
UNIVAC

MMERS PRO~~~ERENCE

IIO~CESSOR MULTI-PA
SYSTEM

PROCESSOR
AND
STORAGE

U P-4053 Rev.

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIV AC ® Systems developments. The infor­
mation presented herein may not reflect the current status of the product.
For the current status of the product, contact your local Univac Represent­
ative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware or software changes and refinements. The Univac
Division reserves the right to make such additions, corrections, and/or
deletions as, in the judgment of the Univac Division, are required by the
development of its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

Other trademarks of Sperry Rand Corporation appearin g in the text of this
publication are:

PAGEWRITER

© 1966,1970 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

UNI VA\" IIVV contents
PROCESSOR AND STORAGE

UJ:-'-··tV;:J.:J ~

Rev. 1 __ --------- _______________________________________ ~ ____ ------~SE-C-T_IO_N_: ____ ~_P_A_G_E: _ ___ __

COt~TENTS

1. INTRODUCTION

1.1. GENERAL

1.2. UNIVAC 1108 MULTI-PROCESSOR SYSTEM

1.3. SYSTEM COMPONENTS
1.3.1. Processor Group
1. 3.2. Sto rage Group
1. 3. 3. Mu Iti-Modu I e Access Unit (MMA)
1.3.4. InpuVOutput Controller (IOC)
1.3.5. Availability Control Unit (ACU)
1.3.6. Shared Peripheral Interface (SPI)
1.3.7. Pe riphera I Subsystems

2. PROCESSOR UNIT

2.1. GENERAL

2.2. CONTROL SECTION
:2.2.1. Control Section Operation
:2.2.2. Instruction Repertoire
:2.2.3. Control Registers

:2.3. ARITHMETIC SECTION

:2.4. INPUT/OUTPUT SECTION

CONTENTS

1 to 12

1-1 to 1-4

1-1

1-1

1-1
1-3
1-3
1-3
1-4
1-4
1-4
1-4

2-1 to 2-2

2-1

2-1
2-1
2-1
2-1

2-2

2-·2

U P-4Ut>j

Rev. 1
UNIVAC llUH

PROCESSOR AND STORAGE

:~. STORAGE

3.1. GENERAL

3.2. MAIN STORAGE
3.2.1. Addressing Main Storage
3.2.1.1. Noninterleaved Addressing of Main Storage
3.2.1.2. Interleaved Addressing of Main Storage
3.2.2. Multi-Module Access Unit (MMA)
3.2.3. Main StorC;lge Special Address Assignments
3.2.3.1 Hidden Storage
3.2.3.2. Fixed Address Assignments
3.2.4. Main Storage Protection

3.3. CONTROL REGISTERS
3.3.1. Control Register Selection Designator
3.3.2. Control Register Address Assignments
3.3.2.1. Temporary Storage for Processor State Register (PSR) at

Interrupt - Address 0008
3.3.2.2. User Index (X) Registers - Addresses 0018 - 0178
3.3.2.3. User Accumulator (A) Registers - Addresses 0148 - 0338
3.3.2.4. User Unassigned Registers - Addresses 0348 - 0378
3.3.2.5. InpuVOutput Access Control Registers - Addresses 0408 -0778
3.3.2.6. Real Time Clock (RO) Register - Address 1008
3.3.2.7. User Repeat Count (Rl) Register - Address 1018
3.3.2.8. User Mask (R2) Register - Address 1028
3.3.2.9. User R Registers - Addresses 1038 :.... 1178
3.3.2.10. Executive R Register - Address 1208
3.3.2.11. Executive Repeat Count (R 1) Registe r - Address 1218
3.3.2.12. Executive Mask (R2) Register - Address 1228
3.3.2.13. Executive R Registers - Addresses 1238 -1378
3.3.2.14. Executive Nonindexing X Register - Address 1408
3.3.2.15. Executive Index (X) Registers - Addresses 1418 - 1578
3.3.2.16. Executive Accumulator (A) Registers - Addresses 1548 - 1738
3.3.2.17. Executive Unassigned Registers - Addresses 1748 - 1778
3.3.3. Control Register Protection

4. CPU ARITHMETIC SECTION

4.1. GENERAL OPERATION

4.2. MAIN ADDER
4.2.1. Signed Numbers
4.2.2. Zero as a Signed Number

4.3. FIXED-POINT ARITHMETIC
4.3.1. Single-Precision Fixed-Point Addition and Subtraction
4.3.2. Double-Precision Fixed-Point Addition and Subtraction
4.3.3. Fixed-Point Overflow and Carry
4.3.3.1. Overflow
4.3.3.2. Ca rry
4.3.4. Fixed-Point Multiplication
4.3.5. Fixed-Point D i vi sion
4.3.6. Divide Fault

Contents

SECTION:

3-1 to 3-13

3-1

3-1
3-1
3-1
3-2
3-3
3-7
3-7
3-7
3-9

3-10
3-10
3-11

3-11
3-11
3-11
3-11
3-11
3-12
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13

4-1 to 4-38

4-1

4-1
4-4
4-4

4-5
4-5
4-6
4-6
4-7
4-7
4-8
4-10
4-12

L

PAGE:

UP-4053
Rev. 1 ~

UNIVAC 1108

PROCESSOR AND STORAGE
-----------'-~---'--,-

Con tents

SEC TION: PAGE:

4.4. FLOATING-POINT ARITHMETIC 4-13
4.4.1. Floating-Po int Formats 4-13
4.4.1.1. Positive Single-Precision Floating-Point Numbers 4-15
4.4.1.2. Positive Double- Preci sion Floati ng- Po int Numbers 4-16
4.4.1.3. Negative Floating-Point Numbers 4-16
4.4.1.4. Residue 4-17
4.4.2. Normalized/Unnormalized Floating-Point Numbers 4-17
4.4.3. Floatin g-Po int Cha racte ristic Overflow/U nde rflow 4-1.8
4.4.3.1. Floating-Po int Characteristi c Overflow 4-18
4.4.3.2. Floating-Po int C ha racte ri stic Underflow 4-18
4.4.4. Mechan i cs of Floating-Po int A rithmeti c 4-19
4.4.4.1. Floating-Point Addition 4-19
4.4.4.1. L Single-P rec ision Floating-Po int Add ition 4-19
4.4.4.1.2 .. Single-Precision Floating-Point Addition - Special Cases 4-22
4.4.4.1.3. Doubl e- P reci sion F loati ng-Poi nt Add i tion 4-22
4.4.4.2. Floating-Point Add Negative (Subtraction) 4-24
4.4.4.3. Floating-Point Multipl ication 4-24
4.4.4.3. L S ingle-P recision Floating- Po int Mu Itipl i cation 4-25
4.4.4.3.2. Double-Precision Floating-Point Multiplication 4-27
4.4.4.4. Floating-Point Division 4-29
4.4.4.4. L Single-P reci sion Floating-Po int Division 4-29
4.4.4.4.2. Double-P reci sion Floating- Po int Division 4-31

4.5. CONVERTING A FIXED-POINT NUMBER TO A FLOATING-POINT NUMBER 4-33
4.5.1. Conversion To Single-Precision Floating-Point Format 4-33
4.5.2. Conversion To Double-Precision Floating-Point Format 4-35

4.6. FLOATING-POINT ZERO - SUMMARY 4-36
4.6.1. Single-Precision Floating-Point Zero 4-36
4.6.2. Double-Precision Floating-Point Zero 4-38

5. CPU CONTROL SECTION 5-1 to 5-29

5.1. INSTRUCTION WORD FORMAT 5-1

5.2. INSTRUCTION WORD FIELDS 5-2
5.2.1. Description of f Field 5-2
5.2.2. Description of j Field 5-2
5.2.2.1. j Fie"ld as an Operand Qualifier 5-2
5.2.2.1.1. Operand Qualification -for Store and Block Transfer Instructions 5-5
5.2.2.1.2. Operand Qual ification When f = 108 Through 678 5-5
5.2.2.2. Use of j Field as Partial Control Register Address 5-5
5.2.2.3. Use of j Field as Minor Function Code 5-6
5.2.3. Description of a Field 5-6
5.2.3.1. Use of the a Field to Reference A Register 5-6
5.2.3.2. Use of the a Field to Reference X Registers 5-6
5.2.3.3. Use of the a Field to Reference R Register 5-7
5.2.3.4. Use of the a Field to Reference I/O Channels 5-7
5.2.3.5. Use of the a Field to Reference Jump Keys 5-7
5.2.3.6. Use of the a Field to Reference Halt Keys 5-7
5.2.3.7. Use of the a Field to Modify Memory Select Register (MSR) 5-7
5.2.3.8. Use of the a Fie Id as M i no r Function Code 5-7

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

5.2.4. Use of the j and a Fields to Modify Control Register Address
~i.2.5. Description of the x Field
5.2.6. Description of the h Field
5.2.7. Description of the i Field
5.2.8. Description of the u Field
5.2.8.1. Use of the u Field as an Operand Address Designator
5.2.8.2. Use of the u Field as an Operand Designator
5,.2.8.3. Restrictions of Use of the u Field

5.3. GENERAL OPERATION OF THE CONTROL SECTION
5.3.1. Program Address Counter (P Register)
5.3.2. Program Control Subsection
5.3.3. Index Subsection
5.3.3.1. Indexing
5.3.3.2. Index Modification
5.3.3.3. Real Time Clock Decrementation
5.3.3.4. Repeat Counter Decrementation
5.3.3.5. InpuVOutput Access Control Word Modification
5.3.4. Storage Class Control Subsection

5.4. CONTROL SECTION TIMING
~i.4.1. Basic Timing Chains
5.4.1.1. Main Timing Chain (TO Chain)
5.4.1.2. Result Storage Chain (T1 Chain)
5.4.2. Alternate Bank vs. Same Bank Timing
5,.4.2.1. Typical Single Pass Instruction Tim ing
5.4.2.2. Typical Two-Pass Instruction Timi ng
5.4.3. Anomalies and Conflicts
5.4.3.1. Detected A or A+lIX Anomalies
5.4.3.2. Undetected A, A+1, and A+2/X Anomalies
5.4.3.3. Detected AI A Confl icts
5.4.3.4. Undetected A+2/X Conflicts
5.4.3.5. Undetected XI A Conflicts
5,.4.3.6. Undetected XI A+ 1 Confl i cts

6. II~STRUCTION REPERTOIRE

6.1. INTRODUCTION

Ei.2. LOAD INSTRUCTIONS
6.2.1. Load A
6.2.2. Load Negative A
6.2.3. Load Magnitude A
6.2.4. Load Negative Magnitude A
6.2.5. Load R
6.2.6. Load X Modi fie r
Ei.2.7. Load X
6.2.8. Load X Increment
Ei.2.9. Double Load A
6.2.10. Double Load Negative A
6.2.11. Double Load Magnitude A

Contents

5 EC TION:

5-7
5-8
5-8
5-8
5-10
5-10
5-11
5-11

5-12
5-12
5-13
5-13
5-13
5-15
5-15
5-15
5-15
5-16

5-17
5-17
5-17
5-20
5-20
5-21
5-24
5-27
5-27
5-27
5-28
5-28
5-29
5-29

6-1 to 6-93

6-1

6-1
6-2
6-2
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-5

4

PAGE:

UP-4053 L
Rev. 1

----- ---~------------~-----------~-------

UNIVAC 1108

PROCESSOR AND STORAGE

Con ten ts 5

SECTION: PAGE:

6.3. STORE INSTRUCTIONS 6-5
6.3.l. Store A 6-5
6.3.2. Store Negative A 6-6
6.3.3. Store Magnitude A 6-6
6.3.4. Store R 6-6
6.3.5. Store Zero 6-6
6.3.6. Store X 6-7
6.3.7. Double Store A 6-7
6.3.8. Block Transfer 6-7

6.4. FIXED-POINT ARITHMETIC INSTRUCTIONS 6-9
6.4.1. Add to A 6-9
6.4.2. Add Negative to A 6-10
6.4.3. Add Magn itude to A 6-10
6.4.4. Add Negative Magnitude to A 6-11
6.4.5. Add Upper 6-11
6.4.6. Add Negative Upper 6-12
6.4.7. Add to X 6-12
6.4.8. Add N egati ve to X 6-13
6.4.9. Multiply Integer 6-13
6.4.10. Multiply Single Integer 6-14
6.4.11. Multiply Fractional 6-14
6.4.12. Divide Integer 6-15
6.4.13. Divide Single Fractional 6-15
6.4.14. Divide Fractional 6-16
6.4.15. Double-Precision -Fixed Point Add 6-17
6.4.16. Double-Precision Fixed Point Add Negative 6-17
6.4.17. Add Halves 6-17
6.4.18. Add Negative Halves 6-18
6.4.19. Add Thi rds 6-18

6.5. FLOATING-POINT ARITHMETIC 6-19
6.5.1. Floating Add 6-19
6.5.2. Floating Add Negative 6-20
6.5.3. Double-Precision Floating Add 6-20
6.5.4. Double-Precision Floating Add Negative 6-21
6.5.5. Floating Multiply 6-21
6.5.6. o ou ble-P re ci sion F loatin g Mu I ti P Iy 6-23
6.5.7. Floating Divide 6-23
6.5.8. Double-P re cision Floating 0 ivide 6-25
6.5.9. Load and Unpack Floating 6-26
6.5.10. Double Load and Unpack Floating 6-26
6.5.11. Load and Convert to Floating 6-27
6.5.12. Double Load and Convert to Floating 6-27
6.5.13. F loati ng Expand and Load 6-28
6.5.14. Floating Compress and Load 6-29
6.5.15. Magnitude of Characteristic Difference to Upper 6-30
6.5.16. Characteristic Difference to Upper 6-30

UP·40S3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6.6. SEARC H AN D MASKED SEARCH I NSTRU CTIONS
6.6.1. Search Equal
6.6.2. Search Not Equal
6.6.3. Search Less than or Equal (SLE) - Search Not Greater (SNG)
6.6.4. Search Greater
6.6.5. Search Within Range
6.6.6. Search Not Within Range
6.6.7. Mask Search Equal
6.6.8. Mask Search Not EQua I ,
6.6.9. Mask Search Less Than or Equal (MSLE) - Mask Search Not

G reate r (MSN G)
6.6.10. Mask Search Greater
6.6.11. Masked Search Within Range
6.6.12. Masked Search Not Within Range
6.6.13 .. Masked Alphanumeric Search Less Than or Equal
6.6.14. Masked Alphanumeric Search Greater

6.7. TEST (OR SKIP) INSTRUCTIONS
6.7.1. Test Even Parity
6.7.2. Test Odd Parity
6.7.3. Test Less Than or Equal to Modifier (TLEM) - Test Not Greater

Than Modifier (TNGM) .
6.7.4. TestZero
6.7.5. Test Nonzero
6.7.6. Test Equal
6.7.7. Test Not Equal
6.7.8. Test Less Than or Equal (TLE) - Test Not Greater (TNG)
6.7.9. Test Greater

6.7.10. Test Within Range
6.7.11. Test Not Within Range
6.7.12. Test Positive
6.7.13. Test Negative
6.7.14. Double-Precision Test Equal

6.8. SHIFT INSTRUCTIONS
6.8.1. Single Shift Circular
6.8.2. Double Shift Circular
6.8.3. Single Shift Logical
6.8.4. Double Shift Logical
6.8.5. Single Shift Algebraic
6.B.6. Double Shift Algebraic
6.8.7. Load Shift and Count
6.8.B. Double Load Shift and Count
6.8.9. Left Single Shift Circular
6.B.10. Left Double Shift Circular
6.8.11. Left Single Shift Logical
6.8.12. Left Double Shift Logical

6.9. UNCONDITIONAL JUMP INSTRUCTION
6.9.1. Store Location and Jump
6.9.2. Load Modifier and Jump
6.9.3. Allow All I/O Interrupts and Jump

Contents

SECTION:

6-30
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40

6-41
6-42
6-42
6-44
6-45
6-46

6-47
6-47
6-48

6-48
6-49
6-49
6-50
6-50
6-51
6-51

6-52
6-52
6-53
6-53
6-54

6-54
6-56
6-56
6-57
6-57
6-57
6-58
6-58
6-59
6-59
6-59
6-60
6-60

6-61
6-61
6-62
6-63

PAGE:

UP·4053 L
Rev. 1 ._______ __ __ -L ____________________ ~~SE~C~T~IO~N~: ____________ ~P~AG~E~: __

UNIVAC 1108

PROCESSOR AND STORAGE
Contents 7

6.10. CONDITIONAL JUMP INSTRUCTIONS 6-65
61.10.1. Jump Greater and Decrement 6-65
6.10.2. Double-Precision Jump Zero 6-66
6.10.3. Jump Positive and Shift 6-66
6.10.4. Jump Negative and Shift 6-66
6.10.5. Jump Zero 6-67
6.10.6. Jump Nonzero 6-67
6.10.7. Jump Positive 6-67
6.10.8. Jump Negative 6-67
6.10.9. Jump (J) - Jump Keys (JK) 6-67
6.10.10. Halt Jump (HJ) - Halt Keys and Jump (HKJ) 6-68
6.10.11. Jump No Low Bit 6-69
Ei.l0.12. Jump Low Bit 6-69
6,.10.13. Jump Modifier Greater and Increment 6-69
6.10.14. Jump Overflow 6-70
6.10.15. Jump No Overflow 6-70

6.l0.16. Jump Carry 6-70
6i.l0.17. Jump No Carry 6-71

6.11. LOGICAL INSTRUCTIONS 6-71

6.11. 1. Logical OR 6-72

6.11.2. Logical Exclusive OR 6-72

6.11.3. Logical AND 6-73

6.11.4. Masked Load Upper 6-73

6.12. MISCELLANEOUS INSTRUCTIONS 6-74

(;.12.1. Execute 6-74

G.12.2. Executive Return 6-74

(;.12.3. Test and Set 6-75

6.12.4. No Operation 6-76

6.13. INPUT/OUTPUT INSTRUCTIONS 6-76

6.13.1. Load Input Channel 6-77

6.13.2. Load Input Channel and Monitor 6-77

G.13.3. Jump on In put Channel Busy 6-77

1:>.13.4. Disconnect Input Channel 6-78

1>.13.5. Load Output Channel 6-78

6.13.6. Load Output Channel and Monitor 6-79

G.13.7. Jump on Output Channel Busy 6-79

6.13.8. Disconnect Output Channel 6-80
G.13.9. Load Function Channel 6-80
6.13.10. Load Function in Channel and Monitor 6-81
1>.13.11. Jump on Function in Channel 6-81
6.13.12. Prevent all Channel External Interrupts 6-82
6.13.13. A /I 0 wall C han n e I Ext e rn a I I n t e r ru p t s 6-82

UP-4053
Rev. 1

7.

UNIVAC 1108

PROCESSOR AND STORAGE

6.14. EXECUTIVE SYSTEM CONTROL INSTRUCTIONS
6.14.1. Prevent all I/O Interrupts and Jump
6.14.2. Store Channel Number
6.14.3. Load Pro cesso r State
6.14.4. Load Storage Limits
6.14.5. Initiate Interprocessor Interrupt
6.14.6. Alarm
6.14.7. Disable Day Clock
6.14.8. Enable Day Clock
6.14.9. Select Interrupt Locations
6.14.10. Load Channel Select Register
6.14.11. Load Last Address Register

6.15. ILLEGAL FUNCTION CODES

INPUT/OUTPUT

7.1. INTRODUCTION
7.1.1. I/O Channel Interface
7.1.2. I/O Channel Numbering and Configurations
7.1.3. lSI Versus ESI Mode of I/O Channel Operation
7.1.4. ESI Mode - Half Word Versus Quarter Word Operation
7.L5. Normal/Compatible I/O Channels
7.1.6. I/O Channel Activity - Introduction
7.1. 7. Input/Output Priority Control
7.1.8. I/O Section and Main Control Section Interaction
7.1.9. I/O Section Versus Main Control Section Main Storage Access

7.2. lSI MODE - I/O OPERATION
7.2,1. General Description - Programmed Activation of an I/O Channel

in lSI Mode
7.2.2. lSI Mode - Access Control Register Assignments
7.2.3. lSI ACW Format
7.2.4. lSI ACW Terminal Condition
7.2.5. lSI Mode - InpuVOutput Channel Activity
7.2.5.1. lSI Function Mode
7.2.5.2. lSI Output Mode
7.2.5.3. lSI Input Mode
7.2.5.4. lSI External Interrupt Mode
7.2,6. lSI Mode - I/O Channel Activity - ACW Initially in Terminal Condition
7.2.7. lSI Mode Monitor Interrupts
7.2.8. Programmed Deactivation of an I/O Channel in lSI Mode
7.2.9. Summary of I/O Channel Control Circuit Operation - lSI Mode
7.2,10. Summary of hhe GP U' s Operation Versus th e EI, ID R, and 0 D R Contra I

Signals
7.2.11. I/O Programming Considerations - lSI Mode
7.2.11.1. lSI Function Mode Programming Considerations
7.2.11.2. lSI Output Mode Programming Considerations
7.2.11.3. lSI Input Mode P rogramm ing Consi de rati on s

Contents 8
SECTION: PAGE:

6-83
6-83
6-84
6-85
6-87
6-87
6-88
6-89
6-90
6-91
6-91
6-92

6-92

7-1 to 7-53

7-1
7-1
7-3
7-3
7--3
7-3
7-4
7-5
7 -10
7-10

7-12

7-12
7-13
7-13
7-14
7-,14
7-14
7-17
7-18
7-20
7-20
7-21
7-22 '
7-24

7-25
7-26
7-27
7-28
7 -31

UNIVAC 1108 Contents
Rev. 1 PROCESSOR AND STORAGE

UP-40S3 L
------ --~----------~-----------~-------

PAGE: SECTION:

7.3. ESI MODE - I/O OPERATION
7.a.1. General Description -- Operation of an I/O Channel in ESI Mode
7.~~.2. ESI Word Format
7.~L3. ESI ACW Formats
7.~L3.1. ESI Half Word ACW Format
7.3.3.2. ESI Quarter Word ACW Format
7.3.4. ESI ACW Terminal Condition Detection
7.21.5. ESI Mode - Input/Output Channel Activity
7.21.5.1. ESI Mode - Function Word Transmission Activity
7.3.5.2. ESI Output Mode
7.2:.5.3. ESllnput Mode
7.2:.5.4. ESI External Interrupt Mode
7.3.6. ESI Mode - I/O Channel Activity - ACW Initially in Terminal Condition
7.3.7. ESI Mode Monitor Interrupts
7.3.8. Programmed Deactivation of an I/O Channel in ESI Mode
7.3.9. Summary of I/O Channel Control Circuit Operation - ESI Mode
7.21.10. Summary of the CPU's Operation Versus the EI, lOR, and ODR Control

Si gnal s
7.3.11. I/O Programming Considerations - ESI Mode
7.3.11.1. ESI Function Word Transfer Programming Considerations
7.3.11.2. ESI Output Word Transfer Programming Considerations
7.3.11.3. ESllnput Word Transfer Programming Considerations
7.3.12. ESI Input/Output Timing

8. INTERRUPTS

8.1. INTRODU CTION

8.L~. I/O INTERRUPTS
8.L~.1. Monitor Interrupts
8.2~.1.1. lSI Input Monitor Interrupt
8.L~.1.2. lSI Output Monitor Interrupt
8.2~.1.3. lSI Function Monitor Interrupt
8.2~.1.4. ESllnput Monitor Interrupt
8.2~.1.5. ESI Output Monitor Interrupt
8.21.2. External Interrupts
8.2~.2.1. lSI External Interrupt
8.21.2.2. ESI External Interrupt
8.2~.3. System I/O Interrupts
8.2~.3.1. Interprocessor Interrupt
8.2~.3.2; Real Time Clock Interrupt
8.2;3.3. Day Clock Interrupt
8.L~.3.4. Power Loss Interrupt
8.2'.4. I/O Parity Error Interrupts
8.L~.4.1. ESI Access Control Word Parity Error Interrupt
8.L~.4.2. lSI Access Control Word Parity Error Interrupt
8.L~.4.3. I/O Data Parity Error Interrupt
8.?5. I/O Interrupt Priority

7-33
7-33
7-34
7-35
7-36
7-37
7-40
7-41
7-41
7-42
7-44
7-46
7-46
7-47
7-48
7-48

7-49
7-50
7-51
7 -51
7-52
7-53

8-1 to 8-22

8-1

8-2
8-3
8-3
8-3
8-4
8-4
8-4
8-5
8-6
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-8
8-9
8-10
8-12

9

UP·4053

Rev. 1

UNIVAC IIUS

PROCESSOR AND STORAGE

8.3. FAULT INTERRUPTS
8.3.1. Main Storage and Control Register Parity Error Interrupts
8.3.1.1. Main Storage Parity Error Interrupt
8.3~1.2~ Control Register Parity Error Interrupt
8.3.1.3. Instruction Locations and Priority
8.3.1.4. Considerations Related to a Main Storage Parity Error
8.3.1.5. Considerations Related to a Control Register Parity Error
8.3;2. Program Error Fault Interrupts
8.3.2.1. Illegal Instruction Fault Interrupt
8.3.2.2. Guard Mode/Storage Limits Protection Fault Interrupt
8.3.2.3. Floating-Point Characteristic Underflow Fault Interrupt
8.3.2.4. Floating-Point Characteristic Overflow Fault Interrupt
8.3.2.5. Divide Fault Interrupt

8.4. PROGRAMMED INTERRUPTS
8.4.1. Executive Return Interrupt
8. 4.2~ Test and Set In terrupt

8.5. P REGISTER CONTENTS CAPTURED AT INTERRUPTS

8.6. PROGRAM CONSIDERATIONS FOR HANDLING INTERRUPTS

9. EXECUTIVE CONTROL

9.1. GENERAL

9.2. PROCESSOR STATE REGISTER
9.2.1. D8 - Floating-Point Compatabil ity Mode Designator (F-P Zero)
9.2.2. D7 - Base Register Suppression Designator (Executive Mode)
9.2.3. D6 - Control Register Selection Designator (Exec ABR)
9.2.4. D5 - Double-Precision Underflow Designator (Interrupt Suppression)
9.2.5. D4 - 1107 Compatibility Designator (1107 Mode)
9.2.6. D3 - Modified Storage Protection (Write Only); D2 -" Guard Mode/Storage

Li mit s P ro t e c ti 0 n
9.2.7. D 1 - 0 v e r flow Des i gn a to r
9.2.8. DO - Carry Designator
9.2.9. BI - Instruction Bank Base Register
9.2.10. QW - Quarter Word Designator
9.2.11. NU = Not Used
9.2.12~ BS = BI/BD Selection Register
9.2~13. BD - Data Bank Base Register
9.2.14. Loading the Processor State Register

9.3. INTRODUCTION TO ADDRESSING
9.3.1. Main Storage Organization
9.3.2. Program Segmentation
9.3.3. General Theory of 1108 Addressing
9.3.4. Description of the Base Register Addressing Process
9.3.5. Programm ing Con si deration s Rei ated to Addressing
9.3.6. P-Capturing Instructions

9.4. MAIN STORAGE PROTECTION
9.4.1. Format for the Storage Limits Word
9.4.2. Loading the Storage Limits Register
9.4.3. Activating and Deactivating Main Storage Protection

Contents

SECTION:

8-13
8-13
8-14
8-15
8-15
8-15
8-16
8-16
8-16
8-17
8-18
8-18
8-18

8-19
8-1.9
8-19

8-20

8-20

9-1 to 9·-17

9-1

9-1
9-2
9-2
9-2
9-2
9-3

9-3
9-4
9-4
9-4
9-5
9-5
9-6
9-6
9-6
9-6
9-7
9-7
9-8
9-10
9-13
9-14

9-16
9-16
9-16
9-16

10

PAGE:

UP·4U53, L
Rev. 1 SECTION: PAGE:

,--------- --~--------------------~~~~--------~~~---

IJ N I V A l.. I I UH

PROCESSOR AND STORAGE
L..on {en I.S

APPENDI XES

A. SYMBOLS AND ABBREVIATIONS A-1toA-7

B. U~IIVAC 110n WORD FORMATS B-1toB-2

c. CHARACTER CODES C-1 to C-2

D. PROCESSOR UNIT DIFFERENCES 0-1 to 0-1

E. INSTRUCTION REPERTOIRE E-l to E-11

IFIGURES

1-1. UNIVAC 110S Multi-Processor System 1-2

3-1. Central Processor Unit with Maximum Noninterleaved Main Storage 3-2

3-:2. CPU with Maximum Interleaved Main Storage 3-3

3-:3. CPU, IOC, and Main Storage with MMA's for UNIVAC 110S Multi-Processor
System 3-4

4-1. Single-Precision Floating-Point Format 4-13

4-2. Double··Precision Floating-Point Format 4-13

4-3. Nonaddressable 72-Bit Arithmetic Accumulator 4-20

5-3. Transfers from Main Storage to the Arithmetic Section (f = lOS through 67S) 5-3

5-:2. Transfers from the Arithmetic Section to Main Storage (f = 01S through 06S
and 22S) 5-4

7-1. I/O Channel Interface, Control and Data Lines 7-1

7-2. I/O Word Transfer Priority - Normal Channels Only 7-S

7-3. I/O Word Transfer Priority - Compatible Channels Only 7-9

9 -1. F 0 nn a t 0 f the P ro c e s so r S t ate W 0 r d 9 - 1

9-2. UNIVAC 110S Addressing Operation Flowchart 9-4

TABLES

3-1. Octal and Decimal Address Ranges for Noninterleaved Main Storage Modules 3-1

3-2. Octal and Decimal Address Ranges for Interleaved Main Storage Modules 3-3

3-3. Main Storage Fixed Address Assignments 3-S

3-4. MSR Values vs. Module Pair Identification for Noninterleaved Main Storage 3-9

3-5. MSR Values vs. Module Pair Identification for Interleaved Main Storage 3-9

3-'6. Con tro I Regi ster Address A ssi gnm en ts 3-10

Rev. 1 PROCESSOR AND STORAGE I Conten ts
SECTION:

II

4-1. Sign Bit Combinations Which Set Overflow Designator 4-7

4-2. Sign Bit Combinations Which Set Carry Designator 4-8

4-3. Single-Precision Floating-Point Characteristic Values vs. Exponent Values 4-14

4-4. Doubl e-P reci sion F loati ng-Poin t Characteri sti c Va lues vs. Expon en t Valu es 4-14

4-5. Instructions Producing Results In Single-Precision Floating-Point Format 4-36

5-1. UseofiField 5-9

6-1. Truth Table for Logical OR, XOR, and AND 6-71

6-2. Interprocessor Interrupt Relationships 6-88

7 -l. I/O Channel, Control and Data Lines 7-2

8-1. I/O Request and Interrupt Priority Table 8-12

8-2. Main Storage or Control Register Parity Error Fault Interrupt
Locations and Priorities 8-13

8-3. UNIVAC llOS Interrupt Versus P Register Contents Captured 8-21

9-l. The Range of Block Numbers for Noninterleaved and Interleaved Main Storage 9-8

E-l. Instruction Repertoire E-1

E-2. Mnemon i c/Fun ction Code C ro ss- Referen ce E-11

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE I SECTION: 1

1. INTRODUCTION

1.1. GENERAL

This manual provides information on the UNIVAC 1108 Central Processor Unit (CPU),
the Multi-Module Access Unit, and the Storage Unit (main storage) of the UNIVAC
1108 Multi-Processor System.

1.2. UNIVA C 1108 MULTI-PROCESSOR SYSTEM

The UNIVAC 1108 Multi-Processor System is the logical successor to the UNIVA C
1107 Thin-Film Memory Computer. It has higher speeds, larger capacities, increased
versatility, and smaller physical size than the UNIVAC 1107 System.

Two prime objectives of a multiprocessor system are:

• Increased system performance

• Increased sys tern availa bility

The UNIVAC 1108 Multi-Processor System achieves increased performance by using
mul{iple processing units, multiple input/output units, and multiple access paths to
cri tical peripheral devices.

Increased availability is achieved by providing multiple access paths to all system
components, and by permitting the removal of any system component for offline testing
and maintenance while the online units continue to operate.

A UNIVAC 1108 Multi-Processor System includes from one to three Central Processor
Units (CPU) and one or two Input/Output Controllers (IOC). In those systems having
more than one CPU, the CPU's may operate simultaneously and independently of each
other, but they are coordinated by a single Executive program. A system consisting of
only one CPU and no IOC is referred to as a Unit Processor System.

Figure 1-1 is a simplified diagram of a UNIVAC 1108 Multi-Processor System.
Primary units are four Storage Units, three CPU's, two IOC's, and the Availability
Control Unit (ACU). Some of the other possible system configurations are presented
and discussed in Section 3.

1.3. SYSTEM COMPONENTS

The components of a UNIVAC 1108 Multi-Processor System are as follows:

• Processor Group

• Multiprocessor Capability

• Stora ge Group

Type No. 3011-95

Feature No. 1053-99

Type No. 7005-72 (131K)
7005-71 (196K)
7005-70 (262K)

• Multi-Module Access Unit (MMA) Type No. 0954-99

• I/O Controller (IOC) Type No. 5013 -00

• Availability Control Unit (ACU) Type No. 2506-00

• Shared Peripheral Interface (SPI) Type No. 0955-04

• Peripheral Subsystems

1
PAGE:

UJ:-'-4U!)j

Rev. 1

()

()

()

()

UNIVAC 11U8

PROCESSOR AND STORAGE

dU"

FASTRAND
MASS STORAGE

UNITS

UNISERVO VI C
TAPE UNITS

~f*"
131,070

EJEN
I

065,536

1:1:71

I
065,537

i'U'
r----T-----,
1 198,606 , 196,607 I

I tit I
I EVEN i ODD i
I I I I i
L..:~~~~-L..:~~:.:'_.J
L... ____ -;MMA _____ J

1
SECTION:

:1.'1"-

~l___ _ ____ ,
I CENTRAL I
: PROCESSOR I
i (CPU) :

; 110 CHANNELS i
r---- ----~~~~~~~~=!

COMMUNICATIONS LINES

~
UNISCOPE 300 VISUAL

CCMMUN ICA TlONS TERMINAL

LEGEND·

Figure 1-1. UNIVAC 17 08 Multi-Processor System

c::::::::J: = MINIMUM
I MULTIPROCESSOR

CONFIGURATION
(EXCEPT FOR 1.'0
SUBSYSTEMS AND SPI,)

[~~~]I = g~~~~~~~IES FOR

MULTIPROCESSOR

-- .MAIN DATA AND
CONTROL PATHS

2
PAGE:

Rev. 1
UNIVAC 1108

PROCESSOR AND STORAGE
1 3

SECTION: PAGE:

UP-40U3

--~------------~------------~-------.------

1.3.1. Processor Group

The Processor Group consists of the following (each in a separate cabinet):

• Central Processor Unit (CPU)

• Power and Maintenance Cabinet

• Display Console

The CPU incorpora tes a 11 features needed for operation in a multiprocessor environ­
ment. Each of the CPU's has full access to all of main storage through the Multi­
Module Access Units (MMA's). Through its input/output (I/O) section, each CPU
has full access to all I/O subsystems in the system.

The Display Console enables the operator to control and communicate with the
operating system. Each CPU communicates' with its console through I/O channel
15. Output from the CPU to the o'perator takes the form of messages displayed on a
cathode-ray tube (CRT) display, and hardware status information is displayed on
the operator's control panel. Operator to CPU communication and control is provided
by the console keyboard, and the positioning of various conditioning and directing
switches. A hard copy of the messages appearing on th~ CRT display is provided
by a UNIVAC PAGEWRITER printer.

Each Display Console is equipped with a day clock which displays the time of day
in hours, minutes, and hundredths of a minute. Storage of the day clock reading at
a fixed location in main s tora ge can be enabled or disa bled, either manually or under
program control. When enabled, the reading is updated 100 times per minute, and
interrupts to the CPU are generated at six second intervals.

1.3.2. Storage Group

The Storage Group may consist of from one to four cabinets, each of which houses
a Storage Unit and power supply. A Storage Unit provides 65,536 words of main storage
(36-bit words). The main storage cycle time is 750 nanoseconds.

By using hardware implemented interleaving for addressing, main storage is utilized
more efficiently.

1.3.3. Multi-Module Access Unit (MMA)

The MMA is the interface between a Storage Unit and the CPU's and IOC's in a
UNIVAC 1108 Multi-Processor System. Each MMA is housed in a separate cabinet.
A MMA includes two logically independent sections, each associa ted with one module
(32K) of a Storage Unit. Each section is used by the CPU's and IOC's to request and
receive access to the corresponding module of a Storage Unit. When a conflict occurs
between two or more access requests, the MMA services the requests on a priority
basis.

UP-40S3

Rev.'l
UNIVAC 1108

PROCESSOR AND STORAGE
SECTION:

1
PAGE:

1.3.4. Input/Output Controller (IOC)

The IOC is functionally similar to the I/O section of the CPU. The IOC may have
up to 16 I/O channels and may be controlled by any of the CPU's in the system. A
CPU sends commands to the IOC; this action initiates I/O data transfers under control
of the 10C. The data transfers between the subsystems and main storage take place
independently of the CPU. When the IOC completes an I/O operation, it signals I/O
termination to the CPU. All command and data transfers between the CPU and 10C
utilize the CPU's I/O channel interface. The 10C further enhances the system
performance by providing chained-buffer (scatter-read/gather-write) operation, and
by permitting a more efficient Externally Specified Index (ESI) mode of operation.

One or two IOC's may be included in a UNIVAC 1108 Multi-Processor System. For
additional information on the 10C see UNIVAC 1108 Multi-Processor System Input/
Output Controller Programm er/O perator Reference Manual, U P-7514 (current vers ion).

1.3.5. Availability Control Unit (ACU)

The ACU provides complete configuration control of the UNIVAC 1108 Multi-Processor
system. It interfaces with the CPU's, 10C's, Storage Units, and MMA's for up to 24
peripheral subsystems. The ACU provides the means for:

• dividing the overall system into independent systems;

• disabling the CPU's or 10C's whenever a power fault occurs;

• taking a unit offline for maintenance without interfering with the operation of
the remainder of the system;

• initiating an automatic recovery sequence in the event of system failure; and

• indicating to the CPU which units are online and available.

1.3.6. Shared Peripheral Interface (SPI)

The SPI enables several processors to control a sin gle· peripheral s ubsys tern. It is
an electronic switching device through which two, three, or four processors (CPU's
or 10C's) in any combination can share a peripheral s ubsys tern. Certain peripheral
subsystems provide an interface which is functionally equivalent to aSP!.

Additional information on the SPI (formerly called Multiple Processor Adapter) can
be found in UNIVAC 1108 Multi-Processor System Multiple Processor Adapter
Programmer/Operator Reference Manual, U P-7562 (current version).

1.3.7. Peripheral Subsystems

Various peripheral subsystems can be used with the UNIVAC 1108 Multi-Processor
System. These subsystems include high speed printers, card readers and punches,
magnetic tapes, magnetic drums, communication subsystems. In the UNIVAC 1108
Multi-Processor System, the subsystems can be accessed by all the CPU's by
utilizing an IOC and/or SPI (or equivalent). A subsystem may also be directly
connected to an I/O channel of a CPU. In this case, the subsystem is available
only to that CPU.

4

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 2 1
SECTION: PAGE:

U.P-
40U3

--~------------~-------------~------.-----

2. PROCESSOR UNIT

2.1. GENERAL

The Central Processor Unit (CPU) is a solid-state, integrated-circuit, data process­
ing unit which features a powerful and comprehensive instruction repertoire, address­
able control registers, high speed arithmetic operations, and a versatile input/output
(I/O) section.

2.2. CONTROL SECTION

The control section of the CPU interprets instructions and directs all CPU operation~
except certain I/O operations. It is discussed briefly below and in more detail in
Section 5.

2.2.1. Control Section Operation

The program instruction words are sequentially loaded into the control section. Each
instruction word is interpreted by the control section which generates the signals
necessary to perform the instruction. The ins truction words are loea ted in main
storage and the data words (operands) are located either in main storage or in the
addressable control registers which are part of the CPU's control section. The con­
trol section includes a Program Address Counter (P register), which addresses main
storage to obtain the instruction words.

The instruction word is divided into fields. These fields specify to the control section
the function to be performed, which portion of the operand is to be used, a control
register, indexing, index register modification, indirect addressing, and an operand
address.

2.2.2. Instruction Repertoire

The instruction repertoire is all the instructions that the control section of the CPU
is capable of interpreting and executing. It includes fixed-point and floating-point
arithmetic, logical functions, data transfers, block transfers, comparisons, tests,
I/O control, and special purpose instructions. There are over 140 basic instructions
in the repertoire. Provision has been made for partial word data transfers and for
repetiti ve operations. Indexing capa bility is provided with all ins tructions. Indirect
addressing capability is also provided and is usable to any level with full indexing
capa bility at each level.

Instructions such as data transfers, single-precision fixed-point adds, certain logical
functions, require only 750 nanoseconds for complete execution. Indexing does not
add to the execution time of an instruction.

2.2.3. Control Registers

The 128 addressable control registers of the control section are integrated-circuit
registers. These control registers are addressed either explicitly or implicitly by
the instructions. They fall into five ca tegories: index registers, arithmetic registers,
special registers, I/O access control registers, and unassigned registers.

The control registers are discussed in detail in 3.3 and Section 5.

UP-40S3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 2 PAGE:

2.3. ARITHMETIC SECTION

All arithmetic computation is performed using the nonaddressable registers of the
arithmetic section. These arithmetic processes can be performed in either fixed-point
or floating-point mode. Fixed-point arithmetic instructions provide for single-precIsion,
double-precision, half-word, and third-word addition and subtraction, and for fraction
and integer multiplication and division. Floating-point instructions provide for both
single-precision and double-precision operation. The arithmetic section also performs
certain logical operations such as shifting and comparisons. The instruction word
may be used to specify the transfer of any chosen portion of a word (half, third,
quarter, or sixth) to or from the arithmetic section. The ability to transfer only the
selected portion of a word minimizes the num ber of masking and shifting operations
required.

A shift matrix in the arithmetic section permits the completion of an entire single
word shift operation in one main storage cycle time. By use of the matrix, the shift
operation can shift a single or double word operand in either direction up to 72 bit
positions. Partial word transfers utilize automatic shifting operations in the shift
matrix.

Details on the operation of the arithmetic section of the CPU are found in Section 4.

2.4. INPUT/OUTPUT SECTION

The I/O section, while physically located in the CPU cabinet, is a functional entity.
I/O activity is initiated when the interpretation of certain instructions by the control
section causes signals to be sent to the I/O section. Once the I/O opera tion is
initiated, the I/O section and the subsystem control the input and output transfers.
The I/O section complements the control and arithmetic sections' orientation toward
high speed concurrent program processing and real time operation. The I/O section
operates with a w ide variety of peripheral devices, and it requires minimal attention
from the control section.

Once an I/O operation is initiated by the program, I/O activity is independent of
program control and it is controlled by an I/O Access Control Word stored in a control
register. The I/O data flows between the main storage and the peripheral subsystem
through an I/O channel. Each I/O channel consists of 36 input data lines, 36 output
data lines, and various control signa1"lines. All data word bits are transmitted in
parallel to or from the subsystem, but data can flow in only one direction over a channel
at any given instant.

The I/O section of a basic CPU includes eight I/O channels. An I/O Channel Expansion
Feature (F0680) may be added to the CPU to increase the number of I/O channels from
eight to 12. If 16 I/O channels are required, a second I/O Channel Expansion Feature
must be added. The total number of I/O channels available to a CPU is expanded by
the inclusion of one or two 10C's in the system.

Details on the input/output section of the CPU are presented in Section 7.

2 '

UNIVAC 1108

PROCESSOR AND STORAGE 3 1
SECTION: PAGE:

UP-4053

Rev. 1
------~----------.--~--------------------~--------------------~---------------

3. STORAGE

3.1. GENERAL

The Storage Units of the UNIVAC 1108 Multi-Processor System provide the main
stora ge for instruction and data words. The 128 addressable control registers in the
control section of each Central Processor Unit (CPU) provide fast access storage
for data and control words.

3.2. MAIN STORAGE

A main storage word consists of 36 information bits and 2 parity bits. The two parity
bits provide independent hardware parity checking of the leftmost 18 data bits and
the rightmost 18 data bits of the main storage word, respectively. The word may be
an instruction word, a data word, or an access control word.

A Storage Unit can store 65,536 words. Functionally, each Storage Unit is divided into
two modules, with each module providing 32,768 words of main storage. Each module
includes independent accessing circuitry which permits simultaneous accessing of
multiple modules.

3.2.1. Addressing Main Storage

Main storage addressing may be either interleaved or noninterleaved. The choice
is made by implementing a modification in the CPU.

3.2.1.1. Noninterleaved Addressing of Main Storage

Noninterleaved addressing is provided only for a UNIVAC 1108 Unit Processor
System (defined as a UNIVAC 1108 System which consists of one CPU and no
IOC's) which has 65,536 or 131,072 words of main storage. In noninterleaved
addressing, the main storage modules and the locations within each module are
addressed sequentially. A Storage Unit cabinet containing two 32K modules is
the minimum complement of main storage available. The maximum complement of
131K words of noninterleaved main storage is obtained by the addition of another
cabinet containing 65K words of main storage. Table 3-1 shows the range of
addresses for the locations in each main storage module.

LOGICAL ADDRESS RANGES
MO[)ULE
NUMBER OCTAL DECIMAL

0 000000-·077777 0-32,767

1 100000-177777 32,768-65,535

2 200000-277777 65,536-98,303

3 300000-377777 98,304-131,071

Table 3-7. Octal and Decimal Address Ranges for Noninterleaved Main Storage Modules

u r -'tV;)":>

Rev. 1

UI'UVA\.. IIUO

3 PROCESSOR AND STORAGE SECTION:

A CPU can retrieve or store the operand of the current instruction, while simul­
taneously obtaining the next instruction from main storage (overlapping). If the
operand for the current instruction and the next instruction word are in different
modules, the CPU simultaneously requests main storage access for both the
operand and the next instruction word (alternate module operation). If the operand
for the current instruction and the next instruction word are in the same module
of main storage, simultaneous access is not possible, and the CPU requests main
storage access (read or write) for the operand first. After the operand has been
transferred, the CPU requests main storage access to retrieve the next instruction
word.

PAGE: "

Figure 3-1 is a block diagram of a CPU with the maximum complement of noninter­
lea ved main storage. Since the desired efficiency of alterna te module opera tion is
obtained only when the instruction words and operands (data words) are not in the
same main storage module, Main Storage Modules #0 and #1 in Figure 3-1 provide
the minimum storage requirement for alternate module operation. Modules #2 and
#3 provide expansion for the noninterleaved addressed main storage.

3.2.1.2. Interleaved Addressing of Main Storage

The interleaved addressing method permits a more efficient use of main storage
in the multiprocessor environment. Interleaved addressing is always used with
a multiprocessor system and also with a unit processor system" which has 196,608
or 262,144 words of main storage. When interleaved addressing is used, each
processor (CPU or IOC) can address up to 262,144 main storage words.

When interleaved addressing is used, sequentially addressed main storage words
within a 65K Storage Unit are located alternately in the two modules, even number
addresses being in one 32K module and odd number addresses in the other.

MAIN
STORAGE
MODULE

itO

032,767

+
I
I
I
I
I

000,000

I

MAIN
STORAGE
MODULE

ttl

065,535

~
I
I
I
I
I

032,768

I
I

MAIN
STORAGE
MODULE

tf2

MAIN
STORAGE
MODULE

#3
'----1--

098,303 131, 071 I I I I
I + I

I
+ I

I I I
I I I I

1 I I I

I I I I
I 1

j

I I

I 065,536 I 098,
L_T_-.i--

I

I
1

I
I
I

304 I
I

UNIVAC 1108
CENTRAL PROCESSOR

I/O CONTROL

r-------------
CHANNEL 0 15

Figure 3 -1. Central Processor Unit with Maximum Noninterleaved Main Storage

2

PAGE:

At least two Storage Units (131,072 words) are necessary for interleaved addressing.
Three or four Storage Units may be used, thereby expanding the capacity to 196K or
262K words. Table 3-2 shows the range of addresses for each module pair. Figure
3-2 shows a CPU with the maximum complement of interleaved addressed main
storage.

LOGICAL ADDRESS RANGES
MODULE

PAIR
NUMBER OCTAL DECIMAL

0 000000-177777 0-65,535

1 200000-377777 65,536-131,071

2 400000-577777 131,072-196,607

3 600000-777777 196,608-262,143

Table 3-2. Octal and Decimal Address Ranges for Interleaved Main Storage Modules

Figure 3-3 shows a CPU and IOC of a UNIVAC 1108 Multi-Processor System with
the maximum complement of interleaved main storage. The IOC requests access to
main storage independently of the CPU. The IOC always provides for interleaved
addressing of main storage.

Figure 1-1 shows a UNIVAC 1108 Multi-Processor System consisting of the maximum
complement of interleaved addressed main storage with two IOC's and three CPU's.
Each IOC and CPU has a ccess to each main s tora ge module by way of the MMA 's.

The advantage of interleaved addressing is that it permits simultaneous access
by two processors (CPU or IOC) to any odd address and any even address in a
main storage module pair. The simultaneity of main storage accessing provides
service under ideal conditions to a pair of access-requesting units at a rate which
meets their needs without a perceptible decrease in overall operating speed for
either unit.

3.2.2. Multi-Module Access Unit (MMA)

The MMA is the interface between the two mairi storage modules of a 65K Storage
Unit and a combination of IOC's and CPU's. The MMA includes switching and
priority networks that provide access to each of two main storage modules for as
many as two IOC's and three CPU's (IOC #0, IOC #1, CPU #0, CPU #1, and CPU #2).

The addition of the MMA Expansion Feature (F0879) expands the interface for that
MMA to accommodate an additional CPU and IOC.

The MMA has two sections, one for each 32K main storage module of a Storage Unit.
When an MMA receives an access request from an IOC or CPU for a main storage
module which is not active, it initiates a cycle for that module. The MMA resolves
conflicts caused by receipt of one or more additional access requests for that module
within approximately 15 nanoseconds of the initial request.

When the MMA initiates a main storage cycle, the priority circuits associated with
that module are activated to handle any access requests pending for that module at
the time the cycle, is initiated or any access requests received for that module during
the current cycle.

Rev. 1

MAIN STORAGE
MODULE PAIR itO

065,534 065,535
..,...

I
I I I I
I I

EVEN ODD
I I
I I
I I

000,000 000,001

PROCESSOR AND STORAGE

MAIN STORAGE MAIN STORAGE
MODULE PAIR 1t1 MODULE PAIR 1t2

131,070

~
I
I
I

EVEN
I
I
I

065,536

CHANNELO

131,071 196,606

+ +
I I
I I
I I

ODD EVEN

I I
I I
I I

065,537 131,072

UNIVAC 1108

CENTRAL PROCESSOR

I/O CONTROL

15

Figure 3-2. CPU with Maximum Interleaved Main Storage

196,607
..,...
I
I
I

ODD

I
I
I

131,073

I SECTION. 3 PAGE: 4

MA1N STORAGE
MODULE PAIR /1.3

262,142 262,143
..,... +
I I
I I
I I

EVEN ODD

I I
I I
I I

196,608 196,609

Up,,·40S3

Rev. 1 3 5 ~
UNIVAC 1108

PROCESSOR AND STORAGE __ ~ ____________ ~S~E~C~T~IO~N~: ______ ~P~A~GE~! ____ _

MAIN STORAGE
MODULE PAIR #0

065,534 065.535

l 1
EVEN ODD

I
000,000 000,001

MAIN STORAGE
MODULE PAIR #1

131,070 131,071

T T
EVEN ODD

I I
065,536 065,537

MMA

1 1 -

UNIVAC 1108

CENTRAL PROCESSOR

MAIN STORAGE
MODULE PAIR #2

1---- --- --
: 196

T
'606 i 196

T
'607 !

I I I
I EVEN I ODD :

I I : I I I I I
I 131,072 I 131,073 I

L

1
- -r-- r- __ I

MAIN STORAGE
MODULE PAIR fl3

CHANNEL 0 15

1108 ilO CHANNEL

CHANNEL 0

I
INPUT jOUTPUT

CONTROLLER

15

Figure 3-3. CPU, IOC, and Main Storage with MMA's for UNIVAC 7108 Mu/ti·Processor System

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 3 PAGE:

If only one access request is pending when a cycle in a particular module is com­
pleted, the pending access request is serviced next. If access requests from two or
more processors (CPU's or IOC's) are pending for a module just prior to completing
a cycle in that module, the MMA's priority network determines which processor is
serviced next, as follows:

• IOC's always have higher priority than CPU's.

• IOC #0 has higher priority than IOC #1.

• CPU #0 has higher priority than CPU #1 which in turn has higher priority than
CPU #2.

Summarizing, the basic priority sequence for access to a main storage module is:
IOC #0, IOC #1, CPU #0, CPU #1, and CPU #2 (highest to lowest priority).

Devia tions from this basic priority scheme are as follows:

• If both IOC's are repetitively requesting access to a main storage module, priority
alternates from IOC #0 to IOC #1 to IOC #0, etc; IOC #0 cannot monopolize the
use of a main storage module to the exclusion of IOC #1. This occurs because the
MMA priority circuits determine which IOC is to be granted access during the
current main storage access cycle, that is, before the IOC currently being serviced
can present another access request. If the two IOC's repetitively request access to the
same module, however, access to that module by any of the CPU's is delayed until
there is a break in the series of IOC access requests.

• If one or more Cpu.'s request access to a main storage module while that module
is servicing an IOC, and the other IOC is not requesting access, the highest
priority CPU (considering lockout discussed below) will gain access next. The
MMA priority circuits determine which processor will be serviced next before the
completion of the current servicing cycle, that is, before the active IOC can present
another access request for that module.

It is not possible for a CPU to monopolize the use of a main storage module to the
exclusion of a lower priority CPU. The priority network modifies the basic priority
scheme to prevent this by setting and clearing lockouts, as follows:

• Set Lockout for CPU #0: During each cycle servicing an access request from CPU
#0, a lockout is set to inhibit initiation of a subsequent cycle for CPU #0 in the
main storage module if either CPU #1 or CPU #2 has a pending access request for
that module.

• Clear Lockout for CPU #0: If the lockout is set for CPU #0, it is cleared during
any subsequent cycle in the module when CPU #1 is serviced provided there is no
pending access request for that module from CPU #2. It is also cleared during any
subsequent cycle in the module servicing CPU #2.

• Set Lockout for CPU #1: During each cycle servicing an access request from
CPU #1, a lockout is set to inhibit initiation of a s ubsequen t cycle for CPU # 1
in the module if and only if CPU #2 has a pending access request for that module.

• Clear Lockout for CPU ttl: If the lockout is set for CPU #1, it is cleared during
any subsequent cycle when that m)~clule is used to service CPU #2.

6

UNIVAC 1108 'UP~4053~
Rev. 1 SECTION: PAGE:

----------- --------.--~--------------~~--~------~-----------
PROCESSOR AND STORAGE 3

3.2.3. Main Storage Special Address Assignments

There are two special categories of main storage addresses. These are main storage
addresses 08 through 1778 , and a set of main storage addresses with fixed assignments.

3.2.3.1. Hidden Storage

The control registers are assigned the same addresses as main storage locations
08 through 1778' If data is written into or read from a location whose operand
address is less than 2008' the data is transferred to or from that addressed location
in the control registers rather than to or from a location in main storage except
as noted in the following paragraph. Thus, locations 08 through 1778 in main
storage are somewhat protected and are referred to as hidden storage.

Information is read from locations in hidden storage rather than from the control
,registers in the following instances:

• The address is that of an instruction defined by the contents of the Program
Address Counter (P register).

• The address is that of a word to be referenced as part of an indirect addressing
sequence.

• The address is that of an instruction word referenced by an Execute instruction.

Information can be read from or written into hidden storage through data transfers
performed by an I/O operation. (An I/O operation never transfers data to or from
the control registers.)

3.2.3.2. Fixed Address Assignments

The interrupt subroutine entrances and status words are assigned fixed locations
in main storage as shown in Table 3-3. The values for bits 15, 16, and 17 of the
addresses listed in Table 3-3 are represented by a X, Y, or Z in the address.

The value X is the contents of the Memory Select Register (MSR), which may be
manually loaded by depressing the desired combination of the three MSR switches
on the maintenance panel. It can also be loaded under program control by performing
the Select Interrupt Location instruction. In a system with noninterleaved addressing
and the maximum complement of 131,072 words of main storage, the only values
permitted in the MSR are 0, 1, 2, or 3 (see Table 3-4). In a system with interleaved
addressing and the maximum complement of 262,144 words of main storage, the only
values permitted in the MSR are 0, 2, 4, or 6 (see Table 3-5). When an initial load
operation is performed, the value in the MSR identifies the main storage module or
module pair in which the incoming data is to be stored. During an ESI-1/0 operation
using the CPU's I/O section, the value in the MSR identifies the main storage
module or module pair from which the ESI access control words are obtained.

The value Y is determined from the contents of the Last Address Register (LAR)
ORed with the settings of the leftmost three Last Address switches on the CPU's
maintenance panel as explained in 8.3.1.3. The value A is 3 or 7 depending on the
setting of the rightmost Last Address switch on the CPU's maintenance panel.

Rev. 1

UI'II ,. '" I Iva

PROCESSOR AND STORAGE

ASSIGNMENT

CPU itO External Interrupt Status Word
CPU !tl External Interrupt Status Word
CPU 1t2 External Interrupt Status Word
Unassigned

Unassigned
Unassigned
Unassigned
Unassigned

Power Loss Interrupt
ESI Access Control Word Parity Error Interrupt
lSI Access Control Word Parity Error Interrupt
I/O Da ta Parity Error Interrupt

Unassigned
Unassigned
Day Clock Input
Day Clock Interrupt

lSI Input Monitor Interrupt
lSI Output Monitor Interrupt
lSI Function Monitor Interrupt
lSI External In terrupt

ESI Input Monitor Interrupt
ESI Output Monitor Interrupt
Unassigned
ESI External Interrupt

External Interrupt Status Word for CPU Type 3011-99
Real Time Clock Interrupt
Interprocessor Interrupt itO
Interprocessor Interrupt 1t1

Unassigned

SECTION: 3

Main Storage Parity Error Interrupt, Mem 2 }
Main Storage Parity Error Interrupt, Mem 3
Main Storage Parity Error Interrupt, Mem 4

(see Tables 3-4 and 3-5)

Control Register Parity Error Interrupt
Illegal Instruction Fault Interrupt
Executive Return Interrupt
Guard Mode/Storage Limits Protection Fault Interrupt

Test and Set Interrupt
Floating-Point Characteristic Underflow Fault Interrupt
Floating-Point Characteristic Overflow Fault Interrupt
Divide Fault Interrupt

Unassigned
Unassigned
Unassigned
Unassigned

Unassigned
Unassigned
Unassigned
Unassigned

10C External Interrupt Status Word Locations

Main Storage Parity Error Interrupt, Mem 1 (see Tables 3-4 and 3-5)

Table 3-3. Main Storage Fixed Address Assignments

PAGE: 8

UP·-4053
Rev. 1 3 ~ UNIVAC 1108

PROCESSOR AND STORAGE SECTION: PAGE: - --------'-------'-~~-

The value Z is supplied by the contents of the Interrupt Bias Register in the
IOC. See UNIVAC 1108 Multi-Processor System Input/Output Controller Programmer/
Operator Reference Manual, UP-7S14 (current version).

MSR LOGICAL ADDRESS PHYSICAL
VALUE MODULE 1t RANGES (OCTAL) MODULE 1t

0 0 0-077777 MEM 1

1 1 100000-177777 MEM 2

2 2 200000-277777 MEM 3

3 3 300000-377777 MEM 4

Table 3-4. MSR Values vs. Module Pair Identification for Noninter/eaved Main Storage

MSR LOGICAL ADDRESS PHYSICAL
VALUE MODULE PAIR 1t RANGES (OCTAL) MODULE PAIR 1t

0 0 0-177777 MEM 1

2 1 200000-377777 MEM 3

4 2 400000-577777 MEM 2

6 3 600000-777777 MEM 4

Table 3-5. MSR Values vs. Module Poi,. Identification for Interleaved Main Storage

3.2.4. Main Storage Protection

Main storage protection is provided to prevent an operating program from writing into,
reading from, or jumping into an unrelated portion of main storage. Main storage pro­
tection can be established in either of two modes. One mode affords write, read, and
jump protection; the other affords protection only when writing.

Main storage protection is controlled through a combination of the Storage Limits
Register (SLR) and the guard mode or write only storage protection designators of
the Processor State Register (PSR). The address ranges of the protected portions
of main storage are specified by storing in the SLR the upper and lower absolute
address limits of the two portions of main storage in which the instructions and
data for the currently operating program are located. Granularity of the designated
areas is 512 words. The two portions can be completely overlapping, partially over­
lapping, or distinctly separate. The mode of storage protection and whether or not
it is enforced depends on the condition of the guard mode and the write only storage
protection designators (D2 and D3) stored in the PSR.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION:
3

3.3. CONTROL REGISTERS

The control section of the CPU includes 128 addressable control registers. Each
control register stores a word consisting of 36 information bits and 2 parity bits.
The two parity bits provide independent hardware parity checking of the leftmost
18 information bits and the rightmost 18 information bits of the word in the control
register. The control registers are addressable by the ja, a, and x fields of the
instruction word and by the value U developed in the index subsection of the CPU's
control section. The details of control register addressing are explained in Section
5. Table 3-6 summarizes the control register address assignments.

3.3,.1. Control Register Selection Designator

The 128 addressable control registers include one set of registers for use by the
user program and another set for use by the Executive program. The control register
selection designator (06) in the PSR defines which set of registers is addressed
by the a and x designators of an instruction word. When 06 = 0, the user program
set of control registers is addressed; when 06 = 1, the Executive program set of
control registers is addressed. The contents of 06 has no effect on the choice of
a control re gis ter for any particular ja com bination or value of U.

NO. OF REGISTERS ADDRESS (OCTAL) ASSIGNMENT

1 000 PSR Temporary Storage Register

15 001-017 User X Registers

16 014-033 User A Registers

4 034-037 User Unassigned Registers

16 040-057 Input Access Control Word Registers

16 060-077 Output Access Control Word Registers

1 100 RO - Real Time Clock

1 101 User R1 - Repeat Count Register

1 102 User R2 - Mask Register

13 103-117 User Unassigned R registers

1 120 Executive R Register

1 121 Executive R1 - Repeat Count Register

1 122 Executive R2 - Mask Register

13 123-137 Executive R Registers

1 140 Executive Nonindexing X Register

15 141-157 Executive X Registers

16 154-173 Executive A Registers

4 174-177 Executive Unassigned Registers

Table 3-6. Control Register Address Assignments

PAGE: 10

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION: 3 PAGE: 11

UP-40S3 L
._------ --~---------------------~-----------------~--------------------

3.3.2:. Control Register Address Assignments

Operand addr~ss 08 through 1778 are assigned to the control registers. The following
paragraphs define the various uses and related address assignments for the control
regis ters.

3.3.2.1. Temporary Storage for Processor State Register (PSR) at Interrupt - Address 0008

When an interrupt occurs, the contents of the PSR are automatically stored in
this control regis ter. Obviously, this regis ter mus t not be used to s tore program
information because such information would be destroyed whenever an interrupt
occurs.

3.3.2.2. User Index (X) Registers - Addresses 0018-0178

The X registers normally contain the modifiers used in indexing operations. The
index register stores an 18-bit modifier (Xm in bits 17-0), and an 18-bit increment
(Xi in bits 35-18).

3.3.2.3. User Accumulator (A) Registers - Addresses 0148-0338

The A registers store arithmetic operands and results. The actual computation or
logical function is performed in the arithmetic section and the results are stored
in the A register or registers specified by the instruction. Four of the A registers
(addresses 0148 -0178) overlap registers assigned as X registers. This affords
additional versatility in the use of A registers and X registers.

3.3.2.4. User Unassigned Registers - Addresses 0348-0378

Two of these unassigned registers (0348 and 0358) serve as an extension of the
set of user A registers when D6 = 0 and an instruction which requires more than
one user A register is being performed. All four of these unassigned registers can
serve as general purpose re gis ters.

3.3.2.5. Input/Output Access Control Registers - Addresses 0408-0778

The contents of the I/O Access Control Registers are used to control the word­
by-word data transmissions over the CPU I/O channels. Two of these registers
are assigned to .each of the 16 CPU I/O channels as follows:

• The registers at addresses 0408 through 0578 are Input Access Control Registers
for I/O channels 0 through 15 .

• The registers at addresses 0608 through 0778 are Output Access Control Regis­
ters for I/O channels 0 through 15.

For Internally Specified Index (lSI) I/O operations, the contents of the Input
Access Control Registers are used to control the addressing of main storage
locations when input data w·ords are received from the subsystems (through the
CPU's I/O section). The contents of the Output Access Control Registers are
used to control the addressing of main storage locations from which output data
words and function words are sent to the subsystems through the CPU's I/O
section (see 7.2).

Up-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 3

For Externally Specified Index (ESI) I/O operations, the Input Access Control
Register for each I/O channel operating in the ESI mode is used to identify the
address of the most recently used Input Access Control Word and the most recently
used Output Access Control Word for that I/O channel. The contents of the Output
Access Control Word for each I/O channel operating in the ESI mode are used to
address a function word in main storage which is to be sent to the subsystem con­
nected to the CPU through the I/O channel (see 7.3).

3.3.2.6. Real Time Clock (RO) Register - Address 1008

The contents of the lower half (bits 17-0) of the Real Time Clock (RTC) register
are decremented by one every 200 microseconds, independently of program control
or supervision. The CPU time utilized for each decrementation cycle is 0.375
microseconds. A real time clock interrupt occurs if the RTC value in the lower
half of the RTC register is zero when a decrementation cycle is initiated. It is
recommended that the programmer avoid using the upper half (bits 35-18) of the
RTC register as a data storage area. Whenever the contents of the RTC register
are read out, the contents of the upper half of the regis ter should be ignored.

3.3.2.7. User Repeat Count (R1) Register - Address 1018

The contents of the lower half (bits 17 -0) of the Repeat Count Regis ter (RCR)
are called the repea t count. When a repea tins truction is performed, the repea t
count is decremented by one for each pass through the instruction. If an interrupt
occurs during the iterations, the repeat sequence is suspended to process the
interrupt. The current repeat count is available in Rl. The repeat sequence is
normally resumed a fter the interrupt has been processed.

If the repeat count is +0 when a repeated instruction is first initiated, the instruc­
tion is not performed, and the next instruction is initiated. When the repeat count
is decremented to +0 during a pass through a repeated instruction, the pass is
completed, but another iteration is not initiated. If a pass through a repeated
instruction leads to termination of the iterations before the repeat count has been
decremented to +0, the repeat count after decrementa tion for tha t pass is available
in the RCR. It is recommended that the programmer avoid the use of the upper half
(bits 35-18) of the RCR for storing data, and the contents of the upper half should
be ignored whenever the regis ter is read.

3.3.2.8. User Mask (R2) Register - Address 1028

The bits in the Mask Register specify the bits of the operand to be operated upon
in certain instructions. A logical AND is performed with the operand and the mask
or its complement. The selected portions of the operands are then used when the
instruction is executed.

3.3.2.9. User R Registers - Addresses 1038-1178

These re gis ters are unassigned and serve as general. purpose registers. When
D6 (PSR) = 0, each of these registers can be implicitly addressed by one of the
values 38 through 178 in the a field of a Load R or Store R instruction.

PAGE: 1:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION: 3 PAGE: 13

UP-4053 L
-------,------ ---~----------------~---------,-------

3.3.2.10. Executive R Register - Address 1208

This register is unassigned and serves as a general purpose register. When
D6 (PSR) = 1, this regis tel' is implicitly addressed when the a field of a Load R
or Store R instruction equals zero.

3.3.2.11. Executive l~epeat Count (R1) Register - Address 1218

This register has the same function and format as the User R1 - Repeat Count
Register (see 3.3.2.7).

3.3.2.12. Executive Mask (R2) Register - Address 1228

This register performs the same function as the User R2 - Mask Register (see
3.3.2.8).

3.3.2.13. Executive R Registers - Addresses 1238-1378

These registers are unassigned and serve as general purpose registers. When
D6 (PSR) = 1, each of these registers can be implicitly addressed by one of the
values 38 through 178 in the a field of a Load R or Store R instruction.

3.3.2.14. Executive N onindexing X Regis tel' - Address 1408

This register is assigned as an X register. It provides an indexing capability
only if a = 0 and x f- 0 in a Block Transfer instruction when 06 = 1. It does not
provide an indexing capability when addressed by the x field of an instruction
word. It may also be used as a general purpose register.

3.3.2.15. Executive Index (X) Registers - Addresses 1418 -1578

These registers perform the same function as the user Index Registers (see
3.3.2.2).

3.3.2.16. Executive Accumulator (A) Registers - Addresses 1548-1738

These registers perform the same function as the user A registers (see 3.3.2.3).

3.3.2.17. Executive Unassigned Registers - Addresses 1748--1778

These registers are used in the same manner as the unassigned registers at
addresses 034-0378 (see 3.3.2.4).

3.3.3. Control Register Protection

When operating in the guard mode (02 of the PSR = 1 and 06 = 0; see 8.3.2.2)ya guard
mode fault interrupt occurs when an attempt is made to store data into anyone of
the Input Access Control Word Registers (addresses 0408-0578)' Output Access
Control Word Registers (addresses 0608-0778)' Real Time Clock Register (address
1008), or any of the Executive re gis tel'S (addresses 1208-1778)'

UP 40153 L UNIVAC 1108 I
R:V.:____ __ _______ P_R_O_C __ E._S_S_O_R __ A_N_D __ S_T_O_R __ A_G_E __________ ~ ____________ ~_SE_C_T_IO_N_: ___ 4 __ ~ __ P_AG_E_: __ , ___ 1 ___

4. CPU ARITHMETIC
SECTION

4.1. GENERAL OPERATION

During the execution of most instructions, either one or two operands are transferred
from addressable locations to nonaddressa ble regis ters in the arithmetic section of
the 1108 Central Processor Unit (CPU). When the specified operation is completed,
the resultant word or words are stored in addressable storage locations. This section
describes the operation of the arithmetic section during the execution of Add, Add
Negative (subtract), Multiply and Divide instructions.

4.2. MAIN ADDER

The main adder, in the arithmetic section, is used to perform the Add, Add Negative,
Multiply, and Divide instructions. It operates with either 36-bit or 72-bit operands.
It performs ones complement subtractive binary arithmetic in the parallel mode. Its
processes are always basically subtractive. For example:

• Subtract (add negative) operations are performed in a straightforward manner using
the minuend and subtrahend as main adder inputs.

• Add operations are performed by treating the augend as the main adder minuend.
input an.d the ones complement of the addend as the main adder subtrahend input.

While the hardware is basically subtractive, the results of an add or subtract operation
can be determined by the following rules:

• Addition - add the augend to the addend.

• Subtraction - form the ones complement of the subtrahend and add it to the minuend.

• Exception - if a number is added to itself, the result is all zeros (operation is
equivalent to subtracting the number from itself).

These rules represent in reality ones complement additive arithmetic as is illustrated
in the following examples.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

Example 1 (Addition):

Augend
Addend
Sum

Example 2 (Addition):

010 000
000 111
010.111

Augend 111 110
Addend 111 110
End-around carry r 111 100

- • 1
Sum 111 101

Example 3 (Subtraction):

Minuend
Subtrahend

101 011 Minuend
110 011 Complement subtrahend and add

Difference

Example 4 (Subtraction):

Minuend
Subtrahend

111 110 Minuend
111 001 Complement subtrahend and add

End-around carry

Difference

Example 5 (Addition):

Augend
Addend
Sum

111 000
. 000 111

000 000

SECTION:

101 011
001 100
110 111

111 110
000 110

[000 1~~

000 101

4

In Example 5, the expected result is a sum consisting of all 1 bits; however, this
example points out the exception in which the result produced by a ones complement
subtractive adder differs from that produced by ones complement additive arithmetic.
This exception to the rules can be stated as follows: if a number is added to its
complement, the resultant number is all 0 bits.

The ones complement subtractive process performed in the main adder must be con­
sidered in two phases for complete understanding. In addition, the minuend input is
th~ augend, and ones complement of the addend is the subtrahend .input. In the first
phase, an exclusiye OR of the minuend and subtrahend is performed and borrows are
generated. For each bit, the first phase result is as follows:

• The res ult is a 0 bit if the main adder inpu ts for that bit are identical.

• The result is a 1 bit if the main adder inputs for that bit are not identical.

• A borrow is generated if the minuend input is a 0 bit and the subtrahend input is
a 1 bit. This is indica ted by the b below certain bits in the examples that follow.

PAGE: 2

Rev. 1 .

UNIVAC 1108

PROCESSOR AND STORAGE SECTION:
4 3

PAGE:

UP-4053 L
------ ,-------- --~~------------~------------~------,------

The second phase of the process consists of handling the borrows generated during
the first phase. When a borrow is generated, each bit to the left of that bit position
is complemented in sequence until a 1 bit is changed to a 0 bit, which halts the action
of that borrow. If the leftmost bit of the first phase result is a 0 bit and it is comple­
mented as a result of sequential borrow action, the borrow propagates around the end
and continues at the rightmost bit position. If a borrow is generated for the leftmost
bit position of the first phase result, the action of that borrow starts at the rightmost
bit position.

No special treatment is given to the leftmost bit by the main adder in obtaining the
first result. The only special treatment given to the leftmost bit in obtaining the
second phase result is the end-around borrow action.

Example 1 (Addition):

Augend
Addend

010 000
000 111

Example 2 (Addition):

Augend
Addend

111 110
111 110

Example 3 (Subtraction):

Minuend
Subtrahend

Augend becomes minuend
Complemented addend becomes subtrahend
First phase: minuend EIffiI subtrahend
Borrows
Second phase results

Augend becomes minuend
Complemented addend becomes subtrahend
First phase: minuend £IillJ subtrahend
Borrows
Second phase results

First phase: minuend XOR subtrahend
Borrows

101 011
110 011
011 000

b
Second phase result

Example 4 (Subtraction):

Minuend
Subtrahend

110 111

First phase: minuend £IillJ subtrahend
Borrow

111 110
111 001
000 111

b
Second phase result

Example 5 (Addition):

Augend
Addend

111 000
000 111

000 101

Augend becomes minuend
Complemented addend becomes subtrahend
First phase minuend EIffi1 subtrahend
No borrows
Second phase result

010 000
111 000
101 000
b b
010 111

111 110
000 001
111 111

b
111 101

111 000
111 000
000 000

000 000

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 4
SECTION:

Example 5 illustrates how the all-zero result is obtained when a number is added
to its complement in the ones complement subtractive process. In all other instances,
the results produced by the ones complement subtractive process are identical to
those produced by the ones complement additive process.

4.2.1. Signed Numbers

While the main adder does not recognize the leftmost bit as being the sign bit, it
is always considered to be the .sign associated with an operand when that operand

PAGE:

is used to represent a number. A 0 bit in this position is considered to be a + (plus)
sign indicating a positive number; a 1 bit is considered to be a - (minus) sign
indicating a negative number. A 36-bit word consisting of the bits 00 0101
represents the signed number +5 10 , The ones complement of this word is 11 1010
and it represents the signed number -510 , The most significant bit of the signed number
is defined as the first bit to the right of the sign bit which differs from the sign bit.
All bits to the left of the most significant bit are sign bits. In the examples of the
signed numbers (+5 and -5), the most significant bit (MSB) is as follows:

00 0101

• MSB

11 11010

• MSB

The main adder produces the expected natural signed result when the program con­
siders the operands to be signed numbers except for those cases in which the signed
result cannot be adequately expressed in the number of bit positions provided. These
are the cases in which an unnatural sign bit appears in the result. If the program
maintains full cognizance of the true implied sign, however, such cases are no
serious handicap. For example, if the augend for an Add instruction is the largest
possible positive s ingle-precis ion signed num ber and the addend is the num her + 1,
th,e resultant sum would be.as follows:

Augend

Addend

Sum

011 111 111 111 111 111 111 111 111 111 111 111

000 000 000 000 000 000 000 000 000 000 000 001

100 000 000 000 000 000 000 000 000 000 000 000

In this example, the sum has an unnatural sign because a significant data bit has
overflowed into the sign position. The programmer may detect this condition by
testing the overflow designator. This designator is set whenever overflow occurs;
however, the result as it stands can be considered the numerical sum if the programmer
recognizes that the leftmost bit is part of the numerical value and if he is maintaining
the sign of his result separately from the numerical part.

4.2.2. Zero as a Signed Number

A signed number which consists of all 0 bits represents the number +0. The ones
complement of this word is a word of all 1 bits and it represents the signed number
-0.

Zero operands follow the main adder addition rules given in 4.2. The results obtained
when opera ting with two zero operands a re as follows:

4

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION:

4 PAGE:

UP-40S3 L
,-------- --~------------~-------------~------

(+0) + (+0) :: +0

(+0)- (-0) ::+0

(+0) + (-0) :: +0

(+0) - (+0) :: +0

4.3. FIXED-POINT ARITHMETIC

(-0) + (+0) = +0

(-0) - (-0) :: +0

(-0) + (-0) :: -0

(-0) - (+0) :: -0

The arithmetic section provides the needed hardware to perform add, add negative
(subtract), multiply, and divide opera tions. A 11 of these opera tions utilize the main
adder. The basic operation performed by the main adder is always subtraction. The
detailed explanation of the various operations presented below frequently state that
"the contents of one register are added to the contents of another register". The
operation is presented in terms of addition for better understanding of the logic flow.
The actual operation performed by the main adder is the subtraction of the ones
complement of the contents of one register from the contents of another register.

4.3.1. Sin gle··Precis ion Fixed-Point Addition and Subtraction

The st.eps performed in the arithmetic section for single-precision Add and Add
Negative instructions are as follows:

(1) The 36-bit augend/minuend is transferred from a control register to the
augend/minuend register in the arithmetic section.

(2) The addend/subtrahend is transferred fr-~rTImain storage, a control register,
or the index subsection to the addend/ su btrahend re gis ter in the arithmetic
section.

• If the addend/subtrahend is a partial word, it is extended to become a full
36-bit word as specified by the j field of the instruction. (See 5.2.2.1.)

• If the instruction is Add Magnitude or Add Negative Magnitude To A and
the leftmost bit of the full word addend/subtrahend is a 1 bit, the contents
of the addend/subtrahend register are complemented.

(3) The contents of the addend/subtrahend register are added to or subtracted from
the contents of the augend/minuend register. The two phases of operation of
the main adder proceed as explained in 4.2 with the following exceptions:

• If the instruction is Add Halves or Add Negative Halves, a borrow generated
for or through bit 17 is propagated to bit 0 rather than to bit 18. A borrow
generated for or through bit 35 is propagated to bit 18 rather than to bit O.

• If the instruction is Add Thirds or Add Negative Thirqs, a borrow generated
for or through bits 11, 23, or 35 propagate's to bits 0, 12, or 24 rather than to
bits 12, 24, or O.

(4) The 36-bit main adder output is stored in a control register.

. 5

UP.4053

Rev. 1

UNIVAC 1108

PROCESSQR AND STORAGE 4
SECTION:

4.3.2. Double-Precision Fixed-Point Addition and Subtraction

The steps performed in the arithmetic section for the double-precision Add and
Add Negative instructions are as follows:

(1) The 72-bit augend/minuend is transferred from two consecutive control
registers to the 72-bit augend/minuend register of the arithmetic section.

(2) The full 72-bit addend/subtrahend is transferred from two main storage
locations to the 72-bit addend/subtrahend register of the arithmetic section.

(3) The contents of the addend/subtrahend register are added to or subtracted
from the contents of the augend/minuend register. The two phases of operation
of the main adder proceed as explained in 4.2.

(4) The 72-bit main adder output is stored in two consecutive control registers.

4.3.3. Fixed-Point Overflow and Carry

In fixed-point arithmetic, the execution of certain instructions can result in an
overflow or a carry condition. The overflow and carry conditions set bits D1 and DO
in the Processor State Register (PSR). These bits can be sensed by the action of
certain other ins tructions.

Overflow designator D1 and carry designator DO in the PSR are both affected by the
execution of any of the instructions listed below. During the execution of these
instructions, D1 and DO are both set to zero. If an overflow condition occurs, D1
is set to 1; if a carry condition occurs, DO is set to 1. Each of these designators
remains set until the next time one of the instructions lis ted below is executed or
until modified by execution of a Load Processor State Register instruction. The
following instructions affect the carry and overflow designators:

• Add To A

• Add Negative To A

• Add Magnitude To A

• Add Negative Magnitude To A

• Add Upper

• Add Negative Upper

• Add To X

• Add Negative To X

• Double-Precision Fixed-Point Add

• Double-Precision Fixed-Point Add Negative

6
PAGE:

UP-40~~3
Rev. 1 ________ • ______________________________________ ~ ______________ L_S_EC~T_IO_N_I ______ ~_P_A_G_E_I __

UNIVAC 1108

PROCESSOR AND STORAGE 4

4.3.3.1. Overflow

An overflow condition occurs when the sum or difference produced by executing
any of the instructions listed in 4.3.3 represents a number that is greater than
the largest signed number that can be correctly represented in the given word
length. This is- of significance when the operands for an additive process are
of the same sign or when the operands for a subtractive process have different
signs. If overflow occurs in these cases, the sign of the result is unnatural. The
condition of the overflow designator (01 of PSR) can be tested by executing
either the Jump Overflow or the Jump No Overflow instruction. Table 4-1 lists
the sign bit combinations which would set 01 to a 1 bit indicating that an overflow
has occurred.

OPERATION INPUT OPERAND SIGN RESUL TANT SIGN

AUGEND ADDEND

+ + -
Addition

- - +

MINUEND SUBTRAHEND

Subtraction + - -

(Add Negative) - + +

Table 4-7. Sign Bit Combinations Which Set Overflow Designator

4.3:.3.2. Carry

The carry designator (DO of PSR) is set to 1 when an end-around carry occurs
during the execution of an instruction listed in 4.3.3. The detection of a carry
condition indicates that a carry was propa ga ted out of the si gn bit position and
automa tically added into the low-order bit position. The detection of the ca rry
condition is significant when programming multiple-precision routines. In ones
complement subtractive arithmetic, the carry condition can be equated to the no
borrow condition, and the no carry condition to the borrow condition.

The condition of the carry designator can be tested by executing either the
Jump Carry or Jump No Carry instructions. Table 4-2 lists the sign combinations
for which the carry designator would be set to 1 indicating that a carry has occurred.

7

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 4
SECTION:

OPERATION INPUT OPERAND SIGN RESUL TANT SIGN

AUGEND ADDEND

+ - +

Add ition
- + +

- - +

- - -

MINUEND SUBTRAHEND

+ + +

Subtraction - - +
(Add Negative)

- + +

- + -

Table 4-2. Sign Bit Combinations Which Set Carry Designator

4.3.4. Fixed-Point Multiplication

The process of multiplying two single-precision fixed-point numbers consists of
transferring the numbers to the arithmetic section, forming a 72-bit product by a
series of main adder cycles and shifts, and transferring part or all of the product
to either one or two control registers.

The various steps performed for the three fixed-point multiplication instructions
are as follows:

(1) The two operands are transferred from storage to the arithmetic section:

• The multiplicand is transferred from a control register to a 36-bit multiplicand
regis ter.

• The multiplier is transferred from main storage, a control register, or the
index subsection (j = 168 or 178) to a 36-bit multiplier re gis ter. If the multi­
plier is only a partial word, it is extended to a full 36-bit word as specified
by the j field of the instruction.

(2) The leftmost bit of the multiplicand register and of the multiplier register are
examined:

• If these bits are not identical, an indicator is set to indicate that the final
product should be nega ti ve.

• If either operand is negative, it is complemented before the multiplication
operation begins.

(3) A 72-bit accumulator register is cleared to +0.

8
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE PAGE:, SEC TION:
4 9

UP-4053 L
-------._-------- --------.--------------------------------------~------------~--------------~-------------

(4) The multiplication algorithm compares two bits of the multiplier during each of
the 18 cycles of the instruction. The appropriate multiple of the multiplicand
is added to the upper half of the accumula tor for each of the four possible
combinations of multiplier bits CO, 1, 2, or 3). When the multiplier bits
are 00 or 01, either zero or the multiplicand is added to the accumulator, and
the result is right-shifted two bit positions. When the multiplier bits are 10, the
partial product is right-shifted one bit position before the multiplicand is added
in, and the resultant sur.n is then right-shifted one bit position. This process
adds two times the multiplicand to the partial product. When the multiplier bits
are 11, the multiplicand is subtracted from the partial product, and the resultant
difference is right-shifted two bit positions. A one is then added to the next
two multiplier bits. If this bit pair is 11, adding one changes it to 00, and
subsequent bit pairs must be modified. This procedures adds 4 minus 1 to
the partial product without requiring more than one full addition during each
cycle. If the subtraction of the multiplicand from the partial product produces
a negative result, the hardware automatically makes the necessary adjustments
to shift bits from the negative upper half of the accumulator to its positive
lower half.

(5) After the 18 cycles are completed, the final product is adjusted for correct sign.

(6) The final steps are dependent on which of the fixed-point multiply instructions
is being performed:

• If the instruction is Multiply Integer, the contents of the accumulator are
stored in two consecutive control registers.

• If the instruction is Multiply Single Integer, the 36 rightmost bits of the
accumulator are stored in a control register. The 36 leftmost bits are lost.

• If the instruction is Multiply Fractional, the contents of the accumulator
are shifted one bit position left circular and then stored in two consecutive
con trol re gis ters.

The one bit position left circular shift of the contents of the accumulator register
performed just prior to storing the product produced for the Multiply Fractional
instruction is the only difference between the multiply integer and multiply
fractional processes.

For both multiply integer instructions: if each input operand has an implied binary
point to the immediate right of its rightmost bit, then an implied binary point is
located to the immediate right of the rightmost bit of the result.

For the Multiply Fractional instruction: if each input operand has an implied binary
poin t between bits 35 and 34, then an implied binary point is loca ted between bits
35 and 34 of the most significant word of the resultant product.

When it is desired to scale the operands as mixed numbers with the implied binary
point located somewhere between or beyond the ends of the register, each number
must be considered to be either a fraction or an integer multiplied by the appropriate
power of two. The scaling associated with the resultant product can be determined
fro,m the algebraic laws of exponents, that is,

Rev. 1 PROCESSOR AND STORAGE

For example, consider the following two 6-bit operands:

3.510 = 011.100

2.2510 = 010.010

4
SECTION:

When multiplying these mixed numbers, they can be considered to be equivalent to
the integers 011100 and 010010, where each integer has associated with it a factor
of 2-3 , that is,

011.100 = (011100)2-3

010.010 = (010010)2-3

In integer arithmetic, the product of 011100 and 010010 would be 000111111000.

The scaled product of (011100)2-3 and (010010)2-3 is:

(000111111000)2-6 = 000111.111000 = 7.87510

The two6-bit operands could also be scaled as fractions:

3.510 = 011.100 = (0.11100)22

2.2510 = 010.010 = (0.10010)22

In fractional arithmetic the product of 0.11100 and 0.10010 would be 0.01111110000.

The scaled product of (0.11100)22 and (0.10010)22 is:

(0.01111110000)2 4 = 00111.1110000 = 7.87510

4.3.5. Fixed-Point Division

PAGE:

The process of dividing one fixed-point number by another consists of loading the
numbers into the arithmetic section, performing a series of trial subtractions to form
a quotient and a remainder, transferring the properly signed quotient to a control
register, and (for two of the three fixed-point divide instructions) transferring the
properly signed remainder to the next higher addressed control register. The various
steps performed in the arithmetic section for a fixed-point divide instruction are
effectively as follows:

(1) The operands are transferred from storage to the arithmetic section:

• If the instruction is Divide Integer or Divide Fractional, the dividend is
transferred from two consecutive control registers, and it fills the entire
72-bit dividend/remainder register.

• If the instruction is Divide Single Fractional, the dividend is transferred
from a control register to the leftmost 36 bits of the 72-bit dividend/remainder
register and the rightmost 36 bits of the dividend/remainder register are
filled with bits identical to the sign bit of the dividend.

• The divisor is transferred from main storage, a control register, or the index
subsection (j = 168 or 178) to a 36-bit divisor register. If the divisor is a
partial word, it is extended to a full word as specified by the j field of the
ins truction.

UP-4053 UNIVAC 1108 I I
Rev.~I ____ ~ __ . ________ P __ R_O_C_E_S_S_O_R __ A_N __ D_S_T_O __ R_A_G_E ____________ ~ __________ ~s_E_C_T_,O_N_: __ 4 ____ ~_p_A_G_E_: ___ l_l ___

(2) The leftmost bit of the 72-bit dividend/remainder register and that of the 36-bit
divisor regis ter are examined:

• If these bits are not identical, a negative quotient results.

• If the leftmost bit of the dividend/remainder register is a 1, a negative
remainder results.

• When an operand is negative, the ones complement of the operand is placed
in the register.

(3) The needed operating registers are prepared for subsequent operations and a
trial subtraction and test are performed:

• A 36-bit quotient register is cleared to +0.

• If the instruction is Divide Integer, the 72-bit dividend/remainder register
is left-shifted one bit position with the leftmost bit being discarded and a
o bit inserted in the righ tmos t bit. No shiftin g occurs if the ins truction is
Divide Fractional or Divide Single Fractional.

• The contents of the divisor register are subtracted from the contents of the
leftmost 36 bits of the dividend/remainder register. The difference is
examined and then discarded.

If the leftmost bit of the difference is a 1 bit and the leftmost bit of the
dividend/remainder register is a 0 bit, step 4 is initiated.

If the leftmost bit of the difference' is a 0 bit, or if the leftmost bit of the
dividend/remainder register is a 1 bit, a divide fault (see 4.3.6) is reported
and the remaining steps are aborted. This occurs if the divisor register
contains all 0 bits (the initial contents of the divisor register were +0 or
-0) or if more than 36 bits are required to rep res ent the numeric value of
the quotient with its sign bit.

(4) A series of 3S shift opera tions, each followed by a trial su btra ction, is used
to form a positive quotient, as follows:

• For each shift operation, the contents of the 72-bit di vidend/ remainder register
is left-shifted one bit position with the leftmost bit discarded and a 0 bit in­
serted in the rightmost bit position. The contents of the 36-bit quotient register
are shifted in the same manner.

• Following each shift operation, a trial subtraction of the contents of the
divisor register from the leftmost 36 bits of the 72-bit dividend/remainder
register is performed.

• If the trial subt~action produces a negative result, the difference is discarded,
and the contents of the quotient register remain unchanged.

• If the trial subtraction produces a positive result, the difference replaces
the value in the leftmost 36 bits of the dividend/remainder register, and a
1 bit is stored in the rightmost bit of the quotient register.

Rev. 1

v y~,", IIVO

4
PROCESSOR AND STORAGE SECTION: PAGE:

(5) Following completion of the series of 35 shifts/trial subtractions, the quotien t
register contains the absolute value of the quotient, and bits 71 through 36 of
the dividend/remainder register contain the absolute value of the remainder. The
properly signed quotient and remainder'are formed as follows:

• If the leftmost bits of the input operands are identical, the quotient register
contains the properly signed positive quotient.

• If the leftmost bits of the input operands are not identical, the contents of
the quotient register are complemented to form a negative quotient.

• If the leftmost bit of the input dividend was a 0 bit, bits 71 through 36 of
the dividend/remainder register contain the properly signed positive remainder.

• If the leftmost bit of the input dividend was a 1 bit, the contents of the
dividend/remainder register are complemented to form the properly signed
nega ti ve remainder in bits 71 throu gh 36.

(6) The final step in the arithmetic section depends on which fixed-point divide
instruction is being performed:

• If the instruction is Divide Integer or Divide Fractional, the properly signed
quotien t and remainder are stored in tw 0 consecu ti ve control registers.

• If the instruction is Divide Single Fractional, the properly signed quotient
is stored in a control register. The remainder is not stored.

The one bit left shift of the dividend/remainder register performed for the Divide
In teger ins truction in step 3 is the only difference between the divide integer and
divide fractional processes.

For the Divide Integer instruction, if each input operand has an implied binary
point to the immediate right of its rightmost bit, then an implied binary point is
located to the immediate right of the rightmost bit of the quotient and the remainder.

For both divide fractional instructions, if each input operand has an implied binary
point to the immediate right of its rightmost bit, then an implied binary point is
located between bits 35 and 34 of the quotient. For a Divide Fractional instruction,
the implied binary point is located to the left of the 34 th bit of the 35-bit implied
sign extension of the remainder.

Just as in multiplication, if the operands are to be scaled as mixed numbers, each
number must be considered to be either a fraction or an integer multiplied by the
appropriate power of two. The scaling associated with the resulting quotient can
be determined from the algebraic laws of exponents, that is, x·2 n/y·2 m = (x/y)2 n- m.

4.3.6. Divide Fault

A divide fault condition is detected during the execution of a fixed-point divide
instruction when an internal test determines that more than 36 bits are required to
represent the properly signed quotient. A divide fault condition is also detected
when any value is to be divided by +0 or -0 (fixed point) or by any floating-point
num ber having a signed mantissa of +0 or -0. When a divide fault condition is
detected, a divide fau lt interrupt occurs (see 8.3.2.5).

12

UP-411!:>j

Rev. 1 1 _______ , __ ~_~_~_y_~_~_s_'~_~_R __ A_N_D __ S_T_O_R __ A_G_E __________ ~ __ ----------~ ____________ L_ ________ _ ~ I SECTION: 4 PAGE: 13

4.4. FLOATING-POINT ARITHMETIC

Floating-point arithmetic was designed to handle the scaling problems which arise
in computations involving numbers which vary widely in range. In floating-point
arithmetic, the numbers are represented in a special format so that the computer can
au toma tically handle the scaling. The £loa tin g-poin t representa tion of anum ber con­
sists of two parts. One part expresses the magnitude of the number; the other represents
the size of the number within the range set off by the first part. This representation
is very similar to scientific notation.

In scientific notation, the speed of light can be expressed as 1.863 x 105 miles per
second. There are two parts to this expression: the power of ten which expresses the
order of magnitude, and a number between one and ten which represents the size of the
given quantity within the power of ten. The number of digits in this part of the expres­
sion indicates the accuracy of the measurement. The correspondin~ fixed-point repre­
sentation for this number is 186300. It is also true that 1. 863 x 10 :: 0.1863 x 106 ::
18.63 x 104 ; however, by convention, in scientific notation, the number is represented
as a number between one and ten multiplied by the appropriate power of ten.

In floating-point notation, a number {s represented as a binary fraction multiplied by
the appropriate power of two. By convention, the binary point is generally placed so
that the binary fraction represented is greater than or equal to 1/2 but less than 1.

4.4.1. Floating-Point Formats

Floating-point numbers in the UNIVAC 1108 system are represented in single­
precision forma t as a 27 -bit fractional quantity multiplied by the appropriate power
of two, or in the double-precision format as a 60-bit fractional quantity multiplied
by the appropriate power of two. The power of two is called the exponent. In machine
representation, the exponents are biased to make them lie in the range of positive
numbers or zero. These biased exponents are called characteristics. The fractional
part is referred to as the mantissa.

Since the exponent base is always 2, it is not included in the actual machine
representation of the floating-point number. The two parts represented are the
biased exponent (characteristic) and the fractional part of the number (mantissa).

The single-precision format for a floating-point number is shown in Figure 4-1.
The double-precision format for a floating-point number is shown in Figure 4-2.

r~HARACTERISTIC I
l~ 2726

MANTISSA

Figure 4-7. Single-Precision Floating-Point Format

rr CHARACTERISTIC

~k
MANTISSA 36~

I3S MA._NT_ISS_A _________________ ----IJ
Figure 4-2. Double-Precision Floating-Point Format

Rev. 1 PROCESSOR AND STORAGE 4
SECTION:

• S = Sign

The sign bit expresses the sign of the numerical quantity represented by the
floa ting-point number.

(1) If S = 0, the numerical quan tity is positive (+).

(2) If S = 1, the numerical quantity is negative (-).

• Characteris tic

PAGE:

The characteristic represents both the numerical value and the sign of the exponent.

(1) Single-Precision Characteristic

The 8-bit characteristic of a single-precision floating-point num ber represen ts
an exponent value in the range +127 through -128. The characteristic is
formed by adding a bias of +128 (2008) to the exponent. Table 4-3
shows the range of characteristic values and corresponding exponent
values.

DECIMAL VALUES OCTAL VALUES

CHARACTERISTIC UNBIASED CHARACTERISTIC UNBIASED
EXPONENT EXPONENT

255 +127 377 +177

128 000 200 000

000 -128 000 -200

Table 4-3. Single-Precision Floating-Point Characteristic Values vs.
Exponent Values

(2) Double-Precision Characteristic

The II-bit characteris tic of a double-precision floa ting-poin t num ber represents
an exponent value in the range +1023 through -1024. The characteristic is
formed by adding a bias of +1024 (20008) to the exponent. Table
4-4 shows the range of characteristic values and the corresponding
exponent values.

DECIMAL VALUES OCTAL VALUES

CHARACTERISTIC UNBIASED CHARACTERISTIC UNBIASED
EXPONENT EXPONENT

2047 +1023 3777 +1777

1024 0000 2000 0000

0000 -1024 0000 -2000

Table 4-4. Double-Precision Floating-Point Characteristic Values vs.
Exponent Values

14

SECTION: PAGE: 15
UP-'tU::l') L
Rev. 1 I 4 ------ ---.----------------------------------

• Mantissa

The mantissa portion of a floa ting-point number represents the fractional part
of the number. In the UNIVAC 1108, the fractional part is normalized so that the
absolute values represented are greater than or equal to 1/2 but less than-I.
Zero cannot be represented in this range and it is considered to be normalized
as it stands. The binary point of a floating-point number is assumed to lie between
the last bit of the characteristic and the first bit of the mantissa. The mantisslil
of a single-precision floating-point number contains 27 bits; for a double-precision
floating-point number, the mantissa contains 60 bits. For any number that has
more significant bits than can be contained in the mantissa, the excess bits are
truncated.

4.4.1.1. Positive Single-Precision Floating-Point Numbers

A single-precision floating-point number can be derived from a positive decimal
num ber as follows:

Example 1:

Given number = +1210

1210 = +11002 = .11002 x 102+1002

• Sign = + = 0

• Characteristic = exponent + bias

• Mantissa

= 1002 + 10 000 0002

= 10 000 1002 = 2048

= .11002

= .110 000 0002 = .600 000 0008

The binary point to the left of the mantissa is not shown (it is implied) in the
single-precision floating-point representa tion of the num ber +12 10 , which is:
010 000 100 110 000 0002 or 2046000000008.

Example 2:

Given number = +0.187510

0. 187510 = 0.00112 = .11 x 102 -102

• Sign = + = 0

• Characteristic = exponent + bias

• Mantissa

= - 10 + 10 000 0002

= 01 111 1102 = 1768

= .112

= .110 000 0002 = .600 000 0008

The single-precision £loa ting-point number for +0.187510 is:

001 111 110 110 000 0002 , or

1766000000008

UNIVA\.. IIUO

PROCESSOR AND STORAGE 4
SEC T ION:

4..4.1.2. Positive Double-Precision Floating-Point Numbers

A double-precision floating-point number can be derived from a given number as
follows:

Example 1:

Given number = +1210

1210= 11002 = .11002 x 102 +1002

• Sign = + = 0

• Characteristic = unbiased exponent + bias

= 1002 + 10 000 000 0002

= 10 000 000 1002 = 20048

• Mantissa = .11002

=: .110 000 0002 = .600 0008

The double-precision floating-point number for +1210 is:

010 000 000 100 110 000 0002 , or 20046000 0008

Example 2:

Given number = +0.187510

0.1875 = 0.0011 2 = .11 2 x 102 -102

• Sign = + = 0

• Characteristic = unbiased exponent + bias

= 102 + 10 000 000 0002

= 01 111 111 1102 = 17768

• Mantissa = .11 2

= .110 000 0002 = .600 0008

The double-precision floating-point n urn ber for +0,187510 is:

001 111 111 110 110 000 0002, or 1776600 0008

4.4.1.3. Negative Floating-Point Numbers

A floating-point number can be derived to represent a given negative number as
follows:

• Represent the given number as a positive floating-point number

• Form the ones complement of the entire positive floating-point number

16
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION: 4 PAGE: 17

UP-4053 ~

------- ---~--------------~------~----~-----...,------

Example 1:

Given number = -1210

The single-precision floating-point num ber for +12 10 is 204 600 000 000
8

,

The single-precision floating-point number for -1210 is 573 177 777 7778 ,

Example 2:

Given number = -0.187510

The double·-precision floating-point number for +0.1875 10 is 1776 600 0
8

,

The double-precision floating-point number for -0.187510 is 6001 177 78 .

4.4.1.4. Residue

When.a single-precision floating-point add or add negative operation is performed,
the result consists of two sin gle-precision floating-point numbers; one of the numbers
represents the algebraic sum and the other number is the residue.

When the two 36-bit input operands for an Add or Add Negative instruction are trans­
ferred to the arithmetic section, their characteristics are examined, and the mantissa
of the input operand with the smaller characteristic is right-shifted a number of bit
positions equal to the difference between th e characteristics; the bits shlited ou t of
the 36-bit arithmetic register are saved in an auxiliary register. The portion of the
mantissa saved in the auxiliary register is used to form the residue and it is not
included in the algebraic addition. After completion of the addition and any shifting
necessary to normalize the sum, the sum and the residue are packed into single­
precision floating- point format and transferred to two co'nsecutive control registers.

4.4.2. N ormalized/U nnormalized Floating-Point Numbers

A floating-point number is normalized when the leftmost bit of the mantissa is not
identical to the sign bit or when all bits of the mantissa are identical to the sign bit.
A floating-point number is unnormalized when all bits of the mantissa are not sign
bits and the leftmost bit of the mantissa is identical to the sign bit.

All floating-point operations produce a normalized. result when the input operands are
normalized.

The sums produced by Floating Add and Floating Add Negative instructions and the
result. produced by the Load And Convert To Floating instruction are always normal­
ized regardless of whether or not the input operands are normalized. When either or
both input operands are not normalized, the result obtained may be less accurate
than if normalized input operands had been used.

Normalized input operands must be used for the Floating Multiply, Floating Divide,
Compress And Load, and Expand And Load instructions. If normalized input operands
are not used for these instructions, the results are undefined.

UI~I TI"'\'- I IVU

PROCESSOR AND STORAGE 4
SECTION: PAGE:

4.4.3. Floating-Point Characteristic Overflow/Underflow

Floating-point characteristic overflow/underflow occurs when the characteristic does
not lie in the range representable in the number of bits allowed for the' characteristic.

When any of the floating- point Add, Add Negative, Multiply, Divide, or Load And
Convert instructions or the Compress And Load instruction are performed, overflow
or underflow may occur.

4.4.3.1. Floating-Point Characteristic Overflow

Single-precision floating-point characteristic overflow occurs when the 8-bit charac­
teristic of the resultant most significant single-precision floating-point word represents
a number greater than 3778 and the associated mantissa is not zero.

Double-precision floating-point characteristic overflow occurs when the II-bit
characteristic of the resultant double-precision floating-point number represents a
number greater than 37778 and the associated mantissa is not zero.

When overflow is detected, an interrupt occurs which causes the CPU to execute the
instruction in floating-point characteristic overflow fault interrupt location
MSR+002468 , rather than the next instruction in sequence. The initial contents of

the A registers referenced by the instruction remain unchanged and the results of
the floating-point operation are not stored.

4.4.3.2. Floating-Point Characteristic Underflow

Single-precision floating-point characteristic underflow occurs when the 8-bit charac­
teristic of the resultant most Significant single-precision floating-point word repre­
sents a negative number and the associated mantissa is not zero. This means that
the exponent of the result is less than -2008 , If the characteristic of the residue

(Floating Add, Floating Add Negative), remainder (Floating Divide), or the least
significan t sin gle-precision word of the product (Floa ting Multiply) represents a
negative number, this fact by itself does not result in underflow. Instead, the res'idue,
remainder, or least significant word of the product is cleared to ,all 0 bits or set to
all 1 bits (to reflect the appropriate sign).

When single-precision floating-point characteristic underflow occurs, an interrupt
causes execution of the instruction in floating-point characteristic underflow fault
interrupt location MSR+0024s8 rather than the next instruction in sequence. The

initial contents of the A registers referenced by the instruction remain unchanged

and the results of the floating-point operation are not stored.

Double-precision floating-point characteristic underflow occurs when the II-bit
characteristic of the result represents a negative number and the mantissa is not
zero. This means that the exponent of the result is less than -20008 ,

When double-precision floating- point characteristic underflow is detected, the
action performed by the CPU depends on the contents of the double-precision
underflow designator (Ds) of PSR.

18

Rev. 1 PROCESSOR AND STORAGE 4 19
5 EC TION: PAGE:

ur~'tuo.:> -.-l
------------- --------.--~------------~--------------~-----------

• If DS = 0 and underflow occurs, an interrupt causes execution of the instruction
located in the floating-point characteristic underflow fault interrupt location

MSR+0024S8 . The initial contents of the A registers referenced by the instruction

remain unchanged and the results of the floating-point operation are not stored .

• If DS = 1 and underflow occurs, the interrupt does not occur. The result of the
floating:-point operation is stored as +0.

4.4.4. Mechanics of Floating-Point Arithmetic

The main adder is used in arithmetic processes involving the mantissas of floating­
point numbers. For arithmetic processes involving the characteristics of floating­
point num bers, a 9-bit characteris tic adder is used for single-prec ision floating-point
operations and a 12-bit characteristic adder ·for double-precision floating-point opera­
tions.

4.4.4.1. Floating-Point Addition

The process of adding two floating-point numbers consists of loading the numbers
"" into the arithmetic section, using the characteristic adder to determine the difference

between the characteristics of the two numbers, shifting the mantissa of the number
having the smaller characteristic, adding the mantissas in the main adder, combining
the results in floating-point format, and transferring the resulting floating-point
numbers to control registers.

The input operands for floating-point addition need not be normalized numbers. For
single-precision addition, the sum (most significant word produced) is always a
normalized number. The residue word mayor may not be a normalized number. For
double-precision addition, the sum is always a normalized number.

4.4.4 .1.1. Single-Precision Floating-Point Addition

The steps performed for single-precision floating- point addition are as follows:

(1) The operands (A) and (U) are transferred from storage to the arithmetic section.

(2) The operands are unpacked and the characteristic difference is determined. In
the unpacking procedure, the 8-bit characteristics are separated from the man­
tissas and transferred to special characteristic registers. If an operand is
negative, bits 34 through 27 are complemented during this transfer. One
characteristic is subtracted from the other and the resultant difference is
called the characteristic difference.

The sign of the characteristic difference indicates which of the two operands
has the smaller characteristic, and its magnitude indicates how many bit
positions the operand with the smaller characteristic should be shifted to
the right in order to align it with the other operand. The larger characteristic
is retained as the characteristic to be associated with the sum.

NOTE: The operands referred to in the discussion that
follows are the unpacked operands in which sign
bits replace the characteristic portion of the word.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 4
SECTION:

(3) The operand having the smaller characteristic is transferred to the upper half
of a 72-bit nonaddressable arithmetic accumulator and right-shifted to align
it for addition.

• If the operand is positive, the lower half of the accumulator is cleared to
+0; if the operand is negative, the lower half is set to -0.

PAGE:

• The accumulator is right- shifted, end off with sign fill on the left, a number
of places eq:ual to the magnitude of the characteristic difference. If this
difference is greater than 63, the accumulator is shifted only 63 places.

• If the characteristic difference is zero, the two operands have equal charac­
teristics. The operand in the A register is transferred to the upper half of
the accumulator and no shifting takes place.

NOTE: In the discussions that follow, the bit positions
of the nonaddressable 72-bit arithmetic accumu­
lator are considered to be numbered as indicated
in Figure 4-3.

UPPER HALF

\ LOWER HALF I

~ ____ ~o

Figure 4-3. Nonaddressable 72-8it Arithmetic Accumulator

(4) The operand having the larger characteristic is added to the upper half of the
accumulator and the resultant sum replaces the previous contents of the upper
half of the accumulator. Since the lower half of the accumulator is not involved
in the addition, the sign of the upper half may, after the addition, differ from
that associated with the lower half.

(5) The sum is normalized and both halves of the accumulator are packed .

• Whenever two normalized floating-point operands are added, the absolute
value of the sum must fall between zero and two. Obviously, operands which
can contain up to 27 significant bits could result in a sum containing 28
Significant bits. During the unpacking operation, the characteristic portion
was filled with sign bits and, after the addition, bits 35 through 28 of the
sum are always sign bits. The first step of the normalization procedure is
to check for a 28-bit sum. This is done by comparing bits 35 and 27 of the
upper half of the accumulator.

20

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE I SECTION, 4

• Case I. If bit 35 = bit 28 the sum contains 27 significant bits or less. The
residue from the alignment (step 3), which is stored in the lower half of

'PAGE:

the accumulator, is packed first. This consists of right-shifting the residue
nine bit positions to make room for the 8-bit characteristic and the mantissa
sign bit. The residue characteristic is obtained by subtracting 27 from the
characteristic associated with the sum. A special case arises if this differ­
ence is a negative value (see 4.4.4.1.2). The sign of the input operand which
was originally' transferred to the upper half of the accumulator (before the
addition) is retained as the sign to be associated with the residue word. If
this sign bit is a 1 bit, the characteristic is complemented when it is trans­
ferred into the characteristic portion of the word. When the sign bit is a 0
bit, complementation is omitted and the characteristic is packed directly
into the characteristic portion of the word. After the residue word is packed,
the sum stored in the upper half of the accumulator is normalized. The
normalization is accomplished by comparing bits 27 and 26. If they are not
equal, the sum contains 27 bits and it is already normalized. If bits 27 and
26 are equal, the upper half of the accumulator is left circular shifted
(applies only to upper half) until bits 27 and 26 are unequal. Sign bits are
brought into the right end during the shifting and this shifting terminates
after a maximum of 27 shifts. The characteristic of the sum is decreased
by a number equal to the number of places the sum was shifted to achieve
normalization and then a check is made for floating-point characteristic
underflow. (See special cases, 4.4.4 .1.2.) If there is no underflow, the
characteristic is packed with the sum. If the sum is negative, the charac­
teristic is complemented as it is transferred to the word. If the sum is
positive, the complementation is omitted.

• Case II. If bit 35 is not equal to bit 27 the addition produced a 28-bit sum
and the entire 72-bit accumulator is right-shifted one bit position to achieve
normalization. The characteristic of the sum is increased by one and checked
for floating-point characteristic overflow. (See special cases, 4.4.4.1.2.) This

step occurs before either the upper or lower half of the accumulator is packed.
If there is no overflow, the residue word in the lower half of the accumulator
is right-shifted nine bit positions. The residue characteristic is obtained by
subtracting 27 from the characteristic of the sum. The resultant characteristic
is adjusted for sign (complemented if the sum is negative) and packed into
the characteristic portion of the residue word. (See special cases, 4.4.4.1.2.)
The residue in the lower half of the accumulator can be considered to be an
extension of the sum formed in the upper half because a 28-bit sum can only
occur when operands of the same sign are added. After packing the residue
word, the characteristic of the sum is adjusted for sign (complemented if
sum is negative) and transferred to the characteristic portion of the sum in
the upper half of the accumulator.

(6) Finally, the packed floating-point sum in the upper half of the accumulator is
transferred to the A register specified by the instruction word. The packed
residue in the lower half of the accumulator is transferred to the next consecu­
tive A register, A+1.

21

UP·4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 4 PAGE:

4.4.4.1.2. Single-Precision Floating-Point Addition - Special Cases

The following paragraphs describe the manner in which floating-point characteristic
overflow /underflow and zero-resultant mantissas are handled by the CPU.

(1) Floating-Point Characteristic Overflow/Underflow

If floating-point characteristic overflow is detected during the normalization
process (Case II, 4.4.4.1.1), the normal procedure is aborted and an interrupt
occurs as indicated in 4.4.3.1. If underflow is detected (Case 1,4.4.4.1.1),
the normal procedure is aborted and an interrupt occurs as indicated in
4.4.3.2. Overflow or underflow is never reported if the mantissa is zero; see
(2) below.

When overflow or underflow is detected and an interrupt occurs, the contents
of the 72-bit arithmetic accumulator are lost and the input operands remain
in the specified A and U.

If underflow occurs on the residue characteristic, floating-point underflow is
not reported. Depending upon the sign of the input operand, either +0 or -0
is transferred to register A+l, where A denotes the A register specified by
the Floating Add or Floating Add Negative instruction.

(2) Zero Mantissa

Bit D8 of the PSR specifies whether or not a characteristic is to be attached
to the result when a zero mantissa is generated.

If D8 = 0, the characteristic is cleared to 0 bits whenever a zero mantissa is
produced. If the mantissa is -0, the entire word is cleared to +0.

If D8 = 1, the characteristic is formed in the normal manner and packed into
the characteristic portion of the word. The procedure followed is that described
for Case I in 4.4.4 .1.1. When the mantissa is zero, the normalization step re­
quires 27 shifts before it terminates, and the characteristic attached to the
sum will be 27 less than the characteristic of the larger input operand. If the
mantissa is -0, the characteristic is complemented.

Whenever there is floatin g-point characteristic overflow or underflow and the
mantissa is zero, no overflow or underflow interrupt is generated, and the
entire word is cleared to +0 (regardless of the value of D8).

4.4.4.1.3. Double-Precision Floating-Point Addition

The steps performed for double-precision floatin g-point addition are as follows:

(1) The two operands are transferred from storage to the arithmetic section:

• The first operand is transferred from two consecutive control registers to
a 72-bit register .

• The second operand is transferred from two main storage locations to a
different 72-bit register.

22

UP 4053 I UNIVAC 1108 I
_____ R_~_~~ __________ P_R_O __ C_E_S_S_O_R __ A_N __ D_S __ T_O_R_A_G __ E __________ ~ _____________ ~S_E_C_T_IO_N_I __ 4 ____ ~_PA_G_E_:, ____ 2 __ 3

(2) The operands are unpacked and the characte!istic difference is determined:

• The characteristics of the two operands are transferred to two II-bit
characteristic registers. Bits 71 through 60 are complemented during the
transfer if the 'corresponding mantissa is negative.

• The characteristic portion of each operand is filled with sign bits.

• The characteristic difference is formed by subtracting the characteristic
of the first operand from the characteristic of the second operand.

• If the difference is positive or zero, the first operand is transferred to
the 72-bit augend register, and the second operand is transferred to the
72-bit addend register.

• If the difference is negative, the first operand is transferred to the addend
register, and the second operand is transferred to the augend register. The
transferred operands are the unpacked operands in which sign bits replace
the characteristic portion of the double-precision floating-point word.

• The absolute value of the characteristic difference is retained for the addi­
tion alignment shift count.

• The larger characteristic is retained as the characteristic to be associated
with the sum.

(3) The contents of the augend register are right-shifted end off with sign fill
on the left. The shift count is the absolute value of the characteristic differ­
ence.

'. If the characteristic difference is zero, no shifting occurs.

• If the characteristic difference is greater than 60, the contents of the
augend register are shifted only 60 bit positions.

(4) The contents of the addend register are added to the contents of the augend
register and the resultant sum replaces the previous contents of the augend
register. The leftmost 11 bits of the sum are always sign bits.

(5) The sum is normalized and packed.

• Since the input mantissas can contain no more than 60 significant bits,
the sum can have no more than 61 significant ~its. The first step of the
normalization procedure is to check for a 61-bit sum. This is done by
comparing bits 71 and 60. If they are equal, the sum contains 60 or less
significant bits. If they are unequal, the sum contains 61 significant bits.

• When the sum contains 6.1 significant bits, the augend register is right­
shifted one bit position and the characteristic associated with the sum
(last item in step 2) is incremented by one. This characteristic is examined
for floating-point characteristic overflow. Overflow can occur only if the
characteristic was 37778 before the incrementation. If overflow occurs, the
normal procedure is aborted and an interrupt occurs as indicated in 4.4.3.1.
If no overflow occurs, the characteristic is transferred to the characteristic
portion of the augend register. If the sum is negative, it is complemented
during the transfer.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 4
SECTION:

• When the sum is not zero and contains 60 significant bits or less, bits 71
and 59 are' examined. If bit 71 does not equal bit 59, the sum is .already
normalized. The characteristic is adjusted for sign and transferred to the
characteristic position of the augend register. If bits 71 and 59 are equal,
the augend register is shifted left circularly until bit 71 does not equal

PAGE:

bit 59. The characteristic is decremented by a number equal to the number
of left shifts and checked for floating-point characteristic underflow. If
there is no underflow, the characteristic is transferred to the characteris tic
portion of the augend register. It is complemented during the transfer if
the sum is negative. In double-precision operations, bit D5 of the PSR
specifies whether or not the floating-point underflow interrupt will occur
in the event of underflow. The special procedures which now take place
are discussed in 4.4.3.2.

• If the sum is zero, the augend register is cleared to +0 and stored in the
specified control registers.

(6) The contents of the 72-bit augend register are stored in the two consecutive
control registers, specified in the Double-Precision Add instruction.

4.4.4.2. Floating-Point Add Negative (Subtraction)

Floating-point subtraction (both single precision and double precision) is performed
following the same procedure as is followed for floating-point addition except that
the ones complement of the subtrahend specified by the instruction word is used as
the second input operand.

The input operands for floating-point subtraction need not be normalized numbers.
For single-precision subtraction, the difference (most significant result word) is
always a normalized number. The residue word mayor may not be a normalized
number. For double-precision subtraction, the difference is always a normalized
number.

4.4.4.3. Floating-Point Multiplication

The process of multiplying two floating-point numbers consists of sending the
operands to the arithmetic section, unpacking, multiplying the mantissas, adding
the characteristics, packing the results into floating-point format, and transferring
the resultant floating-point words to control registers. The sign of the product is
determined by the algebraic rules for signs except as specified in 4.6. The following
explanations apply specifically to all cases in which both input operands are norm­
alized numbers. The explanations apply in general to those cases in which either
or both operands are not normalized numbers. The results obtained for all cases in
which either or both operands are not normalized numbers are undefined.

24

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 4
PAGE:

25
SECTION:

UP-4U053

------- ---~--------------~------------~------..,------

4.4..4.3.1. Single-Precision Floating-Point Multiplication

The steps performed for single-precision floating-point multiplication are as
follows:

(1) The two operands are transferred from storage to the arithmetic section:

• The multiplicand is transferred from a control register to the 36-bit
multiplicand register.

• The multiplier is transferred from main storage or a control register to
the 36-bit multiplier register.

(2) The sign bit of each operand is examined to determine the sign of the product
to be produced and then positive operands are provided.

• If the operands have identical signs, the sign of each word of the product
will be positive.

• If the operands do not have identical signs, the sign of each word of the
product will be negative, except that a zero product is always represented
as +0.

• If an input operand is negative, it is complemented to provide positive
operands.

(3) The two positive operands are unpacked to separate the characteristics from
the mantissas, the characteristics are saved for use in step 6, bits 34 through
27 of both' the multiplicand and the multiplier registers are cleared to 0 bits,
and a 72-bit accumulator register is cleared to +0.

(4) The product of the mantissas of the two positive operands is formed as follows:

• The contents of the multiplicand register are multiplied by the contents of
the rightmost 28 bits of the multiplier register using only 14 repetitions of
step 4 of 4.3.4. The product is accumulated in the 72-bit accumulator
register.

• The contents of the accumulator are left-shifted one bit position (end off,
with O-bit fill on the right). The 54-bit product of the 27-bit mantissas of
the two positive operands is now in bits 62 through 9 of the accumulator.
Bits 71 through 63 and 8 through 0 of the accumulator contain 0 bits.

(S) Bit 62 of the accumulator is used to control initiation of a normalizing shift
which ensures that the most significant word of the product will be normalized if
normalized operands were used.

• If bit 62 contains a 1 bit, no normalizing shift is performed.

• If bit 62 contains a 0 bit, the entire 72-bit accumulator is shifted one bit
position left circular and this step is repeated until bit 62 contains a 1 bit.

(6) Characteristic arithmetic is performed using the 9-bit characteristic adder.
Tests for floating-point characteristic overflow and underflow are performed.

UP-4053
Rev. 1

UNIVAC H08

PROCESSOR AND STORAGE 4
SEC TION: PAGE:

• The characteristics of the two positive operands saved from step 3 are
added to produce the characteristic sum, which is biased by 400S'

• If a normalizing shift was not performed in step 5, 200S is subtracted from
the characteristic sum to produce the characteristic for the most significant
product word and 233S is subtracted from the characteristic sum to produce
the characteristic for the least significant product word.

• If a normalizin'g shift was performed in step 5, 201S is subtracted from the
characteristic sum to produce the characteristic for the most significant
product word and 234S is subtracted from the characteristic sum to produce

the characteristic for the least significant product word.

• If the mantissa (of the most significant product word is not zero and the
characteristic for the mos t significant product word represents a number
greater than 377S' overflow (see 4.4.3.1) is reported, and all following
steps are aborted.

• If the mantissa of the most significant product word is not zero and the
characteristic for the most significant product word represents a negative
number, underflow (see 4.4.3.2) is reported, and all following steps are
aborted.

(7) A single- precision floating-point word representing the most significant
word of the product is packed in the upper half of the accumulator:

• The characteristic from step 6 is stored in bits 70 through 63 of the
accumulator.

• If the input operands were oppositely signed, the upper half of the accumu­
lator is complemented (product developed by multiply algorithm is always
positive).

• If the mantissa is zero, the resultant word is controlled by DS of the PSR.
If DS = 0, the upper half of the accumulator is cleared to +0. If DS = 1, the
word remains packed.

• If there is overflow or underflow for the most significant product word and
the corresponding mantissa is zero, the floating-point characteristic under­
flow o,r overflow interrupt does not occur. If DS = 0, both the characteristic
and mantissa are set to +0. If DS = 1, the characteristic is set to either +0
O,r -0, whichever agrees with the sign of the mantissa.

(S) A single- precision floating-point word representing the least significant
product word is formed in bits 35 through 0 (lower half) of the accumulator.

• The lower half of the accumulator is right-shifted nine bit positions (end
off with O-bit fill in bits 35 through 27) so as to place the 27 low-order
bits of the normalized product (from steps 4 and 5) in bits 27 through 0
of the accumulator.

• The S-bit characteristic of the least significant product word is stored in
bits 34 through 27 of the accumulator. If there is underflow, the lower
half of the accumulator is cleared to +0. (See 6.5.5 for the special case
of overflow on the least significant product word.)

26

UNIVAC 1108

Rev. 1 . PROCESSOR AND STORAGE 4 27
SECTION: PAGE:

UP·A053 ~

------- ---~--------------~------------~~----,------

• If the signs of the original operands were not identical, the lower half of
the accumulator is complemented.

• The value of D8 has no effect on the least significant product word.

(9) The most significant product word (developed in step 7) and the least signifi­
cant product word (developed in step 8) are stored in two consecutive control
registers.

4.4.4.3.2. Double-Precision Floating-Point Multiplication

The steps performed for double-precision floating-point multiplication are as
follows:

(1) The two operands are transferred from storage to the arithmetic section.

• The multiplicand is transferred from two consecutive control registers
to the 72-bit multiplicand register.

• The multiplier is transferred from two main storage locations to the 72-bit
multiplier register.

(2) The sign bit of each operand is examined to determine the sign of the product
to be produced, and positive operands are then provided.

• If the operands .have identical signs, the sign of the product will be positive.

• If the operands do not have identical signs, the sign of the product will be
negative except that a zero product is always represented as +0.

• If an operand is negative, it is complemented to provide a positive operand.

(3) The two positive operands are unpacked to separate the characteristics from
the mantissas, the characteristics are saved for use in subsequent characteristic
arithmetic, bits 70 through 60 of both the multiplicand register and the multiplier
register are cleared to 0 bits, and a 72-bit accumulator register is cleared to +0.

(4) The product of the mantissas of the two positive operands is formed. The
contents of the multiplicand register are multiplied by the contents of bits
59 through 0 of the multiplier register. A series of 30 major cycles is required.
Each major cycle includes a 72-bit main adder cycle and a shift of the contents
of the accumulator and multiplier registers.

• The inputs for each main adder cycle are the contents of the accumulator,
and either the contents of the 72-bit multiplicand register or a double­
precision word of +0. The main adder output replaces the contents of the
accumulator.

• The procedure for each main adder cycle and the associated shifting of the
accumulator is dependent on the contents of the two rightmost bits of the
multiplier register as explained in step 4 of 4.3.4 on fixed-point multipli­
cation. When the multiplier bits which control the 30 th cycle are 11, the
iteration must be carried one step further. This final step consists of
adding the contents of the multiplicand register to the contents of the
accumulator with no subsequent shifting of the accumulator.

UP-40U3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
4 28

SECTION: PAGE:

--~------------~--------------~-------------

• The final contents of the accumulator are 0 bits in bits 71 through 60; the
60 most significant bits of the product are located in bits 59 through O.
The 60 least significant bits of the 120-bit product are discarded.

(5) Bit 59 of the accumulator is used to control initiation of a normalizing shift
to ensure that the result of the multiplication will be a normalized double­
precision floating-point number if normalized input operands were used. If
bit 59 is a 0 bit, the accumulator is shifted one bit position left circularly.

(6) Characteristic arithmetic is performed using the 12-bit characteristic adder.
Tests for floating-point characteristic overflow and underflow and other
special cases are performed.

• The characteristics of the two positive operands saved from step 3 are
added to produce the characteristic sum which is biased by 40008 ,

• If a normalizing shift was not performed in step 5, 20008 is subtracted
from the characteristic sum to produce the characteristic for the product.

• If a normalizing shift was performed in step 5, 2001 8 is subtracted from
the characteristic sum to produce the characteristic for the product.

• If the mantissa is not zero and the characteristic for the product represents
a number greater than 37778 , overflow (see 4.4.3.1) is reported, and all

following steps are aborted.

• If the man tissa is not zero and there is underflow, 05 of the PSR determines
which action is performed next. If 05 :: 0, the floating-point characteristic
underflow interrupt occurs and all following steps are aborted. If 05 :: 1,
the 72-bit accumulator is cleared to +0 and step 8 is initiated to store the
product.

• If the accumulator contains all 0 bits, the characteristic of the product is
discarded, and step 8 is initiated to store the product as +0 regardless of
the signs of the input operands.

(7) If none of the special cases discussed in step 6 are detected, a double-precision
floating-point number is developed in the accumulator which reflects the signs
of the input operands.

• The II-bit characteristic for the product developed in step 6 is stored in
bits 71 through 60 of the accumulator to form a positive floating- point
number.

• If the signs of the input operands differ, the accumulator contents are
complemented.

(8) The contents of the accumulator are stored in two consecutive control registers.

UNIVAC 1108

PROCESSOR AND STORAGE 4 29
UP-40S3 1
Rev. 1 SECTION: PAGE: ------ ._------ ---~~------------~~~~~------~--~~.------

4.4.4.4. Floating-Point Division

The process of dividing one floating-point number by another consists of loading
the numbers into the arithmetic section, subtracting characteristics, dividing one
mantissa by the other, combining the results into floating-point format, and trans­
ferring the result to the specified control registers. The sign of the quotient is
determined by the algebraic rules for signs except as specified in 4.6. The follow­
ing explanations apply specifically to all cases in which both input operands are
normalized numbers. The explanations apply in general to those cases in which
either or both operands are not normalized numbers. For all cases in which either
or both operands are not normalized numbers, the results are undefined.

4.4.4.4.1. Single-Precision Floating-Point Division

The steps performed for single-precision floating- point division are as follows:

(1) The two operands are transferred from storage to the arithmetic section.

• The dividend is transferred from a control register to a 36-bit dividend/re­
mainder register.

• The divisor is transferred from main storage or a control register to a 36-bit
divisor register.

(2) The sign bit of each operand is examined to determine the sign of the quotient
and the sign of the remait:der. Positive operands are provided.

• If the sign bits are identical, the sign of the quotient will be positive.

• If the sign bits are not identical, the sign of the quotient will be negative.
Zero results are the only exception (represented as +0).

• If the leftmost bit in the dividend register is a 0 bit, the sign of the re­
mainder will be positive; if it is a 1 bit, the sign of the remainder will be
negative.

• If an input operand is negative, it is complemented.

(3) The two positive operands are unpacked to separate the characteristics from
the mantissas, the characteristics are saved for use in subsequent character­
istic arithmetic, bits 34 through 27 of the dividend/remainder and the divisor
registers are cleared to 0 bits, and a 36-bit quotient register is cleared to all
+0. If the divisor register now contains all 0 bits, a divide fault (see 4.3.6)
is reported, and all remaining steps are aborted.

(4) The division process is performed by a series of 27 or 28 main adder cycles.
In each main adder cycle, the contents of the 36-bit divisor register are
subtracted from the contents of the 36-bit dividend/remainder register.

• If an end-around borrow is not generated on the first main adder cycle,
26 more cycles are required.

• If an end-around borrow is generated on the first main adder cycle, 27
more cycles are required.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 4
SECTION:

• For each main adder cycle, absence of an end-around borrow signifies
that the number in the dividend/remainder register is greater than or
equal to the num ber in the divisor register. In this instance, the main
adder output replaces the contents of the dividend/remainder register
and a 1 bit is stored in the rightmost bit of the quotient register.

• For each main adder cycle, occurrence of an end-around borrow signifies
that the number in the dividend/remainder register is less than the number
in the divisor register. In this case, the main adder output is discarded

PAGE:

and no change is made to the rightmost bit position of the quotient register.

• Following each main adder cycle except the last, the contents of the
dividend/remainder register and the contents of the quotient register are
shifted one bit position left circularly to prepare for the next main adder
cycle.

• Following the completion of the last main adder cycle and the storing of
any results, the rightmost 27 bits of the quotient register contain the
mantissa for the quotient and the rightmost 27 bits of the dividend/remainder
register contains the mantissa for the remainder.

(5) Characteristic arithmetic is performed using the 9-bit characteristic adder.
Tests for floating-point characteristic overflow and underflow are performed.

• The characteristic associated with the divisor is subtracted from the
characteristic associated with the dividend. This difference does not
include a bias.

• If an end-around borrow occurred in the first main adder cycle of step 4,
2008 is added to the characteristic difference to produce the characteristic
for the quotient and 338 is subtracted from the characteristic of the divi­
dend to produce the characteristic for the remainder.

• If an end-around borrow did not occur in the first main adder cycle of step
4, 2018 is added to the characteristic difference to produce the characteristic
for the quotient and 328 is subtracted from the characteristic of the dividend
to produce the characteristic for the remainder.

• If the quotient register does not contain all 0 bits and the characteris tic for
the quotient represents a number greater than 3778' overflow (see 4.4.3.1) is
reported, and all following steps are aborted.

• If the quotient register does not contain all 0 bits and the characteristics
for the quotient represents a negative number, underflow (4.4.3.2) is reported,
and all following steps are aborted.

(6) The quotient is developed in single-precision floating-point format in the quo­
tient register as follows:,

• The quotient mantissa occupies bits 26 through 0 of the quotient register.

• The 8-bit quotient characteristic developed in step 5 is stored in bits 35
through 27 of the quotient register.

30

UP-4UOS3

\Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 4 31
SECTION: PAGE:

--------.--~------------~--------------~-----------

• If the signs of the input operands are not identical, the contents of the quo­
tient register are complemented.

• If the mantissa of the quotient is zero, the next operation is controlled by
D8 of the PSR. If D8 = 0, the quotient register is cleared to +0 and step 7
is initiated. If D8 = 1, step 6 is performed without any consideration of the
mantissa. If there is overflow or underflow when D8 ::: 1 and the mantissa
is zero, the characteristic is cleared to +0 or -0, whichever agrees with
the sign of the mantissa.

(7) The remainder is develQped in single-precision floating- point format in the
36-bit dividend/remainder register as follows:

• The remainder mantissa occupies bits 26 through a of the dividend/remainder
register.

• If the 8-bit remainder characteristic represents a negative number, the
dividend/remainder register is cleared to +0; if it does not represent a
negative number, it is stored in bits 3S through 27 of the dividend/remainder
register.

• If the input dividend operand was negative, the contents of the dividendi
remainder register are complemented.

(8) The contents of the 36-bit quotient register and the contents of the 36-bit
di vidend/ remainder register are stored in two consecutive control registers.

4.4.4.4.2. Double-Precision Floating-Point Division

The steps performed for double-precision floating-point division are as follows:

(1) The two operands are transferred from storage to the arithmetic section.

• The dividend is transferred from two consecutive control registers to a
72-bit dividend register.

• The divisor is transferred from two main storage locations to a 72-bit
divisor register.

(2) T4e sign bit of each operand is examined to determine the sign of the quo­
tient. Positive operands are provided.

• If the sign bits are identical, the sign of the quotient will be positive.

• If the sign bits are different, the sign of the quotient will normally be
negative, except that zero quotients are always represented as +0.

• If an operand is negative, the operand is complemented.

(3) The two positive operands are unpacked to separate the characteristics from
the mantissas, the characteristics are saved for use in subsequent charac­
teristic arithmetic, bits 70 through 60 of the dividend and the divisor regis­
ters are cleared to a bits, and a 72-bit quotient register is cleared to +0.
If the divisor register now contains all a bits, a divide fault (see 4.3.6) is
reported, and all remaining steps are aborted.

U P-qu::>.j

Rev. 1

UNIVAC IIUf:S

PROCESSOR AND STORAGE 4
SECTION:

(4) The division process is performed by a series of 60 or 61 main adder cycles.
In each cycle, the contents of the 72-bit divisor register are subtracted from
the contents of the 72-bit dividend register.

• If an end-around borrow is generated on the first cycle, 60 additional
cycles are required.

• If an end-around borrow is not generated on the first cycle, 59 additional
cycles are required.

• For each main adder cycle, the absence of an end-around borrow signifies
that the number in the dividend register is greater than or equal to the
number in the divisor register. In this instance, the main adder output
replaces the contents of the dividend register, and a 1 bit is stored in
the rightmost bit position of the quotient register.

• For each main adder cycle, the occurrence of an end-around borrow sig­
nifies that the number in the dividend register is less than the number in
the divisor register. In this case, the main adder output is discarded and
no change is made to the rightmost bit position of the quotient register.

• Following each main adder cycle, except\the last, the contents of the
dividend register and the contents of the quotient register are shifted
one bit position left circularly to prepare for the next main adder cycle.

• At the completion of the last main adder cycle (and the storing of results
if appropriate), the rightmost 60 bits of the quotient register contain the
mantissa for the absolute value of the quotient.

(5) Characteristic arithmetic is performed using the 12-bit characteristic adder.
Tests for floating-point charactEristic overflow and underflow, and other
special cases are performed.

• The difference between the characteristics of the two positive operands
saved from step 3 is found by subtracting the characteristic of the divisor
from the characteristic of the dividend. This difference does not include
the bias.

PAGE:

• If the quotient mantissa is zero, the characteristic of the quotient is ignored
and step 7 is initiated to store all 0 bits regardless of the signs of the input
operands.

• If an end-around borrow was not generated in the first main adder cycle of
step 4, 20018 is added to the characteristic difference to produce the charac­

teristic for the quotient.

• If an end-around borrow was generated in the first main adder cycle of step
4, 20008 is added to the characteristic difference to produce the characteristic
for the quotient.

• If the quotient mantissa is not zero and the characteristic for the quotient
represents anum ber greater than 37778 , overflow (see 4.4.3.1) is reported,
and all following steps are aborted.

32

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 4 33
SEC T ION: PAGE:

UP-40U3

------ --------.--------------------------------------~~------------~------------~-------------

• If the quotient mantissa is not zero and the characteristic of the quotient
represents a negative number, the next operation is controlled by D5 of the
PSR. If D5 == 0, underflow (see 4.4.3.2) is reported, and all following steps
are aborted. If D5 = 1, the quotient register is cleared to +0 and step 7 is
initiated to store all 0 bits regardless of the signs of the input operands.

(6) If none of the special cases discussed in step 5 were detected, a double-pre­
cision floating- point number is developed in the quotient register, which
reflects the signs of the inpu t operands.

• The 11-bit characteristic for the quotient developed in step 5 is stored in
bits 70 through 60 of the quotient register to form a positive floating-point
number.

• If the signs of the input operands differ, the contents of the quotient register
are complemented.

(7) The contents of the quotient register are stored in two consecutive control

registers.

4.5. CONVERTING A FIXED-POINT NUMBER TO A FLOATING-POINT NUMBER

Conversion of a fixed-point number to floating-point number is performed in the arith­
metic section. The first input operand contains a characteristic (biased exponent)
which defines the location of the binary point for the fixed-point number with respect
to the standard position of the binary point for a floating-point number. The second
input operand is the signed fixed-point number to be converted.

The conversion process consists of transferring the two operands to the arithmetic
section, shifting the fixed-point number, if necessary, to position its bits as the
mantissa for a normalized floating-point number, modifying the characteristic to reflect
the magnitude and direction of the normalizing shift, packing the shifted fixed-point
number (the mantissa) and the modified characteristic in floating-point format, and
loading the packed results in a control register (conversion to single-precision
floating-point format) or into two consecutive control registers (conversion to double­
precision floating-point format).

4.5.1. Conversion To Single- Precision Floating-Point Format

The Load And Convert To Floating instruction is used to convert a single-precision
fixed-point number to single-precision floating- point format. The steps performed for
this instruction are as follows:

(1) The two operands are transferred from storage to the arithmetic section.

u The first operand is transferred from a control register to the arithmetic section.
The rightmost eight bits of the operand are stored in a 9-bit characteristic register
which contains a 0 bit in its leftmost bit position. The leftmost 28 bits of the
operand are ignored.

II The second operand (signed fixed- point number) is transferred from main storage
or a control register to a 36-bit operating register.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 4
SEC TION: PAGE:

(2) The sign of the fixed-point number is examined to determine the expected sign of
the result. If the fixed- point number is negative, the contents of the operating
register are complemented.

(3) The positive fixed- point number in the operating register is then examined. The
contents of the operating register are shifted, if necessary, to normalize the
mantissa, and a shift count is determined.

• If the operating register contains more than 27 significant bits, it is right­
shifted (end off with zerofi11 on the left) to move the most significant bit to
bit 26. The number of bit positions shifted is the shift count. This number
varies from one to eight.

• If the operating register contains exactly 27 significant bits, no normalizing
shift is needed, and the shift count is zero.

• If the operating register contains less than 27 significant bits, it is left-shifted
(end off with zerofill on the right) to move the most significant bit to bit 26.
The shift count can vary from one to 26.

• If the operating register contains +0, the shift count is 27.

(4) The shift count developed in step 3 is either added to or subtracted from the
contents of the 9-bit characteristic register using the 9-bit characteristic adder.
Addition is performed if a right shift was required in step 3; otherwise, subtraction
is performed. The characteristic adder output (result characteristic) is stored in
bits 34 through 27 of the operating register. The special cases are handled as
follows:

• If the result characteristic represents a number greater than 3778 , overflow
(see 4.4.3.1) is reported, and all following stepR are aborted.

• If the result characteristic represents a negative number and the mantissa is
not all 0 bits, underflow (see 4.4.3.2) is reported, and all following steps are
aborted.

• If bits 26 through 0 of the operating register are all 0 bits and D8 of the PSR
equals 0, bits 35 through 27 of the register are cleared to all 0 bits, and step
6 is initiated to store a result consisting of all 0 bits.

• If bits 26 through 0 of the operating register are all 0 bits, D8 = 1, and the
result characteristic represents a negative number; bits 35 through 27 of the
operating register are cleared to all 0 bits and step 5 is initiated to consider
the sign of the result. There is no special treatment of the result if bits 26
through 0 of the operating register are all 0 bits, D8 = 1, and the result charac­
teristic represents a positive number.

(5) If the input fixed- point number was negative, the contents of the operating register
are complemented to obtain the properly signed result.

(6) The contents of the operating register are stored in a control register.

34

UP·40S3

Rev. 1 ~ __________ ~_N_~_~_~_~_E_~_~V_~_R __ A_N __ D __ S_T_O_R __ A_G_E __________________________ ~I_S_E_C_T_IO_N_: ___ 4 ______ P_A_G_E_: __ , ____ 3_5 __

4,5,2. Conversion To Double-Precision Floating- Point Format

The Double Load And Convert To Floating instruction is used to convert a double­
precision fixed-point number to double- precision floating-point format. The steps
are as follows:

(1) The two operands are transferred from storage to the arithmetic section.

II The first operand is transferred from a control register to the arithmetic section.
The. rightmost 11 bits of the operand are stored in a 12-bi t characteristic regis ter
which contains a 0 bit in its leftmost bit position. The leftmost 25 bits of the
operand are ignored.

II The second operand, a signed double-precision fixed- point number, is trans­
ferred from two main storage locations to a 72-bit operating register.

(2) The sign of the fixed-point n urn ber is examined to determine the expected sign
of the result. If the fixed- point number is negative, the contents of the operating
regis ter are complemented.

(3) The positive fixed-point number in the operating register is then examined. The
contents of the operating register are shifted, if necessary, to normalize the man­
tissa, and a shift count is determined.

II If the operatin g register contains more than 60 significant bits, it is right­
shifted (end off with zero fill on the left) to move the most significant bit to
bit 59. The number of bit positions shifted is the shift count. This number can
vary from one to 11.

II If the operating register contains 60 significant bits, no normalizing shift is
needed and the shift count is zero.

II If the operatin g register contains less than 60 significant bits, it is left-shifted
(end off with zero fill on the right) to move the most significant bit to bit 59.
The shift count can vary from one to 59.

II If the operating register contains +0, step 6 is initiated to store a result con­
sisting of all 0 bits.

(4) The shift count developed in step 3 is either added to or subtracted from the
contents of the 12-bit characteristic register using the 12-bit characteristic
adder. Addition is performed if a right shift was required in step 3; otherwise,
subtraction is performed. The characteristic adder output (result characteristic)
is stored in bits 70 through 60 of the operating register. The special cases are
handled as follows:

II If the result characteristic represents a number greater than 37778 , overflow
(4.4,3.1) is reported, and all following steps are aborted.

II If the result characteristic represents a negative number and D5 of the PSR
equals zero, underflow is reported (4.4.3.2), and all following steps are aborted .

• If the result characteristic represents a negative number and D5 = 1, underflow
is not reported. Instead, the operating register is cleared to +0 and step 6 is
initiated to store a result consisting of all 0 bits.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 4
SECTION: PAGE:

(5) If the input fixed-point number was negative, the contents of the operating register
are complemented to form the properly signed result.

(6) The contents of the 72-bit operating register are stored in two consecutive control
re gisters.

4.6. FLOATING-POINT ZERO - SUMMARY

A single-precision floating- point word is floating-point zero if bits 35 and 26 through 0
of the word contain all 0 bits (+0) or all 1 bits (-0).

A double-precision floating-point number is floating- point zero if bits 71 and 59 through
o (bits 3S and 23 through 0 of the high order word and all 36 bits of low order word)
contain all 0 bits or all 1 bits.

,Thus, floating- point zero can be defined as a floating-point number having all mantissa
bits identical to the sign bit.

4.6.1. Single-Precision Floating-Point Zero

Six of the floating-point instructions produce results in single- precision floating- point
format. These instructions and the names used to identify the results for each instruc­
tion are shown in Table 4-5.

If the result of the mantissa arithmetic is floating-point zero for the first result word
for any of the first five of these instructions, the factors which affect the stored result
are the content of DS of the PSR, the magnitude of the characteristic produced for the
word, and the sign of the input operand or operands for the instruction, as follows:

• If DS = 0 (specifies normal operating mode for UNIVAC 110S),characteristic arith­
metic has no effect and the result word is stored as +0 .

• If DS = 1 (specifies compatibility with UNIVAC 1107 floating-point zero conventions)
and if the characteristic is in the range OOOS through 377 S, the first result word

reflects the magnitude of the characteristic produced, and also the sign produced
either by the mantissa arithmetic or by consideration of the signs of the input operands.

INSTRUCTION IDENTIFYING NAME OF RESULT WORDS

FIRST WORD SECOND WORD

Floating Add Sum Res idue

Floating Add Negative Difference Residue

Floating Multiply Most Sign if icant Word Least Significant Word

Floating Divide Quotient Rema inder

Load And Convert To Floating Result None (only one result
word produced)

Floating Compress And Load Result

Table 4-5. Instructions Producing Results In Single-Precision
Floating-Point Format

36

UP-40E~)3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SEC TION: 4 PAGE:

--~--------------------------------------

If DS = 1 and the characteristic produced during the execution of the Floating Add,
Floating Add Negative, or Load And Convert To Floating instruction is not within

the range OOOS through 377 S, the first word of the result is stored as +0 regardless

of the signs of the input operands. For these instructions, the characteristic pro­
duced could never be greater than 377S if the mantissa produced is to.

If DS = 1 and the characteristic produced during the execution of the Floating
Multiply or Floating Divide instruction is not within the range OOOS through 377S'
the first result word is stored as +0 or -0, whichever agrees with the sign of the
inpu t operands.

If the mantissa produced during the execution of a Floating Compress And Load
instruction is either +0 or -0, the result stored is +0 regardless of the characteristic
produced and the value of DS.

Characteristic arithmetic can produce a characteristic representing a number greater
than 377 S for the second result word only in the Floating Multiply instruction.

Characteristic arithmetic can produce a characteristic representing a negative number

for the second result word for any of the four arithmetic instructions which produce
twci-word single-precision floating-point format results. When an out- of-range charac­
teristic is produced for the second result word, neither floating-point characteristic
overflow or underflow is reported solely as the result of this occurrence.

If the characteristic calculated for the second result word in a Floating Multiply
instruction represents a number greater than 377S' the 9-bit value (or its ones

complement, if the mantissa is negative) is packed with the mantissa. If overflow
or underflow occurs on the second word of the product, it must have also occurred
for the first word of the product. If the mantissa of the first word of the product is

zero, however, the floating-point characteristic overflow fault interrupt does not

occur and the CPU attempts to pack the second word of the product.

If the characteristic calculated for the second result word for any of the first four
instructions listed in Table 4-5 represents a negative number, a +0 or -0 is stored,

whichever reflects the sign of the word that would have been stored had the charac­

teristic been in the range OOOS through 377 S.

37

UP-40S3

Rev,. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 4 PAGE:

4.6.2. Double-Precision Floating-Point Zero

If the result of mantissa arithmetic is floating-point zero for anyone of the six instruc­
tions which produces a result in double-precision floating-point format, neither floating­
poin t characteristic overflow nor underflow w ill be reported even th ough the character­

istic arithmetic may produce a characteristic which represents a number greater than

37778 or a negative number.

In all cases in which the mantissa produced for a double-precision floating-point result
is floating-point zero, the result stored is +0, regardless of the signs of the input
operands. The value of DS in the PSR is ignored in these cases.

If the result of the mantissa arithmetic is not floating-point zero for any instruction
which produces a result in double-precision floating-point format, but the characteristic
for the result represents a negative number and DS = 1, floating-point underflow is not
reported. Instead the result is stored as +0. This combination of circumstances will
never occur for the Floating Expand And Load instruction.

38

UP-405~3 UNIVAC IIUts I
Rev. 1 PROCESSOR AND STORAGE 5 ________ • ______________________________________ ~ ____________ ~~S_E_C_T_I_O_N_: ______ ~_p_A_G_E_: __

5.1. INSTRUCTION WORD FORMAT

5. CPU CONTROL

SECTION

During the running of a program in the UNIVAC 1108 Central Processor Unit (CPU),
ins tructions are tra nsferred from locations in main storage to the control section of
the CPU. The instructions are normally transferred from sequentially addressed main
storage locations until the sequence is broken by the program or interrupted by the
control section's reaction to some special condition or event. Each instruction is a
coded directive to the control section; the control section initiates a sequence of
steps necessary to perform the particular operatio'n prescribed by the instruction. The
36-bit instruction word, illustrated below, is subdivided into seven fields.

where:

f = Function Code

j = Operand Qualifier, partial Control Register Address, or Minor Function Code

a = A, X, or R register; Channel, Jump Key, Stop Keys, or Module Number; Minor Function
Code; partial Control Register Address

x = Index Register

h = Index Register lncrementation

i = Indirect Addressing

u = Operand Address or Operand Base

1

Rev. 1

UNIVA\.. IIUO

PROCESSOR AND STORAGE
SECTION:

5

5.2. INSTRUCTION WORD FIELDS

The following paragraphs describe the manner in which the CPU's control section
reacts to the contents of each of the seven fields of an instruction word. (U is the
ou tput of the index adder.)

5.2.1. Description of f Field

PAGE:

The f field is used to define the basic operation to be performed for all legal values

of f less than or equal to 70S ' When the value in the f field is greater than 70S ' the

f and j fields are combined to form a 10-bit field which defines the basic operation.
For three of these f, j combinations, the value in the a field is used to define varia­

tions of the basic operation. All function codes are defined in Section 6 and listed
in Appendix E.

5.2.2. Description of j Field

When f is less than 70S ' the j field is used as an operand qualifier. When f is equal to 70S,

the j field is used as part of a control register address. When f is greater than 70S'
the j field and the f field are used to define a basic operation, and, in this instance,
the j field operates as a minor function code.

5.2.2.1. j Field As An Operand Qualifier

When the f field of an instruction contains a value in the range 01S through 67S'

the j field is used as an operand qualifier which specifies the data transfer pattern
to or from main storage.

The j field can con tain values ranging from OOS through 178 , Each value except

4S through 7 S determines a specific data transfer pattern. Each of the j field
values 4S through 7 S may specify either of two different data transfer patterns,
with the choice dependent on the contents of the quarter word designator in bit
17 of the Processor State Register (PSR). (See 9.2.10.) Figures 5-1 and 5-2
illustrate all the possible data transfer patterns which can be specified by the
j field.

The CPU included in Group Type 3011-99 does not have the quarter word Desig­

nator feature or quarter word transfer capability, and each j field value of 4S

through 7 S specifies only one data transfer pattern.

2

UP-4053. L UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 5 3

SEC T1ON: PAGE:

Quarter
i-valu,~ Word Mnemonic

(octal) Designator
MAIN STORAGE ~ ARITHMETIC SECTION for i

o or 1 01 w

o or 1 ~I zeros 117 01 H2

o or 1 ~I zeros
117 01 HI

o or 1 ~I signs 117 j XH2

~I signs
117 01 XHI

~I signs III 01 T3

~I signs III 01 T2

~I signs III 01 T1

l?l zeros

I· 01
Q2

~I zeros 18 01
Q4

~I zeros I. 01 Q3

~I zeros I· 01 Ql

10 o or 1 ~[zeros
15 01 56

11 o or 1 l11
zeros 15 01 55

12 o or 1 ~I zeros 15 01 54

13 o or 1 ~I zeros ~J 53

1~ o or 1 ~I zeros 15 01 52

15 o or 1 rVl zeros 15 01 51

lEi * o or 1 ~I zeros 117 01 U

1"7* o or 1 ~I signs 117 01 XU

* See 5.2.8~2.

Figure 5-7. Transfers from Main Storage to the Arithmetic Section

(f = 108 th,.ough 678)

UP-40S3

Rev. 1

,--

i-value

(octal)

0

1

2

3

4

5

6

7

4

5

6

7

10

11

12

13

14

15

16

17

Quarter

Word
Designator

o or 1

o or 1

o or 1

o or I

0

0

0

0

1

1

1

1

o or 1

o or 1

o or 1

o or 1

o or 1

o or I

o or 1

o or 1

UNIVAC 1108

PROCESSOR AND STORAGE

135

I
I
I
I
I
1

I
I

I
I

I
I
I
1

I
I
I
I

I

SECTION:

ARITHMETIC SECTION ~ MAIN STORAGE

01 ~135 01

not transferred 117 01~1 unchanged 117 01

not transferred
117 01 ~135 161 unchanged I

not transferred I" 01~1 unchanged I" 01

not transferred I" 01 ~135 "I unchanged I
not transferred 111 01~1 unc hanged 111 01

not transferred
111 01~1 ",""god 123 121 ""'h,"g~

not transferred

111 HpG 241 unchanged I
not transferred I, 01 ~I ""h,"g,,126 I, I unchanged I
not transferred 18 ol~1 unchanged 18 o I
not transferred 1,~~C::g" 117 91 unchanged I
not tranSferred

18 01 ~13S 271 unchanged I
not transferred

15 01~1 unchanged IsJ
not transferred 15 ol~1 unchanged III 61,~:g'dl
not transferred t ollYl

unchanged I" 121
unc ha nged I

not transferred 15 H~I unchanged 123 18 1
unc hanged I

not transferred 15 01 ~ l'h~~~'dl29 "I unchanged I
not transferred

15 01 ~135 301
unchanged I

not transferred IQ NO TRANSFER

not transferred IQ NO TRANSFER
-

Figure 5-2. Transfers from the Arithmetic Section to Main Storage

(f = 018 through 068 and 228)

5 4
PAGE:

Mnemonic

for i

W

H2

HI

H2

HI

T3

T2

T1

Q2

Q4

Q3

Q1

S6

S5

S4

S3

52

51

UP-4053 UNIVAC 1108
5 Rev.~l~ __ -L __________ ._P __ R_O_C_E_S_S_O __ R_A __ N_D __ S_T_O_R_A __ G_E ___________ ~~ __________ ~_S~EC~T_I_O_N: ______ ~_P_A_G_E: __

5.2.2.1.1. Operand Qualification For Store and Block Transfer Instructions

The full 36-bit word in the control register specified by the a field (see 5.2.3.1)
is transferred to a nonaddressable register in the arithmetic section (f = 01 8
through 048 and 068), The nonaddressable arithmetic register is cleared to +0
when f ::-: 05 8 ,

II If j = 008' the full 36-bit word is transferred from the arithmetic section to the

location (main storage or control register) specified by U.

II If j = 018 through 158 and U specifies a main storage location (U .2 2008)' a
partial word is transferred from the least significant bit positions of the

nonaddressable arithmetic register to specific bit positions (see Figure 5-2)

of the main storage location. The contents of the remaining bit positions of

the main storage location are not changed. Partial word writes, with lengths

of third word, quarter word, or sixth word, increase the main storage cycle

time to 1125 nanoseconds.

II If j = 018 through 158 and U specifies a control register (U ~ 1778), the j

field is treated as if it contained 008' and the full 36-bit word is transferred

to the control register.

u If j = 168 or 178 , data is never transferred from the arithmetic section to any

storage location (main storage or control register).

5.2.2.1.2. Operand Qualification When f = 108 through 678

These instructions require the transfer of a full 36-bit word or a partial word to
the arithmetic section.

II If j = 0°8 , the full 36-bit word addres sed by U (see 5.3.3.1) is transferred to

the arithmetic section.

II If j = 018 through 158 and U specifies a main storage location (U .? 2008), a

partial word is transferred to the arithmetic section. In the arithmetic section,
the partial word is extended to a full 36-bit word either by zero fill or by sign
bit fill from the leftmost bit position of the partial word, as illustrated in
Figure 5-1.

II If j = 01 8 through 158 and U specifies a control register CU ~ 1778), the j

field is treated as if it contained 008 and the full 36-bit word is transferred

from the control register to the arithmetic section.

II If j = 168 or 178 , an 18-bit partial word is transferred to the arithmetic section.

Details on the formation of this partial word and its extension are given in

5.2.8.2.

5.2.2.2. Use of j Field as Partial Control Register Address

When f = 708' the most significant bit of the j field is ignored by the hardware, and

the three low-order bits are combined with the contents of the a field to form a 7-bit
control register address as described in 5.2.4.

5

u ~ -~V..J..J

Rev. 1

V.". YA\.. I Iva

PROCESSOR AND STORAGE 5
SECTION: PAGE:

5.2.2.3. Use of j Field as Minor Function Code

When f = 718 through 768 , the value in the j field is a minor function code designator.
An explanation of the details of each of these instructions is given in Section 6; they
are summarized in Appendix E.

5.2.3. Description of a Field

The contents of the a field of an instruction word has anum ber of uses. The exact
use is dependent on the instruction being performed and, in many cases, on the contents
of the Processor State Register (PSR).

5.2.3.1. Use of the a Field to Reference A Register

For most of the instructions, the value in the a field references one of the A registers.
When the control regist~r selection designator (EXEC ABR), D6, of the PSR = 0, each
val ue in the range 008 through 178 in the a field references one of the user A registers

in the range of control register addresses 148 through 338 , respectively. When 06 = 1,

each value in the range 008 through 178 in the a field references one of the Executive
A registers in the range of control register addresses 1548 through 1738 respectively.

In some ins tructions, the value in the a field references two or three A registers. When

two or three A registers are referenced, the value in the a field explicitly references

regist~r Aa , and implicitly references registers Aa + 1 and Aa + 2.

The unassigned control registers (addresses 348 , 358 , 1748 , and 1758) can be used

as extensions of the two sets of 16 A registers. For example, when a = 178 and the

instruction requires the referencing of A registers (Aa and Aa + 1) then:

'. If 06 = 0, the last user A register (address 338) is referenced for Aa , and the first

user unassigned control re gister at address 348 is referenced for Aa + L

• If 06 = 1, the las t Executive A register at address 1738 is referenced for Aa , and

the following Executive unassigned control register at address 1748 is referenced

for Aa + 1.

S.2.3.2. Use of the a Field to Reference X Registers

For certain instructions, the value in the a field references one of the X registers.

When D6 = 0, each value in the range of 018 through 178 in the a field references

one of the user X registers in the range of control register addresses 018 through

178 respectively; if a =: 08 , the PSR Temporary Storage Register at control register

address 0008 is referenced. The PSR Temporary Storage Register must not be used

for storage of program information. When 06 = 1, each value in the range of 018

through 178 in the a field references one of the Executive X registers in the range

of control register addresses 1418 through 1578 respectively; if a = 08 , the Executive

nonindexing X register at control register address 1408 is referenced.

UP-4053
Rev. 1

I UNIVAC llUts I
~ _________ P_R_O __ C_E_S_S_O_R __ A_N __ D_S_T __ O_R_A_G __ E __________ ~ ____________ ~S_E_C_T_IO_N_: ____ 5 __ ~P_A_G_E_: _______ 7

5.2.3.3. Use of the a Field to Reference R Register

For certain instructions, the value in the a field references one of the R registers.
When D6 = 0, each value in the range of 008 thrOugh 178 in the a field references
one of the user R registers at control register addresses 1008 through 1178 , respec-

tively. When D6 = 1, each value in the range of ~08 through 178 in the a field refer­

ences one of the Executive R registers at control register addresses 1208 through

1378 , respectively.

5.2.3.4. Use of the a Field to Reference I/O Channels

For most input/output (I/O) instructions, each value in the range of 008 through

178 in the a field (inclusively OR'ed with the contents of the Channel Select

R.egister) references one of the I/O channels 00 through 15 (008 through 17
8

),

respectively.

5.2.3.5. Use of the a Field to Reference Jump Keys
l

For a Jump On Key-s instruction, each value in the range of 018 through 178 in

the a field references one of the 15 selective jump keys on the operator's Display
Console.

5.2.3.6. Use of the a Field to Reference Halt Keys

For a Halt On Keys And Jump instruction, each of the four bit positions in the a
field references one of the four selective step keys on the operator's Display
Console.

5.2.3.7. Use of the a Field to Modify Memory Select Register (MSR)

For the Select Interrupt Locations instruction, the value in the three low-order
bits of the a field is transferred to the MSR.

5.2.3.8. Us~ of the a Field as Minor Function Code

For Store Channel Number, Initiate Interprocessor Interrupt/ Alarm/Disable Day
Clock/Enable Day Clock, or Load Channel Select Register/Load Last Address
Register instruction, the value in the a field specifies a particular variation of
the basic operation initiated by the f, j combination.

5.2.4. Use of the j and a Fields To Modify Control Register Address

For Jump On Greater And Decrement instruction, the values in the j field and a field
combine to form a 7-bit address (the leftmost bit of the j field is ignored). The 7-bit
address specifies which one of the 128 addressable control registers is to be used
as the counter for the instruction.

U p-'tU;)')

Rev. 1

UNIVAC IIUts

PROCESSOR AND STORAGE
SECTION:

5

5.2.5. Description of the x Field

An indexing operation which utilizes a ones complement subtractive adder occurs for
every instruction. If the control register selection designator D6 of the PSR is equal
to 0, each x field value in the range 018 through 178 references one of the user x

PAGE:

registers at control register addresses 018 through 178 , respectively. If D6 = 1, each

x field value in the range 018 th rough 178 references one of the Executive X registers

at control register addresses 1418 through 1578 , respectively. When the value in the

x field is not zero, the contents of the lower half (Xm) of the X register specified by

the x field is added to the extended contents of the u field to form the modified
operand address or a modified operand. This indexing operation is symbolized by

the notation: u + Xm = U.

When the value in the x field is zero, no index register is referenced. However, an

indexing operation does occur. It consists of adding an 18-bit half word of ?11 0 bits

to the extended u field value to form the modified operand address or modified operand.

This indexing operation is symbolized by the notation: u + 0 = U.

An indexing operation never produces a U value consisting of all 1 bits.

5.2.6. Description of the h Field

If the x field of the instruction word contains a nonzero value, the contents of the h
field determines whether or not the contents of the X register specified by the x field
are modified.

After the indexing operation is complete, if h = 1 and the x field is not zero, the
contents of the upper half (Xi) of the addressed X register is added to the contents
of the lower half (Xm) of the same X register and the sum is stored back in the lower
half (Xm). The process is Xm + Xi 4 Xm. The addition is performed in an 18-bit ones
complement subtractive adder in the index subsection. The modification of Xm is
performed without increasing the instruction execution time.

The only time the index register modification process produces an output consisting
of -0 is when both inputs to the process consist of -0, that is, (-0) + (-0) = -0.

If h = 0, the index register is not incremented or decremented.

In certain cases, the h field is used as an extension of the value in the u field
(see 5.2.8.2).

5.2.7. Description of the i Field

The i field can be used to specify indirect or absolu te addressing, or to extend the
u field of an instruction.

If i = 1 and D7 := 0, indirect addressing occurs for all instructioris except when
f = 018 - 678 and j = 168 or 178 , For the exception, x ;. 0 is also a required
condition for indirect addressing.

8

UP-41J!Jj

Rev. 1 I _________ ~_~_'~_~_~_S_';_~_R __ A_N_D __ S_T_O_R_A_G __ E __________ ~ ___________ ~ __________ ~ ________ __ ---L.- I SECTION: 5 PAGE: 9

Indirect addressing will not occur if:

i == 0, or

f == 018 - 678 , j == 168 or 178 , x == 0; the i field is used as an extension of the u
field.

When D7 = 1, indirect addressing is not possible and i == 1 specifies absolute
addressing. The i field may still be used as' an extension of the u field.

The exception cases are summarized in Table 5-1.

CONTENTS OF
CONTENTS BASE REGISTER IF f = 01 8 THRU 678; J = 168 OR 178; AND

OF i FIELD SUPPRESSION BIT
(D7) OF PSR x FIELD f:. 0 x FIELD = 0

0 0 Normal Address ing For all values of i

1 fie Id and D7, the i
field plus the h field

0 Ind irect Address ing
is used to extend

1 the u field
1 Absolute Addressing

Table 5-7. Use of i Field

Indirect addressing is initiated after calculating the relative address and completing
the conversion to absolute address in the index subsection, even if U :s. 1778 , The

contents of bit positions 21 through 0 of the main storage location addressed are

transferred to the control section of the CPU, where they replace the x, h, i and u

field values of the current instruction. The modified instruction is then performed

just as if the whole instruction word were initially obtained in its modified form

from main storage. Indexing and index register incrementation (if specified) are

performed in the normal manner for both the original and the modified instruction.

If the modified instruction also specifies indirect addressing, the whole process of

indirect addressing is repeated. The repetition or cascading of indirect addressing

continues until the modified instruction contains a 0 bit in the i field, or contains
all 0 bits in the x field for certain f, j combinations listed in Table 5-1, at which

time indirect addressing ,ceases and the balance of the instruction is performed.

If f:: 018 through 678 , j == 168 or 178 , and x = 0 in an instruction as it is initially

obtained from main storage or as it is modified as a result of an indirect addressing
operation, indirect addressing does not occur even if i = 1. In this case, the i field

is used as an extension of the u field.

u .t""-'tvv"::>

Rev. 1

UI'UYA\.. I IU~

PROCESSOR AND STORAGE
SEC TION:

5 10
PAGE:

----~-.--------~--~----------------~----------------~-------------------

5.2.8. Description of the u Field

The ultimate use of the u field depends on the values in the f and j fields of the
instruction.

For most f,j combinations, u is used as an operand address designator. The value in
the u field after indexing is used as the relative address of a main storage location
or as a control register address.

For certain f,j combinations, the indexed extension of the value in the u field of the
instruction (or of a modified instruction in the case of indirect addressing) is used
as the operand for some instructions or as a count in the case of shift instructions.
For other f,j combinations, the value in the u field has no effect on the result of the
ins truction.

5.2.8.1. Use of the u Field as an Operand Address Designator

The value in the u field of an instruction (or a modified instruction resulting from
an indirect addressing sequence) is an operand address designator if:

• f = 01 8 through 678 and j = 00 8 through 158 ;

• f = 708 through 728 , 758 , or 768 ; or

• f = 738 and j = 068 , 078 , or 17
8

.

It is also an operand address designator if indirect addressing is being performed
for any instruction.

When the value in the u field is an operand address designator, the 16-bit value in
the u field is always extended to an 18-bit input to the index adder by appending
o bits to form the two leftmost bit positions. The 18-bit output of the index adder
(U) is used as a relative main storage address or as a control register address.
When U < 2008 , U is used as a control register address if it is not being used as

an indirect address, a jump-to address, or the (remote) address for an Execute

instruction. U is used as a relative main storage address in all other cases.

For any given u field value, a value can be chosen for the Xm portion of the index

register specified by the x field which will produce any desired value of U in the

range 0000008 through 7777768 . (It is not possible to produce the value 7777778 .)

Certain instructions use U to reference both U and U + 1 as a double-length (72-bit)
word. In this case, U is the address of the most Significant 36 bits and U + 1 is the
address of the least significant 36 bits.

UP 4053 I UNIVA~ IIUts I
R:v. 1 ~ _________ P __ R_O_C_E_S_S_O __ R_A __ N_D __ S_T_O_R_A __ G_E __________ ~ ____________ ._5_E_c_T_lo_N_: ___ 5 __ ~_p_A_G_E_: _______ 1]

5.2.8.2. Use of the u Field as an Operand Designator

The value in the u field of an instruction (or a modified instruction) is an operand
designator if indirect addressing is not specified and

• f = 108 through 678 and j = 168 or 178 ; or

• f = 738 and j = 008 through 058 or 108 through 138 (all shift instructions)

When the valu.e in the u field of an instruction (or a modified instruction resulting
from an indirect addressing sequence) is an operand designator, the 16- bit value
in the u field is extended to 18 bits to provide one of the inputs to the index adder
for an indexing operation. This 18-bit value normally consist:=. of 0 bits in the two
leftmost bit positions and the 16-bit value from the u field in the remaining bit
positions. However, if f = 108 through 678 , j = 168 or 178 , and x = 0, the bits in

the hand i fields are used in the two leftmost bit positions in place of the 0 bits.

When hand i are both 1 bits and they are used to extend a u field whose value is
all 1 bits, the 18-bit output of the index adder is all 0 bits rather than all 1 bits.

The 18-bit index adder output is normally sent to the arithmetic section where it
is extended to become a 36-bit operand by O-bit fill (j = 168) or by filling with bits

iden tical to the leftmost bit of the index adder output (j = 178),

5.2.8.3. Restrictions of Use of the u Field

The u field is not used in the following instructions when their j field contains

168 or 178 and their i field contains a 0 bit.

• Store A

• Store Negative A

• Store Magnitude A

• Store R

• Store Zero

• Store X

In the following instructions, the u field is not used when their i field contains a
o hit.

• No Operation

• Disconnect Input Channel

• Disconnect Output Channel

• Allow All Channel External Interrupts

• Prevent All Channel External Interrupts

.. Executive Return

• Initiate Interprocessor Interrupt

• Select Interrupt Locations

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 5
SECTION:

5.3. GENERAL OPERATION OF THE CONTROL SECTION

The CPU's control section automatically obtains instruction words from main storage,
decodes them, and provides the control signals needed to execute the instruction. The
control section contains the following:

• Program address counter (P register)

• Program control subsection

• Index subsection

• Storage class control subsection

5.3.1. Program Address Counter (P Register)

PAGE:

The instruction words of the program are stored in one or more groups of consecutive
main storage locations. When a program is executed, each instruction word is tran~­
ferred from its main storage location to the control section. In the control section, the
instruction word is decoded and the control signals needed to execute the instruction
are generated. The main storage location of the instruction word is specified by. the
contents of the P register. The time at which an instruction word is transferred to the
control section is controlled by the program control subsection.

The 18-bit P register contains the absolute address of the next instruction to be
executed. Its contents are automatically incremented by one during the early stages
of the instruction's execution. The P register contents are again incremented by one
during the closing stages of the execution of a Search, Masked Search, or Test
instruction for whic h a skip next instruction condition is met. The P re gister is not
incremented following the 22-bit main storage to control section transfer for an indirect
addressing sequence or following the transfer of a word addressed by U during the
execution of an Execute instruction.

The automatic addressing of sequential main storage location is altered by the
execution of a Jump instruction. When a Jump instruction is performed, the address in
the P register is replaced by an absolute main storage address derived in the index
subsection. The next instruction word is obtained from the main storage location
specified by the altered contents of the P register.

These results are a consequence of the nature of incrementation, which is a true
addition rather than addition by complement subtraction. For example:

• If the P register contains 7777768 , incrementation produces the value 7777778
ra ther tha n 0000008'

• If the P register contains 7777778' incrementation produces the value 0000008
ra ther than 0000018 ,

12

UP·4053

Rev. 1 5 13 ~
UNIVAC 1108

PROCESSOR AND STORAGE SECTION: PAGE: _____ ---'------a..~~._

5.3.2. Program Control Subsection

The program control subsection contains a, number of registers, including the F0 1 F1,
F3, and F4 registers.

Each instruction word is transferred from the main storage location to the FO register
at the appropriate time. While in the FO register, the instruction word is interpreted
so as to provide the control signals for the operations of indexing, index register
incrementation, and indirect addressing. The controls for the reading of input operands
for the instruction and the storing of results are also set up while the instruction is in
the FO register. While these operations are being performed, values are transferred to
the Fl, F3, and F4 registers as follows:

• An image of the f field and j field values and the logical sum (inclusive OR) of the
a field value and the contents of the Channel Select Register (CSR) are transferred
to the F1 register. The f field and j field values in the F1 register are interpreted to
p:rovide control signals in the CPU's arithmetic section for activities such as arith­
metic computations, logical operations, compares, tests, shifts, and partial word
transfers. When an I/O instruction is being performed, the logical sum of the contents
of the a field and the Fl register (previous contents of CSR) specify an I/O channel
and the location of an input or output Access Control Word (ACW) register .

• The a field value in the FO register is modified (the modification depends on the f
field value and the ,condition of the control register selection designator D6) and
transferred to the F3 register. The contents of the F3 register now specifies the
7-bit address of a control register for instructions which use the a field to specify
an A, X, or R register. The 7-bit address of control register Aa + 1 is transferred
to the F4 register for use by instructions which require it. The addresses in the F3
and F4 registers are used to obtain input operands and to store results for many
instructions. When needed, the 7-bit address of control register Aa + 2 is derived by
from the contents of the F4 register. The addresses in the F3 and F4 registers are
also used to detect certa in anomalies and conflicts as describ~d in 5.4.1 and 5.4.3.

5.3.3. Index Subsection

The arithmetic operations of indexing, index modification, repeat counter decrementation,
real time clock decrementation, and input/output Access Control Word modification are
performed in the index subsection using an 18-bit ones complement subtractive index
adder. The 18-bit index adder produces an output of all 1 bits only when both inputs
consist of all 1 bits.

5.3.3.1. Indexing

When the x field of the current instruction in the FO register is not zero, the
value Xm, from the lower half of the X register specified by the x field, is added
to the extended contents of the u field. If the x field is zero, +0 is added to the
extended contents of the u field. The contents of the 16-bit u field are normally
extended to 18 bits by supplying 0 bits as the leftmost two bits. If the f field contains
a value in the range 018 through 678 , and if x = 0 and j = 168 or 178 , then the bits
from the hand i fields of the instruction are used to extend the u field to 18 bits.
'the result of the indexing operation is an 18-bit va lue called U. The us e of U is
determined in the storage class control subsection.

u r -'HJ:l.j

Rev. 1

urUVA\... IIUts

PROCESSOR AND STORAGE SECTION:
5

PAGE:

The indexing operation uses an 18-bit ones complement subtractive adder having
the same general characteristics as the main adder described in 4.2. It should be
noted that when U is an operand address and the CPU is operating in the 1107 system
compatibility mode (D4 of the PSR = 1), 0 bits are always used as the two leftmost
bits of U, regardless of the index adder output.

Conversion of relative address to absolute address is also performed in the index­
ing subsection. (Complete details of this conversion are presented in 9.3). Briefly,
a program's instruction words and data words can be stored in two portions of main
storage; one portion is referred to as the I-blank and the other portion is referred to
as the D-bank; each portion may contain instruction words or data words or both.

Conversion of relative address to absolute address involves two compound indexing
operations, each using a 9-bit modified ones complement subtractive adder and an
18-bit ones complement subtractive adder. The 9-bit adders are said to be modified
ones complement subtractive adders because an end-around borrow is always forced*
from the leftmost bit position of the first phase result to obtain the second phase
result. In all other res pects, the 9-bit adders and the 18-bit adders used in the
compound indeXing operations follow the rules specified in the explanation of the
main adder in 4.2.

The minuend input for one of the 9-bit adders is the 9-bit BI field of the PSR; the
minuend input for the other is the 9-bit BD field of the PSR (see 9.3.6 for exceptions).
The values of BI and BD indicate the displacement of the absolute addresses of the
words in the I-bank and the D-bank, respectively, from the relative addresses of
these words. The relative addresses of these words are assigned in the initial
program assembly or compilation. The displacement is represented in terms of
blocks of 512 words.

The subtrahend for both 9-bit adders is the 9-bit value consisting of 1 bits in the two
leftmost bit positions and the ones complement of the contents of bit positions 15
through 9 of the u field.

The output of each 9-bit adder is extended to 18 bits by inserting the contents of
the nine rightmost bit positions of the u field into the nine rightmost bit positions.
The resultant BI + u and BD + u are each used as the minuend input to the two 18-bit
adders involved in the compound additions. The subtrahend is the ones complement
of Xm if the x field of the instruction is not zero, or all 1 bits if the x field is zero.
The resulting compound sums are SI = (BI + u) + (Xm or 0) and SD = (BD + u) + (Xm or 0).
They are absolute addresses. When the CPU is operating in the 1107 system compatibility
mode (D4 of the PSR = 1), 0 bits are used as the two leftmost bits of the 18-bit sums
SI and SD, regardless of the bits produced for these two bit positions.

*Tlle end-around borrow is forced, which permits developinf!j, a 9-bit output consistinjJ of all1 bits. Because

of the method of forming the input from the u field, a 9-bit output of all1 bits could not be produced by a

tl'ue ones complement subtractive adder.

14

UP-4U!)j ~ UNJVA~ JJUts I
Rev. 1 PROCESSOR AND STORAGE 5 15 _______ _ __ ~ ______________ ._S_E_C_T_IO_N_l ______ ~_P_A_G_E_l ______ _

The sums U, SI, and SD· are produced in parallel. Interpretation of the current
instruction word and U in the storage class control subsection determines whether
or not an operand location in main storage is addressed, and if addressed, controls
the selection of either SI or SD to address main storage.

Conversion of relative to absolute address is also applicable to the address of
the rightmost half of a double length operand. After U, SI, and SD have been produced,
the values U+l, SI+l, and SD+l are calculated.

It should be noted that addition of 1 to certain values produces the following results:

7777758 + 1 = 7777768
7777768 + 1 = 0000008
7777778 + 1 = 0000018

0000008 + 1 - 0000018

It is not possible to produce 7777778 as the value for U + 1, SI + 1, or SD + 1. Unless
otherwise specified, mention of main storage addresses will hereafter be in terms
of U (the relative address) in order to simplify the presentation.

5.3.3.2. Index Modification

If the value in the x field of the current instruction word is not zero and the h
field contains a 1 bit, index modification occurs after the indexing operation is
complete. During index modification, Xi (upper half of the X register specified by
the x field) is added to Xm (the lower half of the same X register). The result
of the addition of Xm and Xi is stored in the lower half of the index register.

5 .. 3.3.3. Real Time Clock Decrementation

The lower half of the Real Time Clock register (RO register) is decremented by 1
once every 200 microseconds, independently of program control.

5.3.3.4. Repeat Counter Decrementation

The lower half of the Repeat Count register (R1 register) is decremented by 1 during
each pass through a repeated instruction. The decremented value replaces the
current value in the R1 register during the termination pass for the instruction.

5.3.3.5. Input/Output Access Control Word Modification

In an I/O operation, an 18-bit field (V field) of the I/O Access Control Word specifies
an absolute address in main storage to or from which an I/O data word is transferred.
The value in another field (G field) of an Internally Specified Index I/O Access
Control Word, or the value in the G and H fields of an Externally Spec ified Index
I/O Aocess Control Word, specifies whether the value in the V field is to be incre­
mented by 1, decremented by 1, or left unchanged each time an I/O data word is
transferred to or from main storage.

The value in the W field of the I/O Access Control Word specifies the number of
I/O data words to be transferred to or from main storage. The value in the W field
is always decremented by 1 as each I/O data word is transferred to or from main
storage.

ur .v""....,

Rev. 1

'-'I~I y"",-, •. _-

PROCESSOR AND STORAGE 5
SEC T ION: PAGE:

The associated I/O operation is complete when the value in the W field has been
decremented to zero. Additional informa tion on I/O Access Control Words is contained
in 7.2 and 7.3.

5.3.4. Storage Class Control Subsection

The values U, SI, and SD formed in the index subsection, are made available to the
storage class control subsection for selection according to the instruction being
performed. U may be used as the address of a control register, or as an operand
within the arithmetic section. SI or SD are used to address main storage, or for a new
value to be sent to the P register, but never to address control registers nor as an
operand of the instruction.

If an address is required, selection is based on comparisons of U with BS of the PSR,
and of U with 200S' When U is compared with BS, it is actually a comparison of the
leftmost nine bits of U with the 9-bit value produced by extending the 7-bit BS with
two high-order ° bits. In subsequent explanations, the result of this comparison is
denoted by: U::;'BS and U >BS.

• If an operand or shift count is required rather than an address, the IS-bit value
U is sent to the arithmetic section.

• The address of an operand is selected according to the following rules:

- If U<200S ' U is transferred to the control register addressing circuitry.

If U2:.200s, and

(1) if U::;'BS , SI addresses main storage; or

(2) if U>BS, SD addresses main storage.

When a two-word operand is required, the selection occurs twice. The first pass
selects U, SI, or SD. During the second pass the decision is made regarding U +1,
SI+l, and SD+1. The two consecutive addresses involved are not always consecutive
absolute addresses. Special cases which illustrate this fact are:

If U=177S ' a control register (U+l = 200S) and SIt! are used to address main storage.

If U =BS, SI is the addres s of the first word; but if U +1 is greater than BS, SD + 1
is the address of the second word .

• For a jump instruction, the new value for the P register is selected according to
the rule:

If U::;. BS, SI is transferred to the P register.

If U>BS, SD is transferred to the P register.

During each jump instruction, a designator within the CPU is set to indicate which
of the two values was used to load the P register. The information is required when­
ever the absolute value in the P register must be reduced to a relative value by sub­
tracting the contents of the appropriate base register.

• An indirect address or the address referenced in the Execute instruction is:

SI, if U::;'BS; or

SD, if U>BS.

16

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION:

5 PAGE: 17
UP-4U53

--~------------~------------~------.-----

5.4. CONTROL SECTION TIMING

The control section utilizes various timing chains to initiate the reading and writing
of main storage locations and control registers as required for the execution of each
instruction. Most chains control more than one activity, issuing the different commands
necessary for this control at intervals throughout chain operation.

Progress along each timing chain is- governed by a clock which defines 125 nanosecond
cycles for the chain.

5.4.1-. Basic Timing Chains

The following discussion of timing chains is intended to provide a basis for under­
standing the anomalies and control register conflicts described in 5.4.3. Examples
of specific timing sequences for typical instructions are given in 5.4.2.

5.4.1.1. Main Timing Chain (TO Chain)

The main timing chain (TO chain) controls initiation of other timing chains which,
in turn, control specialized activity within the control section, arithmetic section,
I/O section, and main storage modules of the system. In some cases, the TO chain
must halt and wait for completion of part or all of the activity being performed under
the control of one or more of the other timing chains. For instance, a main storage
timing chain or an arithmetic timing chain for an extended sequence instruction may
not have proceeded far enough to permit proper initiation of the next step of the TO
chain. The duration of the wait is a multiple of 125 nanoseconds. The TO chain
normally utilizes five productive cycles and one or more wait cycles, as follows:

iii CYCLE 1 - This cycle is used to address the control register specified by the
x field of the immediately preceding instruction in conjunction with 06 of the PSR.
The control register is read (Read Xx sequence), and its contents (both Xm and Xi
- the modifier and the increment portions, respectively) are transferred to the index
subsection. The contents of the u field of the instruction, together with the contents
of the hand i fields if f < 708' j = 168 or 178' and x:=O, are also transferred to the
index subsection .

• CYCLE 2 - Ouring this cycle, the incremented contents of the P register are
stored in that register: (P) + 1 -) P.

The U, SI, and SD values are produced in the index subsection. The storage
class control subsection determines which of the three is to be used and how to
use it. If the chosen value is to be used as the main storage address of an
operand word to be sent to the arithmetic section, a result word to be stored,
or a word from which the rightmost 22 bits are to be transferred to the FO register,
for an indirect addressing sequence, the TO chain initiates a request for a main
storage read or write cycle (Request Read SI/SO sequence or Request Write
SI/SD sequence).

In processing those instructions which use the u field as an index adder input to
define the addresses of the two words of a double precision operand or result,
if the first word of the input operand or result has been read or stored in the
preceeding pas s through the TO chain, this cycle is used to produce U + 1, SI+ 1,
and SOt1, and to determine which of the three values to use and how to use it.
If a main storage reference is required, the TO chain requests it (Request Read
SI+l/SD+l or Request Write SI+1/S0+1).

UP-4053
Rev. 1

UNIVAC 110B

PROCESSOR AND STORAGE SEC TION: 5 PAGE:

Cycle 2 is also used to request a main storage cycle to read the next instruction
(NI), which is addressed by the value in the P register (Request Read NI), unless
inhibited by one of the follow ing conditions:

The cycle is being used to initiate a main storage reference as part of an indirect
addressing sequence.

- The nature of the instruction prevents clearing the FO register in time to ensure
that the next instruction can be accepted. This occurs when the first access is
requested for an instruction which can require two main storage accesses for a
double-precision input operand or result, or at any time Jiuring the execution of
a Block Transfer, Search, or Masked Search instruction.

A main storage conflict exists because the P register addresses the same main
storage module as a Request Read/Write U/SI/SD sequence or a Request Read/Write
U+1/SI+1/SD+1 sequence initiated during this cycle .

. - The instruction is a Store instruction with j = 168 or 178' and the value U
calculated in the index subsection would address the same main storage
module as the value in the P register. The next instruction is not read in
even though U is not actually used to address main storage.

• CYCLE 3 - For most instructions, a control register is selected using an address
derived from the contents of the a field of the instruction in conjunction with D6 of
the PSR. The control register is read (Read Aa, Xa, Ra, Aa+1, or ja) and its
contents are transferred to the arithmetic section.

At the start of this cycle, the appropriate chain is activated in the arithmetic
section.

• CYCLE 4 - When index incrementation is specified (h=1), cycle 4 is used to
store Xm + Xi from the index subsection in bits 17 through 0 of the index register
indica ted by the contents of the x field in conjunction with D6 of the PSR (Write
Xx).

For some instructions, this cycle is also used to select a control register uSing
an address derived from the contents of the a field in conjunction with D6 of the
PSR, to read the selected control register, and to transfer its contents to the
arithmetic section (Read Aa or Aa+1).

If a Request Write U/SI/SD or Request Write U +1/SI+1/SD+1 sequence has been
initiated in cycle 2, the data to be written is made available to the selected main
storage module.

• WAIT CYCLES - If one or two main storage cycles have been requested in
cycle 2, there is a delay of 125 nanoseconds or an integral multiple thereof
before cycle 5 of the TO chain is initiated. Cycle 5 is not initiated until each
main storage module requested to initiate a storage reference responds to that
request. For a Request Write, the main storage module response indicates that
the data made available in cycle 4 has been accepted. For a Request Read, the
main storage response indicates tha t the requested data or instruction has been
read and is now available to the CPU.

18

UP-4053

Rev. 1

I UNIVAC 1108 I
~ __________ P_R_O __ C._E_S_S_O_R __ A_N __ D_S_T_O __ R_A_G __ E __________ ~ ____________ ~_s_E_c_T,_o_N_: __ 5 ____ ~p_A_G_E_:, ____ 1 __ 9

• CYCLE 5 - If a Request Read has been initiated in cycle 2, the data from main
storage is sent to the arithmetic section or the FO register as appropriate. The
nota tion used in the examples of ins truction execution sequences which follow is:

(SI/SD) -,) Arithmetic Section

(SI+l/SD+l) -,) Arithmetic Section

NI -) F 0 register

If the value U (or U+l) has been chosen in cycle 2 to address a control register
rather than main storage, the selected control register is read and the data trans­
ferred to the arithmetic sections, or data from the arithmetic section is written in
the selected control register.

Following the completion of cycle 5, the TO chain is immediately restarted at cycle 1
unless an arithmetic timing chain initiated in cycle 3 has not yet signalled that the
TO chain may proceed. The events occurring during th~ following pass through the TO
chain vary, however. They depend on the nature of the instruction being performed,
the progress already made in performing the instruction, and whether or not the next
instruction has been transferred to the FO register during cycle 5.

• If the instruction is an Execute instruction, the TO chain is immediately restarted
for the purpose of translating the subject instruction.

• If the low-order 22 bit positions of the FO register have been loaded as the result
of an indirect addressing sequence, the TO chain is immediately restarted in order
to develop U, SI, and SD.

• If not all of the storage references using addresses to be deve loped in the index
subsection have been completed for an instruction requiring such multiple references
(for example, a Double Precision Floating, Search, Masked Search, or Block Transfer
instruction), the TO chain is immediately restarted to initiate development of the
next operand word or result word address.

• If all of the passes through the TO chain needed for storage access are complete, the
TO chain is restarted for the purpose of translating the next instruction as soon
a signal to proceed has arrived from any arithmetic timing chain initiated in cycle 3.
Any delay while waiting for the signal is an integral multiple of 125 nanoseconds.

If the next instruction has not been read from main storage during a preceding pass
through the TO chain because of a conflict in storage access, there is an additional
pass through the TO chain for the sole purpose of obtaining the next instruction.
In this case, the only productive cycles of the chain are cycle 2 (Request Read NI)
and cycle 5 (NI --) FO register).

UP·4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 5
SECTION:

5.4.1.2. Result Storage Chain (Tl Chain)

When the TO·chain is restarted to initiate the processes required by the next
instruction or to obtain the next instruction from main storage, the Result
Storage Chain (Tl chain) is also started, if necessary. The Tl chain sequences
the storing of the result word or words from the arithmetic section in control
registers. It utilizes a maximum of three productive cycles. These cycles

PAGE:

coincide in time with cycles 1 through 3 of the TO chain, which is operating in
parallel with the Tl chain. The three cycles of the Tl chain are utilized as follows:

• CYCLE 1 - For the Double Load Shift And Count instruction, a value from the
arithmetic section is stored in the control register addressed by the contents
+ 1 of the F4 register (Write Aa+2).

• CYCLE 2 - For a11 but two of the instructions, which require storing results in
two control registers, this cycle is used to store a value from the arithmetic
section in the control register addressed by the contents of the F4 register
(Write Aa+l).

For the Double Load And Unpack Floating and Double Load And Convert To
Floating instructions, this cycle is used to store a value from the arithmetic
section in the control register addressed by the contents + 1 of the F4 register
(Write Aa+2).

For the Load X Modifier, Load X Increment, and Load Modifier And Jump instructions,
this cycle is used to store an 18·bit value from the arithmetic section in the index
register addressed by the contents of the F3 register (W rite Xa).

• CYCLE 3 - For most instructions (except Load X Modifier, Load X Increment,
and Load Modifier And Jump) which require storing results in one or more control
registers, this cycle is used to store a value from the arithmetic section in the
control register addressed by the contents of the F3 register (Write Aa, Xa, Ra,
ja, OACR, IACR, or Aa+l).

5.4.2. Alternate Bank vs. Same Bank Timing

The time required to perform an instruction is defined as the time from the start of
cycle 1 of the TO chain which follows the loading of the instruction in the FO register,
until the start of cycle 1 of the TO chain which fo11ows the loading of the next
instruction in the FO register. The time required to access the next instruction and
load it in the FO register overlaps the execution of the current instruction.

An instruction is said to be performed with alternate bank timing if the same main
storage module is not specified by the address of the next instruction and the last
value selected in the storage class control subsection for the current instruction
(U, SI, or SD for single pass instructions; U + 1, SI + 1, or SD + 1 for two-pass
instructions). Alternate bank timing applies (main storage module conflict is not
detected) if the selected value is an input operand or shift count, if it addresses
a control register, or if it addresses a main storage module other than the one
containing the next instruction. In this case, activities for the current instruction
completely overlap the accessing of the next instruction. Addressing a main
storage module for the next instruction can delay completion of the current in­
st.ruction by 125 nanoseconds or a multiple thereof if access to the module is
delayed by a wait for completion of a main storage cycle initiated for one of the
other processors in the system or by a wait for initiation and completion of a
main storage cycle for a higher priority processor.

20

21
UP·4053 1
Rev. 1 SECTION: 5 PAGE: ------ --------.--*-------------~--------------~-----------

An instruction is said to be performed with same bank timing if the same main storage
module is specified by the last value selected in the storage class control subsection
for the current Instruction and the address of the next instruction. Same bank timing
applies only if the selected value is an address and it specifies the main storage
module containing the next instruction. In this case, the current instruction and the
next instruction can overlap only during cycles 2 and 3 of the T1 chain for the
current instruction.

The following paragraphs explain in detail the steps performed in the various .passes
through the TO chain and the T1 chain for a single pass instruction and for a two­
pass instruction.

5.4.2.1. Typical Single Pass Instruction Timing

The timing sequences used when a single-precision fixed-point add instruction is
performed are representative of the sequences used for many instructions. The follow­
ing listings show pertinent steps in the timing sequences for both the alternate
bank case and the same bank case when performing the Add To A instrus::tion. The
alternate bank sequence applies if U :S. 1778 ; if j := 168 or 178 ; or if U ~ 2008 ,
j f- 168 or 178 , and the value in the P register addresses a word (the next instruction)
in a different main storage module than the word addressed by SI or SD. The same
bank sequence applies only if U 2.. 2008, .i ~ 168 or 178' and the value in the P register
addresses a word in the same main storage module as the word addressed by SI/SD.
In examples 1 and 2, the listed steps include the reading of the Add To A instruction
from main storage, the pass through TO chain to supply input operands to the arith­
metic section, the work performed in thE" T1 chain to store the sum produced by the
ari.thmetic section, and the reading of the next instruction from main storage.

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE SECTION: 5 PAGE: 22
UP-40U3

----., ,----------------------"---------'------......&..------

EXAMPLE 1:

PRIOR INSTRUCTION

TO CYCLE 1

TO-2

TO-3

TO-4

TO-S

T1 CYCLE 1

Tl-2

Tl-3

ALTERNATE BANK TIMING

Add To A Instruction

ADD TO A

TO-2 Request Read NI

TO-S NI~,)FO register

TO CYCLE 1 Read Xx;

TO-2

TO-3

TO-4

TO-S

u-)Index Subsection
(P)+l>P; Request
Read S I/SD
Read Aa; Start
Arithmetic Sequence
Write Xx

(SI/SD)->A ri thmetic
Section

T1 CYCLE 1

Tl-2

Tl-3 Write Aa (result of
add ins truction)

NEXT INSTRUCTION

TO-2 Request Read NI (no
main storage module
conflict between SI/SD
and P)

TO-S NI-)FO register

TO CYCLE 1

TO-2

TO-3

TO-4

TO-S

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

EXAMPLE 2:

PRIOR INSTRUCTION

TO CYCLE 1

1'0-2

1'0-3

1'0-4

1'0-5

1'1 CYCLE 1

TJl-2

1'1-3

SAME BANK TIMING

Add To A Instruction

ADD TO A

TO CYCLE 2: Request Read NI

1'0-5 NI-)FO Register

TO CYCLE 1: Read Xx;
u-)Index Subsection

1'0-2 (P)+l-)P;
Request Read SI/SD

1'0-3 Read Aa; Start
Arithmetic Sequence

1'0-4 Write Xx

1'0-5 (SI/SD)-) Arithmetic
Section

T1 CYCLE 1

Tl-2

T 1-3 Write Aa (Result of
add instruction)

5
SECTION: PAGE:

23

EXTRA INSTRUCTION FETCH
SEQUENCE AND NEXT INSTRUCTION

1'0-2 (C annot initia te
Request Read NI
because of main
storage module
conflict between
SI/SD and P.)

TO CYCLE 1

1'0-2 Request Read NI

1'0-3

1'0-4

1'0-5 NI~FO Register

TO CYCLE 1

1'0-2

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SEC TION:

5

5.4.2.2. Typical Two-Pass Instruction Timing

The Double Precision Fixed Point Add instruction uses two passes through the
TO chain to obtain input operands for the arithmetic section. Its timing sequences
are representative of the sequences used for all instructions which require input

PAGE:

to the arithmetic section of two words whose addresses are derived in the index
subsection using the u field of the instruction. The following listings show pertinent
steps in the timing sequences for both alternate bank and same bank timing. The
alternate bank sequence applies if U+1 ::;. 1778, or if U+1 2: 2008 and the value
in the P register addresses an instruction which is not in the same main storage
module as the operand word addressed by SI/SD+1. The same bank sequence applies
only if U+1 2:. 2008 and the value in the P register addresses a word in the same
main storage module as the word addressed by SI+1/SD+1. In examples 3 and 4, the
listed steps include the reading of the instruction from main storage, two passes
through the TO chain to supply input operands to the arithmetic section, the work
performed by the Tl chain to store the sum produced in the arithmetic section, and
the reading of the next instruction from main storage.

24

UNIVAC 1108

Rev .. 1 PROCESSOR AND STORAGE
SECTION: 5 PAGE:

25
UP-4053 L

------ --~---------------------------------------

EXAMPLE 3:

ALTERNATE BANK TIMING

Double Precision Fixed Point Add Instruction

P1RIOR INSTRUCTION

TO CYCLE 1

TO-2

TO-3

TO--4

TO-5

T1 CYCLE 1

Tl-2

Tl-3

DP ADD TO A

TO-2 Request Read
NI (the DA Instruction)

TO-5 NI--~FO Register

TO CYCLE 1 Read Xx;
u--'l>Index Subsection

TO-2 (P)+l-)P-
Request Read SIjSD.

TO-3 Read Aa; Start
Arithmetic Sequence

TO-4 Write Xx

TO-5 (SI/SD)-)Arithmetic
Section

TO CYCLE 1

TO-2

TO-3

TO-4

TO-5

Form U+1, SI-+1 and SD+1
in the Index Subsection;
Request Read SI+1/SD+1.
Read Aa+l

(SI+1/ SD+ l)-)Arithm etic
Section

T1 CYCLE 1

Tl-2 Write Aa+1

Tl-3 Write Aa

NEXT INSTRUCTION

TO-2 Request Read NI
(no main storage
conflict between
SI+1/SD+1 and P)

TO-5 NI-)FO Register

TO CYCLE 1

TO-2 etc.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 5
SEC TION:

EXAMPLE 4:

SAME BANK TIMING

Double Precision Fixed Point Add Instruction

PRIOR INSTRUCTION

TO CYCLE 1

TO-2

TO-3

TO-4

TO-S

T1 CYCLE 1

Tl-2

Tl-3

DP ADD TO A

TO-2 Request Read
NI (the DA instruction)

TO-S NI->FO Register

TO CYCLE 1 Read Xx;
u->Index Subsection

TO-2

TO-3

TO-4

TO-S

(P)-f1-> P; Request
Read SI/SD
Read Aa; Start Arithmetic
Section
Write Xx

(Sl/SD)->Arithmetic Sec­
tion

TO CYCLE 1

TO-2

TO-3

TO-4

TO-S

Form U+1 , SI+1, & SD 11
in Index Subsection;
Request Read SI f1/SD ±1.
Read Aa+1

(SI11/SD+1)--> Arithmetic
Section

T1 CYCLE 1

Tl-2 Write Aaf-l

Tl-3 Write Aa

NEXT INSTRUCTION

TO CYCLE 2 (Cannot
initiate Request
Read NI because
of main storage
access conflict
between SI1-1/SDI-1
and P.)

TO CYCLE 1

TO-2 Request Read NI

TO-3

TO-4

TO-S NI->FO register

TO CYCLE 1

TO-2 etc.

26
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 5 27
UP-4053 L

SECTION: PAGE: .____ •. __________________ --L.. _____ .L.......=-=--___ --L. ___ ~ ___ _

5.4.3:. Anomalies and Conflicts

The circuitry associated with the writing into and reading from the set of 128 control
registers is designed to provide reliable operation for simultaneously writing in one
control register and reading from another. Reliability may be impaired, however, if an
attempt is made to write in and read from the same control register during the same
125 nanosecond cycle interval. Such an attempt is termed a conflict. If a potential
conflict is not detected and resolved in the control section, the writing operation
is performed properly but the results of the read operation are not defined. An undetected
conflict may involve the control register references required for two consecutive
instructions or the references required within certain individual instructions.

An analysis of the steps performed during the execution of two sequential instructions
frequently indicates an anomaly; the result produced by the second instruction in the
sequence depends on whether the first instruction is performed with alternate bank or with
same bank timing. Even if the coding for two sequential instructions seems to indicate
alternate bank timing for the first instruction, an anomaly may exist in that the results
produced by the second instruction may depend on whether or not an I/O transfer sequence
or an interrupt occurs between the two instructions.

Special circuitry in the control section detects and resolves, or eliminates most potential
anomalies and conflicts. There are some instan,ces, however, in which an anomaly or
conflict is not detected by the control section.

5.4.3:.1. Detected A or A+1/X Anomalies

When an instruction is performed with alternate bank timing, the Read Xx step for
the next instruction is usually performed before the results for the current instruc-
tion are stored in the register or registers addressed by the a field of the current
instruction. Sometimes the control register addressed by the contents of either the
F3 register or F4 register (A or A+1) for the current instruction is the same register
as that addressed by the x field of the next instruction. For most instructions, when
this is detected, the control section aborts the operation of the TO chain for the next
instruction and restarts it at cycle 1 immediately following completion of cycle 3 of
the T1 chain. Consequently, the result words from the current instruction are stored
before the Read Xx step in cycle 1 of the TO chain for the next instruction is effectively
performed. This introduces a delay of 375 nanoseconds, but it ensures that the result
of the current instruction is in the X register before the register is used for the next
instruction, regardless of whether alternate bank or same bank timing applies for the
c urre n tins truction.

5.4.3.2. Undetected A,A+l, and A+2/X Anomalies

A control register used to store a result word for any of the following eight instructions
must not be used as the index register addressed by the x field of the next instruction.
For these eight instructions, an anomaly will not be detected by the control circuitry.

• Double Precision Floating Add

• Double Precision Floating Add Negative

• Double Precision Floating Multiply

• Double Precision Floating Divide

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 5
SECTION: PAGE:

• Double Load And Unpack Floating

• Double Load And Convert To Floating

• Floating Expand And Load

• Floating Compress And Load

When any of the above eight instructions are executed using alternate bank timing,
the Write Aa, Write Aa+1,and Write Aa+2 steps are performed after the Read Xx step
for the next instruction. When executing any of them with same bank timing, the
necessary write steps are performed before the Read Xx step for the next instruction.
Furthermore, if the instruction appears to provide alternate bank timing but an interrupt
sequence is initiated immediately follow ing the completion of the second pass through
the TO chain for that instruction, the write steps for the instruction are performed
before rather than after the Read Xx step for the next sequential instruction.

5.4.3.3. Detected AI A Conflicts

When an instruction is executed using alternate bank timing, the writing of a result
word in a control register for the current instruction during cycle 3 of the T1 chain
normally occurs during the same 125 nanosecond interval as the reading of a control
register to provide an input word to the arithmetic section (cycle 3 of the TO chain)
for the next instruction. The control section detects situations whiCh call for reading
from and writing in the same control register during cycle 3 of the TO and T1 chains.
When it detects such a situation, it does not perform the read operation. Instead g it
initiates the needed write operation for the current instruction using the data word
supplied by the arithmetic section. It also uses the data word in the arithmetic section
as the input word to the next instruction. This is done without affecting the execution
time of either instruction.

5.4.3.4. Undetected A+2/X Conflic'ts

The control reg.ister (Aa+2) used to store the count ~f the number of bit positions
shifted during the execution of the Double Load Shift And Count (DLSC) instruction
must not be used as the index register addressed by the x field of the next instruction.
The DLSC instruction stores a result word in a control register dUring each of the
three cycles of the T1 sequence. The count of the number of bit positions shifted is
stored in control register Aa+2 during cycle 1. The index register for the next instruction
is read during cycle 1 of the TO chain (Read Xx). There is no conflict if control
register Aa+2 for the DLSC instruction and the control register addressed by the x field
of the 'next instruction are not the same and if same bank timing applies for the DLSC
instruction, or if an interrupt occurs immediately following the DLSC instruction.
If alternate bank timing applies for the DLSC instruction and control register Aa+2 for
the DLSC instruction is the one which is addressed by the x field of the next instruction,
the conflict is not detected. This occurs only if the a field of the DLSC instruction
contains 008 and the x field of the next instruction contains 168 or if the two fields
contain 018 and 178 , respecti velyo If this situation arises, the Write Aa +2 is always
properly performed but the input to the index subsection as a result of the Read Xx
step for the next instruction is undefined.

21

UNIVAC 1108

PROCESSOR AND STORAGE 5 29
UP·40S3 L
Rev. 1 SECTION: PAGE: ------------- --------.--------------------------------------~--------------~~~~~----~~~~-------

S.4~3.S. Undetected X/A Conflicts

If the h field contains a 1 bit, the x field and the a field must not specify the same
control register for the follow ing three instructions:

• Logical AND

• Test Even Parity

• Test Odd Parity

For most instructions the Read Aa step, if required, is performed in cycle 3 of
the TO chain, and the W rite Xx step (store the sum of Xm + Xi if h :;: 1, x i 0)
is performed in cycle 4 of the TO chain. Both the Read Aa step and Write Xx
step (if required), however, are performed in cycle 4 of the TO chain for the
above three instructions. There is no conflict if the x field and the a field of one
of these instructions specify different control registers, or if h :;: O. If h::l, and
the x and a fields of anyone of these instructions specify the same control
register, an undetected conflict occurs during cycle 4 of the TO chain.

5.4.3.6. Undetected X/A+l Conflicts ()¥

':i
If h = 1, the x field and the contents of the field plus 1 must not specify the same
control register for the follow ing ten instructions:

• Divide Integer

• Divide Fractional

• Test Within Range

• Test Not Within Range

• Double Precision Zero Jump

• Double Shift Circular

• Double Shift Logical

• Double Shift Algebraic

• Left Double Shift Circular

• Left Double Shift Logical

Many instructions which require both a Read Aa step and a Read Aa+l step require
two passes through the TO chain. For these instructions, the Read Aa step is
performed during cycle 3 of the first pass through the TO chain and the Read Aa+l
step is performed during cycle 3 of the second pass. The above ten instructions
require only one pass through the TO chain even though they require both a Read
Aa step an4 a Read Aa +1 step. The Read Aa step is performed in cycle 3 and the
Read Aa+l step is performed in cycle 4. If h = 1 and the x field of the instruction
specifies the same control register as the contents of the a field plus 1, an
undetected conflict occurs in cycle 4 of the TO chain.

There is no conflict if h :: 0 or if the x field of the instruction does not specify the
same control register as the contents of the a field plus 1.

UP-4053

Rev. 1 L UNIVAC 1108 6
PROCESSOR AND STORAGE SECTION: PAGE: 1

'~----------'----'---~

8. INSTRUCTION REPERTOIRE'

6.1. INTRODUCTION

This section describes the operation performed by each instruction in the UNIVAC
1108 repertoire. These descriptions are grouped by types of instructions. The descriptions
assume a thorough understanding of the information presented in Section 5.

An introductory paragraph to each group presents information that is common to all
instructions in the group. The detailed descriptions that follow an introductory para­
graph have the following format:

• Instruction name

• Mnemonic code

• Octal function code

• Instruction execution times for alternate and same main storage module operation.

• Symbolic description of the operation performed by the instruction. The sym bology
used is defined in Appendix A.

• Textual description of the operation performed by the instruction.

• Sequentially numbered notes which provide special information related to the
instruction, as appropriate.

For all instructions, any possible value may be used in the a, x, h, i, and u fields
unless an exception to this rule is stated in the notes. Any possible value may be
used in the j field except when j is a minor function code designator or when an
exception is stated in the notes.

6.2. LOAD INSTRUCTIONS

The single-precision load instructions transfer data to the arithmetic section where
a 36-bit word is always formed. The 36-bit word is then transferred to the control
register specified by the a field of the instruction. Single-precision data-word transfers
from main storage to the arithmetic section are controlled by the value in the j field.

For the double-precision load instructions, the j field is a minor function code and
full 72-bit data transfers result.

A word consisting of all 0 bits represents +0 and a word consisting of all 1 hits
represents -0.

UP·4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6.2.1. LoadA

L,LA
10
0.75 IlS alternate
1.50 IlS same

6
SECTION:

The contents of U are transferred under j field control to the arithmetic section
and then to Aa.

(1) A Load A instruction cannot load a half word or a full word consisting or all 1
bits using j = 168 or 178, and h, i, u = -0. See the Load N egati ve A instruction
(6.2.2) or the Load Negative Magnitude A instruction (6.2.4) for loading a full
word.of all 1 bits. For the Load A instruction, if j = 168 or 178 , x = 0, h = i = 1,
and u = 1777778 , the 18-bit output of the index adder is +0 rather than -0 and
the U value transferred to the arithmetic section is +0.

6.2.2. Load Negative A

LN,LNA
11
0.75 IlS alternate
1. SO IlS same

-(U) -) A

The contents of U are transferred under j field control to the arithmetic section.
The ones complement of the value in the arithmetic section is transferred to Aa.

(1) This instruction may be used to load -0 in to an A register by usin g j = 168 or
178' and x = h = i = u = O.

6.2.3. Load Magnitude A

LM,LMA
12
0.75 IlS alternate
1.50 flS same

I (U)I ~ A

The contents of U are transferred under j field control to the arithmetic section.
If the sign bit (bit 35) of the value in the arithmetic section is a 1 bit, it is comple­
mented; if the sign bit is a 0 bit, it is not complemented. The final value (always
positive) is transferred from the arithmetic section to Aa.

6.2.4. Load Negative Magnitude A

LNMA
13
0.75 flS alternate
1. SO IlS same

- j(U)j ~ A

2
PAGE:

UP·4053 ~ UNIVAC 1108 1
Rev. 1 PROCESSOR AND STORAGE SECTION: 6 ._-- .. --~-----.----------------_..&..-_-----,

The contents of U are transferred under j field control to the arithmetic section.
If the sign bit (bit 35) of the value in the arithmetic section is a 0 bit, it is
complemented; if the sign bit is a 1 bit, it is not complemented. The final value
(always negative) is transferred from the arithmetic section to Aa.

(1) This instruction may be used to load -0 into an A register by using j = 168
or 178' and x = h = i = u = O.

6.2.5. Load R

L,LR
23
0.7S fl-S alternate
1.50 fl-S same

The contents of U are transferred under j field control to the arithmetic section and
then to the R registe,r specified by the a field.

(1) It is not possible to load a half word or a full word of 1 bits into an R register
using this instruction with j = 168 or 178' x = 0, and h, i, u == -0.

(2) If the CPU is in guard mode, an attempt to Load RO causes a Guard Mode
Fault Interrupt.

6.2.6. Load X Modifier

LXM
26
0.875 fl-s alternate
1.625 fl-S same

(U) ~ Xa ; Xa unchanged
17-0 35-18

The contents of U are transferred under j field control to the arithmetic section;
the low order 18 bits of the value in the arithmetic section are transferred to the
lower half (bits 17-0) of the X register specified by the a field; the upper half
(bits 35 through 18) of the X register remains unchanged.

(1) It is not possible to load the lower half of an X register with all 1 bits using
this instruction with j = 168 or 178 , x = 0, and h, i, u = -0.

6.2.7. Load X

L,LX
27
0.75 fl-s alternate
1.50 (.J.S same

The contents of U are transferred under j field control to the arithmetic section, and
then to the X register specified by the a field.

3
PAGE:

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECiION:

(1) It is not possible to load an X register with a half word or full word of all 1 bits
using this instruction with j = 168 or 178 , x = 0 and h, i, u = -0.

6.2.8. Load X Increment

LXI
46
1. 00 f.lS alternate
1. 75 f.ls same

(U) ~ Xa ; Xa unchanged
35-18 17-0

The contents of U are transferred under j field control to the arithmetic section;
the low order 18 bits of the value in the arithmetic section are transferred to the
upper half (bits 35-18) of the X register specified by the a field. The lower half
(bits 17-0) of the X register remains unchanged.

(1) It is not possible to load the upper half of an X register with all 1 bits using
this instruction with j = 168 or 178 , x = 0, and h, i, u = -0.

6.2.9. Double Load A

DL
71,13
1. 50 f.lS alternate
2.25 I1S same

(U,U+l) ~ A,A+l

The contents of U and U+l are transferred to the arithmetic section and then to Aa
and Aa+l, respectively.

(1) If a = 178' Aa+l is the control register at address 348 or 1748 ,

6.2.10. Double Load Negative A

DLN
71,14
1. 50 f.lS alternate
2.25 f.lS same

-(U ,U+l) ~ A,A+l

The contents of U and U+l are transferred to the arithmetic section where the
72-bit value is complemented and then transferred to Aa and Aa+l, respectively.

(1) If a = 178' Aa+l is the control register at address 348 or 1748 ,

4
PAGE:

Up-4053 L
Rev. 1

.-------- ---.--~--------------~------------~------,

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECTION: PAGE:

6.2.11. Double Load Magnitude A

DLM
71,15
1. 50 fls alternate
2.25 flS same

\(U,U+l)\ ~ A,A+l

The contents of U and U+l are transferred to the arithmetic section. If the sign
bit (bit 35) of U is a 1 bit, the 72-bit value in the arithmetic section is complemented;
if the sign bit is a 0 bit, the 72-bit value is not complemented. The final value
(always positive) is transferred from the arithmetic section to Aa and Aa+1.

(1) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

6.3. STORE INSTRUCTIONS

The single-precision store instructions transfer data from a control register specified
by the a field to the arithmetic section, where the dat.a is operated on, if required, and
then transferred to the main storage location or control register addressed by U. An
exception to this is the Store Zero instruction (see 6.3.5) which causes zeros to be
transferred from the arithmetic section to location U.

Single-precision data-word transfers to main storage are controlled by the j field as
explained in 5.2.2.1 and illustrated in Figure 5-3. The j field cannot be used to
transfer data from one control register to another control register (U < 2008) and only
full word (36-bit) data can be transferred. If j = 168 or 178 , no data is stored. A Guard
Mode Fault Interrupt will occur, however, if U < 2008 and the guard mode is violated,
or if U 2: 2008 and SI or SD, as appropriate, is outside the main storage limits set in
the Storage Limits Register. The j field of the double-precision store instruction is
a minor function code and a full 72-bit data transfer results.

Indexing, index incrementation/ decrementation, and indirect addressing function
normally in all cases.

A word consisting of all 0 bits represents +0 and a word consisting of all 1 bits
represents -0.

6.3.1. Store A

S,SA
01
0.75 11S alternate
1.50 p,s same

(A) ~ U

The contents of Aa are transferred to the arithmetic section and then transferred
under j field control to location U.

(1) If j = 168 or 178 , no data is stored.

5

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6.3.2. Store Negative A

SN,SNA
02
0.75 flS alternate
1.50 flS same

-(A) ~ U

6
SECTION:

The contents of Aa are transferred to the arithmetic section. The complement of the
value in the arithmetic section is transferred under j field control to location U.

(1) If j = 168 or 178 , no data is stored.

6.3.3. Store Magnitude A

SM,SMA
03
0.75 flS alternate
1. 50 flS same

I(A)I ~ U

The contents of Aa are transferred to the arithmetic section. If the sign bit (bit 35)
of the value in the arithmetic section is a 1 bit, the value is complemented. The
final value (always positive) is transferred from the arithmetic section under j field
control to location U.

(1) If j = 168 or 178 , no data is stored.

6.3.4. Store R

S,SR
04
0..75 flS alternate
1.50. flS same

The contents of the R register specified by the a field are transferred to the
arithmetic section and then transferred under j field control to location U.

(1) If j = 168 or 178 , no data is stored.

6.3.5. Store Zero

SZ
0.5
0..75 flS alternate
1.50. flS same

Zetos ~ U

Binary zeros are transferred under j field control from the arithmetic section to
location U.

6
PAGE:

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 6
SEC TION:

(1) The contents of the a field are ignored; however, it is recommended that the
a field contain all 0 bits.

(2) If j = 168 or 178 , no data is stored.

6.3.6. Store X

S,SX
06
0.7S flS alternate
1.50 fls same

PAGE:

The contents of the X register specified by the a field are transferred to the arithm etic
section and then transferred under j field control to location U.

(1) If j = 168 or 178 , no data is stored.

6.3.7. Double Store A

DS
71,12
1. 50 fls alterna te
2.25 fls same

(A,A+1) ~ U, U +1

The contents of Aa and Aa+1 are transferred to the arithmetic section and then to
locations U and U+1, respectively.

(1) If a = 178' Aa+1 is the control register at address 348 or 1748 .

6.3.8. Block Transfer

BT

22
2.25 + 1.5K flS
K :0:. the initial count in the Repeat Count Register

(Xx + u) ~ Xa + u; repeat K times.

A source word is transferred under j field control to a nonaddressable register in
the ,arithmetic section. The contents of the nonaddressable register are transferred
under j field control to a destination word location. The repeat count is decremented
by 1. The source to destination transfer step is repetitively performed until the
repeat count has been decremented to O. The x field specifies the X register used
with the u field to determine the effective source word address. The a field specifies
the X register used in determining the effective destination word address.

(1) A word containing the desired repeat count in the rightmost 18-bit positions
must be loaded in the Repeat Count Register (R1) before performing the Block
Transfer instruction. It is recommended that this word contain all 0 bits in the
leftmost 18-bit positions.

7

UNIY'"''- IIUO

PROCESSOR AND STORAGE 6
SECTION: PAGE:

(2) Instruction initiation requires a .75 microsecond pass through the main timing
chain (TO) to transfer the contents of R1 to the index subsection. Two passes
through TO are required for each data word transfer. A .75 microsecond termination
pass through TO stores the remnant repeat count in R1 after all specified transfer
steps have been completed (repeat count has decremented to zero) or in preparation
for an 110 interrupt.

(3) If the initial repeat count is +0, only the initiation and termination passes occur
and no data is transferred.

(4) If j = 16S or 17S' no data is transferred; however, the data transfer passes will
occur until the repeat count is decremented to zero.

(5) If the x field is zero, no data is transferred. The contents of the X register
specified by the a field remain unchanged regardless of the contents of the a
and h fields.

(6) The P register is incremented by 1 during the initial data transfer pass. If
I/O interrupt occurs before the repeat count has decremented to zero, the
termination pass occurs at the conclusion of the currently active data transfer
pass. The remnant repeat count is stored in R1 and the contents of the P
register are decremented by 1 during this termination pass. When the instruction
at the interrupt location is initiated, the P register contains the address of the
Block Transfer instruction or the address of the Execute instruction which led
to the Block Transfer instruction. Thus this address can be preserved and, when
the interrupt condition has been satisfied, it is possible to return to the Block
Transfer instruction and continue executing this instruction at the point where
it was terminated for the interrupt. If the Block Transfer instruction was entered
by means of an Execute instruction, the h field of the Execute instruction should
be zero so that, when the program returns to the Execute instruction, the effective
U address will again lead to the Block Transfer instruction. If the Block Transfer
instruction contains indirect addressing (i field = 1), the h field should be zero
to enable the program to return to the same effective U address and complete the
Block Transfer instruction in the event of an interrupt.

(7) If there is no indirect addressing (i field = 0), the h field normally contains a
1 bit. If h = 0, no incrementationl decrementation of the index registers occurs.
The source and destination addresses when h = 0 are the initial contents of the
index registers used repetitively for every transfer perform. Thus no more than
one data transfer is effectively performed.

(S) In user operating mode (D6 of the PSR = 0), if the x field is not zero, but the a
field is zero, the a field references the PSR Temporary Storage register at control
register address OOOS' If an interrupt should occur during the execution of such
a Block Transfer instruction, the contents of the PSR are stored in the PSR
Temporary Storage register. Thus the a field reference for the Block Transfer
instruction is destroyed and there is no way to return to complete the Block
Transfer instruction when the interrupt condition has been satisfied.

In the Executive operating mode (D6 of the PSR = 1), if the x field is not zero
and the a field is zero, the a field references the Executive Nonindexing Index
register at control register address 140S (see 3.2.2.14) and proper operation
results.

s

UP-4053 ~
Rev. 1

------- -----------------------------------~----------~--------------~------------~------,------

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 6 PAGE: 9

In either user or Executive mode, the contents of the control register referenced
when a = 0 are used by the index subsection to determine the destination address
during the second pass through the TO chain for each data transfer pass, and
incrementation/decrementation of index registers operates normally.

(9) If j = 18 to 158 and a source address developed in the index subsection is a
control register address, the source to arithmetic portion of the pass is performed
as if j = O. A full 36-bit word is effectively transferred from the control register
to the arithmetic section. The transfer from the arithmetic section to the destination
address is also under j field con tro!.

Thus the j field can specify partial word transfers from the arithmetic section to
main storage addresses. If the destination address is a control register address,
the full 36-bit word is transferred from the arithmetic section to the specified
control register.

6.4. Fixed-·Point Arithmetic Instructions

The fixed-point arithmetic instructions perform integer or fractional addition, sub­
traction, multiplication, and division. Details of the operation of the arithmetic
section are explained in 4.1 through 4.3.6. In a single-precision arithmetic instruction,
the transfer of data from location U in main storage to the arithmetic section is under
the control of the contents of the j field of the instruction as illustrated in Figure 5-2.
For double-precision and parallel half word and third word arithmetic operations, the
value in the j field is a minor function code.

For all arithmetic instructions, indexing, index incrementation/ decrementation, and
indirect addressing function normally.

A word consisting of all 0 bits represents +0 and a word consisting of all 1 bits
represents -0.

6.4.1. Add To A

A,AA
14
0.75 f.ls alternate
1.50 f.ls same

(A) + (U) ~ A

The contents of U are transferred under j field con trol to the arithmetic section.
The 36-bit value in the arithmetic section is add'ed algebraically to the contents of
Aa. The sum is stored in Aa.

(1) The overflow and carry designators are cleared at initiation and may be set as
a result of performing this instruction.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the index
adder is +0 rather than -0, and the U value transferred to the arithmetic section
is +0.

UP·4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

(3) -0 + -0 =-0
-0 + +0 = +0
+0 + -0 = +0
+0 + +0 = +0

6.4.2. Add Negative To A

AN,ANA
15
0.75 f.Ls alternate
1.50 f.Ls same

(A) - (U) -') A

6
SECTION:

The contents of U are transferred under j field control to the arithmetic section.
The 36-bit value in the arithmetic section is subtracted algebraically from the
contents of Aa. The difference is stored in Aa.

(1) The overflow and carry designators are cleared at initiation and may be set as
a result of performing this instruction.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0 and the U value transferred to the arithm etic
section is +0.

(3) -0 - +0 = -0
-0 - -0 = +0
+0 - -0 = +0
+0 - +0 = +0

6.4.3. Add Magnitude To A

AM,AMA
16
0.75 f.Ls alternate
1.50 f.Ls same

(A) + I(U)I -') A

The contents of U are transferred under j field control to the arithmetic section.
If the sign bit (bit 35) of the 36-bit value in the arithm etic section is a 1 bit, the
value is complemented; if the sign bit is a 0 bit, the value is not complemented.

PAGE:

The final 36-bit value in the arithmetic section (always positive) is added algebraically
to the contents of Aa. The sum is stored in Aa.

(1) The overflow and carry designators are cleared at initiation and may be set as
a result of performin g this instruction.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the index
adder is +0 rather than -0, and the U value transferred to the arithmetic section
is +0.

(3) -0 + +0 = +0
+0 + +0 = +0

10

UP-4053
Rev. 1 PROCESSOR AND STORAGE 6

SECTION: PAGE:
11 ~

UNIVAC 1108

_____ --"---J..._------L.--__

6.4.4. Add Negative Magnitude To A

ANM,ANMA
17
0_.75 IlS alternate
1. SOilS same

(A) -- I (U) I 4 A

The contents of U are transferred under j field control to the arithmetic section. If
the sign bit (bit 35) of the 36-bit value in the arithmetic section is a 1 bit, the value
is complemented; if the sign bit is a 0 bit, the value is not complemented. The final
36-bit value in the arithmetic section (always positive) is subtracted algebraically
from the contents of Aa. The difference is stored in Aa.

(1) The overflow and carry designators are cleared at initiation and may be set
as a result of performing this instruction.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(3) .-0 - +0 = - 0
+0 - +0 = +0

6.4.5. Add Upper

AU
20
0.75 IlS alternate
1. SOils same

(A) + (U) 4 A+l

The contents of U are transferred under j field control to the arithmetic section.
The 36-bit value in the arithmetic section is added algebraically to the contents
of Aa. The sum is stored in Aa+1. The contents of U and Aa remain unchanged.

(1) The overflow and carry designators are cleared at initiation and may be set as
a result of performing this instruction.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(3) --0 + -0 = -0
--0 + +0 = +0
+0 + -0 = +0
to + +0 = +0

(4) If a = 178 , Aa+l is the control register at address 348 or 1748

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6.4 .. 6. Add Negative Upper

ANU
21
0.75 flS alternate
1.50 flS same

(A) - (U) ~ A-f-1

6
SECTION:

The contents of U are transferred under j field control to the arithmetic section.
The 36-bit value in the arithmetic section is subtracted algebraically from the
contents of Aa. The difference is stored in Aa+1. The contents of U and Aa remain

unchanged.

(1) The overflow and carry designa tors are cleared at initiation and may be set as
a result of performing this instruction.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rathe r than -0, and the U value transferred to the arithmetic

section is +0.

(3) - 0 - +0 = - 0
-0 - -0 = +0
+0 - -0 = +0
+0 - +0 = +0

(4) If a = 178 , Aa+1 is the con trol register at address 348 or 1748 .

6.4.7. Add To X

A,AX

24
0.75 flS alternate
1.50 11S same

The contents of U are transferred under j field control to the arithmetic section.
The 36-bit value in the arithmetic section is added algebraically to the contents
of the X register specified by the a field. The sum is stored in the X register
specified by the a field.

(1) The overflow and carry designators are cleared at initiation and may be set
as a result of performing this instruction.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(3) -0 + -0 = -0
-0 + +0 = +0
+0 + -0 = +0
+0 + +0 = +0

12
PAGE:

up-4053

Rev. 1

UNIVAC IIUtJ

PROCESSOR AND STORAGE

'6.4.8. Add Negative To X

AN,ANX
25
0.75 fls alternate
1. 50 fls same

I SECTION, 6

The contents of U are transferred under j field control to the arithmetic section.
The 36-bit value in the arithmetic section is subtracted algebraically from the
contents of the X register specified by the a field. The difference is stored in the
X register specified by the a field.

(1) The overflow and carry designators are cleared at initiation and may be set as
a result of performing this instruction.

(2) J[f j = 168 or 178' x = 0, h = i = 1, and u = 1777778' the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(3) .- 0 - +0 = - 0
·-0 - -0 = to
+0 - -0 = +0
+0 - +0 = +0

6.4.9. Multiply Integer

MI
30
2.375 fls alternate
3.125 fls same

(A) . (U) ~ A,A+l

The contents of U are transferred under j field control to the arithmetic sect~on.
The contents of Aa are multiplied algebraically by the 36-bit value in the arithmetic
section, producing a 72-bit product:. The most: significant 36 bits of the product
(including sign bits) are stored in Aa. The least significant 36 bits of the product
are stored in Aa+ 1.

(1) Bit positions 71 and 70 of the product are always sign bits. The product of
any two 35-bit positive integers cannot exceed a 70-bit positive integer.

(2) The algebraic rule for signs applies without exception.

(3) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(4) If a = 178' Aa+l is the control register at address 348 or 1748 ,

13
PAGE:

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

604.10. Multiply Single Integer

MSI
31
2.375 /1S alternate
3.125 /1S same

(A) . (U) ~ A

6
SECTION: PAGE:

./

The contents of the U are transferred under j field control to the arithmetic section.
The contents of Aa are multiplied algebraically by the 36-bit value in the arithmetic
section, producing a 72-bit product. The least significant 36 bits of the product are
stored in Aa. The most significant 36 bits of the product are lost.

(1) The 36-bit result stored in Aa does not represent the product as a signed
number if the leftmost 37 bits of the 72-bit product formed in the arithmetic
section are not identical.

(2) The algebraic rule for signs applies except as noted above.

(3) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

604.11. Multiply Fractional

MF
32
2.375 /1S alternate
3.125 /1S same

(A) . (U) ~ A,A+l

The contents of U are transferred under j field control to the arithmetic section.
The contents of Aa are multiplied algebraically by the 36-bit value in the arithmetic
section, producing a 72-bit product which is shifted left, circularly, one bit
position. The leftmost 36 bits of the shifted product, including the sign bit are
stored in Aa. The rightmost 36 bits are stored in Aa+1.

(1) This instruction performs an operation iden tical to the Multiply Integer
instruction (see 6.4.9) except that the 72-bit result of the multiplication
process is'shifted left, circularly, one bit position prior to storing it in Aa
and Aa+l.

(2) The algebraic rule for signs applies without exception.

(3) The rightmost bit of the result in Aa+l is a sign bit and it is identical to the
leftmost bit of the result in Aa.

(4) If j = 168 or 178' x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(5) If a = 178 , Aa+l is the control register at address 348 or 1748'

14

- 6 15 UP 4053 l UNIVAC 1108 I
Rev. 1 _________ P __ R_O_C_.E __ SS_O __ R_A ____ N_D __ S_T_O_R_A ____ G_E ____________ ~ ____________ ~_S_E_C_T_IO_N_: _______ ~P_A_G_E_: ____ ___

604.12. Divide Integer

DI
34
10.125 flS alternate
10.875 flS same

(A,A+1) -;- (U) -) A; remainder -) A+1

The contents of U are transferred under j field control to the arithmetic section.
The 72-bit signed number in Aa and Aa+1 is shifted one bit position left, circularly,
and divided algebraically by the 36-bit value in the arithmetic section. The 36-bit
signed quotient is stored in Aa. The remainder retains the sign of the dividend
(the leftmost bit of the initial contents of Aa) and is stored in Aa+1.

(1) The absolute value of the 72-bit signed dividend (Aa,Aa+1) should be less than
the absolute value of the divisor (j-determined portion of U) multiplied by 235 .
If this relationship is not satisfied, no result is stored (the initial contents of
Aa and Aa+1 are not changed) and a Divide Fault Interrupt results. This includes
the case in which the divisor equals to.

(2) The algebraic rule for signs applies to the sign of the quotient (se~ 4.3.5).

(3) When h = 1, the value transferred to the arithmetic section from Aa+1 is
undefined if Aa+1 is also the X register being incremented; that is, for the
following three combinations of x and a field values:

x= 158 and a = 0
x = 168 and a = 1
x= 178 and a = 2

(4) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(5) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

6..4.13. Divide Single Fractional

DSF
35
10.125 fls alternate
10.875 flS same

(A) -;- (U) .~ A+1

The contents of U are transferred under j field control to the arithmetic section.
The contents of Aa are divided algebraically by the 36-bit value in the arithmetic
section. The 36-bit signed quotient is stored in Aa+1. The remainder is lost. The
contents of Aa remain unchanged.

UP-4U~.:S

Rev. 1

UNIVA\.. IIUts

PROCESSOR AND STORAGE 6
SECTION:

(1) The absolute value of the dividend (Aa) should be less than the absolute
value of the divisor (j-determined portion of U). If this relationship is not
satisfied, no result is stored (the initial contents of Aa+1 are not changed),
and a Divide Fault Interrupt results. This includes the case in which the
divisor equals to.

(2) The algebraic rule for signs applies to the sign of the quotient (see 4.3.5).

(3) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0. As a consequence, the U value transferred
to the arithmetic section is +0 and a Divide Fault Interrupt occurs.

(4) If a = 178' Aa+1 is the control register at address 348 or 1748 ,

6.4.14. Divide Fractional

DF
36
10.125 fls alternate
10.875 flS same

(A,A+1) .;- (U) -) A; remainder ~ A+1

The contents of U are transferred under j field control to the arithmetic section.
The 72-bit signed number in Aa and Aa+1 is divided algebraically by the 36-bit
value in the arithmetic section. The 36-bit signed quotient is stored in Aa. The
remainder retains the sign of the dividend (the leftmost bit of the original contents
of Aa) and is stored in Aa+1.

(1) If the absolute value of the leftmost half of the dividend (Aa) is greater than,
or equal to, the absolute value of the divisor, no result is stored (the initial
contents of Aa and Aa+1 remain unchanged), and a Divide Fault Interrupt
occurs. This includes the case in which the divisor equals to.

(2) When h = 1, the value transferred to the arithmetic section from Aa+1 is
undefined if Aa-1-1 is also the X register being incremented; that is, for the
following three combinations of x and a field values:

x = 158 and a = 0
x = 168 and a = 1
x = 178 and a = 2

(3) The algebraic rule for signs applies to the sign of the quotient (see 4.3.5).

(4) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(5) If a = 178' Aa+1 is the control re gister at address 348 or 1748 ,

16
PAGE:

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 6 PAGE: 17
UP-4053 ~

Rev. 1
------- -------.--------------------------------------~------------~------------~-----------

6.4 .15. Double-Precision Fixed Point Add

DA
71,10
1.625 f.1s alternate
2.375 fls same

(A,A+l) + (U,U+l) -) A,A+l

The 72-bit signed number from U and U+l is added algebraically to the 72-bit
signed number from Aa and Aa+1. The 72-bit sum is stored in Aa and Aa+1.

(1) The overflow and carry designators are cleared at initiation and may be set
as a result of performing this instruction.

(2) If a = 178 , Aa+ 1 is the control register at address 348 or 1748 ,

(3) -0 + -0 = -0
-0 + +0 = +0
+0 + +0 = +0
+0 + -0 = +0

6.4.16. Double-Precision Fixed Point Add Negative

DAN
71,11
1.625 fls alternate
2.375 flS same

(A,A+l) - (U,U+l) --) A,A+l

The 72-bit signed number from U and U+l is subtracted algebraically from the
72-bit signed number from Aa and Aa+1. The 72-bit difference is stored in Aa and
ARt-I.

(1) The overflow and carry designators are cleared at initiation and may be set
as a result of performing this instruction.

I

(2) If a = 178' Aa+ 1 is the control register at address 348 or 1748 ,

(3) - 0 - +0 = - 0
-0 - -0 = +0
+0 - +0 = +0
+0 - -0 = +0

6.4.17. Add Halves

AH
72,04
0.~5 flS alternate
1.50 flS same

(A)35-18 + (U)35-18 -~ A35 - 18 ;

(Ah7-0 + (U)17-9 --) A17-0

UP·4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECTION: PAGE:

The contents of each half (18-bit portion) of U are added algebraically to the
contents of the corresponding half of Aa. The sums are stored in the corresponding
hal ves of Aa.

(1) The overflow and carry designators are not affected by this instruction.

(2) There is no interaction between the upper and lower halves in the arithmetic
section. A borrow from bit 17 is propagated to bit 0 rather than bit 18. A borrow
from bit 35 is progated to bit 18 rather than bit O.

(3) -0 + -0 = -0
-0 + +0 = +0
+0 + -0 = +0
+0 + +0 = +0

6.4.18. Add Negative Halves

ANH
72,05
0.75 flS alternate
1.50 flS same

(A)35-18 - (U)35-18 ~ A35- 18 ;

(A)17-0 - (U)17-0 ~ A17-0

The contents of each half (18-bit portion) of U are subtracted algebraically from
the contents of the corresponding half of Aa. The differences are stored in the
corresponding halves of Aa.

(1) The overflow and carry designators are not affected by this instruction.

(2) There is no interaction between the upper and lower halves in the arithmetic
section. A borrow from bit 17 is propagated to bit 0 rather than bit 18. A
borrow from bit 35 is propagated to bit 18 rather than bit O.

(3) - 0 - +0 = - 0
-0 - -0 = +0
+0 - +0 = +0
+0 - -0 = +0

6.4.19. Add Thirds

AT
72,06
0.75 flS alternate
1.50 fls same

(A)35-24 + (U)35-24 ~ A35- 24 ;

(A)23-12 + (U)23-12 ~ A23 - 12 ;

(A)11-0 + (U)11-0 ~ AII-0

18

UP-40U3
Rev. 1

--~------------~------------~------.-----

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECTION: PAGE: 19

The contents of each third (12-bit portion) of U are Eldded algebraically to the
contents of the corresponding third of Aa. The sums are stored in the corresponding
thirds of Aa.

(1) The overflow and carry designators are not affected by this instruction.

(2) A borrow from bit 11, 23, or 35 is propagated to bit 0, 12, or 24, respectively,
rather than to bit 12, 24, or O.

(3) -0 + -0 =-0
-0 + +0 = +0
+0 + +0 = +0
+0 + -0 = +0

6.5. FLOATING-POINT ARITHMETIC

Floating-point arithmetic operations allow for efficient computation in vol ving numerical
data with a wide range of magnitudes (see 4.4). In all floating-point arithmetic instructions,
indexing, index incrementation/ decrementation, and indirect addressin g function normally.

The greatest precision is obtained in floating-point arithmetic operations when the
floating-point input operands are normalized numbers. Certain floating-point operations
produce undefined results if normalized input operands are not used; the supporting
notes indicate which instructions are affected. A word consisting of all 0 bits represents
+0 and a word consisting of all 1 bits represents -0.

6.S.1. F10ating Add

FA
76,00
1.875 /ls alternate
2.626 I1s same

(A) + (U) -" A; residue -" A+1

The single-precision floating-point number from location U is added to the single­
precision floating-point number from Aa. The resulting sum is normalized and then
stored in single-precision floating-point format in Aa. The residue in single-precision
floating-point format is stored in Aa+1.

(1) The result stored in Aa is a normalized num ber even if either or both of the
inp~ t operands are not normalized. No attempt is made to normalize the residue
stored in Aa+1.

(2) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(3) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6,,5.2. Floating Add Negative

FAN
76,01
1. 875 f.1S alternate
2.625 f.1S same

(A) - (U) ~ A; residue ~ A+1

SECTION: 6 PAGE: 20

The single-precision floating-point number from location U is subtracted from the
single-precision floating-point number from Aa. The resulting difference is normalized
and then stored in single-precision floating-point format in Aa. The residue in single­
precision floating-point froma t is stored in Aa+ 1.

(1) The result stored in Aa is a normalized number even if either or both of the input
operands are not normalized. No attempt is made to normalize the residue stored
in Aa+1.

(2) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(3) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

(4) The Floating Add Negative operation performed in the arithmetic section is
identical to the Floating Add operation described in 6.5.1 except that the ones
complement of the conten ts of location U is used as the second input operand.

6.5.3. Double-Precision Floating Add

DFA
76,10
2.625 f.1s alternate
3.375 f1.s same

(A,A+l) + (U,U+l) ~ A,A+l

The double-precision floating-point number from locations U and U+l is added to
the double-precision floating-point number from Aa and Aa+1. The resulting sum
is normalized and then stored in double-precision floating-point format in Aa and
Aa+1.

(1) The result stored is a normalized number even if either or both of the input
operands are not normalized.

(2) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(3) If characteristic arithmetic produces a characteristic for the sum which represents
a negative number and D5 of PSR = 1, a Floating-Point Characteristic Underflow
Fault Interrupt does not occur. Instead, +0 is stored in Aa and Aa+1.

(4) If a = 178 , Aa+l is the control register at address 348 or 1748 ,

(5) Neither of the A registers used to s tore the sum should be used as the index
register specified by the x field of the next sequential instruction.

Up-4053 ~
Rev. 1

------- --~------------~------------~-----------

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 6 PAGE: 21

6.5.4. Double-Precision Floating Add Negative

DFAN
76,11
2.62S f.LS alternate
3.37S f.Ls same

(A,At-1) - (U,U+1) 4 A,A+1

The double-precision floating-point num ber from locations U and U+ 1 is subtracted
from the double-precision floating-poin t num ber from Aa and Aa+l. The resulting
difference is normalized and then stored in double-precision floating-point format
in Aa and Aa+1.

(1) The result stored is a normalized number even if either or both of the input
operands are not normalized.

(2) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(3) If characteristic arithm etic produces a characteristic for t he difference which
represents a negative number and D5 of PSR :::: 1, a Floating-Point Characteristic
Underflow Fault Interrupt does not occur. Instead, +0 is stored in Aa and Aa+1.

(4) If a = 178' Aa+1 is the control register at address 348 or 1748 ,

(5) The Double Precision Floating Add Negative operation performed in the arithmetic
section is identical to the Double Precision Floating Add process described in
6.5.3 except that the ones complement of the contents of U and U+1 is used as
the second input operand.

(6) Neither of the A registers used to store the difference should be used as the
index register specified by the x field of the next sequential instruction.

6.5.5. Floating Multiply

FM
76,02
2.62S f.Ls alternate
3.375 f.LS same

(A) . (U) 4 A,A+1

The single-precision floating-point number from Aa is multiplied by the single­
precision floating-point number from location U. The resulting double-length
product is packed in to two single-precision floating-point numbers. The most
significant portion of the product in single-precision floating-point format is stored
in Aa. The least significant portion of the product in single-precision floating­
point format is stored in Aa+1.

(1) If either or both input operands are not normalized numbers, the results are
undefined. The following notes apply only if both input operands are normalized
numbers.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 6

(2) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(3) The portion of the product stored in Aa is a normalized number. Except for the
special case explained in note 6, no attempt is made to normalize the number
stored in Aa+1.

(4) The algebraic rule for signs applies to the portions of the product stored in
Aa and Aa+1 except for the special cases covered in notes 5b and 5d.

PAGE: 22

(5) If the mantissa of either or both input operands is zero, the following applies:

(a) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt never
occurs, regardless of the values of the characteristics of the input operands.

(b) If D8 of PSR = 0, the result stored in Aa is +0 regardless of the signs of the
input operands.

(c) If D8 = 1 and if the characteristic is in the range 0008 through 3778 , the
most significant product word will reflect the magnitude of the characteristic
produced and the sign produced by the mantissa arithmetic.

If the characteristic arithmetic produces a 'characteristic for the most significant
product word which represents a number greater than 3778 or negative number,
the result stored in Aa is +0 or -0 whichever would reflect the signs of the
input operands.

(d) The value of D8 has no effect on the least significant product word. When
the mantissa for the least significant product word is zero, it is packed with
the appropriate characteristic unless the characteristic is not within
representable range. If there is underflow on the characteristic, the word
is set to +0 or -0 whichever would agree with the sign of the product. If
the characteristic arithmetic for the least significant product word produces
a characteristic which represents anum ber greater than 3778' the full 9-bit
characteris tic adder output (which includes a 1 bit in the leftmo~t bit position
rather than a 0 bit) is packed with the mantissa bits (all 0 bits) for the word.
The word is complemented if the input operands have dissimilar signs. Thus
the result stored in Aa+1 violates the algebraic rule for signs.

(6) When the mantissa for the least significant product word is not zero, it is packed
with the appropriate characteristic unless the characteristic arithmetic for the
least significant product word produces a characteristic which represents a
negative number. In this case, the result stored in Aa+1 is +0 or -0 whichever
would reflect the signs of the input operands.

(7) If the characteristics of the number stored in Aa is greater than or equal to
33 8 , then the characteristic of the number stored in Aa+1 is 338 less than the
characteristic in Aa.

(8) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

UP, -4053 ~
Rev. 1

-----------,------ ---~--------------------------~-------,-------

UNIVAC 1108

P~ROCESSOR AN;D STORAGE
SEC TION: 6 PAGE: 23

6.S.6. Double-Precision Floating Multiply

DFM
76,12
4.2S flS alternate
5.00 fls same

(A,A+1) . (U,U+1) -') A,A+1

The double-precision floating-point number from Aa and Aa+1 is multiplied by
the double-precision floating-point number from locations U and U+1. The product
is normalized and stored in double-precision floating-point format in Aa and Aa+ 1.

(1) If either or both input operands are not normalized numbers, the results are
undefined. The following notes apply only if both operands are normalized
numbers.

(2) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(3) The result stored in Aa and Aa+l is always a normalized number.

(4) The algebraic rule for signs applies except for the special cases covered in
notes 5b and 6.

(5) If the mantissa of either of both input operands is zero, the following applies:

(a) A Floating-Point Characteristic 0 verflow /U nderflow Fault In terrupt never
occurs, regardless of the values of the characteristics of the input operands.

(b) The result stored in Aa and Aa+1 is +0 regardless of the signs of the input
operands.

(6) If the characteristic arithmetic produces a characteristic for the product which
represents a negative number and D5 of PSR = 1, a Floating-Point Characteristic
Underflow Fault I nterrupt does not occur. Instead +0, regardless of the signs of
the input operands, is stored in Aa and Aa+1.

(7) If a = 178' Aa+1 is the control register at address 348 or 1748 ,

(8) Neither of the A registers used to store the product should be used as the index
register specified by the x field of the next sequential instruction.

6.5.7. Floating Divide

FD
'76,03
8.25fls alternate
9.00 f1s same

(A) 7 (U) -') A; remainder -') A+1

UP-4U~,j

Rev. 1

UNIVA\.. I JUts

PROCESSOR AND STORAGE 6
5 EC TION: PAGE:

The single-precision floating-point number from Aa is divided by the single-precision
floating-point number from location U. The quotient is stored in Aa in single-precision
floating-point format. The remainder is stored in Aa+l in single-precision floating­
point format.

(1) If either or both input operands are not normalized num bers, the results are not
defined. The following notes apply only if both operands are normalized numbers.

(2) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(3) If the mantissa of the divisor (U) is zero, a Divide Fault Interrupt occurs.

(4) The quotient stored in Aa is a normalized number. Except for the special case
explained in note 7, no attempt is made to normalize the remainder stored in
Aa+1.

(5) The algebraic rule for signs applies to the quotient stored in Aa, except for the
special cases explained in notes 6b and 6d.

(6) If the mantissa of the dividend (Aa) is zero but not the divisor (U), the following
applies:

(a) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt never
occurs, regardless of the characteristics of the input operands.

(b) If D8 of PSR = 0, the quotient stored in Aa is +0 regardless of the signs of
the input operands.

(c) If D8 of PSR = 1 and the characteristic arithmetic produces a characteristic
for the quotient which represents anum ber greater than 3778 or a negative
number, the quotient stored in Aa is +0 or -0 whichever would reflect the
signs of the input operands.

(d) If the characteristic arithmetic for the remainder produces a characteristic
which represents anum ber greater than 3778' the full 9- bit characteristic
adder output (which includes a 1 bit in its leftmost bit position rather than
a 0 bit) is packed with the mantissa bits (a11 0 bits) for the remainder. The
ones complement of this packed word is formed if the sign bit of the dividend
from Aa was a 1 bit. The remainder stored in Aa+lviolates the algebraic
rule for signs.

(7) If the characteristic arithm etic produ ces a characteristic fo r the remainder which
represents a negative number, the remainder stored in Aa+l is +0 or -0 whichever
would reflect the sign of the dividend from Aa.

(8) If the characteristic of the dividend from Aa is greater than, or equal to, 338
then the characteristic of the number stored in Aa+l for the remainder is 338
or 328 less than the characteristic of the di vidend.

(9) If the absolute value of the dividend mantissa is less than the absolute value
of the divisor mantissa, the instruction execu tion time is extended by .25
microseconds.

24

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 6 25
SECTION: PAGE:

UP-
4°ti3

--~------------~------------~------,--------

(10) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

6.5.8. Double-Precision Floating Divide

DFD
76,13
17.25 f1S alternate
18.00 f1s same

(A,A+1) -;- (U,U+1) ~ A,A+1

The double-precision floating-point number from Aa and Aa+1 is divided by the
double-precision floating-point number from locations U and U +1. The quotient
is stored in Aa and Aa+1 in double-precision floating-point format. The rema.inder
is not retained.

(1) If either or both of the input operands are not normalized numbers, the results
are undefined. The following notes apply only if both operands are normalized
numbers.

(2) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(3) If the mantissa of the divisor is zero, a Divide Fault Interrupt occurs.

(4) The result stored in Aa and Aa+1 is always a normalized number.

(5) The algebraic rule for signs applies except for the special cases explained in
notes 6b and 7.

(6) If the dividend mantissa (Aa,Aa+ 1) is zero Rnd the divisor mantissa (U ,U+1)
is not zero, the following applies:

(a) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt never
occurs regardless of the values of the characteristics of the input operands.

(b) The result stored in Aa and Aa+1 is +0 regardless of the signs of the input
operands.

(7) If the characteristic arithmetic produces a characteristic for the quotient which
represents a negative number and D5 of PSR = 1, a Floating-Point Characteristic
Underflow Fault Interrupt does not occur. Instead +0, regardless of the signs of
the input operands, is stored in Aa and Aa+1.

(8) If the absolute value of the dividend mantissa is less than the absolute value
of the divisor mantissa, the instruction execution time is extended by .25
microseconds.

(9) If a = 178 , Aa+1 is the control register at address 348 or 1748'

(10) N either of the A registers used to store the quotient should be used as the
index register specified by the x field of the next sequential instruction.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6.5.9. Load and Unpack Floating

LUF
76,04
0.75 flS alternate
1. 50 flS same

I(u) 134-27 ~ A7 -0' zero fill;

(U)26-0 ~ A+1 26_ 0 , signfill

6
SECTION:

The single-precision floatin g-point num ber from location U is transferred to the
arithmetic section and unpacked. The absolute value of the biased characteristic
of the input operand is transferred to bits 7 through 0 of Aa; bits 35 through 8 of
the Aa are filled with 0 bits. The mantissa of the input operand is transferred to
bits 26 through 0 of Aa+1; bits 35 through 27 of Aa+1 are filled with bits iden tical
to the sign of the floating-point number in U.

(1) No attempt is made to normalize the input operand.

(2) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

6.5.10. Double Load and Unpack Floating

DFU
76,14
1.50 flS alternate
2.25 flS same

I(U)1 34- 24 ~ A10_ 0 , zerofull; (U)23-0 ~ A+1 23_ 0 , signfill; (U+l) ~ A+2

The double-precision floating-poin t number from locations U and U + 1 is trans­
ferred to the arithmetic section and unpacked. The absolute value of the biased·
characteristic of the input operand is transferred to bits 10 through 0 of Aa; bits
35 through 11 of Aa are filled with 0 bits. The leftmost 24 bits of· the mantissa,
(U)23-0' are transferred to bits 23 through 0 of Aa+1; bits 35 through 24 of Aa+1
are filled with bits identical to the sign of the floating-point number in locations
U and U+1. The rightmost 36 bits of the mantissas (U+1) are transferred to Aa+2.

(1) None of the three A registers used to store results for this instruction should
be used as the index register specified by the x field in the next sequential
ins truction.

(2) No attempt is made to normalize the input operand.

(3) If a = 168 , Aa+2 is the control register at address 348 or 1748 , If a = 178 ,
Aa+1 and Aa+2 are the control registers at addresses 348 and 358 , or 1748
and 1758 respectively.

PAGE:
26

UP-40S3 I UNIVAC 1108

PROCESSOR AND STORAGE SECTION:
6

PAGE:
27 Rev.~

f- --~--------------------------~------,------

6.5.11. Load and Convert To Floating

LCF
76,05
1.125 /lS alternate
1.875 /lS same

(U)35 -) A+135; [normalized (U)]26-0 -~ A+1 26_ 0 ;

if (U)35 = 0: (A)7_0 ± normalizing count -) A+134-27;

if (U)35 = 1: ones complement of [(A)7_0 ± normalizing count] -) A+134-27

The fixed-point number from location U is sent to the arithmetic section where it
is shifted right or left, as required, to normalize it. The normalizing shift count
is added to the characteristic from the rightmost eight bits of Aa if a normalizing
right: shift is required. It is subtracted from the characteristic if a normalizing left
shift: is required. The adjusted characteristic (complemented if U is negative) is
packed with the normalized value from U to form a sin gie-precision floating-point
number. The packed result is stored in Aa+1. The contents of Aa remain unchanged.

(1) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(2) The 28 leftmost bits from Aa are ignored by the arithmetic section; (Aa)7_0
must be prebiased.

(3) If location U contains ±O and D8 of PSR = 0, the result stored is +0.

(4) If a = 178' Aa+1 is the control register at address 348 or 1748 ,

6.5.12. Double Load and Convert To Floating

DFP
76,15
2.125 /lS alternate
2.875 /lS same

(U)35 -) A+135; '[normalized (U ,U+1)]59_0 -) A+123_0 and A+2;

if (U)35 = 0: (A)10-0 ± normalizing count -) A+134-24;

if (U)35 = 1: ones complement of [(A)10-0 ± normalizing count] -) A+134-24

The double-precision fixed-point number from locations U and U+1 is sent to the
arithmetic section where it is shifted right or left, if necessary, to normalize it.
The normalizing shift coun t is added to the characteristic from the rightmost 11
bits of Aa if a normalizing right shift is required. It is subtracted from the
characteristic if a normalizing left shift is required. The adjusted characteristic
(complemented if U is negative) is packed with the normalized value from U and
U+1 to form a double-precision floating-point number and the packed result in
Aa+ 1 and Aa+2. The contents of Aa remain unchanged.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECTION:

(1) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt may occur
(see 4.4.3).

(2) Neither of the A registers used to store the result should be used as an index
register by the next sequential instruction.

(3) If the 72-bit input operand from U and U +1 is ±O, the result stored in +0
regardless of the sign of the 72-bit input operand.

(4) If the adjusted characteristic represents a negative number and D5 of PSR = 1,
a Floating-Point Characteristic Underflow Fault Interrupt does not occur.
Instead +0, regardless of the sign of the 72-bit input operand, is stored.

(5) If a = 168 , Aa+2 is the control register at address 348 or 1748 , If a = 178 , Aa+l
and Aa+2 are the control registers at addresses 348 and 358 , or 1748 and 1758 ,
respectively.

(6) The 25 leftmost bits from Aa are ignored by the arithmetic section; (Aaho_o
must be prebiased.

6.5.13. Floating Expand and Load

FEL
76,16
1.00 flS alternate
1.75 flS same 1.75

If (U)35 = 0: (U)35-27 + 16008 --') A35- 24 ;

if (U)35 = 1: (U)35-27 - 16008 --') A35- 24 ;

(U)26-3 --') A23_ 0 ;

(U)2_0 --') A+135-33;

The single-precision floating-point input operand from location U is transferred
to the arithmetic section. The three fields of the operand are expanded to form
a double-precision floating-point num ber in a 72-bit nonaddressable register, as
follows:

(a) The sign bit is stored in bits 71 and 32 through O.

(b) The 8-bit characteristic which includes a bias of 2008 is modified to an
II-bit characteristic which includes a bias of 20008 and it is stored in bits
70 through 60.

(c) The 27 -bit mantissa is stored in bits 59 through 33.

The contents of the left and right halves of the 72-bit register are transferred to
Aa and Aa+l, respectively.

28
PAGE:

29
Up-4053 L UNIVAC 1108 I
Rev. 1 PROCESSOR AND STORAGE 6

_____ . •. _________________ • __ _________________________ ..-..~ _____________ ~~S_E_C_T_I_O_N_: ______ ~P_A_G_E_: __ • ____ __

(1) If the input operand is not in the normalized single-precision floating-point
format, the results stored are undefined. The following notes apply only if
the input operand is a norm alized num ber.

(2) If the mantissa of the input operand is ±O, the result stored in Aa and Aa+1
is +0 regardless of the sign of the input operand.

(3) Neither of the A registers used to store the result should be used as the index
register specified by the x field of the next sequential instruction.

(4) A Floating-Point Characteristic Overflow/Underflow Fault Interrupt will not
occur as a result of this instruction (see 4.4.3).

(5) If a = 178' Aa+1 is the control register at address 348 or 1748 ,

6.5.14. Floating Compress and Load

FCL
76,17
1.625 fls alternate
2.375 flS same

If (U)35 = 0: (U)35-24 - 16008 ~ A35 - 27 ;

if (U)35 = 1: (U)35-24 + 1600S -> A35-. 27 ;

(U)23-0 ~ A26- 3 ;

(U +-1)35-33 -~ A2_0

The double-precision floating-point operand from locations U and U+1 is trans-
ferred to the arithmetic section. The three fields of the in put operand are compressed
to form a single-precision floating-point number in a 36-bit nonaddressable register,
as follows:

(a) The sign bit is stored in bit 35.

(b) The 11-bit characteristic which includes a bias of 2000S is modified to an
S-bit characteristic which includes a bias of 200S and it is stored in bits
34 through 27.

(c) The 27 leftmost bits of the mantissa (bits 23 through 0 from location U and bits
35 through 33 from location U+1) are stored in bits 26 through O.

The content of the 36-bit register is transferred to Aa.

(1) If the input operand is not in the normalized double-precision floating-point
format, the result stored is undefined. The following notes apply only if the
input operand is a normalized number.

(2) A Floating-Point Charac.teristic Overflow Fault Interrupt occurs if the
characteristic of the input operand is greater than 2177S' A Floating-Point
Characteristic Underflow Fault Interrupt occurs if the characteristic of the
inpu t operand is less than 1600S'

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SEC T ION: 6

(3) The contents of U+132i-0 are ignored.

(4) If the signed mantissa is ±O, the result stored is +0 regardless of the sign
and characteristic of the input operand.

(5) The A register specified by this instruction should not be used as the index
register specified by the x field of the next sequential instruction.

6.5.15. Magnitude of Characteristic Difference to Upper

MCDU
76,06
0.75 fls alternate
1.50 /lS same

/!(A)!35-27 - !(U)!35,-27 1-'> A+18_0; zeros -,> A+135_9

The characteristic of the single-precision floa tin g-point num ber from location U
is subtracted from the character of the single-precision floating-point number
from Aa using the characteristic adder. The absolute value of the 9-bit difference
is stored in bits 8 through 0 of Aa+1. Bits 35 through 9 of Aa+1 are zerofilled. The
contents of Aa are not changed.

(1) The mantissas from location U and from Aa are ignored.

6.5.16. Characteristic Difference to Upper

CDU
76,07
0.75 fls alternate
1.50 flS same

!(A)!35-27 - !CU)!35-27 -,> A+18_0; sign bits to A+135_9

The characteristic of the single-precision floating-point number from location U
is subtracted from the characteristic of the single-precision floating-point number
from Aa using the characteristic adder. The 9-bit signed difference is stored in

PAGE:

bits 8 through 0 of Aa+1. Bits 35 through 9 of the Aa+l are filled with bits identical
to the sign of the difference. The contents of Aa are not change d.

(1) The mantissas from location U and from Aa are changed.

6.6. SEARCH AND MASKED SEARCH INSTRUCTIONS

There are six search instructions, each of which compares the contents of either one
or two A registers with the contents of main storage locations or control registers.
There are eight masked search instructions, each of which compares predefined bit
positions of the contents of either one or two A registers with the contents of the
corresponding bit positions of main storage locations or control registers.

These are all multistage instructions. The various stages required to perform these
instructions are as follows:

30

UNIVAC 1108

Rev. 1. PROCESSOR AND STORAGE
SEC TION: 6 PAGE: 31

UP-4053 L
._------- ---------.--------------------------------------~---

I: An initial stage

• Repeated test stages (any number from 0 to 262,143)

• Termination stage

If indirect addressing is specified, it proceeds, as explained in 5.2.7, prior to
initiation of the first test stage.

The initial stage prepares the control section and the arithmetic section for the test
stages. The following steps are performed during the initial stage:

• The P register is incremented: (P) + 1 -) P

• The contents of the Repeat Count Register (Rl) are transferred to the index subsection.

• The contents of the specified A registers are transferred to the arithmetic section.

• The contents of the Mask Register (R2) are transferred to the arithmetic section for
a masked search instruction.

These steps are performed only during the initial stage and are not repeated during
the test stages.

The rightmost IS-bit positions of Rl contain the repeat count; that is, the maximum
number of test stages to be performed. Rl must be loaded with the desired repeat
count prior to initiating a search or masked search instruction; it is recommended that
the leftmost IS-bit positions of Rl contain 0 bits. If the initial repeat count is zero,
the termination stage is initiated immediately following the completion of the initial
stage; there are no test stages. If the repeat count is not zero, a series of one or
more test stages is initiated.

During each test stage, the value U is formed in the index subsection. For the search
instructions, an input operand is tran sferred to the ari thm etic section under j field
control. The inputs to the test process are the values obtained using the effective U
address and the A register or registers specified by the instruction.

For the masked search instructions, the content of the j field is a minor function
code. The inputs to the test process are:

• the logical product of the mask from R2 and the input operand addressed by U;
and

• the logical products of the mask and the specified A registers.

Each bit of the logical product is the logical product of the contents of corresponding
bit positions of the two words. The logical product of two bits (X Bml Y) is defined
as follows:

X Y

o 0

o 1

1 0

1 1

Logical Product (X mrn Y)

o

o

o

1

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION:
6

The search and masked search instructions include algebraic and alphanumeric
comparisons, During an algebraic comparison, the leftmost bit of each of the 36-bit
values is considered to be a sign bit; a positive number is always recognized as
being greater than a negati ve num ber. During an alphanumeric comparison, the
leftmost bit of each of the 36-bit values is considered to be a numeric bit rather than
a sign bit.

PAGE:

If the test process shows that the specified conditions are met, the repeat count is
decremented by one and the termina tion stage is ini tia ted. If the specified conditions
are not met, the repeat count is decremented by one and examined. If the decremented
repeat count is zero, the termination stage is initiated. If the decremented repeat count
is not zero, another test stage is normally initiated. It should be noted that if x = 0 or
if h = 0, the same value for U will be formed in each test stage.

As previously indicated, the termination stage is initiated if the initial repeat count is
zero, if the repeat count is decremented from one to zero during the test stage, or if the
conditions specified by the search or masked search instruction are detected during
a test stage. If an I/O interrupt is detected during either an initial stage or one of
the test stages, the termination stage is initiated immediately following that stage.
The P register is reset and the repeat count is stored so that the search instruction
can be resumed when the I/O interrupt condition has been satisfied.

The termination stage is used to transfer the current repeat count from the index
subsection to the rightmost IS-bit positions of Rl. The contents of the P register
mayor may not be changed during the termination stage, as follows:

• If the termination stage is entered as a result of detecting that the initial repeat
count is zero during the initial stage or detecting that the decremented repeat
count is zero during a test stage for which the specified conditions are not detected
(no find), the contents of the P register are not changed during the termination stage.
The P register contains the address of the instruction following the search or masked
search instruction or the address of the instruction following the Execute instruction
which referenced the search or masked search instruction (next instruction condition).

• If the termination stage is entered as a result of detecting the specified conditions
during a test stage (a find has been made), the P register also incremented during the
termination stage: (P) + 1 -) P. Since the P register was also incremented during the
initial stage, it now contains the address of the search or masked search instruction
(or the address of the Execute instruction which referenced it), +2 (skip next instruction
condition).

• If the termination stage is entered as a result of recognizing an I/O interrupt, the P
register is decremented by 1 during the termination stage: (P) - 1 -) P. This decre­
mentation offsets the incrementation of the P register performed during the initial
stage; the P register now contains the address of the search or masked search
instruction, or the address of the Execute instruction which referenced it.

This address can be preserved so that when the interrupt condition has been satisfied,
the search or masked search can be resumed at the point where it was terminated for
the interrupt. If the search or masked search instruction is entered by means of an
Execute instruction, the h field of the Execute instruction should be zero; that is,
(no incrementation) so that when the program returns to the Execute instruction after
an interrupt, the effective U address will again lead to the search or masked search
instruction.

32

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE SECTION: 6 PAGE: 33
UP-40S3 L

----- ---~---------------~------------~-------

If the search or masked search instruction specifies indirect addressing (i field = 1),
the h field should be zero to enable the program to return to the same effective U
address and resume the search or masked search after an interrupt.

When a search or masked search is resumed after an interrupt, the initial stage is again
performed to prepare the control section for the remaining test stages and to transfer
the contents of the specified A register to the arithmetic section for the comparisons
performed in the test stages. When h = 1 (that is, index register incrementation is
specified), if the a and x fields reference the same control register, the contents of that
lregister will have been altered by the index incrementation which occurred before the
search or masked search was interrupted. As a result, when the search or masked search
ilS resumed, the value referenced by the a field to be used in the test stages is no
longer the original test value used before the interrupt occurred. Therefore when h = 1,
1the a field and x field should not specify the same control register so that the search
or masked search instruction can be resumed in the event of an interrupt.

A word consisting of all 0 bits represents +0 and a word consisting of all 1 bits represents
--0.

6.6.1. Search Equal

SE
63
2.25 + 0.75K flS
(K == number of times test is performed)

Skip NX if (U) =co (A), else repeat

During the initial stage, the contents of the Repeat Count Register (R1) are trans­
ferren to the index subsection, the contents of Aa are transferred to the arithmetic
section, and the P register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic section under j field control. U is compared to Aa and:

• if U = Aa, the termination stage is initiated. This stage stores the remnant repeat
count and increments the P register (skip to NI).

• if U f. Aa and the repeat count is not zero, another test stage is initiated.

• if U f. Aa and the repeat count is zero, the termination stage stores zero as the
remnant repeat count and the P register is not incremented.

(1) The desired repeat count must be loaded into Rl by an instruction preceding
the search instruction.

(2) +0 is not equal to -0.

(3) If the x field is not zero, h = 1, and Xi f. ±O, a different effective U address
is referenced for each test stage.

UP.4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECTION: PAGE:

(4) Normally, h = 1 and x f 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register
incrementation is specified, the a field and the x field should not reference
the same control register. This en,sures that the test value from the A register
will not be altered by the index register incrementation in the event an
interrupt occurs during the execution of the instruction.

(5) If the instruction specifies indirect addressing (i field = 1), the h field should
be zero to enable the program to return to the same effective U address and
resume the search after an interrupt.

(6) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6.6.2. Search Not Equal

SNE
63
2.25 + 0.75K (.1S

(K = number of times the test is performed)

Skip NI if (U) f (A), else repeat

During the initial stage, the contents of the Repeat Count Register (Rl) are trans-·
ferred to the index subsection, the con ten ts of Aa are transferred to the arithmetic
section, and the P register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic section under j field control. U is compared to Aa and:

• if U fAa, the termination stage is initiated. The termination stage stores the
remnant repeat count and increments the P register (skip NI).

• if U = Aa and the repeat count is not zero, another test stage is initiated.

• if U= Aa and the repeat count is zero, the termin ation stage is initiated. The
termination stage stores zero as the remnant repeat count and the P register is
not increm ented.

(1) The desired repeat count must be loaded into Rl by an instruction preGeding
the search instruction.

(2) +0 is not equal to -0.

(3) If the x fie ld is not zero, h = 1, and Xi -f ±O, a different effec ti ve U address
is referenced for each test stage.

34

UNIVAC 1108

Rev. 1 6
SECTION: PAGE:

PROCESSOR AND STORAGE 35
UP-405~

,---~------------~------------~--------

(4) Normally, h = 1 and x i- 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register incre­
mentation is specified, the a field and the x field should not reference the
same control register. This ensures that the test value from the A register
will not be altered by the index register incrementation in the event an
interruptoccurs during execution of the instruction.

(5) If the instruction specifies indirect addressing (i field = 1), the h field should
be zero to enable the program to retur~ to the same effective U address and
resume the search after an interrupt.

(6) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the I8-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6.6.3. Search Less Than or Equal (SLE) - Search Not Greater (SNG)

SLE,SNG
64
2.25 + 0.75K fl-s
(K=number of times the test is performed)

Skip NI if (U):;'(A), else repeat

During the initial stage, the contents of the Repeat Count Register (R1) are trans­
ferred to the index subsection, the contents of Aa are transferred to the arithmetic
section, and the P register is incremented.

If the initial repeat count is zero, the next instruction (N!) is initiated.

If the initial repeat cou.nt is not zero, the first test ~tage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic section under j field control. U is compared to Aa and:

• if U ::;,. Aa, the termination stage is initiated. The termination stage stores the
remnant repeat count and increments the P register (skip NI).

• if U > Aa and the repeat count is not zero, another test stage is initiated.

• if U > Aa and the repeat count is zero; the termination stage is initiated. The
termination stage stores zero as the remnant repeat count and the P register is
not incremented.

(1) The desired repeat count must be loaded into Rl by an instruction preceding
the search ins truction.

(2) +0 is greater than -0.

(3) If the x field is not zero, h = 1, Xi I- to, a different effective U address is
referenced for each test stage.

(4) Normally, h = 1 and x I- 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register
incrementation is specified, the a field and the x field should not reference
the same control register. This ensures that the test value from the A
register will not be altered by the index register incrementation in the
event an interrupt occurs during execution of the instruction.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 6

(5) If the instruction specifies indirect addressing (i field::: 1), the h field
should be zero to enable the program to return to the same effective U
address and resume the search after an interrupt.

(6) If j::: 168 or 178 , x::: 0, h::: i::: 1, and u::: 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6.6.4. Search Greater

SG
65
2.25 + 0.75K I1S
(K:::number of times the tes t is performed)

Skip NI if (U) > (A), else repeat

During the initial stage, the contents of the Repeat Count Register (Rl) are
transferred to the index subsection, the contents of Aa are transferred to the
arithmetic section, and the P register is incremented.

If the initial repeat count is zero, the next instruction (N!) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic section under j field control. U is compared to Aa and:

• if U > Aa, the termination stage is initiated. The termination stage stores the
remnant repeat count and increments the P register (skip NI).

• if U ~ Aa and the repeat count is not zero, another test stage is initiated.

• if U ~ Aa and the repeat count is zero, the termination stage is initiated. The
termination stage stores zero as the remnant repeat count and the P register is
not incremented.

(1) The desired repeat count must be loaded into Rl by the instruction preceding
the search instruction.

(2) +0 is greater than -0.

(3) If the x field is not zero, h ::: 1, and Xi -f. ±O, a different effective U address
is referenced for each test stage.

(4) Normally, h ::: 1 and x f. 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register incre­
mentation is specified, the a field and the x field should not reference the
same control register. This ensures that the test value from the A register
will not be altered by the index register incrementation in the event an inter­
rupt occurs du ring execu tion of the instruction.

(5) If the instruction specifies indirect addressing (i field::: 1), the h field should
be zero to enable the program to return to the same effective U address and
res ume the search after an interrupt.

PAGE: 36

UP-40S3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE I SECnON< 6

(6) If j = 168 or 178 , x = 0, h::: i::: 1, and u::: 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6.6.5. Search Within Range

SW
66
2.25 + O.75K fls
(K:::number of times the test is performed)

Skip NX if (A) < (U) s;. (A+l), else repeat

During the initial stage the contents of the Repeat Count Register (Rl) are trans­
ferred to the index subsection, the contents of Aa and Aa+l are transferred to the
arithmetic section, and the P register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic se'ction under j field control. U is compared to Aa and Aa+1, and:

• if U > AA and U ::;. Aa + 1, the termination stage is initiated. The termination
stage stores the remnant repeat count and increments the P register (skip NI).

• if U s;. A or U > Aa+l, and the repeat count is not zero, another test stage is
initiated.

• if U s;. Aa or U > Aa + 1, and the repeat count is zero, the termination stage is
initiated. The termination stage stores zero as the remnant repeat count and the
P register is not incremented.

(1) The desired repeat count must be loaded into Rl by an instruction preceding
the se arch ins truction.

(2) +0 is greate r than -0.

(3) Normally, (Aa) < (Aa+l). If, however, (Aa) ~ (Aa+1), there is no value from
U which can satisfy the conditions (Aa) < (U) :s. (Aa+l).

(4) If the x field is not zero, h ::: 1, and Xi i ± 0, a different effective U add res s
is referenced for each test stage.

(5) Normally, h =1 and x f. 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register incre­
mentation is specified, the a field and the x field should not reference the
same control register. This ensures that the test value from the A register
will not be altered by the index register incrementation in the event an
interrupt occurs during execution of the instruction.

(6) If the instruction specifies indirect addreSSing (i field::: 1), the h field
should be zero to enable the program to return to the same effective U
address and resume the search after an interrupt.

(7) If a= 178 , Aa+ 1 is the control register at addresses 348 or 1748 (see Table
3-- 6).

37
PAGE:

Rev. 1 PROCESSOR AND STORAGE
SECTION: 6

(8) If j = 16
8

or 17
8

, x = 0, h::: i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic

section is +0.

6.6.6. Search Not Within Range

SNW
67
2.25 + 0.75K lIs
(K=number of times the test is performed)

Skip NI if (U) ~ (A) or (U) > (A+l), else repeat

During the initial stage, the contents of the Repeat Count Register (R1) are trans­
ferred to the index subsection, the contents of Aa and Aa+l are transferred to the
ari thmetic section, and the P register is increm ented.

If the initial repeat count is zero, the next instruction (N!) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred to
the arithmetic section under j field control. U is compared to Aa and Aa+l, and:

• if U :s.. Aa or U > Aa+l, the termination stage is initiated. The termination stage
stores the remnant repeat count and increments the P register (skip NI).

• if U > Aa and U :s.. Aa+l, and the repeat count is not zero, another test stage is
initia ted.

• if U > Aa and U :s.. Aa+l, and the repeat count is zero, the termination stage is
initiated. The termination stage stores zero as the remnant repeat count and the
P register is not incremented.

(1) The desired repeat count must be loaded into Rl by an instruction preceding
the search instruction.

(2) +0 is greater than -0.

(3) Normally, (Aa) < (Aa+l). If, however, (Aa) ~ (Aa+l), there is no value from
U which can satisfy the conditions (U) ::;. (Aa) or (U) > (Aa+l).

(4) If the x field is not zero, h = 1, and Xi f:. ±O, a different effective U address
is referenced for each test stage.

(5) Normally, h = 1 and x i 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register incre­
mentation is specified, the a field and the x field should not reference the
same control register. This ensures that the test value from the A register
will not be altered by the index register incrementation in the event an
interrupt occurs during execution of the instruction.

(6) If the instruction specifies indirect addressing (i field = I), the h field
should be zero to enable the program to return to the same effective U
address and resume the search after an interrupt.

(7) If a = 178 , Aa+l is the control register at addresses 348 or 174 8 ,

PAGE:

(8) If j = 168 or 178 , x = 0, h = i = 1, and u::: 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +-0.

38

UP 4053 I UNIVAC 1108 I
__ R_~v.:._l __ L ______ P_R_O_C_E_S_S_O_R_A_N_D~S_T_O_R_A_G_E _______ ..L.-_______ L-S_E_C_T_IO_N_:_6 __ --'_P_A_G_E_: __ 3_9 __

6.6.7. Mask Search Equal

MSE
71,00
2.25 + 0.75K I1.S

(K=number of times the test is performed)

Skip NI if (U) m.m (R2) = (A) r.:.m!] (R2), else repeat

During the initial stage, the contents of the Repeat Count Register (R1) are trans­
ferred to the index subsection, the contents of Aa and R2 are transferred to the
arithmetic section, the logical products of the values from Aa and R2 are formed,
and the P register is incremented.

If the initial repeat count is zero, the next instruction (N!) is initiated.

If the initial repeat count is hot zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred to
the arithmetic section. U mrn R2 is compared to Aa r.m:!l R2 and:

• if U Em R2 = Aa mrn R2, the termination stage is initiated. This stage
stores the remnant repeat count and increments the P register (skip NI).

• if U rJml R2 f. Aa mI!1 R2 and the repeat count is not zero, another test
stage is initiated.

• if U r..m!l R2 f. Aa mm R2 and the repeat count is zero, the termination stage
stores zero as the remnant repeat count and the P register is not incremented.

(1) The desired repeat count and mask word must be loaded into R1 and the
Mask Register by instructions preceding the search instruction.

(2) +0 is not equal to --0.

(3) If the x field is not zero, h = 1, and Xi f:. ±O, a different effective U address
is referenced for each test stage.

(4) Normally, h = 1 and x f. 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register
incrementation is specified, the a field and the x field should not reference
the same control register. This ensures that the test value from the A
register will not be altered by the index register incrementation in the event
an interrupt occurs during execution of the instruction.

(5) If the instruction specifies indirect addressing (i field = 1), the h field
should be zero to enable the program to return to the same effective U
address and resume the search· after the interrupt.

UP.40S3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6.6.8. Mask Search Not Equal

MSNE
71,01
2.25 + 0.75K Ils

(K=number of times the test is performed)

Skip NI if (U) rJmJ (R2)., (A) mm (R2), else repeaL

6
SECTION:

During the initial stage, the contents of the Repeat Count Register (R1) are trans­
ferred to the index subsection, the contents of Aa and R2 are transferred to the
arithmetic section, the logical products of the values from Aa and R2 are formed,
and the ° register is incremented.

If the initial repeat count is zero, the next instruction (N!) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred to
the arithmetic section. U eIDl R2 is compared to Aa IfJIDl R2 and:

• if U mI!J R2., Aa fJIDJ R2, the termination stage is initiated. This stage
stores the remnant repeat count and increments the P register (skip NI).

• if U fJIDJ R2 = Aa BID] R2 and the repeat count is not zero, another test
stage is initiated.

• if U ~ R2 = Aa rJIDJ R2 and the repeat count is zero, the termination stage
stores zero as the remnant repeat count and the P register is not incremented.

(1) The desired repeat count and mask word must be loaded into R1 and the Mask
Register by instructions preceding the search instruction.

(2) +0 is not equal to -0.

(3) If the x field is not zero, h = 1, and Xi f:. ±O, a different effective U address
is referenced for each test stage.

(4) Normally, h = 1 and x ;. ° so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register incre­
mentation is specified, the a field and the x field should not reference the
same control register. This ensures that ~he test value from the A register
will not be altered by the index register incrementation in the event an inter­
rupt occurs during execution of the instruction.

(5) If the instruction specifies indirect addressing (i field = 1), the h field should
be zero to enable the program to return to the same effective U address and
resume the search after the interrupt.

40
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE SECTION: 6 PAGE: 41
UP-4053 l

-------------- ---~------------~--------------~-------------

6.6.9. Mask Search Less Than or Equal (MSLE) - Mask Search Not Greater (MSNG)

MSLE,MSNG
71,02
2.25 + 0.75K fls
(K=number of times the test is performed)

Skip NI if (U) f.o1'IDl (R2) ~ (A) mm (R2), else repeat

During the initial stage, the contents of the Repeat Count Register (R1) are trans­
ferred to the index subsection, the contents of Aa and R2 are transferred to the
arithmetic section, the logical products of the values from Aa and R2 are formed,
and the P register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred to
the arithmetic section. U mrn R2 is compared to Aa mm R2 and:

• if U mm R2 ~ Aa mm R2, the termination stage is initiated. This stage
stores the remnant repeat count and increments the P register (skip NI).

• if U r.m:!J R2> Aa f!ml R2 and the repeat count is not zero, another test stage
is initiated.

• if U BID] R2 > Aa mm R2 and the repeat count is zero, the termination stage
stores zero as the remnant repeat count and the P register is not incremented.

(1) The desired repeat count and mask word must be loaded into R1 and the Mask
Register by instructions preceding the search instruction.

(2) +0 is greater than -0.

(3) If the x field is not zero, h :: 1, and Xi f. :to, a different effective U address
is referenced for each test stage.

(4) Normally, h :: 1 and x f. 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register incre­
mentation is specified, the a field and the x field should not reference the
same control register. This ensures that the test value from the A register
will not be altered by the index register incrementation in the event an
interrupt occurs during execution of the instruction.

(5) If the instruction specifies indirect addressing (i field:: 1), the h field should
be zero to enable the program to return to the same effective U address and
resume the search after the interrupt.

Rev. 1
UNIVAl,; IIUts

PROCESSOR AND STORAGE

6.6.10. Mask Search Greater

MSG
71,03
2.25 +0.75K liS

(K=number of times the test is performed)

Skip NI if (U) fJIDl (R2) > (A) flml (R2), else repeat

6
SECTION:

During the initial stage, the contents of the Repeat Count Register (R1) are trans­
ferred to the index subsection, the contents of Aa and R2 are tran::;ferred to the
arithmetic section, the logical products of the values from Aa and R2 are formed,
and the P register is incremented.

If the initial repeat count is zero, the next instruction (N!) is initiated.

PAGE:

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred to
the arithmetic section. U BmJ R2 is compared to Aa rJml R2 and:

• if U rJIDJ R2 > Aa eml R2, the termination stage is initiated. This stage
stores the remnant repeat count and increments the P register (skip NI).

• if U I.Ul'l R2 s;. Aa mI!l R2 and the repeat count is not zero, another test
s ta ge is init ia ted.

• if U mm R2 s;. Aa BIDl R2 and the repeat count is zero, the termination stage
stores zero as the remnant repeat count and the P register is not incremented.

(1) The desired repeat count and mask word must be loaded into Rl and the
Mask Register by instructions preceding the search instruction.

(2) +0 is greater than -0.

(3) If the x field is not zero, h = 1, and Xi -J. ±O, a different effective U address
is referenced for each test stage.

(4) Normally, h = 1 and X I: 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register
incrementation is specified, the a field and the x field should not reference
the same control register. This ensures that the test value from the A
register will not be altered by the index register incrementation in the
event an interrupt occurs during execution of the instruction.

(5) If the instruction specifies indirect addressing (i field = 1), the h field
should be zero to enable the program to return to the same effective U
address and resume the search after the interrupt.

6.6.11. Masked Search Within Range

MSW
71,04
2.25 + 0.75K f.1s
(K::number of times the test is performed)

Skip NI if (A) rJID] (R2) < (U) rJIDJ (R2) s;. (A+1) mI!l (R2), else repeat.

42

PAGE: 43 Rev. 1 L PROCESSOR AND STORAGE I SECTION: 6
------- -----, --~--------------~.-----------------~------------

D'uring the initial stage, the contents of the Repeat Count Register (Rl) are
transferred to the index subsection, the contents of Aa, Aa+l, and R2 are trans­
ferred to the arithmetic section, the logical products of the values from Aa and R2
and the values from Aa,+l and R2 are formed, and the P register is incremented.

If the initial repeat count is zero, the next instruction (N!) is initialed.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic section. The logical products are compared and:

• if (U) mm (R2) < (Aa) tm!J (R2) and (U) mm (R2) S. (Aa+l) mrn (R2)
the termination stage is initiated. This stage stores the remnant repeat count
and increments the P register (skip NI).

• if (U) mm (R2) S. (Aa) mm (R2) or (U) mm (R2) > (Aa+l) mm (R2)
and the repeat count is not zero, another test stage is initiated.

• if (U) mm (R2) S. (Aa) r.mE (R2) or CU) BID] (R2) > (Aa+ 1) mI!l (R2)
and the repeat count is zero, the termination stage stores zero as the remnant
repeat count and the P register is not incremented.

(1) The desired repeat count and mask word must be loaded into Rl and the
Mask Register by instructions preceding the search instruction.

(2) +0 is greater than -0.

(3) Normally, (Aa) rJml (R2) < (Aa+l) mm (R2). If, however, (Aa) mm
(R2) 2: (Aa+l) mI!l (R2), every possible value of U will satisfy at least
one of the follow ing conditions:

(U) rJID] (R2) S. (Aa) f;!ID] (R2)

or

(U) fJIDJ (R2) > (Aa+ 1) mm (R2)

(4) If the x field is not zero, h = 1, and Xi f. to, a different effective U address
is referenced for each test stage.

(5) Normally, h = 1 and x"l 0 so tha t incrementa tion occurs at each tes t s ta ge
and a different effective U address is referenced. When index register
incrementation is specified, the a field an d the x field should not reference
the same control register. This ensures that the test value from the A
register will not be altered by the index register incrementation in the
event an interrupt occurs during execution of the instruction.

(6) If the instruction spe.cifies indirect addressing (i field = 1), the h field
should be zero to enable the program to return to the same effective U
address and resume the search after the interrupt.

(7) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

Rev. 1 PROCESSOR AND STORAGE

6.6.12. Masked Search Not Within Range

MSNW
71,05
2.25 + 0.75K {LS

(Kc=number of times the test is performed)

6
SEC T ION:

Skip NI if (U) BID] (R2):::;. (A) azm (R2) or (U) mm (R2) > (A+l) mm (R2),
else repeat

During the initial stage, the contents of the Repeat Count Register (R1) are
transferred to the index subsection, the contents of Aa and R2 are transferred to
the arithmetic section, the logical products of the values from Aa and R2 and
the values from Aa+1 and R2 are formed, and the P register is incremented.

If the initial repeat count is zero, the next instruction (N!) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. DuriOg each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic section. The logical products are compared and:

• if (U) rJIDl (R2) ~ (Aa) mI!l (R2) or (U) mrn (R2) > (Aa+1) mrn (R2)
the termination stage is initiated. This stage stores the remnant repeat count
and increments the P register (skip NI).

• if (U) BID] (R2) > (Aa) rJm (R2) and (U) .rJIDl (R2):S. (Aa+1) rJIDl (R2)
and the repeat count is not zero, another test stage is initiated.

• if (U) ~ (R2) > (Aa) rJIDl (R2) and (U) BID] (R2):S. (Aa +1) mrn (R2)
and the repeat count is zero, the termination stage stores zero as the remnant
repeat count and the P register is not incremented.

(1) The desired repeat count and mask word must be loaded into R1 and Mask
Register by instructions preceding the search instruction.

(2) +0 is greater than -0.

(3) Normally, (Aa) BIDl (R2) < (Aa+ 1) mm (R2). If however, (Aa) mm
(R2) ~ (Aa+1) mm (R2), every possible value of U will satisfy at least
one of the follow ing conditions:

(U) mm (R2)::;. (Aa) fJID] (R2)
or

(U) rJIDl (R2) > (Aa+1) mm (R2)

(4) If the x field is not zero, h = 1, and Xi f. ±O, a different effective U
is referenced for each test stage.

(5) Normally, h = 1 and x -;. ° so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register incre­
mentation is specified, the afield and the x field should not reference the
same control register. This ensures that the test value from the A register
will not be altered by the index register incrementation in the event an
interrupt occurs during execution of the instruction.

44
PAGE:

U l"'-'i'\};:)..J

Rev. 1 I ;,~~~~~~uOR AND STORAGE
~--------.--------------------------------------~----------~--~------------~~-----------SEC TION: 6 PAGE: 45

(6) If the instruction specifies indirect addressing (i field = 1), the h field
should be zero to enable the program to return to the same effective U
address and resume the search after the interrupt.

(7) If a = 178 , Aa+ 1 is the control register at address 348 or 1748 ,

6.6.13. Masked Alphanumeric Search Less Than or Equal

MASL
71,06
2.25 + 0.75K Ils
(K=I1Umber of times the test is performed)

Skip NI if (U) Bml (R2):S. (A) BID] (R2), else repeat

During the initial stage, the contents of the Repeat Count Register (R1) are
transferred to the index subsection, the contents of Aa and R2 are transferred to
the arithmetic section, the logical products of the values from Aa and R2 are
formed, and the P register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic section. U rJIDl R2 is compared alphanumerically to Aa mm
R2, and:

• if U mrn R2:S. Aa IBffil R2, the termination stage is initiated. This stage
stores the remnant repeat count and increments the P register (skip NI).

• if U mrn R2 > Aa mrn R2 and the repeat count is not zero, another test
stage is initiated.

• if Umm R2 > Aa mrn R2 and the repeat count is zero, the termination
stage stores zero as the remnant repeat count and the P register is not
incremented.

(1) The desired repeat count and mask word must be loaded into R1 and Mask
Register by the instruction preceding the search instruction.

(2) -0 is grea ter than +0.

(3) If the x field is not zero, h = 1, and Xi /:. ±O, a different effective U address
address is referenced for each test stage.

(4) Normally, h = 1 and x I- 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register
incrementation is specified, the a field and the x field should not reference
the same control register. This ensures that the test value from the A
register will not be altered by the index register incrementation in the
event an interrupt occurs during execution of the instruction.

(S) If the instruction specifies indirect addressing (i field = 1), the h field
should be zero to enable the program to return to the same effective U
address and resume the search after the interrupt.

Rev. 1 PROCESSOR AND STORAGE

6.6.14. Masked Alphanumeric Search Greater

MASG
71,07
2.25 + 0.75K fls
(K=number of times the test is performed)

Skip NI if (U) mm (R2) > (A) mI!l (R2), else repeat

I SECTION: 6

During the initial sta ge, the contents of the Repeat Count Register (R 1) are
transferred to the index subsection, the contents of Aa and R2 are transferred to
the arithmetic section, the logical products of the value from Aa and R2 are
formed, and the P register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each
test stage, the repeat count is decremented and the contents of U are transferred
to the arithmetic section. U rJIDl R2 is compared alphanumerically to Aa rJIDl
R2, and:

• if U fa1IDl R2 > Aa mml R2, the termination stage is initiated. This stage
stores the remnant repeat count and increments the P register (skip NI).

• if U mm R2 < Aa mIDl R2 and the repeat count is not zero, another test
stage is initiated.

• if U BIDl R2 S. Aa BIDJ R2 and the repeat count is zero, the termination
stage stores zero as the remnant repeat count and the P register is not incre­
mented.

(1) The desired repeat count and mask word must be loaded into Rl and Mask
Register by instructions preceding the search instruction.

(2) -0 is greater thant-O.

(3) If the x field is not zero, h :: 1, and Xi f- ±O, a different effective U address
is referenced for each tes t stage.

(4) Normally, h :: 1 and x -f. 0 so that incrementation occurs at each test stage
and a different effective U address is referenced. When index register
incrementation is specified, the a field and the x field should not reference
the same control register. This ensures that the test value from the A
register will not be altered by the index register incrementation in the
event an intermpt occurs during execution of the instruction.

(5) If the instruction specifies indirect addressing (i field:: 1), the h field
should be zero to enable the program to return to the same effective U
address and resume the search after the interrupt.

PAGE:
46

UP 4053 I UNIVAC 1108 I I
_____ R~~v~ ______ . ___ P_R_O_C_E_S_S_O_R_A_N __ D_S_T_O_R_A __ G_E. __________ ~ __________ ~_SE_C_T_IO_N_:_6 ____ ~_P_A_G_E: __ 47 __ __

6.7. TEST (OR SKIP) INSTRUCTIONS

Test instructions are used to read one or more words from main storage or control
registers and test for certain conditions. The result of the test is used to determine
whether the instruction addressed by the incremented contents of the P register
(next instruction) should be performed or skipped.

The next instruction (NI) is always read from main storage. If the decision is made
to skip the NI, it is discarded, the P register is incremented a second time, and the
contents of the P register are then used to address the following instruction.

The timing for each instruction depends on whether NI is skipped. The first figure
given is for the skip NI case;_ the second figure is for the execute NI case.

Indirect addressing, indexing. and index regis ter incrementa tion/ decrementa tion
operate norma lly.

A word consisting of-all 0 bits represents +0 and a word consisting of all 1 bits
represents -0.

6.7.1. Test Even Parity

TEP
44
2.00 I1S skip NI/1,25 fls execute NI - alternate
2.75 liS skip NI/2.00 fls execute NI - same

Skip NI if (U) r.u.m (A) have even parity.

The contents of U are transferred to the arithmetic section under j field control,
where they are used with the contents of Aa to form a 36-bit logical product.

If (U) fJIDl (Aa) have an even number of 1 bits, the next instruction (NI) is
skipped and the instruction fo'llowing NI is performed.

If (U) rJID] (Aa) have an odd number of 1 bits, the NI is performed.

(1) The logical product is not saved.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(3) When h = 1 and the a field and the x field specify the same control register,
the value transferred to the arithmetic section from Aa is undefined.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6.7.2. Test Odd Parity

TOP
45
2.00 flS skip NI/1.25 fls execute NI - alternate
2.75 flS skip NI/2. 00 flS execute NI -- same

Skip NI if (A) Bm1 (U) have odd parity.

6
SECTION:

The contents of U are transferred to the arithmetic section under j field control,
where they are used with the contents of Aa to form a 36-bit logical product.

If (U) Dml (Aa) ha ve an odd number of 1 bits, the next instruction (N!) is skipped
and the ins truction follow ing NI is performed.

If (U) rlIDl (Aa) have an even number of 1 bits, the NI is performed.

(1) The logical product is not saved.

(2) If j = 16 8 or 178 , x = 0, h = i = 1, and u = 1 7 7 7778 ' the 18 -bit out put 0 f t he
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(3) When h = 1 and the a field and the x field specify the same control register,
the value transferred to the arithmetic section from Aa is undefined.

6.7.3. Test Less Than or Equal to Modifier (TLEM) - Test Not Greater Than Modifier
(TNGM)

TLEM,TNGM
47
1. 75 flS skip NI/l.OO fls execute NI - alternate
2.50 flS skip NI/l. 75 flS execute NI - same

The contents of U are transferred to the arithmetic section under j field control.
The contents of the index register addressed by the a field (Xa) are transferred
to the arithmetic section. The rightmost 18 bits of the value from U are subtracted
from the rightmost 18 bits of the value from Xa (this is performed as if the leftmost
18 bits of each operand were zeros).

If (U)17-0 < (Xa)17_0 (the sign of the difference is positive), the next instruction
(NI) is skipped and the instruction following NI is performed.

If (U)17-0 > (Xa)17_0 (the sign of the difference is negative), the NI is performed.

In either case, the leftmost 18 bits from Xa are added to the rightmost 18 bits from
Xa, and the sum is stored in the rightmost 18 bit positions of Xa. The leftmost
18 bit positions of Xa are not changed.

48
PAGE:

Re-v. 1 PROCESSOR AND STORAGE SECTION: 6 PAGE: 49
UP 4053 ~ UNIVAC 1108 I

------------ --~-------------~.~----------------~------,--------

(1) When D6 of PSR = 0, the use of a = 0 should be avoided. If D6 a:= 0, Xa is
the control register at address 0008 , The contents of this location may be
changed at any time as the result of an interrupt (see 8.2).

(2) +0 is less than -0.

(3) B6th Xa17 -0 and the va lue from U are considered to be 18-bi t numeric values
with a positive sign implied.

(4) If j = 168 or 178 , x = 0, h = i = 1, and u = 1'777778 , the 18-bit output of the
index adder is +0 rather than -0. .

(5) Only the rightmost 18 bits of the value from U are involved in the operation.
Values of 0, 1, or 3 in the j field yield the same results. Values of 168 or 178
in the j field yield the same result.

(6) If h = 1 and a = x, the specified index register is incremented or modified only
once (during instruction execution).

6.7.4. Test Zero

TZ
50
1.625 Ils skip N1/0.875 Ils execute NI - alternate
2.375 IlS skip NI/1.625 Ils execute NI - same

Skip NI if (U) = to.

The contents of U are transferred to the arithmetic section under j field control.

If the value transferred is ±09 the next instruction (NI) is skipped and the instruc­
tion following NI is performed.

If the value transferred is not ± 0, the NI is performed.

(1) The contents of the a field are ignored; however, it is recommended that the
a field contain all 0 bits.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6.7.5. Test Nonzero

TNZ
51
1.625 Ils skip N1/0.875 Ils execute NI - alternate
2.375 IlS skip NI/1.625 Ils execute NI - same

Skip NI if (U) I- to.

The contents of U are transferred to the arithmetic section under j field control.

UP·4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

If the value transferred is not to, th6- next instruction (NI) is skipped and the
instruction following NI is performed.

If the value transferred is to, the NI is l;-erformed.

(1) The cont.ents of the a field are ignored; however, it is recommended that the
a field contain all 0 bits.

(2) If j = 168 or 178 , x -:: 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6,,7.6. Test Equal

TE
52
1.625 Ils skip Nl/0.875 fls execute NI - alternate
2.375 fls skip NI/1.625 {1.S execute NI - same

Skip NI if (U) = (A).

The contents of U are transferred to the arithmetic section under j field control.
The contents of Aa are also transferred to the arithmetic section.

If U = A, the next instruction (NI) is skipped and the instruction follow ing NI is
performed.

If U :J A, the NI is performed.

(1) +0 is not equal to -0.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0

6.7.7. Test Not Equal

TNE
53
1.625 fls skip Nl/0.875 fls execute NI - alternate
2.375 fls skip Nl/1.625 I)'s execute NI - same

Skip N I if (U) J. (A).

The contents of U Clc1'e transferred to the arithmetic section under j field control.
The contents of Aa are also transferred to the arithmetic section.

If U -f. A, the next instruction (NI) is skipped and the instruction following NI is
performed.

If U = A, the NI is performed.

(1) +0 is not equal to ~O.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the I8-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

PAGE: 50

51
UP'·liU:).) ~ UNIVA\,. IIUQ I
Rev. 1 PROCESSOR AND STORAGE 6 ____________ ____ ________________________________ --------------~------------.----~-SE-C-T-I-O-N-:------~P_A_G_E_:. _____ ___

6.7.8. Test Less Than or Equal (TLE) - Test Not Grea ter (TN G)

TLE,TNG
54
1.625 11S skip NI/0.875 I1s execute NI - alternate
2.375 I1s skip NI/1.625 I1s execute NI - same

Skip NI if (U) s:.. (A).

The contents of U are transferred to the arithmetic section under j field control.
The contents of Aa are also transferred to the arithmetic section.

If U ':S.. A, the next instruction (NI) is skipped and the instruction following NI is
performed.

If U > A, the NI is performed.

(1) +0 is greater than -0.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6.7.9. Test Greater

TG
55
1.625 I1s skip NI/O.875 I1s execute NI -- alternate
2.375 I1s skip Nl/1.625 I1s execute NI - same

Skip NI if (U) > (A).

The contents of U are transferred to the arithmetic section unde l' j field control.
The contents of Aa are also transferred to the arithmetic section.

If U > A, the nex tins truction (NI) is skipped and the instruction followin g NI is
performed.

If U ':S.. A, the Nlis performed.

(1) +0 is greater than -0.

(2) Ifj =: 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the I8-bit output of the
index adder is +0 rather than -0, and the U va lue transferred to the arithmetic
section is +0.

UP-4053
Rev. 1

UNIVAC IIUH

PROCESSOR AND STORAGE

6.7.10. Test Within Range

TW
56
1. 75 I1S skip NI/1.00 I1s execute NI - alternate
2.50 fls skip NI/1. 75 flS execute NI - same

Skip NI if (A) < (U) :s. (A+ 1).

SEC TION: 6

The contents of U are transferred to the arithmetic section under j field control.
The contents of Aa and Aa+1 are also transferred to the arithmetic section.

If Aa < U :s. Aa+l, the next instruction (NI) is skipped and the instruction following
NI is performed.

If U :s. Aa or U > Aa+1, the NI is performed.

(1) +0 is greater than -0.

(2) If a = 178 , Aa+l is the control register at address 348 or 1748 ,

(3) Normally, (Aa) < (Aa+l). If, however, (Aa) 2:. (Aa+l), there is no value of U
that can satisfy the condition (Aa) < (U) :s. (Aa+l).

(4) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(5) When h = 1, the value transferred to the arithmetic section from register
Aa+l is undefined if Aa+l is also the x register being incremented; that is,
for the following three combinations of x and a field values: x = 158 and a = 0;
x = 16'8 and a = 1; x = 178 and a = 2.

6.7.11. Test Not Within Range

TNW
57
1. 75 I1s skip NI/1.00 fls execute NI - alternate
2.50 fls skip NI/1. 75 fls execute NI - same

Skip NI if (U) ~ (A) or (U) > (A+l).

The contents -of U are transferred to the arithmetic section under j field control.
The contents of Aa and Aa+l are also transferred to the arithmetic section.

If U ~ Aa or U > Aa+l, the next instruction (NI) is skipped and the instruction
follow ing NI is performed.

If U > Aa and U :s. Aa+l, the NI is performed.

(1) +0 is greater than -0.

(2) If a = 178 , Aa+l is the control register at address 348 or 1748 ,

PAGE: 52

UP·-4053

Rev. 1

I UNIVAC 1108 1
~ ___ . __ P_R_O.C __ E_SS_O_R_·_A_N_D_S_T_O_R_A_G_E ____ ~ ____ ~_. SECTION: 6

(3) Normally, (Aa) < (Aa+l). If, however, (Aa) 2: (Aa+1), every possible value of
U will satisfy at least one of the following conditions:

(U) :S. (Aa)

or

(U) > (Aa+1)

(4) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

(5) When h = 1, the value transferred to the arithmetic section from register
Aa+1 is undefined if Aa+1 is also the x register being incremented; that is,
for the following three combinations of x and a field values: x = 158 and
a = 0; x = 168 and a = 1; x = 178 and a = 2.

6.7 .. 12. Test Positive

TP
60
1.50 f.ls skip NI/0.75 f.ls execute NI - alternate
2.2S f.ls skip NI/1.50 f.ls execute NI - same

Skip NI if (U)35 = O.

The contents of U are transferred to the arithmetic section under j field control.

If the sign bit (bit 35) of U is a 0 bit, the next instruction (NI) is skipped and
the instruction following NI is performed.

If the sign bit is a 1 bit, the NI is performed.

(1) The contents of the a field are ignored; however, it is recommended that the
a field contain all 0 bits.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6.7.13. Test N ega tive

TN
61
1.50 I1.S skip NI/0.75 f.lS execute NI - alternate
2.25 f.ls skip NI/1.50 f.ls execute NI - same

Skip NI if (U)35 = 1.

The contents of U are transferred to the arithmetic section under j field control.

If the sign bit (bit 35) of U is a 1 bit, the next instruction (NI) is skipped and the
instruction following NI is performed.

If the sign bit is a 0 bit, the NI is performed.

PAGE: 53

UP~4053 I UNIVAC 1108 I
Re~ __________ P_R_O_C __ E_S_S_O __ R __ A_N_D __ S_T_O __ R_A_G_E ____________ ~ __________ ~~S~E~C~T~IO~N~:_6_· ____ ~P~A~G_E~: __ 5_4 __ __

(1) The contents of the a field are ignored; however, it is recommended that the
a field contain all 0 bits.

(2) If j = 168 or 178 , x = 0, h = i = 1, and u = 1777778 , the 18-bit output of the
index adder is +0 rather than -0, and the U value transferred to the arithmetic
section is +0.

6.7.14. Dou ble-Precision Test Equal

DTE
71,17
2.375 IJ.s skip Nl/1.625 IJ.s execute NI - alternate
3.125 IJ.s skip Nl/2.375 IJ.s execute NI - same

Skip NI if (U,U+l)= (A,A+l).

The contents of U, U+ 1, Aa, and Aa+ 1 a re transferred to the arithmetic section.
U,U+l and Aa,Aa+l are 72-bit operands.

If U,U+l = Aa,Aa+l, the next instruction (NI) is skipped and the instruction
following NI is performed.

If U,U+ll: Aa,Aa+l, the NI is performed.

(1) +0 is not equal to -0.

(2) If a = 178 , Aa+ 1 is the control register address at 348 or 1748 ,

6.8. SHIFT INSTRUCTIONS

Each shift instruction transfers either one or two words to the arithmetic section,
moves or shifts the bits of the words, and stores the shifted word or words in one
or two control registers.

The following basic types of shifts are provided for both single word (36-bit input
operand) and double word (two 36-bit words treated as a 72-bit input operand) opera­
tions:

• Right circular

• Left circular

• Right logical

• Left logical

• Right algebraic

- For a right circular shift, a shift count of n moves the contents of all bit positions
of the register holding the input operand n bit pOSitions to the right. Bits shifted
out the right end of the register appear in the leftmost bit positions vacated by the
shift.

- For a left circular shift, a shift count of n moves the contents of all bit positions of
the register holding the input operand n places to the left. Bits shifted out the left
end of the register appear in the rightmost bit positions vacated by the shift.

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE PAGE:

UP-4U03

- .,-- L I SECTION, 6

For example:

A shift count of 6 for a right circular shi~t applied to 7654321012348 as the input
operand produces 3476543210128 as the result. The same result is produced using
a shift count of 30 for a left circular shift.

For a single word circular shift, a shift count of 72 or 36 produces the same result as
a shift count of 0 (no shift), A shift count of 37 produces the same effect as a shift
count of 1, a shift count of 38 produces the same effect as a shift count of 2, and so
on.

- For a right logical shift, a shift count of n moves the contents of all bit positions
of the register holding the input operand n places to the right. Bits shifted out the
right end of the register are lost. The leftmost Qit positions vacated by the shift
are zerofi1led.

For example:

A shift count of 6 for a right logical shift applied to 7654321012348 as the input
operand prod uces 0076543210128 as the result.

- For a left logical shift, a shift count of n moves the contents of all hit positions of
the input operand register n places to the left. Bits shifted out the left end of the
register are lost. The rightmost bit positions vacated by the shift are zerofilled.

For example:

A shift count of 6 for a left logical shift applied to '7654321012348 as the input
operand produces 5432101234008 as the result.

For an algebraic shift (right only, since no left algebraic shift is provided), a shift
count of n moves the con tents of all hit posi t:ions of the regis ter holding the input
operand n places to the right. Bits shifted out the right end of the register are lost.
The bit positions vacated by the shift are filled with hits identical to the leftmost
bit (sign bit) of the original input operand.

For example:

A shift count of 6 for an algebraic shift applied to 7654321012348 as the input operand
produces 7776543210128 as the result.

The two load shift and count instructions are basically left circular shift instructions.
The shift count is determined by the configura tion of the bits of the input operand.
If the two leftmost bits are not identical, the shift count is zero. If the two leftmost
bi ts are identical, the operand is shifted left circular by the minimum amount to position
the bits a f the input operand so tha t the two leftmos t bi ts are not identical. The shift
co un t is the count of the num ber of bi t posi tions shifted. If all bi ts 0 fan input operand
are identical, no amount of circular shifting will position its bits so that the two left­
most bi ts are not identical. In this instance, the shift count is 35 (single-word operand)
or 71 (double-word opera nd). The shift coun t is stored in a control regis te r.

For all shift instructions, except the two load shift and count instructions, the input
operands are specified by one or two A registers, and the shift count is specifie d by
bits 6 through 0 of the effective U. Indirect addressing, indexing, and index register
incl'ernentation/decrementation operate normally for all shift instructions (see 5.3.4).

55

UP 4053 I UNIVAC 1108

~:~,:~----L _____ P_R_O_C_E_S_S_O_R_A_N_D_S_T_O_R_A_G_E _____ ...&.. ______ -'-S_E_C_T_IO_N_:_6 __ --L._P_A_G_E_: _5_6 __

The shift count can be any number between 0 and 72. If a"shift count of 73 to 127
(1118 th rough 1778) is specified, the res ult prod uced is undefined. If x f. 0, the value
in the u field of the shift instruction and the value of Xm must be chosen so that bits
17 through 7 of U w ill con tain 0 bits.

For the two load shift and count instructions, the effective u field specifies the input
operand address just as for the other load instructions. The scaled result is loaded
in the specified A register (A, A+l for Double Load Shift And Count instruction). The
num ber of shifts required for scaling is stored in the next consecutive regis te r A+ 1
(or A+2 for Double Load Shift And Count instruction).

A word consis tin g of all 0 bits represents +0 and a word consis tin g of all 1 bits
represents -0.

6.8.1. Single Shift Circular

SSC
73,00
0.75 flS

Shift (A) right circularly U places.

The con ten ts of Aa a re transferred to the ad thmetic section. The shift coun t from
bits 6 through 0 of U is transferred to the arithmetic section. The value from Aa is
shifted right, circularly, by the number of bit positions specified by the shift count.
The shifted value is stored in Aa.

(1) The result stored is not defined for shift counts greater than 72.

(2) If 36 < n :s. 72, a shift count of n produces the same result as a shift count of
n-36.

6.8.2. Double Shift Circular

DSC
73,01
0.875 flS

Shift (A,A+1) right circularly U places.

The contents of Aa and Aa+l are transferred to the arithmetic section. The shift
coun t from bits 6 through 0 of U is transferred to the arithmetic section. The 72·bit
value from Aa and Aa+1 is shifted right, circularly, the number of bit positions
specified by the shift count. The shifted value is stored in Aa and Aa+1.

(1) The result stored is not defined for shift counts greater than 72.

(2) When h -= 1, the value transferred to the arithmetic section from register Aa+1
'is undefined if Aa+1 is also the x regis ter being incremented; tha t is, for the
following three combinations of x and a field values: x·", 158 and a = 0; x ,"-" 168
and a = 1; x CO" 178 and a = 2.

(3) If a = 178 , Aa+l is the control register at address 348 or 1748 ,

Up-4053 L UNIVAC 1108 I
__ R_e~,: .. ~_ . ______ P_R_O_C_E_S_S_O_R_A_N_D_S_T_O_R_A_G_E __ . ___ ______ -,-_sE_c_T_,o_N_:_6 __ -,-_PA_G_E_: __ 5_7 __

6.8.3. Single Shift Logical

SSL
73,02
0. 75 1LS

Shift (A) right U places, zerofi1l.

The contents of Aa are transferred to the arithmetic section. The shift count from
bits 6 through 0 of U is transferred to the arithmetic section. The value from Aa is
right shifted the number of bit positions specified by the shift count. Bits shifted
out of the rightmost bit positions are lost; the vacated leftmost bit positions are
zerofilled. The shifted value is stored in Aa.

(1) The result stored is not defined for shift coun ts greater than 72.

(2) If 36 :S. U :S. 72, the result stored in Aa is +0.

6.8.4. Double Shift Logical

DSL
73,03
0.875 I1.S

Shift (A ,A+·l) righ t U places, zerofill.

The contents of Aa and Aa+l are transferred to the arithmetic section. The shift
count from bits 6 through 0 of U is transferred to the arithmetic section. The 72-bit
value from Aa and Aa+l is right shifted the number of bit positions specified by the
shift count. Bits shifted out of the rightmost bit positions are lost; the vacated
leftmos t bit positions are zerofilled.

(1) The result stored is not defined for shift counts greater than 72.

(2) When h = 1, the value transferred to the arithmetic section from register Aa+l
is undefined if Aa+l is also the x register being incremented; that is, for the
following three combinations of x and a field values: x = 158 and a = 0; x = 168
and a = 1; x = 178 and a = 2. .

(3) If a= 1781 i\a+l is the con trol regis tel' at .J.ddress 348 or 1748 ,

6.8.5. Single Shift Algebraic

SSA
73,04
0.75 f.LS

Shift (A) right U places, signfi11.

The contents of Aa are transferred to the arithmetic section. The shift count from
bits 6 through 0 of U is transferred to the arithmetic section. The value from Aa is
right shifted the number of bit positions specified by the shift count. Bits shifted
out of the rightmost bit positions are. lost; bits identical to the content of bit 3S
of the initial value from Aa appear in the vacated leftmost bit positions. The shifted
count is stored in Aa.

UP-40U5 .
Rev. 1

--------------..... ------------- I SECTION< 6 1 PAGE, 58

UNIVAC 1108

PROCESSOR AND STORAGE

(1) The result stored is not defined for shift counts greater than 72.

(2) If 35 s.. U s.. 72, all bits of the result stored in Aa are identical to the leftmost
bit of the input operand from Aa.

6.8.6. Double Shift Algebraic

DSA
73,05
0.875 f.Ls

Shift (A,A+l) right U places, signfill.

The contents of Aa and Aa+1 are transferred to the arithmetic section. The shift
count from bits 6 through 0 of U is transferred to the arithmetic section. The 72-bit
value from Aa and Aa+l is right shifted the number of bit positions specified by
the shift count. Bits shifted out of the rightmost bit positions are lost; bits identical
to the contents of bit 35 of the initial value from Aa appear in the vacated leftmost
bit positions. The shifted value is stored in Aa and Aa+ 1.

(1) The result stored is not defined for shift counts greater than 72.

(2) When h = 1, the value transferred to the arithmetic section from register Aa+1
is undefined if Aa+1 is also t.he x register being incremented; that is, for the
following three COIf, binations of x and a field values: x = 158 and a = 0; x = 168
and a = 1; x = 178 and a = 2. .

(3) If a = 178 , Aa+ 1 is the control register at address 348 or 1748 ,

6.8.7. Load Shift and Count

LSC
73,06
1.125 flS - alterna te
1.875 fls - same

(U) -) A; shift (A) left circularly until (A)35 /c (A)34; number of shifts -) A+1.

The contents of location U are transferred to a nonaddressable 36-bit register in
the arithmetic section and then shifted left, circularly, the minimum number of bit
positions which will mak~ bit 35 unequal to bit 34. The resultant scaled number is
transferred to Aa and the shift count to Aa+1.

(1) If bit 35 of th~ value from location U is not equal to bit 34, the number is
already scaled and no shift occurs: (U) --) Aa; + 0 --) Aa+1.

(2) If the value from location U is ±O: (U) .~ Aa, the shift count is 35, and 438 --)
Aa+1.

(3) If a = 178 , Aa+1 is the control regis ter at address 348 or 1748 ,

UP 4053 L UNIVAC 1108 I
____ R_;V~_1_· ___ ., _________ P_R_O __ C __ E_S_S_O_R __ A_N __ D_S_T __ O_R_A_G __ E __ . _________ ~ ______________ ._S_EC._~T_I_O_N_:_6 ____ ~_P_A_G_E_:_,5_9 ____ __

6.8 .. 8. Double Load Shift and Count

DLSC
73,07
2.125 Ils - a1 terna te

~7S I1.S - same

(U ,U+1) ~ A,A+1; shift (A,A+1) left circularly until (A,A+1)71 1= (A,At-1)70; number
of shifts ~ A+2.

The contents of U and U+1 are transferred to a nonaddressable 72-bit register 'in
the arithmetic section and then shifted left, circularly, the minimum number of bit
positions which will make bit 71 unequal to bit 70. The resultant scaled number
is trans ferred to Aa and Aa+1 and the shift count to Aa+2.

(1) If bit 71 of the value from U and U+1 is not equal to bit 70, the double length
number is already scaled and no shift occurs: (U) ~ Aa; (U+1) -~ Aa+1; +0 ~
Aa+2.

(2) If the double length value from locations U and U+1 is to: (U) ~ Aa; (U+1) -)
Aa+1;' the shift count is 71; and 1078 -) Aa+2.

(3) Control register Aa+2 used to store the shift count should not be used as the
index register addressed by the x field in the next instruction.

(4) If a = 168 , Aa+2 is the control register at address 348 or 1748 , If a = 178 , Aa+l
and Aa+2 are the control registers at addresses 348 and 358 , or 1748 and 175-8 ,
respectively.

6.8,,9. Left Single Shift Circular

LSSC
73,10
0.75 f1.s

Shift (A) left circularly U places.

The contents of Aa are transferred to the arithmetic section. The shift count from
bits 6 through 0 of U is transferred to the arithmetic section. The value from Aa is
shifted left, circularly, th e n um ber of bit positions specified by the shift coun t. The
shifted value is stored in Aa.

(1) The result stored is undefined for shift counts greater than 72.

(2) If 36 :S.. n :S.. 72, a shift count of n produces the same result as a shift count
of n-36.

6.8,,10. Left Double Shift Circular

LDSC
73,11
0.875 (lS

Shift (A,A+.l) left circularly U places.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 6
5 EC TION:

The contents of Aa and Aa+1 are transferred to the arithmetic section. The shift
count from bits 6 through 0 of U is transferred to the arithmetic section. The
72-bit value from Aa and Aa+1 is shifted left, circularly, the number of bit
positions specified by the shift count. The shifted value is stored in Aa and
Aa+1.

(1) The result stored is undefined for shift counts greater than 72.

(2) When h = 1, the value transferred to the arithmetic section from register
Aa+1 is undefined if Aa+1 is also the x register being incremen ted; tha tis,
for the following three combinations of x and a field values: x = 158 and
a = 0; x = 168 and a = 1; x = 178 and a == 2.

(3) If a == 178 , Aa+1 is the control regis ter at address 348 or 1748 ,

6.8.11. Left Single Shift Logical

LSSL
73,12
0.75 Ils

Shift (A) left U places, zerofill.

The contents of Aa are transferred to the arithmetic section. The shift count
from bits 6 throu gh 0 of U is transferred to the arithmetic section. The value
from Aa is left shifted the num ber of bit positions specified by the shift coun t.
Bits shifted out of the leftmost bit positions are lost; the vacated rightmost bit
positions are zerofilled. The shifted value is stored in Aa.

(1) The result stored is undefined for shift counts greater than 72.

(2) If 36 :s. U ::;. 72, the result stored in Aa is +0.

6.8.12. Left Double Shift Logical

LDSL
73,13
0.875 Ils

Shift (A,A+1) left U places, zerofi11.

The contents of Aa and Aa+1 are transferred to the arithmetic section. The shift
count from bits 6 through 0 of U is transferred to the arithmetic section. The
72-bit value from Aa and Aa+1 is left shifted the number of bit positions specified
by the shift count. Bits shifted out of the leftmost bit positions are lost; the
vacated rightmost bit positions are zerofi11ed. The shifted value is stored in Aa
and Aa+1.

(1) The result stored is undefined for shift counts greater than 72.

(2) When h = 1, the value transferred to the arithmetic section from register
Aa+1 is undefined if Aa+1 is also the x register being incremented; that is,
for the following three com bina tions of x and a field values: x = 158 and
a == 0; x = 168 and a = 1; x = 178 and a = 2.

(3) If a = 178 , Aa+1 is the control register at address 348 or 1748 ,

60
PAGE:

UP-4053 J
Rev. 1 -------

UNIVAC 1108

PROCESSOR AND STORAGE I SECTION< 6

6.9. UNCONDITIONAL JUMP INSTRUCTION

A jump is a change in the sequence in which instructions are executed. It is accom­
plished by placing a new value in the P register. Each unconditional jump instruction
performs a unique operation in addition to the common operation of placing a new
value in the P register.

The Load Modifier And Jump instruction and the Store Location And Jump instruction
both save the address that was in the P register prior to placing the new value there.
The value saved is the incremented value which has been developed in preparation
for addressing the next instruction in the normal consecutive sequence. For both
instructions, the absolute address saved is converted to a relative address (see
9.3). The Load Modifier And Jump instruction stores the relative address in the
X register addressed by the a field of the instruction. The Store Location And Jump
instruction stores the relative address in th e s tora ge loca tion addressed by U, SI,
or SD, as appropriate.

The Allow All I/O Interrupts And Jump instruction allows the I/O section of the
CPU to recognize and react to I/O interrupt requests. It is used subsequent to a
Prevent All I/O Interrupts And Jump instruction and subsequent to the recognition
of, and reaction to, an I/O interrupt request.

The Prevent All I/O Interrupts And Jump instruction is also an unconditional jump
instruction. It is described, however, in the section on executive system control
ins tructions (see 6.14).

PAGE:

The Jump Keys instruction can be used to specify either a conditional or unconditional
jump. The Halt Jump/Halt Keys And Jump instruction specifies an unconditional jump,
but the halt portion is conditional. Both of these instructions are included in the
section on conditional jump instructions (see 6.10).

6.9.1.. Store Location and Jump

SLJ
72,01
2.125 fJ.S

(P) - base address modifier [BI or BD] -) U 17 -0; jump to U+l

The P register is incremented. An 18-bit relative "jump from" address is formed
by subtracting either BI or BD~ from the incremented contents of the P register.
The relative address is stored in the rightmost 18 bits of the loca tion addressed
by U, SI, or SD. The P register is cleared. The 18-bit values U+l, SI+l, and
SD+l are formed in the index subsection and either SI+l or SD+l, as appropriate,
is transferred to the P register as the "jump to" address.

(1) The contents of the a field are ignored by the control section and may be used
as desired.

(2) BI is subtracted from the contents of the P register to form the relative "jump
from" address if Sf (or SI+l) was used for the "jump to" address for the most
recent jump instruction. BD is subtracted if SD (or SD+l) was used. The value
in D7 of the PSR (base register suppression designator) has no effect on the
value stored as the relative "jump from" address.

61

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECTION:

(3) If U < 2008 , the 18-bit relative "jump from" address is stored in the rightmost
18 bits of the control register addressed by U and the leftmost 18 bit positions
of that control register are cleared to 0 bits. If U 2 2008, the 18-bit relative
"jump from" address is stored in the ri ghtmos t 18 bit positions of U and the
upper half of U is unchanged.

PAGE:

(4) If the absolute" jump to" address chosen (either SI+1 or SD+l) is less than
2008 , the next instruction is taken from the main storage location addressed by
the chosen value rather than from a control register.

(5) If D3 = 1 or D2 = 1 (or both), and the main storage limits set in the Storage
Limits Register are' violated by the absolute address of the location in which
the relative" jump from" address is to be stored, a Guard Mode Fault Interrupt
occurs. The relative address stored by a Load Modifier And Jump (LMJ) or
Store Location And Jump (SLJ) instruction at the Guard Mode Fault Interrupt
location is the "jump from" address.

(6) If D3 = 0 and D2 = 1, and the main storage limits set in the Storage Limits
Register are violated by the absolute "jump to" address transferred to the P
register, a Guard Mode Fault Interrupt occurs.

The relative address ca ptured by a Load Modifier And Jump or Store Loca tion
And Jump instruction at the Guard Mode Fault Interrupt location is the relative
"jump from" address.

(7) The relative "jump from" address is stored in the low order 18 bits of a word.
If this 18-bit relative "jump from" address is larger than 16 bits, the two high
order bits will be interpreted as hand i field bits if the address is used in an
instruction. The instruction may produce erroneous results.

6.9.2. Load Modifier and Jump

LMJ
74,13
0.875 1l s

(P) - base address modifier [BI or BD] ~ Xa17_0; jump to U

The P register is incremented. An 18-bit relative" jump from" address is formed
by subtracting either BI or BD from the incremented contents of the P register.
The relative address is stored in the rightmost 18 bits of the index register
specified by the a field. The leftmost 18 bits of that index register are not
affected. The 18-bit values U, SI, and SD are formed in the index subsection and
either SI or SD, as appropriate, is transferred to the P regis ter as the" jump to"
address.

(1) If D6 = 0 and the value in the a field is zero, the relative "jump from" address
is stored in the control register at address 0008 , Such use should be avoi.?ed
because the contents of the control register at address 0008 are replaced by
the contents of the Processor State Register (PSR) at any interrupt.

62

UP-405~L
Rev. 1

UNIVAC 1108 "",:"

PROCESSOR AND STORAGE SECTION: 6 PAGE: 63
------------.--~--~-----------------

(2) If index regis ter incrementa tion is specified, the rela ti ve "jump fr om" address
is stored in the index register specified by the a field after the new value for
Xm is stored in the index regis ter specified by the x field. As a consequence,
if the value in the a field is not zero and it is the same as the value in the x
field, it makes no difference whether the value in the h field is a 0 bit or a
1. bit.

(3) BI is subtracted from the contents of the P register to form the relative "jump
from" address if SI (or SI+l) was used for the" jump to" address for the most
recent jump instruction. BD is subtracted if SD (or SD+l) was used. The value
in D7 of PSR has no effect on the value stored as the reI a ti ve "jump from"
address.

(4) If the absolute "jump to" address chosen (either SI or SD) is less than 2008 ,
the next instruction is taken from the main storage location addressed by the
chosen value rather than from a control register.

(5) If D3 = 0 and D2 = 1, and the main storage limits set in the Storage Limits
Register are violated by the absolute "jump to" address to be transferred to
the P register, the relative "jump from" address is not stored and a Guard
Mode Fault Interrupt occurs. The relative address saved by a Load Modifier
And Jump or Store Location And Jump instruction at the Guard Mode Fault
Interrupt location is the relative "jump from" address +1.

6.9. 3. Allow All I/O In terrupts and Jump

AAIJ
74,07
0.75 fls

Allow all I/O interrupts and jump to U.

The I/O section of the CPU can recognize and react to pending I/O interrupt
requests or to any I/O interrupt request received following the completion of an
instruction. The instruction stored in location U is executed next.

(1) The following are classed as I/O interrupts:

II All monitor interrupts

II All external interrupts including Co~sole External Interrupt and Day Clock
In terrupt

II All system I/O interrupts including Interprocessor Interrupt, Real Time Clock
(RTC) Interrupt, and Power Loss Interrupt

II All I/O parity error interrupts including Access Control Word Parity Interrupt
and I/O Data Parity Error Interrupt

(2) The contents of the a field are ignored; however, it is recommended that the
a field contain all 0 bits.

(3) This is not a privileged instruction. When D2 of PSR = 1, an Allow All I/O
Interrupts And Jump instruction can be performed without causing a Guard
Mode Fault Interrupt.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 6

(4) This instruction is used to allow I/O interrupts following the honoring of
any interrupt or following execution of a Prevent All I/O Interrupts and Jump
ins truction (see 6.14.1).

(5) An I/O interrupt request is never honored between the execution of the Allow
All I/O Interrupts And Jump instruction and the instruction jumped to. The
instruction at the "jump to" address is always executed next by the CPU.

(6) The Allow All I/O Interrupts And Jump instruction enables the interrupt
circuitry which is disabled by a Prevent All I/O Interrupts And Jump
ins truction. It is also used to ena ble the interrupt circuitry which is disabled
during the response to an interrupt. The Allow All I/O Interrupts And Jump
does not enable the interrupt circuitry which is disabled by a Prevent All
Channel External Interrupts instruction. The Allow All Channel External
Interrupts instruction enables this interrupt circuitry (see 6.13.12 and
6.13.13).

The Allow All I/O Interrupts And Jump instruction does not enable the
Day Clock which is disabled by the Disable Day Clock instruction. The
Enable Day Clock instruction performs this function (see 6.14.7 and
6.14.8).

PAGE:
64

UP-4U~.j L
Rev. 1

-------------- --------.--------------------------------------~------------~~------------~-------

UNIVAC 1 JUtS

PROCESSOR AND STORAGE
SEC T ION: 6 PAGE:

6.10 .. CONDITIONAL JUMP INSTRUCTIONS

Each of the conditional jump instructions performs a test for a specific condition
(or set of conditions). If the condition is satisfied, the value U is transferred to the
P register and the instruction addressed by U is executed next. If the condition is
not satisfied, the next instruction (NI) is executed.

For most of the conditional jump instructions, two execution times are shown: the
time required when the jump is performed is listed first, followed by the time
required when NI is executed.

There are three conditional jump instructions which are not included in this section.
They are Jump On Input Channel Busy (see 6.13.3), Jump On Output Channel Busy
(see 6.13.7), and Jump On Function In Channel (see 6.13.11).

A word consisting of all ° bits represents +0 and a word consisting of all 1 bits
represents -0.

6.10.1. Jump Greater and Decrement

JGD
70
0.75 11S jump/1.50 flS NI

Jump to U if (control register)ja> 0; go to NI if (control register)ja:s..0; always
(control register)ja-1 ~ control registerja'

If the 36-bit signed number in the control register addressed by the 7-bit ja field
is greater than zero (bit 35 contains a ° bit and the number does not consist of
all ° bits), the instruction at location U is executed next. If the number is less
than, or equal to, zero (bit 35 contains a 1 bit or the number consists of all °
bits), the next instruction (NI) is executed. In either case, the number is decre­
mented by one and the difference is stored in the control register addressed by
the ja field.

(1) A Guard Mode Fault Interrupt occurs (if guard mode is set) when ~he ja field
specifies a value in the ran ge 408 through 10°8 , or 1208 th rough 1778 when
D2 = 1. This is true regardless of the value of D6 (User/Exec ABR).

(2) Zero should not be used in the ja -field because the control register at address
0008 is used as a temporary storage location for the contents of the PSR. The
contents of this control register are destroyoed whenever an interrupt occurs.

(3) The leftmost bit in the j field is ignored by the control section. It is recommended
tha taO bit be used as the leftmost bi t of the j field.

65

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

6.10.2. Double-Precision Jump Zero

DJZ
71,16
1.625 fls jump/0.875 fls NI

Jump to U if (A,A+l) = ±O; go to NI if (A,A+l) -J. ±O.

SEC TION: 6

If the 72-bit operand contained in Aa and Aa+l is ±O, the instruction at location
U is executed next. If the operand is not ±O, the next instruction (NI) is executed.

(1) If a = 178' Aa+ 1 is the control register at address 348 or 1748 ,

(2) When h = 1, the value transferred to the arithmetic section from register Aa+l

PAGE: 66

is undefined if Aa+l is also the x register being incremented; that is, for the
following· three combina tions of x and a field values: x = 158 and a = 0; x = 168
and a = 1; x = 178 and a = 2.

6.10.3. Jump Positive and Shift

JPS
72,02
1.50 fls jump/0.75 I1S NI

Jump to U if (A)35 = 0; go to NI if (A)35 ~ 1; always shift (A) left, circularly, one
bit position.

If bit 35 of Aa contains a 0 bit, the instruction at location U is executed next.
If bit 35 contains a 1 bit, the next instruction (NI) is executed. The contents of
Aa are always shifted left, circularly, one bi t position.

(1) The bit shifted out of bit 35 of Aa is shifted to bit 0 of Aa.

6.10.4. Jump Negative and Shift

JNS
72,03
1.50 flS jump/0.75 flS NI

Jump to U if (A)35 = 1; go to NI if (A)35 = 0; always shift (A) left, circularly, one
bit position.

If bit 35 of Aa is a 1 bit, the instruction at location U is executed next. If bit 35
is a 0 bit, the next instruction (NI) is executed. The contents of Aa are always
shifted left, circularly, one bit position.

(1) The bit shifted ou t of bi t 35 of Aa is shifted to bit 0 of Aa.

UN. y,",,-, IIVO

Rev. 1 PROCESSOR AND STORAGE 6
5 EC TION: PAGE:

UY-'!-U;).:> L
------ --~-------------~------------~------

6.10.5. Jump Zero

JZ
74,00
1.50 fls jump/0.75 fls NI

Jump to U if (A) := to; go to NI if (A) f- to.

If (Aa) is to, the instruction at location U is executed next. If Aa does not contain
to, the next ins truction (NI) is executed.

6. 101 .6. J u m p No nz e ro

JNZ
74,01
1.50 fls jump/0.75 Ils NI

Jump to U if (A) f- to; go to NI if (A) := to.

If (Aa) is not to, the instruction at location U is executed next. If (Aa) is to,
the next instruction (NI) is executed.

6.101.7. Jump Positive

JP
74,02
1.50 Ils jump/0.75 Ils NI

Jump to U if (A)35 = 0; go to NI if (A)35 = 1.

If bit 35 of Aa is a 0 bit, the instruction at location U is executed next. If bit 35
is a 1 bit, the next instruction (NI) is executed.

6.10.8. Jump Negative

IN
74,03
1.50 fls jump/0.75 fls NI

Jump to U if (A)35 = 1; go to NI if (A)35 = O.

If bit 35 of Aa is a 1 hit, the instruction at location U is executed next. If bit 35
is a 0 bit, the next ins truction (NI) is executed.

6.101.9. Jump (J) - Jump Keys (JK)

J,JK
74,04
0.75 fls

Jump to U if a = 0 or if a = lit SELECT JUMPS indicator; go to NI if neither is
true.

67

UP-40$3

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 6

If the a field contains all 0 bits, the instruction at location U is executed next.
If the a field contains a value in the range of 1 through 15 (18 through 178) and
the correspondingly numbered SELECT JUMPS switch/indicator on the operator's
console is lit, the instruction at location U is executed next; if the correspondingly
numbered SELECT JUMPS switch/indicator is not lit, the next instruction (NI) is
executed.

(1) The indicator for each of the 15 SELECT JUMPS switch/indicators is turned
on by pressing that SELECT JUMPS switch/indicator. Each is turned off
by pressing the associated RELEASE JUMPS switch/indicator. Either can be
done while the CPU is running.

(2) Care should be exercised in using a value other than all 0 bits in the a field
if the program is to run concurrently with one or more other programs or in a
multiprocessor system. Any other program may include a Jump Keys ins.truction
with the same value in the a field and specify that it is to be run with the
corresponding SELECT JUMPS switch/indicator set. A set of SELECT JUMPS
switch/indicators is physically associated with each CPU in a multiprocessor
sys tern. Each set affects ins tructions executed on the related processor only.

6.10.10. Halt Jump (HJ) - Halt Keys And Jump (HKJ)

HJ ,HKJ
74,05
0.75 flS

Stop if a = 0 or if [a mm lit SELECT STOPS indicators] 1= 0; on restart or
continuation jump to U.

If the a field contains all 0 bits, the execution of program instruction halts.
If the a field contains a 1 bit in a bit position which corresponds to a lit
SELECT STOPS switch/indicator on the operator's console, the program halts.
In either case, a manual restart causes the instruction at location U to be
exec uted next.

If neither of the conditions described above is . fulfilled , the instruction at
location U is executed and the program does not halt.

(1) If the CPU is operating in the guard mode (D2 of PSR = 1) when a halt
condition is satisfied by a Halt Keys And Jump instruction, the CPU
does not halt. Instead, it proceeds immediately with the jump.

(2) The indicator for each of the four SELECT STOPS switch/indicators
is turned on by pressing one of the SELECT STOPS switch/indicators
when the CPU is not in guard mode. They are turned off by pressing
the associated RELEASE STOPS switch .

. (3) Care should be exercised in using a value other than all 0 bits in the
a field if the program is to run concurrently with one or more other
programs, or in a multiprocessor system. Any other program may have
a Halt Keys And Jump instruction with the same value in the a field and
specify it is to be run with the corresponding SELECT STOPS switch/
indicator lit. In a multiprocessor system, each set of SELECT STOPS
switch/indicators is physically related to a particular CPU and it affects
instruction execution on the associated CPU only.

PAGE: 68

UP-40S3 L UNIVAC 1108 I
Rev. }___ _ ____ P_R_O_C_E_SS_O_R_A_N_D_S_T_O_R_A_G_E _______ .a-________ S_E;.,;;C~T_IO~N;.;.:_6 __ --I.._P ... A_G_E ... : _6,9

6.10.11.

(4) When a halt occurs, the instruction from location U has been read and is
in the Maintenance Panel FO register. The P register contains the ad­
dress of the following instruction (U + 1).

Jump No Low Bit

JNB
74,10
LSO fls jump/0.75 flS NI

Jump to U if (A)o= 0; go to NI if (A)o = 1.

If bit 0 of Aa is a 0 bit, the instruction at location U is executed next. If
bit 0 is a 1 bit, the next instruction (NI) is exec uted.

(1) If the Jump No Low Bit instruction is used to determine whether the
value in Aa is an even or an odd integer, consideration must be given
to the sign of the value.

6.10.12. Jump Low Bit

JB
74,11
1.S0 11S jump/0.75 flS NI

Jump to U if (A)o = 1; go to NI if (A)o = O.

If bit 0 of Aa is a 1 bit, the instruction at location U is executed next. If
bit 0 is a 0 bit, the next instruction (NI) is executed.

(1) If a Jump Low Bit instruction is used to determine whether the value
in Aa is an even or an odd integer, consideration must be given to the
sign of the value.

6.10.13. Jump Modifier Greater And Increment

JMGI
74,12
1. 50 flS jump/O. 75 flS NI

Jump to U if (Xa)17_0 > 0; go to NI if (Xa)l 7-0 ~ 0; always

(Xa)17_0+ (Xa)35-18 -4 Xa17-0·

If the signed number in bits 17 through 0 of the X register specified by the
a field is greater than zero (bit 17 is. a 0 bit and the number does not consist
of all 0 bits), the instruction at location U is executed next. If the number
is less than or equal to zero (bit 17 is a 1 bit or the number consists of all
Obits), the next instruction (NI) is executed. In either case, the signed
number in bits 35 through 18 of the X register is added to the signed number
in bits 17 through 0 and the sum is stored in bits 17 through 0 of the X
register.

(1) The number in Xal 7-0 before the addition is tested rather than the number
res ulting from the addition.

UP-4053
Rev. 1

6.10.14.

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 6

(2) If a = x and h = 1, the specified index register is effectively modified
only once for each execution of the instruction.

(3) In user operating mode (06 of the PSR = 0, if the a field is zero, the
control register specified is the PSR Temporary Storage register at
control register address OOOa' When an interrupt occurs, the contents
of the PSR are stored in this control register. Thus the original con­
tents of this control register will be destroyed any time an interrupt
occurs.

Jump Overflow

JO
74,14
1. 50 MS jump/0.75 MS NI

Jump to U if D1 of PSR = 1; go to NI if D1 = O.

If the overflow designator (01) in the Processor State Register (PSR) is a
1 bit, the instruction at location U is executed next. If D 1 is a 0 bit, the
next instruction (NI) is executed.

(1) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

(2) Executing the Jump Overflow instruction does not change 01.

(3) See 4.3.3.1 for additional information about the overflow deSignator.

6.10.15. Jump No Overflow

JNO
74,15
1.50 MS jump/0.75 MS NI

Jump to U if D1 of PSR= 0; go to NI if D1= 1.

If the overflow designator (01) in the Processor State Register (PSR) is a
o bit, the instruction at location U is executed. If D1 is a 1 bit, the next
instruction (NI) is executed.

(1) The contents of the a field are ignored; however, it is recommended
that the a field contain all 0 bits.

(2) Executing the Jump No Overflow instruction does not change Dl.

(3) See 4.3.3.1 for additional information about the overflow designator.

6.10.16. Jump Carry

JC
74,16
1.50 MS jump/0.75 MS NI

Jump to U if DO of PSR=l; go to NI if DO=O.

PAGE: 70

UP-4U53

Rev. 1

UNIVA~ IIUts

PROCESSOR AND STORAGE I SECTION. 6

If the carry designator (DO) in the Processor State Register (PSR) is a 1 bit,
the instruction at location U is executed next. If the DO is a 0 bit, the next
instruction (NI) is executed.

(1) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

(2) Performing the Jump Carry instruction does not change DO.

(3) See 4.3.3.2 for additional information about the carry designator.

6.10.17. Jump No Carry

JNC
74,17
1.50 flS jump/0.75 flS NI

Jump to U if DO of PSR = 0; go to NI if DO = 1.

[f the carry designator (DO) in the Processor State Register (PSR) is a 0 bit,
the instruction at location U is executed next. If DO is a 1 bit, the next
instruction (NI) is executed.

(1) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

(2) Performing the Jump No Carry instruction does not change DO.

(3) See 4.3.3.2 for additional information about the carry designator.

6.11. LOGICAL INSTRUCTIONS

The three logical operations are the Logical Inclusive OR (referred to as the
Logical OR and symbolized by [ill)), the Logical Exclusive OR (symbolized by
tE'i~), and the Logical AND (symbolized by mrn). Each of these instructions
uses two input operands. One input operand is obtained from location U and
the other from A register. Table 6-1 lists the four possible combinations of the
two bits from any bit position of the two input operands and the result produced
for that bit position for each of the three basic operations.

INPUT BITS OUTPUT (RESUL T) BIT

FIRST SECOND mil EI!rn rJIDJ
OPERAND OPERAND

0 0 0 0 0

0 1 1 1 0

1 0 1 1 0

1 1 1 0 1

Table 6-7. Truth Table for Logical OR, XOR, rmd AND

71
PAGE:

u r-"-tVJ,J

Rev. 1

6.11.1.

6.11.2.

UNIVA\... IIUg

PROCESSOR AND STORAGE 6
SECTION:

The Masked Load Upper instruction performs a compound logical operation; the
contents of selected bit positions of one operand are merged with the contents
of the remaining bit positions of a second operand.

For each of the logical instructions the result is stored in an A register.

Logical OR

OR
40
0.75 IlS - alternate
1.50 IlS - same

(A) mil (U) - A+ 1

The contents of Aa are transferred to the arithmetic section. The contents of
U are transferred to the arithmetic section under j field control. A 36-bit tesult
is formed in the arithmetic section, as follows:

• The result contains a 1 bit in each bit position for which the corresponding
bit position of either (or both) of the input operands contain,s a 1 bit.

• The result contains a 0 bit in each bit position for which the cotresponding
bit position of both input operands contains a 0 bit.

T he res ult is stored in A a+ 1.

Logical Exclusive OR

XOR
41
0.75 IlS - alternate
1.50 IlS - same

(A) I!ImJ (U) - A+ 1

The contents of Aa are transferred to the arithmetic section. The contents of
U are transferred to the arithmetic section under j field control. A 36-bit result
is formed in the arithmetic section, as follows:

• The result contains a 1 bit in each bit position for which the corresponding
bit position of either (but not both) of the i.nput operands contains a 1 bit.

• The result contains a 0 bit in each bit position for which the contents of
the corresponding bit position of the input operands are both 0 bits or both
1 bits.

The result is stored in Aa+1.

0) When h = 1 and the a field and the x field specify the same control register,
the value transferred to the arithmetic section from Aa is undefined.

72
PAGE:

UP-4053

Rev. 1
I UNIVAC 1108 I
~, _________ P_R __ O_C_E_S_S_O_R __ A_N_D __ S_T_O __ R_A_G_E __________ ~ ____________ ._SE_C_T_IO_N_: __ 6 ____ ~P_A_G_E_:_7_3 __ ___

6.11..3.

6.11.4.

Logical AND

AND
42
o. '15 fls - alternate
l.S0 /l.S - same

(A) rlm] (U) - A+ 1

The contents of Aa are transferred to the arithmetic section. The contents of
U are transferred to the arithmetic section under j field control. A 36-bit result
is formed in the arithmetic section, as follows:

• The result contains a 1 bit in each bit position for which the corresponding
bit position of both input operands contains a 1 bit.

• The res ult contains a 0 bit in each bit position for which the corresponding
bit position of either (or both) of the input operands contains a 0 bit.

The result is stored in Aa+ 1

(1) When h = 1 and the a and the x fields specify the same control registers,
the value transferred to the arithmetic section from Aa is undefined.

Masked Load Upper

MLU
43
0.75 flS - alternate
1. 50 flS - same

[(U) rlm] (R2)] [illI [(A) mrn (R2)] - -~. A+ 1

The contents of Aa and R2 are transferred to the arithmetic section. The
contents of U are transferred to the arithmetic section under j field control. A
36-bit result is formed in the arithmetic section, as follows:

• The result contains a 1 bit in each bit position for which the corresponding
bit position of the operand from U and the operand from R2 both contain
1 bits.

• The result contains a 1 .bit in each bit position for which the corresponding
bit position of the operand from Aa and the ones complement of the operand
from R2 both contain 1 bits.

• The result contains 0 bits in the remaining bit positions.

The result is stored in Aa+ 1.

(1) The desired value must be loaded in R2 (Mask Register) by an instruction
pre'ceding the Masked Load Upper instruction.

Rev. 1

6" 12.

6 .. 12.1.

6.12.2.

UI~I y I Iva

PROCESSOR AND STORAGE
SEC TION:

MISCELLANEOUS INSTRUCTIONS

Each of the four following instructions is classed as miscellaneous.

Execute

EX
72,10
0.75 fJ..S

Execute the instruction at U.

6

The P register is incremented provided the instruction was addressed by the
contents of the P register. The instruction at location U is transfer/red to the
control section to replace the Execute instruction as the next instruction to be
performed.

(1) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

(2) The remote instruction, specified by U, is always obtained from a main
storage location (never from a control register). The value of U is a
relative main storage address.

(3) Execute instructions may be cascaded; that is, the instruction in the remote
location may be an Execute instruction.

(4) The P register is not incremented after the instruction addressed by U is
transferred to the FO register for execution.

(5) Generally, an I/O interrupt cannot occur between the time an Execute
instruction is started and the instruction (or chain of instructions) it leads
to has been completed except when an Execute instruction leads to a
repeated instruction (see 6.3.8 and 6.6). I/O interrupt cannot occur
between the start of the Execute instruction and the completion of the
initial stage of the repeated instruction. The interrupt, however, can
cause initiation of a termination stage immediately following completion
of the initial stage or any time thereafter in order to permit the I/O
interrupt to occur.

(6) If an Execute instruction leads to a repeated instruction, index register
incrementation should not be specified for the Execute instructions or
for any indirect addressing sequence involved (see 6.3.8, note (6) and
6.6).

Executive Return

ER
72,11
1.375 Ils
Interrupt to 2428

74
PAGE:

UP-4U~j

Rev. 1

Ur'IIl ~I"'\'-' • IUU

PROCESSOR AND STORAGE

The contents of the Processor 'State Register (PSR) are stored in the control
register at address 0008 , D7 and D6 of the PSR are loaded with 1 bits. 08,
DS through DO, and QW of the PSR are cleared to 0 bits. BI, BS, and BD of
the PSR are not changed. The address of the next instruction to be performed
is 2428 + MSR rather than the incremented value in the P register. .

(1) If a11 of the following conditions prevail,

• indirect addressing is specified (i = 1, D7 = 0);

• guard mode/storage limits protection is enabled (D3D2= 01); and

• the value SI or SD, as applicable, violates the main storage limits set
in the Storage Limits Register,

then a Guard Mode/Storage Limits Fault Interrupt will occur.

(2) If indirect addressing is not specified (i = 0 or D7 = 1 or both), the value
in the 11 field has no effect on the instruction or its timing.

(3) If x = 0 and h = 1, then Xm + Xi - Xm.

(4) The contents of the a field are ignored; however, it is recommended that
the a field contain a11 0 bits.

(5) This is not a privileged instruction. When guard mode is specified
(D2=1), it can be performed without causing a Guard Mode Fault Interrupt.

6.12.3. Test And Set

TS
73,17
1.625 Il s interrupt/0.875 IlS NI - alternate
2.00 Ils interrupt/2. 00 IlS NI - same
If (Uh 0 = 1: interrupt to 244 8 ; if (Uh 0 = 0: go to NI; always

018-U35-30; (Uh9-0 unchanged.

An extended main storage cycle is initiated to read and then write at main
storage location U. If bit 30 of the word read from location U is a 1 bit, the
instruction at location 2448 is executed next. If bit 30 of the word read from
location U is a 0 bit, the next instruction (NI) is executed. The write portion
of the extended main storage cycle includes writing 018 in bits 35 through 30
of main storage location U. Bits 29 through 0 at 10cationU are not examined
and are never altered.

(1) If U ~ 1778 , the result produced by the instruction is undefined.

(2) The P register is incremented twice as a result of performing a Test And
Set instruction whic h leads to an interrupt. Therefore, the address saved
by an LMJ or SLJ instruction at 2448 is P + 2 rather than P + 1.

(3) The contents of the a field are ignored; however, it is recommended that
the a field contain a11 0 bits.

(4) In the NI case with alternate bank access, completion of the NI is delayed
by .375 microsecond if the U operand addressed by the NI is in the same
bank as the operand addressed by the Test And Set instruction.

75
PAGE:

6.12.4.

6.13.

UNIVA~ IIUts

PROCESSOR AND STORAGE 6
SECTION:

(5) This is not a privileged instruction. When D2 of PSR = 1, a TS instruc­
tion can be performed without causing a Guard Mode Fault Interrupt.

No Operation

NOP
74,06
0.75 flS

Proceed to next instruction

This instruction ensures that there is an interval of at least 0.75 micro­
second between the end of cycle 5 of the main timing chain for the instruc­
tion which precedes it and the start of cycle 1 of the main timing chain of
the instruction which follows it.

(1) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

(2) The only effects that the values in the x, h, i, and u fields can have on

the operation is the index register incrementation obtained when x 'i'.

o and h = 1, and the indirect addressing delay introduced when i = 1
and D7 of PSR = O. It is recommended that the x, h, i, and u fields
contain all 0 bits.

INPUT /OUTPUT INSTRUCTIONS

The instructions discussed in this section include:

• Two instructions used to condition the CPU to accept input from a peripheral
subsystem via an input channel.

• Four instructions used to condition the CPU to send output (data or function
words) to a peripheral subsystem via an output channel.

• Three conditional jump instructions used to determine the status of an input
or output channe 1.

• Two instructions used to disconnect or deactivate an input or output channel.

Each of these instructions applies to the particular I/O channel specified by the
logical OR of the four-bit values in the a field of the instruction and the Channel
Select Register (CSR). This is symbolized by [p. [!l3 CSR]. The logical OR
operation is explained in 6.11. The CSR is loaded under program control as
explained in 6.14.10.

Two I/O instructions are provided to control recognition by the I/O section of
External Interrupt signals from the various peripheral subsystems: one prevents
recognition, the other allows recognition.

Ea~h I/O channel operates in Internally Specified Index (lSI) or Externally
Specified Index (ESI) mode. The ESI mode is used in conjunction with
communications multiplexing equipment. Certain of the I/O instructions have
different effects according to the mode of the channel.

Input/ output operations are explained in detail in Section 7.

76
PAGE:

UP··4053
Rev. 1

6.13.1.

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECTION:

All of the 110 instructions are privileged or guard mode protected instructions.
An attempt to perform any I/O instruction when the Processor State Register
(PSR) specifies guard mode (D2 = 1) results in a Guard Mode Fault Interrupt
(see 8.3.2.2)~

Load Input Channel

LIC
75,00
0.75 (1.s - alternate
1.50 (1.S - same

For channel [a (ffiJ CSR): (U) - IACR; set input active; clear input monitor.

The word from location U is transferred to the Input Access Control Register
(IACR) at address 408 + [a [ill) CSR]. The input active control circuit is
set for the specified channel.

The input monitor control circuit is cleared for the specified channel.

(1) If D2 of PSR = l,an attempt to perform a''Load Input Channel instruction
causes a Guard Mode Fault Interrupt and none of the above steps occurs.

(2) The transfer of a word to the IACR occurs only if [a [ill) CSR] specifies
an lSI channel, never if it specifies an ESI channel.

6.13.2. Load Input Channel And Monitor

6.13.3.

LICM
7S,01
0075 (1.S - alternate
1.50 (1.S - same

For channel [a m3 CSR]: (U)- IACR; set input active; set input monitor.

The word from location U is transferred to the Input Access Control Register
(IACR) at address 408 + [a m3 CSR]. The input active and the input monitor
control circuits are set for the specified channel.

(1) If D2 of PSR = 1, an attempt to perform a Load Input Channel And Monitor
instruction causes a Guard Mode Fault Interrupt and none of the above
steps occurs.

(2) The transfer of a word to the IACR occurs only if [a [ill) CSR] specifies
an lSI channel, never if it specifies an ESI channel.

Jump On Input Channel Busy

JIC
7S,02
0.75 (1.S

Jump to U if input active is set for channel [a l!I3 CSR]; go to NI if input
active is clear.

77
PAGE:

UP-4053
Rev. 1

6.13.4.

6.13.5.

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 6

If the input active control circuit for channel [a (illJ CSR] is set, U is trans­
ferred to the P register. If the input active control circuit for the specified
channel is in the cleared state, the next instruction (NI) is executed.

(1) If D2 of PSR = 1, an attempt to perform a Jump On Input Channel Busy
instruction causes a Guard Mode Fault Interrupt; in this instance, the
contents of the P register are not affected by the status of the input active
control circuit.

Disconnect Input Channel

DIC
75',03
0.75 I1S

For channel [a lID) CSR]: clear input active; clear input monitor.

(1) If D2 of PSR = 1, an attempt to perform a Disconnect Input Channel
instruction causes a Guard Mode Fault Interrupt and neither of the above
steps occurs.

(2) The only effects that the values in the x, h, i, and u fields can have on the
operation is the index register incrementation obtained when x 1= 0 and
h = 1, and the indirect addressing delay introduced when i = 1 and D7 of
PSR = O. It is recommended that the x, h, i, and u fields contain all 0 bits.

(3). If the conditions which normally lead to an Input Monitor Interrupt are
present on the channel specified by the DIC instruction but are not fully
recognized by both the I/O section and the control section before the
Disconnect Input Channel instruction is performed, the Input Monitor
Interrupt does not occur.

Load Output Channel

LOC
75,04
0.75 I1S - alternate
1.50 I1S - same

For channel [a [ffiJ CSR]: (U) - OACR; set output active; clear output
monitor; clear external function (lSI only).

The word from location U is transferred to the Output Access Control Register
(OACR) at address 60 s + [a (lliI CSR]. The output active control circuit is
set for the specified channel. The output monitor control circuit is cleared
for the specified channel. For lSI only, the external function circuit on the
specified channel is cleared.

(1) If D2 of PSR = 1, an attempt to perform a Load Output Channel instruction
causes a Guard Mode Fault Interrupt and none of the above steps occurs.

(2) The transfer of a word to the OACR occurs only if [a [!E CSRJ specifies
an lSI channel, never if it specifies an ESI channel.

PAGE: 78

UNIVAC 1108
.~ "'-.~

Rev. 1 PROCESSOR AND STORAGE
SECTION: 6 PAGE: 79

UP-4053 ~

------------- --------.---~------------~~------------~-----------

6.13.6. ,Load Output Channel And Monitor

6.Jl3.7.

LOCM
75,05
0. 75 1l s
1.50 IlS

For [a M3 CSR]: (U) - OACR; set output active; set output monitor; clear
external function (lSI only).

....

The word from location U is transferred to the Output Access Control Register
(OACR) at address 60 s -+ [a [illJ CSR]. The output active and output monitor
control circuits are set for the specified channel. For lSI only, the external
function circuit for the specified channel is cleared.

(1) If D2 of PSR = 1, an attempt to perform a Load Output Channel And Monitor
instruction causes a Guard Mode Fault Interrupt and none of the above
steps occurs.

(2) The transfer of a word to the OACR occurs only if [a tmJ CSR] specifies
an lSI channel, never if it specifies an ESI channel.

Jump On Output Channel Busy

JOC
75,06
0.75 IlS

Jump to U if output active is set for channel [a [ill) CSR]; go to NI if output
active is clear.

If the output active control circuit for channel [a [ill) CSR] is set., U is
transferred to the P register. If the output. active control circuit for the
specified channel is in the cleared stat.e, the next instruction (NI) is executed.

(1) If D2 of PSR = 1, an attempt to perform a Jump On Output Channel Busy
instruction causes a Guard Mode Fault Interrupt; in this instance, the
contents of the P register are not. affected by the status of the output
active control circuit.

(2) This instruction tests the state of the output active control circuit for the
specified channeL

• For an lSI channel: This control circuit is set when a Load Output
Channel, Load Output Channel And Monitor, Load Function In Channel
or Load Function In Channel And Monitor instruction specifying t.hat
channel is performed.

• For an ESI channel: this control circuit is set when a Load Output
Channel or Load Output Channel And Monitor instruction specifying
that channel is performed.

UP-4053

Rev. 1

6.13.8.

6.13.9.

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 6

• For an lSI channel: this control circuit is cleared when tl-te peripheral
subsystem attached to that channel turns on the Output Data Request
(ODR) signal at a time when the count in the W field of the corresponding
OACR is ~I~O.

• For an ESI channel: this control circuit is cleared when the count in
the W field of the associated OACR is decremented from 1 to 0, and
under certain circumstances when the count in the W field is
decremented from 2 to 1 (see 7.3.3.2).

Disconnect Output Channel

DOC
75,07.
0. 75 11 s

For channel [a Mf) CSRJ: clear output active; clear output monitor; clear
external function.

(1) If D2 of PSR = 1, an attempt to perform a Disconnect Output Channel
instruction causes a Guard Mode Fault Interrupt and none of the above
steps occurs.

(2) The only effects that the values in the x, h, i, and u fields can have on
the operation is the index register incrementation obtained when x 1- °
and h = 1, and the ind irect addressing delay introduced when i = 1 and
D7 of PSR = 0. It is recommended that the x, h, i, and u fields contain
all Obits.

(3) If the conditions which normally lead to an Output Monitor Interrupt or a
Function Monitor Interrupt are present on the channel specified by the
DOC instruction but are not fully recognized by both the I/O section and
the control section before the DOC instruction is performed, the Monitor
Interrupt does not occur.

Load Function Channel

LFC
75,10
0.75 I1s - alternate
1.50 I1s - same

For channel [a [ffiJ CSR]: (U) ~ OACR; set output active (lSI only), external
function, and force external function, clear ou'tput monitor (lSI only).

The word from location U is transferred to the Output Access Control Register
(OACR) at address 60s + [a [ffiJ CSR]. The output active (lSI only), external
function, and force external function control circuits are set for the specified
channel. The output monitor control circuit is cleared (lSI only) for the speci­
fied channel.

(1) If D2 of PSR ~ 1, an attempt to perform a Load Function Channel instruction
causes a Guard Mode Fault Interrupt and none of the above steps occurs.

PAGE: 80

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION: 6 PAGE: 81

UP-A053 ~

------,----- --~------------------~-------------~-----------

(2) If an ESI channel is specified by a Load Function Channel instruction, the
output active, external function, and output monitor control circuits are not
affected, the OACR is loaded, and the force external function control
circuit is set.

6.13.10. Load Function In Channel And Monitor

LFCM
'75,11
0.75 J1S .. - alternate
1.50 ILS - same

F'or channel [a [!E CSR]: (U) ~ OACR; set output active (lSI only), external
function, force external function, and output monitor (lSI only).

The word from location U is transferred to the Output Access Control Register
(OACR) at address 60 s + [a IffiJ CSRJ. The ou~put active (lSI only), external
function, force external function, and output monitor (lSI only), control circuits
are set for the specified channel.

(1) If D2 of PSR =1, an attempt to perform a Load Function In Channel And
Monitor instruction causes a Guard Mode Fault Interrupt and none of the
above steps occurs.

(2) If an ESI channel is specified for a Load Function In Channel And Monitor
instruction, the output active and external function control circuits are not
affected, the OACR is loaded, and the force external function control c ir­
cuit :is set.

(3) For an ESI channel, the Load Function In Channel And Monitor instruction
performs exactly the same functions as the Load Function Channel instruc­
tion. Neither instruction affects the output monitor control circuit.

6.13.11. Jump On Function In Channel

JFC
75,12
0.75 f.LS

Jump to U if force external function is set for channel [a [!E CSR]; go to NI
if force external function is clear.

If the force external function control circuit for channel [a [!l3 CSR] is set,
U is transferred to the P register. If the force external function control
circuit is in the cleared state, the next instruction (NI) is executed.

(1) If D2 of PSR = 1, an attempt to perform a Jump On Function In Channel
instruction causes a Guard Mode Fault Interrupt; in this instance, the
contents of the P register are not affected by the status of the force
external function control circuit.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 6
SEC TION:

(2) This instruction tests the state of the force external function control
circuit for the specified channel. This control circuit is set when a
Load Function Channel or Load Function In Channel And Monitor in­
struction spec ifying that channel is performed. It is cleared during the
sequence used to send the firs.t function word for a Load Function Channel
or Load Function In Channel And Monitor instruction to, the peripheral sub­
system attached to that channel.

6.13.12. Prevent All Channel External Interrupts

PACI
75,15
O.75{ls

Prevent all external interrupts.

This instruction sets a control circuit which prevents the I/O section from
reacting to any External Interrupt or Day Clock Interrupt requests.

(1) If D2 of PSR = 1, an attempt to perform a Prevent All Channel External
Interrupts instruction ca uses a Guard Mode Fault Interrupt and the control
cire uit is not set.

(2) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

(3) The only effects that the values in the x., h, i, and u fields can have on
the operation is the index register incrementation obtained when x .j. 0
and h = 1, and the indirect addressing delay introduced when i = 1 and
D7 of PSR = O. It is recommended that the x, h, i, and u fields contain,
all 0 bits.

(4) If interrupts are not disabled at the time the Prevent All Channel External
Interrupts instruction is initiated, the I/O section will react to the highest
priority Day Clock Interrupt/External Interrupt signal, should any occur

PAGE:

during the early stages of the Prevent All Channel External Interrupts
instruction, by initiating the interrupt associated with that signal immediately
following the instruction. Only one such request, however, will beso honored.

(5) Once the Prevent All Channel External Interrupts instruction is performed,
it is necessary to perform the Allow All Channel External Interrupts instruc­
tion to enable the CPU to react to Day Clock Interrupt/External Interrupt
requests (see 6.13.13). Execution of the Allow All I/O Interrupts And Jump
instruction or the Enable Day Clock instruction is not sufficient.

6.13.13. Allow All Channe.1 External Interrupts

AACI
75,14
0.75 {lS

Allow all external interrupts.

This instruction clears the control circuit set by the Prevent All Channel
External Interrupts instruction (see 6.13.12) and allows the I/O section to
react to Day Clock Interrupt requests and External Interrupt requests.

82

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION: 6 PAGE: 83

UP~4U53

-------, ---~--------------~------------~------,------

6.14.

6.14.1.

(1) If D2 of PSR= 1, an attempt to perform an Allow All Channel External
Interrupts instruction causes a Guard Mode Fault Interrupt and the control
circuit is not cleared.

(2) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

(3) The only effects that the values in the x, h, i, and u fields can have on
the operation is the index register incrementation obtained when x cI 0
and h = 1, and the indirect addressing delay introduced when i = 1 and
D7 of PSR = O. It' is recommended that the x, h, i, and u fields contain
all 0 bits.

(4) The Allow All Channel External Interrupts instruction clears the circuit
set by the Prevent All Channel External Interrupts instruction (see
6.13.12). It does not clear the circuit set by a Prevent All I/O Interrupts
And Jump instruction (see 6.14.1)" or the honoring of an interrupt request;
the Allow All I/O Interrupts And Jump instruction (see 6.9.3) is required
for this. The Allow All Channel External Interrupts instruction can never
be used to enable the Day Clock; the Enable Day Clock instruction (see
6.14.8) is required for this.

EXECUTIVE SYSTEM CONTROL INSTRUCTIONS

The instructions in this group are intended for use solely by the Executive System.
All but one (see 6.14.2) are privileged instructions; an attempt to perform a privi­
leged instruction when D2 of PSR = 1 causes a Guard Mode Fault Interrupt.

Prevent All I/O Interrupts And Jump

PAIJ
72,13
0.75 f1S

Prevent all I/O interrupts and jump to U.

The I/O section of the CPU will not recognize any I/O interrupt requests
received following the completion of the instruction nor will it react to any
I/O interrupt requests received following the start of the execution of the
instruction. The instruction stored in location U is executed next.

(1) The following are classed as I/O interrupts:

• All monitor interrupts

• All external interrupts including the Day Clock Interrupt

• All system I/O interrupts including the Interprocessor Interrupt, Real
Time Clock (RTC) Interrupt, and the Power Loss Interrupt

• All I/O parity error interrupts including the Access Control Word Parity
Error Interrupt and the I/O Data Parity Error Interrupt.

(2) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

UP-4053

Rev. 1

6.14.2.

UNIVAC 1108

PROCESSOR AND STORAGE 6
SECTION:

(3) This is a priv)leged instruction. If D2 of PSR = 1, an attempt to perform
a PAIJ instruction causes a Guard Mode Fault Interrupt.

(4) Once the Prevent All I/O Interrupts And Jump instruction is performed,
an Allow All I/O Interrupts And Jump instruction (see 6.9.3) must be
performed in order for the CPU to recognize and react to any I/O interrupt
request. Execution of the Allow All Channel Interrupts instruction (see
6.13.13) or the Enable Day Clock instruction (see 6.14.8) is not sufficient.

(5) If an External Interrupt (EI) signal is turned on while a Prevent All I/O
Interrupts And Jump instruction is being performed, the CPU may acknowl­
edge receipt of the status word and store it immediately following completion
of the Prevent All I/O Interrupt And Jump instruction. The program will not
be interrupted to complete the reaction to the EI signal until after an Allow
All I/O Interrupts And Jump instruction has been performed. Therefore, the
conte nts of the status word location as soc iated with an EI signal should
not be changed in any manner following a Prevent All I/O Interrupts And
Jump instruction since the location may contain a status word of which the
program is unaware because the associated interrupt has not occurred.

Store Channel Number

SCN
72,14
0.75 flS alternate
1.50 flS - same

If a = 0: channel number -) U3 - 0 ;

if a = 1: channel number -) U3 - 0 and CPU number ~ US - 4 .

When the a field contains all 0 bits, the 4-bit number identifying the I/O channel
associated with the most recent I/O interrupt for the CPU performing the instruc­
tion is stored in bits 3 through 0 of the location U. Bits 17 through 4 of location
U are cleared to 0 bits.

When the a field contains 0001 2 , the 4-hit number identifying the I/O channel
associated with the most recent I/O interrupt is stored in bits 3 through 0 of
location U, the 2-bit number identifying the CPU is stored in bits 5 and 4 of
location U, and bits 17 through 6 of location U ar e cleared to 0 bits.

(1) If the a fie ld contains a value other than 0000 2 or 0001 2 , the result is
undefined.

(2) If U is greater than, or equal to, 2008 , the bits 35 through 18 of location U
remain unchanged. If U is less than 200 8 , bits 35 through 18 of the control
register addressed by U are cleared to 0 bits.

(3) This is not a privileged instruction. When D2 of PSR = 1, an SCN instruc­
tion can be performed without causing a Guard Mode Fault Interrupt.

84
PAGE:

85
UP 4053 ~ UNIVAC 1108 I
Re·v.l PROCESSOR AND STORAGE SECTION:

6
PAGE:

-------------- ---------------------------------------.--------------------------~.~~~~------~-----------

6.1.4.3. Load Processor State

LPS
72,15
0.75 fJ.S

1. 50 fJ.S

(U) --) PSR

alternate
same

The contents of location U are transferred to the Processor State Register (PSR).

This instruction provides the means for an Executive type program to modify the
operating state of the machine. The Executive program must define a discrete
Processor State Word for each user program under its control, and set the specific
user mode before transferring control to that user . The Processor State Word
associated with a specific program defines the various designators which control
the hardware operation, and contains the proper values for the relative addressing
base registers, BI, BD, and BS (see 9.1).

(1) The Load Processor State instruction which initiates the change from
Executive mode to user mode is usually followed by one of the following
transitional instructions:

• LPS with u and (Xm)x such that U < 200 (see note 5).

• NOP with a, x, h, and u = O.

•],]K with h = O.

• AAI] with h = O.

When the transitional instruction is executed, the PSR values which apply
(including BI, BD, BS, D7, D6, D4, D3, and D2) are the values in the PSR
before the initial Load Processor State instruction. If this instruction
specifies indirect addressing, the PSR values loaded by the initial Load
Processor State instruction apply for all passes after the first pass.

(2) When a Load Processor State instruction is performed, the contents of the
location specified by the U value are actually loaded into the PSR during
cycle 3 of the Tl chain associated with the Load Processor State instruc­
tion (see 5.4.1.2). During this cycle and the cycle immediately following
reading from and writing into control registers is inhibited. If the U value
associated with the Load Processor State instruction references a control
register, there is no Read Instruction delay between cycle 5 of the TO
chain for the initial Load Processor State instruction and the Read Xx in
cycle 1 of the TO chain for the transition instruction. This means the
initial Load Processor State instruction is performed with alternate bank
timing. As a result, cycle 3 of the Tl chain associated with the initial
Load Processor State instruction coincides with cycle 3 of the TO chain
for the transitional instructiol1. Thus, the transitional instruction must be
such that cycles 3 and 4' of the TO chain do not require reading from or
writing into control registers. The transitional instructions listed in note
(1) comply with this restriction. Since the trans itional ins truction is
already being processed by the time the contents of the U value for the

UP-4053
Rev. 1

UNIVAC n08
PROCESSOR AND STORAGE I SEC TlO", 6

initial Load Processor State instruction is stored, the machine state
specified by this Load Processor State instruction effectively applies to
the second instruction performed following the Load Processor State
instruction. This machine state then applies to all subsequent instructions
until the contents of the PSR are changed by another Load Processor State
instruction or by an interrupt.

(3) This is a privileged instruction. If 02 of PSR = 1, an attempt to perform a
Load Processor State instruction causes a Guard Mode Fault Interrupt.

(4) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

(5) The recommended method for an executive program (0302 = 00, 06 = 1) to
return control to a user program after handling an interrupt is to perform
the following sequence of instructions with I/O interrupts locked out:

LPS with u and (Xm)x such that U < 200
LPS with h= i= 0, and u and (Xm)x such thatU < 200
AAIJ with h= i= 0

The first Load Processor State instruction specifies values for u and (Xm)x
such that U < 200 (that is, U addre.sses a control register) to ens ure that the
Load Processor State instruction is performed with alternate bank timing.
The word transferred to the PSR specifies D7 = 0, D6 = 1, D3D2 = 00, and the
user values for BI, BD, and BS. This instruction prepares for the Allow All
I/O Interrupts And Jump instruction by setting up BI, BD, and BS for return­
ing to the user program. At the same time, it retains the executive control
registers so that an executive index register can be read for the Allow All
I/O Interrupts And Jump instruction. The index register specified by the
Allow All I/O Interrupts And Jump instruction should contain the proper

PAGE: 86

user relative address. The user relative address, P + 1 or P + 2, was captured
by the executive when control was transferred from that user to the executive.

The second Load Processor State instruction does not specify indirect ad­
dressing or index register incrementation. Again the values for u and (Xm)x
specified by this transitional Load Processor State instruction should be
such that U < 200 to ensure that this Load Processor State instruction is
performed with alternate bank timing. The trans itional Load Processor State
instruction must be performed with alternate bank timing so that the PSR
values set by the initial Load Processor State instruction w ill apply to the
read Xx cycle of the Allow All I/O Interrupts And Jump instruction. The
word transferred to the PSR specifies D7 = 0, D6 = 0, D302 = 01 or 11, and the
same values for D1 and DO as were captured at control register OOOa when
control was transferred from that user to the executive program. BI, BO, and
BS contain the same user values as used for the first Load Processor State
instruction. The second Load Processor State instruction completes the
switch from the executive mode to the user mode. The user state specified
by this instruction effectively applies to the instruction following the Allow
All I/O Interrupts And Jump instruction.

UNIVAC 1108

Rev. 1 PROCESSO'R AND STORAGE 6
SEC TION: PAGE: 87

UP .. 4053 ~

------- ---~------------~--------------~----.------

6.14.4.

6.1.4.5.

The Allow AllIlO Interrupts And Jump instruction specifies h =- i = O. When
this instruction is performed, the machine state specified by the first Load
Processor State instruction prevails. Thus the executive mode index register
is read in the Read Xx step, but the user BI, BD, and BS are used to deter­
mine the jump to address.

(6) The Storage Limits Register must be set to the proPer values for the user
program before a Load Processor State instruction is executed which sets
guard mode and storage limits protection for the user mode.

Load Storage Limits

LSL
72,16
0.75 IJ.S _. alternate
1.50 IJ.S _. same

(U) ~ SLR

The contents of location U are transferred to the 36-bit Storage Limits
Register (SLR).

(1) Performing a Load Storage Limits instruction does not enable the storage
protection capability, but merely defines or redefines the storage protection
limits. If D3 of PSR = 1, write-only storage protection is provided for the
operand for the next instruction. If D3 of PSR = 0, the storage protection
feature is not enabled until after the PSR is subsequently loaded with a
value which provides a 1 bit for either D2 or D3 or both. For more details
on the Storage Limits Register see 9.3.1.

(2) This is a privileged instruction. If D2 of PSR = 1, an attempt to perform a
Load Storage Limits instruction ca uses a Guard Mode Fault Interrupt.

(3) The contents of the a field are ignored; however, it is recommended that
the a field contain all 0 bits.

Initiate Interprocessor Interrupt

III
73,14 a = 0 or 1
0.'75 IJ.S

Initiate interprocessor interrupt.

The value in the a field is used to determine which processor in a multiprocessor
system is to be interrupted, and the Interprocessor Interrupt signal is turned on
for the specified processor.

(1) In a multiprocessor system, the CPU connected to the active Interprodessor
Interrupt signal is interrupted. The active interrupt signal can be determined
by forming the base 3 s urn of the contents of a + I-fo CPU performing the
Initiate Interprocessor Interrupt instruction. The interrupt location is deter­
mined from the a field of the Initiate Interprocessor Interrupt instruction. If
a = 0000 2 , the interrupt is to location 233 8 + MSR. If a = 0001 2 , the interrupt
is to location 232 8 + MSR. This is summarized in Table 6-2.

U p-'tUJ.:l

Rev. 1

UNIVA\.. Ilua

PROCESSOR AND STORAGE 6
SECTION:

CPU # CONTENTS OF
INTERRUPT

PERFORMING A FIELD OF INTERRUPTED
LOCATION

III III CPU #
(OCTAL)

INSTRUCTION INSTRUCTION

a 0000 1 233 + MSR

0001* 2 232 + MSR

1 0000* 2 233 + MSR

0001 a 232 + MSR -.
2 0000 a 233 + MSR

0001 1 232 + MSR

* If the system includes only two CPU's, the results are not defined if an Initiate Inter processor Interrupt instruction
is performed by CPU #0 with a = 0001 or by CPU #1 with a = 0000.

6.14.6.

Table 6-2. Interprocessor Interrupt Relationships

(2) This is a privileged instruction. If D2 of PSR = 1, an attempt to perform an
Initiate Interprocessor Interrupt instruction causes a Guard Mode Fault
Interrupt.

(3) The only effects that the contents of the x, h, i, and u fields can have on
the operation are the index register incrementation obtained when x/:-O and
h = 1, and the indirect addressing delay introduced when i = 1 and D7 of
PSR = O. It is recommended that the x, h, i, and u fields contain all 0 bits.

(4) When f = 73 s and j = 14s , the value in the a field is used to specify the in­
struction, as follows:

(a) When a = 10002, the Alarm instruction (see 6.14.6) is specified.

(b) When a = 00002 or 00012 ' the Initiate Interprocessor Interrupt instruction
is specified.

(c) When a = 10102 , the Disable Day Clock instruction (see 6.14.7) is
specified.

(d) When a = 10012 , the Enable Day Clock instruction (see 6.14.8) is
specified.

(e) The results are undefined if the a field contains a value in the range
0010 2 through 0111 2 or 10112 through 11112 ,

Alarm

ALRM
73,14 a= lOs
0.75/1s

Turn on alarm.

The audio alarm on the operator's Display Console is turned on.

88
PAGE:

UP-4053

Rev. 1

6.14.7.

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION:

6

(1) The audio alarm may be turned off by pressing the ALARM RESET switch
on the operator's Display Console or on the maintenance panel.

(2) This is a privileged instruction. If 02 of PSR = 1, an attempt to perform an
alarm instruction causes a Guard Mode Fault Interrupt.

(3) The only effects that the values in the x, h, i, and u fields can have on the
operation is the index register incrementation obtained when x 1= 0 and h = 1,
and the indirect addressing delay introduced when i= 1 and D7 of PSR = O.
It is recommended that the x, h, i, and u fields contain all 0 bits.

(4) When f=73 8 and j=148 , the value in the a field is used to specify the in­
struction, as follows:

(a) When a = 10002 , the Alarm instruction is specified.

(b) When a = 00002 or 0001 2 , the Initiate Interprocessor Interrupt instruction
(see 6.14.5) is specified.

PAGE: 89

(c) When a = 10102 , the D isa ble Day Clock instruction (see 6.14.7) is specified.

(d) When a= 1001 2 , the Enable Day Clock instruction (see 6.14.8) is specified.

(e) The results are undefined if the a field contains a value in the range 0010 2

through 0111 2 or 10112 through 11112 ,

Disable Day Clock

DDC
73,14 a= 128
0 .. 75 flS

Disable day clock.

A control circuit is set within the CPU to cause the CPU's I/O section to ignore
request and interrupt signals from the Day Clock on the operator's Display
Console associated with the CPU executing the instruction.

(1) After the Disable Day Clock instruction has been performed, an Enable Day
Clock instruction (see 6.14.8) must be performed in order for the CPU to react
to either a Day Clock Request or a Day Clock Interrupt signal. Performing an

Allow All I/O Interrupts And Jump (see 6.9.3) or an Allow All Channel Exter­
nal Interrupts instruction (see 6.13.13) is not sufficient.

(2) This is a privileged instruction. If D2 of PSR = 1, an attempt to perform a
Disable Day Clock instruction causes a Guard Mode Fault Interrupt.

(3) The only effects that the values in the x, h, i, and fl fields can have on the
operation is the index register incrementation obtained when x 1= 0 and h = 1,
and the indirect addressing delay introduced when i= 1 and D7 of PSR = O.
It is recommended that the x, h, i, and u fields contain all 0 bits.

UP-4053
Rev. 1

6.14.8.

UNIVAC 1108

PROCESSOR AND STORAGE SEC TION: 6

(4) When f = 73 8 and j = 148 , the value in the a field is used to specify the in­
struction, as follows:

(a) When a = 10002 , the Alarm instruction (see 6.14.6) is specified.

(b) When a = 00002 or 0001 2 , the Initiate Interprocessor Interrupt instruction
(see 6.14.5) is specified.

(c) When a= 10102 , the Disable Day Clock instruction is specified.

PAGE: 90

(d) When a = 1001 2 , the Enable Day Clock instruction (see 6.14.8) is specified.

(e) The results are undefined if the a field contains a value in the range 0010 2

through 0111 2 or 10112 through 1111 2 ,

Enable Day Clock

EDC
73,14 a= 118
0.75 f.l.S

Enable day clock.

The control circuit which is set by a Disable Day Clock instruction is cleared.
This permits the CPU's I/O section to recognize and react to Day Clock Request
signals and enables a circuit which causes the CPU's I/O section to, respond to
Day Clock Interrupt signals.

(1) The Enable Day Clock instruction enables the circuit disabled by the Disable
Day Clock instruction (see 6.14.7). It does not enable the circuit disabled by
a Prevent All I/O Interrupts And Jump instruction (see 6.14.1) or the honoring
of an interrupt request; the Allow All I/O Interrupts And Jump instruction
(see 6.9.3) is required for this. It does not enable the circuit disabled by the
Prevent All Channel External Interrupts instruction (see 6.13.12); the Allow All
Channel External Interrupts instruction (see 6.13.13) is required for this.

(2) This is a privileged instruction. If D2 of PSR = 1, an attempt to perform an
Enable Day Clock instruction causes a Guard Mode Fault Interrupt.

(3) The only effects that the values in the x, h, i, and u fields can have on the
operation is the index register incrementation obtained when x 1= 0 and h = 1,
and the indirect addressing delay introduced when i= 1 and D7 of PSR = O.
It is recommended that the x, h, i, and u fields contain all 0 bits.

(4) When f = 73 8 and j = 148 , the value in the a field is used to specify the in­
struction, as follows:

(a) When a = 10002 , the Alarm instruction (see 6.14.6) is specified.

(b) When a = 00002 or 0001 21 the Initiate "Interprocessor Interrupt instruction
(see 6.14.5) is specified.

(c) When a = 10102 , the Disable Day Clock instruction (see 6.14.7) is specified.

(d) \Vhen a= 1001 2 , the Enable Day Clock instruction is specified.

(e) The results are undefined if the a field contains a value in the range 0010 2

through 0111 2 or 1011 2 through 11112 ,

U.P-4U~.j

Rev, 1

6.14.9.

UN. y,",,,,, I IVO

PROCESSOR AND STORAGE

Select Interrupt Locations

SIL
73,15
0.75 flS

(a) ~ MSR

I s«nON, 6

The three low order bits of the a field are transferred to the Memory Select
Register (MSR). MSR [ill) MSR SWITCH SETTINGS on the Maintenance Panel
bias all fixed address assignment references.

(1) The new value loaded in the MSR by the Select Interrupt Locations instruc­
tion is immediately available in the MSR to determine the absolute address
of all fixed address assignment references.

(2) Permissible MSR values are given in 3.2.3.2. The value chosen must cor­
respond to a main storage module or module pair which is physically included
in the system.

(3) This is a privileged instruction. If D2 of PSR = 1, an attempt to perform a
Select Interrupt Locations instruction causes a Guard Mode Fault Interrupt.

(4) The leftmost bit of the a field is ignored by the control section. The only
effects that the contents of the x, h, i, and u fields can have on the operation
are the index register incrementation obtained when x ,J. 0 and h = 1, and the
indirect addressing delay introduced when Leo: 1 and D7 of PSR = O. It is
recommended that the leftmost bit of the a field and the x, h, i, and u fields
contain all 0 hits.

PAGE:

6.14.10. Load Channel Select Register

LCR
73,16 a=O
0" 875 flS - alternate
1.625 flS - same

(Uh-o ~ CSR

The contents of bits 3 through 0 of location U are transferred to the 4-bit
Channel Select Register (CSR).

(1) The new value loaded in the CSR by the Load Channel Select Register in­
struction is available for use by the next instruction. Additional information
on the CSR is given in 6.13.

(2) The CSR is cleared to contain all 0 bits when the CPU is manually master
cleared.

(3) This is a privileged instruction. If D2 of PSR = 1, an attempt to perform a
Load Channel Select Register instruction causes a Guard Mode Fault Interrupt.

(4) When f = 73 8 and j = 168 , the Load Channel Select Register instruction is
specified when the a field contains 00002 , The Load Last Address Register
instruction (see 6.14.11) is specified when the a field contains 0001 2 ,

91

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
6

SECTION:

The results are undefined if the a field contains a value in the range 00102
through 11112 ,

PAGE:

6.14.11. Load Last Address Register

6.15.

LLA
73,16 a= 1
0.875 f.lS - alternate
1.625 f.lS - same

(U)2-0--> LAR

The contents of bits 2 through 0 of location U are transferred to the 3-bit Last
Address Register (LAR).

(1) The new value loaded in the LAR by the Load Last Address Register instruc­
tion is available for use in the event that a main storage parity error is de­
tected during the execution of the next instruction (or a subsequent instruction).
If a main storage parity error (see 8.3.1.1) is detected in logical module pair
#0 (for noninterleaved main storage) or in logical module #0 (for non interleaved
main storage), bits 17 through 15 of the absolute address of the interrupt
location are determined by forming the logical OR of the contents of the LAR
and the leftmost three Last Address switches on the CPU's maintenance panel.

(See Table 8-2J

(2) The LAR is cleared to contain all 0 bits when the CPU is manually master
cleared.

(3) This is a privileged instruction. If D2 of PSR = 1, an attempt to perform a
Load Last Address Register instruction causes a Guard Mode Fault Interrupt.

(4) When f= 73 8 and j = 168 , the Load Last Address Register instruct~on is speci­
fied when the a field contains 0001 2 , The Load Channel Select Register
instruction (see 6.14.10) is specified when the a field contains 00002 , The
results are undefined if the a field contains a value in the range 0010 2

through 11112 ,

ILLEGAL FUNCTION CODES

An attempt to perform an instruction containing anyone of the following function
codes or f, j combinations causes an Illegal Instruction Fault Interrupt:

00

07

33

37

72,00

72,12

72,17

77,00-17

92

UP-40S3 L UNIVAC 1108 I I
Rev.}_____ __ ______ P_R_O __ C_E._S_S_O_R __ A_N_D __ S_T_O_R __ A_G_E __ ' ________ ~ ____________ ~~S~E~C~T~IO~N~:_6 ____ ~~P~A~G~E:~9,_3 __ __

An attempt to perform a Test and Set instruction by a CPU of a nonexpendable
UNIVAC 1108 Unit Processor System (Type 3011-99; see 1.3.1) also causes an
Illegal Instruction Fault Interrupt.

When anIlle gal Instruction Fault Interrupt occ'urs, the instruction in location
2418 + MSR is performed next (see 8.3.2.1). E~cept for the case of f= 77 and
f,j =: 73,17 if the CPU is in the 1108 Mode (D4 of PSR = 0) and not in guard mode
(D2 of PSR= 0) when an Illegal Instruction Fault Interrupt occurs, the System
Fault Alarm is turned on. This alarm is turned off by depressing the ALARM RESET
switch on the operator's console or on the maintenance panel.

An attempt to perform an instruction containi ng anyone of the following, f,j
combinations when the CPU is in guard mode (D2 of PSR = 1) causes a Guard Mode
Fault Interrupt:

75,13

75,16

75,17

When a Guard Mode Fault Interrupt occurs, the instruction in location 243 8 -I- MSR
is executed next.

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE, SECTION: 7 PAGE: 1.
UP-40S3 L

------------- ----------.--------~------~------~--------------~--------------~------------~-------------

7. INPUT/OUTPUT

7.1. INTRODUCTION

The input/output (I/O) section of the UNIVAC Processor Unit (CPU) controls the
transfer of data between main storage and a subsystem over the input and output
channels. The I/O section can control a maximum of 16 I/O channels.

When an input operation is performed, either input or status words are transferred
from? subsystem to main storage. When an ou tpu t operation is performed, either
function or output words are transferred from main storage to a subsystem. Bi­
directional transfers never occur simultaneously. The word length of all transferred
words is 36 bits.

7.1.1. I/O Channel In terface

Figure 7-1 shows the control and data signal lines for an I/O channel. Table
7-1 lists the function of each type of line.

Output Data Request (ODR) line

External Function (EF) line

CPU Output Acknowledge (OA) line

or Output Word/Function Word (36 lines)

IOC Input Data Request (lOR) line Subsystem

I/O External Interrupt (EI) line

Channe I Input Word/Status Word (36 lines)

Input Acknowledge (IA) line

Subsystem (Master) Clear (MC) line

Figure 7-7. 110 Channel Interface, Control and Data Lines

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 7

TYPE OF
LINE

Output Data
Request (ODR)

External
Function (EF)

Output
Acknowledge
(OA)

Output Word
Function Word

Input Data
Request (lOR)

Externa I
Interrupt(E I)

Input
Word/Status
Word

Input
Acknowledge
(IA)

Subsystem
MASTER
Clear (MC)

NUMBER OF
LINES

36

36

FUNCTION

Transmits a control signal from the subsystem which indicates
that the subsystem is ready to receive an output word or a
function word. When the subsystem turns on the ODR, it must
hold it on until after an output word or function word has been
received. Exception: the first word transferred to a subsystem
after activation of the channel in function mode. See 7.2.10.'

Transmits a control signal to the subsystem which indicates to
the subsystem that signals for a function word (or search value
word) are on the output word/function word lines. The EF con­
trol signal is a single pulse.L .. '}'J--::

Transmits a control signal to the subsystem which indicates to
the subsystem that signals for an output word are on the output
word/function word lines. The OA control signal is a single
pulse. LOD~~'

Transmits word signals to the subsystem. These'signals repre­
sent output words or function words (or sear ch value words) of
up to 36 bits in length each. if\O b+ C'''" dq.::.(W",\.i DV'\

~~}~, C),I"\ ~ ("~.r'rJ E'F ~ ©A
Transmits a control signal from the subsystem which indicates
that the subsystem is presenting an input word on the input
word/status word lines. When the subsystem turns on the lOR
control signal it must hold it on until the input acknowledge
signal is received from the CPU. See 7.2.10.

Transmits a control signal from the subsystem which indicates
that the subsystem is presenting a status word on the input
word/status word lines. When the subsystem turns on the EI
control signal it must hold it on until the input acknowledge
signal is received from the CPU. See 7.2.10.

Transmits word signals from the subsystem. These word signals
represent input words or status words of up to 36 bits in length
each. The.subsystem must hold the word signals on the input
word/status word lines unti I the inPfut acknoyv I e dg.e signa I is .
received from the CPU. j'r '! s+ o<t.. """~,,",,, ().. "~-d, ~v'''\J
---1.. />"

Transmits a control signal from the CPU to the subsystem which
indicates to the subsystem that input word or status word from
the subsystem has been accepted. The IA control signal is a
single pulse . .:.. 00- S

Transmits a control signal to the subsystem. The subsystem
responds to this control signal by stopping all subsystem
activity and setting the ODR signal on. The MC control signal
is turned on by manually depressing either the 1/0 CLEAR
switch located on the CPU's maintenance panel or the SUB -
SYSTEM CLEAR switch located on the Display Console. The
MC control signal can also be turned on through operation of
the Availability Control Unit (ACU). loo""s

Table 7-1. 110 Channel, Control and Data Lines

PAGE: 2

UNIVAC 1108

Rev. 1 . PROCESSOR AND STORAGE 7
SEC TION:

3
PAGE:

UP-
4
U0

3
. '

'- ------.----------------------~----------~----------~----------~-----~-----

7.1..2. I/o, Channel Numbering and Configurations

A CPU can have either 8, 12, or 16 I/O channels. If a CPU has 8 I/O, channels,
the channel numbers assigned are 0 through 3 and 12 through 15. If a CPU has
12 I/O channels, the channel num bers assigned are either 0 through 3 and 8
through 15 or 0 through 7 and 12 through 15. If a CPU has 16 I/o, channels, the
channel numbers assigned are 0 through 15. I/O channel 15 is always used for
the Display Console and the day clock.

7. Jl.3. lSI Versus ESI Mode of I/O Channel Operation

I/o, channels 0 through 14 may be assigned to operate either in the lnternally
Specified Index (lSI) mode or the Externally Specified Index (ESI) mode. ISI/ESI
mode selection is made by 15 2-position switches located on the CPU main ten­
ance panel. Each of the 15 switches is assigned to one of the I/O channels
(0 through 14); no ISI/ESI switch is provided for I/o' channel 15.

The details of the lSI mode of I/O channel operation are explained in 7.2; the ESI
mode of I/O channel operation is explained in 7.3. In lSI mode only one subsystem
is interfaced to a channel, but many peripheral devices may be interfaced through
a suitable multiplexing devi'ce on a channel operating in the ESI m()de.

7.1.4. ESI Mode - Half Word Versus Quarter Word Operation

I/O channels in ESI mode can operate with input or output word interfaces which
are either half word or quarter word. When the half word interface is used, i8-bit
input or output words are transmitted from or to the subsystem via that I/O channel.
When the quarter word interface is used; 9-bit input or output words are trans­
mitted from or to the subsystem via that I/o, channel. A patch card, used to select
either h~:df word or quarter word operation, is supplied for each I/O channel.

/

For half word ESI operation, two I/O words (18 bits each) are stored in each main
storage location associated with that ESI mode I/o, word transfer operation. For
quarter word ESI operation, four I/O words (9 bi ts each) are stored in each main
stora'ge location ass'ociated with that ESI mode I/o' word transfer operation.

7.1.5 . Normal/Compatible I/O Channels

The UNIVAC 1108 System is capable of operating with the UNIVAC 1107 and the
UNIVAC 1108 Subsystems by using the normal/compatible channel option (needed
to interface with some UNIVAC 1107 Subsystems).

Two switche~, locateq on the CPU maintenance panel, are used to select either
normal or compatible operation of the CPU's I/O channels. ane switch controls
the selection for I/O, channels 0 through 7; the other switch controls the selection
for I/o' channels 8 through 15.

The maximum instantaneous word transfer rate that can be achieved on one normal
channel under ideal conditions is 444,000 words per second (one word per 2.25
microseconds). The maximum instantaneous word transfer rate wh.ich can be
achieved on a system basis on more ,than one normal channel under ideal conditions
is 1,333,333 words per second (one word per 750 nanoseconds).

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

The length of time the I/O section holds control and word signals on the interface
lines of a normal channel is shorter than that required for some of the subsystems
used with theUNIVAC 1107 CPU. Therefore l to use these UNIVAC 1107 Subsystems
wi th the UNIVAC 1108 the compatible channel operation is provided, which
lengthens the time the control and word signals are held on channel interface lines.
The maxi,mum instantaneous word transfer rate that can be achieved on a compatible
channel or a group of compatible channels is 200,000 words per second (one wor d
per 5 microseconds).

NOTE: The Display Console an'd day clock on channel 15 operates equally well
regardless of whether the channel is in the normal or compatible mode.

7.1.6. I/O Channel Activity - Introduction

A channel is activated upon execution of an appropriate instruction by the CPU's
main control section. The input channel is activated by the Load Input Channel
(LIC) and Load Input Channel And Monitor (LICM) instructions. The output channel
is activated by the Load Output Channel (LOC) and Load Output Channel And
Monitor (LOCM) instructions. The Load Function Channel (LFC) and Load Function
Channel And Monitor (LFCM) instructions activate an output channel only if the
specified ou tpu t channel is operating in lSI mode; these instructions do not activate
the specified channel if that channel is in ESI mode.

In lSI mode, each channel activating ins truction specifies an operand which is an
Access Control Word (ACW). The. ACW is loaded into the control register associated
with the specified channel for input or output. The ACW is then referenced by the
CPU to determine the main storage location of each word to be transferred, and
for a count of the total number of words to be transferred during this operation.

In the absence of I/O. activity, the CPU continuously executes programs. While
executing instructions, the CPU also checks for required I/O activity each 125
microseconds. The sequence of operations for a single data word input transfer
is as follows:

During one of the cyclic checks for I/O activity, the CPU recognizes that input
is active for the specified channel, the lOR signal from this channel's subsystem
is on, and this input data transfer is the highest pdority I/O operation requiring
service. The coincidence of these signals forces the CPU to momentarily stop
instruction processing while the input data transfer occurs. The CPU reads the
contents of the Input Access Control Register (IACR) for this channel. It samples
the input data lines for the channel and places t!'te data word in an internal register.
The ACW provides the address in main storage for the input data word, and a main
storage request is initiated to write the data word from the internal register into
the specified main storage location. An Input Acknowledge signal is sent to the
subsystem which informs the subsystem that the input data word has been received,
and allows the subsystem to continue processing.

The ACW main storage address is incremented by one, the word count portion of
the' ACW is decremented by one, and the updated ACW is stored back into the
IACR for this channel. The· CPU then reverts to instruction processing, or should
there be additional I/O activity, continues with similar I/O sequences.

4
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 7
SEC TION: PAGE:

UP-
4°tiS3

------- ---~--------------~------------~------

Fields within the ACW provide additional controls for directing placement of words
in storage (see 7.2 and 7.3). The inpu t activity for this channel terminates when
the CPU recognizes that all words specified in the word count field of the ACW
have been input.

A typical output data sequence is initiated when the CPU recognizes the coin­
ciuence of an output channel active, the qDR signal is on for this channel, and
the priority of I/O activities is appropriate for an output data transfer. At the
beginning of the output data sequence, the CPU reads the Output Access Control
Word (OACW) from the appropriate control register. The address field of the ACW
specifies the main storage location from which the data word is retrieved. The
data word is presented to the sybsystem on the output data lines for the channel.
An OA signal is sent to the subsystem indicating that the data is present on the
output lines and should be sampled by the subsystem. The ACW is updated by
decremen tin g the word count and incremen ting the address. The updated ACW is
stored in the control register.

The subsystem will turn off its ODR signal while it processes the newly received
word. When the subsystem again requires an output word, it turns on the OOR. A
channel in lSI mode sends function words in the same manner using the same OACR
as that employed for output 'data. Each Function Word output is accompanied by the
EF signal.

The first function word transmission' to a subsystem upon execution of the LFC or
LF'CM instruction is forced. The CPU's I/O section simulates an OOR and the
first function word is transmitted to the subsystem regardless of whether or not
the subsystem has turned on an ODR. This forced function word is accompanied
by the EF signal. If more than one function' word is. to be transmitted to the sub­
system, the additional words are controlled by the ACW.

When an output channel is inESI mode, execution of the LFC or LFCM instruction
does not activate that channel or the monitor function on that channel. (The opera­
tionB of the LFC and LFCM instructions are equivalent.) However, one function
word is transmitted from main storage to a peripheral device via that channel each
time the LFC or LFCM instruction is execu ted.

The' ACW format for lSI operations is presented in 7.2.3. In the ESI mode of
operation, many peripheral devices can be interfaced to the CPU throu gh each
inpu t/ ou tpu t channel and separate ACW' s located in main storage are associated
with the input/output word transfer operations for each peripheral device. For ESI
operations,two different formats may be used: one for half word ESI operations
and one for quarter word ESI operations. The half word ESI ACW format is presented
in 7.3.3.1; the quarter word ESI ACW format is presented in 7.3.3.2.

7.1.7. Input/Output Priority Control

The I/O section of the 1108 CPU 'sequen tially processes the I/O requests of the
acti ve subsystems or peripheral devices attached to its channels. A minimum of
750 nanoseconds is required to transfer each word to or from main storage. Service
requests for the CPU channels are recognized by the coincidence of IDR signals
and the input active state, OOR signals and the output active state, or EI signal.

5

UP-4053

Rev. 1

UNIVA(,,; I lUIS

PROCESSOR AND STORAGE
SECTION:

7

A priority network exists to select the service request to be performed. This
selection must consider the type of function to be performed, timing considerations
implicit in the operation, and selecti()n of a channel from all those requesting ser­
vice.

Input operations on normal channels can proceed at the minimum cycle time of 750
nanoseconds. The duration of output signals exceeds this minimum time and certain
elements of the output section must remain active for a longer period. To lessen
the delay in servicing successive output requests, the CPU channels are divided
into two subgroups (channels 0 through 7 and 8 through 15). Only one output opera­
tion can occur on a subgroup in each 1.5 microseconds. Output on the two subgroups,
however, can be initiated in two adjoining 750 nanosecond periods.

Compatible channel signals require more time than that needed for normal
channel operation. Successive service requests for compatible .channel operations
are spaced by inserting at least one 750 nanosecond instruction cycle between each
compatible channel operation. Operation of the I/O section of the CPU stops CPU

PAGE:

main storage access requests. Main storage in a unit processor configuration is
therefore always available to service the input or output operation. In a multiprocessor
configuration, main storage access requests by other processors may conflict with
the I/O section access and a.dditional delays encountered.

Word transfers for input or output are granted higher priority in all cases than the
status word input transfer ass·ociated with an EI. This priority relationship is
explained in 8.2.5.

Equality of access for all active subsystems, and the maximum utilization of the
input/output section requires an interaction in the priority of input and output
operations. Under conditions of constant load, priority is alternately given to in­
put and then output. In one cycle,an output is initiated. During the following 750
nanosecond cycle priority is given to an input operation. This relationship is
further modified by the two channel groups which do allow simultaneous output
in succeeding cycles, one in each.

The final step in selection is finding the lowest numbered channel requesting the
selected function. Of all channels requesting a particular service, priority is al­
ways given to the channel having the lowest number. The priority network is de­
fined in the following paragraphs for the two forms of channel and the interaction
of the various input/output constraints.

The following rules specify the priority for operations on all active channels in
the normal mode as determined by the normal compatible switches of the CPU's
I/O' section.

(1) An output or function word transfer has priority over all other transfers, unless
an output transfer was initiated during the previous cycle.

(2) If an output transfer was initiated during the preceding cycle, priority is given
to an input transfer on channels 0 through 3.

(3) If the prior cycle was not used to initiate an output operation for channels 0
through 7, and an input transfer on channels 0 through 3 is not required, then
an output transfer will be initiated on the lowest numbered channel 0 through
7 requesting output service.

6

UP-4053 I UNIVAC 1108 7
_____ R __ ev~ __________ P_R_O_C __ E_S_S_O_R __ A_N_D __ S_T~O __ R_A_G_E ____________ ~ __________ ~_S_E_C_T_IO_N_: ______ ~P_A_G_E_:

(4) If the prior cycle did not initiate an output transfer on channels 8 through 15,
and an output on channel 0 through 7 or an input on channels 0 through 3 are
not requited, then an output transfer will be initiated for the lowest numbered
channel 8 through 15 requesting output service.

(5) In the absence of output service requests, an input transfer will be initiated
on the lowest numbered channel 0 through 15 requesting input service.

Figure 7-2 summarizes the priority for word transfer operations when all active
channels are operating in the normal mode.

The following rules specify priority for word transfer operations when all active
channels are operating in the compatible mode as determined by the normal/com­
patible switches of the CPU's I/O sec,tion.

(1) When simultaneous requests for input and output exist, priority alternates be­
tween the two operations. A designator set during each operation forces priority
to be given to the alternate operation in the succeeding I/O cycle.

(2) Among all outstanding service requests, the word transfer in the selected direc­
tion is accomplished on the lowest numbered channel requesting service.

(3) Successive I/O cycles cannot be used to service compatible channels, and at
least one TO timing chain cycle in CPU main control must occur before another
compatible channel serviCe request is honored.

Figure 7-3 summarizes the priority for word transfer operations when all active
channels are operating in the compatible mode.

7

UP-4053
Rev." 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 7

r--'--
CPU MAIN CONTROL

------,
I
I
I
I
I
L

Yes

Do output transfer
for OD R on lowest
ofch.O-7.

Block ODR ch. 0-7
for next cyc Ie.
Set ODR last
designator.

Yes
Perform 1 control
section TO cycle.

--------- _--

Yes

Do output transfer
for OD R on lowest

of ch. 8-15.

Block ODR ch. 8-15
for next cycle.
Set ODR last
des ignator.

Yes

Do input transfer
for IDR on lowest
of ch. 0-15.

Clear 00 R last
designator.

Figure 7-2. I/O Word Transfer Priority - Normal Channels Only

,
I
I
I
I

_...J

No

PAGE:
8

UP-40U3
Rev. 1

--~------~----~------------~------.-----

UNIVAC 1108

PROCESSOR AND STORAGE 9 SECTION: 7 PAGE:

r
I
I
I
I
I
I
I
I

I

Yes

[

Do input transfer
for lOR on lowest
of ch. 0-15.

=r_.
designator.

CPU MAIN CONTROL

Yes Perfo rm 1
control section
TO cycle.

Yes

Do output transfer
for 00 R on lowest
of ch. 0-15.

Set OOR last
designator.

-l
I
I
I
I
I
I
I
I
I

I --

[

Clear OOH last]

l __ ~ __
Figure 7-3. I/O Word Transfer Priority - Compatible Channels Only

U P-4U53

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

7.1.B. I/O Section and Main Control Section Interaction

The I/O and main control sections of the CPU share the single main storage access
logic. Input/output operations have priority over instruction processing whenever
service requests for channels can be processed. The TO timing chain for main con­
trol and the TB timing chain for I/O are the primary control chains which initiate
either form of operation. Only one of these two chains can be active at any time.

The start of the TO timing chain in main control begins processing of a new instruc­
tion. TO con troIs control register access, instruction decodin g, initiation of main
storage data accesses, and init'iates the next instruction fetch if overlapped opera­
tion is possible. Not all parts of an instruction execution are complete at the end·
of the TO chain. Other chains extendin g in time beyond the TO chain provide .con trol
of extended arithmetic processing and the storing of results into control registers.
Except for extended duration instructions the next TO chain sequence can begin
immediately following the prior TO chain. In the absence of I/O, this sequencing
would continue with each TO chain marking the beginning of a new instruction
processing cycle.

PAGE:

The TB I/O timing chain can be started at the same points in time at which the TO
chain is started, if an I/O service request and priority network selection has occurred
prior to this time. If an ODR, IDR, or EI is recognized at least 250 nanoseconds
prior to the point at which the TB chain can be started, then instruction processing
will be momentarily suspended in favor of this I/O request chain. Repeated T8
cycles will occur until all I/O service requests have been satisfied. If the I/O
priority network is again requesting main storage access at least 250 nanoseconds
prior to the end of the current TB I/O timing chain cycle, the I/O timing chain is
activated for another service cycle. Compatible I/O channel service requests cannot
be handled at this rate and these T8 timing chain cycles are usually followed by at
lease one cycle of the TO tim in g chain.

7.1.9. I/O Section Versus Main Control Section Main Storage Access

Both the I/O section and the main control section of the CPU can independently
reques t access to main storage. The I/O section requests access to:

(1) transfer input words or status words into main storage, or

(2) transfer output words or function words from main storage. The main control
section requests access to:

(a) transfer ins truction words from main storage to the con trol section, or

(b) transfer operand words in to main storage, or

(c) transfer operand words from main storage.

10

UP-40U3

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7 11
SECTION: PAGE:

--~------------------------------~------,------

The sequence of events performed when I/O words (input, status, output or function
words) are transferred to or from main storage is controlled by the I/O timing chain.
The main control section timing chain (TO) (see 5.4) controls the sequence of
events performed when an instruction word is transferred from main storage to the
main storage to the main control section and the sequence of events performed in
the execution of each instruction word. The main control timing chain includes the
control of operand transfers to or from control registers and main storage but does
not include the events performed in the arithm.etic sequence, which is controlled
by the arithmetic timing chain (T4), and the storing of arithmetic results in the
control registers which is controlled by the T1 timing chain. The I/O timing cha.in
and the main control timing chain TO are never simultaneously active. However,
the TO or I/O timing chai~ can be active simultaneously with theT1 timing chain
or the arithmetic timing chain (T4).

The I/O timing chain has higher priority than the TO timing chain in that the TO
timing chain is not reactivated at the end of its current cycle but the I/O timing
chain is activited at that point in time if the I/O section's priority network requests
main storage access at least 250 nanoseconds (two CPU main control clock cycles)
prior to the end of the currently active TO timing chain cycle. If at least 250 nano­
seconds prior to the end of the current I/O timing chain cycle the I/O section's
priority network is again requesting main storage access (usually for a normal I/O
channel operation), the I/O timing chain is activated for another cycle upon com­
pletion of its current cycle. Each I/O timing chain cycle for a compatible I/O
channel operation is usually followed by at least one cycle of the TO timing chain.

The execution time of many arithmetic instructions is extended through the necessary
activity of the arithmetic timing chain (T4). The I/O timing chain can be simul­
taneously active with the T4 timing chain and when the I/O timing chain is not
active, the TO timing chain can be simultaneously active with the T4 timing chain.
(In this case, the TO timing chain activity is controlling the transfer of the next
instruction from main storage to the control section.)

If the I/O section's priority network does not request main storage access at least
250 nanoseconds before the end of the current TO, I/O, or T4 timing chain cycle,
then upon completion of the current timing chain cycle the TO timing chain is acti­
vated.

NOT E': If neither the TO nor the I/O timing chain is active during the extended
activity of the T4 timing chain, then the I/O timing chain is activated
250 nanosecon.ds after the I/O section's priority network requests main
storage access provided the request occurred at least 250 nanoseconds
prior to the end of the T4 timing chain cycle. Since the time necessary
to complete the T4 cycle for some instructions is very long, during the
execution of these instructions many cycles of the I/O timing chain can
be performed during the T4 timing chain cycle.

The I/O timing chain cycle can be completed in a mInImUm of 750 nano­
seconds. This minimum time is equal to the basic main storage cycle
time. In a multiprocessor system, however, when an I/O word is trans­
ferred to or from main storage, the I/O timing chain cycle can be extended
beyond the minimum of 750 nanoseconds in increments of 125 nanoseconds.
The number of 125 nanosecond increments in the time extension depends
on the amount of time it is necessary to expend waiting to gain access
to a main storage location through a Multi-Module Access Unit (MMA) in
order to transfer an I/O word to or from that addressed location.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

7.2. lSI MODE - I/O OPERATION

The lSI mode of operation is employed for standard peripheral subsystems. Some of
the standard peripheral subsystems are: magnetic tape, magnetic drum, high speed
printer, punched card, etc.

7.2.1. General Description - Programmed Activation of an I/O Channel in lSI Mode

A channel operating in lSI mode is activated when anyone of the following in­
structions is performed:

Load Input Channel (LIC)

Load Input Channel and Monitor (LICM)

Load Output Channel (LOC)

Load Output Channel and Monitor (LOCM)

Load Function in Channel (LFC)

Load Function in Channel and Monitor (LFCM)

The particular channel activated is determined from the logical sum of the contents
of the a field specified by the instruction and the contents of the Channel Select
Register (a MfJ CSR).

When an I/O channel is operating in lSI mode and the LIC or LICM instruction
is executed, an ACW at storage location U is transferred to the IACR associated
with the input channel specified by the instruction. The specified channel is then
activated in input mode. When the LICM instruction is executed, the monitor
function is also activated for that input channel. Upon execution of the LOC or
LOCM/LFC or LFCM instruction, an ACW at storage location U is transferred to
an OACR associated with the output channel specified by the instruction and that
specified channel is then activated in output mode/function mode. When the LOCM/
LFCM instruction is executed, the monitor function is also activated for that out­
put channel. The ACW's that are transferred to the IACR's and OACR's are more
speCifically called Input Access Control Words (IACW's) and Output Access Con­
trol Words (OACW's) respectively.

While a channel is active and operating in lSI mode, full words (36 bits each -
input, output or function words) are always trans~itted (bit parallel, word serial)
between main storage and a subsystem. The transmission of these words is con­
trolled by the CPU's I/O section which responds to lOR's and ODR's turned on
by the subsystem, or i~ response to an ODR simulated within the CPU's I/O
section (one ODR is simulated following each execution of the LFC or LFCM
instruction).

12
PAGE:

UP 4053 L UNIVAC 1108 I
____ R __ :_V:_1____ __ _______ P __ R_O_C_E __ SS_O __ R_A __ N_D __ S_T_O_R_A __ G_E __________ ~ ____________ ~_S_E_C_T_IO_N_: __ 7 ____ ~P_A_G_E_: ___ 1_3 ___

Throughout the duration of activity of an I/O channel operating in lSI mode, the
address of each location in main storage to or from which a word is transferred is
specified by the current contents of the IACR and OACR associated with the
active channel. As each input or output function word is transferred to or from a
location in main storage, the contents of the associated IACR or OACR is modi­
fied and is tested for the terminal condition (see 7.2.4). When the terminal con­
dition is detected in the contents of an IACR and OACR, the associated active
channel is automatically deactivated and the word transmissions on that channel
are discontinued. If the monitor function is active on a channel, then, at the same
time that the channel is deactivated upon detection of the terminal condition, the
Inpu t Monitor Interrupt, Ou tpu t Monitor Interrupt or Function Monitor In terrupt
occurs respectively.

7.2.2. lSI Mode - Access Control Register Assignments

Thirty-two of the 128 control registers are assigned to serve as IACR's and OACR's .

• The control register at addresses 040
8

through 057 8 are assigned as IACR's
for input channels 0 through 15 (0-17

8
) respectively .

• The control registers at addresses 0608 through 077 8 are assigned as OACR's
for output channels 0 through 15 (0-17 8) respectively.

7.2.3. lSI ACW Format

The format for an lSI ACW includes the G, W, and V fields as shown in the fol­
lowing format:

I
I

W I V G I I
I I

35 I I
34 133 18 117 J

lSI ACW Format

• V field

ThE.~ contents of the V field specifies the absolute address of a location in main
storage to or from which an I/O word (inpu t, ou tpu t, or function word) is trans- .
ferred respectively. After each I/O word is transferred to or from a main storage
location, the contents of the V field is either incremented by one, decremented
by one, or remains unchanged depending on the contents of the G field .

• W field

The initial contents of the W field specifies the number of I/O words that are to
be transmitted between main storage and a subsystem via the associated channel.
After each I/O word is transmitted, the contents of the W field is decremented
by one. During each I/O, word transmission sequence, the contents of the W field
is also tested to determine if the terminal condition has been reached. When the
terminal condition is detected, the associated channel is deacti va ted.

U J:'-LtU;),)

Rev. 1

UI'I'''''''''' I IVO

PROCESSOR AND STORAGE 7
5 EC TION:

• G field

The contents of the G field specifies the following:

(1) G = 002

Increment the con ten ts of the V field by one as each I/O word is transmi tted
between main storage and a subsystem via the associated channel.

(2) G = 102

Oecremen t the con ten ts of the V field by one as each I/O word is transmitted
between main storage and a subsystem via the associated channel.

(3) G = 01 2, G= 112

The contents of the V field remains unchanged for the duration of the I/O
channel acti vi ty.

NOT E': The incrementation and decrementation of the contents of the V field are
performed in a ones complemen t subtractive adder. Therefore, the con ten ts
of the V field never becomes 7777778 as a result of the incremen tation or
decrementation specified by the G field.

7.2.4. lSI ACW Terminal Condition

At the start of the I/O timing chain cycle before an output or function word transf er
operation, and at the end of a cycle after an input word transfer operation, the con­
tents of the W field of the associated ACW is tested for the value zero (0) which is
the terminal condi tion. When the terminal condition is detected, the associated
channel is deactivated. If the Monitor function is active, the appropriate Monitor
Interrupt (ISI Input Monitor, lSI Output Monitor, or lSI Function Monitor Interrupt)
also occurs when the terminal condition is detected.

NOTE: Termination for input transfers occurs during the cycle in which the last
word is received. For output, an OOR must be presented by the subsystem
as if another word will be sent, and it is in this I/O cycle that termination
occurs (without a word transfer).

7.2.5. lSI Mode - Input/Output Channel Activity

Two modes of activity are performed 'On an output channel: the function mode and
the output mode. Two modes of activity are also performed on an input channel:
the input mode and the external interrupt mode. Each of these four modes of activity
are explained thoroughly in 7.2.5.1 through 7.2.5.4.

7.2.5.1. lSI Function Mode

When the LFC or LFCM instruction is executed, an OACW is transferred from
main storage location U to the OACR associated with the specified output
channel, and the function mode is activated on that channel. If the LFCM in­
struction is executed, the output monitor function is also activated on that
channel.

14
PAGE:

UP.-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

When a channel is active in function mode, one or more function words are trans­
ferred from main storage to a subsystem. The number of function words trans­
mitted depends on what is required by the subsystem to condition it to perform
a specific task or operation. The W field of the associated OACW should initially
con tain the value one (1) if one function word is necessary.

To condition a subsystem such as a magnetic tape subsystem to perform a search
operation, it is necess;3.ry to transmit two words to the subsystem. In this case,
the first word transmitted is the function word and the second word is called ~n
identifier word (ID word). When these words are to be transmitted to a subsystem,
they must be located in, consecutively addressed locations in main storage; the
W field of the associated OACW must contain the value two (2), and the G field
of the OACW must specify either incrementation or decrementation of the contents
of the V field in order to transfer the function word first and the ID word second.

When the LFC or LFCM instruction is executed, three particular I/O section con­
trol circuits (flip-flops) are activated, which are associated with the specified
output channel. These circuits are the force external function, external function,
and output active control circuits. An output channel is said to be active in
function mode when the external function and output active control circuits are
simultaneously active.

The force external function control circuit turns on the simulated ODR signal
which causes a function word to be forced to a subsystem. Only the first word
transmitted to the subsystem after the execution of the LFC or LFCM instruction
is forced. The force external function control circuit is deactivated and the
simulated ODR is turned off during the I/O timing chain cycle that sequences the
transfer of the forced function word to the su bsys tern.

When a channel is active in function mode, the external lunction control circuit
activates the EF control signal (pulse) as each function word or ID word is
transmitted to the subsystem. The external function control circuit is deactivated
when an LOC, LOCM, or Disconnect Output Channel (nOC) instruction is exe­
cuted specifying that channel.

I

When the output active control circuit for a given channel is in the active
state, the I/O section will respond to ODR control signals presented on that
channel by a subsystem; it is deactivated when the terminal condition is de­
tected in the OACR for that channel or when a DOC instruction is executed
specifying that channel.

If the output channel was activated in function mode by execution of the LFCM
instruction, the output monitor control circuit associated with that specified
ou tpu t channel is activated in addition to the three control circuits discussed
previously. When the external func tion control circuit for a given channel is
active, the output monitor control circuit allows the lSI Function Monitor
Interrupt to occur when the terminal condition is detected in the OACW associ­
ated with that channel. In this case, the output monitor control circuit is de­
activated when the lSI Function Monitor Interrupt occurs or when an LFC, LOC,
or DOC instruction is executed.

The activity performed by the I/O section following the activation of an out­
pu t channel in function mode is:

15
PAGE:

UP-4U5j

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION:
7

• The first function word is forced out with a simulated ODR turned on in the
I/O section. The I/O section services the ODR as follows:

(1) The contents of the associated OACR is tested for the terminal con­
dition. If it is not in the terminal condition, the function word is ob­
tained from the main storage location specified by the contents of the
V field of the OACW (see 7.2.6).

(2) The 36-bit function word and the EF control signal are transmitted on
the specified output channel to the subsystem.

(3) The contents of the OACR are updated. The contents of the W field
are decremented. The contents of the V field are incremented, decre­
mented, or left unchanged, as specified by the contents of the G field.

• The subsystem responds to the EF signal by transferring the function word
from the output word/function word lines into its control section and turns
off the ODR signal if it is on. The function word which is now in the sub­
system control section is decoded and the subsystem conditions itself ac­
cordin gly. After the su bsys tern has been condi tioned it does one of the
following:

(1) Turns on the ODR signal which indicates to the CPU that the sub­
system is ready to receive:

a. another function word;
b. an ID word;
c. an output word (7.2.5.2); or,

(2) Assembles an input word and turns on the IDR control signal (see
7.2.5.3); or,

(3) Assembles a status word and turns on the EI control signal (see 7.2.5.4).

• When the subsystem turns on an ODR signal in response to the function
word it received when the LFC or LFCM instruction was executed, the
I/O section responds to the ODR by testing the associated OACW for the
terminal condition. One of the following occurs at this point:

(1) If the contents of the associated OACR are not in the terminal condi­
tion and the channel is still active in function mode:

a. A word (function word or an ID word) is obtained from the main
storage location specified by the con'tents of the V field of the
OACW.

b. The word (function or ID word) and the EF control signal are trans­
mitted on the specified output channel to the subsystem.

c. The contents of the OACR are updated.

16
PAGE:

Rev. 1 SECTION: 7 PAGE:
17

UP-4US3 .

------- ---~--------------~-------------~------,------

(2) If the contents of the associated OACR are in the terminal condition
and the channel is still active in function mode:

a. Function mode on the associated output channel is deactivated.

b. The contents of the OACR are not updated.

c. If the monitor function is active on that output channel, the lSI
Function Monitor Interrupt occurs (see 7.2.7) and the monitor
function is deactivated on that channel.

7.2.5.2. lSI Output Mode

When the LOC or LOCM instruction is executed, an OACW is transferred from
instruction storage location U to the OACR associated with the specified
output channel, and output mode is activated on that channel. If the LOCM
instruction is executed, the output monitor function is also activated on that
channel.

I

When a channel is active in output mode, the subsystem sends ODR control
signals to the I/O section via the ODR line associated with that channel.
The CPU responds by transferring output words from main storage to the
subsystem via the output word/function word lines associated with the same
channel. The W field of the associated OACW should initially contain a
value that specifies the number of output words to be transmitted.

When the LOC or LOCM instruction is executed, the output active control
circuit (same circuit as the one discussed with function mode) associa ted
with the specified output channel is activated. An output channel is said
to be active in output mode when the output active control circuit is active
and the external function control circuit is simultaneously inactive.

When the output active control circuit is active, it allows the I/O section
to respond to ODR control signals presented on that channel by the sub­
system; it is deactivated when the terminal condition is detected in the
associated OACW or when the DOC instruction is executed specifying that
channel.

If the specified output channel was activated by execution of the LOCM
instruction, the output monitor control circuit (same circuit as the one dis­
cussed with function mode) associated with that output channel is activated
in addition. When that channel's external function con trol circuit is no t
active, the output monitor control circuit allows the lSI Output Monitor Inter­
rupt to occur when the terminal condition is detected. The output monitor
control circuit is deactivated when the lSI Output Monitor Interrupt occurs
or when an LFC, LOC, or DOC instruction is executed.

The activity performed by the I/O section following activation of the specified
ou tpu t channel in ou tpu t mode is as follows:

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION:

7

• The I/O section responds to an ODR signal turned on by the subsystem by
testing the associated OACW for the terminal condition. At this point one
of the following occurs (see 7.2.6 if the OACR is initially in the terminal
condition):

(1) If the contents of OACR are not in the terminal condition:

a. An output word is obtained from the main storage location specified
by the contents of the V field of the OACW.

b. The output word and the OA signal pulses are transmitted via the
output word/function word lines and OA line respectively of the
specified output channel to the subsystem.

c .. The contents of the OACR are updated.

NOT E: The subsystem responds to the OA signal by accepting the
output word and turning off the OOR signal. The subsystem
then prepares to accept another output word and again turns
on the ODR signal and the I/O section again responds by
testing the associated OACW for the terminal condition, etc.

(2) When the contents of the OACR are in the terminal condition:

a. Output mode on the associated output channel is deactivated.

b. The contents of the OACR are not updated.

c. If the monitor function is active on that outpu t channel the lSI Ou t­
put Monitor Interrupt occurs (see 7.2.7) and the monitor function is
deactivated on that channel.

7.2.5.3. lSI Inpu t Mode

When the LIC or the LICM instruction is executed, an IACW is transferred from
storage location U to the IACR associated with the specified input channel,
and input mode is activated on that channel. If the LICM instruction is executed,
the input monitor function is also activated on that channel.

When a channel is active in input mode, the subsystem sends lOR control sig­
nals to the I/O section via the IDR line associated with that channel. The CPU
responds by transferring input words from the subsystem to main storage via
the input word/status word lines associated with the same channel. The W field
of the associated IACW should initially contain a value that specifies the num­
ber of words to be transferred.

When the LIC or LICM instruction is executed, the input active control circuit
associated with the specified input channel is activated. An input channel is in
input mode when the input active control circuit is active.

When the input active control circuit is active, the I/O section is allowed to
respond to IDR's presented on that channel by the subsys tern; it is deactivated
when the terminal condition is detected or when the OIC instruction is executed
specifying that channel.

18
PAGE:

UP-4U:,j

Rev. 1

UNIVAC JJUts

PROCESSOR AND STORAGE 7
SECTION: PAGE:

If the specified inpu t channel was activated by execution of the LICM instruction,
the monitor control circuit associated with that input channel is activated in
addition to the input active control circuit. This monitor control circuit allows
the lSI Input Monitor Interrupt to occur when the terminal condition is detected
in the IACW associated with that channel. The monitor control circuit is de­
activated when the Input Monitor Interrupt occurs or when a Disconnect Input
instruction is e-xecuted.

The activity performed by the I/O section following the activation of the speci­
fied input channel in input mode is as follows:

• When the subsystem transmits an IDR control signal accompanied by input
word signals, the I/O section responds by initiating an input cycle. Then
one of the following occurs (see 7.2.6 if the IACR is initially in the terminal
condition):

(1) If the contents of the IACR are not in the terminal condition and the
contents of the IACW's W field is greater than one (1):

a. The input word is transferred from the input word/status word lines
to the main storage location specified by the contents of the V field
of the IACR.

b. The IA signal is transmitted via the IA line to the subsystem.

c. The contents of the IACR are updated.

The subsystem responds to the IA signal by turning off the IDR signal
and the current input word signals being held on that input channel.
The subsystem then proceeds to prepare another input word for trans­
mission. When ready, the input word signals and the IDR signal are turned
on and transmitted to the CPU as described above.

(2) If the contents of the IACR are not in the terminal condition but the
contents of the IACW's W field is equal to one (1):

a. The input word is transferred to the main storage location specified
by the contents of the V field of the IACR.

b. The IA signal is transmitted to the subsystem.

c. The contents of the IACR are updated (W field is decremented from
1 to O.

d. Input mode on the associated input channel is deactiv'ated.

e. If the input monitor function is active on that input channel, the lSI
Input Monitor Interrupt occurs (see 7.2.7) and the input monitor function
is deacti va ted.

19

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SEC T ION:

7

7.2.5.4. lSI External Interrupt Mode

A subsystem reports either an abnormal condition or the normal completion of an
operation by assembling a status word and then turning on the corresponding
status word signals and an EI signal on the input word/status word lines and
EI line respectively. The I/O section responds to an EI signal as follows:

• The status word on the input word/status word lines is transferred to a
specifically reserved location in main storage. The address of the reserved
location is X002008 for CPU #0, X00201 8 for CPU#l, or X00202 8 for CPU #2
where X is equal to the contents of MSR.

• The IA signal is transmitted via the IA line of that input channel to the sub­
system.

NOT E: The subsystem responds to the IA signal by turning off the EI and
status word signals.

• Through the operation of the I/O priority network, the instruction sequence
being performed by the CPU's main control section is altered and the next
instruction to be executed is obtained from the lSI External Interrupt fixed
address location X00223 8 where X is equal to the contents of MSR. Additional
lSI External In terrupt ihformation is presented in 8.2.2.

The I/O section responds to an EI signal regardless of whether or not the
I/O channel is active in any mode (input, output or function).

7.2.6. lSI Mode - I/O Channel Activity - ACW Initially in Terminal Condition

• OACW for function mode activity initially in terminal condition. When the LFC
or LFCM instruction is executed, the specified output channel is activated in
function mode even if the W field of the associated OACW initially contains
the value zero. As a result of the execution of the LFC or LFCM instruction,
a simulated ODR is turned on for the associated channel. Su bseq uently, the
I/O timing chain is activated as a result of the word transfer request signaled
by that ODR, and the terminal condition (W field=O) is detected by the test per­
formed near the start of the 1./0 timing chain cycle. Upon detecting the terminal
condition, function mode on the associated channel is deactivated, the OACW
is not updated, and a function word is not transmitted to the subsystem. If the
monitor function was activated on the specified output channel (LFCM instruc­
tion executed), the Function Monitor Interrupt occurs (see 7.2.7) and the monitor
function is deacti va ted .

• OACW for output mode activity initially in terminal condition. When the LaC or
LOCM instruction is executed, the specified output channel is activated in out­
put mode even if the W field of the associated OACW initially contains the value
zero. If the ODR signal has already been turned on for the specified output
channel, the 1./0 timing chain is subsequently activated and the terminal condi­
tion (W field=O) is detected by the test performed near the start of the 1./0
timing chain cycle. If an ODR signal is not on when the specified output channel
is activated, that channel remains active, but when an ODR signal is turned on
for that channel, an 1./0 timing chain cycle is subsequently activated and the

PAGE: 20

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 7 21
SEC TION: PAGE:

UP-40U3

--------.--------------------------------------~--------------~------------~-------------

terminal condition (W field=O) is detected by the tes.t performed near the start
of the I/O timing chain cycle. In either case, output mode on the associated
channel is deactivated, the OACW is not updated, and an outpu t word is not
t~ansferred to the subsystem. If the monito"r function was activated on the
specified output channel (LOCM executed) the Output Monitor Interrupt occurs
(see 7.2.7) and the monitor function is deactivated on that channel.

• IACW for input mode activity initially in terminal condition. The specified in­
put channel is activated in input mode when the LIC or LICM instruction is
executed even if the associated IACW's W field contains the value zero. If an
IDR signal has already been turned on for the specified inpu t channel, an I/O
timing chain cycle is subsequentially activated. Input mode on the channel is
deactivated when the terminal condition CW" field=O) is detected by the test per­
formed at the start of this I/O timing chain cycle. If an IDR signal is not on
when the specified input channel is activated, that channel remains active,
but when the IDR signal is turned on, the I/O timing chain cycle is subse­
quently activated. Again, input mode on the channel is deactivated when the
terminal condition (W field=O) is detected by the test performed at the start
of this I/O timing chain cycle. In either case, an input word is never transferred
to main storage and the contents of the associated IACR remains unchanged. If
the monitor function was activated on the specified input channel (LICM exe­
cuted), the Input Monitor Interrupt occurs (see 7.2.7) and the monitor function
is deac.tivated.

7.2.7. lSI Mode Monitor Interrupts

The monitor interrupt function is activated on a channel operating in lSI mode when
that channel is activated by execution of the LICM, LOCM, or LFM instruction.
An lSI Input Monitor, lSI Output Monitor or Function Monitor Interrupt occurs as
appropriate when the terminal condition is detected in the contents of the associ­
ated IACW or OACW respectively. These lSI Monitor Interrupts systematically
interrupt the sequence of instructions being executed by the main control section
of the CPU's I/O section as explained in 8.5.

The I/O priority network of the CPU determines the priority on which serVICIng
of the lSI Monitor Interrupts is based. Of the three types of lSI Monitor Interrupts,
their order oJ priority from highest to lowest is: Input Monitor Interrupt, Output
Monitor Interrupt and Function Monitor Interrupt. If the same type of lSI Monitor
Interrupt is simultaneously active on more than one channel, the interrupt on the
lowes t number channel has the higher priority.

When a Monitor Interrupt occurs, the sequence of instructions being executed by
the CPU's main control section is altered and the next instruction to be executed
is obtained from a fixed address location in main storage. For the lSI Input
Monitor Interrupt, the address of the fixed location is X002208 , for the lSI Output
Monitor Interrupt it is X00221 8 and for the Function Monitor Interrupt it is X00222 8 .
Addi tional lSI Monitor Interrupt informa tion is presented in 8.2.1. (In the preceding
addresses listed, X is equal to the contents of MSR.)

UP-4U~j

Rev. 1

UNIVA\.. IIUts

PROCESSOR AND STORAGE 7
SECTION:

7.2.8. Programmed Deactivation of an I/O Channel in lSI Mode

If an input channel is active in input mode, execution of the DIC instruction de­
activates input mode on the specified input channel. If that channel was activated
by execution of the LICM instruction, execution of the DIC instruction also de­
activates the monitor function on that input channel.

If an input channel is active in input mode with the monitor function active,
execution of the LIC instruction deactivates the monitor function and transfers
an ACW from a location specified by the LIC instruction into the IACR for that
channel. The input mode remains active on that channel.

If an output channel is active in output mode or function mode, execution of the
DOC instruction deactivates output mode or function mode on the specified out­
put channel. If the channel was activated by execution of the LOCM or LFCM
instruction, the execution of the DOC instruction also deactivates the monitor
function on that output channel.

If an output channel is active in output mode with or without the monitor function
active, execution of the LFC or LFCM instruction deactivates output mode.
Execution of the LFC instruction also deactivates the monitor function if appli­
cable. In either case, an ACW is transferred from a location specified by the
LFC or LFCM instruction to the OACR for that channel and the specified output
channel is then acti va ted in function mode with or without the monitor function
as specified.

If an output channel is active in the function mode with or without the monitor
function active, execution of the LOC or LOCM instruction deactivates the
function mode. Execution of the LOC instruction also deactivates the monitor

. function if applicable. In either case, an ACW is transferred from a location
specified by the LOC or LOCM instruction to the OACR for that channel and
the specified output channel is then activated in output (data) mode with or
without the monitor funct-ion as specified.

If an output channel is active in output mode/function mode with the monitor
function active, execution of the LOC/LFC instruction deactivates the monitor
function and transfers an ACW from a location specified by the LOC/LFC in­
struction into the OACR f or that channel. The output mode/function mode remains
active on that channel.

Deacti va ting the input channel moni tor function by execution· of the DIC or LIC
instruction, or deacti va ting the output channel monitor function by execution of
the DOC, LOC, or LFC instruction does not cause an Input Monitor, Output
Monitor, or Function Monitor Interrupt respectively to occur on the specified
channel. Due to critical timin g conditions, however, there is a remote possi­
bility that the Monitor Interrupt may still occur on a channel even after the de­
activating instruction specifying that channel has been executed. The interrupt
only occurs if the I/O transfer has just.reached completion and the Monitor
Interrupt signal is being transmitted to the I/O section at the time when the
instruction which deactivated the monitor was executed. In this case, if all

22
PAGE:

UNIVAC 1108

PROCESSOR AND STORAGE 7 23
PAGE:

UP·-40S3 L
Rev. 1 SECTION:
-' ---------L----'-------'---,-

I/O interrupts are in an enabled state, the Monitor Interrupt may still occur
within three instruction execution times after the execution of the instruction
which deactivated the monitor. If an interrupt with higher priority (a non-I/O
interrupt) occurs during the critical timing period, the Monitor Interrupt does not
occur.

If all I/O interrupts are in a disabled state when an instruction is executed which
disconnects the monitor, it is possible for a Monitor Interrupt which was just
being transmitted to the CPU I/O section to be retained. This Monitor Interrupt
may occur at a later time when an AAIJ (Allow All I/O Interrupts And Jump)
instruction is executed. In this case, the Monitor Interrupt will occur immediately
following the first instwction executed after the AAIJ, provided that this in­
struction is not a PAIJ (Prevent All Interrupts And Jump) instruction. Again, if
an interrupt with higher priority (a non-I/O interrupt) occurs during this critical
timing period, the Monitor Interrupt will not occur. Further, if an External
Interrupt or a Monitor Interrupt occurs on any other I/O channel, the pending
Monitor Interrupt will not occur.

The possible situations in which a pending Monitor Interrupt can occur after the
execution of an instruction which deactivates the monitor are indicated in the
following chart.

If all I/O interrupts are in an enabled state:

Instruction Location

P

P+l

P+2

P+3

Instruction

Instruction which deacti va tes the monitor
(DIC, LIC, DOC, LOC, or LFC)

Pending Monitor Interrupt can

occur at any of these points

If all I/Ointerrupts are in a disabled state:

Instruction Location

N

N+XXXX

P

P+l

Instruction

Instruction which deactivates the monitor
(DIC, LIC, DOC, LOC or LFC)

AAIJ

(N ot a PAIJ instruction)

A pendin g Monitor In terrupt can occur here

UP-40S3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
5 EC TION:

7.2. g.. Summary of I/O Channel Control Circuit Operation - lSI Mode

Six control circuits are associated with each I/O channel. These six circuits are:

Output Active (Out Act)

Output Monitor (Out Mon)

External Function (EF)

Force External
Function (Force EF)

Input Active (In Act)

Input Monitor (In Mon)

The execution of certain I/O instructions affects the control circuits:

INSTRUCTION EFFECT

Activates

LFC Out Act, EF, Force EF

LFCM Out Act, Out Mon, EF, Force EF

LOC Out Act

LOCM Out Act, Out Mon

LIC In Act

LICM In Act, In Mon

DOC

DIC

Deacti va tes

Out Mon

Out Mon, EF

EF

In Mon

Out Act, Out Mon,
EF

In Act, In Mon

Some of the I/O section control circuits are affected as a result of the detection of
certain conditions in the W field of the associated ACW when the I/O section re­
sponds to an ODR or IDR signal. The essential conditions and the effect produced
are as follows:

24
PAGE:

UP.4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

ESSENTIAL CONDITIONS EFFECT

Responding to: Control Circuits Active W field Deacti va tes

ODR (simulated) Out Act, EF, Force EF .;to Force EF

ODR (simulated) Out Act, EF, Force EF =0 Out Act, Force EF

ODR Out Act =0 Out Act

IDR In Act 1+0 In Act

IDR In Act =0 In Act

Monitor Interrupts occur when the I/O section detects certain control circuit con­
ditions. The conditions detected and the effects produced upon their detection are
as follows:

ESSENTIAL CONDITIONS EFFECTS

Active Not Active Interrupt Occurs Deactivates

In Mon In Act lSI Input Monitor Interrupt In Mon

Out Mon Out Act, EF lSI Outpu t Monitor Interrupt Out Mon

Out Mon, EF Out Act lSI Function Monitor Interrupt Out Mon

7.2.10. Summary of the CPU's Operation Versus the EI, IDR, and ODR Control Signals

The EI con trol signal is turned on by the su bsys tern when the s ubsys tern transmits
a status word to the CPU. The IDR control signal IS turned on by the subsystem
when the subsystem transmits an input word to the CPU. The subsystem turns on
the ODR signal when it is ready to receive an output word or function word (or ID
word) from the CPU.

The I/O section may be active in responding to a control signal from some other
I/O channel at the time the particular ODR, IDR, or EI control signal is turned
on. Once the I/O section recognizes that this control signal has been turned on,
it stores this fact until it reacts to the control signal or until the control signal
is turned off, whichever occurs first. The CPU reaction to an ODR signal is to
send an OA or EF signal, together with a data word or function word, to the sub­
system. Its reaction to an IDR or EI signal is to accept and store a data word or
status word and send an IA signal to the subsystem. Once the CPU has reacted
to a particular ODR, IDR, or EI control signal, the subsystem must turn off the
signal on that line for a minimum of 200 nanoseconds before the CPU I/O section
will again recognize that the subsystem is sending another control signal on the
same line.

PAGE: 25

UP-4053
Rev. 1

UNIVAC 1108

SECTION:
PROCESSOR AND STORAGE 7

7.2.11. I/O Programming Considerations - lSI Mode

An ou tpu t channel is conditioned to perform a function word transfer by execu­
tion of the LFC or LFCM instruction. To condition an output channel to perform
an output word transfer, a combination of the LFC/LFCM and LOC/LOCM
instructions is executed. To condition an input channel to perform an input word
transfer, a combination of the LFC/LFCM and LIC/LICM instructions is
executed.

Other instructions may also be executed in com bina tion with the instructions
stated in the preceding paragraph to determine the presence or absence of cer­
tain conditions on the specified channel. These instructions provide a program
with the means to directly test the condition of a specified channel. These
ins tructions are as follows:

• Jump Function Channel (JFC) (see 6.13.11)

When a JFC instruction is executed after an LFC or LFCM instruction, the
JFC instruction determines whether or not the first function word and EF
signals have been transmitt~d via the specified output channel to the sub­
system. Specifically, the JFC instruction tests the condition of the Force
EF control circuit. If the Force EF control circuit is active, the program
jumps to location U specified by the JFC instruction. If the Force EF con­
trol circuit is not active, the program continues with the next consecutive
instruction.

In the CPU's I/O section, the Force EF control circuit is activated when
the LFC or LFCM instruction is executed; it is deactivated 'during the 'I/O
timing chain cycle which controls transmission of the first function word to
the respective subsystem following the execution of the LFC or LFCM
instruction. If two or more words (function word and'lD word, or two or more
function words) are to be transmitted to a subsystem, the JFC instruction
does not determine whether or not the second, or third, and so forth word
has been ,transmitted to the respective subsystem. The JOC instruction can
be used to determine whether or not all of the words have been transmitted
to the subsystem .

• Jump Output Channel (JOC) (see 6.13.7)

The J OC in~ truction determines whether or not an ou tpu t channel is acti ve
in either function mode or output mode. More specifically, the JOC instruc­
tion tests the condition of the output active control circuit. If the output
active control circuit is active, the program jumps to location U specified
by the instruction. If the output active control circuit is not active, the
program continues with the next consecutive instruction. In the I/O section
of the CPU the output active control circuit is activated when the LFC,
LFCM, LOC or LOCM instruction is executed or when the terminal condition
is detected in the associated OACR.

26
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION:

7 PAGE: 27
UP-

4U53

------- -----------------------~----------------------~--------------~------------~------,------

• Jump Input Channel (JIC) (see 6.13.3)

Execution of the JIC instruction determines whether or not an input channel
is active in input mode. Specifically, the J IC ins truction tests the condition
of the input active control circuit. If the input active control circuit is active,
the program jumps to location U specified by the JIC instruction. If the
input active control circuit is not active, the program continues with the
next consecutive instruction.

In the CPU's I/O section the input active control circuit is activated when
an LIC or LICM instruction is executed; it is deactivated when a DIC in­
struction is executed or when the terminal condition is detected in the
associated IACR.

7.2.11.1. lSI Function Mode Programming Considerations

When a function word transmission is to be perf orm ed the specified channel
is prepared by activating function mode on that channel. While that channel
is active in function mode,' one or more function words or a function word
and an ID word may be transmitted to the subsystem. Some possible sequences
of instruction execution to perform these transfer operations are as follows:

II Sequence #1:

Location

N
Nt 1
Nt2

Ins truction

LFC
JFC (Jump to N t 1, continue later to N t 2)
xxx

In this sequence, execution of the LFC instruction activates the specified
channel in function mode. If the contents of the W field of the associated
OACR are initially equal to one or greater, one or more function words are
transmitted to the subsystem. Execution of the JFC ins truction assures
that the program will not proceed to execute the instruction at location
N t 2 until the first function word has been transmitted to the subsystem
following the execution of the LFC instruction.

II Sequence #2:

Location

N
Nt 1
Nt2

Ins truction

LFC
JOC (Jump to N t 1, continue later to N t 2)
xxx

In this sequence, execution of the JOC instruction assures that the pro­
gram will not proceed to execute the instruction at location N + 2 until
after function mode is deacti va ted on that channeL Function mode is de­
activated for an I/O channel when the subsystem turns on the ODR signal
at a time when function mode is active for that channel but the word count
field of the OACW has been decremented to zero.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 7

If the last function word sent to the subsystem calls for input to the CPU
rather than output, the subsystem will typically turn on its lOR signal
rather than the OOR signal. As a consequence, the output channel will
remain active in the function and output mode until the input transfer is
completed and the subsystem turns on the OOR signal to indicate that it
can accept a new function word .

• Sequence #3:

Location

N
Nt 1
Nt2

M
Mtl

Ins truction

LFCM
xxx
xxx

xxx
xxx

(continue execution)

(Monitor Interrupt routine
which recognizes completion
of the function ou tpu t sequence)

In this ~equence, the program proceeds in normal execution and waits for
the Function Monitor Interrupt to occur. After the Function Monitor Interrupt
occurs, the program is allowed to proceed.

In all of the above sequences, a programmed timing routine could be used
in conjunction with the jump to x function. The timing routine may be used
to inform the program when a more than adequate amount of time has
elapsed to complete the previously initiated I/O operation. If for some
reason the I/O operation has not been completed in the specified period
of time, the timing routine informs the program that some error or mal­
function exists. This type of routine will prevent the system from being
delayed indefinitely waiting for a Monitor In terrupt.

7,,2.11.2. lSI Output Mode Programming Considerations

When an output word transmission is to be performed using a channel, two
steps are essential to prepare for the operation. The two steps are: (1) The
subsystem on that channel must be prepared for output - to turn on OOR
signals on the ODR control line and respond to output words transmi tted
from the CPU's I/O Section and (2) The output mode must be active on the
specified channel so that the CPU's I/O section is ready to respond to the
OOR's turned on by the subsystem by transferring output words fro'm the
locations specified by the OACW. The CPU prepares the subsystem for the
output operation by activating the specified channel in function mode and
transmitting to the subsystem a particular function word (or words). Exe­
cution of the LFC or LFCM instruction activates the channel in function
mode. The channel is prepared for the output word transmission by activating
the channel in output mode through execution of the LOC or LOCM instruction.

PAGE: 28

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 7
SECTION: PAGE:

29
UP-4tlS3

-------- .,--~-----------------------------

The function word transfers and output data transfers both,use the same
OACR and output path. Consequently, all function word transfers must be
completed befo.re the output data transfers can be initiated. If the LOC or
LOCM instruction is executed before the function mode use of the OACR is
complete, a situation is created in which the output active and Force EF
control circuits are active and the EF con trolcircuit is inactive. Execu tion
of a JFC instruction following the execution of an LFC or LFCM instruction
guarantees that this illogical state never occurs.

When 'a specified channel is active in output (data) mode, it is normally unde­
sirable to disturb that channel by executing an LFC/LFCM or LOC/LOCM
instruction specifying that channel until after the output data mode is de­
activated. The following three methods can be used to determine whether or
not the output (data) mode operation is complete.

(1) A JOC instruction can follow an LOC instruction. The program will
jump to the location specified if the output active control circuit is
active. The jump location can return the program to repeat the JOC
instruction. When the output (data) mode is deactivated, the program
will execute the next sequential instruction.

(2) If the output operation was initiated with an LOCM instruction, the Out­
pu t Monitor In terrupt will oc cur when the output channel is deacti va ted.

(3) Some subsystems transmit an EI control signal and a status word to the
CPU when the output (data) mode operation is deactivated.

Some possible sequences of instruction execution to prepare to perform an
output word transfer operation are as follows:

• Sequence #1:

Location

N

N + 1
N+2

Instruction

LFC (W field of OACW = 1)

JFC (Jump to N + 1, continue later to N + 2)
LOC or LOCM

This sequence may be used when only one f unction word is to ,be trans­
mittedto the subsystem. The LFC instruction activates the specified
output channel in function mode which results in the transmission of a
function word to the subsystem. The JFC instruction assures that the
LOC or LOCM instruction will not be executed until the function mode
use of the channel is complete. The LOC or LOCM instruction activates
ou tpu t mode on the specified channel.

• Sequence #2:

Locatio.,!!

N
N + 1
N+2

Instruction

LFC (W field of OACW = 1 or greater)
JOC (JUMP to N + 1, continue later to N + 2)
LOC or LOCM

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

This sequence may be used when one or more function words are to be
transmitted to the subsystem. In this case the JOC instruction assures
that the LOC or LOCM instruction will not be executed until the function
mode use of the channel is complete. Specifically, the J OC instruction
assures that the LOC or LOCM instruction will not be executed until
after function mode is deactivated on the specified channel. In this case
the function mode is deactivated when the subsystem turns on the ODR
signal after it has received the last function word called for by the OACR.

The operation of the LFC and LOC or LOCM instructions in this sequence
are essentially the same as explained in Sequence #1.

• Sequence #3:

Location

N
N + 1
N+2

M
M+1
M+2

Ins truction

LFCM (W field of OACW = 1 or greater)
xxx (continue execution)
xxx

xxx (Function Monitor Interrupt sends control
xxx to this routine.)
LOC or LOCM

This sequence could be used when one or more function words are to be
transmi tted to the subsystem. After execu tion of the LFCM instruction,
the program must not proceed to execute the LOC or LOCM instruction
until after the Function Monitor Interrupt occurs on the specified channel.
The LFCM instruction conditions the CPU to generate the Function
Monitor Interrupt leading to execution of the LOC or LOCM instruction.
The LOC or LOCM instruction will not be executed until the function
mode use of the specified channel is complete. The function mode is
deactivated when the Function, Monitor Interrupt occurs.

The operation of the LFCM and LOC or LOCM instructions in this se­
quence are essentially the same as explained in Sequence #1.

Typically, only one function word is necessary to prepare a subsystem for
an output transmission. Subsystems commonly used on an I/O channel
operating in lSI mode transmit an external in-terrupt control signal and status
word to the CPU when the output operation is complete. Thus, the program
can be informed of completion by the occurrence of the External Interrupt
and an Outp.ut Monitor Interrupt is unnecessary.

Usually a programmed timing routine is used in conjunction with the sequences
illustrated so that the program can be notified when a sufficient time for
normal completion of the I/O transfer has elapsed. If for some reason the I/O
operation has not been terminated in the specified amount of time, the timing
routine informs the progr~m that some error or malfunction exists. This type
of routine prevents this system from being delayed indefinitely in the event
that some abnormal circumstance prevents the I/O operation from reaching
its normal termination.

30
PAGE:

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 7 PAGE:
31

UP-40S3 L
Rev. 1 _ _ _____ -----L-_--'-----'-----

7.2.11.3. lSI Input Mode Programming Considerations

The two steps essential for an input word transmission are as follows:

(1) The subsystem on the channel must be prepared for input.

(2) The input mode must be active on the specified channel so that the
CPU's I/O section is ready to respond to the lOR's turned on by
the subsystem. The I/O section of the CPU must accept input word
signals from the input word/status word lines and transfer the input
words into the main storage locations specified by the IACW. It
must also be ready to transmit IA signals through the IA line to the
subsystem.

The subsystem is prepared for the input word transmission by activating the
specified channel in function mode and transmitting a particular function
word (or words) to the subsystem. Execution of the LFC or LFCM instruc­
tion activates the specified channel in function mode. The specified input
channel is prepared for the input transmission by activating the channel in
input mode through execution of the LIC or LICM instruction.

No conflict occurs when preparing an I/O channel for input data transfer be­
cause the LFC uses the output path and OACR associated with that channel
and the LIC or LICM initiates the input path and associated IACR.

In the input transmission of many systems, the CPU's I/O section must ac­
cept the input words at a rate governed by the subsystem. If the CPU has
not accepted a particular input word from the subsystem by the time the
subsystem is ready to transmit the next input word, a situation arises which
is described as data pile up. When data pile up occurs, the subsystem stops
the input transmission and transmits an EI signal and status word to the
CPU's I/O section reporting the data pile up condition.

In initiating input, if the LFC/LFCM instruction is executed first, followed
some time later by execution of the LIC/LICM instruction, it is possible
that before the channel. is active in input mode the subsystem (such as a
magnetic tape subsystem) could already have data pile up. This cause of
data pile up can be avoided by executing the LIC/LICM instruction first,
followed some time later by execution of the LFC/LFCM instruction.
Some suggested sequences of instruction execution to perform an input
word transfer opera tion are as follows:

• Sequence #1:

Location

N
N + 1
N+2
N+3

Instruction

LIC or LICM
LFC (W field of OACW = 1 or more)
]FC (Jump to N + 2 continue later to N + 3)
xxx

(

UP-40S3

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

In this sequence, the input channel is first activated in input mode and then
function mode is activated on the output channel. As soon as the subsystem
is prepared to perform the input operation, the input channel is already pre­
pared and no data pile up should occur. The use of the JFC instruction
assures the program that the first (if W field> 1 initially) function word has
been transmitted to the subsystem.

Once the specified channel is active in input mode, it is normally undesirable
to disturb the channel by executing an LFC/LFCM or LIC/LICM instruction
specifying tha t channel un til, after the input mode operation is completed. A
program. can determine whether or not the input operation is c;omplete through
execution of the JIC instruction, or by waitingfor the Input Monitor Interrupt

. to occur on the channel if it was activated with the LICM instruction, or by
waiting for an External In terrupt to occur on the channel.

• Sequence #2

Location

N
N t 1
Nt2
Nt3

Ins truction

LIC or LICM
LFC (W field of OACW = 1 or more)
JOC (Jump to N t 2, continue later to N t 3)
xxx

This sequence is like Sequence #1 except that the JOC instruction will not
allow the program to proceed to instruction N t 3 until after the subsystem
has completed the input word transmission operation and has returned to the
at rest state. In this case, after a function word or words is/are transmitted
to the subsystem, the subsystem prepares for an input operation. When the
subsystem is ready, it turns on the IDR signal, and the transmission of input
words begins. The subsystem responds 'with an IDR signal and not an ODR
signal after it receives the function word (or words if the W field> 1 initially).
Therefore the output active control circuit remains active and the JOCin­
struction does not allow the program to proceed to the instruction in location
N t 3. But when the input operation is complete and the subsystem returns to
the idle state, it turns on the ODR control signal, and the CPU's I/O section
responds by deacti va ting the ou tpu t active control circuit. A fter the ou tpu t
active control circuit is deactivated, the JOC 'instruction allows the program
to proceed to execute the instruction at location N t 3.

• Sequence #3

Location

N
N t 1
Nt2

Ins truction

LFC (W field of OACW = 1 or more)
JFC (Jump to N t 1 continue later to N t 2)
LIC or LICM

. This sequence is permissible if the speed of execution is sufficient to prevent
data pile up (magnetic drum subsystem). However, if the JOC instruction was
used instead of the JFC instruction the program ~ould stall on the output
active test and never be allowed to proceed to execute the instruction at
location N t 2 (see 7.2.11.2).

32
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE SECTION: 7 PAGE:
33

UP-40fU3

------------.--~----------------------------~----------------------~-----------------------

7.3. ESI MODE - I/O OPERATION

The ESI mode of I/O channel operation is used on a channel which is assigned a
special ESI subsystem. Many special peripheral devices (ESI devices) or com­
munications lines can be assigned to on~ ESI subsystem. An example of an ESI
subsystem is the Communication Terminal Module Control (CTMC) subsystem. An
example of an ESI device is the Communications Line Terminal (CL T).

When an I/O channel is active and op~rating in ESI mode (see 7.1.4), either half
words (18 bits) or quarter words (9 bits) are transferred to or from main storage
(word serial, bit parallel) via the CPU I/O section and I/O channel from or to an
ESI subsystem. The ESI subsystem in turn transmits these words to, or receives
these words from, the ESI devices. The aggregate of transmissions to or from all
of the ESI devices associated with an ESI subsystem are performed on a time
sharing basis (multiplexed) via the ESI subsystem and I/O channel.

7.3.1. General Description - Operation of an I/O Channel in ESI Mode

A channel operating in ESI mode is activated when any of the following instructions
are performed:

Load Input Channel (LIC)
Load Input Channel and Monitor (LICM)
Load Output Channel (LOC)
Load Output Channel and Monitor (LOCM)

The particular channel activated is specified by the logical sum of the contents
of the a field of the instructions and the contents of the Channel Select Register
(a [!l3 CSR). The LFC and LFCM instructions are legitimate instructions for
transmitting function words in ESI mode, as explained in 7.3.5.1. However, they
are not included in the list above because their execution, when specifying a
channel in ESI mode, does not cause the channel to be activated in function
mode; that is, the output active control circuit or the output active and output
monitor control circuits are never activated as a result of execution of the LFC
or LFCM instruction respectively.

When the LIC or LICM instruction is executed (specifying a channel that is
operating in ESI mode), the specified input ch.anne1 is activated in input mode;
when the LICM instruction is executed, the input monitor function is also activated
for that input channel. When the LOC or LOCM instruction is executed, the speci­
fied output channel is activated in output mode; when the LOCM instruction is
executed, the ou tpu t monitor function is also activa ted for tha t ou tput channel.
When any of the instructions LIC, LICM, LOC, or LOCM is executed, an ACW is
not transferred from a location specified by the instruction to an IACR or OACR
for the associated channel as is the case when a channel is operating in lSI mode.

The transmissions of input words and output words to or from the ESI subsystem
are accompanied by an ESI value (15 bits) from the subsystem. TheESI value is
augmented with the value in MSR to form the absolute address of a main storage
location containing an ESI ACW.

One ESI ACW is usually associated with each ESI device. The contents of the
ESI ACW specifies the following:

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

• absolute address of a location in main storage to or from which an input word
or output word is transferred;

• number of words to be transferred;

• whether the address portion is to be incremented, decremented or left unchanged;

• in ESI quarter word outpu t whether or not the channel is deactivated when the
terminal condition is detected.

Since the address of the ACW is specified by a source which is basically external
with respect to the CPU or main storage, the term Externally Specified Index (ESI)
is used to denote this particular mode of I/O operation.

Deactivating of an input or output channel operating in ESI mode occurs when the
DIC or DOC instruction respectively is executed. Deactivation of an input channel
also occurs when the terminal condition is detected in an associated ESI ACW.
Deactivation of an output channel normally occurs when the terminal condition
is detected in an associated ESI ACW; in some specified cases in quarter word
operation, the output channel is not deactivated when the terminal condition in
the ESI ACW is detected.

7.3.2. ESI Word Format

As previously mentioned, each IDR and ODR control signal transmitted to the CPU
I/O section by the ESI subsystem is also accompanied by an ESI value. In each
case, the ESI value is transmitted via the input word/status word lines. The ESI
value is augmented in the I/O section by the value in Memory Select Register (MSR)
to form the absolute address of a main storage location containing an ESI ACW.

The ESI format is the same for both an input or output operation. For an input opera­
tion, however, the lOR is accompanied by both the ESI value and input data.

For an ESI half word input operation, the information transmitted to the CPU 1/0
section on the input word/status word lines when the IDR control signal is on has
the following format:

I I I
I I ESI I ESI

Input Word I O's I Subsystem I Device
I I
I I Identity I Identity

35 18 :17 15: 14 6:5 0

ESI Word Format - Half Word Input

For an ESI quarter word input operation; the information transmitted to the CPU
I/O section on the input word/status word lines when the lOR control signal is
on has the following format:

O's

35

I
I
I
I
I

27 I 26

Input
Word

ESI
Subsystem

Identity

ESI Word Format - Quarter Word Input

I
I ESI
I Dev ice
I .
I Identity

6:5 0

34
PAGE:

UP-
40U3

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7 35 ________ • ______________________________________ ~ ______________ ~S~E~C~T~IO~N~: ______ ~~p~A~G~E~: ______ _

For an ESI half word or quarter word ou tpu t operation, the information transmitted
to the CPU's I/O section on the input word/status 'word lines when the ODR
control signal is on has the following format:

135

I I
I I
I I ESI ESI
I I

O's I O's I SU BSYSTEM DEVICE
I I IDENTITY IDENTITY I I I

18 !17 15~14 6:5 0

ESI Word Format - Output

After the ESI word is accepted by the I/O section, it is augmented with the value
from MSR. The biased ESI address is an 18-bit value which specifies the absolute
address of a location in main storage. The biased ESI address has the following
format:

ESI
SUBSYSTEM

Biased ESI Address Format

ESI
I DEVICE
: IDENTITY

6 15 0

As each input word is transferred to main storage, in an ESI input operation,
the biased ESI value is stored in bits 35 through 18 of the IACR associated
with the channel. As each output word is transferred from main storage in an
ESI output operation, the biased ESI value is stored in bits 17 through 00 of
the XACR associated with the channel.

The subsystem and device identity fields allow a unique ESI ACW in main storage
to be associated with each ESI device. Each uniqueESI ACW controls the address
in main storage to which, or from which, an input word or output word is transferred
that has been received from, or is being transmitted to, a particular ESI device.

7.3.3. ESI ACW Formats

One ESI ACW format is used for ESI half word input and output operations. A second
ESI ACW format is used for ESI quarter word input and output operations. An I/O
channel is implemented for either half word or quarter word operation through the
use of a particular plug-in card.

For each ESI half word operation, two I/O words are stored in each main storage
location specified by the ESI half word ACW.

When the ESI quarter word operation is in effect, four I/O words are stored in each
main storage location specified by the ESI quarter word ACW.

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 7

7.3.3.1. ESI Half Word ACW Format

The ESI half word ACW includes four fields (G, H, W, and V) and has the follow­
ing format:

I I
"I I

G 1 H I
I

35 1 I
34~33132

W v

18 17 o

ESI Half Word ACW Format

The four fields of the ESI half word ACW are def ined as follows:

• V field

The contents of the V field (bits 17 through 0) specifies the absolute ad'dress
of a location in main storage to or from which a half word ESI I/O word is
transferred. As each I/O word is transferred to or from a main storage location,
the contents of the V field is either incremented by one, decremented by one,
or remains unchanged dep~nding on the contents of the G and H fields.

• W field

The initial contents of the W field (bits 32 through 18) specifies the number
of half word ESI I/O words that are to be transmitted between main storage
and an ESI device via the associated channel. As each I/O word is trans­
mitted, the contents of the W field is decremented by one and tested to
determine if the terminal condition has been reached.

• H field

When the CPU I/O section is responding to an IDR or ODR, the contents of
the H field (bit 33) specifies the following:

(1) H = O·

Transfer the ESI I/O word to or from bits 17 through 0 of the main storage
location addressed by the contents of the V field and change the contents
of the H field from 0 to 1.

(2) . H = 1

Transfer the ESI I/O word to or from bi ts 3S through 18 of the main
storage loca tion addressed by the cort ten ts of the V field and change
the contents of the H field from 1 to O.

PAGE: 36

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 7
SEC TION: PAGE:

UP-4U03

---~------------~~------------~------

• G field

The contents of the G field (bits 35 and 34) specifies the following:

(1) G = 002

Increment the content of the V field by one when the contents of the
H field is changed from 1 to O.

(2) G = 102

Decremen t the con ten t of the V field by one when the con ten ts of the
H field is changed from 1 to O.

(3) G = 01 2 or 112

The contents of the V field remains unchanged when the content of the
H field is changed from 1 to O.

NOTE: The incrementation and decrementation of the contents of the V field
are performed in a ones complement subtractive adder. Therefore, the
contents of the V field can never become 7777778 as a result of the
incrementation or decrementation specified by the G field.

7.3,,3.2. ESI Quarter Word ACW Format

The ESI quarter word ACW includes five fields (G, H, C, Wand V) and has the
following format:

I I I I
G IH 1 C l W I V

I I 1 I

I I 1 I

133 1 31 I
I

35 I

34
I I I

18: 17 0 132130 129

ESI Quarter Word ACW Format

The five fields of the ESI quarter word ACW are defined as follows:

• V field

The con ten ts of the V field (bits 17 through 0) specifies the a bsolu te address
of a location in main storage to or from which a quarter word ESI I/O word is
transferred. As each I/O word is transferred to or from a main storage location,
the content of the V field is either incremented by one, decremented by one,
or remains unchanged depending on the contents of the G and H fields.

37

UP-4053

Rev. 1

UNIVAC IIUH

PROCESSOR AND STORAGE 7
SECTION:

• W field

The initial contents of the W field (bits 29 through 18) specifies the number of
quarter word ESI I/O words that are to be transmitted between main storage and
an ESI device via the associated channel. As each input word is transmitted,
the content of the W field is decremented by one and tested to determine if
the terminal condition has been reached. For output word transmission, the
contents of the Wand C fields combined are tested to determine if the terminal
condition has been reached .

• C field

The con ten ts of the C field (bits 31 and 30) specifies a special action to be
performed by the I/O section when the W field is decremented from 2 to 1
during an output word transmission. Bit 31 of the C field is called the Early
EOT Control bit (EOT = end of transmission); bit 30 is called the Early
Monitor and Deactivate Control bit.

(1) C = 002

No special action is performed when the contents of the W field of the
ACW addressed by the biased ESI word is decremented from 2 to 1.

(2) C = 01 2 (Early Monitor and Deactivate Control Bit set)

When the CPU I/O section responds to an ODR control signal and ESI
word signals, and the contents of the W field of the ACW addressed by
the biased ESI word is a 2, the operation of the I/O section isas 'follows:

a. A quarter word ESI output word is transferred from the main storage
location specified by the V field of the ACW and is transmitted via
the associated output channel with an OA signal to the ESI subsystem.

b. The ACW is updated which includes decrementation of the contents
of the W field from 2 to 1.

c. The output channel is deactivated. An ESI Output Monitor Interrupt
occurs if the ou tpu t monitor function is active on that channel.

(3) C = 102 (Early EOT Control Bit set)

When the CPU I/O section responds to an ODR control signal and
ESI word signals, and the contents of the W field of the ACW ad­
dressed by the biased ESI word is 2, the operation of the I/O
section is as follows:

a. A quarter word ESI output word is transferred from the main storage
location specified by the V field of the ACW; this word plus an EOT
bit (a 1 bit in bit 9 for a total of 10 bits) are transmitted via the
associated output channel with an OA signal to the ESI subsystem.
(The EOT bit causes the ESI device to discontinue operation, that
is, tu rn s 0 ff.)

38
PAGE:

___ U __ :~~~O_.5_: __ ~ _________ ~_~_IO_V_~.~ __ ~_~_~_R __ A_N_D __ S_T_O __ R_~_G_E ___________ ~ ______________ ~I~s_E_C_T_IO_N_:_7 _____ ~_P_A_G ___ E:

b. The ACW is updated (includes decrementing the contents of the W
field from 2 to 1).

c. The output channel is not deactivated and an ESI Output Monitor
In terrupt does not occur.

(4) C = 112 (Early EOT and Monitor and Deactivate Bits set)

When the CPU I/O section responds to an ODR control signal and
ESI word signals, and the contents of the W field of the ACW addressed
by the biased ESI word is 2, the operation of the I/O section is as
follows:

a. A quarter wordESI output word is transferred from the main storage
location specified by the V field of the ACW; this word plus an EOT
bit (a 1 bit in bit 9 for a total of 10 bits) are transmitted via the
associated output channel with an OA signal to the ESI subsystem.
(The EOT bit causes the ESI device to discontinue operation, that
is, turns off.)

b. The ACW is updated (includes decrementing the contents of the
W field from 2 to 1).

c. The output channel is deactivated. An ESI Output Monitor Interrupt
occurs if the output monitor function is active on that channel.

NOT E: The contents of the C field are ignored when a quarter word ESI
input word transmission operation is being performed .

• H field

When the CPU I/O section is responding to an IDR or ODR signal, thE';
contents of the H field (bits 33 and 32) specifies the following:

(1) H = 002

Transfer the ESI I/O word to or from bits 35 through 27 of the main
storage location addressed by the contents of the V field and change
the con ten ts of the H field from 002 to 01

2
,

(2) H = 01 2

Transfer the ESI I/O word to or from bits 26 through 18 of the main
storage location addressed by the contents of the V field and change
the con ten ts of the H field from 01 2 to 102 ,

(3) H = 102

Transfer the ESI I/O word to or from bits 17 through 9 of the main
storage location addressed by the con ten ts of the V field and change
the contents of the H field from 102 to 11 2 ,

39

UP-4053

Rev. -1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION:

(4) H = 112

Transfer the ESI I/O word to or from bits 8 through ° of the main
storage location addressed by the contents of the V field and
change the contents of the H field from 112 to 002'

• G field

The contents of the G field (bits 35 and 34) specifies the following:

(1) G = 002

Increment the contents of the V field by one when the contents of
the H field is changed from 112 to 0°2 ,

(2) G = 102

Decrement the contents of the V field by one when the contents of
the H field is changed from 112 to 0°2 ,

(3) G = 01 2 or 112

The contents of the V field remain unchanged when the contents of
the H field is chan ged from 112 to 0°2 ,

NOTE: The incrementation and decrementation of the contents of the V
field are performed in a ones complement subtractive adder. There­
fore, the contents of the V field can never become 7777778 as a
result of the incrementation or decrementation specified by the
G field.

7.3.4. ESI ACW Terminal Condition Detection

7

The terminal condition is detected when the W field of the ACW addressed by
the associated biased ESI word is decremented from 1 to 0 during any ESI half
word or quarter word input or output transmission operation .

• Terminal Condition Detection - ESI Output

When the I/O section responds to an ODR control signal and ESlword
signals and the contents of the W field of theACW addressed by the
biased ESI word is 1, t he operation of the I/O section is as follows:

(1) An ESI output word is transferred from the main storage location
specified by the V field of the A CW and is transmitted via the
associated output channel with an OA signal to theESI subsystem.

(2) The ACW is updated (includes decrementing the contents of the W
field from 1 to 0).

40
PAGE:

UP -411!)j

Rev. 1

UNIVA\.. IIUts

PROCESSOR AND STORAGE SECTION: 7

(3) The terminal condition is detected. upon the decrementation of the
W field from 1 to 0; as a result the following occurs:

a. The output channel is deactivated.

b. An ESI Output Monitor Interrupt occurs if the output monitor
function is active on that channel.

• Terminal Condition Detection - ESI Input

When the I/O section responds to an IDR control signal, and ESI word
signals, and the contents of the W field of the ACW addressed by the
biased ESI word is 1, the operation of the I/O section is as follows:

(1) The ESI input word is transferred into the main storage location
addressed by the V field of the ACW and an IA signal is transmitted
via the associated input channel to the ESI subsystem.

(2) The ACW is updated (includes decrementing the contents of the W
field from 1 to 0).

(3) The terminal condition is detected upon the decrementation of the
W field from 1 to 0; as a result the following occurs:

a. The input channel is deactivated.

b. An ESI Input Monitor Interrupt occurs if the input monitor
function is active on that channel.

7.3.5. ESI Mode - Input/Output Channel Activity

Four different types of activity can be performed on an I/O channel that
is operating in ESI mode. Essentially, these acti vi ties consist of: function
word transmissions, output word transmissions, input wor d transmissions,
and external in terrupt sta tus word transmissions. Each of these acti vi ties
are explained in the followin g sections.

7.3.5.1. ESI Mode - Function Word Transmission Activity

When the LFC or LFCM instruction is executed, an OACW is transferred
from the location specified by the instruction to the OACR associated with
the specified output channel. The OACW conforms to the lSI - OACW format.

After the LFC or LFCM instruction is executed, one function word is trans­
ferred from the main storage location specified by the OACW and is trans­
mitted via the output word/function word lines of the associated channel to
an ESI subsystem. Only one function word is transmitted via a channel
operating in ESI mode to an ESI subsystem per each execution of the LFC
or LFCM instruction. The specified channel is never activated in function
mode; and execution of the LFCM instruction never activates the monitor
function on the specified ou tpu t channel. The activity performed by the I/O
section following the execution of the LFC or LFCM instruction is as
follows:

PAGEl 41

Rev. 1 PROCESSOR AND STORAGE
SECTION: 7

• The force external function (Force EF) control signal is activated and
causes a simulat ed ODR to be turned on in the I/O section. The I/O
section in turn services the ODR as follows:

(1) The contents of the associated OACR is tested for the terminal
condition. If it is not in the terminal condition (W field i 0),
the function word is obtained from the main storage location
specified by the contents of the V field of the OACW.

(2) The function word (up to 36 bits in length) and EF control signal
pulses are transmitted via the ou tpu t word/function word lines and
the EFline respectively of the specified output channel to the ESI
subsystem.

(3) The contents of the OACR are updated. (The contents of the W field
are decremented. The contents of the V field are either incremented,
decremented or left unchanged as specified by the contents of the
G field.)

NO T E: If the con ten ts of the OACR is initially in the terminal condition
(W field = 0), no function word or EF signals are transmitted and
the contents of the OACR are not updated. When the LFC or LFCM
instruction is executed, two particular I/O section control circuits
(flip-flops) which are associated with the specified ou tpu t channel
are activated. These circuits are the Force EF and the EF control
circuits.

The Force EF control circuit turns on the simulated ODR signal which
causes a function word to be forced to the ESI subsystem. The EF control
circuit activates the EF control signal (pulse) as the function word is
transmitted to the ESI subsystem. Both the Force EF and the EF control
circuit are deactivated during the I/O timing chain cycle that sequences
the transmission of the forced function word to the ESI subsystem. If the
W field of the OACW initially contains the value 0, the Force EF and EF
control circuits are deactivated even though no function word transmission
occurs.

When a specified I/O channel is operating in ESI mode, both the input and
output channels may be simultaneously active in input mode and output
mode respectively. The input mode or ou tpu t mode operation of tha t I/O
channel is not affected by the occurrence of a function word transmission.

7.3 . .5.2. ESI Output Mode

When the LOC or LOCM instruction is executed, the output channel specified
by the LOC/LOCM instruction is activated in output mode. If the LOCM in­
struction is executed, the output monitor function is also activated on that
channel. In ESI mode, an OACW is not transferred from a location specified
by the instruction to the associated OACR as is the case when a channel is
operating in lSI mode.

PAGE: 42

Rev. 1

UNI VA\" I I Uti

PROCESSOR AND STORAGE
SECTION: 7

When an output channel, which is operating in ESI mode, is active in output
mode, output words are transferred from main storage and are transmitted to an
ESI subsystem via the output word/function word lines for that channel. This
operation is in response to ODR control signals and ESI word signals presented
to the CPU's I/O section by the ESI subsystem via the ODR line and input
word/status word lines respectively.

The activity performed by the I/O section in response to an ODR signal and
ESI word signals on an active ESI output channel 'is as follows:

• When an ESI subsystem turns on an ODR signal, the CPU's I/O section
responds by augmenting the ESI value with the contents of the MSR and
transferring the resulting biased ESI address into bits 17 through 0 of
the IACR associated with that channel.

• An ESI ACW is transferred to the I/O section from the main storage location
specified by the biased ESI address.

• The ESI ACW is then tested for the terminal condition.

(1) If the contents of the ESI ACW is not in the terminal condition:

(a) An ESI output word is obtained from the specified portion of the
main storage location addressed by the V field of that ESI ACW.

(b) The ESI output word and OA signal pulses are transmitted via the
output word/function word lines and OA line respectively to the
ESI subsystem. Ifor an ESI half word output operation, the output
word is transmitted via lines 17 through O. For an ESI quarter word
output operation, the output word is transmitted via lines 8 through O.

NOT E: The ESI subsystem responds to the OA signal by accepting
the ESI output word and turning off the ODR signal and ESI
word signals.

(c) The contents of the ESI ACW are updated. That is, the contents of
the W field is decremented by one. The contents of the V field may
or may not be incremented or decremented by one depending on the
contents of the G and H fields, and the contents of the H field are
changed (see 7.3.3.1 and 7.3.3.2).

(d) The updated ESI ACW is tested again for the terminal condition and
is also transferred into the main storage location specified by the
biased ESI address. If at this time the ESI ACW is in the terminal
condition the following occurs:

- Output mode on the as sociated output channel is deactivated.

- If the output monitor function is active on that output channel,
the ESI Output Monitor Interrupt occurs (see 7.3.6).

PAGE: 43

UP-4053
Rev. 1

UNIVAC I lUIS

PROCESSOR AND STORAGE
SECTION: 7

(2) See 7.3.6 for an explanation of the operation of the CPU's 1/0 section
if the ESI ACW is initially in 'the terminal condition when the I/O
section responds to an ODR signal.

NOT E': When the LOC or LOCM instruction is executed, the OA control
cjrcuit associated with the specified output channel is activated. An
ESI output channel is said to be active in output mode when the
OA control circui t is active.

When the OA control circuit is active on a channel operating in ESI mode, it
allows the CPU's 1/0 section to respond to ODR control signals and ESI word
signals presented on that I/O channel by an ESI subsystem; it is deactivated
when the terminal condition is detected in an associated ESI ACW or when the
DOC instruction is executed specifying that channel. If the specified output
channel was activated in output mode by execution of the LOCM instruction,
the output monitor control circuit associated with that output channel is
activated in addition to the OA control circuit. The output monitor control
circuit allows the ESI Output Monitor Interrupt to occur when the terminal
condition is detected in an ESI ACW as'sociated with that channel. When a
channel is operating in ESI mode, the ou tpu t monitor control circuit is deactivated
when the ESI Output Monitor Interrupt occurs, or when the LOC or DOC in­
struction is executed.

7.3.5.3. ESI Input Mode

When theLIC or LICM ins truction is executed, the input channel specified by the
LIC/LICM instruction is activated in input mode. If the LICM instruction is
executed, the input monitor function is also activated on that chc;tnnel. In ESI
modes, an IACW is not transferred from a location specified by the instruction
to the associated IACR as is the case when a channel is operating in lSI mode.

In ESI input mode, the ESI subsystem transmits IDR control signals and ESI
word signals to the CPU's 1/0 section via the IDR line and input word/status
word lines respectively. The 1/0 section responds by transferring into main
storage the input words that are also transmitted from the ESI subsystem via
the input word/ s tatusword lines of the sam e channel (see 7.3.2).

The activity performed by the I/O section in response to an IDR signal and
ESI word signals on an active ESI input channel is as follows:

• When an IDR signal has been turned on, the CPU's I/O section responds by
augmenting the ESI word with the contents Qf the MSR and transferring the
resulting biased ESI address into bits 35 through 18 of the related IACR.

• An ESI ACW is transferred to the I/O section from the main storage location
. specified by the biased ESI address.

• The ESI ACW is then tested for the terminal condition.

(1) If the contents of the ESI ACW is not in the terminal condition:

PAGE: 44

UNIVAC 1108

Rev. 1 SEC TION: PROCESSOR ANb STORAGE 7 45
PAGE:

UP-40U3

--~------------~-------------~------.-----

au The ESI input word is transferred from the input word/status word
lines to the specified portion of the main storage location addressed
by the V field of that ESI ACW. For an ESI half word input operation
the input word is transferred from lines 35 through 18. For an ESI
quarter word input operation, the input word is transferred from lines
26 through 18.

b.. The IA signal is transmitted via the IA line of the input channel to
the ESI subsystem.

NO T E': The ESI subsystem responds to the IA signal by turning off the
IDR, ESI word, and input word signals.

c~ The contents of the ESI ACW are updated. That is, the contents
of the V field mayor may not be incremented or decremented by
one dependin g on the contents of the G andH fields; and the
contents of the H field are changed (see 7.3.3.1 and 7.3.3.2).

d. The updated ESI ACW is tested again for the terminal condition
and is also transferred into the biased ESI address specified
main storage location. If at this time the ESI ACW is in the
terminal condition the following occurs:

- Input mode on the associated input channel is deactivated.

If the input monitor function is active on that input channel,
the ESI Input Monitor Interrupt occurs (see 7.3.6).

(2) See 7.3.6. for an explanation of the operation of the CPU's I/O section
if the ESI ACW is initially in the terminal condition when the I/O section
responds to an ODR signal.

NOTE': When the LIC or LICM instruction is executed, the input active
control circuit associated with the specified input channel is
activated" An ESI input channel is said to be active in input mode
when the input active control circuit is active.

When the input active control circuit is active on a channel operating in ESI
mode, it allows the CPU's I/O section to respond to IDR control signals and
ESI word signals and input word signals presented on that input channel by
an ESI subsystem; it is deactivated when the terminal condition is detected
in an associated ESI ACW or when the DIC instruction is executed specifying
that channel. If the specified input channel was activated in input mode by
execution of the LICM instruction, the input monitor control circuit associated
with that input channel is activated in addition to the input active 'con trol
cir.cuit. The input monitor control circuit allows theESI Input Monitor Interrupt
to occur when the terminal condition is detected in an ESI ACW associated
with that channel. When a channel is operating in ESI mode the input monitor
control circuit is deactivated when the ESI Input Monitor Interrupt occurs or
when the LIC or DIC instruction is executed.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 7
SECTION:

703.5.4. ESI External Interrupt Mode

An ESI subsystem reports either an abnormal condition or the normal completion
of an operation by assembling a status word and then turning on corresponding
status word signals and an EI signal on the input word/status word lines and
EI line respectively. The CPU's I/O section responds to anEI signal on a
channel in ESI mode as follows:

• The status word on the input word/status word lines is transferred to a
specifically reserved location in main storage. The address of the reserved
location is X002008 for CPU#O, X00201 8 for CPU#l, or X00202 8 for CPU#2,
where X is equal to, the contents of the MSR.

• The I/O section transmits an IA signal (pulse) via the IA line of that input
channel to the ESI subsystem.

NOT E: The ES I subsystem responds to the IA signal by turning off the EI
and status word signals.

• Through the operation of the I/O priority network, the sequence of instruction
execution being performed by the CPU's main control section is altered and
the next instruction to be executed is obtained from the ESI EI fixed address
location X00227 8 where X is equal to the contents of the MSR. Additional
ESI EI information is presented in 8.2.2.

The CPU's I/O section responds to an Elsignal regardless of whether or not
the I/O channel is active in any mode (input or output mode).

7.3.6. ESI Mode - I/O Channel Activity - ACW Initially in Terminal Condition

• OA CW for function word transmission initially in the terminal condition.

When the LFC or LFCM instruction is executed, the Force EF and EF
control circuits are activated even if the associated OACW is in the
terminal condition (W field = 0). As a result of the execution of the LFC
or LFCM instruction, a simulated ODR is turned on for the associated
channel. Subsequently, the I/O timing chain is activated as a result of
the word trans fer request signaled by that ODR, and the terminal condi tion
(W field = 0) is detected by the tes t performed near the start of the I/O
timing chain cycle. When the terminal condition is detected, the Force EF
and EF control circuits are deactivated, the OACW is not updated, and a
function word is not transmitted to the subsystem .

• ESI ACW for output word transmission activity initially in the terminal condition.

If the W field of the ACW addressed by the associated biased ESI word is already
in the terminal condition (W field = 0) when the CPU's I/O section responds to
an ODR and ESI word signals, the operation of the I/O section is as follows:

(1) A half word (18 bits) of all 1 bits is transmitted via the function word/output
word lines (17 through 0) of the associated output channel and an OA signal
is transmitted via the OA line of that channel to the ESI subsystem. This
word is called an EOT word (end of transmission).

46
PAGE:

UP 4053 I UNIVAC 1108 I
______ R_~~ __________ P_R_O __ C_E_S_S_O_R __ A_N __ D_S_T __ O_R_A_G __ E __________ ~ ____________ ~_SE_C_T_IO_N_: __ 7 ____ ~_PA_G_E_:. ___ 47 ___

(2) The ESI ACW is not updated.

(3) The output channel is not deactivated. An ESI Output Monitor Interrupt does
not occur .

• ESI ACW for input word transmission activity initially in the terminal condition.

If the W field of the ACW addressed by the associated biased ESI word is already
in the terminal condition (W field = 0) when the CPU's I/O section responds to
an IDR and ESI word signals, the operation of the I/O section is as follows:

(1) The input word is not transferred into main storage, but an IA signal is
transmitted via the IA line of the associated inpu t channel to the ESI
subsystem.

(2) The ESI ACW is not updated.

(3) The input channel is not deactivated. An ESI Input Monitor Interrupt does not
occur.

7.3.7. ESI Mode Monitor Interrupts

The monitor function is activated on an input channel operating in ESI mode when that
channel is activated by execution of the LICM instruction; the monitor function is
activa ted on an ou tpu t channel opera ting in ESI mode when tha t channel is activa ted
by execution of the LOCM instruction. An ESI Input Monitor or ESI Output Monitor
Interrupt occurs as appropriate when the terminal condition is detected in the contents
of the associated ESI ACW. These ESI monitor interrupts syst ematically interrupt
the sequence of the instructions being executed by the main control section of the
CPU's I/O section as explained in 8.2.1.4 and 8.2.1.5.

The I/O priority network of the CPU determines the priority on which servicing of the
ESI monitor interrupts is based. TheESI Input Monitor Interrupt has higher priority
than the ESI Output Monitor Interrupt. If the same type of ESI monitor interrupt is
simultaneously active on more than Qne channel, the interrupt on the lowest number
channel has the higher priority (see 8 .. 2.5 for interrupt priority).

When a monitor interrupt occurs, the sequence of instructions being executed by the
CPU's main ~on.trol section is altered and the next instruction to be executed is
obtained from a fixed address location in main storage. For an ESI Input Monitor
Interrupt, the address of the fixed location is X00224 8 , and for the ESI Output
Monitor Interrupt, it is X002258 (X is equal to the contents of the MSR). Additional
ESI monitor interrupt information is presented in 8.2.1.

In some special cases in ESI quarter word output operation, the ESI Output Monitor
Interrupt occurs at a time other than when the terminal condition is detected in the
con ten ts of the associated ESI ACW. In these cases, the ESI Output Monitor In ter­
rupt occurs when the W field of the ESI ACW is decremented from 2 to 1 and the
cOl).tents of the C field of that quarter word ESI ACW is 01 2 or 112 provided of
course that the monitor function is active on that output channel.

A Function Monitor Interrupt will never occur on a channel operating in ESI mode.

UP·40S3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 7

7.3.8. Programmed Deactivation of an I/O Channel in ESI Mode

If an ESI input channel is active in input mode, execution of the DIC instruction
specifying that channel deactivates input mode on that channel; if that input
channel was activated by execution of the LICM instruction, execution of the
DIC instruction also deactivates the ESI input monitor function on that channel.
If an ESI input channel is active in input mode with the monitor function active,
execution of the LIC instruction deactivates the monitor function but the input
mode remains active on that channel.

If an ESI output channel is active in output mode, execution of the .DOC instruc­
tion specifying that channel deactivates output mode on that channel;-if that
output channel was activated by execution of the LOCMinstrliction, execution
of the DOC instruction also deactivates the ESI output monitor function on that
channel. If an ESI output channel is active in output mode with the monitor
function active, execution of the LOC instruction deactivates the monitor
function, but the output mode remains active on that channel.

Deacti vating the ESI input monitor function by execu tion of the DIC or LIC
instruction, or deactivating the ESI output monitor function by execution of
the DOC or LOC instruction does not cause an ESI Input Monitor or ESI Output
Monitor Interrupt respectively to occur on the channel specified by the DIC,
LIC, DOC, or LOCinstruction. But, due to critical timing conditions, there is
a remote possibility that the monitor interrupt may still occur on a channel
even after the deacti va ting ins truction specifying that channel has been executed.

The interrupt w ill only occur if the I/O trans fer had jus t reached completion and
the monitor interrupt signal was being transmitted to the CPU's I/O section at
the time the DIC, LIC, DOC, or LOC instruction was executed. The details of
this critical timing condition are the same for ESI mode as for lSI mode and are
explained in 7.2.8.

7.3.9. Summary of I/O Channel Control Circuit Operation - ESI Mode

Six control circuits are associated with each I/O channel. These six circuits
are as follows:

External Function
Force External Function
Output Active
Output Monitor
Inpu t A cti ve
Input Monitor

(EF)
(Force EF)
(Out Act)
(Out Mon)
(In Act)
(In Mon)

PAGE:
48

UP··4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 7

The execution of certain I/O instructions, affects the control circuits. The
instructions and the effect they produce are as follows:

INSTRUCTION

LFC
LFCM
LOC
LOCM
LIC
LICM
DOC
DIe

Activates

'EF, Force EF
EF, Force EF
Out Act
Ou t Act, Out Mon
In Act
In Act, In Mon

EFFECT

Deacti va tes

Out Mon

In Mon

Out Act, Out Mon, EF
In Act, In Mon

In the operation of the I/O section of the CPU, some of the control circuits are
affected as a result of the detection of certain conditions in the W field of the
associated ESI ACW when the CPU's I/O section responds to an ODR or IDR
signal. The essential conditions and the effect produced are as follows:

ESSENTIAL CONDITIONS

Responding to: Control Circuits Active W field Deactivate

ODR (simulated)
ODR
IDR
ODR (quarter word)

EF, Force EF
Out Act
In Act
Out Act C=01 2 or 112

'j; 0 or = 0
1 + 0
1 + 0
2 + 1

EF, Force EF
Out Act
In Act
Out Act

Monitor interrupts occur when the I/O section detects certain control circuit
conditions. The conditions detected and the effects produced upon their de­
tection are as follows:

ESSENTIAL CONDITIONS

Active

In Mon
Out Mon

Not Active

In Act
Out Act

EFFECTS

Interrupt Occurs

ESI Input Monitor Interrupt
ESI Output Monitor Interrupt

Deacti va tes

In Mon
Out Mon

7.3.10. Summary of the CPU's Operation Versus the EI, IDR,and ODR Control Signals

The EI control signal is turned on by the ESI subsystem when it is transmitting
a status word to the CPU. The IDR control signal is turned on by the ESI
subsystem when it is transmitting an input word to the CPU. The ESI sub­
system turns on the ODR signal when it is ready to receive an output word
from the CPU.

Note that a subsystem operating in ESI mode does not turn on an ODR signal
when it is ready to receive a function word as was the case with a subsystem
operating in lSI mode (see 7.3.5.1). The details of the CPU's recognition and
response to ODR, IDR, and EI control signals are the same for ESI mode as
for lSI mode and are explained in 7.2.10.

PAGE: 49

UP-40S3

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 7

7.3.11. I/O Programming Considerations - ESI Mode

A function word transfer operation is performed via an output channel operating
in ESI mode by execution of the LFC or LFCM instruction. To condition an
output channel to perform an output word transfer operation, either the LOC
or LOCM instruction is executed. To condition an input channel to perform
an input word transfer operation, either the LIC or LICM instruction is
executed.

Other instructions may also be executed in com bination wi th the instructions
stated in the preceding paragraph which determine the presence or absence of
certain conditions on the specified channel. These instructions provide a
program with the means to directly test the condition of a specified channel.
These instructions are as follows:

• Jump Function Channel (JFC)

When a JFC instruction is executed after an LFC or LFCM instruction,
the JFC instruction tests the condition of the Force EF control circuit.
If the Force EFcontrol circuit is active, the program jumps to the loca­
tion specified by the JFC instruction. If the Force EF control circuit
is not acti ve the program con tinues with the nex t consecutive instruction.

In the operation of the CPU's I/O section, the Force EF control circuit
is activated when the LFC or LFCM instruction is executed; it is de­
activated during the I/O timing chain cycle which controls the trans­
mission of the function word to the ESI subsystem following the execution
of the LFC or LFCM instruction. In ESI mode, only one function word is
transmitted via an ESI channel to the subsystem for each execution of the
LFC or LFCM instruction .

• Jump Output Channel Busy (JOC)

The JOC instruction determines whether or not an output channel operating
in ESI mode is active in output mode. Specifically, the JOC instruction
tests the condition of the Output Active control circuit. If the Output
Active control'circuit is active, the program jumps to the location U
specified by the instruction. If the Output Active control circuit is not
acti ve, the program continues with the nex t consecu ti ve instruction.

In the operation of the CPU's I/O section, the Out Act control circuit
for a channel operating in ESI mode is activated when the LOC or LOCM
instructi'on is executed; it is deactivated when ,the DOC instruction is
execu ted or when the terminal condition is detected in an associated ESI
ACW. The Out Act control circuit is not activated by an LFC or LFCM
instruction for a channel operating in ESI mode, as it was for a channel
operating in lSI mode.

PAGE: 50

U P-'·fV::l.:>

Rev. 1

UNI VAt; IIUO

PROCESSOR AND STORAGE I SECTION. 7

• Jump Input Channel Busy OIC)

Execution of the JIC instruction determines whether or not an input channel
operating in ESI mode is acti ve in input mode. Specifically, the J IC instruction
tests the condition of the In Act control circuit. If the Input Active control
circuit is active, the program jumps to the location U specified by the JIC
instruction. If the Input Active control circuit is not active, the program
continues with the next consecuti ve instruction.

In the operation of the CPU's I/O section the Input Active Control circuit
for a channel operating in ESI mode is activated when an LIC or LICM in­
struction is executed; it is deactivated when a DIC instruction is executed
or when the terminal condition is detected in an associated ESI ACW.

7.3.11.1. ESI Function Word Transfer Programming Considerations

When a function word transmission operation is performed via an ESI channel,
one function word is transmitted to the ESI subsystem via the specified channel
each time the LFC or LFCM instruction is executed provided the W field of
the associated OACW does not contain the value 0 (see 7.3.5.1).

The execution of the LFC or LFCM instructions neither activates nor deactivates
the Output Active or Output Monitor control circuits on that channel. Therefore,
the output mode as well as the input mode operation of that channel is unaffected.

Execution of the JFC instruction following execution of the LFC or LFCM in­
struction can be used to assure the program that the function word has been
transmitted to the ESI subsystem. (In practice, a JFC instruction may appear
in the coding ju st before the LFC or LFCM instruction. This assures that the
channel can accept a function word' before the LFC or LFCM is executed.)

7.3.11.2. ESI Output Word Transfer Programming Considerations

An output channel operating in ESI mode can be activated for an output word
transmission by execution of either the LOC or LOCM instruction. The LOCM
instruction is usually used to activate an output channel operating in ESI mode;
it activates both the output mode and the output monitor function on the speci­
fied channel. When an output channel is operating with the output monitor
function active, an ESI Output Monitor Interrupt occurs when the terminal
condition is detected in an ACW associate'd with one of the devices operating
via that channel.

When an ESI Output Monitor Interrupt occurs, the program can capture the number
of the channel associated wi th that interrupt by executin g the Store Channel
Number (SeN) instruction. After the program has obtained the channel number,
it also captures the address of the ESI ACW that has reached the terminal con­
dition. This is possible because,when the ESI Output Monitor Interrupt occurs,
the biased ESI address of the terminated ESI ACW is in bits 17 through 0 of the
IACR associated with that channel.

PAGE: 51

UP-4U5j

Rev. 1

UNIVAC llUtS

PROCESSOR AND STORAGE
SECTION: 7

Since the program can obtain the channel number and the address of the ESI ACW
that has reached the terminal condition, it can, if so specified, reactivate that
channel in output mode by execution of the LOC or LOCM instruction within a
short enough time period so that there will be no delay in servicing ODR's
presented by the ESI subsystem for any of the ESI devices on that channel.
The program could also load a new ACW in the location of the ESI ACW that
has reached the terminal condition and/or transmit a function word via the
subsystem to the device associated by the ESI ACW. This action could cause
the ESI device to change its mode of operation. The program could also choose
to ignore the terminated ESI ACW; if so, the CPU's I/O section transmits an
EDT word to the associated ESI device when that device presents an ODR and
ESI word to the I/O section and the W field of the associated ESI ACW contains
the value O.

7.2:.11.3. ESI Input Word Transfer Programming Considerations

An input channel operating in ESI mode can be activated for an input word
transmission by execution of either the LIC or LICM instruction. The LICM
instruction is usually used to activate an input channel operating in ESI mode;
it activates both the input mode and the input monitor function on the specified
channel. When an input channel is operating with the input monitor function
active, an ESI Input Monitor Interrupt occurs when the terminal condition is
detected in anyone of the ESI ACW's:

When an ESI Input Monitor Interrupt occurs, the program can capture the number
of the channel associated with that interrupt by executing the SCN instruction.
After the program has obtained the channel number, it can also capture the
address of the ESI ACW that has reached the terminal condition. This is
possible because, when the ESI Input Monitor Interrupt occurs, the biased ESI
word address of the terminated ESI ACW is in bit positions 35 through 18 of
the IACR associated with that channel.

Since the program can obtain the channel number and the address of the ESI
ACW that has reached the terminal condition, it can, if so specified, reactivate
that channel in input mode by execution of the LIC or LICM instruction within
a short enough time period so that there will be no delay in servicing IDR's
presented by the ESI subsystem for any of the ESI devices on that channel.
The program could also load a new ACW in the location of the ESI ACW that
has reached the terminal condition and/or transmit a function word via the ESI
subsystem to the associated ESI device which may turn off the device or
change its mode of operation. If the program chooses to ignore the terminated
ESI ACW, and if the ESI device, via the ESI subsystem continues to present
IDR, ESI word, and input word signals to the CPU I/O section, the I/O section
performs all the actions it normally performs when servicing an ESI IDR except

that the associated ESI ACW is not updated and the input word is not
transferred into main storage. However, allowing this idle activity to
continue for a period of time is wasteful because the same amount of
main storage cycle time is required to perform the idle activity as is
required to actually transfer an inpu t word into main storage.

PAGE: 52

UNrVAC 1108

PROCESSOR AND STORAGE 7
PAGE:

53
UP-40U3

Rev. 1 SEC TION:

--~------------~------------~------.-----

7.3012. ESI Input/Output Timing

When an ESI input or output transmission occurs, three main storage cycles
are needed to perform the operation as follows:

• One main storage cycle is necessary to obtain the ESI ACW from the
main storage location addressed by the biased ESI address.

• One main storage cycle is necessary to obtain an output word from, or
to store an input word into, the location in main storage addressed by
the ESI ACW.

• One main storage cycle is necessary ,to re'store the updated ESI ACW
into the main storage location addressed by the biased ESI address.

An elapsed time of three main storage cycles is required except for the
following special case. If the ESI ACW is located in module pair #0 of
main storage and the main storage location of the output word or input
word is in one of the other module pairs, an elapsed time of two main
storage cycles is needed. In this case only, the restoring of the ESI
ACW is overlapped with the reading of an output word or the writing of
an input wor d.

1
UP-4053 L UNIVAC 1108 I

Rev. 1 PROCESSOR AND STORAGE 8 ________ ______ , ________________ • ____________________________________ ~~ ________________ ~_S_E_C_T_IO_N_: _________ ~~P_A_G_E_: ______ _

B. INTERRUPTS

8.1. INTRODUCTION

Interrupts are signals which queue the CPU control section when error conditions are
detected by the hardware or when certain specified operations have been normally
completed. The actions that are always performed by the CPU when it responds to
an interrupt signal are as follows:

• All I/O interrupts are disabled.

• The current contents of the Processor State Register (PSR) are transferred to the
addressable control register at address OOOa.

• 07 and 06 of the PSR are set to l's; BI, BD, and BS remain unchanged; 08, 05
through DO, and QW are set to O's.

• The normal sequence of instructions is interrupted and the CPU executes the
instruction located in the main storage address assigned to the specific interrupt
(see Table 3-3).

Normally, the instruction stored in the main storage location assigned to a specific
interrupt will be either a Store Location and Jump (SL]) or a Load Modifier and Jump
(LM]). Either of these two instructions can be used to capture the current contents·
of the P register and also perform a transition (jump) to some type of service routine.
This routine can provide whatever service is required to handle the particular interrupt.
When and if the particular circumstances call for returning control of the CPU to the
interrupted program, the address captured by the SL] or LM] instruction can be used
to determine the proper address at which to resume the interrupted program.

Interrupts are classed according to the events or conditions that triggered the interrupt.
There are three general classes of interrupts:

• Input/Output interrupts (I/O interrupts)

• Fault interrupts

• Programmed interrupts

The UO interrupts differ from the fault interrupts and the programmed interrupts in
that they can be ·locked out either by the occurrence of a previous interrupt or by the
execution of the Prevent A11 I/O Interrupts and] ump instruction. Furthermore, if an
I/O interrupt occurs during the execution of an extended sequence such as a Block
Transfer, the repeated search instructions or an Execute instruction, the interrupted
instr,uction is terminated in an orderly manner so tha tit can be resumed when the
interrupt condition has been satisfied.

By contrast, the fault interrupts and programmed interrupts occur without fail when
the particular condition arises or when the Programmed Interrupt instruction is

executed.

U p-q.U;),)

Rev. 1

UNIVAC IIUO

PROCESSOR AND STORAGE
SECTION: 8

8.2. I/O INTERRUPTS

An I/O interrupt originates within the CPU or in a subsystem and they are presented
to the CPU control section through the CPU interrupt priority network. Each interrupt
informs the CPU of an abnormal condition or the normal completion of an assigned
task. An I/O interrupt can interrupt the CPU sequence of instruction execution only
when I/O interrupts are enabled. All I/O interrupts are automatically disabled when
any interrupt occurs; they are also disabled when the Prevent All I/O Interrupts And
] ump (PAl]) ins truction is executed. All I/O interrupts are enabled only by execution
of the Allow All I/O Interrupts And Jump (AAIJ) instruction.

The four classes of I/O interrupts and the particular interrupts are:

• Monitor Interrupts

(1) lSI Input Monitor Interrupt

(2) lSI Output Monitor Interrupt

(3) lSI Function Monitor Interrupt

(4) ESI Input Monitor Interrupt

(5) ESI Output Monitor Interrupt

• External Interrupts

(1) lSI Channel External Interrupt

(2) ESI Channel External Interrupt

• System I/O Interrupts

(1) Interprocessor Interrupt

(2) RTC (Real Time Clock) Interrupt

(3) Dayclock Interrupt

(4) Power Loss Interrupt

• I/O Parity Error Interrupts

(1) lSI Access Control Word Parity Error Interrupt

(2) ESI Access Control Word Parity Error Interrupt

(3) I/O Data Parity Error Interrupt

PAGE: 2

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 8
SEC T ION: PAGE:

3
UP·-4U53

-------- --~------------~~------------~------.------

8.2.1. Monitor Interrupts

The LICM instruction and the LOCM instruction are used to activate both the
channel specified by the instruction and the monitor mode for that channel. For
an lSI channel, the LFCM instruction is also used to activate the specified output
channel and the output monitor mode for that channel. However, when a channel is
operating in ESI mode and the LFCM is executed, the monitor mode is not activ­
ated for that channel. When an I/O transfer operation is performed with the monitor
mode active, a monitor interrupt indicates that all the words initially specified by
the contents of the W field of the associated ACW have been transferred.

The CPU responds to a monitor interrupt by performing the actions common to all
interrupts, as described in 8.1. In addition, it stores the associated channel
number in a nonaddressable register. This number can be obtained and stored
in an address able location by execution of the SCN instruction.

8.2.1.1. lSI Input Monitor Interrupt

An lSI input channel is deactivat.ed, and the lSI Input Monitor Interrupt is triggered
when both of the followi ng conditions prevail:

(1) The currently active input transfer operation was initiated on the lSI channel
by the execution of an LICM instruction.

(2) The subsystem presents an IDR to the CPU and, during the resulting input
data word transfer operation, the contents of the associated lSI IACW is
decremented from 1 to O.

If the CPU's I/O section detects that the W field of the lSI IACW is zero at the
time the input channel is activated and the CPU responds to an IDR signal pre­
sented on that input channel, then the input channel is deactivated, the lSI Input
Monitor Interrupt is triggered, and the input word is not transferred into main
storage.

The CPU I/O section responds to an lSI Input Monitor Interrupt by performing the
instruction at MSR + 220 8 as its next instruction.

8.2.1. 2. lSI Output Monitor Interrupt

An lSI Output channel is deactivated, and the lSI Output Monitor Interrupt is
triggered when both of the following conditions prevail:

(1) The currently active output transfer was initiated on the lSI channel by the
execution of an LOCM instruction.

(2) The CPU's I/O section responds to an ODR signal being presented on the
lSI output channel and the contents of the W field of the associated lSI
OACW is O.

An output word is not transmitted to the subsystem in response to the ODR signal
which triggered the lSI Output Monitor Interrupt.

The CPU's I/O section responds to an lSI Output Monitor Interrupt by performing
the instruction at MSR + 2218 as its next instruction.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SEC TION: 8

8.2.1.3. lSI Function Monitor Interrupt

An lSI output chennel is deactivated, and the lSI Function Monitor Interrupt is
triggered when both of the following conditions prevail:

(1) The currently active lSI output channel was activated as a result of executing
the LFCM instruction.

(2) The CPU's I/O section responds to an ODR signal being presented on the lSI
_'utput channel and the contents of the W field of the associated lSI OACW is O.

If the W field of the lSI OACW is zero when that channel is activated by an LFCM
instruction, then the CPU's I/O section responds to the simulated ODR signal by
deactivating that output channel and triggering the lSI Function Monitor Interrupt
(see 7.2.6).

The CPU's I/O section responds to an lSI Function Monitor Interrupt by performing
the instruction at MSR + 2228 as its next instruction.

8.2.1.4. ESI Input Monitor Interrupt

An ESI input channel is deactivated, and the ESI Input Monitor interrupt is triggered
when both of the following conditions prevail:

(1) The ESI input channel was activated as a result of executing the LICM
instruction.

(2) The ESI subsystem presents an lOR to the CPU, and, during the resulting
input word transfer operation, the contents of the W field of the associated
ESI ACW is decremented from 1 to O.

If the W field of the ESI ACW is zero when the associated ESI input channel is
activated, then the ESI ACW is not updated, the input channel is not deactivated,
an ESI monitor interrupt does not occur, and the inpu t word is not transferred to
main storage (see 7.3.6).

The CPU I/O section responds to an ESI Input Monitor Interrupt by performing
the instruction at MSR + 2248 as its next instruction.

8.2.1.5. ESI Output Monitor Interrupt

Normally an ESI output channel operating in half word or quarter word ESI mode
is deactivated, and the ESI Output Monitor Interrupt is triggered when both of the
following conditions prevail:

(1) The ESI output channel was activated as a result of executing the LOCM
instruction.

(2) The ESI subsystem presen ts an OOR and ESI word signals to the CPU's I/O
section, and, during the resulting output transfer operation, the contents of
the W field of the associated ESI ACW is decremented from 1 to O.

PAGE: 4

UP-4053 l UNIVAC 1108 I
Rev. 1 PROCESSOR AND STORAGE 8 5

______________ _ ______________________________________ • __________ ~ ____________ ~~S_E_C_T __ IO_N_: ______ ~ __ P_A_G_E_: ______ _

If the W field of the ESI ACW is zero when the associated ESI output channel is
activated, then a half word (18 bits) of all 1 bits is sent via the function word/output
word lines (17 through 0) of the associated output channel and an OA signal is sent
via the OA line of that channel to the ESI subsystem. The ESI ACW is not updated,
the output channel is not deactivated and an ESI Output Monitor interrupt does not
occur (see 7.3.6).

However, there is an exception to the general case for quarter word ESI mode. If
the C field of the ESI ACW contains either the value 01 2 or 11 2 , the ESI channel
will be deactivated and the ESI monitor interrupt will be triggered if the following
conditions prevail:

(1) The ESI output channel was activated as a result of executing the LOCM
:ins truction.

(2) The ESI subsystem presents an ODR signal and ESI word signals to the CPU's
I/O section, and, during the resulting output word transfer, the contents of the
W field of the associated quarter word ESI ACW is decremented from 2 to 1
(see 7.3.3.2). .

The CPU I/O section responds to an ESI Output Monitor Interrupt by performing
the instruction MSR + 225 8 as its next instruction.

8.2.2. External Interrupts

An external interrupt signal originates in a subsystem and is presented to the CPU
via the priority network of the CPU's I/O section. It informs the CPU that a status
word is on the input word/status word lines. The status word in turn informs the
CPU of an error condition, the completion of a specific operation, or the existence
of some other specific condition.

Some examples of situations in which an external interrupt is usually presented to
the CPU are as follows:

• A subsystem received a function word from the CPU and the I/O operation could
not be initiated in the subsystem.

• An I/O operation was initiated in a subsystem but could not be completed because
one or more particular deterrent conditions we.re detected in the subsystem.

• An I/O operation was completed in a subsystem but an error condition occurred
while the operation was being performed.

• An I/O operation was initiated by a function word which required the subsystem
to activate the external interrupt signal upon completion of the specified I/O
operation. (Many subsystems always present an external interrupt signal to the
CPU's I/O section upon completion of an operation, regardless of whether or
not the operation is completed satisfactorily.)

The CPU responds to an external interrupt by performing the activities common to
ail interrupts; i.e., disabling I/O interrupts and han dling the PSR (see 8.1).

In addition, it stores the,associated channel number in a nonaddressable register.
This number can be obtained and stored in an addressable location by execution
of the SCN instruction.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 8
SECTION: PAGE:

8.2.2.1. lSI External Interrupt

An lSI External Interrupt is triggered when the CPU's I/O section responds to an
EI signal presented by a subsystem to the CPU's I/O section via theEI line of
an lSI channel. When the lSI External Interrupt is triggered, a status word is auto­
matically transferred via the input word/status word lines of that channel into a
specific main storage location, and the CPU I/O section responds to the lSI
External Interrupt by performing the instruction at MSR + 223 8 as its next
ins truction.

The EI signal which comes from the display console (always connected to I/O
channel #15) triggers an lSI External Interrupt having the same basic character­
istics as an lSI External Interrupt initiated by an EI signal from any other lSI
I/O channel.

The status word conveys coded information to the CPU. For the Type 3011-95*
and Type 3011-97 CPU's, the address at which the status word is stored depends
on the number of the CPU being interrupted as specified by the PROC NO switches
on the top row of the CPU maintenance panel. The address/CPU number relation­
ships are as follows:

• Status Word stored at MSR + 200 8 for CPU #0

• Status Word stored at MSR + 201 8 for CPU # 1

• Status Word stored at MSR + 202 8 for CPU #2

When the INTERRUPT ENABLE button on the Type 4004 operator's control
console is depressed, the console is conditioned so that the external interrupt
signal is turned on as soon as a character key on the console keyboard is
depressed. Depressing a character key makes the character code available to
the CPU via the input word/status word lines for stora'ge in the status word main
storage location associated wit~ the CPU being interrupted.

8.2.2.2. ESI External Interrupt

An ESI External Interrupt is triggered when the CPU's I/O section responds to an
EI signal presented by a subsystem to the CPU's I/O section, via the EI line of
an ESI channel. When the ESI External Interrupt is triggered, a status word is
automatically tran sferred from the input word/status word lines of that ch anne 1
into the same main storage location as for an lSI External Interrupt (see 8.2.2.1),
and the CPU responds to the ESI External Interrupt by performing the instruction
as MSR + 2278 as its next ins truction.

8.2.3. System I/O Interrupts

The Interprocessor Interrupt, Real Time Clock (RTC) Interrupt, Day Clock Interrupt
and Power Loss Interrupt are called system I/O interrupts because they can occur
only when I/O interrupts are enabled, even though they are not related to any
specif.ic I/O channel or I/O activity.

The actions automatically performed by the CPU when it responds to any system
I/O interrupt signal are described in 8.1.

*For the Type 3011-99 CPU, the status word is always stored at MSR + 230.

6

UP··4U53 UNIVAC 1108

PROCESSOR AND STORAGE 8 7 Rev. 1 SECTION: PAGE:
_______ _ ______ ~ __ E __ ~ ____________ ~~~~~ ______ ~~~~ ____ ___

8 .. 2.3.1. Interprocessor Interrupt

An Interprocessor Interrupt occurs following receipt of an Interprocessor Interrupt
signal by one CPU in a multiprocessor system from one of the other CPU's in the
system. The Interprocessor Interrupt signal is turned on when an Initiate Inter­
processor Interrupt (III) instruction is performed. The CPU receiving the Inter­
processor Interrupt signal responds by acknowledging it and performing the
instruction at either MSR + 232 8 or MSR + 233 8 (depending on the CPU #'s
involved and the value in the a field of the III instruction - see 6.14.5) as its
next instruction.

8.2.3.2. Real Time Clock Interrupt

The Real Time Clock (RTC) is a timing device within the CPU. The RTC can be
enabled or disabled manually by operation of the RTC switch at the display
console. When the CPU is operating in the real time mode as specified at the
Availability Control Unit or the CPU maintenance panel, it is impossible to
disable the RTC.

When the RTC is enabled, the content of bits 17 through 0 of the RTC Register
(the control register at address 100 8) is decremented by 1 every 200 microseconds.
The RTC Interrupt is triggered when the CPU detects that the contents of bits 17
through 0 of the RTC l~egister are decremented from 0000008 to 777776 8, The CPU's
I/O section responds to an RTC Interrupt by executing the instruction at MSR + 231 8
as the next instruction. (The contents of bits 35 through 18 of the RTC Register
are not affected by RTC decrementation.)

8.2.3.3. Day Clock Interrupt

HOURS

The Day Clock Interrupt signal is controlled by the day clock associated with the
operator's display console and is presented to the CPU's I/O section via a special
signal in the I/O cabling for channel #15.

All inputs from the day clock can be disabled by performing a Disable Day Clock
instruction. Performing an Enable Day Clock instruction enables inputs from the day
clock provided it is running (it has not been stopped by means of the DAY CLOCK
STOP switch on the display console) and inputs have not been disabled by means
of the DISABLE DAY CLOCK switch on the CPU maintenance panel.

When the day clock is running, it is updated each 600 ms (.01 minutes). If it is not
disabled, the updated time is transferred to main storage location MSR + 216 8 in
the form at shown below. The update and input interval can be chan ged from 600 ms
to 6 seconds or one minute by a wiring change in the display console. The interrupt
interval can also be changed by a wiring change as explained in the following
paragraph.

0

0 29 28 26 25 22

MINUTES

21 18 17

HUNDREDTHS
OF MINUTES

May contain any combination of
O-bit and I-bits

14 13 0

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE I SECTION, 8 PAGE:

When the day clock is running and has not been disabled, the Day Clock Interrupt
is turned on at 6-second intervals (when the low order hundredth of minutes digit
produces a carry to the next higher time digit). The CPU responds to the Day Clock
Interrupt by acknowledging it and executing the instruction at main storage location
MSR + 2178 as its next instruction. The interrupt interval can be changed from six
seconds to 600 milliseconds, 10 minutes, one hour, or 24 hours by a wiring change
in the display console.

8.2.3.4. Power Loss Interrupt

The Power Loss Interrupt is turned on when power sensing hardware in the CPU
detects that the CPU voltages are falling below a prescribed level. The CPU
responds by executing the next instruction from the main storage location at
address MSR + 210 8, When the Power Loss Interrupt signal is turned on, approxi­
mately five milliseconds of prograin operating time remain to prepare for the pre­
dicted loss of a11 electrical power. Since the contents of the addressable control
registers are destroyed and the contents of main storage remains unchanged when
power is lost, it is possible to use the five milliseconds for a programmed routine
which transfers the contents of the control registers and other pertinent data to
main storage. During these five mi11iseconds, the program may store enough
information so that when power is restored to the CPU, it is possible to resume
many programs.

8.2.4. I/O Parity Error Interrupts

There are three I/O parity error interrupts: the lSI Access Control Word Parity
Error Interrupt, the ESI Access Control Word Parity Error Interrupt, and the I/O
Data Parity Error Interrupt. The CPU responds to an I/O parity error interrupt by
performing the activities common to all interrupts; that is, disabling the I/O
interrupts and handling the PSR (see 8.1). In addition, it stores the associated
channel number in a nonaddressable register. This number can be obtained and
stored in an addressable location by execution of the SCN instruction.

8.2.4.1. ESI Access Control Word Parity Error Interrupt

An ESI Access Control Word Parity Error Interrupt occurs following detection of
a parity error in the ESI ACW read from main storage during an ESI mode input
word or output word transfer operation. In addition to the activities involving the
disabling of I/O interrupts, the handling of the PSR, and the storing of the channel
number associated with the I/O parity error, the CPU does the following:

• If the parity error is detected in an ESI input ACW read from main storage during
an input transfer sequence,

(1) an IA signal is sent to the subsystem;

(2) the input word is not written into main storage;

(3) the ESI ACW in main storage remains unchanged;

(4) the associated input channel is not deactivated; the ESI Input Monitor
Interrupt does not occur.

8

V.L -"~Jvv

Rev .. 1 ~ __________ P_R_O_C_-_E_S_S-_O_R __ A_N_D __ S_T_O_R_-_A_G_E __________ ~ ____________ ~I_S_EC_T_I_O_N_I __ 8 ____ ~P_A_G_EI _____ 9 __

• [f the parity error is detected in an ESI output ACW read from main storage during
an output transfer sequence,

(1) an OA signal is sent to the subsystem;

(2) a word of all l's is sent to the ESI subsystem via the output word/function
word lines rather than the word addressed by the ESI ACW;

(3) the ESI ACW in main storage remains unchanged;

(4) the associated output channel is not deactivated; the ESI Output Monitor
Interrupt does not occur.

The CPU I/O section responds to an ESI Access Control Word Parity Error
Interrupt by executing the instruction at MSR + 2118 as its next instruction.

8.2.4.2. lSI Access Control Word Parity Error Interrupt

An lSI Access Control Word Parity Error Interrupt occurs following detection of a
parity error in the ACW read from an IACR or OACR during an lSI input or output
transfer sequence. The lSI Access Control Word Parity Error Interrupt can occur
during an lSI input word, lSI output word, lSI function word, or ESI function word
transfer sequence. In addition to the activities involving the disabling of I/O
interrupts, the handling of the PSR (as described in 8.1), and the storing of the
channel number associated with the I/O parity error, the CPU does the following:

• If the parity error is detected in an lSI IACW read from an IACR during an input
transfer sequence,

(1) an IA signal is sent to the subsystem;

(2) the input word is not written into main storage;

(3) the contents of the IACR remains unchanged;

(4) the associated input channel is deactivated; the lSI Input Monitor Interrupt
does not occur.

• If the parity error is detected in an lSI OACW read from an OACR during an
output data transfer sequence,

(1) an OA signal is sent to the subsystem;

(2) a word of all l's is sent to the subsystem via the output word/function
word lines rather than the word addressed by the OACW;

(3) the contents of the OACR remain unchanged;

(4) the associated output channel is deactivated; the lSI Output Monitor
Interrupt does not occur.

Rev. 1 PROCESSOR AND STORAGE 8
SECTION:

• If the parity error is detected in an OACW read from an OACR during an lSI
function word or ESI function word transfer sequence,

(1) the EF signal is not sent to the subsystem;

(2) a function word is not sent to the subsystem;

(3) the contents of the OACR remain unchanged;

(4) for the aborted lSI functio,n word transfer sequence, the associated output
channel is deactivated; the lSI Function Monitor Interrupt does not occur.
For the aborted ESI function word transfer sequence, the associated output
channel is not deactivated.

The CPU's I/O section responds to an lSI Access Control Word Parity Error
Interrupt by executing the instruction at MSR + 2128 as its next instruction.

8,.2.4.3. I/O Data Parity Error Interrupt

An I/O Data Parity Error Interrupt occurs when a parity error is detected in an
lSI or ESI output data word or function word read 'from main storage during an
output transfer sequence. An I/O Data Parity Error Interrupt also occurs if a
parity error is detected during the read portion of the main storage read/write
cycle when an ESI input word transmission operation is being performed. (These
are always partial word operations.) In addition to the activities involving the
disabling of I/O interrupts, the handling of the PSR (as described in 8.1), and
the storing of the channel number associated with the I/O parity error, the CPU
does the following:

• If the parity error is detected during an lSI output data word transfer sequence,

(1) an OA signal is sent to the subsystem;

(2) the data bits of the outp.ut data word containing the error are sent to the
subsystem;

(3) the contents of the associated OACR are updated;

(4) the associated output channel is normally not deactivated; the lSI Output
Monitor Interrupt normally does not occur. (However, the associated output
channel is deactivated and the corresponding output monitor can occur if
the terminal condition is detected in the updated ACW.)

• If the parity error is detected in an ESI output data word transfer sequence,

(1) an OA signal is sent to the subsystem;

(2) the specified data bits of the output data word containing the error are
sent to the suJ:>system;

(3) the contents of the associated ESI ACW in main storage are updated;

(4) the associated output channel is normally not deactivated; the ESI Output
Monitor Interrupt normally does not occur. (However, the associated output
channel is deactivated and the corresponding output monitor can occur if
the terminal condition is detected in the updated ACW.)

10
PAGE:

Rev. 1 PROCESSOR AND STORAC?E I SECTION:

• If the parity error is detected during an lSI or ESI function word transfer
sequence,

(1) an EF signal is not sent to the subsystem;

(2) the function word is not sent to the subsy.stem;

(3) the contents of the related OACR are updated;

8

(4) the associated output channel is not deactivated; the Function Monitor
Interrupt does not occur.

• If the parity error is detected in the word read during the read portion of the
read/write data store cycle for an ESI input transfer operation, the following
occurs:

(1) an IA signal is sent to the subsystem;

(2) the writing of the input word into main storage is completed;

(3) the contents of the ESI ACW in main storage is updated;

(4) the associated input channel normally is not deactivated; the ESI Input
Monitor Interrupt normally does not occur. However, the associated input
channel is deactivated and the ESI Input Monitor Interrupt can occur if
the terminal condition is detected in the updated ACW.

NOT E: For a half word ESI input operation, the I/O Data Parity Error Interrupt
occurs only if the parity error is detected in that half of the main storage
location not currently being addressed by the H and V field of the ESI
half word ACW. For a quarter word ESI input operation, the I/O Parity
Error Interrupt occurs if the parity error is detected in either half of the
main storage location currently being addressed by the V field of the ESI
quarter word ACW.

The CPU I/O section responds to an I/O Data Parity Error Interrupt by
executing the instruction at MSR + 213 8 as its next instruction.

PAGE: 11

Rev. 1 PROCESSOR AND STORAGE I SECTION:
8

8.2.5. I/O Interrupt Priority

All I/O interrupts, lOR's, and ODR's are subject to the operation of the I/O inter­
rupt priority network of the CPU's I/O section. The ODR's and lOR's command a
higher priority than the I/O interrupts. The priority from highest to lowest is the
order listed in Table 8-1 except that an lOR may have higher priority than an OOR
under certain circumstances, as e~plained in 7.1. 7.

PRIORITY NAME OF REQUEST OR INTERRUPT

1 Output Data Request (ODR)

2 In put Data Re quest (ID R)

3 Rea I Time C lock Decrement

4 Power Loss

5 I/O Par ity Error Interrupt

6 ES I Externa I Interrupt

7 ESI Input Monitor Interrupt

8 ESI Output Monitor Interrupt

9 Real Time Clock Inte.rrupt

10 IS I Externa I Interrupt

11 151 Input Monitor Interrupt

12 151 Output Monitor Interrupt

13 151 Function Monitor Interrupt

14 Interprocessor Interrupt /10

15 Interprocessor Interrupt /I 1

Table 8-1. I/O Request and Interrupt Priority Table

If two or more interrupt signals of the same priority level are simultaneously active
on different channels, priority is determined on the basis of channel number and the
interrupt associated with the numerically lower numbered channel has the higher
priority.

At the moment that the CPU responds to any interrupt, all I/O interrupts are
disabled. The I/O interrupt signals that may be turned on while the I/O interrupts
are disabled must wait until all I/O interrupts are enabled again, at which time the
waiting I/O interrupt signal with highest priority is responded to by the I/O section.
No interrupt signals are lost, but each is responded to when its priority is higher
than the priority of any other waiting interrupt.

NOTE: If an I/O parity error is detected while the CPU is still servicing a
previously detected I/O parity error, and if all I/O interrupts are still
disabled, the channel number associated with the most current I/O parity
error is not available. The instruction from the main storage interrupt
location for the most current parity error is not executed.

PAGE: 12

Rev. 1_~ PROCESSOR AND STORAGE I SI;::CTION:
8

8.3. ,FAULT INTERRUPTS

~.

Fault interrupt signals are generated within a CPU when specific conditions exist
which would cause the· results obtained to be erroneous if the current program is
c6ntinued. Fault interrupts are never disabled, but if more than one fault interrupt
generating condition is detected during the execution of an instruction, the CPU
responds to the first one detected, except as noted under the priorities for main
storage and control register parity error interrupts, Table 8-2.

Fault interrupts are divided into two groups;

• main storage and control register parity error interrupts

• program error fault interrupts

NOI~INTERLE:AVED INTERLEAVED
PRIORITY MAIN STORAGE MAIN STORAGE

INT ERRUPT IN CASE OF

MAIN MAIN MUL TIPLE

STORAGE ADDRESS STORAGE ADDRESS LOCATION ERRORS

LOGICAL RANGE LOGICAL RANGE DURING AN

MODULE J.t MODULE II
INSTRUCTION

r--.----

0 0-077,7778 0 0-177,777 (LAR)* + 077,7768 2

1 100,000-177,777 2 400,000-577,777 MSR + 2358 3

2 200,000·277,777 1 200,000·377,777 MSR + 2368 4

3 300,000-377,777 3 500,000· 777,777 MSR+2378 5

CONTROL REG ISTER MSR + 2408 1

NOTE: There are four LAST ADDRESS toggle switches on the CPU's maintenance panel. The leftmost three
switches correspond to bits 17 through 15 of the 18-bit absolute address for this Main Storage Parity
Error Interrupt. The rightmost switch corresponds to bit 14 of the interrupt address. (If a LAST
ADDRESS switch is in the up position, it corresponds to a 1 brt; if it is in the down pOSition, it
cOHesponds to a 0 bit.) In Table 8-2, it is assumed that the LAST ADDRESS switches for bits 17
through 15 are in the down pOSition and the LAST ADDRESS switch for bit 14 is in the up pOSition.
The C PUPs hardware determines e51ch bit in pOSitions 17 through 15 of the interrupt address by
forming the logical OR of the corresponding bit in the Last Address Register (LAR) and the setting
of the corresponding LAST ADDRESS switch. Bit pOSition 14 of the interrupt address is solely
dependent on the setting of the LAST ADDRESS switch for bit 14.

Table B-2. Main Storage or Control Regi ster Parity Error

Fault Interrupt Locations and Priorities

8.3.1. Main Storage and Control Register Parity Error Interrupts

Each main storage location and each addressable control register stores 38 bits
consisting of 36 data bits and 2 parity bits. One of the parity bits is associated
with the data bits in bits 35 through 18; the other parity bit is associated with the
data bits in bits 17 through O. When data is stored, the values for each of the two
parity bits are generat-ed based on the contents of the associated data bit positions.

13
PAGI;:::

u roc I v A \.. I I va

PROCESSOR AND STORAGE SECTION:
8

When a data word or instruction word is read, the values for the two parity bits are
generated based on the values read from bits 3S through 18 and 17 through 0, re­
spectively. The generated parity bits are then compared with the parity bits read;
if either or both of the generated parity bits are not equal to the parity bits read, a
parity error interrupt signal is generated.

8.3.1.1. Main Storage Parity Error Interrupt

A Main Storage Parity Error Interrupt is generated in the event that a parity error
is detected when program data (an instruction word or an operand or result word)
is read from main storage.

These parity errors are distinguished from I/O data parity errors in that they do
not involve transfers of data to or from an I/O device. The main storage parity
errors occur when data is read from main storage to be used as an operand, as a
result, or as an instruction word. A Main Storage Parity Error Interrupt is never
generated when a full word write into a main storage location is performed, but
it can be generated when a partial word write (1/2, 1/3, 1/4, or 1/6 word) into
main storage is performed. The hardware performs a partial word write into main
storage by:

(1) reading the 36-bit data word and the 2 parity bits from the specified main
storage location;

(2) modifying the word read by replacing the contents of the specified bit posi­
tions with the specified partial word and replacing the contents of the
associated parity bit with the proper value; and,

(3) storing the 36-bit modified word and the 2 parity bits back .into main storage.

The test for parity error is performed on the data word read from main storage as
described in step 1. For a half word write operation, the generation of a Main
Storage Parity Error Interrupt indicates that a parity error has been detected in
that half of the full word which is not to be changed by the partial write. For a
third, quarter, or sixth word write operation, the generation of a Main Storage
Parity Error Interrupt indicates that a parity error has been detected in either or
both halves of the word read from a main storage location and a data error can
exist in any bit position or positions of the contents of that full word read in­
cluding the parity bit positions.

PAGE:

When the CPU reacts to a Main Storage Parity Error Interrupt, the actions performed
by the CPU are thos e described in 8.1, and in the followi ng:

• The system fault alarm sounds .

• The appropriate fault indicators on both the CPU's maintenance panel and the
display console light.

The CPU responds to a Main Storage Parity Error Interrupt by execu ting the in­
struction from the main storage location related to the main storage module from
which the word in error was read, as explained in 8.3.1.3.

UP-40S3 UNIVAC 1108

Rev. 1 SECTION: PAGE:

------~--~------------~----~--------~~-----
PROCESSOR AND STORAGE 8

8.3,1.2. Control Register Parity Error Interrupt

A Control Register Parity Error Interrupt is triggered in the event that a parity
error is detected when a word is read from one of the 128 addressable control
registers for an instruction or for a real time clock update. A Control Register
Parity Error Interrupt is never generated when a write into an addressable control
register is performed.

When the CPU responds to a Control Register Parity Error Interrupt, the actions
performed are those described in 8.1 and the follow ing:

• The system fault alarm sounds.

• The ICR fault indicators on the CPU maintenance panel and the display console
light.

The CPU responds to a control register parity error by executing the instruction at
MSR + 240 8 as its next instruction.

8.3" 1.3. Instruction Locations and Priority

The addresses of the main storage locations from which the next instruction is
obtained when a Main Storage or Control Register Parity Error Interrupt occurs
are as shown in Table 8;-2 Since the detection of a main storage or control
register parity error does not disable othe r parity error detections ,_ it is possible
for more than one parity error to be detected during the execution of an instruc­
tion. When two or more parity errors are detected during the execution of an
instruction, only one parity error interrupt signal is generated. In that case, the
parity error to which the CPU responds is determined by the order of priority as
listed in Table 8-2.

8.3.1.4. Considerations Related to a Main Storage Parity Error

• If a parity error is detected when reading an instruction from main storage, the
instruction is not executed. The instruction with parity error is written back into
memory during the write portion of the read/write cycle.

• If a main storage' parity error is detected when reading an operand, the instruction
being execu ted is completed inc lu.ding the transfer of the .operand word regardless
of whether the word had proper parity.

• When an instruction specifies a read (load), new parity is not generated for the
write portion of the read/write cycle; therefore, ,any attempt to reread the contents
of that location which produced the parity error should produce another parity
error.

• When an instruction specifies a partial write (store), new parity is generated for
only that half of the word that is altered. If a main' storage parity error is de­
tected during the read portion of the partial word write operation, the word read
with incorrect p~rity will be restored with corr~ct parity if the 'parity error was
detected in tha t half of the word that is ch anged in the partial write operation.
In this case, attempts to reread that word normally will not produce another
main storage parity error.

15

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION: 8

8.3.1.5. Considerations Related to a Control Register Parity Error

• When a control register parity error'is detected during the execution of one of
the store instructions, the storing of the data into main storage is not performed.

• If a control register parity error is detected when reading data from a control
register, a repeated read, or reads from that control register, mayor may not
result in repeated control register parity errors.

• In the execution of an instruction, a control register parity error may be detected
in an index register (X register) referenced by either the x field or a field of the
instruction, even if the x field or a field contains the value zero. For example,
in the execution of an instruction such as Store X, both the x field and the a
field are read and checked for parity. If the x field is zero, the PSR word tempo­
rary storage register at control register address 0000 8 is read and checked for
parity. Thus, a control register parity error could occur on either the control
register referenced by the x field or the control register referenced by the a
field.

• Correct parity can be restored in a control register by writing data into that
control register. Correct parity is always restored in all control registers by
manually pressing the MASTER CLEAR switch on the display console or by
manually pressing the ICR CLEAR switch on the CPU's maintenance panel.
Either of these operations clear the control registers to all zero data bits with
proper parity. If the CPU is operating in a multiprocessor configuration defined
by the settings on an Availability Control Unit, the control registers of the CPU
are master cleared each time the ACU initiates the automatic recovery procedure.

8.3.2. Program Error Fault Interrupts

Program error fault interrupts are as follows:

• I1~egal Instruction Fault Interrupt

• Guard Mode Fault Interrupt

• Floating-Point ,Characteristic Underflow Fault Interrupt

• Floating-Point Characteristic Overflow Fault Interrupt

• Divide Fault Interrupt

8.3.2.1. Illegal Instruction Fault Interrupt

The Illegal Instruction Fault Interrupt is triggered when the CPU's control section
detects an undefined function code in an instruction (see 6.15).

When an Illegal Instruction Fault Interrupt occurs, the CPU performs those actions
comm on to all int errupts; that is, it di sables all I/O interrupts, stores the current
PSR and resets the PSR (see 8.1). In addition, it responds to the Illegal Instruction
Fault Interrupt by executing the instruction at MSR + 2418 as its next instruction.

PAGE:

UP 4053 I UNIVAC 1108 I
R:v. ~ _________ P_R_O_C __ E._S_S_O_R __ A_N_D __ S_T_O __ R_A_G_E ____________ ~ __________ ~_S_E_C_T_IO_N_: ____ 8 __ ~P_A_G_E_:_,

• If the CPU is not operating in guard mode, the system fault alarm sounds and the
system fault alarm indicators on the CPU's maintenance panel and display console
light.

• If the CPU is operating in guard mode, these special alarms are not turned on.

8.3.2" 2. Guard Mode/Storage Limits Protection Fault Interrupt

The Guard Mode/Storage Limits Protection Fault Interrupt occurs when the CPU is
operating in guard mode (02 = 1) and an attempt is made to perform one of the follow­
ing instructions or actions.

(1) any I/O instruction (f = 75, all j-values)

(2) Prevent All I/O Interrupts And Jump

(3) Load Processor State Register

(4) Load Storage Limits Register

(5) Initiate Interprocessor Interrupt

(6) Alarm

(7) Disable Day Clock

(8) Enable Day Cloc k

(9) Select Interrupt Locations

(10) Load Channel Select Register

(11) Load Last Address Register

(12) instructions containing certain illegal codes (f,j 75,13; 75,16; or 75,17 -
see 6.15)

(13) a write into any control register location 40 s through 100s and 120s through

177 s

(14) Disabling all I/O interrupts for more than 100 usec. by a looped or cascaded
series of Execute instructions and/or indireCt addressing sequences. Perform­
ing an Execute instruction or an indirect addressing sequence automa tically
locks out all I/O interrupts until the instruction has been completed.

The Guard Mode/Storage Limits Protection Fault Interrupt also occurs if. specific
types of main storage references wh ich v iolate the Storage Limits Register are
attempted when the PSR cOhtains specific combinations of values for D3 and D2
(storage limits protection and guard mode), as follows:

(1) if a write operation is attempted in a protected a rea when 0302 == 10 or 11

(2) if an operand read, a write, or a jump to operation is attempted in a protected
area when 0302 = 01

17

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION:

8
PAGE:

When a Guard Mode/Storage Limits Protection Fault Interrupt occurs, the CPU
performs those actions common to all interrupts; i.e., it disables all I/O interrupts,
stores the current PSR, and resets the PSR (see 8.1). In addition, it responds to
the Guard Mode/Storage Limits Protection Fault Interrupt by executing the in­
struction at MSR + 2438 as its next instruction.

8.3.2.3. Floating-Point Characteristic Underflow Fault Interrupt

The Floating-Point Characteristic Underflow Fault Interrupt is triggered only if
the CPU detects that the characteristic of the result obtained is less than zero
for eithe r a sing Ie-precision floating-point or a double-preci sion floati ng -poin t
operation. (See 4.4.4.1.1.)

When the CPU responds to a Floating-Point Characteristic Underflow Fault
Interrupt, the CPU performs the actions described in 8.1. The instruction from
the main storage location MSR + 245 8 is performed as the next instruction.

NOT E: Ifa floating-point characteristic underflow fault is detected for an
instruction which specifies index register modification, the index
modification is carried through to normal completion. When a floating­
point characteristic underflow fault is detected, the result is not stored
and the contents of the original (input) operand locations remain
undisturbed.

8.3.2.4. Floating -Poin t Characteris tic Overflow Fault Interrupt

The Floating-Point Characteristic Overflow Fault Interrupt is triggered during
the execution of a floating-point instruction only if the CPU detects that the
characteristic of the result obtained is greater than 3778 for a single-precision
floating-point operation or 37778 for a double-precision floating-point operation.

When the CPU responds to a Floating -Point Characteristic Overflow Fault Inter­
rupt, the CPU performs the action s described in 8.1. The instruction from the
main storage location MSR + 246 8 is performed as the next instruction.

NOT E: If a floating-point characteristic overflow fault is detected for an instruc­
tion which specifies index register modification, the index modification is
carried through to norma I completion.

8.3.2.5. Divide Fault Interrupt

The Divide Fault Interrupt is triggered when the CPU detects that more than 36
bits would be required to properly express the signed quotient for a fixed-point
divide instruction or that division by zero is being attempted.

The Divide Fault Interrupt occurs in the following four specific cases:

• For the Divide Integer instruction, when the absolute value of the di vidend is
greater than or equal to 2 35 times the absolute value of the divisor .

• For the Divide Single Fractional instruction, when the absolute value of the
divisor is less than or equal to the absolute value of the dividend.

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 8 PAGE:
19

UP-40U3 .
SECTION:

------.----------------------------~----------~----------~----.----

• For the Divide Fractional instruction, when the absolute value of the divisor
is less than or equal to the absolute value of the most significant word of the
dividend .

• For either floating-point division instruction, when the signed mantissa is plus
or minus zero.

The first three cases listed inel ude the cases in which the divisor for any fixed­
point divide instruction is plus or minus zero.

When the CPU responds to a Divide Fault Interrupt, the actions performed by the
CPU are those described in 8.1. The instruction from the main storage location
at MSR + 2478 is performed as the next instruction.

NOT E: Detection. of a divide fault condition during execution of either floating­
point divide instruction inhibits any reaction to a floating-point
characteristic overflow or underflow fault condition. Only the Divide
Fault Interrupt occurs.

8.4, PROGI~AMMED INT ERRUPTS

The programmed interrupts are as follows:

• Executive Return Interrupt

• Test and Set Interrupt

8.4 .. 1. Executive Return Interrupt

The Executive Return Interrupt is generated when the Executive Return (ER)
instruction is executed. The operation performed by the ER instruction provides
the user program with the ability to transfer control to the executive program.

The CPU responds to the Executive Return Interrupt by performing the actions
described in 8.1. The instruction from the main storage location MSR + 2428 is
performe d as the next instruction.

8.4,,2. Test and Set Interrupt

The Test and Set Interrupt is triggered when the Test and Set (TS) instruction is
executed and bit 30 of the main storage location tested by the instruction contains
a 1 bit. The operation performed by the TS instruction provides control over multi-

. processor use of common Data or common program segments.

The CPU responds to a Test and Set Interrupt by performing the actions described
in 8.1. The instruction from the main storage location MSR + 2448 is performed as
the next instruction.

UP-4QS3

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 8
SEC T10N:

8.5. P REGISTER CONTENTS CAPTURED AT INTERRUPTS

The main storage locations associated with the various types of interrupts are listed
in Table 3-3. Proper program response to any interrupt requires that the associated
main storage location contain an LM] or SL] instruction to capture and store an
address related to the point of interruption and initiate the response to the interrupt.

Table 8-3 lists various individual interrupts and types of interrupts and indicates the
address which is captured by the LM] or SL] instruction contained in the main storage
interrupt location for that particular interrupt. For some interrupts, the address cap­
tured depends on the particular instructions performed immediately preceding the LM]
or SL] instruction. In these cases the address captured is shown for the various
possible preceding instructions.

The address captured is always a relative address (see 9.3.5). It is represented in the
table by one of the values P, P+ 1, P+2, or a jump to address. In this notation, P
normally represents the address of the instru'ction which just precedes the interrupt.
If the interrupt was caused by detection of some error or abnormal condition which
prevented completion of the instruction, P normally represent s the address of th at
instruction. An exception to these statements occurs when the interrupted instruc­
tion was loaded into the control section as a result of an Execute instruction. In this
case, P represents the address of the Execute instruction. For those cases in which
the address captured is shown as a jump to address, it is the address generated as
the result of performing a jump instruction just before the interrupt and bears no
direct relationship to the address of tha t instruction.

8.6. PROGRAM CONSIDERATIONS FOR HANDLING INTERRUPTS

The address c;aptured and stored by the LM] or SL] instruction contained in the main
storage location associated with any particular interrupt is a relative address derived
from the contents of the P register as indicated in Table 8-3. (See 9.3.5.) The LM]
or SL] instruction also loads the P register with an absolute jump to address. This
absolute address is the address of the entrance to the routine used for the program
response to the particular interrupt.

When an interrupt occurs, the processor state word 'for the program which has been
interrupted is automatically stored and a processor state word suitable for an interrupt
handling routine is formed in the PSR. This processor state word is used as required
during each phase of the LM] or SL] instruction (and each subsequent instruction)
until the contents of the PSR are changed. The following hardware characteristics
are important considerations related to the interrupt handling routine.

• The values for 07 and D6 are set to 1 'so The values for 08, DS through DO, and QW
in the PSR are set to D's.

• The values for BI, BD, and BS are not affected when an interrupt occurs.

• When a Monitor Interrupt, an External Interrupt, or an I/O Parity Error Interrupt
occurs, the CPU loads a nonaddressable register with the associated I/O channel
number.

• All I/O interrupts are disabled when any interrupt occurs.

2
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SEC TION:

8
PAGE:

2
UP-40U3

--~------------~------------~------.-----

P REGISTER CONTENTS CAPTURED

INTERRUPT NAME JUMP
P Pel P-I2 TO

ADDRESS

All 1/0 Type Interrupts:

Repeated Instructions In Progress X
In Termination Pass, Skip Not Set (Go to Nil X
In Termination Pass, Skip Set (Skip Nil X

Test Instructions, Go to NI X

Test Instructions, Skip NI X

Unconditional Jump Instruction X

Conditional Jump Instruction, Go to NI X

Conditional Jump Instruction, Jump X

All Other Instructions X

-- --
Main Storage Parity Error Fault:

Instruction Word Parity Error:

All Instructions X

Operand or Result Word Parity Error:

Repeated Instruction in Progress X
In Termination Pass, Skip Not Set (Go to Nil X

In Termination Pass, Skip Set (Skip Nil X

Test Instruction, Skip Not Set (Go to Nil X xCV
Test Instruction, Skip Set (Skip Nil X xCV
All Other Instructions X xCV

C ontro I Reg ister Par ity Error Fa u It:

Repeated Instruction In Progress X

In Termination Pass, Skip Not Set (Go to Nil X
In Termination Pass, Skip Set (Skip Nil X

Test Instruction, Skip Not Set (Go to Nil X

Test Instruction, Skip Set (Skip Nil X

U~conditiona I Jump Instruction X

Conditional Jump Instruction, Go to NI X

Conditional Jump Instruction, Jump X

All Other Instructions X xCV
--

Illegal Instruction X

Guard Mode Fault:

Repeated Instruction In Progress X
In Termination Pass, Skip Not Set XGo to Nil X

In Termination Pass, Skip Set (Skip Nil X X@

Test Instruction, Skip Not Set (Go to Nil X

Test Instruction, Skip Set (Skip Nil X X@

Unconditional Jump Instruction X

Conditional Jump Instruction, Go to NI X

Conditiona I Jump Instruction, Jump X

All Other Instructions X xCV

Characteristic Underflow X
--

Characteristic Overflow X

Divide Fault X

Executive Return X
--

Test and Set X
--

NOTES: CD The address captured is represented by P+2 when the operation of reading or writing the
operand for the current instruction overlaps the operation of reading the next instruction
word from main storage (alternate bank operation applies). It is represented by P+l when
same b'ank operation applies. In this context, current instruction is the instruction which
lead to detection of the fault or parity error associated with the interrupt.

® In this case, the address captured can be either of the values represented by P+l or P+2.
The value captured depends on the exact nature of the fault which led to the interrupt and
the exact moment of detection during the instruction. It does not depend on same bank
versus alternate bank timing.

Table 8-3. UNIVAC 7708 Interrupt Versus P Register Contents Captured

UP·4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SECTION:
8

07 is set to 1 when an interrupt occurs. This action converts the interpretation of
i =1 from indirect addressing to base register suppression. When base register sup­
pression is effective (07 = 1), x f:. 0, and i = 1, then each absolute jump to address,
operand word address, or result word address formed in the index subsection is
u + Xm (and u + Xm + 1 for double-precision instructions). When base register sup­
pression is effective (07 = 1), x = 0, i = I-and j f:. 16 or 17 for f = 01 - 67 8, then the
address forme d is u (and u + 1 for double-precision instructions). Thus the CPU c_an
develop absolute addresses which are independent of the values for BI, BD, and BS
in the processor s tate word which were carried forward from the interrupt program.

D6 is set to 1 when an interrupt occurs so that implicitly addressed R registers and
the A, X, and R registers addressed by the a and x fields of the subsequent instruc­
tions are from the executive set of A, X, and R registers (addresses 1208 through
175 8) rather than from the user set (addresses 0018 through 035 8 and 1008 through
117 8),

The PSR is changed when an interrupt occurs, so that, in most cases, it must be
loaded with the values appropriate to the interrupted program before control is
returned to that program.

During a Monitor Interrupt, an External Interrupt, or an I/O Parity Error Interrupt,
the channel number associated with that interrupt is stored in a non addressable
register. This number can be captured by the interrupt routine by means of the Store
Channel Number (SCN) instruction. The SCN instruction must be executed while the
I/O interrupts are disabled for that particular interrupt if the channel number is to
be preserved. Otherwise, a subsequent interrupt could replace that channe 1 n urn ber
in the nonaddressable register.

Since all I/O interrupts are disabled when an interrupt occurs, the Allow All I/O
Interrupts And Jump instruction should be performed as soon as the interrupt program
is logically interruptible. Barring manual intervention or initiation of the auto re­
covery procedure by the Availability Control Unit, this instruction must be performed
before an I/O interrupt can occur.

PAGE: 22

UNIVAC 1108

PROCESSOR AND STORAGE 9 1
UP-40~3
Rev. 1 SECTION: PAGE:

--------.--~--------------~~~~~------~~~~--------

9. EXECUTIVE CONTROL

9.1. GENEI~AL

The CPU was designed to be run under control of an executive program wh ich:

(a) assigns the absolute main storage locations to user programs and data;

(b) handles all I/O transfers.

As a rysult, certain control capabilities are provided for the exclusive use of the
Executive program. The hardware for addressing utilizes base registers which allow
the Execu ti ve program to relocate any program and/or its data in main storage and
to subsequently run that program without modification. These base registers are
contained in the Processor State Register (PSR). This section defines and explains
the various operations related to and affected by the contents of the PSR and other
registers and operations under Executive control.

9.2. PROCESSOR STATE REGISTER

The PSR is a 36-bit register which contains the two base registers BI and BD, used
in base indexing and also some special designators which define various states and
conditions affecting the current operation of the CPU. The format of the processor
state word is given in Figure 9-1.

35

INSTRUCTION BANK

BASE REGISTER
BI/BD SELECTION

REGISTER

D FIELD

27 26

'--- D2

_D3

'------ D4

~----D5

~ ______ D6

~------D7

QUARTER WORD
MODE 1 lOT USED

18 17 16 15

CARRY DESIGNATOR

OVERFLOW DESIGNATOR

DATA BANK BASE

REGISTER

I

9 8

GUARD MODE AND STORAGE PROTECTION

WRITE ONLY STORAGE PROTECTION

1107 COMPATIBILITY

DOUBLE PRECISION UNDERFLOW

CONTROL REGISTER SELECTION

BASE REGISTER SUPPRESSION

~------D8 FLOA TING-POIN T COMPA TI BI LI TY MODE

Figure 9- 7. Format of the Processor State Word

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
SECTION: 9

9.2.1. D8 - Floating-Point Compatability Mode Designator (F-P Zero)

When D8 = 0 and the mantissa of the most significant word of a single-precision
floating-point result is ±.O, the entire word is stored as all zeros.

When D8 = 1 and the mantissa of the most significant word of a single-precision
floating-point result is + 0, the most significant word is packed and stored with the
appropriate characteristic (see 4.5.1).

The operations of Floating Add, Floating Add Negative, Floating Multiply, Floating
Divide, and Load And Convert To Floating (which has only one result word) instruc­
tions are influenced by this designator.

9.2.2. D7 - Base Register Suppression Designator (Executive Mode)

When D7 = 0, the instruction i field specifies indirect addressing and base register
indexing is used to develop main storage addresses. The absolute operand, result,
or jump to address is developed in the index subsection as (u + BI) + Xm, or
(u + BD) + Xm. When D7 = 0, and i = 1, the i field specifies indirect addressing,
except for the cases in which f = 01 - 67 a , j = 16 or 17, and x = O. (See 5.2.7.)

When D7 = 1, the i field is used to specify base register suppression rather than
indirect addressing. When D7 = 1 and i = 1, the contents of the BI and BD fields
of the PSR are igno~ed, and the absolute operand address, result address, or jump
to address is developed in the index subsection as (u + 0) + Xm. The i field can
still be used with the hand u fields to form an 18-bit operand for those cases in
which f = 01 - 67 a, j = 16 or 17, and x = O. When D7 = 1 and i = 0, base register
indexing functions the same as for D7 = 0 (see 5.3.3.1).

The operation of the P capturing instructions, Store Location And Jump (SLJ) and
Load Modifier And Jump (LMJ), when base register suppression has been specified,
is discussed in 9.3.6.

9.2.3. D6 - Control Register Selection Designator (Exec ABR)

When D6 = 0, the a and x fields of an instruction word reference the addressable
control registers assigned for use by the user program. These are the control
registers having addresses in the ranges from OOOe through 037 a and 100 a through
117 a . (See 3.3 and Table 3-6.)

When D6 = 1, the a and x fields of the instruction word reference addressable
control registers assigned for use by the Executive program. These are the control
registers having addresses in the range 120a through 177 a.

9.2.4. DS - Double-Precision Underflow Designator (Interrupt Suppression)

When DS = 0, a Floating-Point Characteristic Underflow Fault Interrupt occurs if
characteristic underflow is detected during the execution of a double-precision
floating-point instruction. The contents of the specified A registers, A and A + 1,
remain unchanged.

PAGE: 2

UNIVAC 1108

PROCESSOR AND STORAGE 9 3
UP-4~03~
Rev. 1 SECTION: PAGE:

-------- --~~------------~~----~------~------,------

When 05 = 1, a Floating-Point Characteristic Underflow Fault Interrupt does not
occur if characteri.stic unde.rflow is detected during the execution of a dou ble­
precision floating-point instruction. Instead, the contents of the specified A
registers, A and A + 1, are cleared to all zeros, and the normal instruction sequence
is continued.

9.2.5. D4 - 1107 Compatibility Designator (1107 Mode)

When D4 = 0, U, SI, and SD are formed and used to provide a main storage absolute
address range from OOOOOOa to 777777 a (262K words). See 5.3.3.1.

When D4 = 1, the absolute addresses formed are not defined unless BI = BD = BS =
zero. When D4 = 1, and BI, BD, and BS are zero, the main storage absolute address
range is OOOOOOa to 177777 a (6sK). When the u field specifies an operand address,
result address, or jump address, U, SI, and SD are, in effect, formed in the normal
manner (U = SI = SD, since BI = BD := 0), and then 0 bits are forced into bits 17
and 16 of U, SI, and SD before U is tested to determine whether or not it isto be
used as the address of a control register and before its comparison with BS (which
is also zero). See Figure 9-2.

9.2.6. D3 - Modified Storage Protection (Write Only); 02 - Guard Mode/Storage
Limits Protection

D3 and D2 are interactive. The functions of these designators are defined together
in the following paragraphs.

When D3, 02 = 00 2 , guard mode and storage limits protection are disabled. A
Guard Mode/Storage Limits Protection Fault Interrupt will not occur for any reason.

When 03, D2 = 01 2 , guard mode and storage limits protection are fully enabled. A
Guard Mode/Storage Limits Protection Fault Interrupt (to MSR + 243 a) occurs when
an attempt is made to execute any of the privileged instructions (listed as items 1
through 12 under 8.3.2.2), when any attempt is made to write (store) into any of the
I/O A~cess Control Registers (040 a through 077 a), the Real Time Clock register
(100 a), or the executive registers (120 a through 177 a), when an Execute instruction
or indirect addressing loops or cascades for more than 100 microseconds, or when
the main storage address developed for reading an operand, writing a result, or
loadingthe P register for a jump operation violates the Storage Limits Register
(see 9.4).

When 03, D2 = 10 2 , guard mode is disabled and storage limits protection is dis­
abled for reads and jumps. However, a Storage Limits Protectio'n Fault Interrupt
(to MSR + 243 a) occurs When the main storage address developed for writing a
result violates the SLR.

When D3, D2 = 11 2 , guard mode is enabled, and storage limits protection is enabled
only for write operations, the guard mode protection is identical to that provided
when D3, D2 = 01 2 as explained above. However, the protection provided by the
SLR applies only to write operations; it does not apply to operand reads or to
jump operations.

NOTE,' When D2 = 1 and a Halt Jump/Halt Keys And Jump instruction is performed,
the halt portion of the instruction is not performed. Instead, the instruction
from the jump to location U is immediately executed.

Up-4U53

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 9
SECTION:

9.2.7. D1 - Overflow Designtor

D 1 is always cleared to 0 when the execution of one of the following arithmetic
instructions is initiated.

Add To A

Add Negative To A

Add Magnitude To A

Add Negative Magnitude To A

Add Upper

Add Negative Upper

Add To X

Add Negative To X

Double Precision Fixed Point Add

Double Precision Fixed Point Add Negative

D 1 is set to 1 if an overflow condi tioh (see 4.3.3.1) is detected when one of the
above instructions is performed.

9.2.8. DO - Carry Designator

DO is always cleared to 0 when the execution of one of the ten instructions listed
in 9.2.7 is initiated.

DO is set to 1 if a carry condition (see 4.3.3.2) is detected when one of the ten
instructions listed in' 9.2.7 is performed.

NOT E: When D 1 and/or DO is set to 1, it remains set to 1 until one of the instruc­
tions listed in the explanation of Dl is executed or until the contents of
the PSR are changed as a result of some other event such as the CPU
responding to an interrupt signal (see 8.1) or performing a Load Processor
State instruction.

9.2.9. BI - Instruction Bank Base Register

BI is the Instruction Bank Base Register. I t is ~sed during the conversion of a
relative address to an absolute main storage address. BI (or BD) is also used
during the execution of an LMJ or SLJ instruction (see 9.3.6) to convert the
absolute main storage address in the P register to a relative address to be slored.
BI is used for this conversion when SI (or SI + 1) was used as the most recent jump
to address in the program. The relative to absolute address conversion process is
explaine d in 9.3.4.

4
PAGE:

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE 9
SECTION: PAGE:

5
UP-40U3

--------.--------------------------------------~--------------~------------~-------------

9.2.10. QW - Quarter Word Designator

When QW = 0 and the f field of an instruction contains a value in the range 01a
through 67 a, then i field values of 4, 5, 6, and 7 in that instruction are interpreted
as follows for a main storage reference:

j = 4: Specifies half word (18-bit) transfers to or from bi ts 35 through 18 of the
specified location.

= 5: Specifies third word (12-bit) transfers to or from bits 11 through 0 of the
specified location.

j = 6: Specifies third word (12-bit) transfers to or from bits 23 through 12 of the
specified location.

= 7: Specifies third word (12-bit) transfers to or from bits 35 through 24 of the
specified location.

When QW = 1 and the f field of an instruction contains a value in the range 01a
through 67 a, the j field values of 4, 5, 6, and 7 in that instruction are interpreted
as follows for a main storage reference:

j = 4: Specifies quarter word (9-bit) transfers to or from bits 26 through 18 of the
specified location.

= 5: Specifies quarter word (9-bit) transfers to or from bits 8 through 0 of the
specified location.

= 6: . Specifies quarter word (9-bit) transfers to or from bits 17 through 9 of the
specified location.

j = 7: Specifies quarter word (9-bit) transfers to or from bit_s 35 through 27 of the
specified location.

The value of the QW designator has no effect on an instruction in the following
circumstances:

• when the f field of the instruction contains a value in the range 70 a through 77 a;

• when the j field contains a value other than 4, 5, 6, or 7; or

• when U is used to address a control register. All transfers to and from control
registers are always full word transfers regardless of the values of the QW
designator and the j field of the instruction.

9.2.11. NU =: Not Used

The value in bit 16 of the PSR is not used (that is, it has no effect on the operation
of the system). However, it is recommended that bit 16 of the word sent to the PSR
by a Load Processor State instruction contain a 0 bit.

UP-4053

Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE 9
SEC TION: PAGE:

9.2.12. BS = BI/BD Selection Register

BS is the BI/BD Selection Register. It is used to determine whether a relative
address references an absolute main storage address in the I bank or 0 bank portion
of main storage. The value assigned for BS should be greater than or equal to the
nine most significant bits of the largest relative address in the I segment of the pro­
gram and less than the nine most significant bits of any relative address in the 0
segment of the program. The function of BS in UNIVAC 1108 inain storage address­
ing is explained in 9.3.4.

9.2.13. BD - Data Bank Base Register

BD is the Data Bank Base Register. It is used during the conversion of a relative
address to an absolute main storage address. BD (or BI) is also used during the
execution of an LMJ or SLJ instruction (see 9.3.6) to convert the absolute main
storage address in the P register to a relative address to be stored. BD is used
for this conversion when SO (or SD + 1) was used as the most recent jump to ad­
dress in the program. The relative to absolute address conversion process is
explained in 9.3.4.

9.:2.14. Loading the Processor State Register

The Processor State Register can be loaded by performing a Load Processor State
instruction. When this instruction is executed, the word addressed by the instruction
(the Processor State Word) is transferred to the PSR. The Executive program must
define a Processor State Word with the desired designators set and the proper
values of BI, BD, and BS for each user program under its control. The Executive
program must load the proper Processor State Word into the PSR before it transfers
control to a user program. An example of the sequence of instructions which an
Executive program might perform to transfer control to a user program is given in
note (5) of 6.14.3.

Control is returned to the Execu tive program only when an interrupt occurs. The
LMJ or SLJ instruction in the interrupt location transfers control to the Executive
program. When an interrupt occurs, the contents of the PSR are autom atically
stored in the control register at address OOOa and the PSR is then automatically
forced to contain 1 bits for D7 and D6 and 0 bits for 08, D5 through DO, NU, and QW.
The values for BI, BD, and BS in the PSR are not automatically ch anged when an
interrupt occurs. If these values need to be changed, the Executive routine handling
the interrupt must set them to the desired values by performing a Load Processor
State instruction.

9.3. INTRODUCTION TO ADDRESSING

The CPU's addressing hardware provides for relocating the instructions and! or the
data for any program in main storage. The hardware design provides the ability to
specify two areas of memory for use by a running program. The two areas are referred
to as segments. The design also provides the ability to specify that all areas of main
storage not assigned to a program are locked out to that program for both read and
write (or write only) references. The areas of main storage wh ich may be assigned
to a program can be specified in gradations of 512 words - thus, an area may be
opened up for use, that is, 512 words, or 1024 words, or 1536 words. An area of 512
words is referred to as a block of main storage.

6

UNIVAC 1108

Rev. 1 PROCESSOR AND STORAGE
SECTION: 9 PAGE: 7

UP-
4U53

------- ---~--------------~--------------~-----------

·9.3 .. 1. Main Storage Organization

The UNIVAC 1108 is designed as a modular system, permitting a variety of main
storage configurations. For noninterleaved main storage, the minimum configuration
consists of two 32K modules (65K). This system can be expanded to a maximum of
131K words. For an interleaved main storage, sequentially addressed main storage
words within a 65K module pair are alternately located in the two modules. Two
module pairs (131K words) are the minimum complement of interleaved main storage
available, and this configuration may be expanded in increments of 65K words to a
maximum complement of 262K words.

The base registers, BI an,d BD, which provide the CPU with the flexibility for re­
locating programs are 9-bit registers. The Storage Limits Register contains four
9-bit fields which are used to specify the areas of main storage assigned to a
specific program. The use of 9-bit registers allows a maximum main storage con­
figuration of 262K (2 18) words to be divided in to 512 (29) blocks of 512 words each,
or 1000 8 words. Any location within a block of main storage can be addressed by
using values of 000 8 through 777 8 , The block address and the address of the
location within a block can be combined to address any location from 000000 8

through 777777 8 , Table 9-1 shows the ranges of block numbers for noninterleaved
modules and interleaved module pairs of main storage.

NONINTERLEAVED MAIN STORAGE INTERLEAVED MAIN STORAGE

MAIN ST'ORAGE MODULE BLOCK NUMBERS MAIN STORAGE MODULE PAIR
NUMBER NUMBER

Module itO (Mem 1) 000-0778 Modu Ie Pa ir itO (Mem 1)

Module It 1 (Mem 2) 100-177 Module P air It 1 (Me m 3)

Module 1/-2 (Mem 3) 200-277 Module Pairlt2 (Mem 2)

Module 1t3 (Mem 4) 300-377 Module Pairlt3 (Mem 4)

Table 9-7. The Range of Block Numbers for Noninterleaved and

Interleaved Main Storage

9.3.2. Program Segmentation

BLOCK NUMBERS

000-1778

200-377

400-577

600-77 7

A program can be written in two segments or portions, each of which may be relocated
in main storage. The segment having the lower relative address is the I segment, and
the segme nt having the higher relative address is the D segm ent. If the in struc tion s
for the program are in one segment and the data is in the other segment, the Executive
program can attempt to assign the segment s to differen t banks of main storage so that
alternate bank timing will apply to the instruction execution.

UP-4053
Rev. '1

UNIVAC 1108

PROCESSOR AND STORAGE 9
SECTION:

When a program is loaded into main storage, the Executive must determine how many
blocks are required for each segment based on the segment size. Then it can assign
each segment of the program to main storage blocks not assigned previously to other
programs. An individual segment is loaded into contiguous blocks starting wi th the
first location within the first block assigned to that segment. The segment may not
entirely fill all the storage locations in the last block assigned to it. The unfilled
portion of that block is ordinarily not used if the program is to b'e run with guard
mode/storage limits protection because the granularity for memory protection is
512 words.

9.3,,3. General Theory of 1108 Addressing

Normal 1108 programs are constructed wi thout consideration for the physical area of
main storage they will occupy during execution. As the program is constructed, each
word is mapped into a set of addresses called relative addresses. A relative address
is actually used in an instruction within the program which references other 'locations
or words in the program. Proper conversion from these relative addresses to the phys­
ical locations of the program will occur during execution using the base register
mechanism of the 1108G'

The range of relative addresses is from 0 to 262,143. Three constraints limit the por­
tions of the relative address range into which programs are 'mapped.

• Addresses 0 through 127 always reference control registers and are unavailable for
main storage access.

• The additional difficulty in forming addresses greater than 65,535 makes it de­
sirable when possible to map the program within the first 65,536 addresses.

• Execution of instructions located at addresses greater than 65,535 require special
addressing considerations. (See 9.3.5 and 9.3.6.)

If a program was mapped beginning at relative address 0, the first 128 words of the
first block assign,ed ,in memory could not be referenced. A programming convention
which maps addresses beginning at 200 a or greater avoids this waste. For conven­
ience, b,eginning addresses at multiples of 1000a is desirable as they correspond with
the block assignments for the program. Physical space need not be assigned corre­
sponding to the relative addresses below the minimum address. The Storage Limits
Register can be adjusted to prevent reference in this range.

PAGE:
8

UP-40U3 UNIVAC 1108 I
Rev. 1 PROCESSOR AND STORAGE 9 , __________________________________ ~ ______________ L_ ____________ ~~S~E~C~T~I~O~N~: ______ -L~P~A~G~E~: ______ _

A program consists of one or two segments. Normally two are prepared to take ad­
vantage of the overlapped main storage references possible in the 1108 which
provide faster execution. Two base registers are available for independent reloca­
tion of each segment. A part of the relative address range is assigned to reference
ea,ch of the segments. The I segment is always referenced with the smaller relative
address values; the D segment with the larger relative addresses. The constraints
given above in selecting the relative address map apply to either case. However,
the relative address range used for reference to each of the two segments need not
be contiguous.

The Base Selection register (BS) defines for the addressing algorithm the split in
addresses between the two segments. BS remains fixed for each constructed pro­
gram, and is unaffected by th e actual placement in main storage of the program.
BS is a 7-bit field of the Processor State Register which points to the highest
b lock of the I segme nt. The largest address BS can represent is 0177777 a or 65,535.
Any address reference greater than this value will always be a D segment reference.
The I segment is limited to this length. If one imagines the BS register extended on
the left by two 0 bits and on the right by nine 1 bits, then:

• A relative address is an I segment reference if less than or equal to the extended
BS .

• Any relative address greater than the extended BS is a D segment reference.

The I segment and D segment will typically be placed in noncontiguous main
storage areas. If relative addresses are mapped cont inuously at the break, references
during execution will appear continuous across the physical break with one important
exception. Each jump instruction loads into the P register an absolute address con­
structed from the relative address supplied by the program. Sequential instruction
execution proceeds by incrementing the absolute P register value by 1. If the two
segments are not physically contiguous, and sequential instruction execution pro­
ceeds through the last word of the I segment, the next instruction will not be secured
from the D segment but rather from the first absolute location following the physical
I segment. Normal storage protection applied to user programs would cause a guard
mode fault.

The base registers BI and BD are the relocation factors applied to each program
address reference to adjust for the physical position of the program in main storage.
BS is compared with each relative address to determine which of the two base
registers is added in forming the absolute address. BI and BD are 9-bit fields in
PSR. Each can be thought of as an address by extending it on the right with nine
Obits.

A free area of sufficient size will be selected by the Executive and the I segment
loaded into it. BI is calculated as the difference between the absolute address of
any word in the I segment and the relative address assigned by the program to this
location. F or example, by programming convention the first word of the I segment is
assigned relative address 1000 a . If absolute address 70,000a is selected as the
first physical location of the I segment, the BI address value is easily calculated
as (70, OOOs - lOOOs) or 67, OOOs. The Execu ti ve truncates and assigns this BI value

to the Processor State Word for the program,

UP-4053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE SEC TION: 9 PAGE:

A similar selection of physical space to hold the 0 segment and calculation of the
value for BD must be' carried out by the Executive. One additional constraint exists
in the selection of physical space for the 0 segment. The addressing algorithm
operates properly only on positive values. BD must be equal to or greater than O.
This requires that the absolute address of any 0 segment word be equal to or greater
than the relative address by which this word is known. This same constraint also
applies to the I segment, but is usu~lly of no concern as the smallest convenient
relative addresses are typically used for the I segment.

The TO timing chain is als 0 used to secure the operands for repeated instructions
such as the Block Transfer. I/O service requests are satisfied during the long dura­
tion instructions by breaking into the sequence and inserting a T8 timing chain cycle
at the point in time at which the next TO cycle would have b~en initiated.

9.3.4. Description of the Base Register Addressing Process

C
17

171615

C
17

The flowchart in Figure 9-2 illustrates the effective sequence of operations during
the formation of an address. The equivalent of five additions is performed .

• At the start of the process, the sums u+BI and u+BD are formed in parallel. The
alignment for these sums is as follows:

u u

17 1615 9 8 o 17 1615 9 8 o

BI BD

17 9 8 o 17 9 8 o

u+BI I u+BD

17 9 17 9

These are 9-bit additions with no end-around carry. If there is overflow on the
addition, the 10th bit is discarded. (See 9.3.5.)

• After the contents of the X register have been read out, the following three sums
are formed in 18-bit registers.

Xm I I Xm I [Xm

0 17 0 17

u u+BI u I I u+BD u

9 8 0 17 9 8 0 17 9 8

u+Xm = U I I (u+BI) + Xm SI I I (u+BD) + Xm = SD

0 17 0 17

0

0

0

10

Up-4U53

Rev" 1

UNIVAC 1108

PROCESSOR AND STORAGE

[

Add: (u+BI)+Xm

18-bit ones

complement sub­

tractive adder

------'

Xm

Main Storage

Address

Add: (u+BOHXm

18-bit ones

complement sub­

tractive adder

{

9-bit adder
no end-around
carry

15

U to arithmetic

section

U to arithmetic

section

SECTION:

t
Add: u+Xm

18-bit ones

complement sub­

tractive adder

U used to address
a Control Register

NOTES: (1) The next consecutive main storage address must also be developed for double-precision
instructions and for the SLJ instruction. In these cases, the hardware forms the second
address by clearing the register holding u and sending U+1 to the register holding Xm.
This means that SI+1 and SO+l are formed as follows:

SI+ 1 = (B 1+0) + (U+ 1)

SO+1 = (BO+O) + (U+1)

(2) When 07 of the Processor State Word is 1, the i field can be used to specify base
register suppression for instructions which require developing a main storage address.
When 07 = 1 and i = 1, the absolute main storage address developed in the index sub­
section is (O+u) + Xm. (See 9.3.6.)

Figure 9-2. UNIVAC 7708 Addressing Operation Flowchart

9 PAGE: 1J

U 1-'-4U:',j

Rev. 1

UNIVAl,; IIU6

PROCESSOR AND STORAGE 9
SECTION:

/

These sums are formed in ones complement 18-bit subtractive adders which function
as described in 4.2.

PAGE:

• If the f, j, and x fields of the instruction call for U to be used as an 18-bit operand,
then U is sent to the arithmetic section.

• If the instruction is a shift instruction, then U is sent to the arithmetic section to
be used as a shift count.

Otherwise, U is examined to determine whether or not it is a control register address
or a main storage address.

• If U is a control register address, it is used to reference a control register.

If it is not, then U is compared with BS to determine whether SI or SD should be
referenced:

• If U ~ BS, the main storage address referenced is SI.

• If U > BS, the main storage address referenced is SD.

The comparison of BS with U can be illustrated more clearly by first designating the
seven bits of BS as 15, ... , 9. The bits of U that are tested with BS are aligned as
follows:

15 9

u

171615 9 8 o

During the comparison, U 17 and U 16 are sampled. If either or both is a 1, SD is
automatically taken as the main storage address referenced. Otherwise, BS is
compared with U15 - 9 to determine which address is taken.

12

U P-4Ubj

Rev. 1

UNI YA,"- IIVO

PROCESSOR AND STORAGE I SEC TION: 9

9.3.5. Programming Considerations Related to Addressing

The hardware which performs the relative to absolute address conversion was de­
signed to function properly provided that the relative address is always less than
or equal to the absolute address. This requirement can be stated briefly as:

PAGE:

• If SI is the main storage address to be referenced (U 17-9 ~ BS), then the hardware
requires that U ~ SI.

• If SD is the main storage address to be referenced (U 17-9 > BS), then the hardware
requires that U :; SD.

An Executive program can ensure that these requirements are met by selecting the
values for BI and BD such that

U 17-9 + BI ~ 777 8,
and

U 17-9 + BD ~ 777 8 .

where U in the first case is the largest relative address which can occur in the I
segment of the program, and U in the second case is the largest relative address
which can occur in the D segment of the program.

These requirements stem from the fact that the sums

U 15-9 + BI and u 15-9 + BD

are formed in 9-bit adders. If U15-9 + BI >7778 or u15 _ 9 + BD> 7778, overflow has
occurred and the leading bit of the 10-bit sum cannot be contained in the 9-bit
register which holds the sum.

The absolute address generated in these cases appears to be smaller than the
relative address. For example, if

u = 020000 8,

BD::-: 7708, and Xm = 0,

then

U15 _9 + BD = 020 + 770 = 1010

However, only nine bits of this sum are retained so that value appears as

U15_9 +BD = 010

Then the relative address U = u + Xm
SD = (u + BD) + Xm = 010000 8,

020000 8 and the absolute address

.For double-p.recision instructions and for the SL] instruction, the next consecu­
tive main storage address must be referenced. In these cases, the next consecutive
i?ddr.ess SI + 1 or SO + 1 is .for,.med as (BI + 0) + (U + I). or (BD + 0) + (U + 1) where
U = u + Xm. The main storage address developed for either SI + 1 or SD + 1 must be
less than or equal to 777777 8 , When th is restriction is violated, the absolute main
address developed in the index subsection is two greater than the corresponding
SI or SD.

13

Rev. 1 PROCESSOR AND STORAGE

In the previous example

BD + 0 = 770000 8

U + 1 = 0200018

SD + 1 = (BD + 0) + (U + 1) = 010002 8

Thus we have SO = 010000 8

and SD + 1 = 010002 8

SEC TION:
9

The two addresses developed are not consecutive because an overflow bit was
produced (and ignored) when the 9-bit sum u 15-9 + BD was formed; but when the
18-bit sum (BD + 0) I- (U + 1) was formed, the overfloVi bit generated an end­
around carry which was added into the low order bit position.

This problem will not arise in normal circumstances where no overflow occurs
in either U15-9 + BI (if SI is selected as the absolute main storage reference) or
u15_9 + BD (if SD is selected as the main storage reference), and either SI or
SD is less than 7777768 for those operations which require the next consecutive
address.

A similar problem can arise if the value for Xm is negative (i.e., if the value for
Xm has leading 1 bits). In this case the value assigned to BI an~ BD (whichever

PAGE:

is associated with the relative address U) must not be so great that BI + u 15_9>777
(or BD + u 15-9 > 777).

This problem is avoided when addressing locations within a segment by not assign­
ing values to u which exceed the largest relative address for that segment.

9.3.6. P-Capturing Instructions

The Program Address Register (P register) contains the absolute main storage
address of the next instruction to be read from main storage and loaded into the
CPU's control section for the normal sequential execution of a list of instructions.
When one of the two P-capturing instructions, Store. Location And Jump (SL]) or
Load Modifier And Jump (LM]) is executed, BI or BD is subtracted from the contents
of the nine leftmost bit positions of the P register to obtain the relative address
which corresponds to the absolute main storage address in the P register. This
relative address is stored by the SL] or LM] instruction.

Whenever any jump instruction is performed, the CPU records which of the two values,
SI or SD (SI + 1 or SO + 1 in the case of an SL] instruction) was used as the absolute
jump to address. By updating this record each time a jump occurs, the CPU maintains
a record which indicates whether the absolute main storage address in the P register
is associated with BI or BO. When an SL] or LM] instruction is performed, the CPU
determines the relative address to be stored by subtracting either BI or BO from the
contents of bits 17 through 9 of the P register. If SI or SI + 1 was last used as the
absolute jump to address, BI is subtracted; if SD or SD + 1 was last used, BD is
subtracted. When BI or BD is subtracted from the absolute main storage address in
the P register to form the relative address to be captured by the SL] or LM] instruc­
tion, any end-around borrow generated during the subtraction is suppressed.

14

Rev. 1 PROCESSOR AND STORAGE I SECTION: 9 I PAGE:

When a program is operating with base register suppression (D7 = 1 and i = 1), the
base register suppression applies to each absolute main storage address developed
using the value in the u field, but not to the captured relative address derived from
the contents of the P register. Base register suppression applies to the calculation
of the absolute main storage address at which the captured relative address is
stored for the SL] instruction. The jump to addresses for the LM] and SL] instruc­
tions are also calculated with base register suppression. The jump to address for
the LM] instruction is developed according to the procedure in Figure 9-2 except
that BI and BD are effectively zero so that (u + BI) + Xm and (u + BD) + Xm reduce to
u + Xm. The jump to address for the SL] instruction is developed according to the
procedure described in N:ote (1) for Figure 9-2 except that BI and BD are effectively
zero so that (BI + 0) + U + 1 and (BD + 0) + U + 1 reduce to U + 1.

The LM] and SL] instructions are frequently used in the interrupt locations to tran s­
fer control from a user program to an interrupt handling routine. D7 is automatically
set to 1 when the interrupt occurs so that if the LM] or SL] specifies i = 1, base
register suppression will apply to the jump to address (and to the address specified
by the SL] instruction for storing the user jump from address). The user jump from
address is a relative address formed. by subtracting BIoI' BD from the absolute main
·storage address in the P register. If ejther an LM] or SL] instruction is performed
at some point within the interrupt handling routine, the captured address will be a
relative address. Thus the interrupt handling routine must clear BI and BD if these
instructions are to be used to capture the proper address within a routine operating
with base register suppression. The PSR must be restored to the appropriate values
for the user before control is returned to that user. (See 9.2.14.)

If the SL] instruction is used to capture the relative jump from address and transfer
control to another se.quence of instructions, the procedure for returning to the first
sequence of instructions is simplified if the relative value captured is less than
200000 8 . If the relative value captured is 200000 8 or greater, it contains a 1 bit in
bit 17 or 18 (or both). If this relative address is used as the right half of an instruc­
tion, any 1 bits in these positions will be interpreted for index register incrementa­
tion and indirect addressing (or base. regi~ter suppression) rather than as bits used
in developing an absolute address. However, if all the instructions for a program
have relative addresses of 1777778 or less (the largesJ. possible relative address
in the I bank 1777778), this situation will not arise (see 6.9.1, Note 7).

15

UP-4053

Rev. 1

UNIVA\,. IIVO

PROCESSOR AND STORAGE SECTION: 9

9.4. MAIN STORAGE PROTECTION

The CPU has the capability of specifying two areas of main storage for use by a
running program. All locations in main storage not assigned to a program can be
locked out to that program either for both read and write references or only for write
references. The portions of main storage assigned to a program are specifiable in
blocks of 1000s words (see 9.3.1). There are two sets of storage limits" one for each
of the two areas of main storage which may be assigned to a program. These storage
limits are contained in the Storage Limits Register (SLR). The upper and lower
absolute address limits for the I segment and the D segment of a program are defined
in the SLR. These limits are expressed as block numbers. The two segments of main
storage defined by the SLR may be completely separate segments or partially over­
lapping segments, or one segment may be a subset of the other.

9.4.1. Format for the Storage Limits Word

35

The Storage Limits Word contained in the SLR has the format shown below; The
upper half of the SLR is used to define the upper and lower limits of the I segment
of a program. The lower half of the SLR is used to define the upper and lower
limi ts of the D segment of the program.

I PORTION I PORTION D PORTION D PORTION
UPPER LIMIT LOWER LIMIT UPPER LIMIT LOWER LIMIT

27 26 18 17 9 8 0

9.4.2. Loading the Storage Limits Register

The SLR is loaded by the Load Storage Limits instruction (LSL). This is the only
way the SLR can be loaded. The execution of this instruction transfers the contents
of location U to 'the SLR, but it does not enable main storage protection.

9.4.3 . Activating and Deactivating Main Storage Protection

Main storage protection is activated when a Load Processor State instruction (LPS)
is executed which sets D3D2 (bits 30 and 29) of the Processor State Word to one of
the three types of guard mode/storage limits protection (see 9.2.6). Main storage
protection is deactivated when D3D2 of the Processor State Word are cleared to
00 2 , These two bits are automatically cleared to zero whenever an interrupt
occurs. (This includes the interrupts which occur when the Executive Return
instruction and the Test And Set instruction are performed). D3D2 of the PSR can
also be cleared to zero by performing an LPS instruction when D3D2 = 10 2 , The
contents of the SLR are not disturbed when main storage protection is deactivated.

PAGE: 16

u r -'tV;)~

Rev. 1

UNIYA\". IIUO

PROCESSOR AND STORAGE SECTION:
9 PAGEl

Conversion of the relative addresses (U and U + 1) to absolute main storage addresses
(SI and SI + 1, SD and SD + 1) is performed in the index subsection. When either SI or
SI + 1 is chosen as the absolute main storage address to be referenced, it is checked
agains t the set of lim its f<;>r the I portion of the program. When either SD or SD + 1 is
chosen, it is checked against the set of limits for the D segment of the program (see
Figure 9-2). In either case, the reference is permitted if it is not outside the limits
specified in the corresponding part of the SLR, that is, if

I Portion Lower Limit:; SI :; I Portion Upper Limit

or

D Portion Lower Limit :; SD ::; D Portion Upper Limit

When the absolute main storage address is outside the limi ts specified by the SLR
and main storage protection has been specified for the type of operation involved,
then the main storage reference is not made. Instead a Guard Mode/Storage Limits
Protection Fault Interrupt occurs and the CPU executes the instruction at MSR + 243 8

as its next instruction.

The two classes of protection, read-write-jump and write only, are discussed in
9.2.6. It should be noted that the SLR in conjunction with the contents of the PSR
does not provide main storage protection again'st the reading of sequential instruc­
tions whose addresses are formed by the normal process of incrementing the P
register. Thus it is possible for a program to move along sequentially from an as­
signed main storage area into an area which violates the SLR. However, if guard
mode/storage limits protection is fully enabled (D3D2 = 01 2), then main storage
protection is provided for any jump to address wh ich violates the SLR.

17

UP-40:~·3. .
Rev. 1

------------.---,--------------~-----------------------~----------------------~-----

UNIVAC 1108

PROCESSOR AND STORAGE
Appendix A

SECTION: PAGE:

a

A

APPENDIX A. SYMBOLS AND
ABBREVIATIONS

The a field (bits 25-22) of an instruction.

Control register specified by the a field of an instruction.

A register A control register (addresses 148 - 33 8 and 154 8 - 1738), Registers at
addresses 34 8, 35 8, 174 8, and 175 8 can be used either as general purpose
registers or as extensions of an A register.

Aa

Aa+l

Aa+2

ACU

ACW

AND

A+l

A+2

BD

BI

BS

C

The A register specified explicitly by the a field of an instruction.

An A register whose address is one greater than the control register address
specified by the a field of an instruction.

An A register wh ose address is two greater than the control register address
specified by the a field of an instruction.

Availability Control Unit

Access Control Word

Logical product

Same as Aa+l

Same as Aa+2

The BD field (bits 8 - 0) of the Processor State Register. BD times 2 9

yields the address of the first word in the D-bank.

The BI field (bits 26 - 18) of the Processor State Register. BI times 2 9

yields the address of the first word in the I-bank.

The BS field (bits 15 - 9) of the Processor State Register. BS times 2 9 plus
7778 yie Ids the address of the last word in the I-bank.

The C field (bits 31 - 30) of an Access Control Word for a Quarter Word
ESI channel.

1

UP-4053

Rev. 1

UNIVAC 1108 Appendix A
PROCESSOR AND STORAGE

SECTION:

Characteristic Biased exponent portion of a floating-point number.

CL T Comm unication Line Terminal

CPU Processor Unit (the computer itself as opposed to the I/O Controller which,
in the UNIVAC 110S Multi-Processor System, is also considered to be a
processor)

CSR

CTM

CTMC

Channel Select Register

Communication Terminal Module

Communication Terminal Module Controller or Communication Terminal
Module Control Subsystem, dependent upon context.

One of the two areas in main storage assigned to the program.

PAGE:

lD-bank or
D-portion The- area which corresponds to the higher relative addresses. See also I-bank.

IDO

Dl

D2

D3

04

05

The carry indicator (bit 27) in the Processor State Register.

The overflow indicator (bit 2S) in the Processor State Register.

The guard mode/storage limits protection indicator (bit 29) in the Processor
State Register. Used to specify guard mode and whether a Guard Mode Fault
Interrupt should occur if an attempt is made:

(1) to perform any restricted instruction;

(2) to write in a main storage location outside the area specified by the
Storage Limits Register; or

(3) to write in any restricted con trol register.

It is also used to prevent a program halt from occurring for a halt-type
"instruction, and to determine whether the contents of the Storage Limits
Register are to be used in restricting reads and jumps when 03 = O.

The modified storage limits protection (write only) indicator (b it 30) of the
Processor State Register. Used to specify whether the Storage Limits
Register only writes (03 = 1) or is to be used in conjunction with D2 = 1
to restrict reads, writes, and jumps (03 = 0).

The 1107 compatibility indicator (bit 31) of the Processor State Register.
Used to specify 1107 address compatibility, that is, whether the leftmost
two bits of the IS-bit address produced and selected in the index subsection
are to be left unchanged or cleared to 0 bits just prior to sending the address

"to the main storage address circuits.

The double-precision underflow indicator (bit 32) of the Processor State
Register. Used to specify whether the result of charactedstic underflow
should be the initiation of a Characteristic Underflow Fault Interrupt or
the storing of the result as all 0 bits.

2

UP-4053

Rev. 1

06

D7

D8

EF

EI

ESI

f

f ,j

FO

F1

F3

F4

G

h

UNIVAC 1108 Appendix A
PROCESSOR AND STORAGE

SECTION:

The control register selection indicator (bit 33) of the Processor State
Register. Used to specify which of X, A, or R registers is to be used.

The base register suppres sion indicator (bit 34) of the Processor State
Register. Used to specify the interpretation of the i field in an instruction.

PAGE:

D7 = 1 selects absolute addressing; 07 =0 enables either indirect addressing
or u field extension, as appropriate.

The floating-point compatibility mode indicator (bit 35) of the Processor
State Register. Used to specify form of special treatment to be given to
word stored in Aa for a single-precision floating-point operation when the
sign/mantissa arithmetic produces a result of all 0 bits or all 1 bits.

External Function. Control signa 1 sen t by CPU to a su bsystem which identi­
fies the word on the output data lines as a function rather than a data word.

External Interrupt. Control signal sent by a subsystem to the CPU which
causes an interrupt and identifies the word on the output data lines as a
status rather than a data word.

Externally Specified Index. Applied to a subsystem and the I/O channel
connecting that sub system to the CPU. An ESI subsystem specifies a rela­
tive address when it requests an input or output data transfer. This relative
address is converted by the CPU to an absolute address. The absolute
address is used as an address of an Input or Output Access Control Register
rather than a control register.

The f field (bits 35 - 30) of an instruc tion; the function code.

The f and j fields (bits 35 - 26) of an instruction. When the function code
is greater than 70 s , the f,j combination defines the basic operation to be
performed.

A 36-bit register in the program control subsection wh ich receives each
instruction read out of main storage and the low order 22 bits of the word
read out of main storage during an indirect addressing sequence.

A 14-bit register in the program control subsection used to store the f and j

fields of an instruction and an [!ll) CSR (logical sum of a field and Channel
Select Register).

A 7 -bit register u sed to store the address of a control register.

A 7 -bit register used to store the address of an A register when an instruction
references two A regi sters.

The contents of bit positions 35 and 34 (G field) of an Input or Output Access
Control Word. F or each I/O transfer, G speci fies address incremen tat ion
(g = 00), decrementation (g = 10), or no change (g = 01).

The h field (bit 17) of an instruction. Normally, this field specifies whether
or not the index register is to be incremented. In some instances, it is used
to extend the u field.

3

UP-4053

Rev. 1

H

I-bank or
I-portion

IA

IACR

IACW

IDR

IFR

Increment

UNIVAC 1108 Appendix A

PROCESSOR AND STORAGE
SEC TION: PAGE:

A one- or two-bit field (bit 33 or bits 33 and 32) of an Input or Output Access
Control Word. It is used to specify wh ich portion (half or quarter) of a word
is to be transferred.

The i field (bit 16) of an instruction. It normally specifies indirect address­
ing; however, in some instances, it is:

(1) used to extend the u field; or

(2) used in conjunction with D7 to specify base register suppression.

One of tw 0 areas in main storage as si gned to a program.
The area which corresponds to the lower relative addresses.

Input Acknowledge. Control signal sent by the CPU to the subsystem in
response to an Input Data Request or External Interrupt signal and it indicates
that the CPU has accepted the input status or data word.

Input Access Control Register. For an Internally Specified Index I/O channel,
the IACR is one of the control registers at addresses 408 - 57 8 , For an
Externally Specified Index I/O channel, the IACR is a main storage location
associated with an input device.

Input Access Control Word

Input Data Request. Control signal sent from a subsystem to the CPU when
the subsystem has data for input to the CPU.

Internal Function Register. Another name for the Processor State Register.

The leftmost 18 bits (Xi field) of an index register.

Incrementation The addition of the 18 leftmost bits (Xi field) of an index register to its
rightmost 18 bits (Xm field). When incremented in this manner, the resultant
value in the Xm field may be greater than, less than, or equal to, its original
value.

I/O

IOC

lSI

ja

Input and Outpu t

I/O Controller

Internally Specified Index. Applied to a subsystem and the I/O channel
connecting that subsystem to the CPU. When transferring data, the CPU's
initial response is to read out the Input or Output Access Control Register
so as to determine the main storage location of the next word to be trans­
ferred.

The j field (bits 29 - 26) of an instruction. This field is used as either an
operand qualifier, a partial control register addres s, or a minor function code.

Bit positions 29 - 22 of the Jump Greater And Decrement instruction which
."

are used to specify a control regi ster address.

4

UNIVAC 1108 Appendix A

Rev. 1 PROCESSOR AND STORAGE
SECTION: PAGE:

UP-405~

--~--------------~--------

K

Ka

LAR

Mantissa

MC

MEM

MMA

Modifier

MPA

MSR

NI

Normali.?e

NU

OA

OACR

OOR

OR

P

Pack

Pass

P register

PSR

The initial count in the R~peat Count register for Block Transfer, search, or
masked search instruction.

The console key specified by the a field of certain instructions.

Last Address Register

The fractional part of a floating-point number

Master Clear. See Subsystem Clear.

Main Storage module

Multi-Module Access Unit

The rightmost 18 bits (Xm fie Id) of an index register. It is added to the
16-bit address in the u field of an instruction to produce a relative address.

Multiple Proces sor Adapter. Identica 1 to Shared Peripheral Interface; see SPI.

Memory Select Register

Next Instruction

To normalize a floating-point number, the mantissa is shifted left or right
until the leftmost bit of the mantissa is not identical to the sign bit.

Not used. Bit position 16 of the Processor State Register.

Output Acknowledge. Control signal sent by the CPU in response to an
Ou tput Request signa I from a pe ripheral subsystem.

Output Access Control Register

Output Data Request. Control signal sent by peripheral control unit to the
CPU to indicate that the control unit can accept a function or output data
word.

Logical inc Ius ive OR

Program Address Counter (P register)

Process of combining the sign and mantissa of a floating-point number from
one register with the characteristic of the number from another register into
a single register.

When each of the five cycles initiated for the main timing chain (0.625 micro­
seconds minimum) have been completed, a pass through the chain has been
completed.

Program Address Counter

Processor State Register

5

UP·4053

Rev. 1

QW

R or
R register

Ra

Residue

RTC

RO

R1

R2

S

SCCS

so

SI

SLR

SPI

Subsystem
Clear

TO

T1

u

U

UNIVAC 1108
Appendix A

PROCESSOR AND STORAGE SECTION: PAGE:

The quarter word indicator (bit 17) in the Processor State Register. Specifies
alternate interpretation of partial word designators in order to provide quarter
word operations.

Control register specified explicitly or implicitly by an instruction. Control
• register addresses 100a - 117 aand 120a - 137 a.

The R register specified by the a field of an instruction.

The least significant result word produced by a single-precision Floating
Add or Floating Add Negative instruction.

Real Time Clock

Real Time Clock register at control register addre.ss 100 a . It is also a control
register at address 120 a .

Repeat Count registers at address lOla and 121a. They are used during Block
Transfer, search, and ID.qsked search instructions.

Mask registers at addresses 102 a and 122a. They are used during masked
search instructions and the Masked Load Upper instruction.

Sign bit or bit position

Storage C las s Control Subsection

The absolute address (D-bank) developed through addition: (BD + u) + (Xm or 0).

The absolute address (I-bank) developed through addition: (BI + u) + (Xm or 0).

Storage Lim its Regis ter

Shared Peripheral Interface (formerly called the Multiple Processor Adapter).

Control signal sent by the CPU to each peripheral subsystem which clears
the peripheral control unit and conditions it to receive the next function.
From the standpoint of the peripheral control unit, it is a Master Clear
signa 1.

Main timing chain

A timing chain that operates in parallel with the main timing chain which may
store up to three words (from arithmetic section) in a control registers.

The u field (bits 15 - 0) of an instruction.

The 18-bit value produced in the index subsection by adding the righ tmost 18
bits (Xm field) of the index register specified by the x field of the instruction
(or by adding 0 if x = 0) to the 16-bit value in the u field of the instruction
(u field is extended to 18 bits). This value represents an address in main
storage.

6

UP-405~ UNIVAC 1108 I Appendix A
Rev. 1 PROCESSOR AND STORAGE SECTION: PAGE:

--------------------------------------.--------~------------~~~~------~~----

V+1

Unpack

v

w

x

X o.r
X register

Xa

Xi

Xm

Xx

XOR

+0

-0

()

()'

The 18-hit value produced in the index subsection by adding 1 to U. This value
represents an address in main storage.

The process of separating a floating-point number. The sign and mantissa are
placed in one register and the characteristic in a different register.

The absolute address contained in bits 17 - 0 of an lSI or ESI Access Control
Word.

The count field of an Access Control Word. For lSI operations, the W field
is bits 33 - 18. For half word ESI operations, the W field is bits 32 - 18.
For qu:uter word ESI operations, the W field is bits 29 - 18.

The x field (bits 21 - 18) of an instruction.

Control register specified by an instruction a t addresses 18 - 178 and
1418 - 157 8, The registers at 0 8 and 140 8 are special registers.

The X register specified by the x field of an instruction.

Bits 35 - 18 of an index register. Used to increment or decrement the con­
tents of bit positions 17 - 0 (Xm field) when specified by an instruction.

Bits 17 - 0 of an index register. Used in the index adder for the process
u+Xm = U.

The X register specified by the x field of an instruction.

Logical exclusive OR

Two words, one word, or a field consisting of all 0 bits.

Two words, one word, or a field consisting of all 1 bits.

The c'ontents of the register or location identified by the symbol within the
paren theses.

The ones complement of the register or location identified by the symbol
within the parentheses.

The contents of bit position 5 of the register or location identified by the
symbol within the paren theses.

The contents of bit positions 17 through 0 of the register or location identi­
fied by the symbol within the parentheses.

7

UP-40S.3~
Rev. '1

--~------------~------------~--------

UNIVAC 1108

PROCESSOR AND STORAGE
Appendix B

SECTION: PAGE:

AF:JpENDIX

INSTRUCTION WORD

B. UNIVAC IIOB
WORD FORMATS

~ ______ 3_oLI2_9. _______ 2_6LI2_5 _______ 2_2~1_21 ________ 18~1_Ih_7~I_l~~1~1_5 ____________________________________ ~01

INDEX REGISTER WORD

lSI ACCESS CONTROL WORD

~ ________________ W __________________ ~1~8.1~1~7 ______________________ V __________________ ~01

ESI ACCI::SS CONTROL WORD (H IS ONE BITON HALFwORD. TWO BITS ON QUARTER WORD; C IS PRESENTFORQUARTERWORD)

135 G34 13; 13~ 131 C30129 W 18117 v 0 I

BIASED ESI VALUES IN IACR'S

r- BIASED INPUT ESI VALUE BIASED OUTPUT ESI VALUE' I
~ __________________________________ ~~17L-______________________________________ ~0

SINGLE-PRECISION FIXED-POINT WORD

c~rr:-r- 0 \

u~--------.--~·

DOU BL E-PR ECISION FI XED-POI N T WO RD

,~r:r-
u~--

A~rrlr- 0\
U+l~---~'

FI XED-paiN T IN TEG ER MUL TI PLY RESUL T

AI3~1;4133 __ ~ol

A+l~ ___ o~1

FIXED-POINT FRACTIONAL MULTIPLY RESULT

A~. __ ~ol

A+l~ __ lLI~61

1

U N 1 V Al.I 1 Uts Appendix B
PROCESSOR AND STORAGE

SECTION:

FIXED-POINT MULTIPLE SINGLE INTEGER RESULT

A~4~ __ ~ol

ADD HALVES WORD FORMAT

Carry
________________ ~f ~I ______________ _

Carry ----------'.

ADD THIRDS WORD FORMAT

Carry ---------~. ~I----------- Carry _____ f ... 1 _______ Carry ____ -...It

SIN GL E-PRECISION FLOA TIN G-POIN T OPE RAN 0

S CHARAC TERI STI C
35 34 (BIASED EXPONENT) 27 26

MANTISSA

SINGLE-PRECISION FLOATING-POINT RESULT

A S CHARACTERISTI C

35 34 (BrAsED EXPONENT) 2726
MANTISSA (NORMALIZED)

A+l CHARACTERISTIC
35 34 (BIASED EXPONENT) 2726

MANTISSA (NOT NECESSARILY NORMALIZED; CON.TAINS RESIDUE,
. LEAST SIGNIF"ICANT WORD OF" PRODUCT, OR· REMAINDER)

DOU BL E-P RECI SION FLOATIN G-POIN T OPERAN 0 OR RESUL T

A
S

or

U
35 34

CHARACTERISTIC
(BIASED EXPONENT) 2423

MANTISSA

o

o

o

o

A+l ~
or MANTISSA I U+l ~3~ __ ~O

STORAGE LIMITS WORD

35
I-PORTION

UPPER LIMIT 27 26

I-PORTION
LOWER LIMIT 18 17

D-PORTION
UPPER LIMIT

PROCESSOR STATE WORD NOT USED

•
BS

9 8
D-PORTION

LOWER LIMIT

BD

I~ _____ ------~---------------~' •
DeSignatJr Section QUARTER- Relative Addr~SSing Section

WORD
DESIGNATOR

o

PAGE:

UP-4U5j

Rev. 1

UNIVA\.. I Iva

PROCESSOR AND STORAGE
Appendix C

SEC T ION: PAGE:

1

APPENDIX C. CHARACTER CODES

--
OPERATOR'S

80- HIGH DISPLAY CONSOLE CONTROL CONSOLE

CPU COLUMN SPEED TYPE 4009 TYPE 4004

CODE CARD PRINTER
(OCTAL) CODE SYMBOL KEYBOARD CRT PAGEWRITER KEYBOARD PRINTER

SYMBOL SYMBOL SYMBOL SYMBOL SYMBOL

00 7-8 @ If Note 1 Note 1 K It
01 12-5-8 [[[[UC \.
02 11-5-8]]]] LC Iii
03 12-7-8 # NL (new Note 2 Note 3 LF LF

line)

04 11-7-8 ~ (no key) Note 1 Note 1 RETURN CR

05 (blank) (space) (space bar) (blank) (blank) (space bar) (space)

06 12-1 A A

07 12-2 B B

10 12-3 C C

11 12-4 0 0

12 12-5 E
.. E

13 12-6 F F

14 12-7 G G

15 12-8 H H

16 12-9 I I

17 11-1 J J

20 11-2 K K

21 11-3 L L

22 11-4 M M

23 11-5 N N

24 11-6 0 0

25 11-7 P P

26 11-8 Q ... Q

27 11-9 R - .. R

30 0-2 S S

31 0-3 T T

32 0-4 U ... U

33 0-5 V V

34 0-6 W W

35 0-7 X X

36 0-8 Y Y

37 0-9 Z
.. Z

Rev. 1
1\ppenOl x C

PROCESSOR AND STORAGE
SEC TION:

80- HIGH DISPLAY CONSOLE
OPERATOR'S

CONTROL CON SOL E
CPU COLUMN SPEED TYPE 4009 TYPE 4004

CODE CARD PRINTER
(OCTAL) CODE SYMBOL KEYBOARD CRT PAGEWRITER KEYBOARD PRINTER

SYMBOL SYMBOL SYMBOL SYMBOL SYMBOL

40 12-4-8))

41 11 - -
42 12 + +
43 12-6-8 < <

44 3-8 = =

45 6-8 > >
46 2-8 & - - - - -
47 11-3-8 $ $

50 11-4-8 * *
51 0-4-8 (... (

52 0-5-8 % ad aa .. aa "
53 5-8 -

54 12-0 ? ?

55 11-0 ! ...- !

56 0-3-8 , (comma) ~ , (comma)

57 0-6-8 \ 0 ¢ <t> 0 0
60 0 0 0 0 0 0 0
61 1 1

.. 1

62 2 2 po 2

63 3 3 3

64 4 4 p 4

65 5 5 5

66 6 6 6

67 7 7 - 7 ,.

70 8 8
.. 8

71 9 9 9

72 4-8 '(apostrophe) .. • (apostrophe)

73 11-6-8 .. ; , ...

74 0-1 / .. /
75 12-3-8 . (period) ~ . (period)

76 0-7-8):t CJ CJ CJ spec):t

77 0-2-8 f= or stop t t t t t
Note 1: When either 008 or 048 code is received f?r either the CRT or the PAGEWRITER, it is completely ignored.

Note 2: When the 038 code is received for the CRT, the CRT addressing circuits are set to display the symbol for
the next character code as the first symbol on the next line.

Note 3: When the 038 code is received for the PAGEWRITER, a combination carriage return and line feed action is
initiated at the PAGEWRITER.

PAGE:

UP-4U.')j

Rev. 1

UNI YK'" I IVO

Appendix D
PROCESSOR AND STORAGE

SECTION:

APPENDIX D. PROCESSOR UNIT

I~

Preven

Store (

F

~STRUCTIONS OR CAPABILITY

t All I/O Interrupts and Jump (PAIJ-72,13)

:hannel Number (SCN-72,14):

~or a = °

~or a = 1

Initiat

both a

e Interprocessor Interrupt (111-73,14), for

= ° and a := 1

.
Enable , Day Clock (EDC-73,14), for a = 118

Disabl e Day Clock (DDC-73,14), for a = 128

Load L _ast Address Register (LLA-73,16), for a= 1

Test a nd Set (TS-73,17)

Maxim urn Main Storage Size

Interpr etation of bit 17 or PSR

Is ESI quarter word logic included?

Used v vith Avai I abi I ity Control Un it

of the CPU in real time mode on Halt Jump Effect
(HJ) a nd Halt Keys And Jump (HKJ)

Time r

CPU 0

cabine

leeded to update real time clock

perability if a main storage power supply
t is inoperative:

~oninter leaved main storage

Interleaved main storage

Is sub

attach

Fixed

system operable if power is down in a CPU

,ed to the SPI ?

Address:

Status word made available with

~xternal interrupt

rest and set interrupt entrance

DIFFERENCES

TYPE 3011-95 TYPE 3011-97 TYPE 3011-99

Privileged Privileged Not Privileged

As defined As defined As defined

As defined Undefined for some; Undefined

as defined for others

As defined Undefined for some; Undefined

as defined for others

As defined Undefined for some; Undefined
as defined for others

As defined Undefined for some; Undefined

as defined for others

As defined Undefined for some; Undefined

as defined for others

As defined As defined Illegal instruction
fault interrupt

262K 262K 131K

Quarter word Quarter word Ignored

indicator indicator

Yes Yes No

Yes No No

No effect Prevents halt for some; Prevents halt

no effect for others

0.375 f.lS 0.3'75 fls 0.625 fls

Not appl icable Operable Operable

Operable Operable for some Not appl icable

CPU's; nonoperable
for other s

Yes Yes, if CPU includes No

shared subsystem kit

2008 + CPU# 2008 + CPU# 23°8

2448 + MSR 2448 + MSR No Test and Set

instruction

1
PAGE:

UNIVAC IIUlS I\ppenUlX CJ

PROCESSOR AND STORAGE
UP-40S3

Rev. 1
~----~--,----------------------~--------------------~------------~------------~-----------

SECTION: PAGE:

APPENDIX E. INSTRUCTION
REPERTOIRE

E.l. INTRODUCTION

Table E-1 lists the UNIVAC 1108 instruction repertoire in function code order.
This table also provides the mnemonic, the instruction name, a brief description,
and the execution time for each instruction. Table E-2 cross-references the
mnemonic with the function codes.

FUNCTION
CODE (OCT AL)

DESCRIPTION®
EXECUTION TIME

MNEMONIC INSTRUCTION
f j

IN I1SEC CD

00 - - Illegal Code Causes illegal instruction -
interrupt to address 2418

01 0-15 S,SA Store A (A) ~ U .75

02 0-15 SN, SNA Store Negative A -(A) ~ U .75

03 0-15 SM, SMA Store Magn i tude A \(A)\ ~ U .75

04 0-15 S,SR Store R (Ra) ~ U .75

05 0-15 SZ Store Zero Zeros ~ U .75

06 0-15 S, SX Store X (Xa) ~ U .75

07 - - Illegal Code Causes illegal instruction -
interrupt to address 2418

10 0-17 L, LA Load A (U) -) A .75

11 0-17 LN,LNA Load Negative A -(U) ~ A .75

12 0-17 LM, LMA Load Magnitude A \(U)\ ~ A .75

13 0-17 LNMA Load Negative Magnitude A -\(U)\ ~A .75

14 0-17 A, AA Add to A (A) + (U) ~ A .75

15 0-17 AN,ANA Add Negative to A (A) - (U) ~ A .75

16 0-17 AM, AMA Add Magnitude to A (A) + \(U)\ ~ A .75

17 0-17 ANM,ANMA Add Negative Magnitude to A (A) - \ (U)\ ~ A .75

20 0-17 AU Add Upper (A)+(U) ~ A+ 1 .75

21 0-17 ANU Add Negative Upper (A) - (U) ~ A + 1 .75

22 0-15 BT Block Transfer (Xx + u) ~ Xa + u; 2.25 + 1.5K

repeat K times always
L....

See notes at end of table.
Table E-7. Instruction Repertoire

(Part 7 of 70)

Rev. 1 PROCESSOR AND STORAGE
Appendix E

SECTION: PAGE:

FUNCTION
CODE (OCTAL) EXECUTION TIME

MNEMONIC INSTRUCTION DESCRIPTION® IN (lSEC CD
f j

2.3 0-17 L, LR Load R (U) -') Ra .75

24 0-17 A, AX Add to X (Xa) + (U) -') Xa .75

25 0-17 AN,ANX Add Negative to X (Xa) - (U) -') Xa .75

26 0-17 LXM Load X Modifier (U) X . X -') a17_0 ' a35- 18
.875

unchanged

27 0-17 L, LX Load X (U) -') Xa .75

30 0-17 MI Multiply Integer (A) · (U) -') A,A + 1 2.375

31 0-17 MSI Multiply Single Integer (A) · (U) -') A 2.375

3:2 0-17 MF Multiply Fractional (A) · (U) ~ A,A + 1 2.375

3:~ - - Illegal Code Causes illegal instruction -
interrupt to address 2418

34 0-17 01 Divide Integer (A,A + 1) + (U) -') A; 10.125

Remainder -') A + 1

31-.) 0-17 DSF Divide Single Fractional (A) + (U) -') A + 1 10.125

3() 0-17 OF Divide Fractional (A,A + 1) + (U) -') A; 10.125

Remainder -') A + 1

3i' - - Illegal Code Causes illegal instruction -
interrupt to address 2418

40 0-17 OR Logical OR (A) [$I (U) -') A + 1 .75

41 0-17 XOR Logical Exclusive OR (A) oom (U) -') A+ 1 .75

4'" L. 0-17 AND Logical AND (A) mIDJ (U) -') A+ 1 .75

43; 0-17 MLU Masked Load Upper [(U) rJIDJ (R2)] [$I .75

[(A) fJIDl (R2)p] -') A'+ 1

44 0-17 TEP Test Even Par ity Skip N I if (U) rJII!] (A) 2.00 skip

have even par ity 1.25 NI

45 0-17 TOP Test Odd Parity Skip N I if(U) rm!l (A) 2.00 skip

have odd parity 1.25 NI

46 0-17 LXI Load X Increment (U) -') Xa ; Xa 1.00
35-18 17-0

unchanged

47 0-17 TLEM Test Less Than or Skip NI if (U) < (Xa) ; 1.75 skip
- 17-0

1.00 NI Equal to Modifier
always (Xa) + (Xa)

TNGM Test Not Greater Than 17-0 35-18

Modifier
-) Xa

17-0

50 0-17 TZ Test Zero Skip NI if (U) = ± 0 1.625 skip
.875 NI

See notes at end of table.

Table E-7. Instruction Repertoire

(Part 2 of 70)

v y"' ua Appendix ~
PROCESSOR AND STORAGE

SECTION: PAGE:

FUI~CTION

CODE (OCT AL)
DESCRIPTlON®

EXECUTION TIME
r" MNEMONIC INSTRUCTION IN {LSEC CD

f j

51 0-1"7 TNZ Test Nonzero Skip NI if (U) 1= ± 0 1.625 skip

.875 NI

52 0-17 TE Test Equal Skip NI if (U) = (A) 1.625 skip

.875 NI

53 0-17 TNE Test Not Equal Skip N I if (U) 1= (A) 1.625 skip

.875 NI

54 0-17 TLE Test Less Than or Equal Skip NI if (U) ~ (A) 1.625 skip

TNG Test Not Greater .875 NI

55 0-17 TG Test Greater Skip NI if (U) > (A) 1.625 skip

" .875 NI

56 0-17 TW Test Within Range Skip NI if (A) < (U)'::; (A+ 1) 1.75 skip

1.00 NI

57 0-17 TNW Test Not Within Range Skip NI if (U) .:s; (A) or 1. 75 skip

(U) > (A+ 1) 1.00 NI

60 0-17 TP Test Positive Skip NI if (-U)35 = 0 1.50 skip

.75 NI

61 0-17 TN Test Negative Skip NI if (U)35 = 1 1.50 ,skip

.75 NI

62 0-17 SE Search Equal Skip NI if (U) = (A), 2.25 + .75K

else repeat always

63 0-17 SNE Search Not Equal Skip N I if(U) 1= (A), 2.25 + .75K

else repeat always

64 0-17 SLE Search Less Than or Equal Skip NI if (U) .::; (A), 2.25 + .75K

SNG Search Not Greater else repeat always

65 0-17 SG Search Greater Skip N I if (U) > (A), 2.25 + .75K

else repeat always

66 0-17 SW Search Within Range Skip NI if (A) < (U)..:S (A + 1), 2.25 + .75K

else repeat always

67 0-17 SNW Search Not Within Range Skip NI if (U) ~ (A) or 2.25 + .75K

(U) > (A + 1), else repeat always

70 CD JGD Jump Greater and Decrement Jump to U if (Control Register)ja 1.50 jump

> 0; go to N I if (Control .75 NI

Register)ja.:s; 0; always (Control

Register)ja-l~Control Registerja

71 00 MSE Mask Search Equal Skip NI if (U) rJID1 (R2) = (A) 2.25 + .75K

rJmJ (R2), else repeat always

See notes at end of table.
Table E-7. Instruction Repertoire

(Part 3 of 70)

Rev. 1 PROCESSOR AND STORAGE

FUNCTION
C()DE (OCTAL)

MNEMONIC INSTRUCTION
f j

n 01 MSNE Mask Search Not Equal

n 02 MSLE Mask Search Less Than

or Equal

MSNG Mask Search Not Greater

n 03 MSG Mask Search Greater

n 04 MSW Masked Search Within Range

ill 05 MSNW Masked Search Not Within Range

71 06 MASL Masked Alphanumeric Search

Less Than or Greater

71 07 MASG Masked AI phanumer ic

Search Greater

71 10 ,DA Double Precision Fixed.

Point Add

i'l 11 DAN Double Precision Fixed-Point
Add Negative

71 12 OS Double Store A

71 13 DL Double Load A

71 14 DLN Double Load Negative A

7'1 15 DLM Double Load Magnitude A

71 16 DJZ Double Precision Jump Zero

71 17 DTE Double Precision Test Equal

72 00 - Illegal Code

72 01 SLJ Store Location and Jump

72 02 JPS Jump Positive and Shift

See notes at end of table.

I
I U1"'1"'~U~ .. A~' ~

SECTION: PAGE:

DESCRIPTION~
EXECUTION T~E

IN p.SEC 1

Skip NI if (U) mI!l (R2) t (A) 2.25 + .75K

t1IDl (R2), els.e repeat always

Skip NI if (U) fJID) (R2) S (A) 2.25 + .75K

mm (R2), else repeat always

Skip NI if (U) fJIDl (R2) > (A) 2.25 + .75K

t1IDl (R2), else repeat always

Skip NI if (A) mm (R2) < (U) 2.25 + .75K
t1IDl (R2) S (A + 1) fJIDl (R2), always

else repeat

Skip NI if (U) mI!1 (R2) ~ (A) 2.25+ .75K

mrn (R2) or (U) r..1m (R2) always

> (A + 1) mrn (R2), else repeat

Skip NI if (U) mrn (R2) s. (A) 2.25 + .75K

mrn (R2), else repeat always

Skip NI if (U) mrn (R2) > (A) 2.25 + .75K

IBIDJ (R2), else repeat always

(A,A + 1) + (U,U + 1) """" A,A + 1 1.625

(A,A + 1) - (U,U + 1) """" A,A + 1 1.625

(A,A + 1) """" U,U + 1 1.50

(U,U + 1) """" A,A+ 1 1.50

-(U,U +1) """" A,A + 1 1.50

I(~,U + 1).1 """" A,A + 1 1.50

Jump to U if (A,A + 1) = ± 0; 1.625 jump

go to NI if (A,A -t 1) t ± 0 .875 NI

Skip NI if (U,U + 1) = (A,A+ 1) 2.375 skip

1.625NI

Causes illegal instruction -
interrupt to address 2418

(P),- Base Address Modifier 2.125 always

[BI or BD] """" U 17-0; jump to

U+1

Jump to U if (Ahs = 0; go to 1.50 jump

NI if (A)3S = 1; always shift (A) .75 NI always

left circularly one bit position

Table E-1. Instruction Repertoire
(Part 4 of 70)

UP-40S3
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE
Appendix E

SECTION:

5
PAGE:

FUNCTION
EXECUTION (BME CODE (OCTAL)

MNEMONIC INSTRUCTION DESCRIPTION® IN I1 SEC 1 .. -
f j

72 03 JNS Jump Negative and Shift Jump to U if (Ahs = 1; go to NI 1.50 jump

if (Ahs = 0; always shift (A) .75 NI always

left circularly on one bit position

72 04 AH Add Halves (A)3S-l8 + (UhS-18 ~ A3S_' l8 ; .75 always

(A)17-0 + (U)17-0 ~ A 17- 0

72 05 ANH Add Negative Halves (A)SS-18 - (U)SS-18 -) A3S·· l8 ; .75 always

(A)17-0 - (U)17-0 ~ A 17- 0

72 06 AT Add Thirds (A)3S-24 + (UhS-24 ~ ASS-24 ; .75 always

(A)2S-l2 + (U)2S-l2 ~ A23- 12 ;

(A)ll-0 + (U)ll-0 ~ All -0

72 07 ANT Add Negative Thirds (A)SS-24 - (UhS-24 ~ ASS-24 ; .75 always

(A)23-l2 - (U)23-l2 ~ A23- l2;
(A)ll-0 - (U)ll-0 ~ All -0

72 10 EX Execute Execute the instruction at U .75 always

72 11 ER Executive Return Causes executive return 1.375 always

interrupt to address 2428

72 12 - Illegal Code Causes illegal instruction -
interrupt to address 2418

72 13 PAIJ Prevent All I/O Interrupts Prevent all I/O interrupts .75 always

and Jump and jump to U

72 14 SCN Store Channel Number If a = 0: channel number ~ U3- 0; .75

if a = 1: channel number ~ Us-o
and CPU number ~ US_4

72 15 LPS Load Processor State Register (U) ~ Processor State Register .75

72 16 LSL. Load Storage Limits Register (U) ~ SLR .75

72 17 - Illegal Code Causes illegal instruction -
interrupt to address 2418

73 00 SSC Single Shift Circular Shift (A) right circularly .75 always

U-places

73 01 DSC Double Shift Circular Shift (A, A + 1) right .875 always

circularly U-places

73 02 SSL Single Shift Logical Shift (A) right U-places; zerofill .75 always

73 03 DSL Double Shift Logical Shift (A, A + 1) right U-places; .875 always

zerofill

73 04 SSA Single Shift Algebraic Shift (A) right U-places; signfill .75 always

73 05 DSA Double Shift Algebraic Shift (A,A + 1) right U-places; .875 always

signfi II

See notes at end 0'(table.

Table E-1. Instruction Repertoire
(Part 5 of 10)

UP-4053

Rev. 1

UNIVAC IIUB

PROCESSOR AND STORAGE
SEC TION: PAGE:

FUNCTION
CODE (OCT AL)

DESCRIPTION®
EXECUTION TIME

MNEMONIC INSTRUCTION IN IlSEC CD
f j

73 06 LSC Load Shift and Count (U) -) A, shift (A) left 1.125

circularly until (A)3S*= (A)34; -

NUMBER OF SHIFTS-) A +- 1

73 07 DLSC Double Load Sh itt and Count (U,U +- 1) -) A,A +- 1; shift 2.125

(A,A +- 1) left circularly until

(A,A +- 1)71 *= (A,A +- 1)70;
NUMBER OF SHIFTS -) A + 2

73 10 LSSC Left Single Shift Circular Shift (A) left circularly .75 always
U-places

73 11 LDSC Left Double Shift Circular Shift (A,A +- 1) left .875 always
circularly U-places

73 12 LSSL Left Single Shift Logical Shift (A) left U-places; zerofill .75 always

73 13 LDSL Left Double Shift Logical Shift (A,A +- 1) left U-places; .875 always

zerofill

73 14 III Initiate Interprocessor Interrupt Initiate interprocessor interrupt .75 always

(a =0 or 1)

ALRM Alarm Turn on alarm .75 always

(a = lOa)

EDC Enable Day Clock Enable day clock .75 always

(a = 11a)

DOC Disable Day Clock Disable day clock .75 always

(a = 12a)

73 15 SIL Select Interrupt Locations (a) -) MSR .75 always

73 16 ·LCR Load Channel Select Register (Uh-o -) CSR .875

(a = 0)

LLA Load Last Address Register (U)z-o -) LAR .875

(a = 1)

73 17 TS Test and Set If (Uho = 1, interrupt to Alternate bank:

address 244a; if (Uho = 0, go to 1.625 interrupt

NI; always 01a -) U3S-3O ; .875 NI

(U)29-0 unchanged
Same bank:

2.0 interrupt

2.0 NI

74 00 JZ Jump Zero Jump to U if (A) = ± 0; 1.50 jump

go to NI if (A) *= ± 0 .75 NI

always

74 01 JNZ Jump Nonzero Jump to U if (A) =f. ± 0; 1.50 jump

go to NI if (A) == ± 0 .75 NI

always

See notes at end of table.
TobIe E-1. Instruction Repertoire

(Port 6 of 70)

Rev. 1 PROCESSOR AND STORAGE
I un_u __ u -

5 EC TION: PAGE:

FUNCTION
EXECUTION &E COOlE (OCT AL)

MNEMONIC INSTRUCTION DESCRIPTION® IN IlSEC 1

f j

74 02 JP Jump Positive Jump to Uif (A)35 = 0; 1.50 jump

go to NI if (A)35 = 1 .75 NI

always

74 03 IN Jump Negative Jump to U if (A)35 = 1 ; 1.50 jump

go to NI if (Ab5 = 0 .75 NI

always

74 04 JK Jump Keys Jump to U if a = 0 or if .75 always

J Jump
a = lit select jump indicator;

go to NI if neither is true

74 05 HKJ Halt Keys and Jump Stop if a = 0 or if [a mm I it .75 always

HJ Halt Jump
select stop indicators] 1= 0;

on restart or continuation,

jump to U

74 06 NOP No operation Proceed to next instruction .75 always

74 07 AAIJ Allow All I/O Interrupts Allow all I/O interrupts and .75 always

and Jump jump to U

74 10 JNB Jump No Low Bit Jump to U if (A)o = 0; 1.50 jump

go to N I if (A)o = 1 .75 NI

always

74 11 ,JB Jump Low Bit Jump to U if (A)o =: 1 ; 1.50 jump

go to NI if (A)o =0 .75 NI

always

74 12 .JMGI Jump Modifier Greater and Jump to U if (Xa) 17-0> 0; 1.50 jump

Increment go to NI if (Xa) < 0; .75 NI
17-0-

always (Xa) + (Xa)
17-0 35-18

always

~ X
a17

_
0

74 13 LMJ Load Modifier and Jump (P) - BASE ADDRESS MODIFIER .875 always

[BI or BD] ~ Xa ; jump to U
17-0

74 14 JO Jump Overflow Jump to U if Dl of PSR = 1; 1.50 jump

go to N I if D 1 =: 0 .75 NI

always

74 15 JNO Jump No Overflow Jump to U if Dl of PSR = 0; 1.50 jump

go to NI if Dl =: 1 .75 NI

always

74 16 JC Jump Carry Jump to U if DO of PSR =: 1 ; 1.50 jump

go to N I if DO =: 0 .75 NI

always

74 17 JNC Jump No Carry Jump to U if DO of PSR=:O; 1.50 jump

go to N I if DO =: 1 .75 NI

always
'---.

See notes at end of table.
Table E-1. Instruction Repertoire

(Part 7 of 10)

UP·4053
Rev. 1

UNIVAC 1108 Appendix t.;

PROCESSOR AND STORAGE SECTION: PAGE:

FUNCTION
CODE {OCTAL}

MNEMONIC INSTRUCTION DESCRIPTlON~ EXECUTION (3ME
IN j.tSEC 1

f j

75 00 LIC Load Input Channel For channel [a (ill]CS'R]: (U) .75
-) IACR; set input active;

c lear input mon itor

75 01 LlCM Load Input Channel and For channe I [a t!I3 CSR]: (U) .75
Monitor --,) IACR; set input active;

set input mon itor

75 02 JIC Jump On Input Channel Busy Jump to U if input active is set .75 always

for channel [a [ill) CSR]; go to

NI if input active is clear

75 03 DIC Disconnect Input Channel For channel [a [ill) CSR]: .75 always

clear input active; clear input

monitor

75 04 LOC Load Output Channe I For channel [a (i]3 CSR]: (U) .75
--,) OACR; set output active;
clear output monitor; clear

external monitor (lSI only)

75 05 LOCM Load Output Channel For channel [a (ill] CSR]: (U) .75
and Monitor --,) OACR; set output active;

set output monitor; clear

external function (lSI only)

75 06 JOC Jump on Output Channel Busy Jump to U if output active is .75 always

set for channel [a [ffiJ CSR];

go to NI if output active is clear

75 07 DOC Disconnect Output Channel For channe I [a tmJ CSR]: .75 always

c lear output active; c lear output

monitor; clear external function

75 10 LFC Load Function in Channel F~r channel [a [!J3 CSR]: (U) .75
--,) OACR; set output active (lSI

only), external function, and

force external function; clear

output monitor (lSI only)

75 11 LFCM Load Function in Channel For channel [a [ill) CSR]: (U) .75
and Monitor --,) OACR; set output active (151

only), externa.1 function, force

extern al funct i on, and output

monitor (151 only)

75 12 JFC Jump On Function in Channel Jump to U if force external .75 always

function is set for channel

[a [illJ CSR]; go to N I if force

external function is clear

See notes at end of table.

Table E- 7. Instruction Repertoire
(Part 8 of 70)

UP-40 Us

Rev. 1 SECTION: PAGE:

,--~------------~~~~~----~~~~.-----

UNIVAC 1108

PROCESSOR AND STORAGE
Appendix E

FUNCTION
EXECUTION TIME

COOiE (OCT AL)
OESCRIPTION0 IN IlSEC .CD MNEMONIC INSTRUCTION

f j

75 13 - Illegal Code If guard mode is set, causes .75 always

guard mode interrupt to address

2438 , If guard mode is not set,

same as NOP

75 14 AACI Allow All Channe I Allow all external interrupts .75 always

External Interrupts

75 15 PACI Prevent All Channel Prevent all external interrupts .75 always

External Interrupts

75 16 - Illegal Code

I
If guard mode is set, causes

1.75 always guard mode interrupt to address

2438 , If guard mode is not set,

75 17 - Illegal Code same as NOP

76 00 FA Floatin'g Add (A) + (U) ~ A; RESIDUE -) A+ 1 1.875

76 01 ,FAN Floating Add Negative (A) - (U) ~ A; RESIDUE ~ A+ 1 1.875

76 02 FM Floating Multiply (A) . (U) ~ A,A+ 1 2.625

76 03 FD Floating Divide (A) + (U) ~ A; REMAINDER 8.250

~A+1

76 04 LUF Load and Unpack Floating \(U)134-27 ~ A7-0, zerofill; .75 always

(U)26-0 ~ A + 126-0, signfill

76 0" ,) LCF Load and Convert to Floating (U)35 ~ A + 135; [NORMALIZED 1.125

(U)]26-0 ~ A+ 126-0; if (U)3S-= 0,
(A)7~0 ± NORMALIZING COUNT

~ A + 134-27; if (Uh5 = 1, ones

complement of [(A)7-0 ±
NORMALIZING COUNT]

~ A + 134-27

76 Oli MCDU Magnitude of Characteristic 11(A)135-27 -1(u)135-27I .75 always

Difference to Upper ~ A+ 18- 0; ZEROS ~ A+ 135-9

76 07 CDU Character istic Difference I(A)135-27 - I(U)b5-27~ A+ 18-0 : .75 always

to Upper SIGN BITS ~ A+ 135-9

76 10 DFA Double Precision Floating Add (A,A + 1) + (U,U+ 1) ~ A,A+ 1 2.625

76 11 DFAN Double Precision Floating Add (A,A + 1) - (U,U+ 1) ~ A,A+ 1 2.625

Negative

76 12 DFM Double Precision Floating (A,A + 1) . (U,U+1) ~ A,A+ 1 4.25

Multiply

76 13 DFD Double Precision Floating (A,A + 1) + (U,U+ 1) ~ A,A+ 1 17.250
Divide

Seo notes at end of table"
Table E-l. Instruction Repertoire

(Part .9 of 10)

UNIVAC 1108 Appendix E
PROCESSOR AND STORAGE

SECTION: PAGE:

FUNCTION
EXECUTION TIME CODE (OCTAL)

MNEMONIC INSTRUCTION D!=SCRIPTION 0 IN flSEC CD
f j

76 14 DFU Double Load and Unpack !(U)!34-24 ~ A, 0-0' zerofi II; 1.50
Floating (U)23-0 ~A+ 123-0, signfill;

(U + 1) ~A...+ 2

76 15 DFP Double Load and Convert (U) ~ A + 13S ; [NORMALIZED

to Floating (U,U + I)Js9-0 ~ A'+ 123-0 and

A + 2; if (U)3S = 0, (A), 0-0 ±
NORMALIZING COUNT ~

A + 134-24 ; if (Uhs = 1, ones

complement of [(A), 0-0 ±
NORMALIZING COUNT] ~

A + 134-24

76 16 FEL Floating Expand and Load If (U)3S = 0, (U)3S-27 + 16008 1.00

~ A3S-24 ; if(U)3S = 1, (UhS-27

- 16008 ~ A3S-24 ; (U)26-3 ~
A 23-0; (U)2_0 ~ A + 135-33 ;

(Uhs ~ A + 132 - 0

76 17 FCL Floating Compress and Load If (Uhs = 0, (UhS-24 -16008 1.625

~ A3S-27; if (U)3S= 1, (U)3S-24

+ 16008 ~ A35-27; (U)23-0

~ A26-3; (U + 1)3S-33 ~ A2-0

77 0-17 - Illegal Code Causes illegal instruction -

interrupt to address 2418

Notes:

CD The execution times given are for alternate bank memory access; for same bank memory access, execution time is
.75 microsecond greater. Exceptions to this either show the execution times for both types of memory access or

include the word "always" to indicate that the execution time is the same regardless of the type of memory access.

For function codes 01 through 06 and 22, add .375 microsecond to the execution times for 6-bit and 12-bit wr ites.

The execution time for a Block Transfer or any of the search instructions depends on the number of repetitions (K)
required; that is, the number of words in the block being transferred or the number of words searched before a find
is made.

CD INI stands for Next Instruction

CD The a and j fields together serve to specify any of the 128 control registers.

o If 28 rather than 27 subtractions are performed, add .25 microsecond to the execution time.

® If 61 rather than 60 subtractions are performed, add .25 microsecond to the execution time.

Table E-1. Instruction Repertoire
(Part 10 of 10)

H

UP·A053
Rev. 1

UNIVAC 1108

PROCESSOR AND STORAGE

FUNCTION FUNCTION FUNCTION

MNEMONIC CODE (OCTAL) MNEMONIC CODE (OCTAL) MNEMONIC CODE (OCTAL) MNEMONIC

f I j f I j f I j

A 14 DSF 35 LlC 75 00 SIL

A 24 DSL 73 03 LlCM 75 01 SLE

AA 14 DTE 71 17 LLA 73 16 SLJ

AACI 75 14 EDC
a=1

73 14 SM

,AAIJ 74 07
a= 118

LM 12 SMA

AH 72 04 ER 72 11 LMA 12 SN

ALRM 73 14 EX 72 10 LMJ 74 13 SNA
a= I08

FA 76 00 LN 11 SNE

AM 16 FAN 76 01 LNA 11 SNG

AMA 16 FCL 76 17 LNMA 13 SNW

AN 15 FD 76 03 LOC 75 04 SR

AN 25 FEL 76 16 LOCM 75 05 SSA

ANA 15 FM 76 02 I-PS 72 15 SSC

AND 42 HJ 74 05 LR 23 SSL

ANH 72 05 HKJ 74 05 LSC 73 06 SW

ANM 17 III 73 14 LSL 72 16 SX

ANMA 17 a=O or 1
LSSC 73 10 SZ

ANT 72 07 J 74 04 LSSL 73 12 TE

ANU 21 JB 74 11 LUF 76 04 TEP

ANX 25 JC 74 16 LX 27 TG

AT 72 06 JFC 75 12 LXI 46 TLE

AU 20 JGD 70 LXM 26 TLEM

AX 24 JIC 75 02 MASG 71 07 TN

BT 22 JK 74 04 MASL 7l 06 TNE

CDU 76 07 JMGI 74 12 MCDU 76 06 TNG

DA 71 10 IN 74 03 MF 32 TNGM

DAN 71 11 JNB 74 10 MI 30 TNW

DDC 73 14 JNC 74 17 MLU 43 TNZ
a== 128

JNO 74 15 MSE 71 00 TOP

DF 36 JNS 72 03 MSG 71 03 TP

DFA 76 10 JNZ 74 01 MSI 31 TS

DFAN 76 11 JO 74 14 MSLE 71 02 TW

DFD 76 13 JOC 75 06 MSNE 71 01 TZ

DFM 76 12 JP 74 02 MSNG 7l 02 XOR

DFP 76 15 JPS 72 02 MSNW 71 05 -
DFU 76 14 JZ 74 00 MSW 7l 04 -
DI 34 L 10 NOP 74 06 -
DIC 75 03 L 23 OR 40 -
DJZ 71 16 L 27 PACI 75 15 -
DL 7l 13 LA 10 PAIJ 72 13 -

DLM 71 15 LCF 76 05 S 01 -
DLN 7l 14 LCR 73 16 S 04 -
DLSC 73 07 a==O S 06 -
DOC 75 07 LDSC 73 11 SA 01 -
DS 7l 12 LDSL 73 13 SCN 72 14 -
DSA 73 05 LFC 75 10 SE 62

DSC 73 01 LFCM 75 11 SG 65
4 ___

Table E-2. Mnemonic/Function Code Cross-Reference

Appendix E
SECTION: PAGE:

FUNCTION
CODE (OCTAL)

f_~ __ j _

73 15

64

72 01

03

03

02

02

63

64

67

04

73 04

73 00

73 02

66

06

05

52

44

55

54

47

61

53

54

47

57

51

45

60

73 17

56

50

41

00

07

33

37

72 00

72 12

72 17

'15 13

75 16

'15 17

77

U P-4053 Rev. 1

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	6-80
	6-81
	6-82
	6-83
	6-84
	6-85
	6-86
	6-87
	6-88
	6-89
	6-90
	6-91
	6-92
	6-93
	6-94
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	xBack

