
Reference R1063 October 26, 1992

*C89

MTS C Staff

University of Michigan

Information Technology Division

Contents

1 Overview 9

2 Documentation 9

3 How to Run ∗C89 in MTS 9

3.1 Compiler Unit Assignments 10

3.2 Return Codes from the Compiler 11

3.3 Character Graphics . 12

4 Pragmas and Par Field Options 12

Page 2

5 Implementation-Defined Behavior 25

5.1 Diagnostics . 25

5.2 Environment . 26

5.3 Identifiers . 26

5.4 Characters . 26

5.5 Integers . 27

5.6 Floating Point . 28

5.7 Arrays and Pointers . 28

5.8 Registers . 28

5.9 Structures, Unions, Enumerations, and Bit-fields 29

5.10 Qualifiers . 30

5.11 Declarators . 30

5.12 Statements . 30

5.13 Preprocessing Directives . 30

5.14 Library Functions . 31

6 Local Extensions 31

6.1 Compiler Identification . 31

6.2 FORTRAN Linkage . 32

6.3 Saving the Return Code . 32

6.4 Access to the Save Area . 33

6.5 R-call Linkage . 33

6.6 Pseudo-registers . 33

6.7 Setting the Pseudo-register Base 34

October 26, 1992

Page 3

7 Writing Portable Code 34

8 Porting Code From Elsewhere to *C89 35

8.1 UNIX Code . 35

8.2 Identifier Case and Length . 36

8.3 Initialization of Variables . 37

8.4 Diagnosing Portability Errors 37

8.4.1 Illegal Character: xx (hex) 37

8.4.2 Missing Include File “xxx.h” 38

8.4.3 External Name Conflicts 38

8.5 File and Device Name Differences 39

8.6 Character Codes . 39

9 The Execution Environment 39

9.1 Stack Allocation . 40

9.2 Passing Parameters to the Main Program 40

9.3 Details of Parameter Passing 42

10 Calling Non-C Routines 43

10.1 Calling FORTRAN Routines 43

10.1.1 Type Equivalencies for FORTRAN 44

10.1.2 Return Codes . 45

10.1.3 Mixing FORTRAN and RCALL 46

Reference R1063

Page 4

10.2 Conflicts between ∗C89LIB and MTS Library Routines . . . 46

10.3 Getting C rather than MTS Functions 46

10.4 Getting MTS rather than C Functions 46

10.5 Calling PLUS Routines . 47

10.6 Calling Assembly Language Routines 47

11 Calling C From Foreign Environments 49

11.1 Using FORTRAN Linkage . 50

11.2 Using MTS Coding Convention Linkage 51

11.2.1 Initialization of the C Environment 51

11.2.2 Closing the C Environment 52

11.2.3 Calling ∗C89 from Plus 52

11.2.4 Calling C from Assembly Language 53

12 Putting Debugging Tools Into the Source 54

13 Debugging With SDS 55

13.1 Invoking SDS . 55

13.2 Storage Layout . 56

13.3 Setting Breakpoints . 56

13.4 Continuing Execution after a Break 57

13.5 Removing Breakpoints . 57

13.6 Displaying Variables . 58

October 26, 1992

Page 5

13.6.1 Displaying External Variables 58

13.6.2 Displaying Static Variables 58

13.6.3 Displaying Local (auto) Variables 59

13.6.4 Displaying Parameters 60

13.6.5 Displaying Pseudo-registers 61

13.7 Other Useful SDS Commands 61

13.8 Correspondence between ∗C89 and SDS Types 62

14 The Library and Header Files 63

14.1 The ∗C89 Run-Time Library 64

14.2 Header Files . 64

14.2.1 Standard Header Files 65

14.2.2 UNIX Header Files . 65

14.2.3 MTS Header File . 65

14.2.4 Header File Search Order 66

15 The MTS ∗C89 Library, Headers, and Macros 66

15.1 assert.h - Debugging Aid . 67

15.2 ctype.h - Character Handling 67

15.2.1 isascii . 69

15.2.2 toascii . 69

15.3 math.h - Mathematics . 70

15.3.1 Treatment of Error Conditions 70

Reference R1063

Page 6

15.4 signal.h - Signal Handling . 71

15.5 stdio.h - Input/Output . 74

15.5.1 Header Definitions . 74

15.5.2 Input/Output Alternatives 74

15.5.3 MTS File Organization 75

15.5.4 File Types and Input/Output Modes 76

15.5.5 Control Characters in Output Streams 78

15.5.6 Carriage Control Characters 79

15.5.7 MTS File Names . 80

15.5.8 Initial Stream Assignments 81

15.5.9 Random Access . 83

15.5.10Terminal Input/Output 84

15.5.11Using the MTS I/O Routines 84

15.5.12 Implementation Specifics for the I/O Routines 84

15.6 stdlib.h - General Utilities . 86

15.6.1 Implementation Specifics for the Utilities 86

15.7 string.h - String Handling . 87

15.7.1 memcmp . 87

15.7.2 strerror . 87

15.7.3 stricmp . 87

15.7.4 strnicmp . 88

October 26, 1992

Page 7

15.7.5 strchr . 88

15.7.6 strrchr . 89

15.7.7 strlwr . 89

15.7.8 strupr . 90

15.7.9 reverse . 90

15.8 time.h - Date and Time . 91

15.9 mts.h - MTS Specific Routines 91

15.9.1 atoe . 92

15.9.2 etoa . 92

15.9.3 query . 93

16 BSD4.3 UNIX Routines 94

16.1 Kernel Routines . 94

16.1.1 File Access - Querying and Modifying 94

16.1.2 Miscellaneous I/O Routines 95

16.1.3 Sockets in ∗C89LIB 96

16.1.4 Library Utility Routines 97

16.1.5 Signals in ∗C89LIB . 98

16.1.6 Other Unimplemented Kernel Routines 98

16.2 Non-Kernel Routines . 99

16.2.1 I/O Routines . 99

16.2.2 Signal . 99

16.2.3 Character Macros . 100

16.2.4 Other Implemented Routines 100

16.2.5 Unimplemented Routines 101

Reference R1063

Page 8

17 Incompatibilities With ∗C87 102

17.1 Incompatibilities with ∗C87LIB 102

17.2 Incompatibilities with ∗C87 Compiler 103

October 26, 1992

Page 9

1 Overview

∗C89 is a C compiler derived from the C/370 compiler developed by AT&T
Information Systems, although almost all of the original AT&T code has
been replaced. ∗C89 now has numerous improvements and is in conformance
with the American National Standard for Information Systems – Program-
ming Language C (ANSI X3.159-1989), hereafter referred to as the ANSI C
Standard.

The ∗C89 compiler and library attempt to satisfy three goals:

1. to provide a good implementation of the standard language and library,

2. to support many of the UNIX (UNIX is a registered trademark of
AT&T Information Systems) library routines, and

3. to provide support for Michigan Terminal System (MTS) routines.

2 Documentation

This document does not provide information on the C language or C library
except where features are implementation-defined or are local extensions.

A copy of a recent ANSI C Standard can be obtained from Dollar Bill Copy-
ing on Church Street near South University (Ann Arbor, Michigan, USA).
For information on the UNIX routines that are not part of the ANSI Stan-
dard, refer to UNIX Programmer’s Reference Manual (PRM) – 4.3 Berkeley
Software Distribution, from University of California, Berkeley.

3 How to Run ∗C89 in MTS

The MTS command to run the ∗C89 compiler is

$RUN *C89 units PAR=options

Reference R1063

Page 10 3 HOW TO RUN ∗C89 IN MTS

In some cases it may be desirable to add some options to control the com-
pilation. In particular, it may beconvenient to organize a group of include
files into an include library. An include library is a mechanism that allows
a single file to be partitioned into one or more “members,” each of which
corresponds to a single header file. These differences provide a way to com-
pile a C program without changing the #include lines in the source code.
There may be cases in which a file on some other system is named in such
a way that it can’t exist on MTS.

An include library consists of two parts, a directory and the contents of
the include member. The directory starts at the first line in the file and
is terminated by a line with eight zeroes. Each line of the directory has a
member name and the line number (separated by one or more blanks) where
the member is located in the file. Members are separated by $ENDFILEs.

Whenever a #include is given, ∗C89 will search through all specified include
libraries for the “file.”

Unlike normal MTS files, a member of an include library has a name that

• can be up to 255 characters.

• is case sensitive (e.g., XYZ.h is different from xyz.h).

• may consist of any characters other than blanks.

There may be cases in which a file on some other system is named in such
a way that it can’t exist on MTS. A program residing on such a system
can be moved to MTS if the file names and the #include lines are changed
to reflect MTS restrictions. An include library provides a way to compile
such C programs without changing the #include lines in the source code.
However, in many cases it is not necessary to use include libraries. Instead,
individual include files can be placed in separate MTS files provided the
restrictions on MTS file names are satisfied.

3.1 Compiler Unit Assignments

The units described above may be assigned as follows:

October 26, 1992

3.2 Return Codes from the Compiler Page 11

INPUT= source program.

SERCOM= error messages.

PRINT= source and object listing.

OBJECT= object module.

2= additional #include libraries containing header files.

99= if assigned, the PAR field will be read from this unit.

Typically, only INPUT and OBJECT are assigned.

∗C89 does not allow INPUT to be assigned to the same file as any of SERCOM,
PRINT or OBJECT nor does it allow 2 to be assigned to the same file as any
of SERCOM, PRINT or OBJECT. Exception: if INPUT is the terminal, ∗C89 will
allow INPUT to be the same as PRINT, SERCOM, or both.

3.2 Return Codes from the Compiler

The MTS return codes generated by ∗C89 are as follows:

0 The compilation was successful (except for possible warning
messages).

4 A file required by ∗C89 couldn’t be accessed. (Exception:
#include files that can’t be accessed cause rc=8.)

8 One or more compile-time errors were detected or an include

file couldn’t be accessed.

12 The compiler ran out of memory.

16 An internal failure occurred in ∗C89.

Note: If two or more of these conditions apply, the condition with the highest
number prevails. That is, if there are compilation errors and ∗C89 ran out
of memory, the return code is 12.

Reference R1063

Page 12 4 PRAGMAS AND PAR FIELD OPTIONS

3.3 Character Graphics

If a terminal doesn’t support the full range of characters needed to program
in C, it is possible to use the alternate character representations described
in the ANSI C Standard. Some terminals may display certain characters
in a form that may not be familiar. The circumflex (ˆ) appears on some
terminals as an up-arrow (↑) and the tilde (˜) appears on some terminals as
a logical negation(¬).

Also, the circumflex and backslash (\) will not print on the line printer and
may print as other graphics in some fonts on the page printer.

4 Pragmas and Par Field Options

There are numerous options built into the ∗C89 compiler. These options
can be specified either in the PAR field of an MTS $RUN command or
in a #pragma command in the source program. Since MTS doesn’t allow
command lines longer than 256 characters, ∗C89 will read the PAR field in-
formation from unit 99 if it has been assigned. This optional method of
specifying the PAR field is most useful for macros that generate commands.
The PAR field and #pragma option names are case-insensitive and may be
upper, lower, or mixed case. Most options can be negated by prefixing them
with “∼” or “NO”.

When these options are specified in the PAR field, their scope is the entire
compilation unit. When specified in a pragma, the scope is indicated with
each description.

The ANSI C Standard gives no guidance on the names and syntax of prag-
mas, so they are unique to this implementation. Note that the ANSI C
Standard allows unrecognized pragmas to be ignored without an error, so
many of the following pragmas may not impair portability, although some
might conflict with a pragma on another compiler.

Of the multitude of options, only a few are frequently used. These are:

SYM to aid in debugging,

October 26, 1992

Page 13

PROPER to have the compiler diagnose as many suspect or non-
standard constructions as possible, and

UNIX4.3, UNIX or UNIX+ to port programs from UNIX.

The options and pragmas are:

AMODE

This option can be set to 24, 31, or ANY. This tells the loader
what the addressing mode of a given control section is. For
example, if a program can only operate in 24 bit mode, then this
option must be set. For most programs this will not be necessary.
The default is AMODE=ANY.

Pragma Scope: The value at the end of a function determines
how the code for the function is treated by the loader.

ASCII (default NOASCII)

This option causes all character strings and character constants
to be converted to ASCII internally. It is the user’s responsibility
to be careful with this option. If a PAR=ASCII routine calls a
routine that isn’t ASCII, there may be serious problems.

For the most part, the ∗C89 run-time system assumes EBCDIC.
For example, getc, scanf, etc., all return EBCDIC charac-
ters, and the printf and scanf formats must be expressed in
EBCDIC. This may change at some point in the future.

Until the library supports ASCII characters (e.g., for printf

formats), this option is of little utility.

Pragma scope: Takes effect immediately.

Reference R1063

Page 14 4 PRAGMAS AND PAR FIELD OPTIONS

CHECKIOVER (default NOCHECKIOVER)

This option causes the compiler to generate code to check that
the results of all signed integer computations fit into 32 bits.
Turning this on would be most useful when using the signal

facility to capture interrupts for integer overflow.

Pragma scope: The last value is used for the entire compilation
unit.

CHECKSTACK (default NOCHECKSTACK)

This option causes the compiler to generate code to check that
the stack doesn’t overflow. If the size of the stack is exceeded
from within a routine compiled with this option, an interrupt
occurs. Note that ∗C89LIB is not compiled with this option.

Pragma scope: The value at the end of a function is used to
determine how to generate code for that function.

DEFINC (default DEFINC)

This option causes the compiler to search the default include
library (∗C89INCLUDE). NODEFINC would only be used to in-
sure that all symbols are resolved by the user-specified include
libraries. This is intended only for use with libraries other than
∗C89LIB.

If NODEFINC is used, a definition for <unix.h> must appear in
a user-specified include member or in an include library.

Pragma scope: Takes effect immediately.

DEFINE(x)

This is processed as if a #define x 1 had been issued before the
source program had started. x may be any legal identifier. x is
not translated to upper case before use.

This option cannot be negated.

Not allowed as a pragma; use #define.

October 26, 1992

Page 15

DEFINE(x=e)

This is processed as if a #define x e had been issued before the
source program had started. x may be any legal identifier. e can
be any sequence of tokens. x and e are not translated to upper
case before use.

This option cannot be negated.

Not allowed as a pragma; use #define.

DEPEND (default NODEPEND)

When this option is in effect, a list containing the names of all
the source files and all the include files used by the compiler in a
given compilation is printed on the logical I/O unit PRINT. When
the DEPEND option is turned on, the LIST option is turned off and
the compiler does not parse the source nor does it produce an
object module (regardless of the setting of the OBJECT option).

The list produced may contain duplicate file names. This option
is intended for production of makefile dependencies.

Pragma scope: Takes effect immediately.

FILL=c(default NOFILL)

This option specifies a char-sized value that is used at run-time
to initialize each stack frame. This option can be used in debug-
ging when a problem with an uninitialized variable is suspected.

The value of c must fit into a single character, but can be ex-
pressed as any integer constant. For example, each of the follow-
ing has the same effect.

#pragma fill=’a’

#pragma fill=0x81

#pragma fill=129

Reference R1063

Page 16 4 PRAGMAS AND PAR FIELD OPTIONS

Pragma scope: The last value given this option within a function
is used for that function.

I=cccc (where cccc is an MTS userID)

This affects #include searches. This adds the userID cccc to
the list of userIDs to be searched when a quoted #include file
is specified. For example,

$run *C89 input=... par=i=W123 i=W456

Where the source file contains the following include:

#include "ink.h"

∗C89 will first look for the file W123:ink.h. If that doesn’t exist,
it will look for the file W456:ink.h, and if it isn’t there, it looks
for the file ink.h on the current userID. This option may be
specified more than once and the userIDs are searched in the
order specified.

This option is useful when compiling a program developed on
one userID from another userID.

#include directives that use angle brackets are unaffected by
this option.

This option cannot be negated.

Pragma scope: Takes effect immediately.

LANG=x (default LANG=ANSI)

The LANG option defaults to processing the ANSI C Standard
language. To aid in porting programs from UNIX, a few ad-
ditional syntax constructions are allowed that are non-standard
but commonly accepted by traditional Kernighan and Ritchie
compilers, when LANG=K&R is specified. For example, text ap-
pended to #endif will be ignored if the LANG=K&R option is set.

October 26, 1992

Page 17

LIST (default NOLIST)
LIST=n (default LIST=0)

The LIST option controls echoing of source lines to PRINT. The
LIST identifier by itself is the same as LIST=1. NOLIST is the
same as LIST=0.

If LIST=1, everything except #include files is listed. If LIST=2,
everything, including #include files, is listed.

If the logical I/O unit PRINT is assigned and the DEPEND option
is off, LIST is set to 1.

Pragma scope: Takes effect immediately.

LOADNAME(cname,lname)

This option causes the external name cname in the source pro-
gram to be mapped into the name lname in the object module.
This option can be used to allow C programs to access system
names that don’t conform to C syntax.

Pragma scope: The same scope as cname.

LONG (default LONG)

This option suppresses truncation of external names. If NOLONG
is specified, external names are truncated to eight characters.

Pragma scope: The last value is used for the entire compilation
unit.

MC (default NOMC)

Normally, external names are mapped to upper case; for exam-
ple, fopen is changed into FOPEN. If MC is selected, then external
names are left in the original case, i.e., mixed case. Note: The

Reference R1063

Page 18 4 PRAGMAS AND PAR FIELD OPTIONS

∗C89 run-time system is compiled with NOMC, and hence, MC pre-
vents the use of ∗C89LIB and makes use of *OBJUTIL, SDS and
similar programs.

Pragma scope: The last value is used for the entire compilation
unit.

MTSLINE (default NOMTSLINE)

This option determines how #line commands are interpreted
and how SYM records are generated. If MTSLINE is in effect,
the numbers in these commands are assumed to be MTS line
numbers multiplied by 1000. For example:

#line 1500

is assumed to refer to line 1.500. If NOMTSLINE is specified, then
numbers are assumed to be integral line numbers. For example:

#line 45

is assumed to refer to line 45. NOMTSLINE is useful when compil-
ing source code that originated on a non-MTS system.

Pragma scope: Takes effect immediately. If no #line commands
appear in the source file, SYM records are generated assuming
MTS line numbers. Otherwise, the value of the MTSLINE op-
tion at the time of the last #line command in the source file
determines how SYM records are produced by the compiler.

OBJECT (default OBJECT)

Object code generation may be suppressed with NOOBJECT.

Pragma scope: The last value is used for the entire compilation
unit.

OBJLIST (default NOOBJLIST)

October 26, 1992

Page 19

If OBJLIST is specified, an object listing is written to the I/O
unit PRINT.

Pragma scope: The last value is used for the entire compilation
unit.

OPT=n (default OPT=1)

OPT=0 causes no analysis of the intermediate code to be made to
determine code size or register usage, so code is generated
using worst-case assumptions. Compilation is slightly faster
than OPT=1.

NOOPT can be used as an alternative to OPT=0.

OPT=1 causes two passes to be made over the intermediate code.
A first quick pass makes an analysis of the code size and
register usage. A second pass is then made to generate code
that is usually more efficient.

OPT=2 additionally will use peephole optimization techniques to
clean up various inefficiencies in the generated object code
(e.g., eliminate dead code, eliminate redundant loads) Also
OPT=2 causes variables to be assigned to registers under
certain conditions (see section 5.8, “Registers,” for more
information).

Pragma scope: The value at the time of a declaration of a given
variable determines if that variable will be considered for assign-
ment to a register. For other properties of OPT, the value at the
end of a function determines how that function will be compiled.

PORT (default NOPORT)

If PORT is specified, ∗C89 prints warnings that indicate which
parts of a program might not be portable. This will not detect
all violations; neither does the presence of a warning guaran-
tee a non-portable program nor does the absence of a warning
guarantee a portable program.

The following cause a portability warning. Other features may
also be added to cause portability warnings.

Reference R1063

Page 20 4 PRAGMAS AND PAR FIELD OPTIONS

• The fortran, retcode, prvbase, and
pseudoregister extensions.

• The FILL, LOADNAME, PROTO=0, RCALL and ZEROARG prag-
mas.

• Casts between pointers and integers.

• Casts between pointers to different types.

• Uses of identifiers beginning with an underscore in ways
that conflict with the ANSI standard.

Pragma scope: Takes effect immediately.

PROPER

The PROPER pragma stands for a collection of other pragmas
that would all be used if one were trying to write a maximally
portable and correct program. The pragmas set by PROPER are:

#pragma port standard warn=4 proto=4

Pragma scope: Takes effect immediately.

PROTO=n (default PROTO=2)

The PROTO option controls whether prototypes are required and
how they are used. It can have the following values:

PROTO=0 All prototypes are ignored.

PROTO=1 Permits the last parameter to be omitted without
generating an error or warning. This is to be used with
the ZEROARG option for compatibility with certain UNIX
implementations (e.g., that of Sun Microsystems) that allow
final parameters to be omitted, and this also supplies an
extra zero-valued parameter.

PROTO=2 Prototypes are used if provided, but the compiler
doesn’t insist on having them.

October 26, 1992

Page 21

PROTO=3 All function declarations, but not definitions, are
required to have prototypes.

PROTO=4 All function declarations and definitions are re-
quired to have prototypes.

Pragma scope: takes effect immediately.

RCALL(fname,inregs,outreg)

This option is used only to provide an interface to certain MTS
functions.

This option specifies that the function fname is to use R-call
linkage. The inregs parameter specifies which registers are to
be loaded with parameters, and the outreg parameter specifies
which register, if any, contains the result.

inregs is specified as a sequence of hexadecimal digits, one for
each of the general registers to be loaded with a parameter. Each
of the registers specified in inregs is restricted to the range 0-7.

Similarly, outreg specifies either general register R0 or R1.

For example,

#pragma rcall(xyz,043,1)

would declare the function xyz to use R-call linkage, loading the
first parameter into R0, the second into R4, and the third into
R3. The result will be returned in R1.

The register specifications are optional.

If inregs is omitted, parameters will be passed with an S-type
linkage, but it is still possible to specify outreg as 1.

If outreg is omitted, the value is returned in R0.

For example,

#pragma rcall(xxx,043) /* result in R0 */

#pragma rcall(yyy,,1) /* no param regs */

Pragma scope: The same scope as fname.

Reference R1063

Page 22 4 PRAGMAS AND PAR FIELD OPTIONS

RENT (default NORENT)

The option RENT causes all static and extern variables, as well
as string constants, to have the const attribute. This forces
∗C89 to check for possible re-entrancy violations. If you don’t
know what re-entrancy is, you don’t need to use this option.

Pragma scope: Takes effect immediately.

RMODE (default RMODE=ANY)

This indicates to the compiler where the code for the csect can
be loaded at time execution. This can be set to 24 or ANY.

Pragma scope: The value at the end of a function determines
how the code is treated by the loader.

STANDARD, STANDARD+, UNIX, and UNIX+ (default STANDARD)

These four options are especially useful in porting programs to or
from UNIX systems. The two effects these options have are: (1)
to define compile-time symbols that control which parts of the
standard header files are processed, and (2) to set other pragma
options.

STANDARD defines only those identifiers which are in the
standard header files and defined in the ANSI C Standard.
No additional UNIX symbols are defined.

This also sets LANG=ANSI and WARN=3.

STD and ANSI are allowed as equivalent abbreviations.

STANDARD+ gives all of the standard identifiers from the
standard header files and additionally defines all identi-
fiers that would normally be defined in the UNIX ver-
sion of the header file. In the few cases that the standard
and UNIX definitions conflict, the standard definitions take
precedence.

This also sets LANG=ANSI and WARN=3.

STD+ and ANSI+ are allowed as equivalent abbreviations.

October 26, 1992

Page 23

UNIX gives only those identifiers in the standard header files
that are defined in UNIX. No additional ANSI C Standard
identifiers are defined.

This also sets LANG=K&R and WARN=1.

UNIX+ defines those identifiers in the standard header files
that are defined in UNIX and additionally defines all non-
conflicting ANSI C Standard identifiers.

This also sets LANG=K&R and WARN=1.

Note that if UNIX or UNIX+ is used and you also want to have
the compiler check for warnings, the WARN option must be used
after the UNIX or UNIX+ option. For example,

PAR=UNIX+ WARN=3

Pragma scope: Takes effect immediately.

SUMMARY (default SUMMARY)

This option provides a summary of the object code produced
during the compilation of each function. The summary includes
the number of bytes required for the generated code, constants,
and stack. It also gives information about the number of unused
general and floating point registers.

Pragma scope: The last value is used for the entire compilation
unit.

SYM (default SYM)

If SYM is on, SDS SYM records are generated in the object module.
See section 13, “Debugging With SDS.”

Pragma scope: The last value is used for the entire compilation
unit.

TEST

Synonym for SYM.

Reference R1063

Page 24 4 PRAGMAS AND PAR FIELD OPTIONS

UNDEF(x)

This is processed as if a #undef x had been issued before the
source program had started. x may be any legal identifier. As
many DEFINE and UNDEFs can be issued as desired. If more than
one is given, they are processed in order. x is not translated to
upper case before use.

This option cannot be negated.

Not allowed as pragma; use #undef.

UNIX

See STANDARD

UNIX4.3

This is short-hand for UNIX+, WARN=1 and LANG=K&R. Note that if
it is desired to have the compiler check for warnings, the WARN
option must be used after the UNIX4.3 option. For example,

PAR=UNIX4.3 WARN=3

WARN=n (default WARN=3)

The WARN option controls which warning messages are printed.
The possible values range from 0 (no warnings) to 4 (all possible
warnings are printed).

0 No warnings. NOWARN is a synonym for WARN=0.

1 Serious warnings. E.g., a loop doesn’t appear to terminate.

2 Possible confusion warnings. E.g., the assignment operator
(=) occurs where an equality operator (==) would usually
occur. (Also includes WARN=1).

October 26, 1992

Page 25

3 Default type warnings. E.g., int was omitted. (Also includes
WARN=1 and WARN=2).

4 Stylistic warnings. E.g., a variable in an inner block hides
another by the same name in an outer block. (Also includes
WARN=1, WARN=2 and WARN=3).

Pragma scope: Takes effect immediately.

ZEROARG (default NOZEROARG)

If ZEROARG is specified, an extra int zero argument is appended
to every parameter list and PROTO=1 is set. This is provided to
mimic the behavior of the Sun Microsystems C compiler.

Pragma scope: Takes effect immediately.

5 Implementation-Defined Behavior

The ANSI C Standard specifies that every C compiler and library should
describe its implementation of the following standard features.

5.1 Diagnostics

• All diagnostics produced by ∗C89 have the form:

<file-name>, line <line-number>: <message>

If <message> begins with the “warning:”, the error will not suppress
object code generation. If it does not begin with “warning:”, it will
suppress object code generation.

Reference R1063

Page 26 5 IMPLEMENTATION-DEFINED BEHAVIOR

5.2 Environment

• The semantics of the arguments passed from the MTS command envi-
ronment to main are described in section 9, “Execution Environment.”

• The nature of interactive devices is described in MTS Volume 4: Ter-
minals and Networks in MTS, Reference R1004.

5.3 Identifiers

• There may be up to 256 significant characters in identifier names. The
ANSI C Standard requires only 31 significant characters.

• By default, up to 128 characters are used in external names. The
ANSI C Standard requires only 6 significant characters, though most
implementations support many more. If the option PAR=NOLONG is
specified, only 8 characters will be used in external names.

• By default, case is insignificant in external names. If the option PAR=MC

is specified, case is significant.

5.4 Characters

• The EBCDIC character set is used for both compilation and execution.
Further information on exactly which characters are supported for
the various devices can be found in MTS Volume 1: The Michigan
Terminal System, Reference R1001.

• No alternate shift states are provided for multibyte characters.

• There are 8 bits in a character in the execution character set.

• Normally, no mapping is performed between string constants in the
source file and the execution environment. If the option ASCII is
supplied, the characters in string constants are mapped from ASCII
to EBCDIC.

• All characters that might be present in a string constant can be rep-
resented in the execution environment.

October 26, 1992

5.5 Integers Page 27

• A character constant that is longer than one character is packed into
an int right-justified and zero-filled. No more than four characters
can be placed into an int. (This is also true for multibyte characters
and wide-character constants.)

• Multibyte characters will be converted to wide-character constants
with the mbtowc routine under all legal locales.

• A “plain” char is unsigned.

5.5 Integers

• All integers are represented in two’s-complement notation and have
sizes and byte (8-bit) alignments as follows. The signed and unsigned

attributes do not affect the size or alignment.

char is 1 byte, aligned on a byte boundary.

short is 2 bytes, aligned on a two-byte boundary.

int is 4 bytes, aligned on a four-byte boundary.

long int is also 4 bytes, aligned on a four-byte boundary.

• Converting an integer to a signed integer of shorter length will result
in a value with the same high order bit (or sign bit) and other bits
removed from the left until the value fits. Converting an unsigned
integer to a signed integer of the same length will result in the same
bit pattern but now interpreted as a signed value. If this results in
truncation, the new value will be negative.

• Bit-wise operations on signed integers simply take place on their nor-
mal two’s-complement representation.

• The sign of the remainder in an integer division is the same as the sign
of the dividend.

• The result of a right shift of a signed negative integer fills bit positions
on the left with the sign bit.

Reference R1063

Page 28 5 IMPLEMENTATION-DEFINED BEHAVIOR

5.6 Floating Point

• The representation of floating-point numbers is described in detail in
the IBM System/370 Principles of Operation. The sizes and align-
ments are as follows:

float is 4 bytes, aligned to a 4-byte boundary.

double is 8 bytes, aligned to an 8-byte boundary except
when passed as a parameter, when it is aligned to a
4-byte boundary.

long double is 16 bytes, aligned to an 8-byte boundary
except when passed as a parameter, when it is aligned
to a 4-byte boundary. Currently, only the first 8 bytes
are used in computations.

• If an integer is too large to be converted to a float, it will be rounded
to a float.

• A floating-point number that is converted to a narrower floating-point
value is rounded.

5.7 Arrays and Pointers

• The maximum size of an array can be held in an unsigned int.

• Casting may take place between pointers and integers without altering
the bit pattern, but this may generate a warning.

• The difference between two pointers may be held in an int.

5.8 Registers

• Register objects are placed into registers only if PAR=OPT=2 is specified,
the type of the object is integral or pointer, and there are enough free
registers (“integral” means char, short, int, long or enum). GR2

through GR7 are used for expression evaluation. Any of the registers
GR2 through GR7 not needed for expression evaluation can be used to

October 26, 1992

5.9 Structures, Unions, Enumerations, and Bit-fields Page 29

hold variables. For example, if GR2 is needed to evaluate an expression
and all other registers are free, then five registers are available for
register variables. The number of available registers can vary anywhere
from zero to six, depending on the complexity of the function.

5.9 Structures, Unions, Enumerations, and Bit-fields

• Members of a union accessed by a member of a different type will
access the original bit pattern.

• The first byte of a struct or union is aligned to the largest alignment
required by any of the members of that struct or union, except when
passed as a parameter, when it is aligned to a four-byte boundary. For
members of a union or struct, the alignment is as follows:

char is aligned on a byte boundary.

short is aligned on a two-byte boundary.

int is aligned on a four-byte boundary.

long int is aligned on a four-byte boundary.

enum is aligned on a four-byte boundary.

float is aligned to a four-byte boundary.

double is aligned to an eight-byte boundary.

long double is aligned to an eight-byte boundary.

pointers are aligned to a four-byte boundary.

arrays are aligned the same as the members of that array.

struct is aligned the same as the largest alignment needed
by any of the members.

union is aligned the same as the largest alignment needed
by any of the members.

bit fields are never aligned except when the field would
otherwise straddle four consecutive byte boundaries. In
such cases the bit field is aligned to the next byte bound-
ary to prevent this.

Alignment may require the insertion of padding bytes.

• “Plain” bit fields are treated as signed.

Reference R1063

Page 30 5 IMPLEMENTATION-DEFINED BEHAVIOR

• Bit fields are allocated from high-order to low-order bits within an
int.

• A bit field may straddle a byte boundary provided that this doesn’t
cause the field to straddle four consecutive byte boundaries, in which
case it will be aligned to the next byte boundary.

• enum types are implemented as int. Note that even though enums
types are implemented as int, a warning message will result when
enums are mixed with ints.

5.10 Qualifiers

• Currently, the volatile qualifier does not affect code generation. This
may be changed in future versions of the compiler.

5.11 Declarators

• There may be no more than 13 declarators modifying a type.

5.12 Statements

• There is effectively no limit on the number of case values allowed in
a switch statement.

5.13 Preprocessing Directives

• The EBCDIC character set is used in the preprocessor as well as during
execution. Character constants consisting of a single character are
never negative.

• The method of locating includable source is described in section 14.2,
“Header Files.”

• The processing of quoted #include files is described in section 14.2,
“Header Files.”

October 26, 1992

5.14 Library Functions Page 31

• The recognized #pragmas are described in section 4, “Pragmas and
Par Field Options.”

• If the time and date are not known (which should never happen)
TIME and DATE will have the values “18:59:59” and “Dec 31

1969” respectively.

5.14 Library Functions

• The null pointer (NULL) is represented as 4 bytes of all zeros.

Other implementation-dependent aspects of the library are described in sec-
tion 15, “The MTS ∗C89 Library, Headers, and Macros.”

6 Local Extensions

∗C89 has a number of extensions, which primarily help to provide an in-
terface to existing MTS routines. These extensions should not be used if a
portable program is desired.

6.1 Compiler Identification

Several macros are defined to make it possible for the code to identify
the compiler, operating system, and hardware that are being used. These
macros are:

_C89

_MTS

_IBM370

_SITExxx

Reference R1063

Page 32 6 LOCAL EXTENSIONS

(where “xxx” is a two- or three-letter site name. For example, at the Uni-
versity of Michigan this is “UM”; at Renssalaer Polytechnic Institute this is
“RPI”; at the University of British Columbia this is “UBC.”)

These macros can be used in a single source file that may be compiled either
by ∗C89 or another, incompatible, compiler. For example:

#ifdef _C89

*C89 stuff

#else

other compiler stuff

#endif

It is also possible to compile a file differently depending on where it is being
compiled. For example:

#ifdef _SITEUM

UM stuff

#endif

#ifdef _SITERPI

RPI stuff

#endif

6.2 FORTRAN Linkage

If a function is declared fortran, linkage to it will be by means of a stan-
dard IBM 370 S-type calling sequence. The details of the calling sequence
are described in MTS Volume 3: System Subroutine Descriptions, Reference
R1003, and in section 10.1, “Calling FORTRAN Routines.”

6.3 Saving the Return Code

It is possible to get the return code from a call. See section 10.1.2, “Return
Codes.”

October 26, 1992

6.4 Access to the Save Area Page 33

6.4 Access to the Save Area

Each function has a predefined array, called SAVEAREA, in its stack frame.
This is an array of 16 ints, which overlaps the coding conventions save area.
Values may be fetched from this area, and at the programmer’s risk, values
may be modified. For example, issuing the statement

__SAVEAREA[15] = 8;

allows a C routine to set the return code that can be tested by the caller.

6.5 R-call Linkage

The ability to call R-type routines is supported by means of the RCALL

pragma.

6.6 Pseudo-registers

The storage class pseudoregister allows variables to be allocated in the
pseudo-register vector. This is necessary only if re-entrant code is desired.
Example:

__pseudoregister int globals[100];

Such a variable can then be accessed just like any other variable. ∗C89
initializes the pseudo-register vector to all zeros before passing control to
the main program, provided the main program is written in C. This cannot
be guaranteed if the main program is written in PLUS.

A pseudo-register must not have an initializer.

∗C89 doesn’t produce re-entrant code by default. However, it is possible
to modify programs to be re-entrant. See the RENT option in section 4,
“Pragmas and Par Field Options.”

Reference R1063

Page 34 7 WRITING PORTABLE CODE

6.7 Setting the Pseudo-register Base

It is possible to specify a new pseudo-register area base on a call, for example:

sub(a, b, c, __prvbase w);

prvbase sets the value of GR11 to a desired value before making the call.
The expression following prvbase must be of a pointer type. On return
from the call, GR11 is restored to its previous value. This feature is provided
primarily for MTS system programmers.

7 Writing Portable Code

While it is quite possible to write C programs that can easily be moved
(ported) to other machines, care must be taken to achieve portability. Some
of the issues that must be considered are:

• Use the PORT Option.

Specify the PORT option so that some detectable portability violations
will be flagged by the compiler. Although this will not catch all prob-
lems, it will get some of them.

• Do Not Use int.

The code must not depend on the size of data elements. A common
offender is int, which is often either 16 or 32 bits. It is better to use
either #define or typedef to define a new identifier of the appropriate
size to use in declarations. To use int alone is to allow the compiler
implementor to make the size decision for you.

The following is recommended:

#define int8 signed char

#define int16 short

#define int32 int

October 26, 1992

Page 35

and then use only the identifiers int32, int16 and int8 in place of
int, short or char. When moving to a system that has a different
definition of int, it is only necessary to change these definitions.

• Make No Character Code Assumptions.

Avoid using the actual encoding of characters. MTS (∗C89) uses
EBCDIC character codes while most systems use ASCII.

• Use Variable Length Parameter Lists.

Variable length parameter lists should be handled using the type and
macros in <stdarg.h> (va list, va start, va arg, and va end). It
is advisable to use these macros because other C compilers may handle
variable length parameter lists in a different way or have types of
different sizes. However, the parameter passing method used by ∗C89
is compatible with that used by most UNIX C compilers.

• Isolate System Dependencies.

Avoid accessing system-dependent data structures, e.g., the fields in
a FILE structure, and try to isolate the system dependencies in a
separate module.

Remember that UNIX path names are, in general, quite different from
MTS file/device names. Code that refers to files or devices by name
is very likely to be system-dependent.

Don’t depend on ∗C89 extensions such as the FILL option.

8 Porting Code From Elsewhere to *C89

8.1 UNIX Code

Several options have been provided to make porting C programs written for
UNIX systems somewhat easier. The UNIX4.3 pragma (option) may provide
sufficient portability. See section 4, “Pragmas and Par Field Options,” for
details. Some UNIX C compilers append an additional zero argument to
parameter lists. If the code is coming from one of those compilers (e.g., that
used by Sun Microsystems), the ZEROARG pragma would be useful.

Reference R1063

Page 36 8 PORTING CODE FROM ELSEWHERE TO *C89

There are a number of UNIX functions in the library. However, the facilities
of MTS do not always provide the functionality necessary to implement some
of the UNIX functions.

8.2 Identifier Case and Length

The ANSI C Standard allows for some variation in how external variable
names are treated. It requires only a minimum of the first six characters to
be significant, ignoring any case distinctions. By default, ∗C89 allows 128
significant characters in external names but does ignore case distinctions.

Note that this is not the case for static and local identifiers.

For example, a declaration at the outer level (external)

int abc, ABC; /* illegal conflict of EXTERNAL identifiers */

is legal in many systems, but it will not work correctly in ∗C89.

The compiler may be able to diagnose some external name collisions but not
those occurring between separate compilation units.

If the option PAR=MC is specified, then the outer level declaration

int abc, ABC;

will be legal. (PAR=MC must not be used indiscriminately; see section 4,
“Pragmas and Par Field Options,” for more information).

October 26, 1992

8.3 Initialization of Variables Page 37

8.3 Initialization of Variables

At the beginning of execution, external and static variables are initialized
to all zeros.

No code should depend on the implicit initial values of auto variables, but
in fact, some imported code may inadvertently depend on the fact that
stack storage starts off with a value of zero (unlike MTS). The FILL pragma
may be used to set the entire stack frame to the fill value upon function
entry. Note that because the storage allocated for local variables within
inner blocks may overlap, the variables in inner blocks may not always be
set to the fill value.

The FILL pragma should not be used blindly except where there is a proven
problem, as it will slow execution.

Do not write programs that depend on the FILL feature, since the program
will not be portable.

8.4 Diagnosing Portability Errors

When moving a C program from elsewhere to MTS, ∗C89 will often pro-
duce many warning or error messages. Most of the warning messages are a
consequence of the diagnostics in ∗C89 and can be ignored (such warnings
can be controlled with the UNIX4.3 and WARN options).

Here are some suggestions for dealing with those errors that cannot be ig-
nored.

8.4.1 Illegal Character: xx (hex)

This probably indicates a problem was introduced as the file was transferred
to MTS. For example, it may not have been correctly translated from ASCII
to EBCDIC.

Reference R1063

Page 38 8 PORTING CODE FROM ELSEWHERE TO *C89

8.4.2 Missing Include File “xxx.h”

If the missing include file is a private include file, it should simply be trans-
ferred to MTS from the original system.

If the include file is a system include file from another system, the same
features may be available in ∗C89INCLUDE in a different include file. If
the equivalent features are not available, there may be serious difficulties in
getting the program to run on MTS.

8.4.3 External Name Conflicts

It is possible that the originating system’s method of processing external
names was different from that used by ∗C89 on MTS. The following error
message may indicate this problem:

Error: the following external names

do not resolve to unique loader names.

...

This will happen when the names differ only in upper and lower case letters
in the name as in XYZ and xyz.

In some cases the compiler will not recognize that external names are not
unique (for example, if the conflict is between names in separate compilation
units). In this case the name conflict will be diagnosed by the MTS loader.
Regardless of which program gives the warning, the solutions are the same.

In such cases one of the two names can be changed. This can be done using
C’s #define feature as follows:

#define name1 name2

Make sure the names you pick are all unique.

The LOADNAME option can also be used to help with these problems.

October 26, 1992

8.5 File and Device Name Differences Page 39

8.5 File and Device Name Differences

Even when a program compiles successfully, there is no guarantee that it
will run successfully. One problem is that programs on other systems (such
as UNIX) may use routines that do not exist in ∗C89LIB or MTS. Another
problem is that file naming schemes are quite different among different op-
erating systems. For example, if a program brought from UNIX refers to
a tape as /dev/rts8, that reference will have to be changed to something
that is a tape on MTS.

8.6 Character Codes

Since MTS uses EBCDIC and many other systems use ASCII, there may be
problems because the program assumes too much about the character set.
Problems sometimes arise because A-Z does not form a contiguous range in
EBCDIC. For example, the following is true in ASCII but not in EBCDIC:

’i’+1==’j’

9 The Execution Environment

Execution of a ∗C89 program usually begins in a function in ∗C89LIB.
This function performs various initializations such as allocating the run-
time stack and initializing the memory management and I/O routines. A
call is then made to the (user) function main.

Entering a C function from a program written in some other language, as
well as calling functions written in other languages, is discussed below.

Reference R1063

Page 40 9 THE EXECUTION ENVIRONMENT

9.1 Stack Allocation

One of the duties of an initialization function is to allocate a stack in which
local variables and housekeeping data are stored. The default stack is 160K,
but a program with larger storage requirements will need a larger stack.
If the external integer variable stack is defined within any of the user’s
compilation units, it is taken to be the number of pages (4K each) of stack
space needed.

Upon entry, each function requires a minimum of 64 bytes of stack space.
To this one must add the space required by all local variables and tempo-
raries. The SUMMARY pragma will print out the required stack space for each
function.

Thus, a program with substantial stack requirements might contain the fol-
lowing line in it:

int _stack = 32;

which requests 32 pages (131,072 bytes) of stack space.

∗C89 protects the first page after the end of the allocated stack so that stores
into this region will result in a protection exception. The storage protection
exception will often occur at the first instruction of a function as it tries to
save the registers. If a stack addressing exception occurs, typically either
the stack may be too small or there is unlimited recursion.

The stack size is used and the final page is store-protected only when exe-
cution is started in a ∗C89 main program.

9.2 Passing Parameters to the Main Program

Parameters given on the PAR field on the $RUN command for a C main pro-
gram may be accessed in the standard C fashion. Specifically, a C program
that needs to examine the PAR parameters should be declared as

October 26, 1992

9.2 Passing Parameters to the Main Program Page 41

main(argc,argv)

int argc;

char *argv[];

The PAR-field parameters are placed in strings pointed to by the elements
of argv array, starting at argv[1]. argc is one greater than the number
of parameters given. The contents of argv[0] are undefined, which is not
compatible with UNIX.

Some systems pass a third argument, arge, which is a pointer to an environ-
ment list. While this third parameter may be declared, ∗C89 always passes
a NULL (0).

The parameters are separated by blanks (not commas as one would nor-
mally expect in an MTS PAR field). The following characters have special
meaning.

Blanks (one or more) separate the parameters.

Quotes (single and double) are used to enclose characters so that the spe-
cial characters (such as blank) are inactivated. The result has the
quotes removed. If the quotes are unbalanced, a parameter is made of
all characters from the last unbalanced quote up to the end.

Backslash causes the next character to be taken literally.

For example:

main(argc,argv)

int argc;

char *argv[];

{int i;

for (i=1; i<argc; i++)

printf("Argument %d is ’%s’\n",i,argv[i]);

}

Reference R1063

Page 42 9 THE EXECUTION ENVIRONMENT

If we run this program with the MTS command:

$RUN prog.o+*c89lib par=Why "doesn’t" it snow?

the output would be

Argument 1 is ’Why’

Argument 2 is ’doesn’t’

Argument 3 is ’it’

Argument 4 is ’snow?’

9.3 Details of Parameter Passing

When interfacing programs written in different languages, it is important to
know how each language passes parameters.

∗C89 places the value of each argument into the parameter block (the value
of an array or function is its address). This differs from many other languages
on MTS that place the address of the argument in the parameter block.

All integer types are cast to 32-bit integers before being passed. Unsigned
integer types are padded with binary zeroes on the left, if necessary. Signed
integer types are sign-extended, if necessary. Note: chars are unsigned in
∗C89.

float and double require 64 bits in the parameter list (floats are cast to
doubles). doubles are aligned to a full word boundary.

long double elements require 128 bits (16 bytes).

Arrays, pointers, and character-string constants cause the address of the
argument to be passed. These pointers require 32 bits in the parameter list.

The values of structs and unions are copied into the parameter block.

All parameters are aligned to 32-bit (int) boundaries.

The address of the parameter block is passed to the called routine in general
register 1 (GR1).

October 26, 1992

Page 43

10 Calling Non-C Routines

10.1 Calling FORTRAN Routines

The normal C calling conventions are not entirely compatible with the “OS
S-type” calling conventions used by FORTRAN and many assembly lan-
guage routines. However, a mechanism is provided so that C programs can
invoke routines written in assembly language or FORTRAN, provided that
they follow standard OS S-type calling conventions. This allows the use of
subroutine libraries such as ∗PLOTSYS, ∗IG, and IMSL, as well as the use
of most system subroutines.

To advise the compiler that an external function follows the S-type calling
conventions, the function must be declared with storage class fortran.
For example, to declare that the subroutine FOO is written in FORTRAN,
use the declaration

__fortran void foo();

To declare an INTEGER, INTEGER*2, INTEGER*4 or LOGICAL FORTRAN func-
tion BAR, write

__fortran int bar();

To declare a REAL or REAL*4 FORTRAN function BAR2, write

__fortran float bar2();

To declare a REAL*8 or DOUBLE PRECISION FORTRAN function BAR3, write

__fortran double bar3();

Reference R1063

Page 44 10 CALLING NON-C ROUTINES

(Note: CHARACTER functions cannot be directly called by ∗C89. COMPLEX

functions can be called as if they were REAL functions, the value returned
by the routine will be the real part of the return value. The imaginary part
is lost. LOGICAL functions can be called in the same manner as INTEGER

functions. The return value is 1 for .TRUE. and 0 for .FALSE., which is
compatible with C conventions.)

Any subsequent calls to foo, bar, bar2 or bar3 will use an S-type calling
sequence rather than the C calling sequence.

S-type linkage differs from the C linkage in the passing of parameters and
return values. S-type linkage requires that the parameters be addresses and
that the high-order bit of the last parameter be set to one. The FORTRAN
function may pass back a return code to the caller.

10.1.1 Type Equivalencies for FORTRAN

Because FORTRAN parameters are passed by address, it is illegal to pass a
parameter to a routine declared fortran unless it is a pointer to something.
Some parameters, such as arrays, are naturally addresses in C. But for
others, it may be useful to use the & operator to compute the address of a
parameter. Here are FORTRAN parameter types and their C equivalencies:

FORTRAN parameter C parameter
INTEGER int *

INTEGER*4 int *

INTEGER*2 short *

REAL float *

REAL*4 float *

REAL*8 double *

DOUBLE PRECISION double *

LOGICAL int * (see below)
LOGICAL*4 int * (see below)
LOGICAL*1 char * (see below)
COMPLEX (see below)
COMPLEX*8 (see below)
COMPLEX*16 (see below)

October 26, 1992

10.1 Calling FORTRAN Routines Page 45

array of x pointer to or array of appropriate type

For COMPLEX and COMPLEX*8 parameters, one can use a pointer to two float
variables, an array of two float variables or a pointer to a structure contain-
ing two float variables. For COMPLEX*16 parameters, one can use a pointer
to two double variables, an array of two double variables or a pointer to
a structure containing two double variables. In both cases, the real part is
the first variable or element 0 of the array, and the imaginary part is the
second variable or element 1 of the array.

For LOGICAL parameters, .TRUE. values should be passed into the routine
as 1, and .FALSE. values should be passed in as 0.

CHARACTER parameters cannot be directly passed to a ∗C89 program.

10.1.2 Return Codes

Many FORTRAN routines produce a return code. In routines written in
assembly language, this is a value (conventionally a multiple of 4) that is
left in general register 15. In FORTRAN, return code i is set using a RETURN
i statement.

The return code can be saved in a C program by writing the retcode

option at the end of the parameter list in a call. Example:

sub(a, b, c, __retcode x);

retcode stores the return code (the value in GR15 upon return from the
call) in the integer variable x.

Reference R1063

Page 46 10 CALLING NON-C ROUTINES

10.1.3 Mixing FORTRAN and RCALL

It’s possible to declare an external function as both fortran and having
the RCALL (see section 4, “Pragmas and Par Field Options”) linkage option.
Of course, no real FORTRAN function can use register parameters, but
there are some assembly language routines that can make use of this kind of
linkage. When both fortran and RCALL are declared for a function, the
compiler doesn’t require the parameters to be addresses.

10.2 Conflicts between ∗C89LIB and MTS Library Routines

Routines by the same name may occur in several libraries. When ∗C89LIB
is used, routines in it may hide routines by the same name in the MTS
libraries. Whether or not a routine has been declared to be a fortran

routine doesn’t affect the loader’s library search order. So something more
must be done to call MTS routines that have a similarly named routine in
∗C89LIB.

10.3 Getting C rather than MTS Functions

The one certain way to insure that the C library routines are called instead
of MTS routines by the same name is to always include the header files as
these will insure that the proper routine is called. Omission of the header
file can result in obscure errors.

The routines in <math.h> (acos, asin, atan, atan2, cos, cosh, exp, log,
log10, sin, sinh, sqrt, tan, tanh) are remapped with the LOADNAME pragma
to names in ∗C89LIB that begin with an underscore.

10.4 Getting MTS rather than C Functions

Few MTS system routines have the same names as C library functions, but
when this happens and the MTS function must be called, it is best to call the
MTS routine by an alternate name. This is true for the MTS routines FREAD,
FWRITE, MOUNT, READ, RENAME, REWIND, SYSTEM, TIME, WRITE, and many of

October 26, 1992

10.5 Calling PLUS Routines Page 47

the mathematics routines such as ACOS or SQRT. Some MTS routines have
alternate names already defined in the MTS system (e.g., READ, TIME, and
WRITE have alternate entry points MTSREAD, MTSTIME, and MTSWRITE). The
header file <mts.h> contains prototype definitions for many MTS system
functions and defines the alternate entry point names MTSMOUNT, MTSRENAME,
MTSREWIND, and MTSSYSTEM.

For example, you may call the MTS system subroutine READ (at its alternate
entry point mtsread) by using the following code:

#include <mts.h>

char *buffer;

short int len;

int mods, lnum, fdub, rc;

...

mtsread(buffer, &len, &mods, &lnum, &fdub, __retcode rc);

In this example, MTSREAD expects addresses of all its parameters. buffer is
already an address, so & is not used with it.

10.5 Calling PLUS Routines

It is easy to call PLUS from ∗C89 provided that the data types of the PLUS
arguments match the data types of the C parameters. Remember that PLUS
may pack objects in a parameter list differently than C does. This can affect
both the arguments to the routine and the return value. Also remember that
the definition of a PLUS string and a C string are different.

10.6 Calling Assembly Language Routines

If an assembly language routine is to be called from C, it must first save all
registers in the region pointed to by GR13. On entry, GR1 will point to a
parameter list (as explained in section 9.3, “Details of Parameter Passing”).
GR10 must be used as the code base register. After entry, the routine must
set GR12 to the value of GR13 and then increase GR13 by the size of the

Reference R1063

Page 48 10 CALLING NON-C ROUTINES

routines stack frame plus 64 bytes for the save area (i.e., if the routine needs
64 bytes of stack, you must increase the value of GR13 by 128). The routine
is then free to use this area for temporary storage. (If the routine doesn’t
need any temporary storage, it should increase GR13 by 64). After entry,
the routine must not disturb the contents of GR11.

On exit the routine must restore all general registers except GR0 from the
area pointed to by GR12. Floating point registers need not be restored. If
the routine returns an integral type or a pointer, it should return the value
in GR0. If it returns a float it should return the value in the high portion
of FR0, the low portion will be ignored. If it returns a double or long

double, it should return the value in FR0. If the routine returns a struct or
union, it must move the struct or union into memory supplied by the caller.
The address of this memory is the first parameter passed to the routine.

A typical routine to be called from C will look like this:

ROUTINE STM 0,15,0(13)

LR 12,13

LR 10,15

USING ROUTINE,10

LA 13,stack_frame_size(13)

....

L 0,return_value

LM 1,15,4(12)

BR 14

The sequence above does not do stack checking. If stack checking is desired,
the following sequence can be used instead:

October 26, 1992

Page 49

ROUTINE STM 0,15,0(13)

LR 12,13

LR 10,15

USING ROUTINE,10

LA 13,stack_frame_size(13)

L 15,4(11)

C 13,0(15)

BNL error_routine

....

L 0,return_value

LM 1,15,4(12)

BR 14

This code will insure that there is enough stack for 72 bytes beyond the
current stack frame (so that subroutines can be safely called). Stack checking
is only necessary if more than 72 bytes of stack are used by the procedure
or if the procedure contains one or more procedure calls.

11 Calling C From Foreign Environments

There are two ways to define a C function so that it may be called from a
non-C program.

A normal C function uses the MTS coding convention linkages internally,
so any calling program that uses the same linkage may call a C program
subject to C environment initialization requirements given below.

Alternatively, a C function may be defined to be entered with a FORTRAN
(OS S-type) linkage.

Also see section 9, “Execution Environment,” for details of parameter pass-
ing.

Reference R1063

Page 50 11 CALLING C FROM FOREIGN ENVIRONMENTS

11.1 Using FORTRAN Linkage

By using the fortran keyword on a function definition, it is possible to
define a C function that can be called directly from any language that uses
FORTRAN (OS S-type) linkage.

A C function that is defined this way will call an interface routine at the time
of entry to initialize the C environment, if it has not already been initialized.
The programmer doesn’t have to be concerned with explicit initialization of
the C environment (with C89INIT). The stack and TRUSTME parameters
are used in the initialization process exactly like C main programs.

For example, a C function that can be called from FORTRAN and will
return the sum of its arguments could be written as follows:

__fortran int sum(int *a, int *b)

{

return a+b;

}

Note that the types of parameters and return values needed by the C pro-
gram are as described in the previous section “Type Equivalences for FOR-
TRAN.” The programmer must be aware of the consequences of such a
function definition.

• There is additional overhead upon entry, because of the need to estab-
lish a C environment.

• All calls to such a function must use OS S-type (FORTRAN) linkage,
including calls from other C functions.

No such routine can be called asynchronously, for example calling a C func-
tion with a FORTRAN linkage from either PGNTTRP or ATTNTRP will not
work correctly.

The return code for such a routine can be set by adding the following state-
ment anywhere in the routine. If the statement is placed in a routine called
by the fortran routine, the return code is not preserved.

October 26, 1992

11.2 Using MTS Coding Convention Linkage Page 51

__SAVEAREA[15] = e;

where “e” is any integer expression.

If I/O was performed while in the C environment, it may be necessary to
insure that all streams are closed so that the final buffer contents are properly
written. This can be done by calling the cleanup function before the final
C function returns.

11.2 Using MTS Coding Convention Linkage

This section describes how one may call a C function with normal coding
conventions linkage. This type of call is generally available only from Plus
or assembly language.

11.2.1 Initialization of the C Environment

If the main program is not written in C, the initialization routine C89INIT

must be called at some point before entering the C-environment. Failure
to do so will result in many C routines not working, in particular the I/O
routines, storage routines, and the exit routine. C89INIT must be called
only once and must not be called if there was a C main program.

C89INIT must be called using the MTS coding convention linkage. Plus
uses this linkage convention, but for other languages, see The MTS Coding
Conventions by Steve Burling.

C89INIT takes a single int parameter with the value in the range 0-7, the
sum of three bit flags.

Bit 31 (value 1) affects how exits within the C code are interpreted. If 0
is given for this bit, then exit(0) causes the MTS routine SYSTEM# to be
called. A call to exit with a non-zero value results in the MTS routine
ERROR# being called. When 1 is given for this bit, all calls to exit will
return to C89INIT which, in turn, returns to whomever called C89INIT.

Reference R1063

Page 52 11 CALLING C FROM FOREIGN ENVIRONMENTS

When this is done, care must be taken. The return value from C89INIT

must be checked, and the program must respond correctly. Otherwise an
infinite loop will result.

If bit 30 (value 2) is on, the standard units stdin, stdout, and stderr are
not opened within C89INIT. Suppressing this opening may be useful if the
standard opening would cause problems. Even if this bit is set on, it is still
possible to explicitly open these units with calls to freopen (See section
15.5.8, “Initial Stream Assignments.”) If this bit is off, the units are opened
as expected within C89INIT.

If bit 29 (value 4) is on, this will allow explicit and implicit concatenation,
line number ranges and I/O modifiers to be used for files/devices opened for
input. This is analagous to the TRUSTME flag.

“Normal” returns from C89INIT give a return value of 0, returns caused by
a call to exit return 1. In the latter case the return code from C89INIT will
contain the value given to exit.

11.2.2 Closing the C Environment

If I/O was performed while in the C environment, it may be necessary to
insure that all streams are closed so that the final buffer contents are properly
written. This can be done by calling the cleanup function before the final
C function returns.

11.2.3 Calling ∗C89 from Plus

As an example of how C89INIT may be used, the following is a possible
PLUS program which calls C89INIT:

%Include(Main,Message,Message_Initialize,Integer,Boolean);

%Punch(" ENT MAIN");

Procedure C89INIT is

Procedure

October 26, 1992

11.2 Using MTS Coding Convention Linkage Page 53

Parameter Flag is Integer,

Result From_Where is Boolean in Register 0

End;

Procedure C_Stuff is

Procedure

End;

Definition Main;

Variable Mcb is Pointer to Unknown;

Mcb := Message_Initialize();

/* Init C environment before calling C routines */

If C89INIT(1, return code Rc) then

Message(Mcb, " The return code was <i></>", Rc);

Return;

End if;

/* C_Stuff is a routine written in C. */

C_Stuff();

End;

11.2.4 Calling C from Assembly Language

Calls from assembly language to C are straightforward, provided the correct
registers are set up beforehand.

GR1 must point to a parameter block. (If the called routine doesn’t expect
any parameters, a parameter block need not be supplied). The format of
the parameter block was explained in section 9, “Execution Environment.”

GR13 must point to a stack. This region must be large enough for all the
routines that are called as a result of calling the particular C routine. C
main programs typically allocate 160,000 bytes for this purpose.

GR11 must point to the global area. This contains all the pseudo-registers.
The CXD instruction should be used to determine its size. The first two

Reference R1063

Page 54 12 PUTTING DEBUGGING TOOLS INTO THE SOURCE

words of the region have special significance to coding convention routines.
See The MTS Coding Conventions by Steve Burling. The global storage of
C currently does not use this region, but the C run-time system does.

GR14 and GR15 must be the return address and the entry point address,
respectively.

On return, the C program will restore all general registers except GR0.
Floating point registers are not restored by the called program. If the routine
returns a floating point value, it will be in FR0; if the routine returns any
other type of value (except a struct), it will be in GR0.

If the C function returns a struct, there must be another parameter passed
at the beginning of the parameter list that is the address of where the struct
result should be stored (GR0 will not be set in this case).

A typical call to a C routine might look like this:

....

L 13,A(stack_space)

L 11,A(pseudo_register_space)

....

LA 1,parameter_list

L 15,=V(routine)

BALR 14,15

....

12 Putting Debugging Tools Into the Source

The most common way to debug C programs is to insert printf calls at
critical points in the program. It’s often useful to #define a flag that
controls whether debugging source is generated by the preprocessor. This
allows the debugging code to be completely enabled or disabled with only a
recompilation.

October 26, 1992

Page 55

It’s also easy to use the facilities of <assert.h> to insert optional debugging
code permanently in the source program.

To determine if failure to initialize a local variable could be the source of a
bug, the program can be recompiled with the FILL option, which will then
initialize all local variables to some desired value.

13 Debugging With SDS

∗C89 does not come with a separate debugging program or package. How-
ever, ∗C89 programs can be monitored with the MTS symbolic debugger
(SDS).

The following sections are not a tutorial in SDS. If you haven’t used SDS,
see MTS Volume 13: The Symbolic Debugging System, Reference R1013.
The intent of this section is to point the way toward using the most useful
SDS commands.

13.1 Invoking SDS

SDS can be invoked in two fashions. In the first, simply replace the $RUN

command with the $DEBUG command, and the debugger will take over. In
the second, invoke the debugger using the $SDS command once a program
has been loaded. You may find it convenient to use the second method
when a bug unexpectedly appears and the program stops with a protection
exception or something of that sort. Issue the $SDS command followed by an
include of the object to be debugged. The include enables SDS to obtain
the symbol table information.

SDS obtains information about symbolic names from two sources. First,
the names that the MTS loader uses are available to it. Second, there are
names that the compiler told SDS via “SYM” records. These informational
records are produced only when the SYM pragma or compile option has been
given.

Note: SDS maps all names to upper case internally.

Reference R1063

Page 56 13 DEBUGGING WITH SDS

Normally, the following commands should be issued at the beginning of a
debugging session to prevent the signal routines from trapping attention and
program interrupts.

set attn=off pgnt=off

13.2 Storage Layout

The following C constructions in a compilation unit are mapped into object
module entities as follows. Each object module contains one or more control
sections (csects).

External functions are each assigned a separate csect. This csect contains
both the code and the constants from a function. The main program
is no different from any other function – it is just an external function
that is called by the library when the program is executed.

Static functions are appended onto the control section of the first exter-
nal function. There must be at least one external function in every
compilation unit that has static functions.

External variables are placed in their own separate csects.

Static variables are collected into a single blank csect.

Local variables (auto) are allocated on the run-time stack.

13.3 Setting Breakpoints

It’s possible to indicate points in the program where execution should stop.
These are conventionally called breakpoints. A breakpoint may be set at the
beginning of the function f by issuing

break f

October 26, 1992

13.4 Continuing Execution after a Break Page 57

where f is the name of the function. Note that the LOADNAME of the function
is used here. For many C library routines this is different than the real name.
The LOADNAME is frequently prefixed with an underscore (). For example,
read becomes read. It’s also possible to set a breakpoint at any statement.
To do so both a line number and a CSECT must be specified (See section
13.2, “Storage Layout.”) This can be done either by specifying the CSECT
within a CSECT command, which may be followed by one or more BREAK

commands, or by specifying the CSECT within the BREAK command. For
example both of the following two sets of commands do the same thing:

csect f

break #13

break #13_7

or

break #13@cs=f

break #13_7@cs=f

The first of these break statements will put a breakpoint at the code for
the statement that has source line number 13.000. The second will put a
breakpoint at the code for source line number 13.700.

13.4 Continuing Execution after a Break

When execution stops at a breakpoint and variables have been examined,
and it is desired to continue execution, issue the continue command. The
breakpoint from which execution is proceeding remains in effect.

13.5 Removing Breakpoints

Breakpoints may be removed by means of the restore command. For ex-
ample, to undo the effect of the previous break commands, issue one of the
following two sets of commands:

Reference R1063

Page 58 13 DEBUGGING WITH SDS

restore f

restore #13@cs=f

restore #13_7@cs=f

or

csect f

restore f

restore #13

restore #13_7

The clean command can be used to remove all breakpoints.

13.6 Displaying Variables

The ease with which SDS can be used to display variables depends upon
the storage class of the variable. Each kind is discussed separately. It is
often useful to use the SDS @t= modifier to select the appropriate type.
(A complete list of types that can be displayed is given in section 13.8,
“Correspondence between *C89 and SDS Types.”)

13.6.1 Displaying External Variables

To display external variables, issue the SDS display command with the
name of the external variable. For example, to display an int external
variable called count, use the command:

display count@t=f

13.6.2 Displaying Static Variables

Static variables can not currently be displayed from SDS.

October 26, 1992

13.6 Displaying Variables Page 59

13.6.3 Displaying Local (auto) Variables

When a ∗C89 function is executing, GR12 points to the current stack frame.
The current stack frame holds the save area for saving the registers on entry
as well as all of the function’s local (auto) variables and temporaries. The
save area occupies the first 64 bytes of the stack frame.

To display an auto variable, it’s necessary to know its offset in the current
stack frame. All auto variables are allocated on the execution stack (even
variables that have been assigned to a register.) The first variable will have
offset 64 and subsequent variables are assigned offsets with higher offsets
aligned as appropriate. For more information on how the compiler calculates
the offsets, see the sections on “Integers”, “Floating Points”, etc..

Once the offset (in hexadecimal) is known, the display command can be
used to display auto variables in the current function as follows:

display $gr12+offset

By default SDS will display values in hexadecimal. If some other type is
desired, it is necessary to append the @t= modifier. For example, to display
10 characters starting at offset 1C,

display $gr12+1C@t=cl10

For variables that have been assigned to registers, you must determine to
which register the variable has been assigned. (This can be done by looking
at the OBJLIST output from the compiler.) Then simply issue a command
such as

display gr5@t=f

where GR5 is replaced with the correct register number and t=f can be
replaced with a different expression, if the value is not an integer.

Reference R1063

Page 60 13 DEBUGGING WITH SDS

13.6.4 Displaying Parameters

Parameters are normally allocated on the execution stack. If a parameter
has been assigned to a register, its value is copied into that register soon
after the beginning of the function.

When a ∗C89 function is called, GR1 points to the parameter block. Soon
after the beginning of execution, this value is copied to GR8, and GR1 may
be used for other purposes.

To display a parameter, it’s necessary to know its offset in the parame-
ter block, see section 9.3, “Details of Parameter Passing,” to learn how to
calculate such offsets.

Once the offset (in hexadecimal) is known, the display command can be
used as follows:

display $gr1+offset

display $gr8+offset

The first command is used immediately after program entry, and the second
command is used after GR8 has been assigned a value.

As was the case for auto variables, by default SDS will display values in
hexadecimal. This can be overridden in the same manner.

For parameters that have been assigned to registers, you must determine to
which register the variable has been assigned. (This can be done by looking
at the OBJLIST output from the compiler.) Then simply issue a command
such as

display gr5@t=f

October 26, 1992

13.7 Other Useful SDS Commands Page 61

where GR5 is replaced with the correct register number and t=f can be
replaced with a different expression, if the value is not an integer. If this
is not done, you will obtain the value the parameter had before the routine
was called.

For parameters passed to an r-call routine, the parameter resides in the save-
area of the routine in question. The offset is simply four times the register
number. For example, the offset for GR0 is 0, the offset for GR1 is 4, the
offset for GR2 is 8, and so on. Such parameters can be displayed in the same
way as an auto variable. See the previous section for more information.

13.6.5 Displaying Pseudo-registers

Objects which are normal external variables in other C systems have been
implemented as pseudo-registers in ∗C89LIB in order that all simultaneous
users may use the same copy of the library routines. In particular, errno
has been implemented as pseudo-register. At some point before issuing a
display command, SDS must be told which register contains the pseudo-
register base. This needs to be done only once per SDS session.

using prarea $gr11

Once SDS knows where the pseudo-register base is, pseudo-registers may be
displayed in the same way that any external variable is displayed. So, for
example, one can issue the command

display errno

13.7 Other Useful SDS Commands

To print the call history after a breakpoint, one may use the following com-
mand:

Reference R1063

Page 62 13 DEBUGGING WITH SDS

trace stack

To determine the point at which execution has stopped after a breakpoint,
one can issue the following command:

symbol $psw

Once SDS has stopped at the beginning of a function you can continue
execution and stop when the function returns with the command

continue $gr14

you can determine the caller of that function by issuing the command

symbol $gr14

(but only at the beginning of the function).

13.8 Correspondence between ∗C89 and SDS Types

To display C variables in something approximating their C types, the fol-
lowing SDS types should be used.

char @t=cl1 (see text).

signed char @t=fl1.

short @t=fl2.

int @t=f.

October 26, 1992

Page 63

float @t=e.

double @t=d.

long double @t=d (only the first 8 bytes used).

Note that SDS does not have any support for unsigned types. Such data
can be displayed with a signed type with the caveat that large numbers will
be incorrectly displayed with negative values. They can also be displayed
in hex with @t=xl1, @t=xl2 or @t=xl4 depending on the length of the data
item.

Arrays of char can be displayed with @t=cln with n replaced by the re-
quired length. For example, a string of length 10 would be displayed with
@t=cl10. Single chars may often contain either small integers or character
information, therefore @t=cl1 or @t=xl1 or @t=fl1 may all be used, the
choice made based on the exact situation. Note that SDS will not deter-
mine the length of a string automatically, nor does @t=c correctly display
“non-printing characters.” In order to see non-printing characters, a string
or character must be displayed with @t=xln.

For structs, arrays and unions, the object must be broken down into smaller
pieces each of which can be displayed with the types indicated.

For other types such as bit fields and pointers, they can be displayed in
hexadecimal with the type modifier @t=xln (where n is replaced with the
correct length. A bit field with length of 3 bytes would be displayed with
@t=xl3, a pointer of length 4 would be displayed with @t=xl4). Bit fields
that do not occupy an integral number of bytes can be display with @t=xln,
but it is up to the programmer to interpret the information.

14 The Library and Header Files

This section describes the library support for the run-time environment in
MTS for C programs.

∗C89LIB is the run-time support library used by programs compiled with
∗C89. ∗C89INCLUDE is the header file include library with the standard
headers that provide the definitions and declarations required by programs
using ∗C89.

Reference R1063

Page 64 14 THE LIBRARY AND HEADER FILES

14.1 The ∗C89 Run-Time Library

The MTS ∗C89 run-time library (∗C89LIB) provides all the ANSI C Stan-
dard library functions. Additionally, it contains many UNIX facilities. Be-
cause MTS does not support some features available in UNIX, certain facil-
ities are either omitted entirely or are present only in an abbreviated form.

∗C89LIB was designed to behave similarly to BSD4.3 UNIX. However,
∗C89LIB is not identical to BSD4.3, and it may be necessary to make some
alterations to the source code of programs that run on UNIX to get them
to run on MTS. In particular, one must recognize that there are two types
of files (binary and text) in ∗C89LIB (BSD4.3 has only one type of file);
the way MTS processes control characters is different from BSD4.3; and
the details on how certain devices (such as printers) work is different. Also
some facilities of BSD4.3 are not provided. Each of these differences may
require changes to some programs. More details about these differences are
described in the following sections.

It is also possible to call MTS routines directly. See sections 10.2 – 10.4.

14.2 Header Files

The MTS file ∗C89INCLUDE contains the standard headers (those enclosed
in angle brackets).

∗C89INCLUDE contains, in the include library format, the various include
files provided by BSD4.3 implementations of UNIX. In addition to this, it
contains a complete set of ANSI C Standard header files and an include
member called <unix.h>, which is read in by the compiler before reading
the source file. (This provides certain translations that are necessary for
the proper functioning of ∗C89LIB.) The members in this file are usually
contained in separate files on UNIX systems.

By default, only the standard symbols are available from the standard header
files. To access additional symbols, primarily those used in UNIX systems,
the STANDARD+, UNIX, or UNIX+ pragmas can be used. The effects of these
pragmas on the standard header files are:

October 26, 1992

14.2 Header Files Page 65

• STANDARD, the default, includes only the standard identifiers.

• STANDARD+ includes all standard identifiers and all UNIX and MTS
identifiers that don’t conflict with the standard.

• UNIX includes only UNIX identifiers.

• UNIX+ includes all UNIX identifiers and all standard and MTS identi-
fiers that don’t conflict with the UNIX definitions.

The following sections summarize the features available that are specific to
∗C89. A complete description of each header file can be found by examining
∗C89INCLUDE.

14.2.1 Standard Header Files

All ANSI C Standard header files are supported: <assert.h>,<ctype.h>,
<errno.h>, <float.h>, <limits.h>, <locale.h>, <math.h>,
<setjmp.h>, <signal.h>, <stdarg.h>, <stddef.h>, <stdio.h>,
<stdlib.h>, <string.h>, <time.h>.

14.2.2 UNIX Header Files

The include files from the BSD4.3 UNIX system are also available in this
library. A list of the available header files can be found by examining the
beginning of ∗C89INCLUDE.

14.2.3 MTS Header File

Function prototypes, type definitions, and flag values for MTS routines may
be found in <mts.h>.

Reference R1063

Page 66 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

14.2.4 Header File Search Order

The two kinds of header, or include, files (angle-bracket and quoted header
files) are searched for in the following order. The search ends when a match-
ing file name is found.

Angle-bracket header files are searched in the following order:

1. Search any library-organized file assigned to unit 2.

2. Search ∗C89INCLUDE (unless NODEFINC was specified).

Quoted header files are searched in the following order:

1. Search for the file on the MTS userIDs specified in the I option in the
order the userIDs were specified.

2. Search the current userID.

3. Search any library-organized file assigned to unit 2.

4. Search ∗C89INCLUDE (unless NODEFINC was specified).

15 The MTS ∗C89 Library, Headers, and Macros

This section provides a summary of extensions or implementation-defined
features of ∗C89LIB and ∗C89INCLUDE.

The following sections correspond to header file names and are presented in
alphabetical order of those names.

Functions that have non-standard behavior and functions that are not re-
quired by the ANSI C Standard are noted as such.

October 26, 1992

15.1 assert.h - Debugging Aid Page 67

15.1 assert.h - Debugging Aid

The header <assert.h> defines the assertmacro. This is used for putting
diagnostics into the program. When an assertion failure occurs, a message
similar to the following is printed on stderr:

Assertion failed. Line 15.000 of file xyz.c.

After printing this message, the routine abort is called.

15.2 ctype.h - Character Handling

The header <ctype.h> declares several macros useful for testing and map-
ping characters. In all cases, the argument is an int, the value of which
is representable as an unsigned char or is equal to the macro EOF. If the
argument has any other value, the results will be unpredictable.

The term printing character refers to a member of an implementation-
defined set of characters, each of which occupies one printing position on
a display device. These include the space character, the alphabetic charac-
ters (a-z, A-Z), the decimal digits (0-9), and the following characters:

., <, (, +, |, &, !, $, *,), ;, -, /, ,, %, _, >, ?, ‘, :, @, ’, =, ", ~, ^, [,], {,
}, \.

The term control character refers to one of an implementation-defined set
of non-printing characters. In our implementation, the control characters
are those whose values fall between the values 0X00 through 0X3F. The
following control characters have special meanings:

• ‘\n’ (newline)

• ‘\f’ (form feed)

• ‘\r’ (carriage return)

• ‘\b’ (backspace)

Reference R1063

Page 68 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

• ‘\t’ (horizontal tab)

• ‘\v’ (vertical tab)

Some of these functions are implemented both as macros and functions, an
#include of <ctype.h> is needed to make the macros available.

The character-testing functions described in this section return non-zero
(true) if, and only if, the value of the argument c conforms to the description
of the function.

The following standard functions are implemented:

int isalnum(int c) – true for upper-case, lower-case letters and digits.

int isalpha(int c) – true for upper-case and lower-case letters.

int iscntrl(int c) – true for control characters listed above.

int isdigit(int c) – true for decimal digits.

int isgraph(int c) – true for printing characters, excluding space.

int islower(int c) – true for lower-case letters (a-z).

int isprint(int c) – true for printing characters listed above.

int ispunct(int c) – true for printing characters, excluding space and
alphanumeric characters.

int isspace(int c) – true for ‘\f’, ‘\r’, ‘\n’, ‘\r’, ‘\t’, ‘\v’, and space.

int isupper(int c) – true for upper-case letters (A-Z).

int isxdigit(int c) – true for hexadecimal digits (0-9, a-z, A-Z).

int tolower(int c) – if isupper(c) is true, returns the corresponding
lower-case letter. Otherwise, the argument is returned unchanged.

int toupper(int c) – if islower(c) is true, returns the corresponding
upper-case letter. Otherwise, the argument is returned unchanged.

The above macros assume an EBCDIC character set.

October 26, 1992

15.2 ctype.h - Character Handling Page 69

15.2.1 isascii

Name: isascii

Purpose: Test for an ascii character

Include file: <ctype.h>

Prototype: int isascii(int c)

Description: isascii returns true if the argument can be represented in 7
bits. If the decimal value of c falls in the range 0 to 127, it will return
true.

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable. This function is included for
compatibility with UNIX implementations.

15.2.2 toascii

Name: toascii

Purpose: Character mapping to ASCII

Include file: <ctype.h>

Prototype: int toascii(int c)

Description: The character codes used by the ∗C89 compiler are standard
EBCDIC. This macro returns the value of a character’s ASCII equiv-
alent.

Note: This routine uses the same translate tables as MTS.

This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

This function is specific to the ∗C89 implementation on MTS.

Reference R1063

Page 70 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

15.3 math.h - Mathematics

The header <math.h> declares the floating point mathematical functions
and defines three macros related to error processing.

The floating point functions described in this document take double-
precision arguments and return double-precision values. The <math.h>

header maps references of math functions (e.g., sqrt) into references to
the actual supported names (e.g., sqrt). In this way, conflicts between C
function names and MTS subroutine or function names are avoided.

15.3.1 Treatment of Error Conditions

For all functions, a domain error occurs if an input argument is outside the
domain over which the mathematical function is defined. When a domain
error occurs, the integer variable errno acquires the value of the macro
EDOM. With the exception of log and log10, all math functions return 0.0
on a domain error. Both log and log10 set errno to EDOM if the argument
is negative. The value returned by log(-x) is the same as log(x) for all
x. The value returned by log10(-x) is the same as log10(x) for all x.
fmod returns zero if its second argument is 0.0 and the value of errno is not
changed.

Similarly, a range error occurs if the result of the function cannot be repre-
sented as a double value. If the result overflows (the magnitude of the result
is so large that it cannot be represented in an object of the specified type),
the function returns the value of the macro HUGE VAL, with the same sign
as the correct value of the function; the integer variable errno acquires the
value of the macro ERANGE. If the result underflows (the magnitude of the
result is so small that it cannot be represented in an object of the specified
type), the function returns zero. This case is not considered to be an error,
and the value of errno is not changed.

<math.h> contains all of the ANSI C Standard function prototypes and
macros. If UNIX+ is specified, a number of BSD4.3 additional function pro-
totypes and macros become available.

October 26, 1992

15.4 signal.h - Signal Handling Page 71

15.4 signal.h - Signal Handling

<signal.h> defines a number of macros and function prototypes that allow
for interception of various events by a C program.

The signal parameters recognized by the signal facility follow. Those pre-
ceded by an ∗ (asterisk) may result from the environment outside the library
environment, e.g., an attention interrupt or a hardware program interrupt,
or from a call to the raise function. The others currently can only be raised.
Some signals can be ignored, blocked (via the user specifying a blocking
mask), or caught (by the user specifying a signal handler). SIGKILL and
SIGSTOP cannot be ignored or caught. SIGKILL, SIGSTOP, and SIGCONT

cannot be blocked. For all other signals, they may be ignored, blocked, or
caught.

The following is the list of the supported signals (SIG IGN means ignore the
signal):

* SIGHUP 1 Hangup. (Default = $SIGNOFF from MTS.)

* SIGINT 2 Attention interrupt. (Default = Error exit to MTS with
the process still loaded.)

* SIGQUIT 3 Quit. The same as SIGTERM, but can be raised from the
keyboard. (Default = Terminate the process via exit(0).)

* SIGILL 4 Illegal operation or invalid function image (per the C
Standard). This is caused by either an operation exception, privi-
leged operation exception, execute exception, or specification excep-
tion. (Default = Error exit to MTS with the process still loaded.)

* SIGIOVF 5 Integer overflow caused by a fixed-point overflow. (De-
fault = SIG IGN.)

* SIGABRT 6 Abnormal termination. Causes the process to terminate
without cleanup. (Default = Error exit to MTS with the process still
loaded.)

* SIGDECOVF 7 Decimal overflow caused by decimal overflow exception.
(Default = SIG IGN.)

Reference R1063

Page 72 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

* SIGFPE 8 Floating point exceptions, caused by the following hard-
ware exceptions: data exception (decimal operations), integer divide
by zero, decimal divide by zero, floating exponent overflow, and float-
ing point divide by zero. (Default = Error exit to MTS with the process
still loaded.)

* SIGKILL 9 Terminate the process. (Cannot be caught, ignored, or
blocked.) (Default = $SIGNOFF from MTS.)

* SIGBUS 10 Bus error. This is caused by a protection exception in
MTS. (Default = Error exit to MTS with the process still loaded.)

* SIGSEGV 11 Segmentation violation (invalid storage access) caused an
addressing exception in MTS. (Default = Error exit to MTS with the
process still loaded.)

* SIGSYS 12 Bad argument to system call. (Default = Error exit to
MTS with the process still loaded.)

* SIGPIPE 13 Write on pipe with no one to read it. (Default = Error
exit to MTS with the process still loaded.)

* SIGALRM 14 Alarm clock. Typically used by a process so that it can
be woken up at a specific time in the future. (Default = Error exit to
MTS with the process still loaded.)

* SIGTERM 15 Software termination signal. In UNIX the system will
send this signal to all processes shortly before a shutdown to give the
processes a chance to cleanup. (Default = Terminate the process via
exit(0).)

* SIGURG 16 Urgent condition on I/O channel, usually an out-of-band
message on a TCP stream. (Default = Error exit to MTS with the process
still loaded.)

* SIGSTOP 17 A stop signal from something other than a terminal.
(Cannot be caught, ignored, or blocked.) (Default = Error exit to
MTS with the process still loaded.)

* SIGTSTP 18 Stop signal from the terminal. In UNIX this is used to
checkpoint a process and place it in the background. (Default = Error
exit to MTS with the process still loaded.)

October 26, 1992

15.4 signal.h - Signal Handling Page 73

* SIGCONT 19 Continue a stopped process. (Cannot be blocked.) (De-
fault = Error exit to MTS with the process still loaded.)

* SIGCHLD 20 This signal is sent to the parent when a child stops or
exits. (Default = Error exit to MTS with the process still loaded.)

* SIGCLD The same as SIGCHLD. Given for backwards compatibil-
ity. (Default = Error exit to MTS with the process still loaded.)

* SIGTTIN 21 Given to reader’s process group upon background read
from a terminal. (Default = Error exit to MTS with the process still
loaded.)

* SIGTTOU 22 Like SIGTTIN for output. (Default = Error exit to MTS

with the process still loaded.)

* SIGIO 23 Given to a process when input or output is possible
(asynchronous). (Default = SIG IGN.)

* SIGXCPU 24 Given to a process when it has exceeded its CPU time
limit. (Default = Error exit to MTS with the process still loaded.)

* SIGXFSZ 25 Given to a process when it has exceeded its file size limit.
(Default = Error exit to MTS with the process still loaded.)

* SIGVTALRM 26 Virtual time alarm. (Default = Error exit to MTS with
the process still loaded.)

* SIGPROF 27 Profiling time alarm. (Default = Error exit to MTS with
the process still loaded.)

* SIGSIGNF 28 Floating point significance caused by hardware floating
point divide by zero. (Default = SIG IGN.)

* SIGUNFLO 29 Floating point underflow caused by hardware floating
point exponent underflow. (Default = SIG IGN.)

* SIGUSR1 30 User-defined signal 1. (Default = SIG IGN.)

* SIGUSR2 31 User-defined signal 2. (Default = SIG IGN.)

Reference R1063

Page 74 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

The equivalent of “signal(sig,SIG DFL);” is not executed prior to calling
a user-defined signal handler for the signal sig. Further occurrences of signal
sig are blocked until the user’s handler returns. The user’s signal handler
function remains in effect until the user explicitly invokes the signal function
to change the signal handling setting, i.e, via SIG IGN, SIG DFL, or another
handling function.

In some systems the SIGILL signal default is reset upon delivery of the
signal to a user-specified handler. This implementation treats SIGILL no
differently from the other signals.

Blocking of a signal, if allowed, is accomplished by either the user calling
the UNIX kernel functions sigblock or sigsetmask, or by a signal being
delivered by the signal facility to a user-defined signal handler function. In
the latter case, future occurrences of the same signal are implicitly blocked
by the signal facility. For either case of blocking, only the first occurrence of
each blocked signal is queued for processing; other occurrences of the same
signal are ignored. A queued event is processed by the signal facility, when
it becomes unblocked (by a user function call or by a return of a user-defined
signal handler for which the signal facility implicitly blocked the signal).

If integer overflow checking is to be used, the CHECKIOVER option must be
enabled when the program is compiled.

15.5 stdio.h - Input/Output

15.5.1 Header Definitions

The header <stdio.h> declares one type, several macros, and many func-
tions for performing input and output. It contains the standard definitions
and also additional definitions and macros that are contained in<stdio.h>,
in the BSD4.3 implementation of UNIX.

15.5.2 Input/Output Alternatives

There are several methods of performing input/output in C:

October 26, 1992

15.5 stdio.h - Input/Output Page 75

• Use the standard C I/O library, which provides services in a manner
compatible with other C implementations. Because this method is
portable, it is preferred.

• Use UNIX functions which are not in the Standard C library. Many
of the UNIX BSD4.3 functions are provided in ∗C89LIB. A detailed
description of what is and what is not available is included in later
parts of this documentation.

More complete descriptions of these functions can be found in UNIX
Programmer’s Reference Manual, April 1986.

• Call MTS system I/O subroutines and functions directly. A descrip-
tion of these can be found in MTS Volume 3: System Subroutine De-
scriptions, Reference R1003.

15.5.3 MTS File Organization

The MTS file system, with its line-oriented files, is unusual among operating
systems. In particular, many C programs assume a byte-oriented structure,
in which newline characters are stored explicitly (rather than causing a skip
to the next line of the file) and bytes may be addressed individually. The
MTS file structure, however, defines the boundaries of lines, i.e., the begin-
ning and end of each line; hence, newline characters are not used to separate
lines. In UNIX systems, files may be sparsely populated, and non-existent
bytes may be addressed individually. Currently MTS, the standard C I/O
library, and the underlying UNIX kernel all require that for a byte to be ad-
dressed, it must physically exist within a file’s bounds. Of course, in MTS,
as in UNIX, one may append data to the end of a file.

The MTS file system provides features that are not in some other operating
systems. Features which are not compatible with doing an fseek or lseek
on a file are:

• Explicit file concatenation

• Implicit file concatenation

• $ENDFILE

• Sequential files

Reference R1063

Page 76 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

15.5.4 File Types and Input/Output Modes

∗C89LIB allows files to be used in either of two modes, text mode and binary
mode. The mode affects the behavior of the following UNIX kernel routines:
read, write, open, lseek, truncate, ftruncate, stat, lstat, fstat and
most C standard I/O routines.

A file accessed in text mode is referred to as a text file and a file accessed
in binary mode is referred to as a binary file. This is compatible with the
ANSI C Standard. In many systems (including UNIX), both text mode
and binary mode can use the same mechanism, and there need not be any
difference between a text file and a binary file. However, this isn’t possible
on MTS.

Binary mode is extremely close to UNIX behavior. In binary mode, bytes are
read and written unchanged, including the newline character. File streams
opened in binary mode may be positioned to arbitrary byte positions using
integer offsets. Almost all C programs that originated on a UNIX system
and use the standard I/O library will run unchanged in binary mode.

The actual MTS records written in binary mode (except possibly the last
record) will be of constant length, which is 1024 in this implementation.
However, a program using ∗C89LIB need not be aware of this fact (the
program can write in any size it wants).

In general, files written in binary mode cannot be directly read by other
pieces of MTS software. They cannot be viewed easily by the MTS File
Editor or similar methods; they can be read or written only by a program
using ∗C89LIB.

Text mode, the default, allows files to be written that can be read by other
MTS programs and vice versa. The behavior of I/O on a text file differs
from I/O on a binary file in a number of respects:

• Trailing blanks at the end of a line may not appear when the file is
read in.

• If you seek to a position within a text file where there is a newline
‘\n’ and write a character other than a newline character, the newline
character remains in the file. Replacing the very last ‘\n’ in the file is
possible.

October 26, 1992

15.5 stdio.h - Input/Output Page 77

• If you seek to a position within a text file where there is a character
other than a newline character and write a newline character, the
newline character is ignored and the original character is replaced by
a blank space character. (That is, it is not possible to change the
number of lines in a text file after they have been written except by
use of the routines truncate and ftruncate).

• It is not possible to seek to a position beyond the end of a text file.

• If two newline characters are written one after the other to a text file,
it is processed as if three characters were written: a newline character,
a space, and a newline character, in that order.

• Control characters may be replaced with other characters. See section
15.5.5, “Control Characters in Output Streams,” for more information.

• The character written in column one of the file may be interpreted
as a carriage control character. See section 15.5.5, “Carriage Control
Characters,” for more information.

• No more than 32,767 non-newline characters may be written between
consecutive newline characters on a file. (If this is attempted, newline
characters will be inserted every 32,767 characters.) For devices other
than files, there is an ananalogous limit which may be 32,767 or a
smaller number, depending on the device and the circumstances.

• If a file has been opened for writing, characters have been added be-
yond the end of the file, and the last such character written was not
a newline character, a newline character gets written automatically
when the file is closed, when exit is called, or when the program
terminates.

• A text file can be read or written by any MTS program.

∗C89LIB cannot determine whether a file is text or binary without help from
the programmer. It will make assumptions and those assumptions may be
wrong in some cases. There are ways to override the normal behavior of
∗C89LIB to make sure a specific file is processed correctly.

The kernel routines open and creat accept O TEXT and O BINARY for flag
values to denote text or binary mode files. The standard C routines fopen

Reference R1063

Page 78 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

and freopen use the character b in the mode parameter to indicate binary
mode. Once a file has been used as a text file or a binary file, the run-time
system will remember this until exit is called (calls to open and creat will
ignore the O TEXT and O BINARY parameters for such files; they will select
the type of the file based on its remembered value).

If a program has calls to the routines truncate, lstat, or stat, the sys-
tem can determine the file type if the file has been previously used by the
program. In other cases the programmer can use the routine deffile

to specify the correct interpretation. The call deffile(0) causes all fu-
ture such situations to assume text mode. The call deffile(1) causes all
future such situations to assume binary mode.

Warning: If a file is not opened correctly, information will be returned
incorrectly. If a file is opened for a write and opened incorrectly, the file will
almost certainly be damaged in the process.

15.5.5 Control Characters in Output Streams

For a binary stream, all characters are passed unchanged in I/O operations
with both the standard and the kernel I/O routines.

This is the default for text files also, with the exception of ‘\n’, which is
always interpreted as skipping to the next line, and no character, as such,
gets written to the file.

For text files, a method is provided to indicate that control character inter-
pretation is required for a given fd, i.e., a file descriptor. A call to ioctl,
that is, ioctl(fd,XHTABS,NULL) will indicate to the run-time system that
control character interpretation is expected for the file accessed by this fd,
on I/O calls using this fd. If a file has been opened with fopen, the file
descriptor number is available through the fileno macro. For output to the
terminal, this feature becomes active by default. No call to ioctl is needed.
Note: this feature is allowed for files or devices opened only for output.

The following apply to text files where control character interpretation has
been requested.

October 26, 1992

15.5 stdio.h - Input/Output Page 79

• The tab character ‘\t’ is expanded into the appropriate number of
spaces to move the column position to the next tab column (the tab
stops are set every 8 spaces).

• ‘\r’ moves the buffer position to the beginning of the buffer unless it
is already at the beginning, in which case it has no effect.

• ‘\b’ moves the buffer position indicator back by one unless the buffer
position indicator is already at the beginning of the buffer, in which
case it has no effect.

• ‘\v’ skips to the next line. That is, the current output line is written
out, and the buffer position points to the same column it was on before
the ‘\v’ was encountered; the spaces up to that position are filled with
space characters.

• ‘\f’ gets replaced with a blank space if carriage control mode is not
in effect. If carriage control mode is on, then the current output line
is written out, and the character 1 gets written at the first position in
the buffer.

15.5.6 Carriage Control Characters

In some cases the information in column one of a file will not be visible but,
instead, will be removed and used to control the amount of spacing between
lines. Whether this occurs or not depends on where the output line is being
sent.

When output is sent directly to a terminal, column one is printed on the
terminal; i.e., it is not interpreted. However, if the output is directed to
a file and then to a terminal, column one is not printed but is used to
control spacing. Normally, output sent to ∗PRINT∗ (the printer) will have
column one interpreted for carriage controls. Output sent anywhere else is
not interpreted for carriage controls.

The most common carriage controls are ‘1’ to advance to the top of the next
page, ‘ ’ for single space, ‘0’ for double space, and ‘-’ for triple space. Other
characters are specified in MTS Volume 1: The Michigan Terminal System,
Reference R1001.

Reference R1063

Page 80 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

For text files, a method is provided to indicate that carriage control mode
is required for a given fd, i.e., a file descriptor. A call to ioctl, that is,
ioctl(fd,CRCTL,NULL) will indicate to the run-time system that carriage
control characters need to be written for the file accessed by this fd, on I/O
calls using this fd. If a file has been opened with fopen, the file descriptor
number is available through the fileno macro. For output to the terminal,
this feature becomes active by default. No call to ioctl is needed. Note:
this feature is allowed for files or devices opened only for output.

When this mode is active, every output line is written with a blank or
a carriage control character if a control character that effects a carriage
control was part of the output (example: ‘\f’).

NOTE: If a file that is being used for output with carriage control is opened
multiple times or opened for read/write there may be unexpected interac-
tions.

15.5.7 MTS File Names

MTS does not differentiate between upper-case and lower-case characters
within file names. In MTS, the string argument filename for open and
fopen may contain any of the following:

• A file name, possibly preceded by a userID and followed by I/O modi-
fiers and a line number range, e.g., MYID:MYFILE(1,20). Line number
ranges and I/O modifiers are only allowed if the TRUSTME flag has
been set.

• A device name, e.g, ∗PRINT∗.

• A sequence of file or device names explicitly concatenated with “+”
characters, e.g., A+B(1,10)+ABCD:THEIRFILE. This is normally not
allowed (see below).

• A logical unit name or number preceded with a “|” (vertical bar) char-
acter, e.g., |INPUT, |PRINT, |OBJECT, |0, |1, . . ., |99.

October 26, 1992

15.5 stdio.h - Input/Output Page 81

If a file or device is opened for writing, or reading and writing, then use of
the MTS-specific features of I/O modifiers, line number ranges, and explicit
concatenation are not allowed. Open will set errno to EIO and return in these
cases. And implicit concatenation also is not available since, $Continue
with and $Endfile are treated as data.

The above is the default behaviour for all files and devices. However, if the
program contains a definition for an external variable called TRUSTME, then
explicit and implicit concatenation, line number ranges and I/O modifiers
are allowed for files/devices opened for input only. (This does not apply
when the routine C89INIT is used to initialize the C environment. In that
case, these MTS features are allowed only if bit 3 is used when C89INIT is
called). When TRUSTME or bit 3 of C89INIT is used, the programmer must
be aware of the following consequences.

If there is more than one instance of the file being open and one of these
instances has the I/O modifier or the line number ranges, it may cause prob-
lems with synchronization, and the results of read calls may be erroneous.
If one such instance is for the file to be opened with write, the behaviour
is unpredictable. Seeking to random byte positions in the file will also not
work, when concatenation or line number ranges are involved.

Basically, if the file is being opened multiple times and I/O is performed
through multiple fps, then concatenation, line number ranges, and the other
I/O modifiers should not be used. If they are, then the results are unpre-
dictable.

For more information on valid file names, consult MTS Volume 1: The
Michigan Terminal System, Reference R1001.

15.5.8 Initial Stream Assignments

At the start of execution, stdin is assigned to logical I/O unit INPUT, stdout
to the logical I/O unit PRINT, and stderr to to the logical I/O unit SERCOM.
By default, ∗C89 will complain if either stdin or stdout is assigned to a
file/device that does not exist or to which you have no access. Also by
default, stdout and stderr are emptied if they are attached to files.

Reference R1063

Page 82 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

If any of this behavior is not desired, it is possible to suppress the initial
opening of the three I/O units. To do this, place a reference to the exter-
nal variable noopen anywhere in the program. Then the three units can
be manually opened as desired by using the routine freopen. Note that
the units must be opened in the following order: stdin, stdout, and then
stderr. For example:

#include <stdio.h>

int _noopen;

main()

{

/* Open stdin first. */

if(freopen("|INPUT", "w", stdin)==0)

{FILE *msink;

/* stderr hasn’t been opened yet, so don’t

write an error message on it. */

msink = fopen("*MSINK*", "w");

fprintf(msink, " Error opening INPUT.");

exit(4);

}

/* Open stdout second. */

if(freopen("|PRINT", "w", stdout)==0)

{FILE *msink;

/* stderr hasn’t been opened yet, so don’t

write an error message on it. */

msink = fopen("*MSINK*", "w");

fprintf(msink, " Error opening PRINT.");

exit(4);

}

setlinebuf(stdout);

/* Open stderr third. */

if(freopen("|SERCOM", "w", stderr)==0)

{FILE *msink;

/* stderr hasn’t been opened yet, so don’t

October 26, 1992

15.5 stdio.h - Input/Output Page 83

write an error message on it. */

msink = fopen("*MSINK*", "w");

fprintf(msink, " Error opening SERCOM.");

exit(4);

}

setlinebuf(stderr);

/* Rest of the program ... */

}

Of course this may be modified as needed to suit a given situation.

15.5.9 Random Access

Disk files may be processed randomly by requesting that a given byte posi-
tion be made the current one. The functions fseek and lseek set the byte
position, while ftell returns the current byte position.

MTS random access organization is line-oriented, while the C library random
access support is byte-oriented. To efficiently access bytes in MTS files,
one of two byte-access organizations is used, depending on whether the file
stream is in binary or text mode.

In binary mode the byte positions are specified by integers, making it possi-
ble to seek to a specific byte, given its offset. This is very efficient, since all
lines in the file, except for possibly the last, are of the same length, which
makes the byte-position computation simple.

Random access must be handled carefully. Changing the length of a line
in a file opened for random access will result in an error that will not be
detected by the ∗C89LIB I/O support.

Those who want to access MTS files by line number may call MTS subrou-
tines, such as MTSREAD and MTSWRITE, directly.

Reference R1063

Page 84 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

15.5.10 Terminal Input/Output

Terminal input/output is a sensitive area for programming support. It in-
volves the way in which the operating system handles the terminal, as well
as the actual behavior of the terminal when given various control codes.

Many UNIX-based programs use a library of terminal-independent routines
named curses. This library is not available with ∗C89. Sophisticated ap-
plications may call the MTS screen-support routines for full control of the
terminal.

The terminal support provided with ∗C89 is character-based, providing the
ability to read lines from the terminal and to write lines or line segments to
the terminal. The normal character I/O functions are used for this purpose.

15.5.11 Using the MTS I/O Routines

It is possible to directly call the MTS routines READ and WRITE, but this
must be done with some care. First, the routines must be called by their
aliases MTSREAD and MTSWRITE so they don’t interfere with the routines READ
and WRITE in the C library. Second, they must not use any units that are
also being used by the C I/O routines. Third, the fortran linkage must
be used.

15.5.12 Implementation Specifics for the I/O Routines

fopen fopen and freopen are system-dependent by their nature, since
they both use a parameter that is a file name. For this reason, fopen and
freopen calls are not generally portable. For information on constructing a
valid file name, see section 15.5.7, “MTS File Names.”

If the file is opened in append mode, the file position indicator is initially
placed at the end of the file. Opening a file multiple times may cause
problems with I/O synchronization, and hence, is strongly discouraged.

remove If the file is open, the remove function returns with an error, and
errno is set to EINTR.

October 26, 1992

15.5 stdio.h - Input/Output Page 85

rename If a file with the new name already exists, the function rename

returns with an error and errno is set to EEXISTS.

I/O formatting The output for %p conversion for fprintf and the input
for %p conversion for fscanf are the same as those used for %x conversion.
There is no special meaning attached to the ‘-’ character in the scan list for
the fscanf %[format.

Random I/O The functions ftell and fgetpos set errno to ESPIPE if
the file is not indexable. In text mode, errno gets set to ENOMEM if memory
is not available for allocating needed data structures.

perror perror(s) will produce the following output on stderr: if s is not
a null pointer and the character pointed to by it is not the null character, s is
written followed by a colon (:), a space, and the appropriate error message.
The error message is produced by using the current setting of errno as an
index into the array sys errlist, which contains the error messages. For
the list of the error messages, see the include member sys/errno.h or the
UNIX Programmer’s Reference Manual, April 1986. The error messages
and error numbers produced by ∗C89LIB are identical to those produced by
BSD 4.3 UNIX.

Input and Output Writing to a stream does not cause the associated file
to be truncated beyond that point. MTS allows zero-length files to exist.
The implementation does not set a limit on the number of null characters
that may be appended to data in a binary stream. (See section 15.5.3,
“MTS File Organization” and section 15.5.4, “File Types and Input/Output
Modes.”)

I/O buffers There are two I/O buffers used by the run-time system. The
outer level buffer is the one modified by calls that use the FILE pointer. A
call to fflush or any action that requires buffer flushing moves this buffer’s
contents onto an internal I/O buffer. The internal buffer is modified also
by the kernel calls dealing with I/O. When the internal buffer overflows or

Reference R1063

Page 86 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

the ‘\n’ is encountered, its contents are written to the file or I/O unit. The
contents of this buffer are written to the file or I/O unit when calls are made
that require updating the contents of the physical unit.

15.6 stdlib.h - General Utilities

This header contains the macros and function prototypes required by the
ANSI C Standard as general utilities.

15.6.1 Implementation Specifics for the Utilities

calloc If size requested is zero, calloc returns NULL.

malloc If size requested is zero, malloc returns NULL.

realloc If size requested is zero, realloc frees the pointer and returns
NULL. If the ptr is NULL and the size is non-zero, realloc allocates mem-
ory and returns a pointer to the start of the memory. If memory is expanded,
realloc does not initialize the extra space that is allocated.

abort The abort function flushes the I/O buffers of all open files, destroys
any temporary files created by tmpfile, and terminates program execution
with an error code of 8. It never returns to the caller.

exit A call to the exit function terminates execution of the program, and
the value of its argument is returned as the MTS return code.

getenv The getenv function uses the string argument to obtain the value
of a MTS command macro variable. If there is no macro variable with
that name, NULL is returned. Otherwise, the value is converted to a string
and that string is returned. To set the environment variable, use the MTS
Command Macro Processor. For details refer to MTS Volume 21: MTS
Command Extensions and Macros, Reference R1021.

October 26, 1992

15.7 string.h - String Handling Page 87

system The system function takes a string parameter that is in the form
of an MTS command. This command is passed to MTS for processing.

15.7 string.h - String Handling

This header contains all the standard macros and prototype definitions re-
quired by ANSI C Standard as well as some string function available in
BSD4.3 UNIX.

15.7.1 memcmp

Note: Objects with “holes” (used as padding for alignment purposes within
structure objects), strings that are shorter than their allocated space, and
unions may cause problems in comparison with memcmp.

15.7.2 strerror

The error messages generated by strerror are the same as the contents of
the array sys errlist. The integer argument is used as an index into the ar-
ray. For the list of the error messages, see the include member sys/errno.h
or the UNIX Programmer’s Reference Manual, April 1986. The error mes-
sages and error numbers produced by ∗C89LIB are identical to those pro-
duced by BSD4.3 UNIX.

15.7.3 stricmp

Name: stricmp

Purpose: String comparison (case insensitive)

Include file: <string.h>

Prototype: int stricmp(const char *s1, const char *s2)

Description: stricmp returns an integer result similar to strcmp.

The stricmp function is similar to strcmp, except it is case insensitive.

Reference R1063

Page 88 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

Example: #include <string.h>

char *s1, *s2;

...

if (stricmp(s1,s2)==0)

{

...

}

/* Here, if s1 and s2 are the same except for

upper-case/lower-case differences in one

or more characters, stricmp returns 0 */

See also: strcmp, strncmp, strnicmp, memcmp

15.7.4 strnicmp

Name: strnicmp

Purpose: String comparison (case insensitive with count)

Include file: <string.h>

Prototype: int strnicmp(const char *, const char *, size t)

Description: This function returns an integer similar to strcmp.

The strnicmp function is similar to stricmp, except it compares not
more than the third parameter number of characters from the string
pointed to by the first parameter to the string pointed to by the second
parameter.

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

15.7.5 strchr

Note: The name index is recognized as a synonym for this function, since
some UNIX implementations use the name index. For portability consider-
ations, use of the name strchr is preferred.

October 26, 1992

15.7 string.h - String Handling Page 89

15.7.6 strrchr

Note: This function is known by the name rindex in some UNIX implemen-
tations. With ∗C89LIB, the name rindex is a synonym for this function.
For portability considerations, use of the name strrchr is preferred.

15.7.7 strlwr

Name: strlwr

Purpose: Convert string to lower case

Include file: <string.h>

Prototype: char *strlwr(char *s)

Description: This function returns a pointer to the transformed string s

as described below:

strlwr converts the upper-case characters in the string pointed to by
s to their corresponding lower-case characters. The non-alphabetic
characters are unaffected by this transformation.

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

Example: #include <string.h>

char *t;

char s[50]; /* Space for a string. */

strcpy(s,"aBc;Def"); /* Initialize it. */

...

t = strlwr(s); /* Convert to lower case. */

/* Both s and t now point to "abc;def". */

...

See also: strupr

Reference R1063

Page 90 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

15.7.8 strupr

Name: strupr

Purpose: Convert string to upper case

Include file: <string.h>

Prototype: char *strupr(char *s)

Description: This function returns a pointer to the transformed string s

as described below:

strupr converts the lower-case characters in the string pointed to by
s to their corresponding upper-case characters. The non-alphabetic
characters are unaffected by this transformation.

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

Example: #include <string.h>

char *t;

char s[50]; /* Space for a string. */

strcpy(s,"aBc;Def"); /* Initialize it. */

...

t = strupr(s); /* Convert to upper case. */

/* Both s and t now point to "ABC;DEF". */

...

See also: strlwr

15.7.9 reverse

Name: reverse

Purpose: Convert string to its reverse order

Include file: <string.h>

Prototype: char *reverse(char *s)

Description: reverse returns a pointer to the string s. It reverses the
order of the characters in the string s.

October 26, 1992

15.8 time.h - Date and Time Page 91

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

Example: #include <string.h>

char *s, *p;

...

strcpy(p,s);

if (strcmp(reverse(s),p)==0)

printf(" %s is a palindrome\\n",s);

...

15.8 time.h - Date and Time

In addition to routines required by the ANSI C Standard, the routines ftime,
times, and gettimeofday are supplied in <time.h>. They are not part of
the ANSI C Standard but are available in UNIX. They behave as described
in the UNIX Programmer’s Reference Manual, April 1986.

The local time zone, as used by these functions, varies depending on where
the program is executed. For Ann Arbor, Michigan and Troy, New York,
either EST or EDT is used. For Vancouver, British Columbia, either PST or
PDT is used. The times when transitions to and from Daylight Savings time
occur are based on a table, which is accurate for most of North America.

The era for the clock function is relative to the starting time of the MTS
task that is running the program.

15.9 mts.h - MTS Specific Routines

A number of prototypes are defined in <mts.h>. It is important to use
these prototypes so that the proper linkage is made to the appropriate MTS
routines. Most of these routines are described in MTS Volume 3: System
Subroutine Descriptions, Reference R1003.

Some additional C routines are described below.

Reference R1063

Page 92 15 THE MTS ∗C89 LIBRARY, HEADERS, AND MACROS

15.9.1 atoe

Name: atoe

Purpose: Translate ASCII to EBCDIC

Include file: <mts.h>

Prototype: char atoe(char *str, int len)

Description: The function atoe converts the characters in the ASCII
string pointed to by the argument str to their corresponding EBCDIC
representation. It returns the last character after conversion and NULL

if the string is empty.

This function uses the ASCII to EBCDIC conversion table provided
by the system.

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

See also: etoa

15.9.2 etoa

Name: etoa

Purpose: Translate EBCDIC to ASCII

Include file: <mts.h>

Prototype: char etoa(char *str, int len)

Description: etoa converts the characters in the string pointed to by the
argument str to their corresponding ASCII representation. It returns
the last character after conversion and NULL if the string is empty.

Each character is converted to the corresponding 7-bit ASCII character
code, with the parity bit set to zero.

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

October 26, 1992

15.9 mts.h - MTS Specific Routines Page 93

15.9.3 query

Name: query

Purpose: Prompt for terminal input

Include file: <mts.h>

Prototype: int query(char *prompt, char *reply,

int maxinplen)

Description: query displays the string pointed to by prompt on the stdin
stream, if stdin is attached to a terminal; otherwise, the prompt is
not written. Then stdin is read with the input being truncated, if
necessary, to the length maxinplen - 1, to allow for appending a ‘\0’
to the end of the input to make it a string. The input string result is
stored in the object pointed to by reply and the function returns.

The length of the prompting string is limited to 79 characters, not
including its ‘\0’ terminator. If the string is longer, only 79 characters
will be used for the prompt.

query returns a zero if input was successfully done; it returns EOF, if
either an end-of-file was encountered or an input error occurred.

Note: This function is not required by the ANSI C Standard. Programs
using this function may not be portable.

Example: #include <mts.h>

...

int ret; /* return value from query */

static char prompt[]="Input please:";

static int maxlen=100; /* maximum input length. */

char inparea[100]; /* the input line */

...

ret=query(prompt,inparea,maxlen); /* Prompt */

if (ret!=0)

printf("Unable to prompt and read.\n");

...

Reference R1063

Page 94 16 BSD4.3 UNIX ROUTINES

16 BSD4.3 UNIX Routines

This section mainly goes over the UNIX routines and their expected be-
haviour in this library. These fall into two categories: the kernel routines
and the non-kernel routines. The kernel routines are described in chapter
2 of the UNIX Programmer’s Reference Manual, April 1986 and the others
are described in chapter 3. Many of the ANSI C Standard routines are also
described in chapter 3 of the UNIX Programmer’s Reference Manual, April
1986. The ANSI C Standard also has routines not mentioned in chapter 3.

16.1 Kernel Routines

This section deals with the kernel routines of UNIX. Most of these routines
go through a routine called syscall which connect the kernel and non-kernel
levels of the library. This section describes how the behavior of ∗C89LIB is
different from BSD4.3. If not otherwise specified, each routine is assumed to
behave identically to BSD4.3. Full descriptions are given of extensions and
implementation-defined features. The routines read, write, open, close
and lseek are described in the section <stdio.h>.

16.1.1 File Access - Querying and Modifying

The routines that deal with file access (either specifying, modifying, or sim-
ply retrieving access information) are the routines access, creat, open,
chmod, and fchmod. For each of these routines that requires a “pathname,”
an MTS filename should be supplied instead.

When an existing file is used, the access of the file is queried to determine
whether a given type of use is allowed. This query determines the result of
the routine access.

READ access (in the MTS sense) for the current userID, project, and program
key is needed for read access in the UNIX sense.

READ, WRITE/CHANGE and WRITE/EXPAND access (in the MTS sense) for the
current userID, project, and program key are needed for write access in
the UNIX sense.

October 26, 1992

16.1 Kernel Routines Page 95

READ access (in the MTS sense) for the current userID, project, and the
program key *MTS.RUN is needed for execute access in the UNIX sense.

Note that it is possible to permit a file (using MTS mechanisms) such that
its access controls are more complicated than can be represented by the
routine access.

Currently both creat and open ignore their third parameters.

In UNIX, the access of a file is changed with chmod or fchmod, which is not
implemented in ∗C89LIB.

16.1.2 Miscellaneous I/O Routines

Various I/O related UNIX routines have been implemented:

close, dup, dup2, fcntl, flock, fsync, ftruncate, getdtablesize, ioctl,
lseek, read, readv, rename, sync, truncate, umask, unlink, write, writev.

For each of these routines that requires a “pathname,” an MTS filename
should be supplied instead.

sync sync causes an fsync to be performed on all files open by the current
process. (It has no effect on other processes).

fcntl For fcntl the F GETOWN and F SETOWN commands are not imple-
mented. The FASYNC flag is not implemented.

flock Unlike UNIX, file locking is mandatory; that is, reading a file causes
the equivalent of flock(d, LOCK SH) to be executed. Writing to a file or
modifying it causes the equivalent of flock(d, LOCK EX) to be executed.
Also flock will allow LOCK EX only if the file is permitted for write.

A file is said to be open if some process has called open on the file and has
not yet called close or is making some other use of the file. While a file is
open, other processes may not unlink, rename, or chmod the file. If flock
is called with LOCK UN, the file will be unlocked but it will remain open.

Reference R1063

Page 96 16 BSD4.3 UNIX ROUTINES

rename, unlink If rename is called and the second file already exists, an
error is returned and neither file is affected.

With successful calls to rename and unlink, the old file is instantly unavail-
able, and any attempts to do I/O on a file descriptor attached to the old file
cause an error. The failure will occur only when actual I/O is done to the
file and not when information is added to the buffer.

Permission to rename or unlink a file is not as described in the UNIX Pro-
grammer’s Reference Manual, April 1986. A file can be renamed or unlinked
if, and only if, the userID which calls rename or unlink has DESTROY/RENAME
access to the file. Normally only the owner of the file will have such access.
This access can be changed by using the $PERMIT command or the MTS
PERMIT subroutine. It cannot be changed by use of the chmod routine.

16.1.3 Sockets in ∗C89LIB

The following socket-related routines have been implemented:

accept, bind, connect, gethostname, getpeername, getsockname, listen,
recvfrom, select, sendto, socket.

The following socket routines have not been implemented. They set errno
to EFAULT and return -1 when called:

gethostid, getitimer, setitimer, getsockopt, recv, recvmsg, send,
sendmsg, sethostid, sethostname,setsockopt, socketpair

UDP datagram The UDP implementation on MTS can handle 1500
octets, the minimum required to be handled for Ethernet connections as
per RFC 894. (Note: Seems to handle only 1472 bytes of actual data.)

The general default maximum size required by internet is only 576 octets.
When sending data to hosts that are not on the same Ethernet, some hosts
in the route may have to fragment the data if the length of the datagram ex-
ceeds their capacity, even if the intended receiver may be capable of handling
the larger size.

October 26, 1992

16.1 Kernel Routines Page 97

shutdown shutdown closes the TCP connection. The behaviour is the
same as in UNIX BSD4.3 shutdown when the second parameter has value 2.
The partial shutdowns available with how=0 or how=1, where how refers to
the second parameter, are not currently supported by our implementation.

16.1.4 Library Utility Routines

The following utility routines available in UNIX are implemented:

exit, getgid, getgroups, getegid, getpagesize, getpgrp, getpid,
getppid, getpriority, getrusage, gettimeofday, getuid, geteuid,
setpriority and syscall.

It is assumed that the UNIX group ID is the same as the MTS project and
the UNIX userID is the same as the MTS userID.

It is assumed that the UNIX process ID and the UNIX process group are
the same and are both the same as the MTS task number. It is assumed
that the parent to all processes is process 0. The process group cannot be
changed.

syscall syscall is subject to the same constraints as the facility it calls.
For example, syscall(SYS read,...) has exactly the same behaviour as
read(...).

getgroups When the routine getgroups is called, one group is returned
and it is the same as the current group userID.

getpriority It is not possible to modify the priority of a process.
getpriority always returns 0.

setpriority setpriority returns 0 (OK) but does not do anything.

Reference R1063

Page 98 16 BSD4.3 UNIX ROUTINES

setregid, setreuid The system will not allow the UNIX group ID or the
UNIX userID to be changed when setregid or setreuid is called.

16.1.5 Signals in ∗C89LIB

The routines kill, killpg, sigblock, sigsetmask, and sigvec have been
provided.

When the routines kill and killpg are called, if the argument matches the
current process, the call is processed as expected. If an attempt is made to
signal another process with either kill or killpg, EPERM is returned.

Signal routines have some MTS-specific features, which are described earlier
under <signal.h>.

The routines alarm, siginterrupt, sigpause, sigreturn, sigstack, wait,
and wait3 are not available.

16.1.6 Other Unimplemented Kernel Routines

The following routines are mainly of use to the superuser, and they set errno
to EPERM and return -1 when called:

acct, adjtime, chroot, mknod, mount, umount, quota, reboot, setgroups,
settimeofday, setquota, swapon, vhangup

The following routines pertain to directories. Since MTS does not have
directories, they always set errno to ENOTDIR and return -1 when called:

chdir, link, mkdir, readlink, rmdir, symlink

The following routines have not been implemented. They return -1 and set
errno to the values indicated:

execve, fork, profil -- EPERM

ptrace, utimes, vfork -- EPERM

October 26, 1992

16.2 Non-Kernel Routines Page 99

brk, sbrk -- ENOMEM

pipe -- EFAULT

chown, fchown -- EPERM

setrlimit, setpgrp -- EPERM

16.2 Non-Kernel Routines

This section deals with routines, header files, and macros other than the
kernel routines. Unless otherwise specified, routines are assumed to be-
have identically to BSD4.3. Full descriptions are given of extensions and
implementation-defined features. Some of the routines mentioned are also
ones required by the ANSI C Standard, so they may have been mentioned
earlier.

16.2.1 I/O Routines

printf, fprintf, sprintf, doprnt, scanf, fscanf, and sscanf have been
modified to conform to the ANSI C Standard. They all should be upward
compatible with BSD4.3.

The following routines and macros have been implemented. However the
details of their behaviour are analogous to the behavior for read, write and
lseek as explained in section 16.1, “Kernel Routines.”

printf, fprintf, doprnt, scanf, fscanf, fclose, fflush, ferror, feof,
clearerr, fileno, fread, fwrite, ftell, rewind, getc, getchar, fgetc,
getw, gets, fgets, putc, putchar, fputc, putw, puts, fputs.

16.2.2 Signal

The routine signal works essentially as it does in BSD 4.3; however, there
are some differences. See the earlier descriptions.

The routines alarm and siginterrupt do not work.

Reference R1063

Page 100 16 BSD4.3 UNIX ROUTINES

16.2.3 Character Macros

The following macros all assume an EBCDIC character set:

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, isascii, toupper, tolower,
toascii. .

16.2.4 Other Implemented Routines

The following math routines have been implemented:

acos, asin, atan, atan2, cabs, cbrt, ceil, copysign, cos, cosh, erf,
erfc, exp, fabs, floor, hypot, infnan, lgamma, log, log10, pow, rint,
sin, sinh, sqrt, tan, tanh.

In addition, the following routines have been implemented:

abort, abs, atof, atoi, atol, bcopy, bcmp, bzero, ffs, htonl, htons,
ntohl, ntohs, crypt, setkey, encrypt, ctime, localtime, gmtime,
asctime, timezone, ecvt, fcvt, gcvt, exit, frexp, ldexp, modf, fseek,
gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent,
getopt, getpass, finite, inet addr, inet network, inet ntoa,
inet makeaddr, inet lnaof, inet netof, insque, remque, malloc, free,
realloc, calloc, alloca, mktemp, mkstemp, ns addr, ns ntoa,
perror, sys errlist, sys nerr, psignal, sys siglist, qsort, rand,
srand, random, srandom, initstate, setstate, re comp, re exec, rexec,
setbuf, setbuffer, setlinebuf, setjmp, longjmp, sleep, strcat,
strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex, stty,
gtty, swab, time, ftime, times, ttyname, isatty, ttyslot, ualarm,
ungetc, usleep, utime, valloc, vlimit, vtimes.

The assert macro and the macros defined in varargs.h are available.

The symbols end, etext, and edata are available.

October 26, 1992

16.2 Non-Kernel Routines Page 101

16.2.5 Unimplemented Routines

The following routines are not implemented:

dbm open, dbm close, dbm fetch, dbm store, dbm delete, dbm firstkey,
dbm nextkey, dbm error, dbm clearerr, execle, execlp, exect, execv,
execve, execvp, environ, getfsent, getfsspec, getfsfile, getfstype,
syslog, openlog, closelog, setlogmask, system, res mkquery, res send,
res init, dn comp, dn expand, scandir, alphasort, setuid, seteuid,
setruid, setgid, setegid, setrgid, rcmd, rresvport, ruserok, popen,
pclose, pause, nice, nlist, initgroups, opendir, readdir, telldir,
seekdir, rewinddir, closedir, execl, setfsent, endfsent, getgrent,
getgrgid, getgrnam, setgrent, endgrent, getlogin, getnetent,
getnetbyaddr, getnetbyname, setnetent, endnetent, getprotoent,
getprotobynumber, getprotobyname, setprotoent, endprotoent, getwd,
getdiskbyname, getpw, getpwent, getpwuid, getpwnam, setpwent, endpwent,
setpwfile, getservent, getservbyport, getservbyname,
setservent, endservent, getttyent, getttynam, setttyent, endttyent,
getusershell, setusershell, endusershell.

The following math routines are not available:

asinh, acosh, atanh, drem, expm1, log1p, logb, j0, j1, jn, scalb, y0, y1,
yn.

None of the multiple precision arithmetic routines are available:

madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min,
omin, fmin, m in, mout, omout, fmout, m out, sdiv, itom.

None of the plotting routines are available:

openpl, erase, label, line, circle, arc, move, cont, point, linemod,
space, closepl.

None of the termcap routines are available:

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs.

Reference R1063

Page 102 17 INCOMPATIBILITIES WITH ∗C87

In addition, none of the following routines are available:

dbminit, fetch, store, delete, firstkey, nextkey, monitor, monstartup,
moncontrol.

Many UNIX-based programs use a library of terminal-independent routines
named curses. These routines are not available with ∗C89LIB.

The routines available in some unix systems in the library lib2648 are not
available.

17 Incompatibilities With ∗C87

17.1 Incompatibilities with ∗C87LIB

Most programs using ∗C87LIB will work unchanged with ∗C89LIB if all
components of the program are recompiled. There are, however, a few dif-
ferences between ∗C87LIB and ∗C89LIB:

• eat cookie is no longer needed and is not available.

• The values of stdin, stdout, and stderr cannot be modified. The
routine freopen should be used to reassign these units.

• fflush only moves the level 3 buffer to the kernel. To do the equivalent
of what fflush did in ∗C87LIB, one needs to call both fflush and
fsync.

• The routines read, write, open, lseek, and close require small inte-
gers to be used as file descriptors (similar to what UNIX expects).

• fseek uses integer offsets instead of “magic cookies.”

• open does not assume binary mode. The mode is passed through the
appropriate flag value, namely O TEXT or O BINARY.

• Many more routines are available.

October 26, 1992

17.2 Incompatibilities with ∗C87 Compiler Page 103

• By default, I/O modifiers, line number ranges, and explicit concate-
nation are not allowed. Any attempt to use these features will be
treated as an error. $CONTINUE WITH and $ENDFILE lines are never
treated as special; they are always treated as data. ∗C87LIB allowed
these features to be used when files where opened with the c option.
This is not allowed in ∗C89LIB. There is a different method of allow-
ing $CONTINUE WITH and $ENDFILE lines, but it works on input only.
This has been discussed under I/O.

• When writing to files or devices other than terminal, tab characters
are not interpreted by default. An ioctl call is required to cause
interpretation of tab characters.

• Carriage control is no longer supported via the use of the ‘p’ in the
mode parameter for fopen. This is done with an ioctl call on files or
devices opened only for output.

• C87INIT has been renamed C89INIT.

• The behaviour of getenv has changed.

17.2 Incompatibilities with ∗C87 Compiler

• ∗C89 does not predefine the macro C87. It defines the macro C89
instead.

• ∗C89INCLUDE is used as the default macro library instead of
∗C87INCLUDE. This means by default, you have to use ∗C89LIB to
get programs to execute correctly.

• ∗C87 includes <unix.h> only when the option PAR=UNIX4.3 is
used. ∗C89 always includes <unix.h> at the start of compilation.

• Object code produced by ∗C89 must be run with ∗C89LIB. It cannot
be run with ∗C87LIB.

• The option RETCODE is no longer available. RETCODE users must rewrite
their programs to use retcode instead.

• fortran is no longer accepted as an alias for fortran. The latter
keyword must be used whenever FORTRAN linkage is required.

Reference R1063

Page 104 17 INCOMPATIBILITIES WITH ∗C87

• When two or more function declarations have conflicting function pro-
totypes, ∗C89 will print an error message under circumstances that
∗C87 does not.

• ∗C89 no longer allows declarations of two typedefs with the same
name to occur in the same block.

• In some complicated initializers, ∗C89 and ∗C87 may produce different
code.

• There are some subtle differences in the way the compiler determines
whether an expression is signed or unsigned. This will have an effect
only for the “<<”, “%” and “/” operators.

• ∗C87 complained when non-portable usage was made of identifiers that
began with an underscore. The rules on portability have changed since
that part of the compiler was written; thus, ∗C89 uses different rules.

• ∗C89 may produce error messages in circumstances that ∗C87 does
not, and conversely, ∗C89 may compile a program without complaint
when ∗C87 does produce an error message.

• LONG defaults on. Hence by default, external identifiers are not trun-
cated to 8 characters.

• ∗C87 always truncated pseudo-registers to 8 characters, even if the
LONG option was turned on. ∗C89 truncates pseudo-registers only if
the LONG option is off.

October 26, 1992

Index

.FALSE., 44, 45

.TRUE., 44, 45
∗C87, 103
∗C87INCLUDE, 103
∗C87LIB, 102
∗C89, 9
∗C89INCLUDE, 64
∗C89LIB, 39, 46, 63
∗PRINT∗, 79
$CONTINUE WITH, 75, 103
$DEBUG, 18, 23, 55
$ENDFILE, 10, 75, 103
$PERMIT, 96
$RUN, 9, 12
$SDS, 18, 23, 55
cleanup, 51, 52
doprnt, 99
exit, 77, 78, 97
noopen, 82
sqrt, 70
stack, 40, 50
deffile, 78
fortran, 20, 32, 43, 44, 46, 50,

51, 84, 103
pseudoregister, 20, 33
prvbase, 20, 34
retcode, 20, 45, 103
SAVEAREA, 33
TRUSTME, 50, 52, 80, 81
#define, 14, 34, 38, 54
#endif, 16
#include, 10, 11, 16, 17, 31, 68
#line, 18
#pragma, 12, 31
#undef, 24
31 bit, 13, 22

abort, 67, 86, 100
abs, 100
accept, 96
access, 94, 95
acct, 98
acos, 46, 100
acosh, 101
adjtime, 98
alarm, 98, 99
alloca, 100
alphasort, 101
AMODE, 13
ANSI, 16
ANSI Standard C, 9
arc, 101
argc, 41
arge, 41
argv, 41
arithmetic functions, 101
arrays, 28
ASCII, 13, 26
asctime, 100
asin, 46, 100
asinh, 101
assembly language, 47, 51, 53
assert, 67, 100
<assert.h>, 55, 65, 67
atan, 46, 100
atanh, 101
atan2, 46, 100
atoe, 92
atof, 100
atoi, 100
atol, 100
ATTNTRP, 50
auto, 59

105

Page 106 INDEX

bcmp, 100
bcopy, 100
binary mode, 76, 77, 102
bind, 96
bit-fields, 29, 30
BREAK, 57
brk, 99
BSD4.3 UNIX, 9, 22, 64, 94
bzero, 100

cabs, 100
calloc, 86, 100
carriage control, 79
case, 30
cbrt, 100
ceil, 100
char, 27, 29
CHARACTER, 44, 45
character graphics, 12
character sets, 26, 39, 67
chdir, 98
CHECKIOVER, 14, 74
CHECKSTACK, 14
chmod, 94–96
chown, 99
chroot, 98
circle, 101
clearerr, 99
clock, 91
close, 94, 95, 102
closedir, 101
closelog, 101
closepl, 101
compiler options, 10, 12
COMPLEX, 44, 45
COMPLEX*16, 44, 45
COMPLEX*8, 44, 45
concatenation, 81
connect, 96

const, 22
cont, 101
control characters, 78
control sections, 56
conversion, 92
copysign, 100
cos, 46, 100
cosh, 46, 100
creat, 77, 78, 94, 95
crypt, 100
csect, 56
CSECT, 57
ctime, 100
<ctype.h>, 65, 67–69
curses, 84, 102
C87INIT, 103
C89INIT, 50, 51, 81, 103

dbminit, 102
dbm clearerr, 101
dbm close, 101
dbm delete, 101
dbm error, 101
dbm fetch, 101
dbm firstkey, 101
dbm nextkey, 101
dbm open, 101
dbm store, 101
debugging, 18, 23, 54, 55, 67
declarators, 30
DEFINC, 14
DEFINE, 14
delete, 102
DEPEND, 15, 17
dn comp, 101
dn expand, 101
documentation, 9
double, 28, 29, 42, 45, 48, 70
DOUBLE PRECISION, 43, 44

October 26, 1992

INDEX Page 107

drem, 101
dup, 95
dup2, 95

eat cookie, 102
EBCDIC, 13, 39
EBCDIC to ASCII, 92
ecvt, 100
edata, 100
EDOM, 70
EEXISTS, 85
EINTR, 84
encrypt, 100
end, 100
endfsent, 101
endgrent, 101
endhostent, 100
endnetent, 101
endprotoent, 101
endpwent, 101
endservent, 101
endttyent, 101
endusershell, 101
ENOMEM, 85
ENOTDIR, 98
enum, 29, 30
environ, 101
EOF, 67, 93
EPERM, 98
ERANGE, 70
erase, 101
erf, 100
erfc, 100
errno, 61, 70, 84, 85, 96
<errno.h>, 65
error messages, 24, 25
errors, 37
ESPIPE, 85
etext, 100

etoa, 92
execl, 101
execle, 101
execlp, 101
exect, 101
execv, 101
execve, 101
execvp, 101
exit, 86, 100
exp, 46, 100
explicit concatenation, 75, 103
expm1, 101
extern, 22
external names, 17, 26, 38

fabs, 100
FASYNC, 95
fchmod, 94, 95
fchown, 99
fclose, 99
fcntl, 95
fcvt, 100
feof, 99
ferror, 99
fetch, 102
fflush, 85, 99, 102
ffs, 100
fgetc, 99
fgetpos, 85
fgets, 99
file access, 94
file locking, 95
fileno, 78, 80, 99
FILL, 15, 20, 35, 37, 55
finite, 100
firstkey, 102
float, 28, 29, 42, 45, 48
<float.h>, 65
floating point, 28

Reference R1063

Page 108 INDEX

flock, 95
floor, 100
fmin, 101
fmod, 70
fmout, 101
fopen, 77, 78, 80, 84, 103
fork, 99
fortran, 103
FORTRAN, 32, 43, 50, 103
fprintf, 85, 99
fputc, 99
fputs, 99
fread, 99
free, 100
freopen, 78, 82, 84, 102
frexp, 100
fscanf, 85, 99
fseek, 75, 83, 100, 102
fstat, 76
fsync, 95, 102
ftell, 83, 85, 99
ftime, 91, 100
ftruncate, 76, 77, 95
fwrite, 99
F GETOWN, 95
F SETOWN, 95

gcd, 101
gcvt, 100
getc, 13, 99
getchar, 99
getdiskbyname, 101
getdtablesize, 95
getegid, 97
getenv, 86, 103
geteuid, 97
getfsent, 101
getfsfile, 101
getfsspec, 101

getfstype, 101
getgid, 97
getgrent, 101
getgrgid, 101
getgrnam, 101
getgroups, 97
gethostbyaddr, 100
gethostbyname, 100
gethostent, 100
gethostid, 96
gethostname, 96
getitimer, 96
getlogin, 101
getnetbyaddr, 101
getnetbyname, 101
getnetent, 101
getopt, 100
getpagesize, 97
getpass, 100
getpeername, 96
getpgrp, 97
getpid, 97
getppid, 97
getpriority, 97
getprotobyname, 101
getprotobynumber, 101
getprotoent, 101
getpw, 101
getpwent, 101
getpwnam, 101
getpwuid, 101
getrlimit, 99
getrusage, 97
gets, 99
getservbyname, 101
getservbyport, 101
getservent, 101
getsockname, 96
getsockopt, 96

October 26, 1992

INDEX Page 109

gettimeofday, 91, 97
getttyent, 101
getttynam, 101
getuid, 97
getusershell, 101
getw, 99
getwd, 101
gmtime, 100
group id, 97
gtty, 100

header files, 10
htonl, 100
htons, 100
HUGE VAL, 70
hypot, 100

I, 16, 66
I/O, 74, 76, 78, 80, 95, 96
I/O modifiers, 81, 103
identifiers, 26
implementation specifics, 25, 67,

70, 71, 84, 86, 91
implicit concatenation, 75, 103
include files, 16, 38
include libraries, 10, 14
index, 88, 100
inet addr, 100
inet lnaof, 100
inet makeaddr, 100
inet netof, 100
inet network, 100
inet ntoa, 100
infnan, 100
initgroups, 101
initstate, 100
INPUT, 11, 81
input (terminal, prompt), 93
insque, 100
int, 27, 29, 30, 34, 67

INTEGER, 43, 44
integer computations, 14
INTEGER*2, 43, 44
INTEGER*4, 43, 44
integers, 27
interactive I/O, 84
invert, 101
ioctl, 78, 80, 95, 103
isalnum, 68, 100
isalpha, 68, 100
isascii, 69, 100
isatty, 100
iscntrl, 68, 100
isdigit, 68, 100
isgraph, 68, 100
islower, 68, 100
isprint, 68, 100
ispunct, 68, 100
isspace, 68, 100
isupper, 68, 100
isxdigit, 68, 100
itom, 101

jn, 101
j0, 101
j1, 101

kill, 98

label, 101
LANG, 16
ldexp, 100
lgamma, 100
lib2648, 102
<limits.h>, 65
line, 101
line number ranges, 103
linemod, 101
link, 98
LIST, 15, 17

Reference R1063

Page 110 INDEX

listen, 96
LOADNAME, 17, 20, 46, 57
local extensions, 31
<locale.h>, 65
localtime, 100
LOCK EX, 95
LOCK UN, 95
log, 46, 70, 100
logb, 101
LOGICAL, 43–45
logical I/O units, 10, 81
LOGICAL*1, 44
LOGICAL*4, 44
log1p, 101
log10, 46, 70, 100
LONG, 17, 104
LONG, 26
long double, 28, 29, 48
long int, 27, 29
longjmp, 100
lseek, 75, 76, 83, 94, 95, 99, 102
lstat, 76, 78

madd, 101
makefiles, 15
malloc, 86, 100
<math.h>, 46, 65, 70
mathematics, 70
mbtowc, 27
MC, 17, 26
mcmp, 101
mdiv, 101
memcmp, 87
min, 101
mkdir, 98
mknod, 98
mkstemp, 100
mktemp, 100
modf, 100

moncontrol, 102
monitor, 102
monstartup, 102
mount, 98
mout, 101
move, 101
msqrt, 101
msub, 101
MTS files, 75, 80
MTS system subroutines, 21, 32,

46, 84
<mts.h>, 47, 65, 91–93
MTSLINE, 18
MTSMOUNT, 47
MTSREAD, 47, 83, 84
MTSRENAME, 47
MTSREWIND, 47
MTSSYSTEM, 47
MTSTIME, 47
MTSWRITE, 47, 83, 84
mult, 101
multiple precision, 101
m in, 101
m out, 101

nextkey, 102
nice, 101
nlist, 101
NOASCII, 13
NOCHECKIOVER, 13
NOCHECKSTACK, 14
NODEFINC, 14, 66
NODEPEND, 15
NOFILL, 15
NOLIST, 17
NOLONG, 17, 26
NOMC, 17
NOMC, 26
NOMTSLINE, 18

October 26, 1992

INDEX Page 111

NOOBJECT, 18
NOOBJLIST, 18
NOOPT, 19
NOPORT, 19
NORENT, 22
NOSUMMARY, 23
NOSYM, 23
NOTEST, 23
NOWARN, 24
NOZEROARG, 25
ns addr, 100
ns ntoa, 100
ntohl, 100
ntohs, 100
NULL, 31, 92

OBJECT, 11, 15, 18
OBJLIST, 18
omin, 101
omout, 101
open, 76–78, 80, 94, 95, 102
open file, 95
opendir, 101
openlog, 101
openpl, 101
OPT, 19, 28
options, 10, 12
O BINARY, 77, 78, 102
O TEXT, 77, 78, 102

PAR field options, 10, 12
parameter passing, 42
parameters, 60
pause, 101
pclose, 101
PERMIT, 96
perror, 85, 100
PGNTTRP, 50
pipe, 99
plotting, 101

PLUS, 33, 47, 51
point, 101
pointers, 28
popen, 101
PORT, 19, 34
portability, 34
pow, 100, 101
pragma, 12
preprocessor, 30
PRINT, 11, 15, 17, 19, 81
printf, 13, 99
process group, 97
process id, 97
profil, 99
prompt (terminal), 93
PROPER, 13, 20
PROTO, 20
pseudo-registers, 20, 33, 61, 104
psignal, 100
ptrace, 99
putc, 99
putchar, 99
puts, 99
putw, 99

qsort, 100
query, 93
quota, 98

raise, 71
rand, 100
random, 100
random access I/O, 83
RCALL, 20, 21, 33, 46
rcmd, 101
read, 76, 94, 95, 99, 102
READ, 84
readdir, 101
readlink, 98
readv, 95

Reference R1063

Page 112 INDEX

REAL, 43, 44
REAL*4, 43, 44
REAL*8, 43, 44
realloc, 86, 100
reboot, 98
recv, 96
recvfrom, 96
recvmsg, 96
registers, 28, 53
remove, 84
remque, 100
rename, 85, 95, 96
RENT, 22
res init, 101
res mkquery, 101
res send, 101
RETCODE, 103
RETURN, 45
return codes, 11, 45
reverse, 90
rewind, 99
rewinddir, 101
rexec, 100
re comp, 100
re exec, 100
rindex, 89, 100
rint, 100
rmdir, 98
RMODE, 22
rpow, 101
rresvport, 101
ruserok, 101

save area, 33, 48
sbrk, 99
scalb, 101
scandir, 101
scanf, 13, 99
sdiv, 101

SDS, 55
seekdir, 101
select, 96
send, 96
sendmsg, 96
sendto, 96
sequential files, 75
SERCOM, 11, 81
setbuf, 100
setbuffer, 100
setegid, 101
seteuid, 101
setfsent, 101
setgid, 101
setgrent, 101
setgroups, 98
sethostent, 100
sethostid, 96
sethostname, 96
setitimer, 96
setjmp, 100
<setjmp.h>, 65
setkey, 100
setlinebuf, 100
setlogmask, 101
setnetent, 101
segpgrp, 99
setpriority, 97
setprotoent, 101
setpwent, 101
setpwfile, 101
setquota, 98
setregid, 98
setreuid, 98
setrgid, 101
setrlimit, 99
setruid, 101
setservent, 101
setsockopt, 96

October 26, 1992

INDEX Page 113

setstate, 100
settimeofday, 98
setttyent, 101
setuid, 101
setusershell, 101
short, 27, 29
shutdown, 97
sigblock, 74, 98
SIGCONT, 71
SIGILL, 74
siginterrupt, 98, 99
SIGKILL, 71
signal, 14, 71, 99
<signal.h>, 65, 71, 98
signed, 27, 30
sigpause, 98
sigreturn, 98
sigsetmask, 74, 98
sigstack, 98
SIGSTOP, 71
sigvec, 98
SIG DFL, 74
SIG IGN, 74
sin, 46, 100
sinh, 46, 100
sleep, 100
socket, 96
socketpair, 96
space, 101
sprintf, 99
sqrt, 46, 70, 100
srand, 100
srandom, 100
sscanf, 99
stack, 40
stack size, 14, 40
STANDARD, 22
STANDARD+, 22
stat, 76, 78

static, 22
<stdarg.h>, 35, 65
<stddef.h>, 65
stderr, 81, 82, 85, 102
stdin, 81, 82, 93, 102
<stdio.h>, 65, 74, 94
<stdlib.h>, 65
stdout, 81, 82, 102
store, 102
strcat, 100
strchr, 88
strcmp, 87, 88, 100
strcpy, 100
strerror, 87
stricmp, 87, 88
string comparison, 87
<string.h>, 65, 87–90
strlen, 100
strlwr, 89, 90
strncat, 100
strncmp, 100
strncpy, 100
strnicmp, 88
strrchr, 89
strupr, 89, 90
stty, 100
SUMMARY, 23, 40
supported signals, 71
swab, 100
swapon, 98
switch, 30
SYM, 13, 18, 56
symlink, 98
sync, 95
sys/errno.h, 85, 87
syscall, 94, 97
syslog, 101
system, 86, 101
sys errlist, 85, 87, 100

Reference R1063

Page 114 INDEX

sys nerr, 100
sys siglist, 100

tan, 46, 100
tanh, 46, 100
telldir, 101
termcap, 101
terminal (input, prompt), 93
terminal I/O, 84
TEST, 23
text files, 78
text mode, 76, 77
tgetent, 101
tgetflag, 101
tgetnum, 101
tgetstr, 101
tgoto, 101
time, 100
<time.h>, 65, 91
times, 91, 100
timezone, 100
tmpfile, 86
toascii, 69, 100
tolower, 68, 100
toupper, 68, 100
tputs, 101
truncate, 76–78, 95
ttyname, 100
ttyslot, 100
typedef, 34, 104
types, 30

ualarm, 100
UDP, 96
umask, 95
umount, 98
UNDEF, 24
ungetc, 100
union, 29
UNIX, 13, 22, 24

UNIX BSD4.3, 9, 22, 64, 94
UNIX incompatibility, 41
<unix.h>, 14, 64, 103
UNIX+, 22
UNIX4.3, 13, 24, 35, 37
unlink, 95, 96
unsigned, 27
usleep, 100
utime, 100
utimes, 99

valloc, 100
varargs.h, 100
va arg, 35
va end, 35
va list, 35
va start, 35
vfork, 99
vhangup, 98
vlimit, 100
volatile, 30
vtimes, 100

wait, 98
wait3, 98
WARN, 24, 37
write, 76, 94, 95, 99, 102
WRITE, 84
writev, 95

yn, 101
y0, 101
y1, 101

ZEROARG, 20, 25

October 26, 1992

