Ultimate;

Assembly
Reference Guide

The Ultimate Corp.

Version 1

Ultimate Assembly Language Reference Guide
Version 1

© 1989, 1990 The Ultimate Corp., East Hanover, NJ

All Rights Reserved.
Printed in the United States of America.

How to order this guide:

The Ultimate Assembly Reference Guide is a restricted document. For
information on ordering, call the Ultimate Administration Department.

Publication Information

This work is the property of and embodies trade secrets and confidential
information proprietary to Ultimate, and may not be reproduced, copied,
used, disclosed, transferred, adapted, or modified without the express
written approval of Ultimate.

Operating System Release 10, Revision 210
© 1989, 1990 The Ultimate Corp., East Hanover, NJ ¢

Document No. 6973

Contents

6973-1

How to Use this Manual ..., Xvii
How the Manual is Organized...........cccccveevirrcrrrcrnecnnicecnnnce. xviii
CONVENLIONS......eoiieeerieeectercee e see sttt seessae e seesseennas XX
Overview of Assembly Language............c.ceeunees 1-1
The Ultimate Virtual System Architecture................cccc....... 1-3
User Processes in a Multi-User System...........cccocceevueuenene. 1-5

Process WOrKSPaCES.........ccouiereeeeieeeeeiireeeneneneeesseennns 1-6
The Kernel SOftwareovivvrinveennencerece e 1-8
Process Scheduling.......ccoooeeeevenenenncnneneeececeene 1-10
Frame Faults.......ocoririeereeseeeceeereee e 1-11
Automatic Disk WHteSsccceeevrnieneceeeeecereeee, 1-13
Calls (MCALS) from ProCesses.......ccecceeeveerrerecereneennne 1-13
Main Memory Management..........c.cccccevennnnnennnencnenne 1-13
The Assembler.......... e 2-1
The Components of an Assembly Program............c.cc....... 2-2
Displaying the Program........cccccevrnrvmnncnnnicnincnenene 2-3
Creating an Assembly Language Program..........cccccceuuen. 2-4
Assembly StrUCIUreScccvueeirercceectrceecr et 2-5
Mode STIUCIUTE.........cciieceireecee e 2-5
Mode-ids - External Program References..................... 2-7
Program Line Structureoeeveveeeeeceeeecieececeeeee 2-9
Displaying Assembly Programs in the Editor............... 2-12
The Assembler Program.......cc.oeeeieeceeeieeeceeeceeceeeeeeeeee e, 2-15
Executing Assembled Programs.........cccceeeceeeceeceveeeceeeennenn. 2-17
The AS Command - Firmware Assemblies.............cceecueennn. 2-18
The OPT Command - S/370 Assemblies...........ccccceeeenneeee. 2-21
The ASM Command - 1400 Assemblies...........cccceceverunens 2-23
The OptimMizZer......co et 2-26
Assembler Error Messages......ccocueeeeeereeceeeeveeceeceeceeeeeveene 2-27
OSYM EITOIS...oouieeeeeeeeesteeeeee ettt e e 2-28
Generating Object Code.......ocoumereeeueeeeeeeeeeceeeeeeeeeeen 2-29
Directives and Object Code.......cccevvvereeveerieieeeerenn. 2-29
Instructions and Object Codecccveveereeverecveciereneeee. 2-29
Generating Object Code.......cccevmeeeeeeereereeeeeee e 2-30
SYMDOI FileS ...t e 2-31
- The PSYM File Layout......cccooeveeeeeeereeeeeeeeeeeeeceeeevevee 2-32
The TSYM File Layoutccoeeveeeereeeeeeceeeeeeeeeveeeveveean, 2-34

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

iii

Contents

iv

The OSYM File Layout........ccccceeeeeeerceeeieeneereeeeece e, 2-35
Symbols and Literalsccceoeeeeeerrrnerccerersrececieeseseeesnsnnns 2-44
Locally Defined SymbolIsccooeveveeererenerenenseneeesennene 2-44
LItEralS ettt e 2-45
Shared Symbols (INCLUDE Directive)cceeeurune.... 2-48
Immediate Symbols.........ccocvevevireniiiiiiircc e 2-48
Assembler System Commands..........cccceerveervereieeneenienneenne. 2-50
CROSS-INDEX ...ttt eses e eneeeanes 2-51
MLIST ..ttt es e s saa e 2-53
MLOAD ...ttt ettt s e 2-55
MVERIFY ..ttt sre et 2-56
XoREF .ttt e 2-59
XBEF ...ttt ettt et 2-61
Addressing and Representing Data...................... 3-1
Frame FOrmMatScccovieiiviiineeserrtcee et 3-2
Frame SizZ€.......cooieivivinieceeesterteee ettt eneea 3-2
LiNK FIieldS....cceoveveereeeeeceseeeesrce et 3-5
ABS Frames.......cccceeeveerenienerenrineeeensessseseseeseesesnessnessennns 3-7
Data Formats in @ Frame.........cccccocveveveeceneceecvenreeceeeceenee 3-8
Virtual Addresses - Addressing Data in a Frame............... 3-10
Understanding Address Registers.......c.cccceeevevernvnireecneeenn, 3-13
Attaching an Address Register........ccoceevvveeeeeecveeeeinnne. 3-15
Loading an Address Register.......cccvvvvvvieveecrenrecenene. 3-16
Conventional Usage of Address Registers................... 3-16
Understanding Storage Registers......ccoeevvecevvecveveceenn. 3-19
Addressing Modes in an Instruction.........cceceevenveeeeeennene. 3-21
Immediate AdAressing......ccoceevveeeeeeeeeecrecreceeeecereeeeeeene 3-21
Relative ADAressSingccccceeveveeeenreceeieeveee e 3-21
Indirect Addressing......cccoceveeeeeneesersiereeeeeeeeee e 3-22
Direct Register AAdressingc.cococeeeeveeevereeeseseenerenenes 3-23
SYMDOI TYPES....cuervereririreciieretreneee ettt 3-24
Computing Relative Addresses by Symbol Type........ 3-26
Limits in OffSetS ...c.coevievirceriecteeeeeeeeeeee e 3-27
Addressing the PCB Fields........cccoovnivrinennineseceeere, 3-29
The AcCCUMUIALON.......coieeieeeeeeeteeeee e 3-29
Scan Characters.......coccveecreceneeeeeeeeeeeee e 3-33
File Control Block Pointers..........ccceeuveeveveeceecceeeeeeeeene 3-35
Subroutine Return Stack Fields..........ccccvvvevvueeeenrnnnnee. 3-36
XMODE Field.....covceeiriireeeeneeie ettt 3-37
RMODE Field.......ccoeverevereeieeieeeceeee e 3-37
WMODE Field.....coceeverrieeierenreeeeeeee et 3-37
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

Contents

OVRFLCTR Field.......cccooirireeerereecreneeeetecnnene e 3-37
INHIBIT and INHIBITH Fields.......ccocenmninniniinniiiiceeenne 3-38
Addressing the SCB Fields.........cccoocoeiinvenenniciiiceen. 3-39
Addressing Conventional Buffer Workspaces.................... 3-39
Programming Conventions........cccceevenncnnenenenneneisnnscsanne 3-44
Global Symbolic Elements - PSYM File........................ 3-45
Sharing Object Code Among Processes..................... 3-46
Defining Additional Workspace........c..cccveeveeveieieecrnennn. 3-48
Ensuring Compatibility..........ccoceeeeriimneeicninciinieieene 3-48
4 Assembler Instruction Set and Directives.............. 4-1
Summary of the Instructions and Directives...........c....c..... 4-2
Operand TYPES......cceeruererierieniririeereeieteses e steeestestese e seeeens 4-5
Virtual AQAresses........cocceuivieneeeeeneeeeseeeeeeese e 4-6
System Delimiters........coovrireneneeteeeeece e 4-6
ADD ...ttt st e 4-7
ADDX ...ttt ettt ettt e s e 4-7
ADDR ...ttt e et 4-9
ALIGN. ...ttt ettt 4-11
AND ..ttt 4-12
B et enn 4-13
BB S et e e naaee 4-14
BBZ ... e 4-14
B A et s et 4-15
BONA ettt et s 4-15
BE e e s 4-16
BCU ettt 4-16
BOH ..t 4-18
BOHE ..ttt e 4-18
BOL.e ettt enenan 4-18
BN s e 4-21
BONN et s v e enas 4-21
BONA ettt e 4-22
BONN ettt ss s 4-22
BONX st 4-22
BCOU ettt e 4-22
B X ettt e 4-23
BONX ettt a st 4-23
BDHZ.......ee ettt e s 4-24
BDHEZ.......e ettt sesses st es s 4-24
BDLZ ...ttt 4-24
BDLEZ.......ooeeeeeeertee sttt en e 4-24
6973-1 Assembly Manual v

Confidential and Proprietary to The Ultimate Corp.

Contents

BDZ......e ettt et a et e st st e e seean et st saeaa e 4-26
BDINZ......oo oottt st st et s sre e saesseee e se st et aneese et saesesnns 4-26
BE ettt sttt st e st e n s et enas 4-28
BU oottt ere st en st s e st s s s e s e snanen 4-28
BH ettt ettt e s 4-31
BHE ..ottt e sa s st e st e annen 4-31
Bl ettt et s sa e sa e e ee st 4-31
BLE ettt ettt sttt st eenn 4-31
BHZ......eeeeeeeee ettt sa e e snas e e as e e saese st eae s se st e st s eneaen 4-34
BHEZ......ooeeeeee ettt st se st saesase e st st se st se e seseenas 4-34
BLZ ..ttt s e st st 4-34
BLEZ.....o ettt st eana e e st eaes 4-34
B ettt ettt et r e e e sttt et ee s 4-36
BLE ... ettt st st en e 4-36
BLZ ettt 4-36
BLEZ.....oeeeee ettt st sttt ean 4-36
BNZ....ooeeeetee ettt sttt st ettt a et st enenanen 4-36
BOL. ettt et anen 4-37
B S e pereeteteaae et e et ene et aens 4-40
B L.t ettt 4-41
B TE .. ettt st sn e 4-42
BU ottt e e ena 4-44
Bttt st anen 4-45
BNZ.....eeee ettt er e 4-45
CHR ettt e st st 4-46
CMNT .ttt ettt 4-47
DEC (DALQ).....c.coveeeremieeemerereeieieteieeseeeeseesessesessessenessassenenens 4-48
INC (DALa) ...ccoeeveeeueerieeeneeieretee st sessesease st e seseeneeeeenens 4-48
DEC (REQISLEI) ..ottt er e en e e 4-50
INC (REGISIEI) ..ttt erene 4-50
DEFX....uiietereeiineeeeeiresneeseeseseasesssssesssssestesessasssesaesessessseneses 4-52
DEFM ...ttt ettt sae s sae s e st e sn s e 4-60
DEFN....c ettt et easte s et sesrese e ena e ene 4-61
DEFNEP ...ttt sae st n e 4-63
DEFNEPA.......oo ettt sttt seseanes 4-63
DIV ettt ettt sttt s e e s st s es bbb s erena 4-68
DIVX ettt ettt et se vt 4-68
DTLY ettt se st et st e s e e e s b e et e e et ssensanens 4-70
FTLY ettt ettt es et e s s s e 4-70
HTLY ettt et sessea e sn et sn s a s e s enes 4-70
LY ettt 4-70
BUE T ettt ettt 4-72
vi Assembly Manual 6973-

Confidential and Proprietary to The Ultimate Corp.

Contents

END ottt st e 4-73
ENT ettt sttt et st e sr et s 4-74
BN T ettt et enen 4-75
ENTL.ccee ettt st s 4-76
P ettt sra et 4-77
EP.ADDR ...ttt ettt 4-78
EQU ..ttt ettt st 4-80
FAR ..ottt sttt sttt et st e e st e e e st et seennene 4-82
FRAME ...ttt ettt er et st enes 4-87
FTLY ettt ettt 4-88
HALT <ttt et sttt e s e e 4-89
HTLY ottt et et 4-90
ID.B e et ettt 4-91
ID.RSA et s enee 4-92
INC ettt ettt st et sttt s 4-93
INCLUDKE. ...ttt st et see e e eneen 4-94
INP B ettt se e e e e e e e s e saae e s e e e e eean 4-95
INPABX ottt et sa e e s enes 4-95
LAD. ..ttt ettt st e se s 4-97
LOAD. .ttt s en e 4-99
LOADX ..ottt tes et se s e seas e e s snsnnene 4-99
MBD.....ceeee ettt en e 4-101
MBX ettt s e e 4-105
MBXN ..ttt e e e s 4-105
MO C et st s e e e 4-108
MO ettt e r e asa st eees 4-109
MDB...... ettt et r e e eneene 4-111
MXB .ttt 4-111
MDD ettt e e 4-113
MEE et 4-113
MEX ettt r et ens 4-113
MIC ettt b e s e 4-118
MUttt s e en s 4-119
MIID ettt et e 4-121
MIIDC ...ttt er et e sa e 4-121
MIR ettt r e s a e e anes 4-124
MU e e b s er e 4-126
MITTD ottt eae s s s s 4-126
MOV (Operand).......ccoeeceverernrsnrereeceereeeesreseeeeresssessennenennn4=129
MOV (REGISIEN) ..ottt eee e 4-131
MSDB......o ottt ettt et 4-133
MSXBi ..ttt s 4-133
6973-1 Assembly Manual vii

Confidential and Proprietary to The Ultimate Corp.

Contents

MTLY ettt st st se s st se e 4-134
MTLY U oottt ettt esese s sesa st st ssn st s 4-134
MUL ettt et st saes et ses e saanassssasans 4-135
MULX <ttt ev st sn et se e se s 4-135
MXBi....oeieeertetete ettt ettt et en e e st 4-137
NEG ...ttt ettt es e e e st et 4-138
INEP ettt ettt e sb e st et e 4-139
NOP ..ottt ettt ae e st sae e st sse s s aens 4-140
ONE ... ettt sttt st sr et e e s se et sae s e stenenes 4-141
OR ettt sttt ettt s st ee et et ee e enan 4-142
ORG ...ttt ettt ettt et st re e e s st s s ae e 4-143
OUTTB ettt sttt es s e st sese e s saee 4-146
OUTTIBX ettt ettt st st sseseeneeees 4-146
RQM. ettt st e e snae s te s ae s aneseane s 4-147
BTN ettt ettt et st st en e s en s 4-148
S B et et st 4-149
SET.TIME ...ttt s 4-150
SETDSP ettt e 4-151
SETR ettt e 4-153
SHIFT et st sr e 4-155
SICD... ettt ettt b e st er et ae s 4-156
SID ettt ea e a et e er e naeneas 4-161
SIDC ...ttt ettt enes 4-161
ST e st r et e st er et s 4-164
SITD ettt bt ettt 4-164
SLEEP ..t 4-167
S R et e s 4-168
SRA et e ans 4-170
STORE ...ttt 4-172
SUB ettt 4-173
SUBX ettt ettt e et s es et s st 4-173
T ettt sttt a s se st enas 4-174
TIME .ottt et sa s s s s e st enas 4-175
TLY ettt sttt s eae e n e e en et anas 4-176
KOOttt sttt ettt 4-177
KOR ettt sa et et es e e n et st s st 4-178
KRRttt 4-179
ZBh..oe ettt et 4-180
ZERO ...ttt 4-181
System Subroutines.................ccoooviiiiieeee 5-1

Summary of the System Subroutines..........cc.cceueveererenennees 5-2

viii Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

Contents

6973-1

Conventions Used to Describe System Subroutines....... 5-6
File Control Block Symbols.......c.ccccevereieerirccsneenienneeenenns 5-7
ACONV ..ttt se e st esteest e s e st e e e snanas 5-9
ANDIOFLGS ...ttt et sres e st sesneaens 5-10
ATTOVF ..ttt et et s et e st e saes 5-11
CONV .ttt st srae e s st e sa e s st e e naannans 5-12
CRLFPRINT ...t ssete et enas 5-12
CVD ettt sttt et st st sa e na e 5-13
CV X ettt e sttt s st s r e snnnn 5-13
DATE ... ettt ete ettt et se e s sr e enan 5-15
DECINHIB ...ttt 5-16
ECONV ...ttt sttt sttt e enan 5-18
GETACBMS ...ttt e seeaane 5-19
GETBUF ...ttt ettt 5-20
GETFILE ...ttt st snaane 5-21
GETIOFLGS ...ttt ve e 5-23
GETITM . ettt et st ans e st eaane 5-24
GETOVF ...ttt se e st e e srae e e st s e st naans 5-27
GETBLK ...ttt ettt e s se et 5-27
GLOCK. ...ttt sttt et st e st e e e s sa et ens 5-28
GUNLOCK ...ttt sttt sae e se e seennees 5-28
GUNLOCKL.LINE......coiieeeeeeeterreseeecte e e se e 5-28
HASH .. e e 5-29
HSISOS.....cc ettt st s naa e 5-30
INFTRTN <ttt enaees 5-31
LINESUB ...t 5-32
LINK et st 5-33
MARKRTN ..ottt 5-34
MBDSUB ...t 5-35
MBDNSUB ...ttt 5-35
MBDSUBX ...ttt ea e e en e 5-35
MBDNSUBX ...ttt en e e ee s 5-35
NEWPAGE ...t e 5-37
NEXTIR ettt ts et er e e ea e s 5-39
NEXTOVF ...t be s e e enan 5-39
OPENDD ...ttt st ese e s 5-41
ORIOFLGS ...ttt eve e ere e e en s 5-44
PCRLEF ...ttt et ee et e 5-45
PERIPHREAD ...t 5-46
PERIPHREADZ........coooiveecrerereree e seseanen e aesaes 5-46
PERIPHWRITE.......coieeee et 5-48
POPRTN ...ttt seses e snenes 5-49

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

ix

Contents

PRINT ettt st s s saes et s e s e e s sene s sne e 5-50
CRLFPRINT ...ttt et ctneee s cvee s e eesnnesesanaesansasssnssnnns 5-50
PRNTHDR ...ttt ee e snen e san e sene s 5-52
RDLINK . ettt et cmae s snns s ste s sne e s e sssnnesnes 5-54
WITLINK ..ottt eesees s e e s s snae e s snaesanaesnns 5-54
RDREC ... ittt cestaessesssate st eesan s e s e s s ananas 5-55
READ@IB...........eeeeeereeeeetecete et seescsessenesase e e s ssaessneenaennaens 5-56
READX®@IB ...ttt e seeeste st e s e s 5-56
READLIN ...ttt ssaaesres e e s s e snnessae e s 5-57
READLINX. ...ttt e streessane s ssteesssnaesseneeessnaenns 5-57
READIB ...ttt cene et aessnee s n e s e s e snae s 5-57
RELBLK ...ttt e sa e 5-60
RELCHN ...ttt se s s 5-60
RELOVF ...ttt st s ae et saae s e enne e 5-60
RESETTERM ...ttt st ene e 5-61
RETIX ottt ae s e e s e e s s ae s srae e eree s beeans 5-63
RETIXU ..ottt ettt s saa e s rae s 5-63
RTNMARK ...ttt s sr e sn e sa e sn e 5-65
SETLPTR. ..ttt cree s e s ae e s e s 5-66
SETTERM. ...t 5-66
SLEEP et s s e 5-68
SLEEPSUB.......eeerttr sttt 5-68
SORT ..ttt et s e e et e e ne e aeenne s 5-69
SYSTEM-CURSOR..... ettt et 5-72
TERM-INFO ...ttt et sttt en e e 5-85
TIME oottt sttt 5-87
DATE ... oottt sttt st s sas e sa e sa e ene e en 5-87
TIMDATE ...ttt ettt ere e 5-87
TPBCK ..ttt e e et ra e sne s ennens 5-88
TPREAD. ...ttt ettt e eneernens 5-89
TPWRITE ...ttt e s eeereesraesn s 5-89
TPRDBLEK ...ttt sttt s eae e 5-89
TPREW.....o ettt 5-92
TPWEOF ...ttt e e saae bt eneens 5-93
UPDITM ettt sttt esn e saeess e enee e 5-94
WRITE@OB.........cooieeieereeernteesee et eate et easesssesae e erens 5-96
WRITEX@OB ...ttt s eanns 5-96
WRTLIN. .ottt ea e erre s reernens 5-97
WRITOB ...ttt ear e 5-97
WSINIT ..ottt sttt sttt sbe e e et se s e srenesbens 5-100
WITLINK ottt et s 5-102
X Assembly Manual 6973-

Confidential and Proprietary to The Ultimate Corp.

N //

Contents

6 System Software Interfaces.........cccocovevirvrrcecnnene. 6-1
Interfaces Between TCL and User Programs..................... 6-3
The Initial Conditions of a Process at TCL.................... 6-3
CONV INErfaCeccoeeueeeeeieerricireeeesesrereeeecee e e s seeneans 6-5
Calling Conversion Program as a Subroutine............. 6-5
Calling a User-Written Subroutinecccceceevevueeevennnenee. 6-8
PROC Interface......c.cooeevevieieieiereeeece e ceeereseeeseee e eeceesrneenens 6-10
RECALL INterfacecoovreeeeeceeeceee et eeneene 6-13
Gaining Control After Selectionccceceeeveeevecenrenennnns 6-14
Gaining Control After Processing Codes....................... 6-15
Element Usage.........cccviiirieceieeceeseeeeeeeeee e 6-18
TCL-1 and TCL-1l Interfaces.........ccceceeereenevrercenieeceeeeenene 6-24
TCL-I Interface Requirements..........ccocceeevveerniienceeninnnns 6-27
TCL-Il Interface Requirements...........ccceeevieeeieeccereenennne. 6-30
WRAPUP Interface........cccooeeeieeeeeeeeeeeeeceeeeeeeeeeee e 6-33
WRAPUP Entry Points........cccocoeeeneeceeeieeeeeeeee e 6-34
XMODE INterfacec.cccvueievimeeecececeeceeeece et 6-36
7 Programmer's Reference............cooevvinivnnncnnnnne. 7-1
HINES <ot et er e sae e 7-2
Guidelines for Data Moves and String Conversions......... 7-4
Guidelines for Defining Symbols.........ccccceereererecireveerernee. 7-7
Two's Complement Arithmetic Concepts........cccceveveuennnnene 7-8
EXaMPIES....eoeiceeeeeeeteee e 7-10
TCL-1 Verb and BASIC Program.......cccceeeeeeueeeeeenvevennne. 7-11
TCL-1l Verb and BASIC Program........ccccceueeeereeeveeneennnes 7-13
Conversion Subroutingcccceeveeeeeeeeeecveeeeeererene, 7-15
Setting Up Heading and Footing Area............cccou...... 7-17
PROC User EXit.....ccccocvevemirenininecieeeeeceeeee e 7-18
Cursor and Printer Control.........cccceeueeveeereeceeeeeeeceenee 7-19
Returning a Port's Logon PCB Frame..............ccoocuu....... 7-22
Returning Time in Milliseconds.........ccceoveeeemereieeennnnes 7-23
Handling BREAK Key Activityc.ccccceeeruveeeerceeieeeenee. 7-24
Changing Width on Wyse Terminals............cc.cccev.n...... 7-25
8 The System (Assembly Language) Debugger...... 8-1
Entering the Debugger.......coieeeeeeececeeceee e 8-2
System Privileges ..., 8-3
Inhibiting the BREAK Key.......ccoeueeeeeeeeceeeececeeeeee 8-3
Program ADOMScccovvmimreceeeeree v 8-3
Summary of Debugger Commandsccoeeeeueeeereeeeeeeennenee. 8-7
Address Specification and Representation........................ 8-10
6973-1 Assembly Manual Xi

Confidential and Proprietary to The Ultimate Corp.

Contents

Xii

Displaying Data in the Debuggerccccooeveeiniiicinncnnnne. 8-11
Changing Data in the Debugger........cc.ccoovniiiinninriinnennnen. 8-14
A Command - Display Address........ccceceveeereenrcrereencneecrnenenn. 8-16
Arithmetic ComMmMaNGS........cocceueverreniereenereeneneeeree e 8-17
B Command - Breakpoint Specification.........ccecceererueueneee. 8-18
Bye Command - Exiting the Debugger..........ccoccvecrrennucn.n. 8-19
D Command - Display Tables.......c.cceevevenerenrcnrncnncnenen 8-20
DI Command - Disabling the Debugger.........cccecevvcceunnene. 8-21
E Command - Execution Step.......c.cccceerveeerrerenenccnerennenes 8-22
END Command - Exiting the Debugger........cccoceceveveeunneee. 8-23
F Command - Changing Frame Assignments.................... 8-24
G Command - Resume Executioncc.ccceeeeeerereccneneennnee 8-25
K Command - Clear Breakpoints........cccceeeeeicneeeencneeccnnnne 8-26
L Command - Display Link Fields.........ccccccevevveervniieneennen, 8-27
M Command - Modal Execution Trace.cccccovveeeeeennenene. 8-28
N Command - Delay Entry to Debugger..........ccceceevvereeennen. 8-29
P Command - Toggle Terminal Displaycccocevererueuenee 8-30
T Command - Trace Data.......cccccoeevieevenenieveneneceienesesenens 8-31
U Command - Delete Traces......cccvveeeeeeceenereenenecnecnnnns 8-32
Y Command - Data Breakpoint..........cccocoeveveereeceececrerenene. 8-33
>>, <<, >, < Commands - Changing TCL Leveis................ 8-34
Monitor Calls (MCALS)............coooiiieeeeecee e, 9-1
How to Use MCAL Information.........cccceeeueeerenenenrccesenene 9-4
ALARM.CLOCK - MCAL 1C....coeeerererreeereseene e 9-6
CLEAR.INP - MCAL 33......oeeeeetee e 9-7
CLOCK.CANCEL - MCAL 1D ..ottt 9-8
CLR.OUT - MCAL 36....ceuieeieeieeeeeeeereteeeneee et es e seenenes 9-9
DB.ENT - MCAL 0.ttt 9-10
DB.LV - MCAL 17ttt et 9-11
DISKEERR-MCAL 24.........ooeeeeeeeeeeeeeeee st 9-12
DISK.STAT - MCAL 38....ccooeeieieeeeeeetere e crenereassnens 9-13
DSABL.DSK - MCAL 2C ...ttt 9-14
FAKE.RD - MCAL 14 ...ttt 9-15
FAKE.READ - MCAL 49.....c.coieiteeeeereeeee e 9-17
FAKEWT - MCAL 15, 9-18
FORCE.WRITE - MCAL 25 ...t 9-19
FRM.LOCK - MCAL 21 ...ttt 9-20
FRM.UNLOCK - MCAL 20.....cccueieereeeerercrererereee e s 9-21
GET.ID - MCAL Q... 9-22
INT.CANCEL - MCAL 1E e 9-23
LINK.CNT - MCAL 3 ...ttt 9-24
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

\'ﬁ\V //

Contents

LOCK - MCAL 29......eeeeeeetretesees et e seee s e aesaaeenaeenaeas 9-25
LOCK - MCAL 2A...... ettt reeeesee s s e e sreesnae e nnae s 9-27
MTB - MCAL 4 ...ttt ca e s e e ennns 9-29
MTBF - MCAL 2.ttt sne e snae e 9-30
N.GET.ID - MCAL 1A ..ttt e eve e ene 9-31
PANEL - MCALD...... et creeee e e 9-32
PC.MSG - MCAL 48.......eeeeetrte et 9-33
PERIPH.RD - MCAL 40.......eeeeeeceeecte et cree e 9-34
PERIPH.RD.ONE - MCAL 35.......ccoieeeeeeeeecee et 9-35
PERIPHWRT - MCAL 41........eeeeeereeee et 9-36
PERIPHWRT.ONE - MCAL 34 ...t 9-37
PIB.AND - MCAL 12 ...ttt 9-38
PIB.ATL - MCAL 2B ...ttt e 9-39
PIB.OR - MCAL 13t 9-40
PIB.PEEK - MCAL 18 ... 9-41
PIB.POKE - MCAL 19ttt 9-42
PIB.XPCB - MCAL 37 ..ttt nans 9-43
QUERY = MCAL 17 et 9-44
QUEUE.READ - MCAL 2D ...ttt 9-46
RCV.LEN -MCAL A 9-47
RFLAGS.CLR-MCAL4A. ... e 9-48
RFLAGS.SET - MCAL 4B..........oeeeeeeeeceeecee e 9-49
RQM - MCAL 28......eeeeeeeee ettt 9-50
RTC.CALIB - MCAL 2F ...ttt et 9-51
SET.BATCH.TM - MCAL 3F ...t 9-52
SET.FL.DEN - MCAL 3D .t 9-53
SET.TIME - MCAL 26.....ueeeeeeeeeeeeeeece e 9-54
SLEEP - MCAL 22.....oeeeeecteete et 9-55
START.IO.PIB - MCALE. ... 9-56
TEST.NP - MCAL 30 ..o 9-57
TIME - MCAL 27 ...ttt eees e as v eanens 9-58
TL.READ - MCAL C ...ttt eanns 9-59
VMCAL - MCAL 1F et 9-60
VMS.MSG - MCAL 47 ...ttt 9-61
VMS.OFF - MCAL 46......ooeeeeeeeeeeeeceeeeeeeeeee e 9-63
VMS.SPOOL - MCAL 44 ...t 9-64
VMS.TAPE - MCAL 45.....neeeceeeece e, 9-65
VOPT.AND - MCAL 32.....ceeeeeeteeceeee e 9-66
VOPT.OR - MCAL 31 .ot 9-67
WAIT = MCAL 6.ttt se e eve e 9-68
WARM.DUMP - MCALF ..., 9-70
WRITE.WAIT - MCAL 39 ...t 9-71
6973-1 Assembly Manual Xiii

Confidential and Proprietary to The Ultimate Corp.

Contents

Xiv

10

XFER.CLOCK - MCAL 3E......cceerererereerennenerenssessesneessaesenens 9-72
Instruction Set for Internal Use............cc.......... 10-1
Summary of the Instructions and Directives..................... 10-2
D et ene 10-4
et et 10-4
Qs e e s e e e 10-4
T ettt e s st see e st sr e e s ee e st an e ae s 10-4
INTT sttt et s see e e sesmeanes 10-5
BISYNC.IO ...ttt se et e sraneaens 10-6
Sequence for Data Transmission......cccccceceeeeerevnenenee. 10-9
Processing INterruptsc.ccoevevvcenceneneenrieneeeeneenean 10-10
BNREADN ...ttt ettt et r e e 10-11
READN.......ceiteeeeererterest ettt se st et es st e see e et e sasanenens 10-11
READT ...ttt ettt sttt sses e e et e an s 10-11
CRC ettt st st st e e 10-14
MaSK BYTe....c.couimieeeeeccee ettt 10-15
DICD.. ettt et et et 10-17
FRM ettt sttt s e 10-19
LT et ettt e en s 10-20
IBM.DB.TRAP.....ci ittt sttt sn e nens 10-21
LOCK ettt st et se st sesre s sn s s en e ss et eaens 10-22
MOAL .ttt e st s st e enns 10-23
MCODE........oo ittt sttt en e sasn e aeneas 10-23
MODEM ..ttt see st en s e 10-24
MP ettt ettt e 10-25
MSG ...t 10-26
MTEXT ..ottt sttt ettt s 10-26
MV ettt et sae e et a s s e enetnaea 10-32
MVER.OFF ...ttt sttt 10-33
MVER.ON ...ttt st 10-33
POPN .ttt sttt s s 10-36
POPS ..ottt ettt 10-36
PUSHX ..ottt en e snssssesens 10-39
RIEQU.....oe ettt vsas e s 10-42
REV ettt 10-45
RPLDCD ...ttt 10-46
RTNX ettt s e e e 10-47
SCHR ettt e 10-48
SETAR ..ottt st 10-49
SETDD......o ottt et ettt 10-50
SETDO.... ottt er e s 10-50
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

Contents

6973-1

SHTLY ettt ettt et e sn e st enans 10-52
SLEEPX ..ttt ettt sttt ettt st nea 10-53
SMOD et sttt s enans 10-54
THDC ettt et st b e ea s 10-55
MaSK BYLe......ceiieiici ettt eaens 10-56
VIO ettt st ettt sttt e en e e ans 10-58
VIOLD....e ettt ettt et e et s e e st seer e nan 10-58
VML ettt ettt sttt st e e sn e e e 10-61
XBCA ...ttt ettt st es e ettt se e se e anans 10-62
XBONA ...ttt st st s st e st s sranaans 10-62
Figures
1-1. Virtual Memory Systemcccvvvininincneiencieenene 1-4
12, PrOCESSES ..ottt ettt s 1-5
1-3. Process WOork Spaceccccceveeeeeveeceeeeceece e 1-7
1-4. Main Memory Layoutcccocevereniencnenenceeneceeee 1-9
1-5. Frame Fault.......ccc oo 1-12
3-1. Frame FOrmats....ccocovvvenireiencreeece e 3-4
3-2. Data Formats and Bit Numberings........cccccceeeuuennen..e. 3-9
3-3. Register Displacement Involving Linked Set of 3-13
3-4. Address Register Format.........c.ccocerereienienicinenceennenne. 3-14
3-5. Relative Addressing of Symbols.........ccccccvervrrnnnnnn.e. 3-26
3-6 Primary Accumulator Area........cccocceveeveeveeeeieeneeienns 3-30
3-7. Mask Byte Format..........ccooevevnninncieencececenenas 3-34
4-1. SICD Mask Byte Format......ccoecveveecieveceeceeeeee 4-157
6-1. Processing Codes......ccovmrnnrrerieneeneeneeeeee e 6-7
6-2. TCL-I Verb Definition Item Format..........c.ccccocvevneneee 6-24
6-3. TCL-ll Verb Definition ltem Format............c..coeen.e.e. 6-25
Tables
2-1. Symbol FileS.....cmieirrieeeecree e 2-31
2-2. Symbol Type Codes and Storage Allocation......... 2-32
2-3. Format of Symbol File temccccevevcecviirereeeee. 2-33
2-4. Expressions to Generate Object Code.................... 2-38
3-1. Resolution Table of Displacements and Addresses
(for a 512-Byte Frame).....ccccocoeeveieeeececcieeceeeeee 3-12
3-2. PSYM Symbol Type Codes.......cooevevveeveeeercrerennnne. 3-25
3-3. Registers and Pointerscccoceveeeeeeee e 3-41
4-1. Operand and Symbol TYpes.....cccccceeeeeveeeiereneenee. 4-5
4-2. Bitsin H7 used by MFD, MFE, and MFX.................. 4-114

Assembly Manual

Xv

Confidential and Proprietary to The Ultimate Corp.

Contents

Xxvi

5-1. Cursor Control ValUESueueeeeeeeeeeeineeeeeeeeeeeeeeeennes
5-2. Letter-Quality Printer Control Values

7-1. Data Conversion Instructions

10-1. CHAR.TABLE

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

....................................

7-2. Data Move InStrucCtions.........ccoceeeveeeieveseeeeeeeeeeeeeeenes

8-1. Traps (ADOMS) ..ot
8-2. Kernel Traps.....ciccreneinicecicincsicecceeeese e

...

6973-1

How to Use this Manual

6973-1

This manual is intended as a reference for programmers using the
Ultimate Assembly language. Although not a tutorial, it covers all
aspects of using Assembly language with the Ultimate system file
structure and operating system. The material is presented in a structured
format, with text and figures integrated into single-topic units.

The Ultimate operating system is written mainly in the Ultimate
assembly language. Users may also write their own programs in this
language. This manual assumes that the reader has some familiarity
with the Ultimate computer system and with programming concepts in
general. For an overview of the system hardware and software
components, see the Ultimate System Overview manual. For a
description of the various programming languages and Ultimate-
supplied system and application programs, see the appropriate user
reference manuals.

Assembly Manual Xvii
Confidential and Proprietary to The Ultimate Corp.

Preface

How the Manual is Organized s

This manual contains nine chapters, five appendices, a glossary, and an
~ index. The following describes each of these components.

Chapter 1, Introduction to the Assembler, gives an overview of
programming with Ultimate Assembly language. It covers the virtual
system architecture, kernel software, and management of virtual
memory.

Chapter 2, The Assembler, explains how the assemblers operate,
including use of the symbol files, the format and editing of instructions
in source items, assembler options and directives, and the assembly
process itself. It also summarizes programming conventions

Chapter 3, Addressing and Representing Data, describes how data can
be represented, addressed, and manipulated in an assembly language
program. It covers the topics needed to write an assembly language »
program for the Ultimate operating system. This includes the formats of
linked and unlinked frames, data formats and the use of registers to
address data. It also discusses the Ultimate system conventions for
writing assembly language programs, such use of global variables,
control blocks, and workspace buffers, re-entrancy, PCB fields, and

SCB fields.

Chapter 4, The Instruction Set and Directives, details each instruction
and assembler directive in the assembly language set in alphabetical
order.

Chapter 5, System Subroutines, lists, in alphabetical order, the system
subroutines that users may call, with one listing for each root routine.
The root entry contains its associated routine names (different suffixes).
These subroutines perform specific functions such as reading command
lines or taking care of file management tasks. The standard system
elements used as inputs and outputs are listed, and subroutine
operations are explained.

Chapter 6, System Software Interfaces, discusses the Ultimate system
flow of control, and conventions for interfacing between the system and
a user-written assembly program. When a program is ready to run, it
must be integrated to work within the system control flow. This chapter

Xxviii Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Preface

— —

6973-1

discusses the various ways a program can be executed; for example, as
AY . .

a type of system command or as a subroutine called from an appropriate

system indicator or flag.

Chapter 7, References for Programmers, gives some guidelines on
recommended methods for using the instruction set. It also contains
examples of programs and their interfaces with the system. This chapter
is intended as a transition for programmers who are new to the Ultimate
system.

Chapter 8, The Assembly Language (System) Debugger, explains the
tools available for program testing and debugging in the Assembly
(System) Debugger. The Debugger messages are also included.

Chapter 9, MCAL:s contains a list of the system monitor calls.

Chapter 10 contains details about internal instructions. This chapter will
eventually be merged into chapter 4.

Assembly Manual Xix
Confidential and Proprietary to The Ultimate Corp.

Preface

Conventions

XX

This manual presents the general syntax for each BASIC statement and
function. In presenting and explaining the syntax, the following

conventions apply:

Convention

UPPER CASE

lower case

bold

RETURN

<key>

enter

X'nn

Enter option

Assembly Manual

Description

Characters printed in upper case are required and
must appear exactly as shown.

Characters or words printed in lower case are
parameters to be supplied by the user (for
example, line number, data, etc.).

Braces surrounding a parameter indicate that the
parameter is optional and may be included or
omitted at the user's option.

Boldface type is used for section and unit
headings. It is also used in examples to indicate
user input as opposed to system displayed data.

The RETURN symbol indicates a physical carriage
return pressed at the keyboard. A RETURN is
required to complete a command line, and signals
the system to begin processing the command.

Angle brackets are used to indicate a key other
than letters or numbers; for example <ESC>.

The word enter is used to mean "type in the
required text, then press RETURN."

This form is used to define a hexadecimal
number where 'nn'’ is the hex value; for example,
X'OB', X'41', X'FF'.

This typeface is used for messages and prompts
displayed by the system.

6973-1

Confidential and Proprietary to The Ultimate Corp.

L

Overview of Assembly Language

6973-1

Uldmate assembly language is a generalized language that is not tied to
any specific CPU type. The assembly language program source code is
the same on any Ultimate system, regardless of the underlying
hardware. After the source program is written, an assembler process,
provided by Ultimate, compiles it into object code for specific hardware.
A different assembler process is needed for each type of hardware.

Assembly language programming on any computer requires greater
attention to detail than programming in higher-level languages, but it
also provides more control over the machine. Also, assembly programs
tend to be much longer in source form than equivalent programs written
in a high-level language such as BASIC, but the generated object code is
often shorter and more efficient.

The Ultimate operating system is written mainly in assembly language.

The main features of the assembly language are

+ symbolic addressing, which allows locations to be addressed by a
symbolic name as well as by an absolute number

* bit, byte, word, double-word, and triple-word operations

* memory to memory operation using relative addressing on bytes,
words, double-words, and triple-words

* bit operations permitting the setting, resetting, and branching on
condition of a specific bit

+ branch instructions which permit the comparison of two relative
memory operands and branching as a result of the comparison

+ addressing register operations for incrementing, decrementing,
saving, and restoring addressing registers

* byte string operations for the moving of arbitrarily long byte strings
from one place to another

* byte string search instructions

+ buffered terminal Input/Output instructions, with selectable type-
ahead

Assembly Language 1-1
Confidential and Proprietary to The Ultimate Corp.

Overview

1-2

+ all data and program address references handled by virtual memory

« operations for the conversion of binary numbers to printable ASCII

characters and vice versa

+ arithmetic instructions for loading, storing, adding, subtracting,

multiplying, and dividing the extended accumulator and a memory
operand

« control instructions for branching, subroutine calls, and program

linkage

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

o

«

Overview

The Ultimate Virtual System Architecture

The concept of virtual memory used by Ultimate is that all data on disk,
including files, is addressable by any assembly program. Any process
on the system can address the entire disk in exactly the same manner.
Software conventions are used to control and limit a particular process
from using space that belongs to some other process, but there is no
hardware enforced "memory exception” type of error.

This concept of virtual memory differs from that used by other systems
where each process has its own process area and cannot address any
other area and where files are not part of the addressable area.

Figure 1-1 shows a typical layout of an Ultimate virtual memory
system.

Virtual memory is organized into blocks called frames . A frame is a
fixed block of data resident on the disk, which can be transferred
between disk and main memory. The size of a frame may vary from
one hardware implementation to another; on firmware machines it is 512
bytes.

All frames are uniquely identified by a frame number, or frame-identifier
(called the FID). Frame numbers start at one and continue to the last
available frame in the disk set. The physical limit on the frame number
is (2**24)-1, or 16,777,215. The frame numbers map directly into disk
addresses.

For additional information on the Ultimate virtual memory system, see
Chapter 3.

Caution! This ability to address any data in virtual memory, which
gives assembly programming its power, can also be
dangerous. Unlike BASIC, which tends 1o affect only the
account or terminal on which it is run, assembly programs
can affect several terminals or even destroy data
throughout the system (including most of the operating
system itself).

Assembly Language 1-3
Confidential and Proprietary to The Ultimate Corp.

Overview

1-4

ABS SPACE
Executable Code
Frames 1to 2047

INITIAL PROCESS
- WORKSPACES

Frames 2048
to SYSBASE

AVAILABLE SPACE,
INCLUDING FILE
SPACE

Frames SYSBASE
to MAXFID

Figure 1-1. Virtual Memory System

Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

Overview

User Processes in a Multi-User System

A process is an operating entity within the system that has its own
functional elements and workspace. A virtual process is typically
attached to a line on one of the asynchronous communication channels
available on the system, and is therefore often called a channel or, more
commonly in Ultimate, a port or line.

Each user interacts with the system via an assigned process line. A
peripheral device connected to the line, usually a terminal, is the user's
means for interaction with the system. All Ultimate systems can support
one or more users at a time; the maximum number of users and/or
processes that can be running at one time is a function of the system's
configuration.

Note: Inaddition to processes that are assigned to physical lines, the
print spooler and nerwork processes are always assigned to

"phantom lines".

Figure 1-2 illustrates an Ultimate system with many processes.

Spooler Process
Work Space

Warmstart Process

Process 0 Process 1 Work Space
Work Space Work Space
Line 0 Line 1 Ultinet Work
Space (2
:WHO processes)
1USERI
Figure 1-2. Processes
6973-1 Assembly Language 1-5

Confidential and Proprietary to The Ultimate Corp.

Overview

Process
Workspaces

1-6

Each process has a dedicated area of virtual memory called the process
workspace (see Figure 1-3). Approximately 256K bytes of workspace
are reserved for each process.

The first frame of each process work space is called the Primary Control
Block (PCB). The PCB is used for assembly program "housekeeping"
requirements such as registers for manipulating data, stacks for program
loops, and an accumulator for arithmetic functions. When a process
executes an assembly instruction that references an element in this
housekeeping area, the reference is always relative to the beginning of
the workspace assigned to that process. This allows several processes
to execute the same program simultaneously.

The format of a PCB is shown in Appendix B.

In addition to the workspace in virtual memory,each process has a
dedicated block of space in main memory called the Process
Identification Block (PIB). The PIB is a fixed block of main memory that
serves to define the status of a virtual process. It is used by the Kernel
for process scheduling and input/output operations associated with a
process, and contains all information necessary for process activation.

The PIB and its extensions constitute the only elements of a process that
are always in main memory. All other information associated with a
process is in virtual memory, and can remain on disk if the process is
not active.

For more information about PIBs, see Appendix C.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

AN,

\N,«

Overview

PCB
SCB
DCB
QCB
BMS,IB,OB, etc.
TS
4 linked frames

of PROC
work space

S

6 linked frames
of OS

4 unlinked
frames

32 frames
(Reserved)

PCB+1

PCB+2
PCB+3

PCB+4
PCB+5
PCB+6

PCB+10

PCB+16

PCB+22

PCB+28

PCB+32

64 primary frames

L
3 x
64K
64K bytes of bytes
o additional
, el o linked frames
5‘:*°”S‘“w°'k§paca of OS workspace
Figure 1-3. Process Work Space
1-7

6973-1 Assembly Language

Confidential and Proprietary to The Ultimate Corp.

Overview

The Kernel Software

The Kemnel is the executive program of an Ultimate system. Itis
responsible for virtual process scheduling, all I/O, monitor calls, and
management of memory tables.

The Kemnel software differs from other assembly language software in
the following respects:

* it is resident in main memory

+ itis usually written in the "native" language of the machine
(Honeywell Level 6, DEC LSI-11, Motorola 68000, etc.), unlike
virtual software which is written in Ultimate assembly language

* it can address any location in memory directly

All input and output (I/O) from an Ultimate system to the disk is under

control of the Kemel. No other process can explicitly perform any I/O

to the disk. For example, when a user process issues a write command,

a flag is set in main memory to indicate that a disk write is required.

The actual writing of data to disk happens at some time later as

determined by the state of the memory buffer and the Kernel (and is .
transparent to both user and process).

At system startup, the Kernel process is used to coldstart the system.
This involves loading all system software and starting up the processes
that make up a multi-user computer system.

When the system is running, the Kemel is called whenever the
following tasks are needed:

» process scheduling

+ frame faults

+ automatc disk writes

+ special functions that are requested by a user process via an assembly
language Monitor Call (MCAL) instruction

 terminal input/output

Figure 1-4 shows the main memory portion of an Ultimate computer

system. Note that the fixed portion contains the Kernel software and a £
few other control tables (which are discussed later in this section). The L
Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

Overview

virtual portion is simply storage space to be used as needed by user

processes.
Kernel
PIBS
Fixed Buffer
Portion Table
Terminal
I/O Buffers
Buffers Buffer
(frame-size)
Virtual é
Portion —p
divided
into
buffers
Figure 1-4. Main Memory Layout
6973-1 Assembly Language 1-9

Confidential and Proprietary to The Ultimate Corp.

Overview

Process. A process may be active or inactive . The Kernel maintains a schedule
Scheduling of available processes, their current statuses (active or inactive), and
their relative priority to be activated.

When the Kernel turns over control by selecting the virtual process that
is next in line, with no roadblocks to prevent activation, that process is
said to be active .

A process is inactive, but eligible to be activated, if it has returned
control to the Kernel due to one of the following events:

» The process has executed a Monitor Call instruction. Normally,
when the Kernel has completed the function that it was called upon to
perform, it reactivates the virtual process immediately.

» The process was terminated by some external interrupt such as a
timeslice runout.

A process is inactive and roadblocked if it has returned control to the
Kernel due to one of the following events; the process will not be
eligible to be activated untl the roadblock is resolved:

» The process has made reference to data which is not in main memory.
This causes a frame fault trap to the Kernel.

» The process has executed a READ (asynchronous channel byte)
instruction when the terminal input buffer is empty.

» The process has executed a WRITE (asynchronous channel byte)
instruction when the terminal output buffer is full.

+ The process has executed a SLEEP and the time has not elapsed.

1-10 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Overview

Frame Faults

6973-1

The Kemel handles disk scheduling, which involves bringing data from
the disk into main memory for processing. This mechanism is called a
"frame fault".

Data is transferred between disk and the main memory, frame by frame
(one frame at a time). Each frame is stored in memory in a block of the
same size; the memory block is called a "buffer".

The FID of each frame that has been brought into memory from the disk
is kept in the buffer table. Each time a frame is referenced, the system
checks for its FID in the buffer table; if the FID is not there, the frame
must be retrieved from disk (a "frame fault” occurs). After the frame is
brought into memory, its FID is put into the buffer table.

Before the system brings the frame into memory, it checks to see if the
buffer table is full. If it is full, the least recently used frame is written to
disk if necessary, its FID removed from the table, and the new FID is
added.

Figure 1-5 illustrates the retrieval of frames. The first figure shows the
case of a frame already in memory. The second figure shows the case
of a frame fault.

Assembly Language 1-11
Confidential and Proprietary to The Ultimate Corp.

Overview

1-12

Request for

Main Memory

Frame 1000

Request for
Frame 1212

:122? 20000 2122

Buffer Table

FID in buffer table - no frame fault

Main Memory Main Memory
1000 2000 212 |_ Buffer Table 1000 2000 2122
4444 4444 12]2

E FID
1000 1000 1212
=3 |
Frame
_l Image
p sk
1212

FID not in buffer table - frame fault

Figure 1-5.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

Frame Fault

6973-1

N

Overview

Automatic
Disk Writes

Calls (MCALs)
from
Processes

Main Memory
Management

6973-1

Periodically, such as whenever the system is idle, the Kernel attempts to
"flush" memory by writing buffers to disk which have their write-
required flags set. This ensures that updated data is safely on disk in
case of a power failure, which could destroy the contents of main
memory.

If uninterrupted, the Kernel writes one or more write-required buffers at
a time to disk and resets the write-required flags, until memory is
flushed. Various types of interrupts, however, such as frame faults
from virtual processes, can suspend the automatic-write mechanism.
During this time, the disk is kept busy reading in requested frames, and
writing other frames out as needed on a least-recently-used basis. When
the system again becomes idle, the automatic-write mechanism is
restarted.

The precise criteria for determining when the system is idle is subject to
variation according to configuration and operating system release.

User processes communicate with the Kernel via assembly language
instructions called Monitor Calls (MCALs). Each Ultimate
implementation has its own set of MCALs that allow assembly language
programmers to call the Kernel whenever any I/O functions are needed.

All I/O operations initiated at the virtual level, except those to or from

the asynchronous communication channel, are accomplished through the
MCALs.

The format and meaning of these Monitor calls depend on the particular
Ultimate implementation being used; no details are given here.
However, standard system subroutines are provided in Section 6 for
programmers to use with common devices such as tape drives and line
printers (e.g., TPREAD, SETLPTR, WRTLIN, etc.).

In main memory, several kilobytes are reserved for use by the Kernel
for its resident software, tables, etc. Other areas of memory contain the
variable-size memory mapping table, the extent of which is dependent
on the size of main memory. All remaining main memory is available as
buffers for disk frames.

Assembly Language : 1-13
Confidential and Proprietary to The Ultimate Corp.

Overview

In order to manage the main memory, the Kernel uses several tables that
contain information regarding the buffers. These tables may be
accessed by memory management firmware as well as by the Kernel
software. They are not accessible to the virtual processes.

The protection afforded to the tables is set up by the initial condition of
the tables themselves. Since the memory map indicates the relationship
between a disk address and a main memory location, the protected areas
of memory do not have corresponding disk addresses, and therefore
cannot be addressed by a virtual process.

1-14 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Ultimate operating system is configured on a wide variety of
computers. On some computers, such as the Honeywell Bull DPS-6 and
various Digital Equipment Corporation (DEC) models, a firmware
implementation is used. On others, such as the IBM 4300 or 9370, a
software implementation is used. The assembly language program
source code is the same for all implementations.

A firmware implementation is one in which the virtual machine language
is directly executed by underlying firmware. In addition to instruction
decoding, the firmware also aids in virtual memory management.

A software implementation is one in which the virtual machine language
is translated to the native machine language of the computer by the
assembly process.

The assembly language program is assembled at the TCL level using the
process referred to as the assembler. The assembler generates the
machine-specific object code that is needed to execute the program on a
given implementation. There is one assembler for firmware
implementations and a different assembler for each software
implementation.

At this time, there is no assembler for Ultimate PLUS implementations.

Assembly Language 2-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Components of an Assembly Program

Assembly language programs are stored as items in disk files. A
program is made up of assembly language instructions, as well as
directives that are interpreted and used by the assembler.

An assembly instruction tells the system to perform a specific program
operation, for example, move an element. An assembly directive tells
the assembler to perform a specific function about the way the program
is assembled (for example,.define and reserve space for symbols).

An instruction or directive must contain an operation code mnemonic
(opcode), and may also contain a label, operands, and comments. Only
one instruction or directive can appear on a program line. The general
format is:

{label} opcode {operand{,operand...} {comments}}

Only the opcode is required; operands may be required, depending on
the instruction. Labels and comment fields are optional. One or more
blanks are needed to separate label from opcode, opcode from first
operand, and last operand from comments.

If a program line has a label, the label must start at the first character
position in the line. If a line does not have a label, there must be at least
one blank space before the opcode. A label may be composed of either
alphabetic or numeric characters.

The comment field can be used to explain or document the program
operation. It allows the programmer to keep a running commentary on
the meaning or purpose of each line of code.

In a program item, extra blank spaces surrounding the opcode or
operands in a line are ignored; however, all-blank lines or null lines are
illegal.

Assembly Language ' 6973-1
Confidential and Proprietary to The Ultimate Corp.

\\‘{\’W,/»'

The Assembler

(, Displaying the The MLIST command and the line editor AS command can be used to
Program produce a formatted listing of the program. Figure 2-1 shows a sample
excerpt from an assembly program's source code, formatted using
MLIST. (For more information on MLIST, see the section, Assembler
System Commands.)

!START EQU *
BSL LOGHDR

BBZ RMBIT, RTN rtn if error
MCI SM,R15 mark header end in CS
BSL INITTAPE
BZ TCTLBSRF, RTN tape problem
(" BNZ REJCTR, RTN tape problem

INC INHIBITH

MOV OSBEG, 0S

INC 0S,1+ID.PWS.SZ and stay here until wrapup
FAR 0S,4

MOV XPFID,D8 save until wrapup
MOV OSFID,RECORD

INC RECORD, -1+ID.WS.FRAMES [abt0387]
MOV RECORD, XPFID link first to last
BSL RDLINK

MOV OSFID,XNFID link last to first
MOV SHED, MAP

LOAD PRECL

STORE BLOCKSIZE

LOAD PROCESS# get my PIB#

STORE CAMP#

MOV 0S, DECKBEG

Figure 2-1. Sample Assembly Program
(Source Code Lines

6973-1 Assembly Language 2-3
Confidential and Proprietary to The Ultimate Corp.

The Assembler

A

Creating an Assembly Language Program «k

An assembly language program, also called a mode, is created using
either the line editor or the screen editor. However, only the line editor
provides assembly formatting.

The line editor can be set to display the lines of code in assembly listing
format, using the following commands:

AS assembly listing format on/off switch; default OFF.
M macro expansion display on/off switch; default OFF.
S suppress object code on/off switch; default OFF.

In addition, the following command can be used to locate a line of object
code in a previously assembled mode:

Q/loc#/ locates the line that contains object code location 'loc#', which
is specified as a hexadecimal byte offset in the current mode
(for example: 005D). Differs from L/string/ in that only object
code is searched, and the match is on a location, not a string
value.

For more information on the editors, see the Guide to the Ultimate
Editors.

2-4 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Assembly Structures

Mode
Structure

6973-1

An assembler mode item has a specific overall structure and each
program line within the mode has a specific structure. The assembler
program checks for this structure. In addition, the line editor uses this
structure to display assembly source code lines in a standard assembly
listing format, including object code, if any is present.

The assembler expects an assembly source mode to begin with comment
lines. The comments may use as many lines as needed. Following the
initial comments, the assembler looks for the beginning of the Entry
Point Branch Table, followed by the directives that are used to define
symbols and registers in the program. This section of the program is
then followed by the main program instruction routines. This structure
is similar to the following:

001 FRAME directive.

002 * Comment line. By convention, program type/purpose.
003 * Comment line. assembler places current system date
004 * Comment line. By convention, these lines contain

005 * Comment line. revision level, author, and other

006 * Comment line. explanatory comments.

Onn entry point 1

nnn final entry point
xxx symbol definitions

yyy main program

zzz END
Each of these elements is discussed on the following pages.

The end of the program can be indicated by an END directive, but this is
not actually required by the assembler.

Assembly Language 2-5
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-6

FRAME Directive

The FRAME directive specifies the frame in which this program mode is
to be loaded. FRAME also sets the assembler's location counter to 1 or

2, depending on the implementation. You may use an ORG directive to

reset the location to ORG O if you wish to use the first 1 or 2 bytes.

The frame number must be within the limits for ABS frames. For release
200, the limits are frame O to frame 2047. In general, user-written code
should be loaded into frames 400-599; Ultimate reserves these frames
for user modes. It is possible that other user modes and applications
already have used some of these frames, so be sure to check that the
frame is free before using it.

Note: The USER-MODES file in the SYSPROG account contains user
modes that are loaded by the COLD-START PROC. This is a
good starting point in detecting used program frames.

Comment Lines

A comment line is defined by an asterisk (*) in column 1 or by the
CMNT directive. The * comment line has no tabbing performed; it is one
long line of text comments. The CMNT directive must be in column 2 or
beyond; everything else on that line is considered to be comments. A
CMNT directive may be preceded by a label.

Note: The assembler puts the system date in line 3 only if it is a
comment line that begins with an *.

Entry Point Branch Table

This is a sequence of up to 16 Entry Point (EP) instructions that defines
the entry points (numbered 0-15) into the mode. The entry points may
be given sequential labels such as 0, 1, 2, etc., or alpha labels. (For
information on using the entry points to execute the program, see
Chapter 6.)

The entry points must be the first instructions that generate object code.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

By setting the entry points up as a series of branches, you can later
change the program and reassemble it without affecting the entry points.

Note: Although no entry points are required to be defined after the
last used entry point, it is usually safer to put NEP instructions
in place of all unused entry points.

Mode-ids - All assembly language programs to be executed must be identified by a
External mode-id in order for the system to access the correct frame (FID) and
Program entry point in memory where the program is located.

References

A mode-id is a 16-bit field (that is, it fits in a tally), and is composed of
one hex digit for the entry point and three hex digits for the frame
number (FID). Together these make up an address to which execution
control can be transferred in a program.

Every program needs to have a defined mode-id; however, the mode-id
is actually stored in different places, depending on the system interface
being used to initiate the program:

« If the program is to be executed as a verb (system command) from
TCL, the mode-id is stored (in ASCII character format) in the verb
definition item in the Master Dictionary (MD) of each account that
runs the program.

+ If the program is to be executed via the CONV (Conversion) interface,
the mode-id 1s given as part of the 'Unxxx' conversion code in the
BASIC ICONV or OCONYV function that calls it. If the program is
associated with Recall attributes, the mode-id is given in the 'Unxxx'
(User Exit) Correlative or Conversion code (line 7 or 8) in a
dictionary attribute definition item.

+ If the program is to be executed from PROC, the mode-id is given as
part of the 'Unxxx' or 'Pnxxx' PROC command that calls it.

In all 'Unxxx' specifications, the 'nxxx' is four hexadecimal digits of
mode-id, which immediately follow the 'U' conversion code letter.
‘Unxxx' means entry point 'n' (0-F) of frame 'xxx' (1-FFF, which
is 1-4095 in decimal). For more information on BASIC, Recall, and
PROC, please see the appropriate reference manual.

Due to the mode-id format, assembly programs must be loaded into
frames 1-4095, with up to 16 entry points. The actual number of
frames may be less, depending on the operating system release. Frames

6973-1 Assembly Language 2-7
Confidential and Proprietary to The Ultimate Corp.

The Assembler

above 1023, especially, are typically used for purposes other than
assembly programming.

In assembly language programming, when a program needs to branch to
an entry point in another frame, a symbol should be predefined as a
mode-id that points to the desired entry point in the desired frame. If a
symbol already exists in the PSYM file which defines this mode-id, then
that symbol may be used. Otherwise, both the entry point and FID of
the mode-id should be explicitly specified in the calling program.

A mode-id may be defined in two ways:

» DEFM directive (defines a symbol; no object code)

¢ MTLY or MTLYU directive (defines a symbol and reserves storage,
word-aligned only if MTLY)

The DEFM method may be used to simply define a synonym for a
location already allocated storage (or that will be allocated storage before
the program calls it). For example, the following defines the symbol
EXT.SUB as a mode-id whose value is entry point 4 in frame 500:

EXT.SUB DEFM 4,500

EXT.SUB may then be used as an operand in instructions such as the
following:

BSL EXT.SUB Call external subroutine
ENT EXT.SUB Branch with no return

The MTLY directive should be used when storage needs to be reserved.
MTLY and MTLYU are less frequently used, except when constructing
tables of mode-ids. For example:

EXT.SUB MTLY 4,500

LOAD EXT.SUB Get mode-id in accumulator
BSLI * Call subroutine referenced
CMNT * by accumulator

Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

The Assembler

Program Line
Structure

6973-1

A source line may contain up to five fields of information:
* label field

« source code operation field (opcode mnemonic)

* source code operand field

« comment field

+ object code generated by assembler

Label field

The optional label, if present, must begin in column 1 of an input line
and must begin with an alphanumeric character. Labels may be up to 50
characters in length, although only 10 columns are reserved for the
format on an assembly listing.

Labels should not contain an asterisk (*), a slash (/), or a plus sign (+).
A label is separated from the opcode mnemonic by a space.

Labels are locally defined symbols used to address locations in the
program, or to define other symbol types. A label must be used as the
target of all branch instructions (conditional or unconditional).
Examples are:

LOOP

! STARTIT
TOTAL-X
TEST123

Opcode field

The opcode is separated from the label and the operands by at least one
space. If there is no label, at least one space must precede the opcode.

Opcodes may be primitive or macro instructions, or directives. They
consist of the opcode mnemonic and usually one or more operands.

Examples of mnemonics are:

MOV

Assembly Language 2-9
Confidential and Proprietary to The Ultimate Corp.

The Assembler

7
INC s
BSL

The valid opcodes are described in Chapter 4.

Operand field

The operands are separated from the opcode by at least one space.
Multiple operands are separated by commas, and no spaces are allowed
within the field (except in quoted character literals). Operands may be

literals, symbols, or the current location counter, using the forms shown
below:

O

2-10 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Form Description

C'xxxx' Text string; example:

C'NOT AGAIN'
If a single quote (') is needed as a literal, two
adjacent single quotes must be used; example:
for JOE'S, use the operand

C'JOE''S"'
For just a single quote, use

crine

n Decimal integer; examples: 120 or -42

X'XXXX' Hexadecimal constant; example: x'FE' or
X'8100FF"'

If an odd number of hex characters is used, a
leading zero is assumed to fill the leftmost
nibble

symbol Symbol name predefined in the PSYM file or
defined in the label field of the source program

Current byte location in frame; uses the
assembler program location counter to return
the first byte of the current location or address
being assembled

*n Current location in units of 'n' bits; examples:
*]1 =loc. in bits; *8 = *; *16 = loc. in words
This location counter advances as instructions
are assembled; the counter can be altered only
via an Origin (ORG) directive.

literals +/- loc Literals or * locations combined with a plus (+)
or minus (-). Symbols cannot be used here;
examples:

*+2

*-1

-1+ID.ABSFRM.SIZE

6973-1 Assembly Language 2-11
Confidential and Proprietary to The Ultimate Corp.

The Assembler

—

Displaying
Assembly
Programs in
the Editor

2-12

Comments field

The optional comments field follows the last operand, separated by at
least one space, and may be of any length.

Object Code field

The first four columns of the object code field contain the byte offset
(displacement) in the frame, followed by a space, followed by the actual
object code. The object code is separated from the source code by a
subvalue mark, placed there by the assembler.

The line editor has three commands that can be used to display assembly
language programs:

AS displays source code in pre-sized fields

M displays macro expansions

S suppresses object code (if any) in object field

Source code lines may be displayed on the screen with all fields shown
when the Editor is used with the assembly listing switches AS and M
turned on and S turned off.

If both the AS switch and the S switch are off, each line is displayed as
entered. Macro expansions and error messages, if any, follow the
source code and are separated from it by value marks. Object code, if
any, follows the source code and any macro expansion code; it is
separated by sub-value marks. For example,

013 SAVE MCC R4,R5 MOVE THE TERMINATOR\0056 645D
014 MCC R4,R16 SAVE IT ALSO]*ERR: REF:UDEF, REF:UDEF
015 B OK] B: OK\0058 1E45

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

6973-1

When AS is on, the assembly listing format is as follows:

Col Field description
1-15 object code
16 blank

17-25 label field; contains one of the following:
label
* (comment line)
(null) neither label nor comment

26 blank

27-31 opcode field
32 blank

33-49 operand field
50 blank

51-75 comment field

The following example shows a program in the editor with AS on, but
with S and M off (the editor item line numbers are shown to the left of
the program line itself).

column: 1 2 3 4 5 .
1234567890123456789012345678901234567890123456789012...

001 0001 7FF001D7 FRAME 471

002 *SAVE/RESTORE

003 *24 APR 1990

013 0000 ORG 0

014 0000 FE CHR AM

015 AM EQU R1

016 *

017 0001 1E27 0 EP ' LOG

018 0003 1E38 1 EP ! CMDLOOP
073 0028 'LOG EQU *

074 0028 A00200 ZERO PRMPCH
085 0049 1172B2 B CMD200
243 01CC 0309 END

Assembly Language 2-13

Confidential and Proprietary to The Ultimate Corp.

The Assembler

If S is on (suppress object code), lines 13-18 would list as:

1 2 3 4 5 .
1234567890123456789012345678901234567890123456789012...
013 ORG 0
014 CHR AM
015 aM EQU R1
016 *

017 0 EP 'LOG
018 1 EP !'CMDLOOP

If M is also on (display macro expansions), line 85 would list as:

085 B CMD200
+B: CMD200
2-14 Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Assembler Program

6973-1

The assembler translates source code statements into object code. The
source mode may be stored as an item in any file. In firmware
implementions, the object code is assembled in place; that is, at the
conclusion of the assembly process, the item contains both the original
source code and the generated object code. In software implementations
the destination of the object code must be specified; it can be a separate
file or it can be in the current file.

The assembled object code must be less than or equal to one ABS frame
in size. On all machines the operative frame size is stored in the PSYM
file as the symbol ID.ABSFRM.SIZE; on firmware machines, this is 512

bytes.

Each implementation has its own version of the assembler and is
invoked as follows:

firmware systems use the AS verb
$/370 systems use the OPT verb.

1400 systems use the ASM verb

When a program is assembled, the generated object code is stored along
with the source statement and system delimiters are used to separate the
components on each line. On firmware machines, the object code is
stored back into the source file. On 1400 and S/370 systems, it is stored
a separate file. On a firmware system, while you are editing an already
assembled program, you can ignore any data beyond the source
statement, because the assembler examines only the source data on each
line as it performs the assembly; any existing object code and other
characters are discarded.

Object code and associated addresses are stored as hexadecimal digits in
ASCI character format. These are converted to binary values when the
program is loaded.

Assembly Language 2-15
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Listing
Assembled
Programs

2-16

The following system commands can be used to generate listings using
an assembled program item:

MLIST generates a formatted listing

MLOAD loads the program for execution
MVERIFY verifies the loaded code
CROSS-INDEX generates concordance listings
X-REF generates a cross reference by symbol name

XREF enhanced version of X-REF

These system commands are described in in this chapter in the section,
Assembly Program Listings.

Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

= ‘\”%«,

A

The Assembler

Executing Assembled Programs

6973-1

An assembled program is not automatically ready to execute. In order to
run an assembled program, you must create a verb definition item in the
account's Master Dictionary (MD), or call the program from BASIC,
PROC, Recall, or another assembly language program.

The following interfaces can be used between user-written programs
and the Ultimate operating system. Each interface is designed for a
particular function or type of program.

Interface

CONV

PROC

RECALL

TCL-1
TCL-II

WRAPUP

XMODE

_———

Function

For subroutine calls from BASIC or Recall. Used
when a conversion needs to be performed.

For routines called from PROC.

For verbs that use Recall's data base reporting
capabilities.

For verbs that use the TCL-I form (no filename)
For verbs that use TCL-II form (filename).

For exiting verbs, or anywhere if a program may
exit on an error condition.

For handling Forward Link Zero register
conditions (that is, to add frames to a linked set
during program operation).

When an assembled program is ready for production, the appropriate
interface must be selected and programmed. Most user-written |
programs use the TCL-I, TCL-II, or the CONV interfaces. The TCL
interfaces involve defining the program as a verb in the MD. Once the
verb definition is stored, the program can be executed by entering the
verb name at the TCLor specifying the name anywhere a system

command is valid.

All interfaces are described in Chapter 6, System Software Interfaces.

Assembly Language 2-17
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The AS Command - Firmware Assemblies

Syntax

Description

2-18

The AS command is used to assemble programs for a firmware machine.

AS filename {itemlist} {(options)}
filename name of file that contains items to be assembled

itemlist names of items to assemble; may be one or more explicit
item-IDs, or an asterisk (*) to specify all items in the file;
may be omitted if a select-list is active

(options the following options are available:

E when used in conjunction with the L option, lists only
errors

L generates a listing equivalent to the MLIST command during
assembly

N inhibits waiting at end-of-page during listing to terminal;

useful in conjunction with Z option
routes output to print spooler

Q specifies that messages are not to be displayed nor the editor
entered if assembly errors are found; normally, this is used
when multiple items are being assembled

z specifies that, if assembly errors are found, the editor is not
to be entered; normally, this is used when multiple items are
being assembled

The AS command requires three files to be defined on the user's
account:

OSYM opcode symbol file; contains all the opcodes and valid symbol
types for each opcode

PSYM permanent symbol file; contains the global symbols available to
all assembly language programs

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled

OSYM and PSYM are typically Q-pointers to the Ultimate-supplied OSYM
and PSYM files, but TSYM must be created for each account. For more
information on the symbol files, see the section, Symbol Files.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

L

The Assembler

6973-1

Only one user at a time in an account can use the AS command.

The AS command is table driven and performs two passes over the
source code. During the first pass, all instructions that have undefined
and forward references are flagged as requiring re-assembly. Local
labels are stored in the temporary symbol file (TSYM) during this first
pass, along with the literal definitions that need to be created.

As the assembler processes items, it outputs an asterisk (*) after every
ten source statements are assembled. At the end of the first pass, the
literals are generated and added to the end of the current object code.

On pass two, a new line is started and an asterisk is printed for each ten
statements reassembled.

If there are any assembly errors, the assembler enters the editor so that
the program may be conveniently corrected for reassembly (unless
suppressed by the Q or Z option).

If there are no errors, the following message is displayed (unless the Q
or Z option is used):

[236] No errors

The AS command is table driven and performs two source code passes:

1. In the first pass, all instructions haveing undefined and forward
references are flagged as requiring re-assembly. Local labels are
stored in the temporary symbol file (TSYM), along with the literal
definitions that need to be created. At the end of the first pass, the
literals are generated and added to the end of the current object
code. As the Assembler processes items, it outputs an asterisk (*)
after every 10 source statements assembled.

2. Inpasstwo, a new line is started and an asterisk is printed for each
10 statements reassembled.

Assembly errors cause the Editor to be entered for program correcttion

for reassembly (unless suppressed by the Q or Z option). If no errors,

the following message displays (unless the Q or Z option is used):

[236] No errors

Assembly Language 2-19
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Assembler error messages are stored as part of the source line in error.
Undefined symbols are stored as a message list in the last line of
source. Assembler error messages are explained below.

Message
OPCD?
OPRND REQD

ILGL OPCD: xxxx

LBL REQD

MUL-DEF

OPRND DEF

OPRND RNGE

REF: UDEF

TRUNC

UNDEEF: xxx {xxx..}

Description
opcode mnemonic is missing
instruction is missing at least one operand

either the opcode mnemonic, or operands
specified are not valid for this opcode

an Equate (EQU) directive does not contain a
symbol in the label field, so there is nothing to
equate the value to

label is defined more than once

either the operand is defined improperly or is
not valid for this instruction

operand’s numeric value is not within the valid
range for this instruction

instruction references an undefined symbol

an operand is out of range. Typically this error
occurs when a program exceeds the size of a
frame and an instruction tries to reference an
Assembler-generated literal beyond the last
location of an ABS frame

list of undefined symbols found

:AS SM PROG1

% % %k %k %k %k %k Kk k Kk k %k Kk k k %k k %k

* % %

[236] No errors

(pass 1 output from assembler)
(pass 2 output from assembler)

2-20 Assembly Language

6973-1

Confidential and Proprietary to The Ultimate Corp.

N

The Assembler

(| The OPT Command - S/370 Assemblies

Syntax

Description

6973-1

The OPT command is used to be assemble a program for S/370
implementations of the Ultimate Operating System. The command itself
is a cataloged BASIC program and is included in the SYSPROG account.
OPT filename {itemlist} {(L}

filename name of file that contains items to be assembled

itemlist names of items to assemble; may be one or more explicit
item-IDs, or an asterisk (*) to specify all items in the file;
may be omitted if a select-list is active

(L generates an instruction that allows a BREAK at each label.

Note: Once aprogram has been debugged, it should be assembled
without the L option in order to run more efficiently.

OPT requires the following symbol files to be defined on the account
doing the assembly:

I1.PSYM permanent symbol file used in pass 1 of the assembly
11.0SYM opcode symbol file used in pass 1 of the assembly
IPSYM permanent symbol file used in pass 2 of the assembly
I0SYM opcode symbol file used in pass 2 of the assembly

ISM file used by the assembler to store assembled object code;
must be created by user

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled. This
file must be created with a data section modulo of 31.

The 11.PSYM, 11.0SYM, IPSYM and I0SYM files are delivered on the
SYSPROG account. To assemble from another account, Q-pointers
should be set to the file in the SYSPROG account.

The OPT command uses the following two verbs, which must be
defined on the account doing the assembly:

AS.IBM
XP

Assembly Language 2-21
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-22

The OPT version of the assembler makes two passes. Pass 1 converts
the Ultimate source code to S/370 source code. Pass 2 assembles the
S$/370 source code into S/370 object code.

When the assembly is complete, the following message is displayed:
[206] 'itemname' assembled

The object code is stored in the ISM file under the item name used in the

assembly. If there were errors or undefined references, these are also

stored in the item in the ISM file.

Each assembled item should be edited to determine if errors exist. The
following shows an assembled item with errors:

*ERR MOV BMS, 15
*ERR: ILGL OPCD: MOV:RN

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

B

#

N

The Assembler

The ASM Command - 1400 Assemblies

Syntax

6973-1

ASM is used to assemble a program for 1400 implementations of the
Ultimate Operating System. The command itself is a cataloged BASIC

program.

ASM filename {item-ist} {(options)}

filename name of file that contains items to be assembled

itemlist

(options

C

names of items to assemble; may be one or more explicit
item-IDs, or an asterisk (*) to specify all items in the file;
may be omitted if a select-list is active

the following options are available:

retains comment lines from the source code instead of
suppressing them from the assembled program. By default,
ASM deletes comment lines in the source, and converts
source code into comment lines; the assembled code is
indented beneath the source code that generated it. With the
C option, a comment line is converted as a comment with a
greater-than sign (that is, "*> comment-text").

when used in conjunction with the L option, lists only
erTors

generates a listing equivalent to the MLIST command during
assembly.

inhibits waiting at end-of-page during listing to terminal;
useful in conjunction with Z option.

routes output to print spooler.

specifies that messages are not to be displayed nor the editor
entered if assembly errors are found; normally, this is used
when multiple items are being assembled

inserts a V.TRAP instruction into the native code before each
source instruction instead of just at labels. By default, ASM
inserts a V.TRAP only at a label, to enable single-step
debugging with the debugger E1 command. With the Vv
option, the single-step is from the source's instruction to
instruction instead of label to label.

Assembly Language 2-23
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Description

2-24

Note: Once aprogram has been debugged, it should be assembled
without the V option in order to run efficiently.

y4 specifies that the editor is not to be entered if assembly
errors are found; normally, this is used when multiple items
are being assembled

ASM requires the following symbol files to be defined on the user's
account:

M1.0SYM opcode symbol file; used by pass 1 of the assembler
program to convert Ultimate assembler code to 1400
assembler code

M1PSYM permanent symbol file; contains all predefined symbols
available to the assembly language programmer

M2.0SYM opcode symbol file; used by pass 3 of the assembler
program to convert 1400 assembler code to object code

M2 PSYM permanent symbol file; used by the assembler program

OPT.ERRORS optimizer errors; used by optimizer to store errors
encountered during pass 2

TSYM temporary symbol file; used by the assembler to store the
symbols used in the mode currently being assembled

The symbol files are described in the section, Symbol Files.

The OPT command uses the following two verbs, which must be
defined on the account doing the assembly:

ASM1
ASM2

When ASM is invoked, it first prompts for a destination file name:

To: {(filename} {item-list}
The response to the To: prompt may be a filename or item-IDs or both;
pressing RETURN with no response cancels the ASM command. All

destination file/item name forms that are valid for a COPY command may
be used. For example:

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The Optimizer

6973-1

ASM BP *
To: (BD

assembles all items in the BP source file to the BD file using the same
item-IDs as in BP. Another example:

ASM SSM T
To:T.OBJ

assembles one item in SSM to the same file as item 'T.OBJ'.

After a valid destination file has been specified, the ASM command starts
the assembly.

ASM uses three passes:

1. Executes the ASM1 verb, which assembles virtual code into native
machine source code, using M1.0OSYM and M1.PSYM.

2. Executes a BASIC program in the SYSPROG-PL file called OPT. The

symbol files are used to construct the destination file items. Any
errors encountered are logged in the OPT.ERRORS file, described

below. The optimized items are output to the specified destination
file.

3. Executes the ASM2 verb, which assembles the object code, using

the output of the optimizer and the M2.PSYM and M2.0SYM symbol
files. The items are updated in the destination file.

This sequence is looped through for all items in the list.

Object code for an assembled item must fit into one ABS frame. If the
object code generated by the optimizer in pass 2 does not fit in an ABS
frame in the first try, the optimizer reassembles the code using a
compression algorithm. Level 0 is "no compression"; level 9 is
"maximum compression”. The higher the compression level, the
smaller but less efficient the resultant code. The optimizer tries up to ten
levels of compression; if it reaches level 10 without fitting the object
code into a frame, it gives up and goes on to pass 3.

Assembly Language 2-25
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-26

Each level of compression specifies which instructions are to be
compressed by the optimizer. An instruction is compressed by moving
most of its code to the Kernel, leaving only code to set up a call to the
Kernel in the assembled object code.

The level of compression for a program is stored in attribute 2.of the
destination item in the following format:

002 * compression level = n

n number of iterations used by the Optimizer to get the object code to
fit into an ABS frame

If the destination item already exists, the value in attribute 2 is used as
the compression level for the program being assembled. The Optimizer
does not reduce the compression level value previously stored. This
means that even if code has been removed to make the program smaller,
the optimizer starts the assembly at the previous level of compression.
To overcome this restriction, you should either delete the old destination
item, or edit the old item and set the compression level back to O before
reassembling the program.

The OPT.ERRORS File

This file contains an item for each source file item that has been
assembled. OPT.ERRORS stores the time and date of the assembly in the
item, as well as any errors that the optimizer found while processing the
source file item.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

s

The Assembler

Assembler Error Messages

Assembly error messages are stored as part of the source line in error.
If undefined symbols exist, a list of these symbols is stored as a
message in the last line of source. If any assembly errors are found, the
Editor is called as a convenient way to edit the source item, unless the Q
or Z option was specified with the assembler command.

Message Description

OPCD? The opcode mnemonic is missing.

OPRND REQD The instruction is missing at least one
operand.

[LGL OPCD: XXXX Either the opcode mnemonic is not valid, or
the operands specified are not valid for this
opcode.

LBL REQD An Equate (EQU) directive does not contain a

symbol in the label field, so there is nothing
to equate the value to.

MUL-DEF The label is defined more than once.

OPRND DEF Either the operand is defined improperly or
is of an invalid type for this instruction.

OPRND RNGE The operand's numeric value is not within
the valid range for this instruction.

REF: UDEF The instruction references an undefined
symbol.
TRUNC An operand is out of range; typically this

occurs when a program exceeds the size of a
frame and an instruction tries to reference an
assembler-generated literal beyond the last
location of an abs frame.

UNDEF: XXX List of undefined symbols found.
{,xxx..}

6973-1 Assembly Language 2-27
Confidential and Proprietary to The Ultimate Corp.

The Assembler

I ———— S —— S— eea——

AN
OSYM Errors The following error messages are issued when the assembler detects d
errors in the OSYM file definitions:
FRMT. A-FIELD
FRMT. B-FIELD
OPCD TYP
MACRO DEF
MOD WORDSIZE > 32 BITS
EXIT DEFN
To correct the OSYM file, perform a selective restore (SEL-RESTORE
command) of the OSYM file using the latest SYSGEN tape.
A
%\,,w P

2-28 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Generating Object Code

Directives and
Object Code

Instructions
and Object
Code

6973-1

The output of the assembly procedure is object code that the Ultimate
machine can directly execute. The actual object code on Ultimate
software implementations depends on the native code of the system;
however, all firmware machines generate the same object code.

The assembly procedure performs two distinct tasks on source code,
determined by the type of operation:

+ directives are processed to set up the program structure and
generate object code where needed

* instructions are assembled into object code

Directives do not generate executable code. They may, however,
generate object code in the sense that symbol definitions may reserve
space in the program frame and may also assign a value which is in
"object” format.

The following directives do generate object in that sense:

ADDR generates a 6-byte storage register”
ALIGN may generate 1 byte (0)

DTLY generates a 4-byte double tally*
FTLY generates a 6-byte full tally*

HTLY generates a 1-byte half tally

MTLY generates a 2-byte tally with even-byte alignment*
MTLYU generates a 2-byte tally without alignment

SR generates a 6-byte storage register*
TEXT generates the number of bytes in specified string
TLY generates a 2-byte tally*

Instructions normally generate executable code. Each source code
instruction is assembled into 1-6 bytes of object code that can be directly
executed by the operating system.

* may first generate a byte of 0 to align the operand on a word (tally) boundary

Assembly Language 2-29
Confidential and Proprietary to The Ultimate Cormp.

The Assembler

Generating
Object Code

2-30

The first byte of the object code for all instructions is the primary
opcode (1 byte). In addition, depending on whatever is necessary to
access the specified data and perform the specified operation, the object
code may have up to 5 more bytes for secondary opcodes, address
registers, byte addresses of relative operands, a code for the type of
symbol used as an operand, immediate data, and/or the offset of a local
label.

The primary opcode is the only byte that is generated for all instructions.
The other parameters may or may not be applicable to a particular
instruction. Chapter 4 discusses each instruction in alphabetical order.

In order to generate directive object where needed, the assembler
interprets the directive and converts the value to hexadecimal for storage
in the frame. The object is stored at the current program counter
location. If a symbol is locally defined (that is, it is not in the PSYM
file), it is added to the TSYM file during the assembly procedure.

To generate instruction object, the assembler searches the OSYM file for
the particular instruction form and uses the primitive layout(s) to convert
the source to object code in the frame. The object is stored at the current
program counter location in the frame.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp

The Assembler

S— — — S —— ——— ——————————————— S— ——

Symbol Files

The Ultimate system assemblers use several symbol files in assembling
a source program. The file types and names for each of the
implementations are given in Table 2-1.

Each file performs a different function during program assembly.

The permanent and opcode symbol files must be defined in the master
dictionary (MD) of the user account. These may be actual files in the
account, but usually they are Q-pointers to the files supplied in the
SYSPROG account. TSYM, however, must be an actual file defined in
the MD of any user account that uses the assembler.

Table 2-1. Symbol Files

File Type Firmware | 1400 S/370
P e —
permanent symbols | PSYM M1.PSYM I1.PSYM

M2.PSYM IPSYM

temporary symbols | TSYM TSYM TSYM

opcode symbols OSYM M1.0SYM 11.0SYM
M2.0SYM IOSYM

6973-1 Assembly Language 2-31
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The PSYM
File Layout

2-32

The permanent symbol files contain the set of permanent or global ~
symbols available to all assembly programs. While symbols in these
files may be redefined locally in a program, it is best to treat them all as
reserved.

The item-ID of a permanent symbol file entry is the symbol name.
Attribute 1 of each symbol item has a symbol type code, which the
assembler uses to determine the amount of space to assign for the
symbol. Table 2-2 lists the symbol type codes and storage allocation.
The specific format of each symbol type is shown in the Table 2-3.
Values are in hexadecimal.

Table 2-2. Symbol Type Codes and
Storage Allocation

Symbol Type Name Storage Allocation

B bit 1 bit

C character 1 byte
D double tally 4 bytes
F triple tally 6 bytes
H half tally 1 byte
L label (none)
M mode entry point (none)
N literal number variable
R address register (none)
S storage register 6 bytes
T tally 2 bytes
X external address 8 bytes

register

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

The Assembler

6973-1

Table 2-3. Format of Symbol File Item

Attribute Description
item-ID | symbol name | symbol name | symbol name | symbol name
001 M N R all other
(symbol) symbols

002 entry point | literal value | register offset
number number

003 frame not used not used base register
number

Assembly Language

Confidential and Proprietary to The Ultimate Corp.

2-33

The Assembler

The TSYM
File Layout

2-34

The TSYM file is used by the assembler to hold the set of symbols in the
program currently being assembled. It is always cleared by the
assembler before the start of each assembly.

As the assembler finds labels and symbols in the source program, it
stores the label in the TSYM file for future use. If a reference is made to
an undefined symbol, it is also stored in the TSYM file. Undefined
symbols are converted to defined symbols if they are later found in the
label field of a source statement. If not used, an undefined symbol is
reported as an assembly error.

The format of the entries in the TSYM file is identical to that of entries in
the PSYM file.

A symbol in the TSYM file overrides a corresponding symbol in the
PSYM file; that is, local definitions override global ones.

The TSYM file cannot be shared. Therefore, only one user at a time can
use the assembler on an account. Each account should have its own
TSYM file, and not a Q-pointer to another account's TSYM.

The modulo of the data section of the TSYM file must be 31, due to the
method the assembler uses in generating literals. If a program is loaded
and then reassembled with a different TSYM modulo it will not
MVERIFY, even though the source statements are identical.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The OSYM
File Layout

6973-1

The opcode files contain the set of Ultimate opcode mnemonics.

The item-ID of an entry in one of these files has one of two forms:
+ the opcode mnemonic itself; for example, B for branch.

* the opcode mnemonic concatenated with the symbol type of each
operand. For example, MOV:RR (move register to register) and
MOV:SR (move storage register to register)

The second form is used to distinguish different opcode-operand
combinations, which may generate completely different machine
instructions, as well as to validate the operands used in the instruction.
For example, the MOV opcode with operands of types B and H would
result in an OSYM file lookup of MOV:BH, which is nonexistent and
therefore invalid.

An item in the opcode files has two or more attributes:

Attribute Description
001 type of instruction; valid codes are
P primitive; the following lines in the item

are used to generate object code or
perform other symbol manipulation
functions.

M macro; each succeeding line in the item is
used to generate a new source line that is
in turn assembled just as any source line.

Q synonym; the following line in the item is
used as an item-ID to continue processing.
This is used to "link" from one item to
another to save duplicate definitions.

002 and on assembly operation appropriate for type; may be
* primitive instruction layout (attribute 1 = P)

* list of component instructions (attribute 1 = M)

* synonym item-ID (attribute 1 = Q)

Assembly Language 2-35
Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-36

Primitive Instructions

Each primitive entry in an opcode file contains a definition for
generating object code from the source statement. The definition is
divided into argument fields, where each argument defines the object
code for that particular component of the instruction.

The term "argument field" (AF) refers to the fields in the original source
statement being assembled as follows:

label AF(0)
opcode AF(1)
operands AF(2) through AF(9), if they exist.

For example, in the following source statement:

LoeCPp BCE R11,C'A',STOPIT

the AF values are:

AF(0) LOOP
AF(1) BCE
AF(2) RII
AF(3) C'A’

AF(4) STOPIT

Each line in a primitive OSYM definition has one of the following
formats:

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

The Assembler

Entry

G,al,a2,... bl,b2,..

R,al bl,b2...

E:XXXx

Q opcode

O text

*comment

Description

_

generates object code. There is a one-to-one
correspondence between the al, a2, etc.,
and the bl, b2, etc. There is one blank
space between the 'a’ and 'b' fields. The
'a's are bit counts, and refer to the size in
bits of the object code to be generated by the
corresponding 'b' expressions. The sum of
the 'a’ fields must be a multiple of 8, and
must be in the range 8-32. Valid b field
expressions are given in Table 2-4.

redefines a TSYM file entry. The TSYM file
item 1s referenced using AF(al) (normally,
al is zero, to reference the label field of the
source statement). Successive lines in the
TSYM file entry are replaced with the data
generated by the expressions bl, b2, ...

specifies an exit to an assembly subroutine
whose mode-id is xxxx.

transfers control to OSYM entry specified by
opcode. There is one blank space between
the Q and the opcode name.

generates the specified text as source code,
in the macro expansion portion of the
statement. This is used in assembling
programs on 1400 systems (ASM
command).

used to include comments in OSYM entries.

Assembly Language

2-37

Confidential and Proprietary to The Ultimate Corp.

The Assembler

Table 2-4.

Expressions to Generate Object Code
('b' Field Expressions)

Code

Description

E:xxXxx

Jn

decimal constant.
hexadecimal constant.
single byte character constant.

current location counter, where the optional n is 1
for location in bits, 8 in bytes, 16 in words

references AF(n); if a symbol, returns the value
from the 'm'th line of the PSYM/TSYM file
definition; if a literal constant, returns the value of
the literal.

Current base register (see literals below).

Exit to assembly subroutine whose mode-id is
XXXX.

Returns branch (or jump) address of local label
referenced by AF(n).

The 'b' field expressions may be composed of sub-expressions joined
with the following operators:

+ addition

- subtraction

* multiplication

/ division (integer)
& logical AND

! logical OR

Rn-n lower-upper range limit on previous expression

Uxxxx assembly subroutine call (mode-id: xxxx) after evaluating
previous expression

2-38 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

P ,;,\(

The Assembler

— —— —

(...) enclose expression in parentheses to alter expression
evaluation

The precedence of the operators is as follows:
expressions within parentheses are evaluated
R and U operators

& and ! operators

* and / operators

[0 T S N R O

+ and - operators.

Operators with the same precedence in an expression are applied left to
right; for example:

A2;2-%* difference between value of AF(2) and current
location

A4;2R0-3 value of AF(4) or assembly error if this is not 0,
1,2,0r3

(A2;2+1)/2 half of one more than the value of AF(2);
remainder from division is discarded

6973-1 Assembly Language 2-39
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Macro Definitions N

A macro definition has the code M in attribute 1 of the OSYM file item.
Each succeeding line generates a new line of source. All text in the
macro definition is literal and copied without change, except for the

following:

Text Description

(n) references AF(n), which is copied to the source line.

(*) references all AF entries, starting with AF(2); this may be
used to copy all references to the macro-generated source
line.

L), If present in the label field of the macro-generated

(L+n) or | statement, this creates a unique label by incrementing the

(L-n) macro's internal label count, and storing that as the
generated label. The +n and -n forms are not allowed
here. ’
If not in the label field, the current internal label count,
modified by the +n or -n, is used to generate a label.

The following example explains how a macro is created. Suppose a
new instruction which tests a signed integer to see if it is in a specified
range is to be created, using the following syntax:

RANGE x,low,high, label

X signed integer

low minimum value

high maximum value

label label to branch to if x is in range

An example of this instruction, its OSYM macro definition, and the
generated code would be:

RANGE CTRO,CTR1,CTR2, INRANGE

L

2-40 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

OSYM file format

RANGE: TTTL

001 M

002 BL (2),(3), (L+1)
003 BLE (2),(4),(5)
004 (L) EQU *

Generated source code (assume
macro label count = 14 at start)

BL CTRO,CTR1,=L15
BLE CTRO,CTR2, INRANGE
=L15 EQU *

Note that (L) is in the label field because no space precedes the "(".

MCI SCO,R11
sco R11
001 C 001 R
002 3 002 00B
003 0 003 B
‘ MCICR
T 001 M
002 INC (3)

003 MCC (2),(3)

+INCR R11
+MCCCR SCO,R11

Original source line

PSYM file entries

OSYM file entry

Resulting macro source statements

6973-1 Assembly Language
Confidential and Proprietary to The Ultimate Corp.

2-41

The Assembler

2-42

MCC sSCO,R11

SCO

001 C
002 3
003 0

MCCCR
001 P

R11

001 R
002 00B
003 B

Source line

PSYM file entries

OSYM file entry

002 G,4,4,8,4,4 13,A2;3,A2;2,1,A3;2

Object code generation:

a-field
4

4
8
4
4

D0031B

b-field expression
13

A2;3

A2;2

1

A3;2

symbol ref

SCO
SCO

R11

Final result

result
D

0

03

1

B

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

[

The Assembler

6973-1

NEW DEFH R1S5,5

R15

001 R
002 OOF
003 F

DEFHRN

001 P

002 R,0 =H,A3;2,A2;2
003 E:5019

NEW

001 L

002 XXXXXXXX
003 1

NEW

001 H
002 5
003 4

Source line

PSYM file entries

OSYM file entry

TSYM file entry after Pass 1
symbol NEW is stored as type L
offset equal to the current location
base register of 1

TSYM file entry after Pass 2

Assembly Language

2-43

Confidential and Proprietary to The Ultimate Corp.

The Assembler

Symbols and Literals

Locally
Defined
Symbols

2-44

A symbol is a named reference to one of the fields that can be addressed
by the system. Symbols can be defined in the following ways:

* a globally defined symbol, stored in PSYM

* alocally defined symbol; one that appears in the label field of the
current program

* ashared symbol; one that appears in the label field of a program that
is named in an INCLUDE assembler directive in the current program.

+ an immediate symbol; one that is explicitly stated in the instruction.

The symbol name is of the same format and has the same restrictions as
a label field.

A symbol name should not begin with one of the following characters:

$ dollar sign
pound or number sign
' double exclamation mark

Certain symbols that start with these characters are used by the kernel on
some systems. To avoid possible conflict, select symbol names that do
not begin with these characters.

If you attempt to assemble a program whose code includes a definition
of a symbol used by the kernel on 1400 systems, the ASM command
displays the following message as a warning to change the specified
symbol name to a different "safe" name:

Redefinition of symbol used by kernel: symbol

To define a symbol in the program for local usage, use one of the DEF
directives. To reserve storage in the object code, use one of the TLY
type directives.

For example, the following instruction defines CNTER as a symbol of
type T, with a specific base register of 4 and an offset of 5:

CNTER DEFT R4,5

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

AN

Ao
L

The Assembler

Literals

6973-1

However, the following instruction defines it implicitly at the current
location in the object code, and stores a value of 1234 at that location in
the object code:

CNTER TLY 1234

This symbol is now a literal or constant in the program.

The assembler automatically assembles certain types of literals. Such
literals are fields that can be addressed using a base register and an
offset displacement. When a program is executing, address register 1
(R1) points to byte zero (0) of the frame. Therefore, this may be used
by the assembler as the default base register to address literal fields that
it creates and stores in the frame.

Symbols of types T and D can be automatically generated as part of an
instruction, but types H and F cannot. This is because half tallies (H)
can only be offset up to 255 bytes from the base register's address, and
literals are only generated at the end of the object code. If the object
code is greater than 255 bytes, half tally literals would cause a truncation
error. F-type (triple) tallies cannot be generated automatically due to an
assembler limitation. If a program needs to use half or F-type tally
literals, they must be defined explicitly with the HTLY or FTLY
instructions.

In addition, in order for the assembler to generate a literal, the
instruction must be a macro. The instruction itself should simply
specify the literal value (for example., ADD 3); the macro uses the
following form to generate the symbol:

=x (AFn)

where
X DorT

AFn number of argument field in the instruction that contains
the literal value

For example, to generate a tally of the value in argument field 2, the
assemble sets up the following:
=T (2)

Assembly Language 2-45
Confidential and Proprietary to The Ultimate Corp.

The Assembler

The assembler stores this symbol (if not already present) as an -
undefined type in the TSYM file. At the end of pass one, the TSYM is

searched sequentially for undefined symbols that match the above

pattern, and the literals are assembled. This is done by internally

generating source statements using special opcodes of the form ":x" (:D,

:T, etc.), which actually generate the literal and redefine the symbol to

the correct type and location.

The literal thus generated at the end of the program has the following
form:

=xvalue :x value
For example, the following generates a tally with the literal value 3:
=T3 :T 3

The following is step-by-step example of literal generation on a
firmware implementation:

Step 1
MOV 100,COUNTER Source line

PSYM file entry:
item-ID COUNTER
001 D
002 1IF
003 0

OSYM file entry
item-ID MOVND
001 M
002 MOV =D(2),(3)

Step 2
MOV =D100,COUNTER Resulting macro source statements

TSYM file entry
item-ID =D100
001 U
002 0
003 1 ¢

2-46 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

6973-1

OSYM file entry
item-ID MOVDD
001 P
002 G,4,4,8,4,4,8 15,A3;3,A3;2,8,A2;3,A2;2

Step 3

At the end of pass one, an internal source statement is assembled:

=D100 :D 100 Source line
OSYM file entry
item-D :D
001 E:101B
002 1F Forces word alignment in object
code
003 R,0 =D,*16,B
004 G,32 A2;2 Generates double tally object code
00000064 Resulting object code
TSYM file entry:
Before instruction After instruction
item-D =D100 item-D =D100
001 U 001 D
002 O 002 xxx
003 1 003 1

xxx offset appropriate to the current location.

Step 4

The MOV 100,COUNTER instruction is reassembled on pass two.

Assembly Language 2-47
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Shared
Symbols
(INCLUDE
Directive)

Immediate
Symbols

2-48

The main reason for the INCLUDE directive is to be able to place a set of
shared definitions in one item and then use the definitions in any other
program. Typically, variables and mode-ids that are local to a set of
programs are placed in a single program for inclusion during assembly.
The advantage of this method is that the definitions are not duplicated in
every program that uses them. Such duplicate definitions can lead to
errors and are in general more difficult to maintain than if they were all

in one program.

The format of the INCLUDEd program is identical to that of any other
program, though typically it consists of only DEFx (definition)
assembler directives.

Normally, a symbol must be in PSYM or must appear as an entry in the
label field of the program or in an included program.

In some instructions, however, an immediate symbol may be defined as
an operand. This may be useful when a symbol is only used once; it
may be simpler than having to define the symbol in a separate line.
However, because these symbols have a quirk in their syntax that makes
them different from the PSYM/TSYM equivalents, they are not
recommended except to reference bits. They are documented here for
compatibility only.

The general form of an immediate symbol is:

Rn;xd
Rn address register RO-R15
x symbol type (B, C,D, F, H, S,or T)

m decimal value that generates the offset displacement
The offset displacement is equal to m * field.length

In other words, m is the displacement in units of immediate symbols.
For example, the immediate symbol RO;B32 addresses bit 32 displaced
from RO; and R2;T10 addresses the tally displaced from R2 at bytes 20
and 21 (same as PSYM/TSYM entries). However, R2;D10 addresses the
double tally displaced from R2 at bytes 40 through 43 (not 20 through
23, as generated by PSYM/TSYM entries).

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

6973-1

Following are examples of immediate symbols and their equivalent DEF
instructions (see the DEFx directive in Chapter 4 for a full discussion).

Immediate
Symbol

RO;BO
R15;B7
R2;C100
R15;T10
RO;D10
R0O;S10

RO;F15

Displacement from
Base Register

0

7

100
20-21
40-43
60-65
90-95

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

HIBIT

LOBIT

CHARACTER

TALLY

DTALLY

STORAGE

F-TALLY

Equivalent DEF

Instruction
DEFB R0,0
DEFB R15,7
DEFC R2,100
DEFT R15,10
DEFD R0,20
DEFS R0,30

DEFF R0,45

2-49

The Assembler

— —

Assembler System Commands g

After an assembly language program has been assembled, a number of
system (TCL) commands are available to bring the program up to a
production mode of operation.

2-50 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

g

The Assembler

CROSS-INDEX

Syntax

Description

6973-1

The CROSS-INDEX command creates a cross-reference of all symbols
used in an assembly language program or set of programs.

~ CROSS-INDEX filename {itemlist} {(F)}

filename name of file that contains items to be indexed

itemlist names of items to index; may be one or more explicit item-
IDs, or an asterisk (*) to specify all items in the file; may be
omitted if a select-list is active

(F prompts for the name of a symbol file to use instead of
PSYM; if not specified, the symbols are searched for in
PSYM

CROSS-INDEX checks each program in the specified file and builds an
item in the CSYM file. (The CSYM file must already exist).

The name of the program is used as the item-ID in the corresponding
item in the CSYM file. Each attribute in the item contains information
about one type of symbol. The item has the following format:

AMC symbol type
1 B bits
2 C characters
3 H half tallies
4 T tallies
5 D double tallies
6 F f-type tallies
7 S storage registers
8 R address registers
9 M mode-ids
10 N literals or constants

The name of each symbol and the number of times it occurs in the
program are kept together as a value in the corresponding attribute.

Symbol references are only checked in the PSYM file, or if the F option
was used, in the specified file. To cross-reference local definitions

Assembly Language 2-51
Confidential and Proprietary to The Ultimate Corp.

The Assembler

(such as from an INCLUDEd program) as well as the standard global
definitions, a temporary symbol file containing both the global and local
definitions must be created, as follows:

1. Copy all items from the regular PSYM file into the temporary
symbol file.

2. Assemble program that contains the local symbols, for example, the
INCLUDEd program

3. Copy all items from the TSYM file copied into the temporary
symbol file.

4. Use the F option when invoking the command, and specify the
name of the temporary symbol file at the prompt.

: CROSS-INDEX MODES DLOAD Cross-indexes the item DLOAD in
the MODES file.

:CT MODES DLOAD

DLOAD
001 LISTFLAG 001)RMBIT 002
002 CHB 001
003 NNCF 002
004 CTR1 002]MODULO 007]0BSIZE 001]RSCWA 001]SEPAR 010]
005 BASE 008]DO 001]JOVFLW 001]R1SFID 001]RECORD 005
006 FP1 001
007 BMSBEG 001]CSBEG 001]ISBEG 002]OBBEG 001]S2 002
008 Cs 006]IS 021]0B 005]R14 003]R15 006]TS 001
009 CRLFPRINT 001]CVDR15 003]CVTNIS 002]GETBLK 001
010 aM 002

2-52 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

,A(\»“\

; o~

The Assembler

MLIST

Syntax

Description

6973-1

The MLIST command lists an assembly language program.

MLIST filename {itemlist} {(options)}
filename name of file that contains items to be listed

itemlist one or more explicit item-IDs, or an asterisk (*) to specify
all items in the file; may be omitted if a select-list is active

(options
n-m lists only line numbers n through m, inclusive
E prints error lines only

J enables page eject if EJECT directive is in program being
listed

prints macro expansions of source statements
inhibits waiting at end-of-page when listing to the terminal

routes output to print spooler

©w N Z X

suppresses the display of object code

The MLIST command generates a program listing with one instruction
per line. Each line shows a statement number, location counter, object
code, and source code, with the label, opcode, operand and comment
fields aligned. A page heading is output at the top of each new page.

Errors, if any, are displayed on the line following the line that contains
the code. Macro expansions, if requested, are displayed as source code,
but with the opcodes prefixed by a plus sign (+).

Assembly Language 2-53
Confidential and Proprietary to The Ultimate Corp.

The Assembler

—

2-54

:MLIST MODES LIST4

PAG

E 1

001 0001 7FF301FF

002
003
004
005
006
007
008
009
010
011
012
013
014
015

0001

T SF O

0001
0003

0007
000B
000E

0010
0014
0018
001C

70BE
90A1040F

F21A412B
117009
80A1

909EO0A1B
A21A644E
F21A412B
EOSCEE

LIST4

FRAME 511

FRAME 511

*

HSENDDSP DEFTU HSEND

*

ZB
BBS

SB30
SB1, NOTF

* FIRST TIME SETUP

MOV
BSL
SB

NOTF BBZ
BDNZ
MOV

9)3 MOV

4,CTR32
PRNTHDR
SB1

RMBIT, OP
CTR32, RETURN
4,CTR32
HSBEG, R14

14:40:16 29 JAN 1991

DISP FIELD OF HSEND

INTERNAL FLAG

NOT FIRST TIME

INITIALIZE AND PRINT HEADING

LAST ENTRY
NOT YET 4 ITEMS OBTAINED
RESET

Assembly Language

Confidential and Proprietary to The Ultimate Corp.

6973-1

The Assembler

MLOAD

Syntax

Description

6973-1

The MLOAD command loads an assembly language program mode
(item) into the frame specified in the mode's FRAME opcode.

MLOAD filename {itemlist} {(options}
filename name of file that contains items to be loaded

itemlist names of items to load; may be one or more explicit item-
IDs, or an asterisk (*) to specify all items in the file; may be
omitted if a select-list is active

(options
E prints only messages relating to errors
I prints item-IDs if more than one is MLOADed
N inhibits load but prints message

routes output to print spooler

The mode to be loaded must contain no more bytes of object code than
are in an ABS frame (ID.DATFRM.SIZE in PSYM). The first statement
assembled in the mode must be a FRAME statement.

If the load is successful, a message is displayed:

[216] Mode 'item-ID' loaded; Frame =nnn Size =sss Cksum =cccc

nnn frame number into which the mode has been loaded; nnn is
decimal.

SSS number of bytes of object code loaded into the frame, expressed
in hexadecimal

cccc byte checksum for the object code in the loaded mode.

The program then becomes part of the ABS software.

Assembly Language 2-55
Confidential and Proprietary to The Ultimate Corp.

The Assembler

—

m—

MVERIFY

Syntax

Description

2-56

The MVERIFY command checks previously loaded object code against
the assembled source item.

MVERIFY filename {itemlist} {(options}
filename name of file that contains items to be verified

itemlist names of items to verify; may be one or more explicit item-
IDs, or an asterisk (*) to specify all items in the file. May
be omitted if a select-list is active.

(options
A displays all error bytes
E prints only messages relating to errors
I prints item-ID if more than one item is MVERIFYed
P routes output to the print spooler

MVERIFY is used to verify assembly language object code in a program
item, or mode, against the actual code loaded in the ABS frame specified
by the FRAME opcode in the mode.

If the item verifies, a message similar to the following is displayed:

[(217]) Mode 'item-ID' verified; Frame =nnn Size sss Cksum=cccc

nnn frame number into which the mode has been loaded; nnn is
decimal.

SSS number of bytes of object code loaded into the frame, expressed
in hexadecimal

cccc byte checksum for the object code in the loaded mode.

If the process finds mismatches, they are displayed along with an error
status message:

aaa bb cc

[218) MODE 'item-ID' Fram e= nnn has xx mismatches

aaa location of first error

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

The Assembler

6973-1

bb value that should be in the first byte of that location

cc value that is currently there

nnn frame number into which the mode has been loaded; nnn is
decimal.

XX total number of errors

:MVERIFY SM EXAMPL1

(217] Mode 'EXAMPL1" verified; Frame=511 Size=1FB Cksum=A03C

:MVERIFY SM EXAMPL2

014 oC 18
(218)] Mode 'EXAMPL2' Frame=511 has 78 mismatches
MVERIFY SM EXAMPL2 (A list all mismatches

LOC SB AB LOC SB AB LOC SB AB LOC SB AB
014 OC 18 015 13 17 016 OE OD 017 3A 3C

(218] Mode 'EXAMPL2' Frame=511 has 78 mismatches

Assembly Language 2-57
Confidential and Proprietary to The Ultimate Corp.

The Assembler

SET-SYM

Syntax

Description

2-58

The SET-SYSM command is used to specify symbol names for display
and data change.

SET-SYM filename {(T)}
filename name of file that contains symbols

(T indicates that filename is secondary file and that previously
specified symbol file is also to be used

Normally, PSYM is used as the symbol file so that all the global PSYM
symbols can be referenced. The Coldstart procedure supplied by
Ultimate on the SYS-GEN tape initially sets up the symbolic debugging
capability for all symbols in the PSYM file. (The command :DEBUG-
PSYM is used by the Coldstart procedure to set up PSYM as the symbol
file for the debugger.)

Users are therefore not required to use the SET-SYM command before
referencing PSYM elements symbolically in the debugger. However, the
SET-SYM command is required if a user wishes to specify the T option,
or when using a symbol file other than PSYM.

Local references can be made to another file by using the SET-SYM verb
with the (T) option. This is useful when working with numerous local
symbols, such as those defined in INCLUDEd programs. For example,
immediately after an assembly, the TSYM file has all the local symbols in
it and it can be specified in the SET-SYM command. However, the
contents of the TSYM change after an assembly. To preserve the local
symbols, copy them to a more permanent file, then that file can be used
with the SET-SYM with the T option.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

W

(

The Assembler

— ——

X-REF

Syntax

Description

6973-1

The X-REF command creates a cross-reference listing of symbols and
stores it in an XSYM file.

X-REF filename {itemlist}

filename name of file that contains items to be cross-referenced; this
is usually the CSYM file, but can be any file in same format
as CSYM file

itemlist names of items to cross-referernce; may be one or more
explicit item-IDs, or an asterisk (*) to specify all items in the
file; may be omitted if a select-list is active.

The X-REF command uses the CSYM file created by the CROSS-INDEX
command, or another similarly formatted file, for input. It creates a
cross-reference listing by symbol name; the listing includes all symbol
names and stores the result in a file called XSYM. (The XSYM file must
already exist).

The symbol name is used as the item-ID. Each program that uses that
symbol name is stored as a value in attribute 1 of the file. Each item has
only one attribute.

Note: The CSYM file is composed of program name items that have
symbol names as data. The XSYM file is composed of symbol
name items that have program names as data.

To list the file, you should create an attribute definition item similar to
the following:

REFERENCES item-ID

001 A

002 1

003 References

004

005

006

007

008

009 L

010 70
Assembly Language 2-59

Confidential and Proprietary to The Ultimate Corp.

The Assembler

2-60

: SORT XSYM
PAGE 1

XSYM : CTR32

References

XSYM : CTRS
References

LIST4

CHARGES

XSYM : CVDR1S

References

XSYM : DO

References

XSYM : D1

References

XSYM : D2

References

XSYM : D3
References

CHARGES

CHARGES

CHARGES

CHARGES

CHARGES

17:39:08

29 JAN 1991

Assembly Language

Confidential and Proprietary to The Ultimate Corp.

6973-1

Kﬁ,v

¢

The Assembler

XREF

Syntax

Description

6973-1

The XREF command is a PROC which clears the XSYM file, executes an
X-REF command, then produces a sorted listing of the XSYM file.

XREF {filename {itemlist {options}}}

filename name of file that contains items to be cross-referenced; this
is usually the CSYM file, but can be any file in same format
as CSYM file; if not specified, it is prompted for

itemlist names of items to cross reference; may be one or more
explicit item-IDs, or an asterisk (*) to specify all items in the
file; if not specified, it is prompted for

options any option that is valid for the SORT command
Before using XREF, an attribute called REFERENCES must be defined in

the file dictionary. (REFERENCES is described in the description of X-
REF)

:XREF CSYM *
PAGE 1 17:43:08 29 JAN 1991

XSYM : CTR32
References LIST4

XSYM : CTR9
References CHARGES

XSYM : CVDR1S
References CHARGES

XSYM : DO
References CHARGES

XSYM : D1
References CHARGES

XSYM : D2
References CHARGES

Assembly Language 2-61
Confidential and Proprietary to The Ultimate Corp.

The Assembler

Notes

2-62

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

’&w/‘

Addressing and Representing
Data

6973-1

This chapter discusses the general concepts of how data is addressed
and the symbol types used to describe data. The following topics are
covered:

frame formats

data formats in a frame

virtual addresses

understanding address registers
understanding storage registers
addressing modes in an instructionQ
symbol types

addressing the PCB fields
addressing the SCB fields

addressing conventional buffer workspaces

programming conventions

Assembly Language 3-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Frame Formats

Frame Size

As a virtual system, Ultimate programs and data reside on disk. Each
addressable section of disk memory is called a frame. By convention,
there are two logical types of frame formats: linked and unlinked.

A linked frame is part of a chained set. The first few bytes of a linked
frame contain fields for two links: a forward link to the next frame of
data, and a backward link to the previous frame of data. Linked frames
are used primarily for files of data (which are variable in size) and for
the larger workspaces.

An unlinked frame stands alone; that is, it has no forward or backward
links to other frames. The entire frame is used for data; there are no link
fields. Unlinked frames are used primarily for programs, short
workspaces and control blocks.

Physically, there is no difference between a linked frame and an
unlinked frame—nothing in the frame itself indicates whether it should
be viewed as linked or unlinked. The distinction is made by software,
when a program attaches an address register to point within a frame.
(For information on attaching registers, refer to the section, Attaching an
Address Register.) If a frame is attached in linked mode, the register
can be incremented or decremented to point to any byte within the set of
linked frames, as if the frames were a single area of contiguous storage.
The operating system automatically points the register into the correct
frame at all times, by reading the link fields. If a frame is attached in
unlinked mode, an address register can only reference data in the current
frame, although this includes all bytes in the frame.

Originally, in the Ultimate operating system, all frames contained 512
bytes. Linked frames had an addressable size of 500 bytes and a 12-
byte link field; unlinked frames had an addressable size of 512 bytes.
Now, however, frame sizes and the link field sizes in linked frames are
variable, depending on the system implementation.

The frame and link field sizes for a particular implementation are stored
in special ID.symbols in the Permanent Symbol (PSYM) file, as follows:

specifies the length of ABS frames (for example,
512)

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

6973-1

ID.DATFRM.SIZE specifies the length of an unlinked data frame

ID.DATA.SIZE specifies the length of the data portion of a linked
frame (for example, 500)

ID.LINK.SIZE specifies size of link area (difference between
unlinked and linked sizes)

Note: The value of ID.ABSFRM.SIZE and ID DATFRM SIZE is always a
power of 2.

Figure 3-1 illustrates the layouts of linked and unlinked formats.

Assembly Language 3-3
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-4

32-bit FID Address Register
80xxx ... —
{
Unlinked frame bit (high bit) | |
is set " Data Bytes
(ID.DATA.FRAME.SIZE)

Unlinked Frame

32-bit FID Address Register
QOxxx —
Link Field (ID.LINK SIZE)
Unlinked frame bit (high bit) .
s 0ot set X Q Forward Link | Backward Link // X
Data Bytes
(ID.DATA.SIZE)

Linked Frame

NNCF byte (Number of Next Contiguous Frames)

' . .
NPCF byte (Number of Previous Contiguous Frames)

Figure 3-1. Frame Formats

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

S——

."/

Addressing Data

Link Fields

6973-1

In a linked frame, the first ID.LINK.SIZE bytes (12 on a firmware system)
make up the link field, which contains link information. Following the
link field are ID.DATA.SIZE bytes (500 on a firmware system) of data.
The link fields contain a count of the number of sequential forward and
backward linked frames, and the next and previous frame numbers
(FIDs) in this linked set.

The following describes the format of a linked field (assuming 12 bytes
in the link field):

0 1 2 3 4 5 6 7 8 9 A B Cc D..

rese Forward link Backward link rese
rved | NNCF| frame number frame number NPCF | rved | data bytes

Byte Description

—_——e—— |

0 reserved
1 NNCF (number of next contiguous frames); count of
the number of sequential frames linked after this
one.
2-5 forward link frame number (FRMN); contains the

frame number of the next frame in this logical set.
(These bytes are zero if this is the last frame in the
set.)

6-9 backward link frame number (FRMP); contains the
frame number of the previous frame in this logical
set. (These bytes are zero if this is the first frame in
the set.)

X'A’ NPCF (number of previous contiguous frames);
count of the number of sequential frames linked
previous to this one.

X'B' reserved; sometimes referred to as a dummy data
byte.
Assembly Language 3-5

Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-6

The Purpose of NNCF and NPCF

When a frame boundary is reached, the link information is examined to
determine which frame is to be addressed next. Depending on the
direction of movement in the logical chain, either the forward link or the
backward link is used to continue in the chain.

If the required address is more than ID.DATA.SIZE bytes ahead or behind
the boundary of the current frame, the contiguous count plays a role. If
the contiguous count is non-zero, it may be used to compute the next
frame to be addressed since it is known that the frame numbers are
contiguous or sequential; that is, one or more intervening frames may be
skipped over.

This scheme obviously results in considerable savings in frame faulting
when indexing into large contiguous blocks of frames, or skipping over
large segments of data in such frames.

It is possible that a frame links to a sequential frame, but that the NNCF
or NPCF is zero. While this reduces efficiency, it is not an error.

:DUMP 6520 L

FID: 6520 :

+ 7 6521 6519 120 (1978 : 7 1979 1977 78)
+ FID: 6521 6 6522 6520 121 (1979 6 197A 1978 79)
+ FID: 6522 : 5 6523 6521 122 (197A : 5 197B 1979 7A)
+ FID: 6523 : 4 6524 6522 123 (197B : 4 197C 197A 7B)
+ FID: 6524 3 6525 6523 124 (197C : 3 197D 197B 7C)
+ FID: 6525 : 2 6526 6524 125 (197D : 2 197E 197C 7D)
+ FID: 6526 : 1 6527 6525 126 (197E : 1 197F 197D 7E)
+ FID: 6527 0 0 6526 127 (197F : O 0 197E 7F)

This is an example of the end of a set of 128 contiguously linked
frames. The first number in each line is the FID; the second is the NNCF;
the third is the forward link FID; the fourth is the backward link FID; and
the fifth is the NPCF. The numbers in parentheses are the equivalent
values in hexadecimal.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

. &

Addressing Data

ABS Frames

6973-1

:DUMP 12568 L

FID: 12568 : O 0 0 0 (3118 : O 0 0 0)

This frame has no forward or backward links.

The Ultimate operating system has designated a group of frames as ABS
frames; usually these are frames 1-2047 (up to a maximum of 4095).
All frames that are not ABS frames are called data frames and are used
for files, work-spaces, etc. (Frame 0 is unused and is considered an
"illegal frame.")

ABS frames are normally used to hold assembly language programs. All
programs must be located in the first 4095 frames of virtual storage
since instructions are referenced via a 12-bit frame number (three
hexadecimal digits). (The maximum three-digit hexadecimal value
(X'FFF) 1s equivalent to decimal 4095.)

As a rule, ABS frames are in unlinked format. Conversely, most data
frames, except for small workspace areas, such as process control
blocks, are in linked format.

Assembly Language 3-7
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Data Formats in a Frame

3-8

The data in a frame may be addressed in one of the following formats:
bit, byte, tally (word), double tally, triple tally, or string data type.

bit binary digit; can contain one of two values: O or 1. Bits
are often used as switches or flags: OFF or UNSET for O
value, and ON or SET for 1 value.

byte eight bits, and is also known as a half tally or character.
Bytes can store values in the range of -128 through +128.
tally two bytes with a range of -32,768 through +32,767.

Tallies are the basic word size in an Ultimate system and
are the most frequently used format.

double tally four bytes with a range of -2**31 through +2**31-1.
Double tallies are typically used to store FIDs (base FID of a
file, for instance), and to count items in a file.

triple tally six bytes (also known as an F-tally) with a range of -2**47
through +2**47-1. Triple tallies are used for any
arithmetic that requires the full 48-bit precision of the
system.

string data a sequence of characters of arbitrary length; may be
delimited by any system delimiters, such as an attribute
mark, value mark. A string is the only data type that may
cross a frame boundary.

Figure 3-2 is an illustration of the layout of these data types, except
string data. Using binary notation (base 2), each bit (that is, binary
digit) may have only a 0 or 1 value. However, by defining byte and
tally formats, very large values may be represented as single entities.

At the assembly program level, these information entities are called
elements or fields, and are given symbolic names just as variables are
named in higher level languages.

In Ultimate, the following conventions apply:

+ All numbering starts at 0 and is incremented from left to right. So,
bit 0 is the high order bit in a byte, and bit 7 is the low order bit.

+ Decimal notation is normally used, although offsets within frames are
usually expressed in hexadecimal (base 16). (In hexadecimal

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

notation, a single digitmay be: 0123456789 ABCDEOrF,
where A-F represent the decimal values 10 through 15.) When a
hexadecimal value is used, the hexadecimal number is enclosed in
single quotes and preceded by an X; for example X'1F is 31 in
decimal.

Bt
u
0

Byte

01234567

Tally (word)

lLllIIIIIlIIIIIlI
0123456789111111
012345

Double tally

Llll[lllllllll[l!Illllll,lllllll

01234567891111111111222222222233
0123456789012345678901

Triple tally

IIHLIIIIIIIIIUIIUIIIIIIIIIIII IR EENERERNE
012345678911111111112222222222333333333344444444
01234567890123456789012345678901234567

Figure 3-2. Data Formats and Bit
Numberings

Assembly Language 3-9
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Virtual Addresses - Addressing Data in a Frame

3-10

All program references to data and instructions in a frame use virtual
addresses. Fields in virtual storage are referenced via a frame number
(FID) and a displacement of the first byte of the field within the frame.
The FID and displacement together are known as the virtual address.

All references to data and instructions are done through address
registers. Each such register contains a virtual address, which may be
in either unlinked or linked format.

The number of addressable bytes in a frame depends on whether the
register used is in unlinked or linked format and also on the Ultimate
system implementation. (The physical number of bytes in an ABS frame
is the value of the ID.symbol in PSYM called ID.ABSFRM.SIZE. The
physical number of bytes in a data frame is the value of the ID.symbol in
PSYM called ID.DATFRM.SIZE.)

If the register is in unlinked format, physical byte O of the frame is
addressed by a displacement of 0. The last physical byte is addressed
by a displacement of (n-1), where n is ID.ABSFRM.SIZE or
ID.DATFRM.SIZE as specified above. In unlinked addressing mode, the

boundaries of the frame cannot be crossed, and all bytes of the frame are
addressable.

If the register is in linked format, physical byte ID.LINK.SIZE of the
frame (for example, 12 on firmware systems) is addressed as byte 1.
The last physical byte is addressed by a displacement of ID.DATA.SIZE
(500 on firmware systems). Addresses in data frames with
displacements in the range 1 to ID.DATA.SIZE are referred as
normalized.

Displacements outside this range refer to either previous or forward
frames in the logical chain (assuming that such frames exist), and such
addresses are referred to as unnormalized. Unnormalized addresses
are automatically resolved and normalized when the address register is
used. Normalization consists of following the links in the appropriate
direction until the displacement is reduced to the range 1 to
ID.DATA.SIZE.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

— S— — —

6973-1

If the end of the linked set is reached during the normalization process,
the assembly debugger is entered with a trap condition indicating either
Forward Link Zero or Backward Link Zero. See the section on the
debugger relating to system traps for further details.

Table 3-1 summarizes how the system resolves virtual addresses,
assuming a frame size of 512 bytes. Figure 3-3 shows how virtual
addresses are resolved in a linked set of frames. Virtual addresses are
normally kept in address registers or storage register fields. The next
topics explain more about registers.

Assembly Language 3-11
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-12

Table 3-1.

Resolution Table of

Displacements and Addresses (for a

512-Byte Frame)

Displacement

Linked Mode
Address

Unlinked Mode
Address

less than O

1-500
501-511

512 or greater

refers to previous frames
in logical chain

If a backward link
exists, a displacement of
0 is normalized to access
the last byte of previous
frame in chain. Also,
displacement may be set
to 0 temporarily in
advance of using
instructions that
increment the register
before accessing data.
Data at displacement of 0
should never be
accessed.

physical bytes 12-511

refers to forward frames
in logical chain

refers to forward frames
in logical chain

invalid

physical byte O of frame

physical bytes 1-500

physical bytes 501-511

invalid

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

Addressing Data

Physical

bytes
Logical

A bytes
L4 2 Aﬂ__.m
éu{ 1 50 500

/j R14 points to

physical byte 61

R14 - 500 points Q 112 £l sl
to logical byte 50 7

gical by 1 50 500
in previous frame // ‘

|

R14 points to
logical byte 50)] 1112 gl 511

/2 1 50 500

R14 + 500 points
to logical byte 50

in next frame

Figure 3-3. Register Displacement
Involving Linked Set of Frames

Understanding Address Registers

6973-1

Data within a frame is always referenced via address registers. There
are no assembly language instructions that allow you to access data
directly by virtual address. Instead, the location of each data element
must be specified in terms of an address register and offset. A register
can be thought of as pointing to a location in virtual storage. Data
elements in a program are defined in terms of offsets from this location.

Every process has 16 address registers. An address register is
composed of 8 bytes (see Figure 3-4) and contains a virtual address.

Assembly Language 3-13
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

w——

3-14

[o]

1] 2] 3] 4] 5] 6] 7]

\

J [\ s T ~ >4

rese‘rvﬁed displac;ment flags frame nu?n'ber (FID)

Byte

Oand 1

2and 3

5-7

Description

reserved (used in some implementations along with
bytes 2 and possibly 3 to store the main memory
address when the register is attached. In other
implementations, the main memory address is stored
in a register that is not accessible to the programmer.)

displacement field, can be in range -32768 to 32767
flag field; contains specific bits as follows:

bit 0 link mode flag for address in register
0 = linked; 1 = unlinked

bit 1 special attachment flag; for internal use
only (allows register to have displacement
of zero when a pre-incrementing data
movement instruction reaches a frame
boundary. It pre-increments to the first
data byte in the frame as instruction
execution continues.)

0 - causes normalization and attachment
to ID.DATFRM.SIZE of previously
linked frame

1 - allows temporary displacement of 0
bit 2-7 reserved

frame number (FID) of address in register; can be in
range 1 to (2*%*24)-1

Figure 3-4. Address Register Format

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

ra

S

(

Addressing Data

Attaching an
Address
Register

6973-1

In order to use an address register, it must be attached. This means
that the frame pointed to by the register has been copied into a main
memory buffer. References to data within the frame then become
references to data within this buffer. When any data in the buffer is
changed, the buffer is marked write-required, and the Kernel schedules
a disk write to copy the new version of the frame back to disk.

Address register attachment is automatic; you can use a register at any
time without knowing if the frame it points to is currently in main
memory. If it is, the correct memory buffer is accessed. If it is not, a
frame fault occurs, and the kernel schedules a disk read to bring a
copy of the frame into main memory.

Only one copy of a frame is ever in main memory at one time. If several
address registers point into the same frame, they will point into the same
memory buffer when they are attached.

In some Ultimate implementations, all 16 address registers are attached
when a process is activated. In other implementations, a register may
not be attached until the first instruction which tries to use the register is
executed.

When a process is not active, all its address registers are detached. The
contents of the registers are stored in reserved locations in the Primary
Control Block (PCB) of the process. When the process is activated
again, the contents of these locations are used to reattach the registers.

The PCB fields reserved for address registers are not normally
referenced by assembly language programs (other than the FID field).
One reason for this is that the format of these fields is not the same on
all Ultimate implementations. Another reason is that the fields may not
reflect or affect the true contents of an address register: some
implementations maintain information about attached registers in
hardware or other locations outside the PCB, and update the PCB
locations only when detaching the address register.

Assembly Language 3-15
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Loading an
Address
Register

Conventional
Usage of
Address
Registers

3-16

The standard method of loading a virtual address into an address register
is to first load the virtual address into a storage register, then to move
the storage register into the address register. Conversely, the standard
method of obtaining the contents of an address register is to move the
address register into a storage register, and then to inspect the storage
register contents. (For more information on storage registers, see the
section, Understanding Storage Registers.)

When a register is referenced directly by its register number (RO-R15),
the reference is to the register's contents, that is, to the virtual address
(FID and displacement) of the data being pointed to. For example, the
following instruction causes the virtual address in RS to be saved in
storage register SRS:

MOV R5, SRS

Remember: The term "address in a register" means the FID and
displacement (virtual address) of the byte that the register is referencing,
not the data being pointed to or the location of the register itself.

Most of the 16 address registers have a certain conventional usage
associated with them. However, only R0, R1, and R2 are system-
controlled pointers; the rest are simply conventions and may be used for
other purposes (at your own risk). The address registers are predefined
for each user process.

Address register RO addresses a special frame called the Primary Control
Block (PCB) of the process. R1 addresses the current ABS frame being
executed by the process. R2 addresses the Secondary Control Block
(SCB). R3-R15 have associated conventional uses, but no predefined
meanings.

The following sections describe the conventional uses of address
registers. A summary is given in Table 3-2.

RO - Primary Control Block (PCB)

RO always addresses the Primary Control Block (PCB), which is a single
frame unique to a particular process. The PCB contains address registers

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

6973-1

RO-R15, the subroutine return stack, the accumulator, and various other
data variables. The PCB of a process is the basis for every data
reference that the process can make.

The PCB for each process is assigned a FID at system initialization.
When the Kemnel decides to turn control over to a particular process, it
uses the Process Identification Block (PIB) to find the FID of the PCB for
that process. It then searches the virtual memory table for that FID. If
that frame is not in main memory, the process cannot be activated. An
instruction to read the frame into memory is executed and the Kernel
continues on to other tasks

When the PCB frame is in main memory, RO is attached to byte zero
(unlinked format) of the frame, and this main memory address is saved
1n a register that is inaccessible to the programmer. That register is then
used to reference all other PCB elements, including the other address
registers for attachment. R1 is attached first, followed by the other
registers (R2-R15).

Note: Although RO is stored in the process’s PCB, it is not used for
all PCB accesses. Some internal functions use a direct memory
address.

The PCB is described in the section, Addressing the PCB Fields.

R1 - Program Counter

R1 has two distinct formats, depending on whether the process is active
or inactive. In the inactive state, R1 is a true program counter in the
sense that it addresses the location (less one byte) of the next instruction
that the process will execute when it is reactivated.

In the active state, it is set pointing to byte zero of the ABS frame that the
process is currently executing. This means that since R1 always
addresses byte zero of the current program frame, data in that frame may
be referenced relatively using R1 as a base (see the topic on Addressing
Modes below). Relative addressing is the primary mode used to

address literal text, symbols and other data in a program frame.

Assembly Language 3-17
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-18

The real program counter, which actually addresses the next instruction —
that the process will execute, is stored in a special register and is
inaccessible to the programmer.

R2 - Secondary Control Block

R2 points to another control block, called the Secondary Control Block
(SCB) whose frame number is fixed as the PCB FID plus one. This block
contains numerous additional elements that have both system-defined
and variable uses. (The SCB layout is given in Appendix C.)

R3 through R15

Address registers 3-15 (R3-R15) are general purpose registers.
However, the Ultimate system software conventions initialize R3
through R13 to specific locations (see the section Buffer Workspaces).

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

(Understanding Storage Registers

6973-1

A storage register is a 6-byte field which contains a virtual address.
Unlike address registers, which are fixed in number and are associated
with specific locations in a process's PCB, storage registers may be
defined in any frame, to store as many virtual addresses as a program
needs.

A storage register may be specifically defined via an assembly language
program directive (ADDR, DEFS, or SR), or it can be allocated without a
symbol, as in the following:

MOV R6;S0,R4

In this example, R6;S0 defines a storage register at the virtual address
pointed to by address register R6.

The format of a storage register is as follows:
Lo [2] 3] 4] 5]

T - _
Displacement Flags Frame number (FID)

Byte Description

—
Oand 1 displacement field.
2 flag field; contains specific bits as follows:
bit 0 link mode flag for address in register

0 = linked; 1 = unlinked
bit 1-7 reserved

3t05 frame number (FID) of address in register

Remember: The term "address in a register”" means the FID and
displacement (disk address) of the byte that the register is referencing,
not the data being pointed to or the location of the register itself.

Assembly Language 3-19
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-20

Storage registers reside in the frame in which they are defined.
Standard storage register fields in the PCB and SCB are defined in PSYM.

There is no attachment associated with storage registers. In order to
reference data pointed to by a storage register, the storage register must
be moved into an address register, and the data referenced via the

address register.

Following is an example of an instruction (MOV) that moves the virtual
address from a storage register (srl) into an address register (ar2).
After the instruction is executed, both srl and ar2 point to the same

byte.

sr1 SR offset,fid

MOV sri,ar2

Assembly Language

Confidential and Proprietary to The Ultimate Corp.

sri

virtual address

ar,

virtual address

| Dyte

| (cannot directly address)

|

6973-1

Addressing Data

Addressing Modes in an Instruction

Immediate
Addressing

Relative
Addressing

6973-1

The Ultimate operating system supports four addressing modes. All
four modes use the address registers RO-R15.

The four addressing modes are as follows:
+ immediate addressing

+ relative addressing

+ indirect addressing

+ direct register addressing

In the immediate addressing mode, the data is stored in the instruction
itself. The candidates for immediate addressing are literal values used as
operands, such as numbers or characters.

Examples of the use of immediately-addressed data are as follows:

+ The source operand in character moves of a single byte (MCC, MCI
instruction) where the character is immediate data.

MCC X'FE, ' R15

» The mask operand in string scans and moves (MIID, SID instructions,
for example) where the mask is immediate data.

MIID R14,R15,X'AQ"

+ For some implementations, other literal values used as operands.
MOV 4,CTR1

Note: Notall literal value operands are immediately addressed; it
depends on the implementation of Ultimate for which the
instruction is being assembled. Although, as a rule, one-byte
literals are always assembled as immediate data, larger values
may become immediate data in some implementations (for
software machines) but relatively addressed data (at the end of
the program) in others.

The relative mode of addressing is used to address data defined as a bit,
half tally, tally, double tally, triple tally, local label, storage register, or
external address register.

Assembly Language 3-21
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Indirect
Addressing

3-22

Relatively addressed operands are addressed via a base address register
and an offset (displacement) to get the actual address. All relative
addresses are computed from the virtual address pointed to by the base
register. In the case of local symbols, R1 is the base register,
referencing byte zero of the program frame, and the offset is simply the
offset from the beginning of this frame.

To resolve the relative address, a function of the offset is added to the
virtual address in the base register. The function used is dependent on
the actual symbol type being addressed (which is described in the next
section). Only forward addressing is allowed, and the entire element
must be in the frame being addressed. (Note: some implementations
check to see if the element crosses the boundary of the frame for any of
the referenced field. If it does, a Crossing Frame Limit error message
and an abort conditions are generated. In other implementations, no
checking is done; in this case, if the element crosses the boundary of the
frame, the results are unpredictable.)

The indirect mode of addressing data is used in instructions where an
address register is an cperand, but the reference is to the data ar e

virtual address in the register. Several types of instructions use indirect
addressing:

« Single-byte character moves where the destination is an
unincremented register (MCC instruction).

MCC X'FE',R15

+ Single-byte character moves where the destination is a pre-
incremented register (MCI instruction). The destination addressed
byte is located indirectly by first adding one to the virtual address in
the register. The register remains altered.

MCI X'FE',R15

+ String moves where the destination register is pre-incremented until a
test condition is met (MIID, SID instruction, for example). The
destination addressed byte is located as described for single-byte
character moves above and moved, then the register is successively
incremented by one and another character in the string is moved until
the terminating conditions are met. The register is left addressing the
last moved byte in the string.

MIID R14,R15,X'AQ"

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

* Other instructions where an addressed byte is located indirectly by
using the virtual address in the register (for example, a branch
instruction where the register points to a byte whose value is being
tested).

BCE R14,R15,LABEL

Direct The direct mode of addressing a register (R0-R15) is confined to a group
Register of register instructions (MOV, INC, DEC, SETR, SETDSP, etc.). In these
Addressing instructions, the reference is to the contents of the register itself and the

operation is on the register content, not the data at the address in the
register. For example, in the following instruction, R14 is moved to
replace the contents of R15, so that the two registers are then identical
(that is, they contain the same virtual address):

MOV R14,R15

6973-1 Assembly Language 3-23
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Symbol Types s

Symbols can be either defined by a program, or predefined by the
system. The predefined symbol names and criteria are stored in the
PSYM file.

In assembly language programs, each symbol has an associated symbol
type code. This code defines the nature of the symbol. Table 3-2 lists
the symbol type codes.

As shown in the table, all symbol types, except A, M, N, and R, use the
relative addressing mode. Type M symbols (mode identifiers) are used
to define branches to external program subroutines, which are defined
as entry points in a mode (that is, the mode-id). Addresses of this type
are discussed in Chapter 2 in the section, External Program References:
Mode-ids. Type N symbols (literals) are treated as immediate data.
Type R symbols (address registers), which are treated directly or
indirectly, have addressing modes that are discussed in the section,
Addressing Modes in an Instruction.

The effects of symbol types in computing relative addresses are
discussed in the next section.

3-24 Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

6973-1

Table 3-2. PSYM Symbol Type Codes
Symbol Unit of |Maximum
Type Description Offset Displace-
Code ment

A virtual address (both FID N/A N/A
and displacement)

B relatively addressed bit bits 255 bits - 31

bytes+7 bits

C relatively addressed bytes 255 bytes
character or byte (8 bits)

D relatively addressed double | words 255 words -
tally (32 bits) 510 bytes

E system message N/A N/A

F relatively addressed triple | words 255 words -
tally (48 bits) 510 bytes

H relatively addressed half bytes 255 bytes
tally (8 bits)

L locally defined label bytes 255 bytes!

M mode-id (16 bits); external | N/A N/A
FID and entry point

N constant or literal value N/A N/A

R address register N/A N/A

S storage register words 255 words -

510 bytes

T relatively addressed tally | words 255 words -

(16 bits) 510 bytes

1Local labels are subject to the 256-byte limitation only in the SRA instruction. In a
branch instruction, it is an absolute location in the object code.

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

3-25

Addressing Data

Computing
Relative
Addresses by
Symbol Type

3-26

Symbols referenced in a relative addressing mode specify a base register
and an offset displacement. The resulting address may be offset up to
the maximum displacement as given in Table 3-2, although it may not
cross the boundary of the frame that the register is addressing.

Offsets are in the range 0-255. The offset value is taken from the
definition of the symbol in the symbol file. The column "Unit of
Offset" indicates the function used to convert the offset to the effective
address.

The following are examples of symbol definitions:

B15 DEFB R1,15
H15 DEFH R1,15
T15 DEFT R1,15
D15 DEFD R1,15
S15 DEFS R1,15

The relative address computed for each of these symbol definitions is
different, as illustrated in Figure 3-5.

R1
Bytes 0 1 15 16
Lovvrrodbivond - - oo bl - ..
Bits 012345670123456*7 0123456701234567
B15 H15
30 31 32 33
Lo - - -

;1 234567012345670123456701234567

T15 (bytes 30 and 31)

D15 (bytes 30 thru 33)

S15 (bytes 30 thru 35)

Figure 3-5. Relative Addressing of
Symbols

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

(R1 points to byte O of the frame. Each symbol is also shown with the
effective address of that symbol:

+ if the symbol being addressed is a bit (type B), the offset is also in
bits, so that an offset of 15 would address the seventh bit in byte 1
displaced from the address in the register

« if the symbol is a half tally (type H), the offset is in bytes, so an
offset of 15 would address byte 15 displaced from the address in the
register

+ if the symbol is a tally (type T), the offset is in words, so an offset of
15 would address bytes 30 and 31 displaced from the address in the
register

+ if the symbol is a double tally (type D), the offset is also in words, so
an offset of 15 would address bytes 30 through 33 displaced from the
address in the register.

+ if the symbol is a storage register (type S), the offset is again in
words, so an offset of 15 would address bytes 30 through 35
displaced from the address in the register.
(Limits in The reason for limits in offsets used in relative addressing is so that any
Offsets relatively addressed operand can be specified by a 12-bit number. This
number includes four bits for specifying an address register (0-15),

leaving eight bits for an offset (0-255). In fact, this is how relatively
addressed operands are coded in the object code for firmware machines.

When the maximum of 255 is applied to the three different units of
offset shown in the table, you can see that the actual addressable bytes,
offset from the address in the register, are different:

256 addressable bits you can address a bit in the range of byte x'00'
to x'1F' (32 bytes)

256 addressable bytes you can address a byte in the range of byte
x'00" to x'7F' (256 bytes)

256 addressable words you can address a word in the range of byte

x'00" to x'FF' (512 bytes)

6973-1 Assembly Language 3-27
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-28

A limitation of this scheme is not being able to address words (tallies, -
double tallies, etc.) at odd (byte) boundaries off a register; however, this

scheme does allow an entire 512-byte frame to be referenced at word

boundaries. In practice, the restrictions on relative addresses are not a

problem.

Note that a relatively addressed character or half tally (byte operand),
when the offset is zero, is the same as an indirectly addressed byte. For
example, the code sequence:

CHR15 DEFC R15,0 C at R15, offset 0
MCC R14,CHR1S Move to relatively-
addressed byte

produces the same effect as:

MCC R14,R15 Move to indirectly-
addressed byte

The object code generated by the assembler may be different for the two
cases, however.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

C

C

Addressing Data

Addressing the PCB Fields

The
Accumulator

6973-1

The primary control block (PCB) of each process contains indicators and
flags for that process, including the following:

 accumulator

* scan characters

« file control block pointers
 address register fields

« subroutine return stack

All elements in the PCB are accessed via address register zero (R0),
which always addresses byte zero of the PCB in unlinked mode.

The format of the PCB may vary depending on the system implemen-
tation. The actual location of most PCB elements is irrelevant to
programmers since they are referenced via their PSYM name. A sample
PCB format is shown in Appendix B.

The accumulator consists of an 8-byte accumulator area and a 6-byte
extension (14 bytes). The accumulator is used in the following
instructions:

* LOAD and STORE instructions.
« arithmetic instructions.
e LAD instruction.

* Certain string scanning and moving instructions to count the number
of bytes scanned or moved.

+ Certain string-to-binary and binary-to-string conversion instructions.

The primary accumulator area consists of two double tallies, labeled D1
and DO. This area is used for most arithmetic operations, except for the
extended arithmetic instructions. Extended arithmetic addresses a 6-byte
area (triple tally) of the accumulator, labelled FPO. Another triple tally,
FPY, is a 6-byte extension which is used for extended precision division
instructions only (DIVX instruction).

Assembly Language 3-29
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-30

The primary accumulator area occupies bytes 8 through 15 of the PCB.
This area may be addressed symbolically with the following units:

bits (BO-B63)

half tallies (HO-H7)
tallies (TO-T3)

double tallies (DO-D1)
triple tally (FPO).

See Figure 3-6.

The accumulator retains its last resultant value until other data is moved
or loaded into it.

The 6-byte accumulator extension is called FPY and is located at bytes
498-503 (X'1F2'-'1F7') of the PCB.

The symbols in Figure 3-6 are all global variables in the PSYM file and

PCB

byte 8 9 A B c D E F
BBB

666 BBB
|321 " | | | | | i 21°|
| w7 | He | ms | He | o | w2 | LHO |
| ™ | T2 | T ‘ To]

I o | 00 |

| | FPO |

Figure 3-6. Primary Accumulator Area

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

Addressing Data

——— — — ——

may be used to address sections of the accumulator. Some instructions,
such as LOAD and ADD, address the accumulator implicitly; the portion
depends on the operand.

The Accumulator and Arithmetic

All arithmetic is performed in the PCB accumulator. Each arithmetic
instruction operates on specific prenamed portions of the accumulator,
as determined by the type of arithmetic and the operands used. For any
particular instruction, only a certain portion of the whole 8 bytes is
addressed. When performing arithmetic, the following symbol types
used as operands cause the accumulator to be addressed in a
corresponding way.

Operand Symbol Type Accumulator
Portion Addressed
H half tally DO
T tally DO
D double tally DO
F triple tally FPO

The accumulator does all arithmetic in binary, and expects that file
values have been converted to binary, if necessary. (That is, they may
have been stored on disk as ASCII values.) The following examples
show the value of the accumulator using hexadecimal equivalents.

For example, if the accumulator contains a value of zero:

/001001001001 00100100100

the ADD instructions below would return these results from the
accumulator:

ADD HS8 H8 = 64 (X'40")

/001 001001001001 001 001 40

Assembly Language 3-31
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-32

ADD T4 T4 = 42000 (X'A410")

Il 00O 0000 O0O0IOO| OO0 A4] 10|

ADD D6 D6 = 1234567890
(X'499602D2")

/001 001 001|001 491961021 D2

ADDX FP1 FP1 = 1234567839012345
(X'7048860DDF79")

/o0 001 701] 48| 8 6] 0DI|DFI| 79|

Numbers are stored in two's complement form. The high-order bit of a
positive number is 0. The high-order bit of a negative number is 1.
This high order bit is propagated to the left when necessary to sign-
extend a number within the section of the accumulator (DO or FPO) being
used. The sign is extended initially when the accumulator is loaded with
a value. For example:

LOAD N N = a half tally of X'7F'
/001 001 001001001001 001 7F |
Because the high order bit is a 0, the number is positive, and the 0 sign

bit is extended throughout the accumulator DO. The D1 portion is not
affected.

If the same half tally were to have a value of X'80', the high order bit
would be 1, which would also be sign-extended throughout the
accumulator DO. For example:

LOAD N N = a half tally of X'80'
| 001 00)] 00| 00| FF|FF|FF | 80|

Note that the sign is extended within the accumulator DO, but the D1
portion is not affected by this instruction. However, a LOADX N

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

(t:

e

Addressing Data

Scan
Characters

6973-1

instruction would extend the sign through FPQ, leaving only T3
unaffected.

In Chapter 7, Reference for Programmers, there is additional
information about two's complement arithmetic.

Accumulator Usage

The following are some general guidelines for accumulator usage:

» Extended precision arithmetic instructions such as ADDX affect FPQ;
DIVX also affects FPY.

» Normal precision arithmetic instructions such as ADD affect DO; MUL
and DIV also affect D1.

+ Instructions that count string lengths, as well as the LAD instruction,
use TO only.

+ Conversion instructions use FP0 for data and T3 as a parameter.

Scan characters are programmer-specified characters used in string
scanning and moving instructions. Three one-byte fields called SCO,
SC1, and SC2 contain the characters. The fields are referenced through
mask bytes.

Mask bytes are used by the following instructions:

MIID SID
MIIDC SIDC
MIITD SITD
SICD

The mask bytes used by MIID, MIIDC, MIITD, SID, SIDC and SITD
instructions can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark SM X'FF'
attribute mark AM X'FE'
value mark VM X'FD'

sub-value mark SVM X'EC'

Assembly Language 3-33
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

3-34

The other three characters are taken from the scan characters SC0, SC1,
and SC2. The contents of these scan characters are specified by the
programmer.

Note: The mask byte used by the SICD instruction is unique and is
discussed as part of the instruction description in Chapter 4.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the mask byte is set (1), it indicates that
the string terminates on the first occurrence of a delimiter as specified
by the setting of bits 1-7. If it is zero (0), it indicates that the string
terminates on the first non-occurrence of a delimiter as specified by
the setting of bits 1-7.

See Figure 3-7. (The parentheses around SCO, SC1 and SC2 are to
indicate that it is the contents of these locations that are compared.)

The following are some examples of mask bytes:

Mask byte Bit pattern Meaning

X'CcO’ 1100 0000 Stop on first occurrence of a SM.
X'A0' 1010 0000 Stop on first occurrence of an AM.
X'C3' 1100 0011 Stop on first occurrence of an SM, or

the contents of SC1 or of SC2.

Le | | 2| s | ¢+] s | &] 7|
match/ SM AM VM SVM (SCO) (SC1) (SC2)
nonmatch

Figure 3-7. Mask Byte Format

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Mask byte Bit pattern Meaning

X'F8' 1111 1000 Stop on first occurrence of any
systemn delimiter - SM, AM, VM, or
SVM.

xX'or 0000 0001 Stop on the first non-occurrence of

the contents of SC2. For example, if
SC2 contains a blank, this mask
causes the instruction to terminate
when the first non-blank character is
encountered.

For information on the use of these fields, see the MIID, MIIDC, MIITD,
SICD, SID, SIDC and SITD instructions.

File Control Each file in the system has a File Control Block (FCB) that stores file

Block Pointers access information, such as the file's base, modulo, separation, and
other status information. The PCB contains the FIDs of the FCBs
typically associated with the following files:

Symbols Associated File Information
_

FCB1, FCB2 current file

DFCB1, DFCB2 file dictionary section (typically)

MFCB1, MFCB2 master dictionary (user's MD)

EFCB1, EFCB2 ERRMSG file

FFCB1, FFCB2 file data section (typically)

See the GETFILE and OPENDD subroutine descriptions for more
information on these fields.

6973-1 Assembly Language 3-35
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Subroutine
Return Stack

Fields

3-36

The assembly subroutine return stack in the PCB can handle up to 11
entries. An extended stack, which resides in a workspace frame defined
in the item WORKSPC-DEFS in the SM file, can hold up to 125 entries.

Each stack entry is four bytes, where bytes 0 and 1 contain the FID and
bytes 2 and 3 contain the displacement. The first two return stack
entries in the PCB are used to handle return stack full and return stack
empty processes.

When the process executes a subroutine call, the address of the last byte
of the call is stored in the return stack and the stack pointer is
incremented by four bytes. When the stack in the PCB is full, the
routine in the first stack entry is called to move the oldest five entries to
the extended workspace; the remaining entries are moved down, freeing
up room for five more entries.

On executing a subroutine return instruction, the stack pointer is
decremented by four bytes, then used to get the return address. If the
stack in the PCB is empty, the routine in the second stack entry is called
to move entries back from the extended stack.

If desired, the extended stack can be logically divided into multiple
stacks. When the stack is divided into logical stacks, the entire logical
stack can be moved to the PCB stack.

The following instructions can be used to access the return stack:

INITRTN initializes return stack; can be useful in conditions where a
process is to be re-initialized and all current entries in the
stack are to be deleted or ignored

POPRTN pops one entry off the return stack; this is mandatory if a
subroutine is to be exited without using a RTN instruction

MARKRTN copies all the active entries in the PCB to the extended
stack, then marks them as one logical stack

RTNMRK pops all entries in the PCB and the extended stack, up to
and including the marker. Any remaining entries in the
extended stack are moved back to the PCB if the return
stack is empty.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

AN

s

,/'(/‘MW\ "
N

Addressing Data

XMODE Field

RMODE Field

WMODE Field

OVRFLCTR
Field

6973-1

The XMODE tally field can be used to branch to a specified mode-id
(subroutine) when a Forward Link Zero error condition occurs. This
error indicates that the program has reached the end of a set of linked
frames without completing the current instruction. See Chapter 6 for
more information about using XMODE.

When the WRAPUP software is entered to store or print messages, a
return may be requested by placing a mode-id in the tally field RMODE.
When WRAPUP completes the requested processing, an ENT* RMODE
instruction transfers control to the program whose mode-id has been
stored in RMODE. See Chapter 6 for more information about using
RMODE.

When WRAPUP finishes processing, just before it returns to TCL or
PROC, the tally field WMODE is checked. If WMODE is non-zero,
control is transferred via a BSL* WMODE instruction to the subroutine
whose mode-id has been stored in WMODE.

Assembly programs that require special handling before completing may
gain control in this way. The control transfer via WMODE occurs even if
the process has been terminated via the debugger END command.

An example of WMODE usage is when writing to magnetic tape. If the
process is stopped for any reason, an EOF mark should be written on the
tape. Setting WMODE to the mode-id of the subroutine that writes an
EOF mark (TPWEOF) automatically ensures this.

When the system software gets space from the system's overflow space
pool, the FID of the first frame so obtained is placed in the special
double tally field OVRFLCTR. This is typically done by a sorting or
selecting function such as SORT or SELECT. The extra space needed by
the program is built up as a chain of frames obtained as needed.

Just before WRAPUP returns control to TCL, OVRFLCTR is checked, and
if it is non-zero, the subroutine RELCHN is called to return the chain of
frames to the overflow pool. To maintain this convention of releasing
space, OVRFLCTR should not be changed by any program other than the
first one that gets space and initializes it.

Assembly Language 3-37
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

INHIBIT and
INHIBITH

Fields

3-38

User code written as a TCL-I or TCL-II verb may initialize OVRFLCTR if it
uses overflow space that is to be released when the process terminates
by returning to WRAPUP. However, TCL-II initializes OVRFLCTR for
update-class commands (that is, attribute 5 of the verb definition item
contains a U) used with more than one item. In this case, user code
must use another means of returning space, perhaps via WMODE.

Nommally, the terminal's BREAK key causes the process to enter the
appropriate debugger (either assembly or BASIC). For sensitive
processing that should not be interrupted, the bit INHIBIT (available to
the user) and the half tally INHIBITH are used to prevent debug entry. If
either are non-zero, such entry is prevented.

For example, INHIBITH is used by the system during overflow
management. [t is incremented by one during the sensitive processing,
and decremented on exit. The increment is performed with an INC
INHIBITH instruction. The decrement is performed by calling the
subroutine DECINHIB.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

(,f Addressing the SCB Fields

The Secondary Control Block (SCB) contains additional elements that
can be used by assembly language programs. All elements in the SCB
are accessed via address register 2 (R2), which always addresses byte
zero of the SCB in unlinked mode.

The format of the SCB may vary depending on system implementation.
A sample SCB format is shown in Appendix C.

Addressing Conventional Buffer Workspaces

6973-1

By convention, the system preassigns buffer workspaces such as HS,
IS, and OS to a process via address registers R3-R15.

In Ultimate assembly programs, unlike other systems, program space is
rarely used to store variables (other than text strings). All programs
should be re-entrant and contain only code.

There are several preassigned buffer workspaces available to a process.
Three linked workspaces, called the IS, OS, and HS, contain 64000
bytes each (128 frames on systems having 500-byte logical data
frames). Five other workspaces, called the BMS, AF, IB, OB, and CS,
vary between 50 and 140 bytes in length and are all in one frame. The
TS workspace is one unlinked frame. These standard workspaces
normally give ample room to store and manipulate string data.
Counters, bits, and pointers are stored in PSYM-defined PCB and SCB
elements, as mentioned in previous topics.

Each workspace is defined by a beginning pointer and an ending pointer
(both are storage registers). The pointer to the beginning of the buffer is
conventionally called xxBEG, and the pointer to the end of the buffer is
called xxEND, where xx is the workspace name.

When the process is at the TCL level, these pointers are all set to an
initial condition. At other levels of processing, the beginning pointers
should normally be maintained; the ending pointers may be moved by
system or user routines.

Assembly Language 3-39
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Notes to
Table 3-3

3-40

The xxBEG pointer (such as ISBEG) is set to point one byte before the
actual data. This is to ensure correct operation of the string scanning
and string moving instructions, which always increment an address
register before testing or moving the next data byte.

For example, a typical sequence that initializes and moves data into the
HS workspace is:

MOV HSBEG, HS Set HS register to start of
MIID R15,HS,X'CO" buffer; copy a string until
an SM.

Note that the byte at HSBEG is not affected, since the MIID instruction
pre-increments and then stores the first byte.

The subroutine WSINIT may be used to reset the BMS, AF, CS, IB and OB
registers and buffer pointers to their initial conditions. The subroutine
ISINIT does the same for the IS, OS and HS buffers, and also calls
WSINIT.

The buffer pointers are sometimes changed by system software, but
reference is always made to a symbol, so this is mostly transparent.
TSBEG, for example, always defines the beginning of the TS buffer,
regardless of which frames are actually being used for this buffer at any
given time.

The address registers associated with these workspaces (for example,
R3 or HS) need not necessarily be maintained within their workspaces;
however, system routines may reset the specific registers to their
associated workspaces.

Table 3-3 shows the various workspace pointers, along with the size
and location of the buffers (using the FID of the PCB as the reference
point).

"Not a buffer” indicates that there is no permanently assigned space
associated with those address registers.

The Description column indicates the conventional usage of the buffer.
"Freely usable" does not apply to a program entered from the

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

conversion interface of BASIC or Recall, both of which tend to be very

possessive of all available registers, except R14 and R15.

The frames at PCB+6 to PCB+9 are reserved for the PROC software for

working storage.

Table 3-3. Registers and Pointers (1 of 3)

Reg | PSYM | Beginning and | Size, Description
Num | Name | Ending Location of
Pointers (SRs) | Buffer
RO - - - points to byte O of
user's PCB
R1 - - - points to FID of
currently executing
ABS frame
(“ R2 - - - points to user's SCB
N R3 HS | HSBEG fixed, 64K bytes history string; stores
HSEND floating; | PCB+10 messages to be
must point to printed at end of
current end of processing!
data in the HS
buffer
R4 IS ISBEG fixed, 64K bytes input string; stores
ISEND floating; | PCB+16 compiled string for
end of current Recall; data for
data pointer Editor; no
conventions

larea past HSEND may be used as scratch if needed to save data; conventions are:
strings separated by SMs
character after SM is an X
string terminated by aSM and aZ

HSEND points to the SM before the Z

6973-1

Assembly Language

Confidential and Proprietary to The Ultimate Corp.

3-41

Addressing Data

3-42

Table 3-3. Registers and Pointers (2 of 3)

Description

output string; stores
compiled string for
Recall; data for
Editor; in Recall,
area past OSEND is
scratch; no
conventions

points to beginning
of current file item if
using standard
system file I/O
subroutines

used as tape buffer
pointer for tape 1/0;
otherwise, register
R7 is freely usable

stores item-ID when
interfacing with
system file I/O

scratch buffer in
same frame as BMS;
register RO is freely
usable

terminal input buffer
used by terminal
input routines to
read data; not to be
used for other
purposes

Reg | PSYM | Beginning and | Size,
Num | Name | Ending Location of
Pointers (SRs) | Buffer
a0 e |
RS 0S | OSBEG fixed, 64K bytes
OSEND floating; | PCB+22
end of current
data pointer
R6 IR none not a buffer
R7 UPD | UPDBEG not not a buffer
used; UPDEND
not used
R8 BMS | BMSBEG fixed, | 50 bytes
BMSEND floating | PCB+4.00
on last byte of
item-ID
R9 AF | AFBEG fixed, 50 bytes
AFEND fixed PCB+4.51
R10 B IBBEG fixed, 465 bytes
IBEND floating; | PCB+46.33
end of current (linked)
data pointer

Assembly Language
Contfidential and Proprietary to The Ultimate Corp.

6973-1

/{/‘ -~ a,“
“_/

Addressing Data

6973-1

Table 3-3. Registers and Pointers (3 of 3)

Reg | PSYM | Beginning and| Size, Description
Num | Name | Ending Location of

Pointers (SRs) | Buffer
e e e——————————

R11 OB | OBBEG fixed, 465 bytes terminal output
OBEND fixed PCB+47.1 buffer used by
(linked) terminal output
routines to write
data; not to be used
for other purposes

R12 CS | CSBEG fixed, 100 bytes scratch buffer in
CSEND fixed PCB+4.102 | same frame as BMS;
register R12 is freely
usable as a scratch

register
R13 TS | TSBEG fixed, 512 bytes scratch area used by
TSEND floating; | PCB+5 various processors;
points to current the area from TSBEG
end of data on may be treated as

scratch space in the
conversion interface;
register R13 is freely
usable as a scratch

register
R14 R14 - scratch register
R15 R15 - scratch register
Assembly Language 3-43

Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Programming Conventions

3-44

Programming in the Ultimate assembly language requires understanding
and adhering to the conventions of the operating system. The primary
areas where conventions apply are the use of

 global elements (variables) defined in the permanent symbol (PSYM)
file

+ predefined buffer workspaces, typically associated with address
registers R3-R13.

Ultimate assembly language programming makes extensive use of
global data areas. This reduces overhead in allocating and deallocating
storage for programs when they are run, but requires the programmer to
choose very carefully the data areas used by a program. Otherwise, data
in use by other programs, including the operating system, can be
destroyed.

Global elements such as bits, counters, and storage registers are defined
as fields in the PCB or the SCB. The field definitions are in the PSYM
file, and give the offset relative to RO (if in the PCB) or R2 (if in the
SCB). For more information on the PCB, see the section, Addressing the
PCB Fields. For more information on the SCB, see the section,
Addressing the SCB Fields.

In addition to the global elements, the system defines several buffers to
use as workspaces. These workspace areas are used by system
software such as BASIC, PROC, Recall, and the system debugger. For
more information, see the section, Addressing Conventional Buffer
Workspaces.

When a process is at the system (TCL) level, its process workspace
pointers are in an initialized state, although the data in the workspace
frames is whatever was left over from the last program. Also, most bit
flags are cleared. These points are important to remember when first
writing assembly programs, since they define initial conditions that the
programmer must take into account. These initial conditions are
discussed in more detail in Chapter 6, System Software Interfaces.

An active process always has access to the current account's Master
Dictionary (MD) and to the ERRMSG file; that is, these files are open to
the process.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Global
Symbolic
Elements -
PSYM File

6973-1

A process can normally run any re-entrant assembly program to which it
has access simultaneously with other users. (A re-entrant program is
one which has no storage internal to the program. The section, Sharing
Object Code Among Processes, discusses this concept. It also
discusses how to lock a byte to prevent simultaneous access if a
program requires internal storage, and cannot be re-entrant.)

All PSYM elements (variables) are global and can be used by all
routines. Some PSYM elements are used by the operating system, as
well as system subroutines, and their values cannot be expected to be
preserved when calling a system subroutine. Other PSYM elements are
not used by the operating system or any subroutines, and are reserved
for user assembly language programs.

The following PSYM elements in the SCB are unused by the system
software and can be safely used by user-written assembly programs:

bits SB24 - SB35
characters none

double tallies none

half tallies none

storage registers SR20 - SR29
tallies CTR30 - CTR42

Note that no PCB elements, including address registers, are freely
available; availability depends on the interface with the system software.

Additional elements may be stored by setting up an additional control
block (see the section, Defining Additional Workspaces).

Elements used for temporary storage are known as scratch elements.
Information that needs to be preserved should not be kept in a scratch
element, since any subroutine that is called may use these elements.

The following scratch elements located in the PCB might be used by
nearly any subroutine:

bits SB60, SB61
tallies T4, TS
double tallies accumulator (DO, D1), D2

Assembly Language 3-45
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Sharing
Object Code
Among
Processes

3-46

triple tallies FPX (overlays SYSRO) e
FPY (overlays SYSR1)
registers R14, R15

storage registers SYSRO (overlays FPX)
SYSR1 (overlays FPY)

The following scratch element is located in the SCB:
storage register ~ SYSR2

These scratch elements are so widely used that their use is not covered
in the documentation for most system subroutines in Chapter 5.
However, each subroutine in Chapter 5 does specify all other system-
and user-defined inputs and outputs to that routine.

In practically all cases, the system software is re-entrant; that is, the
same copy of object code may be used simultaneously by more than one
process. For this reason, programs normally do not store variable data

within the program itself. Instead, each process uses its own process
workspace for data storage.

The system has predefined several control blocks (frames) per process
that are reserved for that process, such as:

» primary control block (PCB)
+ secondary control block (SCB)
+ tertiary or debug control block (DCB)

* quaternary control block

The storage space most commonly used by a process is that in its PCB
and SCB. The system automatically sets up an address register to allow
direct, indirect, and relative addressing of these blocks:

RO points to the PCB, byte 0
R2 points to the SCB, byte 0

The two other control blocks, the tertiary (debug) and quaternary control
blocks, have no registers pointing to them. The debug control block is
used solely by the assembly debugger, and should not be used by any
other programs. The quaternary control block is used by some system N

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

software (magnetic tape routines, for example) which temporarily set a
register pointing to it; its use is reserved for future software extensions.

If a program must modify fields internal to itself, the program must be
made non-re-entrant in order to prevent several processes from
modifying data at the same time. A common method of accomplishing
this is with a lock byte, illustrated below. The first process to execute
the code locks it with an XCC instruction. Any other process attempting
to execute the code must then wait until the first process unlocks the

program after execution is completed:

ORG O
TEXT X'00'
byte
CMNT *
CMNT *
LOCKED MCC X'0l1',R2
XCC R2,R1
BCE R2,X'00',O0K
ROM *
B LOCKED
OK EQU *
UNLOCK MCC X'00',R2
XCC R2,R1

Initial condition for lock

(Note usage of storage

internal to program)

Move "lock"™ flag to scratch
location;

Exchange old lock; store
"lock" flag:;

If old flag was X'00', ok
to continue.

Else wait a while...

and try again.

Start of non-shared code

Unlock the "lock" flag
Set R1 to unlocked

Note: The instruction MCC X'00',R2 followed by XCC R2,R1 is
equivalent to the single instruction MCC X'00',R1. The reason
the first form is better than the second is that the XCC
instruction guarantees that the memory location of the byte is
not accessed by more than one processor at a time. The MCC
X'00°,R1 instruction would be adequate on a single-processor
system, but not on a dual-processor system.

6973-1

Assembly Language

3-47

Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Defining
Additional
Workspace

Ensuring
Compatibility

3-48

If a program needs more workspace than is available in the system-
defined areas, the system allows the program to define storage elements
or buffer areas. The unused frames PCB+30 and PCB+31 may be used
as additional control blocks.

The following sequence of instructions is one way of setting up an
address register to a scratch buffer:

MOV RO, R3
SETRO+ R3,30 Set R3 with FID of PCB+30
CMNT . and displacement of zero

R3 can now be used to reference areas in the additional workspace, or
functional elements that are addressed relative to R3. None of the
system subroutines use R3, so that a program has to set up R3 only
once in the above manner. However, an exit to TCL via the WRAPUP
software resets R3 to PCB+10.

In order to ensure that assembly programs are compatible on all Ultimate
platforms, the following rules and conventions should be applied to all
assembly language programs:
Do not use the following characters in symbols (anything that may
cause a PSYM file lookup):
) =2 x| <> %

 Symbols defined in INCLUDE items should not be used prior to the
INCLUDE statement.

* Only the following subroutines should be used to modify the return
stack:

INITRTN POPRTN MARKRTN RTNMARK
+ In Ultimate PLUS implementations, items in the SM file become files.
Because of the restrictions on filename size imposed on some UNIX

implementations, it is necessary that the item-ID of any new mode be
less than or equal to 12 characters.

Assembly Language 6973-1
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Item-IDs for items in the OSYM and PSYM files can be up to 14
characters.

Scan character definitions (such as <SM> or <SM!AM>) that exceed
14 characters have been put into an SM INCLUDE item called SCAN-
DEFS.

The Ultimate PLUS implementation on HP systems requires that all 2-,
4-, and 6-byte data fields be aligned:
- 2-byte (TLY) fields must be word aligned;
- 4-byte (DTLY) fields must be on a double word boundary;
- 6-byte (FTLY or SR) fields must be word aligned but not double
word aligned. It is the low order two words (FID in case of an
SR) that need to be double word aligned.

Use the directives ALIGND and ALIGNS to align data definitions as
follows:

ALIGND * Align for Double tally
LAB1 DTLY X'12345"

*

ALIGNS * Align for Storage register
LAB2 ADDR T3$CONFIG

ALIGNS *
LAB3 FTLY X'12',x'3456"

On the traditional systems, ALIGNS and ALIGND are synonyms of
ALIGN.

Access on word and double boundaries are not mandatory but highly
desirable, given the impact on performance.

In cases where the definition cannot be aligned (for example, the
double tallies XNFID and XPFID which reference the forward and
backward links), use the special instructions in the OSYM starting
with UA_ (for UnAligned) followed by the normal OSYM entry.
These instructions function as a flag to the 'virtual to C' translator,
indicating the non-aligned nature of this data access. Such entries can
be added freely to the OSYM file when needed. For example, the
following statement

MOV XNFID,OVRFLW

should be changed to the following:

UA_MOV XNFID,OVRFLW

Assembly Language 3-49
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

On all platforms except Ultimate PLUS on the HP, the UA_MOV
instruction is equivalent to MOV.

» The following instruction should be used to clear the PCB:

MII R14,R15,-1+ID.DATFRM.SIZE

This ensures that all the bytes in the PCB are cleared, regardless of the
implementation or frame size.

+ If you need to copy an unknown number of bytes then set a pointer to
the data, use the ID.DSP.ADJ command to align the register, as

follows:
MIID R14,R15,<SM>
ID.DSP.ADJ R15
MOV R15, SR2

+ When allocating space for an array of SRs, either reserve eight bytes
for each one, leaving the first two bytes of every definition unused,
or use the PSYM entries ID.SRDEF.SIZE (word size of an SR
definition) and ID.SRDEF.OFFS (word offset from the start of an
aligned register to the start of a storage register defined from it). On
an Ultimate PLUS implementation, these reserve eight bytes; on all
other implementations, where the size of the SR can remain at six

bytes, these reserve six bytes. The following is an example of the
use of these instructions:

SR.BYT.SIZ DEFN 2*ID.SRDEF.SIZE Byte size of

SR definition
SR.BYT.OFS DEFN 2*ID.SRDEF.OFFS Byte size of

SR offset

* Allocate size for array of 10 storage registers

MOV R15, SR2 Save ptr to array
LOAD 10 Numb of SRs defined
MUL SR.BYT.SIz Byte size (6 or 8)
SIT R15 Skip array area

* Initialize array to zero

MOV SR2,R15 At array start
LOAD 10 Count of SRs
3-50 Assembly Language 6973-1

Confidential and Proprietary to The Ultimate Corp.

Addressing Data

6973-1

LOOP EQU *

INC R15,SR.BYT.OFS Skip 0 or 2 bytes
ZERO R15;F0 Clear SR

BDNZ TO0, LOOP

» No assumptions should be made regarding the physical location of
PCB or SCB elements. For example, many of the PSYM entries
referring to the PCB or SCB were recently redefined.

» The BASIC runtime contains string instructions of the type NO_MII.
On both the HP and the RS6000, data copies using the 'memcpy’
library function are not guaranteed to occur in a 'left to right' motion.
This means that this function can not be used for overlapping moves.
The NO_... (No Overlap) is a flag to the C translator indicating that
this particular string copy involves no data overlap, therefore
allowing the use of 'memcpy’. Otherwise, data is copied in a slower
way, byte by byte.

Assembly Language 3-51
Confidential and Proprietary to The Ultimate Corp.

Addressing Data

Notes

3-52

Assembly Language
Confidential and Proprietary to The Ultimate Corp.

6973-1

e

Assembler Instruction Set and
Directives

6973-1

An assembly instruction performs one operation. Each instruction
assembles to one or more machine-executable object code instructions.

An assembly directive reserves program space, defines symbols for use
as operands, or generates literal data within a program. Directives are
different from instructions in that directives do not generate executable
object code.

A program is a sequence of instructions and directives that perform a
complete job or task. For information on the structure of programs and
program lines, see Chapter 2, The Assembler.

In the following topics, each instruction and directive is described in
detail in its own separate topic. The topics are presented in alphabetical
order, according to the root mnemonic name of the instruction or
directive.

The general syntax, operands, usage, and examples are given for each
instruction.

Assembly Manual 4-1
Confidential and Proprietary to The Ultimate Corp.

Instructions

Summary of the Instructions and Directives

The following summary lists the Ultimate Assembly Language

Instruction set, divided into functional groups.

Arithmetic ADD

Instructions ADDX
DEC
DIV
DIVX
INC

Bit BBS
Instructions BBZ

MOV

Character Scans McCC
and Moves MCI

Character BCA

Tests BCE
BCH
BCHE
BCL
BCLE
BCN

4-2 Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

MULX
NEG
SUB
SUBX

SB

SICD
SID
SIDC
SIT
SITD
XCC

BCNA
BCNN
BCNX
BCU
BCX
BSTE

6973-1

Summary of Instructions

6973-1

Conversions

Data
Comparisons

Data Movement

Directives

Terminal /O

Assembly Manual

Confidential and Proprietary to The Ultimate Corp.

BDLEZ
BDHZ
BDHEZ
BDLZ
BDNZ
BDZ
BE

BH
BHE

LOADX
MOV

ADDR
ALIGN
CHR
CMNT
DEFx
DEFM
DEFN
DEFNEP
DEFNEPA
DTLY
EJECT

INP1B
INP1BX

MFX
MSDB
MSXB

BHEZ
BHZ
BL
BLE
BLEZ
BLZ
BNZ
BU
BZ

ONE
STORE
ZERO

EP.ADDR
EQU
FRAME
FTLY
HTLY
INCLUDE
MTLY
MTLYU
ORG

SR

TEXT
TLY

OUTI1B
OUT1BX

4-3

Instructions

— — ————— m—

Logical Operators AND SHIFT
OR XOR

Register BE MOV

Operators BU SETDSP
DEC SETR
FAR SRA
INC XRR
LAD

Transfer B EP
BSL HALT
BSL* ID.B
BSLI ID.RSA
ENT NEP
ENT* NOP
ENTI RTN

System RQM SLEEP

MCALs SET.TIME TIME

4-4 Assembly Manual 6973-1

Conlfidential and Proprietary to The Ultimate Corp.

Operand Types

Operand Types

Table 4-1 summarizes the operand types; for more information, see
Chapter 3.

Table 4-1. Operand and Symbol Types

Symbol
Code

m

A

B

Description

address (both FID and displacement)
relatively addressed bit

relatively addressed character or byte (8 bits)
relatively addressed double tally (32 bits)
relatively addressed triple tally (48 bits)
relatively addressed half tally (8 bits)
locally defined label in this program
mode-id (16 bits); FID and entry point
constant or literal value

address register

storage register

relatively addressed tally (16 bits)

address register in an external PCB

6973-1

1 An operand of type 'N' may be any of the following:
An actual literal such as 3, X'82', or C'A".

'*'; the symbol for program location counter

A symbol defined as having a literal value (symbol code=N), such as
ID.DATA SIZE; literal symbols may be predefined in the PSYM file (such as
ID.DATA.SIZE or SM), or may be defined locally with the DEFN directive.

Assembly Manual 4-5
Confidential and Proprietary to The Ultimate Corp.

Instructions

Virtual An operand that resolves to a virtual address can be expressed in one of
Addresses the following ways

* as a symbol name defined in PSYM or locally via a DEFx directive

* as an asterisk (*); specifies the current location of the program
counter in this frame

+ as a special operand of the form:
Rn;Sd
Rn address register RO-R15

Sd displacement from the virtual address of Rn. S specifies the
symbol type units (B,C,H,T,D,F) and d specifies the relative
displacement

The following example shows several special operands:

R4;Bl2 12th bit off R4

R14;D4 4th double tally off R14
R2;T7 7th tally off R2

R8;H8 8th half tally off RS8

For more information on special operands, see the section, Immediate
Symbols, in Chapter 2.

System The following symbols are used to denote the system delimiters:
Delimiters _

SM segment mark (X'FF')
AM attribute mark (X'FE')
VM value mark (X'FD')
SVM subvalue mark (X'FC')
SB start buffer (X'FB')

4-6 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

C

ADD
ADDX

Syntax

Description

6973-1

ADD/ADDX

The ADD and ADDX instructions add the contents (value) of the operand
to the accumulator. The ADD form adds to a 4-byte field (DO); the ADDX
form adds to a 6-byte field (FPO).

ADDd ADDX d
ADDX f

ADDh ADDX h

ADDn ADDX n

ADDt ADDX t

d double tally

f triple tally (for ADDX only)

h half tally

n numeric literal; if used, a 2-byte field is assumed (a range of -32,768
through +32,767). If a 1-byte literal (half tally) is being referenced,
it should be defined separately using the HTLY directive. If the
literal is outside the range of -32,768 through +32,767, a 4-byte
literal must be separately defined using the DTLY directive, or a 6-
byte literal via the FTLY directive.

The n form may generate a 2-byte literal at the end of the program
when assembled for certain machines.

t tally

The ADD instruction adds the operand value to the 4-byte field in the
accumulator called DO. If the operand is a half tally (1 byte) or tally (2
bytes), it is internally sign-extended to form a 4-byte field before the add
operation takes place.

The ADDX instruction adds the operand value to the 6-byte field in the
accumulator called FPO. If the operand is a half tally (1 byte), tally (2
bytes), or double tally (4 bytes), it is internally sign-extended to form a
6-byte field before the add operation takes place.

The ADD and ADDX instruction cannot detect arithmetic overflow or
underflow.

Assembly Manual 4-7
Confidential and Proprietary to The Ultimate Corp.

Instructions

VA
.. .. . NS
The addition does not affect the original operand or the other sections of =
the accumulator.
ADD D4
ADD H8
ADD T4
ADDX D4
ADDX FP1
ADDX H8
ADDX T4
ADD 11
.
\\&,,x"'
4-8 Assembly Manual 6973-1

Conlfidential and Proprietary to The Ultimate Corp.

ADDR

« ADDR
Syntax
(Description

6973-1

The ADDR (define address) assembler directive defines a program
address and creates a storage register containing that address. The
storage register (symbol type S) is in unlinked format.

label ADDR a

label ADDR n,m

label ADDR n,n

label specifies the symbol being defined

a defines both FID and displacement to specify the virtual address.
If used, the address must have been previously defined via a
DEFRA directive.

n,n virtual address to reserve for the symbol. The first operand is a

n,m literal (n) value that specifies the displacement of the generated
virtual address. The second operand may be a literal (n) or a
mode-id (m) that specifies the frame number (FID).

The ADDR instruction sets up a symbol as a storage register pointing to
data in an unlinked frame. (To define storage registers in linked frame
format, use the SR directive.)

Six bytes of storage for the address are reserved at the current location
counter, or the current location +1 if necessary to align on a word (even
byte) boundary.

The ADDR instruction can be used to refer to data in other ABS frames.
However, care needs to be taken if the ABS frames contains code. Data
within such a frame may be in different locations on different
implementations. This is because the object code for one implemen-
tation may be of a different size from that generated for another
implementation. Accordingly, it is important to know whether the
location of data referred to by an ADDR may vary by implementation.

If the ABS frame contains only data (for example, it contains tables), the
data within the frame will be in the same locations on all implemen-
tations. In this case, the ADDR directive can be used to specify the
location of data within the frame.

Assembly Manual 4-9
Confidential and Proprietary to The Ultimate Corp.

Instructions

—

However, if a frame contains both code and data, more care is needed.
To refer directly to an entry point of the frame, the EP.ADDR directive
can be used (the ADDR directive should never be used to refer directly to
entry points). To refer to data which is not an entry point, one of two
techniques can be used:

+ Place the data far enough after the last entry point of the frame (but
before the next executable instruction) so that it is not overlaid by
object code no matter what machine the frame is assembled for. The
lowest "safe" address can be calculated by assuming four bytes of
object code for each entry point (EP instruction), and an initial
location (set by the FRAME directive) of 2.

Once this is done, the data can be referred to by a simple ADDR
directive as in the case of the data only frame above.

* Place the data immediately after the last entry point of the frame, and
refer to it in terms of entry points, using the ADDR directive in
conjunction with the DEFNEP or DEFNEPA directive. DEFNEP defines
a byte offset to an entry point and DEFNEPA defines a (word-aligned)
word offset.

FIELD ADDR X'1F0',223
MOV FIELD,R15 point R15 to above addr

$SYSTYP DEFRA X'6C',127 define as address, type A

SYSTYP ADDR %SYSTYP
MoV SYSTYP,R14 point R14 to above addr
DATA2 DEFNEPA 3 word-aligned entry point 3

LABL1 ADDR DATAZ2, 511

DATAS DEFNEP 3 7 or E (machine-dependent)
LABLS8 ADDR DATAS8, 511
MOV LABL8,R15 point R1l5 to above addr
4-10 Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

ALIGN

(ALIGN
ALIGND
ALIGNS

Syntax

Description

6973-1

The ALIGN directive aligns the assembler’s location counter on an even-
byte (word) boundary. On Ultimate PLUS implementations, the ALIGND
directive aligns the assembler's location counter on a double word
boundary. On Ultimate PLUS implementations, the ALIGNS directive
aligns the assembler's location counter on a word boundary, but not
double word boundary.

ALIGN

If the location counter is currently pointing to an odd byte, the ALIGN
directive creates one byte of object code (X'00') in the program in order
to move the counter down to the next even byte.

The ALIGN directive is typically used before a section of definitions
(DEFx directives) to ensure even byte (word) alignment.

Note: The assembler automatically word-aligns literals that it creates
itself (at the end of a program). It also word-aligns storage
created by TLY, DTLY, FTLY, MTLY, SR, ADDR, and EP.ADDR
directives.

The ALIGND and ALIGNS directives are used to that fields align correctly
on Ultimate PLUS implementations. On all other implementations, these
directives are identical to the ALIGN directive.

For more information on data alignment, see the section, Ensuring
Compatibility, in Chapter 3.

Assembly Manual 4-11
Confidential and Proprietary to The Ultimate Corp.

Instructions

AND

Syntax

Description

4-12

The AND instruction logically ANDs two bytes, and stores the result in
the byte referenced by the first operand. The byte referenced by the

second operand is unchanged.

ANDr,n
ANDTr

r address register

n numeric literal

The logical AND instruction tests two bytes, one bit at a time, for a true
(1) condition. If both bits are true (1), the result is true (1). If eitheris

false, the result is false (0). For example,

Byte 1: 0000 0101
Byte 2: 1111 0011
Result 0000 0001

The result is stored in the byte referenced by the first operand. The byte

referenced by the second operand is unchanged.

AND R14,X'EF'

AND R14,R15

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

B (Branch)

Syntax

Description

6973-1

The B (branch) instruction transfers control unconditionally to a local
label in the program.

Bl

1 local label; must be defined in the same frame as the B instruction

The B instruction immediately resolves the effective address of the local
label and transfers program control to that address. To set up branches
for other situations, use one of the following:

» To transfer control to an external label, use the ENT instruction.
+ To define entry points at the start of the frame, use the EP instruction.

» To define branch tables (branch on a number used as an index) within
a frame, use the ID.B instruction.

The EP instruction is used to indicate an entry point because the object
code may differ from a simple B instruction when assembled for certain
implementations. The ID.B instruction is used in branch tables to
guarantee that the object code for each branch instruction has the same
length; otherwise, the assembly process for some implementations may
produce shorter code for some of the branches than for others, thereby
destroying the table.

B LOW
B HIGH

Low EQU *
ORG X'101'
HIGH EQU *

Assembly Manual 4-13
Confidential and Proprietary to The Ultimate Corp.

Instructions

BBS
BBZ

Syntax

Description

4-14

The BBS (branch bit set) instruction tests a specified bit and transfers
control to a local label if the bit is set (1). The BBZ (branch bit zero)
instruction tests and transfers control if the bit is not set (0).

BBS b,1 BBZ b,1

b specifies the bit to be tested; it may be a symbol or a special operand
in the form Rn;Bd. (Special operands are described in the beginning
of this chapter in the section, Virtual Addresses.)

1 specifies the label in the current frame of the branch destination if the
result of the test is "true".

For BBS instructions, the referenced bit is tested, and if its value is 1
(set), program control transfers to the specified local label. If the value
is 0, execution continues with the next instruction.

For BBZ instructions, the referenced bit is tested, and if its value is O
(off), program control transfers. If the value is 1, execution continues
with the next instruction.

TEST DEFB RO, 10
BBS TEST,LABL1

BBZ R15;B3,LABL1
BBS R15;B3,LABL1

LABL1 EQU *

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

BCA/BCNA

(BCA
BCNA

Syntax

Description

6973-1

The BCA (branch character alphabetic) instruction tests a specified
character and branches to a local label if the character is an alphabetic
letter. The BCNA (Branch Character Not Alphabetic) instruction tests
and branches if the character is not an alphabetic letter.

BCAT,l BCNAT,1

r address register (RO-R15) that contains the virtual address of the
character to be tested

1 the label (in the current frame) of the branch destination if the result
of the test is true

For BCA instructions, the referenced character is tested, and if its value
is in the ASCII character range of upper case letters A-Z (X'41' through
X'SA") or lower case letters a-z (X'61' through X'7A"), the program
branches to the specified local label. If the value is not in the range of
alphabetic characters, execution continues with the next sequential
instruction.

For BCNA instructions, the referenced character is tested, and if its value
is not in the range of alphabetic characters (X'41' to X'5A' or X'61' to
X'TA"), the program branches to the specified local label. If the value is
within this range, execution continues with the next instruction.

BCA R15,LABL1

BCNA R15,LABL1

LABL1 EQU *

Assembly Manual 4-15
Confidential and Proprietary to The Ultimate Corp.

Instructions

BCE
BCU

Syntax

Description

4-16

The BCE (branch character equal) instruction compares one specified
character against another and branches to a local label if the characters
are equal. The BCU (branch character unequal) instruction compares and
branches if the characters are not equal.

BCE c,c,1 BCU c,c,l
BCE c,r,l BCU c,r,l
BCE n,r,1 BCU n,r,l
BCE r,c,l BCU r,c,
BCE r,n,l BCU r,n,l
BCE r,r1,l BCU r,r,l

¢ relatively addressed characters.

1 the label (in the current frame) of the branch destination if the result
of the test is true

n constant or literal

r address register (RO-R15) whose virtual address points to the
character to be tested

BCE and BCU compare two characters and use the results to determine
program action. -

For BCE instructions, the first referenced character is compared to the
second referenced character, and if their ASCII values are equal, the
program branches to the specified local label. If the values are not
equal, execution continues with the next sequential instruction.

For BCU instructions, the referenced characters are compared, and if the
values are not equal, the program branches to the specified local label.
If the values are equal, then execution continues with the next
instruction.

Note that a symbol of type c can be tested directly against another
symbol of type c, but not against type n . To handle comparisons

between ¢ and n symbol types, you can use one of the following
techniques:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

BCE/BCU

+ Use an SRA instruction to set an address register to point to the ¢ type
symbol; for example:

SRA R15,SC1 set R15 pointing to c symbol
BCE R15,C'$',0K

» Use DEFH or HTLY to define the c symbol as a half tally (symbol type
h), then use a BE or BU instruction;for example:

HSC1 DEFH SC1 define SCl as a half tally
HLITS HTLY C'S$' define $ as half tally literal

BE HSC1,HLITS,OK
If the c,c,l form is used, a signed arithmetic comparison is made instead

of an ASCII comparison. However, the result is correct since two
different bit patterns are never evaluated as equal by the machine.

BCE R14,R15,LABLl
BCU R14,R15,LABL1
BCE X'20',R15,LABL1
BCU X'20',R15,LABL1
BCE PRMPC,R15,LABL1
BCU PRMPC,R1S5,LABL1
BCU CHO,CH9,LABL1
BCE CHO,CH9,LABL1

LABLL EQU *

Assembly Manual 4-17
Confidential and Proprietary to The Ultimate Corp.

Instructions

BCH
BCHE
BCL

Syntax

Description

4-18

TN
N

The BCH (branch character higher) instruction compares one specified

character against another and branches to a local label if the value of the

first character is greater than the second. BCHE (branch character higher

or equal) compares and branches if the first value is greater than or equal
to the second.

The BCL (branch character lower) instruction compares one specified
character against another and branches to a local label if the value of the
first character is less than the second. BCLE (branch character lower or
equal) compares and branches if the first value is less than or equal to
the second.

BCL c,c,l BCLE ¢,c,l
BCH c,r,1 BCHE c,r,l BCL c,r,l BCLE c.r,i
BCH n,r] BCHE n,r,1 BCL n,r,l BCLE n,r,l
BCHr,c,l BCHE r,c,l BCL r,c,l BCLE r,c,!
BCH r,n,l BCHE r,n,l BCL r,n,l BCLE r,n,l
BCHr,r,l BCHE r,r,] BCL r,r,] BCLE r,r,l

¢ relatively addressed character

1 label (in current frame) of the branch destination if the result of the
test is true

n constant or literal

r address register (R0-R15) whose virtual address points to the
character to be tested.

BCH, BCHE, BCL, and BCLE compare two characters and use the results
to determine program action.

For these instructions, the character addressed by the first operand is
compared as an 8-bit logical field to the character addressed by the
second operand. In a logical comparison, the lowest character is
decimal 0 (X'00") and the highest character is decimal 255 (X'FF").

If the first character is higher than (BCH), higher than or equal to
(BCHE), less than (BCL), or less than or equal to (BCLE) the second, then
program control transfers to the third operand, which is a local label. o0

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

BCH/BCHE/BCL/BCLE

(There are basically four cases, each with two ways of coding:
BCH A,B or BCL B,A
BCHE A,B or BCLE B,A
BCL A,B or BCH B,A
BCLE A,b or BCHE B,A

Note that a symbol of type ¢ cannot be tested directly against another
symbol of type c or type n. To handle comparisons between ¢ and n
symbol types, you can use one of the following techniques:

» Use an SRA instruction to set an address register to point to the ¢ type
symbol; for example:

SRA R15,SC1l set R15 pointing to ¢ symbol
BCH R15,C'S$',0OK

+ Use DEFH or HTLY to define the ¢ symbol as a half tally (symbol type
h), then use a BH{E} or BL{E} instruction;for example:

HSC1 DEFH SC1l define SCl as a half tally
HLIT$ HTLY C'S! define $ as half tally literal

BH HSC1,HLITS,OK

Note: This coding performs an arithmetic comparison. In an
arithmetic comparison, the lowest half tally is -128 (X'80°)
and the highest half tally is 127 (X'7F’). This means that
the Ultimate system delimiters SM, AM, VM, and SVM
(decimal 255-252, hexadecimal X'FF’-X'FB’) are logically
higher than all other ASCII characters but are arithmetically
lower (as "negative” numbers).

6973-1 Assembly Manual 4-19
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-20

BCH
BCL
BCHE
BCLE
BCH
BCL
BCL
BCH
BCLE
BCLE
BCH
BCL
BCL
BCH
BCLE
BCLE
LABLl EQU *

R14,R15,LABL1
R14,R15, LABL1
R14,R15, LABL1
R14,R15, LABL1
X'20',R15,LABL1
R15,X'20',LABL1
X'20',R15, LABL1
R15,X'20',LABL1
X'20',R15, LABL1
R15,X'20',LABL1
PRMPC, R15, LABL1
R15, PRMPC, LABL1
PRMPC, R15, LABL1
R15, PRMPC, LABL1
PRMPC, R15, LABL1
R15,PRMPC, LABL1

Assembly Manual

Confidential and Proprietary to The Ultimate Corp.

6973-1

BCN/BCNN

(BCN
BCNN

Syntax

Description

6973-1

The BCN (branch character numeric) instruction tests a specified
character and branches to a local label if the character is a number. The
BCNN (branch character not numeric) instruction tests and branches if
the character is not a number.

BCNT,1 BCNN 1l

r address register (RO-R15) that contains the virtual address of the
character to be tested

1 the label (in the current frame) of the branch destination if the result
of the test is true

The BCN instruction tests the specified character, and if its value is in the
ASCII character range of numbers 0-9 (X'31' through X'39"), program
control transfers to the specified local label. If the value is not numeric,
execution continues with the next sequential instruction.

The BCNN instructions tests the specified character, and if its value is not
in the ASCII character range of numbers 0-9 (X'31' to X'39"), program
control transfers. If the value is numeric (within this range), execution
continues with the next instruction.

BCN R15, LABL1
BCNN R15,LABL1

LABL1 EQU *

Assembly Manual 4-21
Contfidential and Propristary to The Ultimate Corp.

Instructions

AN
BCNA s
The BCNA instruction branches if a character if not alphabetic. See the
BCA instruction for details.
BCNN
The BCNN instruction branches if a character is not numeric. See the
BCN instruction for details.
BCNX
The BCNX instruction branches if a character is not hexadecimal. See
the BCX instruction for details.
BCU
The BCU instruction branches if a character is not equal to another. See
the BCE instruction for details.
=
\%‘%’ ﬁ;‘/
4-22 Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

BCX/BCNX

BCX
BCNX

Syntax

Description

6973-1

The BCX (branch character hexadecimal) instruction tests a specified
character and branches to a local label if the character is in the hexa-
decimal number range (0-F). The BCNX (branch character not

hexadecimal) instruction tests and branches if the character is not in the
hexadecimal range.

BCXr,l BCNX r,1

r address register (RO-R15) that contains the virtual address of the
character to be tested

1 thelabel (in the current frame) of the branch destination if the result
of the test is true

The BCX instruction tests the specified character, and if its value is in the
ASCII character range of numbers 0-9 (X'31' through X'39') or upper
case letters A-F (X'41' through X'46'), program control transfers to the
specified local label. If the value is not a hexadecimal number,
execution continues with the next sequental instruction.

The BCNX instruction tests the specified character, and if its value is not
in the ASCII character range of 0-9 or A-F (X'31' to X'39' or X'41' to
X'46"), program control transfers. If the value is hexadecimale (within
this range), execution continues with the next instruction.

BCX R15,LAaBL1
.BCNX R15,LABL1
LABL1 EQU *

Assembly Manual 4-23
Confidential and Proprietary to The Ultimate Corp.

Instructions

S—

BDHZ
BDHEZ
BDLZ
BDLEZ

Syntax

Description

4-24

The BDHZ, BDHEZ, BDLZ, and BDLEZ instructions decrement a relatively
addressed operand and then compare it to zero. BDHZ (branch
decrementing higher than zero) transfers control to a local label if the
resultant value is higher than zero. BDHEZ (branch decrementing
higher/equal zero) transfers control if the value is higher than or equal to
zero. BDLZ (branch decrementing less than zero) transfers control if the
value is less than zero. BDLEZ (branch decrementing less/equal zero)

transfers control if the value is less than or equal to zero.

BDHZ d,] BDHEZ d,] BDLZ d,] BDLEZ d,l
BDHZ d,d,] BDHEZ d,d,! BDLZ d,d,! BDLEZ d,d,l
BDHZ d,n,l BDHEZ d,n,l BDLZ d,n,l BDLEZ d,n,l
BDHZ f,1 BDHEZ f,] BDLZ f,] BDLEZ f,1
BDHZ f.f,1 BDHEZ f f,] BDLZ f.f,] BDLEZ f,f,1
BDHZ h,l BDHEZ h,] BDLZ h,l BDLEZ h,l
BDHZ h,h,] BDHEZ h,h,] BDLZ h,h,] BDLEZ h,h,l
BDHZ t, BDHEZ t,1 BDLZ t,] BDLEZ t,]
BDHZ t,t,1 BDHEZ t,t,1 BDLZ t,t,1 BDLEZ t,t,]1
BDHZ t,n,l BDHEZ t,n,l BDLZ t,n,l BDLEZ t,n,l
d double tallies

f triple tallies

h half tallies

n numeric literal
t tallies

1 the label (in the current frame) of the branch destination if the result
of the test is true

If operand 1 is a tally or double tally, operand 2 may be a numeric literal
(n); the literal assembles as the same symbol type as operand 1.

These instructions take the place of a DECrement followed by a
conditional branch instruction, and are usually used in loop controls.

If only one operand is specified, the value at the effective address is
decremented by one (1). If two operands are specified, the value at the
effective address of operand 2 is subtracted from the value at the address

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

.\4\

BDHZ/BDHEZ/BDLZ/BDLEZ

—— — E——

(,, : of operand 1. Then the specified condition is tested and, if true, the
specified branch is taken.

Note: Ifthe second operand in a BDHEZ instruction is negative,
decrementing the first operand by the second operand will not
detect a sign change if a positive first operand overflows,
producing a negative number.

To loop through a section of code, the following can be used:

MOV COUNT,CTR1 Set loop counter for iterations
REPEAT BDLZ CTR1l,QUITLP

B REPEAT Repeat the cycle
QUITLP EQU * Termination of loop

) This example does not execute the loop body if the loop count is
(initially zero or negative. Compare this to the following example:

MOV COUNT, CTR1
XLOOP EQU *
BDLEZ CTR1,XLOOP

This also loops for the count in CTR1, but always executes at least
once.

6973-1 Assembly Manual 4-25
Confidential and Proprietary to The Ultimate Corp.

Instructions

BDZ
BDNZ

Syntax

Description

4-26

The BDZ (branch decrementing if zero) and BDNZ (branch decrementing
if not zero) instructions decrement a relatively addressed operand and
then compare it to zero. BDZ decrements, then tests and transfers
control if the resultant value is zero. BDNZ decrements, then tests and
transfers control if the value is not zero.

BDz d,l BDNz d,1
BDz d.d,l BDNZ d.,d,1
BDZ d,n,l BDNZ d,n,l
BDZ f] BDNZ £,
BDZ £ f,1 BDNZ ffl
BDZ h,1 BDNZ h,l
BDZ h.h,l BDNZ h,h,]
BDZt,l BDNZ t,
BDZ t,t,1 BDNZ t,t,1
BDZ t,n,l BDNZ t,n,l
d double tallies

f triple tallies

h half tallies

n numeric literal

t tallies

1 the label (in the current frame) of the branch destination if the result
of the test is true

If operand 1 is a tally or double tally, operand 2 may be a numeric literal
(n); the literal assembles as the same symbol type as operand 1.

These instructions take the place of a DECrement followed by a
conditional branch instruction, and are usually used in loop controls.

If only one operand is specified, the value at the effective address is
decremented by one (1). If two operands are specified, the value at the
effective address of operand 2 is subtracted from the value at the address

of operand 1. Then the specified condition is tested and, if true, the
branch is taken.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

w7

O

BDZ/BDNZ

MOV 100,CTR1 Set loop counter for 100
iterations
REPEAT EQU * Start of loop

BDNZ CTR1l,REPEAT

Note that the body of the loop executes at least once with this logic.
Compare this to the example shown for BDHZ.

6973-1 Assembly Manual 4-27
Confidential and Proprietary to The Ultimate Corp.

Instructions

BE

BU
The BE (branch equal) instruction compares two relatively addressed
operands or virtual addresses and branches to a local label if the operand
values are equal. The BU (branch unequal) instruction compares and
branches if the values are not equal.

Syntax BE d.d,1 BU dd,l
BE d,n,] BU d,n,l
BE f,f]l BU ff]l
BE h,h,l BU h,h,1
BE n,d,l BU nd,l
BE n,tl BU n,t,]

BE r,r,l BU rr,l

BE r,s,l BU r,s,1

BE s,1,1 BU s,

BE t,n,l BU t,n,l

BE t,t,1 BU t,tl

d double tally

f triple tally

h half tally

n numeric literal

t tally

1 the label (in the current frame) of the branch destination if the result
of the test is true

If the operands are tally-types, they must be of the same length, that is,

one byte (type H), two bytes (type T), four bytes (type D) or six bytes

(type F).

If one operand is a tally or double tally, the other operand may be a

literal (n); the literal assembles as the same symbol type as the relatively

addressed operand.

Description BE and BU compare two values of the same length or symbol type and
use the to determine program action. If a 1-byte or 6-byte literal or
constant value needs to be compared, it must be defined as a symbol

4-28 Assembly Manual 6973-1

Conlfidential and Proprietary to The Ultimate Corp.

6973-1

BE/BU

using an HTLY or DEFH directive (1-byte value), or an FTLY or DEFF
directive (6-byte value).

If the register format is used, the virtual address in any storage register
operands must be normalized prior to executing the BE/BU instruction;
see the FAR instruction for more information.

For BE instructions, the first referenced operand is compared to the
second referenced operand, and if their arithmetic values are equal, then
program control transfers to the specified local label. If the values are
not equal, then execution continues with the next sequential instruction.

For BU instructions, the referenced operands are compared, and if the
values are not equal, then program control transfers. If the values are
equal, then execution continues with the next instruction.

Note: When testing registers, this test for "equal or unequal” is the
only option. There is no way to test which register is "less
than” or "higher than" the other. When testing tally-type
operands, however, alternative tests are possible; see the BH,
BHE, BL, and BLE instructions.

If a tally-type operand is to be compared with a literal or constant (n)
value of zero, it is more efficient and clearer to use another instruction
that is designed for comparisons with zero (such as BZ, BNZ, or BHZ);
for example, use

BZ CTR1,QUIT

rather than

BE CTR1,0,QUIT

Note that half tally and triple tally symbols (types h and f) cannot be
tested directly against a constant or literal (type n). There are two ways
to handle this condition:

 Use an SRA instruction to set an address register to point to the h or f
type symbol; for example:

SRA R15,H7 set R15 pointing to h symbol
BCE R15,10,0K

Assembly Manual 4-29
Confidential and Proprietary to The Ultimate Corp.

Instructions

* Define the constant or literal as a half tally or triple tally in the
program,; for example:

FLIT FTLY 0,X'F23AB3FC'

Define a constant of type F

BE FPO,FLIT,OK
BE R14,R15,LABL1
BU R14,R15,LABL1
BU SR5,R15, LABL1
BE R15, SRS, LABL1
BU DO,D1,LABL1
BE D0,D1, LABL1
BU FPO,FP1l, LABL1
BE FPO,FP1l, LABL1
BU H8,H9, LABL1
BE H8,H9, LABL1
BU TO,T4,LABL1
BE TO, T4, LABL1
LABL1 EQU *
4-30 Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

P

\ W

C

BH/BHE/BL/BLE

BH
BHE
BL
BLE

Syntax

Description

6973-1

The BH (branch higher) instruction compares one specified tally-type
operand against another and branches to a local label if the value of the
first operand is greater than the second. BHE (branch higher/equal)
compares and branches if the first value is greater than or equal to the
second.

The BL (branch lower) instruction compares one specified operand
against another and branches to a local label if the value of the first
character is less than that of the second. BLE (branch lower/equal)
compares and branches if the value is less than or equal to the second.

BH d,d,! BHE d,d,] BL d,d,! BLE d,d,!
BH d,n,l BHE d,n,l BL d,n,l BLE d,n,l
BH f,f,1 BHE f.f,1 BL f,f,1 BLE f,f,]

BH h,h,] BHE h,h,1 BL h,h,l BLE h,h,]
BH n,d,l BHE n,d,1 BL n,d,l BLE n,d,l
BH n,t,l BHE n,t,] BL n,t,1 BLE n,t,]
BH t,n,1 BHE t,n,l BL t,n,l BLE t,n,l
BH t,t,l BHE t,t,] BL t,t,1 BLE t,t,]

d double tallies

f triple tallies

h half tallies

n numeric literal
t tallies

1 the label (in the current frame) of the branch destination if the result
of the test is true

The operands must be of the same length, that is, one byte (type H), two
bytes (type T), four bytes (type D) or six bytes (type F).

If one operand is a tally or double tally, the other operand may be a
literal (n); the literal assembles as the same symbol type as the relatively
addressed operand.

These instructions compare two values of the same length or symbol
type and use the results to determine program action.

Assembly Manual 4-31
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-32

The first referenced operand is compared to the second referenced
operand. The operands are compared as two's-complement (signed)
integers. If the first operand is arithmetically higher than (BH), higher
than or equal to (BHE), less than (BL), or less than or equal to (BLE) the
second, program control transfers to the specified local label. If the
result of the comparison is "false", execution continues with the next
sequential instruction.

If a 1-byte or 6-byte literal or constant value needs to be compared, it
must be defined as a symbol using an HTLY or DEFH directive (1-byte
value), or an FTLY or DEFF directive (6-byte value).

If an operand is to be compared with a literal or constant (n) value of
zero, it is more efficient and clearer to use another instruction that is
designed for comparisons with zero (such as BHZ or BLZ); for example,
use

BHZ CTR1,QUIT

rather than

BH CTR1,0,QUIT

Note that half tally and triple tally symbols (types h and f) cannot be
tested directly against a constant or literal (type n). Since this is an
arithmetic comparison, there is only one way to handle this condition:

* Define the constant or literal as a half tally or triple tally in the
program; for example:

FLIT FTLY 0,X'F23AB3FC' Define a constant of type F

BL FPO,FLIT,OK

Assembly Manual \ 6973-1
Confidential and Proprietary to The Ultimate Corp.

L

BH/BHE/BL/BLE

6973-1

BLE
BHE
BH
BL
BLE
BL
BLE
BHE
BH
BLE
BL
LABL1

DO,D1,LABL1
DO, D1, LABL1
DO,D1,LABL1
D0,D1, LABL1
FPO,FP1, LABL1
FPO,FP1, LABL1
H8,H9, LABL1
H8,H9, LABL1
H8,H9, LABL1
TO, T4, LABL1
TO, T4, LABL1
EQU *

Assembly Manual

Confidential and Proprietary to The Ultimate Corp.

4-33

Instructions

BHZ
BHEZ
BLZ
BLEZ

Syntax

Description

4-34

The BHZ (branch higher than zero) instruction compares one specified
operand against zero and branches to a local label if the operand value is
higher than zero. BHEZ (branch higher/equal zero) compares and
branches if the value is higher than or equal to zero.

The BLZ (branch lower than zero) instruction compares one specified
operand against zero and branches to a local label if the operand value is
less than zero. BLEZ (branch lower/equal zero) compares and branches
if the value is lower than or equal to zero.

BHZ d,] BHEZ d,] BLZ d,] BLEZ d,]
BHz f|] BHEZ f,1 BLZ f] BLEZ {1
BHZ h,l BHEZ h,l BLZ h,] BLEZ h,]
BHZ tl BHEZ t,1 BLZ t,] BLEZ t,1
d double tallies

f triple tallies

h half tallies

t tallies

1 the label (in the current frame) of the branch destination if the result
of the test is true

The BHZ, BHEZ, BLZ, and BLEZ instructions compare a tally-type symbol
against zero to determine program action. These instructions are faster
and clearer than the equivalent BH, BHE, BL, and BLE instructions used
with a literal of zero as one of the operands.

The value at the effective address is tested against zero to determine
program action. If the result is "true", program control transfers to the
specified local label. If the result is "false", then execution continues
with the next sequential instruction.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

®

BHZ/BHEZ/BL/ZBLEZ

6973-1

BHEZ
BHEZ
BHEZ
BHEZ
BHZ
BHZ
BHZ
BHZ
BLEZ
BLEZ
BLEZ
BLEZ
BLZ
BLZ
BLZ
BLZ
LABL1 EQU

D4, LABL1
FP1,LABL1
H8, LABL1
T4, LABL1
D4, LABL1
FP1,LABLl
H8, LABL1
T4, LABL1
D4, LABL1
FP1,LABL1
H9, LABL1
T4, LABLL
D4, LABL1
FP1, LABL1
H8, LABL1
T4,LABL1

*

Assembly Manual

Confidential and Proprietary to The Ultimate Corp.

4-35

Instructions

BL
BLE

BLZ
BLEZ

BNZ

4-36

The BL instruction branches if an operand value is lower than another.
The BLE instruction branches if an operand value is lower than or equal
to another. See the BH instruction for details.

The BLZ instruction branches if an operand value is less than zero. The
BLEZ instruction branches if an operand value is less than or equal to
zero. See the BHZ instruction for details.

The BNZ instruction branches if an operand value is not zero. See the BZ
instruction for details. '

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

BSL

BSL

Syntax

Description

6973-1

The BSL (branch subroutine location) instruction stores the address of
the next sequential instruction in the return stack and branches
unconditionally to a specified subroutine location.

BSL 1
BSL m
BSL n,m

1 the label (in the current frame) of the subroutine

m mode-id (external entry point), which defines a frame number and
offset for a subroutine located outside the current program frame

n,m n specifies the entry point (0-F) and the m is a mode-id

The BSL instruction is used to branch to an internal or external

subroutine when a return to the main program after the conclusion of the
subroutine is desired.

If a mode-id format is used, the m operand may be a globally defined
symbol of type M in the PSYM file, or it may be defined with a DEFM
assembler directive (either within the local program or in an INCLUDEd
program).

The BSL instruction first stores the return address where program
execution will continue after returning from the subroutine. The address
is stored in the next available return stack entry, which is always pointed
to by the return stack pointer (RSCWA). Then RSCWA is incremented by
four, to point to the next available entry. (This return address is the
location, less one, of the instruction following the BSL.)

Next, the BSL instruction resolves the effective address of the label or
mode-id by modifying the runtime program counter (R1). Program
control is then transferred to that address.

Note that the same subroutine can be called either locally from within the
frame or externally by establishing an entry point. When calling a
subroutine in the same frame that happens to have an externally
established entry point, the BSL executes slightly faster if the local label
is used instead.

Assembly Manual ' 4-37
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-38

Note:

Because of the word alignment requirement on software
machines, if data follows the BSL instruction, it must fill out a
full word or the called subroutine must account for the
possible extra filler byte. For example:

BSL CRLFPRINT
TEXT C'1234',X'FF'
LOAD 5

In the above case, there are an odd number of bytes in the text
string, but the LOAD code will begin on the next even address,
leaving a 1-byte hole which the subroutine must deal with.
(CRLFPRINT, an Ultimate system subroutine, guarantees
execution at the next even address after text on software
machines, by use of the ID RSA instruction, see ID RSA, listed
in this section, for details.)

If the instruction causes more than eleven entries in the return stack, the
Debugger is entered with a Return Stack Full trap condition. In this
case, the first entry in the stack is overwritten with the location of the
instruction causing the abort.

See also the RTN instruction to return from a subroutine.

Note: The subroutine return stack is part of the PCB and is described
in Chapter 3.
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

BSL

Example of defining an external mode-id:

EXTS DEFM 10,500 Define a constant of type M as
CMNT * entry point #10 in frame 500.
BSL EXTS Transfers control to FID 500,
CMNT = e.p. 10, at offset 21 (X'15")
CMNT * on firmware machines. Returns
CMNT * when subroutine executes RTN.

Example of a local/external subroutine:

FRAME 500
EP EXT.S Entry point for external call
CMNT * in branch table at start of
CMNT * prog

‘ BSL EXT.S Local call of same subroutine

EXT.S EQU * Subroutine local label
(body of subroutine)
RTN
C
6973-1 Assembly Manual 4-39

Confidential and Proprietary to The Ultimate Corp.

Instructions

BSL*

Syntax

Description

4-40

The BSL* (branch subroutine location indirect) instruction

stores the address of the next sequential instruction in the return stack
and branches unconditionally to the location referenced by the specified
operand.

BSL* t

t tally symbol, which contains the branch destination address
(subroutine's mode-id)

The BSL* instruction performs the same function as a LOAD t instruction
followed by a BSLI instruction.

On firmware machines, BSL* is a macro that loads the accumulator (TO)
with the current content of the t operand, and then executes the BSLI
instruction. T1 is also destroyed because of sign-extension in loading
the accumulator. On software machines, the same operation may occur
without affecting TO or T1. Therefore, the contents of the accumulator

are not guaranteed to be in a predictable state after execution of a BSL*
instruction.

See BSLI and BSL for more details about how subroutine branches
operate.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

/?/ R

Ny

(

BSLI

BSLI

Syntax

Description

6973-1

The BSLI (branch subroutine location, indirect) instruction stores the
address of the next sequential instruction in the return stack and
branches unconditionally to the location specified in TO of the PCB.

BSLI

The BSLI instruction operates identically to the BSL instruction, except
that the subroutine address is variable and is obtained from the low-
order two bytes of the accumulator, T0, instead of from an operand.

TO must contain the branch destination mode-id (entry point in the high-
order 4 bits and FID in the lower-order 12 bits), which can be loaded
into it from a local label, an external label or by converting an ASCII
string.

See the BSL instruction for details on calling subroutines.

ALIGN * Ensure TABLE is word-aligned
TABLE EQU ~* Start of table
MTLY 0, SUB1 Define subroutine exits

MTLY 7,SUB4

SRA R15,TABLE Set to start of table
INC R15,CTR1 Index into table
LOAD R15;TO Load Tally from table
BSLI * Call subroutine
CMNT * Return here when subroutine
CMNT * executes RTN
Assembly Manual 4-41

Confidential and Proprietary to The Ultimate Corp.

Instructions

BSTE

Syntax

Description

4-42

The BSTE (branch string test equal) instruction compares one string to
another (character by character) until a specified delimiter is reached,
then branches to a local label if the strings are equal.

BSTE r,r,n,l

r address registers (RO-R15) that contain the virtual address of the two
strings to be compared

n constant or literal (symbol type n) that specifies the delimiting value
(usually a system delimiter)

1 the label (in the current frame) of the branch destination if the result
of the test is true

The BSTE instruction compares two strings and uses the result to
determine program action.

Two different registers should be used to reference the strings, since
unpredictable results may occur if both register operands refer to the
same register.

The two address register operands are incremented by one before the
initial comparison is made.

The character addressed by the first operand is tested as a 1-byte logical
field against that addressed by the second operand. In a logical
comparison, the lowest character is decimal 0 (X'00") and the highest
character is decimal 255 (X'FF).

This operation is repeated until one of the following conditions is met:

* One character is logically higher than or equal to the third operand,
but the other is not. BSTE terminates with the strings considered
unequal.

» Both characters are logically higher than or equal to the third operand.
BSTE terminates with the strings considered equal.

Note: The terminating characters need not be the same, as long as

they are both higher than the third operand. =

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

BSTE

» The two characters are both less than the third operand, and are not
equal. BSTE terminates with the strings considered unequal.

+ BSTE R4,RS5,X'FE',LABEL

Before instruction: R5

)»4'——§

B C XFE' 2 B C XFF
Compare starts " 4

Strings are considered equal, and a branch is taken to LABEL.

* BSTE R4,R5,X'FC',LABEL

D

Before instruction: 4

> -—

Fis
2

Compare starts * 4

B C XFE' BCDS56

Strings are considered unequal, and no branch is taken.

* BSTE R4,RS5,X'FC',LABEL

s

Before instruction: 4 R5

> —

B C XFE
Compare starts 4 4

Strings are considered unequal, and no branch is taken.

Assembly Manual 4-43
Confidential and Proprietary to The Ultimate Corp.

Instructions

N
B U ‘\“&», //‘
The BU instruction branches if an operand value is not equal to another
operand value. See the BE instruction for details.
\‘*‘@./'

4-44 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

BZ/BNZ

BZ
BNZ

Syntax

Description

6973-1

The BZ (branch on zero) instruction compares a relatively addressed
operand to zero, and transfers control if the value is zero. The BNZ
(branch on not zero) compares and transfers control if the value is not
zZero.

BZ d,1 BNz d,1
BZ f,] BNz f,]
BZ h,l BNZ h,l
BZ tl BNZ t,l
d double tallies

f triple tallies

h half tallies

t tallies

1 the label (in the current frame) of the branch destination if the result
of the test is true

The BZ and BNZ instructions compare a symbol value against zero and
use the result to determine program action. These instructions are faster
and clearer than the equivalent BE and BU instructions used with a literal
of zero as one of the operands.

The referenced operand is compared to zero, and if the value is zero (BZ)
or not zero (BNZ), program control transfers to the specified local label.
Otherwise, execution continues with the next sequential instruction.

BNZ D4, LABLl
BNZ FP1,LABL1
BNZ H8,LABL1
BNZ T4,LABL1
BZ D4,LABLl
BZ FP1,LABLl
BZ H8,LABLl
BZ T4,LABLl

LABL1 EQU *

Assembly Manual 4-45
Confidential and Proprietary to The Ultimate Corp.

Instructions

CHR

Syntax

Description

4-46

The CHR directive reserves one byte of storage and sets up the symbol
in the label field to be of type ¢ (Character).

{symbol} CHR n

symbol if present, appears in the label field of the instruction and
specifies the symbol name of the character; if not present, CHR
simply stores the value of the operand at the current program
location counter as a single byte

n specifies the constant or literal value to be assigned to the
character symbol.

The CHR assembler directive sets up a symbol of type ¢ (character).

One byte of storage is reserved for the symbol value.

CHR AM

STAR CHR C'*!

S

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

CMNT

(CMNT

Syntax

Description

6973-1

The CMNT (Comment) directive places a comment line in the source
program.

CMNT text

text any characters up to a maximum that fit on one program line

The CMNT assembler directive is an alternative to the use of an asterisk
(*) in the label field; both specify that the source line is a comment and
is to be ignored by the assembler.

The first word in the text is treated as an operand by MLIST or the Editor
AS format. It may be desirable to put a dummy operand (such as "*")
after CMNT to force the real comment to be entirely in the comment field
of the listing.

This directive can be used to align comments in the MLISTing. It can
also be used to define a label as an alternative to the "label EQU *" form.

LABEL1 CMNT THIS LINE HAS NO DUMMY OPERAND
LABEL2 CMNT * However, this and following
CMNT * lines of comments are
CMNT * aligned.
Assembly Manual 4-47

Confidential and Proprietary to The Ultimate Corp.

Instructions

DEC (Data)

INC (Data)

Syntax

Description

4-48

The DEC (decrement) instruction used with a symbol operand
decrements the relatively addressed operand value. The INC (increment)
instruction used with a symbol operand increments the relatively
addressed operand value. (For information on decrementing and
incrementing a register, see the next topic.)

DEC d INC d
DEC d,d INC dd
DEC d,n INC d,n
DEC f INC f
DEC f.,f INC ff
DEC h INC h
DEC h,h INC h,h
DEC t INC t
DEC t,n INC t,n
DEC t,t INC t,t

d double tally
f triple tally
h half talliy

t tally

numeric literal

=

If operand 1 is a tally or double tally, operand 2 may be a numeric
literal; the literal assembles as the same symbol type as operand 1.

If only one operand is specified, the value at the effective address is
decremented or incremented by one. The DEC and INC instructions with
one symbol operand are always preferable to the logically equivalent
forms "DEC operand,1", or "INC operand,1", which are slower
instructions that also use more object code.

If two operands are specified, the value at the effective address of
operand 1 is decremented or incremented by the value at the effective
address of operand 2. The two operands must be of the same length.

Assembly Manual 6973-1
Contfidential and Proprietary to The Ultimate Corp.

DEC/INC (Data)

The DEC and INC instructions with two operands are used whenever a
value needs to be decremented or incremented by a value other than 1.

Symbols of type F and H cannot be directly decremented or incremented
by a constant or literal (type N). The FTLY or HTLY directive should be
used to define a local constant to use as the second operand.

Caution PCB fields associated with address registers (RnDSP,
RnFID, RnDSPFID) should not be modified with these
instructions. Instead, use the INC or DEC register
instructions (see next topic), or the SETR, SETDSP, or MOV
instructions to change the register’s virtual address.

Arithmetic overflow or underflow cannot be detected. For example, if a
DEC instruction is used with a two-byte tally, the value -32768
(X'8000") wraps around to 32767 (X'7FFF).

DEC D4

DEC FP1l

DEC HS8

DEC T4

INC DO

INC FP1

INC HO

INC TO

DEC D4,DO0

DEC FP1,FPO0

DEC H8,HO

DEC T1,TO

INC RECORD,DO

INC FP1,FPO

INC HS8,HO

INC T1,TO
6973-1 Assembly Manual 4-49

Confidential and Proprietary to The Ultimate Corp.

Instructions

DEC (Register) e

INC (Register)

Syntax

Description

4-50

The DEC (decrement) instruction used with a register operand
decrements the virtual address in the register. The INC (increment)
instruction used with a register operand increments the virtual address in
a register.

DECr INCTr
DEC r,n INC r,n
DEC r,t INC 1t

r address register
n constant or literal
t tally

The first operand must be a register. If a second operand is present, it
may be a tally (type t) or a constant or literal (type n).

If only a register operand is specified, the virtual address in the address S
register is decremented (DEC) or incremented (INC) by one. These

instructions are always preferable to the logically equivalent forms "DEC

r,1", or "INCr1,1", which are slower instructions that also use more

object code.

If two operands are specified, the virtual address in the address register
is decremented (DEC) or incremented (INC) by the second operand
value.

If the resultant address crosses a frame boundary, and the register is in
unlinked mode, the debugger is entered with a trap condition
indicating CROSSING FRAME LIMIT.

If the resultant address crosses a frame boundary, and the register is in

linked mode, the system may attempt to normalize the address,

depending on instruction type and machine type. (Normalization of an

address means to resolve the address to an offset (up to the size of a

frame) within a particular frame. This may require traversing several

frames in a linked set, reading the link fields to determine subsequent o

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

DEC/INC (Register)

frames in the chain, until the required number of bytes have been
skipped over.)

For the single-operand INC and DEC register instructions, the system
always attempts to normalize the resultant address if it crosses a frame
boundary.

For the double-operand instructions, the address may be left
unnormalized on firmware machines. In this case, normalization does
not take place until the next instruction is executed which references data
via the address register. In order to guarantee attachment and
normalization after incrementing or decrementing an address register by
the value of another operand, a FAR instruction can be used after the INC
or DEC instruction. This may be useful when an XMODE routine has
been set up to handle end-of-linked-chain conditions.

If the beginning of a linked set of frames is reached during the
normalization process, the assembly debugger is entered with a trap
condition indicating Backward Link Zero.

If the end of a linked set is reached during the normalization process, the
XMODE (exception mode identifier) tally is tested to determine the
program action:

» If XMODE is non-zero, a subroutine call is executed to that address, to
allow special handling of this condition (usually linking additional
frames).

+ If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Incrementing an address register by a negative value has the same effect
as decrementing it by a positive value, and decrementing a register by a
negative value has the same effect as incrementing it by a positive value.

DEC RI1S
INC RI15
DEC R15,TO
INC R15,TO

6973-1 Assembly Manual 4-51
Confidential and Proprietary to The Ultimate Corp.

Instructions

DEFx

Syntax

4-52

The DEFx (define symbol) assembler directives are used to define a local
symbol for a program or to associate additional symbol names and types
with previously defined symbols or their locations.

The following set of formats (Set 1) are used to define symbols in terms
of literal base register and offset values:

symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol

DEFB r,n
DEFC r,n
DEFD r,n
DEFF r,n
DEFH r,n
DEFS r,n
DEFT r,n
DEFX r,n
DEFRA n,n (n,n = byte offset,FID)

The following set of formats (Set 2) are used to define symbols in terms
of previously-defined symbols:

symbol
symbol
symbol
symbol
symbol
symbol
symbol

symbol
symbol
symbol
symbol
symbol
symbol
symbol

DEFC r,c r,h

DEFD r,d T,S r,t
DEFF r,d r.f T,S r,t
DEFH r,C r,h

DEFS r,d r,f r,S Tt

DEFT r,d r,s .t
DEFX r,d r,sS r,t
DEFC h

DEFD t
DEFF d S t
DEFH ¢

DEFS f

DEFS d t

DEFT d f S

The tally (t) and double tally (d) forms overlay the existing ??

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

DEF

Description

6973-1

The following special formats (Set 3) are used to define one symbol as a
subfield of another:

symbol DEFDL s (overlays lower DTLY of storage reg.)
symbol DEFHL t (overlays lower HTLY of a TLY)
symbol DEFHU t (overlays upper HTLY of a TLY)
symbol DEFTL d (overlays lower TLY of a DTLY)

symbol DEFTL s (overlays lower TLY of storage reg.)
symbol DEFTM s (overlays middle TLY of storage reg.)
symbol DEFTU d (overlays upper TLY of a DTLY)
symbol DEFTU s (overlays upper TLY of storage reg.)

The symbol type being defined is the last character of the instruction
mnemonic (such as B in DEFB) or the next to last character (such as T in
DEFTL).

The DEFx directives define a local symbol as one of the following
symbol types:

a address

b bit

c character

d double tally

f triple tally

h half tally

S storage register

t tally

X external register
upper half-tally of tally (HU)
lower half-tally of tally (HL)

upper tally of double tally or storage register (TU)
lower tally of double tally or storage register (TL)
middle tally of storage register (TM)

lower double tally of storage register (DL)

To define a mode-id, see the separate topic DEFM. To define literals,
see the separate topic DEFN.

Assembly Manual 4-53
Confidential and Proprietary to The Ultimate Corp.

Instructions

——

4-54

The first set of formats (Set 1) is used to define a symbol for the first
time in a program. These formats have two operands:

r an address register (RO-R15 or synonym such as IS, IR, or TS)

n the offset; may be a symbol or expression that resolves to an offset.

The second set of formats (Set 2) is used to associate additional symbol
names with previously-defined symbols. These formats may have one
or two operands:

r an address register (RO-R15 or synonym such as IS, IR, or TS)

¢ character

d double tally
f triple tally
h half tally

s storage register

t tally

The third set of formats (Set 3) is used to associate additional symbol
names to subfields of previously-defined symbols. These formats have
one operand that identifies the symbol type of the original symbol:

d double tally
S storage register

t tally

In essence, a symbol may be defined in terms of:

+ a base register and offset:
DEFT R2,11

+ apreviously defined symbol having a register and offset:
DEFT CTR17

 apreviously defined symbol having a register and offset, with a
different register:

DEFT R13,CTR17

This is useful when accessing a table via different registers.

The symbol in the label field of the DEFx directive is created with the
specified type.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

DEF

Initial Symbol The initial definition of a symbol is used to generate a symbol in TSYM

Defipi.tion Vvs. to define a location that was previously unknown and assign a symbol
Additional name to it

Symbol
Definitions »
Additional definitions are used to create new symbols based on an

existing symbol in PSYM or TSYM. Either the symbol type, the
displacement, or base register of the new symbol is different from that
of the original symbol, and a new symbol name is assigned as well.

All initial symbol definitions require two operands: register and
displacement.

For additional definitions, the symbol used as the operand provides the

displacement and base register. The register can be overridden by
specifying the optional register operand.

Evaluation of if only one operand is present, it must be a previously-defined symbol.

Operands In this case, both the base register and the offset of the new symbol are
taken from those of the previously-defined symbol. This form is used
to refer to a symbol by a different type code; for instance, to refer to a
half tally as a character.
If two operands are present, the first indicates the base register. The
second operand indicates the offset of the symbol's address, where the
unit of offset depends on the symbol type.
Type Offset Unit
bit (type B) bits
character (type C) bytes
half tally (type H)
tally (type T) words (16 bits each).
double tally (type D)
triple tally (type F)
storage register (type S)
external register (type X)
6973-1 Assembly Manual 4-55

Confidential and Proprietary to The Ultimate Corp.

Instructions

4-56

The second operand may be viewed as an expression which is evaluated
on the basis of the following rules:

» If the first character is the '*' character, it is assumed to refer to the
location counter.

« If the first character is a number or the character 'X' followed by a
single quote, it is assumed to be a literal or literal expression (e.g.,
79, or X'A' or 3+2).

« If the first character is any other legal character, it is assumed to be a
symbol name.

2*L0C evaluated as 2 times the offset in
symbol LOC

LOC*2 evaluated as the label 'LOC*2'

* evaluated as the current location

counter (bytes)

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

— —

DEF

(Using Whenever the second operand begins with the "*" character, the
Location expression is evaluated using the following formula:
Counter as
Second
Operand *{n}{+/-m}

* the current location counter as maintained by the assembler.

n measurement of units, in bits, with which to express the
location; valid values are 1, 4, 8, 16, or 32. If omitted, it's
assumed to be 8 (in bytes). Thus, a location counter value of
X'10' equates as follows:

*x1 X'80' (bits)
*8 X'10' (bytes)
*16 X'8' (TLY or tally units)
*32 X'4' (DTLY or double tally units)
+/-m value by which to increment or decrement the resultant value of
n}; 'm' mus recede a plus (+) or minus (-) sign. For
*{n}; 'm' must be preceded by a plus (+)) F
example:
ORG X'10'
LABL1l DEFT *16
{ LABL2 DEFT *16+1
would define one TLY at byte offset X'10" (word X'8') and
another at byte offset X'12' (word X'9").
The 'n' value must be preset for certain DEF directives:
DEFB *1
DEFH * *8 is assumed for *)
DEFT *16 all require TLY offsets in
DEFD *16 all instructions
DEFF *16
6973-1 Assembly Manual 4-57

Confidential and Proprietary to The Ultimate Corp.

Instructions

Defines a bit with register 15 as the base
register, and an offset of 7 (low order bit
in the byte addressed by the register)

Defines a tally with register 15 as the base
register, and an offset of 7,which
references bytes 14 and 15 (a tally)
displaced from the virtual address in R15.

Defines a double tally with register 15 as
the base register, and an offset of 7,
which references bytes 14-17 displaced
from the virtual address in the AR; note
this is not the same as a displacement of 7
double tallies, as used for immediate
symbols; see the Immediate Symbols
topic in Section 2 on the Assembler.

Defines T2T1 as a four-byte field that
overlays the fields T2 and T1 (both tallies)
in the accumulator

Redefines the six-byte accumulator FPO
as a storage register FPOS

Defines a 6-byte external register located
X'10A’ bytes off of R15.

Defines a symbol that references the FID
field of storage register SR20

Defines a symbol that references the
displacement field of SR20

LOWBIT DEFB R15,7
XCURS DEFT R15,7
NXTFID DEFD R15,7
T2T1 DEFD RO, T2
FPOS DEFS FPO
R1XR.15 DEFX R15,R1DSP
SR20FID DEFDL SR20
SR20DSP DEFTU SR20
4-58 Assembly Manual

6973-1

Confidential and Proprietary to The Ultimate Corp.

DEF

SVLOC ORG X'90!

*
% Kk K Kk Kk Kk kK Kk kK Kk Kk Kk Kk Kk k Kk Kk k ok ok ok ok ok ok

*

CTR.A DEFT R1,X'48"
CTR.B DEFT R1,72
CTR.C DEFT R1,CTRO
CTR.E DEFT R1,*16

AAAKKAAAKAKRAKRAAKA AR KA AR AKXk dkkkkxkxk

% %k Kk Kk Kk ok ok ok k %k %k %k %k k %k %k Kk %k %k Kk ok ok ko ok ok

*

CTR.EUA DEFH R1,2*CTR.E
CTR.EUB DEFH R1,**1
CTR.EUC DEFH R1,*8

*

CTR.ELA DEFH R1,1+CTR.EUA
CTR.ELB DEFH R1,*+1
CTR.ELC DEFH R1,*8+1

* SET LOC CTR FOR DEFS

* TLY DSP=HTLY DSP

* X'90' / 2

* CTRO DEF'D ASSUMING
* X'48' TALLY DSP--
NOT VALID IF CTRO

IS MOVED IN A

LATER RELEASE!

* UPPER HTLY OF
* CTR.E

* LOWER HTLY CTR.E
* FORM: *{+m}
* FORM: *{n} (+m)

Ak khkA kXA Ak kAkhkhkhkhkhkkhkkkhkhkkkkxkxkx

*

SRX DEFS FPO

SRXN DEFS RO, FPO

*

* REG OPERAND INFERRED

* FROM FP0O SYMBOL

* REG OPERAND EXPLICITLY
DEFINED

6973-1

1Ultimate recommends not hard-coding assumptions such as the CTRO location; if
CTRO were redefined, the program may not work properly after assembly with the

new PSYM definition

Assembly Manual

4-59

Confidential and Proprietary to The Ultimate Corp.

Instructions

DEFM

Syntax

Description

4-60

The DEFM (Define Mode-id Symbol) directive defines a local symbol as
a modal entry point, or mode-id.

symbol DEFM n1,n2
symbol DEFM n1,m

nl entry point number; must be in the range 0-15 (0-X'F')
n2 frame number

m previously defined mode-id

A mode-id consists of a four-bit entry point number and a twelve-bit
frame number (FID). The DEFM directive is used whenever a mode-id
symbol is needed in a program.

A symbol defined by the DEFM directive can be used in the BSL and ENT
instructions to transfer control to the specified location. It can also be
used in the MOV and LOAD instructions, when it acts as a literal value.
Depending on implementation, the assembler may actually generate a
literal at the end of the object code with the value defined in the DEFM
instruction.

EXT.SYM DEFM 3,133 Defines EXT.SYM as entry point 3 in
frame (decimal) 133 (for firmware
machines, this is location 7 in frame).

MYFRAME DEFM 0,510 Defines MYFRAME as entry point
0 in frame 510

ENTRY0 DEFM 0,MYFRAME Defines ENTRYO as entry point O.
ENTRY1 DEFM 1,MYFRAME Defines ENTRY1 as entry point 1.

ENTRY1S DEFM 15,MYFRAME Defines ENTRY1S as entry point
15.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

«

DEFN

DEFN

The DEFN (define constant symbol) directive defines a local symbol as a
constant.

Syntax symbol DEFN n

n constant value which may be generated in one or two bytes (a byte
or tally).

Description The DEFN directive defines the value as a constant symbol (type n). A
constant can be used in exactly the same manner as a literal value. With
many instructions (on certain implementations), reference to a constant
or literal causes a literal field to be generate at the end of the object code.

Constants have a maximum length of four bytes, giving a numeric range
of -2,147,483,648 to 2,147,483,647 (X'80000000' to X'7FFFFFFF).
Constants more than two bytes long, however, must be explicitly
defined as double tallies via the DTLY directive.

For more information about literal values, see the section on Literals in
Chapter 2.

Notes: Ifthe value is to be used to define the location of a variable (an
offset) within an ABS frame, the DEFN directive should not be
used. The DEFNEP or DEFNEPA directives should be used
instead, to define the word or byte offset relative to an entry
point rather than an explicit offser.

Due to an assembler requirement in software machines, a
symbol of type n defined via DEFN, DEFNEP, or DEFNEPA (but
not other symbol types) when used as an offset must be
preceded by "0+" or the appropriate "n+". The symbol offset
may not be used alone. For example,

TEN DEFN 10
CTR DEFT R7, 0+TEN (0+ required)
CTR1 DEFT R7,CTR (0+ not required)

6973-1 Assembly Manual 4-61
Confidential and Proprietary to The Ultimate Corp.

Instructions

Se—— — — —

Using DEFN to refer to a constant value by a symbolic name rather than
its actual value tends to make programs easier to read, easier to modify,

and less prone to errors.

MAXNUM DEFN 20

XCONST DEFN X'8010°
DELIM DEFN C'.'
CCONST DEFN C'ABCD'
DCCONST DTLY C'ABCDEF'

BH TO,MAXNUM, ERR
MOV XCONST,CTR30
MOV DCCONST, D1
MCC DELIM,R15

References 2-byte literal
References 2-byte literal
DTLY must be defined

Immediate value

4-62 Assembly Manual

6973-1

Confidential and Proprietary to The Ultimate Corp.

DEFNEP
DEFNEPA

Syntax

Description

6973-1

DEFNEFP/DEFNEPA

— S — S —

The DEFNEP (define entry point) and DEFNEPA (define entry point
aligned) directives define the offset of a program entry point that is
machine independent. DEFNEP defines the byte offset to the designated
entry point. DEFNEPA defines the word offset (word-aligned) to the
designated entry point (that is, rounded up if necessary to the next even
address if entry points begin on odd bytes, as they do on firmware
machines).

label DEFNEP ep#
label DEFNEPA ep#

label local label to assign to the entry point
ep# entry point number relative to the beginning of the framw

The DEFNEP and DEFNEPA directives are used to define machine-
independent address displacement (offset) values, which can then be
referenced in ADDR or DEFx directives.

These directives are necessary to ensure that an assembly language
program operates correctly on any Ultimate implementation, since data
in ABS frames may wind up in different locations on different
implementations. This is because the object code for a firmware
machine, for instance, may be smaller than that generated by assembling
the frame for a software machine. If a frame contains both code and

data, then, the locations of entry points and data may vary between
machines.

The EP.ADDR directive can be used to refer directly to the entry point of
the frame. To refer to data which is not an entry point, however, it must
be placed either (1) at a "safe" location via an ORG directive, or (2)
immediately after the last entry point of the frame, which has been
defined by a DEFNEP or DEFNEPA directive. An ADDR or DEFx directive
may then be used after DEFNEP or DEFNEPA to reference the data.

The specified label is defined in the program's TSYM file as a symbol of
type n. The value of the symbol is derived from the entry point number,

Assembly Manual 4-63
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-64

as the correct offset for that entry point based on the implementation for
which the program is assembled.

For example, the following directive sets up a literal or constant (n)
symbol at the next available location following entry point 2:

DATAl DEFNEP 3

This defines DATA1 as symbol type n with a value of 7 (offset to byte 7)
on a firmware machine. On a software machine, this same directive
could result in DATA1 having a value of X'E' (offset to byte 14) if the
FRAME directive ORGs to byte 2 and four bytes are reserved for each EP
instruction.

The above DEFNEP-defined symbol may be used with an ADDR directive
to define a location immediately following entry point 2. For example,
given the following program with data:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

C

DEFNEP/DEFNEPA

6973-1

FRAME 511

*

*

*

0 EP ! LABELO

1 EP ! LABEL1

2 EP 'LABELZ2
CMNT * The next available location is 007
CMNT * on firmware machines

MYTXT TEXT C'Externally referenced string'

The following lines could be placed in another program to address the
label MYTXT:

TXTDSP DEFNEP 3 Define byte offset to EP 3
HERTXT ADDR TXTDSP, 511

which references the same data as:

HERTXT ADDR 7,511 (on a firmware machine)
or
HERTXT ADDR X'E',511 (on a 1400 machine)

When both programs are assembled for the same machine, they execute
properly. No source code has to be changed to assemble the two frames
for another machine.

If the data following the last entry point must be word aligned (a tally or
greater), the above technique does not work since it produces an ADDR
pointing to the first byte at or beyond the specified entry point. In this
case, the DEFNEPA directive must be used instead to point to a word
aligned variable following the last entry point. For example:

DATA2 DEFNEPA 3

defines DATA2 as a symbol of type n with a value of 4 on firmware
machines (the first even address at or following entry point 3 is X'008'

Assembly Manual 4-65
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-66

which is word offset X'004'). On a software machine, however,
DATAZ2 could have a value of 7.

The above DEFNEPA could be used with an ADDR directive to define a
tally immediately following entry point 2. For example, given the
following frame with a tally MYWORD defined at the next word offset:

FRAME 511
*
*
*
0 EP ' LABELO
1 EP !LABEL1
2 EP 'LABELZ2
CMNT * The next available location is 007
CMNT * on firmware machines
ALIGN

MYWORD DEFT R1,*16

The following lines could be placed in another frame to address the
label MYWORD:

WRDDSP DEFNEPA 3 Define word offset to EP 3
HISWRD ADDR 2*WRDDSP, 511

which references the same data as:

HISWRD ADDR 8,511 (on a firmware machine)

since WRDDSP has the value of the 4th word (2*4 = 8).

On a software machine where the first entry point starts at location 2
and each EP instruction generates 4 bytes of object code, DEFNEPA
would give WRDDSP a value of X'E' (14), and the ADDR directive

would be equivalent to:

HISWRD ADDR X'E',511

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

1“*’\;» ,,."

DEFNEP/DEFNEPA

6973-1

SYMB1
ADDR.NW
ADDRS .NW

TBL
TLY1
TLY2

TBL
HTLY1
HTLY2

DEFNEPA 11

DEFS R6, 0+SYMB1
DEFT R6, 3+SYMB1
DEFNEPA 11

DEFT R6, 0+TBL
DEFT R6,1+TBL
DEFNEP 11

DEFH R6, TBL
DEFH R6,2+TBL

word offset X'C' to entry point 11
defines 3 words of storage at loc.
defines a tally immediately after
ADDR.NW, or 3 words past entry

point

word offset X'C' to entry point 11
tally at X'18' (2 * x'C")!
tally at X'1A' (2+2 * X'C")!

byte offset to entry point 11
half tally at X'17'!
half tally at X'19'1

I Note that the explicit locations in hex apply only to firmware machines
and are included merely as examples. By using DEFNEPs, the
appropriate offset is automatically assembled on all Ultimate
implementations.

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-67

Instructions

DIV
DIVX

Syntax

Description

4-68

The DIV and DIVX (divide) instructions are used to divide the contents of
the accumulator by the value of the operand. The DIV form addresses
the accumulator field DO); the DIVX form addresses it the field FPO.

DIvd DIvx d
DIVX

DIV h DIVX h

DIVn DIVX n

DIVt DIVX't

d double tally

f triple tally (for DIVX only)

h half tally

n numeric literal); if used, a 2-byte field is assumed (a range of -
32,768 through +32,767). If a 1-byte literal (half tally) is being
referenced, it should be defined separately using the HTLY directive.
If the literal is outside the range of -32,768 through +32,767, a 4-
byte literal must be separately defined using the DTLY directive, or a
6-byte literal via the FTLY directive.

The n form may generate a 2-byte literal at the end of the program
when assembled for certain machines.

t tally

If the value of the operand is zero, the results of the division are
unpredictable.

The DIV instruction divides the operand value into the 4-byte field in the
accumulator called DO. If the operand is a half tally (1 byte) or tally (2
bytes), it is internally sign-extended to form a 4-byte field before the
divide operation takes place. The integer result is stored in DO, and the
integer remainder in D1. The division does not affect the original
operand or the other sections of the accumulator.

The DIVX form divides the operand value into the 6-byte field called
FPQ. If the operand is a half tally (1 byte), tally (2 bytes), or double

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

DIV/DIVX

6973-1

tally (4 bytes), it is internally sign-extended to form a 6-byte field before
the divide operation takes place. The 6-byte integer result is stored in
FPO, and the 6-byte integer remainder is stored in the 6-byte field called
FPY. The division does not affect the original operand, or the other
sections of the accumulator.

In division involving negative numbers, the sign of the remainder
follows that of the dividend, so that multiplying the quotient by the
divisor and adding the remainder yields the original dividend.

These instructions cannot detect arithmetic overflow or underflow.

3/2 = 1 remainder 1
-3/2 = -1 remainder -1
3/-2 = -1 remainder 1
-3/-2 = 1 remainder -1

DIV D4

DIV HS8

DIV T4

DIVX D4

DIVX FP1

DIVX H8

DIVX TO

DIV 11
Assembly Manual 4-69

Confidential and Proprietary to The Ultimate Corp.

Instructions

DTLY
FTLY
HTLY
TLY

Syntax

Description

4-70

The DTLY (double tally), FTLY (full (triple) tally), HTLY (half tally), and
TLY (tally) directives reserve storage and set up the symbol in the label
field to be of a specific symbol type. They can also be used to only
reserve storage if there is no entry in the label field.

{symbol} DTLY n
{symbol} FTLY n,n
{symbol} HTLY n
{symbol} TLY n

symbol optional label name; if present, it stores the symbol name as
an item in the TSYM file with the specified value.

n value of the symbol as an alphabetic, numeric, or
alphanumeric value. In FTLY instructions, the first n gives
the value of the upper two bytes; the second n gives the value
of the lower four bytes.

The DTLY directive is used to define a double tally (four bytes), and to
store a 4-byte value .

The FTLY directive is used to define a triple tally (six bytes), and to store
a 6-byte value.

The HTLY directive is used to define a half taily (one byte), and to store
a one-byte value.

The TLY directive is used to define a tally (two bytes, which also make
up one "word"), and to store a 2-byte value.

The TLY, DTLY, and FTLY directives force the locaton counter to be
aligned on an even-byte boundary (word alignment).

The HTLY directive can only be used when the program's location
counter is less than X'100'; otherwise it will generate a TRUNCation
error message. This is because the generated symbol would have an

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

C

DTLY/FTLY/HTLY/TLY

offset of more than X'FF. The TLY, DTLY, and FTLY directives can
appear anywhere in the source program.

Due to an assembler requirement, the value stored by the FTLY directive
must be specified as two values: an upper 2-byte value and a lower 4-
byte value. The programmer must be especially careful with negative

values. For example:

Equivalent value

Instruction Hex Decimal
X.10 FTLY 0,1 000000000001 1
FTLY 0,12345 000000003039 12345
ABCD FTLY 0,10000000 000000989680 100000000
FTLY 2,X'540BE400" 0002540BE400 10000000000
FTLY X'FFFF',X'FFFFFFFC' | FFFFFFFFFFFC -3

For information on defining a storage register, see the SR directive.

The specified symbol label, if any, is added to the TSYM file. The value
of the symbol is stored at the current program counter location, word-
aligned if necessary, as described above.

6973-1 Assembly Manual |

Confidential and Proprietary to The Ultimate Corp.

4-71

Instructions

EJECT -

The EJECT (eject page) directive ejects the current page and begins a new
page in an MLISTing of the program in which the EJECT directive
appears. This directive is put into effect only if the MLIST command has

the J option.
Syntax EJECT
Description The EJECT directive is used to start a new page of an MLIST for a

program, where the MLIST command specifies the J option.

If the MLIST command does not contain the J option, the directive has no
effect.

4-72 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

END

END

Syntax

Description

6973-1

The END (end program) directive indicates the end of a source program.

The END directive has no effect on assembly, and is treated as a
comment line (see CMNT directive).

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-73

Instructions

ENT

Syntax

Description

4-74

The ENT (external branch) instruction transfers program control
unconditionally to a specified location external to the current program
frame.

ENTm
ENT n,m

m mode-id (external entry point), which defines a frame number and
offset for a routine located outside the current program frame

n entry point (O-F or symbol); offset specified by m is replaced by the
value of n .

The ENT instruction is used to unconditionally branch to an external
routine when no subroutine return is needed to the current program
frame. The ENT instruction resolves the effective address of the mode-
id and transfers program control to that address.

The external mode-id must be defined as a globally defined symbol of
type M in the PSYM file, or it can be defined with a DEFM or MTLY
Assembler directive (either within the local program or in an INCLUDEd
program).

If the n operand is specified, the mode-id is used only to define the
frame. Conventionally, mode-ids used only to define a frame are given
entry point values of zero; for example,

MYSUBS DEFM 0,511

For information on internal branches, see the B instruction. For
information on transferring to subroutines, see the BSL instruction.

EXTM DEFM 10,500 Define mode-id (type m symbol)
CMNT * at entry point 10 in frame 500.
ENT EXTM Transfers control to FID 500,
CMNT * entry point 10.
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

ENT*

ENT*

Syntax

Description

6973-1

The ENT* (external branch indirect) instruction branches unconditionally
to the location referenced by the specified operand.

ENT* t

t tally symbol, which contains the branch destination address.

The ENT* instruction performs the same function as a LOAD t instruction
followed by an ENTI instruction.

The contents of the accumulator are not guaranteed to be in a predictable
state after execution of an ENT* instruction. On firmware machines,
ENT* is a macro that loads the accumulator (TO) with the current content
of the t operand, and then executes the ENTI instruction. T1 is also
destroyed because of sign-extension in loading the accumulator.
However, on software machines, the same operation may occur without
affecting TO or T1.

For more information about how external branches operate, see ENTI
and ENT.

Assembly Manual 4-75
Confidential and Proprietary to The Ultimate Corp.

Instructions

ENTI

The ENTI (external branch indirect) instruction branches unconditionally
to the location specified in TO of the PCB.

Syntax ENTI

Description TO must contain the branch destination mode-id (the high 4 bits are the
entry point and the low 12 bits are the FID), which may be loaded into it
from a local label, an external label, or by converting an ASCII string.

The ENTI instruction operates identically to the ENT instruction, except
that the address is variable and is obtained from the low-order two bytes
of the accumulator, TO, instead of from an operand.

R15 points to a hexadecimal ASCII string :
v

Ix |7 |1 |F |E |AM]|

BSL CVXR15S CVXR15 is a subroutine that
CMNT * converts the ASCII string

CMNT * value to a binary value in the
CMNT * accumulator FPO (that is, TO)
ENTI * External branch to TO location
CMNT * (frame 510, entry point 7).

4-76 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

EP

Syntax

Description

6973-1

The EP (entry point) instruction defines an entry point at the start of a
program frame.

EP 1
1 local label.

The EP instruction is used to define an entry point at the start of a
program frame. Up to 16 entry points can be defined. Although the
assembler may not flag an error if more than 16 entry points are defined,
there is no way to specify the 16th (number 15) in either the ENT or BSL
instruction.

Although typically EP generates the same object code as B (branch), EP
guarantees branch code of a fixed length on each Ultimate implemen-
tation and, moreover, is required by some Assemblers in order to
identify program entry points.

The EP instruction immediately resolves the effective address of the local
label and defines the entry point as a symbol of type L (label).

FRAME 471
.
*
ORG O
0 EP FIRSTEP
1 EP SECONDEP
2 EP THIRD EP
3 EP FOURTHEP
4 EP FIFTHEP
Assembly Manual 4-77

Confidential and Proprietary to The Ultimate Corp.

Instructions

EP.ADDR

Syntax

Description

4-78

The EP.ADDR (entry point address) directive specifies an entry point
address and creates a storage register containing that address.

label EP.ADDR n,n
label EP.ADDR m
label EP.ADDR n,m

label name of symbol to use in referring to storage register

n,n virtual address to reserve for the symbol. The first operand
specifies the entry point number (0-15) in the frame. The
second operand specifies the frame number (FID)

m mode-id symbol which contains the virtual address

n,m entry point to be used with the FID from the mode-id m .

The EP.ADDR creates a storage register in unlinked format. containing

the specified entry point address. It also creates a symbol (type S) that

referss to the storage register. Six bytes of storage for the address are
reserved at the current location counter (word-aligned).

An EP.ADDR directive, instead of an ADDR directive, should be used to
point directly to entry points. The reason is that entry roints cannot be
assumed to be of the same length on all machines. The EP.ADDR
directive, which uses entry point numbers rather than actual
displacements, generates the correct byte offset based on the machine
for which the program is being assembled.

For example, on some systems, two bytes of object code are generated
for each entry point. On other systems, four bytes of object code are
generated for each entry point. If an ADDR directive is used to point to
entry point 9 in frame 278 on one system, the instruction would be

ADDR 19,278

On other systems, the equivalent ADDR instruction would be:

ADDR 38,278

However, The EP.ADDR directive is the same on all system types.

EP.ADDR 9,278

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

N

EP.ADDR

6973-1

MD999
001 M
002 1
003 00a

LAB1 EP.ADDR 1,10
LAB2 EP.ADDR MD999

LAB3 EP.ADDR 1,MD99

PSYM entry

specifies entry point 1 in frame 10
these directives are equivalent

Assembly Manual

4-79

Confidential and Proprietary to The Ultimate Corp.

Instructions

EQU

Syntax

Description

4-80

The EQU (equate) directive sets up an equivalence between the symbol in
the label field of the statement and the operand.

label EQU n
label EQU symbol

label symbol name being equated to an operand
n constant or literal value

symbol redefined symbol name;current program location counter (*) is
often specified as the operand.

The EQU directive is normally used for two purposes:

+ To define a new name for an existing symbol (already defined in
PSYM or via DEFX, DEFN, or DEFM

» To give a label to a location within the program.

If the operand is a literal or constant or the current location counter
symbol (*), the label symbol is stored as a symbol of type L. If the
operand is another symbol, the label symbol is created as an exact
duplicate of the operand symbol.

Note: [tis recommended that DEFN directive be used to define
constant values, and to give names to numeric or character
values:

OFFSET DEFN 3
MAXNUM DEFN X'40'

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

EQU

LOOP EQU *

TITLE EQU *-1

COUNT EQU CTR21

creates a symbol LABEL, with the
current location as its value. Thisis a
useful way of defining labels, since
the label is on a line by itself, and is
therefore clearer.

creates a symbol TEXTS, with the
current location less one as its value.
This is useful when an SRA
instruction is to address a text string,
and it is necessary to address the
location one less than the start of the
string.

creates a symbol COUNT which is
equivalent to CTR21.

creates a symbol PTR which is
equivalent to storage register 20.

creates a symbol X which is
equivalent to the value of the attribute
mark, X'FE'. The symbol AM is
predefined in PSYM as a constant
(type N). X is also made a type N
symbol, since its definition is copied
directly from that of AM.

PTR EQU SR20
X EQU AM
6973-1 Assembly Manual

4-81

Confidential and Proprietary to The Ultimate Corp.

Instructions

FAR

Syntax

Description

4-82

The FAR (force attachment of register) instruction attaches an address
register (if not already attached), and thereby normalizes its virtual
address.

FAR 1,n
r address register RO-R15 or synonym such as IS, IR, or TS
n constant or literal value of of O or 4

0 guarantees attachment and normalization

4 guarantees attachment and normalization, and sets R15
(unlinked) to the link field of the frame to which r points after
normalization (r=R15 is permissible).

other values of n are undefined.

The FAR instruction has the following uses:

+ for compatibility between implementations
* to normalize the virtual address in a register
+ toset R15 to the link field of the frame

+ with XMODE for exception processing

On firmware machines, address registers are typically attached only
when data is referenced through the register (via indirect or relative
operands) or when either an INC/DEC Rn or a FAR is executed. The FAR
is therefore necessary for correct program operation on firmware

machines whenever the program may not execute properly if the register
is not attached.

On software machines, however, all address registers for a process are
typically automatically attached and remain attached as long as the
process is running.

Consequently, the FAR instruction should be coded where needed for
compatibility between firmware and software machine implementations.
The "FAR r,0" instruction generates no object code when assembled for
systems that keep all registers attached.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

. \%h ’//,‘

FAR

—— — ——

The FAR instruction is typically used to ensure that the virtual address in
a register is normalized before using it in a comparison with another
virtual address (without regard to the data actually addressed) or
MOVing it to a storage register.

Virtual addresses in storage registers must be normalized before
comparison, since the same location within a set of linked frames may
be addressed in terms of several different frame-displacement
combinations. If a virtual address is unnormalized, perhaps due to an
"INC r,t" instruction, it may fail a "BE r,s" or "BE s,s" comparison with
another (normalized) virtual address even though it logically addresses
the same location.

For example, on a system having 512-byte frames, if a register such as
R14 is incremented by X'200', the displacement is inaccessible until the
address is normalized (if a linked frame; otherwise, it is a Crossing
Frame Limit error).

Note: As an alternative, you can always move a storage register into
an address register before comparing addresses:

See also Section 3, Addressing and Representing Data, and the topic on
Understanding Registers.

Another use of the FAR instruction is to set Address Register 15 to the
link field of a frame; that is, to byte 0, unlinked. R15 is set up in this

manner if the "mask" byte (the second operand) has a value of X'04".
Other mask byte values are reserved for future use.

INC R14,ID.DATA.SIZE INCs R14 by the size of one data
frame, forcing a chase of the
forward link

FAR R14,X'04°' ensures normalization of R14, and
setup of R15 in the unlinked
format to byte 0 of the frame
referenced by R14

Assembly Manual 4-83
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-84

Finally, the FAR instruction can be used in conjunction with the XMODE
field of the PCB to perform exception processing. For example, you
may want to build a table in a set of linked frames and need to ensure
that enough frames are available. To avoid an abort to the debugger,
you can set up XMODE with the mode-id of a subroutine that links
another frame onto the set, and execute another FAR instruction each
time another entry is added to the table.

Note however, that (1) when an XMODE routine is entered because of a
Forward Link Zero condition, the address register involved is not
guaranteed to be pointing to the same location in all implementations,
and (2) no XMODE routine is guaranteed to work when the register is
incremented by more than one frame past the end of a linked set of
frames.

MOV ADDIT, XMODE

INC R14,ENTRYSIZE

FAR R14,0 forces attachment of R14

ZERO XMODE automatically calls ADDIT if a
forward link zero condition would
occur while normalizing the
virtual address in R14

The above example works in cases such as when R14 starts out pointing
to (logical) byte 1 of the first frame, ENTRYSIZE is an integral divisor of
ID.DATA.SIZE (such as 10, 20, 50, etc.), and ADDIT always sets R14 to
(logical) byte 1 of the new frame it attaches before exiting. Also note
that any reference to data off R14, not just a FAR instruction, may cause
the XMODE routine to be entered; the FAR is then not needed unless it is
the last instruction in the table building routine.

MOV ISBEG, IS Set IS to data start
INC IS,CTR30 Increment by length
FAR 1IS,0 Ensure normalized SR for future
MOV IS, ISEND tests.
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

FAR

MOV SR20,R14
FAR R14,X'04°'
LOAD R15;H1

MOV OSBEG, 0S

INC 0S,4000
MOV 0S, OSEND

FAR 0S,0
MOV 0OS, OSEND
BE OS,OSEND, SUCCESS

MOV OSEND, R15

BE 0OS,R15, SUCCESS

Get data pointer
Attach R14, set R15 to links
Load nncf

example of comparison of virtual
addresses

skip forward at least one frame
this may leave an unnormalized
address in OSEND if executed on a
machine that does not normalize
0S when the "INC 0§,4000"
instruction is executed.

ensure normalization

save normalized address

0S and OSEND are equal; if the
FAR instruction had not been
included, the compare would have
found the values unequal

An alternative way to normalize
OSEND.

R15 normalized and the compare
is equal.

6973-1 Assembly Manual

4-85

Confidential and Proprietary to The Ultimate Corp.

Instructions

FILLCHR

Syntax

Description

4-86

The FILLCHR (fill character) instruction initializes a data segment with a
particular character (typically to clear frames).

FILLCHR rl, r2, fill.character.

r2 must be one byte past rl. The byte pointed to by r2 at the start of the
instruction is initialized with the fill character, which is then propagated
for the number of bytes specified in TO.

This instruction expects that TO (the accumulator low order two bytes)
has been set up for the maximum string length to move.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

P

\
R
S

.

FRAME

FRAME

Syntax

Description

6973-1

The FRAME (define frame) directive defines the frame number into
which the object code from the program is to be loaded.

FRAME n

n frame number (in decimal, unless explicitly specified as a
hexadecimal number).

The FRAME directive is normally the first statement in the program, but
always must precede any statements that generate object code. For more
information about how the Assembler assembles the program object
code, see Section 2, The Assembler.

The FRAME directive also sets the assembler's location counter to the
first byte for code to be assembled into via an ORG directive. On
firmware machines, this zero'th entry point is byte X'001", but on
software machines, it may be X'002' for word alignment.

If it is necessary to use byte zero of the object code, the FRAME directive
must be followed by an appropriate ORG, then the value of byte zero,
and then the entry points, as usual. Note that EP is word-aligned when
assembled for systems that require it.

FRAME 511
ORG 0
CHR Cr'x*1
STAR EQU R1
EP 'ENTRYO
EP 'ENTRY1
Assembly Manual 4-87

Confidential and Proprietary to The Ultimate Corp.

Instructions

FTLY

4-88

The FTLY directive defines a triple tally (48 bits, or 6 bytes). See the
DTLY directive for details.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

HALT

(HALT

Syntax

Description

6973-1

The HALT (halt program) instruction interrupts execution of the program
and unconditionally branches to the assembly debugger.

HALT

The HALT instruction is primarily used as a debugging tool. Due to
software machine requirements, the HALT instruction may not be used in
a branch table at the beginning of a program. HALT can be used
anywhere else in a program frame, but should not be used to take the
place of an EP instruction. The NEP instruction should be used to
indicate an invalid entry point; this creates the same effect as HALT, but
guarantees that the object code is the same length as that for EP on each
system type.

The HALT instruction affects only the current process; it does not halt the
entire multi-user system.

HALT interrupts execution of the current program and transfers control
to the assembly debugger at entry point 11 (HALT). Program execution
can be resumed only by specifying an address with the debugger "G"
command. Alternatively, the program execution can be terminated with
the "BYE", "END", or "OFF" commands.

See Section 6, The Assembly Language System Debugger, for more
information about using the debugger.

HALT

Assembly Manual 4-89
Confidential and Proprietary to The Ultimate Corp.

Instructions

HTLY

The HTLY directive defines a half tally (8 bits, or one byte character).
See the DTLY directive for details.
4-90 Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

ID.B

(ID.B

Syntax

Description

6973-1

The ID.B (table branch) instruction defines the unconditional branches in
an internal branch table.

IDB 1

1 the label (in the current frame) of the branch destination

The ID.B instruction is used instead of a B instruction to define branch
tables (branch on a number used as an index) within a frame. It
guarantees that the object code for each branch instruction has the same
length. Otherwise, some assemblers may produce shorter code for
some branch instructions than for others. The length of an ID.B
instruction's object code in bytes, for any given implementation, is the
value of the symbol ID.B.SIZE in the PSYM file.

The ID.B instruction immediately resolves the effective address of the
local label and transfers program control to that address.

MUL ID.B.SIZE ADJUST TO BRANCH TABLE
BSL !GOTO (* INDEXED BY TO)
* GOTO WILL RETURN TO ONE OF THE FOLLOWING BRANCHES
ID.B BLNK vt
ID.B BLNK ‘6!
ID.B BSPACE t4¢
Assembly Manual 4-91

Confidential and Proprietary to The Ultimate Corp.

Instructions

ID.RSA

Syntax

Description

4-92

The ID.RSA (return stack adjust) instruction ensures that the return stack
contains a valid address for subroutine returns.

IDRSA r

r address register that points to the top stack entry.

The ID.RSA instruction should be inserted in subroutines that modify a
return address to ensure correct operation on both firmware and
software machines. This allows for instruction alignment (on a word)
for software machines, which require word alignment. Any subroutine
that modifies the return address of the stack must ensure that the
modified address points to an even byte for these machines.

On firmware machines, the ID.RSA instruction assembles as a null.
However, on software machines, ID.RSA assembles as a macro which
ensures that the return address on the stack is word-aligned. Itis
important to insert this instruction in the appropriate spots even though it
appears as a null on firmware machines.

ID.RSA assumes that an address register has been set up pointing to the
top stack entry.

For example, assume that R14 is pointing to the first byte of the top
return stack entry (the first byte of the FID portion). The following

instruction should be inserted before returning from the subroutine:

ID.RSA R14

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

INC

The INC instruction increments a data value or a register operand. See
the DEC/INC (Data) or DEC/INC (Register) instruction for details.

6973-1 Assembly Manual 4-93
Confidential and Proprietary to The Ultimate Corp.

Instructions

INCLUDE

Syntax

Description

4-94

The INCLUDE (include program) directive causes the specified program
to be "included" in the program being assembled.

INCLUDE program-name

program-name name of an assembled program in the current user
account and file

The main reason for the INCLUDE directive is to be able to place a set of
shared definitions in one item, and then use the definitions in any other
program. Typically, variables and mode-id's that are common to a set
of programs are placed in a single program for inclusion during
assembly. The advantage of this method is that the definitions are not
duplicated in every program that uses them. Such duplicate definitions
can lead to errors and are in general more difficult to maintain than if
they were all in one program.

The format of the INCLUDEd program is identical to that of any other

program, though typically it consists of only DEFx (definition)
directives.

If the INCLUDEd program does generate code, it may be necessary to
save and restore the location counter of the current program around the
INCLUDE statement, as shown in the example below:

SAVELOC EQU *

INCLUDE TABLEl
INCLUDE TABLE2
ORG SAVELOC Reset location counter

Assembly Manual 6973-1
Conlfidential and Proprietary to The Ultimate Corp.

r'{‘ ™

L O

=
()

INP1B/INP1BX

INP1B

INP1BX

Syntax

Description

6973-1

The INP1B and INP1BX instructions replace the character addressed by
the register operand with the next character (byte) from the
asynchronous channel input buffer.

INPIB 1 INPIBXr

r address register (R0-R15) whose virtual address is the destination of
the byte being read.

The INP1B and INP1BX instructions are used to input data from the
asynchronous channel input buffer into buffers in memory. These
instructions read the next character from the asynchronous channel input
buffer and place it in the location addressed by the register. The byte
previously in that location is overlaid. If the input buffer is empty, the
process 1s suspended until a character is received from the asynchronous
channel.

Characters transmitted by the channel are automatically queued in the
terminal input buffer for the process, until some configuration-
dependent maximum number of characters is received. If this condition
occurs, no further data characters are accepted from the channel; if an
attempt is made to enter more characters, a bell character (X'07') is
output for each attempted input character until the condition is cleared.

The INP1B instruction also tests to determine if the character should be
echoed to the terminal. The INP1B instruction does not echo control
characters (X'00' through X'1F'); it echoes non-control characters
unless the bit NOECHO is set.

On most machines, the INP1BX instruction never echoes characters on
the asynchronous channel. However, some types of terminals on some
systems perform local echoing. Because of this, it is important to use
the OUT1BX instruction when attempting to echo characters read via
INP1BX. Otherwise, characters may be echoed twice.

The INP1B instruction actually consists of several instructions that test

whether a character should be echoed, and execute an OUT1B instruction

Assembly Manual 4-95
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-96

if so. The following example shows an INP1B instruction and its macro
expansion on a firmware system:

INP1B R13
+INP1BX R13
+BCL R13,X'20',=L002

+BC: R13,X'20',=L002,3
+BBS NOECHO, =L002
+OUT1B R2

=L002 +EQUX *

Caution: The INP1B and INPIBX instructions are not compatible with
the TERM-VIEW and character translation features of the
Ultimate operating system. To ensure that your programs
are compatible with these features, use the system
subroutines READ@IB or READX@IB. These subroutines are
described in Chapter 5, System Subroutines.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

LAD

LAD

The LAD (load absolute difference) instruction loads the difference
between a specified address register and a specified storage register into
the accumulator (T0).

Syntax LAD1,s
LAD s,

r address register (symbol type r for RO-R15)

s storage register (symbol type s).

Description The LAD instruction computes the difference between the virtual
addresses of the two register operands, and stores the absolute
(unsigned) value in the low-order two bytes of the accumulator, TO.
The result is unsigned, and may be in the range 0-65,535. The other
sections of the accumulator are unchanged .

The LAD instruction can be used to compare virtual addresses of data
only when the addresses can be guaranteed to be one of the following:

* in the same frame, or

* in contiguously linked frames no more than 65,535 bytes apart.
The following actions are taken:

1. If the virtual addresses are in the same frame when normalized,
they can be compared directly.

2. If the frame numbers of the virtual addresses of the registers are
unequal, the instruction compares correctly if the addresses are:

* in a set of contiguously linked frames, and

+ the addresses differ by no more than 65,535.

3. If the virtual addresses are in different unlinked or non-
contiguously linked frames, or more than 65,535 bytes apart in a
contiguously linked set, the results of the instruction are undefined.

It is therefore strongly recommended that the LAD instruction be used
with registers in the same unlinked frame . In order to determine

6973-1 Assembly Manual 4-97
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-98

address differences (or string lengths) under other conditions, use either

the SIDC or MIIDC type of instruction.

LAD BMS,BMSBEG

LAD BMSBEG,BMS

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

«

LOAD
LOADX

Syntax

Description

6973-1

LOAD/LOADX

B ——— — S— ———

The LOAD (load accumulator) instruction loads a relatively addressed
operand value into the accumulator. The LOAD form loads into a 4-byte
field (DO); the LOADX form loads into a 6-byte field (FPO).

LOADd LOADX d
LOADX f
LOAD h LOADX h
LOAD m LOADX m
LOADn LOADX n
LOADt LOADX t

d double tally
f triple tally (for LOADX only)
h half tally
m mode-id

n numeric literal); if used, a 2-byte field is assumed (a range of -
32,768 through +32,767). If a 1-byte literal (half tally) is being
referenced, it should be defined separately using the HTLY directive.
If the literal is outside the range of -32,768 through +32,767, a 4-
byte literal must be separately defined using the DTLY directive, or a
6-byte literal via the FTLY directive.

The m and n form may generate a 2-byte literal at the end of the
program when assembled for certain machines.

t tally

The LOAD instruction loads the operand value into the 4-byte field in the
accumulator called DO. If the operand is a half tally (1 byte) or tally (2
bytes), it is internally sign-extended to form a 4-byte field before the
load takes place.

The LOADX form loads the operand value into the 6-byte field in the
accumulator called FPQ. If the operand is a half tally (1 byte), tally (2
bytes), or double tally (4 bytes), it is internally sign-extended to form a
6-byte field before the load takes place.

Assembly Manual 4-99
Confidential and Proprietary to The Ultimate Corp.

Instructions

The load operation does not affect the other sections of the accumulator.

LOAD D4
LOAD H8
LOAD RETIX
LOAD T4
LOADX D4
LOADX HO (sign-extend HO into FPO)
LOADX TO (sign-extend TO0 into FPO)
LOADX FP1
ORG X'100' what is this??
=QRETIX +:Q RETIX (macro expansion showing
literal generation of RETIX
mode-id, X'1007"')
4-100 Assembly Manual 6973-1

Conlfidential and Proprietary to The Ultimate Corp.

(MBD

Syntax

Description

6973-1

MBD

The MBD (move binary number to decimal) instruction converts a binary
value into its equivalent decimal ASCI string value, and stores the
resulting string, starting at the address +1 of the register operand.

MBD dr MBD n,d,r
MBD fr MBD n.fr
MBD h,r MBD n,h,r
MBD tr MBD n,t,r
d double tally

f triple tally

h half tally

t tally

r address register (RO-R13) whose virtual address +1 is the starting
location at which the converted value is to be stored; neither R14 nor
R15 should be used.

n integer that specifies the minimum number of characters that the
output string will contain

Note: No section of the accumulator should be used as the binary
field operand (the d, t, h, or f symbol operand).

The register operand is pre-incremented by one before storing the first
byte (character) of the converted string. After the first character is
stored, the register operand is incremented by one, and the next
converted character is stored at that location. This operation is repeated
until the entire string has been stored.

The length of the string is determined by the format used in the
instruction as follows:

» The first set of MBD formats does not create leading zeros; the field is
variable length. MBD, unlike MBX (which is described in the next
topic) generates one zero for an operand value of zero.

» The second set of MBD formats stores a fixed length field, padded
with leading zeros if necessary. The field is allowed to exceed the
specified length if its precision requires this.

Assembly Manual 4-101
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-102

The incrementing process could generate an address that crosses a frame
boundary. If the register is in linked mode, it is normalized and attaches
to the next frame in the linked chain. If the end of the linked set is
reached during the normalization process, the following action is taken:

+ If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

+ If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

If the register is in unlinked mode and the frame boundary is reached,
the assembly debugger is entered with a trap condition indicating
Crossing Frame Limit.

This instruction destroys the current contents of:
BKBIT
T4
DO
D1
R14
R15
FPX ('f operand forms only; same as SYSRO)
FPY ('f operand forms only; same as SYSR1)
SYSRO ('f operand forms only; same as FPX)

SYSR1 ('f' operand forms only; same as FPY)

MBD is a subroutine call, not a primitive opcode; however, it has been
included as part of the instruction set for convenience.

For the first set of formats, the subroutine MBDSUB is called to convert
numbers of type h, t, and d (half tallies, tallies, and double tallies). The
subroutine MBDSUBKX is called for numbers of type f (triple tallies).

For the second set of formats, the subroutine MBDNSUB is called to
convert numbers of type h, t, and d (half tallies, tallies, and double

tallies). The subroutine MBDNSUBX is called for numbers of type f
(triple tallies).

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

| ¢
\ :
N

mMBD

— ——— m— N———— S —

The subroutine call can be coded directly, instead of being called with an
MBD instruction. See the macro expansions below, as well as the
chapter on System Software, which illustrate the subroutine interface.

Assume the following binary tally value is to be converted
0000 1000 1101 0010

This is equivalent to the following hexadecimal value:
X'04D2"

MBD converts that value to the following decimal ASCII string:
1234

The equivalent, character-for-character, hexadecimal ASCII string
value would be:

X'31 32 33 34°

Assuming VALUE is X'04D2', the following instructions would yield
different stored results:

Instruction Stored ASCII string
MBD VALUE,R9S 1234
MBD 8,VALUE,R9 00001234
6973-1 Assembly Manual 4-103

Confidential and Proprietary to The Ultimate Corp.

Instructions

4-104

The following examples show how a program can be coded to call the

subroutines directly:

Using MBD with minimum number of characters not specified:
MBD CTR1,R9

Calling subroutine directly:
LOAD CTR1
MOV R9,R15
BSL MBDSUB
MOV R15,R9

Using MBD with minimum number of characters specified:
MBD 4,CTR1,R9

Calling subroutine directly:

LOAD CTR1
MOV R9,R15
MOV 4, T4

BSL MBDNSUB
MOV R15,R9

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

{
L ;
y\sw/

N

MBX/MBXN

L.

MBX
MBXN

Syntax

Description

6973-1

The MBX (move binary number to hexadecimal) and MBXN instructions
each convert a binary value into its equivalent hexadecimal ASCI string
value, and stores the resulting string, starting at the address +1 of the
register operand.

MBX d,r MBXN n,d,r
MBX fr MBXN n,fr
MBX h,r MBXN n,h,r
MBX tr MBXN n,t,r
d double tally

f triple tally

h half tally

t tally

r address register (RO-R15) whose virtual address +1 is the starting
location at which the converted value is to be stored.

n integer that specifies the number of characters to convert

The MBX instruction uses the first operand to locate the rightmost digit
to be converted. It then uses HO, the low-order byte of the accumulator,
to determine the number of characters to convert and whether zero

padding is to be used for output. HO must be set up prior to executing
the MBX instruction.

The MBXN instruction is similar to MBX, except it first sets up HO with
the number of characters to convert specified in the instruction and with

zero padding. MBXN then executes the MBX instruction.

The MBX instruction assumes HO has been set up as follows:

Assembly Manual 4-105
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-106

Bit Contents
w
0 1 (set) pad string with leading zeros

O (unset) suppress leading zeros

4-7 | The number of ASCI hexadecimal digits to create. If O, the
instruction becomes a NOP. If greater than the number of
nibbles in the first operand, the results are undefined. If less
than the number of nibbles in the operand, the most
significant nibbles are skipped so that the conversion will

finish on the rightmost nibble.

Both MBX and MBXN destroy the current contents of HO. All of DO may
be affected, depending on machine type.

The MBX instruction converts a binary number to its equivalent ASCII
string value in hexadecimal. The length of the result string is
determined by the HO as follows:

+ Ifleading zeros are suppressed, the field is variable length. In this
case, MBX, unlike MBD, does not generate one zero for an operand
value of zero.

 If padding is specified, the field is a fixed length string, padded with
leading zeros if necessary. The field is truncated on the left, if the
specified length is exceeded.

The register operand is pre-incremented by one before storing the first
byte (character) of the converted string. After the first character is
stored, the register operand is incremented by one, and the next
converted character is stored at that location. This operation is repeated
until the entire string has been stored. When the instruction terminates,

the register points to the last byte moved. If no bytes are generated, the
register is unchanged.

The incrementing process could generate an address that crosses a frame
boundary. If the register is in the unlinked mode and the frame
boundary is reached, the assembly debugger is entered with a trap
condition indicating Crossing Frame Limit. If the register is in linked
mode, it is normalized and attached to the next frame in the linked chain.
If the end of the linked set is reached during the normalization process,
the following action is taken:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MBX/MBXN

condition.

+ If XMODE is zero, the assembly debugger is entered with a trap

condition indicating Forward Link Zero.

« If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this

0000 1000 1101 0010

X'04D2'

string value as follows:
04D2 (or X'30 34 44 327')
(different stored results:
Instruction
LOAD X'04'

MBX VALUE, RS

MBXN 2,VALUE,R9

Assume the following binary tally value is to be converted

This is equivalent to the following hexadecimal value:

Converting this value to its equivalent value as a hexadecimal ASCI
string would result in a character-for character conversion that yields a

Assuming VALUE is X'04D2, the following instrucdons would yield

Stored ASCII string

4D2

D2 (truncated)

MBXN 4,VALUE, R9 04D2

Additional examples:
MUL 3 multiply a value
STORE T4 store value in T4 to free accumulator
LOAD X'84"' for MBX: zero fill, convert 4 nibbles
MBX T4,0B convert value in T4 to ASCII hex
LOAD X'04' zero suppress, convert 4 nibbles
MBX FP2,R14
MBXN 4,CTR1,R9 zero-fill, convert 4 nibbles

6973-1 Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

4-107

Instructions

MCC

Syntax

Description

4-108

The MCC (move character to character) instruction stores the character

addressed by the first operand at the location addressed by the second
operand.

MCC c,c
MCC c,r
MCC n,r
MCCr,c
MCC r,r

c relatively addressed characters
n constant or literal values

r address registers

The MCC instruction copies a data character to a specified location.

The character addressed by the first operand is stored at the location

addressed by the second operand. The contents of the register operands
are unaffected.

Note: Halftallies (symbol type h) are not directly supported;

however, they can be equated to characters, then moved
accordingly.

MCC X'FE',R11

MCC AM,R11 same as previous example, except
uses the PSYM name for X'FE'

MCC R14,R15

MCC PRMPC,R15

MCC R15,PRMPC

MCC R15;C0,CHS8

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

C

MCI

MCI

Syntax

Description

6973-1

The MCI (move character to character, incrementing) instruction stores
the character addressed by the first operand at the address +1 of the
second operand. The extended MCI instruction, which uses a third
operand, repeats the move a specified number of times.

MCIc,r
MCI nr
MCI n,r,n
MCI n,r,t
MCIrr

¢ relatively addressed character
n constant or literal value

r register

t tally

The first operand references the character to be moved. The second
operand is an address register (RO-R15) whose virtual address +1 is the
location at which the character is to be stored.

The third operand is used with the extended form, and if present,
specifies the number of times the move is to be repeated.

In the extended form, the same character is moved and the second
operand is incremented until the terminating condition is met as specified
in the third operand. If the third operand is initially zero (0), a total of
65,536 bytes (all the same character) are moved and stored.

With both forms, address register 15 (R15) and the accumulator DO may
be used.

Note: Half tallies (symbol type h) are not directly supported,
however, they can be equated to characters, then moved
accordingly.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in

Assembly Manual 4-109
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-110

S — — — — S

e e ————— P

unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

« If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

+ If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The extended form of the MCI instruction sets up the conditions for the
MIIT instruction, which moves a string of bytes. See the MIIT
instruction for details.

MCI AM,R10,9 move nine attribute marks

+MOV R10,R15 code generated on firmware
+MCINR AM,R10 by extended form of instruction
+LOAD =T-1+9

+MIIT:RR R15,R10

Assembly Manual 6973-1
Conlfidential and Proprietary to The Ultimate Corp.

MDB/MXB

I

MDB
MXB

Syntax

Description

6973-1

The MDB (move decimal number to binary) converts a decimal ASCII
character to its equivalent binary value and accumulates it into a symbol
operand. The MXB (move hexadecimal number to binary) converts a
hexadecimal ASCII character to its equivalent binary value and
accumulates it.

MDB r,d MXBr,d
MDB r.f MXB r,f

MXB r,h
MDB r,t MXB r,t

d double tally

f triple tally
h half tally (MXB only)
t tally

r address register (RO-R15) that contains the virtual address of the
character to be converted

The first operand is an address register (RO-R15) which references the
ASCII character to be converted. The second operand specifies the
location into which the converted byte is to be accumulated and should
be initialized before this instruction is executed.

The character addressed by the first operand is assumed to be ASCII
decimal number (for MDB) or ASCII hexadecimal number (for MXB). If
not, the result of the instruction is unpredictable.

The MDB and MXB instructions are normally used in a loop, with the
value of the second operand initially set to zero. The ASCII characters
are accumulated according to the following formulas:

MDB: operand2 = operand2 * 10 + binary equivalent of operand1
MXB: operand2 = operand2 * 16 + binary equivalent of operandl

That is, each execution of the MDB or MXB instruction multiplies the
previous value in the second operand by 10 (MDB) or 16 (MXB), then

Assembly Manual 4-111
Confidential and Proprietary to The Ultimate Cormp.

Instructions

— m— E—
—e

adds in the binary equivalent of the character addressed by the first
operand.

Note: These instructions have been largely superseded by the
equivalent string conversion instructions MSDB, MSXB, MFD,

MFE, and MFX.
ZERO FPO Clear the accumulator
LOOP INC R15 Set on next character
BCNN R15,QUIT Done if not numeric character
MDB R15,FPO Convert one more character
B LOOP
4-112 Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Corp.

MFD
MFE
MFX

Syntax

Description

6973-1

MFD/MFE/MFX

These instructions convert ASCII character strings to binary. MFD
(move decimal to binary F-tally) and MFE (move European decimal to
binary F-tally) assume a string of decimal numbers; MFX (move
hexadecimal to binary F-tally) assumes a string of hexadecimal
numbers. The European version, MFE, interprets a comma as a decimal
point.

MFDr MFE r MFXr

r address register (RO-R15) whose byte address +1 is the starting
location of the ASCII decimal or hexadecimal character string to
convert.

The results of these instructions are accumulated into the accumulator
FPO as scaled integers; that is, the string is multiplied by 10 raised to the
power of the scaling factor.

Before executing an MFD, MFE, or MFX instruction, the accumulator
must be initialized as follows:

Address | Value

H7 scaling factor; contains the number of fractional digits
expected in the string. This must be in the range 0-15
(0-X'F)!. The converted value stored in FPQ is scaled
up if there are not enough decimal places in the string.

H6 contains the maximum number of digits allowed to the
left of the decimal point; typically used with fixed
length strings. A zero is equivalent to 256.

FPO any value in FPQ is multiplied by 10 (MFD and MFE) or
by 16 (MFX) before each byte is converted; the
converted byte is added to the previous value; initial

value is typically zero.

I'The high order four bits have special significance and are used by certain system
processes. See Table 4-2.

Assembly Manual 4-113
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-114

Table 4-2. Bits in H7 used

and MFX

by MFD, MFE,

Bit in H7

If Set Before
Instruction

If Set After Instruction

B63

B62

B61

B60

m—

no sign digit should occur;
if one is found, conversion
stops and NUMBIT is reset
to zero

previous processing
encountered a numeric digit

decimal point was
previously encountered and
the scaling factor is greater
than zero; digits currently
being processed are
considered fractions

indicates a minus sign was
found previously. If string
being converted currently
also contains a minus sign,
results are undefined.

—

at least one character was
processed

at least one numeric digit
has been found; if not,
NUMBIT is reset to zero

indicates a scaling factor
greater than zero and a
decimal point has been
encountered

indicates a minus sign has
been found; this bit is
copied to NEGBIT in the
ACF

The bits shown in Table 4-2 are used primarily when it is necessary to
separate the processing of an input string into multiple segments. The
bits are set, but never reset, by these instructions.

The conversion terminates when one of the following conditions occurs:

* When a non-numeric character (for MFD/MFE, a character not in the
range 0-9; for MFX, a character not in the range 0-F), is found. A

plus or minus character in the first position, or a decimal point in any

position, unless H7 = 0, are not terminating characters.

If the terminating character is a decimal point or is a system delimiter

(a character in the range x'FO'-x'FF"), the flag NUMBIT is set to 1;

Assembly Manual

Confidential and Proprietary to The Ultimate Corp.

6973-1

N

C

6973-1

MFD/MFE/MFX

otherwise, NUMBIT is zeroed. The register addresses the terminating
character. The result is scaled as specified by H7 even if the
conversion is stopped by a non-standard delimiter.

» When the number of characters specified by H6 have been converted.
NUMBIT is zeroed, and the register addresses the last character
converted. There is no scaling of fractional digits in this case.

» When the number of fractional digits specified by H7 have been
converted, and the next character is not a system delimiter or decimal
point. NUMBIT is zeroed, the result is scaled, and the register
addresses the terminating (unconverted) character.

FPQ is always scaled as specified by H7 (even if no digits have been
converted) except when the number of characters specified by H6 have
already been converted (case 2, above).

After execution, H6 is decremented by one for each digit found to the
left of the decimal point. When converting fixed length strings, then,
H6 can be compared to zero to determine if an entire string was
successfully converted.

If the string is null, or if no numeric characters are found before the
terminating character is encountered, NUMBIT is zeroed.

Note: If more than one decimal point is encountered, the results are
undefined.

The following are examples of MFD and MFX usage.

Instructon: ZERO T3

ZERO FP0Q
MFD R4
Before instruction: R4 |oo |oo |oooooooooooo |
H7 He FPO
A18 XFE
Move starts: _J 1 lﬁ) Ioo |oooooooooo12 I
After instruction: H7 He FPO
NUMBIT=1 FP0=18 (decimal)
Assembly Manual 4-115

Confidential and Proprietary to The Ultimate Corp.

Instructions

4-116

Instruction: Mov X'0200°',T3

ZERO FPO
MFD R4
Before instruction: R4 |02 |oo Ioooooooooooo l
H7 H6 FPO
A-18.75 XFF
Move starts: _J T |) |oo |FFFFFFFFF8AD I
After instruction:] H7 M6 FPO
NUMB;T=1 i FP0=1875 (decimal)
Note integer is scaled
Instruction : Mov X'0200', T3
ZERO FPO
MFD R4
Before instruction: R4 loz |oo [oooooooooooo J
H?7 He6 FPO
AM+1775QSM

Move starts: _* 1 l c2 I 00 |000000028550 l

After instruction:

H7 H6 FPO
NUMBIT=0 FP0=177500 (decimal)
non-numeric Note integer is scaled even though
character there were no fractional digits present
found
Instruction: Mov x'0000',T3
ONE FPO
MFX R4
Before instruction: R4 |oo |oo |ooooooooooo1 I
J H7 H6 FPO
701F7AM23
Move starts: __5 1 I cz|oo |ooooooo1o1F7 J
After instruction: H7 He FPO

NUMBIT=1 FP0=66039 (X'0000000101F7")
Note original value in FPQ is included

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

«

MFD/MFE/MFX

6973-1

Instruction: M™Mov Xx'0204', T3
ZERO FPO
MFX R4
Before instruction: R4 |02 | 04 | 000000000000 |
H7 He FPO
A701F7A23
Move starts:

After instruction:

_4 1 |Cz |ooJ 0000000001F7 '
H? He FPO

NUMBIT=0 FP0=507 (X'0000000001F7")
Maximum string length reached, therefore, result not
scaled

Assembly Manual 4-117
Confidential and Proprietary to The Ultimate Corp.

Instructions

MIC

Syntax

Description

4-118

The MIC (move incrementing character) instruction copies one character
from one location to another location.

MICr,c
MIC r,r

r address register (RO-R15)
¢ relatively addressed character

The first operand is incremented by one; the character addressed by the
incremented first operand is copied to the location addressed by the
second.

The MIC instructon is the same as an INCrement followed by an MCC
instruction.

Note: Halftallies (symbol type h) are not directly supported,
however, they can be equated to characters, then moved
accordingly.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

+ If the exception mode identifier XMODE is non-zero, a subroutine call

1s executed to that address, to allow special handling of this
condition.

 If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

v‘tv,ﬂ"

Mil

Mil

Syntax

Description

6973-1

The MII (move incrementing character to incrementing character)
instruction increments two register operands, then moves the character
addressed by the first operand to the location addressed by the second
operand. The extended MII instruction, which uses a third operand,
repeats the move a specified number of times.

MII 1,

MII r,r,n
MiII r,1,8
MII 1,1t

n constant or literal value
r address register (RO-R15)

S storage register
t tally

The first operand references the character to be moved. The second
operand is the location at which the character is to be stored. When the
instruction is executed, both register operands are incremented by one.
The character then addressed by the first operand is stored at the location
addressed by the second operand.

The third operand is used with the extended form, which moves a
string. If the third operand is a symbol type t or n, it specifies the
number of times the move is to be repeated. If the third operand is a

symbol type s, it specifies the location of the last byte in the string to be
moved.

In the extended form, the assembled code sets up the conditions for the
MIIR or MIIT instruction. With the MII r,r,s form, address register 15
(R15) is used. The third operand is moved into R15 and an MIIR
instruction is executed (see the MIIR instruction for details). With the
MII r,r,t and MII r,r,n forms, the accumulator DO is used. The third
operand is moved into DO and an MIIT instruction is executed (see the
MIIT instruction for details).

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the registeris in

Assembly Manual 4-119
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-120

p— —

||

unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

« If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

+ If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

MII R4,R6,T1
+LOADT T1 Tl is operand 3
+MIIT:RR R4,R6 R4,R6 are operands 1 and 2

MII R4,R6,SR20

+MOVSR SR20,R15 SR20 is operand 3
+MIIR:RR R4,R6 R4,R6 are operands 1 and 2
Assembly Manual 6973-1

Confidential and Proprietary to The Ultimate Comp.

MIID/MIIDC

MIID
MIIDC

Syntax

Description

6973-1

The MIID (move incrementing string to incrementing string, delimiter)
instruction increments two address register operands, then moves the
character addressed by the first operand to the location addressed by the
second operand. If the specified delimiter is not encountered, the
operation is repeated. The MIIDC instruction performs the same
operation, and also counts the number of characters moved.

MIID r,r,n MIIDC r,r,n
r address register (RO-R15)

n constant or literal value that specifies the mask of delimiters to use as
terminators for the string being moved

The first address register's virtual address +1 references the starting
character of the string to be moved. The second address register's
virtual address +1 is the location at which the starting character of the
string is to be stored.

The registers referenced by the first two operand fields are incremented
by one; the character addressed by the first register is stored at the
location addressed by the second. This operation is repeated until the
condition specified by the third operand is met.

The third operand, called a "mask byte" indicates the terminating
condition for the string move. The mask byte contains flags for four
system delimiters plus three user-specified characters; it also has a
match/nomatch flag that allows the move to terminate on either a match
or nomatch with the specified delimiters.

Each byte is tested after it has been copied, to see if it satisfies the
terminating condition.

Note: Because the delimiter test is done after the byte copy, the

virtual addresses of the registers are always incremented by at
least one.

Assembly Manual 4-121
Confidential and Proprietary to The Ultimate Corp.

Instructions

Mask Bytes

4-122

The MIIDC instruction uses the accumulator field TO to store the number

of characters moved. As each byte is moved, TO is decremented by one.

If TO was set to ZERO (0), its value after the instruction terminates is the
negative of the length of the string, including the delimiter. If TO was
set to ONE (1), its value after the instruction terminates is the negative of
the string length excluding the delimiter.

No other sections of the accumulator are affected.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

+ If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
conditon.

+ If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark SM X'FF'
attribute mark AM X'FE'
value mark VM X'FD'
sub-value mark SVM X'FC'

The other three characters are taken from the scan character symbols

SCO, SC1, and SC2. The contents of these symbols are specified by the
programmer.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

MIID/MIIDC

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string terminates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string terminates

on the first non-occurrence of a delimiter as specified by the setting of
bits 1-7.

For more information on the use of the mask byte, see the description of
SCO, SC1, and SC2 in Chapter 3.

Instruction: MIIDC R4,RS5,X'CO’ COPY UNTIL SM
mask byte: 1100 0000
Before instruction: R4 RS
i #
Data A3 ACon 1~2°~3"4"5"56"
1~B~C~ _~5~56"
After instruction: t *

Instruction: SRA R15,SC1l
MCC C' ',R15

MIID R4,R5,X'82" COPY UNTIL BLANK
maskbyte: 1000 0010
Before instruction: R4 RS
Data A~B Tt 1~2~3"~4"~5"6"
A 1°B~C~_~ ~eh .
After instruction: *
Assembly Manual 4-123

Confidential and Propristary to The Ultimate Corp.

Instructions

MIIR

Syntax

Description

4-124

The MIIR (move incrementing string to incrementing string, register)
instruction increments two address register operands, then copies the
characters addressed from one location to another.

MIIR r,r
r address register (R3-R14)

The first address register's virtual address +1 references the starting
character of the string to be copied. The second address register’s
virtual address +1 is the starting location where the string is to be
copied.

The address of the last byte of the string to be copied is taken from
address register 15 (R15).

The MIIR instruction first increments the registers referenced by the

operand fields by one; the character then addressed by the first operand
is stored at the location addressed by the second. A comparison is made

and this operation is repeated until the first operand's address equals that
of R1S.

Caution: RIS should not be used as one of the two operands since it is
referenced as the ending location of the string. The
assembler does not check for this condition, and if R15 is
used as an operand, the assembled instruction will not
execute properly at runtime.

If the first operand's address equals that of R15 at the start of this
instruction, no action takes place .

For all three registers (operands 1 and 2, plus R15), the incrementing
process could generate an address that crosses a frame boundary. If the
register is in unlinked mode, and the frame boundary is reached, the
assembly debugger is entered with a trap condition indicating Crossing
Frame Limit. If the register is in linked mode, it is normalized and
attaches to the next frame in the linked chain. If the end of the linked set

is reached during the normalization process, the following action is
taken:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MIIR

+ If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

 If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

SETR R1S,-1+ID.DATA.SIZE
MIIR R14,R13

C

6973-1 Assembly Manual 4-125
Confidential and Proprietary to The Ultimate Corp.

Instructions

MIT
MIITD

Syntax

Description

4-126

The MIIT (move incrementing string to incrementing string, TO
termination counter) instruction copies a specified number of characters
from one location to another. The MIITD (move incrementing string to
incrementing string, TO termination counter or delimiter) instruction
performs the same operation as MIIT, but terminates the move at a
specified number of characters or when a specified delimiter is
encountered.

MIIT r,r MIITD r,r,n
r address register (RO-R15)

n constant or literal value that specifies the mask of delimiters to use as
terminators for the string being moved

The first address register's virtual address +1 references the starting
character of the string to be moved. The second address register's
virtual address +1 is the location at which the starting character of the
string is to be stored. These instructons also expect that TO (the
accumulator low order two bytes) has been set up for the maximum
string length to move.

The mask byte contains flags for the four system delimiters plus three
user-specified characters; it also has a match/nomatch flag that allows

the move to terminate on either a match or nomatch with the specified
delimiters.

These instructions are usefui when a program expects that a frame
boundary may be crossed, to access the XMODE facility.

If TO is zero at the start of this instruction, no action takes place .

The registers referenced by the first two operand fields are incremented
by one; the character then addressed by the first operand is copied to the
location addressed by the second. TO is decremented by one. A
comparison is made after the copy to determine if one of the terminating
conditions has occurred. If not, this operation is repeated.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

N/

MIT/MIITD

— — p—

Mask Bytes

6973-1

The following are the terminating conditions:

« For the MIT instruction, when TO reaches zero. This instruction is
typically used to move a fixed length string.

+ For the MIITD instruction, when TO reaches zero, or when one of the
delimiter tests specified by the third operand (the mask byte), is
encountered. This instruction is typically used to move a delimited
string of unknown length to a location of preset maximum length. If
the string is longer than the destination location, the instruction
terminates without overlaying subsequent data.

Note: IfTOis not initially zero, the virtual addresses of the
registers are always incremented by at least one, because the
delimiter test is done after the byte copy.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

+ If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condidon.

+ If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark SM X'FF'
attribute mark AM X'FE'
value mark VM X'FD'
sub-value mark SVM X'FC'

The other three characters are taken from the scan character symbols

SCO, SC1, and SC2. The contents of these symbols are specified by the
programmer.

Assembly Manual 4-127
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-128

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string terminates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string terminates

on the first non-occurrence of a delimiter as specified by the setting of
bits 1-7.

For more information on the use of the mask byte, see the description of
SCO0, SC1, and SC2 in chapter 3.

LOAD 4 LOAD 4
MIIT R4,R5 MIITD R4,R5,X'CO' (Stop on SM)

Before instructions:
|
|

-> R4 --v RS --v TO = 4
Data: |A B |C |SMIZ | ... 11 12 13 14 15 16 |
~ I1 IB IC ISMIZ |6 |
-> R4 =—=mmmmmmmmmm e | I " TO =
0

| After MIIT instruction

I1 IB IC ISMI5 |6 |
-> R4 ———mmmmmmeo A RS =====m———u- ~ TO

i
-

| After MIITD instruction

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

N

SN
P

W/

MOV (Operand)

———— — p— — — a— —

MOV (Operand)

The MOV (operand) instruction copies the contents of the first operand
to replace the contents of the second operand. For MOV register
instructions, see MOV (Register).

Syntax MOV b,b
MoV d.d
MoV ff
MOV h,h
MOV m,t
MOV n,d
MOV n,t
MOV s,s
MOV t,t

bits

double tally
triple tally
half tally

t tally

=2 e B N e o

S storage register
m mode-id

n constant or literal

Description In the MOV (operand) instruction, the contents of the first operand

replace the contents of the second operand. The two operands must be
of the same length.

Note: A constant or literal cannot be moved directly to a half tally (h)
or triple tally (f). Use the FTLY or HTLY directive to define a
local constant as a symbol, then use the appropriate MOV.

If the first operand is a literal, constant, or mode-id, a literal may be

generated at the end of the program when assembled for some
machines.

6973-1 Assembly Manual 4-129
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-130

To change the virtual address of an address register, use the MOV

(Register) instruction or the DEC/INC Register instruction or the

SETR/SETDSP instructions. MOVing values to the PCB fields associated
with address registers (RnDSP, RnFID, RnDSPFID) is illegal and may
cause unpredictable results.

MoV

MOV

MOV

MOV

D1, RECORD

H8,H9

SR4, HSEND

T4,T3

Assembly Manual

Confidential and Proprietary to The Ultimate Corp.

6973-1

¢

MOV (Register)

MOV (Register)

Syntax

Description

6973-1

The MOV (register) instruction copies the virtual address of the first
register operand into the second register operand.

MOV rr MOV s,r MOV x,r
MOV 1,8 MOV Xx,s
MOV r,x MOV s,x

r address register (RO-R15)
s storage register

x external address register (in another PCB)

In the MOV (register) instruction, the first operand contains the address
to move, and the second operand is the destination of the move.

If one of the operands is an address register that is in another PCB, use
the DEFX directive to define the external register symbol. This causes
the MOV instruction to be assembled with the x type operand and
guarantees that the correct object code is generated no matter which
machine type the code is assembled for. The assembler does not check
for this condition, and if the instruction is executed on a software
system, the assembled instruction will not execute properly at runtime.

When an address register is moved to a storage register, the virtual
address of the address register replaces the value in the storage register.
If the address register was attached, the address is converted to the
detached form before the move. The address register remains
unchanged.

When a storage register is copied to an address register, the address
register is first detached, then the virtual address from the storage
register replaces the value in the address register.

When moving one address register to another, the second register may
or may not be attached after the instructon is executed, depending on
the machine type.

Assembly Manual 4-131
Confidential and Proprietary to The Ultimate Corp.

Instructions

——
——————

In a multiple-processor machine, an external register is not guaranteed to
be detached. Otherwise, an external register may be regarded simply as
another storage register.

SETRO+ R14,ROFID,2 Set R14 to DCB

R8.14 DEFX Rl14,R8DSP Define R8 in PCB that R1l4
points to
Mov R8.14,R15 Point my R15 to what his RS

points to

4-132 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MSDB/MSXB

(MSDB
MSXB

Syntax

Description

6973-1

The MSDB (move ASCII string decimal to binary) instruction converts an
ASCII decimal string into its equivalent value as a binary number, which
remains in the accumulator FPQ. The MSXB (move ASCII string hexa-
decimal to binary) instruction converts an ASCII hexadecimal string into
its equivalent value as a binary number, which remains in the
accumulator FPQ.

MSDB r MSXB r

r address register (RO-R15) whose virtual address +1 is the starting
location of the ASCII decimal or hexadecimal character string to
convert.

These instructions clear the entire accumulator (T3 and FPO), then the
MSDB instruction executes an MFD, and the MSXB instruction executes
an MFX.

MSDB assumes a string of decimal numbers; MSXB assumes a string of
hexadecimal numbers. The resultis an integer stored in FPQ.

See the MFD/MFX instruction for details.

Assembly Manual 4-133

Confidential and Proprietary to The Ultimate Cormp.

Instructions

MTLY
MTLYU

Syntax

Description

4-134

The MTLY (mode-id) and MTLYU (mode-id unaligned) directives reserve
storage and set up the symbol in the label field as a symbol type M. The

directives can also be used to only reserve storage if there is no entry in
the label field.

{symbol} MTLY m {symbol} MTLYU m
{symbol} MTLY n,m {symbol} MTLYU n,m
{symbol} MTLY n,n {symbol} MTLYU n,n

symbol name given to tally; the value of the symbol is the current
program counter location.

m mode-id

n literal or constant

There may be one or two operands. If only one operand is present, it
must be a symbol of type m (mode-id). A mode-id consists of a four-bit
entry point number and a twelve-bit frame number or FID.

If two operands are present, the first operand must be a constant or
literal value in the range of 0-15 (X'0'-X'F) that specifies the entry point
number. The second operand may be a literal or a previously defined
mode-id. If a mode-id is specified, only the FID portion is used.

The MTLY form automatically aligns the tally at an even-byte boundary.
The MTLYU form does not force the tally being defined to be aligned ata
word (even-byte) boundary.

These directives are typically used when creating a table of mode-ids.
For more information about mode-ids, see Chapter 2.

Symbols of type M may be loaded into the accumulator for use in the
BSLI and ENTI instructions to transfer control indirectly to an external
program frame. See also description for the DEFM directive, which
defines a mode-id without creating storage.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

MUL/MULX

MUL
MULX

Syntax

Description

6973-1

The MUL and MULX (multiply) instructions multiplies the contents of the
accumulator by the value of the operand. The MUL form addresses the
accumulator as a 4-byte field (DO); the MULX form addresses it as a 6-
byte field (FPO).

MUL d MULX d

MULX f
MUL h MULX h
MUL n MULX n
MUL t MULX t

double tally

d
f wiple tally (for MULX only)
h half tally

n numeric literal; if used, a 2-byte field is assumed (a range of -32,768
through +32,767). If a 1-byte literal (half tally) is being referenced,
it should be defined separately using the HTLY directive. If the
literal is outside the range of -32,768 through +32,767, a 4-byte
literal must be separately defined using the DTLY directive, or a 6-
byte literal via the FTLY directive.

The n form may generate a 2-byte literal at the end of the program
when assembled for certain machines.

t ally

The MUL instruction multiplies the operand value by the 4-byte field in
the accumulator called DG. If the operand is a half tally (1 byte) or tally
(2 bytes), it is internally sign-extended to form a 4-byte field before the
multiply operation takes place.

The 8-byte result is stored in D1 and DO.

The MULX instruction multiplies the operand value by the 6-byte field in
the accumulator called FPO. If the operand is a half tally (1 byte), tally
(2 bytes), or double tally (4 bytes), it is internally sign-extended to form
a 6-byte field before the multiply operation takes place.

The low order eight bytes of the result are stored in D1 and DO.

Assembly Manual 4-135
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-136

These instructions cannot detect arithmetic overflow or underflow.

The multiplication does not affect the original operand.

MUL D4

MUL HS8

MUL T4

MULX D4

MULX FP1

MULX HS8

MULX T4

MUL 11

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

\&w’/‘

MXB

MXB

6973-1

The MXB (move hexadecimal to binary) instruction converts a
hexadecimal ASCII byte to its equivalent as a binary number and adds the

result to a location specified by a symbol operand. For details, see the
MDB/MXB instruction.

Assembly Manual 4-137
Confidential and Proprietary to The Ultimate Corp.

Instructions

NEG

Syntax

Description

4-138

The NEG (negate) instruction replaces the value of a specified operand
with its negative (two's complement).

NEG d
NEG f
NEG h
NEG t

d double tally
f triple tally
h half tally

t tally

The NEG instruction returns the negative of a value, where the value is
treated as a binary number.

The negative of a value is computed by applying the two's complement
operation to it. The two's complement of a number is the result of
inverting each bit, then adding 1. The high order bit of a binary number
1s always the sign bit.

Original Value: 9 In Bits: 0000 1001
Inverted Value: 1111 0110
Addition of 1: +1
Negated Value: -9 1111 0111
Original Value: =63 In Bits: 1100 0001
Inverted Value: 0011 1110
Addition of 1: +1
Negated Value: 63 0011 1111
Assembly Manual 6973-1

Confidential and Propristary to The Ultimate Corp.

NEP

NEP

Syntax

Description

6973-1

The NEP (not entry point) instruction defines a program location at the
start of a frame as a "non-entry point”. NEP executes a HALT and
transfers control to the assembly debugger.

NEP interrupts execution of the current program and transfers control to
the assembly debugger at entry point 11 (HALT). Program execution
can be resumed only by specifying an address with the debugger G
command. Alternatively, the program execution can be terminated with
the BYE, END, or OFF commands.

The NEP instruction is primarily used as a debugging tool to indicate an
invalid entry point. Due to software machine requirements, the HALT
instruction may not be used in a branch table at the beginning of a
program; the NEP instruction is to be used instead. The NEP instruction
has the same effect as HALT, but guarantees that the object code is the
same length as that for EP (entry point) on each type of machine.

The NEP instruction affects only the current process; it does not halt the
entire multi-user system.

See Chapter 8, The System (Assembly Language) Debugger, for more
information about using the debugger.

Assembly Manual 4-139
Confidential and Proprietary to The Ultimate Corp.

Instructions

NOP

Syntax

Description

4-140

The NOP (no operation) instruction performs no action in the program,; it
merely causes the program to pass on to the next instruction to be
performed.

NOP

The NOP instruction can be used as a placeholder for a future instruction
or when patching object code on a particular machine. It can also be
used to generate a small delay. However, this is all machine-dependent;
NOP is not normally useful in a general-purpose program.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

)

ONE

(ONE

The ONE (set to one) instruction replaces the contents of the operand
with a binary one (1) value.

Syntax ONE d
ONE f
ONE h
ONE t

d double tally
f triple tally
h half tally

t tally

Description The operand value becomes a binary one.
half-tally : 0000 0001

(tally: 0000 0000 0000 0001

6973-1 Assembly Manual 4-141
Confidential and Proprietary to The Ultimate Corp.

Instructions

OR

Syntax

Description

4-142

The OR instruction logically ORs two bytes, and stores the result in the
byte referenced by the first operand. The byte referenced by the second
operand is unchanged.

OR r1,n
OR 1,1

r address register

n numeric literal

The logical OR operation tests two bytes, one bit at a time, for a true
condition. If either bit is true (1), the result is true (1). Otherwise, the
result is false (0). For example,

Byte 1: 0000 0101
Byte 2: 1111 0011
Result: 1111 0111

The result is stored in the byte referenced by the first operand. The byte
referenced by the second operand is unchanged.

OR R14,X'FD'

OR R14,R15

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

ORG

Syntax

Description

6973-1

ORG

The ORG (origin) directive resets the program's location counter to a
specified byte offset in the current program frame for use by the
assembler during program assembly.

ORG n

n number within the size of an ABS frame; may also be current
program location counter functdon (*). The * function can be used
alone, but is normally used with a +n or -n, meaning 'n' bytes
before or after the current location counter value.

The ABS frame size is stored in a PSYM symbol called
ID.ABS.FRAME SIZE, and may vary among various types of
firmware and software machines.

The ORG directive resets the program location counter to a specified byte
locaton.

When a program is assembled, the FRAME directive sets the location
counter ORG to the address of entry point O:

ORG 2 FRAME directive on many software machines
ORG 1 FRAME directive on firmware machines

The location counter then advances, byte by byte, as the assembler
generates object code. The current location function (*) always contains
the address (byte offset) of the next byte to be generated. The *
function can be specified in the operand field of various directives that
define data symbols in terms of the current program location.

There are several reasons to change the location counter in an explicit
manner:

» To save and restore the location counter; for example, if a program is
INCLUDEC that actually generates code:

SLOC EQU * Save location counter
INCLUDE TABLEl Include program to get table
ORG SLOC Reset in case TABLEl has

object code

Assembly Manual 4-143
Confidential and Proprietary to The Ultimate Corp.

Instructions

» To use byte zero of the object code. The FRAME assembler directive
typically sets the location counter to 1 or 2 (not zero) because the
object code begins at one. To use byte zero for storage:

FRAME xxx

ORG O

TEXT X'FE' Define an attribute mark

CMNT * Location counter is back to 1
AM EQU R1 Used to reference the byte at

CMNT = location zero symbolically

CMNT * via label AM

EP 'ENTRY0 EP Forces location counter to 2

CMNT * if necessary for this machine

» Toleave "space” in the object code for variables that the program
uses. This is not recommended, since this leads to non-re-entrant
(non-sharable) code, but is not prohibited. For example,

COUNT DEFT R1l,*16
ORG *+2

Since the tally COUNT occupies two bytes in the object code, the ORG
*+2 is used to "space" over these two bytes.

Programmers are advised to make sure that any absolute number is a
safe ORG before using it. An ORG instruction with an absolute offset
that is placed after code will probably be incorrect when assembled for
different machine types since the object code is of different lengths. The
only exception is when the offset is prior to any code, or beyond any
conceivable expansion of code in the frame.

One area where a safe ORG can be easily guaranteed is past the last entry
point. It can be assumed that no implementation will have entry point
zero start at a location greater than X'002'. Furthermore, it can be

assumed that an entry point will require no more than four bytes in any
implementation. For example,

4-144 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

ORG

FRAME 511
*

EP LABL1 0 starts no higher than X'002°
NEP * 1 starts no higher than X'006'
(2+4)

ORG 10 Safe ORG (2+4+4)

However, it cannot be assumed that the next available location that the
assembler will assign after a FRAME directive is location X'001". Ifitis
necessary to assign data starting at locatdon X'001' then an ORG 1
directive should be inserted. For example:

FRAME 512

. (all comments)
ORG 1
TEXT C'Data not after EP',X'FF'

FRAME 513

*

ORG -11+ID.ABS.FRAME.SIZE
TEXT X'Q0COCOcCOC®

TEXT X'Qco0cococ*

TEXT X'0COCOD'

The X'0D' byte will end up in the last byte of the frame regardless of
the ABS frame size.

Assembly Manual 4-145
Confidential and Proprietary to The Ultimate Corp.

Instructions

m—

OouT1B
ouTi1BX

Syntax

Description

4-146

The OUT1B instruction stores the character (byte) addressed by the
register operand in the next location in the asynchronous output buffer.
The OUT1BX form is used anywhere when a write is needed only to
echo a character read in by a INP1BX instruction.

OUTIB r
OUTIBXTr

r address register (RO-R15) that contains the virtual address of the
character to be output

The OUTIB instruction outputs a character to a process's asynchronous
channel (normally connected to a terminal). The OUT1BX instruction is

used anywhere that the write is only to echo a character read in by a
INP1BX instruction.

The virtual addressed by the register is stored in the next location in the
asynchronous channel output buffer. If the output buffer is full, the
process is suspended until characters are removed from the buffer by the
asynchronous channel controller.

Caution: The OUTIB and OUTIBX instructions are not compatible with
the TERM-VIEW and character translation features of the
Ultimate operating system. To ensure that your programs
are compatible with these features, use the system
subroutines WRITE@OB or WRITEX@OB. These subroutines
are described in Chapter 5, System Subroutines.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

RQM

RQM

Syntax

Description

6973-1

The RQM (release quantum) instruction releases a process's timeslice,
thereby deactivating the process.

RQM

The RQM instruction is a request to the Kernel to turn over control to the
next process in line. The process that executed the RQM is reactivated

after other active processes in the process chain have executed their
timeslices.

RQM typically causes a process to sleep (remain deactivated) for about
50 milliseconds, though this varies with machine type.

See the XCC instruction for examples of RQM usage.

Assembly Manual 4-147

Confidential and Proprietary to The Ultimate Corp.

Instructions

RTN

Syntax

Description

4-148

The RTN (return from subroutine) instruction transfers program control
to the location specified by the current entry in the return stack.

RTN

This instruction exits a subroutine that has been called via a BSL
instruction. It does not matter whether the subroutine had been called
locally or externally.

If there are no entries in the return stack, the assembly debugger is
entered with a Return Stack Empty trap condition.

The assembly subroutine return stack is in the user's PCB. Up to 125
entries can be placed in the return stack.

An entry can be deleted from the return stack by the instruction POPRTN.

This is mandatory if a subroutine is to be exited without using a RTN
instruction.

The entire return stack can be reset by the instruction INITRTN, which
may be useful in conditions where a process is to be re-initialized, and
all current entries in the stack are to be deleted or ignored.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SB

|
I

SB

Syntax

6973-1

The SB (set bit) instruction sets the referenced bit to an "on" condition
(that is, 1 or true).

SB b
b specifies the bit symbol that is to be set

The SB instruction sets a bit flag or switch in a program. The referenced
bit value is set to 1.

For information on a related instruction, see ZB instruction.

Assembly Manual 4-149
Confidential and Proprietary to The Ultimate Corp.

Instructions

SET.TIME

Syntax

Description

4-150

The SET.TIME instruction resets the system's internal time and date.

SET.TIME

The SET.TIME instruction is a monitor call (that is, it executes an external
subroutine call to the operating system kernel) that is included as part of

the instruction set.

SET.TIME assumes that the accumulator FPO has been set up as follows:

T2 (upper two bytes of FPQ) contains the date as a number of days past

December 31, 1967.

DO (lower four bytes of FP0) contains the time as a number of
milliseconds past midnight.

SET.TIME

Assembly Manual
Confidential and Proprietary to The Ultimate Corp.

6973-1

Y\ Mﬂ'

— —

SETDSP

SETDSP

The SETDSP instruction sets the displacement (DSP) field of an address
register to the specified value.

Syntax SETDSP 1,n SETDSPO r
SETDSP 1.t SETDSP1 r

r specifies the address register (RO-R15) to be set up.
n constant or literal value that is to be used as displacement
t tally symbol that contains value to be used as displacement

The SETDSP(instruction sets the displacement to zero (0); the
SETDSP1 instruction sets the displacement to one (1).

Description The SETDSP instruction is used to set the displacement portion of an
address register's virtual address to a specific value. This is an
alternative to setting up a virtual address in a storage register, then using
the MOV (Register) instruction to move the virtual address into the
address register.

SETDSP sets the displacement field of an address register to the specified
value (0, 1, or the n or t value). If an n value is specified, a 2-byte
literal may be generated at the end of the program when assembled for
certain machine types, and the instruction will assemble the same as if a
t symbol had been specified. The register may be detached after
execution of the instruction, depending on machine type.

The following example shows the effect of each form of the SETDSP
instruction, regardless of the implementation details on any particular
machine type (such as detaching registers):

SETDSP r,m
MOV m, RnDSP

SETDSP r,t
MOV t,RnDSP

SETDSPO r

ZERO RnDSP

6973-1 Assembly Manual 4-151
Confidential and Proprietary to The Ultimate Corp.

Instructions

SETDSP1
ONE RnDSP

Caution: The above merely shows the effective instruction generated
by each form of the SETDSP instruction. Do not try to
substitute the descriptive code for the SETDSP instruction,
because register attachment needs to be handled correctly for
each machine type.

The following are examples of SETDSP instructions and the
corresponding macro expansions on a firmware machine.

SETDSPO R13
+DETZERO R13"

SETDSP1 R13
+DETONE R13"
SETDSP R13,5
+DETZERO R13

+MOV 5,R13DSP

SETDSP R13,TS
+DETZERO R13
+MOV TS5,R13DSP

* The DETONE and DETZERO instructions are for use only by the firmware assembler
in macros such as SETDSP. They should not be coded directly, in order to

guarantee compatbility of source code across all system types, firmware and
software.

4-152 Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

-

SETR

I

(SETR

Syntax

Description

6973-1

The SETR (set register) instruction sets the FID and displacement (DSP)
fields of an address register to the specified values.

SETR r,n

SETR r1,n,n SETRO{+/-} r,n SETRI{+/-} r,n
SETR 1t SETRO{+/-} r SETR1{+/-} r

SETR+ r,n,d,n SETRO+ r,d,n SETR1+ r,d,n
SETR+ r,t,d,n SETRO- r,d,n SETRI1- r,d,n

SETR- r,n,d,n

SETR- r,t,d,n

SETR{+/-} r,n,d SETRO{+/-) r.d SETRI{+/-} r,d

SETR{+/-} r,t,d

r address register (RO-R15) to be set up
d double tally

f triple tally

h half tally

n literal or constant
t tally

The SETR instruction is used to change the virtual address of an address
register to a specified value. Itis an alternative to setting up the virtual
address in a storage register, then using the MOV (Register) instruction
to move the virtual address into the address register.

There may be one, two, three or four operands; the first operand always
specifies the address register to set up.

With the first set of formats (SETR, SETR+, and SETR-), the second
operand specifies the displacement to use. If the third operand is
present, it specifies the FID to use; if not present, the FID value comes
from the accumulator (INCed if SETR+ or DECed if SETR-). The fourth
operand is valid only if the SETR+ or SETR- form is used; it specifies the
value by which to INC or DEC the FID; if not present, 1 is used to
increment or decrement the third operand.

Assembly Manual 4-153
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-154

With the second and third set of formats, SETRO specifies a
displacement of 0 and SETR1 specifies a displacement of 1. If a second
operand is present, it specifies the FID to use; if not present, the FID
comes from the accumulator (INCed if SETRO+/SETR 1+ or DECed if
SETRO-/SETR1-). The third operand is valid only if the SETRO+/SETR1
or SETRO-/SETR1- is used; it specifies the value by which to INC or DEC
the FID; if not present, 1 is used to increment or decrement the third
operand.

If an n value is a FID or a FID INC/DEC value, a 4-byte literal may be
generated.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SHIFT

Syntax

Description

6973-1

SHIFT

The SHIFT (shift) instruction shifts the value of the byte addressed by a
register operand by one bit to the right, sets the leftmost (high order) bit
to zero, and stores the new byte value at the virtual address of the
second register operand.

SHIFT r,r
r address register (RO-R15)

The first operand specifies the byte to be shifted. The second operand
specifies the storage location of the new byte value.

The value of the byte referenced by the first operand is logically shifted
one bit; the vacated leftrnost bit is set to zero. The result is stored at the
location addressed by the second operand. The byte referenced by the
first operand is unchanged.

SHIFT R14,R15

Assembly Manual 4-155
Confidential and Proprietary to The Ultimate Corp.

Instructions

SICD

Syntax

Description

4-156

The SICD (scan string to count of delimiters) instruction scans a string
starting from the character addressed by a register operand until a
specified number of a delimiter has been scanned.

SICD r,n

r address register (RO-R15) whose virtual address points to the
character where the scan begins

n constant or literal value that specifies the mask of delimiter criteria to
use for the string being scanned

The SICD instruction scans a string until a specified count of a delimiter
has been reached. The result is to position the address register at a
specific point within a data structure.

The SICD instruction expects that TO, the low-order tally of the
accumulator, has been set up to contain the count of delimiters to be
scanned over. If TO is initially zero, the results are unpredictable.

The register operand is incremented by one; the character then addressed
is examined. This operation is repeated until the terminating condition
specified by TO and the second operand (the mask byte) is met. If the
initial condition of the accumulator and the mask byte matches the
terminating condition, no operation is performed. Each byte is tested
after it has been scanned, to see if it satsfies the terminating condition.

Note The mask byte used by SICD is different from the one used in
the SID, SIDC, SITD, MIID, MIIDC, and MIITD instructions.

Only one of six possible delimiters may be specified as the test
character in the SICD instruction.

Three of the possible scan delimiters are fixed, and are the standard
system delimiters (excluding the segment mark):

attribute mark AM X'FE'
value mark VM X'FD'
sub-value mark SVM X'FC'

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SICD

I
I

6973-1

The other three delimiters are variable, and the programmer may set up
the desired test character in one of the scan characters SC0, SC1, and
SC2.

Six bits in the mask byte are used to determine which one of the six
above characters is to be compared; if a bit is set (1), the corresponding
character in the scan string is tested; if zero, it is ignored.

Bits O and 1 set up additional criteria, as follows:

0 bit O (high-order bit) of the mask, if set, indicates that the
accumulator TO should be decremented by 1 before the scan is
started and the terminating condition tested. If zero, TO is not
decremented.

1 bit 1 specifies the condition for abnormal termination of the scan. If
set, the scan terminates abnormally if a character is found that is
logically higher than the character in SC2. If zero, the scan
terminates abnormally if a character is found that is logically higher
than the delimiter being scanned for. If the delimiter being scanned
for is in SC2, therefore, the state of this bit does not matter.

See Figure 4-1. (The parentheses around SCO, SC1 and SC2 are to
indicate that it is the contents of these locations that are compared.)

The scan can terminate either normally or abnormally. It terminates
normally if the number of delimiters specified in TO (pre-decremented if
required) is encountered. In this case, TO is zero, and the register points
to the final delimiter (or is unchanged if no scan takes place).

The scan terminates abnormally if a character higher than that in SC2
(mask bit 1 on) or higher than the delimiter (mask bit 1 off) is
encountered. In this case, the value remaining in TO is the number of

Lo | + |2]3]« s |6] 7|
decrement abnormal AM ™ SVM (SCO) (SC1) (SC2)
TO termination

Figure 4-1. SICD Mask Byte Format

Assembly Manual 4-157
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-158

delimiters that must be inserted in the data to create the required data
position, and the register points one byte before the character that caused
the scan to terminate.

A few examples should make this clear:

Mask byte Bit pattern Meaning

X'A0Q 1010 0000 Stop on nth occurrence of an AM,
or on the first SM; decrement TO by
1 before starting scan.

X'20' 0010 0000 Stop on nth occurrence of an AM,
or on the first SM; do not
decrement TO before starting.

X'02' 0000 0010 Stop on nth occurrence of the
contents of SC1, or on the first
character higher; do not decrement
TO before starting scan.

X'42' 0100 0010 Stop or: r:th occurrence of the
contents 5f SC1, or on the first
character higher than the contents
of SC2; do not decrement TO
before starting scan.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

+ If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

+ If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

6973-1

The following are some examples of SICD usage.

SicD

Scan to attribute 3:

LOAD 3
SICD R15,X'20!

T0 = 3
Scan to AM

Before instruction: R15

i mask byte: 0010 0000
EOAE11]E12AE2~E31]E321\E322] E33 " _
After instruction: 1
TO = 0

Scan to attribute 6:

LOAD 6 TO = 6
SICD R15,X'A0!

Decrement T0, scan to AM

Before instruction: 5115 mask byte: 1010 0000
Data EOAE11]E12AE27E31]E321\E322] E33~ _
After instruction: T
TO0 = 2

Note that R15 has been backed off one byte from the segment mark.

Assembly Manual 4-159
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-160

Scan to attribute 3, value 2, subvalue 2:

LOAD 3
SICD R15,X'20"
Loap 2
SICD R15,X'90'
LOAD 2

SICD R15,X'88'

Before instruction: Ri15

i

TO0O = 3
Scan to AM
TO = 2

Decrement TO,
TO = 2
Decrement TO,

first mask byte:
second mask byte:

final mask byte:

scan to VM

scan to SVM

0010 00O0O0
1001 0000

1000 1000

EOAE11]E127E24 E31] E321\E322] E33~ _

After first scan:

T

After second scan:

After final scan:

]
o

TO

Assembly Manual

Contfidential and Proprietary to The Ultimate Corp.

6973-1

-

SID/SIDC

SID
SIDC

Syntax

Description

6973-1

The SID (scan incrementing string to delimiter) instruction scans a string
starting from the character addressed by a register operand until a

specified delimiter has been scanned. SIDC also counts the number of
characters scanned.

SID r,n SIDC r,n

r address register (RO-R15) whose virtual address +1 contains the
character where the scan begins

n constant or literal value that specifies the mask of delimiter criteria to
use for the string being scanned.

The register operand is incremented by one; the character then addressed
is examined. This operation is repeated until the terminating condition
specified by the second operand (the "mask" byte) is met.

Each byte is tested after it has been scanned to see if it satisfies the
terminating condition.

Note: The virtual address of the register is always incremented by at
least one, because the delimiter test is done after the byte scan.

The SIDC instruction expects that T0, the low-order tally of the
accumulator, has been set up (usually to ZERO or ONE) so that on
termination, it indicates the number of characters scanned. With the
SIDC instruction, as each byte is examined, TO is decremented by one.
No other sections of the accumulator are affected. If TO is set to ZERO
(0), its value after the instruction terminates is the negative of the length
of the string, including the delimiter. If TO is set to ONE (1), its value is
the negative of the string length excluding the delimiter.

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the register is in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to

Assembly Manual 4-161
Confidential and Proprietary to The Ultimate Corp.

Instruction

Mask Bytes

4-162

the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

+ If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

» If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark SM X'FF’
attribute mark AM X'FE'
value mark VM X'FD'

sub-value mark SVM X'FC'

The other three characters are taken from the scan character symbols
SCO, SC1, and SC2. The contents of these symbols are specified by the
programmer.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string terminates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string terminates

on the first non-occurrence of a delimiter as specified by the setting of
bits 1-7.

For more information on the use of the mask byte, see the description of
SCO, SC1, and SC2 in chapter 3.

The following are some examples of SID(C) usage:

Assembly Manual 6973-1
Contfidential and Proprietary to The Ultimate Corp.

A

SID/SIDC

Instruction:
SIDC R4,X'CO' SCAN UNTIL SEGMENT MARK
TO = 0
Before instruction: FI mask byte: 1100 0000
A A B A C A
After instruction: —__T
TO = -3
SRA R15,SC1
MCC C' ',R15
SID R4,X'02" SCAN UNTIL NON-BLANK
Before instruction: Ri‘ mask byte: 0000 0010
Data AAAXA A
After instruction: —_1
6973-1 Assembly Manual ‘ 4-163

Confidential and Proprietary to The Ultimate Corp.

Instructions

SIT
SITD

Syntax

Description

4-164

The SIT (scan incrementing string, TO termination counter) instruction
scans the characters addressed by the first operand until a specified
number of characters has been moved. The SITD (scan incrementing
string, TO termination or delimiter) instruction performs the same
operation as SIT, but terminates the move at a specified number of
characters or when a specified delimiter is encountered.

SITr SITD r,n

n constant or literal values that specifies the "mask" of delimiters to
use as terminators for the string being scanned

r address register whose virtual address +1 references the starting
character of the string to be scanned

The SIT and SITD instructions can be used whenever a data character
string needs to be scanned or counted, if the string field is of fixed
length or the string delimiters can be specified in a mask byte. The
mask byte contains flags for the four system delimiters plus three user-
specified characters; it also has a match/nomatch flag that allows the

move to terminate on either a match or nomatch with the specified
delimiters.

These instructions also expect that TO, the low-order tally of the
accumulator, has been set up for the maximum string length to scan.

If TO is zero at the start of this instruction, no action takes place .

These instructions are used as an alternative to merely INCing a register
by TO when a program intends to use the XMODE facility in cases where
a frame boundary is crossed. SIT is logically equivalent to the INC 1.t
instruction, except that additional frames can be linked via XMODE (see
below).

The register operand is incremented by one; the character then addressed
is scanned and compared. TO is decremented by one. This operation is
repeated until one of the following terminating conditions is met:

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

Mask Bytes

6973-1

SIT/SITD

» For the SIT instruction, when TO reaches zero. This instruction is
typically used to scan over a fixed length string.

* For the SITD instruction, when TO reaches zero or when one of the
delimiter bytes specified by the mask byte is encountered. The
terminating condition is found by testing each byte after it has been
scanned. This instruction is typically used to scan over a delimited
string of preset maximum length. Additional frames can be linked on
to the end of the linked set by using XMODE (see below).

Note: IfT0 is not initially zero, the virtual address of the register will
always be incremented by at least one, because the delimiter
test is done after the byte scan.

The mask byte can specify up to seven different characters to be tested;
four of them are the standard system delimiters:

segment mark SM X'FF'
attribute mark AM X'FE'
value mark VM X'FD'

sub-value mark SVM X'FC'

The other three characters are taken from the scan character symbols
SCO, SC1, and SC2. The contents of these symbols are specified by the
programmer.

The low order seven bits in the mask byte are used to determine which
of the seven characters are to be compared; if any bit is set (1), the
corresponding character is tested; if zero (0), it is ignored.

If the high-order bit (bit 0) of the byte is set (1), it indicates that the
string terminates on the first occurrence of a delimiter as specified by the
setting of bits 1-7. If it is zero (0), it indicates that the string terminates
on the first non-occurrence of a delimiter as specified by the setting of
bits 1-7.

For more information on the use of the mask byte, see the description of
$CO, SC1, and SC2 in chapter 3.

Assembly Manual 4-165
Confidential and Proprietary to The Ultimate Corp.

Instructions

4-166

Il

For the address register operand, the incrementing process could
generate an address that crosses a frame boundary. If the registeris in
unlinked mode, and the frame boundary is reached, the assembly
debugger is entered with a trap condition indicating Crossing Frame
Limit. If the register is in linked mode, it is normalized and attaches to
the next frame in the linked chain. If the end of the linked set is reached
during the normalization process, the following action is taken:

« If the exception mode identifier XMODE is non-zero, a subroutine call
is executed to that address, to allow special handling of this
condition.

 If XMODE is zero, the assembly debugger is entered with a trap
condition indicating Forward Link Zero.

Instruction LoAD 4
SIT R4

Betfore instruction: R4

Data A~B~C~ _ -~

Z
After instruction: T

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

.

SLEEP

SLEEP

Syntax

Description

6973-1

The SLEEP instruction causes the process to be deactivated and putina
wait state until a specified time of day.

SLEEP

The SLEEP instruction is typically used when the process is waiting for
an event to occur. If the process executes instructions continuously, it
is a waste of the system's resources. The SLEEP instruction is inserted
as a means of delaying the process until a specific time of day.

This instruction expects that the accumulator DO has been loaded with
the "awakening" time of day in internal system format (number of
milliseconds past midnight). If DO contains a value higher than
86,400,000, the process will sleep "forever."”

A sleeping process can be awakened from the process’ own terminal by
the BREAK key. See also the RQM instruction.

Assembly Manual 4-167
Confidential and Proprietary to The Ultimate Corp.

Instructions

SR

Syntax

Description

4-168

The SR (storage register) assembler directive defines a program address
and creates a storage register containing that address. The storage
register (data type 's') is in linked format. Six bytes of storage for the
address are reserved at the current location counter.

label SR n,n
label SR a

n the virtual address to reserve for the symbol. The first operand
specifies the displacement of the generated virtual address. The
second operand specifies the frame number (FID) as a decimal
number (linked frame) or hexadecimal number (unlinked frame).

a defines both FID and displacement to specify the virtual address

An SR directive can be used to set up a symbol as a storage register
pointing to data in a specific frame, which can be in linked or unlinked
mode.

In the first SR form, the second operand specifies the frame, or FID, as
a 4-byte field. If the high-order bit of the second operand's value is set,
the virtual address is assumed to be in unlinked format. If the high-
order bit is zero, it is assumed to be in linked format.

In the second SR form, the address specified by a the a operand must
have been previously defined via a DEFRA directive. In this case, the
virtual address is always in linked format.

See the section in the chapter on Data Addressing for a full description
of linked and unlinked modes of addressing.

Note: The ADDR directive also creates a storage register, normally
for data stored within a program. The frame is assumed to be
in unlinked format (that is, an abs frame) and the displacement
is relative to location 0 of the frame.

Assembly Manual 6973-1
Confidential and Proprietary to The Ultimate Corp.

SR

6973-1

SR 1,100 Addresses frame 100 in linked mode; the
first data byte in the frame depends on
machine type, and is equal to the value of
the PSYM symbol ID.LINK.SIZE.

SR <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>