“ollltimate _—

BASIC Language
Reference Guide

®

Ultimate

THE ULTIMATE CORP. ;

BASIC Language
Reference Guide

The Ultimate Corp.
East Hanover, NJ

Version 3

Ultimate BASIC Language Reference Guide
Version 3.0

© 1989, 1990 The Ultimate Corp., East Hanover, NJ

All Rights Reserved.
Printed in the United States of America.

How to order this guide:

The Ultimate BASIC Reference Guide is included with the system
documentation set.

To obtain additional copies, please call your dealer.

Publication Information

This work is the property of and embodies trade secrets and confidential
information proprietary to Ultimate, and may not be reproduced, copied,
used, disclosed, transferred, adapted, or modified without the express
written approval of Ultimate.

Operating System Release 10, Revision 210
© 1989, 1990 The Ultimate Corp., East Hanover, NJ

Document No. 6929-3

“k‘/’,

6929-3

Contents
How to Use this Manual ... XV
INtroduction ... 1-1
The File Structure of BASIC Source Programs.................. 1-2
The Components of a BASIC Program..........c.cccccvveeiennnnns 1-3
Creating BASIC Programs........cccoccveeveeicnericncncieseenens 1-6
Compiling BASIC Programs.........c.ccoooenmeinncineencecee s 1-7
Cataloging BASIC Programs..........cccocccevveeeciiiiieniieniieeinens 1-11
Decataloging BASIC Programscoccecevrneeenenesceceenans 1-12
Executing BASIC Programs...........ccceevveeerieeiieeicieeeee e 1-14
Working With Data..............cooii 2-1
Reserved WOrIAS...........ccc.eoeiiieiieie et 2-2
Numbers and Numeric Data.........cocccvevceeicnricniiecee 2-4
Fixed Point Numbers.........cccooveiieiiiieneeeceeeeee, 2-4
Floating Point Numbers...........ccoocooviiiicniicece 2-5
String NUMDETrS ..o 2-6
StriNg Data.......c.ooeieieee e 2-7
Constants and Variables...........ccceoniniiccnennicenccen 2-8
Predefined Symbols..........cccoooeriininieniiiceceee, 2-9
System Variables............ ettt et e ste et eanan 2-10
File Variables..........cocoiiiiiiiieieee e 2-11
ATTAYS .ottt ettt se ettt sh et e sr e en e s 2-12
Dimensioned AITays..........coereeeernerrrireriese e 2-13
Dynamic ArTays.......c.ccorerenreireneseeee e 2-14
ArithmetiC EXPressionscccoevvveenie e 2-16
Order of Operations........ccceveeeneeennce e 2-16
Processing Numeric and String Data...........coccceeunee. 2-18
Arithmetic Operators and Dynamic Arrays.................... 2-19
Rules for Standard Arithmetic............c.cccooiiiiiiinn. 2-20
Extended Arithmetic Functions............ccocoviiniiininne. 2-21
Arithmetic Values and Comparison Statements.......... 2-23
Numeric vs String Comparisons........ccoceeevereveeeenne. ..2-24
String EXPreSSiONS ..o 2-26
SUDSEINGS .o 2-26
Concatenation ..o 2-27
Format Stringscoooeieirere e 2-29
Relational EXpressions........ccoveevvivenesinecieceeee e 2-33
Pattern MatChingcoooveeeeienecceeeeee e 2-35

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

Contents

vi

Logical EXPreSSiONSccccoviviriirireeereree et eae e 2-37
Summary of Expression Evaluatlon 2-39
Limited EXPressions......c.cccovvevevenneeeenreecenenecesiccneeseneennes 2-42
Variable Data Area.........ccceoveeeeeceveeeeeeceeee e 2-43
Variable AlIOCAtIONcoevuieeieeeceeeece et 2-45
Program DescCriptorscccovveereeeneienne e, 2-45
CHAIN and ENTER..........cooeiieeceeeeeceeeeeeeee e 2-46
BASIC Statements and Functions...............c............. 3-1
A Summary of the Statements and Functions.................... 3-3
Fand * StatemMentS ..o 3-5
Rl D= To: (1= TSROSO SRUROO 3-7
PCHAIN Dir€CtiVe........oceeeeeeeeeeceeeeee e 3-8
SCOMPATIBILITY Dir€Ctivecoovveeeeeeceeeeeeeeeeeee e 3-9
SINCLUDE Dir€CtiVe ... 3-11
SNODEBUG Dir@CHVEeeeieeeeeeeeeeeeeeeeeeeeeeeeee e 3-12
= (Assignment) Statement............cccooriiiinenninie, 3-183
Overlaying a Substring.........cccccoceveevvrnencneeceeee 3-16
Replacing Delimited Substringscccooeeriieieneinnnne 3-17
@ FUNCHON ...t 3-21
ABORT Statement..........c.oooeieeeeeceeeeeeeeeeee e 3-32
ABS FUNCHON........oeeieeiee e 3-33
ALPHA FUNCHON.......coiieiie et 3-34
ASCH FUNCHON ot 3-35
BEGIN CASE Statementcooooeveieieceecieeeeeeeeeeeee e 3-36
BREAK Statement..........c.ooovvuieeeeeeeceeeeeeeee e 3-37
CALL StatemeNnt.......c.oooeieeieeeeee et sen e 3-39
Passing AITays ..ot 3-41
CASE Statement.........ccoeeeeveeeeceeceeeceeceee e 3-43
CHAIN Statement ...t 3-44
CHAR FUNCHON. ...ttt 3-46
CLEAR Statement.........cooeeieeiieeeeeeeeeeeee e 3-47
CLEARDATA Statement.........ccvoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen e, 3-48
CLEARFILE Statementooveeeeeeeeeieeeeeeeeeeeeeee e 3-49
CLEARSELECT Statement.........cccveeeeeeeeeeeeeeeeeeeeeeeeeeeeeean, 3-51
CLOSE Statementooo oo 3-52
COL1 and COL2 FUNCHONS.......cooveiieeeeeecieeeeeeee e, 3-55
COMMON Statementc.ooeeeveveeeiecceeeee e eesee e 3-56
CONVERT Statement..............c.......... e ——————————— 3-60
COS FUNCHON ...ttt ettt se s ee e 3-61
COUNT FUNCHON......cuiieieeeeee e 3-62
CRT Statement ..o 3-63
Ultimate BASIC f 6929-3

Confidential and Proprietary to The Ultimate Corp.

a

s

Contents

6929-3

DATA Statementoo e 3-64
DATE FUNCGHON ... 3-66
DCOUNT FUNCHON. ... 3-67
DEL Statement ..o 3-69
DELETE FUNCHON ..o, 3-70
DELETE Statement ... 3-71
DIM Statement........c.ooooviiiiieeeeceeeee e 3-73
DISPLAY Statement.........cc.eeeeieieeeeeeeeereeie e 3-75
EBCDIC FUNCHON. ...ttt 3-76
ECHO Statementooooeeieeeeeeee e, 3-77
END State@mentoeeeeee ettt 3-78
END CASE Statement.......coooeeeeeeeeceee e 3-79
ENTER Statement..........oooveieeiie e 3-80
BEOF FUNCHON ... 3-81
EQUATE Statement..........coviiiie e 3-82
ERRTEXT FUNCHON ... 3-84
EXECUTE Statement........oooooieiiiiee e 3-85
SIECE LSS e 3-87
EXIT Statement ... 3-90
EXP FUNGHON ... 3-91
EXTRACT FUNCHON......oeieeeeeeeeeeeee e 3-92
FADD FUNCHON ..o 3-93
FCMP FUNCHON. ...t 3-94
FDIV FUNCHON ... 3-95
FEIX FUNCHON. ... 3-96
FELT FUNCHON......eoeeeee e, 3-97
FIELD FUNCHON. ... 3-98
FMT FUNCHON et 3-100
FMUL FUNCHON . 3-101
FOOTING Statementcoooeeeeie e 3-102
FOR/NEXT Statementccoeeoeeeeiiiee e 3-104
FSUB FUNCHON ..o 3-106
GET Statement ..o 3-107
GOSUB Statement ... 3-109
GOTO StAteMENL.....coeeeeeeeeeeee e 3-110
HEADING Statement..........cccoooveiiiiiieeee e 3-111
ICONV FUNCHON ..ottt 3-113
IF StatemMENT.... .o 3-115
INDEX FUNCHON......oooeiiceeeeeeceeeeee et e 3-117
INMAT() FURCHON ...t 3-118
INPUT Statement........ccoooeeeeeeeeeee e 3-120
Ultimate BASIC vii

Confidential and Proprietary to The Ultimate Corp.

Contents

viii

Input Verificationcccvenininirecee e 3-123
Stacked INPUL.........c.ooiiiee e 3-124
INPUTCLEAR Statement..........coooooveeeeeieeeeeeeeeceeee e 3-126
INPUTCONTROL Statement.........c.cccoevieeeiieieeeeeeeeeeeee 3-127
INS Statementooeeeeeeeeeeeeee e 3-130
INSERT FUNCHON e, 3-131
INT FUNCHON. ..ttt e s 3-133
LEN FUNCHON ... 3-134
LET Statement.....c..eoeeeieeeeeeee e e 3-135
LN FUNCHON.....eeeiieeeeee et 3-136
LOCATE Statement........oooueoeeeeeeeeeeeeeeeeeee e 3-137
LOCK Statementcooiuieieeieeceeeeeeeeee e 3-140
LOOP Stat@ment ... 3-142
MAT = Statement ..o 3-144
MATCHFIELD FUNCHON ... 3-146
MATPARSE Statement ..o 3-148
MATREAD{U} Statement ... 3-149
UltiNet Considerations...........cccuvverieeeeeeeeeceeeeee e 3-151
BEM LOCKS ...t 3-151
MATWRITE{U} Statement...........ccoooioeiiiieeeeee e 3-153
MOD FUNCHON. ... e 3-156
NEXT Statementooooeeiiceeeeeeeeee e 3-157
NOT FUNCHON. ...t 3-158
NULL Statementooveeeeieeeeeeeeeee e 3-159
NUM FUNCHON.......ueiiiieeeeeeeeeeee et 3-160
OCONYV FUNCHON .t 3-161
ON GOSUB Statementc.oooeeeeeeeeeeeeeeeeeee e 3-163
ON GOTO Statement........cccee e 3-164
OPEN Statement.........ccooouiieeeiceeceeeeeee et 3-165
Opening Files ... 3-165
Opening Subroutings...........cccooeverenierrrneneereeere e 3-167
PAGE Statement.........cooeiiiieeeeeceeeeceecee e 3-168
PAGING Statement...........ooooeeeeeeeeeceeeeeeeeee e 3-169
PRECISION Statement..........coovveeeeoicececeeecee e 3-170
PRINT Statement ... 3-171
PRINTER Statement.........co i 3-174
PRINTERR Statementc.ccooeeieeeeieeeeeeecei e 3-176
PROCREAD Statement..........ccoveeveeeiiiiceeeceee e 3-177
PROCWRITE Statementoooueeoeeeeieeeeeeeeeeeeeeeeee e 3-179
PROGRAM Statement.........cooueveeieeieeeeeeeceeeeeee e 3-180
PROMPT Statementoooeeeiiiieeceeceieeeeeeeee e 3-181
Ultimate BASIC 6929-3

Confidential and Proprietary to The Ultimate Corp.

-

6929-3

PUT Statement.........cccoocveieciiieeeeceeeeeee.
PWR FUnNCtion.........oooiieeeceeeee e
READ{U} Statementcccconrieneiinenenes

UltiNet Considerations.........ccccccceeeeuneee...

1 (=10 0 1 0 T G T
READNEXT Statement.......cc.cocoevvveneennn
READT{X} Statementccooeerivennnenns
READV{U} Statement...........ccccoviiinnennannnn

tem LOCKS ..o
RELEASE Statementc..cccoveeevveveenenee.

UltiNet Considerations...........cccccoeeeeunnnnene.
REM FUNCHON ..o
REM Statementcccooeviieiiiieieeeeeee.
REMOVE Statement..........cccooovieeiieiiieeee.
REPEAT Statementccooovveeeieeieeee.
REPLACE Functioncccooevveveieceeeee.
RETURN (TO) Statement...........cccocovvrnvcnene
REUSE Function.........ccooovecoiieeeiecieeeeee.
REWIND Statement........cccoocoveveceeceieeeeen.
RND Functioncooveeeeeviieeeeeee e
RQM Statement..........cooeeoeeoeeeceeeeeeeeeeeen.
SADD FunCtioncccoeoeeeeciieeeeeeeeee e
SCMP FUunCtion........oooeeeeecieeeeeeeeeee
SDIV FUNCHiON ..o
SEEK Statement.........coooooiiiiiiieee
SELECT Statement........cccoocvieieceiieeeeee.

UltiNet Considerations..........ccccceuvuevvenee...
SEQ Functionc.ooooieeeeieeeeeeeeee e
SIN FUNCION ...,
SLEEP Statement.........ccccooovvveiveeeieeeeeeeeeen.
SMUL FUunCGtioncoooeeeeeeeeieeceeeeeeeeeee.
SORT FUNCHON ...
SOUNDEX FUNCHON.......cocouieeieeeeeeeeeeee
SPACE FUunction.......cceeveeeveeeceecee e
SQRT FUNCHON.....coeiceieeecee e,
SSUB FUNCON ...

STORAGE Statement.........cccccoeeeeveeeceeenne.
STR FUNCHON ...
SUBROUTINE Statement.........c.ccccccovveeunenneen.
SUM FUNCHON.......ooviiieeeeeeeeeeeeeeee e,

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

ix

Contents

SYSTEM FUNCHON ..o 3-240
TAN FUNCHON . 3-245
TIME FUNCHON......oviieieeeee e 3-246
TIMEDATE FUNCHON ...ttt e 3-247
TRAP ON THEN CALL Statementoccccceevvvinnccccnennnn 3-248
TRIM FUNCHON. ...t 3-253
UNLOCK Statement ..o 3-254
UNTIL Statementcoveeieeeceeeereeeeeere e 3-255
USERTEXT FUNCHON. ..ot 3-256
WEOF Statementocoovieiieneeieececeeeeeee e 3-257
WHILE Statement ..o 3-259
WRITE{U} Statement..........ccooiiiereeeere e 3-260
UltiNet Considerations..........ccccceeeeieiiiiiieeeeeeee e 3-261
WRITET{X} Statement..........ccorrernernrrecereseeeeeae 3-263
WRITEV{U} Statement ... 3-266
UltiNet Considerations............cooeeverereneienie e 3-267
BASIC Debugger ... 4-1
Entering the Debugger ... 4-2
Compiler RestriCtionS........ccccevvirveieece e 4-3
Summary of Debugger Commands........cccooeieveincncnenne 4-3
B Command - Set Breakpoints.........ccccccerveereeiinncenenceea, 4-6
BYE Command - Return 10 TCL ...cccoeeiinrcieieeee 4-9
C Command - Toggle CALL/RETURN Breakpoint............ 4-10
D Command - Display Tablesccccoreenininciiee. 4-11
DE{BUG} command - Enter System Debugger.................. 4-11
E Command- Set Lines to Executecoccceovvvvceeinieiennne. 4-12
END Command - Return t0 TCL........cocviiiiiiiiiee 4-13
G Command- Resume Execution of Program.................... 4-14
H Command - Help........uooiieeeeeeee e 4-15
HX - Display in Hexadecimal Format............cccooenniinnens 4-16
K Command - Breakpoint Table.........ccccoceiiiiiiiincieie 4-17
L Command - Displaying Source Code........ccccceerurnnnnee. 4-18
LP Command - Printer Outputcccoeenevcinninerccceee 4-18
N Command - Bypass Breakpointsc.cccceceveeeeeeeriienne, 4-19
O Command - Display Options........cccccceevereenereincee e 4-20
OFF Command - Log Off........ceeeeiieeiieeeeeeecee e, 4-21
P Command - Suppress Program Outputcccceueueneee. 4-21
PC Command - Close Printer.......ccvvveieennencereeenns 4-21
R Command - Display GOSUB Return Stack..................... 4-22
S Command - Display Source Code Lines....................... 4-23
STOP Command - Exit Debuggercccccoouvveevreerrrenennn. 4-24
Ultimate BASIC 6929-3

Confidential and Proprietary to The Ultimate Corp.

S

8

6929-3

T Command - Set Trace Table......ccocoviveiceniniicc 4-25
U Command - Delete Traces.........oceeceeiviiiieniiciiiee, 4-27
V Command - Verify Object Code...........ccocooviniiiiiinnenn. 4-28
Z Command - Displaying Source Code.........cccecvrureneenenne. 4-29
/ Command - Displaying and Changing Variables............ 4-30
?, * and $ Command - Verify Object Code.......cccceeueueneeee. 4-32
[] Command- Specify Substring to Display..........cccccceeenee. 4-33
Example of Using the BASIC Debuggerccccooonnnee. 4-34
Programmer's Reference............... 5-1
Understanding the Ultimate System File Structure.......... 5-2
System Delimiters........coooooiieieeeeee e 5-3
Segment Marks........ccoooiveiieiieieneeeeeee e 5-5
Programming Techniques for Handling /O 5-6
OPEN .t e 5-7
I/0 Considerations for Network Users............cccccc....... 5-7
ACCESSING HEBMS ...t 5-9
REAA LOCKS ...t 5-11
Accessing Data in Hems ..o 5-13
Dynamic Array Format ..o 5-13
Dimensioned Arrays.ccooeeeeieeiceeniee e, 5-15
Determining the Number of Values...............cccoceee. 5-15
Choosing Between Dynamic and
Dimensioned Arrays...........ccoooeeveeiiiiiieieee e, 5-16
Clearing Variables...........ccocoiiiiiiie e 5-16
Guidelines for Cursor Positioning........cccceeccceveeciesiecie e 5-17
Programming for Maximum System Performance............. 5-18
Minimizing Program Size........cccooooiiiniiciiee e, 5-18
Variable AOCatioNnccoccceiiiiiieiieecee e 5-18
Repetitive Operations............cccoveeveeiniecene e, 5-18
Programming EXamples.......cccoiinnieieieceeeee e, 5-20
PRIME.NUMBER ..o 5-20
POO00O0 (File Update).......ccceeveeeeneeieeiereeieieiee e 5-21
ITEMS.BY.CODE (Use of Job Control)........cccccooeuenenee. 5-24
SUMMARY.REPORT (Menu/Report Generator)........... 5-27
QOH (Use of LOCATE with Dynamic Arrays)................ 5-33

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

Xi

Contents

Xii

Appendices
A. BASIC Compiler Messages.......ccccooveneeerenenecnenencecenens A-1
B. BASIC Run-Time MeSSages.....cccocooererernereenenenceneennenen. B-1
C. BASIC Debugger Messages..........cccevevevereenecncreneennnee C-1
D. List of ASCI Codes ..ot D-1
E. USEr EXitS ..coooieeiieee e E-1
F. USERMSG Fil€ccootriieiiieeereneee e F-1
USERMSG ltem Format..........cocooeeiiinenieiiccceecee F-1
G Revision 200 New Features............cccocveeiiniieniinnceienn. G-1
Statements and Functions ..., G-2
Compiler Changescocoeereeeveeenseee e, G-4
BASIC Debugger ..ot G-5
INA@X .. ettt index-1
Figures
Figure 1-1. Sample BASIC Program.......cccccevvnvnevennennne. 1-5
Figure 1-2. BASIC Program With Remark Statements....1-5
Figure 1-3. Creating BASIC Program.........c.cccccevenienncnn. 1-6
Figure 2-1. BASIC Reserved Words............cccocovveinuennee. 2-2
Figure 2-2. BASIC FUNnClionSccooeieiiicecie e 2-3
Figure 2-3. Precedenceccccveencvinecceeiineeesieeeca, 2-41
Figure 3-1. BASIC Statementsccceveeniincnninencnns 3-3
Figure 3-2. BASIC FUNCHONSccoceviivirrercereeeeee, 3-4
Figure 3-3. BASIC Compiler Directives............ccccceununnnee. 3-4
Figure 3-4. Subroutines for Extended Arithmetic Power
FUNCHION .. 3-184
Ultimate BASIC : ' 6929-3

Confidential and Proprietary to The Ultimate Corp.

AN

e

Contents

6929-3

Tables
Table 2-1. BASIC Operators........ccoccoveoeneneneeeereeeeee 2-40
Table 3-1. Cursor Control Values.........c..ccccooeveverinnnnee. 3-23
Table 3-2. Letter-Quality Printer Control Values............. 3-31
Table 3-3. FUNCKEYS Valu€scccccoeveiieiviiieeeeenen. 3-129
Table 3-4. Soundex Codes.........ccccoermrrirnernnirrirneeeeene 3-229
Table 3-5. SYSTEMValues........cccocoeveveciieiciceeceeee 3-241
Table 3-6. SYSTEM(16) Valuescccocoevvrevererererernee. 3-250
Table 4-1. BASIC Debugger Commands...........cc..cc...... 4-4
Table 5-1. System Delimiters........cccccooveveviiiiiccec 5-3
Ultimate BASIC Xiii

Confidential and Proprietary to The Ultimate Corp.

Contents

Notes

Xiv

Ultimate BASIC
Confidential and Proprietary ta The Ultimate Corp.

6929-3

O

[7(»\\
A

C

How to Use This Manual

This manual is intended as a reference for programmers using the
Ultimate BASIC programming language. It covers all aspects of Ultimate
BASIC through revision 210 of the Ultimate operating system.

BASIC is a simple yet versatile programming language that was first
developed at Dartmouth College in 1963 and is suitable for expressing a
wide range of problems. The Ultimate version has been extensively
modified to support the unique features of the Ultimate data base
structure and operating system.

How the Manual is Organized

6929-3

Chapter 1 gives an overview of programming with Ultimate BASIC. It
covers the program file structure, components of a program, compiler
options, and methods of executing programs.

Chapter 2 discusses how data can be represented in a BASIC program:
as constants (literals), variables, or arrays. It also covers the use of
expressions (arithmetic, logical, string, and relational), and the standard
vs. extended arithmetic (floating point and string) operations.

Chapter 3 lists all statements and functions in alphabetical order. Each
statement and function is detailed in a single-topic unit.

Chapter 4 explains each command in the BASIC debugger and gives an
example of the use of the debugger.

Chapter 5 reviews the Ultimate data file structure and gives some
recommended coding techniques. The chapter also contains several
sample programs for reference.; these programs illustrate the use of
Ultimate BASIC for file updating, job control, and other applications.

The appendices list compiler and runtime messages, debugger
messages, ASCII codes, standard user exits from BASIC, the USERMSG
file, and features introduced in revision 200.

Ultimate BASIC Xv
Confidential and Proprietary to The Ultimate Corp.

Preface

Conventions

Xvi

Enter option

Ultimate BASIC

N
This manual presents the general syntax for each BASIC statement and
function. In presenting and explaining the syntax, the following
conventions apply:
Convention Description
UPPER CASE Characters printed in upper case are required and
must appear exactly as shown.
lower case Characters or words printed in lower case are
parameters to be supplied by the user (for
example, line number, data, etc.).
{} Braces surrounding a parameter indicate that the
parameter is optional and may be included or
omitted at the user's option.
bold Boldface type is used for section and unit
headings. Itis also used in examples to indicate
user input as opposed to system displayed data.
TN
RETURN The RETURN symbol indicates a physical carriage ./
return pressed at the keyboard. A RETURN is
required to complete a command line, and signals
the system to begin processing the command.
<key> Angle brackets are used to indicate a key other
than letters or numbers; for example <ESC>.
enter The word enter is used to mean "type in the
required text, then press RETURN."
X'nn' This form is used to define a hexadecimal
number where 'nn' is the hex value; for example,
X'0B', X'41', X'FF'.
'RND(expr) All functions require a set of parentheses, which

usually enclose a parameter. No space is allowed
between the function name and the left
parenthesis.

This typeface is used for messages and prompts
displayed by the system.

6929-3

Confidential and Proprietary to The Ultimate Corp.

Introduction

6929-3

This manual describes the Ultimate BASIC programming language,
which is an extended version of Dartmouth BASIC.

Ultimate BASIC includes the following features:

L]

L

.

Compiled object code

Optional alphanumeric or numeric statement labels of any length
Multiple statements on one line

Single statements on multiple lines

String handling with variable length strings
String and numeric format masking

Shared source code between programs
Linked programs

Computed GOTO and GOSUB statements
Complex and multi-line IF statements

CASE statement selection

External subroutine calls

Magnetic tape input and output

Fixed point, floating point, and string arithmetic
Data conversion capabilities

Ultimate file access and update capabilities
File level or group level lock capabilities
Pattern matching

Dynamic arrays

Job control capabilities

Debugging language

Variably dimensioned arrays

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

1-1

Introduction

The File Structure of BASIC Programs v

A BASIC source program is stored as an item in the data section of a file.
The program name is its item.id. Each individual line within the BASIC
program is stored as an attribute in the item.

When a program is successfully compiled, the compiler generates a
pointer to the object code and stores this pointer in the dictionary section
of the file, using the program name as the pointer name. Thus, in order
to compile programs, the data and dictionary sections must be distinct
files.

Object pointer items have a format similar to that of POINTER-FILE save-
listitems:

Attribute Description

item.id program name
01 cc
02 starting frame number of object code
03 number of frames of object code AN
04 null -/
05 time and date of compilation

Attributes O through 4 are protected by the system against alterations by
the Editor or any other file-updating program.

Note: Frame number is also referred to as the frame identifier or FID.

Stored along with the object code of each program (unless suppressed at
compile time) is a symbol table for use with the BASIC debugger. The
symbol table contains all variable names defined in the program. (For
details on the BASIC debugger, refer to Chapter 4, BASIC Debugger.)

When object pointer items are saved on tape as part of a FILE-SAVE or
ACCOUNT-SAVE, the associated object code is also saved. Individual
object programs may also be saved on tape by T-DUMPing specified
pointers in a file dictionary. Programs may be restored from FILE-SAVE
and ACCOUNT-SAVE tapes using ACCOUNT-RESTORE or SEL-RESTORE
(specifying a file dictionary). Object programs may be T-LOADed into
file dictionaries from T-DUMP tapes.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

Components of BASIC Programs

C The Components of a BASIC Program

Multi-
Statement
Lines

Multi-Line

Statements
Labels
6929-3

A BASIC program consists of a sequence of BASIC statements. Each
BASIC statement tells the system to perform a specific program
operation. A statement may include one or more data values,
expressions, and/or intrinsic functions. (Please refer to Chapter 2 for
details on representing data and expressions. Refer to Chapter 3 for an
alphabetical listing and discussion of each BASIC statement and intrinsic
function.)

More than one statement may appear on the same program line,
separated by semicolons. For example:

X =20; Y =20; GOTO 50

Certain statements which take an indefinite number of arguments may be
continued on several lines; each line except the last must end with a
comma. For example:

CALL A.BIG.SUBROUTINE (LONGPARAMETERNAME]L,
LONGPARAMETERNAME2,
EVEN.LONGER.PARAMETERNAME3)

The continued lines may be indented to improve program clarity, but
this is not required by the BASIC Compiler. Statements with the multi-
line option are noted in their individual discussions.

Any BASIC statement may begin with an optional statement label that can
be either numeric or alphanumeric.

Numeric statement labels may be any constant number. The following
INPUT statement, for example, has a statement label of 100:

100 INPUT X

Alphanumeric statement labels may contain letters, numbers, dollar
signs, and periods, but the first character must be a letter. An
alphanumeric label, when it is defined, must be followed by a colon.

Ultimate BASIC 1-3
Confidential and Proprietary to The Ultimate Corp.

Introduction

Compiler
Directives

Use of Blanks

1-4

When an alphanumeric label is referenced, the colon is not used. The

colon is optional in defining numeric labels..

The following routine defines the statement label INPUTLOOP and
references itself and two other labels:

INPUTLOOP: GOSUB GETINPUT
GOSUB DOIT
GOTO INPUTLOOP

A label can be the only text on a line, in which case it labels the next
non-blank non-null line. For example:

DOIT:
GOSUB DOITAGAIN

A BASIC program can also include compiler directives. Directives look
similar to BASIC statements, but they affect the way a program is
compiled, not the way it runs. The following compiler directives are
available: W/

$* inserts comments into object code

$CHAIN links program file items

$COMPATIBILITY compiles according to alternative standards

$INCLUDE shares source code between programs

$INSERT equivalent to SINCLUDE

$NODEBUG omits source line references and symbol table,
which limits debugging capabilities

INCLUDE equivalent to SINCLUDE

The compiler directives are described in Chapter 3, BASIC Statements
and Functions.

Except for situations explicitly called out in the following sections,

blank spaces appearing in the program line and that are not part of a

string are ignored. All-blank lines and null lines (containing no text and

no blanks) are also ignored. Thus, blanks and null lines may be used

freely within the program for purposes of clarity and readibility. @

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

C

Components of BASIC Programs

Remarks

End of
Program

6929-3

A helpful feature to use when writing a BASIC program is the REMark
statement. A REMark statement is used to explain or document the
program. It allows the programmer to place comments anywhere in the
program without affecting program execution. (The REMark statement,
which can be written as REM, !, or *, is described in Chapter 3.)

Figure 1-1 uses a simple BASIC program to show overall program
format. Figure 1-2 illustrates the same program with a number of
REMark statements and a null line added for clarity.

An Ultimate BASIC program does not require any special end of program
command; however, an END or STOP statement can be used if desired.
The compiler always places a STOP command after the last line in the
program.

I =1
5 PRINT I
IF I = 10 THEN STOP
I=I+1
GO TO 5
END

Figure 1-1. Sample BASIC Program

REM PROGRAM TO PRINT THE

* NUMBERS FROM ONE TO TEN

*
I =1 ;* start with one

5 PRINT I ;* print the value
IF I = 10 THEN STOP ;* stop if done
I=1I+1 ;* increment I
GOTO 5 ;* continue

END

Figure 1-2. BASIC Program With Remark Statements

Ultimate BASIC 1-5
Confidential and Proprietary to The Ultimate Corp.

Introduction

Creating BASIC Programs

1-6

BASIC programs are created and edited using one of the system editors.
To invoke an editor, issue one of the following commands at TCL:
ED{IT} file.name program.name
SE file.name program.name
EEDIT file.name program.name

The EDIT verb calls the line editor. The SE verb calls the full screen
editor. The EEDIT verb performs the same function as EDIT, but
compresses the storage space used by eliminating all spaces when the
item is filed.

Program listings are easier to follow when you indent statements within
a loop or routine. You may set tab stops at TCL or within either editor.
Figure 1-3 shows the commands in the line editor. (For details about
using either editor, see the Editor/Runoff User Guide.)

The program is stored in the file specified by filename using the
program name as the item.id.

:TABS I 4,8,12 <CR> User sets input tabs at TCL

:ED BP COUNT <CR> User edits item 'COUNT' in file

New Item 'BP' (Basic Programs)
Top
I <CR> User enters input mode

001+* PROGRAM COUNTS FROM 1-10 <CR>
002+ FOR I =1 TO 10 <CR> tabonce

003+ PRINT I <CR> tab twice
004+ NEXT I <CR> tab once
005+END <CR>

006<CR>

Top

.FI <CR> User files item

'COUNT' filed.

Figure 1-3. Creating BASIC Program

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

™

C

Compiling BASIC Programs

Compiling BASIC Programs

Syntax

6929-3

After the BASIC program has been filed, it can be compiled. Compiling
a program creates object code, which can then be executed using the
RUN verb, or the program can be cataloged, then executed directly from
TCL. The symbol table is also included with the object code (unless
suppressed by the S option or SNODEBUG directive).

If either EDIT or SE was used to create the program, two TCL verbs are
available to compile programs and create the object code: COMPILE and
BASIC. Either may be used since they perform the same operation. If
the EEDIT verb was used to create the program, the EBASIC form of
BASIC must be used to compile the program. EBASIC expands the item
to include any spaces that were compressed by EEDIT.

BASIC file.name item.list {(options)}
COMPILE file.name item.list { (options)}
EBASIC file.name item.list {(options)}

item.list may contain one or more explicit item.ids (program names)
separated by one or more blanks, or may be an asterisk (*) to
indicate all programs in the file.

options if used, options must be enclosed in parentheses; multiple
options used in a single command should be separated by
commas. The valid options are

C suppress end-of-line (EOL) opcodes from object code.
This eliminates one byte of run-time object code for every
line of source code. The EOL opcodes are used to count
lines for error messages. This option is designed to be
used with debugged cataloged programs; any run time
error message that occurs in a program compiled with this
option specify a line number of 1.

F used with the M option to list internal variables and labels,
including those created by IF/THEN and FOR/ NEXT loops;
internal variables and labels are displayed preceded by an
asterisk.

Ultimate BASIC 1-7
Confidential and Proprietary to The Ultimate Corp.

Introduction

F

\,

A
if L option is specified, also list lines from $INCLUDEd N
programs. '

list BASIC program,; generates a line by line listing of the
program during compilation. Error lines with associated
error messages are indicated.

list map of BASIC program; generates a variable map and a
statement map that show where the program data will be
stored in the user's workspace. The variable map lists the
offset from the beginning of the descriptor table of every
BASIC variable in the program. The display is similar to
the following:

Symbol table is 2% full

Last variable is at 210
——————————— VARIABLES S ——————————-
30 REPLY 40 FEXISTS 50 FTYPE 60 TIME
70 HH 80 MM 100 N 150 MODE
—————————————— LABELS ———-——=——-=——=-
55 PRINTID 59 ERRORPR
————————————— EQUATES —-———=——————--

BELL=CHAR(7) CR=CHAR (13) ESC=CHAR(27)

The variable locations are given as offsets from the
beginning of the descriptor table. The gaps in the table are
either because a variable is a dimensioned array or because
there are CALLS to subroutines between two definitions.
The location of the last variable shown above the variables
may be greater than the last location shown in the table for
the same reasons. In addition, offsets 10 and 20 are never
displayed; offset 10 is used for the internal default file
variable and offset 20 is used for the internal default select
variable. (The descriptors used for subroutines and for
internal variables will be displayed if the F option is also
specified.) Descriptors are ten bytes in length.

The number preceding each label is the line number where
the label is defined. If the program is compiled with the C !
option, the line number is always 1; if there is a |

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

Compiling BASIC Programs

$NODEBUG directive in the program itself, the line number
is always the line number of the $NODEBUG statement.

no page; inhibits automatic paging on terminal when using
the L and M options.

print compilation output on line printer

suppress generation of symbol table; suppresses saving the
symbol table generated during compilation. The symbol
table is used exclusively by the BASIC debugger for
reference; therefore it must be kept only if the user wishes
to use the debugger to display or manipulate variables.

cross-reference all labels and variables used in a BASIC

program and stores this information in the BSYM file.

(Note: A BSYM file must be created prior to using this
option.)

The X option first clears the information in the BSYM file,
then creates an item for every variable and label used in the
program. The variable or label name is used as the
item.id. Each line number where the variable or label is
referenced is placed as a value in attribute 1. An asterisk
precedes the line number where a label is defined or where
the value of a variable is changed.

The output is not displayed by this option; use RECALL to
sort the file. To format the listing, create an attribute
definition item in the dictionary of the BSYM file for
attribute 1, called something such as line-number, then use
a SORT command to create a cross reference listing of the
program to be generated:

:SORT BSYM BY LINE-NUMBER LINE-NUMBER

Description The BASIC compiler displays a message when an error is encountered;
the compiler also indicates where on the line it was scanning when it
noted the error. For example, if the THEN/ELSE clause is missing in an
OPEN statement, the compiler displays an error message similar to the

C following:

6929-3 Ultimate BASIC 1-9
Confidential and Proprietary to The Ultimate Corp.

Introduction

1-10

004 OPEN 'BP' TO BP

* k% ~ THEN or ELSE clause missing

After the program is compiled, the system no longer needs the source
program, which can then be deleted, if desired.

Note: The compile process does not create an item in the Master
Dictionary (MD); to create an item in MD from the compiled
program, use the CATALOG command. The compile-and-go
format can be used to place a BASIC source program in the MD
(for information on compile-and-go, see the section Executing
BASIC Source Programs.)

The BASIC compiler stores a compiler version number in each program's
object code. At run-time, before running a program, the system checks
the program's compiler version number to see if it is compatible with the
current compiler version. If it is not, the program is not allowed to run
and the system issues an error message, which indicates that the
program must be recompiled before it can be run.

The maximum BASIC object code size is 57,534 bytes.

The BASIC, COMPILE, and EBASIC commands are also discussed in the
Ultimate System Commands Reference Guide.

Example Description

:COMPILE BP COUNT <CR> compile command

* Kk kK %k

[B241] Line 5, 'COUNT' successfully compiled; 1 frames
used.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

D

Kv/

-~

Cataloging BASIC Programs

Cataloging BASIC Programs

Syntax

Description

6929-3

The CATALOG verb is used to catalog compiled BASIC programs into the
user's master dictionary; after the program is cataloged, its program
name can be used as a command at TCL.

CATALOG file.name item-list {(L{)}}
file.name file containing programs to be cataloged

item-list one or more program names (item.ids), or "*" to indicate all
programs in the file

L indicates that the program is not to be automatically executed
at logon time, if the name of the program is the same as the
name of the account in which the program is cataloged. If the
L option is not present, a cataloged program with the same
name as the current account is automatically executed
whenever a user logs on to the account. (For details about
executing programs at log on, please refer to the section,
Executing BASIC Programs.)

A program must be compiled before it can be cataloged.

For each program successfully cataloged, the system responds with

[244) 'item.id' cataloged.

The CATALOG verb adds the program to the MD as an item with the
following form:

Attribute Description

item.id program name

001 PC
002 E6
003
004

005 file.name item.id

Ultimate BASIC 1-11
Confidential and Proprietary to The Ultimate Corp.

Introduction

1-12

If the program was cataloged using the L option, attribute one of the
verb definition is P rather than PC.

After a program has been cataloged, it can be executed by entering its
name at the TCL prompt, using the following general format:

:programname {argument list}

The programname must be entered exactly as the program name is
stored in the user's Master Dictionary. The optional argument list
contains any parameters that need to be passed to the program.

The external subroutines used with the BASIC CALL statement may also
be cataloged, although it is unnecessary if both the subroutine and the
calling routine are in the same program file. The CALL statement first
searches the Master Dictionary for a cataloged verb; if no verb is found,
CALL then looks in the dictionary of the program file for the calling
routine.

The program to be cataloged cannot have the same name as an existing
item in the user's Master Dictionary unless that item is also a cataloged
program. If a conflicting item exists in the user's Master Dictionary, a
message similar to the following is displayed and the program is not
cataloged:

[415] ’item.id' exists on file

Ultimate BASIC S 6929-3
Confidential and Proprietary to The Ultimate Corp.

£

AN

C

Decataloging BASIC Programs

Decataloging BASIC Programs

Syntax

Description

6929-3

The DECATALOG verb deletes the Master Dictionary reference to the
program and removes the object code from the system.

DECATALOG file.name item-list
file.name file containing programs to be decataloged

item-list one or more program names (item.ids), or "*" to indicate all
programs in the file

DECATALOG removes the object programs by deleting the appropriate
pointer items from the dictiqnary of the file; the associated frames
containing the object code are returned to the system's pool of available
frames (overflow). DECATALOG also deletes the verbs for cataloged
programs from the Master Dictionary, but a program does not have to be
cataloged before it is decataloged.

The CATALOG and DECATALOG commands are also discussed in the
Ultimate System Commands Reference Guide.

Ultimate BASIC 1-13
Confidential and Proprietary to The Ultimate Corp.

Introduction

Executing BASIC Programs

BASIC programs can be executed in the following ways:

+ acataloged BASIC program can be executed by issuing the program
name at TCL

+ the RUN verb issued at TCL can be used to execute a compiled BASIC
program

+ a cataloged BASIC program with the same name as an account name
can be automatically executed at logon time

*» a source program that is stored in the master dictionary and that has a
PROGRAM statement as the first line can be compiled and executed by
issuing only the program name at TCL

» programs can be executed as part of another BASIC program or as part
of a PROC

RUN Command

The RUN verb is used to execute programs that have already been

compiled.

Syntax RUN filename item.id {argument list} {(options)}
filename file containing program to be executed
item.id program to be executed

1-14

argument list parameters that must be passed to the program

options if used, the options must be enclosed in parentheses;
multiple options may be separated by commas. Valid
options are as follows:

A abort option; inhibits entry to the BASIC debugger
under all error conditions; instead, if an error occurs,
the program prints the error message and terminates
execution

Ultimate BASIC

: 6929-3
Confidential and Proprietary to The Ultimate Corp.

®

Executing BASIC Programs

D run-time debug option; causes the BASIC debugger to
be entered before the start of program execution.
Note that the BASIC debugger may also be called at
any time while the program is executing, by pressing
the BREAK key on the terminal

E errors option; forces the program to enter the BASIC
debugger whenever an error condition occurs. The
use of this option forces the operator either to accept
the error by using the debugger, or to exit to TCL

I inhibit initialization of data area (refer to the
description of the BASIC CHAIN statement)

N nopage option; cancels the default wait at the end of
each page of output when that output has been routed
to the terminal by a program using the HEADING,
FOOTING, and/or PAGE statements

P printer on (has same effect as issuing a BASIC
PRINTER ON statement). Directs all program output to
the Spooler

S suppress run-time warning messages.

Executing
Programs at
Logon Time

6929-3

When a user logs on, the system attempts to execute an item in the
user's Master Dictionary with the same name as the logon account
name. This item can be a cataloged BASIC program, a compile and-go
BASIC program, or a PROC. This feature is useful to run a standard job
control sequence or present a custom-tailored menu of choices to the
user.

However, you may need to catalog a BASIC program with the same
name as the name of the account, but you do not want it to run
automatically at logon time. To avoid automatic execution, the program
should be cataloged with the L option.

For details on cataloging programs, refer to the section, "Cataloging
BASIC Programs".

Ultimate BASIC 1-15
Confidential and Proprietary to The Ultimate Corp.

Introduction

Executing
BASIC Source
Programs
(Compile and
Go)

BASIC source programs can be stored as items in Master Dictionaries
and can be executed from TCL without previous compilation. This
option, called "compile-and-go", requires only that the source program
have a PROGRAM statement beginning at the first character (no leading
blanks) of line one. The PROGRAM statement can be abbreviated as
PROG. For example:

HELLO
001 PROG
002 PRINT "HELLO"
003 END

The general format for running the program is:
program.name {argument list}

The effect of compile-and-go is similar to that of writing a PROC, but

with BASIC's more powerful run-time and debugging features.

Compile-and-go programs can be executed at logon time if the program

name 1is the same as an account name. I

Note: When a compile-and-go program has been established in a
user’s Master Dictionary, that name cannot be used as the
name of another program when it is cataloged.

Using BASIC
for Job
Control Tasks

1-16

BASIC programs can be used for job control tasks by executing BASIC
programs, PROCs, and TCL verbs within a controlling BASIC program.
The controlling program can use EXECUTE statements, as well as other
supporting statements (PUT, GET, SEEK) and functions (EOF) to
implement the job control tasks.

The BASIC program can control error processing by using TRAP ON
THEN CALL statement. This statement can trap program terminations,
error conditions, pressing of the BREAK key, and commands entered
from the BASIC and system debuggers.

For details on using these statements, please refer to the appropriate

statement name, listed alphabetically in Chapter 3 of this manual. { ~
)

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

Working with Data

6929-3

This section describes the features of BASIC that are available for
working with data. It also describes the way in which the system
allocates variables. The following features are discussed:

» reserved words

» numbers and numeric data

* string data

* arrays

« arithmetic expressions

* string expressions
 concatenation

« format strings: numeric mask and format mask codes
« relational expressions

* logical expressions

+ summary of expression evaluation
* limited expressions

+ variable data area

» variable allocation

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

Working with Data

/ﬂ‘)
Reserved Words
Figure 2-1 is a list of BASIC reserved words. These words cannot be
used as simple variable names, array variable names, or labels.
AND GOTO OUT.
ARG. GO PASSLIST
CAPTURING GT REPEAT
CASE IN. RETURNING
CAT LE RTNLIST
DO LOCKED SELECT.
ELSE LT STACKING
END MATCH - STEP
EQ MATCHES THEN
FROM NE TO
GE NEXT UNTIL
GLE ON WHILE
GOSUB OR
(Y
Figure 2-1. BASIC Reserved Words
C
|
|
2-2 Ultimate BASIC 6929-3 ;
\

Confidential and Proprietary to The Ultimate Corp.

Reserved Words

(" Figure 2-2 is a list of BASIC functions; the names of these functions
cannot be used as array or matrix variable names. Ultimate strongly
advises against using these names as simple variables and labels,
although the compiler allows such use.

@ FIELD RND
ABS FMT SADD
ALPHA FMUL SCMP
ASCII FSUB SDIV
CHAR ICONV SEQ
COLL1 INDEX SIN
COL2 INDEXINFO* SMUL
CoS INMAT SORT
COUNT INSERT SOUNDEX
DATE INT SPACE
DCOUNT LEN SQRT
DELETE LN SSUB
EBCDIC MATCHFIELD STR

- EOF MAXIMUM* SUM

(_ , ERROR MINIMUM* SYSTEM

EXP MOD TAN
EXTRACT NOT TIME
ERRTEXT NUM TIMEDATE
FADD OCONV TRIM
FCMP PWR TRIMB
FDIV REM TRIMF
FFIX REPLACE USERTEXT
FFLT REUSE

*Reserved for future use

Figure 2-2. BASIC Functions

6929-3 Ultimate BASIC 2-3
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Numbers and Numeric Data

Fixed Point
Numbers

Numbers may be represented in Ultimate BASIC in three formats:
+ fixed
+ floating point

* string

Each format has its own arithmetic operators. For both floating point
arithmetic and string arithmetic, the standard operations of add, subtract,
multiply, divide, and compare have been implemented as functions
within BASIC.

A fixed point number may contain any number of digits to the left of the
decimal point and can have a maximum of nine digits to the right of the
decimal point. The actual number of digits is determined by the
PRECISION statement; the default number is four. (For details, see the
description of the PRECISION statement in Chapter 3.)

The unary minus sign is used to specify negative numbers. For
example:

—17000000
-14.3375

The fixed point arithmetic operators are

A exponentiation
* multiplication
/ division
+ addition
— subtraction
Ultimate BASIC 6929-3

Confidential and Proprietary to The:Ultimate Corp.

C

Numbers and Numeric Data

Floating Point
Numbers

6929-3

Floating point numbers have a different format from fixed point
numbers. A floating point number consists of a mantissa and an
exponent. Ultimate BASIC floating point uses an integer mantissa and a
base-10 exponent. The mantissa may contain from 1 to 13 digits and
may be either positive or negative. A negative mantissa uses a minus
sign in front of it; a positive mantissa is unsigned. The exponent may
be in a range of -255 to 255. Like the mantissa, a negative exponent
uses a minus sign; a positive exponent is unsigned. An E is used to
separate the mantissa from the exponent.

Values to be used as floating point numbers must be specially formatted
strings. Functions are provided that convert fixed point numeric or
string numeric values to floating point format. Another set of functions
may be used after floating point operations to convert the results back to
fixed point numeric or string values.

The following examples show the floating point representation of
various numbers:

Floating Point
Representation Expanded Number

OEO 0
1E0 1
1E3 1000
1E-20 .00000000000000000001
-1234567890123E-5 -12345678.90123
9876543210987E-13 .9876543210987
-28855E-2 -288.55

The following functions are available for arithmetic operations on
floating point numbers:

Operation Floating Point Function
Addition FADD

Subtraction FSUB

Multiplication FMUL

Division FDIV

Comparison FCMP

Convert to floating FFLT

Ultimate BASIC 2-5

Confidential and Proprietary to The Ultimate Corp.

Working with Data

String
Numbers

2-6

Convert to fixed FFIX

For details, see the description of each function in Chapter 3.

A string number, that is, a number that is enclosed in string delimiters,
can have any magnitude and any precision.

The following examples show various string numbers:

" 1 "

"-300.23"
"5000000000000000000000000"
".000000000000000000000000023"

String numbers can use any of the numeric operators shown with the
fixed point numbers. However, these operators restrict the number of
decimal places in the result of the arithmetic operation to the current
precision.

The following set of functions have been defined for string arithmetic
and, except for SDIV, do not restrict the number of decimal places. The
divisor in SDIV is restricted to 13 significant digits and the quotient is
restricted to 14 significant digits.

Operation String Function
Addition SADD
Subtraction SSUB
Muldplication SMUL
Division SDIV
Comparison SCMP

For details, see the description of each function in Chapter 3.

Ultimate BASIC : 6929-3
Confidential and Proprietary to The Ultimate Corp.

>
N

®

C

String Data

String Data

6929-3

A string may contain any number of characters. A string is defined by a
set of characters enclosed in single quotes('), double quotes ("), or
backslashes (\); these characters are described as string delimiters.

The following are examples of strings:

"THIS IS A STRING"
'ABCD1234#*'
\3A\

If a string value contains a character that can also be a used as a string
delimiter, then another delimiter must be used to delimit that string.

"THIS IS A 'STRING' EXAMPLE"
'"THIS IS A "STRING" EXAMPLE'

Internally, a string is delimited by a segment mark (SM), which is a
character having a decimal value of 255. A string may not include a
segment mark.

A string may include data delimited by system delimiters (attribute
marks, value marks, and subvalue marks). Such strings are called
"dynamic arrays" and are described in the section "Arrays", starting on
page 2-12.

Ultimate BASIC 2-7
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Constants and Variables

Constants

Variables

Variable
Names

2-8

Numeric and string data values may be represented as either constants or
variables.

A constant, as its name implies, has the same value throughout the
execution of a program. A constant may be a literal value such as the
number 2 or string "HELLQO", or it may be a named value. In this case, a
symbolic name is equated with a constant value; for example, the name
"AM" could be equated to CHAR(254); and the name can be used instead
of the value in BASIC statements.

A variable has both a name and a value. The value of a variable may be
either numeric or string, and may change dynamically during the
execution of the program.

Storage space for variables is allocated in the order that the variables
appear in a program. No special statements are needed to allocate space
for simple variables (except COMMON variables), but the size of each
dimensioned array must be specified in a DIM or COMMON statement to
allocate its space.

The maximum number of variables in a program is 3223. If an array is
dimensioned to a literal number of elements, each element counts as one
variable. An array that is dimensioned to a variable number of elements
counts as only one variable, regardless of the value of the variable. For
more information, see the section Arrays, which starts on page 2-12.

Variables are identified by a variable name; the name remains the same
throughout program execution. Variable names consist of an alphabetic
character followed by zero or more letters, numerals, periods, or dollar
signs. Variable names may be of any length.

The following terms are valid variable names:

X

QUANTITY
DATA.LENGTH
BS..$

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

.

S

C

Constants and Variables

Values of
Variables

Predefined
Symbols

6929-3

BASIC reserved words may not be used as variable names (the BASIC
reserved words are listed at the beginning of this chapter).

Although a BASIC variable name may end with a period (.), it is
recommended that programmers not use names in this format for their
own variables in order to distinguish the variables predefined by the
Ultimate operating system. Since variable names in this format may or
may not be treated as names of predefined variables in all cases,
depending on the operating system release, The Ultimate Corp. strongly
suggests programmers rewrite their software, if necessary, to avoid
possible conflict.

The value of a variable may change during the execution of the program.
The variable X, for example, may be assigned the value 100 at the start
of a program, and may later be assigned the value "THIS IS A STRING".
A program can retrieve the value of a variable by specifying the variable

name. For example, the following program lines assign the value 12 to
A, then print the value of A:

A = 1112"

PRINT A

The following symbols have been preassigned values and can be used in
place of variables:

@FM field mark; this has the value CHAR(254)
@VM value mark; this has the value CHAR(253)

@SM sub-value mark; this is has the value CHAR(252)

Ultimate BASIC 2-9
Confidential and Proprietary to The Ultimate Corp.

Working with Data

System
Variables

2-10

The following symbols return information based on the current status of

the system:

(@EXECLEVEL

@HOLDFILE

@LANGUAGE

(@PRIVILEGE

@SELECT

(@SENTENCE

returns current EXECUTE level; equivalent to
SYSTEM(21)

number of last hold file created by PRINT statement in
current BASIC program; if no hold file has been
assigned, returns zero; equivalent to SYSTEM(22)

returns two-digit language code of the language
assigned to current port; equivalent to SYSTEM(27)

returns 0, 1, or 2 to indicate system privilege level of
current user; equivalent to SYSTEM(23)

returns 1 if external select list is active, else returns O;
equivalent to SYSTEM(25)

returns TCL statement that invoked current program;
statement is formatted as dynamic array; equivalent to
SYSTEM(18). Elements in the statement are
separated by attribute marks. If an element is
enclosed in delimiters, the delimiters are removed.
For example, if a program is invoked using the
following command:

RUN BP PGM1 A 'B,C' (D)

the following is returned in @SENTENCE within
PGM1:

@ SPOOLOPTS

@USERNO

Ultimate BASIC

RUN"BP"PGM1"A"B,C" (D)

returns current spooler assignment status; equivalent
to SYSTEM(24)

returns current port number; equivalent to
SYSTEM(19)

6929-3

Confidential and Proprietary to The Ultimate Corp.

O

Constants and Variables

File Variables

6929-3

@WHO name of current user; does not return name of any
CHARGE-TO account; equivalent to SYSTEM(26)

A file variable is the variable to which a file is opened and contains
information the system needs to locate the file. The file variable can be
used in a BASIC PRINT statement or BASIC debugger / (list) instruction to
display the base frame number (FID) of the file.

In addition, the file variable can be tested to see if any file has been
opened to it. A non-zero value indicates the file is opened.

If the file variable is included in a COMMON statement, the file
information assigned to it can be passed to subsequent programs.

If the file variable is changed in any way by the BASIC program, it is no
longer considered a file variable.

OPEN 'TEST.FILE' TO TF ELSE STOP

PRINT ‘'Base frame ID: ':TF
Prints base frame ID as given in the file
identification item in the file dictionary.

OPEN 'TEST.FILE' TO TF ELSE TF = 0

IF TF THEN
READ ITEM FROM TF,'Tl' ELSE ITEM = ‘' !
END ELSE
ITEM = 'No test file available'

END

PRINT ITEM<1>

Ultimate BASIC 2-11
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Arrays

2-12

Arrays are variables with multiple elements. Ultimate BASIC supports
two types of arrays: dimensioned and dynamic.

A dimensioned array is defined by a DIM or COMMON statement. The
exact number of elements can be fixed in the defining statement, or the
number can be specified in a variable and determined at run time. A
dynamic array is a string that contains elements delimited by attribute
marks, value marks, and subvalue marks.

An array is associated with multiple storage locations, each of which has
a separate value and which can function as a simple variable. A
particular location (or element) within an array is specified by following
the array name with subscripts (numbers or other arithmetic
expressions).

Elements in dimensioned arrays are referred to with subscripts in
parentheses. For example, if A defines a dimensioned array, A(10)
refers to the tenth element of the array. Elements in dynamic arrays are
referred to with subscripts in angle brackets. The first subscript
specifies the attribute, the second subscript specifies the value, and the (N
third subscript specifies the subvalue. For example, if X is a dynamic

array, X<3> refers to the third attribute of the dynamic array; X<3,1,2>

refers to the second subvalue in the first value in the third attribute of the

dynamic array.

A dynamic array can be an element of a dimensioned array. An element
within the dynamic array is referred to by placing the dynamic array
subscript after the dimensioned array subscript. For example, if A
defines a dimensioned array, A(10)<3> refers to the third attribute of the
dynamic array in the tenth element of the dimensioned array.

Dynamic arrays, which are strings, should not be confused with
dimensioned arrays, which are sets of storage locations. Unlike
dimensioned array elements, the individual attributes, values, and
subvalues of a dynamic array are not directly addressable, and are
searched for on each reference since they may move as the dynamic
array changes.

These two array types are described in detail in the following two

sections. c(/

Ultimate BASIC ' 6929-3
Confidential and Proprietary to The Ultimate Corp.

Arrays

Dimensioned
Arrays

6929-3

A BASIC program can address any element of a dimensioned array as a
separate variable and can assign values to the individual elements or to
the entire array.

A dimensioned array contains one value per element. Any array element

may be accessed by specifying its position in the array as a subscript
following the array name. For example, if array A has been
dimensioned as A(4) and assigned values, it might look similar to the
following:

3 A(1) has value 3

8 A(2) has value 8

-20.3 A(3) has value -20.3

ABC A(4) has string value "ABC"

The above example illustrates a one-dimensional array. A two-
dimensional array is characterized by having rows and columns. For
example, if array Z has been dimensioned as Z(3,4) and assigned
values, it might look similar to the following:

3 xyz | a -8.2 Z(1,2) has string value 'XYZ'
8 ABC 500 | .333 Z(2,2) has value 'ABC'
2 xyz | 012 | 84 Z(3,2) has value 'XYZ'

The MATREAD{U} statement can be used to assign each attribute of an
item to an individual array element. Conversely, the MATWRITE (U}
statement can be used to write an item from an array. The MATPARSE
statement can be used to assign values in a dynamic array to
corresponding elements in a dimensioned array. (For details, see the
appropriate statement listed alphabetically in Chapter 3.)

Ultimate BASIC 2-13

Confidential and Proprietary to The Ultimate Corp.

Working with Data

Dynamic
Arrays

2-14

A
s

The maximum number of elements to which an array can be
dimensioned is 3223. An array can be dimensioned with a literal or
with a variable. An array that is dimensioned with a literal can be
accessed more quickly than an array that is dimensioned with a variable.
However, each element in an array with a literal dimension counts
toward the total number of variables in a program. An array
dimensioned with a variable counts as only a single variable.

A string that has elements delimited by system delimiters is called a
dynamic array. A dynamic array does not have a fixed number of
elements nor is it dimensioned. Itis an array in that its component data
elements can be referenced using subscripts. It is dynamic in that
individual elements may be added, changed, or deleted within the string,
causing the relative positions of the elements to be subject to change.

A dynamic array consists of one or more attributes; multiple attributes

are delimited by attribute marks. An attribute mark has an ASCII

equivalent of 254, shown as ” by the editor and ~ by BASIC.

An attribute, in turn, may consist of one or more values; multiple values .

in an attribute are delimited by value marks. A value mark has an ASCII

equivalent of 253, shown as | by the editor and } by BASIC.

Finally, a value may consist of one or more subvalues; multiple

subvalues in a value are delimited by subvalue marks. A subvalue mark

has an ASCII equivalent of 252, shown as \ by the editor and | by BASIC.

Note: This manual displays the delimiters as shown by the editor.

An example of a dynamic array is as follows:
Jones”Alice”244"temporary

Jones, Alice, 244, and temporary are attributes.

The following illustrates a more complex dynamic array:

Jones”Alice”2364 E. Main]Apt 206”English\s\r\w]
Spanish\s

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

Arrays

6929-3

Jones, Alice, 2364 E. Main]Apt 206, and English\s\f\w]Spanish\s are
attributes. 2364 E. Main, Apt 206, English\s\r\w, and Spanish\s are
values. English, s, r, w, Spanish, and s are subvalues.

Each element of the dynamic array can be addressed by specifying its
position within angle brackets (< >); the first subscript specifies the
attribute, the second subscript, if present, specifies the value within the
selected attribute, and the third subscript, if present, specifies the
subvalue within the selected value.

For example, if X represents the first example dynamic array above,
then X<2> denotes attribute two of the string, which is "Alice". If Y
represents the second dynamic array above, then Y<3,2> = "Apt 206"
and Y<4,2,1> = "Spanish".

If the specified element is not in the array, a null value is returned; a
missing dynamic array element is not considered an error. For example,

(111

if Y represents the second dynamic array, Y<2,2>="".

Dynamic arrays are significant in Ultimate BASIC because items in files
are in dynamic array format; thus, dynamic arrays may be used to
represent data in disk files. Special constructs are available for
manipulating dynamic arrays, thus making it easier to access and update
files.

The maximum number of attributes in a dynamic array is 32,767.

The following BASIC functions and statements are used to reference
dynamic arrays:

* EXTRACT
¢ DELETE

¢ INSERT

* LOCATE

* REMOVE
* REPLACE
* REUSE

For details, please refer to the appropriate function or statement, listed
alphabetically in Chapter 3.

Ultimate BASIC 2-15
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Arithmetic Expressions

Order of
Operations

2-16

Expressions are formed by combining operators with variables,
constants, or BASIC functions. Arithmetic expressions are formed by
using arithmetic operators.

When an expression is encountered as part of a BASIC program
statement, it is evaluated by performing the operations specified by each

of the operators on the adjacent operands.

The simplest arithmetic expression is a single unsigned numeric
constant, variable, or intrinsic function. A simple arithmetic expression

may combine two operands using an arithmetic operator. More

complicated arithmetic expressions are formed by combining simple

expressions using arithmetic operators.

When more than one operator appears in an expression, certain rules are
followed to determine which operation is to be performed first. Each
operator has a precedence rating. In any given expression the highest

precedence operation is performed first.

The arithmetic operators have the following precedence:

Operator Operation
A exponentiation
* multiplication
/ division
+ addition or identity

subtraction or negation

Precedence

1
2
2
3
3

O

If there are two or more operators with the same precedence, or an
operator appears more than once, the leftmost operation is performed

first.

For example, consider this expression: -50/5+3*2. The division and

multiplication operators have the same precedence and it is higher than

the precedence of the other operators. Since the division operator is

leftmost, it is evaluated first: 50/5 = 10. The expression then becomes

-(10)+3*2. The multiplication operation is performed next: 3*2 = 6.

The expression then becomes: -(10)+(6). The negation is the leftmost f ;

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

6929-3

Arithmetic Expressions

operator, so it is applied to the 10. The addition is then performed,
yielding the final result, -4.

Any sub-expression may be enclosed in parentheses. The parenthesized
sub-expression as a whole has highest precedence and is evaluated first.

However, within the parentheses, the rules of precedence apply. For
example, the following expression is evaluated as follows:

10+2*3-1 = 15
However, parentheses can change the order of operation:
(10+2) * (3-1) = 12%2 = 24

Parentheses may be used anywhere to clarify the order of evaluation,
even if they do not change the order. For example,

10+(2*3)-1 = 15

Arithmetic operators may not be adjacent to each other. For example,
2*-3 is not a valid expression, although 2*(-3) is.

Example Description

2+6+8/2+6 evaluates to 18

12/2%3 evaluates to 18

12/ (2%3) evaluates to 2

-572 evaluates to -25

(-5)"2 evaluates to 25

8% (-2) evaluates to -16

5 % wu3n evaluates to 15
Ultimate BASIC 2-17

Confidential and Proprietary to The Ultimate Corp.

Working with Data

Processing
Numeric and
String Data

2-18

In BASIC, data may be stored as a numeric value or a string value (which
may or may not consist entirely of numbers). Arithmetic operations
process these data types differently .

Internally in the Ultimate operating system, a numeric value is stored as
a six-byte binary number, which is expressed in hexadecimal or
converted to decimal. The maximum value possible is:

140737488355327 = X'TFFFFFFFFFFF'

Thus, when the PRECISION is set to 4 (the default), the maximum
decimal value is 14,073,748,835.5327.

The PRECISION statement allows a program to preset the number of
decimal places returned by standard arithmetic performed in that
program,; the range is O (only integer values returned) to 9 (returned
values may have up to nine decimal places). Thus, a program's
PRECISION affects the range of numeric values that are valid in that
program. However, a PRECISION statement is ignored by explicitly
coded string and floating point arithmetic operations, since these
functions are designed to deal with larger (string) numbers, and by the
functions EXP, LN, and PWR.

A string value is stored as a series of ASCII characters. String numbers
may be of any length; hence, there is no limit on the magnitude or
precision.

In BASIC, arithmetic may be performed via expressions that contain
arithmetic operators and via certain functions, such as PWR. The
arithmetic operators performs binary arithmetic, if possible, on numeric
or string values by converting them to binary for the operation.

If the values exceed the range that binary arithmetic can handle within its
six-byte maximum, string arithmetic is automatically invoked by the
system, without programmer or user intervention. Both operations are
considered "standard arithmetic". Again, if the result of an arithmetic
operation is too large to be stored in a six-byte binary number, string
arithmetic is automatically used by the system. In this case, the
program's PRECISION is in effect .

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

£ N

Arithmetic Expressions

Arithmetic
Operators and
Dynamic
Arrays

6929-3

If a string value containing only numeric characters is used in an
arithmetic expression, it is considered as a decimal number. For
example, 123 + "456" evaluates to 579.

If a string value containing non-numeric characters is used in an
arithmetic expression, a warning message is printed when the program
is executed and zero is assumed for the string value. For more
information, see Appendix B, BASIC Run-Time Error Messages.

The following expression, for example, when executed, generates a
warning message and evaluates to 123:

123 + "ABC"

The variables used in arithmetic expressions can contain dynamic
arrays. The specified operation is automatically performed on
corresponding array elements. If the arrays do not have the same
number of elements, the system assumes a value of zero (0) for the

missing elements for addition, subtraction, multiplication, and dividends

in division. It assumes a value of one (1) for missing divisors in
division.

Note: The function REUSE allows you to use the previous value
instead of zero when the number of elements differ. For more
information on REUSE, see Chapter 3.

ARRAY1l = 1:AM: 2:VM: 2:VM: 2:AM: 3
ARRAY2 = 10:AM:20:VM:20:VM:20:AM:30
ARRAY3 = ARRAY1 + ARRAY2

result:
ARRAY3 = 11:AM:22:VM:22:VM:22:AM:33

The elements of ARRAY3 are composed of the sums of the five
elements in ARRAY1 and ARRAY?2.

Ultimate BASIC 2-19

Confidential and Proprietary to The Ultimate Corp.

Working with Data

Rules for
Standard
Arithmetic

2-20

ARRAY1 = 1:VM:1:AM:2:VM:2:AM:3
ARRAY2 = 1: AM:2 AM:3
ARRAY3 = ARRAY1l + ARRAY2

result:
ARRAY3 = 2:VM:1:AM:4:VM:2:AM:6

ARRAY?3 is built as follows:
1. The first two values in attribute 1 are added.

2. ARRAY?2 does not have a second value in attribute 1, so 0 is added
to the second value in ARRAY1.

3. The first value in attribute 1 of ARRAY1 is added to the first value
in attribute 2 of ARRAY?2.

4. ARRAY?2 does not have a second value in attribute 2, so 0 is added
to the second value in ARRAY1.

5. The values in attribute 3 are added.

For each arithmetic operation, the system performs as follows:

1. The system first attempts to convert all values to binary numbers (if
they are not already).

2. [If all values can be converted to binary, binary arithmetic is

performed. If the resulting binary number can be stored in six
bytes, it is stored, using the program's PRECISION to truncate to the
proper number of decimal places if needed. The operation is then
considered complete.

If the result would overflow a 6-byte binary storage area, the
system automatically cancels the operation and prepares for
automatic string math (see 3, below).

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

Arithmetic Expressions

Extended
Arithmetic
Functions

6929-3

3. If all values cannot be converted to binary or the result would
overflow, then the system attempts to convert the original values to
string numbers.

4. If all values can be converted to strings, string arithmetic is
performed. The resulting value is stored as a string, using the
program'’s PRECISION to truncate to the proper number of decimal
places if needed. The operation is then considered complete.

5. If the values cannot be converted to either binary or string numbers,
then an error message is generated, and the operation is performed,
with zero being used for the unconverted values. The result is
stored as a string, and the PRECISION is applied.

In addition to standard arithmetic, functions are available that can be
used in expressions to perform mathematical operations. These
functions allow the programmer to explicitly code string arithmetic or
floating point arithmetic operations into a program. These functions are
considered "extended arithmetic".

When a program requires calculations beyond the precision or
magnitude of the standard arithmetic, either the string or floating point
arithmetic may be used. It is usually best to select one of the two types
and do all calculations in that mode. This minimizes confusion and also
reduces the number of conversions which must be performed.

String arithmetic can handle virtually any operation and it requires the
least conversion since all standard numbers are automatically string
numbers as well. One might decide to always use string arithmetic
except for speed considerations.

The speed of floating point operations and string operations are
essentially the same except in multiplication. Floating point
multiplication is considerably faster, depending on the number of digits
involved. For example, it is four times faster to multiply
12345678909.87 by 1.00327 in floating point than in string and it is
seven times faster to multiply two 13-digit numbers together in floating
point.

Ultimate BASIC 2-21
Confidential and Proprietary to The Ultimate Corp.

Working with Data

For each string arithmetic operation:

1. A specific intrinsic function is used in an expression (SADD, SSUB,
SMUL, SDIV).

2. The system attempts to convert all original values to string numbers
(if they are not already).

3. If all values can be converted to strings, string arithmetic is
performed. The resulting value is stored as a string. The
program's PRECISION is ignored and the full resulting value is
always stored. The operation is then considered complete.

4. If the values cannot be converted to string numbers, an error
message is generated, and the operation is performed with zero
being used for the unconverted values. The result is stored as a
string.

For each floating point arithmetic operation:

1. The original values must have been converted to floating point
values via the FFLT function.

2. A specific intrinsic function is used in an expression (FADD, FSUB,
FMUL, FDIV).

3. Floating point arithmetic is performed. The resulting value is
stored as a floating point number.

4. The resulting value may be used in other floating point functions or
converted back to a string number by the FFIX function.

After any arithmetic operation, the resulting value has the same data type
as the values used; that is, binary arithmetic produces numeric values,
string arithmetic produces string values, and floating point arithmetic
produces floating point string values.

2-22 Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

-

Arithmetic Expressions

\
(Arithmetic The results of an arithmetic operation may be used in a comparison
X?)Irl:l?)sar?ggn statement in the BASIC program. Each comparison statement (IF, FCMP,
MP) foll . . X . o,
Statements and SCMP) follows certain processing rules in making the comparison

Rules for IF Comparisons

1. The system first attempts to convert all values to binary numbers.

2. [If all values can be converted to binary numbers, the binary values
are compared as numeric entities, using the program's PRECISION
to determine the proper number of decimal places. The result of
comparison is either "true” (1) or "false" (0).

3. If all values cannot be converted to binary, the system attempts to
convert the original values to string numbers.

4. If all values can be converted to numeric strings, a numeric
comparison is made using string arithmetic. The program's
PRECISION is not considered. The result of the comparison is either

B "true"” or "false" and depends on the specific operators used in the
(’ expression.

5. If either operand is not numeric, then a pure string comparison is
done (see Numeric vs. String Comparisons below).

Rules for SCMP (String) Comparisons

1. The system attempts to convert all values to string numbers. If they
cannot be converted successfully, an error message is generated,
and zero (0) is used for the value of each unconverted value.

2. The converted values are compared as ASCII numeric strings and
the result specifies if they are equal in value or if the first is less
than or greater than the second. The resulting value (0, -1, or 1) is
returned.

C
6929-3 Ultimate BASIC 2-23

Conlfidential and Proprietary to The Ultimate Corp.

Working with Data

Numeric vs
String
Comparisons

2-24

Rules for FCMP (Floating Point) Comparisons:

1.

The system attempts to compare both values as floating point string
numbers. The result specifies if they are equal in value or if the
first is less than or greater than the second. The resulting value (0,
-1, or 1) is returned.

The type of comparison used depends on whether the values are being
compared as numbers (if binary or numeric strings) or ASCII characters
(if any string operand is non-numeric).

The two methods are summarized as follows:

Numeric comparison - A numeric comparison is attempted first,
and is made whenever both values can be converted to binary or
numeric strings. If both values have an equivalent numeric value,
then they are considered to be 'equal’. If they are unequal in value,
the value with the larger numeric value is considered 'greater than'
the other. If either or both values contains any non-numeric
characters, the character pair comparison is made on the non-
numeric character pairs (as in 2 below). For example:

100 is equal to 0100
Al is greater than 99
1A is less than 99

String (ASCII) comparison - Character pairs are compared one
at a time from left to right. If no unequal character pairs are found,
then the strings are considered to be 'equal’. If an unequal pair of
characters is found, the characters are ranked according to their
ASCII code numeric equivalent. The character with the higher
numeric ASCII equivalent is considered to be greater than the other.
If the two strings are not the same length, and the shorter string is
otherwise identical to the beginning of the longer string, the longer
string is considered greater than the shorter string. For example:

WORDS is less than Words
XXX is greater than XX

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp:

Arithmetic Expressions

6929-3

If the string has only numbers and includes a decimal point, the
decimal point is used to determine the magnitude of the number.

For example:

'12345.1 ' 1s less than '123451"
'12345.1' is equal to '12345.10'

For a list of ASCII code equivalents, see Appendix D.

Ultimate BASIC 2-25
Confidential and Proprietary to The Ultimate Corp.

Working with Data

String Expressions

Substrings

2-26

A string is a set of characters enclosed in single or double quotes or
backslashes. A string expression may be any of the following:

* string constant
« variable with a string value
+ asubstring

 concatenation of string expressions

String expressions may be combined with arithmetic expressions. If
numeric values are used in a string expression, the system converts
them into equivalent string values before performing the operation.

A substring is a set of characters that makes up part of a whole string.
For example, "SO.", "123", and "ST." are substrings of the string "1234
SO. MAIN ST."

Substrings are defined by specifying the starting character position and
the number of characters, separated by a comma and enclosed in
brackets:

string[start.pos{,no.char}]

If the starting position specification is past the end of the string, an
empty substring value is returned; for example, if A has a value of
'XYZ', A[4,1] has a value of "". If the starting position specification is
less than one, one is used; for example, if X has a value of 'JOHN', X[-
5,1] has a value of 'I'.

If the number of characters specification exceeds the remaining number
of characters in the string, the remaining string is selected; for example,
if B has a value of '123ABC', B[5,10] has a value of 'BC". If the number
of characters specification is less than one, an empty substring is
returned; for example, B[1,-2] has a value of "". If number of
characters is not specified, 1 is assumed.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

String Expressions

Concatenation

Precedence

6929-3

Two strings are concatenated by appending the characters of the second
string onto the end of the first. Concatenation is specified by a colon (:)
or CAT operator. A space must precede and follow the CAT operator.
Spaces are not required for the colon.

The following examples both return the same value:

'Good ' CAT 'Morning'

'Good ':'Morning'
The result is

'Good Morning'

The precedence of the concatenation operator is lower than any of the
arithmetic operators. So, if the concatenation operator appears in an
expression with an arithmetic operator, the concatenation operation is
performed last. Multiple concatenation operations are performed from
left to right. Parenthesized sub-expressions are evaluated first.

The precedence of the substring operator is higher than that of the
arithmetic operators. So in an expression such as A+B[7,3], the
substring of B is extracted, converted to a numeric value, then added to
the value of A.

Ultimate BASIC 2-27
Confidential and Proprietary to The Ultimate Corp.

Working with Data

2-28

In the following examples, assume

A = ABC1l23
Z = EXAMPLE

Expression
z[1,4]
A : 2[1,1)]
Z[1,1] CAT A[4,3]

3*%3:3

A[6,1] +5

Z CAT A : Z

Zz CAT " ONE"

Description

Evaluates to "EXAM"

Evaluates to "ABC123E"

Evaluates to "E123"

3#*3 is evaluated first and results in the
number 9. 9:3 is then evaluated and
results in the string value 93.

Evaluates to 8.

Evaluates to
"EXAMPLEABC123EXAMPLE"

Evaluates to "EXAMPLE ONE"

Ultimate BASIC

6929-3

Confidential and Proprietary to The Ultimate Corp. v

/,Aﬂ’ ™~

Format Strings

C Format Strings: Numeric Mask and Format Mask Codes

Syntax

6929-3

Both numeric and non-numeric values may be formatted by the use of
format strings. A format string immediately following a variable name
or expression specifies that the value is to be formatted as specified by
the characters within the format string. (You can also use the FMT
function to format values; see the description of FMT listed
alphabetically in Chapter 3.)

A format string may contain a numeric mask and/or a format mask.

"{just}{num.mask } { (format.mask)}"

"D{d}"

just

justification; may be R for right justification or L for left
justification; for input, may be Vv, which specifies exact
match. Default justification is left.

num.mask numeric mask, in the following format:

{n{m}}{$} {,}{N}{z}{c]}

single numeric digit that specifies the number of digits
to display following the decimal point; the displayed
value is rounded, if necessary (the actual value is not
altered). If n =0, the decimal point is not output
following the value.

single numeric digit that specifies scaling factor;
causes the converted number to be descaled (divided)
by a factor equal to 10 raised to the power (m minus
PRECISION value). For example, to descale a number
by 10 if PRECISION is 4, m should be set to 5; to
descale a number by 100 if PRECISION is 0, m should
be set to 2. If mis used, n must precede it.

places a dollar sign immediately to the left of the value

inserts commas between every thousands position of
value

causes the minus sign of negative values to be
suppressed

specifies suppression of leading zeros; if value is
zero, null is displayed

Ultimate BASIC 2-29
Confidential and Proprietary to The Ultimate Corp.

Working with Data

¢ credit indicators; may be any one of the following:

C causes the letters 'CR' to follow negative values
and causes two blanks to follow positive or zero
values

D causes the letters 'DB' to follow positive values;
two blanks to follow negative or zero values

M causes a minus sign to follow negative values; a
blank follows positive or zero values

E causes negative values to be enclosed in angle
brackets (<...>); a blank precedes and follows
positive or zero value

(format.mask) can be any of the following:

#n specifies that the data is to be placed in a field of n
blanks

*n specifies that the data is to be placed in a field of n
asterisks

TN

%n specifies that the data is to be placed in a field of n
Z€eros

X any other characters, including parentheses and dollar
signs, are displayed exactly as specified. Each
character adds one to the number of characters
displayed in the result. See the examples.

D{(d} format as date; d may be any one of the following:

n{s} number of digits to display for year; may be any
value between 0 and 4; s is separator, may be any
character to use as separator. If s is used, date is
displayed in dd/mm/yy format; if s not used, date is
displayed in dd mon yy format

D day of the month

J julian date

M month as numeric value

Q quarter

Y year

2-30 Ultimate BASIC ' 6929-3

‘Confidential and Proprietary to The Ultimate Corp.’

C

Format Strings

Description

Precedence

6929-3

The format string may be a literal or it may be assigned to a variable and
immediately follows the expression it is to format. The entire format
string is enclosed in single or double quotes or backslashes when it is
used as a literal. If the format mask is used, it should be enclosed in
parentheses. (Some format masks, such as #, function correctly
without the parentheses, but it is recommended that all format masks be
enclosed in parentheses.)

If a dollar sign is specified in a numeric mask, it is output just preceding
the value. If a dollar sign is used within the format mask, it is output in
the position indicated in the mask. See the mask examples.

The resulting formatted value may be used anywhere an expression is
permitted, including in an assignment statement, which stores the
formatted value, and in PRINT statements of the following form:

PRINT X "format string".

A format string can be used in an INPUT statement, in which case the
input is verified according to the format specifications and redisplayed in
formatted form. For information on INPUT verification, see the
description of the INPUT statement in chapter 3.

Characters are placed in the format mask starting with the rightmost
character if right justification is specified and starting with the left in all
other cases. If the number of characters in the value is greater than the
number of characters in the format mask, the extra characters are
truncated.

Formatting has higher precedence than concatenation, but lower than
substring and arithmetic operations.

The following examples assume the PRECISION is 4.

Ultimate BASIC 2-31
Confidential and Proprietary to The Ultimate Corp.

Working with Data

2-32

Unconverted
String

X = 1000

X = 38.16

X = 1234588

X = -12345888

X = -1234

X = -1234

X = 072458699

X = 072458699

X = Smith, John

X = 12.25
X = 12345
X = 345
X =1

X = Smith
A = mum
A= 8100

Format String Result

V = X "R26" 10.00

vV =x " 38.2

V = X "R27," 1,234.59

V = X "R27,E$" $<1234.59>
V = X "R25%,M(*10)" **x5123.40-
V = X "R25,M($*10)" $***x123.40-
V = X "L(###-##-####)" 072-45-8699
V =X "L(#3-#2-#4)" 072-45-8699
V =X "L((#12))" (Smith, John)
Y = "1"; PRINT X Y 12.3

PRINT X "R2," 12,345.00
PRINT 12:X "R2," 12345.00

INPUT @(2,4):X "R(%%)" 01

PRINT X '(NAME: #10)' NAME: Smith

INPUT Q(3,5):A "V(%%%)" 000 (will only
accept three numeric
digits as input)

PRINT A "D" 05 MAR 1990

Ultimate BASIC

6929-3

Confidential and Proprietary to The Ultimate Corp.

»

Relational Expressions

Relational Expressions

Precedence

6929-3

Relational expressions are the result of applying a relational operator to a
pair of arithmetic or string expressions.

The following relational operators are available:

Operator Symbol Operation

= Equal to

Less than

Greater than

Less than or equal to

<>
Not equal to
>< eq

NE

MATCH

Pattern matching
MATCHES

>=
=> } Greater than or equal to

Relational operators have lower precedence than all arithmetic and string
operators; therefore, relational operators are only evaluated after all
arithmetic and string operations have been evaluated.

Ultimate BASIC 2-33
Confidential and Proprietary to The Ultimate Corp.

Working with Data

Evaluation

2-34

A relational operation evaluates to 1 if the relation is true, and evaluates
to 0 if the relation is false.

For purposes of evaluation, relational expressions are divided into
arithmetic and string relations. An arithmetic relation is a pair of
arithmetic expressions separated by any one of the relational operators.
A string relation is a pair of string expressions separated by any one of
the relational operators. A string relation may also be a string
expression and an arithmetic expression separated by a relational
operator; if a relational operator encounters one numeric operand and
one string operand, it treats both operands as strings.

If the two strings are not the same length, and the shorter string is
otherwise identical to the beginning of the longer string, the longer
string is considered "greater" than the shorter string.

Example Description

4 <5 Evaluates to 1 (true).

D" EQ "A" Evaluates to O (false).

npn > wpw ASCII equivalent of D (X'44') is

greater than ASCII equivalent of A
(X'41"); expression evaluates to 1.

"Q" LT 5 ASCII equivalent of Q (X'51") is not
less than ASCII equivalent of 5
(X'35"); expression evaluates to 0.

6+5 = 11 Evaluates to 1.

Q EQ 5 Evaluates to 1, if current value of
variable Q is 5; otherwise, evaluates
to 0.

"ABC" GE "ABB" Evaluates to 1 since C is greater than B

"YXX" LE "XX" Evaluates to O.

Ultimate BASIC 6929-3

Confidential and Proprietary to The Ultimate Corp.

Pattern Matching

¢ Pattern Matching

Syntax
Description
6929-3

BASIC pattern matching allows the comparison of a string value to a
predefined pattern. Pattern matching is specified by the MATCH or
MATCHES relational operator, which compares the string value of the
expression to the predefined pattern (which is also a string value) and
causes the relation to evaluate to 1 (true) or O (false).

expression MATCH{ES} {~}pattern

expression any valid string expression

~ indicates negation of pattern that follows; valid for nN
and nA patterns only

pattern may consist of any combination of the following:
nN tests for n numeric characters
nA tests for n alphabetic characters
nX tests for n characters of any type

'string’ tests for specified literal string of characters; if
the literal pattern contains numeric characters,
they must be enclosed within delimiters other
than the delimiters enclosing the string

The number of characters specified by n must match the number of
characters in the string to be compared.

The ~ (tilde) negates the pattern match. The negation is true only if no
characters in the expression match the type (N or A).

If the integer number used in the pattern is O, the relation evaluates to 1
if all the characters in the string match the type, regardless of the number
of characters in the string.

Ultimate BASIC 2-35
Confidential and Proprietary to The Ultimate Corp.

Working with Data

2-36

Example

A = 'ABC123"

Description

A MATCHES '3A3N!' Evaluates to 1.

A MATCHES '~3N~3A' Evaluates to 1.

A MATCHES 'ABC"123"! Evaluates to 1.

A MATCHES '~6N' Evaluates to O because there are not 6
non-numeric characters.

Q MATCHES "ON" Evaluates to 1 if current value of Q is
any unsigned integer; otherwise,
evaluates to 0.

B MATCH '3N"-"2N"-"4N' Evaluates to 1 if current value of B is,
for example, any social security
number; otherwise, evaluates to 0.

A MATCHES "ON'.'ON" Evaluates to 1 if current value of A is
any number containing a decimal
point; otherwise, evaluates to 0.

X MATCHES "" Evaluates to 1 if current value of X is

the empty string; otherwise, evaluates
to 0.

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

6929-3

LY

C

Logical Expressions

Logical Expressions

Precedence

Evaluation

6929-3

Logical expressions (also called Boolean expressions) are the result of
applying logical (Boolean) operators to relational or arithmetic
expressions.

The following logical operators are available:

Operator Symbol Operation
chD } Logical AND operation
?R } Logical OR operation

Logical operators operate on the true or false results of relational or
arithmetic expressions. Logical operators have the lowest precedence
and are only evaluated after all other operations have been evaluated. If
two or more logical operators appear in an expression, the leftmost is
performed first.

A OR B is true (evaluates to 1) if A is true or B is true; it is false
(evaluates to 0) only when A and B are both false.

A AND B is true (evaluates to 1) only if both A and B are true; it is false
(evaluates to 0) if A is false or B is false or both are false.

Ultimate BASIC 2-37
Confidential and Proprietary to The Ultimate Corp.

Working with Data

2-38

Example

1 AND A

8-2*4 OR Q5-3

A>5 OR A<0

1 AND (0 OR 1)

J EQ 7 AND I EQ 5%2

X1 AND X2 AND X3

Description

Evaluates to 1 if current value of
variable A is non-zero; evaluates
to 0 if current value of A is 0.

Evaluates to 1 if current value of Q5-3
is non-zero; evaluates to O if current
value of Q5-3 is 0.

Evaluates to 1 if the current value of
variable A is greater than 5 or is
negative; otherwise, to 0.

Evaluates to 1.

Evaluates to 1 if the current value of
variable J is 7 and the current value of
variable I is 10; otherwise, evaluates
to 0.

Evaluates to 1 if the current value of
each variable (X1, X2, and X3)is
non-zero; evaluates to 0 if the current
value of any or all variables is 0.

Ultimate BASIC

6929-3

- Confidential and Proprietary to The Ultimate Corp.

C

Summary of Expression Evaluation

Summary of Expression Evaluation

6929-3

Expressions may consist of constants, variables, function references,
and operators. Each operator has a precedence which determines the
order in which operations within an expression are performed.

The operands of an expression may be constants, variables, function
references, and other expressions enclosed in parentheses. All
expressions, whether in parentheses or not, are evaluated according to
the same rules of operator precedence:

+ expressions in parentheses are evaluated before the results are used as
operands in other expressions

+ operators with higher precedence are processed first

+ aseries of operators with equal precedence is processed left to right.

Operators and their precedence are given in Table 2-1.

Ultimate BASIC 2-39
Confidential and Proprietary to The Ultimate Corp.

Working with Data

®

Table 2-1. BASIC Operators

Operator Operation Precedence
Symbol
<> Dynamic array extraction 1 (high)
[...] Substring specification 1 (high)
A Exponentiation 2
* Multiplication 3
/ Division 3
+ Addition or Identity 4
- Subtraction or Negation 4
expression Formatting 5
: or CAT Concatenation 6
<orLT Less than 7
> or GT Greater than 7
<= or =< or LE Less than or equal to 7
=or EQ Equal to 7
#or <>or ><

or NE Not equal to 7
>=or =>or GE | Greater than or equal to 7
MATCH or Pattern Matching 7

MATCHES
AND or & Logical AND 8 (low)
OR or ! Logical OR 8 (low)

2-40 Ultimate BASIC 6929-3

Confidential and Proprietary to The Ultimate Corp.

Summary of Expression Evaluation

6929-3

Figure 2-3 illustrates the way an expression with several levels of
precedence is evaluated.

Expression to be evaluated:
A+ B : C[D, (E"F*XG)] H MATCH I AND J

Evaluation: (r1...r8 are results of prior operations):

1. A+ B : C[D,(E*F*G)] H MATCH I AND J
2. A+ B : C[D,((rl)*G)] H MATCH I AND J
3. A+ B : C[D,(r2)] HMATCH I AND J
4, A+ B : (r3) H MATCH I AND J
5. (r4) : (r3) H MATCH I AND J
6. (r4) : (r5) MATCH I AND J
7. (r6) MATCH I AND J
8. (r7) aND J
9. (r8)
Figure 2-3. Precedence
Ultimate BASIC 2-41

Confidential and Proprietary to The Ultimate Corp.

Working with Data

Limited Expressions

Certain instructions cannot use expressions that contain operators with a
precedence level 5 or above. Expressions of this type are considered to
be "limited expressions” since they may specify only the following

operations:
<..> Dynamic array extraction
[...] Substring specification
A Exponentiation
* Multiplication
/ Division
+ Addition
- Subtraction

For identification in the documentation, limited expressions are referred
to as X4-expr in the statements that use them. The following statements
contain one or more parameters which may be of the X4-expr type only:

Assignment (=) statement
DELETE statement
EXTRACT statement
INPUT statement

INS statement

INSERT statement
LOCATE statement
MATREAD{U} statement
MATWRITE statement
PRINT ON statement
REPLACE statement
REUSE statement

For details, please see the appropriate function or statement, listed

alphabetically in Chapter 3.

Note: Whenever an expression with a level 5-8 operator is needed
for an X4-expr parameter, the complex expression may be
enclosed in parentheses and is then considered valid. For

example,

INS (A:B) BEFORE ...

2-42 Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

6929-3

Variable Data Area

C Variable Data Area

The variable data area used by a BASIC program is composed of a
descriptor table, free storage area, and a buffer size table.

Descriptor The type of information in each variable in a program is kept in the
Table descriptor table. The descriptor table contains one 10-byte entry for
Structure

each variable (including array elements) in the program. The number of
descriptors, and hence, the number of variables in a program, is limited
to 3223.

A descriptor contains a code byte which identifies the type of the
descriptor as one of the following:

Content of Descriptor Usage

Free Storage
Area

6929-3

6-byte binary number

8-byte string plus a terminating
segment mark

6-byte pointer to a string in the
free storage area

8-byte reference to file access
information (base, modulo,
separation)

6-byte pointer to external
subroutine code

2-byte mode-id

for numeric values

for string values of eight
characters or less

for string values with more than
eight characters

for file variables

for external subroutines

for assembly code routines

The free storage area is made up of buffers of various sizes. One of

these buffers is assigned to a variable if the string to be stored in the

Ultimate BASIC

variable cannot fit in its descriptor (more than eight characters). A
pointer to this area is stored in the descriptor.

2-43

Confidential and Proprietary to The Ultimate Corp.

Working with Data

Buffer Table

2-44

Strings longer than eight bytes are placed in storage buffers located in
the free storage space. These buffers are by default 50 bytes, 150
bytes, or multiples of 250 bytes in length. There is overhead involved;
the BASIC run-time package reserves 7 bytes per buffer for internal
usage. The maximum length for strings in 50-byte buffers, then, is 43
bytes.

A program can change the default buffer sizes of 50 bytes, 150 bytes,
and multiples of 250 bytes, by executing a STORAGE statement. (Please
refer to the STORAGE statement, listed alphabetically in Chapter 3.)

When a string requires a new buffer, the system looks in the table of
abandoned buffers for a buffer of the appropriate size. If one cannot be
found, a buffer that is somewhat larger than the string it will contain is
allocated from free storage. This allows the string to grow.

Initially, free storage is one contiguous block of space. Buffers are
allocated from the beginning of the free storage area. When a string is
assigned to a variable which exceeds the variable's current buffer size,
the buffer is abandoned and a new buffer is allocated from the remaining
contiguous portion of free storage. If there is not enough contiguous
space for the new buffer, a procedure called 'garbage collection' takes
place. Garbage collection collects the abandoned buffer space and
forms a single block of contiguous space. If, after garbage collection
takes place, there is still not enough contiguous space (which should
happen very rarely), the program is aborted with the message:

NOT ENOUGH WORK SPACE

At this point, the programmer can attempt to reduce the number of
characters in variables, and set to null all variables that are no longer
needed. For example, if a very large item has been retrieved and only
one attribute from it is required, the attribute can be extracted and the
variable for the item set to null.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

C

Variable Data Area

Variable Allocation

Program
Descriptors

6929-3

Variables are allocated descriptors in the order in which they are
declared in a program. For this reason, it is important that COMMON
variables be declared before any other processing takes place. To
ensure that variables in the main program and its subroutines match, it is
recommended that the COMMON statements be placed in a separate
program that is $INCLUDEd by all programs using that COMMON.

Note: For details on COMMON and $INCLUDE, refer to Chapter 3,

Statements and Functions.

The arrangement of descriptors for a main program and an external
subroutine is illustrated as follows:

Values passed
through argument

list
COMMON Variables Variables
Used by both Used by Used by
mainline mainline subroutine
program and program only
subroutine only

The programs should be written so that variables declared as COMMON
in both the main program and the subroutine are first. The COMMON
variables then refer to the same locations and there is a one-to-one
correspondence between the variables in both COMMON statements.
However, when values are passed through the argument list on the
CALL and SUBROUTINE statements, the values are copied back and forth
between the two local areas as indicated above.

Ultimate BASIC 2-45
Confidential and Proprietary to The Ultimate Corp.

Working with Data

CHAIN and
ENTER

2-46

If subroutine calls are nested, the arrangement of descriptors is:

COMMON Variables Variables Variables
Used by mainline Used by Used by Used by
program and mainline subroutinel subroutine2
subroutines program only only

only

Values passed through the argument list are copied as indicated above.

Each of these statements are described in detail in Chapter 3, Statements
and Functions.

The ENTER statement may be used to transfer control to a new BASIC
program which inherits the values of variables from the old program.
The CHAIN statement may be used in a similar way when invoking the
RUN verb with the I option to run a new program without initializing
variables. (For details, please refer to the CHAIN and ENTER statements,
listed alphabetically in Chapter 3.)

It is permissible to CHAIN or ENTER a program that calls a subroutine,
but it is illegal to CHAIN or ENTER from a subroutine.

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp. '

N/

BASIC Statements and
Functions

Organization
of Chapter

6929-3

A BASIC statement performs a complete operation. Statements may
appear anywhere in a program. All statements must be formatted with a
space separating the statement name from any parameters that follow;
for example:

GOTO 10

A BASIC function performs a function within a statement operation.
Functions may appear anywhere that expressions can be used in a
statement. All functions must be formatted with a left parenthesis
following the function name, any parameters, and a right parenthesis;
for example:

ALPHA (N)
COL1 ()

Each statement and function is described in detail in its own separate
topic. The topics are presented in alphabetical order by the statement or
function name.

Each topic about a statement or function begins on a new page. Topics
may be presented on one or more pages, as necessary. The statements
and functions identified by symbols, such as the = (assignment)
statement and the @ (cursor control) function, are listed before the
statements and functions with alphabetical names:

!'and * statement
$compiler directives

= (assignment) statement
@ function

ABORT statement

ABS function

WRITEV statement

Ultimate BASIC 3-1
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

For a description of the structure and components of a BASIC program,
see Chapter 1. Chapter 1 also describes how programs are written,
compiled, and executed.

l‘k/

i

. |

3-2 Ultimate BASIC : 6929-3 i
Confidential and Proprietary to The Ultimate Corp.

Introduction

C A Summary of the Statements and Functions

Figure 3-1 lists the BASIC statements. Figure 3-2 lists the BASIC
intrinsic functions. Figure 3-3 lists the BASIC compiler directives.

! GOSUB PROMPT
* GOTO (GO TO) PUT
= HEADING READ
ABORT IF READNEXT
BEGIN CASE INPUT READT
BREAK KEY INPUTCLEAR READU
CALL INPUTCONTROL READV
CASE INS READVU
CHAIN LET RELEASE
CLEAR LOCATE REM
CLEARDATA LOCK REMOVE
CLEARFILE LOOP REPEAT
CLEARSELECT MAT = RETURN (TO)
. CLOSE MATPARSE REWIND
(‘ COMMON MATREAD RQM
CONVERT MATREADU SEEK
CRT MATWRITE SELECT
DATA MATWRITEU SLEEP
DEL NEXT STOP
DELETE NULL STORAGE
DIM OFF SUBROUTINE
DISPLAY ON GOSUB TRAP ON THEN
ECHO ON GOTO CALL
END OPEN UNLOCK
END CASE PAGE UNTIL
ENTER PRECISION WEOF
EQUATE PRINT WHILE
EXECUTE PRINTER WRITE
EXIT PRINTERR WRITET
FOOTING PROCREAD WRITEU
FOR PROCWRITE WRITEV
GET PROGRAM WRITEVU
O Figure 3-1. BASIC Statements
6929-3 Ultimate BASIC

Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

@ FFLT SADD
ABS FIELD SCMP
ALPHA FMT SDIV
ASCII FMUL SEQ
CHAR FSUB SIN
COL1 ICONV SMUL
COL2 INDEX SORT
COoS INMAT SOUNDEX
COUNT INSERT SPACE
DATE INT SQRT
DCOUNT LEN SSUB
DELETE LN STR
EBCDIC MATCHFIELD SUM
EOF MOD SYSTEM
ERROR NOT TAN
EXP NUM TIME
EXTRACT OCONV TIMEDATE
ERRTEXT PWR TRIM
FADD REM TRIMB
FCMP REPLACE TRIMF
EDIV REUSE USERTEXT
FFIX RND
Figure 3-2. BASIC Functions

$* $INCLUDE INCLUDE
$CHAIN $INSERT
$COMPATIBILITY $NODEBUG

Figure 3-3. BASIC Compiler Directives

Ultimate BASIC

Confidential and Proprietary to The Ultimate Corp.

6929-3

AN

R

o

! and * Statements

! and * Statements

Syntax

Description

6929-3

to the next line in the following statements:

The "!" and "*" statements are alternative forms of the REM (remark)
statement. Remarks can identify a function or section of program code,
as well as explain its purpose and method.

! text ...

* text ...

text any arbitrary characters, up to the end of the line.

A remark statement can be specified in one of three ways: by the REM
statement, by an asterisk (*), or by an exclamation point (!).

REM, !, or * must be placed at the beginning of the statement, but may
appear after another statement on the same line; a semicolon must be
used to separate a remark statement from any other BASIC statement on

the same line. A remark statement does not affect program execution.

Comments can be included in lines that end in a comma and continue on

CALL

__—— COMMON

DIM{ENSION}
EQUATE

A semicolon must follow the comma and the comments must start with
an asterisk (¥):

010 COMMON FIRST, ; *This is the first comment
011 CTR, ; *This is another comment
012 LAST ; *This is the last comment

Remarks are useful to summarize, introduce, explain, or document the
program instructions and routines.

Ultimate BASIC - 3-5
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-6

REM PROGRAM TO PRINT THE
* NUMBERS FROM ONE TO TEN

I =1 s *
BEG: PRINT I Hd
IF I = 10 THEN STOP ;*

I=I+1 i *
GOTO BEG Px
END

START WITH ONE
PRINT THE VALUE
STOP IF DONE
INCREMENT I
BEGIN LOOP AGAIN

Ultimate BASIC
Confidential and Proprietary to The Ultimate

Corp.

6929-3

®

$* Directive

($* Directive

Syntax

Description

6929-3

The $* directive is used to embed comments (such as a copyright notice)
in a program's object code.

$* text
text comments to be included with the object code
Any text that is specified after the asterisk (*) is assumed to be

comments. The text appears in the object code in a code sequence not
generated by any BASIC statement.

*Program copyrighted Comments in source code
$*Program copyrighted Comments in object code
Ultimate BASIC 3-7

Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

$CHAIN Directive

Syntax

Description

3-8

The $SCHAIN directive can be used to link program items together at
compilation.

$CHAIN (file.name} prog.name

file.name name of file that contains program; if omitted, the file is
assumed to be the one containing the program currently
being compiled

prog.name name of program to link together with current program

The $CHAIN directive continues compilation with the specified program.

Any source code in the current program appearing after the SCHAIN

directive is ignored; therefore, the directive should be the last line in the

source code.

If the final object code size cannot exceed 57,534 bytes.

001 * Long Program

999 S$CHAIN MOD2 Continue compilation with next
program module

Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

N

$COMPATIBILITY Directive

$COMPATIBILITY Directive

Syntax

Description

6929-3

The $COMPATIBILITY directive is used to specify the compiler
implementation to be used when compiling a BASIC program. This
directive alters certain instructions to work according to a standard other
than the Ultimate standard if there is a conflict.

$COMPATIBILITY imp

imp implementation standards to use when compiling the program;
currently, only R83PC, which generates instructions according to
PICK R83 PC standards, can be specified

The SCOMPATIBILITY R83PC directive can be used in cases where an
Ultimate release is not compatible with the PICK R83 PC standard.
Currently, SCOMPATIBILITY R83PC affects the use of data stacks and
select lists used by EXECUTE statement.

If SCOMPATIBILITY R83PC is in effect and there is an active data stack,
the data stack is passed to the next EXECUTE statement with no IN. or
STACKING clause. The data stack is also cleared on return from the
EXECUTE statement. If SCOMPATIBILITY R83PC is not in effect, the data
stack is not passed, nor is it cleared.

Also, if SCOMPATIBILITY R83PC is in effect and there is an active select
list, the select list is passed to the next EXECUTE statement. If
$COMPATIBILITY R83PC is in not effect, a select list is not passed unless
the SELECT.< or RTNLIST parameter is specified.

Program with $COMPATIBILITY
SCOMPATIBILITY R83PC

DATA 1 2 3

EXECUTE 'RUN BP NEXT'
INPUT A

Result:

The data stack is passed to the program NEXT and is cleared when
control returns to this program. The INPUT statement requires an
operator response.

Ultimate BASIC 3-9
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-10

Program without SCOMPATIBILITY
DATA 1 2 3
EXECUTE 'RUN BP NEXT'

INPUT A
Result:

The data stack is not passed to the program NEXT. The INPUT
statement takes the first value from the data stack.

Program with SCOMPATIBILITY
SCOMPATIBILITY R83PC

EXECUTE 'SSELECT MD = "UPD]"'
EXECUTE 'LIST ONLY MD'

UPD-DEF
UPD-VALIDATE
UPD . LANGUAGES

7 items listed.

Program without §COMPATIBILITY
EXECUTE 'SSELECT MD = "“UPD]"'
EXECUTE 'LIST ONLY MD'

U/MAX
T-STATUS
U/HIGHAMC

355 items listed.

Ultimate BASIC

Confidential and Proprietary to The Ultimate Corp.

6929-3

®

AN

$INCLUDE Directive

C $INCLUDE Directive

Syntax
(_ Description
6929-3

The $INCLUDE directive may be used to include source code stored in
one program item as part of another. $INSERT and INCLUDE may be
used in place of $INCLUDE.

$INCLUDE {file.name} prog.name
$INSERT {file.name} prog.name
INCLUDE {file.name} prog.name

file.name name of file that contains program,; if omitted, the file is
assumed to be the one containing the program currently
being compiled

prog.name name of program to include in compilation of current
program

$INCLUDE directives may be nested up to three levels deep. Users
should note that the object code of any BASIC program or external
subroutine, whether or not it contains $INCLUDE directives, cannot
exceed 57,534 bytes in size.

A typical use for the $INCLUDE directive is with a set of related BASIC
programs using variables in COMMON. The COMMON statements can be
placed in a single item which is included in each program by the
$INCLUDE directive. This has the advantages of saving space, making
changes easier, and reducing the chance of declarations in one program
mismatching those in another.

** Start program
$INCLUDE COM.CODES Include program that defines
COMMON variables

Ultimate BASIC 3-11
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

$SNODEBUG Directive | O

The $NODEBUG directive causes the compiler to not save the end-of-line
(EOL) opcodes and the symbol table as part of the object code.

Syntax $NODEBUG

Description The $NODEBUG directive has the same effect as specifying the C
(suppress EOL opcodes) and S (suppress generation of symbol table)
options with the COMPILE or BASIC verb.

The $NODEBUG directive should be used only after a program has been
debugged, because when it is specified, all runtime errors are reported
as occurring on line 1 and the BASIC debugger cannot display variables
and other symbols.

N

3-12 Ultimate BASIC 6929-3
Confidential and Proprietary to The Ultimate Corp.

C

= (Assignment) Statement

= (Assignment) Statement

Syntax

6929-3

The = (assignment) statement is used to assign a value to a simple
variable, a dimensioned array element, an element of a dynamic array,
or a substring. In addition, the assignment statement may be used to
add, subtract, or concatenate an expression to a simple variable.

variable = expression

variable += expression

variable —= expression

variable := expression

variable(row {,col}) = expression

variable <attrib.no{,val.no{,subval.no}}> = expression

variable[start.char,no.char] = expression (overlay)
variable[delimiter,start.sub,no.subs] = expression (replace)
variable name of element to receive assignment

expression any valid BASIC expression

+= plus-equals; adds an expression to a variable and returns
the results to the variable; this is equivalent to
var = var + expression

—= minus-equals; subtracts an expression from a variable and
returns the results to the variable; this is equivalent to
var = var - expression

= concatenate-equals; concatenates an expression with a
variable and returns the results to the variable; this is
equivalent to

var = var : expression

row row parameter for dimensioned array element
col column parameter for dimensioned array element
attrib.no attribute number of dynamic array element; if attrib.no has

a value of -1, the expression is inserted after the last
attribute, or if last attribute is null, replaces last attribute

Ultimate BASIC 3-13
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

val.no

subval.no

start.char

no.chars

delimiter

‘start.sub

no.subs

value number of dynamic array element; if val.no has a
value of -1, the expression is inserted after the last value in
the attribute specified by attrib.no, or if last value is null,
replaces last value

subvalue number of dynamic array element; if subval.no
has a value of -1, the expression is inserted after the last
subvalue in the value specified by val.no, or if last
subvalue is null, replaces last subvalue

starting character position in the variable; if start.char
evaluates to O or less, 1 is used as the value. If start.char
evaluates to greater than the number of characters in the
string, no characters are overlaid. (For a complete
description of overlaying substrings, see the section
Overlaying a Substring, which starts on page 3-16.)

number of characters to be overlaid; if no.chars evaluates

- to 0 or less, no characters are overlaid

substring delimiting character; if the delimiter evaluates to
more than one character, only the first character is used as
the delimiter; if the delimiter evaluates to a null, no
characters are replaced

first substring to be changed; if start.sub is O or less, 1 is

‘used as the value. If start.sub is greater than the number

of delimited substrings in the original string, the required
number of null delimited substrings are appended to the
string. (For a complete description of changing
substrings, see the section Replacing Delimited
Substrings, which starts on page 3-17.)

number of substrings to be changed; the actual change is
determined as follows:

~+ if no.subs is greater than O, this number of delimited

substrings is replaced

+ if no.subs is 0, expression is inserted at the location
. specified by start.sub

3:14 Ultimate BASIC R R 6929-3
Confidential and Propr/etary to The Ultimate Comp. =

&

= (Assignment) Statement

Description

6929-3

+ if no.subs is less than O, then starting at the substring
specified by start.sub, the absolute value of no.subs
substrings are deleted from the existing string, then
expression is inserted

All parameters can be literals or expressions.

The value of the expression becomes the current value of the variable on
the left side of the equality sign. The expression may be any legal
BASIC expression.

The value of the variable does not change until the entire right side of the
statement has been evaluated.

The LET statement may optionally be prefixed to an assignment
statement, as in LET X = 12.

An equated symbol may not be used in place of a variable in an
assignment statement if the symbol has already been assigned a constant
(literal) value in the program. For more information, please see the
EQUATE statement listed alphabetically in this chapter.

The elements in a dimensioned array can be assigned values by the MAT
= assignment statement. For more information, please see the MAT =
statement listed alphabetically in this chapter.

Ultimate BASIC 3-15
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

ST="STRING"

ST1=ST[3,1]

A<2>=0

B=A

TABLE (I,J)=A(3)

Assigns 5 to X.
Increments X by 1.
Assigns the character string to ST.

If ST = "STRING", assigns substring
"R" to ST1.

Assigns element from array TABLE to
element.in array A.

Assigns 1 to A if "B=0" is true,
assigns 0 to A if "B=0" is false.

Assigns 0 to attribute 2 of dynamic
array A

EXECUTE 'SELECT F1', RTNLIST A

Copies select-list from A to B.

Overlaying a

A substring can be overlaid by a string by using an assignment

variable[start.char,no.chars] = expression

This form of the assignment statement does not change the length of the

If the number of characters in the replacement expression is less than the
number of characters specified in no.char, blanks are added to the end
of expression. If the number of characters in the replacement
expression is greater than no.char, the excess characters in expression

Substring statement:
string variable.
are not assigned.
3-16 Ultimate BASIC

Confidential and Propneta)y to The Ultimate Corp

6929-3

s

= (Assignment) Statement

Replacing
Delimited
Substrings

6929-3

If no.chars is greater than the number of characters remaining in the
original string, only the number of characters remaining are overlaid.
Any extra characters are ignored.

A = 'ABCDEFGHI'
A[4I3] = VTkkxx%x{
result:

A = "ABC***GHI'

The substring starting at the fourth character position and containing

three characters (DEF) is replaced by the specified three characters

M = 'ABCDEFGHI'

M[2,10] = 'XXXXX'
result:
M = 'AXXXXX '

The substring 'BCDEFGHI', which starts at the second character and
extends to the end of the string (since there are fewer than ten
characters left in the string), is replaced by the specified 5-character
substring plus 3 spaces.

One or more delimited substrings can be added, deleted, or replaced in a
string. This form of the assignment statement can change the length of
the string.

variable[delimiter,start.sub,no.subs] = expression

The expression to be inserted in place of the delimited substrings is
assumed to contain substrings delimited by the same value as the
original string. The first substring has no initial delimiter; the last
substring has no final delimiter.

Ultimate BASIC 3-17
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-18

If the delimiter is a system delimiter (attribute mark, value mark, or sub-
value mark), the substring is terminated by a second delimiter of the
same level and ignores any higher level delimiter. For example, if sub-
value mark is the delimiter, the substring does not stop at a value mark
or attribute mark, only at the next sub-value mark.

If the specified delimiter is null, no characters are replaced.

If no.subs is greater than the number of substrings in expression, the
required number of delimited null substrings are added to expression.

If no.subs is non-zero and is less than the number of substrings in
expression, the extra substrings in expression are ignored. If no.subs is
zero, the entire expression is inserted as a delimited substring preceding
the substring specified by start.sub.

If no.subs is greater than the number of substrings remaining in the
original string, the required number of delimited null substrings are
appended to the original string.

If no.subs is less than O, then starting at the substring specified by
start.char, no.subs substrings are deleted from the existing string, then
the expression is inserted at that location.

A = '1*2%3%4%5"

A['*',2,3] = TAXB*C*D!'
result:
A = '1*AXB*Cx5!

The substring delimiter is an asterisk (*); the substring to replace starts
at the second delimited substring and contains three substrings (2*3*4);
it is replaced by the specified number of substrings and their delimiters
(A*B*C).

Ultimate BASIC : 6929-3
Confidential and Proprietary to The Ultimate Corp. '

= (Assignment) Statement

A= "1":VM:'2':AM:'3':VM:'4"':VM:'5"
A[VM,2,2] = 'A':VM:'B'

result:
A = "1":VM:'A':VM:'B':VM:'5"

The substring delimiter is a value mark; the substring to replace starts at
the second delimited substring and contains two substrings
('2.AM:'3":vM:'4"); it is replaced by the specified two substrings and
their delimiter (A":VM:'B'). The attribute mark that separates the value
marks is ignored by this form of the assignment statement.

A = '1%2%3%4"

A['*',-3,5] = 'A*B'
result:
A = VAXBX*xx!

The assignment starts at the first substring (-3 defaults to 1). String A
contains fewer than five substrings, the number of substrings
specified, so one null substring is appended to A. The replacement
expression also contains fewer than five substrings, so three substrings
are appended to it. Finally, the expression overlays the specified
substrings in A.

A = '1%2%3%4"

A['*',6,2] = 'A*B!'
result:
A = '1%2%3%4*x*xAxRB!

The assignment starts at the sixth substring. However, string A
contains only four substrings, so two null substrings are appended to
it. The expression is then appended to A, starting at the sixth substring.

Ultimate BASIC 3-19
Confidential and Proprietary to The Ultimate Corp.

Statements and }Functions

3-20

A = 11*2%3%4"
A['*',3,0] = 'A*B'

result:
A = VIX2*XAXBr3%4"

Since the number of substrings is zero, the two substrings in
expression are inserted at the third substring position and no substrings
are deleted.

A = '1%2%3%4"

A['*',3,-2] = '2!
result:

A = '1*2%7¢

Two delimited substrings are deleted starting at the third delimited
substring and the new substring is inserted.

Ultimate BASIC » 6929-3
" Confidential and Proprietary to The Ultimate Corp.

®

C

@ Function

@ Function

Syntax

Description

6929-3

The @ ("at" sign) function generates a string of control characters used
for cursor positioning or other terminal or printer control features. The
terminal or printer is affected when the string is later output to it with a
CRT, DISPLAY, or PRINT statement.

@(col{,row})

col column to which the cursor is to be positioned; if it is negative,
the @ function returns a terminal control string as described in
Table 3-1; if the value of the @ function is less than -100, it
affects Ultimate-supported letter-quality printers as shown in
Table 3-2.

row row to which cursor is to be positioned; if not specified, and col
is positive, the cursor is assumed to remain on the current line.
However, if the terminal on which the statement is executed
does not support column-only cursor positioning, the results
are unpredictable.

In general, the @ function, other than @(-100) and lower, is not meant
for statements that are to be directed to the printer and may cause
unexpected results.

Columns and rows are numbered starting with zero (0), left to right and
top to bottom on the screen. When positioning the cursor, the values of
expressions used in the @ function should be within the column and
row limits of the screen; otherwise, the results are unpredictable.

The @ function generates values based on the current terminal or printer
type for the port (line) on which the BASIC program is run. The terminal
type is determined by the most recent TERM command executed for the
port, or by a terminal type logon parameter set up with the TERMINAL
command, or by the system's default terminal type, which may be
changed with the SET-TERM command. These commands set up the
terminal using parameters in the TERMDEF item for the specified
terminal type. The printer type is shown and changed with the PRINTER

Ultimate BASIC 3-21
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

command. For more information on these commands, please refer to
the Ultimate System Commands Reference Guide.

Not all terminals or printers attached to terminal auxiliary ports respond
to all control codes listed here. The documentation for each terminal or
printer must be consulted for information about which features are
supported. If a non-supported feature is used, a null string is returned.
If a non-supported terminal is used, all cursor control characters return a
CR/LF.

X =7 Prints the current value of variable Z
Y =3 at column position 7 of row 3.
PRINT @ (X,Y): 2

= @(3): "HI" Prints "HI" at column position 3 of
PRINT Q current Tow.
A=5 Prints the value 5 at column position
PRINT Q@ (A,A+5):A 5 of row 10.
PRINT @ (-1) Clears the screen and positions the

cursor at 'home' position.

= @(-46) Returns default values of function
keys.
CONVERT CHAR(251) :CHAR(250) TO CHAR(254) :CHAR(253) IN F
Puts values into dynamic array format
PRINT F<1>:F<2>:F<3,13>:'OFF':CHAR(13) :F<5>
Sets function key 13 to log user off
when pressed.

NW.CORNER = @(-49)[1,1] Upper left comner is first position in

NE.CORNER = @(-49) [3,1] string; upper right corner is third.

HORIZONTAL = STR(@(-49)[2,1],10)

TOP = @(-50) :NW.CORNER: HORIZONTAL:NE.CORNER: @ (-51)

PRINT @(3,3):TOP Prints the top of a box with a corner
at each end.

Ultimate BASIC B 6929-3
Confidential and Proprietary to The Ultimate Corp.

A

@ Function

Table 3-1. Cursor Control Values (1 of 8)

Code Description
@(-1) Clear the screen and positions the cursor at 'home'
(upper left corner of the sc\reen)
@(-2) Position the cursor at 'home' (upper left corner).
@(-3) Clear from cursor position to the end of the screen.
@(-4) Clear from cursor position to the end of the line.
@(-5) Start blink.
@(-6) Stop blink.
@(-7) Start protected field.
@(-8) Stop protected field.
@(-9) Backspace the cursor one character.
(| @(-10) Move the cursor up one line.
@(-11) Move the cursor down one line.
@(-12) Move the cursor right one column.
@(-13) Enable auxiliary (slave) port.
@(-14) Disable auxiliary (slave) port.
@(-15) Enable auxiliary (slave) port in transparent mode.
@(-16) Initiate slave local print.
@(-17) Start underline.
@(-18) Stop underline.
@(-19) Start reverse video.
@(-20) Stop reverse video.
@(-21) Delete line.
C : @(-22) Insert line.

6929-3 Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

3-23

Statements and Functions

Table 3-1. Cursor Control Values (2 of 8)
Code Description
m
@(-23) Scroll screen display up one line.
@(-24) Start boldface type.
@(-25) Stop boldface type.
@(-26) Delete one character.
@(-27) Insert one blank character.
@(-28) Start insert character mode.
@(-29) Stop insert character mode.
@(-30,¢) Set foreground and background color:
c background foreground
1 black cyan
2 black red
3 black blue
4 black green
5 black magenta
6 black yellow
7 black white
8 blue red
9 blue green
10 blue white
11 blue yellow
12 blue red
13 blue cyan
14 blue magenta
15 white red
16 white green
17 white blue
18 white cyan
19 white magenta
20 white black
21 red ‘white
22 red green
3-24 Ultimate BASIC 6929-3

Confidential and Proprietary to The Ultimate Corp.

»

@ Function

6929-3

Table 3-1. Cursor Control Values (3 of 8)
Code Description
@(-31,1) Set foreground color:
f foreground
1 brown (may vary on some
2 white
3 red
4 magenta
5 yellow
6 green
7 cyan
8 blue
@(-32,b) | Set background color:
b background
1 brown
2 white
3 black
4 red
S blue
6 cyan
7 magenta
@(-33) Set 80 columns.
@(-34) Set 132 columns.
@(-35) Set 24 rows.
@(-36) Set 44 rows.
@(-37)- | Reserved
@(-45)

Ultimate BASIC

Confidential and Proprietary to The Ultimate Corp.

3-25

Statements and Eunctions _

3-26

Table 3-1. Cursor Control Values (4 of 8)

FB
f
Xn
FA
yn
e

- 0 < K rh

Code Description

@(-46) Returns function key default values as a string in the
| following format:

@(-47) Returns character sequence needed to set the overall
characteristics for the label line (bottom line of
terminal). The following information is returned:

SFBfFBx1FA...xnFBy1FA...ynFBeFB

character sequence needed to set the overall

characteristics of the function line; typically,
this is null

CHAR(252)!

lead-in sequence used to load function keys

value for function key n

CHAR(251)

value for shifted function key n

terminator for key text

SFBfFBXFBYFBEFBr

character sequence needed to set the overall
characteristics of the label line

CHAR(252) '

lead-in sequence used for label line

lead-in sequence for unshifted label line
lead-in sequence for shifted label line
terminator for text ‘

reset label line (turn off)

1 After the string is returned, the CONVERT function can be used to change the
delimiters to attribute marks (CHAR 254) and value marks (CHAR 253) if desired.
(Doing this converts the string to a dynamic array.)

Ultimate BASIC

6929-3

Confidential and Proprietary to The Ultimate Corp.

@ Function

Table 3-1. Cursor Control Values (5 of 8)

Code Description
ﬁ
@(-48) Returns character sequence needed to set the overall

characteristics for the status line (top line of
terminal). The following information is returned:

SFBfFBXFBYFBeFBr

s character sequence needed to set the overall
characteristics of the status line

CHAR(252)

lead-in sequence used for status line
lead-in sequence for unshifted status line
lead-in sequence for shifted status line
terminator for text

reset status line (turn off)

HO%XWE

@(-49) Returns string that defines the graphics characters
codes for the current terminal; the exact characters
that will be displayed depend on the terminal type.
Before the code is printed, the terminal's graphic
capability must be turned on by an @ (-50)
statement. After the graphics have been printed, the
graphic capability must be turned off by an @(-51)
statement.

The codes in @(-49) are single digits whose
meanings are determined by the position of the code
in the string. The first eleven positions in the string
define the following single line graphics characters:

6929-3 Ultimate BASIC 3-27
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

- Table 3-1. Cursor Control Values (6 of 8)

Code Description

1 [7 T
2 — 8 4
3 7 9o |
a | 10 F
5 _| 11 +
6 L

The second set of eleven positions define the
following double line graphics characters:

12 T 18 T
13 = 19 4|
14 T 20 JL
I Ity
16 22 9=
17 L

The 23rd through 26th positions define other

graphic characters, depending on the terminal type.

@(-50) Start graphics.
@(-51) Stop graphics.
@(-52) Start blink.
@(-53) Stop blink.
@(-54) Start reverse video.
3-28 Ultimate BASIC 6929-3

Confidential and Proprietary to The Ultimate Corp.

C

@ Function

(Table 3-1. Cursor Control Values (7 of 8)

Code Description

@(-55) Stop reverse video.

@(-56) Start reverse video and blink.
@(-57) Stop reverse video and blink.
@(-58) Start underline.

@(-59) Stop underline.

@(-60) Start underline and blink.

@(-61) Stop underline and blink.

@(-62) Start underline and reverse video.
@(-63) Stop underline and reverse video.

(, @(-64) Start underline, reverse video, and blink.
@(-65) Stop underline, reverse video, and blink.

@(-66) Start dim.

@(-67) Stop dim.

@(-68) Start dim and blink.

@(-69) Stop dim and blink.

@(-70) Start dim and reverse video.
@(-71) Stop dim and reverse video.
@(-72) Start dim, reverse video, and blink.
@(-73) Stop dim, reverse video, and blink.
@(-74) Start dim and underline.

@(-75) Stop dim and underline.

@(-76) Start dim, underline, and blink.

6929-3 ~ Ultimate BASIC 3-29
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-30

Table 3-1. Cursor Control Values (8 of 8)

Code Description

@-77) Stop dim, underline, and blink.

@(-78) Start dim, reverse video, and underline.
@(-79) Stop dim, reverse video, and underline.
@(-80) Set 80 columns

@(-81) Reserved

@(-82) Set 132 columns

Ultimate BASIC
Confidential and Proprietary to The Ultimate Corp.

6929-3

@ Function

Confidential and Proprietary to The Ultimate Corp.

Table 3-2. Letter-Quality Printer Control Values
Code Description
@(-101,p) | Set VMI (Vertical Motion Index) to p.
@(-102,h) | Set HMI (Horizontal Motion Index) to h.
@(-103) Set alternate font.
@(-104) Set standard font.
@(-105) Generate a half line-feed.
@(-106) Generate a negative half line-feed.
@(-107) Generate a negative line-feed.
@(-108) Print black ink.
@(-109) Print red ink.
(' : @(-110) Load cut sheet feeder.

“ @(-111) | Select feederl.
@(-112) Select feeder2.
@(-113) Select standard thimble.
@(-114) Select proportional space thimble.
@(-115) Start automatic boldfacing.
@(-116) Stop automatic boldfacing.
@(-117) Start automatic underlining.
@(-118) Stop automatic underlining.

C
6929-3 Ultimate BASIC

3-31

Statements and Functions

ABORT Statement

Syntax

Description

3-32

The ABORT statement terminates program execution. If the program

was run from a PROC, the PROC is terminated as well.

ABORT {errnum{,param, param, ...} }

errnum error message number (item.id) in the ERRMSG file

param parameters to be used within the error message format; must
be separated by commas; may be variables or literals

An ABORT statement may be placed anywhere within the BASIC

program.

The ABORT statement displays the following message before terminating
the program:

[B1l] Run-time abort at line n
Line n is the program line number that contains the ABORT statement.
The STOP statement can also be used for program termination; STOP

does not terminate a PROC. (Refer to the STOP statement, listed
alphabetically in this chapter.)

PRINT 'PLEASE ENTER FILE NAME':
INPUT FN
OPEN FN TO FFN ELSE ABORT 201, FN

This program requests a file name from the user and attempts to open
the file. If an incorrect file name is entered, the standard system error
message "[201] 'xxx' IS NOT A FILE" is printed, followed by the BASIC
run-time message "[B1] Run-time abort at line n". The program is then
terminated.

Ultimate BASIC ‘ , 6929-3
Confidential and Proprietary to The Ultimate Corp.

ABS Function

ABS Function

The ABS function returns an absolute value.

Syntax ABS(expr)

expr any numeric expression; if expression is non-numeric or null,
zero is assumed

A =100
B = 25
C = ABS (B-A) The value 75 is assigned to C.
Z - wa
A = ABS(Z) The value O is assigned to A.
6929-3 Ultimate BASIC 3-33

Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

ALPHA Function

Syntax

Description

3-34

The ALPHA function evaluates a specified expression for alphabetic
characters.

ALPHA(expr)

expr contains characters to test

Alphabetic characters are the 26 letters of the alphabet, in upper or lower
case. The null string ("") is not considered to be an alphabetic string.

The ALPHA function returns a value of true (1) if all characters in the
given expression evaluate are alphabetic; if not, it returns a value of false

0).

IF ALPHA(I CAT J) THEN GOTO 5
Transfers control to statement label 5
if current value of both variables I and
J are alphabetic strings.

PRINT ALPHA(N) OR ALPHA (M)
Prints a value of 1 if the current value
of either M or N is an alphabetic
string.

Ultimate BASIC T 6929-3
Conlfidential and Proprietary to The Ultimate Corp. ‘

s
r

ASCII Function

ASCIl Function

Syntax

Description

6929-3

The ASCII function returns the ASCII value of an EBCDIC string.

ASCII(expression)

expression string value to be converted from EBCDIC to ASCII
The inverse function, EBCDIC, is discussed as a separate function.
(Please refer to the EBCDIC function, listed alphabetically in this

chapter.)

For a list of ASCII values, refer to Appendix D.

READT X ELSE STOP Reads a record from tape and assigns
Y = ASCII(X) value to variable X. Assigns ASCII
value of record to variable Y.

Ultimate BASIC 3-35
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

BEGIN CASE Statement

The BEGIN CASE statement is the first statement in the CASE statement
sequence.

Please refer to the CASE statement for information about the entire CASE:
statement sequence.

3-36 Ultimate BASIC e 6929-3
Confidential and Proprietary to The Ulnmate Corp.

»

BREAK Statement

Syntax
Description
6929-3

BREAK Statement

The BREAK statement controls the BREAK key on the terminal through a
BASIC program.

BREAK {KEY)} OFF
BREAK {KEY } ON
BREAK {KEY} expr

expr determines setting; must evaluate to a numeric value; a value of
zero (0) is equivalent to OFF, and all other values are equivalent
to ON.

The BREAK OFF statement disables the BREAK key on the terminal.
When disabled, the BREAK key cannot be used to stop a program from
executing. This is useful when the BREAK key must not be operative
during critical processes such as file updates.

The BREAK ON statement enables the BREAK key on the terminal. When
enabled, the BREAK key is set to its normal state.

Setting the BREAK key is cumulative. That is, each time a BREAK
statement is encountered, the system increments or decrements by one,
as appropriate, a counter called the BREAK inhibit counter. For
example, if three BREAK OFF statements are encountered, three BREAK
ON statements must be encountered before the BREAK key is enabled.
Therefore, an equal number of BREAK ONs and BREAK OFFs must be
executed to restore a breakable status.

The expression form of BREAK KEY increments or decrements the
BREAK inhibit counter by one, as appropriate.

Ultimate BASIC 3-37
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-38

BREAK OFF

GOSUB UPD.FILES
BREAK ON

F 0
BREAK F

F=1
BREAK KEY F

Disable BREAK key

Enable key after file update

Disable BREAK key

Enable BREAK key

Ultimate BASIC

Confidential and Proprietary to The Ultimate Corp.

6929-3

.k/],‘

CALL Statement

CALL Statement

Syntax

Description

6929-3

The CALL statement provides external subroutine capabilities for a
BASIC program. An external subroutine can be called directly or
indirectly.

CALL {@ }subr.name {(argument list)}

@ specifies an indirect call; subroutine name has been
assigned to a variable

subr.name item name of a program,; if @ is not used, the name
cannot have any characters other than letters, numbers,
and periods in it. If the @ is present, subr.name is a
variable containing the name of the external subroutine to
be called

argument list one or more expressions, including literal values,
separated by commas, that represent actual values passed
to the subroutine. The argument list can pass an array to
a subroutine by preceding the array argument with the
word MAT. An argument list may continue on multiple
lines; each line except the last must conclude with a
comma and comments that start with an asterisk (*) may
be included on each continuation line. The comments
must be separated from argument list by a semicolon (;).

An external subroutine is a subroutine that is compiled separately from
the program or programs that call it.

The CALL statement first looks for the subroutine as a cataloged entry in
the account's master dictionary; if the subroutine is not there, the CALL
statement then looks for a compiled program in the file that contains the
mainline program that is being executed.

Subroutines may be opened to a variable by the OPEN statement, then
used in an indirect call. This greatly enhances the performance of
indirect subroutine calls. For details, refer to the OPEN statement listed
alphabetically in this chapter.

Ultimate BASIC 3-39
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

The CALL statement with no @ is a direct call, and transfers control to
the external subroutine.

There is no correspondence between variable names in the calling
program and variable names in the subroutine. The only information
passed between the calling program and the subroutine are the values of
the arguments; the values correspond in order of the variables in the
argument list.

Variables may also be declared in COMMON and named COMMON areas
and passed between the main program and its subroutines. For details,
refer to the COMMON statement listed alphabetically in this chapter.

External subroutines may call other external subroutines, including
themselves.

The SUBROUTINE statement must be used in conjunction with CALL.
The called external subroutine must begin with a SUBROUTINE statement
and must contain a RETURN statement. For details, refer to the
SUBROUTINE statement listed alphabetically in this chapter.

The CALL statement checks to see that the appropriate number of
arguments has been passed to the subroutine by the calling program. If
not, CALL prints an error message and aborts to the BASIC Debugger.

If the correct number of arguments has been passed, the CALL statement
evaluates the arguments and assigns their values to the corresponding
variables named in the subroutine's SUBROUTINE statement. These
variables may subsequently be assigned new values by the subroutine.

When the RETURN statement in the subroutine is executed, control is
returned to the CALLing program and variables used as subroutine
arguments are updated to reflect the most recent values of the
corresponding variables in the subroutine. Constants and literals used
as subroutine arguments are not affected.

Care should be taken not to update the same variable referenced by more
than one name in an external subroutine. This can occur, for example,
if a variable in COMMON is also passed as a subroutine argument.

3-40 Ultimate BASIC , ‘ 6929-3
Confidential and Proprietary to The Ultimate Corp.

&

C

CALL Statement

Passing
Arrays

6929-3

If the execution of the subroutine is terminated before the RETURN is
executed (such as by executing a STOP statement), control never returns
to the calling program.

CALL REVERSE (A,B) Subroutine REVERSE has two
arguments.

CALL REPORT Subroutine REPORT has no
arguments.

CALL VENDOR (NAME, ; * Comments

ADDRESS, NUMBER) The arguments for VENDOR are

continued on to the next line;
comments can be included on multiple
lines

CALL DISPLAY (A,B,C) Subroutine DISPLAY has three
argument.

Dimensioned arrays can be passed as parameters to the external
subroutines by preceding the array name with MAT:

CALL subr.name (MAT array.name)

The array must be dimensioned in both the calling program and the
subroutine. Array dimensions may be different, as long as the total
number of elements matches.

Arrays are copied in row major order; that is, all columns in row 1 are
copied before the first column in row 2.

Note: Anelementinan array can be passed or the entire array can be
passed; however, they should not be passed in the same CALL
statement. If both an element from an array and the array itself
are passed, the results are unpredictable.

Ultimate BASIC 3-41
Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

3-42

Calling Program ' Subroutine
DIM A(4,10),B(10,5) SUBROUTINE REV (MAT C,MAT B)
CALL REV (MAT A,MAT B) DIM C(4,10), B(50)

Subroutine REV accepts two input array variables, one of size 40 and
one of size 50 elements.

DIM X(4,5) SUBROUTINE COPY (MAT A)
CALL COPY (MAT X) DIM A(10,2)
END PRINT A(8,1)
RETURN
END

In this subroutine the parameter passing facility is used to copy array X

specified in the CALL statement of the calling program into array A of
the subroutine. Printing A(8,1) in the subroutine is equivalent to
printing X(3,5) in the calling program.

Ultimate BASIC : 6929-3

Confidential and Proprietary to The Ultimate Corp.

C

C

CASE Statement

CASE Statement

Syntax

Description

6929-3

The CASE statement provides conditional selection of a sequence of
BASIC statements.

BEGIN CASE
CASE expression
statements
CASE expression
statements

END CASE

The indentations are for clarity and are not required.

If the logical value of the expression is true (non-zero), the statements
that immediately follow, up to the next CASE or END CASE, are
executed, then control passes to the statement following END CASE. If
the expression is false (zero), control passes to the next CASE
expression.

The expression CASE 1 is always true and can be used to force control
to a series of statements.

BEGIN CASE Increment Y if Y is equal to B.
CASE Y=B This is equivalent to the statement
Y=Y+1 IF Y=B THEN Y=Y+1.
END CASE
BEGIN CASE Program control branches to the
CASE A=0; GOTO 10 statement with label 10 if the
CASE A<(0; GOTO 20 value of A is zero; to 20 if A
CASE 1; GOTO 30 is negative; or to 30 in all other
END CASE cases (CASE 1 is always true).
Ultimate BASIC 3-43

Confidential and Proprietary to The Ultimate Corp.

Statements and Functions

CHAIN Statement

Syntax

Description

3-44

The CHAIN statement terminates program execution and passes control
to a specified TCL command. Control is not returned to the BASIC
program that invokes the CHAIN statement.

CHAIN "TCL.command"

TCL.command any valid verb or PROC name in the user's Master
Dictionary

The TCL command may be used to initiate another BASIC program using
values from the first program. The variables in one program that are to
be passed to another program must be in the same location. (Variables
are allocated in the order in which they first appear in a program, except
that arrays are allocated in the order of their DIM statements after all
other variables are allocated.) The variable names do not need to
correspond; only the order is significant.

In order to use the variables from the first program in the CHAINed-to
program, the program must be executed with the RUN verb with the 1
option. (The I option specifies that the variables are not to be initialized.)
This causes the variables to take on values from variables in the first
program, since variable data is always stored beginning at the same
location in a user's workspace.

Caution! The workspace areas used for variable storage are also used
by other system software. Their contents cannot be
guaranteed when CHAINing from one BASIC program to
another if there is any intermediate processing. For
example, CHAINing to a PROC that performs a Recall
SELECT statement before it invokes a BASIC program with
the I option, causes the contents of the BASIC program's
variables to be unpredictable.

It is illegal to CHAIN from an external subroutine, but legal to CHAIN to a
program that calls a subroutine.

Ultimate BASIC ‘ 6929-3
Confidential and Proprietary to The Ultimate Corp.

™
L

O

CHAIN Statement

6929-3

CHAIN "RUN FN1 LAX (I)"

CHAIN "RUN BP ABC"

Program ABC
A=500
B=1;C=2
CHAIN "RUN BP XYZ (I"
END

Program XYZ:
PRINT X
PRINT Y
PRINT Z
END

CHAIN "LISTU"

CHAIN "LIST CUSTOMERS"

Executes program LAX in file FN1. |
option specifies that data area is not to
be initialized; the program invoking the
CHAIN statement passes values to
program LAX.

Invokes the program ABC in file BP.
Because the I option is not used, values
are no<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>