Cll

s.:
~
Cl)
r+ s·
:I
Cll

SECTION 7 - EXTENDED BASIC

Extended BASIC (EBASIC) extends the BASIC language to provide a powerful tool for real
time systems using rotating memory devices. A complete data-acquisition and process
control system called ADAPTS is built around EBASIC, and is available from Varian Data
Machines.

This section describes how to write programs using the EBASIC language. The ADAPTS
User's Guide (publication number 03-996 700B) contains additional programming
information for the advanced user who wishes to add his own assembly-language
subroutines to the system.

The two features of EBASIC which distinguish it from more common versions of BASIC are:

• A CALL statement which permits subroutines to be written in assembly language.
Assembly language subroutines execute faster than subroutines written in EBASIC,
and they also permit access to special purpose hardware.

A set of statements which provide file handling and file maintenance capability.
Programs and data files are resident on bulk storage devices such as fixed-head
disc, moving-head disc, 9-track IBM compatible magnetic tape, or cassette magnetic
tape.

GETTING STARTED

The best way to learn to program this system is to skim through this section very quickly
and then to begin practice at the Teletype keyboard.

Assuming that EBASIC is running in the computer and the Teletype power switch is
positioned to LINE, the computer will type READY each time the ESC key is used (CTRL,
SHIFT and K for the ASR-35). In the ready state, the system is waiting for the user to type
a control command or a numbered program statement.

Under normal operating conditions, EBASIC is always in either a ready state or a run
state. If a program is in the computer, the system will enter the run state after the
operator hits the control command RUN (followed by the carriage return key). This action
will cause the program to be executed.

BASIC 7-1

EBASIC

Keyboard Input

The Teletype keyboard is used to give control commands and to write program
statements. From the standpoint of construction, the difference between a command and
a program statement is that a program statement has a line number, for example,

10 PRINT X

and a command has no line number (or line number 0), for example,

PRINT X.

All lines of input must be terminated by the carriage RETURN key.

Control Commands

Several inputs are used specifically to operate on the entire EBASIC program in the
computer. Therefore, these are designated as control commands. In fact, they may also be
given line numbers and made part of a program. These commands, which are listed in
table 7-1, must be terminated with the carriage RETURN key.

Command

RUN nnnn

Table 7-1. EBASIC Control Commands

Description

Runs or executes the program in the computer from line
nnnn. If nnnn omitted, run begins at lowest numbered
statement.

ESC key Aborts program execution. Use CTRL, SHIFT, and K on
ASR-35 Teletype.

LIST nnnn Lists program from line nnnn to the end. If nnnn omitted,
entire program is listed.

PUST nnnn Punches program from line nnnn to the end. If nnnn
omitted, entire program is punched (paper tape output).

PTAPE Reads in a program from paper tape. Each line is accepted
or rejected E~xactly as if it were typed on keyboard.

SCRATCH Deletes the entire program.

RESTART Brings in a fresh copy of EBASIC from the system file (disc).

REMOVE mmmm Removes program statements from line mmmm to nnnn. If nnnn'S
TO nnnn mmmm, then only one line will be removed.

BASIC 7-2

EBASIC

The paper tape reader and punch may be either the Teletype devices or the optional high
speed devices. The reader and punch are selected as Teletype or high-speed during the
system dialogue with the user which follows the RESTART command. The RESTART
command has a number of other functions as well:

It enables the user to delete the matrix and/or trigonometric functions from EBASIC,
thus conserving core space.

It enables the user to load assembly language subroutines from paper tape onto the
disc.

It allows the user who has a system with more than 12K of core memory to make the
upper core unavailable to EBASIC. That is, the upper core may be reserved, in lK
increments, for non-EBASIC use or for assembly language subroutines.

It allows assembly language subroutines to be loaded from disc into core.

Program Statements

A description of each program statement is given in a later section. Each statement is
preceded by a line number which must be an integer in the range from 1 to 9999. For
example,

10 PRINT X

is a program statement. Statement numbers are assigned in the sequence in which the
statements are to be interpreted at run time. However, they do not have to be typed in the
order in which they are run. For example,

20 PRINT A
10 PRINT B

Even though statement 10 is typed after statement 20, it will precede 20 in the actual
program. The LIST command types all program statements in their true numerical order -
not the order in which they are entered.

Statements need not be executed in numerical order, however, because the program may
contain branching statements which transfer control to another point in the program.

It is advisable to assign line numbers which follow in increments of 10 (or some other
convenient number). This permits the insertion of statements between those previously
entered.

BASIC 7-3

EBASIC

Editing Features

Two keys on the Teletype have special meaning during input of a line.

(black arrow :I

RUBOUT

Deletes previous character on the line.
Retype character or backspace again.

Abort current line. Must be given
before RETURN to have effect.
Retype line.

The back arrow may be used as many times as necessary on a single line to backspace over
typographical errors. RUBOUT, in addition to aborting the entire line, will cause a backward
slash (\) to be printed and the printer will advance to the left margin of the next line.

To change a program statement already entered, simply retype the line using the same
line number. The new entry will overlay the old entry. To delete a single statement already
entered, retype the line number and follow with the RETURN key. This " erases" the
previous statement with that line number.

Error Messages

During the entry of a line, EBASIC checks for construction errors and reports certain
errors. Errors may also be reported during running of a program. All errors are reported
through the following message output to the user:

ERROR XX IN LINE nnnn

where nnnn is equal to line zero for control commands. The error codes (XX) and their
meanings are given in table 7-2. Notice that errors 65 through 70 do not abort the
program but serve only as warnings to the user.

ELEMENTARY BASIC

All subjects not included in this section may be ignored by the beginner, if he so desires.
The omissions are those topics dealing with:

arrays, matrices, and vectors

bulk storage files

BASIC 7-4

EBASIC

Assignment Statements

The topics covered in this section are:

LET

Variables and numbers

Arithmetic and boolean operators

EBASIC functions

DEF

LET

The LET statement assigns a value to a variable. A simple example is:

10 LET A • 1

which assigns the value 1 to variable A. The symbol = is sometimes called a
" replacement operator for"; in this context, it means replace the value of the variable A
with the constant 1.

The quantity to the right of the = symbol may be a formula involving previously defined
variables and functions as well as constants. A simple formula is indicated by the
example,

10 LET A • A + 1

in which the current value of A is replaced by A + l, that is, A is incremented by one.

The word LET is optional and need not be typed by the user. Thus, the statement,

10 A • A + 1

has the same meaning as the previous example. LET is implied and understood by
EBASIC. On a listing of the program, LET will be inserted before the variable to the left of
the = symbol by the EBASIC language processor.

The LET statement may be used to assign one value to several constants. For example:

10 LET A • S = T • X • 0

The whole string of variables (A, S, T, X) will be assigned the value to the right of the last
= symbol, which is zero in this case.

BASIC 7-5

EBASIC

Variables

A variable may be either a simph~ variable or an array variable. The following variables are
examples of each:

SIMPLE VARIABLES

A, B, , Y, Z
AO, Al, , BO, Bl, , Z8 Z9

ARRAY VARIABLES

A(l), A(2), ,El{l), B(2), Z(255)
A(l, 1), A{l, 2), , B(l, 1), B, {1, 2), , Z(255, 255)
A(I), B(I, J), C{I, J2)

A simple variable may be either a single letter (A to Z) or a single letter followed by a
single digit (0-9). An array variable is a single letter followed by one or two subscripts
enclosed in parentheses. Subscripts may be previously defined variables but no subscript
may exceed 255. Subscripts may also be integers.

Tablo 7-2. EBASIC Error Codes

Code Meannng

1 Statement ends unexpectedly.
2 Input exceeds 72 characters.
3 System command not recognized.

(May be missing statement
number.)

4 Missing or incorrect statement type.
5 Exponent of numb1~r is missing power.
6 Symbol following MAT not recognized.
7 LET statement has no store.
9 Missing or incorrect function identifier

in DEF.
10 Missing parameter in DEF statement.
11 Missing assignment operator.
12 Missing THEN.
13 Missing or incorrect FOR variable.
14 Missing TO.
15 Incorrect STEP in !FOR statement.
16 Called routine does not exist.
17

BASIC 7-6

Wrong number of parameters in CALL
statement. (continued)

Table 7-2. EBASIC Error Codes (continued)

Code Meaning

18 Missing or incorrect constant in DATA
statement.

19 Missing or incorrect variable in READ or
OPEN statement.

20 No closing quote for PRINT string.
21 Missing print delimiter or bad PRINT quantity.
22 Illegal word follows MAT.
23 Missing delimiter.
24 Improper matrix function.
25 No subscript where expected.
26 May not invert or transpose matrix into self.
27 Missing multiplication operator.
28 Improper matrix operator.
29 Matrix may not be both operand and result of

matrix multiplication.
30 Missing left parenthesis.
31 Missing right parenthesis.
32 Operand not recognized.
33 Defined array missing subscript part.
34 Missing array identifier.
35 Missing or bad integer.
36 Nonblank characters following statement's

logical end.
37 Out of storage during syntax phase.
38 Tape reader not ready or EOF on

mag tape.
39 Doubly-defined function.
40 FOR statement has no matching NEXT

statement.
41 NEXT statement has no matching FOR statement.
42 Formal parameter finds no actual parameter.
43 Array appears with inconsistent dimensions.
44 Missing END statement.
45 Array doubly dimensioned.
46 Number of dimensions not obvious.
47 Array too large.
48 Out of storage during array allocation.
49 Subscript exceeds bound.
50 Accessed operand has undefined value.
51 Noninteger power of negative number.
53 Missing statement.
55 RETURN finds no address.
56 Out of data.
57 Out of storage during execution.

EBASIC

BASIC 7-7

EBASIC

Table 7-2. EBASIC Error Codes (continued)

Code Meanin~:

58 Dynamic array exceeds allocated storage.
59 Dimensions not compatible.
60 Matrix operand contains undefined element.
61 Singular or nearly singular matrix.
62 Trigonometric function argument is too large.
63 Attempted square root of negative argument.
64 Attempted log of nel~ative argument.
65 Numerical overflow, result taken to be ± infinity.
66 Numerical underflow, result taken to be zero.
67 Log of zero taken to be - infinity.
68 EXP overflows, result taken to be + infinity.
69 Division by zero, result taken to be ± infinity.
70 Zero raised to negative power, result taken to

be + infinity.
71 Illegal file name.
72 Illegal file type.
73 Illegal logical file number.
74 File number not ASSIGNed.
75 Illegal file access mode.
76 File not OPENed
77 File cannot be found.
78 Mass storage full.
79 Attempt to read past end of file.
80 1/0 unit not ready.
81 Data transfer 1/0 error.
82 Peripheral not in configuration.
83 Removable media peripheral busy.
·s4 No BASIC program in core to SAVE.
85 Illegal argument(s).
86 Incorrect number of arguments.
87 Data file too large.
88 System power on or run from

location zero.

Note: Errors 65 through 70 are warnings only. Program will continue to, execute.

Numbers

Numbers in EBASIC are positive or negative expressed in decimal form, and may contain
up to seven significant digits. Numbers may be in the range 10" 18 to 10+ 18

BASIC 7-8

Example:

-3.5
5
-7E-5
1234567
6E+10
1.543217E6

EBASIC

where - 7E- 5 means - 7 times 10 raised to the - 5 power. The plus sign is optional for a
positive power of 10.

Numbers may be entered in one of three ways:

a. As an integer (no decimal point)

b. As a real number (with a decimal point)

c. As large number (integer or real) with an exponent to the base 10 (scientific notation).
Maximum exponent is ± 38.

When printing numbers during a program run or following a LIST command, EBASIC uses
a format which depends on the size and type (real or integer) of the number. This function
is explained later under the PRINT statement. For now, assume that an integer of more
than six digits will be printed in exponential notation as will very large or very small real
numbers.

All numbers are stored in computer memory in a floating-point format that utilizes two 16-
bit computer words per value. This is true whether the numbers are referenced as
contants, simple variables, or array variables.

Arithmetic and Boolean Operators

The arithmetic and boolean operators enable the user to perform computations in
EBASIC. Functions (described in following section) may also be used to perform
computations. The operators and the operations they perform are shown in table 7-3. The
order in which they are listed indicates their priority or the order in which the operations
will be performed in a formula. Exponentiation is of the highest priority and the boolean
OR of the lowest. Operations on the same line in the table are of equal priority.

BASIC 7-9

EB ASIC

Table 7-3. Arithmetic and Boolean Operators in

Descending Order of Priority

Operation

Exponentiation
Multiplication, division
Addition, subtraction, NOT
AND
OR

Operator

*, I
+, - , NOT

AND
OR

The following are examples, shown both in EBASIC notation (using the operators) and in
notation perhaps more familiar.

EBASIC Notation Algebraic Notation

x t 2 + 2 x~ + 2

(A/(B+4)) *X (s:4)x

EBASIC Notation Boolean Notation

A AND B OR NOT C A• B + C

Boolean operators are defined by" truth tables" , which show the effects of the operations.
The truth tables for AND, OR, and NOT are given in tables 7-4.

Table 7-4. Truth Tables for Boolean Functions AND, OR, NOT

AND OR NOT

A B A AND B A B A ORB A NOT A

F F 0 F F 0 F T

F T 0 F T 1 T F

T F 0 T F 1 -- --

T T 1 T T 1 -- --

Note: F = O; T :;e 0

A value (8 for example) is false (F) if B is equal to zero and true (T) if B is not equal to
zero.

BASIC 7-10

EBASIC

The rules of priority may be summarized as follows:

a. In the absence of parentheses, all arithmetic and boolean operations in a formula are
computed in the priority indicated by table 7-3. Exponentiation has the highest
priority and multiplication ar.id division are next (equal priority).

b. A quantity in parentheses is computed before that quantity is used in further
computation.

c. In the absence of parentheses in a formula involving operations of equal priority, they
are performed as they are read from left to right.

Functions

In addition to the five arithmetic operations (t , *, I, +, -) and the three boolean
operations (AND, OR NOT), EBASIC has twelve defined functions. These functions are
listed in table 7-5.

Function

SIN(X)
COS(X)
TAN(X)
ATN(X)
EXP(X)
LOG(X)
SQR(X)
ABS(X)
INT(X)
RND(X)

SGN(X)
TAB(X)

TRIG FUNCTIONS

Table 7-5. EBASIC Functions

Interpretation

Find the sine of X
Find the cosine of X
Find the tangent of X
Find the arctangent of X
Find ex
Find the natural logarithm of X (lnX)
Find the square root of X (VX)
Find the absolute value of X
Find the largest integer contained in X .
Find a random number (uniform distribution)
X is dummy
SGN(X) = 1 if X > 0 , - 1 if X < 0 , 0 if X = 0
Space to column X, where X = O through 71

The trigonometric functions (SIN, COS, TAN and ATN) may be deleted from the system by
the user during the Teletype dialogue following the use of the RESTART command. The
user may wish to delete these functions, since this will provide an extra 400

10
locations in

computer memory for use by EBASIC.

BASIC 7-11

EBASIC

INT

The INT (integer) function may be used to round off to the next highest integer by adding
0.5 to the number before applying the function. For example:

10 LET A• 3.7
20 LET B • INT (A)
30 LET C • INT (A + 0.5)

In this example B would be assigned to the value 3 while C would be assigned the value 4.

RND

The RND (random) function is used to generate a random number from a uniform
distribution of numbers between 0 and 1. The argument for RND has no meaning,
although it must be included. That is,

RND {X)
RND (12)
RND {O)

are all equivalent. For example, to ge1nerate a random integer between O and 100, the INT
function could be used as follows:

10 LET X •INT (100 * RND (O))

It is important to remember that when RND is used in a program, the same sequence of
random numbers will be generated each time the program is run. If the user desires a
different sequence he may discard some numbers from the sequence.

The following example generates random numbers from Oto 100 and prints them until a
number greater than 50 is generated. Upon finding a number greater than 50, the
program ends and EBASIC returns to a ready state.

SGN

10 LET X • 100 * RND (0)
20 IF X > 50 THEN 100
30 PRINT X
40 GOTO 10
100 END

The SGN (sign)function returns the value- 1, 0, or + 1 according to whether the argument
is negative, zero, or positive, respectively.

TAB

The TAB function is used in conjunction with the PRINT statement to format output. It
may cause the printer to advance to the column (0-71) specified by the argument before
printing. The TAB function should be followed by the item to be printed.

BASIC 7-12

EB ASIC

DEF

In addition to the standard functions, any other function which will be used in the
program a number of times can be defined by the use of the DEF statement. The name of
the defined function must be three letters, the first two of which must be FN. Thus, a total
of 26 functions can be defined FN[\, FNB, etc.).

For example, if the function,

SIN (X)
x

is needed frequently, it might be defined by the line

30 DEF FNR (X) • SIN (X)/X

The expression to the right of the equal sign may be any formula which fits onto one line.
It may include standard functions and even functions defined by other DEF statements.
The DEF statement may appear after the line number in which the function it defines is
used, but not after and END statement.

The following sequence of statements illustrates the use of a function to compute the third
side of a triangle when two sides and the included angle are given. Note that,· in the
definition, the two known sides (Bl, Cl)are given as variables. These variables must be
assigned values before the function may be used. The variable A (the included angle) is
used to define the function. Function~ converts the angle given in degrees to its radian
equivalent. In the example FNR computes the side of the triangle and assigns it equal to
the variable S.

10 LET B1 - 10
20 LET C1 - 20
30 LET A - 30
40 LET s • FNR(A)

100 DEF FNR(A) • B1 t 2 + C1 t 2 - 2 ~~ Bl * Cl * FNS(A)
110 DEF FNS(A) - (A * 3, 14159) I 180

Data Pools

This section describes the method of establishing and using data pools .. A data pool is a
collection of values to be used by the program during run time. The section shows how to
establish a one-to-one correspondence between variables and constants. This permits a
program to run according to input which the user may enter prior to execution.

BASIC 7-13

EBASIC

READ DATA

The READ statement is always used in conjunction with one or more DATA statements. A
DATA statement establishes a pool of numerical constants which may be assigned to
variables in a READ statement. In the following example, X, Y, and Z are assigned values
1, 2 and 3 respectively.

10 READ X, Y, Z
2 0 DATA 1 , 2 , 3

The items following READ are called a.READ list and the items following DATA are called
a DATA list. The DATA list may contain constants only; it may not contain functions,
expressions, or operators. DATA statements may appear anywhere in the program since
they are not executed. :t

Access to the data pool by READ statements is always sequential in the order in which
items appear. Constants- placed in the data pool need not be used, but enough values
must be supplied to satisfy all READ statements. Continuing the example already
introduced,

10 READ X, Y, Z
20 DATA 1, 2, 3
30 DATA 4, 5, 6, 7, 8
40 READ A, B, C

in which A, B, and C are assigned the values 4, 5 and 6 respectively and the values 7 and
8 are not read at all.

RESTORE

The RESTORE statement permits the data pool to be re-used by initializing the READ
pointer to the first value in the lowest numbered DATA statement. In the following
example, X and Y are initially assignnd the values 1 and 2, respectively. X and Y are then
used in a LET statement which alters the value of X. After executing t~ RESTORE
statement, the READ statement in line 50 re-uses the data pool, only this time the values
are assigned in reverse order.

10
20
30
40
50

BASIC 7-14

READ X,
DATA 1 ,
LET X •
RESTORE
READ Y,

y

2
x + y

x

EB ASIC

Miscellaneous Statements

This miscellaneous statements are presented here under the assumption that the
beginner may be reading this chapter in the order of the section numbers. At least two of
these statements discussed will be used frequently in examples in later sections.

END

Every program must have an END statement. Its form is simple, a line number followed by
END, for example,

1000 END

Any number of .END statements are permitted. Execution of an END statement causes
'EBASIC to return to the ready state, in which the system awaits commands from the
keyboard.

Example:

10 READ X
200 DATA 1000
300 END

Note that the END statement need not be the highest numbered statement in the
program. However, the END statement must be placed somewhere in the program
following all DEF statements and DATA statements.

STOP

The STOP statement may be used interchangeably with the END statement to return the
system to a ready state. STOP and END have identical meaning in EBASIC.

REM

REM provides a means for inserting explanatory remarks in a program by instructing the
computer to ignore the remainder of the line. This allows the user to follow REM with
directions for the use of the program, identification of parts of a long program, or anything
else he wants. Although the remarks following REM are ignored, the line number of a REM
statement may be used in a GOTO or IF THEN statement. A line number of a REM
statement may also be used in a GOSUB statement. Sample REM statements are:

10 REM THIS IS A REMARK.
20 REM ALTHOUGH THE COMMENTS FOLLOWING REM
30 REM ARE IGNORED BY BASIC, IT
40 REM TAKES TIME TO DETECT THE PRESENCE
50 REM OF A REM IN THE PROGRAM. THEREFORE,
60 REM AVOID USING REM IN A LOOP.

BASIC 7-15

EBASIC

WAIT

The WAIT statement introduces a delay into the program. Execution of the WAIT
statement causes the program to wait for a specified number of milliseconds. An example
of a WAIT statement in a program is

30 WAIT 100

Because a software timer is used by WAIT, the program delay depends upon the speed by
which the instructions are processed. Program delays are listed below for the Varian
computers:

COMPUTER

620/L
620/L-100
620/f
620/f-100
V73

DELAY (in milliseconds)

100
50
42
40
30

In the 620/L-100, 620/f-100, and V73 computers, precision timing can be programmed
using the hardware real-time clock (see ADAPTS User's Guide).

The argument following WAIT may be a constant, a variable, or a formula. The argument
is truncated to an integer and converted to a 16-bit computer word before it is used.
Therefore, the argument must evalt,1ate to a value not greater than 32767 and not less
than zero. Negative values will result in an error message being issued to the user.
Positive values greater than 32767 will be treated as 32767 and will not generate an error
message.

If in range, the value is decremented every millisecond on the 620/L and once every 0.40
millisecond on the 620/f-100. When the value reaches zero, the delay period is over.

The following use of a function, FNT, enables the WAIT statement on a 620/f-100 simulate
the timing on a 620/L

10 DEF FNT (T) • T/.40
20 READ T
30 DATA 1000
40 WAIT FNT (T)

Branching Statements

A branching statement alters the sequence in which program statements are encountered
during the running of a program. Two types of branching statements are presented here:

a. The unconditional branch, represented by GOTO and GOTO OF

b. The conditional branch, represented by IF THEN

BASIC 7-16

EBASIC

The GOTO OF and IF THEN statements permit a program to make decisions based upon
input or computations.

A third type of branch, a subroutine branch, is considered as a separate topic in a later
section.

GOTO

The statement form is GOTO line number. It is possible to go to a non-executable
statement; in this case control passes to the next executable statement in sequence.

An example of the GOTO statement is:

150 GOTO 75

GOTO may be typed as one word or two separate words. lmbedded spaces are ignored. In
a listing printed by BASIC, GOTO will be a single word.

GOTO OF

The GOTO OF statement is of the form

GOTO formula Of list of line numbers

The formula is evaluated and truncated to an integer N, which selects the Nth line
number in the list as the target for the GOTO. Error messages are reported if:

a. The formula evaluates to less than one or to a number greater than the number of lines
in the list; or

b. The selected line number for the GOTO is nonexistent.

Example:

10 LET I -3. 3
20 GOTO I-1 OF 200, 300, 400

200 REM TARGET IF INT (I-1) - 1
.......
300 REM TARGET IF INT (I-1) - 2

400 REM TARGET IF INT (I-1) -3

BASIC 7-17

EBA SIC

IF THEN

The IF THEN statement is of the form

IF formula relation THEN liine number

For example:

10 IF A • 1 THEN 200
20 REM TARGET IN A #

200 REM TARGET IF A • 1

If the relation following IF is satisfie!d, control will be directed to the line number following
THEN; if the relation is not satisfied, control is passed to the next statement in sequence.
A full list of the relational operators follows:

Relational Operator

<
>
<•
>•

Input/Output Statements

Definition

Equal To
Uiss Than
Greater Than
Loss than or equal to
Greater than or equal to
Not equal to

This section describes the INPUT statement, the PRINT statement, and the use of the
TAB function with PRINT. The INPUT statement allows the operator to enter data from
the keyboard during the running of a program. Print allows the program to print and
format alphanumeric output from the program. The use of the TAB function gives PRINT
additional format flexibility.

INPUT

There are times when it is desirable to enter data during the running of a program. A data
entry request during run may be accomplished by an INPUT statement, which acts as a
READ statement but does not draw data from a DATA statement. For example, if the
EBASIC program requires the user to supply a value for X during the program run. The
following statement may be coded

40 INPUT X

before the first statement to use the value of X. When the computer encounters this
statement at run time, it prints a que•stion mark and waits for the user to enter a number;

BASIC 7-18

EBASIC

it will not accept letters, functions, or expressions. After the user types a number and
presses the carriage RETURN key, control passe~ to the next statement in sequence.

Frequently a PRINT statement is employed to tell the user what response to make when
he sees the question mark:

10 PRINT 'ENTER DESIRED VALUE FOR X'
20 INPUT X

At run time, the program will print

ENTER DESIRED VALUE FOR X
?

and wait until it receives a number followed by a carriage RETURN.

Multiple values may be requested by a single INPUT statement (as many as fit on a line).
For example:

100 INPUT X, Y, Z .

In this case, when the question mark is printed by the program, the user may enter the
three values in two ways:

a. He may type all values on the same line, separated by commas and followed by carriage
RETURN.

b. He may strike carriage RETURN after typing each value. The program will continue to
print a question mark on each line until all values have been entered.

PRINT

The PRINT statement may be used to print and format alphanumeric output. The
following examples illustrate PRINT statement usage:

10 PRINT 'MESSAGE' The message in quotation marks is printed
exactly as typed.

20 PRINT x Print the value of X
30 PRINT 3.5 Print the number 3.5
40 PRINT 2*SIN(X) + 5 Print the value computed by the formula
so PRINT Print a blank line. Used to space text

In all of the above examples, except in line 50, PRINT is followed by a single item which is
a message, a variable, a constant, or a formula. Each item will be typed on a single line. A
PRINT list may contain as many items as can be typed on a line; items are separated
either by commas or semicolons. The list itself may be terminated by a comma or a

BASIC 7-19

EBASIC

semicolons. The list itself may be terminated by a comma or a semicolon. Commas and
semicolons provide output formatting capability as described in the following paragraphs.

A line of output is divided into 72 columns labeled 0 through 71. The first item in a PRINT
list will normally be printed starting in column 0. The line is arbitrarily divided into five
zones which start in columns 0, 15, 30, 45, and 60. A comma following an item in the list
is a signal to advance to the next zone. If a semicolon follows an item in the list, no extra
spaces are inserted before printing the next item.

If a comma terminates a list in a single PRINT statement, it effectively links the list in the
next PRINT statement. For example,

10 PRINT X, Y,
20 PRINT Z

is equivalent to

10 PRINT X, Y, Z

When past the beginning of zone 5 (column 60) the comma is the signal to begin in
column O on the next line.

A semicolon at the end of a list suppresses the carriage return. Therefore, it may be used
to link an output message to an INPUT request as follows:

10 PRINT 'ENTER VALUE FOR X';
20 INPUT X

When the program is run, the computer will print

ENTER VALUE FOR X?

whereupon the user types in a number following the question mark. If the semicolon after
the print message were removed, then the question mark would have been printed on the
next line.

The PRINT statement may be used without a line number to give immediate results of a
computation. For example,

PRINT 2*3
6

where 6 is printed by the computer on the next line after operator input of the PRINT
statement.

PRINT may be used to debug programs when an error causes a program to abort. All
variables after a normal or aborted run will contain the last values used in the program.
For example, if the program has ended or aborted and the user types

PRINT N

the value last assigned to N will be p1rinted on the next line.

BASIC 7-20

EB ASIC

FIELD DEFINITIONS FOR NUMBERS

When a number is output from a PRINT statement, it is printed in a format which
depends on the size of the number and whether it is an integer. This format is called a
field definition. The number of spaces (Teletype columns) is called the field. The field
definitions for EBASIC numbers are given in table 7-6. Notice that all fields include
trailing blanks (spaces) so that numbers printed in adjacent fields are easily readable.

A simple PRINT statement like

10 PRINT 37; 9998

will normally cause the field on which the number 37 is printed to begin at column zero.
According to table 7-6, the next number (9998) will begin in column 6, because a
semicolon has been used after the 37. If a comma had been used to separate 37 and
9998, then 9998 would have begun its field in column 15.

Table 7-6. Field Definitions for Values Printed by EBASIC

Value of Number Type of Number Field Definition

1 ~ /n/ ~ 999 Integer SXXXbb

1000 ~ /n/ ~ 999999 Integer SXXXXXXbbbb

0.1 ~ n ~ 9999.9 Real (normal range) SXXXXXXbbb

n < 0.1 Small or real integer SX.XXXXXE ± eebb

n > 9999.9 Large real SX.XXXXXE ± eebb

n > 999999 Large integer SX.XXXXXE ± eebb

Notes:

1. Each X represents a decimal digit (0·9) except that trailing zeros are replaced by blank
spaces for integers and real numbers in the normal range. Numbers are left justified
in the field.

2. S is equal to the minus sign (-)for negative numbers and is a blank space for positive
numbers.

3. b indicates a blank space.

4. For real numbers in the normal range, one of the X's is replaced by a decimal point.
(continued)

BASIC 7-21

EBASIC

5. Numbers in the extreme range are printed in scientific notation, where ee represents
the exponent to base 10. The value of ee cannot exceed 38.

6. Internal representation of numbers is always in a floating point format, which requires
two 16-bit computer words for each number.

USE OF TAB WITH PRINT

The TAB function may be used to advance the printer to the specified column before
printing. TAB will have no effect if that column has already been passed or if the TAB
argument exceeds 71 (the last column). The TAB function is given immediately before the
item to be output. For example

10 PRINT TAB (32) X, TAB (65) Y

will print the value of X beginning at column 32 and Y beginning at column 65. If,
however, the following statement is used:

10 PRINT TAB (32), X, TAB (65) Y

we find that X now begins in column 45. Tab (32) advances to column 32 but the comma
before X advances printing to the next zone, which begins at column 45. A semicolon
between TAB (32) and XtNould have no effect, however.

Writing Loops

Frequently, it is necessary to write a program in which one or more portions are performed
not just once but a number of times, perhaps with slight changes each time. The
programming device known as a loop is used to perform this iterative processing.

One type of loop is illustrated by the following example:

10 LET A •
20 GOTO 10

This is not a very useful loop, nor is there any way to terminate it except through the use
of the ESC key. In order to execute a loop a finite number of times, the program must be
provided with decision making capability. One way to do this is through the use of the IF
THEN statement, which has already been introduced.

For example:

10 LET A • 0
20 A • A + 1
30 IF A > 10 THEN 50
40 GOTO 20
50 END

BASIC 7-22

EBASIC

This loop consists of lines 20, 30 and 40 and is executed 10 times before the program
ends. Another way of writing the program to perform the same function is:

10 LET A • 0
20 A • A + 1
30 IF A ~ 10 THEN 20
40 END

This loop uses one line less than the previous example and may, therefore, be termed
more efficient.

Another way of writing loops is to use the FOR and NEXT statements. FOR and NEXT are
always used together. They mark the boundaries for a FOR-NEXT loop. For example:

LIST
10 FOR I • 1 TO 10 STEP 5
20 PRINT I, SQR (I)
30 NEXT I
40 END

RUN
1
6

READY

1
2.44948

The first time through the loop, I (a running variable) is set equal to the initial value (in
this case, 1) and a test is made to see if I exceeds the final value (in this case, 10). Since
in this example, the initial value does not exceed the final value, control passes to the
PRINT statement. If the initial value were greater than the final value (less than, for
negative step size) control would pass immediately to the line number following NEXT,
which is line 40 in this example.

The main body of the loop is included between FOR and NEXT. When the program gets to
the NEXT statement, it increments the running variable (I) by the step size and tests it. If
the running variable has not passed the boundary set by the final value, control passes to
the first statement after FOR. Otherwise, control passes to the statement following NEXT.

The initial value, the final value, and the step size may all be formulae of any complexity
which can be typed on a single line. Initial value, final value, and step size may also
evaluate to negative or positive numbers or zero.

The NEXT statement must include the running variable (in this case, I). NEXT increments
the running variable by the step size but this does not prevent statements within the loop
from also operating on the running variable to change its value. For a positive step size
the loop continues as long as the running variable is less than or equal to the final value.
For a negative step size, the loop continues as long as the running variable is greater than
or equal to the final value.

BASIC 7-23

EB ASIC

The step size may be omitted from the FOR statement if a step size of plus one is to be
used. For example:

LIST
10 FOR I • 1 TO 10
20 PRINT I, SQR (I)
30 NEXT I
40 END

RUN
1 1
2 1.41421
3 1.73205
4 2
5 2.23606
6 2.44948
7 2.64575
8 2.82842
9 3
10 3.16227
READY

The main body of a FOR-NEXT loop may contain an IF THEN statement which causes the
program to exit from the loop before the running variable reaches its final value. The body
may also contain GOSUB, GOSUB OF, or GOTO statements which cause the program to
exit from the loop either temporarily or permanently. The body may even contain other
FOR-NEXT loops. These are called nested FOR-NEXT loops. However, they must actually be
nested and must not cross, as illustrated below.

Allowed

FOR X
FOR Y
NEXT Y
NEXT X

Subroutines

Not Allowed

FOR X
FOR Y
NEXT X
NEXT Y

Allowed

FOR X

~~~T!Z 
FOR W 
NEXT W 
NEXT Y 

rFOR Z 
LNEXT Z 

NEXT X 

There are two types of subroutines which may be used in EBASIC. These are (1) 
subroutines written in the EBASIC language; and (2) subroutines written in assembly 
language. They are usually written for different purposes. EBASIC subroutines are written 

BASIC 7-24 



EBASIC 

to perform operations which may be useful several times in a program or at different parts 
of a program. Assembly language routines are usually written to gain access to special 
purpose hardware. For example, assembly language subroutines are used in this system to 
access the Interface Console. 

Assembly language routines add a degree of flexibility and control to the system, but they 
may be run only on the specific computer for which they are written. Subroutines written 
in EBASIC are in a high-level language which has been implemented on a number of 
different computers. 

The EBASIC statements used in writing and accessing EBASIC subroutines are: 

• GOSUB 

• RETURN 

SUB 

• GOSUBOF 

A single EBASIC statement, the CALL statement, is used to access any and all assembly
language routines which have been written in the proper format. 

GOSUB-RETURN 

The GOSUB statement is of the form: 

GOSUB line number 

For example, 

75 GOSUB 210 

When the GOSUB is executed, control passes unconditionally to the line number 
referenced. The last statement executed in a subroutine must be RETURN, which 
transfers control to the next statement after the GOSUB. 

The following example shows the use of a subroutine to calculate the sine of an angle A 
given in degrees. The routine uses a Taylor series expansion. Compare the value produced 
by the subroutine to the true value (112) and the value given by the SIN function in 
EBASIC (.499999). The computed value of .499999 is close enough for most purposes. The 
RETURN statement is executed when the last term used in the series approximation is 
less than or equal to 10"6 

• From the mathematical properties of the series we know that this 
last term is also less than the error introduced by terminating the series at this point. 
However, the calculated value shows that roundoff errors have reduced the accuracy. 

BASIC 7-25 



EBASIC 

A subroutine must be terminated by the use of a RETURN statement. Statements such as 
IF THEN and GOTO are illegal. More than one RETURN statement is permitted inside a 
subroutine but one is sufficient. 

A GOSUB or GOSUB OF (see next section) may appear inside a subroutine. This procedure 
is known as " nested GOSUB's" . 

Notice that all variables used inside the subroutine are " global" . This means that they 
have the same definition (or value) inside the subroutine as they do outside the 
subroutine. " Local" variables may be introduced by the use of a SUB statement 
(described in a later section) in the subroutine. 

LIST 
10 LET A • 30 
20 GO SUB 50 
30 PRINT 'SINE OF'; A; I IS I; s 
40 END 
50 REM SUBROUTINE TO CALCULATE 
60 LET x • 3.14159•A/ 180 
70 LET s • 0 
80 LET N • N2 • z . 
90 LET X2 • x 
100 GOTO 150 
110 LET N2 • N + 2 
120 LET N2 • N* (N -
130 LET X2 • X2*Xt2 
140 LET z • -z 
150 LET I • Z*X2/N2 
160 LET s • S + I 
170 LET I • I*SGN (I) 
180 IF I >1.00000E-06 
190 RETURN 
RUN 

SINE OF 30 IS .499999 
READY 

1 

1) *N2 

THEN 

PRINT SIN (3.14159•A/180) 
.499999 

IOSUB Of 

lhe GOSUB OF statement has the form 

GOSUB formula OF list of line numbers 

11 0 

SINE OF A 

vhere the valuE:: of the formula is truncated in an integer, N, which selects the Nth line 
1umber in the l1st. If N is less than one or greater than the number of line numbers in the 
ist or if the target line number is non-eicistent, then an error is reported. 

:ASIC 7-26 



EBASIC 

Note that GOSUB OF may not pass parameters to a subroutine. A subroutine entered by 
GOSUB OF must be terminated by execution of a RETURN statement. 

SUB 

The SUB statement is used to define parameters which are passed to a subroutine. A SUB 
statement may look like the following 

300 SUB N, A, B (2), C 

and the corresponding GOSUB may be something like 

80 GOSUB 300, X, 5, Y, Q(1) 

The SUB statement picks up the argument list following the line numbers in the GOSUB 
statement and assigns their values to the list following SUB. Let us suppose that the 
following values are assigned to the GOSUB arguments: 

x - 3.5 
y - 2 
Q(1) - 11 

then the SUB list will make the assignment 

N • 3.5 
A • 5 
B(2) • 2 

c - 11 

All arguments in a SUB list are " local" , that is, defined only within the body of the 
subroutine. If variables of the same name have been defined in the main program, they 
will not be affected by any operation which changes their values in the subroutine. 

However, variable names used in the subroutine which are not in the SUB list are 
" global" . They are defined identically in the subroutine and in the main program. 

The following example illustrates the method of parameter transfer between a GOSUB 
argument list and a SUB argument list. Line 60 was written as a deliberate error to show 
that Z, used in subroutine, is undefined in the main program. Z is a local variable. A, on 
the other hand, is a "global" variable, since it is not used in the SUB list. 

Note the caution in lines 120 and 130. Z is equivalent to 10 and vice versa. Changing Z 
would change 10 and after the change every place the constant 10 is used in the program 
(except in quotation marks and in REM statements) the new value for Z would appear. If 
this happens inadvertently, simply retype the subroutine so that Z is reassigned to its 
initial value before running the subroutine. In most cases, the program may then be re-

BASIC 7-27 



EBASIC 

run and the constant will be changed back to its original value. In some cases, however, it 
may be necessary to reload the program into the computer. 

LIST 
10 READ I,K 
20 DATA 3, 6 
30 GOSUB 80, I, K, 10 
40 PRINT 'I•'; I; 'K•'; K 
50 PRINT 'A•'; A 
60 PRINT 'Z•'; Z 
70 END 
80 REM SUBROUTINE BEGINS HERE 
90 SUB X, Y, Z 
100 LET X•X+Y 
110 LET Y•Y+Z 
120 REM CAUTION: DO NOT CHANGE Z IN SUBROUTINE. IF YOU DO SO, 
130 REM THEN THE NEW VALUE FOR Z WILL BE STORED IN THE CONSTANT 10. 
140 LET A•1 
150 RETURN 

RUN 
I•9 K•16 
A•1 
Z• 
ERROR 50 IN LINE 60 
READY 
A subroutine which has a SUB statement may be entered by a GOSUB statement within 
the subroutine, passing new values to the SUB list. This is known as recursive entry and is 
illustrated by the following example. The subroutine is actually executed twice because 
after the first time through X is equal to 9, but on the second time through X is equal to 
25. Therefore, the IF THEN statement (line 120) transfers control back to the main 
program. 

LIST 
10 READ I,K 
20 DATA 3, 6 
30 GOSUB 60, I,K, 10 
40 PRINT 'I•'; 'K•';K 
50 END 
60 REM SUBROUTINE BEGINS HERE 
70 SUB X, Y, Z 
80 LET X•X+Y 
90 LET Y•Y+Z 
100 REM RECURSIVE ENTRY INTO SUBROUTINE PERMITTED 
110 IF X > 10 THEN 130 
120 GOSUB 60, X, Y, Z 
130 RETURN 

RUN 
I•25 K•26 
READY 

BASIC 7-28 



EB ASIC 

ARRAYS 

An array is an orderly presentation of numbers. The two primary ways of displaying 
numbers are by row and by column. An array which has one column only or one row only 
is said to be one-dimensional; if it has multiple rows and columns, it is a two dimensional 
array. 

Array variables in EBASIC are identified by a single letter of the alphabet followed by one 
or two values enclosed in parentheses, for example, 

A(l), B(2,3), C(I, J + K) 

The value in parentheses indicates the subscripts that would be used in ordinary algebraic 
notation, for example, 

A, 
1 

B 
2,3 

c 
I, J+K 

where the first subscript identifies the row and the second subscript identifies the column 
of the array element. Table 7-7 illustrates the positions of the various elements in an array 
of four rows by three columns. By convention in Varian's EBASIC, a singly-subscripted 
array is designated as a column vector (as opposed to a row vector). 

Table 7-7. Array Element Positioning and Method of 

Storing in Computer Memory 

~ w 1 2 

1 A(l, 1) A(l, 2) 

2 A(2, 1) A(2, 2) 
,, 

/ 

3 A(3, 1) A(3, 2) 

4 A(4, 1) A(4, 2) 

3 

A(l, 3) 

A(2, 3) 

A(3, 3) 

A(4, 3) 

Note: Array elements are stored by column in computer memory. A(2, 1) 
follows A(l, 1) ... A(l, 2) follows A(4, 1), and so on. DATAI and DATAO 
(assembly language subroutines) access array elements according to this 
storage scheme. 

BASIC 7-29 



EBASIC 

Array Subscripts 

Array subscripts may be constants, sim.ple variables, array variables, or formulae. All 
subscripts are truncated to an integer befOt:e they are used. Subscripts must evaluate to a 
number from 1 to 255. An error will be reported at run time if sufficient storage area is 
not available in the computer for the array element referenced (see next section). The 
following example shows the use of a simple varnilble and an array variable as subscripts. 

LIST 
10 DIM A ( 10) , B ( ·10) 
20 FOR I•1 TO 10 
30 LET A (I) •I+ • 2 
40 LET B(A(I)+ • 1 ) 
50 PRINT A (I),B(I) 
60 NEXT 
70 END 
RUN 

1. 2 
2.2 
3.19999 
4.2 
5.19999 
6.19999 
7.19999 
8.19999 
9.2 
10.1999 

READY 

DIM Statement 

I 

1 
1.41421 
1.73205 
2 
2.23606 
2.44948 
2.64575 
2.82842 
3 
3.16227 

•SQR (I) 

The dimensions of arrays in EBASIC should be declared in the program. This is done 
through the use of a DIM statement. 

Example: 

2 5 DIM A ( 5) , B ( 2 0, 3 0) , C ( 2 0) , D ( 1 , 1 0) 

In this example A is declared to be one-dimensional array with 5 elements. B has 20 rows 
and 30 columns, C has 20 elements (in a column, like A) and D has 1 row and 10 
columns. Array D is a degenerate case of a doubly-dimensioned array since one of the 
dimensions is 1. However, this is the only way we have of producing an array of one row or 
a row vector in BASIC (arrays A and C are columns). 

RULES FOR DIM STATEMENT: 

a. A DIM statement reserves storage in computer memory for the arrays in the list 
following DIM. Arrays follow one another in memory in the reverse order in which 
they appear in DIM statements. (continued) 

BASIC 7-30 



EBASIC 

b. The values for the dimensions enclosed in parentheses in a DIM statement must be 
constants in the range 1 to 255. If any dimension exceeds 255, no storage space will 
be reserved and no error will be reported on statement entry. An error will be 
reported, however, on any attempt to use the incorrectly dimensioned array in the 
program. 

c. Array dimensions do not have to be declared in a DIM statement if no array variable in 
the program uses a subscript greater than 10. Although this is a convenient feature, 
the use of array variables without DIM statements is to be discouraged because, if 
dimensions are not declared, BASIC will automatically reserve storage for 10 
elements in the case of an array variable with single subscript and will reserve 
storage for 100 elements for an array variable with two subscripts. This is very 
wasteful if all the space reserved is not really needed. 

d. DIM statements may appear anywhere in the program, since they are not executed. It is 
good practice, however, to group them at the beginning of the program where they 
are easily identified. 

Matrix Statements 

A matrix is a two-dimensional array which is subject to certain rules of operation or 
manipulation. The explanation of the matrix statements in EBASIC assumes that the user 
understands these rules, which are readily found in any elementary textbook on matrix 
algebra. 

The matrix statements, which are listed in table 7-8, may be deleted from EBASIC during 
the Teletype dialogue which follows the use of the RESTART command. Deleting the matrix 
statements frees approximately 800 words of computer memory for use by the program. 

Normally, the dimensions of all matrices used must be dimensioned with DIM statements. 
If the array is to contain a number of elements not to exceed 100, EBASIC offers the 
convenience of using the MATREAD, ZER, CON, and IDN commands to specify the 
number of elements, as in the following examples. · 

10 MATREAD A(3,7) 
20 MAT B • ZER (2, 10) 
30 MAT C • CON (20,5) 
40 MAT D • IDN (10,10) 

CAUTION 

Although it is possible to use the MATREAD, ZER, CON, and IDN commands 
to assign the elements in a matrix, the use of dimensions in these 
commands is discouraged for the following reasons: 

a. If no DIM statement appears in the program to allocate core space for the array, 
EBASIC will reserve storage for 100 elements, even if fewer elements are required. 

(continued) 

BASIC 7-31 



EB ASIC 

b. ZER, CON, and IDN will have the effect of decreasing the core memory allocation in a 
non-reversible manner if the dimensions given are less than those in a DIM 
statement which refers to the same array. However, if one of these commands 
attempts to use more core than is alloted, an error will be reported. 

For the reasons listed above, it is hoped that the programmer will use dimension 
specifications only in DIM statements. There is one case, however, in which he may wish 
to go against this advice; this is the case in which the number of elements to be assigned 
is unknown but certain to be less than 100. In such cases, the dimensions in a MATREAD, 
ZER, CON, or IDN may be given as variables or formula. This is not true for the DIM 
statement which uses only constants·to specify dimensions. 

Command 

MATREAD A, 8, C 

MAT C ZER 

MAT C CON 

MAT C IDN 

MATPRINT A, 8;C 

MAT 8 A 

MAT C A+8 

MAT C A-8 

MAT C A*8 

MAT C TRN(A) 

MAT C INV (A) 

MAT C (K) * A 

BASIC 7-32 

Table 7··8. EBASIC Matrix Commands 

Meaning 

Read the three matrices. Data is stored 
row by row (not column by column). 

Fill out matrix C with zeros. 

Fill out matrix C with ones. 

Set up C as an identity matrix. 

Print the three matrices with A and C in 
regular format and 8 in closely packed 
format. 

Set matrix 8 equal to matrix A. 

Add the two matrices A and 8. 

Subtract matrix 8 from matrix A. 

Multiply matrix A by matrix 8. 

Transpose matrix A. 

Invert the matrix A. 

Multiply the matrix A by the number K. This 
is multiplication of a matrix by a scalar. 



EBASIC 

Use of Matrix Operations 

Certain operations are legal or illegal according to the standard rules which govern matrix 
algebra. For example, if matrix A has dimensions L by M (L rows and M columns) and 
matrix B has dimensions M by N, then 

A * B is legal (resulting dimension: L by N) 

whereas 

B * A is illegal 

Restrictions 

There are several restrictions on the use of matrix commands on the Varian system which 
are imposed because of the necessity to use computer memory efficiently. Note that some 
of the legal examples below may be illegal in the sense that they violate principals of 
dimensioning. 

a. Only one operation may be performed in a single statement. 

Legal Illegal 

MAT C • A+B MAT C • A+B-D 

b. The results of multiplying one matrix by another matrix may not be stored in either, the 
multiplicand or the multiplier. In the second legal example K is a number rather 
than a matrix. 

Legal 

MAT C • A*B 
MAT C • (K) * A 
MAT A • (K)*A 

Illegal 

MAT A • A * B 

c. The transpose of a matrix or the inverse of a matrix may not be stored in itself. A 
violation of either of these rules is reported as error 26. 

Legal 

MAT B • TRN (A) 
MAT B • INV (A) 

Illegal 

MAT A • TRN (A) 
MAT A • INV (A) 



EBASIC 

MATREAD Statement 

The MATREAD statement assigns constants from one or more DATA statements to the 
array variables. The array elements are assigned sequential values row by row. 

For example: 

LIST 
10 DIM A(3, 4) 
20 MATREAD A 
3 0 DATA 1 r 2 r 3 r 4 r 'Sr 6, 7, 8 r 9 1 10 1 11 1 12 
40 MATPRINT A 
50 END 

RUN 
1 

5 

9 
READY 

MATPRINT Statement 

2 3 4 

6 7 8 

10 1 1 12 

The MATPRINT statements prir.it one or more matrices as a result of a single statement. 
Elements are printed, row by row, either in the five zones across the page (beginning at 
columns O, 15, 30, 45 and 60) or in closely packed format. As with the PRINT statement, 
the format is selected by following the array name with either a comma (or blank in the 
case of last array in the list) or a semicolon. 

Examples: 

MATPRINT A 

MATPRINT A, 

MATPRINT A,B 

MATPRINT A, B; 

MATPRINT A;B; 

BASIC 7-34 

I 
Zone format in all three cases 

Zone format for A and close packed 
format for B 

Close packed format for A and B 



EB ASIC 

All rows are double spaced. If a row overruns one line, it is continued on the next line 
(single spaced) until it is completely printed. An example of MATPRINT usage is: 

LIST 
10 DIM A(2, 3), B(2, 2) C(2, 4) 
20 MATREAD A 
30 DATA 1, 2, 3, 4, 5, 6 
40 MAT B•IDN 
50 MAT C•CON 
60 MATPRINT A,B;C; 
70 END 

RUN 
1 2 

4 5 

0 

0 

READY 

VECTORS 

3 

6 

A vector is defined as an array of one column or an array of one row. Thus a vector is 
either a column vector or a row vector. The matrix statements may be used on vectors as 
well as on arrays of two dimensions. In fact, the row vector is a degenerate case of a 
doubly-dimensioned array. For example, 

10 DIM A(4), B(1,4) 

defines B as a row vector whereas A is column vector. The following examples illustrate the 
use of the matrix statements with vectors. Note that in these examples, double spaced 
printing is not shown to conserve space. 

LIST 
10 DIM A(4), B(1,4) 
20 MATREAD A,B 
3 0 DAT A 1 , 2 I 3 , 4 I 1 1 I 1 2 I 1 3 I 1 4 
40 PRINT 'COLUMN VECTOR' 
50 MATPRINT A 
60 PRINT 'ROW VECTOR' 
70 MATPRINT B; (continued) 

BASIC 7-35 



EB ASIC 

80 END 
RUN 

COLUMN VECTOR 
1 
2 
3 
4 

ROW VECTOR 
11 12 

READY 

LIST 

13 14 

10 DIM A(4), B(1,4), C(4,4) 
20 MATREAD A,B 
30 DATA 1, 2, 3, 4, 11, 12, 13, 14 
40 PRINT 'COLUMN VECTOR' 
50 MATPRINT A 
60 PRINT 'ROW VECTOR' 
70 MATPRINT B; 
80 MAT C•A*B 
85 PRINT 'PRODUCT OF COLUMN VECTOR TIMES ROW VECTOR' 
90 MATPRINT C; 
100 END 

RUN 
COLUMN VECTOR 

1 
2 
3 
4 

ROW VECTOR 
11 12 13 14 

PRODUCT OF COLUMN VECTOR TIMES ROW VECTOR 
11 12 13 14 
22 24 26 28 
33 36 39 42 
44 48 52 56 
READY 

BULK STORAGE FILE HANDLING 

All systems have at least one bulk storage file device, which is fixed- or moving-head disc. 
This is designated as the system file unit. The system file unit contains a copy of EBASIC 
and may also store program files, data files, and assembly language subroutines. 

The system may be optionally equipped with one or two bulk storage devices which have 
removable file media. These are designated as file units A and 8. Both A and B devices 

BASIC 7-36 



EBASIC 

may be ~ither 9-track magnetic tape units (25 ips or 37.5 ips, 800 bpi), cassette tape units 
with Phillips cartridges, or a moving-head disc (File A only). The magnetic tape units can 
read and write in IBM compatible format. 

Table 7-9 summarizes the file handling commands and the types of files on which they 
may be used. The file types are defined as follows: 

EBASIC Program Files · These files, type P, are stored as ASCII 
characters; each item consists of four characters. They represent the 
statements of a complete EBASIC program. 

Assembler Subroutine Files · These files, type. S, are stored as re
locatable object code of DASfMAR assemblies~ Each item is stored as 
a 16-bit word. 

Floating Point Data Files - These files, type D, are stored as floating 
point data. Each item is a two-word floating point number. 

Integer Data Files - These files, type I, are stored as integer data 
files, one integer data word per item. Type I files may be created 
only by use of the DATIF subroutine (described in a later section). 

Loading EBASIC From the System File (RESTART) 

The RESTART control command loads a fresh copy of EBASIC into the computer memory 
from the system file unit. After EBASIC is in memory following the use of RESTART, it 
enters into Teletype dialogue with the user, allowing him to select certain option·s. In 
addition to giving the RESTART command on the Teletype, the restart phase of EBASIC 
may also be entered (1) by manually entering and executing the restart bootstrap and (2) 
automatically, follo'!'ing the system generation phase. 

Command 

FUST (null,A,8) 
SAVE name (null,A,B) 
LOAD name (null,A,8) 
COPY (name) TO (name) 
DELETE name (null,A,B) 
CLEAR (A,8) 
ASSIGN name = file no. 
OPEN file no., r/w, 

variable 
CLOSE file no., variable 
PUT file no., variable 
GET file no., variable 

Table 7-9. File Command Summary 

File Type 

p s D 
p 
p 
p s D 
p s D 
p s D 

D 
D 

D 
D 
D 

BASIC 7-37 



EBA SIC 

The following example shows a sample of the Teletype dialogue which occurs during the 
restart phase. User responses are underlined. Each response is followed by the carriage 
RETURN. 

TTY • 0, HSPT • 1 
INPUT? 1 
OUTPUT? .Q 
TRIG+MAT•2, TRIG•1, 
NEITHER •0?1 

CORE (K)? 1..2 
APPEND LIBRARY? Y 
APPEND LIBRARY? ll 
LOAD SUBROUTINES? 

NAME? 
NAME? 
NAME? 
NAME? 
READY 

'IOSS' 
'CRT' 
'RENUMB-A' 
!i 

Select high-speed paper tape reader 
Select Teletype punch 

Select trig functions, omit matrix 
:;ta tements* 
Use lowest 15K of memory 
Add Assembly language subroutines 
Done with additions 
Load assembly language subroutines 
into memory 
Get IOSS from disc 
Get CRT from disc 
Get RENUMB from A device 
Done with RESTART configuration 
Proceed with BASIC language operations 

* The matrix statements are ncit available in a system that uses the IOSS package with 
only 12K of core memory. l'f the user tries to reply with 2. the question will be 
repeated but no error message will be given. 

The core size entered by the user may be less than or equal to the actual size of the 
computer memory (12K, 16K, 20K, 24K, 28K, or 32K). By specifying a value less than the 
true size, the upper postion of memory is made inaccessible to EBASIC. The memory thus 
saved for other purposes must be a multiple of 1 K. There are two primary reasons for 
saving upper memory: 

a. The user may wish to keep BLD II in memory, anticipating that the system will use a 
language other than EBASIC. He can therefore avoid the inconvenience of using the 
bootstrap program to load BLD II. 

b. The users of the system may wish to write special purpose assembly language 
subroutines to make use of the reserved memory. For example, it may be used as a 
common data pool accessible by many subroutines which pass data and/or 
parameters back and forth (tlhat is, a " blank common" area, familiar to FORTRAN 
users). This is the fastest way of linking assembly subroutines not included in the 
same module. That is, the RESTART loader is not a linking loader. (Another way to 
link subroutines is to pass data and/or parameters through EBASIC CALL 
statements.) 

If the APPEND Library? query is answered by" Y", an assembly language subroutine 
module must be available in the paper tape reader (either Teletype or high-speed reader, 
as previously selected). Several standard modules are supplied with the system and these 
are commonly appended to the disc files immediately following a system generation. 
Modules may also be developed by the user for special purposes. The method of creating 
assembly language modules is described in the ADAPTS User's Guide. ' 

BASIC 7-38 



EBASIC 

The standard software modules supplied with each ADAPTS system match the particular 
system configuration. For example, if the system contains the rack-mounted CRT, the 
matching "CRT" software module is supplied. A complete list of the standard software 
modules is given in table 7-10. 

During the process of appending relocatable object modules to the library, two possible 
error messages may be printed on the Teletype. 

READ ERROR 

This may be caused by either a bad paper tape or a reader malfunction. 

SYNTAX ERROR 

This error is caused by attempting to read an illegally constructed module. See the 
ADAPTS User's Guide for construction of modules. 

In either case, the entire module is ignored and any partial files created on the system file 
unit are automatically deleted. The question 

APPEND LIBRARY ? 

is retyped on the Teletype. This process continues until an N is entered. 

All assembly language modules are in relocatable format and may be loaded in any order. 
They are stored on the system file unit as type S files (see the FUST command). The name 
of the subroutine is part of the module itself. It is this name which must be used when the 
query 

NAME? 

appears on Teletype. The names of some of the Varian supplied subroutines are shown in 
the preceeding sample dialogue. 

File Name 

CRT 

KBCRT 

PLOTTR 

Table 7-10. ADAPTS Standard Software Modules 

Description 

CRT Display Subroutines for performing alphagraphic 
operations on the rack-mounted CRT unit. 

CRT Display Subroutines for performing alphagraphic 
operations on the free-standing keyboard CRT unit. 

Incremental X-Y Plotter Subroutines for alphagraphic 
operations on the hard-copy plotter. 

(continued) 

BASIC 7-39 



EBASIC 

File Name 

IOSS 

RENUMB 

DEBUGR 

FFT 

MAGTAB 

CA SSAB 

MAGB 

CASSB 

DISKA 

Table 7-10. ADAPTS Standard Software Modules (continued) 

Description 

Input/Output Subsystem Subroutines for analog and digital 
input/output operations. 

Renumber EBASIC Statements to help edit EBASIC programs. 

Debugger to help troubleshoot relocatable assembly 
language routines for use with EBASIC. 

Fast Fourier Transform Subroutines, transform and reverse 
transform, callable from EBASIC. 

Magnetic Tape Unit Filing Subroutines for systems with two 
magnetic tape units as File A and File B. 

Magnetic CassHtte Unit Filing Subroutines for systems with 
two cassette units as File A and File B. 

Magnetic Tape Unit Filing Subroutines for systems with one 
magnetic tape unit as File B. 

Magnetic CasSE!tte Unit Filing Subroutines for systems with 
one cassette unit as File B. 

Moving-Head Disc Subroutines for systems with one disc 
(removable or non-removable) as File A. 

Assembly language modules are loaded into computer memory from the disc (system file) 
or the A or B device. Since modules are apper;ided only to the disc, if they are to be loaded 
from a cassette (for example), the COPY command must be previously used to transfer the 
module to the cassette (after a complete system generation). 

File Directory Listing (FLIST, FLIST A, FLIST B) 

The FUST command enables the operator to examine the file directories of the system file 
(FUST) or the removable files (FUST A and FUST 8). The directory will be printed by 
EBASIC in the following format: 

UN USED STORAGE 

NAME 

ff ff ff 

fffff 

BASIC 7-40 

TYPE 

aaaaa 

#BLOCKS 

bbbb 

bbbb 

#ITEMS 

ii ii 

ii ii 



where 

aaaaa 

ff ff ff 

number of blocks _remaining 

alphanumeric file name 

file type (P = EBASIC program, S = assembly language 
subroutine, D = floating point data, I = integer data) 

bbbb number of blocks used by file 

iiii number of values in a standard data file or the (number of 
characters) I 4 in an EBASIC source program. 

EBASIC 

If the removable file unit (A or B) is in a 9-track magnetic tape device, the first line of 
output (UNUSED STORAGE = aaaaa) will not be typed. In this case, the unused storage 
cannot be determined since reels of magnetic tape may vary in length. 

Each program or data file is stored in an integer number of blocks, each of which contains 
one hundred and seventy-eight (178) 16-bit computer words. The number of items is the 
actual number of 16-bit words in . the file divided by two. Each item represents four 
characters in an EBASIC program (including all spaces shown in a LIST), one floating 
point number as stored by a PUT statement, or two data values stored by the IOSS Driver 
DATIF. 

The following example shows an FUST directory listing. 

FLISTB 
UNUSED STORAGE•3056 
NAME TYPE #BLOCKS #ITEMS 
ANUITY p 8 670 
BE LOOP p 12 1026 
AMAZIN p 20 1729 
JAKCUS p 14 119 3 
CLNDAR p 11 910 
DECIDE p 10 863 
FSMMIN p 1 5 1334 
GRADFR p 6 483 
HISTO p 8 688 
HOOK p 12 1064 
TRUINT p 7 543 

BASIC 7-41 



EBASIC 

Initialization of Removable me Media (CLEAR A, CLEAR B) 

The CLEAR command initializes the selected removable storage medium (A or B) so that it 
may be used by the system. When using a cassette cartridge or a magnetic tape for the 
first time, the user must type either 

CLEAR A or CLEAR B 

before any programs or data can be stored on the medium. When the CLEAR command is 
used, the following warning message will be printed by EBASIC: 

FILES ON MED!A WILL BE DESTROYED 

If the user wishes to go ahead with the CLEAR operation, he depresses the carriage 
RETURN key; if he wishes to abort the CLEAR command, he hits the ESC key. If the 
medium has been previously unused, the message will not have meaning. However, as 
indicated, the CLEAR command may also be used to delete all old files on the medium 
and make medium available for re-use. 

A CLEAR command not followed by either A or B will not be recognized. Thus, CLEAR can 
never be used to destroy the system files. Because imbedded spaces are ignored in the 
command it may be typed as CLEARA or CLEARS. 

Storage and Recovery of Program Files 

The SAVE and LOAD commands are used to transfer program files (only) back and forth 
between computer memory and any of the bulk storage units (system file, unit A, or unit 
8). Data files are handled by PUT and GET commands. 

SAVE 

The SAVE command has three forms: 

SAVE " ff ff ff" 
SAVE "ffffff-A" 
SAVE "ffffff-8" 

Save on system file 
Save on unit A 
Save on unit B 

The file name (ffffff) may have from one to six characters, the first of which must be a 
letter (A to Z). The last five characters (optional) may be letters or digits (0 to 9). The file 
name is separated from the unit identifier by a dash. The entire identifier is enclosed in 
quotation marks. Blank spaces are not allowed within the quotation marks. 

If the file name specified is identical to one which is already present on the designated 
bulk storage device, the following message will be printed: 

OLD FILE? 

BASIC 7-42 



EBASIC 

This gives the user an opportunity to abort the SAVE command, which he may do by 
striking the ESC key. If he wishes to replace the old file, he may do so by using carriage 
RETURN. When the program has been" saved", the Teletype bell will ring once. 

A program may be saved under the same name on each of the three bulk storage devices 
in the system. Only EBASIC programs can be saved; assembly language subroutines, for 
example, may not be stored on any of the bulk storage devices with the SAVE command. 

LOAD 

The LOAD command has three forms 

LOAD " ffffff" 
LOAD " ffffff ·A" 
LOAD "ffffff-B" 

Loads program from system file 
Loads program from unit A 
Loads program from unit B 

A data file cannot be loaded with the LOAD command. Data files are recovered through 
the GET command. 

The file name (ffffff) followed by the unit identifier A or B (removable media only) must be 
enclosed in quotation marks. S~s are not permitted between quotation marks. Only 
program files listed in the directory may be loaded. 

When programs are LOADed, each line is brought in the file unit in the same manner as 
lines are accepted from the Teletype keyboard. If a statement in the program file being 
loaded has the same line number as the program in the computer, it will overlay the old 
statement. Otherwise, it will insert the new statement in the program. As each line is 
brought in it is checked for construction and rejected if in error. For example, if a program 
being loaded has a CALL statement to a subroutine not loaded during the restart phase, 
then that statement will not be loaded. An error message will be printed and the load 
process will terminate. Control returns to the READY state. 

Since a program being loaded may mix statements inconveniently with the program 
already in the computer, it is customary to precede the LOAD command with a SCRATCH. 

The LOAD command may be used as a program statement to perform overlays. This 
" dynamic use" of LOAD is explained in a later section. 

Creation and Use of Data Files 

Five commands are available to handle data files: 

ASSIGN Associates one, two, or three file names with corresponding 
file numbers (1, 2, or 3) 

OPEN Initializes a data file for read or write access 
(continued) 

BASIC 7-43 



EBASIC 

PUT 

GET 

CLOSE 

Places a list of values into a numbered data file 
(1, 2 or 3); sequential access 

Assigns sequential values from a numbered data file (1, 2 
or 3) to a variable list 

Terminates input or output to a specified data file (1, 2 or 3) 

Data is transferred to and from the bulk storage devices through file buffers, which are 
sections of computer memory assigned for that purpose. Three file buffers are 
implemented and they are referenced by a number (1, 2, or 3) in the program. The 
numbers are assigned alphanumeric names just prior to the running of the program. In 
this way a more general program can be written. For example, the program might use file 
1 for input, file 2 for output, and file 3 for a scratch file. 

The following example is presented without comment. The use of ASSIGN, OPEN, CLOSE, 
PUT and GET will become clear in the next four sections. 

LIST 
10 OPEN 1 I 0 
20 FOR I• 1 TO 7 
30 PUT 1 I I I I I * 
40 NEXT I 
50 CLOSE 1 ,R 
60 PRINT I ITEMS ION 
70 OPEN 1 I 1 ,N 
80 PRINT 'ITEMS ON 
85 PRINT 'X' I 'Xt 2 I 

90 FOR I• 1 TO N/ 2 
100 GET 1 I X,Y 
11 0 PRINT X,Y 
120 NEXT I 
130 CLOSE 1 
140 END 
ASSIGN 'DATA-A'•1 

1•NEW 
RUN 

ITEMS ON CLOSE• 14 
ITEMS ON OPEN• 14 
x Xt2 

1 1 

2 4 

3 9 
4 16 
5 25 
6 36 
7 49 

BASIC 7-44 

I 

CLOSE• I ;R 

OPEN• I ;N 

(continued) 



READY 
FL I STA 

UNUSED STORAGE •592 
NAME 
AN OVER 
DATA 

Type 
p 

D 
ASSIGN 'DATA-A' •1 

1•0LD 

ASSIGN 

#BLOCKS 
29 
1 

#ITEMS 
2561 
14 

EBASIC 

The ASSIGN command assigns or associates alphanumeric file names with the file 
numbers 1, 2, and 3. Examples: 

ASSIGN 'DATA' • 
ASSIGN 'DATA-A' • 2, 'JUNK-B' • 3 
ASSIGN 'SCRAP' • 1, 'TEST' • 2, 'MIC~-A' • 3 

The command is normally given just prior to running the program. The OPEN, CLOSE, 
PUT, and GET statements make use of the logical connection between the file numbers 
and the file names. The ASSIGN statement may be made a numbered statement in the 
program but this usage destroys the generality of the scheme. For example, a program 
may use files 1 and 2 for data, and 3 for scratch. By deferring the naming of the files until 
execution time, many data files may be used by one program. 

The ASSIGN command is used for data files only; programs are never assigned file 
numbers. Up to three files may be assigned on a single line and, in fact, file numbers no\ 
referenced in an ASSIGN statement (lre assumed to be not assigned. 

For example, if the following statement is typed.~ 

ASSIGN 'ONE' • 1 

and then 

ASSIGN 'TWO' • 2 

the effect of the second assignment is to assign the name TWO to file 2 a'r'td to cancel the 
previous assignmenf of name ONE to file 1. If we wish to assign names to both 1 and 2 
then we must do it in a single statement,jor example, 

ASSIGN 'ONE' • 1, 'TWO' • 2 

When the ASSIGN command is given, the file directory is searched to determine if the 
names have been previously used. Suppose that in the last example ONE had been used 
before but TWO had not been used, then the computer would print the the following 
message: 

1 • OLD, 2 • NEW 

BASIC 7-45 



EBASIC 

Of course, if the ASSIGN command is given a line number in the program, the message is 
only an indication that the program is operating. But if the ASSIGN command is given 
prior to run, it gives the user a second chance to decide on a new assignment, since no 
action will be taken until he types RUN. An "old" file name is perfectly acceptable, but it 
means that the file may be altered by running the program. 

OPEN 

The OPEN statement is used to initialize a file number for either write or read access. 
After an OPEN statement the GET or PUT pointer is set to the first item in the file. 

To PUT items into a file (write access) we must use a statement of the form: 

OPEN file number, O 

To GET items from a file (read access) we must use a statement of the form: 

OPEN file number, 1, optional variable 

The file number may be any variabl1e or formula which when evaluated and truncated to 
an integer, is equal to 1, 2, or 3. When a file is opened for read access, the optional 
variable is set equal to the current number of items in the file. 

Examples: 

10 REM OPEN FILE 1 FOR GET 
20 OPEN 1, 1, N 
30 REM N IS NOW EQUAL TO NO. ITEMS IN FILE 1 
40 REM OPEN FILE 2 FOR PUT 
50 OPEN 2, 0 

Each time a file is OPENed for either GET or PUT operations, the data pointer is set to the 
first item in the file. 

Only one file at a time may be OPENed on a magnetic tape unit. If a file is OPENed on a 
magnetic tape unit, the following statements cannot be issued specifying a file on the 
same unit: COPY, LOAD, SAVE, or DEILETE. Also, the FUST command (FLISTA or FLISTB) 
will not display the contents of that bulk storage unit. 

A given file may be OPENed for read access on more than one file number. A file OPENed 
for write access, however, may be ASSIGNed to only one file number at a time. 

PUT 

The PUT statement is used to place values in a data file previously opened for write 
access. Its form is 

PUT file number, list 

BASIC 7-46 



EBASIC 

where the file number may be any variable or formula which, when truncated to an integer 
value, is equal to 1, 2, or 3. The list of items, which are .placed sequentially in the file, may 
also be variables or formulae. For example: 

10 REM OPEN FILE 2 FOR WRITE· 
20 OPEN 2,0 
30 FOR I • 1 TO 10 
40 PUT2, I' I t 2 r SQR(I) 
so NEXT I 
60 CLOSE 2,N 

This example places 30 values into file 2. The values are PUT sequentially in the order in 
which they appear in the list following the file number. Here 1, 1, and 1 are the first items 
in the file and 2, 4, and (2 are the fourth, fifth, and sixth items. The OPEN statement 
initializes the pointer to the first item in the file and each value PUT into the file 
increments the pointer by one. 

GET 

The GET statement is used to recover items from a data file previously opened for read 
access. Its form is 

GET file number, list 

where the file number may be any variable or formula which, when truncated to an integer 
value, is equal to 1, 2, or 3. The list contains one or more variables which receive the items 
" gotten" from the file in sequential manner. For example: 

10 REM OPEN FILE 3-FOR READ 
20 OPEN 3, 1, N 
30 GET 3, X, Y, Z 

The first three items in the file are assigned to X, Y, and Z. The data pointer is initialized 
to the first item in the file by the OPEN statement. Each time an item is obtained from the 
file the pointer is incremented by one. Note: Items retrieved from an integer data file 
(type I) are converted to floating point automatically by the G'ET. 

CLOSE 

The CLOSE statement terminates GET or PUT operations on a file. Its form is 

CLOSE file number, optional variable 

where the file number may be any variable or formula which when truncated to an integer 
evaluates to 1, 2, or 3. The optional variable is set equal to the number of items in the file 

BASIC 7-47 



EBASIC 

at time of CLOSE; the optional variable may be used only when terminating access to a file 
OPENed 'tor write. 

EXAMPLE: 

300 CLOSE 1, N 

An implicit CLOSE is performed on every open file when a program is cfborted through use 
of the ESC key or through a program error. CLOSE is also performed on all open files when 
a normal run is completed. 

COPY Statement 

The COPY statement permits the user to transfer any file from one bulk storage device to 
another bulk storage device. It is also possible to copy the file on the same bulk storage 
device unless that device is a magnetic tape unit. 

The form of the COPY statement is 

COPY file name TO file name 

where the first file name is the source and the second file is the sink. If the sink file name 
is found to already exist in the file di1rectory of the designated unit, the message 

OLD FILE? 

is printed. This gives the user a chance t6' abort the COPY command by striking the ESC 
key. Otherwise, the user may give the go-ahead signal by striking carriage RETURN. 

Examples: 

COPY 'DATA' TO 'DATA-A' 
COPY 'PROG1' TO 'PROGZ' 
COPY 'SAMP-A' TO 'SAMP-B' 
COPY 'TEST' TO 'TEST' 

Notice that all file names are constructed according to the rules specified under SAVE. 

The last example is legal but of no use since it will result in EBASIC reading the file into a 
core memory buffer and writing it out again on the disc in the same place. Only one file 
named TEST will appear in the file directory. 

The source file may be on any of the bulk storage devices: system file, unit A, or unit B. 
The sink file may also be any of the bulk storage devices except that a source file on 
magnetic tape may not be copied onto the magnetic tape in a single operation; it must 

BASIC 7-48 



EBASIC 

first be transferred to another unit (for example, the system file) and then may be 
transfered back to the tape. 

Note: The COPY statement may be used as a numbered statement in the program if and 
only if the files have been previously CLOSEd. Otherwise an error will be reported. 

DELETE Statement 

The DELETE statement may be used to erase a specified program file, subroutine file, or 
data file from any of the bulk storage devices on the system. For example: 

DELETE 'SAMPLE' 

The file name must be enclosed in quotation marks and is constructed according to the 
rules given under the SAVE command. Only one file may be deleted at a time. If the name 
specified is on the file unit, then the system will respond to the DELETE statement by 
printing 

OLD FILE? 

If the user wishes to go ahead with the command, he depresses carriage RETURN; if he 
wishes to abort the comm~nd, he uses the ESC key. 

When a file is deleted, the space previously used by it is released for re-use, unless the file 
was on a reel of magnetic tape. 

Program Overlays--Dynamic Use of LOAD 

The LOAD command may be used as a numbered statement in the program. This facility 
permits the programmer to write EBASIC programs in segments which may be SAVEd on 
bulk storage units and LOADed into the computer only as they are needed. A program 
written in this manner usually includes one or more REMOVE commands to release 
computer memory for the incoming segment and to avoid an " inconvenient" mixing of 
current statements with incoming statements. Statements in the current segment which 
are not overlaid by statements in the incoming segment or REMOVEd before the LOAD is 
executed will remain after the LOAD has been completed. 

The conditions and restrictions which govern the use of the LOAD statement in a program 
are as follows: 

a. A LOAD statement should not be written inside a FOR-NEXT loop or a subroutine. 

b. Simple variables and array variables retain their values from one segment to the next, 
unless changed by the program. 

(continued) 

BASIC 7-49 



EBASIC 

c. A DIM statement must be overlaid by the incoming segment or REMOVEd prior to the 
LOAD statement. 

d. A user-defined function (DEF statement) remains defined from segment to segment 
only if it is not overlaid or REIMOVEd. 

e. An implicit RESTORE is performed when a LOAD statement is executed. This initializes 
the pointer to the first number in the data pool after the LOAD has been completed. 

After a successful LOAD, control will pass to the next numbered statement in the program. 

The procedure for incorporating LOAD statement into the program is illustrated in the 
following example. In this example, the segments of the program are called "pages" for 
convenient reference. Note that statement 40 in PAGEOl had to be either REMOVEd (as 
was done) or overlaid by PAGE02 or else error message 45 would have been reported. 

SCRATCH 

READY 
LOAD 'PAGE02' 
LIST 

1 REM PAGE02 
190 DIM B (5) 
2 0 0 READ B ( 1 ) I B ( 2 ) I B ( 3 ) I B ( 4 ) I B ( 5 ) 
210 PRINT 'A(I)' I 'B(I)' ,'FNX(A(I))', 'FNX(B(I)) 
220 FOR I• 1 TO 5 
230 PRINT A(I),B(I),FNS{A(I)),FNX(B(I)) 
240 NEXT I 
400 END 

SCRATCH 

READY 
LOAD 'PAGED 1' 
LIST 

1 REM PAGE01 
10 DEFFN X(X)•X t 2 
20 DATA 1, 2, 3, 4, 5 
3 0 READ A ( 1 ) , A ( 2. ) , A ( 3 ) , A ( 4 ) , A ( 5 ) 
40 DIM A(5) 
50 REMOVE 25 TO 50 
60 LOAD 'PAGE02' 
70 REMOVE 60 TO 70 
80 REM WILL NOT BE OVERLAID TO ILLUSTRATE PROCESS. 
400 END 

(continued) 

BASIC 7-50 



RUN 
A( I) 

1 
2 
3 
4 
5 

READY 
LIST 

B(I) 
1 
2 
3 
4 
5 

1 REM PAGE02 
10 DEFFN X(X)•X t 2 

FNX(A(I)) 
1 
3.99999 
8.99997 
15.9999 
24.9999 

2 0 DATA 1 , 2 , 3 , 4 , 5 

F~X( B (I)) 
1 
3.99999 
8.99997 
15.9999 
24.9999 

EBASIC 

80 REM WILL· NOT BE OVERLAID TO ILLUSTRATE PROCESS. 
190 DIM B(5) 
2 0 0 READ B ( 1 ) , B ( 2) , B ( 3) , B ( 4) , B ( 5) 
210 PRINT 'A(I) I, 'B(I) I, 'FNX(A(I)) I, 'FNX(B(I)) I 

220 FOR I• 1 TO 5 
230 PRINT A(I),B(I),FNX(AI)),FNX(B(I)) 
240 NEXT I 
400 END 

PROGRAMMING THE INTERFACE CONSOLE 

The Interface Console (IFC) is programmed via CALL statements to the Input/Output 
Subsystem (IOSS) drivers, which are assembly language subroutines. The IOSS drivers 
and their functions are: 

DATAI 
DATIF 
DA TAO 
PULSE 
STATUS 

Inputs data to an array 
Inputs data to a file 
Outputs data from an array 
Operates a control line output 
Senses a status line input 

Analog and Digital Channels 

The IOSS drivers (assembly language subroutines) DATAI, DATIF, and DATAO allow input 
or output over one or more channels in a single CALL statement. The channel may be 
handling analog or digital data as determined by the factory wiring. Each channel is 
assigned a number, to which the subroutines may refer, but only the programmer Knows 
whether the channel number is assigned to analog data or digital data. 

The analog inputs are multiplexed to a 13-bit (binary) analog-to-digital converter, which 
accepts signals of± 10 volts full scale. Thus the full scale values (numbers) which are read 
on these channels are + 4095 ( + 10 volts)' and - 4096 (- 10 volts). The negative limit is 
slightly larger than the positive limit because a two's complement format is used to 
represent raw input data. Data is then transformed to floating point format so that it may 
be used by the EBASIC program. 

BASIC 7-51 



EB ASIC 

The analog outputs are multiplexed to 12-bit (binary) digital-to analog converters. Again, 
two's complement format is used by the converter circuitry so that full scale is + 2047 
( + 10 volts) and - 2048 (- 10 volts). If a positive value greater than 2047 is output or a 
negative value less - 2048 is output, then the higher bits are ignored. This causes 2048 to 
be equivalent to + 1 and - 2049 to be equivalent to - 1 (for example). A number N outside 
the range 

-327685; N ~32 7 6 7 

cannot be contained in the 16-bit computer word used. DATAO will report the attempt to 
output numbers outside this range as an error. 

The digital inputs or outputs are 16-bits in binary two's complement format. Again, the 
maximum values which can be contained in 16 parallel bits are + 32767 and - 32768. In 
two's complement format, negative numbers are represented as the one's complement 
form plus one. A negative number in one's complement form is obtained by taking the 
number in binary form and replacin~~ every 11 l 11 with a 11 011 and vice versa. 

Thus we have, for example, 

+ 1 = 0 000 000 000 000 001 
-1 1 111 111 111 111 110 
-1 = 1 111 111 111 111 111 

(one's complement) 
(two's complement) 

The CALL statements for DATAI, DATIF, and DATAO are very similar. DATAI may be used 
as an example: 

where 

10 CALL DATAI, M(1), A(1), N, S, C 

M(l) = first element of a channel selector array 
A(l) = first element of the data storage array 
N number of data points 
S scan time, which is the time (in microseconds) to 

scan all channels in the channel selector array 
C capture delay, which is the time delay (in microseconds) 

between channels in the scan 

Notice that the CALL statements for DATAO and DATIF are very similar, for example, 

20 CALL DATAO, M(1), A(1), N, S, C 
30 CALL DATIF, M(1), 1, N, S, C 

where all the above definitions of the CALL arguments apply except that a file number has 
replaced A(l) in the CALL to DATIF. For DATAO, A(l) is the first element of an output 
array instead of an input array as used with DATAI. 

BASIC 7-52 



EBASIC 

The simple variables and array variables used above are illustrations only. Any variable 
names may be used except that the first two arguments must be array variables. 
Furthermore, the dimensions of these arrays must have been previously declared in a DIM 
statement. 

Note: When using DATAI or DATIF, the programmer must consider the SCAN SYNC line on 
the I FC. For a description of its use, see the section on scan time. 

Channel Selector Array 

The first argument in the CALL statement to DATAI, DATAO, or DATIF is an array variable 
which is the first element in a channel selector array, for example, 

10 CALL DATAI, M(1), A(1), N, S, C 

For convenience, this element will be referred to as M(l) and array M is then the channel 
selector array. The channel selector array specifies the channel numbers over which data 
is to be transferred and whether the specified channels are to be accessed in every scan, 
every other scan, every third scan, etc. 

In setting up the channel selector array the user must decide whether to use sequential 
addressing of channels or random addressing. Sequential scans are easier to set up but 
require data rates to be the same on every channel specified. Channels may not be 
skipped in a sequential scan; the scan occurs from channel 1 to the last channel given. 
Random addressing allows different data rates on various channels and permits use of 
only those channels absolutely specified. 

The channels are, for the most part, the numbers given on the IFC. For DATAI channels 
1-16 are assigned to analog inputs 1-16. The digital input will be channel 17, unless more 
than sixteen analog inputs are installed on the system. Of course, more than sixteen 
analog inputs are not available on a single IFC. But if the analog channels are expanded 
then the digital channels will be numbered following the highest numbered analog 
channel. A similar situation exists for· the output channels. Output channels 1-8 are 
assigned to analog outputs (as marked on the IFC) and the digital output channel is 
assigned number 9, unless the analog outputs are expanded beyond 8. 

SEQUENTIAL SCAN 

The sequential scan of input or output channels is set up in the following manner: 

M(l) 
M(2) last channel in scan 

When this type of channel selector array is specified, all channels from channel 1 to the 
last channel will be accessed in every scan time. The scan time is given as the fourth 
argument in the CALL statement. 

BASIC 7-53 



EBASIC 

The programmer must take the number of channels to be scanned into account when 
assigning values to the scan time and capture delay. 

RANDOM SCAN 

The random scan of input or output channels is set in the following manner: 

M(l) number of items to follow 
M(2) - 1 (access every scan) 

channels to be accessed in every scan; channel numbers 
in ascending order 

M(l) - 2 (access every second scan) 

channels to be accessed every second scan; channel numbers 
in ascending order 

M(J) - 3 (access every third scan) 

etc. 

channels to be accessed every third scan; channel numbers 
in ascending order 

Note that a negative integer is used to specify the random scan. For a random scan, M(2) 
is a - 1 and succeeding positive entries up to the next negative number are accessed on 
every scan. Similarly, succeeding negative entries specify how often other channels are to 
be accessed. 

Example: 

M(l) 5 
M(2) -1 
M(3) 1 
M(4) 3 
M(5) -2 
M(6) 2 

In this example channels 1 and 3 will be accessed every scan and channel 2 will be 
accessed on the even scans. A detailed example of a random scan is illustrated in figure 
7-1. 

The specifications for the channel sielector will affect the specifications for scan time and 
capture delay, as described in the appropriate sections of this manual. 

BASIC 7-54 



.,, 
c;Q" DATA 
~ CAPTURE 
CD FOR 

""" CHANNEL 
~ 
:::ti ADC TIME 
I» 
::3 INPUT TO 
0.. ARRAY 0 
3 
Cl> 
C') 

I» 
::3 

s: 
0 
0.. 
(I) 

fT'I 
)( 

I» 
3 

"'C 
(D 

120µ s----....,·~1-·----120µs,------•------120P•1 

1 8 

c=Jc:::::J 

B(l) B(2) 

10 DIM A(8), B(l 3) 

3 

r=-J c=J 
L-...J 

B(3) B(4) B(5) 

300 CALL DATA! A(l), B(l), 13, 120 

LWHERE A(l) = 7 
A(2) = -1 
A(3) = 1 
A(4) = 8 
A(5) = -2 
A(6) = 3 
A(7) = -3 
A(8) = 13 

1 8 13 
r::=Jc:::::J c:::::J 

B(6) B(7) B(8) 

3 
c=J c::i 

L---1 

B(9) B(lO) B(l l) 

NOTE: WHEN INTERMEDIATE CHANNELS 
ARE SKIPPED, COLLECTED CHANNELS ARE 
ACQUIRED AT THE SAME RELATIVE TIME 
FROM THE START OF THE DATA ACQUISITION 
CYCLE. 

NUMBER OF ENTRIES TO FOLLOW 

CHANNELS AT BASIC RATE 

CHANNEL AT l/2 BASIC RATE 

CHANNEL AT l/3 BASIC RATE 



EBASIC 

Data Storage Array (DATAI and DATAO) 

The data storage array is identified by the second argument in the CALL statement. This 
array variable, which will be referred to as A{l), is the first location to be used for input 
(DATAI) or the first location to be used for output (DATAO). There is no reason why the 
first element cannot be A(2) or 8(10) or C(l,20). A double-subscripted array variable must 
be used if the program is to output more than 255 values in a single CALL statement, 
however. In any case the array dimensions must be declared in the program by a DIM 
statement. 

If using a double-subscripted array variable, the programmer should be aware that input 
or output is by columns, not by rows. For example, an array A with 3 rows and 2 columns 
(DIM A (3,2)) contains array elements which are used in the following order: 

A (1,1) 
A (2,1) 
A (3,1) 
A (1,2) 
A (2,2) 
A (3,2) 

File Number (DATIF) 

When using DATIF, the second argument in the CALL statement may be a constant, a 
variable or a fomula which has a truncated value equal to one of the three file numbers (1, 
2 or 3). 

OPEN and CLOSE statements for the file used should not be given when DATIF is called. 
DATIF performs its own OPEN and CLOSE operations. However, an alphanumeric file 
name must be assigned to the file number via the ASSIGN command. This is commonly 
done prior to running the program. If the file to be used is OPEN for read or write when a 
CALL for DATIF is encountered, the file is deleted and reOPENed in the write mode. 

The DATIF command can be used with all bulk file units except cassettes. 

Number of Data Points 

The third argument in the CALL statement to DATAI, DATAO, or DATIF is the number of 
data points to be transferred. A variable, formula, or constant may be used; the value is 
truncated to an integer. The numbE!r of data points, N, may be as large as 32767 for 
DATIF; for DATAI and DATAO, N is limited to the available computer memory. 

The number of data points specified must not exceed the number of elements in the array 
which are given in a DIM statement. If the number of data points exceeds the number of 

BASIC 7-56 



EBASIC 

elements in the array, there are three possible destructive consequences when using 
DATAI: 

a. The input may overflow into the next array(s). 

b. The input may overflow all the arrays and destroy the EBASIC program, thus putting the 
computer into step mode. This will necessitate the manual restart of the computer. 

c. The input may overflow into the assembly language subroutines and possibly into 
memory locations used by EBASIC itself. In either case the restart bootstrap will 
have to be used to recover. 

Scan Time 

The fourth argument in the CALL statement specifies the number of microseconds in a 
data cycle. For convenience, this argument will be referred to as S. The scan time is 
truncated to an integer, which must be in the range 

32767 :2=S :2=T * N 

where N = number of channels in the data cycle 
T = minimum time to transfer a data point over one channel 

Refer to figure 7-2 for a detailed illustration of scan time and capture delay. 

The scan time may also be set equal to zero, which permits the external data source to 
give a "data present" signal for every single data point to be input. SCAN SYNC is raised 
to + 5 volts each time the computer is ready to accept another data point. SCAN SYNC is 
externally grounded to synchronize each scan. SCAN SYNC is also used when the scan 
time is not zero except that this line need be grounded only once to cause the computer to 
input data to the entire array at the rate indicated. SCAN SYNC is used only with DATAI 
and DATIF (not DATAO). 

The number of channels, N, in the data cycle is determined from the channel selector 
array. When using sequential scan, the number of channels is simply the last channel 
number specified. When using random channel selection, the number of channels is the 
maximum number of channels which will be used in any one scan time. 

The minimum time (T) required to transfer data over a channel depends on the 
subroutine used and storage media. A summary of values assigned to T is given in table 
7-11. 

If the value given for the scan time falls within the bounds given earlier, then all channels 
specified in the channel selector array may be accessed in the time allotted for the scan. 
But if the scan time is not sufficient, then the computer will take as much time as is 
required and no error message is returned. The following example shows how a value for 
the scan time is computed. 

BASIC 7-57 



EBASIC 

The channel selector array is 

M(l) 5 
M(2) -1 
M(3) 1 
M(4) 3 
M(5) -2 
M(6) 7 

DATIF is used to input to a magne,tic tape unit. (25 ips) 

S min = N "' T 
where T 

"' therefore, S min = 3"'333 

333 
3 
1000 microseconds 

A large value for scan time may be specified, if desired . 

POSSIBLE 
DATA 
CAPTURE 
TIMES 

.-DATA ACQUISITION FRAME 

T1 -

MEANING OF SYMBOLS 

DATA ACQUISITION FRAME 1 

T1 DATA ACQUISITION CYCLE TIME INTERVAL (SCAN TIME) 

T2 TIME INTERVAL BETWEEN EACH DATA INPUT OPERATION (CAPTURE DELAY) 

TADC TIME TO COMPLETE ONE ANALOG-TO-DIGIT AL CONVERSION 

N MAXIMUM NUMBER OF CHANNELS TO BE COLLECTED IN ONE TI TIME 

IMPORTANT RELATIONSHIPS 

IF T2 NOT SUPPLIED (EQUIVALENT TO SETTING T2 = TADC) 

T2 :;::.N*TADC 

1h2 SUPPLIED 

T/T
2 
~N (MUST BE JNTEGER RESULT) 

VTIJ-1918 
T2 2'. TADC 

Figure 7-2. Time Specification Arguments 

BASIC 7-58 



Table 7-11. Minimum Times to Transfer Data Over a Channel 

for 620/L-100 or 620/f-100. 

Equivalent 

EBASIC 

Input/Output Minimum Transfer Throughput in 
IOSS Driver Data Storage Time (T) in usec kHz 

Core memory 
DATAI 50 20 

array 

Core memory 
DA TAO 150 15 

array 

Moving-head 
disc 667 1.5 

Fixed-head 
DATIF disc 225 4.5 

25 ips tape 
deck (9 track) 333 3.0 

37.5 ips tape 
deck (9 track) 225 4.5 

Capture Delay 

The fifth argument in the CALL statement specifies the time in microseconds between 
adjacent channels in the scan. The capture delay must be an integer sub-multiple of the 
scan time. 

The capture delay is optional for DATAI and DATAO. If it is not specified then data will be 
input or output as fast as possible. However, when using DATAI and selecting more than 
one channel, the failure to specify the capture delay will result in data points unevenly 
spaced in time. This is because the minimum time to switch channels is a variable (if not 
controlled) although it will always be less than the value given in table 7-11. However, 
when using DATAO, even though capture delay is not specified, the data points will always 
be equally spaced in time. 

To continue the example chosen in the section on scan time, the channel selector array is 

M(l) 5 
M(2) -1 
M(3) 1 
M(4) 3 
M(5) -2 
M(6) 7 

BASIC 7-59 



EBASIC 

DATIF will be used for input to a tape unit (25 ips). The minimum scan time we can 
choose is (from table 7-11) 1000 microseconds. For illustration 2000 is chosen, which gives 
a throughput of 500 Hz for each channel included in every scan. For capture delay some 
value is required which when multiplied by an integer is equal to 2000. Our choices are 
somewhat limited: 

200016 
200015 
200014 
200013 
200012 
2000/l 

333.3 
400 
500 
666.7 
1000 
2000 

(Not an integer) 
(0.K. Minimum time to transfer) 
(0.K.) 
(Not an integer) 
(Cannot fit 3 channels in scan) 
(Cannot fit 3 channels in scan). 

Thus, the only valid choices for the capture delay with 3 channels and a scan time of 2000 
are 400 and 500. If, however, input to the system file is performed, we could choose a 
capture delay of 250 (250 x 8 = 2000). The graphic representation of this solution is 
shown in figure 7 -3. 

Control and Status Line Oporation (PULSE, STATUS) 

The IOSS drivers (assembly language subroutines) PULSE and STATUS allow the 
programmer to operate the digital output CONTROL lines and the digital input STATUS 
lines. Each deals with a single bit of information (0 or 1), whereas DATAI, DATAO, and 
DATIF deal with many bits in parallel (up to 16). 

The statement 

10 CALL PULSE, N 

turns on the NPN transistor switch (to ground) which is control line N. Each transistor 
switch is reset by an external input to ground on the appropriate connector. 

Control lines 1 through 8 are available on the IFC. Lines 9 through 56 are available as 
options but they must be accessed on the printed circuit boards. 

The STATUS inputs permit the user to examine a single bit at a time by calling the IOSS 
Driver STATUS. For example 

100 CALL STATUS, 2, N 

This CALL examines the input to status input number 2 and sets the variable N equal to 1 
if the input is at ground (true). If the input is high (false), the variable N will be set equal 
to 0 (zero). The program may then make a decision based on this value. 

The status inputs may also be used in an interrupt mode. However, the user must 
generate his own assembly language subroutines for this purpose (see the ADAPTS User's 
Guide). 

BASIC 7-60 



~ 

~ 
~ 

.,, 'C 

Oti' 
c 
~ 
CD 

"' ~ 
-t 

CHANNEL 3· 
:i' 

OQ 

0 ;· 
~ 
I» ELEMENT 
3 

~ 
I» 

t./) 
I» 
3 
~ 

CD' 
(') 

> .... .... 
~ 
~ 
CD 
3 
CD 

3. 
c: 
Cll 
5· 

OQ 

0 
> 

tll :::! 
)> .,, 
(/) 

() 
....... a. ...... 

T = 0 (SCAN SYNC HAS BEEN GROUNDED) 

3 

I I 

CHANNEL SELECTOR ARRAY 

M(l) = 5 
M(2) =-1 
M(3) = l 
M(4) = 3 
M(5) = -2 
M(6) = 7 

3 7 

I I 

~~) 
A(3) A(5) 

1 3 

I 

A(l) 

A(6) 

10 DIM A(lO), M(6) 

1 3 7 

I 

A(9) 

A(S) A(lO) 

20 READ M(l) I M(2) I M(3) I M(4) I M(6) 
30 DAT A 5 I - 1 , 1 , 3 I -2 I 7 

NUMBER OF VALUES 

SCAN TIME CAPTURE DELAY 

ITI 
m 
> 
V> 
c:; 



EB ASIC 

INFORMATION DISPLAY ON OSCILLOSCOPE 

A summary of the commands for operating the oscilloscope is given in table 7-12. The 
oscilloscope controls are operated by assembly language subroutines. The oscilloscope, 
Model A-620173, is modified to match the signal levels at the hardware controller. The 
controller is similar to an analog output module and, therefore, the PULSE and STATUS 
subroutines may be used to operate some of the features of the A-620173 such as the 
STORE/NON-STORE choice of modes. These will be explained later. 

Both alphanumeric characters and graphical figures (dots and lines) may be output to the 
oscilloscope. Characters are generated by a software character generator. The size of the 
characters is independently controllt:~d by the SIZE subroutine. 

All alphanumeric output, whether typed from the keyboard or printed with a PRINT 
statement, is directed either to the Teletype or to the oscilloscope by the routines TTY and 
CRT. Alphanumerics cannot be printed simultaneously on the screen and on the Teletype 
page. 

The screen is initialized for a fresh page of alphanumeric output by CTRL L (which may be 
included in a PRINT statement between quotation marks). If outputting alphanumeric 
information only, each line will be automatically positioned on the page. Character size 2 
permits 72 columns on the screen · the same as a Teletype page. When any attempt is 
made to print below the page, the software character generator rings the Teletype bell and 
waits for a go-ahead signal from the operator. The go-head signal, which is any key on the 
Teletype, causes the screen to be erased, the beam to be re-positioned to the upper left 
corner, and the information display to be resumed. 

The POS subroutine may be used to position the beam before printing characters or 
drawing a straight line. In order to use ORG, POS, POINT, and VECT the user needs to 
understand the coordinate system of the screen. With the origin set to (0,0), the screen is 
organized so that 

- 512 5 x $; 5 11 
- 400 s; y $; 3 9 9 

where X has a larger range because the screen is rectangular. Equal increments in X and 
Y cause the beam to be moved at a 45 degree angle. 

The actual X and Y coordinates may be used and thus the values are modulo 511 (- 512 
for negative values) up to the limit which can be contained in a 16-bit word length; the 
high order bits (except sign) are simply not used by the converter. Thus, for example, X = 
512 is equivalent to X = 0, and X = 513 is equivalent to X = 1. This modulus feature 
could be used to expand a graphic display by using variables as outer bounds, which 
might be assigned values as large as ± 32767. However, this technique might cause the 
routine to" waste" time by writing off-screen. 

BASIC 7-62 



Command 

CALL CRT 

CALL TTY 

CALL INIT 

CALL ERASE 

CALL SIZE,S 

CALL SCALE,SF 

CALL ZOOM,ZF 

Table 7-12. EBASIC Oscilloscope Commands 

Function 

Switches alphanumeric output stream to the CRT 

Switches alphanumeric output stream to the Teletype 

Initializes the CRT by erasing the screen; positioning 
the beam to (0,0); and resetting the origin to (0,0), the 
character size to (2), the scale factor to (100), and the 
zoom factor to (100). 

Erases the screen, leaves the current X, Y position un
changed, and places the CRT in the ready-to-write mode 

EBASIC 

Sets the size of alphanumeric characters according to (S) 
which may be a formula, but must evaluate to a positive 
integer between 1 and 80. Once set, SIZE remains unchanged 
until altered by another SIZE or. ZOOM command. Initially, 
S = 2 which allows 44 lines of 72 characters each to be 
written on the screen. The ZOOM command effects SIZE as 
follows: 

(S * ZOOM factor) 
new size greatest integer 

100 

Sets the scale factor (SF) to enlarge or reduce graphic 
output only while alphanumerics simply change absolute 
position. Once set, SCALE remains unchanged until 
altered by another SCALE or ZOOM command. Initially, 
SF = 100; thus 50 reduces the graphic output by a 
factor of 2 and 200 enlarges it by a factor of 2. The 
ZOOM command affects SCALE as follows: 

(SF ~· ZOOM factor) 
new scale greatest integer 

100 

SF can be a formula, but must evaluate within the range 
- 32768 to 32767 

Sets the zoom factor (ZF) to enlarge or reduce the entire 
alpha-graphic presentation. Once set, ZOOM remains unchanged 
until altered by another ZOOM command. Initially, ZF = 100; 
thus if ZF = 50 and SF = 300, the new scale will be 150 

(continued) 

BASIC 7-63 



EB ASIC 

Table 7-12. EBASIC Oscilloscope Commands (continued) 

Command 

CALL ORG,X,Y,M 

CALL POS,X,Y,M 
CALL POINT, X 

Y,M 

CALL VECT, X, 
Y,M 

RETURN key 

CTRL,FORM key 

LINE FEED key 

BASIC 7-64 

Function 

and the alpha1-graphic output will be enlarged by a factor of 
1.5. (ZF) can be a formula, but must evaluate within the 
range -32768 to 32767. 

Stores bias values for X and Y coordinates permitting translation 
of the origin of the coordinate system to any desired point. 
Once set, the bias values remain unchanged until altered by 
another ORG command. Initial bias values are both zero. (X) and 
(Y) can be formulas, but must evaluate within the range 
- 32768 to 32767. (M) must evaluate to zero (specifying 
absolute) or one (relative) 

POS positions the beam; POINT positions the beam and writes a 
point on the screen. Positioning to the new X- and Y
coordinates ca1n be absolute (if M = 0) or relative (if M = 1) 

Draws a straight line from the present beam position to the new 
X- and Y- coordinates absolute (if M = 0) or 
relative (if M = 1) 

Pressing the RETURN key on the Teletype keyboard (anytime after 
the CALL CRT command) positions the beam to: 

)( = -512 
Y = - unchanged 

Pressing and holding the CTRL key, then pressing the FORM key 
erases the CRT and positions the beam to: 

x -512 
y 399 

Pressing the LINE FEED key positions the beam to: 

X unchanged 
Y current Y - 10 * S 

if the new Y < -.400 the Teletype bell rings and 
pressing any key executes a CTRL,FORM 

(continued) 



Table 7-12. EBASIC Oscilloscope Commands (continued) 

Command Function 

Auxillary Commands for Oscilloscope 

CALL PULSE,59 Pulse the Z-axis, i.e., write a dot 

CALL PULSE,GO Erase the screen. Does not change the beam position; does 
not check for read-to-write condition 

CALL STATUS, 
57, (TF) 

Sense the erase interval. If complete, set (TF) 
set (TF) = O 

CALL PULSE, 61 Select non-store mode 

CALL PULSE, 62 Select store mode 

1; else 

CALL PULSE, 63 Select write-thru mode. Effective only if store mode 

CALL PULSE, 64 Select non-write-thru mode 

EBASIC 

Alphanumeric characters are printed in a 5 x 7 dot matrix which is expanded by the 
argument given in the CALL to the subroutine SIZE. 

In order to lengthen the life of the oscilloscope tube, the display unit has a view/hold 
feature which causes the stored display to decrease in intensity approximately 60 seconds 
after either of the following: 

a. the VIEW button on the front panel has been pressed; or 

b. output to the screen has ceased. 

The unit may be returned to the view mode by pressing the VIEW button or by writing any 
information on or off screen. If the user wishes to override the normal return to hold mode 
after 60 seconds, then he may position the beam near the edge of the screen and 
repetitively operate line 59 with the command 

CALL PULSE, 59 

Several other auxiliary commands may be useful in programming. The NON-STORE and 
WRITE-THRU modes are of particular interest. While in NON-STORE mode, the 
oscilloscope screen will not store information; however, previous information written. in 
STORE mode is retained, although not visible. Therefore, the user may write on the screen 
in STORE mode and then switch back and forth between NON-STORE and STORE modes. 
This will cause the stored display to blink on and off in an attention-getting manner. 

The WRITE-THRU mode may be used while the unit is in STORE mode to display the beam 
position without storing the information on the screen. The following example shows how 
to position the beam at the center of the screen and display an "x" without storing it on 
the screen. The "x" will be very fuzzy, however, because the electron beam is very 

BASIC 7-65 



EBASIC 

diffused in WRITE-THRU mode to decrease its intensity below that required for storage. 
This decreased intensity makes the beam difficult to see, especially if it is not properly 
adjusted (see the ADAPTS User's Guide). 

10 REM PROGRAM '.ro DISPLAY X IN WRITE-THRU MODE 
20 CALL PULSE, t5 3 
30 CALL CRT 
40 CALL SIZE, 2 
50 CALL PCS, 0, 0, 0 
60 PRINT 'X' 
70 CALL STATUS, 1 , A 
75 IF A•O THEN so 
80 CALL PULSE, 64 
90 CALL TTY 

100 END 

In the example above, the program will terminate normally when STATUS line 1 is 
grounded. Otherwise the " x" will be repetitively written in the center of the screen in 
WRITE-THRU mode. 

The programmer may wish to erase the screen without changing the beam position. He 
may do this by using the command 

CALL PULSE, 60 

However, the screen will not be checked for ERASE INTERVAL true after erase, as it would 
be if the CALL ERASE command WE!re used. STATUS line 57 may be checked to determine 
when the ERASE INTERVAL is over (true condition) so that the program may not write 
until the screen is in a ready-to-write state. For example: 

10 CALL PULSE, 60 
20 CALL STATUS, 57, A 
25 IF A•O THEN 20 
30 REM CONTINUE WITH PROG IF STATUS TRUE 

The example on the following page summarizes many of the principles of operating the 
oscilloscope display. When RUN is typed, the program will type 

GIVE FREQUENCY IN kHz? 

Typical values might be in range 1·10. The program will display a sine wave of this 
frequency on the oscilloscope screen. Then it will ask the user for scale factors in X and Y. 
A scale factor larger than 100 percent will decrease the number of actual units per inch; 
this will seemingly decrease frequency (X scale factor) and increase the amplitude (Y scale 
factor). 

Note from line 290 that the display will always extend from the extreme left of the screen 
to the extreme right no matter wlhat scale factor is selected. The amplitude in the Y 

BASIC 7-66 



EBASIC 

direction is ± 200 for a scale factor of 100 percent and will vary according to the input 
accepted by line 140. 

Function FNA(X) is used to convert the X axis to a time scale which, for a scale factor of 
100, runs from - 0.5 millisecond to + 0.5 millisecond. Therefore, the frequency in kHz will 
be the number of actual cycles displayed on the screen (before scale factors are 
introduced). Line 230 defines a function FNB(X) which is the scale factor times the 
amplitude at 100 percent times sine (2 pi ft.). The data points are printed as small x's. 
Note that if the Y scale factor is made larg~r than 200 percent any data point which the 
program trys to print below the page will cause the display to halt, waiting for the go
ahead signal (any key) to be given before erasing the page and continuing the display. 

LIST 
10 CALL TTY 
20 PRINT 
30 PRINT 'GIVE FREQUENCY IN KHZ'; 
40 INPUT F 
50 READ X1,X2,Y1,Y2,P 
60 READ S1,S2 
70 DATA -512, 511, 200,-200 
8 0 DATA 2 0 0 I 100 I 100 
90 GOSUB 250 

100 PRINT 'GIVE SCALE FACTORS IN % ' 
110 PRINT 'X SCALE FACTOR•'; 
120 INPUT S1 
130 PRINT 'y SCALE FACTOR•'; 
140 INPUT S2 
150 GOSUB 250 
160 PRINT 'TYPE 1 TO REPEAT, 0 TO END PROGRAM'; 
170 INPUT R 
180 IF R• 0 THEN 240 
190 RESTORE 
200 IF R• 1 THEN 10 
210 IF R# 1 THEN 160 
220 DEFFN A(X)•( 1oo•x/s1 )/( (X2-Xl)* 1000) 
230 DEFFN B(X)•(S2*Y1/ 100)*SIN( 6.27999* 1000*F*FNA(X)) 
240 END 
250 REM SUBROUTINE 
260 CALL ERASE 
270 CALL SIZE, 
280 CALL CRT 
290 FOR X•X1 TO X2 STEP (X2-Xl)/P 
300 CALL POS,X,FNB(X), 0 
310 PRINT 'X' 
330 CALL SIZE, 2 
340 CALL TTY 
350 RETURN 

BASIC 7-67 



EB ASIC 

INFORMATION DISPLAY OIN KEYBOARD OSCILLOSCOPE DISPLAY 

This unit, Model A-930, is used in lieu of the A-620173. It is a free-standing, pedestal 
mounted, keyboard-CRT unit. In an ADAPTS system, its function is almost identical to 
that of the A-620/73-Teletype keyboard combination (see preceding section). 

The commands given in table 7-1~~ apply identically to keyboard CRT with the following 
exceptions: 

a. With the ORIGIN set to (0,0) the screen is organized so that: 

05;XS:1023 
O~YS:780 

b. The following command puts the A-930 on-line: 

CALL KBCRT • Switches alphanumeric output stream to 
the keyboard-CRT 

c. Just one character size is available on the A-930. The SIZE command controls the 
" interline" spacing: 

CALL SIZE,S • Sets the interline spacing to (11 points) 

d. RETURN KEY 

e. CTRL, FORM keys 

BASIC 7-68 

* (S), where (S) may be a formula, but must 
evaluate to a positive integer between 1 and 80. 
Once set, SIZE remains unchanged until altered 
by another SIZE or ZOOM command. Initially, 
S = 2, which allows 36 lines of 74 characters 
each to be written on the screen. The ZOOM 
command affects SIZE as follows: 

new size = greatest integer (S * ZOOM factor) 
( 100 ) 

• Pressing the RETURN key on the CRT keyboard 
(anytime after the CALL KBCRT command) positions 
the beam to: 

x 0 
Y unchanged 

• Pressing the holding the CTRL key, then 
pressing the FORM key erases the CRT and 
positions the beam to: 

x 
y 

0 
780 (continued) 



f. LINE FEED key • Pressing the LINE FEED key positions the 
beam to: 

X = unchanged 

Y = current Y - 11 (• S 

If the new Y< 0 the speaker tone sounds 
continuously until any key is pressed which 
executes a CTRL,FORM 

g. The auxiliary commands listed in table 7-12 do not apply to the A-930. 

INFORMATION OUTPUT ON DIGITAL X·Y PLOTTER 

EBASIC 

A summary of the commands for operating the plotter is given in table 7-13. Note the 
similarity between these commands and those for the oscilloscope display units. This 
similarity allows the same EBASIC program to output alphagraphic information to the CRT 
or the plotter. Plotter commands use paramenters which may or may not be used by the 
CRT. Some parameters are also optional for the plotter. Nevertheless the plotter and CRT 
software packages each recognize their own valid parameters and function accordingly. 

Command 

CALL PLOTTR 

CALL TTY 

CALL INIT 

CALL ERASE 

CALL SIZE,S,OR 

Table 7-13. EBASIC Digital X-Y Plotter Commands 

Function 

Switches alphanumeric output stream to the plotter 

Switches alphanumeric output stream to the Teletype 

Initializes the plotter by raising the pen and returning 
it to the load point (lower left corner); the origin is 
reset to (0,0), the character size to (2), the scale 
factors to (100), and the zoom factor to (100). This 
establishes an X and Y reference zero point and locates 
the pen point so that a new chart may be loaded without 
interference. 

Raises the pen and returns it to the load point (lower 
left corner of the page). 

Sets the size (S) and orientation (OR) of alphanumeric 
characters. (S) may be a formula, but must evaluate to 
a positive integer between 1 and 16. Initially, (S) = 2 
which produces characters about 1 /8 inch high. (OR) is 
optional; if not used it is set to zero; (OR) may be a 

(continued) 

BASiC 7-69 



EBASIC 

Table 7-13. EBASIC Digital X-Y Plotter Commands (continued) 

Command 

CALL SCALE, 
SF1,SF2 

Function 

formula, but must evaluate to a positive integer between 
O and 3 as follows: 

if 0, upright 
1, turned right 
2, upside down 
3, turned left 

The ZOOM command affects SIZE as follows: 

new size = greatest integer (S * ZOOM factor) 
( 100 ) 

Sets the scale factors (SFl for X) and (SF2 for Y) to enlarge 
or reduce graphic output only while alphanumerics simply 
change absolute position. Once set, SCALE remains unchanged 
until altered by another SCALE or ZOOM command. Initially, 
both (SFl) and (SF2) equal 100; (SF2) is optional and if 
omitted, is set to SFl. The ZOOM command effects SCALE as 
follows: 

new scale greatest 

integer (SFl ,SF2 * ZOOM fact2!:2 
( 100 ) 

(SFl) and (SF2) can be formulas, but must evaluate within 
the range - 32768 to 32767. 

CALL ZOOM, ZF Sets the zoom factor (ZF) to enlarge or reduce the entire alpha
graphic presentation. Once set, ZOOM remains unchanged until 
altered by another ZOOM command. Initially, ZF = 100; it can 
be a formula, but must evaluate within the range - 32768 to 
32767. . 

CALL ORG,X,Y,M Stores bias values for X and Y coordinates permitting trans· 
lation of the origin of the coordinate system to any desired 
point. Once set, the bias values remain unchanged until 
altered by another ORG command. Initial bias values are both 
zero. (X) and (Y) can be formulas, but must evaluate within 
the range - 32768 to 32767. (M) must evaluate to zero 
(specifying absolute) or one (relative). 

CALL POS,X,Y,M POS raises th1:1 pen and repositions it to X,Y; 
(continued) 

BASIC 7·70 



EBASIC 

Table 7-13. EBASIC Digital X-Y Plotter Commands (continued) 

Command Function 

CALL POINT,X, 
Y,M 

POINT raises the pen, repositions it to X,Y, and then lowers 
it momentarily to make a small dot on the page. Repositioning 
is to the new X- and Y- coordinates absolute (if 
M = 0) or relative (if M = 1). 

CALL VECT,X, 
Y,M 

Draws a straight line from the present pen position to the 
new X- and Y- coordinates absolute (if M = 0) 
or relative (if M = 1). 

CTRL, FORM keys Pressing and holding the CTRL key on the Teletype, then 
pressing the FORM key raises the pen and returns it to 
the load point (lower left corner). 

RETURN and 
LINE FEED 
keys 

Pressing these keys on the Teletype affects the beam position 
of CRTs, but are ignored for the plotter. 

UTILITY SUBROUTINES 

The RENUMB subroutine permits the user to renumber EBASIC program statements. The 
command format is: 

CALL RENUMB, line number, increment 

which renumbers the entire current, in-core EBASIC program. The first statement of the 
renumbered program is labeled (line number) and each succeeding statement is labeled 
(previous line number) + (increment). In addition, line numbers referenced in all EBASIC 
statements (except CALL arguments, and REM statements) are automatically adjusted to 
match the new numbers. Line numbers must be in the range zero to 9999. Note the use of 
the RENUMB command in the following example: 

LIST 
LET A • 2 

11 GOTO 100 
12 PRINT 'ERROR IF MESSAGE TYPED' 
50 IF A • 1 THEN 124 
60 STOP 

100 CALL STATUS, 1, R 
110 IF R • 0 THEN 100 
122 GOTO 50 
124 END 

(continued) 

BASIC 7·71 



EB ASIC 

CALL RENUMB,10,5 
LIST 

10 LET A • 2 
15 GOTO 35 
20 PRINT 'ERROR IF MESSAGE TYPED' 
25 IF A - 1 THEN 50 
30 STOP 
35 CALL STATUS,1,R 
40 IF R - 0 THEN 35 
45 GOTO 25 
50 END 

BASIC 7-72 



Report Program Generator IV (RPG IV) 

RPG i 



RPG ii 



SECTION 1 

INTRODUCTION 

TABLE OF CONTENTS 

STRUCTURE OF RPG IV PROGRAMS .............................................................................. 1-2 

STATEMENTS ..................................................................................................................... 1-3 
Data-Defining Statements ................................................................................................. 1-3 
Procedural Statements ...................................................................................................... 1-4 

ELEMENTS OF RPG IV STATEMENTS ............................................................................. 1-5 
Statement Numbers .......................................................................................................... 1-5 
Names ................................................................................................................................. 1-5 
Conditions ........................................................................................................................... 1-7 
lndicators ............................................................................................................................ 1-7 
Constants ............................................................................................................................ 1-8 
Literals ................................................................................................................................ 1-8 
Expressions ......................................................................................................................... 1-9 
Comment Lines ................................................................................................................ 1-10 

SAMPLE PROGRAMS ....................................................................................................... 1-11 

SECTION 2 

SYSTEM CONCEPTS 

HARDWARE ....................................................................................................................... 2-1 

SOFTWARE ........................................................................................................................ 2-1 

SECTION 3 

RPG IV STATEMENTS 

DATA-DEFINING STATEMENTS ....................................................................................... 3-1 
RECORD Statement .......................................................................................................... 3-1 
Record Field Statement .................................................................................................... 3.3 
TABLE Statement. ............................................................................................................. 3-9 
Table Field Statement .................................................................................................... 3-10 

RPG iii 



PROCEDURAL STATEMENTS ........................................................................................... 3-11 
PROCEDURE Statement ................................................................................................... 3· 12 
MOVE Statement .............................................................................................................. 3-12 
MOVEZ Statement ............................................................................................................ 3-13 
POST Statement ............................................................................................................... 3~13 
COLLECT Statement ......................................................................................................... 3-14 
ADD Statement ................................................................................................................. 3-14 
COMPUTE Statement ....................................................................................................... 3-15 
GO TO Statement ............................................................................................................. 3-16 
Indexed GO TO Statement ............................................................................................... 3-16 
PERFORM Statement ........................................................................................................ 3-16 
RETURN Statement ......................................................................................................... 3-17 
SET Statement .................................................................................................................. 3· 18 
ENTER Statement ............................................................................................................. 3-18 
DELETE Statement ........................................................................................................... 3· 19 
LOOKUP Statement .......................................................................................................... 3-20 
CALL Statement ................................................................................................................ 3-20 
READ CARD Statement .................................................................................................... 3-21 
PRINT Statement ............................................................................................................. 3-22 
PUNCH Statement ........................................................................................................... 3-23 
STOP Statement ............................................................................................................... 3-24 
END Statement ................................................................................................................. 3-24 
MOS 1/0 Calls ................................................................................................................ 3-25 
EXIT to MOS ................................................................................................................... 3-27 
VORTEX RPG IV ................................................................................................................ 3-29 

SECTION 4 

OPERATING PROCEDURES 

COMPILING AN RPG IV PROGRAM .................................................................................. 4-1 
Deck Preparation ................................................................................................................ 4· l 
Hardware Operation ............................................................................................................ 4.5 
Compilation Errors .............................................................................................................. 4-6 

LOADING AND EXECUTING AN RPG IV PROGRAM ....................................................... 4-9 
Stand-Alone Version Deck .................................................................................................. 4-9 
MOS Version Deck ............................................................................................................. 4-1 O 
VORTEX Version Deck ....................................................................................................... 4-11 
Loading Errors .................................................................................................................... 4-12 
Execution (Runtime) Errors ............................................................................................... 4-13 

SECTION 5 

SAMPLE RPG IV PROGRAM 

RPG iv 



APPENDIX A 

INDICATOR CHART 

APPENDIX B 

COLLATING SEQUENCE AND CHARACTER REPRESENTATION 

APPENDIX C 

COMPILATION ERROR MESSAGES 

APPENDIX D 

CARD BOOTSTRAP LOADER 

APPENDIX E 

CALL STATEMENT SUBROUTINE USAGE 

RPG v 



SECTION 1.· INTRODUCTION 

The RPG (Report Program Generator) IV language is an advanced version of the widely 
used RPG commercial and general data-processing systems. RPG IV permits the concise 
coding of powerful programs in a ~imple and efficient manner. Thus, users with 
backgrounds other than data processing can use RPG IV problem-solving techniques 
without extensive training or practice. 

RPG IV improves on basic RPG in that it incorporates many automatic features and 
powerful procedural statements. RPG IV is particularly adapted to processing data for the 
output of reports, but has many other applications as well. 

This manual is divided into five sections. 

Section 1 introduces RPG IV by explaining its basic features and illustrating them with a 
simple example. 

Section 2 gives system concepts on hardware and software. 

Section 3 details the RPG IV language. It explains the types of statements and their 
coding, and gives the format and use of each type of statement in the language. 

Section 4 explains the use of the hardware in running RPG IV programs. 

Section 5 gives an advanced sample program. This program illustrates uses of the 
instructional material given in previous chapters. 

This manual is written for the user, who may or may not have programming experience, 
and explains the use of RPG IV so that nonprogrammers can apply the language to 
problem-solving. No special training or experience is required,· except for section 4, which 
is written for the computer operator. However, this chapter is an explanation of how to run 
completed programs on the computer and does not impair the ability of the 
nonprogrammer or nonoperator to write the programs according to the rules given in the 
other chapters. 

RPG 1-1 



introduction 

STRUCTURE OF RPG IV PROGRAMS 

RPG IV programs comprise two sequences of statements. First, there is a sequence of 
data-defining statements that defines the structures and formats of the data to be 
processed. This is followed by a sequence of procedural statements that processes the 
data through the structures defined in the first sequence. This processing yields the 
output in the desired form. Figure 1-1 shows the general layout of a typical program in 
RPG IV. 

RECORD Statement 
Record field Statement 
Record Field Statement 
Record Field Statement 

RECORD Statement 
Record Field Statement 

RECORD Statement 
Record Field Statement 

Record Field Statement 

TABLE Statement 
Table Field Statement 

TABLE Statement 
Table Field Statement 

Table Field Statement 

PROCEDURE 

END 

Procedural Statement 
Procedural Statement 
Procedural Statement 

Procedural Statement 

DATA-DEFINING STATEMENTS 

PROCEDURAL STATEMENTS 

NOTE: Comment I ines 
can be placed anywhere 

in the program 

VTll-1009A Figure 1-1. Layout of a Typical RPG IV Program 

RPG 1-2 



introduction 

These two sequences of statements handle tables and records, update files, produce 
reports, and can deal with any other business-oriented applications. Section 3 details the 
data-defining and procedural statements, and gives their individual formats and uses. 

In addition to the program itself, there is the data to be processed. This is a separate 
sequence of input that has the format{s) specified b~ the data-defining statements of the 
program. 

Simple RPG IV programs with explanatio.ns are provided later in this section. 

STATEMENTS 

A statement, whether it is a data-defining or a procedural statement, is one line of 
information written in the RPG IV language. It consists oi 80 characters corresponding to 
the 80 columns of a standard punched card. 

RPG IV ignores columns 70 through 80. Use these columns for statement identification, 
comments, or programming aids as desired. 

NOTE 

The data used with the program can be in any column, following the 
specifications of the data-defining statements. 

The statement itself is in columns 1 through 69. It comprises elements defined in the 
following section arranged in a format that depends on the individual statement (section 
3). Regardless of the elements contained in a statement or the format requirements 
within a statement, each statement is freeform, i.e., there are no requirements for 
spacing, indentation, or column use within columns 1 through 69. You need no special 
coding forms. 

DATA-DEFINING STATEMENTS 

As indicated in figure 1-1, there are four types of data-defining statements that provide a 
definition of the data structures to be used by the program. These data structures are 
records and tables. Records hold intermediate results and data being input from or 
output to files. Tables contain related, repetitive data items. 

Both records and tables are divided into fields. Fields are the elementary variables of any 
RPG IV program. The computations performed by the program, its logic, and its final 
output are based on the manipulation of fields and their contents. 

RPG 1-3 



introduction 

A record statement identifies a record and specifies the conditions under which this 
record is manipulated. 

A record field statement identifies and defines all of the fields in the record. All record 
field statements pertaining to a given record immediatelv follow the record statement for 
that record. 

A table statement identifies a table and specifies its size. 

A table field statement identifies and defines all of the fields in the entries in a table. All 
table field statements pertaining to a given table immediately follow the table statement 
for that table. Each entry in a given table has the same field structure as any other entry 
in that table. 

The formats, elements, and uses of data-defining statements are explained in section 3. 

PROCEDURAL STATEMENTS 

As indicated in figure 1-1, procedural statements follow the data-defining statements. 
They direct the execution of the program as it processes the data previously defined by the 
data-defining statements. 

The PROCEDURE statement is the 'first procedural statement. It is not executable, but 
merely serves as the divider between the data-defining statements and the procedural 
statements. It terminates the processing of data definitions and begins the processing of 
procedural manipulations. This statement has only one form: the single word 
PROCEDURE. 

Subsequent procedural statements manipulate the data to obtain the desired output. 
Their formats, elements, and uses ar•e explained in section 3. 

Procedural statements are executed in the order of their appearance in the program 
unless the specified condition is not met, or unless the program is directed to another 
statement by a GO TO or PERFORM statement (section 3). 

The END statement is the last procedural statement. It is not executed, but merely serves 
as a signal that the program is finished. This statement has only one form: the single 
word END. It is the last statement in the program. 

RPG 1-4 



introduction 

ELEMENTS OF RPG IV STATEMENTS 

RPG IV statements contain combinations of the following elements arranged in formats 
given in section 3: 

a. Statement numbers 

b. Names 

c. Conditions 

d. Indicators 

e. Constants 

f. Literals 

g. Expressions 

h. Comments 

The elements are defined in this section and their uses illustrated in the sample program 
(section 3) in giving the format of each RPG IV statement, exhaustively explains the 
application of these elements in the statements. 

STATEMENT NUMBERS 

A statement number from 1 to 9999 can begin any procedural statement. It identifies the 
statement so that the program has access to it as required (e.g., in program loops, jumps, 
and conditional processing). Statements that do not require other than sequential access 
need not be numbered. 

NAMES 

A name identifies data or a subroutine referenced by the program. It comprises one to six 
alphanumeric characters (numbers and letters), the first of which is alphabetic. No blanks 
are allowed. 

Examples: 

A 
X15 
FIELD3 
J7U5 

RPG 1-5 



introduction 

A record name identifies an area of memory that provides space for the characters 
comprising the record. A record name is assigned by a RECORD statement (section 3). 

A table name identifies an area of memory that provides space for a series of data entries, 
i.e., a table. All entries in a given table have identical field assignments. A table name is 
assigned by a TABLE statement (section 3). 

A field name identifies a contiguous set of character positions in a table entry or record. It 
is assigned by a FIELD statement (section 3). 

An implied field name identifies a field not named in a FIELD statement. The appearance 
of an implied field name in a procedural statement causes assignment of a memory area 
to it. This area is large enough to hold any character string or number entered. 

A subroutine name identifies a special procedure outside the program. This procedure 
(subroutine) performs one of many special functions. 

The above types of names conform to the format given at the beginning of this subsection. 
In addition, there are qualified and subscripted names that take modified formats. 

A qualified name identifies a field and its record or table so that it is not confused with a 
like-named field in another record or table. A qualified name consists of a record or table 
name, a period, and a field name. No blanks are allowed. 

Examples: 

UPDATE.HOURS 
OUTPUT.HOURS 
C45Y.Y7 
J289RR.Y7 

A subscripted name identifies a table entry. It consists of a table name followed by a 
computational expression (see EXPR·ESSIONS) in parentheses. No blanks are allowed. The 
integral portion of the result of 1he computation is the number of the table entry 
referenced. 

Examples: 

ACCNT(INDEX) 
OUTPUT.NAME(3) 
VALUE7(X+3) 
NORTH.Y3(X•2.53) 

Note: Up to 1023 names (explicit and implied) are allowed. 

RPG 1-6 



introduction 

CONDITIONS 

A condition can be imposed ·on any procedural statement by placing the condition in 
parentheses in front of the statement. Such a statement is executed only if the condition 
is met when the statement comes up for execution. 

Example: 

(TIME•10) MOVE INPUT.JOB,OUTPUT.JOB 

is a MOVE statement (section 3) that moves the contents of the field JOB in record INPUT 
to the same field in record OUTPUT only if TIME has the value 10 when the program is 
ready to execute this instruction. Time is defined in the program prior to this statement. 

If the statement is numbered, the condition follows the number. 

Example: 

100 (TIME•10) MOVE INPUT.JOB,OUTPUT.JOB 

INDICATORS 

An indicator is a program switch that can be on or off. By program switch we mean that 
the program itself, not part of the computer hardware, turns the switch on or off. You can 
thus use these switches to control the operations performed by your program, and specify 
the conditions under which these controls are activated. For instance, you can specify that 
certain statements be executed if, and only if, certain indicators are on or off. 

RPG IV has three types of indicator: general, control break, and special. The indicators 
and their uses are given in appendix A for later referencing convenience. Refer to this 
appendix as you study this section. 

A general indicator is turned on or off by a general procedural statement (section 3 ). 
There are 99 general indicators, specified in coding by the symbols # 1 through # 99. 
Used in procedural statements, they specify conditions to be met for the execution of any 
part of the program. For example: 

(#2) ENTER INPUT,TABLEA 

enters INPUT in TABLEA only if general indicator # 2 is on; and 

(#1 AND NOT #65) ENTER INPUT,TABLEA 

enters INPUT in TABLEA only if general indicator # 1 is on and general indicator # 65 is 
off (the conditions under which these indicators are on or off will have previously been 
specified by your general procedural statements). All general indicators are off until you 
write a general procedural statement that turns them on. Of course, you can turn them off 
again with other procedural statements. 

RPG 1-7 



introduction 

A control break indicator is used in the direct updating of a record control field and as a 
condition for statement execution. There are ten levels of control break: #Cl through 
# ClO. the uses of these indicators are explained in section 3. 

A special indicator is used like a general indicator except that the conditions are implicit 
in the indicator itself and are not otherwise specified. A special indicator is turned on or 
off by a general procedural statement, or by one of the explicit procedural statements SET 
ON, SET OFF, or SET conditional (s•~ction 3). For example: 

(#") ENTER INPUT,TABLEA 

enters INPUT in TABLEA only if the previous statement was executed. One frequent use of 
#" is to repeat long or complicated conditions for successive statements. 

NOTE 

All special indicators except :t~ OV are off until a statement that turns them on 
is executed. However, because #OV is normally used to begin a new report 
page, it is initially on. 

CONSTANTS 
A constant is a positive or negative number used by the program. It can contain up to 14 
significant decimal digits before, and nine after, the decimal point. For integer constants, 
no decimal point is required. No blanks are allowed. 

Examples: 

375.125 
100 
.0333333 
12345678901234.123456789 
-123 

LITERALS 
A literal is a string of alphanumeric characters (on one line) used by the program. A literal 
is enclosed within apostrophes. Blanks are allowed in literals. 

NOTE 

If an apostrophe is to be part of a literal, use two consecutive apostrophes. 

Examples: 

'THIS IS A LITERAL' 
'DON' 'T' 
'$350.00' 

RPG 1-8 



introduction 

EXPRESSIONS 

An expression in RPG IV is one of three types: computational, relational, or conditional. 

A computational expression is a combination of constants and/or numeric fields with the 
arithmetic operators + (addition), - (subtraction), * (multiplication), and I (division). In 
a computational expression, operations within parentheses are performed first, and 
multiplication and division are performed before addition and subtraction. Within these 
levels, operations are performed from left to right. After nine digits to the right of the 
decimal place in the result of the computation, there is rounding for multiplication and 
division, and truncation for addition and subtraction. 

Examples: 

A+B*C 

multiplies B by C and adds A; 

(X*Y)+(U*V) 

multiplies X by Y and U by V, and adds the results; 

-VAL1(J)/37.S 

divides VALl(J) by 37.5 and negates the result; and 

-(A*(B+C+D+E)) 

multiplies A by the sum of B, C, D, and E, and negates the result. Numeric fields in a 
computational expression can contain editing characters and embedded blanks without 
affecting the arithmetic interpretation since only the digits, sign, and decimal point are 
significant. Thus, a field with two implied decimal places could contain either 00002575 or 
$**25.75 and be interpreted as 25.75 in the computation. 

A relational expression compares two computational expressions, or two alphanumeric 
fields or literals, for a specific relational condition. The two expressions, fields, or literals 
are separated by one or two of the relational operators<, = , and>, as follows: 

< Less than 
> Greater than 

Equal to 

< - or •< Not greater than (less than 
or equal to) 

> -
or •> Not less then (greater than 

or equal to) 
<> or >< Not equal to (less than 

or greater than) 

RPG 1-9 



introduction 

If the relation is true, the condition is met. If not, the condition is not met. 

Examples: 

FIELDA<•FIELDB 

states that the condition is met when FIELDA is less than or equal to FIELDS; 

A*B>10 

states that the condition is met when A*B is greater than 10; and 

A1(INDEX) ><LIMIT 

states that the condition is met when Al(INDEX) is not equal to LIMIT. Note that a 
constant or implied numeric field cannot be compared with an alphanumeric field or 
literal. 

A conditional expression combines indicators and/or relational expressions with the 
logical operators AND, OR, and NOT to form a logical condition. In conditional 
expressions, operations within parentheses are performed first, and NOTing is performed 
before ANDing, which is performed before ORing. Within these levels, operations are 
performed from left to right. NOT can follow another logical operator. At least one blank 
follows each logical operator if the next character of the statement is a letter or digit. 

Examples: 

#1 AND NOT #2 

states that the condition is met only if indicator # 1 is on and indicator # 2 is off; 

NOT A>B OR #OV 

states that the condition is met only if A is not greater than B or if the page overflow 
indicator # OV is on. 

COMMENT LINES 

A comment line improves the format of the listing or documents the program. It appears 
in the listing but neither acts nor is acted upon. A comment line is either entirely blank or 
has an asterisk as the first nonblank character. Blanks are allowed. 

Examples: 

*REMARKS CAN OFTEN CLARIFY A PROGRAM 
*THIS IS A COMMENT $85+N 

RPG 1-10 



introduction 

SAMPLE PROGRAMS 

This section shows a flowchart (figure 1-2), an RPG IV program (figure 1-3), the data to be 
processed by the sample program (figure 1-4), and the resulting report (figure 1-5). It 
would serve little purpose here to give a detailed description of the total operational 
sequence involved in this data processing, since this sample is intended to serve as a 
reference guide while reading the material in sections 2 and 3, and to show how the 
program, data, and results are related. 

Notice that the first data-defining statements are a group of literals under the record 
named HEAD. The first procedural statement reads a card. If it is the first control break 
(#Fon), the output control fields are initialized by the move statement. If this card would 
cause page overflow on printing, the printer goes to the top of the next page, increments 
the page NO, and prints the heading HEAD (the overflow indicator # OV is also on at the 
beginning of a program since it is assumed that the first line of output will be at the top of 
the page). Thus, the first printer action, PRINT if # OV is on, skips to the top of the next 
page ($Cl), prints HEAD, and skips a line ($Al). Note that the record named HEAD is 
printed as is, with DEPARTMENT in character positions 16 through 25. ACCOUNT 
NUMBER in 29 through 42, EMPLOYEE in 47 through 54, HOURS in 59 through 63, PAGE 
in 72 through 75, and the page number (i.e., the value of NO) in 77 and 78 as specified in 
the data-defining statements under the RECORD HEAD card. 

Now that the heading is printed, the program considers the card already read. Since the 
READ CARD procedural statement specifies the record named INPUT, the data on the 
card are placed into the record INPUT according to the format given by the data-defining 
statements of that record. Thus, the record field DEPT comprises character positions 1 
through 3 of the record, EMPNO 4 through 9, ACCT 10 through 24, and HOURS 75 
through 80. The designation 80. l specifies that the record field HOURS has one place to 
the right of an implied decimal point. Examination of the first data card shows that the 
data are in compliance with the specifications of the record named INPUT. Thus, lOA in 
card columns 1 through 3 is the department number DEPT, 210356 in card columns 4 
through 9 is the employee number EMPNO, etc. Upon printing, the positions of these 
fields shift to those in the record named OUTPUT so that the department number is 
printed in character positions 20 through 22, etc. The symbols #Cl, # C2, and # C3 are 
control break indicators that in this case specify that an employee number be printed for 
every entry, but that account and department numbers be printed only for the first 
applicable entry. 

Further details of the procedure will become apparent on further study and the reading of 
sections 2 and 3. 

RPG 1-11 



introduction 

VTl2-0J59 

RPG 1-12 

START # 10 

ACCUMULATE 
EMPLOYEE 
HOURS 

INITIALIZE 
PRINTING 
flELDS 

INCREMENT 
P1\GE 
NUMBER 

ADD EMPLOYEE 
HOURS TO AC
COUNT SUBTOT 

ADD ACCOUNT 
SUBTOTAL TO 
DEP~RTMENT 

TOTAL 

STOP 

figure 1-2. flowchart for the Sample RPG IV Program 

UPDATE 
PRINTING 
FIELDS 



VTII-10138 

VTII-JOUA 

VARIAN RPG IV SOURCE LISTING 

* 
* 
* 

SAMPLE RPG IV PROGRAM 

RECORD liEAD 
( 16, 25) 'DEPARTMENT' 
( 2 9 , 4 2 ) I ACCOUNT NUMBER I 

10 

(47,54) 'EMPLOYEE' 
(59,63) 'HOURS' 
(72,75) 'PAGE' 
N0(77, 78 ,0) Z 

RECORD INPUT 
DEPT(1,3) #C3 
EMPNO ( 4 , 9 ) # C 1 
ACCT(10,24) #C2 
HOURS ( 7 5 , 8 0 . 1 ) 

RECORD OUTPUT 
DEPT(20,22) B,P#C3 
ACCT(29,41) B,P#C2 
EMPN0(48,53) P#C1 
EHOURS(58,63.1) B,Z,D 

RECORD SUBTOT 
AHOURS(66,71.1) B,Z,D 

RECORD TOTAL 
DHOURS ( 7 3, 7 8. 1 ) B, Z, D 

PROCEDURE 
READ CARD INPUT 

( #F) 
( #") 
( #") 
(#OV) 
( #") 
( #C 1) 
( #") 

MOVE INPUT.DEPT,OUTPUT.DEPT 
INPUT.ACCT,OUTPUT.ACCT 
INPUT.EMPNO,OUTPUT.EMPNO 

COMPUTE NO•N0+1 

( #") 
( #C2) 
( #") 
(#CJ) 
(#LC) 

PRINT $C1,HEAD,$A1 
ADD EHOURS,AHOURS 
PRINT OUTPUT 
POST INPUT,OUTPUT 
ADD AHOURS,DHOURS 
PRINT SUBTOT 
PRINT TOTAL 
STOP 'END OF REPORT' 
ADD HOURS, EHOURS 
GO TO 10 
END 

Figure 1-3. Sample RPG IV Program 

10A210356ALPHA-29107 
10A210356ALPHA-29107 
10A350017ALPHA-29107 
10A350017ALPHA-29107 
10A151179BETA-35 
10A161711BETA-35 
10A290238BETA-35 
10A750192BETA-35 
25B019372HOUSE-1997 
25B019372HOUSE-1997 
25B019372HOUSE-1997 
25B317911HOUSE-1997 
25B607712HOUSE-1997 

1200 
800 
392 

1500 
800 
800 
800 
800 
505 
405 

50 
1500 
1200 

Figure 1-4. Data for the Sample RPG IV Program 

introduction 

RPG 1-13 



introduction 

DEPARTMENT ACCOUNT NUMBER EMPLOYEE HOURS PAGE 

10A ALPHA-29107 210356 200.0 
350017 189.2 

389.2 
BETA-35 151179 80.0 

161711 80.0 
290238 80.0 
750192 80.0 

320.0 
709.2 

258 HOUSE-1997 019372 96.0 
317911 150.0 
607712 120.0 

366.0 
366.0 

END OF REPORT 
Jt'Tll-1015 

Figure 1-5. Final Report from Sample RPG IV Program 

Four types of RPG IV coding forms provide convenient documentation and organization for 
programs. 

RPG 1·14 · 



SECTION 2 ·SYSTEM CONCEPTS 

HARDWARE 
The Varian 731620 RPG IV System can operate in one of three environments: as a 
stand-alone system, under the master operating system (MOS), or under the VORTEX 
system. 

The stand-alone version is a card-oriented system designed for a minimum hardware 
configuration consisting of a Varian computer-with 4,096 words (4K) or more of memory, a 
card reader (620-25), a card punch (620-27), and a line printer (620-77). 

The MOS version of RPG IV operates on any standard MOS configuration with 12K or more 
of memory and utilizes the l/0-device-independence inherent in MOS. The minimum MOS 
to operate RPG IV would be a 12K computer, a magnetic tape unit, and a Teletype. 
Expanded configurations are supported and include multiple magnetic tape units, card 
devices, line printers, and rotating memory devices. 

The VORTEX version of RPG IV operates on any standard VORTEX configuration with a 
background partition size of at least 6K. It is also device-independent. 

For additional information on the hardware system, refer to the Varian documentation on 
the 620 and 73 computers and the individual peripherals. Section 4 explains how RPG IV 
programs are complied and run in the different environments. 

SOFTWARE 
You provide two pieces of software to produce reports on the Varian RPG IV system: 

a. You write a program according to the directions in section 3. This program comprises 
two parts: data-defining statements to specify the forms that the data to be 
processed will take, and procedure statements to specify how the data in the defined 
forms will be processed. 

b. You supply data according to the specifications given in the data-defining portion of 
your RPG IV program. 

The software supplied with the Varian RPG IV System processes the data you have supplied 
according to the specifications of the program you have written. 

The basic software component of the system is the RPG IV two-part compiler. This 
component compiles your program and yields an object deck. The object deck, the RPG 
loader, and the RPG runtime support program process your data. The use of these 
software components is explained in section 4. All except the object deck are supplied with 
the Varian RPG IV System. (The object deck, of course, is the output of the compilation of 
your program by the supplied RPG IV two-part compiler.) 

RPG 2-1 



SECTION 3 ·RPG IV.STATEMENTS 

As explained in section 1, there are two general types of statement in RPG IV. This section 
gives the specifications for data-defining statements and procedural statements. 

In the descriptions of the statement formats, boldface type designates required items and 
italic type designates optional items. Items in capital letters are coded just as written. 
Items in lower-case letters represent variables, constants, values, etc. 

DATA-DEFINING STATEMENTS 

Data-defining statements are the first statements in an RPG IV program. They provide a 
definition of the data structures (records and talbles) to be used by the program and 
processed according to the procedural statements. 

The data-defining statements are divided into record statements, record field statements, 
table statements, and table field statements. 

A record statement identifies a record and specifies the condition under which this record 
is manipulated. It is followed by the record field statements pertaining to the fields of this 
record, identifying and defining the fields. A table statement identifies a table and 
specifies its size. It is followed by the table field .statements pertaining to the fields of the 
entries in this table, identifying and defining them. 

RECORD STATEMENT 

A record statement identifies a program record and its area in memory. It contains 
identifiers that specify the selection criteria for data to be input to the record by a READ 
CARD procedural statement and an indicator that is turned on when data are input to the 
record and turned off when it is not. The format of a record statement is 

RECORD name (identifier,identifier, ... )indicator 

where name identifies the record and its area in memory, identifier is a record selection 
code, and indicator is a symbol for an indicator that is turned on when data are accepted 
and input into the record or off when the data are rejected. 

RPG 3-1 



statements 

For example, the record statement 

RECORD GAIN (80C1)#17 

identifies the record named GAIN, specifies that a READ CARD statement can enter data 
in this record only when column 80 of the data card contains a one, and turns indicator 
# 17 on if data are accepted or o-ff if data are rejected. 

If the record statement contains no selection criterion (identifier), any READ CARD 
statement that references this record will input data to the record. 

Identifier 

The identifier in a record stateme!nt is a record selection code that specifies the criteria for 
the input of data to this record by a read card statement. If the criteria specified by the 
identifier are met, the data from the card are input to the specified record and the 
indicator designated in the RECORD statement is turned on. Identifiers are enclosed in 
parentheses. 

An identifier has one of the following formats: 

pCx pDx pZx pNCx pNDx pNZx 

where C, D, and Z specify that the selection is based on the entire character (C), the digit 
(0-9 punches) portion (D), or thi:l zone (11-12 punches) portion (Z); p is a number from 
one to 80 specifying the card column used for comparison; x is a character punched in 
that column; and N (NOT) specifies that the comparison must fail for data to be accepted 
into the record. 

For example, the identifier 1C3 specifies that the character in column 1 of the data card 
must be a three for data to be accepted into the record. Identifier SONZA specifies that for 
data to be accepted into the record, the character in column 80 of the data card cannot 
have the zone bits of the character A (i.e., since A has a 12-punch as a zone bit, the 
character in column 80 must have a different zone bit configuration than a 12-punch). 

Multiple Identifiers 

Record statements can contain multiple identifiers to specify ANDed or ORed conditions 
for the acceptance of data into the record. 

A sequence of identifiers separated by commas and included within one set of 
parentheses ANDs the selection criteria of the individual identifiers. For example, the 
sequence 

( 1SCX,20NZ-)#79 

specifies that for acceptance of data into the record, there is an X in column 15 and there 
cannot be the zone bits of the minus sign in column 20. The indicator is given at the 
conclusion of the identifier sequence. 

RPG 3-2 



statements 

A sequence of identifiers in separate subsequences, separated by commas and indicator 
symbols, ORs the selection criteria of the individual identifiers. For example, the sequence 

(80C1)#17,(80C2)#27 

specifies that for acceptance of data into the record, .column 80 contains a one or a two. 
The sequence 

(22D$)#40,(54CE)#40 

Specifies that for acceptance of data into the record, column 22 contains the numeric bits 
of the $ (i.e., a 3-8 punch) or column 54 contains an E. An indicator is given after each 
identifier. 

These specifications can be combined. For example, the sequence 

(1Z-)#1,(1NZ-,2C )#2 

specifies that for acceptance of data into the record, column 1 contains the zone bits of 
the minus sign, or if column 1 does not contain the zone bits of the minus sign and 
column 2 is blank. 

RECORD FIELD STATEMENTS 

All record field statements for a given record directly follow the record statement. They 
define all fields in the record. The fields can appear in any order and can overlap. 

The record field statement for an alphanumeric field has the format 

field (first,last),parameter,parameter ... 

where field is the name (if any) of the field, first is the number of the first character 
position in the field, last is the number of the last character position in the field, and 
parameter is one of the parameters discussed in a later subsection. 

Statement-identifying names and logical operators (e.g., RECORD, MOVE, NOT) cannot be 
used as record field names. 

If more than one parameter is required, enter additional parameters, separated by 
commas, following the first parameter. Parameters can appear in any order. 

The record field statement for a numeric field has the format 

field (first, last.decimal), parameter, parameter, ... 

where the definitions are as above except that last is followed by a decimal point and 
decimal, ·which specifies the number of digits to the right of the implied decimal point in 

RPG 3·3 



statements 

the field. It is present for every numeric field, even if the value is zero. If the field contains 
an actual decimal point, its position overrides the specification in the record field 
statement. 

An example of a record field statement for an alphanumeric field is 

(16,25), 'DEPARTMENT' 

which places the literal DEPARTMENT in character positions 16 through 25 of the record 
to which the record field statement applies. 

An example of a record field statement for a numeric field is 

EHOURS (59,64.1) 

which places data having one placie to the right of the decimal point in the field EHOURS. 
This field occupies character positions 59 through 64 of the record to which the record 
field statement applies. 

Negative Numbers 

Three methods of expressing negative numbers are recognized by RPG: minus sign, credit 
symbol, and minus overpunch. 

MINUS SIGN (-) 

A number may have an appended minus sign to express a negative value. Space in the 
field definition statement must be made for the minus sign. The sign may appear 
anywhere within the field, but must be the last character excluding blanks. 

CREDIT SYMBOL 

A number may have an appended credit symbol to express a negative value. Space in the 
field definition statement must be made for the credit symbol. This symbol may appear 
anywhere within the field, but must be the last non-blank character. 

Ml NUS OVERPUNCH 

A number may have a minus overpunch to express a negative value. The numeral which is 
overpunched with a minus must be the last number in the field and be right-justified. 

NOTE 

Since a zero with a negative overpunch is undefined (11-0), the character uparrow t (12-
7-8) is used to denote a negative number ending in zero. This is applicable to the MOS 
and VORTEX versions only. 

RPG 3-4 



statements 

The following table lists the graphic representation for overpunched digits. 

digit graphic 

0 t 

1 J 
2 K 
3 L 
4 M 
5 N 
6 0 
7 p 

8 Q 
9 R 

Parameters 

The following parameters can be used with record field statements to define more closely 
the format of the data. Parameters can appear in any order. Each parameter is preceded 
by a blank or comma. 

BLANK (8 PARAMETER) 

The B parameter consists of the letter B. It indicates that the field is to be cleared 
(blanked) after the record is output with a PRINT or PUNCH statement. An example of a 
record field statement containing this parameter is 

ACCNT (10,19),B 

CONDITIONAL POSTING (P PARAMETER) 

The P parameter consists of the letter P followed by an indicator that is on for conditional 
posting. If the indicator is off when a POST or COLLECT operation would normally modify 
this field, no modification occurs. An example of a record field statement containing this 
parameter is 

ACCNT (10,19),P#C1 

EDITING PARAMETERS 

An editing parameter consists of one of the letters or symbols listed below. It edits a 
numeric field according to the corresponding explanation. More than one editing 

RPG 3-5 



statements 

parameter can be used in a record field statement, but each must be separated by blanks 
or commas. 

H Half -round the low-order digit. 

Z Suppress leading zeros. 

D Insert actual decimal point. 

C Insert commas. 

$ Insert$ before first digit. 

* Replace leading zeros with asterisks. 
Allow one position to the right for a minus sign. 

CR Allow two positions to the right for the credit sign (CR). 

Editing parameters do not apply to alphanumeric fields. Examples of record field 
statements containing editing parameters are 

EHOURS (59,64.1),D 
EHOURS (59,64.1),B,Z,D 
BAL (35,44.2),$,•,C,D,CR 

AUDITING PARAMETER 

The auditing parameter consists of any combination of the letters A, N, and S followed 
(optionally) by any combination of the letters R, L, and J; followed (obligatory) by an 
indicator symbol. The auditing parameter checks the validity and positioning of characters 
in a field. 

The first set of letters indicates the characters permitted by the audit: 

A permits alphabetic characters 

N permits numerals 

S permits special characters 

These can be combined. For instance, AN permits alphabetic characters and digits, but no 
special characters. The presence of a nonpermitted character causes the audit to fail. 

The second set of letters, if used, indicates the allowed positions of the permitted 
characters: 

R right-justified (rightmost character nonblank) 

L left-justified (leftmost character non blank) 

J all characters juxtaposed (no embedded blanks) 

RPG 3·6 



statements 

If none of these letters appears in the auditing parameter, all positions are permitted for 
characters and blanks. 

The indicator following the letters is turned on if the audit passes and off if the audit fails. 
For example, the auditing parameter NRJ # 20 turns indicator # 20 on only if the 
rightmost characters are digits and there are no nonnumeric characters or embedded 
blanks (leading blanks are allowed). 

Special case: The letter J alone with an indicator symbol causes an audit for an all
blank field. 

Examples of record field statements containing auditing parameters are: 

NAME (21,30),AL,#40 
ZAP ( 1 , 6 9 ) , J # 1 
NUMBER (1,10),N#99 
CLOSED (11,27),ANSLJ#J 

CONTROL PARAMETER 

The control parameter consists of one of the control break indicators #Cl through 
# ClO. A record field statement containing a control parameter defines a control field. 

Whenever there is a direct updating (next subsection) of a control field, there is a check 
for a control break. A control break occurs when there is a direct updating of a control 
field that changes the contents of that field. When such a change takes place, the 
corresponding control break indicator and all lower-numbered control break indicators are 
turned on. 

However, if the contents of the control field are unchanged by the direct updating, the 
corresponding control break indicator only is turned off. The lower-numbered control 
break indicators remain unchanged from their previous states. 

The first time that there is a direct updating of a control field, the indicator # F, rather 
than a control break indicator, is turned on. Any subsequent updating turns indicator # F 
off and the corresponding control break indicator(s) on. 

when a READ CARD statement that references a record with a control field encounters the 
last data card (which has I* in columns 1 and 2), a control break for that field occurs. 

NOTE 

Data placed in one of a set of overlapping fields does not constitute a direct 
updating of the other fields. Such other fields are thus not checked for a 
control break even though their contents can be changed by the new data. 

RPG 3-7 



statements 

SEQUENCE PARAMETER 

The sequence parameter consists of one of the characters >, =, or < followed by an 
indicator symbol. It specifies that the field is to be checked for sequence during a direct 
updating (next subsection). The specified indicator is turned on if the new contents of the 
field are greater than, equal to, or less than, respectively, its previous contents. All fields 
are initialized to blank (lowest value of the collating sequence) unless explicitly set as a 
literal field. 

For example, the sequence parameter > # 50 specifies that indicator # 50 is turned on 
when a direct updating of the field increases the value of its contents. If the direct 
updating does not change the contents of the field, or decreases them, indicator # 50 is 
turned off. 

NOTE 

Data placed in one of a set of overlapping fields does not constitute a direct 
updating of the other fields. Such other fields are thus not checked for 
sequence even though their ccintents can be changed by the new data. 

LITERAL PARAMETER 

The literal parameter consists of a literal used to initialize a field. Positions not initialized 
by the literal are cleared (i.e., contain blanks). 

Examples: 

(5,17),'TOTAL HOURS•' 
(30,40), 'TOTAL COST•' 

Direct Updating of Record fields 

A direct updating of a record field oiccurs whenever: 

a. A READ CARD procedural stat1~ment (see procedural statement section) causes data to 
be input to any part of a record containing the field. 

b. Data are placed directly in the field by a MOVE, MOVEZ, POST, COLLECT, or ADD 
procedural statement. 

When a direct updating of a field has occurred, the auditing, editing, control-break
checking, and/or sequence-checking specified in the record field statement is performed. 

The direct updating is numeric whein a numeric field or computation is placed directly in a 
numeric field. Editing, when specifil~d. occurs only in numeric direct updating. 

RPG 3-8 



statements 

All other types of direct updating, including reading a record, are alphanumeric. Auditing, 
when specified, occurs only in alphanumeric direct updating. 

Checking for control breaks and sequencing, when specified, occur in both types of direct 
updating. Comparisons are algebraic for numeric direct updating and for changes to 
numeric fields caused by a READ CARD statement being executed. Other comparisons are 
alphanumeric, following the collating sequence given in appendix B. 

NOTE 

Data placed in one of a set of overlapping fields does not constitute a direct 
updating of the other fields. Such other fields are thus not checked even 
though their contents can be changed by the new data. 

TABLE STATEMENT 

A table statement identifies a table and specifies its size, i.e., the maximum number of 
entries it will accommodate. The entries in a table all have the same field format as 
defined by the table field statements (next subsection) that follow the table statement. 
The format of a table statement is 

TABLE name (size) overflow 

where name is the name of the table, size is that maximum number of entries in the table, 
and overflow is a general table overflow indicator ( # 1 through # 99). 

The length of each entry in the table is equal to the minimum space required for all of the 
table fields as specified by the table field statements. 

When overflow is used, the general table overflow indicator is turned on when the table is 
referenced using an index value of less than one or greater than size. 

Reference to a table entry is made by subscripting the table name. The subscript is a 
computational expression (section 1) enclosed in parentheses following the table name. 
The integer portion of the result of the computation specifies the entry referenced, e.g., 
one for the first entry, four for the fourth entry, etc. When a table name is used without a 
subscript, the implied subscript is used as a reference. The implied subscript references 
the last entry in that table found by a LOOKUP statement or input by an ENTER 
statement (see procedural statement section). For example, TABX(J/2) references the (J/ 
2)th entry in the table TABX, but TABX alone references the last entry looked up or 
entered. 

RPG 3-9 



statements 

The effect that the procedural statements ENTER, DELETE, and LOOKUP have on tables is 
explained under the referenced sections, and depends on the type of table involved. Here 
are two types of table: 

a. A sequential table is specified by designating, in a table field statement, one of the 
fields in each entry of the table as the key field. The entries in the table are placed 
in order according to the ascending values of the key field. Any entry is liable to 
manipulation. 

b. A last-in-first-out (LIFO) tablEi is specified by not designating a key field. The entries in 
the table are placed in order of their manipulation, i.e., the last entry determines the 
next so that the changes to the table are at the upper end of the entry sequence. 
(The current highest entry aiddress is normally set by the last ENTER or DELETE 
statement affecting this table, but any reference to the table changes the current 
highest entry address to the value of the subscript in the reference when it is higher 
than the then-current highest entry address in the table.) 

For example, the table statement 

TABLE TABLEA (100~#17 

specifies a table of 100 entries of the format indicated by the following table field 
statements and that indicator # 17 is the table overflow indicator. The table statement 
itself does not specify the type of table. This is done by the presence or absence of a key 
field in one of the table field statements. If a key field is present in one of the table field 
statements, it is a sequential table. If no table field statement contains a key field, it is a 
LIFO (last-in-first-out) table. 

TABLE FIELD STATEMENT 

All table field statements for a given table directly follow the table statement. They define 
the fields for the entries in the table. The fields can appear in any order and can overlap. 
However, all entries in a table have the same field format. 

The table field statement for an alphanumeric field has the format 

field (first, last), post, KEY 

where field is the name of the field, first is the number of the first character position in 
the field, last is the number of the last character position in the field, post is the letter P 
plus a general indicator used for conditional posting like the P parameter of a record field 
statement and KEY specifies that the table is sequential and that this is the key field in 
the table. 

KEY in a table field statement indicates the key field of a sequential table. The table field 
statement containing KEY is the field used for searching by procedural statements. KEY 

RPG 3-10 



statements 

can be used for only one field per table. If KEY is not present in any table field statement 
for a given table, it is a LIFO (last-in-first-out) table. 

The table field statement for a numeric field has the format 

field (first, last.decimal), post, KEY 

where the definitions are as above except that last is followed by a decimal point and 
decimal, which specifies the number of digits to the right of the implied decimal point in 
the field. It is present for every numeric field, even if the value is zero. If the field contains 
an actual decimal point, its position overrides the specification in the table field 
statement. 

An example of a table field statement for an alphanumeric field is 

ACCNT (1,10),KEY 

which specifies that the field ACCNT occupies character positions one through ten in each 
entry in the table, and that ACCNT is the key field for this table. 

An example of a table field statement for a numeric field is 

AMOUNT (11,17.2),P#32 

which specifies that the field AMOUNT occupies character positions 11 through 17 in each 
entry in the table, and that there are two digits to the right of the implied decimal point in 
the field. Indicator # 32 is the conditional posting indicator. This field is not a key field. 

PROCEDURAL STATEMENTS 

Procedural statements follow the data-defining statements. They direct the execution of 
the program as it processes the data previously defined by the data-defining statements. 

The PROCEDURE statement is the first procedural statement and comprises the single 
word PROCEDURE. It serves as the divider between the data-defining statements and the 
procedural statements. 

Subsequent procedural statements manipulate the data to obtain the desired output. They 
have the general form 

statement number (condition) VERB direction 

where the optional condition specifies the condition(s) under which the statement is to be 
executed, VERB specifies the action to be taken, and direction specifies the object(s) of 
the verb. If no condition is specified, the statement is executed unconditionally. The 
formats, elements, and uses of individual procedural statements are explained in the 

RPG 3-11 



statements 

following subsections. Any procedural statement can begin with an optional statement 
number. 

The END statement is the last procedural statement. It indicates the last input to the RPG 
IV language processor. 

If the verb of a procedural statement is to be repeated in subsequent statements, it can 
be replaced by the ditto mark("). 

Example: 

(#3 OR #44) MOVE C,D 
( # 3 OR # 4 4 ) ' A, B 

The ditto mark cannot be used for repetition of directions. 

The #" indicator can be used for repetition of a condition. 

Example: 

(#3 OR #44) MOVE C,D 
(#')'A, B 
(#')COMPUTE X • J+TOTAL 

PROCEDURE STATEMENT 

This statement is always the first procedural statement. Thus it directly follows the last 
data-defining statement and senres as a divider between the two types of statement. 
PROCEDURE terminates the processing of data definitions and begins the processing of 
procedural manipulations. This statement has only one form: 

PROCEDURE 

MOVE STATEMENT 

This statement moves a literal, a constant, or the contents of one field to another field or 
'fields. It has the format 

(condition) MOVE from,to,to, ... 

where from is the literal or constant to be moved, or the name of a field whose contents 
are to be moved; and to is the name of the field to receive the moved item. The movement 
can be made to additional fields by entering the names of all such fields, separated by 
commas, in the MOVE statement after the first to. 

RPG 3·12 



statements 

A numeric movement occurs when the from-field contains a constant or the name of a 
numeric field, and the to-field is a numeric or implied field. A numeric movement moves 
only numeric information, re-editing and rescaling it to the format of the to-field. 

An alphanumeric movement occurs in all other cases. However, constants or implied 
numeric fields cannot be moved to explicit alphanumeric fields. An alphanumeric 
movement moves the characters one by one, left to right. Movement stops when the to
field is full. If the from-field is shorter than the to-field, the to-field is filled out with blanks 
after all characters have been moved from the from-field. 

Examples: 

MOVE 'TITLE' ,FIELD1,FIELD2 
(TIME•10) MOVE IN.JOB,OUT.JOB 

MOVE INVAL,OUTVAL 

MOVEZ STATEMENT 

This statement moves only the zone bits of the characters in a literal or field to the zone 
bits of corresponding characters in another field or fields. It has the format 

(condition) MOVEZ from,to,to, ... 

where from is the literal or field whose zone bits are to be moved, and to is the name of 
the field to receive the moved zone bits on corresponding characters. The movement can 
be made to additional fields by entering the names of all such fields, separated by 
commas, in the MOVEZ statement after the first to. 

The MOVEZ statement does not apply to numeric movements. It operates as an 
alphanumeric movement under a MOVE statement except that only the zone bits of the 
characters are moved. (Zone bits are those corresponding to the 11- and 12-punches on 
punched card input.) 

Examples: 

(#1 OR X•S) MOVEZ 'A' ,XYZ 
MOVEZ NEWSUM,CODE1,CODE4 

POST STATEMENT 

This statement posts the contents of fields in one record or table entry to like-named fields 
in other records or entries. It has the format 

(condition) POST from,to,to, ... 

where from is the name of the record or entry from which the posting is made, and to is 
the name of a record or entry to which the posting is made. The posting can be made to 

RPG 3-13 



statements 

additional records or entries by entering the names of all such records or entries, 
separated by commas, in the POST statement after the first to. Posting obliterates the 
original contents of the to-fields, and replaces them with the contents of the from-field. 

The field moves as under a MOVE statement except when the field in the to-record or to
entry has a P parameter that is off. 

Examples: 

(#CJ) 
( #") 

POST INPUT, OUTPUT 
POST INPUT, OUTPUT,TOTAL 
POST BOOKS(2*X),CURRENT 

COLLECT STATEMENT 

This statement adds the contents of fields in one record or table entry to the contents of 
like-named fields in other records cir entries. It has the format 

(condition) COLLECT from,to,to ... 

where from is the name of the record or entry whose contents are to be added, and to is 
the name of a record or entry whose contents are to be augmented by the amount 
contained in from. The addition can be made to additional records or entries by entering 
the names of all such records or entries, separated by commas, in the COLLECT statement 
after the first to. The COLLECT statement functions like the POST statement except that 
the to-fields after execution contain the sum of their former contents and the contents of 
the from-field. 

The field moves as under a MOVE statement except when the field in the to-record or to
entry has a P parameter that is of1f. If any significant digits of the result are lost because 
the to-field is not l<irge enough to hold them, computational overflow indicator # Xl comes 
on. If either field is a non numeric implied field, mode error indicator # X2 comes on. 

Examples: 

( # 1 7) COLLECT DETAIL, MASTER 
COLLECT ACCT,DEPT,TOTAL 

ADD STATEMENT 

This statement adds a constant or the contents of one field to the contents of other fields. 
It has the format 

(condition) ADD from,to,to, ... 

where from is the constant or the name of the field whose contents are to be added, and 
to is the name of the field containing the value to which the addition is made. The 

RPG 3-14 



statements 

addition of from can be made to the contents of several fields by entering the names of all 
such fields, separated by commas, in the ADD statement after the first to. 

The accuracy of the result depends on the size of the to-field and the position of the 
decimal point in it. If any significant digits of the result are lost because the to-field is not 
large enough to hold them, computational overflow indicator # Xl comes on. If either field 
is a non numeric implied field, mode error indicator # x2 comes on. 

The ADD statement can be coded as a COMPUTE statement for updating a field as 
follows: 

Examples: 

( #C 1 ) 

COMPUTE to • to+from 

ADD MONTH,YTD 
ADD ACCT.AMT,DEPT.AMT 
COMPUTE ZAP •ZAP+1. 

COMPUTE STATEMENT 

This statement computes the value of an expression and places the result in the specified 
field. It has the format 

(condition) COMPUTE field expression 

where field is the name of the numeric or implied field receiving the result of the 
computation, and expression is the computational expression, constant, or numeric field 
being evaluated. 

The result is moved as for a numeric move under a MOVE statement. Editing occurs if it 
has been specified for the specified field. 

When the result is plus, zero, or minus, the corresponding indicator ( # P, # Z, or # M) is 
turned on and the other two turned off. 

Computational overflow turns the # Xl indicator on. 

Examples: 

(#C3) 
(#2 OR #5) 

COMPUTE AH • AH+EH 
COMPUTE A(I) • 10*B+(2*C) 
COMPUTE DETAIL.COST • RATE*HOURS 
COMPUTE TOTAL• X(1)+X(2) 

RPG 3-15 



statements 

GO TO STATEMENT 

This statement alters the flow c1f the program by specifying the next statement to be 
executed. It has the format 

(condition) GO TO number 

where number is the number of the next statement to be executed. 

Examples: 

(NOT #E) 
(A•B) 

GO TO 1000 
I 777 

GO TO 255 

INDEXED GO TO STATEMENT 

This statement, like the GO TO statement, alters the flow of the program by specifying the 
next statement to be executed. It has the format 

(condition) GO TO (number,number, ... )index 

where number is the number of a statement that can be the statement selected by the 
value of the index, which is the name of a numeric field. More than one statement can be 
included by entering additional statement numbers, separated by commas, after the first 
statement, but within the parenthE!ses. 

The integer portion of the contents of index selects the number of the statement to be 
executed next. Thus, if this value is one, two, three, etc., the first, second, third, etc., 
statement number, respectively, is the number of the statement to be executed next. For 
instance, in the first example below, the next statement executed is statement number 20 
if the value of the integer portion of the contents of X is two. If the index is out of range, 
the program continues in sequenc;:e· and next executes the statement following the indexed 
GO TO statement. 

Examples: 

(#3 OR NOT #7) 
( # I ) 

GO TO (10,20,JO)X 
II (101,35,972,15)INPUT.KEY 

(11,22,33,500)UU78 

PERFORM STATEMENT 

This statement, like the GO TO statement, alters the flow of the program by specifying the 
next statement to be executed. In addition, however, PERFORM stores the present address 
of the program so that when a RETURN statement (next subsection) is found in the 

RPG 3-16 



statements 

sequence following the specified statement, the program flow returns to the main 
sequence at the statement following the PERFORM statement. The format of the 
PERFORM statement is 

(condition) PERFORM number 

where number is the number of the next statement to be executed. Note that this 
statement is always used in conjunction with a RETURN statement. If the RETURN 
statement is missing, the effect of the perform statement is that of a GO TO statement. 

Examples: 

(A X B) PERFORM 95 
PERFORM 7250 

RETURN STATEMENT 

This statement returns the flow of the program to the statement following the 
corresponding PERFORM statement. The RETURN statement has the format 

(condition) RETURN 

There is at least one RETURN statement for each PERFORM statement, but only one of 
these RETURN statements is executed on each pass. The PERFORM statement places the 
return location value in a LIFO (last-in-first-out) queue. The following RETURN statement 
uses the last such location placed in the queue. Thus, subroutines can be nested using 
these two statements. 

Example (arrows show the flow of the program when the condition of the statement is 
met): 

( # 3) 

95 (#OV) 

(S•TOTAL) 

777 

(#OV) 

(#CS) 
(HOURS<8) 

PERFORM 95 
ENTER ..... 

COMPUTE ..... 

!~~~~~~-777 ~ 

~:::::····· ~ 
PRINT..... t 
RETURN 
COMPUTE ..... 

RETURN 

RPG 3-17 



statements 

SET STATEMENT 

This statement turns indicators on or off under specified conditions. It has the format 

(condition) SET value indicator.indicator, ... 

where value is the word ON, the word OFF, or a conditional expression within parentheses; 
and indicator is the symbol for an indicator. More than one indicator can be specified by 
entering their symbols, separated by commas, after the first indicator. 

If value is ON and the statement condition is met, the specified indicators are turned on. 
If value is OFF and the statement condition is met, the specified indicators are turned off. 
If value is a conditional expression that is true and the statement condition is met, the 
specified indicators are turned ON, but if the condition expression is not true, the 
specified indicators are turned OFF. In any case, if the statement condition is not met, the 
indicators are unchanged because this statement will not be executed. 

If a control break indicator is turned on or off by a SET statement, there is no change in 
the status of any other control break indicators, i.e., the lower-level control break 
indicators are unaffected by a SET statement unless they are explicitly specified therein. 

Examples: 

(#C1) SET ON #1, #2, #50 
SET (HR<S.O AND T>SOO) #26 

(#CG) SET OFF #LC 

ENTER STATEMENT 

This statement assigns space for a new entry to a table and posts data into the new entry. 
It has the format 

(condition) ENTER record,table,index 

where record is the name of the table entry or record from which the posting is made, 
table is the name of the table into which the new entry is being posted, and index is the 
name of a numeric or implied field that is set equal to the number (subscript) of the new 
entry. 

The address of the new entry depends on the type of table (see table statement 
description): 

a. In a LIFO (last-in-first-out) table, the address is one greater than that of the current 
highest entry or subscript reference value. 

(continued) 

RPG 3-18 



statements 

b. In a sequential table, the record contains a field having the same name as that of the 
table's key field. The value of this field determines where the new entry is assigned. 
When this value matches an. existing key in the table, the new entry overlays that 
position. Otherwise, all entries having higher key. values move up one position to 
make room for the new entry. 

After the address of the new entry is established, the ENTER statement posts the contents 
of record to that entry just as under a POST statement. Data can also be entered in a 
table by subscript referencing without the use of ENTER statements. 

If the new entry would cause the_ table to overflow, no posting occurs and the table 
overflow indicator (a general indicator you will have defined) is turned on. This indicator 
can be turned off only by a SET OFF statement. 

After a successful entry, the implied subscript for the table references the new entry. 

Examples: 

(#22) 
ENTER INPUT,TABLEA 
ENTER DATA,CTROL,IXSS 

DELETE STATEMENT 

This statement deletes an entry from a table. It has the format 

(condition) DELETE table(subscript),key 

where table is the name of the table from which the deletion is to be made; subscript 
(enclosed in parentheses) is the number of the entry to be deleted; and key is a field 
name, constant, or literal used to find the entry to be deleted. A key is used only for 
sequential tables in the absence of a subscript. 

When there is neither subscript nor key, the entry to be deleted is specified by the implied 
subscript, and depends on the type of table: 

a. In a LIFO table, the entry deleted is the current highest entry. Deletion reduces the 
current highest entry by one. 

b. In a sequential table, the entry deleted is the last entry entered or looked up. 

In any case, all entries above the deleted entry move down one position in the table after 
the entry is deleted. 

Examples: 

(#42 AND #43) 
DELETE TABLEA 
DELETE CTROL,MONTH 

RPG 3-19 



statements 

LOOKUP STATEMENT 

This statement determines, in a S•equential table, if there is an entry having a key field 
(section 1.4) equal to or greater than the key specified in the LOOKUP statement, and sets 
indicators according to the findings. The format of the LOOKUP statement is 

(condition) LOOKUP table,key,index 

where table is the name of the SE~quential table to be searched; key is a field name, 
constant, or literal compared with the values in the table entry key fields; and index is the 
name of an implied or numeric field that is set equal to the implied subscript found (see 
below). 

The implied subscript for the table and the (optional) index are set to reference the first 
entry having a key equal to or grE!ater than that of the one specified in the LOOKUP 
statement. If there is no such entry in the table, the implied subscript and index are set to 
reference the last entry address. 

The LOOKUP statement sets the # E, #_G, and # L indicators as follows: 

a. If a match is found between the specified key and that of a table entry, the # E (equal) 
indicator is turned on and the other two are turned off. 

b. If no match is found but there is a table entry having a key field greater than the 
specified key, the # G (greater than) indicator is turned on and the other two turned 
off. 

c. In other cases, the # L (less than) indicator is turned on and the other two turned off. 
This is always the case for empty tables. For full tables, the implied subscript is set 
to the maximum table entry plus one. 

The LOOKUP statement is not applicable to LIFO tables. 

Examples: 

LOOKUP TABLEA,INPUT.DEPT 
(#E) LOOKUP CTROL,MONTH.IND 

CALL STATEMENT 

This statement calls a DAS-coded subroutine (appendix E). It has the format 

(condition) CALL subroutine.argument, ... 

Nhere subroutine is the name of the D.AS-coded subroutine being called, and argument is 
:i constant, name of a record or table, or a nonsubscripted field. More than one argument 
:an be included by entering additional arguments, separated by commas, after the first. 

~PG 3-20 



statements 

The subroutine must be written in DAS assembler language and provides a method of 
augmenting the RPG language with special functions 

Subroutines referenced by the RPG IV CALL statement must be manually included with 
the runtime package prior to loading. Appendix E describes the detailed procedures. 

Examples: 

( * 3) 
(*I ) 

CALL FACTOR,PARM,10.3 
CALL PACK 

CALL EXIT 
Cttov> CALL SQRT,INPVAL,OUTVAL 
(#') CALL CLOCK,TIME 

I SQRT,XXX 

READ CARD STATEMENT 

This statement reads a card and inputs the data on the card to each of the specified 
records whose acceptance criteria are met. It has the format 

(condition) READ CARD name.name, ... 

where name is the name of the record to receive the data provided its acceptance criteria 
are satisfied. The data can be read into more than one record by entering additional 
record names, separated by commas, after the first name. 

After the card is read, each record specified accepts or rejects the data on the basis of its 
own selection criteria. If the data are accepted by a record, it enters the record without 
editing and truncates the right end of the card image if the record is too small to hold all 
the data. 

Control break checks, sequence checks, and auditing checks are performed as required by 
the record field statements. 

If the card read is the last data card (columns 1 and 2 con_tain /*), the card image is not 
read into the records. The #LC indicator and all control break indicators associated with 
the specified records turn on. 

Examples: 

(#25) 
( *II ) READ CARD EMPLYE 

READ CARD MAN,WOMAN,CHILD 

Under MOS, the READ CARD statement causes an alphanumeric read operation from 
logical unit 16. If unit 16 is assigned to a card reader, up to 80 characters can be input. If 
unit 16 is not assigned to a card reader, the record length is limited by the device or the 

RPG 3-21 



statements 

length defined by the RECORD (plus field) statements, whichever is less. In the stand
alone version, the limit is 80 characters. 

RPG IV data read by stand-alone and MOS versions are input and converted as EBCDIC 
(029 card) codes. 

Under MOS, if a record is read with a (0-1) punch in column one, the program is aborted 
and control returned to MOS. The only exception is if the record contains a I* in columns 
1 and 2, then the #LC indicator is set. 

Under VORTEX, the READ CARD statement causes an ASCII read operation from logical 
unit 13. If unit 13 is assigned to a card reader, up to 80 characters can be input. If unit 13 
is not assigned to a card reader, the record length is limited by the device or the length 
defined by the RECORD (plus field) statements, whichever is less. For READ CARD logical 
unit 13 cannot be a rotating memory device. 

RPG IV data read by the VORTEX version will be converted as BCD or EBCDIC (026 or 
029) card codes depending upon the mode selected by the /KPMODE directive. 

PRINT STATEMENT 

This statement performs page control functions or prints data or messages on the line 
printer. It has the format 

(condition) PRINT parameter.parameter, ... 

where parameter is one of the following and the line printer performs the function 
indicated for the parameter: 

Record Name The record is printed, the paper advanced one line, and record 
fields having a B(blank after print) parameter are cleared. If, by advanc
ing the paper, a ~ine count of 44 is reached, the # OV indicator is 
set on. Under MOS, and VORTEX the line count can be altered by 
the /FORM directive allowing the # OV indicator to be set on any line 
count. 

$An (n = 1-7) The paper advances n lines. If the bottom of the page is reached 
by the advancement of the paper, the # OV indicator comes on. If 
n is omitted or is zero, the paper advances one line. Value greater 
than 7 will causE! a compilation error. 

$Cn The paper advances to the designated line position on the page as 
(n = 1-7) determined by the vertical-format tape in the line printer. If N = 1, 

the paper advances to the top of the next page and the # OV indicator 

(continued) 

RPG 3-22 



statements 

goes off. If N = 7, the paper advances to the position determined by 
channel 7 of the tape and the # OV indicator comes on. Under 
VORTEX, the vertic<;1I format tape channel used to control the slew is one 
less than N, i.e., if N = 1, the paper is advanced to a point determined 
by channel O on the tape. 

Additional parameters can be specified in the same PRINT statement by entering the 
parameters, separated by commas, after the first parameter. 

Examples: 

(#OV) PRINT $C1,HEADER,$A1 
PRINT DETAIL 

Under MOS, the PRINT statement causes an alphanumeric write operation on logical 18. 
The record length is limited by the device or the length defined by the RECORD (plus field) 
statements, whichever is less. In the stand-alone version, the record limit is 132 
characters. 

Under VORTEX, the PRINT statement causes an ASCII write operation to logical unit 15. 
The record length is limited by the device or the length defined by the record (and field) 
statements, whichever is less. A leading space character is appended to the print line 
since the system uses the first characters as a format control, thus the output to the 
printer is shifted one column to the right. Output with PRINT statement is limited to 132 
characters, and cannot have logical unit 15 assigned to a rotating memory device. 

PUNCH STATEMENT 

This statement punches one or more cards. It has the format 

(condition) PUNCH name.name, ... 

Where name is the name of the record to be punched. More than one card can be 
punched with a single PUNCH statement by entering additional record names, separated 
by commas, after the first name. 

Examples: 

(KEY•3) PUNCH SUMMARY 
PUNCH DATA, SUMMR~ 1 H44 

Under MOS, the PUNCH statement causes an alphanumeric write operation on logical 
unit 17. The record length is limited by the device or the length defined by the RECORD 
(plus field) statements, whichever is less. In. the stand-alone versions, the record limit is 
80 characters. 

RPG 3-23 



statements 

RPG IV data punched by stand-al.one and MOS versions are converted and output as 
EBCDIC (029) card codes. 

Under VORTEX, the PUNCH statement causes an ASCII write operation to logical unit 14. 
The record length is limited by the device or the length defined by the record (plus field) 
statements, whichever is less. For F~PG PUNCH cannot have logical unit 14 as a rotating 
memory device. 

RPG IV data punched by the VORTEX version will be converted as BCD or EBCDIC (026 or 
029 keypunch) card codes depending upon the mode selected by the /KPMODE directive. 

STOP STATEMENT 

This statement stops the executic1n of the program and outputs a message to the 
computer operator. If the operator presses RUN after a STOP, the program continues 
execution with the statement following the STOP. The STOP statement has the format 

(condition) STOP message 

where message is the alphanumeric field or literal output to the computer operator. 

Examples: 

( #C 1 ) 
(#LC) 

STOP 'END OF RUN' 
STOP 'OUT OF DATA' 
STOP 

In the stand-alone version, messages are output to the line printer. Under MOS, they are 
directed to the list output (LO) device. 

Under VORTEX, the runtime execution of the STOP statement causes the program to 
execute a SUSPND call. The program may be continued by use of the RESUME command 
in OPCOM, i.e., ;RESUME, RPGRT. The STOP message is output to the LO device. 

END STATEMENT 

This statement is always the last procedural statement, and, therefore, the last statement 
in the RPG IV program. It is not executable and serves only to indicate the end of the 
program. This statement has only one form: 

END 

RPG 3-24 



statements 

MOS 1/0 CALLS 

The stand-alone version of RPG IV provides 1/0 statements for reading, punching, and 
printing. Used under MOS, these statements allow one input file and two output files. 

The MOS version of RPG IV expands this I /0 capability by providing six CALL statements 
for performing additional 1/0 operations. Through the use of these calls and proper device 
assignments (see MOS Manaual, I ASSIGN directive), the user can manipulate up to ten 
files at one time, any of which can be on such devices as magnetic tape units and disc. 

The following subsections provide detailed descriptions of each CALL statement. All 
parameters must be supplied and must be the proper type. Errors in CALL statements are 
indicated by the message: 

INVALID RPG CALL TO xxxxxx 

where xxxxxx specifies the name of the called subroutine as it appears in the CALL 
statement. The error message is logged on LO and the job is aborted. Figure 3-1 is a 
sample RPG IV program that utilizes MOS 1/0 calls. 

Read Alphanumeric Record 

CALL READ,lu,record,size,exception 

where: 

lu 
record 

size 

exception 

logical unit number (16-25) 
name of record as it appears in a 
RECORD statement 
number of characters in record (must 
be in even number, if not, the last 
character is truncated). 
name of implied field set after read 
operation: 

O = reading successful 

1 = irrecoverable reading error 

2 = end of file detected 

3 = end of device detected 

Note: If the first character read is a {!), 0-1 punch and it is not followed by an *, the 
program is aborted and cont'rol returned to MOS. 

RPG 3-25 



statements 

Write Alphanumeric Record 

CALL WRITE,lu,record,size,exception 

where: 

lu 

record 

size 

exception 

Write End of File 

logical unit number (16-25) 

name of record as it appears in a 
RECORD statement 

number of characters in record (must be 
in even number, if not, the last char
acter is truncated). 

name of impled field set after write 
operation: 

O = writing successful 

1 = irrecoverable writing error 

3 = end of device detected 

CALL WEOF,lu,exception 

where: 

lu 

exception 

Rewind Unit 

logical unit number (16-25) 

name of implied field set after end of file 
is written: 

1 = irrecoverable writing error 

3 = successful execution of WEOF 

CALL REWIND,lu,exception 

Where: 

lu logical unit number (16-25) 

exception name of implied field set after rewind: 

1 = irrecoverable error 

3 = successful rewind 

RPG 3·26 



Skip Record 

CALL SKIPR,lu,count,direction,exception 

Where: 

lu 

count 

direction 

exception 

Skip file 

logical unit number (16-25) 

number of recorqs to be skipped 

0 for forward, not 0 for backward 

name of implied field set after record(s) 
skip: 

0 = successful execution 

1 = irrecoverable error 

2 = end of file detected 

3 = end/beginning of device detected 

CALL SKIPF,lu,count,direction,exception 

Where: 

lu 

count 

direction 

exception 

EXIT TO MOS 

logical unit number (16-25) 

number of files to be skipped 

0 for forward, not O for backward 

name of implied field after file(s) skip: 

O = successful execution 

1 = irrecoverable error 

3 = end/beginning of device detected 

statements 

An RPG IV program run under MOS is terminated by a special call. It has the format: 

CALL EXIT 

and returns control to the MOS executive. 

RPG 3-27 



statements 

• • 
• 
• 
• 

• 
• 
• 
• 
1 
(EX•l) 
( #' ) 
2 
(EX•l) 
( #') 

• 
• 
• 

RPG IV PROGRAM FOR COMPARING TWO FILES ON LOGICAL UNITS 
20 AND 21, AND PRINTING MISMATCHES ON 18. ERRORS ARE LOGGED 
ON LOGICAL UNIT (LO) AND INPUT IS TERMINATED BY AN EOF . 
RECORDS ARE 100 BYTES LONG . 

RECORD FILE1 
FI ELD 1 ( 1 , 100 ) 

RECORD FILE2 
FIELD2 ( 1, 11)0) 

RECORD HEAD 
( 1, 16) 'MISMATCHES ON 21' 

RECORD MSG1 
( 1 , 1 9) 'EOF ON 2 0 BEFORE 2 1 ' 

RECORD MSG2 
( 1 , 1 9 ) ' EOF ON 2 1 BEFORE 2 0 ' 

RECORD MSG3 
( 1, 10) 'END-·OF-JOB' 

PROCEDURE 

REWIND INPUT FILES 

CALL REWIND,20,EX 
STOP 'REW ER-20' 

GO TO 
CALL REWIND,21,EX 

STOP 'REW ER-21' 
GO TO 2 

READ INPUT RECORDS 

3 CALL READ,20,FILE1,100,EX 
(EX•1 OR EX•3) STOP 'READ ER-20' 
( #') GO TO 3 
(EX•2) SET ON 11 
4 CALL READ,21,FXLE2,100,EX 
(EX•l OR EX•3) STOP 'READ ER-21' 
( #') GO TO 4 

• 
• 
• 

TEST FOR EOF CONDITIONS 

(#1 AND EX>< 2) 
( #') 
(NOT #1 AND EX•2) 
( #' ) 
(11 AND EX•2) 
CI,> 
CI' ) 
CI') 

• 

PRINT $C1,MSG1,$C1 
CALL EXIT 

PRINT $C1,MSG2,$C1 
CALL EXIT 

PRINT $C1,MSG3,$C1 
CALL REWIND,20,EX 
CALL REWIND,21,EX 
CALL EXIT 

• COMPARE RECORDS AND PRINT MISMATCHES 

• 
(FIELD1 • FIELD2) GO TO 3 
(#OV) PRINT $C1,HEAD,$A1 

RPG 3-28 

PRINT FILE2 
GO TO 3 
END 

Figure 3·1. RPG IV Program Utilizing MOS 110 Calls 



statements 

VORTEX RPG IV 

In addition to the READ CARD, PUNCH and PRINT statements, the VORTEX version of 
RPG expands this 1/0 capability by providing seven CALL statements for performing 
additional 1/0 operations. 

These additional 1/0 operations are performed on logical units 16 through 22. The 
following paragraphs provide a detailed description of the CALL statements. All 
parameters must be supplied and must be of the proper type. An error in the use of a 
CALL statement will result in an error message (see below) being posted on logical unit 
number 15 and the job being terminated. 

The seven 1/0 CALL statements are: 

CALL OPEN, u, lun, filename, key, record size, access method, mode, exception 

where: 

u 

lun 

filename 

key 

record size 

RPG unit number (16-22) 

VORTEX logical unit number 

a name of a field containing a six
character literal string which is the 
filename. 

a name of a field containing a one
character literal string which is the 
protection key for the file. 

the number of characters in the record 
(must be an even number, if not, the last 
character is truncated). 

access method = the manner in which the file is to be 
accessed; O if direct access by logical 
record, 1 if sequential access by logical 
record. 

mode the mode in which the OPEN operation is 
to be performed; 0 if open and rewind, 1 
if open and leave. (continued) 

RPG 3-29 



statements 

exception name of an implied field set to the 
following values at the completion of the 
open request O = open successful, 1 
irrecoverable error. 

CALL CLOSE, u, mode, exception 

where: 

u 

mode 

exception 

RPG unit number (16-22) 

the mode in which the CLOSE operation 
is to be performed 0 if close and leave, 1 
if close and update. 

name _of an implied field set to the 
following values at the completion of the 
close request O = close successful, 1 
irrecoverable error. 

CALL READ/WRITE, u, record name, record size, record number, exception 

RPG 3-30 

where: 

u RPG unit number (16-22) 

record name name of record as it appears in RECORD 
statement. 

record size number of characters in record (must be 
an even number, if not, the last 
character is truncated). 

record number = ~he name of an implied field which 
contains the record number to be read 
or written in the direct access mode; if 
the file is being accessed in the 
sequential mode, the record number 
should be zero. 

(continued) 



exception = 

CALL WEOF, u, exception 

where: 

u = 

exception = 

CALL REWIND, u, exception 

where: 

u = 

exception = 

name of an implied field set to the 
following values at the completion of the 
READ or WRITE request; 
0 = READiWRITE successful 
1 = irrecoverable error 
2 = End of file detected 
3 = End of device detected 

RPG unit number (16-22) 

name of an implied field set to the 
following values at the completion of the 
WEOF request; O = WEOF successful, 1 
= irrecoverable error. 

RPG unit number (16-22) 

name of an implied field set to the 
following values at the completion of the 
REWIND request; 0 rewind 
successful, 1 = irrecoverable error. 

CALL SKIPR, u, record count, direction, exception 

where: 

u = 

record count = 

direction = 

exception = 

RPG unit number (16-22) 

number of records to be skipped 

0 if forward; non-zero if backward 

name of an implied field set to the 
following values at the completion of the 
SKIP RECORD request; 
0 = SKIP RECORD successful 
1 = irrecoverable error 
2 = End of file detected 
3 = End of device detected 

statements 

RPG 3-31 



statements 

The OPEN call links the RPG unit number with the VORTEX logical unit number (so that 
multiple files within an RMD partition may be accessed). 

The CLOSE call unlinks the RPG unit number and the VORTEX logical unit number. 

If a prior OPEN does not bind the RPG unit with a VORTEX logical unit number, it is 
assumed on subsequent READ, WRITE, etc. that the RPG unit number equals the VORTEX 
logical unit number. 

Input/output initiated by calls do not invoke any of the automatic record checking 
features of RPG, i.e., control break, audit, etc. 

The VORTEX versions of RPG also has the CALL EXIT subroutine to return control to the 
executive. RPG programs, upon completion, must return control to the executive through 
the CALL EXIT statement. 

Figure 3-2 is a sample RPG IV program that utilizes VORTEX IOC calls. 

* * RPG IV PROGRAM FOR COMPARING TWO FILES ON RPG UNITS 
* 20 AND 21, AND PRINTING MISMATCHES ON UNIT 15. ERRORS ARE 
* LOGGED ON (LO) AND INPUT IS TERMINATED BY AN EOF. 
* RECORDS ARE 100 BYTES LONG. 

* 

• 

RECORD FILEN1 
NAME1 ( 1,6) 'FILE1 I 

KEY 1 ( 7 I 7 ) I I 

RECORD FILEN2 
NAME2 ( 1 I 6) I FILE2 I 

KEY2 ( 7 I 7) I I 

RECORD FILE1 
FIELD1 ( 1, 100) 

RECORD FILE2 
FIELD2 (1,100) 

RECORD HEAD 
( 1, 16) 'MISMATCHES ON 21' 

RECORD MSG1 
( 1 I 19) I EOF ON 2 0 BEFORE 2 1 I 

RECORD MSG2 
( 1 I 19) I EOF ON 2 1 BEFORE 2 0 I 

RECORD MSG3 
( 1 I 10) I END OF JOB I 

PROCEDURE 
MOVE 0, REC 

Figure 3-2. RPG IV Program Using VORTEX 1/0 Calls 

RPG 3-32 



* * OPEN/REWIND FILES 

* CALL OPEN,20,180,NAME1,KEY1,100,1,0,EXCP 
(EXCP•1) STOP 'OPEN ERROR ON 20' 
(#')GO TO 5 

2 CALL OPEN,21,180,NAME2,KEY2,100,1,0,EXCP 
(EXCP•1) STOP 'OPEN ERROR ON 21' 
(#')GO TO 5 

* * READ INPUT RECORD 

* 3 CALL READ,20,FILE1,100,REC,EXCP 
(EXCP•1 OR EXCP•3) STOP 'READ ERROR ON 20' 
(#')GO TO 5 
(EXCP•2) SET ON #1 

4 CALL READ,21,FILE2,100,REC,EXCP 

* 
* 

(EXCP•1 OR EXCP•3) STOP 'READ ERROR ON 21' 
(#')GO TO 5 

* TEST FOR EOF CONDITIONS 

* 

* 

(#1 AND NOT EXCEP•2) PRINT $C1,MSG1,$C1 
(#')CALL EXIT 
(NOT #1 AND EXCP•2) PRINT $C1,MSG2,$C1 
( #' ) CALL EXIT 
(1 AND EXCP•2) PRINT $C1,MSG3,$C1 
(#')GO TO 6 

* COMPARE RECORDS AND PRINT MISMATCHES 

* 

* 

(FIELD1•FIELD2) GO TO 3 
(#OV) PRINT $C1,HEAD,$A1 
PRINT FILE2 
GO TO 3 

* CLOSE/UPDATE FILE 

* 6 CALL CLOSE,20,1,EXCP 
(EXCP•1) STOP 'CLOSE ERROR ON 20' 
CALL CLOSE,21,1,EXCP 
(EXCP•1) STOP 'CLOSE ERROR ON 21' 

5 CALL EXIT 
END 

Figure 3-2. RPG IV Program Using VORTEX 1/0 Calls (continued) 

statements 

RPG· 3-33 



SECTION 4 - OPERATING PROCEDURES 

This section explains how to run the RPG IV programs written according to the 
instructions in section 3. The program is first compiled and the resulting object 
deck then used to process the data. 

NOTE 

In this section, numbers beginning with a zero are octal and numbers 
beginning with any other digit are decimal. References to START and RESET 
refer to the V73, 620/f, and 620/f·lOO computers. References to RUN and 
SYSTEM RESET refer to the 620/L and 620/L-100 computers. Refer to the 
applicable system reference manual for descriptions of the control panel 
switches and indicators. 

COMPILING AN RPG IV PROGRAM 

The RPG IV compiler is available in three versions: stand-alone, MOS and VORTEX. The 
stand-alone version is supplied on cards as a two-part compiler; part I is for data-defining 
statements and part 11 is for procedure statements. The MOS version is an integral part of 
the standard MOS Installation System Library. The VORTEX RPG compiler may be added 
to the background library (BL) after the system is generated. 

The RPG IV compiler is a one-pass compiler that reads a source module (program), 
produces an object module (executable code), and generates a source listing. The listing 
includes diagnostic and error messages. 

DECK PREPARATION 

Deck Preparation for Compilation (Stand-Alone) 

The card deck for compilation is shown in figure 4·1 and comprises, in order: 

a. Binary card loader (three cards, supplied) 

b. RPG IV COMPILER PART I 

c. The data-defining statements of the RPG IV program (continued) 

RPG 4·1 



operating procedures 

d. The PROCEDURE statement of the RPG IV program 

e. RPG IV COMPILER PART II • 

f. The procedural statements of the RPG IV program 

g. The END statement of the i:;tPG IV program 

The binary card loader is loaded by the card bootstrap loader (appendix D). The binary 
card loader then loads the RPG IV COMPILER PART I, which then processes the data
defining statements of the program. When this is completed, the binary card loader loads 
the RPG IV COMPILER PART II, which then processes the procedural statements of the 
program. 

These processes yield a printed ~isting of the program and an object deck of the compiled 
program. 

END 

PROCEDURAL STATEMENTS 
OF THE RPG IV PROGRAM 

RPG IV COMPILER PART 2 

('•ROCEDURE 

DATA·DEFININ'G STATEMENTS 
OF THE RPG IV PROGRAM 

RPG IV COMPILER PART l 

BINARY CARD LOADER 

VTll-1010 

Figure 4-1. Deck for Compiling an RPG IV Program (Stand-Alone Version) 

RPG 4-2 



-. · .. 

operating procedures 

Deck Preparation for Compilation (MOS Version) 

The MOS RPG IV compiler reads source records from the Processor Input file (Pl), writes 
object records on the Binary Output file (BO), and lists the source program on the List 
Output file (LO). These logical units can be assigned to any valid MOS peripheral. By 
assigning it to dummy, a logical unit can be ~isabled. For example, I ASSIGN,BO =OUM 
would result in compilation with the BO suppressed. 

The compiler input is terminated by an END statement and control returns to MOS. 
Therefore, it is necessary to reload the compiler with another /ULOAD,RPGC directive if 
multiple compilations are desired. 

A sample job stream for an MOS compilation is shown in figure 4-2 and comprises, in 
order: 

a. An optional job card to identify jobs in the input stream. 

b. An optional date card (the date is printed at the top of the source program listing if one 
is supplied). 

c. An optional forms card if other than the default value for number of lines per page is 
desired. 

d. An optional assignment card if assignments other than the default peripheral 
assignments are required, or if assurance of additional assignments is desired. 

e. An unconditional load card to direct the loading of the RPG IV compiler from the system 
file. 

f. The RPG IV source program. 

g. An optional end-of-job card to separate jobs in the input stream. 

Deck Preparation for Compilation (VORTEX Version) 

The VORTEX RPG IV compiler and the VORTEX RPG IV runtime/loader execute as level O 
background programs in unprotected memory. Both the compiler and runtime/loader will 
operate in 6K of memory with limited work stack space. The stack space may be expanded 
and consequently larger RPG programs compiled and executed, by use of the VORTEX 
IM EM directive. 

The VORTEX RPG IV compiler reads source records from the Processor Input device (Pl), 
writes object records on the Binary Output device (BO), and lists the source program, and 
any diagnostic .• or error messages, on the list output device (LO). If Pl is assigned to a 
Rotating Memory Device (RMD) partition, the compiler assumes the source records are 
blocked three 40-word records per RMD 120-word physical record. However, if Pl is the 

RPG 4-3 



operating procedures 

same logical unit as the system input device (SI), and is assigned to a Rotating Memory 
Device (RMD) partition, the compiler assumes the source records are not blocked but 
consist of one source record per RMD 120-word physical record. If BO and/or LO is 
assigned to a RMD partition, tlhe output is blocked two 60-word records per RMD 120-
word physical record. 

If Pl is assigned to a card reader during compilation, the /KPMODE directive maybe used 
to indicate whether 026 or 029 keypunched cards are to be read. 

The compiler is scheduled from the background library at level by the /LOAD, RPGC 
directive. The compiler terminates when an END statement is encountered, and exits to 
the executive. Only one RPG IV program can be compiled for each load of the compiler. 

The Pl, BO and LO devices are opened and rewound at the start of compilation, and are 
closed and updated at the end of compilation. 

I ENDJOB 

h<-'GIVSOURC>---
ONLY CRITICAL SEQUENCE r ~;ROCEDURE STATElv1ENTS) 

(PROCl-:D-U-RE~~~~~~~~~~~~~---. 

I FORM, 56 

( DATE, 12/01/71 

/JOB, SAMPLE 

VTll-1519 

Figure 4-2. MOS Job Stream for Compiling an RPG IV Program 

RPG 4-4 



operating procedures 

A sample job stream for a VORTEX RPG compilation is shown in figure 4-3. 

I ENDJOB 

END 

PROCEDURE 

/LOAD, RPGC 

I ASSIGN PI°CROO, B0°CPOO, LOc LPOO 

/FORM, 44 

I JOB, SAMPLE 

VTll-1540 

Figure 4-3. VORTEX RPG IV Compilation 

HARDWARE OPERATION 

Stand-Alone Hardware Operation for RPG IV Compilation 

To compile a program in RPG IV: 

a. Place the compilation deck (figure 4-1) in the input hopper of the card reader with the 
binary card loader at the front of the deck. 

b. Turn on and ready the card reader. 

c. Turn on and ready the line printer. (continued) 

RPG 4-5 



operating procedures 

d. Turn on and ready the card punch. Ensure that there are blank cards in the hopper. If 
the visual punch station is empty, insert a card into it as follows: 

(1) Place a card in the auxiliary feed slot. 

(2) Clear all registers. 
(3) Set the instruction register to 0100131. 
(4) Set RESET (not on V73 computer). 
(5) Press STEP (for V73, 620/f, and 620/f-100 computers, ensure computer is in 

the step mode and press START). 
(6) Reset REPEAT (not on V73 computer). 

e. If it has not already been done, key in the 19-word card bootstrap loader (appendix D). 
Once done, this step can be omitted. 

f. Clear the A, B, X, and instrnction registers. 

g. Set the P register to 000130. 

h. Press RESET or SYSTEM RESET. 

i. Press RUN (for V73, 620/f, and 620/f-100 computers, ensure computer is in the run 
mode and press START). The cards should start to move through the card reader. 

If the compilation is successful, no further manual operation is required. When the END 
statement is reached, the computer stops in STEP mode with the A, 8, and X registers 
cleared and the P register set to 000130. 

Remove the object deck from the output hopper of the card punch and the program listing 
from the line printer. 

Hardware Operation for RPG IV Compilation (MOS Version) 

For procedures on operating the hardware for RPG IV compilation (MOS version), refer to 
the Varian 620 Master Operating System Reference Manual (98 A 9952 09x). 

Hardware Operation for RPG IV Compilation (VORTEX Version) 

For procedures on operating the system for RPG IV compilation (VORTEX version), refer to 
the VORTEX Reference Manual (98 A 9952 lOx). 

COMPILATION ERRORS 

Serious compilation errors and irrecoverable 1/0 errors detected by the stand-alone 
version of RPG IV halt the computer. The following subsection describes such errors as 

RPG 4-6 



operating procedures 

well as the recommended corrective action. The MOS version of RPG IV does not halt the 
computer but, instead, logs the errors and returns to the MOS executive (refer to the MOS 
reference manual for additional errors relating to 1/0, loading, etc.). Similarly, the 
VORTEX version, upon detecting a serious error, logs and error message and returns 
control to the executive. 

Language errors introduced through programming do not abort the compiler but, instead, 
produce diagnostic and error messages (see Language Errors). 

Compilation Error Halts 

Any of the following conditions stops compilation. To correct the error, use the recovery 
procedure indicated. 

Card reader malfunction: This is indicated by an instruction register value of 000007. 
To recover: 

a. Press the START button on the card reader. 

b. Press RESET or SYSTEM RESET on the computer. 

c. Press RUN on 620/L and 620/UOO computers (for V73, 620/f, and 620/f·lOO 
computers, ensure computer is in the run mode and press START). 

Card punch malfunction: This is indicated by an instruction register value of 000031. 
To recover: 

a. Add cards to the card hopper if it is empty. 

b. If the visual punch station is empty, put a blank card in the auxiliary feed slot and set 
SENSE switch 1 on the computer. 

c. Press RESET or SYSTEM RESET on the computer. 

d. Press RUN on 620/L and 620/UOO computers (for V73, 620/f, and 620/f·lOO 
computers, ensure computer is in the run mode and press START). 

END card found before the PROCEDURE card: This is indicated by an instruction 
register value of 0131 and 01 in each of the A, B, and X registers. To recover, remove the 
compilation deck, reassemble it correctly, and restart. 

Program requires more memory than available: This is indicated by an instruction 
register value of 000131 and 0177777 (i.e., - 1) in each of the A, B, and X registers. There 
is no recovery. Run the program on a system having more memory, or restructure the 
program into smaller segments. 

Excessive table size 0 This error is indicated by instruction register value of 00144. There 
is no recovery. The user should investigate alternatives for reducing his tables to an 
acceptable size for his computer memory. 

RPG 4.7 



•perating procedures 

Compilation Error Message!• (MOS Version) 

Error messages are listed followed by the cause. 

Message 

NO PROCEDURE 
CARD 

,v1EMORY FULL 

Cause 

An END card detected 
prior to a procedure 
card. 

a. Program requires 
more memory than 
is available. 

b. Table declaration 
is too large. 

Compilation Error Messages. (VORTEX Version) 

The diagnostic messages produced during compilation are the same as those described in 
the following subsection. Fatal compilation errors or irrecoverable 1/0 errors during 
compilation cause and error message (see below) to be posted to the LO device, and the 
compilation terminated. These error messages are as follows: 

RPOI, NNN 
RP02, NNN 
RP03, NNN 
RP04 

RP05 

1/0 error 
End of file error 
End of device error 
End card error (End 
card encountered 
before procedure card) 
Available memory exceeded 

Where NNN is the logical unit number on which the error occurred. 

Language Errors 

Any of the conditions tabulated in appendix C causes an error message to be print~d on 
the program listing. In addition, there is an arrow pointing to the location of the error as a 
diagnostic aid. An error message and arrow are shown as follows: 

(1,4 'l?AGE) 
SYNTAX 

Compilation continues so that the program listing is complete. Thus, all listed errors can 
be detected and corrected on one pass. 

To recover from these errors, correct the program statements containing the errors and 
recompile the program. Discard any object deck produced from a compilation containing 
errors. 

RPG 4-8 



operating procedures 

LOADING AND EXECUTING AN RPG IV PROGRAM 

STAND-ALONE VERSION DECK 

The card deck preparation for loading and executing an RPG IV program is shown in 
figure 4-4 and comprises, in order: 

a. Binary card loader (the same as for compilation) 

b. RPG IV loader 

c. The compiled object module (deck) resulting·from the compilation 

d. RPG IV runtime support 

e. Data cards as required by the program 

f. Last card (/"' in columns 1 and 2) as required by the program 

BINARY CARD LOADER 

VTll-1012 

RPG IV RUNTIME 
SUPPORT PROGRAM 

Figure 4-4. Runtime Deck for Proceeding RPG IV Data (Stand-Alone Version) 

RPG 4-9 



operating procedures 

MOS VERSION DECK 

The MOS RPG IV runtime/loader reads object records from the Binary Input file (Bl) and 
logs any errors on the List Output file (LO). A sample job stream for an MOS load and 
execution is shown in figure 4-5 am:I comprises, in order: 

a. An optional job card to identify jobs in the input stream. 

b. An optional forms card if other than the default value for number of lines per page is 
desired. 

c. An optional assignment card if assignments other than the default peripheral 
assignments are required, or 1if assurance of additional assignments is desired. 

d. An unconditional load card to direct the loading of the RPG IV runtime/loader from the 
system file. 

e. The RPG IV object program. 

f. Optional data cards as required by the program. 

g. An optional last card (I* in columns 1 and 2) indicated as required by the program. 

h. An optional end-of -job card to separate jobs in the input stream. 

, ENDJOB 

~-TA-CA-R-DS~~~~~~~~ 
ONLY CRITICAL SEQUENG ------------------r 

COMPILED OBJECT PROGRAM 

1 ULOAD, RPG RT 

1 ASSIGN, Bl=CROO, L0°LPOO, 16-CROO, 17cCPOO, 18° LPOO 

r / FORM, 20 

I JOB, SAMPLE 

VTll-1541 

Figure 4-5. MOS Job Stream for Loading and Executing an RPG IV Program 

RPG 4-10 



operating procedures 

VORTEX VERSION DECK 

The VORTEX RPG IV runtime/loader is scheduled from the background library at level O 
by the /LOAD,RPGRT directive. The runtime/loader will assume the RPG object program is 
on the Binary Input device (Bl) and will read and execute it. If the load directive contains 
the name of a program to be loaded, as in /LOAD, RPGRT, NAME the runtime/loader will 
assume the program " NAME" is in the background library and will load and execute it. A 
RPG object program may be " catalogued'r· in the background library by creating a 
directory entry and allocating file space with FMAIN, and copying the object program into 
this file with IOUTIL. 

A sample job stream for a VORTEX RPG load and execution is shown in figure 4-6. 

/ENDJOB 

/' 

COMPILED OBJtCT PROGRAM 

/LOAD, RPG RT 

/ASSIGN, Bl,CROO, LO LPOO, 13,CROO, 14° croo, 15 LPOO 

I FORM, 20 

I JOB, SAMPLE 

VTll-1542 

Figure 4-6. VORTEX Job Stream for Loading and Executing an RPG IV Program 

RPG 4-11 



operating procedures 

LOADING ERRORS 

Stand-Alone 

To operate the hardware for the stand-alone RPG IV program, follow the directions given 
for compilation, replacing the compiler card deck with the runtime deck. 

Any of the following error messagE~s can appear on the line printer output upon detection 
of the corresponding loading error. Except for the missing subroutines error, any of these 
errors causes a halt in the loading after the message is printed. 

PROG TOO BIG: This message indicates that the object deck requires more memory 
than is available in the system. There is no recovery. Run the program on a system having 
more memory, or restructure the program into smaller segments. 

INVALID OBJECT DECK: This message indicates that the loader encountered a 
directive or format not conforming to those of a normal compiler output. There is no 
recovery. Recompile the program. If the error persists, check the card punch and 
recompile. 

CHECKSUM ERROR: This message indicates that the last card read produced a 
checksum error. Back up the erroneous card and press READ to reread it. If the error 
persists, check the card punch and recompile. 

CARD SEQUENCE ERROR: This message indicates that the cards in the object deck are 
out of sequence. Correct the sequence and reload. (The eight-bit sequence field on the 
object deck cards is in rows 6 through 9 of column 1 and rows 12 through 1 of column 2, 
where row 1 of column 2 is the least significant bit.) 

PROG NOT EXECUTABLE: This message indicates that the program contains an error 
that would prevent output of the correct results. There is no recovery. Correct the program 
and recompile. 

MISSING SUBROUTINE: This message, followed by the names of the programs that are 
missing, indicates that there is a CALL statement reference to a subprogram not included 
in the runtime deck. Loading continues and the object program is executed up to the call 
to the missing program. At this point execution halts. There is no recovery. Insert the 
missing program in the program (appendix E) and recompile. 

MOS Version 

The only loading error message directly output by the RPG IV loader is MISSING 
SUBROUTINE. Its definition is identical to the stand-alone version. Additional loading 
error messages are logged by the MOS Executive as a result of faults detected by the RPG 
IV loader (see MOS Reference Manual for status and error messages of the system loader). 

RPG 4-12 



operating procedures 

oading Errors (VORTEX Version) 

he VORTEX RPG IV runtime/loader, upon detecting an error while loading an object 
rogram, will post an error message on logical unit 15 and terminate further activity, 
~turning control to the executive. These error messages are· as follows: 

RTOl, NNN 
RT02, NNN 
RT03, NNN 
RT04 
RT05 
RT06 
RT07 
RT08 

1/0 error 
End of file error 
End of device error 
Program too big 
Invalid object record 
Checksum error 
Sequence error 
Program not executable 

Yhere NNN is the logical unit number on which the error occurred. 

t'\n additional error message which may occur at load time is: 

RTlO, xxxxxx 

where xxxxxx is a missing subroutine name. After this message is posted, loading will 
continue. If an attempt is made to execute one of the missing subroutines control will be 
returned to the executive. 

EXECUTION (RUNTIME) ERRORS 

Stand-Alone 

Any of the following conditions stops execution of the object program. To correct the error, 
use the recovery procedure indicated, if one is possible. 

STOP statement encountered: This is indicated by an instruction register value of 
000001 and an operator message on the line printer. To continue execution, press START 
or RUN on the computer. 

Missing CALL subroutine: This is indicated by an instruction register value of 000002. 
There is no recovery. Insert the missing subroutine in the program deck and recompile. 

Worklist overflow: This is indicated by an instruction register value of 000003. This 
results from an overflow on an internal worklist stack during complicated arithmetical 
manipulations, etc. There is no recovery from this rare condition. Run the program on a 
system having more memory, or recode the lengthy expression into smaller 
subexpressions. 

RPG 4-13 



operating procedures 

Card reader malfunction: This is indicated by an instruction register value of 000007. 

To recover: 

a. Press the START button on the card reader. 

b. Press RESET or SYSTEM RESET on the computer. 

c. Press RUN on 620/L and 620/L-100 computers (for V73, 620/f, and 62,0/f·lOO 
computers, ensure computer is in the run mode and press START). 

Card punch malfunction: This is indicated by an instruction register value of 000031. 

To recover: 

a. Add cards to the card hopper if it is empty. 

b. If the visual punch station is empty, put a blank card in the auxiliary feed slot and set 
SENSE switch 1 on the computer. 

c. Press RESET or SYSTEM RESET on the computer. 

d. Press RUN on 620/L and 620/L-100 computers (for V73, 620/f, and 620/f-100 
computers, ensure computer is in the run mode and press START). 

MOS Version 

The RPG IV runtime program under MOS detects and outputs the two error messages 
described below. Additional faults dealing with 110 are detected by IOCS and logged 
accordingly (see MOS Reference Manual for status and error messages of 1/0 control). All 
runtime error messages are followed by the program being aborted and control returned 
to MOS. 

INVALID RPG CALL TO: This message is printed when a CALL statement contains 
invalid arguments (i.e., too few, too many, or the wrong type). 

RPG WORKLIST OVERFLOW: This message is printed when the internal worklist stack 
space is exceeded during arithmetic manipulation, etc. To correct this condition, run the 
program on a system having more memory, or recode the lengthy expression into smaller 
subexpressions. 

RPG 4-14 



operating procedures 

VORTEX Version 

The VORTEX RPG IV runtime/loader, upon detecting an error while executing an object 
program, will post an error message on logical unit 15 and terminate further activity, 
returning control to the executive. The error messages are as follows: 

RTOl, NNN 
RT02, NNN 
RT03, NNN 
RT08 
RT09 
RTl 0, xxxxxx 

1/0 error 
End of file error 
End of device error 
Program not executable 
Work list overflow 
Invalid call to subroutine 

where NNN is the logical unit number on which the error occurred. 

xxxxxx is the subroutine name. 

RTlO errors may be caused by invalid parameters in the CALL, such as invalid RPG unit, 
invalid VORTEX logical unit, access method or mode :j: 1, or by an attempt to open an 
already opened file. 

RPG 4-15 



SECTION 5 ·SAMPLE RPG IV PROGRAM 

CALENDAR PROGRAM 

This program will print a calendar for any year between 1582 (when the Gregorian 
calendar was adopted) and 4901. The year 4901 is a terminal date for the Gregorian 
calendar because by that year the astronomical year will be out of step by one day (this 
occurs approximately every 3,000 years)_. 

Note 

A year is a leap year if: 

a. It is evenly divisible by 4, but not by 100 
1900 is not; 1904 is. 

or 

b. It is evenly divisible by 400 
1900 is not; 2000 is. 

The day of the week can be calculated by use of the formula: 

DW == ([2.6*M] + DM + B + [B/4] + [C/4]-2C)MOD7 

where 

DW 

M 

DM 

B 

c 

( )MOD7 == 

Day of the week (0 == Sun., ... , 6 == Sat.) 

Month (Jan. == 11, Feb. == 12 of previous year and Mar. == 1, 
... , Dec. == 10 of current year 

Day of the month (1, ... , 31) 

Last two digits of the year 

First two digits of the year 

Remainder after dividing by 7 until ( ) is less than 7 

The months are printed in four rows of three columns. The program initialization (lines 10 
through 30) inputs the heading cards. Loop 1 (lines 40 through STOP) reads in a year, 
prints the calendar for that year, and, on reading the last card (/*), prints "end of JOB' 
and then stops. 

RPG 5-1 



sample program 

Loop 2 (lines 80 through 190) is inside loop 1, and prints four rows of three months each 
(rows numbered 0 through 3). Inside loop 2 is loop 3 (lines 110 through 190) which prints 
six lines (one for each week, see Jan. 1971). Loop 4 (lines 130 through 190), inside loop 3, 
creates the line of the week for each column (numbered 1, 2, 3). The last loop is 5 (lines 
150 through 190) which calculates the day of the week for each day of the month and 
inserts it into the line. If the day is not a Saturday, the line is shifted left one position, and 
the next day is tried. 

This method has a very slow execution rate, but it demonstrates the use of loops within 
loops, and of overlapping fields (SO, SP). The figures that follow illustrate this program. 
Figure 5-1 is the program, 5-2 is the flowchart, 5-3 is the input data, and figure 5-4 is the 
printed output. 

VTll-1179 

RPG 5-2 

TAR LE MO 
MQNr. 
IN 
YIN 
YEU 
c 
8 
M 
ow 
so 
SP 
SQ 

R!'CORO L.INf 
YQIJT 
cou 
COl.2 
COl.3 
COL• 
0 

TOLE T 
l.M 
OM 

FIROC!OURI!' 
10 
20 

crce) 

c 1,., 
C1,4.0) 
(1,2.0) 
CJ,•.o> 
(,, 8. O'l 
(7,9.0'.I 
(1('), 12.,0) 
(10,13.,l) 
(14,15.,(')) 

C-'5 1 39) ,B 
c t,71',~ 
C29 1 7l),8 
(51,71),8 
(54,71),B 
(70,71.0),llJ,Z 
c 12) 
c1,2.o> 
(3,4.0) 

MOVE l,t 
R!AO CA~D LIN! 
~OVE cnLS,MONG(I) 
COMPUTI! ?•l+l 
GO TO 20 
MDV! I •,COLl 

30 ~OVf ll,LM(l),LMC3),LM(5),LM(7),LM(l) 1 LM(10),LMCS2) 
MDV! l0 1 LMC•),LM(8) 1 LM(9),LMC11) 

40 

50 

eo 

70 
ao 

ClfLC) 
(#") 

RUD CHO IN 
P"INT S1=t 
STOP '!~D O' J09~ 
MOVE vr·~. YOUT 
l'fUNT t1:1,LIN! 
C0"4PUTE SP•9/I 
" SQ•CI• 
MDV! 28,LM(2) 

cce•••SO) AND CC9••0) OR CC•4•8Q)))MOVE 29,LM(2) 
COMPUTE "01U•1 
COMPUTE ~Ow•ROW+l 

CR003) GO TO 4(1 

Figure 5-1. Calendar Program 

(continued I 



sample program 

VARIAN RPG IV SOURCE LI~TING 

VTll-1180 

00 ~OMPUT~ ROWl•ROW+l 
MOVE HONGC~OW1),COL1 
PRINT IA3 1 LINE 
MOVE HONG(5),C0Li 
PRINT LINE 

100 MOV! o,oMCl),OM(2),0M(3),WK 
110 COMPUTE WK•WK+l 

(WK>t5' GO TO PIO 
120 ~OVE l1COL 
l~O COMPUTE M•(3•ROW)+COL 
140 MOVE COL2 1 COL1 
135 (M•1) COMPUTE YEAR•Y!AR•l 

(M•3) " YEAR•YEAR+l 
150 MOVE C~LA,COL3 
l~C COMPUTE OM(COL)•OM(C0L)+1 
170 COMPUTE N•M•2 ' 

(Ncl) N•N+l2 
SP•2.t5•N•0,2+0MCCOL)+B•2•C+lOS 
SP•SO+B/A 
l'lW•SCl+C/A 
SP•Dloi/7 
IHuOW•7•SO 

COMPUTE SQ•LM(M)•OM(COL)+l 
l~O (SQ>O) Mn.VE OM(COL),~ 
190 (Owctl) GO TO 1'50 

CO~PUT~ COL•COL+t 
CCOLC•3,GO Tn 1ln 

PRI"'T LtNE 
GO TO lln 

Figure 5-1. Calendar Program (continued) 

RPG 5-3 



sample program 

VT12-0167 

RPG 5-4 

START 

MOVE 
CARD IMAGE 
TO HDNG (I) 

10 

20 

( 

READ A CARD 
INTO IN 

[ 

MOVE YEAR 
TO OUTPUT 
AREA 

40 

so 

60 

D
OVE 28 
0 FEB., AND 
OMPUTE YEAR 

[

INST ROW 
PTR 

01 
A4 

70 

STOP 

MOVE 29 
TO FEB. 

Figure 5-2. Flowchart for Calendar Program 

INIT OM, 
AND WK 

02 
Al 

NOTE 

INIT .. ln1ttaltze 
PTR - Pointer 
HONG • Heading 
DM Day Month 

Week 



VT/2-0368 

sample program 

01 
A4 

MOVE 
DM INTO 
LINE 

figure 5-2. Flowchart for Calendar Program (continued) 

RPG 5-5 



sample program 

JANUARY HBRUU'I' 11AU!~ l 
All"IL MAV JU~! 2 
JULY AUGUST 8!PTEM8U 3 

OCTOB!lt ~CV!'.1481!" O!C!1419!1t • • "' 
T w T , a ~ "' 

T w ,. 
" s • M ' w ' 

, I 5 
!111 
VTJl-/181 

Figure 5-3. Input Data 

1971 

J4NUARV H!AUARV "4ARCH 
s "4 T "' T ,, s s M T w T F s s 

"' 
T w T I' s 

1 2 1 2 3 • 5 " 1 2 3 • 5 e 
3 • !S e 7 8 g 7 8 g 10 11 u u 7 a 0 10 11 u 13 

10 11 12 13 14 l!S 18 14 1"1 18 17 u u 20 , .. u t8 17 ti 10 20 
17 18 19 20 21 22 23 21 22 23 u 2!S 25 27 u H n 2• 25 215 27 
2• 2!5 25 27 28 2~ 30 28 28 20 30 31 
31 

APRIL MAV JL•N! 
s M T w T ,, s ~ M T w T F a 9 "' T .,. T " a 

1 2 3 J l 1 2 3 .. 5 .. !'! 8 7 e " 10 2 3 .. 5 e 7 8 e 7 a 0 10 11 12 
11 u 13 14 l!S 18 17' " 10 11 l2 u u 15 13 14 UI ti' 17 18 u 
l8 10 20 21 22 23 2• 18 17 18 19 20 21 22 20 21 22 2~ u 25 25 
25 28 27 21! 20 30 23 24 2!5 26 27 28 u 27 H 29 30 

JO 31 

JULY AUGUST Sf PTE"48Elt 
s M T "' T ,, 5 s "' T w T , s s Iii T w T I' s 

1 2 3 1 2 3 .. " e 7 ' 2 3 .. .. !S e 7 8 9 10 8 " ltl 11 l2 u 1• !S e 7 8 0 10 11 
11 12 13 14 15 18 1' 15 18 17 u u 20 21 u u 14 l !S 18 t 7 u 
18 111 20 21 22 23 24 22 23 2• 25 28 27 28 10 20 21 22 2~ 24 25 
2!5 28 27 28 2111 JO 31 29 3:> 31 25 27 28 2'I 3n 

OCTOiH'lil ~OVEM"!A D!Cf141!1U 
s M T T F 5 s 

"' 
T w T F s s "' T w T , s 

1 2 1 ~ 3 • 5 e 1 2 3 .. 
3 • ' fi 7 8 9 7 8 " 10 11 u u !5 8 7 8 9 10 1l 

10 11 12 13 14 1 !'! 18 lA '.I !!I lt'I 17 u Ill 20 12 u 14 15 18 17 11 
17 18 19 20 21 22 23 21 :22 n 2• u H 27 19 20 21 22 23 24 29 
24 2!1 2e 27 28 29 30 2e l?O 30 u 27 28 u 30 u 
31 

ENO OF JOR 
Vl'll-1182 

Figure 5-4. Printed Output 

RPG 5-6 



APPENDICES 

Page 

A · Indicator Chart. ........................................................................................................... A-2 

B · Collating Sequence and Character Repre~entation .................................................. 8-1 

C · Compilation Error Messages ...................................................................................... C-1 

D · Card Bootstrap Loader .............................................................................................. D-1 

E · Call Statement Subroutine Usage ............................................................................. E-1 

RPG A·l 



appendix A 

I H DICATOR CHART 

Where Used Turned on by: Turned off by: 

GENERAL ll~DICA TORS # i THROUGH # 99 

General purpose SET statement SET statement 

Sequence-checking Fields out of sequence Fields in sequence 

Auditing Successful audit Unsuccessful audit 

Record selection Meeting criteria Not meeting criteria 

Table overflow Out-of-range table SET statement 
reference 

CONTROL BREAK INDICATORS #Cl THROUGH #ClO 

Control breaks 

Repeat verb or con
dition of previous 
statement 

#" 

Table-searching 
#G, #L, #E 

Result of computation 
#P, #Z, #M 

First control break 
#F 

RPG A-2 

Direct updating that 
changes this or any 
higher-level control 
field (except when 
# F is on) 

SPECIAL INDICATORS 

Execution of previous 
statement 

LOOKUP statement 

COMPUTE statement 

First direct updating 
of any control field 

Direct updating that 
does not change this 
control field or 
direct updating that 
changes this or any 
higher-level control 
field when # F is on 

Nonexecution of pre
vious statement 

LOOKUP statement 

COMPUTE. statement 

Subsequent direct up
dating of any control 
field 

(continued) 



Where Used 

Computational Overflow 
#Xl 

Mode error 
#X2 

Last card 
#LC 

Page overflow 
#OV 

INDICATOR CHART (continued) 

Turned on by: 

Numeric ,value placed 
in a field that cannot 
hold it or any com
putation (including 
subscript and rela
tional expressions) 
whose value exceeds 
99,999,999,999 

Attempted use of a 
field of wrong mode 
(numeric/alphanumeric) 

READ CARD statement 
after I* card 

PRINT statement in 
which· the line count 
= 44 or one that 
causes a skip to 
channel 7 or /FORM 

NOTE 

appendix A 

Turned off by: 

SET statement 

SET statement 

SET statement 

PRINT statement that 
causes a skip to 
channel 1 

The initial state of # OV is on; that of all other indicators is off. 

RPG A-3 



COLLATING SEQUENCE AND CHARACTER REPRESENTATION 

Collating Standard 
Sequence Graphic 029 Keypunch 026 Keypunch 

1 (Blank) (no punch) (no punch) 
2 [ 12-2-8 12-5-8 
3 12-3-8 12-3-8 
4 < 12-4-8 12-6-8 
5 ( 12-5-8 0-4-8 
6 + 12-6-8 12 
7 t 12-7-8 7-8 
8 & 12 12-7-8 
9 11-2-8 11-2-8 

10 $ 11-3-8 11-3-8 
11 * 11-4-8 11-4-8 
12 11-5-8 12-4-8 
13 I 11-6-8 11-6-8 
14 \ 11-7-8 0-6-8 
15 11 11 
16 0-1 0-1 
17 0-3-8 0-3-8 
18 % 0-4-8 11-2-8 
19 0-5-8 2-8 
20 > 0-6-8 6-8 
21 ? 0-7-8 12-2-8 
22 2-8 5-8 
23 # 3-8 0-7-8 
24 @ 4-8 0-2-8 
25 5-8 4-8 
26 6-8 3-8 
27 7-8 0-5-8 
28 A 12-1 12-1 
29 B 12-2 12-2 
30 c 12-3 12-3 
31 D 12-4 12-4 
32 E 12-5 12-5 
33 F 12-6 12-6 
34 G 12-7 12-7 
35 H 12-8 12-8 
36 I 12-9 12-9 
37 J 11-1 11-1 
38 K 11-2 11-2 
39 L 11-3 11-3 
40 M 11-4 11-4 
41 N 11-5 11-5 

(continued) 

RPG 8-1 



appendix B 

COLLATING SEQUENCE AHD CHARACTER REPRESENTATION (continued) 

Collating Standard 
Sequence Graphic: 029 Keypunch 026 Keypunch 

42 0 11-6 11-6 
43 p 11-7 11-7 
44 Q 11-8 11-8 
45 R 11-9 11-9 
46 ] 0·2·8 11-5-8 
47 s 0-2 0-2 
48 T 0-3 0-3 
49 u 0-4 0-4 
50 v 0-5 0-5 
51 w 0-6 0-6 
52 x 0-7 0-7 
53 y 0-8 0-8 
54 z 0-9 0-9 
55 0 0 0 
56 1 1 1 
57 2 2 2 
58 3 3 3 
59 4 4 4 
60 5 5 5 
61 6 6 6 
62 7 7 7 
63 8 8 8 
64 9 9 9 

RPG 8-2 



Message 

INDICATOR 

INVALID 

LABEL 

LITERAL 

NAME 

COMPILATION ERROR MESSAGES 

Location of Arrow 

Invalid character 

Invalid character 

End of section table 
field statement con
taining KEY 

Last character of table 
name 

Last digit of statement 
number 

None ·· message after 
END 

Closing quotation mark 

Last nonblank character 

Last character of name 

Seventh character of name 

Period 

Last character of field 
name 

Error 

Character other than # 
at beginning of assumed 
indicator symbol 

Invalid indicator char
acter 

More than one key field 
for a table 

DELETE references a LIFO 
table 

Duplication of statement 
numbers 

Undefined statement number 

No character between opening 
and closing single quotation 
marks 

End of line found before 
closing single quotation 
mark 

Duplication of table or 
record names 

More than six characters 
in a name 

Field name followed by 
period or qualified name 
where nonfield name is 
required 

Field name of a qualified 
name not defined in a record 
or table 

RPG C-1 



appendix C 

COMPILATION ERROR MESSAGES (continued) 

Message Location of Arrow 

NAME (continued) Left parenthesi1s of 
subscript 

RELATIONAL 

SIZE 

RPG C-2 

Last character of name 

Last character of table 
name 

Right parenthesis of 
subscript 

Right parenthesis of 
subscript 

Last character of relational 
expression 

Last digit of boundary 

Last digit of field-end spec 

Last digit of number 

Digit causing o·verflow 

Last digit of selection 
column 

Last digit of statement 
number 

Fifteenth digit 

Tenth digit 

Error 

Subscripted record or record 
field name 

Invalid reference to name 
(e.g., a field name where a 
record name is required) 

LOOKUP references LIFP table 

LOOKUP contains a subscript 

Subscripted name in CALL 
argument list 

Relational expression contains 
two literals, or attempts to 
compare an alphanumeric field 
to a constant or expression 

Zero field boundary 

Field width not positive 

Numeric portion of indicator 
quantity zero or too large 

Accumulation of integer quantity 
causes arithmetic overflow 

Record selection column zero or 
> 255 

Statement number zero. or > 
9999 

> 14 digits before decimal 
point 

> 9 digits after decimal point 



appendix C 

COMPILATION ERROR MESSAGES (continued) 

Message 

;1zE (continued) 

:>YNTAX 

Location of Arrow 

Last digit of number 

Invalid character 

Character following name 

Character following last 
digit of field-end spec
ification or fractional 
length 

Character following subscript 

Invalid character 

First character of statement 

Invalid character 

Invalid character 

Invalid character 

Invalid character 

Nonblank character following 
number of entries 

Invalid character 

Nonblank character following 
conditional expression 

Error 

Numeric portion of PRINT zero 
or> 7 

First character of name not 
alphabetic 

Missing ( in field definition 

Missing ) in field definition 

Missing ) on subscript 

First character of assumed 
integer not numeric 

Field statement found before 
record or table statement 

Invalid selection identification 

Nonblank character in statement 
after meaningful specifications 
complete 

Editing character in definition 
of a nonnumeric field 

First nonblank character after 
TABLE in a table statement not ( 

Missing ) after number of 
entries in table statement 

Nonblank character after 
PROCEDURE 

Missing ) in conditional 
expression 

RPG C-3 



appendix C 

COMPILATION EHROR MESSAGES 

Message 

SYNTAX (continued) 

RPG C-4 

Location of Arrow 

Nonblank character following 
field name 

Column 69 of SET statement 

Nonblank character following 
position meant for missing item 

Nonblank character following 
last statement number in list 

Column 69 of statement 

Column 69 of LOOKUP 
statement 

Nonblank character following 
expression 

Nonblank character following 
first operand 

Invalid character 

Column 69 of PRINT 
statement 

First character not matching 
the sequence C A R D 

Nonblank character following 
CARD 

(continued) 

Error 

Missing = in COMPLETE 
statement 

Missing indicator list in 
SET statement 

No condition, ON, or OFF 
in SET statement 

Missing ) in indexed GO 
TO statement 

Missing to-field in state
ment that requires one 

Missing index field in 
LOOKUP statement 

Missing ) on expression 
that began with ( 

Missing relational operator 
after first operand of rel
ational expression 

First character of assumed 

decimal constant neither 
digit nor period 

Missing argument list in 
PRINT statement 

Keyword CARD missing in 
READ CARD statement 

Missing delimiter after 
READ CARD statement 
character string 



CARD BOOTSTRAP LOADER 

Using the data entry switches on the computer front panel, enter the card bootstrap 
loader as follows: 

Memory Octal 
Address Contents DAS Code 

000114 102530 BOOR CIA 030 
000115 004250 LRLA 8 
000116 101130 SEN 0130,BOOS 
000117 000122 
000120 001000 JMP * -2 
000121 000116 
000122 102130 BOOS INA 030 
000123 055000 STA 0,1 
000124 005144 IXR 
000125 001000 JMP BOOU 
000126 000131 
000127 000000 BOOT DATA PLD 
000130 100230 EXC 0230 
000131 101130 BOOU SEN* 0130,BOOR 
000132 000114 
000133 101630 SEN 0630,BOOT 
000134 100127 
000135 001000 JMP ~~ -4 

000136 000131 

Clear the registers. 

Load the B register with the upper boundary of a 4K memory module, thus delimiting the 
virtual memory for a given run; e.g., set the B register to 010000, 020000, etc., to indicate 
a virtual memory of 4K, 8K, etc., words. If the B register contains zero, the loader locates 
itself at the top of the memory starting with address Ox7660 (x = O for a 4K memory, 1 
for an 8K memory, etc.). 

Set the P register to 000130. 

Put the RPG IV loader, followed by the compiler or runtime deck in the card reader. 

Press SYSTEM RESET or RESET. 

Press RUN or START. The bootstrap loader loads the binary card loader and transfers 
co.ntrol to it for further loading. 

RPG D·l 



CALL STATEMENT SUBROUTINE USAGE 

STAND-ALONE VERSION 

The stand-alone version of RPG IV provides for linking up to two user-written, DAS-coded 
subroutines. Once loaded, these subroutines can then be executed through the RPG IV 
CALL statement. 

Linkage 

The RPG IV loader and runtime programs both contain an empty table, labeled STAB, 
which is used to establish linkage to called subroutines. The table is initialized to blanks 
and zeros and can be overlayed at load time by the user to establish subroutine names 
and entry points. Figures E-1 and E-2 depict the actual code as it appears in the loader 
and runtime programs. The table format is: 

Word 1 

Words2-4 

Word5 

Words6-8 

Word9 

Number of subroutine names in the 
table (0, 1, or 2) 

Subroutine name in ASCII (preset to 
blanks) 

Pointer to subroutine entry address 
(preset to zero) 

Subroutine name in ASCII (preset to 
blanks) 

Pointer to subroutine entry address 
(preset to zero) 

When the loader encounters an external reference in the object deck, it searches STAB for 
the name. If the name is in the table, a runtime CALL instruction is stored with the 
operand equal to the entry number of the subroutine name in STAB. The runtime 
interpreter uses this value to locate the beginning of any specified subroutine. If the name 
is not in the table, the error message MISSING SUBROUTINE is printed on the line printer 
(chapter IV). 

RPG E-1 



000770 000002 
000771 120240 
000772 120240 
000773 120240 
0007711 000000 
000775 1202110 
000776 120240 
000777 1202110 
001000 000000 

000721 000002 
000722 1202110 
000723 1202110 
0007211 1202110 
000725 000000 
000726 1202110 
000727 1202110 
000730 1202110 
000731 000000 

RPG E-2 

ORG 
STAB 

ORG 
STAB 

SUBROUTINE CALL TABLE (STAB) 
'rHE FOLLOWING TABLE CONTAINS THE REQUIRED INFORMATION 

0770 
DATA 
DATA ' 

DATA 1) 

DATA ' 

DATA 

TO ENABLE THE RPG IV LOADER TO LINK TO AN EXTERNAL 
SUBROUTINE WHICH IS REFERENCED BY A 'CALL' 

STATEMENT. THE TABLE PROVIDES ROOM FOR 
TWO ENTRIES. EACH ENTRY CONTAINS TH 

FOLLOWING DATA: 

1. NAME OF SUBROUTINE 

2. SUBROUTINE ENTRY ADDRESS 

NUMBER OF ENTRIES 
SUBROUTINE NAME- 1ST ENTRY 

SUBROUTINE ENTRY ADDRESS 
SUBROUTINE NAME- 2ND ENTRY 

SUBROUTINE ENTRY ADDRESS 

(DATA IN THE SUBROUTINE CALL TABLE MUST 
CORRESPOND IDENTICALLY TO THE DATA 

CONTAINED IN THE SUBROUTINE CALL 
TABLE (STAB) OF THE RPG IV 

RUNTIME SUPPORT PROGRAM) 

Figure E-1. STAB Table In Loader 

SUBROUTINE CALL TABLE (STAB) 
THE FOLLOWING TABLE CONTAINS THE REQUIRED INFORMATION 

0721 
DATA 

TO ENABLE THE RPG IV RUNTIME SUPPORT PROGRAM TO LINK 
TO AN EXTERNAL SUBROUTINE WHICH IS REFERENCED BY 

A 'CALL' STATEMENT. THE TABLE PROVIDES 
ROOM FOR TWO ENTRIES. EACH ENTRY HAS 

THE FOLLOWING DATA: 

1. NAME OF SUBROUTINE 

2. SUBROUTINE ENTRY ADDRESS 

DATA ' 
NUMBER OF ENTRIES 
SUBROUTINE NAME- 1ST ENTRY 

DATA 0 
DATA ' 

DATA 0 

SUBROUTINE ENTRY ADDRESS 
SUBROUTINE NAME- 2ND ENTRY 

SUBROUTINE ENTRY ADDRESS 

DATA CONTAINED IN THIS TABLE MUST 
CORRESPOND IDENTICALLY TO THE DATA 

CONTAINED IN THE SUBROUTINE CALL 
TABLE (STAB) OF THE RPG IV 

LOADER PROGRAM 

Figure! E-2. STAB Table in Runtime 



appendix E 

Arguments 

To retrieve arguments from the CALL statement calling sequence, the called subroutine 
requires the service of runtime support routine GETR. GETR is called for each argument in 
the calling sequence. After each return from GETR, the A register contains a pointer to the 
first (next) argument in the calling sequence. The interpreter location counter is stepped 
past the argument on each call to GETR so that, after all of the arguments have been 
retrieved, the location counter is positioned for the interpreter to continue with the next 
interpretive instruction. The contents of location REND in the runtime program are 
negative after the last argument is fetched with GETR. Linkage to GETR can be made by a 
JMPM':' 000177 instruction, and REND is at location 000017. 

Arguments passed to called subroutines. are one of two types: a numeric constant or a 
record, table, or field name. Numeric constants occupy six consecutive words of memory 
and have the form shown in figure E-3. 

Record, table, and field names as arguments are accessed by a call to GETR also. Upon 
return, the A register indicates one less than the memory location that contains the byte 
address of the argument. To form a word address, the user is required to right-shift this 
value one position (e.g., LSRA 1). 

After all arguments are processed and the subroutine has completed its function, control 
can be returned to the runtime interpreter by a JMP':' 000220 instruction. 

15 12 11 8 7 4 3 0 
Word Sign I DI D2 I D3 

Word 2 D4 D5 D6 D7 

Word 3 D8 D9 DlO I Dl 1 

Word 4 D12 Dl3 Dl4 I Dl5 

l__decimal point 

Word 5 Dl6 Dl7 Dl8 Dl9 

Word 6 D20 D21 D22 D23 

NOTES 

a. A call to GETR returns the A register contents to word 1. 

b. For a plus sign, bits 12 through 15 of word 1 equal a value of six. For a negative sign, 
they equal a value of seven. 

c. The data fields (Dl through D23) are in 4-bit binary-coded decimal (BCD) each field can 
have a value of zero through nine. 

Figure E-3. Word Formats of Numeric Constants 

RPG E-3 



appendix E 

Coding 

Subroutines to be used in CALL statements must be first coded in DAS assembly language 
and assembled with either the DAS 4A or DAS BA assembler. The object output must be 
on punched cards. The assembly language-source deck contains the following as the last 
seven statements of the program:: 

Card Operation 

1 ORG 

2 DATA 

3 DATA 

4 ORG 

5 DATA 

6 DATA 

7 END 

RPG E-4 

Operand 

Octal address of the first word for this 
entry in the subroutine call table 
(STAB) in the RPG IV runtime support 

program (value = 000721). 

Subroutine name enclosed between 
apostrophes. The subroutine name 
(exclusive of apostrophes) must 
correspond exactly to the name used in 
the CALL statement of the RPG IV 
program. 

Octal address of the subroutine entry 
location. 

Octal address of the first word of the 
corresponding entry In the subroutine 
call table (STAB) of the RPG IV 
loader program (value • 000770). 

Subroutine name enclosed between 
apostrophes. The subroutine name must 
correspond exactly to the name used In 
the CALL statement of the RPG IV 
program. 

Octal address of the subroutine entry 
location. 



appendix E 

Card 7 is the END statement of the source deck itself; there is no operand after assembly. 
The three final object cards contain the following data: 

a. Object data from cards 1, 2, and 3 above 

b. Object data from cards 4, 5, and 6 above 

c. Normal card object end ca"rd 

Remove the next-to-last card and place it in the front of the last card of the RPG IV loader 
object deck. Place the remaining object cards of the assembled routine at the end of the 
RPG IV runtime support deck with the last card of that deck removed. 

Subroutines such as these, which are called at runtime by an RPG IV program, reside in 
that part of upper memory not otherwise used by RPG IV. This area can be determined 
empirically by the following procedure: 

a. Initialize each word of memory to some specific value using the 620 AID II program and 
the command: 

1. la,b,c, (initialize locations a through b to c) 

b. Load and run the RPG IV program with the subroutine(s) omitted. 

c. When RPG IV attempts to execute a missing subroutine, the computer halts with 
000002 in the instruction register. Using AID II and the command: 

2. Sa,b,c, (search locations a through b to c) 

scan the computer memory for the value to which memory was previously initialized. That 
block of memory below the resident card binary loader (which is filled with the value to 
which memory was previously initialized) is then available for containing the subroutine(s) 
whose name(s) appear in CALL statements in the RPG IV program. 

Figure E-4 shows sample coding for a DAS subroutine and illustrates many of the details 
described in the preceding pages. 

MOS VERSION 

The MOS version of RPG IV allows for inclusion of DAS-coded subroutines to augment an 
RPG IV program. Such subroutines must be assembled into the runtime/loader program; 
hence, linkages are handled through the assembly process. Subroutines can be included 
after the end of the runtime/loader code; they require an entry into the STAB table 
(figures E-1 and E-2). 

RPG E-5 



appendix E 

Since the loader and the runtime programs are combined under MOS, there is only one 
STAB table. Its size is variable and the user can add as many special-purpose subroutines 
to his system as needed. Refer to RPG IV runtime/loader source listing MOS version 
(Varian Software Parts Catalog, document number 98 A 9949 060). 

Argument-processing is the same as in the stand-alone version except that GETR must be 
called directly (i.e., JMPM GETR) and control must be returned directly to the interpreter 
(i.e., JMP INT). 

VORTEX VERSION 

The method of inclusion and use of DAS-coded subroutines in the RPG runtime/loader 
program is the same as that described for the MOS version. 

RPG E-6 



appendix E 

PARTIAL SAMPLE OF AN RPG IV SUBROUTINE 
DAS CODED FOR STAND-ALONE VERSION 
SUBROUTINE SHIFTS AN RPG NUMERIC FIELD RIGHT OR LEP'T 'N' PLAC 
ENTER: CALL SHIFT,F,D,N 

WHERE F • FIELD NAME 
D • DIRECTION (+ FOR RIGHT, - P'OR LEFT 
N • NUMBER OF PLACES IN DECIMAL ( 9 MAXIMUM) 

EXIT: FIELD SHIFTED 

000177 GETR EQU 0177 
000017 REND EQU 0017 
000220 INT EQU 0220 

016000 ORG 016000 
016000 002000 SHIFT JHPH• GETR GET FIELD ADDRESS ( -1) 
016001 100177 
016002 0050 14 TAX 
016003 015001 LDA 1,1 PICKUP BYTE ADDRESS 
016004 004341 LSRA 1 HAKE WORD ADDRESS 
016005 054032 STA THP1 SAVE 
016006 010017 LDA REND 
016007 001004 JAN ERROR HORE ARGUMENTS 
016010 016035 
016011 002000 JHPH• GETR YES, GET DIRECTION INDICATOR 
016012 100177 
016013 005014 TAX 
016014 015000 LDA o, 1 GET SIGN 
016015 006150 ANAI 010000 ISOLATE +/- BIT ( RIGHT/LEP'T) 
016016 010000 
016017 054021 STA THP2 SAVE 
016020 010017 LDA REND 
016021 001004 JAN ERROR HORE ARGUMENTS 
016022 016035 
016023 002000 JHPH• GETR YES, GET NUMBER OP' PLACES 
016024 100177 
016025 005014 TAX 
016026 015003 LDA 3. 1 PICKUP D12-D15 OP' BCD WORD 
016027 006150 ANAI 0360 ISOLATE D14 
016030 000360 
016031 004344 LSRA RIGHT JUSTIFY 
016032 054007 STA THP3 SAVE 

ETC. 

016033 001000 JHP• INT EXIT TO RPG INTERPRETER 
015034 100220 
016035 000007 ERROR HLT 07 ERROR HALT 
016036 001000 JHP• INT 
016037 100220 

016040 000000 THP1 DATA 
016041 000000 THP2 DATA 
016042 000000 THP3 DATA 

000721 ORG 0721 
000721 151710 DATA 'SHIFT' RUNT I HE 'STAB' OVERLAY 
000722 144706 
000723 152240 
000724 016000 DATA SHIFT 

000770 ORG 0770 
000770 151710 DATA 'SH"IFT LOADER 'STAB' OVERLAY 
000771 144706 
000772 152240 
000773 01600Q DATA SHIFT 

000000 END 

Figure E-4. Sample Coding for DAS Subroutine 

RPG E-7 



Master Operating System (MOS) 

MOSi 



TABLE OF CONTENTS 

SECTION 1 

INTRODUCTION 

SYSTEM CONFIGURATION ................................................................................................... 1-1 

MOS COMPONENTS ............................................................................................................. 1-2 
Resident Partition ................................................................................................................. 1-2 
Nonresident Partition ........................................................................................................... 1-2 

SECTION 2 

CONTROL DIRECTIVES 

TYPES AND FORMATS ......................................................................................................... 2-1 

EXECUTIVE CONTROL DIRECTIVES .................................................................................... 2-2 

110 CONTROL DIRECTIVES .................................................................................................. 2-5 

SYSTEM LOADER CONTROL DIRECTIVES .......................................................................... 2-7 

DECK PREPARATION ......................................................................................................... 2-14 

SECTION 3 

INPUT /OUTPUT CONTROL PROGRAM 

LOGICAL AND PHYSICAL UNITS ......................................................................................... 3-1 

110 CALLS ............................................................................................................................. 3-6 
Read Binary Record ............................................................................................................. 3-9 
Read Alphanumeric Record .................................................................................................. 3-9 
Read BCD Record ................................................................................................................. 3-9 
Write Binary Record ........................................................................................................... 3-10 
Write Alphanumeric Record ............................................................................................... 3-10 
Write BCD Record .............................................................................................................. 3-11 
Write End of File ................................................................................................................ 3-11 

MOS-iii 



Rewind ................................................................................................................................. 3-12 
Skip Records Forward ........................................................................................................ 3-12 
Skip Records Reverse ......................................................................................................... 3-12 
Skip Files Forward .............................................................................................................. 3-13 
Skip Files Reverse ............................................................................................................... 3-13 
Perform Function ................................................................................................................ 3-14 
Request Status .................................................................................................................... 3-15 

PROGRAMMING EXAMPLES .............................................................................................. 3-16 

SECTION 4 

DEESUGGING PROGRAM 

INTRODUCTION .................................................................................................................... 4-1 

TELETYPE DIALOG ......................... , ..................................................................................... 4-1 

PSEUDOREGISTERS ............................................................................................................. 4-2 

INSTRUCTION LANGUAGE .................................................................................................. 4-3 
Display and Alter lnstructions ............................................................................................ 4-3 
I /0 Instructions ................................................................................................................... 4-4 
Control Instructions ............................................................................................................. 4-5 

EXAMPLES OF DEBUGGING ............................................................................................... 4-6 

SECTION 5 

CONCORDANCE PROGRAM 

SECTION 6 

FILE. EDITING PROGRAM 

PROGRAM AND DIRECTIVES ............................................................................................. 6-1 

SOURCE FILE ....................................................................................................................... 6-6 

Header Record ..................................................................................................................... 6-6 
Data Record ......................................................................................................................... 6-7 
Catalog Record ..................................................................................................................... 6-7 

MOS-iv 



SECTION 7 

SYSTEM MAINTENANCE PROGRAM 

SECTION 8 

SYSTEM PREPARATION PROGRAM 

INTRODUCTION ................................................................................................................... 8-1 

CONTROL DIRECTIVES ........................................................................................................ 8-2 

INSTALLATION SYSTEM LIBRARY ORGANIZATION ........................................................ 8-13 
System Preparation Section .............................................................................................. 8-13 
System Processor Section .................................................................................................. 8-13 
System Library Section ...................................................................................................... 8-14 

OPERATING PROCEDURES ............................................................................................... 8-15 
Loading ............................................................................................................................... 8-15 
Assignment ......................................................................................................................... 8-17 
Disc Formatting ................................................................................................................. 8-19 
System Verification and Completion ................................................................................ 8-19 

EXAMPLES .......................................................................................................................... 8-24 

SECTION 9 

LANGUAGE PROCESSORS 

DAS MR ASSEMBLER ......................................................................................................... 9-1 

FORTRAN IV COMPILER ..................................................................................................... 9-2 

RPG IV .................................................................................................................................. 9-3 

SECTION 10 

SUPPORT LIBRARY 

CALLING SEQUENCE ......................................................................................................... 10-1 

MOS-v 



NUMBER TYPES AND FORMATS ...................................................................................... 10-2 

SUBROUTINE DESCRIPTIONS ........................................................................................... 10-4 

SECTION 11 

MOS OPERATING PROCEDURES 

DEVICE INITIALIZATION ................................................................................................... 11-1 
Card Reader ....................................................................................................................... 11-1 
Card Punch ........................................................................................................................ 11-1 
33135 ASR Teletype .......................................................................................................... 11-1 
High-Speed Paper Tape Reader ........................................................................................ 11-2 
Magnetic Tape Unit. .......................................................................................................... 11-2 
Magnetic Drum Unit ......................................................................................................... 11-2 
Fixed-Head Disc Unit. ........................................................................................................ 11-2 
Moving-Head Disc Unit (620-39) ...................................................................................... 11-2 
Moving-Head Disc Unit (620-40,-41) ................................................................................ 11-2 

BOOTSTRAP ....................................................................................................................... 11-3 

SYSTEM (RE)INITIALIZATION ........................................................................................... 11-5 

SECTION 12 

USER-CODED 1/0 DRIVERS 

DEVICE SPECIFICATION TABLE ....................................................................................... 12-2 
Word 0 ................................................................................................................................ 12-3 
Word l ................................................................................................................................ 12-3 
Word 2 and 3 .................................................................................................................... 12-4 
Word 4 ................................................................................................................................ 12-4 
Word 5 ................................................................................................................................ 12-4 
Word 6 ................................................................................................................................ 12-4 
Word 7 and 8 .................................................................................................................... 12-5 
Word 9 ................................................................................................................................ 12-5 
Word 10 .............................................................................................................................. 12-5 
Word l l .............................................................................................................................. 12-6 
Word 12 .............................................................................................................................. 12-6 
Word 13 .............................................................................................................................. 12-7 
Word 14 .............................................................................................................................. 12-7 
Word 15 .............................................................................................................................. 12-7 
1/0 DRIVER PROGRAMMING EXAMPLES ...................................................................... 12-13 

MOS-vi 



1/0 SUPPORT SUBROUTINES ......................................................................................... 12-16 

1/0 STATUS MESSAGES .................................................................................................. 12-17 

BIC CONTROL ................................................................................................................... 12-18 
BIC Control Table ............................................................................................................. 12-18 
BIR$ ................................................................................................................................... 12-19 
BIA$ ................................................................................................................................... 12-19 

SECTION 13 

STATUS AND ERROR MESSAGES 

EXECUTIVE .......................................................................................................................... 13-l 

SYSTEM LOADER ................................................................................................................ 13-3 

110 CONTROL ..................................................................................................................... 13-5 

LANGUAGE PROCESSORS .................................................................................................. 13-5 

DAS MR ASSEMBLER ........................................................................................................ 13-6 

FORTRAN IV COMPILER .................................................................................................... 13-8 

FILE EDITING PROGRAM ................................................................................................. 13-10 

SYSTEM MAINTENANCE PROGRAM ............................................................................... 13-12 

SECTION 14 

MOS FORMATS 

ABSOLUTE MODULE FORMAT ......................................................................................... 14·1 

OBJECT MODULE FORMAT .............................................................................................. 14-3 

DATA FORMAT ................................................................................................................. 14-11 

APPENDIX 

TTY CHARACTER CODES ..................................................................................................... A-1 

MOS-vii 



SECTION 1 - INTRODUCTION 

The Master Operating System (MOS) is a batch processing operating system for Varian 
computer systems. MOS operates on a wide range of hardware configurations. It is 
modular, thus facilitating expansion (e.g., new language processors, special user 1/0 
drivers, etc.). MOS makes optimum use of memory by loading only those portions of the 
system (including 1/0) required during execution. Fe.atures of MOS include: 

Minimum operator intervention required 

Single tape, drum, or disc as secondary storage device 

Extensive job control language (22 directives) 

Multisource input during loading 

Debugging aids 

File maintenance and editing programs 

Extensive status- and error-reporting 

SYSTEM CONFIGURATION 

The minimum MOS configuration requires the following hardware: 

a. Varian computer 

b. 4Kmemory 

c. 33135 ASR Teletype 

d. One of the following: 

( 1) Magnetic tape unit 

(2) Rotating memory unit on a buffer interlace controller (BIC) 

MOS supports and is enhanced by the following hardware: 

MOS 1-1 



introduction 

a. Card reader and/or punch 

b. Line printer 

c. High-speed paper tape reader and/or punch 

d. Memory increment(s) 

e. Hardware multiply/divide and extended addressing 

MOS COMPONENTS 

MOS is divided into resident and nonresident partitions. Figure 1-1 shows their 
relationship. 

RESIDENT PARTITION 

This partition comprises the: 

a. Resident monitor 

b. Absolute loader 

c. 1/0 assignment tables 

d. System flags and parameters 

e. Dump 

NONRESIDENT PARTITllONS 

This partition comprises the: 

a. Control programs 

b. Support programs 

c. Language processors 

Control Programs 

The control programs are the: 
a. Executive - job control processor and system control 

b. System loader - linking and relocating loading of system and user programs 

c. i10 control - dispatching of l/O requests and device driving 

MOS 1-2 



Support Programs 

The support programs are: 

a. Math and support library 

b. Concordance program 

c. Debugging program 

d. File editing program 

e. File maintenance program 

f. System preparation program (operates in stand-alone mode) 

Language Processors 
The language processors are: 

a. DAS MR assembler 

b. FORTRAN IV compiler (requires an additional memory increment) 

R£SIDENT 
MONITOR 

EXECUTIVE 

USLR OR 
SYSTtM 
SUPPORT 
PROGRAM 

Figure 1-1. System Partitions and Flow 

RES!DtNT 
PARTITION 

NONRES!DtNT 
PARTITION 

introduction 

MOS 1-3 



SECTION 2 - CONTROL DIRECTIVES 

TYPES AND FORMAT 

The MOS recognizes three types of control directives: 

a. Executive control directives 

b. 110 control directives 

c. System loader directives 

Executive and 1/0 control directives are executed while the executive is in memory. 
System loader directives cause the executive to be overlayed with the system program 
that is implemented by the directive. MOS has the following directives: 

Executive 1/0 System Loader 

JOB COPY A LOAD 
EN DJ OB COPYB ULOAD 
ASSIGN REW ASSEMBLE 
IOLIST WEOF FORTRAN 
FORM SREC SMAIN 
STACK BREC 
EOF SFILE 
DATE FUNCTION 
COMMENT 

The general form of a directive is an alphanumeric record of up to 72 characters in the 
following format: 

where 
/name,p(l),p(2),p(3),_. .. ,p(n) 

name 

p(l), ... 

in the first character position of the record 
specifies that the record contains a control 
directive. 

is the name of the control directive comprising 
one to eight alphanumeric characters, 
and is terminated by a comma or blank. 
is a parameter string with individual parameters 
separated by commas. 

MOS 2-1 



control directives 

The form and number of parameters varies with the 
directive. However. parameter strings cannot be 
longer than one record (72 characters). If it is. 
the directive is truncated. 

The parameter string 1s terminated either by one 
period or bi blanks from the last parameter lo 
character position 72. Blanks within the parClrn
eter string are ignored. 

Some control directives have an abbreviated form that is equivalent to the full form: 

le 
/COMMENT 

These forms can be used interchangeably. 

EXECUTIVE CONTROL DIRECTIVES 

JOB,title 

This control directive starts a job. (A job is all tasks requested between a / JOB and an 
1 EN DJ OB directive.) The system is initialized by setting certain resident constants and 
logical unit assignments to their default values; a top-of-form function is sent to the list 
output. 

One parameter (optional) is allowed. It 1s an alphanumeric string of up to eight characters 
that is stored in the resident monitor. It is an identification printed on every page of list 
output generated by the assembler or compiler. The identification is also incorporated 
into the actual object module. If the parameter has fewer than eight characters. the 
identification is left-justified and filled out with blanks. In the case of a tJOB parameter. 
the first blank terminates it, i.e., embedded blanks cause truncation. 

The parameter can be accessed during execution by referencing the four-word area $TTL 
in the resident monitor. This can be done by making $TTL an external reference. The 
parameter is stored in ASCII, two characters per word. 

END JOB 

This control directive ends a job. The system is initialized by setting certain resident 
constants and logical unit assignments to their default values; a top-of-form function is 
sent to the list output. There are no parameters. Any text in the pClrameter field 
is ignored. 

MOS 2-2 



control directives 

/ASSIGN,1(1)=r(1),1(2)=r(2), ... ,l(n)=r(n) 

This control directive equates and assigns particular logical units to specific physical 110 
devices. Execution of this directive decodes the parameter string and alters the logical 
unit table as specified by the ~arameter. 

The parameters can be logical unit numbers, logical unit names, or physical unit names 
(figure 3-1). In each parameter pair (i.e., each l(n) = r(n)), the left parameter, l(n), is a 
logical unit number or name, and the right parameter, r(n), is a logical unit number or 
name or a physical device name. 
In any case, the logical unit to the left of the equal sign is assigned to the unit/device to 
the right. 

If r is a physical device, the I entry in the logical unit table is altered so that it points to 
the physical device driver specified by r. Thereafter, all 110 operations referencing I are 
directed to the physical device specified by r. 

If r is a logical unit number or name, I is made equivalent to r and is assigned to the 
same physical device as r. However, if r is reassigned later to a new physical device, I no 
longer has an equivalent assignment. 

As many parameter pairs as will fit in the control directive record can be specified on one 
I ASSIGN. Once a logical unit assignment is made, it remains in effect until changed by a 
new I ASSIGN, until the system is initialized by I JOB, /ENDJOB, or a bootstrap loading. 

/IOLIST,p(1),p(2), ... ,p(n) 

This control directive requests a listing of the current assignments of the individual logical 
units. The parameter string consists of logical unit numbers or names. As many logical 
units as will fit in th~ parameter field are allowed. The list is printed on LO and system 
output (SO, figure 3-1 ). 

Example: 

If the system file is currently assigned to drum unit 
0 and the binary output ·to the high-speed paper 
tape punch, the directive 

/IOLIST,SF,BO 

prints the following on LO and SO: 

SF = DROO 
BO = PTOO 

If the parameter field is blank, all logical units and their assignments are printed, but 
only on LO. 

MOS 2-3 



control directives 

/FORM, X 

This control directive sets the value of the line-count word in the resident monitor to the 
value of parameter x. This word specifies, to operating system programs, the number of 
lines on the LO file before a top-of-form request is sent to the device. The parameter is a 
positive decimal integer from 5 to 9999. If the parameter is blank or less than 5, the value 
is set to the default value of 44. 

/STACK 

This control directive stacks binary object programs on the BO. Normally, the system 
rewinds the BO before each assembly or compilation. However, with /STACK in effect, the 
binary output of all tasks within a job are written on the BO file sequentially. 

/STACK remains in effect until a I JOB or /ENDJOB is encountered. It is not set when the 
MOS is initialized after a bootstrap loading. 

There are no parameters. The parameter field is ignored. 

/EOF 

This control directive instructs the executive to write an end-of-file record on the BO and 
GO (figure 3-1) files. 

There are no parameters. The parameter field is ignored. 

/DATE,xxxxxxxx 

This control directive inputs the parameter into the operating system. The one parameter 
is an alphanumeric character string of up to eight characters (for example, month, day, 
and year). The first blank terminates it, i.e., embedded blanks cause truncation. The 
parameter is output on any list output generated by the assembler or compiler and other 
system support programs. 

If the parameter field has fewer than eight characters, it is left-justified and filled out 
with blanks. Once entered, the parameter remains unchanged until another /DATE is 
encountered. 

Access to the parameter during execution is by referencing the four-word area $DAT in the 
resident monitor. This can be done by making $DAT an external reference. The 
parameter is stored in ASCII, two characters per word. 

le 
/COMMENT 

This control directive annotates the list output. The MOS prints all 72 characters of this 
directive record, including /C or /COMMENT, on SO and LO. No other action is taken. 

MOS 2-4 



control directives 

1/0 CONTROL DIRECTIVES 

/COPYA,1(1)=r(1),1(2)=r(2), ... ,l(n)=r(n) 

This control directive copies ASCII-coded data files from one logical unit on another. The 
parameter string comprises logical unit pairs. Copying is record by record from the left (I) 
unit to the right (r) unit. Copying begins at the position of the I unit when the /COPYA is 
requested and continues until an end of file is encountered on the I unit. The r unit is not 
positioned before copying to it begins. After the copy is completed, neither unit is 
positioned· nor is an end of file written on the r unit. Unit I is a logical unit number or 
name; unit r is a logical unit number or name. 

/COPYB,1(1)=r(1),1(2)=r{2), ... ,l(n)=r(n) 

This control directive is identical to /COPYA, except that copying is binary. 

/REW,p(1),p(2), ... ,p(n) 

This control directive rewinds the specified logical units. If a specified unit cannot be 
rewound, no action is taken for that unit. 

/WEOF,p(1),p(2), ... ,p(n) 

This control directive writes end-of-file records on the specified logical units. The format of 
the end-of-file record depends on the physical device to which the logical unit is currently 
assigned. If a physical device cannot accept an end of file, no action is taken for that 
logical unit. 

ISREC, 1 ( 1) , r ( 1) , 1 ( 2) , r ( 2) , ... , 1 ( n) , r ( n) 

This control directive skips physical records on the specified logical units. The parameter 
string consists of parameter pairs, each pair specifying a logical unit and a record count. 
/SREC spaces the logical unit forward the number of records designated. 

The record count is a positive decimal integer from 0 to 9999. If the count is blank, or if 
the specified unit cannot skip records, no action is taken for that unit. If the count 
exceeds 9999, the left four digits are used. 

MOS 2-5 



control directives 

/BREC,1(1) ,r(1),1(2),r(2), ... ,l(n),r(n) 

This control directive is identical to /SREC, except that the records on the specified logical 
unit are skipped in reverse order (backspace). 

/SFILE,1(1),r(1),1(2),r(2), ... ,l(n),r(n) 

This control directive skips physical files on specified logical units. File-skipping occurs 
only in the forward direction. The parameter string consists of parameter pairs, each pair 
specifying a logical unit and a file count. /SFILE spaces the logical unit forward the 
number of physical files designated. 

The file count is a positive decimal integer from 0 to 9999. If the count is blank, or if the 
specified unit cannot skip files, no action is taken for that unit. If the count exceeds 9999, 
the left four digits are used. 

/FUNCTION 
/FUNC , 1 ( 1 ) , r ( 1 ) , 1 ( 2 ) , r ( 2 ) , ... , 1 ( n ) , r ( n) 

This control directive performs special functions on specified logical units. The parameter 
string consists of parameter pairs, each pair specifying a logical unit and a special 
function code. 

The special function code is a positive decimal integer from 0 to 9999. If the code is 
blank, no action is taken for that unit. If the code exceeds 9999, the left four digits are 
used. 

The function performed depends on the physical device to which the logical uni! is 
currently assigned. Definitions of the 1/0 functions of MOS are given in Section 3. 

Note: Discs and drums must be positioned in the same manner as magnetic tapes with 
respect to the 1/0 control directives REW, SREC, BREC, and SFILE. 

MOS 2-6 



control directives 

SYSTEM LOADER CONTROL DIRECTIVES 

The system loader can load unconditionally from binary input (Bl. figure 3-1 ) and/or 
selectively by program name from SF. It accepts only relocatable object text. including 
literal addressing and external program-linking. Upon successful completion. the system 
loader returns control to the resident monitor for program execution. When errors occur 
during loading, the process is aborted and control returned to the resident monitor. the 
executive is loaded and the error message posted on the LO and SO. Figures 2-1 and 2-2 

show a map of memory during and after the loading process. 

/LOAD 
IL, p ( 1 l , p ( 2 l , ... , p ( n l 

This control directive directs the executive to call the system loader and load one or more 
object modules from the Bl file. The parameter string can specify the following tasks for 
the loader during loading, or for the resident monitor after the loaded program has been 
run: 

PAUSE 

HALT 

MAP 

DUMP 

DEBUG 

The loader pauses before each program is loaded 
from Bl, allowing the loading of programs from more 
than one tape by stopping the computer during the 
changing of tapes. 

The resident monitor stops after all programs are 
loaded but before execution begins. 

When loading is complete, the loader outputs a 
map of all entry points, external names, and labeled 
data blocks (figure 2-3) 

After the loaded program has been executed, the 
resident monitor dumps core on LO (figure 2-3). 

The dump routine uses memory locations 0400 through 
0477 and thus destroys the original contents of these 
locations. 

The loader loads the debugging program as part of 
the loading task. 

MOS 2-7 



control directives 

Top of memory 

System loader 

Sy~.tem fil~ (SF) driver 

Map routine and I ist output (LO) driver 
(if requested) 

Birary input (BI) clriver 
(if requested) 

List output (LO) d1·iver 
(if requested) 

T-+ Loode< toble> ~ 

1 .·---J'.....______,l 

~ ~-L-: ~"ogrnm ond rnbprn~.__ms----, 

1 "Direct reference I iterals 

0 rcect cefe,ence laernh 

figure 2-1. Loader Memory Map 

MOS 2-8 

Overlayed by 
blank COMMON 
when possible 



control directives 

THE FOLLOWING IS OUTPUT ON THE LO DEVICE WHEN A MAP 
REQUEST IS MADE WITH AN ASSEMBLY, COMPILATION, OR 
LOADING: 

WHERE 

ssssss aaaaa 

ssssss/ rrrrr 

($IAP) vvvvv 
($LIT) vvvvv 
($PED) vvvvv 

ssssss IS A SYMBOLIC NAME, RIGHT-JUSTIFIED. 

aaaaa 

rrrrr 

vvvvv 

THE CHARACTER / (SLASH) FOLLOWING ssssss 
INDICATES THAT THE ROUTINE WAS NOT LOADED. 

IS AN OCTAL ENTRY ADDRESS, RIGHT
JUSTIFIED, OF A LOADED PROGRAM OR COMMON 
BLOCK NAME. 

IS AN ADDRESS-REFERENCING OF AN UNLOADED 
PROGRAM OR COMMON BLOCK NAME. 

IS THE OCTAL VALUE OF: 

($IAP) 

($LIT) 

($PED) 

HIGHEST INDIRECT ADDRESS POOL 
LOCATION 

LOWEST DIRECT REFERENCE 
LITERAL POOL L/OCATION 

HIGHEST PROGRAM LOCATION STORED 

Figure 2-2. Memory Map Format 

MOS 2-9 



control directives 

0('1111• 'I I (•1'\f\IH: rn5111 fJ(, 1 I'()(\ 0;.'1471 ~ onlt'IOO 1)3H 15 0110~~('1 1n3121 
onr,. 1 '"''·lb ... l)f)~~712 11·5l l7 l 1'157:?0 11"157?.1 105771' nnoo 1 :-- C'351';5f; 
or. r.r . .,; .. ,,'':.i'lt:\ 001771'l 01' 177' !)('I \772 or.1713 00?1'\1 4 QO::?C'l 1 !) 004741 
0(·(•i 1 .. ;~11 177, IJl'\17715 or 20n:!i 002004 on2n•J7 on 1 ;,7 ::-; 1)1) 177 7 Ml1300 
orir.r· .i ... \"l'.2"'t)f'I Ol'l 1 lOt· l)f·200"i on2nof:l 0111374 OOG~21'\ 001 ?7! ort'?77 
onr.1 , ' 1«.' l 7 !'l.., nn \7'57 f)( t 'f:)(I urt7"i1 ()(' t 7ti2 uo17t:d 1;:>n::>4t. \ ')(\')4() 

arr··~' l ?•l:J1') 1 ?0'?4(1 1 '11)')4l') 1'?!:1')41) 1 ?1')240 12n?4 '.l 1 ?1);:>4r 1 ?0?40 
OOG'· l i ( ? ('I') 4 ~l 1 '?0241' t ')0?41) 1?0;:>41') , ?.0::>40 0('01:) 11'1 o 1 n;i.07 ('I\ ')3('1" 
n('lnt 'i·· •· 11";;" 7" 0 I O::>l!'i f) ! If ?]I• 11 ?~/ ij 01'\2~7 4 00,,.,n 0('1)!'12;_\ (;()1'1~24 

0('(;1 J ': 111''1(,""~~ 01'10"2" or 1 "7!i 01"0"'1" Ql'.l')~()f' onoso7 l)(\1'1!::21 nno~2n 

nrr.: ~ ~" l.•."l'.,1'"' l)n•1F 15 or.o,_ 1.., !'.Ir 117 '5 ('1111 l 7fi 01'11 77 ·11'112')(1 (11'107~7 

0 (I I~ I '·' [', .. ,, 1tl._4. Ol'l0f:125 l)f•f,)"'>03 or.otio4 0110511 Ol'lO')IJ"> l)l)l'l!l J ;:> I' I 031'!~ 
(!(\ (\ ~ ,\ .. C•'' l • o? on 11 '>" or 11 :::!'> CIC Ofi? 1 onoHi;:> 0010fifl l)l'll'l"::?:>. 1'1'11)1'.1 ;_\ 
O!"f'\ I~, .. , ur•n!i 1 4 OOOfi 17 01'0'-<'" Qfl01J?1 ()01)62? Oll1165 0l031~ onn7tt4 
oor.1 ., .. u•it ! I) 4 00'51'4"' O< 11 ':J7 OtiO"i71 01031')2 OtOJ04 O!OU;:t r. 1 0311 
0('1(.) 7" -.1Pr1';t 7 onn'Hi I ')r O'-'ti:? l'Jl"f)..,f'.'4 0101"0?. Q(l(J51J 001:::>01 rn7,45 
oro:;. 1 t ... 7 7 7 7 Ol'l ~3fi or 7 ~\ 5" C)( 7:\J5 on7~H5 orin':J3 l)('lfif; 7" rn1it!tif> 
OM·f'I' r.r.n?7" i)f)tj~fj~ 177771 1 ?O:ion onn?'lC' 00"' 17 5 001"1?0(1 CM72? 
Ol'r,;.•;."' .1r..,~o:\ ()1'1~542 or.o 1 o•: OMll'\2'1 01'10('14('1 O('l':)~~I'\ t 41')7,, l !'-4240 
onr1;..,1' 141"1?4" 14 715 40 1~1"4r 1111"4('1 1 ?J451'i 1?.34~" I ?'d!'>f' 1?3451' 
(1(';(;;.: .: i:i.\l:!'>"' 1?.~4 'lti 1;: .~ 4 ':J" 1 ?J4 '" I ?j4"Jf, 12;:<4~(\ 1/;\451- I :?3tt515 

or.;l.~-. 1.H ?.-,"• 1J11?04 J ,l.(1?f,I" 1::>n:;>4n 1?0241"l 1.3f·!'I-' 1 '.'-<1?o;; I :>-~;:>fif'I 
(l(lf;.'.i< j ;.;;.itt,, 130fiti3 1 ~Hi?th 1JJ?"3 1?024('1 1 ·' (\.., f\ ·' 130:;.>6:;.> 1 'J'?t1h 
Q('lr1.c ') t., ,~? "1•1 I~\ Of' I'<~ 13\tH,? 1 Jj:;.>t",, 1 ?J?.40 1:1u11-2 1 :\020;;. I ~;.>?fin 
orr t \ ·: 1:'ti~4 •" 1 ~H)t'ti3 1 ~0::>"" I :.'<J?l:I? 1 ?1')?41'! 1 ~('111'' 1 ;,o::>t1::> I·' J:>l:l? 
0(1(' t I·' '~t.~ 4~ 1 :\uh63 1 ;_< \fi"i2 l ~\ ,,:>t'i? 1?0241) 1 ;:>0241"1 1 ?!'1;141' I ::in?tt<' 
()('IOI" ' 1? •"''.) 4 f\ 1 ?0?40 1;.:o;,i,,,·, 1 ?!'):;.>41'1 1 ?n;:u10 I ?l':.:t11 J?l'l?4r I )l'J" 4r 

0(1(1.:: I" t ?r;;;4 ~ 120:?40 1,..0;;:4n 1?1')?4('1 onJ755 077777 01'103".>C onoro4 
()01'\'• f<" r.:-.1 r.,J."1 0('11)767 fJ I :?71'in Q;.>J;:>77 O?ll404 000501"1 01'1)1') 1 (, nrir12c:i 
oor·~.1 -: l 2 ltl ·1 ono?'-? 0 I 6 ~r.t1 Qf'Qjl'l'1 (1')1)1'1\('I ono2o"i \40h4(· 1 :::>0?4!" 
noo~.,. ... 1;r,)4'! 1 ?()?4('1 0(473? l.C0723 l j 170~ 1 ttF-7 ()? 14030~ 0" 47;'\? 
0011~ ~ ., , '1•'/2:>. 1~1711 t .t 37 1" 1?1')?4(J 00Jl/O 1413?? 14?70:0. 1?0240 
orn!-t. ... I 'J ,., ? ttri l')l'l.~"' :in 1II1r:4 r, 1 '10;.>4f'J 120240 1 :,>(l?4" (Jf'l:.!,..47 141717 
oor~"' 1 .. 1.., 7 ':i I l271" l~??4f"J or,211.11 141717 1~o:~J1 14'11'14( I tl0('40 
0(10~") • :ir.pAn 1111717 1 !'- 1)~,j I 1 <!' ;.>40 I ?IJ:>40 o·oPti~ \ A?:,o ! , "?:'>()~ 
0<'()~1'• 1? ):;>do) )?()?4n ()(.~7 I" 1427t1' J4:?Jl2 14770' l)OQr.00 ('lf'.\(1'100 
oor,,..,'l·• '" '""1 r, )" lll'.\011UO or;J.P.1i1.1 orono0 onoOOf'\ or1()1'\(\I') ')f\1)(\1')( nl"nnoo 

()('!(:~).., (J(,flfl(l('I l')nl'11'll)!" ')r•nnol'\ Ql'\O!l:J•1 onono('I onoo('l'l \ ?l'J:;>40 I ?0;;>4<' 
0001' •. , Oi•,'"4'l 1433~5 1111 :rnJ \!'l2,q I 1.1177\1' 003154<; \44717 1 d6.'1, 
Ot'IC't-11" 1~112 1 1 ::>n?4C• or .. F;(V· 1.t 531 7 14\240 120241") t?O?dr 01'\27 j(\ 

Q('l()I'.,., 111 "?'1•1 1 ;:>0?40 1 ?0?411 120?40 0042~4 1H·,H7 140704 1 ?0?40 
OOf:"~" l ?1l24Cl 004ti:i4 l~PM 1~Jl:l40 !?0?40 1 ?0?41'\ Ol'l362? 1"'1701'\ 
O('<'t- I.' 1d4 7 1 ~ \42'140 120?4fl l')nJFi~~ J "11715 1d07 11 147?4(1 1 tl1Jf'4() 
00to7 ·:· ., "\ {'\.,.., ... ~ 1':i1722 t.1!2703 1?0?40 I ?Otl40 003"i53 1517241 140703 
O!"r i 1 •. 14:°i"'4'! 1?:l?40 or?744 1 ~21'i4!'1 1 ?024('1 1?0?4') 121)?.dr or 4:;.> 4t-

Note: An asterisk indicates that the succeeding line (or lines) has the same contents 
as the last printed line. 

Figure 2-3. Dump Format 

MOS 2-10 



control directives 

In addition to these task options, the parameter string can also specify relocation values 
to instruc;t the system loader where to relocate the program and data. Relocation value 
parameters are of the form: 

where 

xx 

n 

xx= n 

is the relocation bias name 

is the octal relocation value in the range 0 to 
077777 entered as an octal number up to five 
digits (no leading zero is required). 

The relocation bias names are: 

RP 

RI 

RL 

RC 

Specifies the program relocation base 
0 s RP s core size 

Specifies the indirect pointer relocation base 
0 s RI s 0777 

Specifies the literal relocation base 
0 s RL s 03777 

Specifies the COMMON relocation base 
0 s RC s core size 

If these relocation biases are not specified, /LOAD sets them to the default values 
defined at system preparation time. 

/ULOAD 
/u,name,p(1),p(2), ... ,p(n) 

This control directive directs the executive to call the system loader and load one or more 
programs from the SF file. Except for the name parameter, the parameters are identical 
to those of /LOAD. 

The name parameter specifies the name of the program to be loaded from SF, and is the 
first parameter in the string. Object module names are generated by DAS MR or 
FORTRAN IV. Program names are alphanumeric character strings of one to eight 
characters. Six blanks is an illegal name. Parameters other than the name can appear in 
any order. 

MOS2-11 



control directives 

All error and bounds-checking of parameters is identical to that in /LOAD. 

/ASSEMBLE 
/A,p( 1) ,p(2), ... ,p(n) 

This control directive directs the executive to load the assembler. The parameter string 
specifies optional tasks for the assembler or executive to perform after the assembly is 
completed. These tasks are: 

Parameter 

N 
B 

MAP 

L 

M 

Definition 

No source listing 
No binary object 
program output 
Memory map on load
and-go 
Load-and-go after 
assembly 
No symbol table 
listing 

Def a ult Assignment 

Source listing 
Binary object pro
gram listing 
No memory map on 
load-and-go 
No load-and-go after 
assembly 
Symbol table listing 

If L (load-and-go) is specified, all the options and relocation parameters of /LOAD can be 
used in I ASSEMBLE. These loading parameters do not apply to the assembly, but to the 
load-and-go initiated after the assembly is completed. 

/FORTRAN 
/F, p ( 1) , p ( 2) , ... p ( n) 

This control directive directs the executive to load the FORTRAN compiler. The parameter 
string specifies optional tasks that the compiler or executive is to perform. These tasks 
are: 

Parameter 

N 
B 

MAP 

L 

0 

x 

M 

MOS 2-12 

Definition 

No source listing 
No binary object 
program output 
Memory map on load
and-go 
Load-and-go after 
compilation 
Octal listing of 
generated code 
Conditional compilation 

No symbol table listing 

Default Assignment 

Source listing 
Binary object pro
gram listing 
No memory map on 
load-and-go 
No load-and-go after 
compilation 
No octal listing of 
generated code 
No conditional com
pilation 
Symbol table listing 



Parameter 

D 

Definition 

Generate two-word 
integer and logical 
numbers 

Is MA IN I p ( 1 ) I p ( 2 ) 

control directives 

Default Assignment 

Generate one-word 
integer and logical 
numbers 

This control directive directs the executive to call the system loader and load the system 
maintenance program. 

p(l ), if present, is a physical unit name to which. Pl is assigned. ~(2),. if present, is a 
physical unit name to which PO is assigned. Neither the Pl nor the PO can be assigned to 

dummy (DUM). 

MOS 2-13 



control directives 

DECK PREPARATION 
The batch processing facilities of MOS are envoked by control directives in combination 
with programs and data. These elements form the input job stream to MOS. The input job 
stream can come from various peripherals and be on various media. The following 
examples illustrate common job streams and deck preparation. 

Example 1 - Card Input 

Request a listing of all logical 110 assignments, enter the current date, set the LO line 
count to 50, and log a comment to the operator that reads: MOUNT TAPE DM72. 

/JOB,EXAMPLE1 
/IOLI ST 
/DATE,10/15/70 
/FORM,50 
/C,MOUNT TAPE DM72 
/ENDJOB 

Example 2 - Card Input 

Compile a FORTRAN IV program with source listing, octal object listing, and load·and-go 
binary output. 

/JOB,EXAMP:LE2 
/REW,GO 
/FORTRAN,L,O 

(Source Deck) 

/EOF 
/ENDJOB 

Example 3 - Teletype Input 

Assign the Bl file to magnetic tape unit 2, load a program from Bl and produce a map. 
After loading, halt before execution and produce a dump at program completion. 

I JOB, EXAMPJ:.E3 
/ASSIGN, BI••MTO 1 
/LOAD,MAP,HALT,DUMP 
/ENDJOB 

Example 4 - Card Input 

Copy a card file from Pl (processor input, figure 3-1) to scratch 1 (S1), write an end of 

file, rewind, and copy to the LO file. Then. copy scratch 1 (Sl) to the second file of scratch 
3 (S3), rewind both scratch tapes. and exit. 

f\AOS 2-14 



/JOB,EXAMPLE4 
/COPYA,PI=S1 

(Card File) 

(End-of-File) 

/WEOF,S1 
/REW,S1 
/COPYA,S1=LO 
/REW,S1,S3 
/SFILE,S3,1 
/COPYA,S1=S3 
/WEOF,S3 
/REW,S1,S3 
/ENDJOB 

control directives 

MOS 2-15 



control directives 

SECTION 3 - IN PUT /OUTPUT CONTROL PROGRAM 

I 0 control is the generalized 110 subsystem under MOS for all users and requires only 
minimal understanding of the 620 computer hardware 110 operations. All 110 operations, 
both MOS and user-written. utilize I 10 control. During program execution, only the 
required modules of I 10 are loaded into memory. 

Because of the standardized interfaces between 1/0 control and the user's program, and 
between I /0 control and I /0 subroutines, I /0 peripherals can be changed without 
program reassembly. As new peripheral devices are added to a system, it is only necessary 
to program the required I /0 driver (section 14 ). 

Status and error messages are given in section 13. 

LOGICAL AND PHYSICAL UNITS 

MOS. through I ;O control. allows access to ·I 10 devices and_ files in terms of logical units 
with names and /or numbers rather than by actual physical references. The 
correspondence of a logical unit to a physical unit is made by I ASSIGN prior to program 
loading and execution. 

MOS allows up to 64 logical units, with the first 14 being defined and used by MOS. Table 
3-1 lists logical units defined by MOS; table 3-2, physical devices; and table 3-3, valid 
assignments. 

MOS 3-1 



input/output control program 

Unit No. 

2 

3 

4 

5 

MOS 3-2 

Description 

System file 

System input 

System output 

Processor 
input 

List output 

Table 3-1. MOS 1/0 Units 

Unit Name 

SF 

SI 

so 

Pl 

LO 

Function 

The system file input logical unit. 
All processing, utility, and 
library programs are stored here. 
SF is a magnetic tape unit or 
drum or disc memory unit. 

The system directive input logical 
unit. The operating system inputs 
all of its control directives from 
SI. 

The system output logical unit. 
The operating system outputs all 
input control directives and out
puts system operation 
messages on SO. 

The language processor in 
put logical unit. All 
operating system proces
sors (assembler, compiler, 
etc.) input source state
ments from Pl. 

The system listing output 
logical unit. The oper
ating system outputs all 
input control directives 
and any system operations 
messages on LO. All oper
ating system processors 
(assembler, compiler, etc.) 
output listings on LO. 



Unit No. 

6 

7 

9 

10 

input/output control program 

Table 3-1. MOS 1/0 Units (continued) 

Description Unit Name 

Binary input Bl 

Binary output BO 

System scratch SS 

Load and Go GO 

Processor PO 

Function 

The system binary input logical 
unit. All operating system pro
grams that input binary records 
input from Bl (e.g., loaders). 

The system binary output logical 
unit. All operating system proces
sors (assembler, compiler, etc.) 
that output binary text records 
output on BO. 

The system intermediate scratch 
logical unit. All operating system 
processors (assemblers, etc.) 
that use an intermediate scratch 
unit input from SS. 

The system assemble/compile and 
GO (load-and-go) logical unit. 
The assembler and compiler out
put on GO the same information 
as output on BO. When assemble/ 
compile and GO is requested, GO 
references the system resident 
unit. Otherwise, it references 
a dummy I /O driver. 

The system processor output 
logical unit. All operating 
system processors (assembler, 
etc.) that use an intermediate 
scratch unit output on PO. 

MOS 3-3 



input/output control program 

Table 3-1. MOS 1/0 Units (continued) 

Unit No. Description Unit Name Function 

11 Scratch 1 SI System scratch logical unit. For 
assignment as scratch records. 

12 Scratch 2 S2 System scratch logical unit. For 
assignment as scratch records. 

13 Scratch 3 S3 System scratch logical unit. For 
assignment as scratch records. 

14 Scratch 4 S4 System scratch logical unit. For 
assignment as scratch records. 

15-~ User-assigned Logical unit Can be assigned to any function. 

"" 
number 

MOS 3-4 



input/output control program 

SI 

CR 
DR 
MT 
PT 
TR 
TY 

Table 3-2. MOS Physical 110 Devices 

System Name 

--CPcu 
CR cu 
DKcu 
DR cu 
LPcu 
MT cu 
PT cu 
TPcu 
TR cu 
TY cu 
DUM 

Physical Device 

Card punch 
Card reader 
Disc memory unit 
Drum memory unit 
Line printer 
Magnetic tape unit 
High-speed paper tape reader /punch 
Teletype paper tape punch 
Teletype paper tape reader 
Teletype printer 
Dummy 1/0 

NOTES 

1. cu represents controller/unit. 

2.--DUM ·appears to the 1/0 control program to be a legitimate 
device, but in reality does nothing. DUM is used when an I /0 output 
is not desired and for other special system purposes. 

Table 3-3. Valid Logical Unit Assignments 

so Pl LO Bl BO GO PO Sl,S2,S3,S4 

TY CR CP CR CP DR DR ---DR 
DR DR DR DR MT MT ---MT 
MT LP MT MT ---DUM 
PT MT PT PT ---CR 
TR PT TR TP ---PT 
TY TR DUM DUM ---TR 
DUM TY ---TY 

DUM ---LP 

For disc versions of MOS, every DRxx unit name is replaced by DKxx. 

SS 

CR 
DR 
MT 
PT 
TR 
TY 
DUM 

MOS 3-5 



input/output control program 

1/0 CALLS 
During program execution, 110 control facilities are accessed through calls specifically 
defined by the DAS MR assembler. When called, 110 control normally transfers one 
record at a time between the computer memory and the 110 device. An 110 request to 110 
control spec'ifies: 

a. The logical unit number 

b. The type of 110 function to be performed 

c. The number of memory words to be transmitted, or a count for skip operations 

d. The data location 

These parameters are combined into 14 1/0 calls recognized by the DAS MR assembler 
(table 3-4). 

The following abbreviations are used to describe the calls: 

NOTE 

Abbreviation 

DST 
fc 
IOCS 
foe 
tun 
n 

WC 

Definition 

Device specification table 
Function code 
110 control entry point 
Data address 
Logical unit number 
Number of words, records, or files to 
be skipped 
Word count 

The A, B, and X registers and the overflow indicator are assumed 
volatile and are destroyed during all 110 calls. 

MOS 3-6 



input/output control program 

Table 3-4 Summary of 1/0 Calls 

Mnemonic Definition Function Code 

FUNC Perform function 016 
RALF Read alphanumeric record 001 
RBCD Read BCD record 041 
RBIN Read binary record 101 
REW Rewind 004 
SKFF Skip files forward 005 
SKFR Skip files reverse 205 
SKRF Skip records forward 006 
SKRR Skip records reverse 206 
STAT Request status 000 
WALF Write alphanumeric record 002 
WBCD Write BCD record 042 
WBIN Write bina'ry record 102 
WEOF Write end of file 003 

MOS 3-7 



input/output control program 

The general format of all 110 calls is: 

Label Field 

Symbol (optional) 

Operation Field 

Mnemonic 

The general format of the expansion of all 110 calls is: 

Label Field 

Symbol (optional) 

Operation Field 

JMPM 
DATA 

DATA 

where (fc +parameter 1) is: 

Bit Position 

17* 16 15 
n 

1 4 1 3 12 
n n n 

11 1 0 9 
n n n 

Function Code 

8 7 6 
n n n 

where n is the octal value of the indicated bit groups. 

For 18-bit computers (622). 

Variable Field 

1. 2. 3. or 5 
pararneters or ex
pressions separated 
by commas 

Variable Field 

IOCS 
fc +parameter 
parameter 2 

parameter n 

5 4 3 
n n n 

lun ( p 1 l 

2 1 0 
n n n 

In addition to the expansion of each call, the assembler generates two other directives at 
the beginning of every program that uses 1/0 calls: 

EXT 
ION 

roes 
lun 1, ... ,lun n 

The EXT declares IOCS an external reference, while ION does the same for the necessary 
drivers. Both allow the loader to link the user and 110 control at load time. 

The following sections give a detailed discussion of each I 10 call defined within MOS. 

MOS 3-8 



READ BINARY RECORD 

Call: 

Expansion: 

RBrN 

JMPM 
DATA 
DATA 
DATA 

lun,wc,loc 

roes 
040400+lun 
WC 

loc 

-j.nlJut/output control program 

This call inputs we words from the I 10 device to consecutive memory addresses 
beginning at loc. The function is performed in the mode requested. if possible. Otherwise. 
the mode of the device is used. If the input record contains more than we words. only we 
words are stored in memory, and the remainder, ignored. If the input record contains less 
than we words, they are input. The number of words is placed in word 0 of the DST. The 
I 0 request is ignored if we is not greater than zero. 

READ ALPHANUMERIC RECORD 

Call: 

Expansion: 

RALF 

JMPM 
DATA 
DATA 
DATA 

lun,wc,loc 

roes 
000400+lun 
WC 

loc 

This call inputs we words from the I 10 device to consecutive memory addresses beginning 
Cit loc. The function is performed in the mode requested. if possible. Otherwise. the mode 
of the device is used .. If the input record contains more than we words. only we words are 
stored in memory, and the remainder, ignored. If the input record contC1ins less than we 
words. they are input. The number of words is placed in word 0 of the DST. The I /0 
request is ignored if we is not greater than zero. 

READ BCD RECORp 

Call: 

Expansion: 

RBeD 

JMPM 
DATA 

lun,wc,loc 

roes 
020400+lun 

MUS 3-9 



input/output control program 

DATA WC 

DATA loc 

This function inputs we words from the 110 device to consecutive memory addresses 
beginning at loc. The function is performed in the mode requested, if possible. Otherwise, 
the mode of the device is used. If the input record contains more than we words, only we 
words are stored in memory, and the remainder, ignored. If the input record contains less 
than we words, they are input. The number of words input is placed in word 0 of the DST. 
The I /0 request is ignored if we is not greater than zero. 

WRITE BINARY RECORD 

Call: 

Expansion: 

WBIN 

JMPM 
DATA 
DATA 
DATA 

lun,wc,loc 

roes 
041000+lun 
WC 

loc 

This function outputs we words to the 1/0 device from consecutive memory addresses 
beginning at toe. The function is performed in the mode requested, if possible. Otherwise, 
the mode of the device is used. If output is specified with less than we words, they are 
output. if the configuration permits we or more words, we words are output. The number 
of words output is placed in word 0 of the DST. The 1/0 request is ignored if we is not 
greater than zero. 

WRITE ALPHANUMERIC RECORD 

Call: 

Expansion: 

WALF 

JMPM 
DATA 
DATA 
DATA 

lun,wc,loc 

IOCS 
001000+lun 
WC 

loc 

This function outputs wc words to the 1/0 device from consecutive memory addresses 
beginning at loc. The function is performed in the mode requested, if possible. Otherwise, 
the mode of the device is used. If output is specified with less than we words, they are 
output. If the configuration permits we or more words, we words are output. The number 

v10S 3-10 



input/output control program 

o'f words output is placed in word 0 of the DST. The I /0 request is ignored if wc is not 
greater than zero. 

Efficient choice of a record length depends upon the peripheral device: for example, the 
more efficient use of a disc file would be with record lengths in a multiple of sixty words. 

WRITE BCD RECORD 
Call: 

WBCD lun,wc,loc 

Expansion: 

JMFM 
DATA 
DATA 
DATA 

roes 
021000+lun 
WC 

loc 

This function outputs wc words to the I /0 device from consecutive memory addresses 
beginning at loc. The function is performed in the mode requested, if possible. Otherwise, 
the mode of the device is used. If output is specified with less than wc words, they are 
output. If the configuration permits wc or more words, wc words are output. The number 
of words output is placed in word 0 of the DST. The request is ignored if WC is not greater 
than zero. 

Note 

For high-speed paper-tape reading and writing there is a driver for unformatted 
tapes as well as for formatted tapes. The high-speed paper-tape driver for 
unformatted tape makes no distinction between WBIN and WALF. On input 
this driver will read one record which is defined by the wc parameter in the 
program if wc is less than 60, or otherwise 60 words will be read. Each record 
read is checked for leading blank characters. If the first half record contains all 
blank characters, the blanks are interpreted as an end-of-file. On output, the 
driver for unformatted tapes will write two frames per word to paper tape for wc 
words. The DST and paper-tape driver for unformatted tapes are combined as 
one routine labeled $OP, which corresponds to the peripheral mnemonic PTlO. 

WRITE END OF FILE 

Call: 

Expansion: 

WEOF lun 

JMPM 
DATA 

roes 
001400+lun 

MOS 3-11 



input/output control program 

This function outputs an end-of-file character to the peripheral device. No data are 
transmitted. Subsequent 110 status requests produce an end-of-file return. 

REWIND 

Call: 

Expansion: 

REW 

JMPM 
DATA 

lun 

roes 
002000+lun 

This function issues a rewind command to the I /0 device. No data are transmitted. 
Subsequent 1/0 status requests produce a beginning-of-device return. 

SKIP RECORDS FORWARD 

Call: 

Expansion: 

SKRF 

JMPM 
DATA 
DATA 

lun,n 

roes 
003000+lun 
n 

This function skips n records in the forward direction on the 1/0 device. No data are 
transmitted. If an end of device or end of file is detected before the requested number of 
records are skipped, skipping terminates and the count of records remaining to be 
skipped is placed in word 0 of the DST. Subsequent 1/0 status requests produce an end
of-device or end-of-file return, respectively. The request is ignored if n is not greater than 
zero. 

SKIP RECORDS REVERSE 

Call: 

Expansion: 

\/IOS 3-12 

SKRR 

JMPM 
DATA 
DATA 

lun,n 

roes 
0103000+lun 
n 



input/output control program 

This function skips n records in the reverse direction on the I /0 device. No data are 
transmitted. If a beginning of device or an end of file is detected before the requested 
number of records are skipped, skipping terminates and the count of records remaining 
to be skipped is placed in word 0 of the DST. Subsequent I /O status requests produce a 
beginning-of-device or end-of-file return, respectively. The request is ignored if n is not 
greater than zero. 

SKIP FILES FORWARD 

Call: 

Expansion: 

SKFF 

JMPM 
DATA 
DATA 

lun,n 

roes 
002400+lun 
n 

This function skips n file marks in the forward direction on the 1/0 device. No data are 
transmitted. Subsequent 1/0 status requests produce an end-of-file return. If an end of 
device is detected before the requested number of files are skipped, skipping terminates 
and the count of any remaining files to be skipped is placed in word 0 of the DST. 
Subsequent I /0 status requests produce an end-of-device return. The request is ignored if 
n is not greater than zero. 

SKIP FILES REVERSE 

Call: 

Expansion: 

SKFR 

JMPM 
DATA 
DATA 

lun,n 

roes 
0102400+lun 
n 

This function sk.ips n file marks in the reverse direction on the 1/0 device. No data are 

transmitted. Subsequent l/O status requests produce an end-of-file return. If an end of 
device is detected before the requested number of files are skipped, skipping terminates 
and the count of any remaining files to be skipped is placed in word O of the DST. 
Subsequent I /O status requests produce a beginning-of -device return. The request is 
ignored if n is not greater than zero. 

MOS 3-13 



input/output control program 

PERFORM FUNCTION 

Call: 

FUNC lun ,. n 

Expansion: 

JMPM 
DATA 
DATA 

IOCS 
003400+lun 
n 

This function commands one of the following special functions peculiar to the specified 
110 device: 

Peripheral 

Teletype keyboard (TYcu) 

Teletype paper tape punch 
(TPcu) 

High-speed paper tape punch 
(PT cu) 

Card punch (CPcu) 

Line printer (LPcu) 

Value of n Channel on 

0 
1 
2 
3 
4 
5 
6 
7 

MOS 3-14 

Function 

Spaces paper five lines (n ignored) 

Punches about 24 inches of blank 
leader (n ignored) 

Punches about 24 inches of blank 
leader (n ignored) 

Ejects one blank card (n ignored) 

Slews paper at a rate other than one 
line per print line (n is the slew 
character). The page position for each of 
the eight possible counts in a function 
call is listed below: 

Format Tape Position on Page 

0 Top of form 
Reserved for user 

2 Reserved for user 
3 Reserved for user 
4 Reserved for user 
5 Reserved for user 
6 Reserved for user 
7 Reserved for user 



REQUEST STATUS 

Call: 

Expansion: 

STAT 

JMPM 
DATA 
DATA 
DATA 
DATA 
DATA 

input/output control program 

lun,err,eof ,beod,busy 

IOCS 
O+lun 
ERR 
EOF 
BEOD 
BUSY 

This function examines the 1/0 driver of a logical unit to determine Its status and then 
specifies return addresses to be used depending on this status. Return addresses can 
specify indirect addressing. On return, the X register points to word 0 of the DST of the 
I /0 driver for this lun. If this lun has no I /0 driver, the X register is cleared. 

The various exit terms are: 

ERR 
EOF 
BEOD 
BUSY 

I /0 error on last transfer 
End of file on last transfer 
Beginning/end of device on last transfer 
Device busy 

MOS 3-15 



input/output control program 

1/0 PROGRAMMING EXAMPLES 

Example 1 

l~ewind tape unit 3 (lun = 15) and read one file consisting of 100 records of 60 binary 
words each. After each record is read. print 1t on the line printer (lun = 5) Go to the top 
of the next form upon completion and rewind tape unit 3. Halt on an end of file or I 0 
error Exit to the resident monitor on normal completion. 

Label Field 

El 
c 

I) 

F 
BUF 
x 

G 

Example 2 

Operation 

REW 
LDAI 
RALF 
STAT 
WALF 

STAT 
IAR 
JAN 
FUNC 
STAT 
REW 
STAT 
BSS 
HLT 
EXT 
CALL 
END 

Field Variable Field 

15 
100 

15.60.BUF 
15.X.X.X.C 
5.60.BUF 
5.X.X.X.D 

B 
5.1 
5 X.X.X.E 
15 
15.X.X.G.F 
60 
0 
EXIT 
EXIT 
A 

Re<id a card from the card reader (lur = 6) until an end of file 1s detected and write it on 
:i drum file (lun = 20). List all I 0 errors on the Teletype. but do not terminate the 
operation. 

Label Field Operation Field Variable Field 
A RBIN 6.60.BUF 
B STAT 6.F.D.F.B 

WBIN 20.60.BUF 
E STAT 20.F.F.F.E 

JMP A 
F WALF 3.3.H 

J STAT 3.A.A.A.J 
JMP A 
EXT EXIT 

D CALL EXIT 
BUF BSS 60 
H DATA ·10 ERR' 

END A 

MOS 3-16 



input/output control program 

Example 3 

Read a disc file (lun = 17) consisting of 40-word records until and end of file 1s detected. 
Search each record for a zero word and keep a count of them. At end of file. punch a 
binary card on lun = 7 with the count of zero words in the first card word. Ignore i '0 
errors. 

Label Field 

A 

B 
D 
c 
E 

G 

F 
H 
BUF 

Operation 

TZA 
STA 
RBIN 
STAT 
LDXI 
LDA 
XAZ 
!NCR 
SUB! 
JAP 
JMP 
WBIN 
STAT 
EXT 
CALL 
INR 
DATA 
BSS 
END 

Field Variable Field 

H 
17 .. 40.BUF 
17.C.G.C.D 
BUF 
O.X 
F 
045 
BUF + 40 
B 
E 
7.1.H 
7.J.J.J. I 
EXIT 
EXIT 
H 
0 
40 
A. 

MOS 3-17 



debugging program 

SECTION 4 - DEBUGGING PROGRAM 

The MOS debugging program aids the programmer in finding and correcting program 
errors. Its commands examine and/or change the program, in addition to running part or 
all of a program. 

Whenever the DEBUG option is specified on /LOAD or /ULOAD (section 2), the 
debugging program is loaded with the user's program. When loading is complete, control 
is transferred to the debugging program. 

Status and error messages are given in section 13. 

DIALOG 

The debugging program is an interactive component within MOS used via SI. Upon entry, 
if SI = TYOO, it types: 

CIR** 

To communicate with the debugging program, use the command language with the 
following syntax: 

a. General form: 
instruction parameter(l),parameter(2), ... ,parameter(n) 

b. Instructions can have up to 72 characters. Characters beyond the 72nd are 
ignored. 

c. Continuation lines begin with a comma (,). 

d. Invalid instructions cause the reply WHAT?? followed by ':":' if SI = TYOO. 

e. All numbers are octal. 

f. Negative (two's complement) numbers are preceded by a minus (- ) sign. 

MOS 4-1 



debugging program 

g Parameters are separated by commas. 

h. Blanks between parameters are ignored, but other blanks may cause errors. 

PSEUDOREGISTERS 

Because the debugging program uses the A, B, and X registers and the overflow indicator, 
pseudoregisters are defined to guarantee the integrity of the physical registers during the 
debugging process. The debugging program loads the pseudoregisters into the physical 
registers prior to transferring control to the user's program. With a breakpoint (trap) set. 
the contents of physical registers are saved in the pseudoregisters when the breakpoint is 
reached. When the program starts from the breakpoint, the physical registers are restored 
to the saved values. The pseudo-overflow indicator contains zero or nonzero, 
corresponding to overflow reset or set, respectively. 

MOS 4-2 



debugging program 

INSTRUCTION LANGUAGE 

The following is a list of instructions accepted by the debugging program, where aaaaaa 
denotes any signed or unsigned 16-bit (18-bit for 622 computers) octal number. The 
debugging program makes no check of addresses against the actual memory size. Use 
care in specifying addresses. 

DISPLAY AND ALTER INSTRUCTIONS 

Instruction 

aaaaaa 

aaaaa( 1 ),aaaaaa(2) 

A 

Aaaaaaa 

8 

Baaaaaa 

x 

Xaaaaaa 

Description 

Display the contents of memory at the given memory 
address on LO. 

Display the contents of memory at aaaaaO(l) 
through aaaaa7(2) inclusive on LO. An 
asterisk indicates that the succeeding line 
(or lines) has the same contents as the last 
printed line. 

Display the contents of the pseudo-A register 
on LO. 

Change the contents of the pseudo-A register 
to aaaaaa. 

Display the contents of the pseudo-B register 
on LO. 

Change the contents of the pseudo-B register 
to aaaaaa. 

Display the contents of the pseudo-X register 
on LO. 

Change the contents of the pseudo-X register 
to aaaaaa. 

MOS 4-3 



debugging program 

Instruction 

() 

Oaaaaaa 

Caaaaaa,v( 1) ,v(2) , ... , 

v(x) 

laaaaaa( 1 ),aaaaaa(2).v 

Saaaaaa( 1 ),aaaaaa(2),v 

Saaaaaa( 1 ),aaaaaa(2),v,m 

1/0 INSTRUCTIONS 

Instruction 

ASSIGN,1(1) = r(l), 
1(2) = r(2), ... , 
l(x) = r(x) 

IOLIST,1(1 ),1(2), ... , 
l(x) 

R 

MOS 4-4 

Description 

Display the contents of the pseudo-overflow 
indicator on LO. 

Change the contents of the pseudo-overflow 
indicator. 

Change the contents of memory addresses aaaaaa 
and following to the values v(l) to v(x), where 
x = 1 through 16 and v has the same range as 
aaaaaa. 

Initialize th.e contents of memory addresses 
aaaaaa(l) through aaaaaa(2) to the value v, where 
v has the same range as aaaaaa. 

Search through memory addresses aaaaaa( 1) to 
aaaaaa(2) for value v and fog all addresses 
containing that value on LO. 

Search through memory addresses aaaaaa( 1) to 
aaaaaa(2) for the value v. The contents of each 
memory address are ANDed with the mask specified 
by m prior to comparison with v and log all 
addresses containing that value on LO. 

Description 

Assign logical units 1(1) through l(x) to physical 
devices r( 1) through r(x), respectively, I( 1) 
through l(x) are decimal numbers. Re-
assignments can be made only to physical devices 
whose drivers were loaded with DEBUG. 

List current logical unit assignments (section 2). 

Read a program in binary record format (see 
appendix C) from logical unit assigned to Bl 
into memory. When reading is complete, print 
the starting address, ending address, execution 
address, and program name on the LO. 

Caution: Only programs that have been punched by 
DEBUG can be read by DEBUG. 



Instruction 

T 

Waaaaaa( 1 ),aaaaaa(2) 

Waaaaaa(l), aaaaaa(2) 
aaaaaa(3) 

Waaaaaa( 1 ),aaaaaa(2), 
aaaaaa(3), name 

CONTROL INSTRUCTIONS 

Instruction 

Gaaaaaa 

T aaaaaa( 1 ),aaaaaa(2) 

debugging program 

Description 

Terminate the current printout after the next 
octal number. This can be used for discontinuing 
search, memory display, or I 10 list output. 

Write memory in binary record format (see 
appendix C) on the physical unit assigned to 
BO from addresses aaaaaa(l) through aaaaaa(2). 

Write memory in binary record on the physical unit 
assigned to BO from addresses aaaaaa(l) through 
aaaaaa(2) ~1'1d set. the execution address to aaaaaa(3). 

Write memory in binary record on the physical 
unit assigned to BO from addresses aaaaaa(l) 
through aaaaaa(2). Set the execution address to 
aaaaaa(3) and name the program, where name 
represents any legal MOS label. 

Description 

Load the registers from the pseudoregisters and 
transfer control to address aaaaaa. 

Set a trap to the debugging program in memory 
address aaaaaa(l) and transfer control to address 
aaaaaa(2). Load the registers from the pseudo
registers prior to transferring. Upon reaching 
the breakpoint (trap), save and type the contents 
of the registers on LO. 

MOS 4-5 



debugging program 

EXAMPLES OF DEBUGGING 

In the following examples. symbols in bold type indicate user-entered information. Other 
symbols represent the output of the debugging program. 

'A 
(.077553) 

A005572 
':'8 

( 177750) 
:'':'8-1 

:,.:,x 

(000021) 
•:'Xl2 

,:,,:,o 

(000000) 
-:.':'0-1 

: :'26001 
( 170522) 
: :' 1002, 1045 

Display and Alter Instructions 

Display the contents of the pseudo A register. 
Con tents of the pseudo-A register. 
Change the contents of A to 005572. 
Display the contents of the pseudo-B register. 
Contents of the pseudo-B register. 
Change the contents of B to rrnnus one (0177777) 

(0777777 on 622 computers) 
Display the contents of the pseudo-X register_ 
Contents of the pseudo-X register. 
Change the contents of X to 000012. 
Display the contents of the pseudo-overflow 

indicator. 
Contents of the pseudo-overflow indicator_ 
Set the pseudo-overflow indicator_ 
Display the contents of memory address 026001. 
Cont en ts of memory ciddress 026001. 
Display the contents of memory addresses 001002 

through 001045. 

001000 177776 100001 010101 151501 025252 000000 000101 015432 
001010 144456 052345 177777 101010 111101 063063 033333 177777 

001040 177776 177776 177775 020205 123456 000000 035353 077756 

' • C26000, 1000,2500 
* * '77777 ,375 

:•11000,1100,125252 

MOS 4-6 

Ch<inge the contents of i1ddresses 026000 through 
026003 to 001000. 002500_ 077777. ,1nd 
000375. respectively 

lnil1<il1ze ,1ddresses 001000 through 001100 to 
0125252 (e:ich word from 001000 through 



,;, ';'S5000,6000, 100000 

005100 
005302 
005701 

,;, ':' S6300, 10000, 136000, 
177000 

006320 
006700 
006701 

(136111) 
(136111) 
(136000) 

01 Blank 
02 CROO 
03 
04 

TYOO 
Blank 

15 MT03 

,;, '·' w 17000, 17556, 17000, 
TEST 

':' ':' Wl4000, 14100, TEST 
':' ':'Wl4700,15334 

debugging program 

001100 contains 0125252). 
Search addresses 005000 through 006000 for 0100000 

and print each address where this value is 
found. 

In this example, 0100000 was found in addresses 
005100, 005302, and 005701 

Search addresses 006300 through 010000 for the 
value 0136 in bits 9 through 15 of each word 
and print each such address and its full 
contents. The last parameter, 017700, 
is used as a mask. 

In this example, three locations met the com
parison criteria. 

1/0 Instructions 

Assign logical unit 12 to device MTOl (magnetic 
tape unit 01). The unit number is decimal. 

List the assignment of logical units to physical 
devices. 

In this example, LUN 2 is the card reader, LUN 3, 
is the Teletype, and LUN 15 is magnetic tape 
unit 03. LUN 1 and LUN 4 were not loaded with 
DEBUG. 

Write the program named TEST on the BO in 
absolute format (TEST resides in addresses 
017000 through Ol 7556)and set execution 
starting at 017000. 

Write the program named TEST on the BO in 
absolute format (TEST resides in addresses 

MOS 4-7 



debugging program 

•:• •:• Wl5734, 16040, 14740 

017000 017556 017777 
TEST 

•:• •:• T26000,21000 

026000 (001004) 001111 
150000 000025 000001 

015000 (054002) 000001 
111000 010101 000000 

MOS 4-8 

014000 through 014100, 014700 through 
015334, and 015734 through 016040). 
Set execution starting at 014740. 

Read an absolute format program from the Bl into 
memory. 

When reading is completed, print the starting 
address, ending address, execution address, 
and program name. 

Control Instructions 

Transfer the contents of the pseudo-A, -B, and -X 
registers and the pseudo-overflow indicator 
and execute at address 005013. 

Load the physical registers from the pseudoregis
ters and transfer to address 021000. If and 
when breakpoint (trap) address 026000 is 
reached, save and type. 

The breakpoint (trap) address 026000, its contents 
001004, and the contents of the A, B, and X 
registers and the overflow indicator. 

Load the registers from the pseudoregisters and 
continue program execution from the prior 
breakpoint (in the above example, execution 
would continue from 026000) and use 015000 
as the new breakpoint. If address 015000 is 
reached, save and type. 

The breakpoint (trap) address 015000, its contents 
054002, and the contents of the A, B, and X 
registers and the overflow indicator. 



SECTION 5 · CONCORDANCE PROGRAM 

The concordance program is an MOS support program that analyzes the symbols of a 
DAS assembler program. The analysis consists of a printout showing where symbols are 
defined and referenced. The analysis can be performed on any source program in DAS 
assembler languages. 

Upon being loaded by /ULOAD.CONC (Section 2), the concordance program inputs 

source programs from the system scratch (SS) logical unit (lun = 8). Any of the following 
terminates the input: 

a. END card 

b. MOS control directive 

c. End-of-file or end-of-device status received 

d. Available memory is full 

When any one of these conditions arises, a concordance list is output on the list output 
(LO) logical unit. If the list was output for one of the first three reasons, the concordance 
program exits to the resident monitor. If the list was output because no more memory 
space is available, the concordance program clears the concordance table and continues 
with another concordance. This continues until one of the other terminating conditions is 
met. 

The concordance program does not position SS except when it is MTOO. In this case, one 
file is skipped and the concordance starts with the second file. 

Figure 5-1 is a concordance listing output. A title line at the top of each page consists of 
the page number, program name (blank if none) and the date (blank if not input with 
I DA TE). Following the title line is the concordance. 

MOS 5-1 



concordance program 

PAGE F1SCfl2LPC i l /Ofi/7fl 

" Sfl IT 52 Rt- , ? ' 1?3 \~"l 1 27 13!5 137 
0 :i,!Cw 17 pi 
n ~LH 18R 1 eo 
(I !LE\F 1"17 15R t59 
() ~IO('IC 11" , 17 

193 Sl!E~ 1. 1n 
159 UAF 4~ 4f'i f)R 73 915 I OCI 

\0 tHS~ 1 !'i 
191 "'LI< 40 143 
1 !>fl f:HIF A 30 49 7?. 74 101 1'51 1. '54 

Q? CMAI< 87 
104 01on 17P 

7(1 Ol'iC\ 4'1 
24 r)~P p 14 
311 r)t-IPG t1' 

143 r)PFI Hl6 
27 nsc~ \4? 

tt 4 o~oc \OQ 

111"> O~OE 11"' 
\2? DSQL ?b 131'1 \~fl I 4fl 

5n 01'FB 71 9Q 
\4t OIMflK 1341 
'49 DWIT 111 131 1 4 '1 I '55 
1411 J"°P \?4 ,.. LPT 47 \151 
18f' '-'nlJ"4P ,, 2! 
U5n r10 :n 
173 0?00 
llL' p ~r.E" ?II\ tti!'i ll'ii'i l 7f'i 17() 1'3!'1 
I" F1C\CR:;> ! 94 

, l\.'I SF ~J !i 79 fl? 81'1 93 ! O::> 1 l'i4 1 l;Q , 7(1 170, 177 
I!!? 1R3 

, 5t- n,..i:o ~e 7fl I 07 11"> l"ll' , !'13 
17? IJl•lJ 10? 
1R4 vvv 171 
\!)fl '""'"" fl(\ 

Ill 0)1 4~ 

153 YYY ~8 

~!l Z7Z !5~ 

Figur19 5-1. Sample Concordance Listing 

MOS 5-2 



concordance program 

Beginning with the first character position, the format for a concordance line is: 

a. Four positions to display the decimal line number where the symbol is defined. 
The line number is right-justified and left-blank-filled. 

b. Two blanks. 

c. Six positions to display the symbol, in sort sequence, left-justified and right
blank-filled. 

d. Up to ten reference line numbers. Each reference line number is in sort 
sequence, preceded by two blanks and four character positions to display the 
decimal line number, right-justified and left-blank-filled. 

The maximum line is 72 characters. Continuation lines contain only the reference line 
numbers. 

Status and error messages are given in Section 13. 

MOS 5-3 



SECTION 6 · FILE EDITING PROGRAM 

The file editing program is a support program operating under MOS that is a simple and 
powerful tool for editing files generated under MOS (e.g., source programs, text, etc.). 

PROGRAM AND DIRECTIVES 
The user supplies the file editing program with control directives and files, and the 
program produces new and/or modified files and an audit trail of all transactions. 

Status and error messages are given in Section 13. 

The file editing program accepts single·reel files and multifile reels of input. It processes 
input in control directive and source file format, and outputs source file format and a 
printed audit listing. 

Control directives are input through the SI. 

On being loaded by /ULOAD,EDITOR,RP = 0500,RI = 0377 (Section 2), the file editing 

program types 

BEGIN EDITOR 

on the LO and inputs control directives to obtain its instructions from the user. The 
following conventions are used in describing and coding f:le editing directives: 

a. General form: 

n ,p( 1 ),p(2), ... ,p(x) 

where n is the directive name, and p(l),p(2), ... ,p(x) is a parameter string with 
individual parameters separated by commas. 

b. Directives begin in the first character position of the record and can consist of 
up to 72 characters. 

c. All fields are interpreted as fixed-format data and must be the exact size as 
indicated below. 

d. Parameters shown in upper-case letters appear on the control records exactly as 
shown. 

MOS 6-1 



concordance program 

e. Parameters in italics are optional. 

f. Parameters in lower-case letters are to be replaced by user-defined character 
strings according to thB following: 

DIRECTIVES 

filename 

author 

aaa 

nnnnn 

location 

Name of file: any eight characters 

Author of file: any 12 characters 

Alphabetic portion of sequence number: any 
threE! alphabetic characters 

Numeric portion of sequence number: any 
five numeric digits ending in zero 

Either the internal sequence number (in the 
form aaannnnn) or the external line number 
(in the form nnnnn) identifying a record 

nnn Number of records: any three numeric digits 

LIST,xxx 

The letter I at the end of a parameter string 
indicates that location is an internal sequence 
number. 

LIST specifies list output during editing. If omitted, no list output is provided. Its 
presence, with or without a parameter, causes a file audit and outputs catalog to be 
printed (figure 6-1). The parameter xxx, if used, is: 

a. CHG - list changes only 

b. ALL - list complete file(s) 

LIST can be repeated for different options on different files. It immediately precedes a 
Fl LE, COPY, or EDIT. 

When an audit listing is output, it is produced on the LO. Three levels of reporting are 
provided. All include a heading identifying the rerort cis an output and giving the run 

date (Figure 6-2). 

MOS 6-2 



FILE EDIT RUN 

FILE NAME 

NUMl 

NUM2 

concordance program 

OUTPUT CATALOG 

HOF RECORDS 

0008 

10/14170 PAGE0003 

CHANGED 

0287 

0013 0287 

Figure 6-1. Output Catalog Format 

MOS 6-3 



file editing program 

FILE EDIT RUN FILE AUDIT 10/14/70 PAGE0002 

FILENAME IS NUM2 AUTHOR IS JONES CREATION DATE IS 10/14/70 

*CONTROL RECORD OR DATA RECORD IMAGE* LINEI 

c WBJN 
STAT 
EXT 
JMP 

D BSS 
BO EQU 
ERR !NCR 
EOF INCR 
BEOD INCR 

EXT 
JMP 
END 

/EN DJ OB 

MOS 6-4 

BO, 10,D VDMOOOOO 
BO, ERR, EOF, BEOD, *-6 VDM00010 
E VDM00020 
E VDM00030 
10 VDM00040 
7 VDMOOOSO 
01 VDM00060 
02 VDM00070 
04 VDM00080 
F VDM00090 
F VD MOO JOO 
c VDMOOl 10 

VDM00120 

l. CONTROL RECORDS ARE PRECEDED AND 
FOLLOWED BY TWO BLANK LINES. 

2. GROUPS OF ADDITIONS OR DELETIONS 
ARE PRECEDED AND FOLLOWED BY ONE 
BLANK LINE. 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 

3. EACH NEW FILE BEGINS ON A NEW PAGE. 

4. LITING OUTPUT SETUP USING TELETYPE 
AS LO. 

Figure 6-2. Audit Listing Format 

DATE CODE 

0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 
0287 ADD 



file editing program 

The output catalog report is a summary of the contents of the source library showing the 
file names and the number of records each contains. The date of the latest change to 
each file (excluding resequencing only) is shown. 

The file audit report is available in two levels for each file on the source library. All 
records in the file can be shown, or the report can be limited to those records having 
changes. Each record listed is accompanied by a program-generated line number and an 
action code (ADD) if the record has been added. All control records are also listed, and 
have four asterisks in the action code field. 

Fl LE, filename,author, SEQ, aaannnnn 

Fl LE creates a file from the data records following it. The file is formatted as a standard 
MOS source file (section 3). The optional SEQ parameter assigns internal sequence 
numbers in positions 73 through 80 of each record, beginning with the value specified in 
aaannnnn and incrementing by ten for each record. 

FILE is followed immediately by the data records comprising the file. 

An end of file following the data records indicates the end of the data to be processed 
with FILE. This can be a 2-7-8-9 punch on cards; a BELL character on the Teletype; or an 
EOF mark on paper tape, magnetic tape, drum, or disc. 

COPY, filename, filename, SEQ,aaannnnn 

COPY copies a file or files from the input device to the output device. If a second filename 
is specified, all files from the one specified in the first filename through that of the second 
filename are copied. If SEQ and aaannnnn are present, they apply only to the first file 
being copied and cause the program to assign internal sequence numbers in positions 73 
through 80 of each record being copied. Sequence numbers start with aaannnnn and 
increment by ten for each record. 

EDIT, filename, SEQ,aaannnnn 

EDIT copies a file from the input device to the output device with the modifications 
specified by the ADD, DEL, and RPL that immediately follow EDIT. If SEQ and aaannnnn 
are present, they apply only to the first file being copied and cause the program to assign 
internal sequence number in positions 73 through 80 of each record being copied. 
Sequence numbers start with aaannnnn and increment by ten for each record. 

ADD,nnn,location,/ 

ADD adds the following nnn data records to the file being processed immediately after 
the record specified by location. If location represents an internal sequence number 
rather than the line number of the previous audit list, add I. 

This control record is valid only after an EDIT and before an ENDCOR. 

MOS6-5 



file editing program 

DEL,location,/ocation, I 

DEL deletes a record or records from the file being processed. If a second location is 
present, all records from the one specified in the first location through that of the second 
are deleted. If location represents an internal sequence number rather than the line 
number of the previous audit list, add I. 

This control record is valid only after an EDIT and before an ENDCOR. 

RPL,nnn,location,/ocation,/ 

RPL deletes a record or records from the file being processed and replaces them with the 
following nnn data records. If a second location is present, all records from the one 
specified in the first through that of the second are deleted and replaced with the 
following nnn data records. If location represents an internal sequence number rather 
than the line number of the previous audit list, add I. 

This control record is valid only after an EDIT and before an ENDCOR. 

ENDCOR 

ENDCOR indicates the end of modifications to the file in process. It copies the remainder 
of the file to be copied to the output device without modification. 

SOURCE FILE 

When a source file is to be copied or edited, it is input through the Pl. The new or 
modified file is output by the PO. 

A file in a source-language library consists of a header record, an EOF, the data records 
comprising the file, another EOF, and a catalog of all preceding files including the current 
one. 

If a file follows another file, its header record immediately follows the catalog at the end 
of the preceding file. The last file on the source library is followed by two EOF records. 
Figure 6-3 shows the structure of a typical MOS source file. 

HEADER RECORD 

The header record is the first record of each file. It is generated with the file by Fl LE and 
is used as the identifier for the fil•:i. It is 14 words (28 characters) long in the following 
format: 

1----------8 9----------20 21----------28 
l~ILENAME AUTHOR DATE 

MOS 6-6 



file editing program 

where the filename and author are taken from FILE parameters and date is the creation 
date as input on the /DATE card to the executive (Section 2). 

DATA RECORD 
A data record is a fixed-length record of 46 words in the following format: 

1----------------80 81-------88 
CHARACTER DATA BLANK 

89------92 
yddd 

where yddd is the date (units position of year followed by the day) of the last change to 
the record (excluding resequencing). 

CATALOG RECORD 
The catalog record is a fixed-length record of eight words per entry, and up to 20 entries. 
Each catalog record contains an entry for each preceding file. Catalog records have the 
following format: 

FILENAME 

COUNT File 1 

yddd 

FILENAME 

COUNT File 2 

yddd 

File n 

where the filename is taken from FILE, count is a two-word binary integer representing 
the number of records in the file, and yddd is the date (units position of the year followed 
by the day) of the last change to the record (excluding resequencing). 

MOS 6-7 



file editing program 

~ HEADER RECORD FOR FILE 1 

0 EOF 

~ } DATA RECORDS FOR FILE 1 

~ 
LJ EOF 

§] CATALOG RECORD (FILE 1) 

§] HEADER RECORD FOR FILE 2 

LJ EOF 

~ } DAT A RECORDS FOR FILE 2 a 
LJ EOF 

~ CATALOG RECORD (FILE 1 AND 2) 
r-.L-, 
I I ADDITIONAL FILES I I 
L-T--' 

LJ EOF 

0 EOF 

Figure 15-3. MOS Source File Structure 

MOS 6-8 



SECTION 7 · SYSTEM MAINTENANCE PROGRAM 

The system maintenance program (SMP) is an MOS support program for use in updating 
an MOS installation system library (ISL) prior to the use of the ISL in system preparation. 
As input, the user supplies the SMP with control directives and an ISL. The program 
outputs a new library and optional directive listings of both old and new libraries. 

Status and error messages are given in Section 13. 

The SMP is loaded with /SMAI N (Section 2), which also specifies the logical input and 
output units. On loading, the program types the message: 

BEGIN SYSTEM MAINTENANCE 

on the Teletype (and LO, if different). All control directives are then input through SI 
before processing of the ISL is begun. 

SMP directives have the following specifications: 

a. General form: 

name,p( 1 ),p(2), ... ,p(n) 

where name is the directive name and p(l),p(2), ... p(n) is a parameter string 
with individual parameters separated by commas. 

b. Directives have up to 72 characters and begin in the first character position of 
the record (card). 

c. Embedded blanks are allowed within a field. 

d. Fields smaller than the maximum are left-justified and blank-filled. 

DIRECTIVES 

ADD,name(l),name(2), ... ,name(n) 

·MOS 7-1 



. 
system maintenance program 

ADD adds a program or group of programs to the new ISL. The programs contained on 
the Bl logical unit are added selectively to the new ISL after each program specified by 
ADD. Each name is the name of a program in the old ISL. 

In processing ADD, the SMP copies from the old ISL to the new ISL until it has copied the 
program specified by a name in .ti.DD. Then the SMP types the message: 

ADD name 

on the Teletype (and LO, if different). The program then waits for one of the following 
control directives from the Teletype: 

Y Add the program contained on the Bl, copy it into the 
new ISL, and return for another control directive. 

N The additions are complete. Resume copying to the next 
name. N also types the message: 

END ADDITIONS 

DELETE,name(l ),name(2), ... ,name(n) 

DELETE deletes the specified program or programs from the old ISL when the new ISL is 
produced. Each name is the nam•e of a program in the old ISL. 

In processing DELETE, the SMP copies from the old ISL to the new ISL all programs 
except those named in DELETE. 

REPLACE,name(l),.name(2), ... ,name(n) 

REPLACE replaces a program or programs from the old ISL. The program(s) specified in 
REPLACE are deleted and selectively replaced by the new program(s) contained on the Bl. 
Each name is the name of a program in the old ISL. 

In processing REPLACE, the SMP copies from the old ISL to the new ISL until it has 
copied the program preceding the program specified by a name in REPLACE. The SMP 
skips the specified program(s) on the old ISL and types the message: 

REPLACE name 

on the Teletype (and LO, if different). The program then waits for one of the following 
control directives from the Teletype: 

MOS 7-2 

Y Add the program contained on the Bl, copy it into the 
new ISL, and return for another control directive. 



N The replacements are complete. Resume copying to the 
next name. N also types the message: 

END REPLACEMENTS 

END,p 

END initiates the ISL copying process. All necessary ADD, DELETE, and REPLACE 
directives are input before END. END rewinds the old and new ISL media, starts the 
copying process, and continues until it reaches the end of the old ISL. 

END control directive parameter p is either: 

L List the old ISL on the LO 

blank Omit the listing (in this case, no comma follows END) 

LIST 

Lor LIST lists on LO the ISL on the Pl (Figure 7-1 ). A single letter (A or R), to the left of a 
program name under the ID header, identifies the program as an absolute or relocatable 
module. 

DATE,xxxxxxxx 

DATE sets up to eight alphanumeric characters (e.g., a date) in the page title of the list 
output. If DATE is not used, the date is used from the last/DATE input to the executive 
(section 2). 

MOS 7-3 



PAGE 01119171 

BEGIN SYSTEM MAJNTFNANCF 
ENO,L 

PAGE 2 Ot/19/71 

rn OATF SlZ~ ENTRY NAMFS 

A PREPt Ot/14/71 1743~ 
A PREP2 0111~/71 '.5377 

ARS,RSCRIDK,0~/12170,-t,n1ono,oto 
R RSC8tRMC Ot/1?.171 no72t CYLN04 

CYLNOO 
tUCB.t 
llJC80 

SROC 
SPEO 
'MPR 
SLBF 
'L'! 
$FRM 
Sl)AT 

ENOA~S 
ARS,RSCA1MT,Ol/11170,•t,O\O~n,010 

R RSC81MTC 00~6~ CVLN04 
CVLNOO 

'"r."A 
IUCBn 

SROC 
SPED 
S"1PR 
SLF3F 
SLAR 
SFRlol 
son 

END AL'S 
ABS,RSCR2TY,Ot/1l/70,•t,Ot0~0,010 

R RSCl3,TV 0'/19170 nnt6~ twEn 
ENO ABS 
ABS,RSCR2LP,Ol/11170,-1,0tOno,010 

R RSC8,LPR 10129170 00,15 SWEQ 
ENO ABS 
ARS,RSCR3,0lll1/70,•t,ntono.010 

R RSC83 00435 IOCS 
l!EW IT 

IPUP-1 
SMOS 
SLIT 

CVLNnt 
UF'.il 

IUCl31 
JTTL 
UFW 
•PC: .. 
ILCR 
JI.Al( 
1-JC"I 
~ECw 

UllJF 

CVL l\Jnt 
'XEQ 

llJ!':~ 1 
HTL 
igRf:w 
JPC\11 

'LC~ 
!'LU 
JJCW 
J€Cw 
JBttF 

FW IT 
Ul5T 
SPG~ 

ILl1N 
SI('llfl 

system maintenance program 

'Rnc tLilC IJC111 SFRM 

'Rnc SLBF 'L All SJCW 

'WEQ IRElll IPL!~ SLUR 
'L Alt IJClrl tEClll \RIJfl' 

Figure 7-1. Svstem Maintenance List Output 

MOS 7-4 



SECTION 8 · SYSTEM PREPARATION PROGRAM 

The system preparation program (SPP) is a stand-alone support program of MOS. It 
creates a system file on a magnetic tape or rotating memory unit, tailored to the hardware 
and software requirements of the installation. 

System preparation is controlled by SPP control directives. These directives include a 
description of the devices to be used for the system preparation, the devices to be 
included in the generated MOS system file, the system preparation functions to be 
executed, and the parameters for the system preparation functions. 

Status and error messages are given in Section 13. 

MOSB-1 



system preparation program 

CONT~OL DIRECTIVES 
Control directives can be presented to the SPP from the SI in any order, except that the 
END directive must always be last. END signals the end of the SPP control directives and 
causes the program to begin generating the MOS system file on the PO. 

SPP directives have the following specifications: 

a. General form: 

name,p( 1 ),p(2), ... ,p(n! 

where name is the directive name and p(l),p(2), ... ,p(n) is a parameter string 
separated by commas. 

b. Directives have up to 72 characters and begin in the first character position of 
the record (card). 

c. Blank records are ignored. 

d. Embedded blanks are allowed within a field. 

e. Numeric fields can be signed or unsigned octal or decimal integers. Octal 
numbers begin with a zero and decimal numbers do not. 

f. Fields smaller than the maximum are left-justified and blank-filled. 

DIRECTIVES: 

ADD,name(l),name(2), ... ,name(n) 

ADD adds a program or group of programs to the system file. The programs contained on 
the Bl are added selectively to the system file after each program specified by ADD. Each 
name is the name of a program in the installation system library (ISL). 

In processing ADD, the SPP copies from the ISL to the system file until it has copied the 
program specified by a name in ADD. Then, the SPP types the message: 

ADD name 

on the Teletype (and LO, if different). The program then waits for one of the following 
control directives from the Teletyp1:i: 

MOS 8-2 



y 

N 

system maintenance program 

Add the program contained on the Bl, copy it to the 
system file, and return for another directive. 

The additions are complete. Resume copying to the next 
name. N also types the message: 

END ADDITIONS 

Note: The ADQ control directive 
cannot be used to add a new program 
within an ABS-ENDABS program module. 

DELETE, name( 1 ), name(2), ... ,name(n) 

DELETE deletes the specified program or programs from the ISL when the system file is 
produced. Each name is the name of a program in the ISL. 

In processing DELETE, the SPP copies from the ISL to the system file all programs except 
those named in DELETE. 

REPLAC~,name(l),name(2), ... ,name(n) 

REPLACE replaces the specified program or programs from the ISL with new programs 
contained on the Bl. Each name is the name of a program in the ISL. 

In processing REPLACE, the SPP copies from the ISL to the system file until it has copied 
the program preceding the program specified by name in REPLACE. The SPP skips the 
specified program on the ISL and types the message: 

REPLACE name 

on the Teletype (and LO, if different). The program then waits for one of the following 
control directives from the Teletype: 

y 

N 

Add the program contained on the Bl, copy it to 
the system file, and return for another directive. 

The replacements are complete. Resume copying to 
the next name. N also types the message: 

END REPI.ACEMENTS 

MOS 8-3 



system preparation program 

END,p(l),p(2) 

END indicates to the SPP that thern are no more system preparation control directives to 
process. Its parameters are: 

L 

N 

v 

blank 

List the ISL on the LO. 

Do not list the ISL nor verify and list the new system 
file. 

Verify the new system file. 

Do not list the ISL, but verify and list the new 
system file (in this case, no comma follows END). 

DATE,xxxxxxxx 

DATE sets up to eight alphanumeric characters (e.g., a date) in the page title of the list 
output. If DATE is not used, no date is printed. 

COMP ,p( 1),p(2),p(3),p(4 ),p(5),p(6),p(7) 

COMP defines the MOS computer system configuration as follows: 

p(l) Specifies the computer. If it is a 620/a or 622/a, p(l) 
is A. For all other Varian computers, P(l) is I or unspecified. 

p(2) Specifies the highest available memory address to be used 
for system preparation and the MOS system being prepared. 
On a system with 12K or larger memory, 025777 is assumed 
if the value is unspecified or less than 025777. On a sys
tem with 8K of memory, 017777 is assumed if the value is 
unspecified or less than 017777. 

p(3) Specifies the number (0, l, 2, 3, or 4) of buffer inter
lace controllers (BICs) available in the system. If 

MOS 8-4 

the value is unspecified or larger than four, zero is 
assumed. The SPP uses this parameter to supply the 
proper set of BIC library subroutines. If no BIC is 
available, dummy BIC library subroutines are entered 
in the system file. Otherwise, the program enters the 
actual BIC library subroutines. 



p(4) 

p(S) 

p(6) 

p(7) 

system preparation program 

Specifies the relocation bias set by the executive for 
the first program to be loaded by the loader if not 
specified in /LOAD (Section 2). A value of P(4)-1 is 

specified or less than the value of p(5), 04000 is 
assumed. 

Specifies the base address set by the executive to be 
used by the loader for the direct literal pool if not 
specified in /LOAD (Section 2). Uthe value i'S'uh- A. V~\"-"t /f ~,..){_ 

, assumed JL .. p.{.5.) is either not spectfied; larger than.J...is:.s:-tltVJ fl( 'l) 
rG377:Z, o.r: .. small.er.than,p(6). ~S MSv.t-t'fA 1 ~· ~) '-

JNO-\ H?fc\Fn!J J: J..esf ~ \'> (t....J 
1

" 
Specifies the base add1ess se by the executive to be 
used by" the loader for the indirect address pool if not 
specified in /LOAD (Section 2). A value·of 010 is 

' -assumed if p(6) is either not specified, smaller than 
010, larger than 0777, or larger than p(5). 

Specifies the number of logical units in MOS. If it is un-
specified or less than 14, a value of 14 ls assumed. MOS handles 
up to 64 logical units. 

Commas must be present for unspecified parameters unless all parameters are 
unspecified. Thus, to define p(2) and p(7) only, input 

COMP, ,027777,,,, ,25 

and to set all parameters to their default values, input 

COMP 

IODEV ,p(l ),p(2),p(3) 

IODEV adds or modifies entries in the MOS logical and physical unit tables as follows: 

p(l) Specifies a four-character alphanumeric 1/0 device name. 
If I ASSIGN (Section 2) references this name, the SPP 
modifies the logical unit table to point to the physical 
unit. 

, p(2) Specifies the second and third characters of the three
character subroutine entry name of the 1/0 driver. The 
SPP stores these characters as the second two characters 
of the 1/0 driver in the physical unit table (the first 
character is always the dollar sign). 

MOS 8-5 



system preparation program 

P(3) Specifies the relative position the I 10 driver occupies 
in the physical unit table. The SPP enters the name of 
the 1/0 driver in the physical unit table in the order 
specified by p(3). If p(3) is omitted, the I /0 driver 
is added to the physical unit table at the bottom. 

Commas must be present for unspecified parameters unless all parameters are 
unspecified. Thus, to define p(l) and p(2) only, input 

IODEV,MTU3,VW, 

EQUIP ,p(l ),p(2),p(3), ... ,p(n) 

EQUIP specifies the I /0 devices to be included in the preparation of the system file. The 
SPP uses the parameters to construct the MOS logical and physical unit tables, and to 
select the proper drivers from the ISL when building the system file. 

EQUIP parameters p(l) through p(n) are: 

TY cu 

TR cu 

TPcu 

CR cu 

CPcu 

LP cu 

PT cu 

PTcu(R) 

PTcu(P) 

MTcu(x) 

MT cu 

DRcu(x,y) 

DKcu(x,y) 

MOS 8-6 

Teletype keyboard/page printer 

Teletype paper tape reader 

Teletype paper tape punch 

Card reader 

Card punch 

Line printer 

High-:speed paper tape reader and punch 

High-speed paper tape reader only 

Higl'\-speed paper tape punch only 

Magnetic tape unit to be connected to 
BIC number x 

Magnetic tape unit 

Drum memory unit to be connected to 
BIC number x; with y sectors allocated 

Disc memory unit to be connected to 
BIC number x; with y sectors allocated 



where 

cu 

P,R 
X,Y 

system preparation program 

specifies controller and unit number; if omitted, 
assume 00 
are entered as key words (symbols) 
are numeric variables 

Drum Partioning. Because of the low access time of the drum memory unit, MOS can 
partition the drum into from one to ten virtual units. Each virtual unit can function as a 
separate logical unit (except that the drum can perform only one operation at a time). 
Beginning- and end-of-device sector addresses and a current address pointer for each 
unit are kept by MOS in the resident constant area. End-of-file marks are recorded on the 
first ten sectors of the drum. 

The ten possible drum units are designa-ted DROO through DR09. EQUIP partitions the 
drum into the desired number of virtual units. A particular virtual unit is incorporated 
into the system if it is designated in an EQUIP parameter of the form DRcu (x,y). Since x 
specifies the BIC, all drum units have the same x value. The number of sectors allocated 
to that virtual unit is given by y. If DROO is designated as logical unit SF, y is the number 
of sectors assigned to DROO in addition to those used by MOS. The value of x and y can 
be octal or decimal, but, if the former, it has a leading zero. 

a. If DROO is specified, it occupies sectors 012 to 012 + y if it is not the SF. If DROO 
is SF, it occupies sectors 012 to 012 + y + k, where k is the number of sectors in 
the system file. 

b. Other specified virtual units begin at the end of the previous unit and occupy the 
next y sectors or the rest of the drum, whichever is smaller. 

Since the size of the system file differs for each configuration, the number of sectors it 
occupies on DROO is not known at the beginning of system preparation. The SPP, 
therefore, lists the sector allocation for each virtual unit on LO at the end of system 
preparation in the form: 

where 

DRUM ALLOCATION 

DROO 
DR01 

DR09 

xxxxxx 
yyyyyy 

000012 
yyyyyy 

yyyyyy 

xxxxxx 
xxxxxx 

xxxxxx 

is the last sector address 
is the first sector address 

MOS 8-7 



system preparation program 

All addresses are octal. Typical system files occupy about 03500 sectors. 

If DROO contains the MOS system file, the drum should be partitioned into at least two 
virtual units. The second unit is for intermediate storage of the source statements during 
assemblies and for other utility tasks. DROO cannot contain both the MOS system file and 
assembly source statements. 

·Disc Partitioning. A disc MOS system can have one or two disc units. MOS can partition 
each disc unit into from one to ten virtual units. Each virtual unit can function as a 
separate logical unit (with the obvious exception that two virtual units on the same 
physical unit cannot function simultaneously). Beginning- and end-of-device sector 
addresses and a current address pointer for each virtual unit are maintained by the 
system in the resident monitor. 

The designations of the 30 possible virtual units, and the physical unit and controller 
corresponding to each, are shown below. EQUIP partitions the disc into the desired 
number of virtual units. 

Controller 

0 
0 
1 

Disc Unit 

0 
1 
0 

Virtual Unit 

DKOO-DK09 
DK10-DK19 
DK40-DK49 

A particular disc unit is incorporated into MOS if (and only if) one or more corresponding 
virtual unit designations appear in an EQUIP parameter of the form: 

DKcu(x,y) 

Since x specifies· the BIC, DKOO through DK19 have the same n value. Similarly, DK40 
through DK49 have the same n value. 

The number of sectors to be allocated to that virtual unit is given by y. The value of y can 
be octal or decimal, but, if the former, it has a leading zero. 

a. If DKOO is specified, it begins in sector 0 of the corresponding disc unit and 
occupies the next y sectors. 

b. Each additional virtual unit specified for the same disc unit begins at the end of 
the previous virtual unit and occupies the number of sectors specified. 

c. If the total number of sectors specified for all the virtual units is less than the 
total number on the disc, the last virtual unit is expanded to fill the rest of the 
disc. If the total number of sectors exceeds the total number on the disc, the 
first virtual unit to exceed the disc size is truncated to the capacity of the disc 
and all additional virtual units are zero sectors long. 

MOS 8-8 



system preparation program 

d. If DKOO is SF, it begins in sector 0 and occupies the next y + k sectors, where k 
is the number of sectors required by the MOS system file. 

Since the size of the system file differs for each configuration, the number of sectors it 
occupies on DKOO is unknown at the beginning of system preparation. The SPP, 
therefore, lists the sector allocation for each virtual unit on LO at the end of system 
preparation in the form: 

where 

xxxxxx 
yyyyyy 

DISC 0 ALLOCATION 

DKOO 
DK01 

DK09 

DISC 

DK10 
DK 11 

DK19 

000000 
yyyyyy 

yyyyyy 

ALLOCATION 

000000 
yyyyyy 

yyyyyy 

xxxxxx 
xxxxxx 

xxxxxx 

xxxxxx 
xxxxxx 

xxxxxx 

is the last sector address 
is the first sector address 

All address are octal. Typical system files occupy about 03500 sectors. 

If DKOO contains the MOS system file, the first disc unit is partitioned into at least two 
virtual units. The second unit is for intermediate storage of the source statements during 
assemblies, and for other utility tasks. DKOO cannot contain both the MOS system file 
and assembly source statements. 

ASSIGN,1(1) = r(l),1(2) = r(2), ... ,l(n) = r(n) 

Assign equates and assigns particular logical units to specific physical I /0 devices. 
Execution of this directive decodes the parameter string and alters the logical unit table as 
specified by the parameter. 

The parameters can be logical unit numbers, logical unit names, or physical unit names 
(Figure 3-1 ). In each parameter pair (i.e., each l(n) = r(n)), the left parameter, l(n), is a 

MOSB-9 



system preparation program 

logical unit number or name, and the right parameter, r(n), is a logical unit number or 
name or a physical device name. 

In any case, the logical unit to the left of the equal sign is assigned to the unit/device to 
the right. 

If r is a physical device, the I entry in the logical unit table is altered so that it points to 
the physical device driver specified by r. Thereafter, all 110 operations referencing I are 
directed to the physical device specified by r. 

If r is a logical unit number or name, I is made equivalent to rand is assigned to the same 
physical device as r. However, if r is reassigned later to a new physical device, I no longer 
has an equivalent assignment. 

The SPP makes default assignments for logical units not assigned to physical units. These 
assignments are a function of the physical devices included in the system. The SPP 
nominally assigns each logical unit the number of the highest peripheral device listed in 
table 8-1. 

SF is always assigned to the same peripheral device that was used as PO in system 
preparation. SS is always assigned to the same logical unitas PO. 

The first scratch unit is assigned to the first available device, the second scratch unit to 
the next available device, etc. If the end of the table is encountered, the table is 
rescanned from the top rather than assigning the logical unit to OUM. If no device is 
available, scratch units are assigned to OUM. 

ABS,p( 1),p(2),p(3),p(4 ),p(5) 

ABS generates an absolute module on the system file. The input is an object module 
generate_d by assembly or compilation, preceded by the ABS. When the SPP encounters 
the ABS, the first object module that follows is converted into an absolute module and 
put on the MOS system file. Any following subprograms are only converted into the 
absolute module if referenced by the first (or a previous) program. No program or 
subprogram can contain an instruction reference to an externally defined literal. 

The ABS parameters are: 

p(l) An eight-character ASCII program identification name. 
The SPP stores this name in the identification block 
of the beginning absolute loader text record. If p(l) 
is omitted, the program generates a unique program 
identification name of the form XXnnnn for the program 
(where nnnn is a decimal number beginning at 0001 for 
the first program). 

p(2) An eight-character creation date. The SPP stores p(2) 
in the date block of the beginning absolute loader 
text record. 

MOS 8-10 



SI 
TYOO 
TYlO 
CROO 
CRlO 
DUM 

system preparation program 

Table 8-1. Valid SPP Logical Unit Assignments 

so 
TYOO 
TYlO 
DUM 

Pl 
CROO 
CRlO 
PTOO 
PTlO 
TROO 
TRIO 
DUM 

LO 
LPOO 
LPlO 
TYOO 
TYlO 
DUM 

Bl 
CROO 
CRlO 
PTOO 
PTlO 
TROO 
TRlO 
DUM 

BO 
CPOO 
CPlO 
PTOO 
PTlO 
TPOO 
TPlO 
DUM 

GO PO Sl,S2,S3,S4 
MT02 MTOl MTOl 
DR02 DROl DROl 
MT03 MT02 MT02 
DR03 DR02 DR02 
MTl 0 MT03 MT03 
DR04 DR03 DR03 
MTll MTlO MTlO 
DR05 DR04 DR04 
MT12 MTl 1 MTl 1 
DR06 DR05 DR05 
MT13 MT12 MT12 
DR07 DR06 DR06 
MT20 MT13 MT13 
DR08 DR07 DR07 
MT21 MT20 MT20 
DR09 DR08 DR08 
MT22 MT21 MT21 
MT23 DR09 DR09 
MT30 MT22 MT22 
MT31 MT23 MT23 
MT32 MT30 MT30 
MT33 MT31 MT31 
DU M MT32 MT32 

MT33 MT33 
MTOO 
DUM 

Figure 8-1. Valid SPP Logical Unit Assignments 

MOS 8-11 



system preparation program 

p(3) A program relocation bias. The SPP uses this value to 
define the start of the first of the generated programs. 
If p(3) is omitted, the SPP uses the value of p(4) in 
COMP. If the p(3) is a -1, the SPP uses the current 
value of p(2) in COMP minus the size of this program as 
the relocation bias. 

p(4) The base address of the direct literal pool. If the 
p(4) parameter is omitted, larger than 03777, larger 
than p(3), or smaller than p(5), the SPP uses the value 
of p(5) in COMP. 

p(5) Specifies the base address of the indirect address 
pointers. If p(~i) is omitted, smaller than 010, larger 
than 0777, or larger than p(4), SPP uses the value 
specified by COMP. 

ENDA BS 

ENDABS terminates ABS processing. It follows the object modules input with the ABS. 

MOS 8-12 



system preparation program 

INSTALLATION SYSTEM LIBRARY ORGANIZATION 

The installation system library (ISL) is the primary input to the SPP. The order of the 
sections in the ISL and the programs within the sections must be maintained for proper 
MOS system file preparation and operation. The ISL sections are: 

a. System preparation 

b. System processor 

c. System library 

Comment records are alphameric records with a blank in the first character position. 
They are between, but not within, programs. 

SYSTEM PREPARATION SECTION 

This section contains: 

a. Loader for the system preparation program 

b. System preparation program part 1 

c. System preparation program part 2 

SYSTEM PROCESSOR SECTION 

This section contains: 

a. Resident system configuration block part 1 (resident monitor) 

b. Resident system configuration block part 2 (dump) 

c. Resident system configuration block part 3 (1/0 control) 

d. Resident system configuration block part 4 (executive) 

e. Loader 

f. Loader system file I /0 drivers 

g. Loader map subroutine 

MOS 8-13 



system preparation program 

h. Loader list output 1/0 drivers 

i. Loader binary input l/O drivers 

j. DAS MR assembler 

k. FORTRAN IV compiler 

I. Debugging program 

m. Concordance program 

n. System maintenance program 

o. File editing program 

p. Input/output drivers 

SYSTEM LIBRARY SECTION 

This section comprises the FORTRAN IV run-time library and programs that perform 
utility functions. Utility or often-used object programs can be added and executed with 
/ULOAD (section 2). The final programs in this section are the 1/0 drivers. All user 

programs precede the 110 drivers. 

MOS 8-14 



system preparation program 

OPERATING PROCEDURES 

To prepare a MOS system: 

a. Load the system preparation program (SPP) by entering the proper bootstrap 
program into the computer memory. 

b. Assign the peripheral devices for use by the SPP. 

c. Supply the control directives to define a MOS system file. 

LOADING 

Depending on the peripheral device used to read the SPP, one of the following 
initialization procedures applies: 

a. Card reader 
(1) Turn on the card reader. 
(2) Place two blank cards after the last control-directive card of the ISL deck. 
(3) Place the ISL deck in the card hopper. 
(4) Press clear and start. 

b. 33135 ASR Teletype 
(1) Turn on the Teletype 
(2) Place Teletype in off-line mode and simultaneously press the CONTROL 

and D, then CONTROL and T, and finally the CONT~OL and Q keys. 
(3) Position the system preparation loader program paper tape in the reader 

with the first binary frame at the reading station. Close the reading gate. 
(4) Set the reader control level to STOP, and the Teletype on-line. 

c. High-speed paper tape reader 
(1) Turn on the paper tape reader. 
(2) Position the system preparation loader program paper tape in the reader 

with the first binary frame at the reading station. Close the reading gate. 
(3) Set the LOAD/RUN switch to RUN. 

d. Magnetic tape unit 
(1) Turn on the magnetic tape unit. 

(2) Mount the. ISL magnetic tape. 
(3) Position the magnetic tape to the load point. 
(4) Ready the magnetic tape unit so it can be used by the computer. 

MOS 8-15 



system preparation program 

Enter the appropriate bootstrap loading routine (tables 8-2 and 8-3). Depending on the 
Varian computer used, one of the following procedures apply: 

a. V73 Computer 
1. Load the starting memory address of the bootstrap loader (007756) into the P 
register. 
2. Press MEM switch momentarily. 
3. Clear the console display (Press DISPL CLR). 
4. Select the first bootstrap loader instruction and load it into the control-panel 
display register. 
5. Press ENTER to load the display-register contents into the address specified by the 
P register, which is incremented by one after the instruction is loaded. 
6. Clear the display register (Press DISPL CLR). 
7. Repeat steps 3, 4, 5, and 6 for each bootstrap loader instruction. 

b. 620/f and 620/f-100 Computers 
1. In step mode, load a store A register relative to P instruction (054000) into the 
instruction register. 
2. SettheREPEATswitch. 
3. Load the starting memory address of the bootstrap loader into the P register. 
4. Select the first bootstrap loader instruction and load it into the A register. 
5. Press STEP or START to load the A register contents into the address specified by 
the P register, which is incremented by one after the instruction is loaded. 
6. Clear the A register. 
7. Repeat steps 4, 5, and 6 for each bootstrap loader instruction. 

c. 620/L and 620/L-100 Computers 
1. In step mode load a stor·e A register relative to P instruction (054000) into the 
instruction register. 
2. Press the REPEAT switch. 
3. Load the starting memory address of the bootstrap loader into the P register. 
4. Select the first bootstrap loader instruction and load it into the A register. 
5. Press STEP to load the A register contents into the address specified by the P 
register, which is incremented by one after the instruction is loaded. 
6. Clear the A register by pressing BIT RESET. 
7. Repeat steps 4, 5, and 6 for each bootstrap loader instruction. 

Initiate the bootstrap from the peripheral device as follows: 

a. To initiate loading from the card reader, high-speed paper tape reader, or magnetic 
device, reset the A, 8, X, P, and instruction registers; then, press SYSTEM RESET 
and RUN (for V73 and 620/f press RESET, position STEP/RUN to RUN, and press 
START). 

MOS 8-16 

The system preparation loader and ISL are separate paper tapes. The ISL must 
be mounted when the computer goes to STEP after reading the loader. 



system preparation program 

b. To initiate loading from the Teletype, follow step a; then, set the reader control 
level to RUN. (Start position on ASR 33.) 

NOTE 
If an error occurs while loading the system preparation modules, the computer 
goes to the STEP mode with the instruction register = 0777 and A = B = X 
= - 1. Recovery is made by repositioning the last record read at the read 
station and press RUN (START for V73 and

0 

620/f). For magnetic tape, the 
repositioning is automatic. 

ASSIGNMENT 

At the end of a successful loading, the Teletype makes five requests for peripheral device 
assignments to be used by the SPP. The form of these requests is: 

Table 8-2. 620 Bootstrap Loading Routines (16-Bit Computer) 

Magnetic Magnetic Magnetic High-Speed 
Tape Tape Tape 33/35 Paper 

Controller 0 Controller 0 Controller 1 ASR Tape Ciird 
Address Unit 0 Unit 1 Unit 0 Teletype Reader Reader 

00000 104110 104210 104111 102601 100537 100230 
00001 101210 101210 101211 030011 030011 101130 
00002 000005 000005 000005 005101 005101 000007 
00003 001000 001000 001000 101201 101537 101630 
00004 000001 000001 000001 000007 000007 Oxx400 
00005 030020 030020 030020 001000 001000 001000 
00006 100010 100010 100011 000003 000003 000001 
00007 102510 102510 102511 102601 102637 102230 
00010 055000 055000 055000 001020 001020 030024 
00011 005144 005144 005144 Oxx400 Oxx400 004244 
00012 101110 101110 101111 004050 004050 004344 
00013 000007 000007 000007 004002 004002 004444 
00014 101210 101210 101211 004446 004446 060030 
00015 Oxx401 Oxx401 Oxx401 001020 001020 020027 
00016 001000 001000 001000 000003 000003 004142 
00017 000012 000012 000012 055000 055000 056000 
00020 Oxx400 Oxx400 Oxx400 005144 005144 005344 
00021 001000 001000 040027 
00022 000002 000002 020030 
00023 001040 
00024 000003 
00025 001000 
00026 000011 
00027 yy5777 

xx = 17 for SK systems; xx = 25 for 12K or larger systems 
yy = 07 for SK systems; yy = 12 for 12K or larger systems 

MOS 8-17 



system preparation program 

Table 8-3. Bootstrap Loading Routine (18-Bit Computer) 

Magnetic Magnetic Magnetic High-Speed 
Tape Tape Tape 33/35 Paper 

Controller 0 Controller 0 Controller 1 ASA Tape Card 

Address Unit 0 Unit 1 unit 0 Teletype Reader Reader 

00000 104110 104?10 104111 102601 100537 100230 
00001 101210 101~~10 101211 030011 030011 001000 
00002 000005 000005 000005 005101 005101 000006 
00003 001000 001000 001000 101201 101537 Oxx377 
00004 000001 000001 000001 000007 000007 040003 
00005 030020 030020 030020 001000 001000 067003 
00006 100010 100010 100011 000003 000003 040003 
00007 102510 102510 102511 102601 102637 006010 
00010 055000 055000 055000 001020 001020 001036 
00011 005144 005144 005144 Oxx400 Oxx400 050022 
00012 101110 101110 101111 004052 004052 005007 
00013 000007 000007 000007 004002 004002 101630 
00014 101210 101210 101211 004446 004446 Oxx400 
00015 Oxx401 Oxx401 Oxx401 001020 001020 101130 
00016 001000 001000 001000 000003 000003 000021 
00017 000012 000012 000012 055000 055000 001000 
00020 Oxx400 Oxx400 Oxx400 005144 005144 000013 
00021 001000 001000 102230 
00022 000002 000002 001036 
00023 000004 
00024 004454 
00025 057003 
00026 040022 
00027 001000 
00030 000013 

xx = 17 for 8K systems; xx = 2:, for 12K or larger systems 

MOS 8-18 



system preparation program 

ENTER DEVICE NAME FOR xx 

where xx denotes Pl, PO, LO, Bl, and SI, respectively, in the five requests. In response to 
each request, type the name of a peripheral device followed by a carriage return. The 
specified peripheral device is assigned the corresponding logical function during the 
system preparation process. 

Table 8-4 gives the function of each logical unit during system preparation and lists 
acceptable peripheral device assignments for each logical unit name. To assign the 
peripheral device a default assignment, type a carriage return. 

After completing peripheral device assignments for system preparation, the message: 

BEGIN SYSTEM PREPARATION 

is output. The SPP can then accept system preparation control directives defining the 
MOS system file to be generated. 

DISC FORMATTING 

When preparing an MOS system for a 620-40 disc, a disc-formatting routine is loaded by 
the SPP loader. This routine is loaded prior to the SPP. 

At the end of a successful loading, the Teletype makes four requests for disc formatting 
information. These requests are for the BIC hardware address, controller hardware 
address, disc unit number, and the disc size (in cylinders). Each input can be either a 
decimal or octal number, but, if the latter, it has a leading zero. Each request is 
terminated by a carriage return. 

After the fourth request, the routine formats the disc. When formatting is complete, 
formatting information for another disc is requested. When all discs have been formatted, 
answer the request for the BIC hardware address by pressing the CONTROL and BELL 
keys on the Teletype. The loader then loads the next segment of the SPP and proceeds as 
described in section 4. 

SYSTEM VERIFICATION AND COMPLETION 

Upon completion of the system preparation, the system file is read and verified to ensure 
that no errors occurred. Verification consists of reading the new system file and checking 
such items as checksums, sequence numbers, and record formats. A listing is also 
generated on the LO (figure 8-1). If verification is not desired, supply the parameter N on 
the END control directive. After the system preparation is complete, the program outputs 
the message: 

MOS SYSTEM READY 

It then loads the resident monitor into memory by executing the appropriate bootstrap of 
the MOS system file and ~ypes ':":' on the Teletype. 

MOS 8-19 



system preparation program 

Table 8-4. Logical Unit Functions 

Unit 

Pl 

PO 

LO 

Bl 

SI 

Function 

Contains the ISL 

Contains the MOS system 

Lists all SPP control 
directives and the ISL 

or MOS system file, if 
requested 

Inputs any additional pro
grams not contairn~d on 
the ISL 

Inputs all SPP control 
directives 

*Only on systems with 12K or larger memory. 

Assignments 

TROO':,,:,,:,,:,,:, 

PTOO 
CROO':' 
MTOl':,,:,,:,,:, 
MTIO':,,:,,:,,:, 
MTOO':,,:,,:,,:, 

MTOO':,,:,,:,,:, 

DROO':":' 
DKOO':,,:,,:, 

TYOO 
LPOO 

TROO 
PTOO 
CROO':' 

TYOO 
TROO 
PTOO 
CROO':' 

**DROO is acceptable only on the drum and magnetic tape MOS_ 
***DKOO is acceptable only on the disc MOS. 

Default 

TROO 

MTOO 

TYOO 

TROO 

TYOO 

****MTOO is acceptable on systems with 12K or larger memory or any drum and magnetic 
tape MOS_ 

•:":":":":'When TROO is specified, TPOO must also be specified within the EQUIP directive 
parameter. 

MOS 8-20 



system preparation program 

PAGE 

B!QIN SYSTE~ PREPARATIQ~ 
DATE,01/20/71 
co~P,t,c2~111,1,o'oo,0477,oto,1• 
EQUlP,~TO~,~TlO,TV,TR,TP,PT,CR,~, 

EQuIP,D~0~(022,0),U~01(~2~,o200~),D~02(~2?,C1~0~),u~03(~2~,n1000) 
E~o,1. 

Figure 8-1. System Preparation List Output (1 of 3) 

MOS 8-21 



system preparation program 

ID 

A ~U~TST~P 01/~0/71 0044~ 
ABS,~~C~1D~,Q5/12170,•1,01000,010 

s~Li" 25ooe 
Si,.L:e 250~1 

c Y 1. ~. o • 2 ~ 1 e 15 
C"l.~01 2~711511! 
CYl.l\itJ•i 25740 
SH~ 25CH~f5 

SUC84 2'i'41 
JLJC61 2~741 
~JCb'J 25713 

STH :?"iC72 
S'"'OC £5176 
SRE.111 255C'I~ 
,of.n 25070 
s~c~ <"iC'56 
S"'P~ 2"5140 
Si.Ct' ~'"i0'57 

H8"' 01)400 
-'LH 2~2~5 
ILA:j 2':i270 
'JC" 2~C'!'57 
'"~~ 251('12 
.IE.C"ioi 25071 
Ji'H 2"'076 
S8i,,F 2'5011 

CUA?l M010 
[Sl,.ITl 0101'l0 
csno1 2,c~.., 

A88,RSC~1~r.01111110,-1,010~0,n10 
f:~OA~5 

4BS,~SC~2TY,01/11/7n,.1,01ono,010 
ENOABS 
4BS,R5CR2LP,01/11/7n,.1,01000,010 

s•u~ 2561'16 
IL.LIB 2~037 

cv1."'o" 251ee 
CYl.t-.01 2~7~15 
CYl.'1100 25740 

UE1 2~M>6 

Note: If a slash appears to the left of a number field, the designated program is required 

by the system preparation program but omitted from the ISL. 

Figure 8-1. System Preparation List Output (2 of 3) 

MOS 8-22 



system preparation program 

P4GE g 01/20171 

10 CUE SIZE ENTRY N•"1E8 EllTERNAl. NHl!'.S 

SI.BF '·I.AX 
IL.A! •Jc.-
Stall' ~UP 

Sl'Rl-1 lllECVll 
Si:>AT .SCM 
SCOl'I MBIJF 
Ul.G 

R ,.AP$ 00123 MAltS l.CBS IOC, !i13UF 
R 500 00022 soo Mi;RS l'IT.10 ,.SRI M5FJ 

i"Rll t Mll!l)11 ~!F• Ml'.'I(' 

*" 101 OOC\22 !01 '"wRS MT:IO ft1SR' M!U''I! 
MH,.;i MR(}!li ~fF.; "1Cl('I 

*" $C2 001'122 '02 "lllRS MT.110 t-ISIU MS"~ 
"IR,•l f'IRDt i-IEF:\ MCi<l' 

•P •o;s 0(1022 !103 ~wl'U MTSt'l lolSRJ l'ISF~ 
"'Ri"ll MROi "EF• MCI<.'< 

R SO• 00022 '04 "'lllRS MH\ "'SIU MSF~ 

'"R'"! MRO, MEF~ MCl('I 

*" 105 00022 SO!! M~R~ "4TU MSIU l"SF~ 
IR•· li MRD' "'EF, MCI(• 

•R ·'Of: no~n !IOe t-~R$ !'I Ht t.ISRS l'lt'P''JI 
"·R"'i MRD:t to1EFS MCO 

111R 107 00022 !107 "'°"RS lolT:l 1 MSRS M!)F~ 

..-~;.! l'IRO.• t-'IE"S MCK~ 

111R $08 00(122 soe Ml'jRS MTS2 t-ISRii MS!I" 
"R•IS .,i:io.• "'EF'll MCI<~ 

•P $09 00022 ~o~ "''IRS l'ITS2 MSfU 1'11'1"'~ 
f"Rl#S MR!)$ ME Fi MCIO 

*" SOA 00022 IOA iloV!IRS MTS:? '"SR.I !'1SI'! 
MR\lj$ "4RO$ M!l't MCI(.• 

•R SOB 00!'122 108 M\flRS !'ITU MSR!I MS" 
1-lRWS .~HOS "1!!1'11 Ml""::'.. 

•R soc: 00022 soc "IVllR:I l'IHJ "'!i:l.i M~ll" 

"R"'t M~O, twiEI', MCO 
•R P.00 00022 SOC! ~~'-"RS MT$3 MUS ~s'' 

.,R•'' MRD!I M!ll'5 "1Ct<~ 
•R SOf 001'!22 SOE i'\llRS "1U3 MSIH MSF~ 

l'IR"''I MRO• MEI', "1CO 
•R JOI' 00022 •OI' l.!\olRS MTS3 ~SR'S MSn 

MRWS "1ROS MEI'$ 1i1eo 

Note: An asterisk preceeding a line indicates that the designated program is contained 
in the ISL but omitted from the created System File. 

Figure 8-1. System Preparation List Output (3 of 3) 

MOS 8-23 



system preparation program 

If the system file is on a rotating memory unit, the virtual unit allocation table is listed on 
SO followed by the message: 

DISC MOS SYSTEM READY 

EXAMPLES 

Problem 1 

Prepare an MOS system file for a 6201622 computer system having one magnetic tape 
unit, one Teletype unrt, and 8K of core memory. Make the following logical unit 
assignments: SF = MTOO, Pl = TROO, SS = MTOO, Bl = TROO, SO = TYOO LO = TYOO, 
and BO = TPOO. Set the default values of $PGM to 03000, $LIT to 02777, and $1AP to 
010. During system preparation, do not list the ISL, but verify and list the MOS system 
file. 

Procedure: 

l. Key in the Teletype bootstrap loader and enter the SPP through the Teletype 
paper tape reader. 

2. Assign logical units for use by the SPP as follows: 

Pl = TROO 
PO = MTOO 
LO = TYOO 
Bl TROO 
SI = TYOO 

3. Mount the ISL on the Teletype reader (Pl) and mount a scratch magnetic tape 
with a write-ring on the magnetic tape transport (PO). 

4. Respond to the BEGIN SYSTEM PREPARATION message with the following 
control directives on the Teletype keyboard (SI): 

COMP,I,017777,0,03000,02777,010,14 
DATE, 11I0 7 I 6 9 (optional) 
EQUIP,TY,MT,TR,TP 
END 

MOS 8-24 



system preparation program 

Problem 2 

Prepare an MOS system file for a 620/622 computer system having four standard 
magnetic tape units connected to one controller, one special magnetic tape unit 
connected to a different controller for which the user supplies the I /0 driver, one Teletype 
unit, one line printer, one card reader, one high-speed paper tape reader /punch unit, and 
16K of core memory. The special magnetic tape unit is designated MMlO and its 1/0 
driver has the entry name $OU. Make the following logical unit assignments: SF = 

MTOO, PO = MTOl, SS = MTOl, GO = MT02, SI = TYOO, Pl = CROO, LO = LPOO, Bl 
= PTOO, BO = PTOO, Sl = MT03, and LUN 15 = MMlO (special magnetic tape unit). 
Set the default values of $PGM to 04000, $LIT to 03777, and $1AP to 030. During the 
system preparation process, replace the FORTRAN compiler with a new version and verify 
and list both the ISL and the MOS system file. 

Procedure: 

1. Key in the magnetic tape unit 2 bootstrap and enter the SPP through MTOl. 

2. Assign logical units for use by the SPP as follows: 

Pl = MTOl 
PO = MTOO 
LO = LPOO 
Bl PTOO 
SI = TYOO 

3. Mount the ISL on MTOl (Pl) and mount a magnetic tape on MTOO (PO) 

4. Respond to the BEGIN SYSTEM PREPARATION message by typing the 
following control directives on the Teletype (SI): 

COMP,I,037777,0,04000,03777,030,15 
DATE, 11IO7 I 6 9 (optional) 
IODEV,MM10,0U,5 
EQUIP,TY,CR,LP,PT,TR,TP 
EQUIP,MTOO,MT01,MT02,MT03,MM10 
ADD,$03 
REPLACE FORTRAN 
ASSIGN,BI=PTOO,BO=BI 
a s s i g n , S 1 = MT 0 3 , 1 5 MM 1 0 

END,L 

5. When the SPP types the message: 

ADD $03 

MOS 8-25 



system preparation program 

place the special magnetic tape 110 driver object program ($OU) in the high
speed paper tape reader. Type Y to copy $OU on the MOS system file. After the 
program has been copied, type N to continue system preparation. 

6. When the SPP types the message: 

REPLACE FORTRAN 

place the new FORTRAN compiler program on the high-speed paper tape reader. 
Type Y to copy the FORTRAN compiler to the MOS system file. After the 
FORTRAN compiler has been copied, type N to continue system preparation. 

Problem 3: 

Prepare an MOS system file for a 6201622 computer system having one 256-track drum 
memory unit (connected to BIC 020), two standard magnetic tape units with separate 
controllers, one Teletype unit, one line printer, one high-speed paper tape reader/punch 
unit, and a 32K core memory. Prepare the system so that only the first 31 K of core is 
used. Make the following logical unit assignments: SF = DROO, Pl = PTOO, SS = DROl, 
PO = DROl, Bl = PTOO, SI = TYOO, ,SO = TYOO, LO = LPOO, and BO = PTOO. Set the 
default values of $PGM to 0500, $LIT to 0377, and $1AP to 010. Partition the drum 
memory into six virtual units. Make the first unit 050 sectors longer than the system file, 
and the next five units 05000, 03000, 01500, 01500, and 01500 sectors long, respectively. 
Do not list the ISL and do not verify or list the MOS system file. 

Procedure: 

1. Mount the ISL on MTOO (Pl). 

2. Key in the magnetic tape unit 1 bootstrap and enter the SPP through MTOO. 

3. Assign logical units for use by the SPP as follows: 
Pl. = MTOO 
PO = DROO 
LO = LPOO 
Bl = PTOO 
SI = TYOO 

4. Respond to the BEGIN SYSTEM PREPARATION message by typing the 
following control directives on the Teletype (SI): 

COMP I I I 0 7 5 0 0 0 I 1 I 0 5 0 0 I 0 3 7 7 I 0 1 0 I 1 4 
DATE, 05126170 (optional) 
EQUIP,MTOO,MT10,TY,TR,TP,PT,LP 
EQUIP,DR00(020,050),DR01(020,05000) 
EQUIP,DR02(020,03000),DR03(020,01500) 
EQUIP,DR04(020,01500),DR05(020,01500) 
END,N 

MOS 8-26 



system preparation program 

5. A drum allocation listing of the following form is printed on LO after system 
preparation is complete: 

DRUM ALLOCATION 

DROO 0 0 0 0 1-2 003477 
DR01 003500 010477 
DR02 010500 013477 
DR03 013500 015177 
DR04 015200 016677 
DR05 016700 017777 

Problem 4: 

Prepare an MOS system file for a 620/622 computer system having one disc unit 
connected to BIC 020, one disc unit connected to BIC 022, two 9-track magnetic tape 
units connected to BIC 024, one Teletype unit, one card reader, one line printer, and 32K 
core memory. Prepare the system so that only the first 28K of core is used. Make the 
following logical unit assignments: SF = DKOO, Pl = CROO, PO = DKOl, SS = DKOl, Bl 
= MTOl, SI = TYOO, SO = TYOO, LO = LPOO, BO = MTOO, Sl = DK02, S2 = DK03, 
S3 = DK40, and S4 = DK41. Partition the 1irst disc unit into four virtual units. with the 
first virtual unit equal in length to the system file (SF) plus 0100 sectors and the other 
three virtual units 01500, 01000, and 01000 sectors long, respectively. Partition the 
second disc unit into five virtual units,· each 01200 sectors long. Set the default values of 
$PGM to 02000, $LIT to 01777, and $1AP to 0500. During system preparation, do not list 
the ISL, but verify and list the MOS system file. 

Procedure: 

1. Mount the ISL on MTOO (Pl). 

2. Key in the magnetic tape unit 0 bootstrap and enter the SPP through MTOO. 

3. Assign logical units for use by the SPP as follows: 

Pl = MTOO 
PO = DKOO 
LO = LPOO 
Bl MTOl 
SI = TYOO 

4. Respond to the BEGIN SYSTEM PREPARATION message by typing the 
following control directives on the Teletype (SI): 

COMP,I,067777,3,02000,01777,0500,14 
DATE, 06/ 11 /70 (optional) 
EQUIP,MT00(024),MT01(024),TY,CR,LP 

MOS 8-27 



system preparation program 

EQUIP,DK00(020,0100),DK01(020,01500),DK02(020,01000) 
DK03 (020,01000) 

EQUIP,DK40(022,01200),DK41(022,01200),DK42(022,01200) 
EQUIP,DK43(022,01200),DK44(022,01200) 
ASSIGN,PO=DK01,SS=DK01,BI=MT01,BO=MTOO 
ASSIGN,S1=DK02,S2=DK03,S3•DK40,S4=DK41 
END 

A disc allocation listing of the following form is printed on LO 
after system preparation is complete: 

DISC 0 ALLOCATION 

DK01 
DK01 
DK02 

DISC 

DK40 
DK41 
DK42 
DK43 
DK44 

4 

000000 
003600 
005300 

ALLOCATION 

000000 
001200 
002400 
003600 
005000 

003577 
005277 
006257 

001177 
002377 
003577 
004777 
006257 

PROBLEM 5: 

Prepare a MOS system file for a 6201622 computer system having one standard magnetic 
tape unit connected to BIC device address 022, one Teletype unit, one card reader, one 
high-speed paper tape reader/punch unit, one movable-head disc unit with 9,744 sectors 
connected to BIC device address 020, one STATOS 21 (620-74) printer/plotter to be used 
as the system line printer, and 32K core memory. The STATOS 21 printer/plotter 
programs are not resident on the Installation System Library (ISL) and it is desired to 
replace the standard line printer routines "RSCB2LPB" (core dump), " $0Q" (DST), and 
"LPDP24" (line printer driver) with the STATOS 21 routines" RSCB2LPB", "$0Q", and 
"LPST21". Set the default valuies of $PGM to 0500, $LIT to 0377, $1AP to 010, and 
number of logical units to twenty. Partition the disc unit into ten virtual units, with the 
first virtual unit equal in length to the system file (SF), the second virtual unit through 
the tenth virtual unit into 3000, 800, 500, 900, 700, 100, 300, 200, and 100 sectors long, 
respectively. Do not list the ISL, but verify the MOS system file. 

Procedure: 

MOS 8-28 

NOTE: 

LO cannot be assigned to LPOO unless SPP contains the appropriate 
line printer driver. 



system preparation program 

1. Mount the ISL on MTOO (Pl). 

2. Key in the magnetic tape unit 0 bootstrap and enter the SPP through MTOO. 

3. Prepare the system preparation control directives on punched cards and place 
into the input hopper. Make the card reader ready. 

4. Assign logical units for use by the SPP as follows: 

Pl = MTOO 
PO = DKOO 
LO = TYOO 
Bl CROO 
SI = CROO 

5. Be prepared to place the appropriate binary-object program replacements into 
the card reader when the SPP requests the replacements for " RSCB2LPB" , 
" $0Q" , and " LPDP24" 

6. Respond to the Begin System Maintenance message by making the card reader 
ready. The following directives, previously prepared, will be read and printed on 
the Teletype (LO) 

DATE,07-27-71 (optional) 
COMP,I,075777,2,0377,010,20 
EQUIP,TY,PT,LP,CR,MOT00(022),DK00(020,0),DK01 
(020,3000) 
EQUIP,DK02(020,800),DK03(020,500),DK04(020,900), 
DK05(020,700) 
EQUIP, DK06 ( 020, 100), DK07 ( 020, 300), KD08 ( 020, 200), 
DK09(020, 100) 
REPLACE,$0Q,LPDP24,RSCB2LPB 
END,V 

7. When the SPP types the message: 

REPLACE RSCB2LPB 

place the STATOS 21 core dump routine object program (RSCB2LPB) in the card 
reader and make ready. Type Y to copy RSCB2LPB onto the MOS system file. 
After the program has been copied, type N to continue system preparation. 

8. When the SPP types the message: 

REPLACE $0Q 

place the STATOS 21 1.10 cir•ver DST object program ($0Q) in the card reader 
and make ready. Type Y to copy $0Q onto the MOS system file. After the 
program has been copied, type N to continue system preparation. 

MOS 8-29 



system preparation program 

9. When the SPP types the message: 

REPLACE LPDP24 

place the STATOS 21 1/0 driver object program (LPST21) in the card reader and 
make ready. Type Y to copy LPST21 onto the MOS system file. After the 
program has been copied, type N to continue system preparation. 

10. Repeat steps 8 and 9 until all required replacements are completed. 

11. A disc allocation listing of the following form is printed on LO (TYOO) after 
system preparation is complete: 

DISC 0 ALLOCATION 

DKOO 000000 004544 
DK01 004545 012434 
DK02 012435 014074 
DK03 014075 015060 
DK04 015061 016664 
DK05 016665 020160 
DK06 020161 020324 
DK07 020325 021000 
DK08 021001 021310 
DK09 021311 023017 

12. After the system has been verified by SPP the following is printed on the LO: 

MOS SYSTEM READY 

13. The system file is then bootstrapped into the computer via the memory resident, 
MOS and the following is printed on the Teletype (SO): 

* * 

MOS 8-30 



SECTION 9 - LANGUAGE PROCESSORS 

The basic MOS supports the DAS MR assembler as its language processor. By increasing 
memory, the FORTRAN IV (ANSI standard) compiler can also be used. The modular 
design of the MOS allows the inclusion of additional Varian or user language processors 
through the system preparation procedure. 

Both the assembler and compiler exist in stand-alone and MOS configurations. This 
chapter describes the features of the MOS versions of these language processors. 

Status and error messages are given in Section 13. 

DAS MR ASSEMBLER 

DAS MR is a two-pass macro assembler that uses the secondary storage device of MOS 
for the Pass 1 output. It reads a source module from the Pl and outputs it on the PO. The 
Pass 2 source input is input from the SS. ' 

When an END statement is encountered, the SS is repositioned and reread. During Pass 
2, the output can be directed to the BO for the object module and the LO for the assembly 
listing. The SS or PO file, which contains a copy of the source module, can be used as 
input to a subsequent assembly. 

A DAS MR symbol consists of one to six characters, the first of which must be alphabetic, 
with the rest alphabetic or numeric. Additional alphanumeric characters can be 
appended to the first six characters of the symbol to form an extended symbol up to the 
limit imposed by a single line of code. However, only the first six characters are 
recognized by the assembler. 

Assembler language programs (and subroutines) are referred to within MOS by name 
during system maintenance and system preparation. To name a DAS MR module in MOS, 
specify from one to eight characters in the title parameter of the I JOB preceding the 
I ASSEMBLE control directive. 

The DAS MR assembler provides for relocatable and absolute object modules. Absolute 
modules must be explicitly specified with an ORG directive. Otherwise, the modules will be 
relocatable. 

MOS 9-1 



language processors 

The directives recognized by the DAS MR assembler are: 

BES DATA END GOTO MZE PZE 
BSS DETL ENTR IFF NAME RETu•:• 

CALL DUP EQU IFT NULL SET 
COMN EJEC EXT LOC OPSY SPAC 
CONT EMAC FORM MAC ORG SMRY 

FORTRAN IV COMPILER 

The FORTRAN IV compiler is a one-pass compiler. It inputs a source module from the Pl 
and produces an object module on the BO and an object listing on the LO. No secondary 
storage is required for a compilation. 

When a fatal error is detected (T type·, section 13), the compiler automatically terminates 
the BO. LO output continues. The compiler reads from the Pl file until an END statement 
is encountered or a control directive is read. Compilation also terminates on detection of 
an 1/0 error or an end-of-device, beginning-of-device, or end-of-file indication from 1/0 
control. 

FORTRAN IV programs (subroutines, functions, block data, etc.) are referred to within 
MOS by name during system maintenance and system preparation. To name a FORTRAN 
IV module in MOS, specify from one to eight characters in the title parameter of the I JOB 
preceding the /FORTRAN control directive. 

The FORTRAN IV compiler output comprises relocatable object modules under all 
circumstances (e.g., main programs, subprograms, functions, etc.). 

The FORTRAN IV compiler has conditional compilation facilities implemented by an X in 
column 1 of a source statement. When the X appears in the /FORTRAN directive, all 
source statements with an X in column 1 are compiled with all other statements (viz., the 
X is treated as a blank). When the X is not present, all conditional statements are 
ignored by the compiler. X lines are given numbers on the list output in either case, but 
the source statement is printed only when the X is present. 

When performing 1/0 in FORTRAN, the READ and WRITE statements are used. In these 
statements, 110 devices are reference~d by logical unit numbers. The MOS FORTRAN IV 
supports logical units 1 through 255 (table 3-1). These logical unit numbers are assigned 
to physical devices (table 3-2). 

!lOS 9-2 



RPG IV 

The MOS RPG IV system is a software package for general data processing applications. It 
combines versatile file and record defining capabilities with powerful processing 
statements to solve a wide range of applications. It is particularly useful in the processing 
of data for reports. The MOS RPG IV system consists of an RPG IV compiler and a 
runtime/loader program. 

The RPG, Report Program Generator, its compilation and execution under MOS are 
described in the Varian RPG IV User'.s Manual (98 A 9947 03R, where R is the revision 
number). 

MOS 9-3 



SECTION 10 - SUPPORT LIBRARY 

The MOS system has a comprehensive subroutine library directly available to the user. 
The library contains mathematical subroutines to support the execution of a FORTRAN IV 
program, plus many commonly used utility subroutines. To use the library, merely code 
the proper call in the program, or, for the standard FORTRAN IV functions, implicitly 
reference the subroutine (e.g., A= SQRT(B) generates a CALL SQRT(B)). All calls 
generate a reference to the required routine, and the loader brings the subroutine into 
memory and links it to the calling program. 

CALLING SEQUENCE · 

The subroutines in the support library can be called through a DAS MR or FORTRAN IV 
program as follows: 

General form: 

Expansion: 

General form: 

DAS MR 

label CALL S,p(1),p(2), ... ,p(n) 

label JMPM 
DATA 
DATA 

s 
p ( 1) 

p~2) 

DATA p(n) 

FORTRAN IV 

statement number CALL S(p(1),p(2), ... ,p(n)) 

MOS 10-1 



support library 

Generated code: 

JMPM 
DATA 
DATA 

DATA 

s 
p( 1) 
p(2) 

p(n) 

SIXTEEN-BIT NUMBERS 

Single-precision integers use one 16-bit word. A negative number is in two's complement 
form. An integer in the range -32,768 to + 32,767 can be stored as a single-precision 
integer. 

Single-precision floating-point numbers use two consecutive 16-bit words. The exponent 
(in excess 0200 form) is in bits 14 to 7 of the first word. The mantissa is in bits 6 to 0 of 
the first word and bits 14 to 0 of the second word. The sign bit of the second word is 
always zero. A negative number is represented by the one's complement of the first word. 
Any real number in the range 10± 

8 
can be stored as a single-precision floating-point 

number having a precision of six digits. 

Single-Precision Floating-Point Number (16-Bit) 

Bit 15 14 13 12 11 ·1 0 9 8 7 6 5 4 3 2 1 0 
n) s ------Exponent---------- ---High Mantissa-
n+ 1) 0 ---------------Low Mantissa---------------

Double-precision floating-point numbe·rs use four consecutive 16-bit words. The exponent 
(in excess 0200 form) is in bits 7 to 0 of the first word. The mantissa is in the second, 
third, and fourth words. Bit 17 of the third and fourth words and bits 17 to 8 of the first 
word are zero. A negative number is represented by the one's complement of the second 
word. Any real number in the range 10± can be stored as a double-precision floating
point number having a precision of U decimal digits. 

Double-Precision Floating-Point Numbers (16-bit) 

Bit 15 
n) 0 
N+ 1) S 
n+2) 0 
n+3) 0 

MOS 10-2 

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 0 ------Exponent-----
--------------High Mantissa---------------
--------------Mid Mantissa----------------
--------------Low Mantissa----------------



support library 

EIGHTEEN-BIT NUMBERS 

Single-precision integers use one 18-bit word. A negative number is in two's complement 
form. Any integer in the range -131,072 to + 131,071 can be stored as a single-precision 
integer. 

Single-precision floating-point numbers use two consecutive 18-bit words. The exponent 
(in excess 0200 form) is in bits 16 to 9 of the first word. The mantissa is in bits 8 to 0 of 
the first word, and bits 16 to 0 of the second word. The sign bit of the second word is 
always zero. A negative number is represented by the one's complement of the first word. 
Any real number in the range -76,000,000,000 to + 76,000,000,000 can be stored as a 
single-precision floating-point number having a precision of seven digits. 

Single-Precision Floating-Point Number (18-Bit) 

Bit 
n) 

17 16 15 14 13 12 11 1 0 9 8 7 6 5 4 3 2 1 0 
s 

n+ 1) 0 
---------Exponent------- -----High Mantissa-
-----------------Low Mantissa----------------

Double-precision floating-point numbers use four consecutive 18-bit words. The exponent 
(in excess 0200 form) is in bits 7 to 0 of the first word. The mantissa is in the second, 
third, and fourth words. Bit 17 of the third and fourth words and bits 17 to 8 of the first 
word are zero. A negative number is represented by the one's complement of the second 
word. Any real number in the range -76,000,000,000 to + 76,000,000,000 can be stored 
as a double-precision floating-point number having a precision of 15 decimal digits. 

Bit 1 7 
n) 0 
n+1) s 
n+2) 0 
n+3) 0 

Double-Precision Floating-Point Number (18-Bit) 

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 0 0 0 -----Exponent---
--------------High Mantissa------------------
--------------Mid Mantissa-------------------
--------------Low Mantissa-------------------

MOS 10-3 



support library 

SUBROUTINE DESCRIPTIONS 

The following definitions and notation apply to the subroutine descriptions given in this 
section: 

Notation 

AB 

AC 

ACCZ 

d 

x 

z 

$ 

Meaning 

Hardwari:~ ·A ·and B registers 

Four-word software accumulator for 
double-precision and real numbers. 

Four-word software accumulator for 
complex numbers (defined as labelled 
COMMON block $1MAG and where the results 
of all complex functions are placed) 

A double-precision number 

Two-word fixed-point number 

An integer 

A double--preci.sion integer 

A real number 

Hardware X register 

A complex number 

Exponentiation 

Division 

A character commonly used as the first character 
of a subroutine name 

The external references in table 10-1 refer to items in both tables 10-1 and 10-2. Similarly, 
the subroutines called in table 10-2 refer to items in both tables 10-1 and 10-2. When a 
subroutine has more than one name, it is indicated by multiple calls under Calling 
Sequence. 

MOS 10-4 



Table 10-1. DAS Coded Subroutines 

Name Function Calling Sequence External References 

$HE In A, compute il ':":'i2 CALL $HE,i2 $QS, $SE, $PE, 
$HS, $QK 

$PE In AB, compute r':":'i CALL $PE,i $SE, $QS, $QE 

$QE In AB, compute rl ':' ':'r2 CALL $QE,r2 ALOG, $QM, EXP, 
$SE 

ALOG In AB, compute ln r. If CALL ALOG,r $ER, $QS, $QK, 
negative, error exit with $QM, XDMU, XDAD, 
A = B = 0 and overflow = 1. $FMS, $NML, $XDDI, 
If zero, set result to maxi- $XDSU, $SE 
mum negative number. 

EXP In AB, compute e':' '~r CALL EXP,r XDMU, $QK, $QL, 
$QM, $QN, $SE 

ATAN In AB, compute arctan r CALL ATAN,r $QM, $QL, $QN, 
$QK, $SE 

COSINE In AB, compute cos r CALL COS,r SIN, $QL, $SE 

SINE In AB, compute sin r CALL SIN,r $QM, XDMU, XDAD, en 
$NML, $FMS, $SE c 

"C 

$SE To transfer a list of N CALL $SE, N, LIST None 
"C 

~ para- Q 
0 meters from a calling program r+ 
(f) 

~ 
0 

to a called subprogram 
Ill 

cJi < 



s Table 10-1. DAS Coded Subroutines (continued) Cll c 
0 'C 
Ul "C 

Name Function Calling Sequence External References ~ 
0 .+ 

m 
SQRT In AB, compute square root CALL SQRT,r XDDI, $FSM, $SE, g: 

of r XDIV 
I» 

< 
FMULDIV In AB, compute rl ':'r2 with CALL $QM,r2 XDMU, $FMS, XCCI, 

$QM, or rl /r2 with $QN. If CALL $QN,r2 $SE 
result overflows, error 
exit with A B = 0 and 
overflow = 1. 

FADDSUB In AB, compute rl + r2 with CALL $QK,r2 $SE, $FSM, $NML, 
$QK, or rl - r2 with $QL CALL $QL,r2 $ER 

SEPMAN Separate mantissa and CALL $FMS None 
characteristic of r into CALL $FSM 
AB and X respectively 

FNORMAL In AB, normalize r CALL $NML XDCO 

XDDIV In AB, compute fl /f2 CALL XDDl,f2 XDSU, XDCO, XDIV, 
XMUL 

XDMULT In AB, compute fl *f2 CALL XDMU,f2 XDAD, XDCO, XMUL 

XDADD In AB, compute fl + f2 CALL XDAD, f2 None 

XDSUB In AB, compute fl - f2 CALL XDSU,f2 None 

XDCOMP In AB, compute negative of f CALL XDCO None 



Table 10-1. DAS Coded Subroutines (continued) 

Name Function Calling Sequence External References 

$FLOAT In AB, convert the i in A CALL $PC $SE 
to floating-point and, for CALL $QS,r 
$QS, store result in r 

$1FIX In A, convert the r in AB CALL $IC $SE 
to i and, for $HS, store CALL $HS,i 
result in i 

IABS In A, compute absolute i CALL IABS,i $SE 

ABS In AB, compute absolute r CALL ABS,r $SE 

ISIGN Set the sign of i 1, in A, CALL ISIGN,i2 $SE 
equal to that of i2 

SIGN Set the sign of rl, in AB, CALL SIGN,r2 $SE 
equal to that of r2 

$HN In A, compute il/i2 CALL $HN,i2 $SE, XDIV 

$HM In A, compute il '~i2 CALL $HM,i2 $SE, XMUL 

XMUL Software emulation of CALL XMUL,i None 
hardware multiplication 

"' c 
'C 

~ XDIV Software emulation of CALL XDIV,i None 'C 
~ 

0 hardware division ..... 
(fl g: 
0 QI 

.'..J < 



$ Table 10-1. DAS Coded Subroutines (continued) en c 
0 'Cl 
(/) 'Cl 

Name Function Calling Seq_uence External References 3 
0 
00 DSINCOS In AC, compute sin d or CALL $DSl,d $STO, $DMP, SDIT, g: 

cos d CALL $DSIN,d $DFR, CHEB, $SE, Ill 

CALL $DCO,d $DLO < 
CALL $DCOS,d 

DA TAN In AC, compute arctan d CALL $DAT,d $DLO, $STO, $DAD, 
CALL $DATAN,d $DSU, IF, $SE, 

AC, $DMP, $001, 
POLY 

DEXP In AC, compute exponential d CALL $DEX,d WLU, $STO, $DMP, 
CALL DEXP,d $001, $SE, AC, 
CALL TWOX,d $DIT, CHEB, IF, 

$DFR 

DLOG In AC, compute ln d CALL DLOG,d $DLO, $STO, $DAD, 
CALL $DLN,d POLY, IF, $SE, 

AC, $DSU, $DMP, 
$DOI-

POLY In AC, compute double- CALL POL Y,t,c,y $DLO, $DAD, $DMP 
precision polynomial with 
t terms, coefficient list 
starting at address c, and 
argument at address y 

CHEB In AC, compute shifted CALL CHEB,t,c $DLO, $STO, $DAD, 
Chebyshev polynomial series $DSU, $DMP 
with t + 1 terms and coef-
ficient list starting at 
address c 



Table 10-1. DAS Coded Subroutines (contin~ed) 

Name Function Calling Sequence External References 

DSQRT In AC, compute square root CALL $DSQ,d $DLO, $STO, $DNO, 
of d CALL DSQR,d $DAD, $DMP, $DDI, 

$SE, AC 

$DFR In AC, compute fractional CALL $DFR,d $DLO, $DNO, $DSU, 
part of d $DIT, AC, $SE 

IDINT In AC, compute integral CALL $DIT,d $DNO, $SE 
part of d CALL IDIN,d 

DMULT In AC, compute di::'d2 CALL $DMP,d2 $DLO, $STO,. $DNO, 
CALL $ZM,d2 $DAD, AC, $SE 

DIVIDE In AC, compute dl/d2 CALL $DDl_,d2 $DLO, "$STO, $DNO, 
CALL $ZN,d2 $DSU, AC, $SE 

DADDSUB In AC, compute dl + d2 with CALL $DAD,d2 $STO, $DLO, $DNO, 
$DAD, or dl - d2 with $DSU CALL $DSU,d2 AC 

CALL $ZK,d2 
CALL $ZL,d2 

DNORMAL In AC, normalize d CALL $DNO $SE 

DLOADAC Load AC with d CALL $DLO,d AC, $SE 
CALL $ZF,d 

Ill c 
$: 

DSTOREAC Store AC in d CALL $STO,d AC, $SE 
"Cl 

0 "Cl 
U) 

CALL $ZS,d ~ ... 
0 Si cb RLOADAC Load A with double-precision CALL $ZI AC OJ 

mantissa sign word from AC < 



s: Table 10-1. DAS Coded Subroutines (continued) 
~ 

0 'ti 
Cf) 

Name Function Calling Sequence External References 
'ti 

<? ~ 
0 SINGLE In AB, convert the d in AC CALL $RC AC ~ 

to r 
I» 

< 
DOUBLE In AC, convert the r in AB CALL $YC AC 

to d 

DB LE COMP In AC, compute negative of CALL $ZC AC 
the d in AC 

$3S Store AB in memory address m CALL $3S,m $SE 

SNAP Print the contents of core CALL SNAP IOCS 
on logical unit (LO) 
(A) = starting address 
(B) = ending address 

A2MT Translate in memory a char- CALL A2MT,n,s,e None 
620 only acter string of length n 

starting at s and ending at 
e from eight-bit ASCII to 
six-bit magnetic tape BCD 
code 

MT2A Translate in memory a char- CALL MT2A,n,s,e None 
620 only acter string of length n 

starting at s and ending 
at e from six-bit magnetic 
tape BCD code to eight-bit 
ASCI! 

DEBUG Provide an execution address CALL DEBUG DBG$ 
for the DEBUG package 



support library 

Table 10-2. FORTRAN IV Coded Subroutines 

Name Function Calling Sequence External References 

$9E Compute ACCZ':":'i CALL $9E(i) $SE, IABS, $8F, 
$8M, $8N 

ccos In ACCZ, compute cos z CALL CCOS(z) $SE, CSIN, $8F, 
$8K, $8S 

CSIN In ACCZ, compute sin z CALL CSI N(z) $SE, EXP, $QN, 
SIN, $QK, $QM, 
COS, $QL, $8F 

CLOG In ACCZ, compute ln z CALL CLOG(z) $SE, ALOG, $QM, 
$QK, $QN, ATAN2, 
$8F 

CEXP In ACCZ, compute exponen- CALL CEXP(z) $SE, EXP, COS, 
tial z SQM, SIN, $8F 

MOS 10-11 



support library 

Table 10-2. FORTRi~N IV Coded Subroutines (continued) 

Name Function Calling Sequence External References 

CSQRT In ACCZ, compute square CALL CSQRT(z) $SE, SQRT, CABS, 
root of z $QK, $QN, $8F 

CABS In AB, compute absolute z CALL CABS(z) $SE, SQRT, $QM, 
$QK 

CON JG In ACCZ, compute conjugate CALL CONJG(z) $SE, $8F 
of z 

$AK Add r to real part of ACCZ CALL $AK(r) $SE, $8S, $QK, 
$8F 

$AL Subtract r from the real CALL $AL(r) $SE, $8S, $QL, 
part of ACCZ $8F 

$AM Multiply ACCZ by r CALL $AM(r) $SE, $8S, $QM, 
$8F 

$AN Divide ACCZ by r CALL $AN(r) $SE, $8S, $QM, 
$8F 

$AC Convert AC to z and store CALL $AC $3S, CMPLX 
in ACCZ 

CMPLX Load ACCZ with a value having CALL CMPLX(rl,r2) $SE, $8F 
a real part rl and an imagi-
nary part r2 

$8K Add z to ACCZ CALL $8K(z) $SE, $8S, $QK, 
$8F 

$8L Subtract z from ACCZ CALL $8L(z) $SE, $8S, $QL, 
$8F 

$8M Multiply ACCZ by z CALL $8M(z) $SE, $8S, $QM, 
$QL, $QK, $8F 

$8N Divide ACCZ by z CALL $8N(z) $SE, $8S, $QM, 
$QK, $QN, $QL, 
$8F 

MOS 10-12 



support library 

Table 10-2. FORTRAN IV Coded Subroutines (continued) 

Name Function Calling Sequence External References 

$ZD Compute negative of z CALL $ZD $8S, $8F 

AIMAG Load AB with the imaginary CALL AIMAG(z) $SE 
part of z 

$0C Load AB with the real part CALL $0C $8S 
of ACCZ 

REAL Load AB with the real part CALL REAL(z) $SE 
of z 

$8F Load ACCZ with z CALL $8F(z) $SE 

$8S Store ACCZ in z CALL $8S(z) $SE, $3S 

$XE Compute d':":'i where d is in CALL $XE(i) $SE, $ZF, MOD, 
AC $ZM, $HN, $ZN 

$YE Compute d •:• •:, r where d is in CALL $YE(r) $SE, $ZS, DBLE, 
AC $ZE, $ZF 

$ZE Compute di::'':'d2 where dl CALL $ZE(d2) $SE, $ZS, DEXP, 
is in AC DLOG, $ZM 

DATAN2 In AC, compute arctan CALL DATAN2(dl,d2) $SE, $ZF, $ZS, 
(dl/d2) $ZI, $ER, $ZN, 

$ZL, $ZK, DATAN 

DLOGlO In AC, compute log d CALL DLOGlO(d) $SE, DLOG, $ZM 

DMOD In AC, compute dl modulo d2 CALL DMOD(dl,d2) $SE, DINT, $ZF, 
$ZN, $ZS, $ZM, 
$ZL, $ZC 

DINT In AC, compute integer CALL DINT(d) $SE, $ZF, $JC, 
portion of d $XC 

DABS In AC, compute absolute d CALL DABS(d) $SE, $ZF, $ZI, 

MOS 10-13 



support library 

Table 10-2. FORTRAN IV Coded Subroutines (continued) 

Name Function Calling Sequence External References 

$ZN 

DMAXl In AC, select the maximum CALL DMAXl(dl,d2, $SE, $ZF, $ZS, 
value in the set d 1, ... ,dn,O) 1$FA, $ZL, $ZI 
d2, ... ,dn 

DMINl In AC, select the minimum CALL DMIN l(dl,d2, $SE, $ZF, $ZS, 
value in the set dl, d2, ... ,dn,O) 1$FA, $ZL, $ZI 
... ,dn 

DSIGN Set the sign of dl equal CALL DSIGN (dl,d2) $SE, $ZF, $ZI, 
to that of d2 $ZN 

$YK Add r to AC CALL $YK(r) $SE, $ZS, DBLE, 
$ZK 

$YL Subtract r from AC CALL $YL(r) $SE, $ZS, DBLE, 
$ZL, $ZC 

$YM Multiply AC by r CALL $YM(r) $SE, $ZS, DBLE, 
$ZM 

$YN Divide AC by r CALL $YN(r) $SE, $ZS, DBLE, 
$ZF, $ZN 

DBLE In AC, convert r to d CALL DBLE(r) $SE, $YC 

$XC In AC, convert i to cl where CALL $XC $PC, $YC 
i is in A 

TANH In AB, compute tant«1 r CALL TANH(r) $SE, $QK, EXP, 
$QL, $QN 

ATAN2 In AB, compute arctan (rl!r2) CALL ATAN2(rl.r2) $SE. $ER, ATAN, 
$QK. $QL, $QN 

ALOGlO In AB, compute log r CALL ALOGlO(r) $SE, ALOG, $QM 

AMOD In AB, compute rl modulo r2 CALL AMOD(rl .r2) $SE, AINT. $QN, 

MOS 10-14 



support library 

Table 10-2. FORTRAN IV Coded Subroutines (continued) 

Name Function Calling Sequence External References 

$QM, $QL 

AINT In AB, truncate r CALL AINT(r) $SE, $IC, $PC 

AMAX! In AB, select the maximum CA~L AMAX1(rl,r2 $S~, 1$FA, $QL 
value in the set rl,r2, ... , ... ,rn,O) 
rn 

AMINI In AB, select the minimum CALL AM1Nl(rl,r2 $SE, 1$FA, $QL 
value in the set rl,r2, ... , ... ,rn,O) 
rn 

AMAXO In AB, select the maximum CALL AMAXO(il,i2, $SE, 1$FA, 
value in the set .il,i2, ... , ... ,in,O) FLOAT 
in and convert to r 

AMINO In AB, select the minimum CALL AMINO(il,i2, .$SE, 1$FA, 
value in the set il,i2, ... , ... ,in,O) FLOAT 
in and convert to r 

DIM In AB, compute the positive CALL DIM(rl,r2) $SE, $QL 
difference between rl and r2 

FLOAT In AB, convert i to r CALL FLOAT(i) $SE, $PC 

SNGL In AB, convert d to r CALL SNGL(d) $SE, $ZF, $RC 

MAXO In A, select the maximum CALL MAXO(il,i2, $SE, 1$FA 
value in the set il,i2, ... ,in,O) 
... ,in 

MINO In A, select the minimum CALL MINO(il,i2, $SE, 1$FA 
value in the set il,i2 ... ,in,O) 
.... in 

MAXI In A, select the maximum CALL MAX1(rl,r2, $SE, 1$FA, $QL, 
value in the set rl,r2, ... ,rn,O) IFIX 
... ,rn and convert to i 

MINI In A, select the minimum CALL M1Nl(rl,r2, $SE, 1$FA, $QL, 

MOS 10-15 



support library 

Table 10-2. FORTRAN IV Coded Subroutines (continued) 

Name Function Calling Sequence External References 

value in the set rl,r2, .. .,rn,O) lflX 
... ,rn and convert to i 

MOD In A, compute il modulo i2 CALL MOD(il,i2) $SE, $HN, $HM 

INT In A, truncate r and CALL INT(r) $SE, $IC 
convert to i 

IDIM In A, compute the positive CALL IDIM(il,i2) $SE 
difference between il and 
i2 

IFIX In A, convert r to i CALL IFIX(r) $SE, $IC 

$JC In AC, convert d to i and CALL $JC $RC, $IC 
store result in A 

MOS 10-16 



MOS operating procedures 

SECTION 11 · MOS OPERATING PROCEDURES 

The installation system library (ISL) of the MOS is available on punched paper tape, or, 
for systems having 12K of memory, on magnetic tape or punched cards. From the ISL, the 
user performs a system preparation to obtain a system file (Section 8). The following 
procedures assume the presence of a system file and deal only with bootstrapping and 
initialization of MOS. 

DEVICE INITIALIZATION 

CARD READER 
a. Turn on the card reader. 

b. Place two blank cards after the last control-directive card of the input deck. 

c. Place the input deck in the card hopper. 

d. Press CLEAR and START. 

CARD PUNCH 
a. Turn on the card punch. 

b. Place blank cards in the card hopper. 

c. Press START. 

33135 ASR TELETYP~ 
a. Turn on the Teletype. 

b. Set the Teletype in off-line mode and simultaneously press the CONTROL and D, 
then the CONTROL and T, and finally CONTROL and Q keys. 

c. Set the Teletype on-line. 

MOS 11-1 



MOS operating procedures 

HIGH-SPEED PAPER TAPE READER 

a. Turn on the paper tape reader. 

b. Position the input pap,er tape in the reader with blank leader at the reading 
station and close the reading gate. 

c. Set the LOAD/RUN switch to RUN. 

MAGNETIC TAPE UNIT 

a. Turn on the magnetic tape unit. 

b. Mount the input magnetic tape. 

c. Position the magnetic tape to the loading point. 

d. Ready the magnetic tape unit so it can be used by the computer. 

FIXED-HEAD DISC UNIT (Model 620-38C and 620-438, c, D) 

a. Press the AC POWER switch. 

b. Wait for the AC POWER indicator to light. 

c. Press the DC POWER switch. 

MOVING-HEAD DISC UNllT (Model 620-::J6, -37) 

a. Turn on the disc unit. 

b. Set the START !STOP switch to START. 

c. Wait for the disc unit to reach operating speed (READY indicator lights). 

d. Turn off WRITE PROTECT. 

MOVING-HEAD DISC UNIT (Models 620-35) 

a. Turn on the disc unit. 

b. Wait for the disc unit to reach operating speed (DISC READY indicator lights). 

MOS 11-2 



MOS operating procedures 

BOOTSTRAP 

To enter the bootstrap loading routine (table 11-1) into computer memory, follow the 
bootstrap loading procedures given in section 8. 

To initiate the bootstrap, reset the A, B, X, P, and instruction registers. Then, press 
SYSTEM RESET and RUN (for V73 and 620/f press RESET, position STEP/RUN, and 
press ST ART). 

MOS 11-3 



MOS operating procedures 

Table 11-1. IV.IOS System File Bootstrap Routines 

620-38C 620-35 620-39 620-40, -41 620-37 
Magnetic 620-46 Fixed- Moving- Moving- Moving- Moving-
Tape to -49 Head Head Head Head Head 

Address Unit Drum Disc Disc Disc Disc Disc 

00000 104110 lOOOyy lOOOyy 005006 005003 005006 005003 
00001 10l210 006020 006020 010024 101316 010024 100416 
00002 000005 000012 000012 140034 000013 140034 100216 
00003 001000 010014 010014 001002 100716 001002 103116 
00004 000001 1031xx 1031xx 001001 100216 001001 101016 
00005 030016 006120 006120 120034 103016 120034 000010 
00006 100010 000350 000350 100015 000035 100015 001000 
00007 102510 1031yy 103lyy lOOOyy 101516 lOOOyy 000004 
00010 055000 lOOOxx lOOOxx 103lxx 000025 103lxx 100416 
00011 005144 100014 100014 006120 001000 006120 100316 
00012 101110 103214 103214 000121 000007 000121 103116 
00013 000007 1010xx 1010xx 103lyy 010033 1031yy 100021 
00014 101210 001001 001001 lOOOxx 100716 lOOOxx 014011 
00015 001001 001000 001000 103215 100416 103215 103120 
00016 001000 000013 000013 001040 103216 001040 124011 
00017 000012 000026 lOOOyy 000026 103121 
00020 100415 1031xx 100415 100020 
00021 005122 120036 005122 100016 
00022 101415 1031yy 101415 101416 
00023 000002 lOOOxx 000002 000022 
00024 001000 100016 001000 101516 
00025 000022 101216 000022 000000 
00026 100515 000025 100115 001000 
00027 101015 101016 101015 001001 
00030 000001 000027 000001 000550 
00031 005144 001010 005144 000000 
00032 001000 000000 001000 
00033 000027 001000 000027 
00034 001520 001001 001520 
00035 000312 
00036 000550 

Where xx = even BIC address and yy = odd BIC address. 

MOS 11-4 



MOS operating procedures , 

SYSTEM (RE)INITIALIZATION 

The executive component of MOS (re)initializes t~e system: 

a. At bootstrap time 

b. When / JOB is read 

c. When 1ENDJOB is read 

d. When the operator resets the A, B, X, P, and instruction registers, presses the 
SYSTEM RESET, and presses RUN. (for the V73 and 620/f, the operator 
presses RESET, positions STEP/RUN to RUN, and presses START). 

Upon (re)initialization: 

a. All logical unit assignments are set to their default values. 

b. System flags denoting errors, processor options, and loader options are reset. 

To (re)execute the user's program in memory: 

a. Set the P register to 000002 and the instruction register to zero. 

b. Press SYSTEM RESET (RESET for the V73 and 620/f). 

c. Press RUN (for the V73 and 620/f, position STEP/RUN to RUN and press START). 

To enter the dump program prior to (re)initialization through the executive: 

a. Set the P register to 000004 and the instruction register to zero. 

b. Press SYSTEM RESET (RESET for the V73 and 620/f). 

c. Press RUN (for the V73 and 620/f, position STEP/RUN to RUN and press START). 

MOS 11-5 



SECTION 12 - USER-CODED 1/0 DRIVERS 

MOS permits augmenting the system with 1/0 drivers coded by the user. To develop an 
I 10 routine and place it in MOS: 

a. Code the driver according to the applicable I /0 device specification. 

b. Assemble the driver using the DAS MR assembler. 

c. Add the driver to the system file using the system preparation program. 

d. Use the driver through I /0 control calls. 

MOS 12-1 



user-coded 1/0 drivers 

"DEVICE SPECIFICATION TABLE 

When a driver controls a single l!ogical unit, the first 16 or more words comprise the 
device specification table (DST). When multiple units are controlled, such as magnetic 
tape units, a DST is required for each. Each DST is a separate assembly linked to its 
driver through externals. The DST: 

a. Transfers parameters of the user I /0 request to the driver 

b. Determines if an 110 driver can accommodate an 1/0 request 

c. Obtains the results of I 10 function requests 

Table 12-1 lists 1/0 driver entry names and their corresponding device names and device 
addresses as recognized by MOS Input/Output Control. The device addresses are omitted 
for those peripheral devices which are presently not supported by VDM. If a user replaces 
an existing driver or incorporates a driver for one of the devices which is not supported, it 
is suggested that the listed entry names, device names, and device addresses be retained. 

DST words have the following significance: 

Word Meaning 

0 Actual number of transfers 
1 1/0 status 
2-3 1/0 driver name 
4 110 request flag and operation 

code 
5 Count parameter 
6 Address parameter 
7 Address of I /0 checking routine 
8 Address of I /0 checking routine 
9 Address of reading routine 
10 Address of writing routine 
11 Address of write-end-of-file 

routine 
12 Address of rewind routine 
13 Address of skip-files routine 
14 Address of skip-records routine 
15 Address of function routine 
16-n Defined by driver 

MOS 12c2 



WORD 0 

Modified by: 
Used by: 

user-coded 1/0 drivers 

1/0 driver 
User programs when information on the number 
of transfers is required 

Word 0 is associated with the entry name of the 1/0 driver since all remaining DST words 
are referenced relative to word 0. f/O driver entry names comprise three characters, the 
first of which is the dollar sign ($); th0' second, a number (0 through 9); and the third, 
a letter or number. 

Word 0 contains the number of words transferred for an 1/0 reading or writing request, or 
the number of files or records remaining to be skipped for a skip request. The 1/0 driver 
puts this information into word O of the DST. 

WORD 1 

Modified by: 1/0 driver 
Used by: 1/0 control and user programs 

Bits 0 through 2 of word 1 are examined by 1/0 control during a status request call to 
determine the appropriate return as follows: 

Value 

0 
1 
2 
3 
4 

Meaning 

Normal return 
Error 
End of file 
End or beginning of device 
Last operation not complete (busy) 

Bits 3 through 15 (17 on 18-bit computers) are not examined by 1/0 control. However, for 
uniformity .in the 1/0 driver, the following meanings are ascribed to the bit positions: 

Bit 

3.5 
6 
7 
8 

Meaning 

Temporary storage for 1/0 driver 
Last operation was rewind 
Odd-length record detected 
Error detected 

MOS 12-3 



user-coded 1/0 drivers 

Bit 

9 
10 
11 
12 
13 
14 
15 
16 
17 

WORDS 2 and 3 

Modified by: 
Used by: 

Meaning 

Unit ready 
Unit rewinding 
End of file detected 
End of device detected 
Beginning of device detected 
Last operation ignored 
Status not valid 
Not used (18-bit computers only) 
Status not valid (18-bit computers 
only) 

Not modified 
110 control and user programs 

Words 2 and 3 contain the four-character ASCII name of the peripheral device for the 1/0 
driver. 

WORD 4 

Modified by: 
Used by: 

110 control and 1/0 driver 
1/0 control and 110 driver 

When word 4 is positive, 1/0 control is advised that an 110 request 1s in process or 
pending and a new 1/0 request must wait. When word 4 is negative, 110 control is 
notified that the 1/0 driver is available. When an 110 request is made for an available 110 
driver, 110 control puts the function code from the user's 1/0 request in bits 7 through 0 
of word 4, making it positive. 

WORD 5 

Modified by: 
Used by: 

1/0 control and 110 driver 
1/0 driver 

When an 110 request is made for .an 110 driver and no other request is pending (word 4 
negative), 1/0 control puts the count (if greater than zero) from the user's 1/0 call in 
word 5. 

WORD 6 

Modified by: 
Used by: 

1/0 control and 1/0 driver 
1/0 driver 

When an 110 request is made for an 110 driver and no other request is pending (word 4 
negative), l/O control puts the data address from the user's 110 call in word 6. The most 
significant bit is always zero. 

MOS 12-4 



WORDS 7 AND 8 

Modified by: 
Used by: 

Not modified 
110 control 

Words 7 and 8, which contain the same address, are used as follows: 

user-coded 1/0 drivers 

a. Before 110 control passes to the 1/0 driver to perform the requested 110 
function, it transfers to the 1/0 driver by a Jump and Mark Indirect (JMPM':') 
instruction to the address of word 7. Then, the I /0 driver determines if the 
peripheral device is available. If so,. it sets a positive condition code in the A 
register, permitting 1/0 control to enter the 110 driver a second time to process 
the request. If the device is unavailable, the A register is set to zero, signaling 
I 10 control not to make an I /0 request at this time. 

b. Every time a call requesting status is made to I /0 control, it checks the I 10 
driver request flag (most significant bit of word 4 ). If no request is in process. 
control passes to the 110 driver with a JMPM•:• to the address given in word 7. 
The 1/0 driver sets the condition code in the A register before returning control 
to 1/0 control. · 

WORD 9 

Modified by: 
Used by: 

Not modified 
1/0 control 

If the 110 driver can read, word 9 contains the address used by 110 control when reading 
is requested of this I /0 driver. If the I /0 driver cannot read, word 9 is zero. 

To read, I /0 control passes to the I 10 driver with the X register pointing to word 0 of the 
I /0 driver DST. When the reading is complete, the I /0 driver returns control to I ;q 
control with a Jump Indirect (JMP':') instruction to the address in word 7. 

The I 10 driver sets a condition code in the A register before returning to I 10 control. A 
negative A register indicates that more than 500 microseconds were spent in the 110 
driver, and the physical unit table ($PUT. section 2) is scanned again because another I /0 
operation may have finished in the interim. A zero in the A register indicates that the I 10 
driver is busy. A positive A register (nonzero) indicates that the I /0 driver is free. 

WORD 10 

Modified by: 
Used by: 

Not modified 
I /0 control 

If the 110 driver can write, word 10 contains the address used by 110 control when writing 
is requested of this I /0 driver. If the 110 driver cannot write, word 1 O is zero. 

MOS 12-5 



user-coded 1/0 drivers 

To write, 110 control passes to the 110 driver with the X register pointing to word 0 of the 
I /0 driver DST. When writing is complete, the I 10 driver returns control to I /0 control 
with a JMP':' to the address in word 7. 

The 110 driver sets a condition code in the A register before returning to 1/0 control. A 
negative A register indicates that more than 500 microseconds were spent in the I /0 
driver, and the PUT is scanned again because another 1/0 operation may have finished 
in the interim. A zero in the A register indicates that the I /0 driver is busy. A positive A 
register (nonzero) indicates that the I 10 driver is free. 

WORD 11 

Modified by: 
Used by: 

Not modified 
I 10 control 

If the 1/0 driver can write an end of file, word 11 contains the address used by 1/0 
control when a write-end-of-file is requested of this 110 driver. If the 110 driver cannot 
write an end of file, word 11 is zero. 

To write an end of file, I 10 control passes to the I /0 driver with the X register pointing to 
word 0 ofthe 1/0 driver DST. When the writing is complete, the 1/0 driver returns control 
to I 10 control with a JMP':' to the address in word 7. 

The 110 driver sets a condition code in the A register before returning to l/O control. A 
negative A register indicates that more than 500 microseconds were spent in the I /0 
driver, and the PUT is scanned again because another 110 operation may have finished 
in the interim. A zero in the A register indicates that the I /0 driver is busy. A positive A 
register (nonzero) indicates that the 1/0 driver is free. 

WORD 12 

Modified by: 
Used by: 

Not modified 
I /0 control 

If the I 10 driver can rewind, word 12 contains the address used by I 10 control when 
rewinding is requested of this 1/0 driver. If the 110 driver cannot rewind, word 12 is zero. 

To rewind, I /0 control passes to the I /0 driver with the X register pointing to word 0 of 
the I 10 driver DST. When rewinding is complete, the I /0 driver returns control to I /0 
control with a JMP':' to the address in word 7. 

The 110 driver sets a condition code in the A register before returning to 110 control. A 
negative A register indicates that more than 500 microseconds were spent in the 110 
driver, and the PUT is scanned again because another 110 operation may have finished 
in the interim. A zero in the A register indicates that the I /0 driver is busy. A positive A 
register (nonzero) indicates that the 1/0 driver is free. 

MOS 12-6 



WORD 13 

Modified by: 
Used by: 

Not modified 
I /0 control 

user-coded 1/0 drivers 

If the I /0 driver can skip files, word 13 contains the address used by I /0 control when 
file-skipping is requested of this 1/0 driver. If the 110 driver cannot skip files, word 13 is 
zero. 

To skip files, I /0 control passes to the I /0 driver with the X register pointing to word 0 of 
the I /0 driver DST. When the file-skipping is complete, the I /0 driver returns control to 
110 control with a JMP':' to the address in word 7. 

The 1/0 driver sets a condition code in the A register before returning to 110 control. A 
negative A register indicates that more than 500 microseconds were spent in the I /0 
driver, and the PUT is scanned again because another 1/0 operation may have finished 
in the interim. A zero in the A register indicates that the 1/0 driver is busy. A positive A 
register (nonzero) indicates that the I 10 driver is free. 

WORD 14 

Modified by: 
Used by: 

Not modified 
I 10 control ,. 

If the 110 driver can skip records, word 14 contains the address used by the 1/0 control 
when record-skipping is requested of this 1/0 driver. If the 1/0 driver cannot perform a 
skip record function, word 14 is zero. 

To skip records, 1/0 control passes to the 110 driver with the X register pointing to word O 
of the I 10 driver DST. When the record-skipping is complete, the I 10 driver returns 
control to 110 control with a JMP'' to the address in word 7. 

The I /0 driver sets a condition code in the A register before returning to I 10 control. A 
negative A register indicates that more than 500 microseconds were spent in the 1/0 
driver, and the PUT is scanned again because another 1/0 operation may have finished 
in the interim. A zero in the A register indicates that the I /0 driver is busy. A positive A 
register (nonzero) indicates that the I 10 driver is free. 

WORD 15 

Modified by: 
Used by: 

Not modified 
I 10 control 

If the 1/0 driver can perform a function not otherwise covered, word 15 contains the 
address used by 1/0 control when a function is requested of this l/O driver. If the 1/0 
driver cannot perform such a function, word 15 is zero. 

MOS 12-7 



user-coded 1/0 drivers 

To perform the function, 1/0 control passes to the l/O driver with the X register pointing 
to word 0 of the 1/0 driver DST. When the function is complete, the 110 driver returns 
control to 110 control with a JMP•:• to the ad<;lress in word 7. 

The 110 driver sets a condition code in the A register before returning to 110 control. A 
negative A register indicates that more 'than 500 rr;iicroseconds were spent in the 1/0 
driver, and the PUT is scanned again becau;e an.qther !10 operation may have finished 
in the interim. A zero in the A register indicates that the 1/0 driver is busy. A positive A 
register (nonzero) indicates that the 110 driver is free. 

vlOS 12-8 



Table 12-1. 1/0 Drivers and Peripheral Devices 

Peripheral Device Device Name Entry Name Device Address 

Magnetic tape MTOO $00 010 
(controller 0, unit 0) 
Magnetic tape MTOl $01 010 
(controller 0, unit 1) 
Magnetic tape MT02 $02 010 
(controller 0, unit 2) · 
Magnetic tape MT03 $03 010 
(controller 0, unit 3) 
Magnetic tape MTlO $04 011 
(controller 1, unit 0) 
Magnetic tape MTll $05 011 
(controller 1, unit 1) 
Magnetic tape MT12 $06 011 
(controller 1, unit 2) 
Magnetic tape MT13 $07 011 
(controller 1, unit 3) 
Magnetic tape MT20 $08 012 
(controller 2, unit 0) 
Magnetic tape MT21 $09 012 
(controller 2, unit 1) c 
Magnetic tape MT22 $0A 012 

Ill 

~ 
(controller 2, unit 2) n 

() 

Magnetic tape MT23 $08 012 CL 
CD 

(controller 2, unit 3) 
CL 

s:: :::. 
0 0 
en ~ 
N •r 

CD 
c.'o iil 



~ c 
0 Table 12-1. 1/0 Drivers and Peripheral Devices (continued) ~ (fJ n 
t;-J 

Q 
c. 

Peripheral Device Device Name Entry Name Device Address CD 
0 c. 

Magnetic tape MT30 $0C 013 
:::::: 
0 

(controller 3, unit O) ~ 
Magnetic tape MT31 $00 013 ·=-~ 
(controller 3, unit 1) Ill 

Magnetic tape MT32 $OE 013 
(controller 3, unit 2) 
Magnetic tape MT33 $OF 013 
(controller 3, unit 3) 
Teletype keyboard/ TYOO $0G 001 
printer i 
(controller 0, unit 0) 
Teletype paper tape TPOO $OH 001 
punch 1 
(controller 0, unit 0) 
Teletype paper tape TROO $01 001 
reader 1 
(controller 0, unit O) 
Teletype keyboard I TYlO $OJ 
printer 2 
(controller 1, unit O) 
Teletype paper tape TPlO $OK 
punch 2 
(controller 1, unit 0) 
Teletype paper tape TRIO $0L 
reader 2 
(controller 1, unit 0) 



Table 12-1. 1/0 Drivers and Peripheral Devices (continued) 

Peripheral Device Device Name Entry Name Device Address 

Card reader 1 CROO $OM 030 
Card reader 2 CRlO $ON 
High-speed paper tape PTOO $00 037 
reader /punch 1 
High-speed paper .tape PTlO $OP 037 
reader/punch 2 (unformatted) 
Line printer 1 LPOO $0Q 035 
Line printer 2 LPlO $OR 
Card punch 1 CPOO $OS 031 
Card punch 2 CPlO $OT 
Drum DROO $10 014 
(controller 0, unit 0) 

Drum DR09 $19 014 
(controller 0, unit 0) 
Disc DKOO $10 015 
(controller 0, unit 0) (620-40/41) 

016 
(620-39) 

Disc DK09 $19 
(controller 0, unit 0) 
Disc DKlO $20 015 c 

1G 
(controller 0, unit 1) (620-40/41) ~ 

016 0 
Q. 

(620-39) ! 
s: Disc DK19 $29 .:::::. 
0 0 
C/) (controller 0, unit 1) ~ 
~ <" 

CD 
UJ 



s:: 
0 
en 

~ 
N 

Table 12-1. 1/0 Drivers and Peripheral Devices (continued) 

Peripheral Device 

Disc 
(controller 1, unit 0) 

Disc 
(controller 1, unit 0) 
First buffer interlace 
controller 
Second buffei interlace 
controller 
Third buffer interlace 
controller 
Fourth buffer interlace 
controller 

Device Name Entry Name 

DK40 $50 

DK49 $59 

Device Address 

016 
(620-40/41) 
017 
(620-39) 

020-021 

022-023 

024-025 

026-027 

~ 
;;; 
0 a. 
Cll a. 
:::::: 
0 
a. 
"' ::· 
g: 
Ill 



user-coded 1/0 drivers 

1/0 DRIVER PROGRAMMING EXAMPLES 

Example 1 

Output an alphanumeric character string to the Teletype: 

* 
$TY 

* 
$TCK 

* 
$TWR 

$TWR1 

NAME 
DST 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

DATA 

INCR 
JMP* 

LDA 
STA 
LDB 
EXC 
LDAI 
JMPM 
LDA 
DAR 
JAN 

$TY 

0 
0 
'TY99' 
-1 
0 
0 
$TCK 
$TCK 
0 
$TWR 
0 
0 
0 
0 
0 

0 

$TCK 

5 I 1 
0 I 1 
6 I 1 
0401 
0201 
$TOAR 
5. 1 

$TWR2 

WORDS TRANSFERRED 
I/O STATUS 
I/O DRIVER NAME 
I/O FLAG AND OP CODE 
COUNT PARAMETER 
LOCATION PARAMETER 
CHECK I/O ADDRESS 
CHECK I/O ADDRESS 
UNUSED 
ADDRESS OF WRITE I/O 
UNUSED 
UNUSED 
UNUSED 
UNUSED 
UNUSED 

TTY AVAILABILITY UNDE
TERMINED, ASSUME READY 

GET COUNT PARAMETER 
STORE IT IN WORD 0 
GET DATA LOCATION 
INITIALIZE TTY 

OUTPUT PRINT ENABLE 
GET COUNT 

JMP IF END OF WORD 

MOS 12-13 



user-coded 1/0 drivers 

$TWR2 

* 
$TOAR 

STA 
LDA 
LRLA 
JMPM 
LRLA 
JMPM 
IBR 
JMP 
LDAI 
JMPM 
LDAI 
JMPM 
LDAI 
JMPM 
DECR 
STA 
JMP* 
DATA 
SEN 
JMP 
OAR 
JMP* 
END 

5, 1 
I), 2 GET DATA WORD 
8 
:$TOAR OUTPUT LEFT CHARACTER 
8 
$TOAR OUTPUT RIGHT CHARACTER 

$TWR'1 . 
I) 2 1 5 
$TOAR OUTPUT CARRIAGE RETURN 
I) 212 
$TOAR OUTPUT LINE FEED 
0204 
:STOAR OUTPUT PRINT OFF CHAR 
1 A REGISTER NEGATIVE 
•4 , 1 TURN OFF REQUEST FLAG 
:$TCK 
0 
0101,*+4 WRITE REGISTER READY 
:tc-2 NOT READY, WAIT 
1 OUTPUT A CHARACTER 
:$TOAR RETURN 

Example 2 

Read binary records from magnetic tape unit 0 on controller 0, device address 010. 

NAME :$MT 
* DST 
$MT DATA 0 

DATA 0 
DATA 'MT99' 
DATA ·- 1 
DATA 0 
DATA 0 
DATA .$MTS CHECK I/O ADDRESS 
DATA $MTS CHECK I/O ADDRESS 
DATA .$MRD ADDRESS OF READ I/o 
DATA 0 
DATA 0 
DATA 0 
DATA 0 
DATA 0 

* STATUS ROU'rINE 
$MTS DATA 0 

SEN 0210,A IF MTU READY 

MOS 12-14 



A 

B 

BOT 
EOT 
EOF 
ERROR 
NORM 

* 
$MRD 

c 

D 

E 

TZA 
JMP* 
LDA 
JAN 
!NCR 
JMP* 
DECR 
STA 

SEN 
SEN 
SEN 
SEN 
JMP 
BSS 
IAR 
IAR 
IAR 
IAR 

$MTS 
1 I 1 
B 
0 1 
$MTS 
0 1 

4 r 1 

010,ERR 
0310,EOF 
0510,EOT 
0610,BOT 
NORM 
0 

STA 1I1 
JMP* $MTS 
READ ROUTINE 
LDB 
EXC 
SEN 
SEN 
JMP 
CIA 
STA 
IBR 
INR 
LDA 
DAR 
STA 
JAZ 
JMP 
LDAI 
STA 
TZA 
JMP* 
END 

6 r 1 
010 
0 110 ID 
0210,E 
c 
010 
0,2 

0 I 1 
5 r 1 

5 r 1 
E 
c 
0100004 
1 I 1 

$MTS 

user-coded 1/0 drivers 

SET (AR) = 0 
RETURN (MTU BUSY) 
GET WORD 1 OF DST 
IF STATUS INVALID 
SET A = 1 
RETURN (MTU READY) 
SET A = -1 
SET WORD 4 OF DST TO 
'NOT BUSY' 
IF ERROR OCCURRED 
IF END OF FILE READ 
IF END OF TAPE FOUND 
IF BEGINNING OF TAPE 
INDICATE NORMAL STATUS 

SET WORD 
SET WORD 
SET WORD 
SET WORD 

OF DST TO 3 
OF DST TO 2 
OF DST TO 1 
OF DST TO 0 

RETURN, STATUS SET 

GET START MEMORY ADDR 
START MTU 
IF WORD READY 
IF MTU STOPPED 
WAIT 
INPUT WORD 
STORE WORD 
BUMP MEMORY POINTER 
INCREMENT NO OF XFERS 

DECREMENT COUNT 
IF FINISHED 
CONTINUE 

STATUS INVALID, MTU BUSY 
(AR) = 0 FOR MTU BUSY 
RETURN 

MOS 12-15 



user-coded 1/0 drivers 

1/0 SUPPORT SUBROUTINES 

To prevent possible data loss when several 1/0 transfers are operating concurrently, MOS 
has a subroutine, IOOK, for determining if enough processor time is available before 
initiating an 1/0 operation. This subroutine is used by the I /0 driver prior to data 
transfer. The subroutine calling sequence is: 

JMPM IOOK 

Upon IOOK entry, the A register contains the 110 algorithm factor for that 110 device. The 
I /0 algorithm factor depends on whether the device is operating in BIC or programmed 
data transfer mode. The equations for the two types of !ransfers are: 

Fb = _(Tb/Tt) + O.l(Tb/Tt) 

Fp = (N (• C)/Tt + O. l((N ':' C)/Tt) 
where 

Fb I /0 algorithm factor for BIC transfers 
Fp 110 algorithm factor for programmed transfers 
C CPU memory cycle time (microseconds) 
Tt = maximum transfer rate of 1/0 device (microseconds/word) 
Tb maximum transfer rate of BIC (microseconds/word) 
N number of CPU memory cycles required by data transfer 

On returning from IOOK, the 110 driver examines the A register. If the A register is 
positive, the 110 operation can be performed. If the A register is negative, more time is 
needed for the 1/0 operation than is available. In the latter case, the new 1/0 operation 
cannot start and the driver exits to I 10 control indicating a busy device (A = 0). 

Upon completion of a successful I 10 operation, the 110 driver removes the algorithm 
factor from the system timing variable by again calling IOOK with the two's complement 
of the I /0 algorithm factor in the A register. 

Example 

If device A is operating with a SIC and has a data transfer rate of one word every 9.9 
microseconds, and device B is operating with another BIC and has a data transfer rate of 
one word every 19.8 microseconds, can device C be operated over the I 10 bus if it 
requires the following programmed transfers: 

$1 

$2 

MOS 12-16 

SEN 
JMP 
CIA 
STA 

DEVC,$2 
*-2 
DEVC 
0 I 1 

DEVICE READY 
NO, WAIT 
YES, GET DATA 
STORE DATA IN ADDR(X) 



INCR 
SUB 
JAN 

045 
EADD 
$1 

user-coded 1/0 drivers 

INCREMENT DATA ADDRESS 

JMP IF NOT END ADDRESS 

The 1/0 algorithm factor for device A is: (4.9519.9) + 0.1(4.95/9.9) = 0.55. The 1/0 
algorithm factor for device B is: (4.95/19.8) + 0.1(4.95119.8) = 0.275. The 1/0 
algorithm factor for device C is: (11.25 •:• 1.8)/81 + 0.1 ((11.25 ·:· 1.8)/81) = 0.275. 
The sum of the I /0 algorithm factors for devices A and B is 0.825, which is less than one. 
Thus, A and B use only about 82.5 percent of the available memory cycles. However, if C 
were added, the sum would be 1.1, requiring more memory cycles than available (110 
percent). Therefore, C cannot be activated at this time and must wait for either A or B to 
complete its operation. 

1/0 STATUS MESSAGES 

The operator alert subroutine is called by the 110 driver to advise the operator that a 
peripheral device is not available. The calling sequence is: 

JMPM 
DATA 

IOA$ 
DELY 

The X register points to word 0 of the I /0 driver. DEL Y is the address of a two-memory
word data block in the 1/0 driver. 

IOA$ examines and increments the first word of the DELY data block and returns to the 
calling routine if this word is negative. If the first word is positive, IOA$ copies the 
contents of the second word into the first word and moves the name of the peripheral 
device from words 2 and 3 of the 1/0 driver DST into the message: 

xxxx - NOT READY 

This message is output at intervals of approximately 10 seconds to the Teletype printer by 
the resident message-printing subroutine. IOA$ does not save any register contents when 
returning to the calling routine. 

MOS 12-17 



user-coded 1/0 drivers 

BIC CONTROL 

When an 110 driver is controlling a dev.ice that can operate on a BIC, subroutines BIR$ 
and BIA$ are used. In addition, a BIC control table is defined by the driver for each 110 
·device controller. A pointer to the table can be appended to the end of the DST for 
reference purposes. The BIC control subroutines used by the 1/0 driver have the same 
calling sequence: 

CALL 

BIC CONTROL TABLE 

BIR$ 
BIA$ 

With the B register pointing 
to word 0 of the control table 

The words in the BIC control table are defined as follows: 

Word Definition 

O Contains the BIC address associated with this device (figure 
12-1 ). Set to -01 if none. 

Contains the Bl'C initial address set and used by BIR$. 

2 Contains the abnormal BIC stop flag set by BIR$. It is set 
after a BIC operation in which an abnormal BIC stop occurs. 

3 Contains the word count (i.e., the number of words to be 
input or output through the BIC). 

4 Contains the starting memory address for the BIC transfer. 

5-n Contains controller commands and flag information specific to 
each device. 

MOS 12-18 



BIR$ 

user-coded 1/0 drivers 

The controller commands are built at assembly time with the ap
propriate device address (i.e., each controller has its own de-
vice address, hardwired). 

The flag information is used by the driver to determine and 
monitor such things as the direction of a skip, the type of 
skip (records or files), etc. 

NOTE 

Both words 3 and 4 are used by the BIC routines to initiate an 
operation. These words should be initialized by the driver before 
BIA$ is called. 

BIR$ determines if there is a BIC associated with the control table by testing word 0 of 
the BIC control table. A negative value indicates that there is no BIC. BIR$ returns and 
sets the A register negative. If word 0 is positive, BIR$ uses the number to build the BIC 
instructions. 

BIR$ determines if the BIC is busy. If the BIC is busy, BIR$ returns and sets the A 
register negative. If the BIC is not busy, BIR$ continues. 

BIR$ determines if an abnormal BIC stop has occurred. If it has, BIR$ returns and sets 
the A register negative. If not, BIR$ returns and sets the A register positive. 

NOTE 

The contents of the X register are destroyed. 

BIA$ 

BIA$ determines if there is a BIC associated with the control table by testing word 0 of 
the BIC control table. A negative value indicates that there is no BIC. BIA$ returns and 
sets the A register negative. If word 0 is positive, BIA$ uses the number to build the BIC 
instructions. 

BIA$ initializes the BIC and outputs the initial address from word 4 of the BIC control 
table. 

BIA$ adds one less than the count from word 3 of the BIC control table to the initial 
address to obtain the final address, and then outputs it. BIA$ activates the BIC and 
returns to the caller. 

NOTE 

The eontents of the X register are destroyed. 

MOS 12-19 



SECTION 13 · STATUS AND ERROR MESSAGES 

EXECUTIVE 

During operation of the executive, the following status and error messages can be posted 
on the system output device: 

Message 

ILL DIR 

READ ERR ON SI 
INPUT 
I ASSIGN SI = TY 

I ASSIGN SI = TY 

ASSIGN DIR 
PARAM ERR 

L = R INCOM· 
PATIBLE 

Cause 

Invalid directive read 
by executive 

I 10 error while reading 
directive 

An end of file or end 
of device detected 
during reading on SI 
file 

Either L or R parameter 
missing from an I ASSIGN 

R unit cannot perform 
the function required 
by the L unit on I ASSIGN 

Action 

Directive ignored. If SI 
= TYOO, waits for input 

of next directive. If SI 
:;t: TYOO, reads but ignores 
SI until next I JOB or 
/ENDJOB. 

Using the TTY, manually 
input the directive that 
caused the error. 

System waits for operation 
action. The next direc-
tive should be entered 
through the TTY. 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 
:;t: TYOO, reads but ignores 
SI until next I JOB or 
/ENDJOB. 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 
:;t: TYOO, reads but ignores 
SI until next I JOB or 
/ENDJOB. 

MOS 13-1 



status and error messages 

Message 

CANNOT ASSIGN 
SI= OUM 

L.U.xxxx MAY NOT 
BE REASSIGN 

ILL LUN/NAME 
USED IN DIR 

LUN.xx END/BEG 
OF DEV ERR 

CPY INPT UNIT 
UNABL TO READ 

CPY OUTPT UNIT 
UNABL TO WRTE 

CPY READ ERR 

MOS 13-:2 

Cause 

Attempt to assign system 
input file to a dummy 
physical device 

Attempt to reassign SO 
or SF logical ,unit 

Invalid parameter on 
/IOLIST 

Physical end or be
ginning of device en
countered on unit xx 
prior to completion of 
cert a in executive 
functions 

Invalid /COPYA or 
/COPYB (L unit cannot 
be read) 

Invalid tCOPYA or 
/COPYB (R unit cannot 
be written on) 

110 reading error during 
copying 

Action 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 
c,c TYOO, reads but ignores 
SI until next I JOB or 
/EN DJ OB. 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 

7'= TYOO, reads but ignores 
SI until next I JOB or 
/EN DJ OB. 

List terminated. If SI 
= TYOO, waits for input 
of next directive. If SI 

7'= TYOO, reads but ignores 
SI until next I JOB or 
/EN DJ OB. 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 

c,c TYOO, reads but ignores 
SI until next I JOB or 
/EN DJ OB. 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 

7'= TYOO, reads but ignores 
SI until next I JOB or 
/ENDJOB. 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 

c,c TYOO, reads but ignores 
SI until next I JOB or 
/EN DJ OB. 

Copying terminated. Read 
next directive from SI. 



CPY WRTE ERR 

END OF CPY 
OUTPT DEV 

ILL LOAD/ULOAD 
DIR PARAM xx 

xx= N INVALID 

ILLF/ADIR 
PARAM 

NO/EOF, NO LOAD 
ATTMPTD 

SYSTEM LOADER 

1/0 writing error during 
copying 

Physical end of device 
encountered during 
copying 

Undefined parameters en
countered during proc
essing of /LOAD or 
/ULOAD, where xx = · 
first two characters of 
invalid parameter 

One or more of the 
following parameters 
out of range on /LOAD 
or /ULOAD: 
O :s; RP :s; core size 
O :s; RC :s; core size 
O :s; RI :s; 0777 
O :s; RL :s; 03777 

Invalid parameter on 
assembler or FORTRAN 
control directive 

No I EOF after an 
assembly or compila
tion, therefore, no 
end of file on GO 
file. 

status and error messages 

Copying terminated. Read 
next directive from SI. 

Copying terminated. Read 
next directive from SI. 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 

-::;t:. TYOO, reads but ignores 
SI until next I JOB or 
/EN DJ OB. 

No loading attempted. 

Directive ignored. If SI 
= TYOO, waits for input 
of next directive. If SI 

-::;t:. TYOO, reads but ignores 
SI until next I JOB or 
/EN DJ OB. 

No loading attempted 

During loading, the events listed abort the loading procedure. In this case, if SI = TYOO, 
MOS waits for the next directive. If SI -::;t:. TYOO, SI is read but ignored until the next I JOB 
or /ENDJOB. When a map is requested, it is output prior to the termination message. For 
size and missing program errors, the names of all programs causing the error are also 
listed. 

MOS 13-3 



.status and error messages 

Message 

LOR READ ERR 

LOR RECORD ERR 

LOR CKSM ERR 

LOR SEQ ERR 

LOR TEXT ERR 

LOR DATA ERR 

LOR SIZE ERR 

LIT POOL OVRFLW ERR 

LOR COMMON ERR 

MISSG PGRMS ERR 

LOR INITZTN ERR 

NO EXCTN ADDR 

MOS13-4 

Cause 

The loader encountered a reading error while 
attempting input of the object tape. 

The loader input an invalid type of record. 

The loader input an object text record with 
an invalid check-sum. 

The loader input an object text record with 
an invalid sequence number. 

The program object text contains an illegal 
or erroneous loader code. 

The program attempted to overlay the loader, 
loader tables, or resident program; or 
the assembler attempted to overlay its 
1/0 drivers. 

Program memory requirements exceed available 
program/common storage. 

Program literal requirements exceed available 
literal storage. 

The programs contain conflicting size 
definitions for a common block. 

Loading requested named programs not 
found on either the binary or system 
file input devices. 

Errors during loading of system loader. 

Address to begin execution of the loaded 
program is missing from the object pro
gram. 



status and error messages 

1/0 CONTROL 

During program execution, calls to 1/0 control for input/output functions containing one 
of the following errors cause posting of a run-time error. In this case, if SI = TYOO, MOS 
waits for the next directive. If SI =;e. TYOO, SI is read but ignored until' the next I JOB or 
/EN DJ OB. 

Message 

ILL LUN/NAME USED 
IN DIR 

IOCS CALL TO 
UNASSGND LUNxx 

Cause 

An undefined logical unit specified as a 
parameter in an 1/0 control directive. 

An attempt to call an 1/0 driver not in 
memory (i.e., an unassigned logical unit 
specified by xx). 

LANGUAGE PROCESSORS 

During assembly and compilation, the following errors associated with language 
processors cause posting of an error message. In this case, if SI = TYOO, MOS waits for 
the next directive. If SI =;e. TYOO, SI is read but ignored until the next I JOB or /ENDJOB. 

Message 

PROCSSR ERR JOB 
ABORTD 

PROCSSR RCRD COUNT 
ERR 

LUN.xx SYS CNTRL DIR 
INPT ERR 

LUN.xx EOF ERR 

LUN.xx END/BEG OF 

LUN.xx 1/0 ERR 

Cause 

Language violation. 

The number of source statements read during 
pass 2 is not equal to that of pass 1. 

A control directive (i.e., a slash in 
column 1) was read from unit xx prior 
to an END statement. 

An end of file was read from unit xx prior 
to an END statement. 

The physical end or beginning device was 
encountered on unit xx prior to an END 
statement. 

An unrecoverable 1/0 error occurred on unit 
xx during assembly or compilation. 

MOS 13-5 



status and error messages 

DAS MR ASSEMBLER 
During assembly, the source statements are checked for syntax errors and usage. In 
addition, errors can occur where the program cannot determine the correct meaning of 
the source statement. 

When an error is detected, the assembler outputs· an error code following the source 
statement containing the error, on the LO, and continues to the next statement. 

The assembler error messages (codes) are: 

Code Definition 

':'AD An address expression is in error. 

•:•DC A decimal character appears in an octal constant. 

•:•DD There is an invalid redefinition of a symbol or the 
location counter. 

•:•E The symbolic source statement is incorrectly formed. 

•:•EX An expression contains an illegal construction. 

•:•FA A floating point number contains a format error. 

':'IL The first non-blank character of the source statement 
is invalid; the statement is not processed. 

·~NR No memory space available for the addition of an entry 
to the assembler's tables. 

':'NS No symbol in the label field of a SET, EQU, MAC or FORM 
directive statement. No symbol in the label or variable 

MOS 13-6 

field of an OPSY directive statement. No symbol in the 
variable field of a NAME directive statement. 



':'OP The instruction field is undefined; two No Operation 

(NOP) instructions are generated in the object program. 
The remainder of the statement is not processed. Illegal 
nesting of DUP or MAC directive statements also causes 
this error. 

•:•QQ Illegal use of prime ('). 

':'R A relocatable item was encountered in the place where 
an absolute item was expected. 

·=·SE The symbol in the location field has a value during 
pass 2 that is different than the vah.~e used in pass 1. 

·=·sv An expression contains an undefined symbol. 

·=·sz The expression value is too large for the size of the 
subfield or a DUP statement specifies that more than 
three symbolic source statements are to be assembled. 

·='TF Undefined or illegal index register specification. 

•:•uc An undefined character in an arithmetic expression. 

•:•uo Undefined symbol in variable field of USE directive. 

•:•xR Address out of range for indexing specification. 

Illegal use of a literal. 

MOS 13-7 



:tLi:ILU:> 1:mo error messa91> 

FORTRAN IV COMPILER AND RUNTIME 

COMPILER 

During compilation, source statements are checked for such items as validity, syntax, and 
usage. When an error is detected, it is posted on the LO beneath the source statement. 
The errors marked T terminate b'inary output. 

All error messages are of the form 

ERR xx c(l)·c(l6) 

where xx is a number from 0 to 18 (notification error), or T followed by a number from 0 
to 9 (terminating error); and c(l)·c(16) is the last character string (up to 16) encountered 
in the statement being processed. The right-most character indicates the point of error 
and the @ indicates the end of the statement. The possible err~r messages are: 

Notification Error 

0 
1 
2 
3 
4 
5 
6 
7 
8 

9 
10 

11 
12 
13 

14 
15 
16 
17 

18 

.MOS 13-8 

Definition 

Illegal character input · 
Construction error 
Usage error 
Mode error 
Illegal DO termination 
Improper statement number 
Common base lowered 
Illegal equivalence group 
Reference to nonexecutable 
statement 
No path to this statement 
Multiply defined statement 
number 
Invalid format construction 
Spelling error 
Format statement with no 
statement number 
Function not used as variable 
Truncated value 
Statement out of order 
More than 29 n;:imed common 
regions 
Noncommon data 



status and error messages 

Terminating Error Definition 

RUNTIME 

Tl 
T2 
T3 
T4 
TS 
T6 
T7 
TS 
T9 

Construction error 
Usage error 
Data pool overflow 
Illegal statement 
Improper use 
Improper statement number 
Mode error 
Constant too large 
Improper DO nesting 

When an error is detected during runtime, a message is posted on the SO device and the 
job is aborted. The messages and their definitions are: 

Message 

ARITH OVFL 

GO TO RANGE 

FUNC ARG 

FORMAT 

MODE 

DATA 

1/0 

Cause 

Arithmetic overflow 

Computer GO TO out of range 

Invalid function argument (e.g., square root of 
negative number) 

Error in FORMAT statement 

Mode error (e.g., outputting real array with I 
format) 

Invalid input data (e.g., inputting a real number 
from external medium with I format) 

1/0 error (e.g., parity, EOF) 

MOS 13-9 



status and error messages 

FILE EDITING PROGRJ\M 

During the file editing program, the following errors can occur: 

Message 

INPUT FMT ERR n 

CATL OFlO 

OUTPUT EOM 

END INPUT-FILE 
filename NOT 
FOUND 

FILE filename 
NOT FOUND 

CTRL REC 
ERROR n 

END INPUT 

MOS 13--10 

Cause 

An unrecognizable record 
read from SI (n = 1) 
or from the source file, 
Pl, (n = 2) 

More than 20 entries in 
the catalog 

The end of media de
tected ·on PO 

The second filename 
specified in a COPY con
trol record not on the · 
old source library (Pl) 

The filename is an EDIT 
control record, or the 
first filename in a COPY 
control record is not on 
Pl. 

A control record is mis
placed (n = 1), a re
quired parameter is 
missing (n = 2), con
tains too many param
eters (n = 3), or con
tains a parameter format 
error (n = 4) 

An EOF or MOS control 

Action 

No action taken on PO. 

The PO backspaces to the 
previous file, two EOFs 
are written and the job 
t~rminated. 

Same as above. 

Two EOFs are written on 
PO and the job termin
ated. 

The control directive is 
ignored and the job con
tinues. 

If n = 1, action is de 
scribed under INPUT FMT 
ERR n. If n = 2. 3. pr 
4, the control record is 
ignored and the program 
continues. 

Same as for INPUT FMT 



Mes.sage 

SEQ. OFLO 

aaannnn NOT 
FOUND 

SEQ.ERROR 
aaannnn· 
aaannnn 

CTRL. SEQ. 
ERROR 

Cause 

directive (Icard) is 
read when a file editing 
control directive was 
expected. 

While resequencing a 
file, mor~ than 9,999 
data records are read. 

While searching a file 
by internal sequence 
number, a sequence num
ber higher than the one 
being searched for is 
encountered. 

While searching a file 
by internal sequence 
number, an out-of
sequence condition is 
found. 

An internal sequence 
number or external line 
number lower than the 
previous one is in an 
ADD, DEL, or CHG control 
record. 

status and error mess"ges 

Action 

ERR n. 

Sequencing restarts at 
zero and the program con
tinues. 

NOTE: The records in 
this file can no longer be 
accessed by internal se
quence numbers. 

If the desired sequence 
number is the first number 
of a DEL or RPL group, or or 
is the sequence number 
specified in an ADD control 
record, the higher number 
is used in its place. 

If the desired sequence 
number is the second num
ber of a DEL or RPL group, 
the record preceding the 
record containing the 
higher number is taken to 
be the last record of the 
group. 

Same as for INPUT FMT 
ERR n. 

Same as for IN PUT FMT 
ERR n. 

MOS·13-11 



status and error messages 

SYSTEM MAINTENANCE PROGRAM 

During the system maintenance operation, the following errors can occur: 

Message 

CHECKSUM ERROR name 

READ ERROR name 

WRITE ERROR name 

NO NAME name 

RECORD SIZE name 

LOADER CODE ERROR 
name 

SEQUENCE ERROR name 

STRUCTURE ERROR name 

MOS 13-12 

Cause 

There is a checksum error in a record of 
the named program. 

An error indication is received from 110 
control after reading a record of the 
named program. 

An error indication is received from 110 
control after writing a record of the 
named program. 

The named program contains no entry name 
in the binary object module. 

The size of a binary record as determined 
by 1/0 control for the named program is 
not 60 words (53 for the 622). 

The binary loader text for the named pro· 
gram contains a code or subcode not recog
nized by the loader. 

A sequence number in the binary object 
module for the named program is incorrect. 

There is a nonbinary record in the named 
object module. 



status and error messages 

After an error message is logged, enter one- of the following statements: 

Statement 

RCIW 

PGRM 

SMAIN 

Definition 

Reread the last-record. If the error occurred on a 
magnetic tape, drum, or disc unit, the system main
tenance program backspaces the record. Otherwise, 
manually position the record so it can be reread. 

Restart the program. If the error occurred on a 
magnetic tape, drum, or disc unit, the program 
backspaces to the beginning of the program. Other
wise, manually position the program so it can be 
reread. 

Restart the system maintenance program. 

Key-in errors result in a repeat of the error message: 

The system then waits for a correct entry. 

MOS 13-13 



status and error messages 

SYSTEM PREPARATION 
During system preparation, the following errors can occur. The first two can be corrected 
by reentering the information noted. 

Message 

ILLEGAL PREP 
DIRECTIVE 

DEVICE NAME NOT 
VALID ENTER DE· 
VICE NAME FOR xx 

Cause 

There is a syntax error 
in the control directive 
just read. 

Thern is a syntax error 
in a peripheral device 
name. 

Action 

Reenter the directive 
through the TTY. 

Reenter the name through 
the TTY. 

The errors listed below are corrected by the procedure given at the end of the list. 

Message 

SEQUENCE ERROR name 

STRUCTURE ERROR name 

LITERAL POOL OVERFLOW 
name 

COMMON ERROR name 

PROGRAM SIZE ERROR 
name 

MEMORY SIZE ERROR 
name 

MISSING PROGRAMS 
ERROR name 

MOS 13-14 

Cause 

A sequence 'number in. the object module for 
the named program is incorrect. 

There is a nonbinary record in the named 
object module. 

The size allocated to the literal pools is 
exceeded during the generation of the 
named absolute module. 

The size of a common block is illegally 
redefined during the generation of the 
named absolute program. 

The size of the named absolute program 
exceeds the available memory. 

The tables internal to the system prepara
tion program during the generation of the 
absolute program named exceed the available 
memory. 

During the generation of the absolute pro
gram named, there is an external reference 
that cannot be satisfied before encountering 
EN DABS. 



NO EXECUTE ADDRESS 
name 

CHECKSUM ERROR name 

READ ERROR name 

WRITE ERROR name 

NO NAME name 

LOADER CODE ERROR 
name 

status and error messages 

No program execution address is found for 
any_ program during the generation of the 
absolute program named. 

There is a check-sum error in a record of 
the named program. 

An error, end, or beginning of device is 
received from J/O control after a reading 
operation for the named program. 

An error, end or beginning of device, or 
end of file is received from 110 control 
after a writing operation for the named 
program. 

The named program contains no name in the 
object module. 

The object module for the named program 
contains a code or subcode not recognized 
by the loader. 

After an error message is logged, enter one of the following statements: 

Statement 

RCRD 

PGRM 

Definition 

Reread the last record. If the error occurred on 
a magnetic tape, drum, or disc unit, the system 
preparation program backspaces the record. Other
wise, manually position the record so it can be 
reread. This procedure does not apply to errors 
during ABS processing. 

Restart at the beginning of the current binary 
loader text program. If the error occurred on a 
magnetic tape, drum or disc unit, the system prepa
ration program backspaces to the beginning of the 
program. Otherwise, manually position the program 
so it can be reread. 

Key-in errors result in a repeat of the error message: 

The system then waits for a correct entry. 



SECTION 14 · MOS FORMATS 

ABSOLUTE MODULE FORMAT 
Absolute modules are created by the system preparation program to construct the system 
file. The modules are made up of text and string records. 

Word 1 of each record is a control word, as follows: 

Bit Binary 

16-17 
15 0 

1 
13-14 11 

00-10 
12. 0 

1 
11 0 

10 0 
1 

9 
8 0 

1 

o.;1 Any 

Value Definition 

622-series computers only: unused 
Verify the record check-sum 
Suppress check-sum verification 
Binary record 
Nonbinary record 
First record of a module 
Not the first record of a module 
Last record of a module -- execu-

tion address in the word 
following the last word of 
text 

Not the last record of a module 
Text record 
String record 
Unused 
Absolute module 
Not an absolute module (e.g., relo

catable object module) 
Sequence number 

Word 2 contains the exclusive-OR check-sum of words 1 and 3 through 60. 

Word 3 contains zeros when the first record of a module. When not the first record, it 
contains text. • 

Words 4 through 7 in the first record of a module contain the module (program) name as 
left-justified, blank-filled ASCII characters. When not in the first record, these words 
contain text. 

Words 8 through 11 in the first record contain the creation date of the module (program) 
in ASCII characters. When not in the first record, these words contain text. 

Words 12 through 60 contain text. 

Text data on text records (word 1, bit 10 
variable length blocks as follows: 

0) is organized into a variable number of 

MOS 14-1 



absolute module format 

Word 

3 
4 

5 

4+n 

5+n 
6-n 
7-n 

6+ n + n' 

Contents 

Number of words of text that follow (n-1) in block 
Starting load location for the text that follows in 

block 1 
Text word 1 in block 1 

Text word n in block 1 

Number of words of text that follow (n-1) in block 2 
Starting load location for text that follows in block 2 
Text word 1 in block 2 

Text word n in block 2 

A text record can contain a number of text words equal to or less than the capacity of one 
card, i.e., up to 57 words. However, it will never contain a partial block. When a record is 
not full, the last number of words of the text minus one value is negative to indicate the 
logical end of the record. 

String data on string records (word 1, bit 10 = 1) is organized into a variable number of 
variable length blocks of information, as follows: 

Word 

3 

4 
5 

4-m 

5-m 
6-m 

6-m-m' 

MOS 14·2 

Contents 

Number of words of string entry points minus 
one (n-1) on this record. 

String entry point 1 
String reference 1, 1 

One's complement of string reference l ,m 

String entry point 2 
String reference 2, 1 

One's complement of string reference 2,m 



OBJECT MODULE FORMAT 

Object modules generated by the MOS_ language processors result from assembly or 
compilation. The modules are input by the MOS loader and are bound together into an 
executable program. 

The first record of the module contains the size of the program, an eight-character 
identification, and an eight-character date. Entry name addresses, if any, appear as the 
first data field items of the object module. ~ 

RECORD STRUCTURE 

Sixteen-Bit Computers 

Object module records have a fixed length of sixty 16-bit words. Word 1 is the record 
control word. Word 2 contains ttie exclusive-OR check-sum of word 1 and words 3 to 60. 
Words 3 to 11 can contain a program identification block (optional). Words 12 to 60 (or 3 
to 60 if there is no program identification block) contain data fields. 

Eighteen-Bit Computers 
Object module records have a fixed length of fifty-three 18-bit words. Word 1 is the record 
control word. Word 2 contains the exclusive-OR check-sum of word 1 and words 3 through 
53. Words 3 through 11 can contain a program identification block (optional). Words 12 
through 53 (or 3 through 53 if there is no program identification block) contain data 
fields. 

Table 14-1 illustrates record-control word formats. 

PROGRAM IDENTIFICATION BLOCK 
The program identification (ID) block appears in words 3 to 11 of the starting record of 
each module. Word 3 contains the program size, words 4 to 7 contain an ASCII eight
character program identification, and wo_rds 8 to 11 contain an ASCII eight-character 
date. The program ID is the job name at the time that the object module is assembled. 

DATA FIELD FORMATS 

Data fields contain one-, two-, three-, or four-word entries. One-word entries consist of a 
control word; two-word entries consist of a control word and a data word; three-word 
entries consist of a control word and two data words; and four-word entries consist of a 
control word, two name words, and a data word. Data words can contain instructions, 
constants, chain addresses, entry addresses, and address offset values. 

MOS 14-3 



object module format 

Bit 

16-17 
15 

13-14 

12 

11 

10 

9 
8 

0-7 

MOS 14-4 

Table 14-1. Record Control Word Format 

Binary 

00 
0 
1 
11 
00-10 
0 
1 
0 
1 
0 

0 
0 
1 

Value Meaning 

Undefined (18-bit computers only) 
Verify check-sum 
Suppress check-sum 
Binary record 
Nonbinary record 
First record of module 
Not the first record 
Last record of module 
Not thP !:ist record 

Not a relocatable module (i.e., absolute) 
Relocatable module 
Sequence number (modulo 255) 



object module format 

LOADER CODES 
Loader codes, which have the following format, are among the data in an object module. 

17 16 15 14 13 12 1-1 1 0 9 8 7 6 5 4 3 2 1 0 

622/i Code 

Code Values 

00 

01 

02 

03 

04 

05-07 

Subcode Values 

00 

01 

02 

03 

04 

Sub code Pointer Name 

Meaning 

Refer to subcode for specific action. 

Undefined. 

Add the value of the selected pointer to the data word 
before loading. 

Add the value of the selected pointer to the first data 
word (literal value) and enter the sum in the direct 
literal pool if bit 11 of the second data word is zero. 
Otherwise, enter it in the indirect literal pool. Add 
the address of the literal to the second data word be
fore loading. 

Load the data word(s) absolute. Bits 12 through 0 indi
cate the number of words minus one (n-1) to load. 

Undefined. 

Meaning 

Ignore this entry (one word only). 

Set the loading address counter to the sum of the 
specified pointer plus the data word. 

Chain the current loading address counter value to 
the chain whose last address is given by the sum of 
the selected pointer plus the data word. Stop chaining 
when an absolute zero address is encountered. 

Complete the postprogram references by adding to each 
address the sum of the -selected pointer plus the data 
word. 

Undefined. 

MOS 14-5 



object module format 

05 

06 

07 

010 

011 

012 

013 

014-017 

Pointer Values 

00 

01 

02 

03-036 

037 

Name Format 

Load the 110 driver currently associated with the 
logical device number specified by the sum of the 
selected pointer plus the data word. 

Undefined. 

Set the program execution address to the sum of the 
values of the selected pointer plus the data word. 

Define the entry name with entry location as equal to 

the value of the selected pointer plus the data word. 

Define a region for the pointer whose size is given 
in the data word. If the entry name is not blank, de
fine the entry point as the base of the region. 

Enter a load request for the external name. The 
chain address is given by the sum of the selected 
pointer plus the? data word. 

Enter the loading address of the external name in the 
indirect literal pool. Add the address of the lit-
eral plus the value of the selected pointer to the 
data word (command) before loading. 

Undefined. 

Meaning 

Program region. 

Postprogram region. 

Blank common region. 

Labelled COMMON regions. 

Absolute (no relocation). 

Names are one to six (six-bit) characters, starting in bit 3 of the control word and ending 
with bit 0 of the second name word. Only the right 16 bits of the two name words are 
used. 

EXAMPLE 

The following is a sample program with description of the object module format after 
assembly and the core image after loading. 

1105 14-6 



object module format 

Source Module 

NAME SUBR 
EXT BBEN 

SUBR ENTR 
LDA* SUBR 
CALL BBEN 
STA TIME 
JAN DONG 
LDA =2 
CALL BBEN 

DONG INR SUBR 
JMP* SUBR 

TIME BSS I 
END 

Object Module 

060400 

157631 

000016 

142730 
140715 
150314 
142640 

131263 
126661 
130255 
133271 

010000 
000647 
054262 
000000 

100000 
000000 

Record control word (first and last record, verify check-sum se
quence number 0) 

Check-sum word. 

(Begin program tD block) 

Program size (exclusive of FORTRAN COMMON, literals, and indi
rect address pointers). 

Identification in ASCII (assume this program was labeled 
EXAMPLE). 

Date of creation in ASCII (assume assembled 03-10-69) 

(End program ID block) 

Define entry name SUBR at relative 0 (code 0, subcode 010, 
pointer 0, name SUBR, and data word 0). 

Enter absolute data word 0 in memory at relative 0. 

MOS 14-7 



uoJeCl moame 1ormat 

060000 
100000 
017000 

100000 
002000 

100000 
000000 

100000 
054010 

100000 
001004 

040000 
000012 

060760 
000002 
010000 

100000 
002000 

040000 
000003 

060000 
000000 
047000 

100000 
001000 

040000 
100000 

001000 

012003 
000212 
024556 

l!OS 14-8 

Enter literal (indirectly addressed relative 0) in indirect 
pointer pool, add address of pointer to load 017000 and enter 
memory at relative 1. 

Enter absolute data word 020QO in memory at relative 2. 

Enter absolute data word 000000 in memory at relative 3. 

Enter absolute data word 054010 in memory at relative 4. 

Enter absolute data word 01004 in memory at relative 5. 

Enter relative data word 012 in memory at relative 6. 

Enter literal (absolute 2) into literal pool, add address 
of literal to load command 010000, and enter in memory at 
relative 7. 

Enter absolute data word 02000 in memory at relative 010. 

Enter relative data word 03 in memory at relative 011. 

Enter literal (relative 0) into indirect pointer pool, add 
address of literal to increment command 047000, and enter 
in memory at relative 012. 

Enter absolute data word 01000 in memory at relative 013. 

Enter relative data word 0100000 in memory at relative 014. 

Set loading location for next command, if any, to relative 
016. 

Enter load request for external name BBEN and chain entry 
address to relative 011. 
000011 

(The remaining words of this record contain zero.) 



object module format 

Core Image 

Assume the program originates at 0500, the literal pool limits are 0200-0400, and BBEN 
is loaded at 0516. 

0200 
0201 

0377 

0500 
0501 
0502 
0503 
0504 
0505 
0506 
0507 

0510 
0511 
0512 
0513 
0514 
0515 
0516 

100500 
000500 

000002 

000000 
017200 
002000 
000516 
054010 
001004 
000512 
010377 

002000 
000516 
047201 
001000 
100500 

DATA 
DATA 

DATA 

ENTR 
LDA* 
JMPM 

STA 
JAN 

LDA 

JMPM 

INR* 
JMP 

BSS 
BSS 

* 

0500 
0500 

2 

0 
0200 

516 
0515 

0512 
0377 

0516 
0201 

0500 
1 

MOS 14-9 



object module format 

The following six-bit codes are used by the loader in building object modules. The codes 
define names created by NAME, EXT, and /JOB directives. 

Character Octal Character Octal Character Octal 

@ 40 v 66 + 13 
A 41 w 67 14 
B 42 x 70 15 
c 43 y 71 16 
D 44 z 72 I 17 
E 45 [ 73 0 20 
F 46 \ 74 1 21 
G 47 ] 75 2 22 
H 50 76 3 23 
I 51 77 4 24 
J 52 (blank) 00 5 25 
K 53 01 6 26 
L 54 02 7 27 
M 55 03 8 30 
N 56 $ 04 9 31 
0 57 05 32 
p 60 & 06 33 
Q 61 07 < 34 
R 62 10 35 
s 63 11 :> 36 
T 64 ~:: 12 ? 37 
u 65 

110S 14-10 



DATA FORMAT 

This appendix explains the formats and symbols used by MOS for storing information on 
cards and paper tape. 

PAPER TAPE 

Information stored on paper tape is either binary or alphanumeric. It is separated into 
records (blocks of words) by three blank frames. The last frame of each record contains 
an end-of-record mark (1-3-4-8 punch). 

Binary Mode 

Binary information is stored with three frames per computer word (figure 14-2). Note that 
channels 6 and 7 are always punched. 

Alphanumeric Mode 

Alphanumeric and unformatted binary information is stored with one frame per character 
or one frame per 8 bits of unformatted binary data (figure 14-3). Standard ASCll-8 punch 
levels are used. 

Special Characters 

An end of file is represented by the ASCll-8 BELL character (1-2-3-8 punch). 

When paper tape is punched on a teletypewriter, the ASCI 1-8 ERROR character flags 
erroneous frames punched by the teletypewriter when it is turned on or off. This notifies 
the TTY and paper tape reader drivers to ignore the next frame. 

When alphanumeric input tapes are punched off-line on a teletypewriter, there is no 
means of spacing the three blank frames after every record. The following procedure gives 
a tape that can be read by the TTY reader and paper tape reader drivers: 

a. Punch the alphanumeric statement. 

b. Punch an end of record (RETURN on the TTY keyboard). 

c. Punch three or more frames of the line-feed character. 

d. Punch the next alphanumeric statement. Return to step b. 

MOS 14-11 



data format 

CARDS 

Information stored on cards is eithHr binary 9r alphanumeric. Each card holds one record 
of information. Hence, there is no end-of-record character for cards. 

Binary Mode 

Binary information is stored with sixty 16-bit words or fifty-three 18-bit words per card. 
The information is serial with bit 15 of the first word in row 12 of column 1, bit 14 in row 
11, etc. (figure 14-4). Note that 18-bit records occupy only the first 954 bits on the card 
(i.e., the last six bits in column 80 aire not used). 

Alphanumeric Mode 

Alphanumeric information is stored one character per card column (figure 14-5) using the 
standard punch patterns. 

Special Character 

An end of file is represented on cards by a 2-7-8-9 punch in column 1 of an otherwise 
blank card. 

MOS 14-12 



CHANNEL: 

8 
7 
6 
5 
4 

QXXQXXQXX 

QXXQXXQXX 
xxxxxxxxx 

xxxxxxxxx 
xxxxxxxxx 
xxxxxxxxx 

QXX* 
* * * B 
* * * B 
OXXB 
xx x * 

xx x * 
XX X B 
xx x * 

B B 
B B 
B B 
B B 
B B 

B B 
B B 
B B 

B Q XX 
B ,, * * 
B * * * 
BOXX 
B X XX 

B X xx 
B X xx 
B X xx 

WORD 1-=r- -LwoRD 2 WORD N ~J--- -L-cWORD l. 
EOR RECORD 

\..._ ____ BINARY RECORD ___ ....,,/ GAP 

*=HOLE 
B = BLANK 
X =DATA BIT 

EOR = END - OF - RECORD 
Q = BLANK FOR 16-BIT WORD; DATA BITS # 17 

AND# 16 FOR 18-BIT WORD. 

Figure 14-2. Paper Tape Binary Record Format 

MOS 14·13 



:l':: 
0 
CJ') 

~ 
~ 

..,, 
ciQ' 
~ 
CD 

.... 
~ 

~ 
..,, 
I» 
~ 

~ 
-t 
I» 
~ 
CD 

)> 

"6' 
~ 
I» 
:J 
c 
3 
~ c:;· 

:::0 
CD 
n 
~ 
Q. 

..,, 
0 

3 
~ 

CHANNEL: 

8 
7 
6 
5 
4 

TIMING 
3 
2 
l 

xxxxx 
xxxxx 
xxxxx 
xxxxx 
xxxxx 

xxxxx 
xxxxx 
* * * * * 

XX*BBBXX 
XX BB BB XX 
XXBBBBXX 
XXBBBBXX 
XX*BBBXX 

XX*BBBXX 
XXBBBBXX 

***BBB** 
....__, -_____.. ...._...... 

LAsc n CHARACTERS_J J L LAsc n CHARACTERS OR UNFORMATTED 
EOR RECORD BINARY WORD · 

'--ALPHANUMERIC RECORD---' GAP 

* = HOLE FOR ASC II CHARACTER OR DATA BIT FOR UNFORMATTED 
BINARY INFORMATION 

B =BLANK 
X =DATA BIT 

EOR = END-OF-RECORD 



WORD: 

OOOOOOOO~OOOOOPOOOOOOOOOOOOOO 

I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 

2 2 2 2 2 2 2 l 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J J 3J 3 3 3 3 

4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

55555555~~55555555555555555' 

666666666666666666G6S6666666 

7777777777777777777777777777 

B s as n a 8 s s a a a as as ea a B s B s B s es 
9099999999999999999958~399999 
I ~ 3 4 ~ 6 ; D 9 10 ii l~ IJ 14 !j 16 ll 1h 1:: :"l i' ~l .'~ ]~ :J ~& 2121119 

C':" f l STA/\iOAR') tJ-•.A !>Jdl 

A. 16-BIT WORD FORMAT 

5 5 5 5 5 5 5 5 

66666666 

data format 

o o o o on o o o o o o o a o 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

S 6 6 G 6 6 6 5;; 6 6 6 6 6 G 

7777777777 7777777777777777 

8 C 8 8 8 8 8 8 8 8 8 8 8 BS" 

B. 18-BIT WORD FORMAT 

Figure 14-4. Card Binary Record Format 

MOS 14-15 



s: 
0 
en 
..... 
~ -0\ 

'Tl 
o'Q' 
c ... 
<D 

..... 
~ 

~ 
(") 
DI ... 
Q. 

> 
if :::r 
DI 
:::J 
c 
3 
~ r;· 
::0 
<D 
n 
~ 
Q. 

'Tl 
0 

3 
~ 

'"'"" 
CD 
3: 
0 
II.) 

~ 

:: 0 0 0 0 0 0 0 p 0 0 0 0 ~ D r. r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 r. 0 0 0 0 iJ 0 0 0 0 0 c ", 0 0 0 0 0 0 0 fi 0 :: c : : 0 : 0 ::: g :: c : 0 D ~ D Q : ~ & ~ 0 a 
0 '!I:"~:::::::~~:,;::;;:~~;!~!' Jl JJ ~• ./ .. ~ ~ '' l,<14' 414.1 .~ U ·~ (S. ;& ~150 51~15354 ~~ '5 ~~ 59 S!lf.') £~ !1 ~-, !.C ~~ ij", '1 Oi ;r. ·I "';;;.a~:;:~.·~ H 10 

11:::111111111111 :1111 11111111111111111 I llill 1111111111111111i111111 11111111111 

2 2 l 2 2 2 2 2 2 2 2 2 2 2 2 ~ 2 2 Z 2 2 :: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 \ l i 2 2 2 2 l 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

JJJJJJ 3JJ:3JJjJ3JJ33331':23J33333333l3!.'.JJ 33323::.33333:33 J;j}J1333333J:::3::1:::3::3 

4 4 4 4 4 4 t, 4 ::: 4 4 4 4 t; 4 ~ 4 ~ .: ' 4 4 4 ~ 4 4 ::: ' 4 : : 4 .: 4 4 4 4 4 4 l 4 4 4 ::: 4 4 4 1 4 4 4 4 4 4 4 4 4 4 • 4 ~ 4 ~ 4 4 4 4 4 4 4 4 1 ~ 4 4 ~ 4 4 

5 r, 5 5 5 s 5 5 : 5 • 5 ' ~ s <; :. :; 5 5 5 s J ~ J : 5 5 :: : J ~ ~ 5 5 5 5 ~ 'j 5 j ~ '· 5 5 5 •• 5 5 5 5 5 ~ : J '.· 5 5 : 5 5 : ,:: 5 5 ~ 5 5 s 5 5 5 s 5 5 ) 5 5 5 5 

6 & c o 6 6 6 6 6 6 £ £ ::: 6 G 6 6 6 6 6 f 6 G 6 € G G G 6 r, ::: C Ii o C S E I'. G o 6 6 G 6 S S o 6 ::: 6 c 6 6 6 6 € 5 6 5 : E C G C ': 5 6 6 6 £ ~ ti 6 6 6 6 6 6 6 5 

77777J77177777:•17777717777777'/17:'77777777777777i77'·7i7777777777777:::7777777777777 

8 1 8 8 e E ~ ~ B e B 8 B 8 8 8 B 8 R 8 i B 8 8 8 8 B ~ g 8 8 s 8 :: B 8 s 8 ! 8 8 8 8 8 E : ' B 8 8 a E E 8 3 B 8 s e 8 ~ B s ! 6 8 > 8 8 : :: 6 B ::: e :: 8 

~ .... 
Ill .... 
0 

3 
Ill .... 



appendix 

APPENDIX TTY CHARACTER CODES 

Character Internal Code Character Internal Code 

0 260 y 331 
1 261 z 332 
2 262 (blank) 240 
3 263 241 
4 264 242 
5 265 # 243 
6 266 $ 244 
7 267 245 
8 270 & 246 
9 271 247 
A 301 250 
B 302 251 
c 303 }:~ 252 
D 304 + 253 
E 305 254 
F 206 255 
G 307 256 
H 310 257 
I 311 272 
J 312 273 
K 313 274 
L 314 275 
M 315 276 
N 316 277 
0 317 @ 300 
p 320 333 
Q 321 334 
R 322 335 
s 323 336 
T 324 337 
u 325 RUBOUT 377 
v 326 NUL 200 
w 327 SOM 201 
x 330 EOA 202 

MOS A·l 



appendix 

Character Internal Code Character Internal Code 

EOM 203 X-OFF 223 
EOT 204 TAPE OFF 
WRU 205 AUX 224 
RU 206 ERROR 225 
BEL 207 SYNC 226 
FE 210 LEM 227 
H TAB 211 so 230 
L,INE FEED 212 Sl 231 
V TAB 213 S2 232 
FORM 214 S3 233 
RETURN 215 S4 234 
so 216 S5 235 
SI 217 S6 236 
DCO 220 S7 237 
X-ON 221 
TAPE AUX 
ON 222 

MOS A-2 


	00_01
	00_02
	00_03
	01_001_Introduction
	01_003
	01_01
	01_02
	01_03
	01_04
	01_05
	01_06
	01_07
	01_08
	01_09
	02_001_DAS_Assemblers
	02_003
	02_01
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	02_13
	02_14
	02_15
	02_16
	02_17
	02_18
	02_19
	02_20
	02_21
	02_22
	02_23
	02_24
	02_25
	02_26
	02_27
	02_28
	02_29
	02_30
	02_31
	02_32
	02_33
	02_34
	02_35
	02_36
	02_37
	02_38
	02_39
	02_40
	03_001_Loader
	03_003
	03_1-01_BLD_II
	03_1-02
	03_1-03
	03_1-04
	03_1-05
	03_1-06
	03_1-07
	03_1-08
	03_1-09
	03_1-10
	03_1-11
	03_2-01_BCL_I
	03_2-02
	03_2-03
	03_2-04
	03_2-05
	03_2-06
	03_2-07
	04_001_AID_II
	04_003
	04_1-01
	04_1-02
	04_1-03
	04_1-04
	04_1-05
	04_1-06
	04_1-07
	05_001_EDIT
	05_003
	05_1-01
	05_1-02
	05_1-03
	05_1-04
	05_1-05
	05_1-06
	05_1-07
	06_001_Math_Subr
	06_002
	06_1-01
	06_1-02
	06_1-03
	06_1-04
	06_1-05
	06_1-06
	06_1-07
	07_001_FORTRAN_IV
	07_003
	07_004
	07_005
	07_006
	07_007
	07_1-01
	07_1-02
	07_1-03
	07_1-04
	07_1-05
	07_1-06
	07_2-01
	07_2-02
	07_2-03
	07_2-04
	07_2-05
	07_2-06
	07_2-07
	07_2-08
	07_3-01
	07_3-02
	07_3-03
	07_3-04
	07_3-05
	07_3-06
	07_4-01
	07_4-02
	07_4-03
	07_4-04
	07_4-05
	07_4-06
	07_4-07
	07_4-08
	07_4-09
	07_4-10
	07_4-11
	07_4-12
	07_5-01
	07_5-02
	07_5-03
	07_5-04
	07_5-05
	07_5-06
	07_5-07
	07_5-08
	07_5-09
	07_5-10
	07_6-01
	07_6-02
	07_6-03
	07_6-04
	07_6-05
	07_6-06
	07_6-07
	07_6-08
	07_6-09
	07_6-10
	07_6-11
	07_6-12
	07_6-13
	07_6-14
	07_6-15
	07_6-16
	07_6-17
	07_6-18
	07_6-19
	07_6-20
	07_7-01
	07_7-02
	07_7-03
	07_7-04
	07_7-05
	07_7-06
	07_7-07
	07_7-08
	07_7-09
	07_7-10
	07_7-11
	07_7-12
	07_7-13
	07_7-14
	07_7-15
	07_8-01
	07_8-02
	07_8-03
	07_8-04
	07_8-05
	07_8-06
	07_8-07
	07_8-08
	07_8-09
	07_8-10
	07_8-11
	07_8-12
	07_8-13
	07_8-14
	07_8-15
	07_8-16
	07_8-17
	07_9-01
	07_9-02
	07_9-03
	07_9-04
	07_9-05
	08_001_BASIC
	08_003
	08_004
	08_005
	08_1-01
	08_1-02
	08_1-03
	08_1-04
	08_1-05
	08_1-06
	08_1-07
	08_1-08
	08_1-09
	08_1-10
	08_1-11
	08_1-12
	08_1-13
	08_1-14
	08_1-15
	08_1-16
	08_1-17
	08_1-18
	08_1-19
	08_1-20
	08_2-01
	08_2-02
	08_2-03
	08_2-04
	08_2-05
	08_2-06
	08_2-07
	08_2-08
	08_2-09
	08_2-10
	08_2-11
	08_3-01
	08_3-02
	08_3-03
	08_3-04
	08_3-05
	08_3-06
	08_3-07
	08_3-08
	08_3-09
	08_3-10
	08_3-11
	08_3-12
	08_3-13
	08_3-14
	08_3-15
	08_3-16
	08_3-17
	08_3-18
	08_3-19
	08_4-01
	08_4-02
	08_4-03
	08_4-04
	08_5-01
	08_5-02
	08_6-01
	08_6-02
	08_6-03
	08_7-01
	08_7-02
	08_7-03
	08_7-04
	08_7-05
	08_7-06
	08_7-07
	08_7-08
	08_7-09
	08_7-10
	08_7-11
	08_7-12
	08_7-13
	08_7-14
	08_7-15
	08_7-16
	08_7-17
	08_7-18
	08_7-19
	08_7-20
	08_7-21
	08_7-22
	08_7-23
	08_7-24
	08_7-25
	08_7-26
	08_7-27
	08_7-28
	08_7-29
	08_7-30
	08_7-31
	08_7-32
	08_7-33
	08_7-34
	08_7-35
	08_7-36
	08_7-37
	08_7-38
	08_7-39
	08_7-40
	08_7-41
	08_7-42
	08_7-43
	08_7-44
	08_7-45
	08_7-46
	08_7-47
	08_7-48
	08_7-49
	08_7-50
	08_7-51
	08_7-52
	08_7-53
	08_7-54
	08_7-55
	08_7-56
	08_7-57
	08_7-58
	08_7-59
	08_7-60
	08_7-61
	08_7-62
	08_7-63
	08_7-64
	08_7-65
	08_7-66
	08_7-67
	08_7-68
	08_7-69
	08_7-70
	08_7-71
	08_7-72
	09_001_RPG_IV
	09_002
	09_003
	09_004
	09_005
	09_1-01
	09_1-02
	09_1-03
	09_1-04
	09_1-05
	09_1-06
	09_1-07
	09_1-08
	09_1-09
	09_1-10
	09_1-11
	09_1-12
	09_1-13
	09_1-14
	09_2-01
	09_3-01
	09_3-02
	09_3-03
	09_3-04
	09_3-05
	09_3-06
	09_3-07
	09_3-08
	09_3-09
	09_3-10
	09_3-11
	09_3-12
	09_3-13
	09_3-14
	09_3-15
	09_3-16
	09_3-17
	09_3-18
	09_3-19
	09_3-20
	09_3-21
	09_3-22
	09_3-23
	09_3-24
	09_3-25
	09_3-26
	09_3-27
	09_3-28
	09_3-29
	09_3-30
	09_3-31
	09_3-32
	09_3-33
	09_4-01
	09_4-02
	09_4-03
	09_4-04
	09_4-05
	09_4-06
	09_4-07
	09_4-08
	09_4-09
	09_4-10
	09_4-11
	09_4-12
	09_4-13
	09_4-14
	09_4-15
	09_5-01
	09_5-02
	09_5-03
	09_5-04
	09_5-05
	09_5-06
	09_A-01
	09_A-02
	09_A-03
	09_B-01
	09_B-02
	09_C-01
	09_C-02
	09_C-03
	09_C-04
	09_D-01
	09_E-01
	09_E-02
	09_E-03
	09_E-04
	09_E-05
	09_E-06
	09_E-07
	10_001_MOS
	10_003
	10_004
	10_005
	10_006
	10_007
	10_01-01
	10_01-02
	10_01-03
	10_02-01
	10_02-02
	10_02-03
	10_02-04
	10_02-05
	10_02-06
	10_02-07
	10_02-08
	10_02-09
	10_02-10
	10_02-11
	10_02-12
	10_02-13
	10_02-14
	10_02-15
	10_03-01
	10_03-02
	10_03-03
	10_03-04
	10_03-05
	10_03-06
	10_03-07
	10_03-08
	10_03-09
	10_03-10
	10_03-11
	10_03-12
	10_03-13
	10_03-14
	10_03-15
	10_03-16
	10_03-17
	10_04-01
	10_04-02
	10_04-03
	10_04-04
	10_04-05
	10_04-06
	10_04-07
	10_04-08
	10_05-01
	10_05-02
	10_05-03
	10_06-01
	10_06-02
	10_06-03
	10_06-04
	10_06-05
	10_06-06
	10_06-07
	10_06-08
	10_07-01
	10_07-02
	10_07-03
	10_07-04
	10_08-01
	10_08-02
	10_08-03
	10_08-04
	10_08-05
	10_08-06
	10_08-07
	10_08-08
	10_08-09
	10_08-10
	10_08-11
	10_08-12
	10_08-13
	10_08-14
	10_08-15
	10_08-16
	10_08-17
	10_08-18
	10_08-19
	10_08-20
	10_08-21
	10_08-22
	10_08-23
	10_08-24
	10_08-25
	10_08-26
	10_08-27
	10_08-28
	10_08-29
	10_08-30
	10_09-01
	10_09-02
	10_09-03
	10_10-01
	10_10-02
	10_10-03
	10_10-04
	10_10-05
	10_10-06
	10_10-07
	10_10-08
	10_10-09
	10_10-10
	10_10-11
	10_10-12
	10_10-13
	10_10-14
	10_10-15
	10_10-16
	10_11-01
	10_11-02
	10_11-03
	10_11-04
	10_11-05
	10_12-01
	10_12-02
	10_12-03
	10_12-04
	10_12-05
	10_12-06
	10_12-07
	10_12-08
	10_12-09
	10_12-10
	10_12-11
	10_12-12
	10_12-13
	10_12-14
	10_12-15
	10_12-16
	10_12-17
	10_12-18
	10_12-19
	10_13-01
	10_13-02
	10_13-03
	10_13-04
	10_13-05
	10_13-06
	10_13-07
	10_13-08
	10_13-09
	10_13-10
	10_13-11
	10_13-12
	10_13-13
	10_13-14
	10_13-15
	10_14-01
	10_14-02
	10_14-03
	10_14-04
	10_14-05
	10_14-06
	10_14-07
	10_14-08
	10_14-09
	10_14-10
	10_14-11
	10_14-12
	10_14-13
	10_14-14
	10_14-15
	10_14-16
	10_A-01
	10_A-02

