MACINTOSH® TOOLBOX INTERFACE

Macintosh Toolbox Interface (TI Part Number 2559092-0001)
_Original ISSUEccoceereervcersinceiionens eerenrenneesenans December 1988

3,

Copynght © 1988 by ExperTelhgence, Inc,,.,.A]lBlghts Reserved.
“Copyright © 1988 by Texas Instruments Incorporated. All Rights
~Reserved.. i SEE i

No part of this pubhcatlon may be reproduced stored in a retrieval
_ system, or transmitted, in any form or by any means, electronic,

mechanical, photocopymg, recording, or otherwise, without the prior
‘written penmssmn of ExperTelhgence, Inc and Texas Instruments

InCOIporated : o ey, (E Y

RESTRICI'ED RIGH'I‘S LEGEND
Use, duphcatlon or disclosure by’ the Government is subject to
restrictions as set forth in subdivision (c)(1)(ii) of the Rights in
‘Technical] Data and Computer Software clause at 52.227-7013.

Expeﬂ‘elhgence, Inc. !

. 5638 Hollister Avenue
Goleta Cahforma931 17

|
_Texas Instruments- Incorporated

Data Systems. Group
- P.O. Box 2909 - M/S 2151
Austm Texas 78769-2909

%;.i&

Finder, MultiFinder, and Apple Desktop Bus are trademarks of Apple
Computer, Inc """

A i Yoo}
;

- Apple, AppleTalk Image Wrzter Macmtosh and silhouetted apple
’logo ate reg1stered trademarks of Apple Computer, Inc.

MacWrite, MacPaint, and MacDraw are registered trademarks of
CLARIS Corporatlon

Explorer, microExplorer, and NuBus are trademarks of Texas
Instruments Incorporated.

TMON is a trademark of ICOM Simulations, Inc.
Po&tScript is a registered trademark of Adobe Systems Incorporated.

- Helvetica and Times are registered trademarks of LinoType Co.

"Inside Macintosh”, Volumes I-V, copyright © 1985, 1986, and 1988
by Apple Computer, Inc., Addison Wesley, Reading, MA.

Contents

About This Manual e eeeeeeeeeeetereieaeeneeaeaes xi
S T
1 Everything You Always Wanted to Know About the
microExplorer™ Toolbox
L.l IntroducCtionccceeiioiiiineiininiionieeieereiineseeineessnnnanns 1-1
- 1.2 The TbServer: How the microExplorer Communicates
‘ With the Macintosh.........cc.oiiiiiiiiiiiiiiiiii i 1-1
1.3 What'sinaName?ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiecniaana, 1-3
1.4 What Are VARs and How Did They Get into Lisp?................ 1-3
1.4.1 True VAR Variablesccccoceiieiiiiiiiiniiniinicnnnnnnn. 1-3
1.4.2 Pseudo VAR Variables.........cccovervenieeeniinneeenneeannnenns. 14
1.4.3 VARs'IhatArent............,.; 14
1.5 WhoLives Where?.......coiiiiiiiiiiiiiiiiiieiiiiieiineneenanas 1-5
- 1.6 Toolbox Interface Structures in the Load Band..................... 1-5
1.7 Procedure POINterscoovviiiiniiiiiiiiiieiaiieiiiiaeniinneenns 1-6
1.8 HeapManagement............coceviiiiiiiiinininiiiiniiiineninienenans, 1-6
1.9 Flavors and Recordsccovveiiiiiieinieinieniiiiniiiiineaiiens 1-6
1.10 Accessorsand Fields........cocoviniiiiiiiiiiiiiiiiiiiiiiiiiiiiens 1-7
1.11 NotinROM.....iiiiiiiiiiiiiiiiii it eieaie et eieeeaennaas 1-7
1.12 That is Illogical........ccoiiviiiiiiiiiiiiiiiiiiiiiiniiiceeeees 1-7
1.13 MultiFinder™ ... 1-8
1.14 User Interface Guidelines..........cccooeiiniieiiniiiniinniennnnnnnn. 1-8
1.15 Debugging.......cooeieiiiiiiiiiiiiiiiiiiiiiiiiaiieii s 1-8
1.16 Putting It All Together Making a Macintosh Application......... 1-9
2 ‘Resource Manager
2.1 Introduction ettt eteereeeeeeeeere e i eirearaeainans 2-1
2.2 Creating, Opening, and Closmg Resource Files.................... 2-1
2.3 Checking for EITOIScoovvniiiiiiiiiiiiiicei e e, 2-2
2.4 Setting the Current Resource File.....c.c..ccooeviviiiiiiinnnnnnnnen, 2-2
2.5 Getting Resource TYPesocovveniiiiiiiiniiiiiiiiieiieeenannenen 2-3
2.6 Getting, Counting, and Disposing of Resources 24
2.7 Getting Resource Information............ccccccoviiiiiiiiniiinnnnnnn., 2-6
2.8 Modifying Resourcescocevviiiiiiiieieiiecieinoneenierannenns 2-8
3 QuickDraw
3.1 INtroduCtioncooviiiiiiiiiiiiiiiiii e, 3-1
3.2 GrafPortSueinniiiii e e, 3-1
3.2.1 GrafPoOrt. ...t 3-1
3.2.2 CGrafPort (color grafPort)......cc..coeevviniiiiiiiiiiiiiinnnnnnn. 3-2
3.2.3 GrafPort and CGrafPort Routinescooveee. 3-3
33 CursorHandling..........c.coooiiiiiiiiiiiiiiiiiiiii i, 3-7
3.3.1 [517 £+ S 3-7
3.3.2 Color CUrSOT.....ouiiiiiiiii it e, 3-7
3.33 Cursor Handling Routinesc.ccoiiiiiiiiiiiinniinann. 3-7
3.4 TconHandling........c.coooiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee e 3-9
Macintosh Toolbox Interface v

Contents

3.5 PenandLine Drawing...........c.coovviiiininiiininiiiiiiinnininenn. 39
3.6 TexXtDIawing.....coccoeererieenrenecrererneineeessesaeiesieeesasensans 3-12
3.7 Drawing in Colol....ccccoorrriiiuiiiiiiniiniiiiirinenicinenen, 3-14
3.8 Operations on Color Tables............ccoeeveiiiiiiiiiniiiiinnenne. 3-15
3.9 Operations on Pixel Patterns..............coeviiiiiiiinni, 3-16
3.10 Calculations With Rectangles.............ccooceviiiiiiniiiininnne.. 3-17
3.11 Graphic Operations on Rectangles..............cccoieiiiiieiiinn. 3-21
3.12 Graphic Operationson Ovals..........c.occveviiiiniiiiiiniinnnna. 3-21
3.13 Graphic Operations on Round-Cornered Rectangles 3-22
3.14 Graphic Operations on Arcs and Wedges.........cccocevvenienennee 3-24
3.15 Calculations WithRegions..............cooieiiiiiiiiiiiiiinii. 3-25
3.16 Graphic Operations on Regions.............ccceevvviiiiiniiniininne 3-29
3.17 Creating Pixel Mapsc.coccvviiiiiiiiiiiiiiiioninininiinienenas 3-29
3.18 Bit Transfer Operations...........ccccceruivimineiiiniiiiininninnnnns 3-30
KT8 LIS 1111 | (1 O 3-32
3.20 Calculations With Polygonscccoveviiiiiiiiiiiiiiniiinnene.. 3-33
3.21 Graphic Operations on Polygons..........cccccerirvrnninnrunnnnnene. 3-34
3.22 Calculations With Points...........ccccciiiiiiiiiiiiiiiiiiiicinnen, 3-35
3.23 Miscellaneous ROUtINEScovviiveiiiniiiciiiiiiciiieioronennns 3-36
3.24 Customizing QuickDraw Operations........cccccceccceceeecncenenns 3-38
4 Color Manager
4.1 IntroduCtion...........ccoeveiriiiriiniiiiiiiuiiiiniiiiieiiieirieianens 4-1
4.1.1 Graphic DeviCescocevriiuiiiiiiiiiiiiiiiieniiiieiieiaenens 4-1
4.1.2 Color Tables....ccocviviiiiiiiiiiiiiieiiiiiiiiiincercraeeeaes 4-1
4.1.3 Inverse Tables.......coceeiviiiiniuiiiniiiiiiiiiiiiiiiniiienenn, 4-1
4.14 Using the Color Manager............coceviveiiiniinneniieiooncons 4-1
4.2 Color Conversion Traps..........cccceererieiiiinniiiiniinnineeicnan. 4-1
4.3 Color Table Management.........c.ccoevirrmuninrienniinininneniecnins 4-2
44 EmorHandlingcoocoviviiiiiiiiiiiiiiiiiiiciiiiin 4-3
4.5 Search and Complement Procedures.......ccccccumueuuniieninnnnns - 43
5 Palette Manager
5.1 INtroducCtion.........ccocceiiiiiniiniiniiniiitiiiiiieieeieaeeaeeas 5-1
5.2 Color Palette Manager Routines..............ccccevevieiiiineennen.. 5-1
6 Color Picker
6.1 INtroduction...........coviiiiiiiiiiiiiiiiiiiiiii e aaeas 6-1
6.2 Color Picker Package Routines..........cccceceevreriueicerreennnnn. 6-1
6.3 Color Picker Conversion Routines........ccccccceevviininieinnnnnn.. 6-1
7 Font Manager
7.1 INntroduCtion..........coviviiiiiiiiiiiiiiiieneineinernenerienneneneenees 7-1
7.2 Initializing the Font Managerc.cccevviiiiiiiiiinnnnnn... 7-1
7.3 Getting Font Information........c...ccoeevevrneieenniecreeninnieennnn. 7-1
7.4 Keeping Fonts N IMeMOIYcoeiviiiiiiiiniiiiiiiiiinieninnnens 7-3
7.5 AdvancedRoutinesc.ccoviiiiiiiiiiiiiiiiiiiiiininiiennn., 7-3
7.6 7-3

Fractional Width Routinesccccoevviiiiiiiiiiiineeiniereninnens

vi Macintosh Toolbox Interface

Contents

8 Event Manager
8.1 INtroducCtionceieveiiinuieiiieeneeennnieeniieeennenereneereannees 8-1
8.2 Event Manager Traps.......ccoovtiiiiiiiiiiiiiiiiiiiiiiiiiieieneenns 8-3
9 Window Manager
9.1 INtroduCtionc.cooeviiiiiiiniiuiniiiiniineioneieeeneeneeneennees 9-1
9.2 Initialization and Allocation.........cccceeeiiiiuniirrenciiinennnnnnne. 9-1
9.3 Window Display........ccviiiniiiiiiiiiiiiiiiiiir e 9-5
9.4 Mouse Location........coeveviiiiiiiiiiiiiiiiiiicniiiiiiini e, 9-7
9.5 Window Movement and Sizing............cocevvviiiiiiiiiiinnnnnn.. 99
9.6 Update Region Maintenance...........c.ccceeiiininniiniiinnannennns 9-10
9.7 Miscellaneous Routines............... e eeeeeneeeeeeeenaeeaeeeaaaaaas 9-11
9.8 Low-Level RoUtineS.......c.c.coivuieriicriiinienriiiiienencencnnnns 9-13
9.9 Color Window Manager Traps.......cccccceemuunveriiiininnnnnnnnen. 9-13
10 Control Manager
: 10.1 INtroductioncc.eeieieierineeernnieenerecneeoneneecaneessenneeennns 10-1
10.2 Initialization and Allocation...........ccceeeereieniiirinncrniinnnnees 10-2
10.3 Control Displayccoveeiiniiiiiiiiiiieiiiiiieiaeeiaeenaeaanns 104
10.4 Mouse Location...................... N 10-5
10.5 Control Movement and Sizingc.ccevevvreiiiiinennaneennnnn. 10-6
10.6 Miscellaneous. Routines..........ccoovviiiiiiiiiiniiinniiiiiennnn... 10-7
10.7 Control Manager Color Traps........ccoovvieieiiiiinieiineennnennn. 10-8
11 Menu Manager
11,1 Introductionc.coiieiioiiiiiiiiiiiieiiiiiiieieieeiaeeannennes 11-1
11.2 Initialization and Allocation...........cccveererinnierinniereneenenn. 11-1
11.3 Forming the Menus..................... et et aeeaanae 11-3
11.4 Formingthe MenuBar...............cciiiiiiiiiiiiiiiiiiiinn.. 114
11.5 Choosing From a Menu.......ccccoeiiiiiiniiiiniieniiiinncennnnne. 11-5
11.6 Controlling the Appearance of anItem.............c.......coeeeeene. 11-6
11.7 Miscellaneous Routines..............ccoiiiiiiiiiiiiiiiiiniiiinnnn... 11-8
11.8 Menu Manager Color Trapscoceeviiiniiniiiieennneennnennn. 11-9
12 TextEdit
12,1 INtroduCtioncocoveiiiiiiiionieeneiioieeeianeeeionneeraneeeeannes 12-1
12.2 Initialization and Allocation.......c..cccccceuveerrinnriiiinnennnnnnnn. 12-1
12.3 Accessing the Text of an Edit Record...........................e.l. 12-2
12.4 Insertion Point and Selection Range.........cccccoociuiniinnnnne. 12-2
125 Editing ..ooenniiiiiiiiiiii i e 12-3
12.6 Text Display and Scrollingccceiviieiiiiiiiiiiinnnnen. 124
127 ScrapHandlingcooeiiiiiiiiiiiiiiiiiiiiiiiiiiii e 12-5
12.8 Advanced Routines..............ccoiciiiiiiiiiiiiiiiiiiniiiiiiiennennn. 12-6

Macintosh Toolbox Interface : vii

Contents

13 Dialog Manager
13.1 Imtroduction.........cccoviiiiieiiiiiiiiiiiineiiriniiniiiieneinninneennes 13-1
132 InitialiZation...........oeoceeierinnneneruenenianineiieeieieeneneaaaes 13-1
13.3 Creating and Disposing of Dialogs.......ccccccevvririiirnrnnnencne. 13-1
13.4 Handling Dialog EVentsccocvvieiurnninieceieinneioncnenes 13-5
13.5 Invoking AlETItS.....occouverrreiereiconnrronionneacocierecnnecnsoonces 13-7
13.6 Manipulating Items in Dialogs and Alertsc.cccoceveneenee 13-8
13.7 Dialog Manager Color Traps......c..cccccviviicocsoorincreenaneonces 13-9
14 Desk Manager
14.1 INtroduCtOn........c.covueniniieininineiniueiintinineneneneieininiiaaes 14-1
14.2 DeskManager Traps........ccoeviviiiiiiiiiiiiiniiiiiiiiiiiiiinninne, 14-1
15 Scrap Manager
15.1 IntroduCtion..........cocieiiiieiiiinuieiiiiiiiiiniiinneiiinieniieeennes 15-1
15.2 Getting Desk Scrap Information.............c.cccceeeviiiirininnnnns 15-1
15.3 Keeping the Desk Scrap on the Disk.....ccccccceercriireicerioaene. 15-2
15.4 Writing to the Desk Scrap..........ccocveviiiiiiiiininiiiiiiinn.. - 152
15.5 Reading From the Desk Scrap.........c.coccvveieniniiniiiiiccnienee. 15-2
16 Toolbox Utilities
16.1 INtroduction..........covveneeriiuiorineiiinieeinineiernenionernececnns 16-1
16.2 Fixed-Point Arithmeticcocveieiiniiiiiiiiiioniniiiiinenecann 16-1
16.3 String Manipulation.........c...ccoociviiiiioiiiiiiiiiiiiinn 16-1
16.4 Byte Manipulation.......ccocoviininiiiiiiiiiiiiiiniiiiiiiien. 16-2
16.5 Bit Manipulation.......ccooeviiiiiiiniiiniiiiiininin. 16-2
16.6 Other Operations on Long Integers 16-3
16.7 Graphic UtilitieS..........ooeeiiiiiiiiiiiiiiiiiiiiiie, 16-3
16.8 Miscellaneous Utilities.......ccoeeeeriiinrininirniniiinniinniiinnnen. 16-4
16.9 Fixed Point ArithmetiC.......cccccoriieriiniiiinniiiniiiiccennieneneen 16-5
17 Package Manager
17.1 INtroduCtion..........cc.eeieneeiueenennuneneneneneeeeeeeeeeeneeneanen 17-1
17.2 Intemational Utilities Packagec.cooocvviiiiiiii.. 17-1
17.3 Standard File Package............cccooiiiiiiiiiiiiiiiiiniinnn, 17-2
18 Memory Manager
18.1 Introduction...........c.coeeiiiiiiiiiiiiiiiiiiiiiiiiiii s 18-1
18.2 Initialization and Allocationc.ccoviviiiiiiiiiiiiiieen. 18-1
18.3 Heap Zone ACCESS ..couvunenieneeneeaeineaneenneeeerrencnnernnernens 18-2
18.4 Allocating and Releasing Relocatable Blocks....................... 18-2
18.5 Allocating and Releasing Non-Relocatable Blocks................. 18-3
18.6 Freeing Spaceinthe Heapccoooviiiiiiiiiiiiiiinn, 18-5
18.7 Properties of Relocatable Blocks...............oooiviiiiiiiin. 18-6
18.8 Grow Zone Operationscccooevuiiiiiuiniieiiiniiiiiiinecneenns 18-6
18.9 Miscellaneous ROULINEScocvveiniiiiiiiniiiiiiiniiiiiiniieen, 18-7
viii

Macintosh Toolbox Interface

Contents

18.10 Memory Manager Utilities...........c.ccoveiiiiiiiiniiiiiiiiienennnas 18-8
18.11 Accessing MEmOTYc.cocvuiniininiiiiiiiniiniiiiiiiiiniinenainens 18-9
19 Segment Loader
19.1 INtroductionccooeieiiiiiiieiiiniiieiiiieieeiieeiieeaenens 19-1
19.2 Segment Loader Traps.........c.cooevvviiiiiiiiiiiiiniiiiininiinnennnn. 19-1
20 Operating System Event Manager
20.1 INtroducCtioncccevveiiuiiniiiieienioniiieeneerieeieereeioneenees 20-1
20.2 Operating System Event Manager Routines 20-1
21 File Manager ‘
211 INtroduCtionc..eccvvieiniiiiiieniiiierniiinieieieneeneenneinens 21-1
21.2 Initializing the File /O Queue........cocovvviiiiiiiiniiniinennennnnnn. 21-8
21.3 Accessing Volumes.......c.ccoeviiniiniiniiiiiiiniiiiiiinieniennen.e. 21-9
21.4 AccesSIng Filescooviiiiiiiiiiiiiiiiiiiiiii e 21-12
21.5 Changing Information About Files.............cc.ccooiiiiiininnna. 21-17
21.6 Hierarchical Directory Routines........ccccocoeerieuunirinnennnnnnne. 21-20
21.7 Working Directory Routinescccoiiiniieiiiiiiiiicnnennn.. 21-21
21.8 Accessing Queues P 21-22
21.9 File Control BlocksS.......ccoieimmiiniiiinininieniinennninneneennnns 21-22
22 Printing Manager)
22.1 INroduCtioncccieiiiiiiieiniiiieieiniiteneiieiiieeieenaenenns 22-1
22.2 Initialization and Terminationcooevieiiiiieiiiennnnnnnn. 22-1
22.3 Print Records and Dialogs...........cccoeveiiiiiiiniiiiiininnennen.. 22-1
224 Printing.............. PPNt 22-3
225 EmorHandling...........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieenans 224
22.6 Low-Level Driver ACCESS......ccccceiiriimirierunneeneneriennneaenes 22-5
23 Device Manager
23.1 INtroduCtiONcoviiiiiriiiie ittt eeeiiiireeeeeetinnnraeeeenns 23-1
23.2 Device Manager Trapsccoceeeieiienieiuientinnieierneenaaaannns 23-1
24 Disk Driver
24.1 Introductioncoceiiuiiiniiini i 24-1
242 Disk Driver Traps....c..coccovveiiiiimiiiiiiiiiiiiiiiiiniiieieeiennnnns 24-1
24.3 Advanced Disk Driver Trapsccoovveiieeiiniiiiiniiieninnnnn.. 24-2
25 Serial Driver
25.1 INroduCHiONccevrereininriientirireiiieeieeiareereeeeranennes 25-1
25.2 Changing Serial Driver Information...................ccccvveien... 25-1
25.3 Getting Serial Driver Information...........ccccccevvriiiiiniininnnns 25-3
Macintosh Toolbox Interface ix

Contents

26 Sound Manager
26.1 INtroducCtion..........c.ceocviiniiniiiieiiiiiiiiiiiiiiiiiniiiniiaiian, 26-1
26.2 Sound Manager Commandscocevveiiniiiiiiiiiiiiiiniinn.. 26-1
26.2.1 General Commandscovviiiiiiiiiiiiiiiiiiiiiiieienne, 26-2
26.2.2 Synchronization Commandsc.ccoceveeieienniiieiiienne. 26-3
26.2.3 Modifier Control Commands......ccccceuucereiriiniceienennnn 264
26.2.4 Scaling and Note Commandscc..cocvveeciiviioiccnnenes 26-5
26.2.5 Wave Table Synth Commands.........ccccoovveieenennineiincenn. 26-6
26.2.6 Sampled Sound Synth Commandsc.ccceveviiinnnnn. 26-6
26.3 Original Sound Driver Traps.......cccccoovveiiiiiiiiiirinninnnnnaes 26-7
26.4 Sound Manager Traps...........ccceveeeiieiininiiiiiiiiiiniiinceeene. 26-8
27 Operating System Utilities
27.1 INtroduCtion.....c..ccceeuieeseninuineneneneroreecueneiereoncecnenesaees 27-1
27.2 Pointer and Handle Manipulationccocevviiiiiininnee. 27-1
27.3 Date and Time Operations...........ccccoiviiiiniiiiiiiiiiiniinnen.. - 27-2
27.4 Parameter RAIM Operations............ccoovviiniiiiiiiiniininneneen 274
27.5 Queue Manipulation........ccoceviiiiiniiiiiieniniiiiiieiie, 274
27.6 Trap Dispatch Table Utilities.....ccccceeerierririnirirnnecniiennnenees 274
27.7 Miscellaneous Utiliti€s......cceeuvonrienreniernreenrirerieieeireennes 27-5
28 List Manager Package ,
28.1 INtroducCtion...........cceeeeerericeioneeiueeronecnueinneinreonnioaionns 28-1
28.2 Creating and Disposing of Lists........ccccooceviiiiniiieiiiininan. 28-1
28.3 Adding and Deleting Rows and Columns............... e 28-3
28.4 Operations on Cells........occveviniiiuiieiiiiiiiiiiiiiiiiiiininn. 28-4
28.5 Mouse Locationccceveiiuiiniiiiieieniiniiiiiiiiiiiieeiea, 28-5
28.6 Accessing CellS....cccccviiiniiiiiiiiiiiiiiiiiiiiiiiiiiaees 28-5
28.7 ListDisplay.......cooevviiiiiiiiiiiiiiiiiiiiiiii i 28-7
29 Error Handling
29.1 Introduction..............cccoeevieininn e eeeoe et et e rreeiaenas 29-1
29.2 Signaling an EIror.......c..ccoceviiiiniiiniiiiiniiiiinnen. 29-1
29.3 Suppressing Errorsc.ccceviiiiiiiiiiiiiiiiviiiinii 29-3
29.4 Restarting From an Error...........ccccccvvieiiviiiiiiiiiiinneenn. 294
Appendix A Resource Types.....ccoooiiiiiiiiiiiiiiiiiiiiiieiieieniinieannas A-1
Appendix B Result CodesS........coovviiiiiiiiiiiiiiiiiiiic e B-1

b4 Macintosh Toolbox Interface

ABOUT THIS MANUAL

Purpose

This reference manual documents each Toolbox function and provides
examples of how to use them.

For readability and ease of use we have kept the descriptions as short
and simple as possible. In most cases, these brief descriptions will be
more than sufficient. If you desire additional information about a
particular routine, please refer to the volume and page number of Inside
Macintosh listed in brackets after the definition of each routine.

Who Should
Use This
Manual

This reference manual is designed for Lisp programmers who need to
use the Toolbox routines. All the examples are written in Lisp and the
arguments and conventions refer to Lisp data types. Nevertheless, this
manual might not meet your casual expectations.

The problem is that these Toolbox functions merely give access to the
Macintosh operating system. The Macintosh OS, on the other hand, is
a piece of sophisticated software which is somethmg of a milestone in
the computer industry. When you decide to use the Macintosh
Toolbox, you have committed yourself to learning a new OS which is
markedly different from anything which has come before.

You must understand the structure of the Macintosh OS and its unique
way of doing business. For example, the Macintosh's highly
developed notion of a resource is both unique and central to the
understanding of how many Macintosh features are implemented.
Therefore, knowing how to call the tb: 'OpenRefF ile function is one
thing; knowmg what to do with an open "Res" file is something else
again.

Another difference is that there are many varied and subtle interactions
among Toolbox functions. The th:!WaitNextEvent function you see
in main event loops is just one example. You are not just calling some
mathpack trig utility; you are manipulating the internal data structures of
a complex OS in real time. You bear sole responsibility for supporting
all Macintosh OS conventions ... whether you are aware of them or not.

Structure of the
Document

This document is composed of 29 chapters organized in the same way
as Inside Macintosh. Each chapter begins with a short introduction
describing the specific Toolbox feature.

Macintosh Toolbox Interface

Style and
Conventions

The following notational conventions help you recognize Toolbox
functions, methods, and arguments. The table below defines the three
typefaces used in this manual and their respective meanings.

Typeface Meaning

boldface Indicates a function, method, or symbol name.

italics Indicates an argument to a function or method.
Names in italics can be replaced by any appropriate
value you choose to substitute.

‘monowidth Indicates sample code or program output.

The naming convention adopted for the Toolbox Interface says that if
Inside Macintosh documents a symbol name, then that symbol appears
in the Toolbox as th:!name.

Furthermore, you will notice that many of the symbols mentioned in the
text appear in upper and lower case. For example, the flavor which
implements a Macintosh color graph port appears as th:!cGrafPort
rather than all lower case as most Explorer™ symbols are documented.
These mixed case symbols are simply following the convention
established in the Macintosh's Pascal-oriented documentation. Since
the Lisp system uppercases all symbols internally, the symbols
tb:!cGrafPort, tb:!cgrafport, and TB:!CGRAFPORT are all the
same as far as Lisp is concerned.

xii

Macintosh Toolbox Interface

Chapter 1

EVERYTHING YOU ALWAYS WANTED TO

KNOW

ABOUT THE TOOLBOX INTERFACE

Introduction

1.1 The standard Macintosh interface is probably the most important
aspect of any Macintosh application. It is this interface that sets those
applications apart as the easiest to learn and use.

If you are familiar with one Macintosh application, MacDraw® for
example, you should be immediately familiar with navigating any other
Macintosh application.

To the user, the screen appears to act like a desktop, and the various
windows like sheets of paper. Actually, this appearance is an illusion
carefully maintained by the programmer. For every possible action the
user can make, including dragging, growing, zooming, closing,
scrolling through the contents, or switching to another window, the
programmer must call the necessary functions to maintain this illusion.

The Macintosh Toolbox is a collection of more than-700 specialized
routines stored in read-only memory (ROM) that can be called to
perform such tasks as drawing a rectangle, displaying a window, or
pulling down a menu. While the Macintosh Toolbox is very complex
and difficult to master using traditional languages, programming is
made easier with the Toolbox Interface.

Rather than providing a simplistic, statically typed interface using
macros or requiring developers to invoke remote procedure calls to
programs written in C, the ToolBox Interface was implemented with the
dynamic nature of Lisp in mind. It is implemented with rapid
debugging, accurate error checking, and an object-oriented approach to
programming in mind. The ToolBox Interface lets you write code
calling Macintosh Toolbox routines in the same way you would call a
typical Lisp function on any Lisp machine.

The ToolBox Interface consists of two parts: Lisp code on the

microExplorer™ and assembly language code in the form of a Toolbox

server application on the Macintosh. The microExplorer consists of a
Texas Instruments Lisp chip (generally referred to as a Lisp machine)
and a Macintosh connected by the NuBus™. The Lisp machine can
send calls to and receive calls from the Macintosh via the NuBus.

The ThServer:
How the
microExplorer
Communicates
With the
Macintosh

1.2 When a Macintosh function is called from Lisp, the number and
type of the arguments are checked. If correct, the trap number and the
data from the arguments are then placed into a packet of memory
(actually, a piece of memory that can be accessed by both the Macintosh
and the microExplorer). If no return value is needed (for example,
when calling a line drawing function), the packet is queued and Lisp
continues execution without waiting for the trap to be run. Of course, if
the trap returns a value, Lisp must wait for the data.

Macintosh Toolbox Interface

1-1

Everything You Always Wanted to Know...

On the Macintosh side of the bus, a Toolbox server is receiving the
packets sent to it by Lisp and invoking the appropriate Toolbox
functions. This process is complicated by the fact that there are many
different Toolbox calling conventions, and data can be passed in byte,
word, or long lengths. The server handles this for you by using the
information contained in the "TRAP" resources.

There can be up to eight servers running at once. Each application you
define that uses the ToolBox Interface must have its own Toolbox
server. The first of these servers is built into the microExplorer driver.
It communicates on *application-channel* 8. For the most part, this
server is hidden from users.

An unobvious feature of these Toolbox servers is that they automatically
take care of the standard initialization functions common to all
Macintosh applications: tb:!InitGraf, tb:!InitFonts,
tb:!InitWindows, tb:!InitMenus, tb:!TEInit, tb:!InitDialogs,
and tb:!InitCursor. The documentation for each of these traps
mentions that there is no need for you to call it directly.

Since the default Toolbox server is running in the microExplorer
application, a fatal Toolbox error may cause the microExplorer
application to terminate, thereby crashing the Lisp machine. Therefore,
when making Toolbox calls, you should launch an independent
Toolbox server. MultiFinder™ launches the application named
"TbServer" (note the lack of a separating space) in the
:microExp:MACSYS: folder. A fatal error in one of these stand-alone
Toolbox server applications will not harm the Lisp machine. At any
time, you can kill the Toolbox server. Of course, you can launch and -
kill servers as much as you want throughout a session. See the
functions defined below to determine how to do this.

tb:launch-default-th-server &optional kill-and-relaunch-p Function

tb:launch-default-tb-server launches a Toolbox server and-
initializes it. Normally, this function can be called from your login-init
file. This function causes a Toolbox server to be available to run your
calls to the Toolbox from any microExplorer process.

tb:kill-default-tb-server Function

tb:Kkill-default-tb-server causes the default Toolbox server to shut
down and reset itself. If a Toolbox server has an untimely exit (whether
by signaling a Macintosh system error, by doing an exit to shell from
any debugger, or by explicitly calling the tb:!ExitToShell trap on the
microExplorer), you still must call tb:kill-default-tb-server.
Calling this function adjusts the value of certain global variables and
allows you to relaunch a new server without causing problems.

Alternately, instead of calling tb:kill-default-tb-server before you
call th:launch-default-th-server again, you may simply call
tb:launch-default-tb-server with an argument of t which is the
equivalent of calling tb:kill-default-tb-server followed by
tb:launch-default-tb-server.

Macintosh Toolbox Interface

Everything You Always Wanted to Know...

To determine which Toolbox servers are running, look at the Apple
Menu under the MultiFinder applications list. You can switch to other
applications or to the microExplorer by clicking in one of their windows

or selecting them from the Apple® Menu.

If a Toolbox server exits unexpectedly, there are several ways to shut it
down and bring it back up. If you are running a debugger (such as
ICOM's TMON™ debugger), system errors will cause you to enter the
debugger automatically. From the debugger, you can exit to shell and
that will close the default Toolbox server. Be careful when exiting to
shell under MultiFinder because multiple applications can be running at
the same time. Make sure you are exiting Toolbox server and not some
other application. Remember, when you return to the Lisp
environment, be sure to execute the form (tb:launch-default-tb-
server t) again. The t argument makes certain the microExplorer side
and the Macintosh side are in sync.

If no main event loop is running in the Toolbox server (this is the
default), you may have to click the mouse several times in another
application's window in order to switch from the Toolbox server to that
application.

What's in a
Name?

1.3 You may notice that some of the names of the traps documented in
this manual differ from the names as they appear in Inside Macintosh.
The most obvious difference is that most of the names in this manual
begin with a bang ("!") character. The naming convention followed in
most of the traps is a bang followed by the assembly language name of
the trap, not the high level, or Pascal, name. Most traps are named the
same in Pascal and assembly language, but do not always assume the
names will be the same. For example, the Macintosh trap PBOpen
exists in the Toolbox Interface as tb:!Open.

What Are VARs
and How Did
They Get Into
Lisp?

True VAR
Variables

1.4 VAR variables are a contrivance invented for Pascal because
Pascal functions cannot return multiple values. Pascal treats VARs
differently depending on the data length of the variable. Unfortunately,
these declarations found their way into the Macintosh Toolbox and
consequently were introduced into Lisp in order to avoid changing
calling conventions in dozens of traps. For each trap that requires VAR
arguments, there is.an alternate trap name that performs the same
operation but does not return information with VAR arguments.
Instead, these traps return the information as function results. These
trap names are identical to the VAR trap names except the ! is missing.
For example, the VAR-less version of tb:!PtToAngle is
tb:PtToAngle.

1.4.1 The only true VAR variables for the microExplorer are: (VAR
integer), (VAR longint), (VAR string), (VAR character), and (VAR
restype). When calling traps that use these VAR variables, you must
wrap the variable in a VAR form.

Macintosh Toolbox Interface

1-3

Everything You Always Wanted to Know...

Example:

Example:

Pseudo VAR
Variables

VARs That Aren't

(tb:!GetResInfo han (VAR id) (VAR type) (VAR name))

The variables id, type, and name may be local or global, and may or
may not have any value. After invoking the Toolbox function, these
variables will be set to their respective values.

The Lisp compiler is very smart. When compiling:

(defun foo ()
(let ((type "")

(name "")

(id nil))
(tb:!GetResInfo han (VAR id) (VAR type) (VAR name))
type))

the compiler notices that both name and type are constants and doesn't
understand VARSs, so it actually sets both variables to the same empty
string. Thus, this function will actually return the wrong value because
it treats type and name as the same string. Instead, define foo as
follows:

(defun foo (&aux type name id)
(let ((type nil)
(name nil)

(id nil))
(tb:!GetResInfo han (VAR id) (VAR type) (VAR name))
type))

1.4.2 Since Macintosh data types are really instances, window

- pointers and pointers may optionally be passed as VARs. For VAR

window pointers (e.g., th:!FindWindow) and VAR control records
(e.g., th:!'FindControl), it is best to call using the VAR form because
then the trap will return the same instance (as opposed to another
instance with the same pointer). See Chapters 9 and 10 on the Window
Manager and the Control Manager, respectively.

VAR pointers are often used to pass information into a trap as well as to
return information. Therefore, if you pass a VAR argument, make sure
that its value is an instance of tb:mac-pointer.

1.4.3 Sometimes traps are decléred to take VAR arguments when
they really take a data structure that may be modified by the trap. In this
situation, just pass the data structure.

Since VAR handles are instances in Lisp. just pass the instance to the
trap and the :handle instance variable will be modified by the trap.

VAR FontIinfo, SFReply, PenState, Points, Rectangles, and
EventRecords are in another category. Since these instances are true
Lisp objects (not pointers to Macintosh objects), you need only pass the
instance. Do not put the (VAR...) form around these arguments. The
functions with these argument types do, however, wait for the instances
to be modified by the ROM call.

1-4

Macintosh Toolbox Interface

Everything You Always Wanted to Know...

Who Lives
Where?

1.5 Most data structures used by Macintosh Toolbox traps reside in
the Macintosh heap. Pointers or handles to these objects are
encapsulated by instances of an appropriate flavor. The two most
important data types used by the Toolbox are tb:mac-handle and
tb:mac-pointer. For the Toolbox Interface, these and all data types
are instances of flavors. This means that the address of a th:mac-
pointer is really stored in the instance variable :pointer of an instance
of the flavor tb:mac-pointer.

For example, the result of doing a (make-instance 'tb:window) -is
an instance of a Macintosh window. It contains, however, only a single
instance variable :pointer which points to where the window is stored
in the Macintosh heap. The rest of the information about the window
resides entirely in Macintosh memory. The only way to access or
change the Macintosh data structure is through so-called instance
accessors. Thus, while it may appear to a user that a field like window
kind is an instance variable, it is not.

A handful of data structures which are both small and frequently used
are actually true.instances, and the information is copied back and forth

- when the trap is invoked. The most common examples of these are

rectangles and points. Because these data structures are true instances,
it is faster to use the methods provided to do calculations directly on
rectangles and points than to send the information across the bus, and
then wait for MultiFinder to give the CPU to the server and return the
result.

Other data structures that reside as true Lisp objects include:
th:eventrecord, tb:sfreply, and th:fontinfo.

Toolbox
Interface
Structures in
the Load Band

1.6 Each th:mac-handle and th:mac-pointer instance normally
holds a dynamic Macintosh-relative address. These addresses are
dynamic in the sense that they become invalid when the Macintosh is
rebooted. If these instances should be saved in a load band, then on the
next reboot they will effectively introduce random Macintosh addresses
into Toolbox execution. Therefore, pointers and handles may not be
saved in a microExplorer load band.

CAUTION: Handles, pointers, and any Toolbox Interface
structures which include a handle or a pointer cannot be
saved in a microExplorer load band. This applies to any
Toolbox data structure which include handles or pointers
directly or indirectly (and that includes almost everything).

The only exceptions are the trivial case of NIL handles and pointers and
the special case of a constant pointer to a Macintosh global variable--the
only Macintosh addresses guaranteed to remain constant across boots.

Macintosh Toolbox Interface

1-5

Everything You Always Wanted to Know...

Procedure
Pointers

1.7 Many traps take procedure pointers as arguments. These
arguments are pointers to routines which are expected to lie in
Macintosh memory. These routines are called during the execution of
the traps and are expected to follow Pascal calling conventions. Using
the name of a Lisp function as a procedure pointer will not work. For
this reason it is best to pass th:!nilPtr in these parameters. However,
if you install a routine into Macintosh memory (perhaps written in
assembly language or another language on the Macintosh), you may use
a pointer to it with these routines. If you do so, be very careful that the
routines you write follow the correct calling conventions, as there is no
checking done whatsoever on these routines. Read Inside Macintosh
carefully for the descriptions of the traps which use procedure pointers

for details on these calling conventions.

Heap
Management

1.8 All of the Macintosh memory allocated to a particular Macintosh
application is located in its heap. This means that if you plan to create
large handles or use lots of color pictures, etc., you must allocate
enough memory in the "SIZE" -1 resource to hold the data you want to
keep in Macintosh memory. In addition, heed the warnings in the
Inside Macintosh chapter that discusses memory management including:
not keeping pointers to unlocked handles, not leaving large locked
handles in the middle of the heap, and remembering to dispose of
handles no longer in use.

For your safety and convenience, many data structures that are defined
by Inside Macintosh as pointers to Pascal records are actually allocated
as handles. As traps using these data structures are invoked, the handle
is first locked, then dereferenced for you automatically. Upon
completion of the trap, the locking status is returned to its original
condition. -

Flavors and
Records

1.9 To allocate new Macintosh data structures, the universal way is
make an instance of its flavor. The :init method will automatically
create the Macintosh object of the correct size in one of two ways. -
Flavors that mix in tb:AutoHandleTo (like tb:RGBColor)
automatically create a handle of the necessary size, while flavors that
mix in tb:SystemCreatedTo (like th:window) automatically call the
appropriate trap. to allocate the object (in this case,
tb:!NewCWindow).

At times, you may need to get an instance without having it
automatically generate a Toolbox data structure. Use th:make-
instance-no-init for this purpose.

1-6

Macintosh Toolbox Interface

Everything Yoﬁ Always Wanted to Know...

Accessors and
Fields

1.10 Since the Macintosh data structures exist in Macintosh memory,
not microExplorer memory, a mechanism is needed to access the fields
of Toolbox records. Instance accessors perform this operation. Since
all Macintosh data types are defined as flavors, the instance accessors
are methods. You can access a field in the same way that you get the
value of an instance variable. Fields may be set by passing a new value
for a field to the method or by using a setf form. Since these fields are
not in Lisp memory, some overhead does exist in accessing the data.
You can look at all of the fields in many records by doing a describe
on the record. Similarly, a tb:describe-class on a flavor name will
tell you the instance accessors and their offsets defined for a flavor.

MultiFinder considers Window Manager data structures as being owned
by the Window Manager. Therefore, these data structures should never
be modified directly by an application. This includes all of the fields in
a grafPort and the window record itself. Instead use the traps provided
by the Toolbox to modify these fields.

Not in ROM

1.11 A handful of Toolbox routines are not in the Macintosh ROM.
Most of these perform very simple operations like fetching a value from
low memory. Many of these routines have Lisp equivalents.

In managers like the File Manager where both high and low-level
function calls are provided, only those in ROM are supported. These
traps are more complete and provide more control than the so-called
high-level Pascal functions.

That is Illogical

1.12 Given the limited development environment of the Macintosh,
the authors of the Toolbox provided a number of low-level arithmetic
traps that make no sense to a Lisp programmer. Logical operators,
bignums, and trig functions are more complete in the Lisp environment
and much faster than sending the data across the bus for processing.
For these reasons, some traps have not been implemented. Others were
implemented for completeness, but should not be used.

Macintosh Toolbox Interface

1.7

Everything You Always Wanted to Know...

MultiFinder

1.13 Since all microExplorer applications must run under
MultiFinder, it is important to emphasize a few points contained in the
MultiFinder Development Package. Most importantly, observe the
limitations mentioned above regarding the Window Manager and
understand that the Event Manager has been modified extensively. You
should use the new Event Manager call !WaitNextEvent. Call this
function often enough so the system does not lock up without giving the
user a chance to do something. (Remember, MultiFinder does not do

preemptive scheduling).

It is very important to tell MultiFinder how much memory your
application requires using the "SIZE" -1 resource.

Any Macintosh application (e.g., MacWrite®) may be launched with the
Lisp function 1aunch (e.g., (tb:launch "hd:MacWrite")).

User Interface
Guidelines

1.14 Macintosh programmers have gone to a great deal of trouble to
make their programs operate in a consistent manner, yet it is possible to
use the traps to create applications that are inconsistent with the
established guidelines. Before you create a new Macintosh application,
carefully read Chapter 2 of Inside Macintosh, The Macintosh User
Interface Guidelines. Pay particular attention to the discussion
supporting the Edit menu (cut, copy, paste, etc.) so that data can be
transferred between your application and other Macintosh applications.

Adapting an existing application to run on the Macintosh can be
particularly difficult, but no application has been commercially
successful unless those adaptations have been made.

For design tools that make writing consistent Macintosh applications
easier and faster or for assistance in converting an existing application,
contact ExperTelligence.

Debugging

1.15 While the dynamic runtime error checks prevent you from
making many errors, the low-level non-typed nature of the Macintosh
ROM tends to produce errors that are sometimes difficult to debug.
You can use debuggers like TMON to view your heap in hexadecimal
notation. To enter the debugger, simply type (tb:!Debugger).

CAUTION: Many traps can write anywhere in memory
(even outside your application's heap). There is no hard-
ware protection, so it is possible to crash the Macintosh
system. If you make catastrophic errors within your own
heap, however, you can often exit-to-shell, restart your
Toolbox server, and continue without rebooting.

When you enter the debugger, make sure that you are in your
application's heap. Look at the Macintosh global variable in location
#x910 to check the name and avoid confusion.

1-8

Macintosh Toolbox Interface

Everything You Always Wanted to Know...

Putting It All
Together:
Making a
Macintosh
Application

1.16 All microExplorer applications that use the Toolbox Interface are
invoked the same way. Each application is represented by a double-
clickable icon that exists somewhere on the Macintosh desktop. This
icon is linked via a "NAME" resource to Lisp code on the
microExplorer side of the machine.

tb:define-mac-application is the macro that links the Macintosh
icon to the Lisp code and the Lisp code to the Macintosh icon, allowing
you to launch your application from either the Macintosh or the Lisp
machine side of the microExplorer.

Every application has an entry point, a single function that launches and
starts running the entire application. It is this function that we use to
tb:define-mac-application.

The TbServer application is the Toolbox server. It provides access to
the various Toolbox routines. During development of your application,
you'll want to use the default Toolbox server provided. It's very handy
for testing and debugging. You can add any necessary resources to the
TbServer application (pictures, icons, cursors, etc.).

Once your application is debugged, however, you need to create your
own copy of the TbServer application to run your application as a stand-
alone, double-clickable Macintosh application. To do that, perform the
following operations:

On the Macintosh side:

e Make a copy of the TbServer application and give it your
application's name.

* Copy any pictures, icons, or other resources required by your
application into your copy of the TbServer application using ResEdit
or some other resource editor.

On the Lisp machine side:

e Link your application to the Macintosh icon described above using
the Lisp macro th:define-mac-application. This creates a
resource of type "NAME" that contains the flavor to instantiate
during the boot process (that is, when your application icon is
double-clicked).

tb:define-mac-application name &optional args Macro

&key :directory :lisp-function :server-name

Name is the name of your application. When launching from the Lisp
side, name is the symbol that you pass to tb:launch-mac-
application. Args are the list of arguments to the Lisp function, if
any, that are passed to :lisp-function's Lisp function. The :lisp-
function value is a symbol that is the name of the entry point to the
Lisp application that you want to run when you tb:launch-mac-

Macintosh Toolbox Interface

1-9

Everything You Always Wanted to Know...

Y

application or double-click on the corresponding Macintosh icon.
The :server-name argument is a string that contains the current name
of your application icon. :server-name is very important when
launching your application from the Lisp side of the microExplorer
because without this information the system is unable to locate the
corresponding icon.

When doing a tb:launch-mac-application the microExp folders on
all mounted volumes are searched for the application named by the
keyword :server-name. If :directory is supplied (or a list of
directories), a search of all mounted volumes for :directory (a folder
name) is done. This search is only one deep, that is, :directory
should be on a mounted volume's desktop. When the directory is
found it is searched for the application named by :server-name.
When the file is found a "NAME" resource is added to its resource file.
This "NAME" resource contains the name given above.

Example." (tb:define-mac-application color-gix (&optional length)
(:directory "microexp:toolbox-examples:"
:lisp-function 'tb:tb-gix
: server—name "color-qix™))

tb:launch-mac-application name Function

Name is the symbol that you used in tb:define-mac-application.
Note that the search path is defined as described above when doing your
tb:define-mac-application.

Example: (tb:launch-mac-application 'color-gix)
tb:mac-application-cleanup &optional reinitialize-p Function

Shuts down all Macintosh applications launched from the
microExplorer, including the default Toolbox server. If reinitialize-p is
true, tb:mac-application-cleanup will reinitialize the application
channels.

tb:select-application &optional (application tb:CurApName) Function

This function causes the MultiFinder to select application as the current
application. That is, this is the programmatic version of clicking on a
different window or clicking on an application name in the Apple
Menu. application may be an instance of tb:mac-pointer or th:mac-
handle or it may be a string matching the name of the application as it
would appear in the Apple Menu.

1-10

Macintosh Toolbox Interface

Chapter 2
RESOURCE MANAGER

Introduction 2.1 The Resource Manager is a collection of routines used to manage
resources. Resources are data structures that define various objects
used by the Macintosh: menus, windows, dialog boxes, and so on.
Resources are kept in a resource file. At the beginning of every resource
file is a resource map that contains information about all the resources in
the resource file. When the resource file is opened, its resource map is
read into memory. The resource map tells the Resource Manager how
many resources are in the file, their types, their IDs, and their names.
The individual resources in the resource file are loaded into memory as
needed.

The resources in memory can be made purgeable, meaning they can be
thrown out when the Memory Manager needs more memory. When the
Memory Manager purges a resource, it is removed from memory such
that it can be reloaded when it is later needed. Making non-vital
resources purgeable gives the Memory Manager greater flexibility and
generally improves the performance of the machine.

Resources are distinguished by two properties: their resource type and
their resource ID. There are about fifty Apple-defined resources types,
such as "MENU", "WIND", and "DITL". Resource types are listed in
Appendix A. The resource type is a string of four characters where case
and blanks are significant. The resource ID is a 16-bit integer. Up to
65,536 different resources of the same type can exist, but many of
these resource IDs are reserved and are not available for your use. A
resource name is a string of up to 255 characters.

Creating, 2.2 The following traps are used to create, open, and close resource
Opening and files. Macintosh files are divided into two forks: the data fork and the
Closi resource fork. The data fork is always empty. The resource fork
osing . contains all the individual resource's data and a resource map, which
Resource Files includes a list of the resources in the file.
tb:!CreateResFile fileName [I-114] Function

Creates a file with the name fileName on the current volume or in the
current working directory in HFS (Hierarchical File System), and puts a
default resource map in the resource fork.

Example.’ (tb:!CreateResFile "mySampleResFile®)

Before you can work with a newly created file, you must open it with
the trap tb:!OpenResFile.

tb:!OpenResFile fileName [I-115] Function
Opens the resource fork of the file fileName, loads in it's resource map,

and returns a refNum (reference number) which is used when you need
to specify the file.

Macintosh Toolbox Interface 2-1

Resource Manager

Ekunqﬂe: (setf resFileRefNum (tb:!OpenResFile "mySampleResFile"))
=> 378
tb:!OpenRFPerm fileName VRefNum permission [IV-17] Function

Similar to th:!OpenResFile except this trap allows you to define a
permission and a VRefNum for the file. See Chapter 21 on the File
Manager for information on the VRefNum argument. For available
permissions, see th:!fsCurPerm et al.

th:!CloseResFile refNum [I-115] Function

Closes the file which has a reference number refNum and removes that
file's resource map from memory.

Checking for 2.3 This routine checks for errors.
Errors |

tb:!ResError | [I-116] Function

Checks to see if the last Resource Manager trap used was successful
and returns an error code if it was not.

This trap is normally needed because Resource Manager traps do not
individually return result codes. Instead, you typically call the trap and
then you call tb:!ResError to see if the trap worked.

However, a feature of the Toolbox Interface is that it will automatically
signal non-zero result codes for you if the global variable tb:*signal-
mac-oserr* is true. Therefore, you will need tb:!ResError only if

you set this variable to false.
Setting the 2.4 The following traps modify the order in which the resource maps
Current in memory are searched.

Resource File These traps manipulate only the current resource file, the first resource

file in the open resource file list. That is, they only search "one deep"”
into the list. When you read or get information about a resource of a
particular resource type or resource ID, all the open resource files are

“searched for that resource, not just the current file. To force the
Resource Manager to search only the current resource file, use the "one-
deep” traps.

tb:!CurResFile ' [I-116] Function
Retumns the refNum (reference number) of the current resource file.

Example: (setf theCurrentResFile (tb:!CurResFile)) => 284

2-2 Macintosh Toolbox Interface

Resource Manager

tb:!HomeResFile theResource [I-117] Function

Searches through the resource maps of all open resource files for a
resource with the handle theResource. If found, it returns a reference
/ number to the resource file.

th:!UseResFile refNum [I-117] Function

Makes the resource file with the reference number of refNum the current
resource file, the first to be searched by the Resource Manager.

Getting 2.5 The following traps return resource types or the number of
Resource Types fesourcetypes. ‘
tb:!CountTypes [I-117] Function
tb:!CountlTypes [IV-15] Function

tb:!CountTypes returns the number of resource types in all open
resource files.

tb:!Count!Types is similar except that it searches only "one deep" in
the current resource file.)

Example: (tb: !CountTypes) => 38

tb:GetIndType index [I-117] Function
tb:!GetIndType VAR theType index : : [I-117] Function
tb:Get1IndType index [IV-15] Function
tb:!GetlIndType VAR theType index [IV-15] Function

thb:GetIndType returns the index'th resource type in all open resource
files. The maximum value for index is the value returned by
th:!CountTypes.

tb:!GetIndType is similar except that it modifies theType to be the
resource type.

tb:GetlIndType and tb:!GetlIndType are similar to
tb:GetIndType and tb:!GetIndType respectively except that they
search only "one deep” in the current resource file.

Example: (tb:getIndType 6) => "FONT"
(tb: !GetIndType (VAR theType) 6)
theType => "FONT"

Macintosh Toolbox Interface 2-3

Resource Manager

Getting,
Counting, and
Disposing of

2.6 These routines get, count, and load resources.

Resources

tb:!SetResLoad load [I-118] Function
Normally, when you call a resource that is not in memory, it is loaded
into memory from the file. However, if you set resLoad to NIL by:

Example: (tb:!SetResLoad nil)
the resource is not automatically loaded from the file if not already in
memory.
CAUTION: Do not use this trap unless you fully
understand the Resource Manager.

tb:!CountResources theType [I-118] Function

tb:!CountlResources theType [IV-15] Function
tb:!CountResources returns the number of resources of type
theType in all open resource files.
th:!Count1Resources is similar except that it searches only "one
deep” in the current resource file.

Example: (tb:!CountResources "FONT") => 95

tb:!GetIndResource theType index [I-118] Function

tb:!GetlIndResource theType index [IV-15] Function
tb:!GetIndResource indexes into the resources of type theType.
This trap returns the handle to the index'th resource of theType. There
is no relationship between a resource's ID and its index.
tb:!GetlIndResource is similar except that it searches only "one
deep" in the current resource file.
NOTE: The trap tb:!UseResFile, which changes the first resource
file to be searched, does not affect the order of the resources in the
resource map. '
To get the handle to the first "FONT" resource in the open resource
files, do the following:

Example: (setf theRes (tb:!GetIndResource "FONT" 2))

2-4

Macintosh Toolbox Interface

Resource Manager

tb:!GetResource theType thelD [I-119] Function
tb:GetResource theType thelD [I-119] Function
th:!Get1Resource theType thelD [IV-16] Function
tb:GGet1Resource theType thelD [IV-16] Function

Example:

tb:!GetResource returns a handle to the resource with a resource type
theType (a string of four characters) and a resource ID number thelD.
If the resource is not found, th:!GetResource returns a NIL handle
(i.e., a handle of zero) and tb:!ResError returns noErr. You must
either check the handle retumed by tb:!GetResource or use the
alternate function th:GetResource.

tb:GetResource is similar except that it signals tbh:!resNotFound if
the resource does not exist.

tb:!GetlResource and tb:Getl1Resource are similar to
tb:!GetResource and th:GetResource, respectively, except that
they search only "one deep" in the current resource file.

If a resource does exist, the following example will return the handle to
the resource of "MENU" resource type with a resource ID of 1.

(setf theRes (tb:!GetResource "MENU" 128))

tb:!RGetResource theType thelD [V-30] Function
tb:RGetResource theType thelD [V-30] Function

th:!RGetResource is similar to th:!GetResource except that if the
resource is not found in the system file, ROM is searched. . If the
resource is not found, th:!RGetResource returns a NIL handle (i.e.,
a handle of zero) and tb:!ResError returns noErr. You must either
check the handle returned by th:!RGetResource or use the alternate
function th:RGetResource.

tb:RGetResource is similar except that it signals tb:!resNotFound
if the resource is not found.

th:!GetNamedResource theType name [I-119] Function
tb:!Get1NamedResource theType name [IV-16] Function

Example:

tb:!GetNamedResource is similar to th:!GetResource except that
you must specify the resource you want by its resource type and its
name.

tb:!GetINamedResource is similar to th:!GetNamedResource
except that it searches only "one deep” into the current resource file.

If you want to get the handle to the Scrapbook desk accessory, do the
following:

(setf theRes (tb:!GetNamedResource "MENU" "Apple"))

Macintosh Toolbox Interface

Resource Manager

tb:!LoadResource theResource [I-119] Function

Ensures that a resource with the handle theResource exists in memory,
and reloads it from its resource file if not already in memory.

th:!ReleaseResource theResource [I-120] Function

Given a handle to the resource theResource, this trap sets the resource
handle in the resource map to NIL and then releases the handle data.
This means that the resource data contained in the handle is lost. Refer
to Inside Macintosh for more information about using this trap.

th:!DetachResource theResource [1-120] Function

Sets the resource handle theResource in the resource map to NIL, but
does not release the handle of data so the resource data contained in the
handle is not lost. Refer to Inside Macintosh for more information
about using this trap.

Getting 2.7 All resources can be identified by the following three parameters:
Resource a resource type, a resource ID, and a resource name. The resource type
Inf et (a four character string) and resource ID (a 16-bit integer) are required.

nformation Specification of a resource name (a string of up to 255 characters) is
optional. -

tb:!UniquelD theType | . [I-121] Function
tb:!UniquellID theType , [IV-16] Function

tb:!UniquelD returns a resource ID which has not been used by any
other resource of the resource type theType in any of the currently
opened resource files.

tb:!UniquelID is similar except that it searches only "one deep" in the
current resource file.

Appendix A contains a list of reserved resource types that should not be
used when creating application defined resources. Resource ID's less
than 128 are reserved for the system and also should not be used.

To get an unused "DITL" (dialog item list) resource ID, do the
following:

Example: (setf newResID (tb:!UniqueID "DITL")) => 7823

tb:GetResInfo theResource [I-121] Function
tb:!GetResInfo theResource VAR theID VAR theType [I-121] Function
VAR name

tb:GetResInfo returns information about a resource with the handle
theResource. The trap returns three values: the resource's resource ID
(a 16-bit integer), the resource's resource type (a four character string),
and the resource's name (a string of up to 255 characters).

2-6 Macintosh Toolbox Interface

Resource Manager

tb:!GetResInfo is similar except that it modifies thelD, theType, and
name to be the resource ID, type, and name, respectively.

Suppose you have a resource handle # and wish to determine its
resource type. You would do the following:

Example: (setf h (tb:!GetResource "MENU" 128))
(multiple-value-bind (theID theType name)

(tb:getResInfo h)

...body within which...

theID => 128

theType => "MENU"

name => "Apple"

)

tb:!GetResAttrs theResource [I-121] Function

Returns the resource attributes (resAttributes) of the resource
theResource. The resource attributes are a group of flags that tell the
Resource Manager the status and properties of a resource. The
following constant masks may be used to examine the resource
attributes returned by this function.

th:!resSysHeap [I-111] Constant
tb:!resPurgable [I-111] Constant
tb:!resLocked ‘ [I-111] Constant
tb:!resProtected [I-111] Constant
tb:!'resPreload [I-111] Constant

tb:!'resChanged [I-111] Constant
- These are constant masks for the resource attributes indicating this

resource is to be read into system heap, is purgeable, is locked, is
protected, is to be preloaded, or has been changed (and therefore needs
to be written), respectively.

tb:!MaxSizeRsrc theResource [IV-16] Function
Retumns the resource size by looking at the resource map. The trap
tb:!SizeResource also returns the resource size but is much slower as
it must read the information from the disk.

th:!SizeResource theResource [1-121] Function
Returns the size, in bytes, of the resource theHandle.

tb:!RsrcMapEntry theResource | [IV-16] Function

Returns an offset into the resource map of the entry for the resource
theResource.

Macintosh Toolbox Interface 2-7

Resource Manager

Modifying 2.8 Except for tb:!UpdateResFile and tb:!WriteResource, the
Resources following routines described in this section change the resource map in

memory and not the map in the resource file itself.
tb:!SetResInfo theResource thelD name [I-122] Function

Changes the resource information of the resource specified in
theResource. The resource ID is changed to theID and the resource
name is changed to name. Do not change a resource's ID unless you
know exactly what you are doing.

tbh:!SetResAttrs theResource attrs [I-122] Function

Sets the resource attributes of theResource to attrs. See the trap
tb:!GetResAttrs for the attributes table.

tb:!ChangedResource theResource [I-123] Function

Used after the resource information, resource attributes, or resource
data of theResource has been changed. This trap sets the resChanged
resource attribute of the resource. When the resource file is updated, or
when the tb:!WriteResource trap is called with the resource

theResource, the Resource Manager writes any changes to the resource
" file.

th:!ChangedResource verifies that there is sufficient disk space to
write out the modified file. The tb:!ResError trap retums an error if
there is not enough disk space to save the changed resource. Check the
error code returned by that trap before proceeding with the
tb:!WriteResource trap.

tb:!AddResource theData theType thelD name [1-124] Function

Add resources to a resource file. Given a handle theData, this trap adds
theData to the resource map of the current resource file giving it a
resource type of theType, a resource ID of thelD, and a resource name
of name. '

Example: (setf resHandle (tb:!NewHandle 30))
(tb: !AddResource resHandle "TEST" 1 "testResource")

tb:!RmveResource theResource [1-124] Function

Removes theResource from the resource map. This differs from the
tb:!DetachResource and th:!ReleaseResource traps which set the
resource handle to NIL, but leave the resource in the resource map.

Refer to Inside Macintosh before using this trap. ’

tb:!UpdateResFile refNum _ [I-125] Function
Does the required housekeeping necessary to keep the resource file

consistent with the resource map. This trap updates all of the resources
which have their th:!resChanged attributes set to the resource file.

2-8

Macintosh Toolbox Interface

Resource Manager

tb:!WriteResource theResource [I-125] Function

Checks the resChanged resource attribute of theResource (see
tb:!resChanged). If resChanged is set, the trap writes the resource
out to the resource file and clears the resChanged attribute of
theResource. Unlike the th:!ChangedResource trap, this trap does
not check for sufficient disk space.

The following example creates a new handle, makes a resource of type
"TEST" with a resource ID of 1 and then writes it to the current
resource file.

Example: (setf current (tb:!CurResFile))
(tb:!CreateResFile "ResFile")
(setf refnum (tb:!OpenResFile "ResFile"))
(setf resHandle (tb:!NewHandle 30))
(tb: !'AddResource resHandle "TEST" 1 "test resource")
(tb: !WriteResource reshandle)
(tb: CloseResFile refnum)
(tb:!UseResFile current)

tb:!SetResPurge install [I-126] Function

Calling (tb:!SetResPurge t) tells the Memory Manager to call the
Resource Manager when it attempts to purge any purgeable blocks in
_memory. The Resource Manager then verifies that the handle is a
resource, and if so, calls the tb:!WriteResource trap if the resource's
resChanged resource attribute is set (see tb:!resChanged).

tb:!GetResFileAttrs refNum [I-127] Function

Returns the file attributes of the resource file with a file reference
number refNum. The file attributes tell the Resource Manager the status
and properties of the resource file. The following mask constants may
be used to examine the resource file attributes returned by this function.

th:!mapChanged [1I-126] Constant
tb:!mapCompact [I-126] Constant
tb:!mapReadOnly . [1-126] Constant

These constants are masks for the resource file attribute indicating that
the resource map has been changed and therefore needs to be written,
should be compacted when written, or is read-only respectively.

tb:!SetResFileAttrs refNum attrs [I-127] Function

Sets the file attributes of the resource file with a reference number

refNum.

Macintosh Toolbox Interface 2-9

Chapter 3
QUICKDRAW

Introduction

3.1 QuickDraw is the name given to the group of over one hundred
Macintosh Toolbox traps that draw and manipulate graphic objects.
There are traps for drawing and manipulating simple graphic objects
such as:

e Lines

¢ Rectangles

* Round-comered rectangles

e Ovals

e Arcs

e Text

and more complex graphic objects, including:

* Polygons - A group of connected straight lines.

¢ Pictures - A list of QuickDraw drawing commands which can be
played back.

¢ Regions - A rectangle which contains a group of graphic objects.

In most cases, a new grafPort is automatically set up when you create a
window. Just call the trap tb:!SetPort to make the new window's
grafPort the current grafPort. -

Methods are provided for most of the functions that draw or perform
calculations on graphic objects. By calling the method instead of the
function, portability between systems is greatly simplified. In addition,
it is often faster to invoke the method than the function. If possible, use
the method given rather than the function.

GrafPorts

GrafPort

tb:grafPort

3.2 The most frequently used grafPort traps are tb:!GetPort and
tb:!SetPort.

3.2.1 To create a new grafPort object, make an instance of the
tb:grafPort flavor.

[1-148] Flavor

This flavor defines a black-and-white grafPort. It is unlikely that you
will ever have to explicitly create a th:grafPort instance. Normally,
you will use a flavor which has tb:grafPort flavor as a mixin.
tb:grafPort instances have the following instance accessor methods:

« :DEVICE ;0 [integer]
e« :PORTBITSBASEADDR ;2 [pointer]
e :PORTBITSROWBYTES ;6 [integer]
¢ :PORTBITSBOUNDSTOP ;8 [integer]
¢ :PORTBITSBOUNDSLEFT ;10 [integer]
e :PORTBITSBOUNDSBOTTOM ;12 [integer]
¢ :PORTBITSBOUNDSRIGHT ;14 [integer]

Macintosh Toolbox Interface

3-1

QuickDraw

Example:

CGrafPort
(color grafPort)

tb:cGrafPort

...l...."....'.....O.’Q.‘.‘OOO“..O.

:PORTRECTTOP
:PORTRECTLEFT
:PORTRECTBOTTOM
:PORTRECTRIGHT
:VISRGN
:CLIPRGN
:BKPATONE
:BKPATTWO
:BKPATTHREE
:BKPATFOUR
:FILLPATONE
:FILLPATTWO
:FILLPATTHREE
:FILLPATFOUR
PNLOCV
:PNLOCH
:PNSIZEV
:PNSIZEH
:PNMODE
:PNPATONE
:PNPATTWO
:PNPATTHREE
:PNPATFOUR
:PNVIS

TXFONT
‘TXFACE -
:TXMODE
‘TXSIZE
:SPEXTRA
:FGCOLOR
:BKCOLOR
:COLRBIT
:PICSAVE
:RGNSAVE
:POLYSAVE
:GRAFPROCS

[integer]

[integer]

[integer]

[integer]

[rgnhandle]

[rgnhandle]

[unsigned-integer]
[unsigned-integer]
[unsigned-integer]
[unsigned-integer]
[unsigned-integer]
[unsigned-integer]
[unsigned-integer]
[unsigned-integer]
[integer]

[integer]

[integer]

[integer]

[integer]

[unsigned-integer]
[unsigned-integer]
[unsigned-integer]
[unsigned-integer]
[integer]

[integer]

[style]

[integer]

[integer]

[fixed]

[longint]

[longint]

[integer]

[handle]

[handle]

[handle]

[qdprocsptr]

The only instance variables of a th:grafPort instance you are likely to
be interested in are the th:PortRect ones which define the boundary

rectangle of the th:grafPort instance.

(setf gp (make-instance ‘'tb:grafport))

(tb:!GetPort gp) => T gp #<GRAFPORT Pointer 01l0E6C>

3.2.2 To create a new color grafport, make an instance of the
tb:cGrafPort flavor.

[V-50] Flavor

This flavor defines a color grafPort data structure. It is unlikely that you
will ever have to explicitly create an instance of this flavor. Normally,
you will use a flavor which mixes in the tb:cGrafPort flavor such as

3-2

Macintosh Toolbox Interface

QuickDraw

tb:Window or th:DialogRecord. th:cGrafPort instances have the
following instance accessor methods:

« :DEVICE ;0 [integer]

¢ PORTPIXMAP 2 [pixmaphandle]

¢ :PORTVERSION ;6 [integer]

« :GRAFVARS ;8 [handle]

» CHEXTRA ;12 [integer]

¢ :PENLOCHFRAC ;14 [integer]

* :PORTRECTTOP ;16 [integer]

 :PORTRECTLEFT ;18 [integer]

e :PORTRECTBOTTOM ;20 [integer]

 :PORTRECTRIGHT ;22 [integer]

 :VISRGN ;24 [rgnhandle]

* CLIPRGN ;28 [rgnhandle]

* :BKPIXPAT ;32 [pixpathandle]

* :RGBFGCOLORRED :36 [unsigned-integer]

¢ :RGBFGCOLORGREEN ;38 [unsigned-integer]
"¢ :RGBFGCOLORBLUE ;40 [unsigned-integer]

e« :RGBBKCOLORRED ;42 [unsigned-integer]

¢« :RGBBKCOLORGREEN 144 [unsigned-integer]

¢« :RGBBKCOLORBLUE ;46 [unsigned-integer]

« :PNLOCV ;48 [integer]

« :PNLOCH ;50 [integer]

e« :PNSIZEV ;52 [integer]

« :PNSIZEH - ;54 [integer]

« :PNMODE ;56 [integer]

« :PNPIXPAT ;58 [pixpathandle]

« FILLPIXPAT ' ;62 [pixpathandle]

 :PNVIS ;66 [integer]

e TXFONT ;68 [integer]

« TXFACE ;70 [style]

« :TXMODE ;72 [integer]

e TXSIZE ;74 [integer]

» :SPEXTRA ;76 [fixed]

¢ :FGCOLOR ;80 [longint]

« :BKCOLOR ;84 [longint]

« :COLRBIT ;88 [integer]

« :PICSAVE ;92 [handle]

« :RGNSAVE ;96 [handle]

e :POLYSAVE ;100 [handle]

¢ :GRAFPROCS ;104 [cqdprocsptr]

Example: (setf cgp (make-instance 'tb:cgrafport))

(tb:!GetPort cgp) => T cgp #<CGRAFPORT Pointer 010E6C>

GrafPort and 3.2.3 These traps and methods are used to create, modify, and

CGrafPort dispose of grafPorts and cGrafPorts. Most of the time you will not use

Routines grafPorts directly; instead you will use windows and dialogrecords
which are extended types of grafPorts.

tb:!InitGraf pointer [1-162] Function

Initializes the QuickDraw global variables. Since QuickDraw has
already been initialized by the TbServer, do not use this function.

Macintosh Toolbox Interface 3-3

QuickDraw

ropen Method of th:grafPort
topen Method of th:cGrafPort
tb:!OpenPort grafPort [I-163] Function
tb:!OpenCPort cGrafPort [V-67] Function

The two methods above allocate space in the Macintosh heap via a
th:!NewPtr and then call tb:!OpenPort or thb:!OpenCPort,
respectively. The two functions set up the various fields of the given
grafPort (or cGrafPort). You will rarely need to call either of these
functions because they are called by the Window Manager when a new
window is created.

CAUTION: Never use tb:!OpenPort or th:!OpenCPort
without allocating space via tb:!NewPtr. It is not sufficient
to_ merely make an_instance of tb:grafport.

You will normally want to save the current port before using the :open
methods or traps because they will cause the new port to be the current
grafPort. Calling the methods or traps from the top level will cause the
new grafPort to become the current grafPort.

tb:!InitPort grafPort [1-164] Function
tb:!InitCPort cGrafPort [V-67] Function

These are internally called traps and should not be used.

:dispose Method of tb:grafPort
:dispose ' . Method of th:cGrafPort
tb:!ClosePort grafPort [V-164] Function
tb:!CloseCPort cGrafPort [V-68] Function

These functions and methods close a grafPort (or cGrafPort), disposing
of any data objects that may have been created. You should never need
to call these, except if you are working with off-screen bitmaps, as they
are called internally by tb:!CloseWindow.

Example: :
;;;Example of creating, opening, getting, setting, and closing a new grafPort
(defun ALLOC~-NEW-GRAFPORT ()
(let ((temp-port (make-instance 'tb:cgrafport))

(cgp nil))
(tb: !GetPort temp-port) ; save current grafPort
(setf cgp (make-instance 'tb:cgrafport)) ;make new cgrafPort
(send cgp :open) ; allocate & init structs
(tb:!SetPort temp-port) ; restore original port
cgp)) ’ ; return a new color gp

(setf cgp (alloc-new—-grafport))
... work with off screen bitmap...
(send cgp :dispose) ; deallocate memory

th:!SetPort grafPort [I-165] Function

Makes grafPort the current grafPort. This means that all further
QuickDraw traps will refer to and act upon grafPort. You usually call

3.4 Macintosh Toolbox Interface

QuickDraw

this trap after receiving an activate event or an update event for a
window. To call this trap, do the following:

Example: (tb:!SetPort myWindow)

All further QuickDraw commands will be drawn into the window
myWindow.

It is a good idea to save the current grafPort using the trap tb:!GetPort
before using th:!SetPort. You can then restore the original grafPort
when you are finished.

tb:GetPort [I-165] Function
tb:!GetPort grafPort [I-165] Function

tb:GetPort returns the current grafPort. The current grafPort is the
grafPort in which all QuickDraw traps are drawn. If the current
grafPort is a window, GetPort will return a window instance instead of
a grafPort. Notice in the example below how the current grafPort is
saved before operations on a different port are done, and then how the

original grafPort is restored.
tb:!GetPort is similar except that it updates grafPort with the new
grafPort information.
Example:
- (defun FOO ()
(let ((temp-port (make-instance 'tb:cGrafPort)))
(setf temp-port (tb:GetPort)) ;save current port in it
(tb:!SetPort myWindow)
...some operations on a different grafport...
(tb:!SetPort temp-port))) ; set back to original port
th:!GrafDevice device [I-165] Function
Sets the current grafPort field device to the integer value specified in
device. You will never call this trap.
tb:!SetPortBits bitMap [I-165] Function
tb:!SetCPortPix pixMap [V-76] Function
These traps set the bitMap (or the pixMap) of the current grafPort to a
previously defined bitmap (or pixMap). They are useful for graphic
animation where you create an off-screen grafPort, draw into it, and
then copy it into the on-screen grafPort using th:!CopyBits.
tb:!PortSize width height [I-165] Function
Sets the width and height of the grafPort's portRect. This does not
affect the screen; it merely changes the size of the "active area" of the
grafPort. You will never call this trap. It is normally called by the
Window Manager.
tb:!MovePortTo leftGlobal topGlobal [I-166] Function

This trap is only called internally. You will never call this trap. It is
normally called by the Window Manager.

Macintosh Toolbox Interface 3-5

QuickDraw

tb:!SetOrigin‘ hv [I-166] Function

Sets the local coordinate system of the grafPort. The integers 4 and v are
the new coordinates of the grafPort portRect's top and left coordinates.
See the discussion in Inside Macintosh.

sclip rect-or-region Method of th:grafPort
th:!SetClip region [1-166] Function
tb:!ClipRect rect [I-167] Function

Sets the grafPort's clipRegion equivalent to region or rect.

Example:
(defun FOO ()
(let ((w (make-instance ‘tb:window :title
"Half of a Color Circle"))
(r (make-instance ‘rect :left 10 ttop 10
:right 110 :bottom 110)))
(tb:!SetPort w)
(send r :FrameOval)
(send w :clip ; clip to left half
(make-instance ‘'rect :left 10 :top 10
tright 60 :bottom 110))
(send r :FillCOval) ; flit haif a circie
(sleep 5) .
(send w :dispose)))
tb:!GetClip region [I-167] Function
Changes region to be equivalent to the current grafPort's clipRegion.
This is the opposite of th:!SetClip.
tbh:!BackPixPat pixPat [V-74] Function
tb:!BackPat pattern [I-167] Function
Set the background pattern of the current grafPort to the given pixPat (or
pattern). To set the background pattern of the current grafPort to light
gray, do the following;:
Ehunqﬂb: (tb:!BackPat tb:!ltgray)
tb:!OpColor RGBColor [V-77] Function
Sets the operand red, blue, and green colors used by tb:!AddPin,
- tb:!SubPin, and th:!Blend drawing modes if the current grafPort is a
color grafPort.
th:!HiliteColor RGBColor [V-77] Function
Overides the system color and allows you to change the highlighting
color used by the current port if the current grafPort is a color grafPort.
tb:!CharExtra fixed [V-77] Function

Specifies the number of pixels to widen every character, excluding the
space character, in a line of text.

3-6

Macintosh Toolbox Interface

QuickDraw

th:!blend [V-59] Constant
th:!addPin [V-59] Constant
th:!addOver [V-59] Constant
th:!subPin [V-59] Constant
th:!adMax [V-59] Constant
th:!subOver [V-59] Constant
tb:!asMin [V-59] Constant
th:!transparent [V-59] Constant
These constants represent the color QuickDraw arithmetic transfer
modes.

Cursor 3.3 A cursor is the small image that appears on the screen and is
Handling controlled by the mouse. The mouse position is always linked to the
cursor position. You can't reposition the cursor through software; the
only control you have is whether or not it is visible and what shape it

will assume.
Cursor 3.3.1 Normally you can get the cursor you need from a resource

Color Cursor

Cursor Handling

using th:!GetCursor. If, however, you were writing a cursor editor
and needed a blank cursor object, you could make an instance of the
th:cursor flavor. The system would then automatically give you a
handle 68 bytes long.

3.3.2 A color cursor is a handle 96 bytes long. Color cursors are
much more complicated than regular cursors. Normally, you will use -
tb:!GetCCursor to get a color cursor. To get a blank cursor to use in
a cursor editor, for example, make an instance of the tb:cCursor
flavor.

3.3.3 Cursor handling routines are the functions that control the

Routines appearance and visibility of the cursor.

tb:!InitCursor [I-167] Function
Sets the cursor to the arrow cursor and makes it visible. This trap is
called for you initially when you launch the TbServer.

tb:!GetCursor cursorID [I-474] Function

tb:!GetCCursor cursoriD [V-75] Function

Return a handle to a cursor with the given resource ID of cursorID in the
"CURS" resource. The Toolbox Utility trap th:!GetCursor can be
used to select any cursor. There are four predefined cursors shown
below and defined by the following constants:

Macintosh Toolbox Interface

3-7

QuickDraw

Standard Cursors

I +- & @

iBeamCursor crossCursor plusCursor watchCursor

th:!'IBeamCursor [1-474] Constant
tb:!PlusCursor [1-474] Constant
th:!WatchCursor [I-474] Constant
tb:!CrossCursor [1-474] Constant
tb:!ArrowCursor [I-474] Constant

These are the "CURS" resource IDs for standard cursors.

* iBeam selects text

 thin cross draws graphics

e thick plus selects cells in structured documents

« watch indicates a long wait

e armrow points
Example: (tb:!SetCursor (tb:!GetCursor tb:!WatchCursor))

;;;Another example that changes cursors
(defun FOO ()
(dotimes (i 16)
(tb:!SetCursor (tb:!GetCursor (1+ (mod i 4)))
(sleep 1))) :
(tb:1InitCursor))

tb:!SetCursor cursor [I-167] Function
th:!SetCCursor cursor [V-75] Function

Set the current cursor to the one specified in cursor.

tb:!ShowCursor [I-168] Function
tb:!HideCursor [I-168] Function

Makes the cursor visible or invisible.
tb:!ObscureCursor [I-168] Function
Hides the cursor until the next time the mouse is moved.
th:!DisposCCursor cursor [V-75] Function
Disposes of the memory associated with a color cursor.
tb:!AllocCursor [V-75] Function

Reallocates color cursor memory. See Inside Macintosh before using.

3-8

Macintosh Toolbox Interface

QuickDraw

tb:!ShieldCursor shieldRect point [1-474] Function

Removes the cursor from the screen if the cursor and the rectangle
shieldRect intersect.
Icon Handling 3.4 These traps are used to create and dispose of icons.
tb:!Getlcon iconiD [1-473] Function
tb:!GetClIcon iconID [V-76] Function
tb:Getlcon iconID [I-473] Function

Get an icon (or a color icon) from a resource with an ID iconiD.
tb:Getlcon signals an OSErr is the icon is not found

tbh:!PlotIcon rect Icon [1-473] Function
tb:!PlotCIcon rect clcon [V-76] Function

Draw the icon whose handle is icon (or cIcon) in rect.
th:!DisposClcon clcon [V-76] Function

Disposes of the color icon.

Pen and Line 3.5 Two data structures are used when drawing with the pen:
Drawing tb:PenState and tb:Pattern. To get a new pen state or pattern , make
in instance of the tb:PenState or th:Pattern flavor, respectively.

tb:PenState [I-169] Flavor

This flavor defines an "empty" pen state data structure. An instance of
this flavor is passed to the trap tb:!GetPenState. The trap updates
various information about the pen in the current grafPort.

:PnLocV ‘ Method of th:PenState
:set-PnLocV integer Method of tb:PenState
:PnLocH Method of tb:PenState
:set-PnLocH integer Method of tb:PenState

Pen location as point coordinates.

:PnSizeV Method of th:PenState
:set-PnSizeV integer Method of th:PenState
:PnSizeH Method of th:PenState
:set-PnSizeH integer Method of th:PenState

Pen size as height and width

:PnMode Method of th:PenState
:set-PnMode integer Method of tb:PenState

Pen drawing mode (e.g., th:!patCopy).

Macintosh Toolbox Interface 3-9

QuickDraw

:PnPatl Method of th:PenState
:set-PnPatl 16b-integer Method of th:PenState
:PnPat2 Method of th:PenState
:set-PnPat2 16b-integer Method of th:PenState
:PnPat3 Method of th:PenState
:set-PnPat3 /6b-integer Method of th:PenState
:PnPat4 Method of th:PenState
:set-PnPatd 16b-integer Method of th:PenState

The 8-byte pen pattern expressed as four 16-bit integers.

tb:Pattern [I-146] Flavor
A tb:Pattern instance consists of 8 bytes of data organized into four
16-bit unsigned integer instance variables.
:one Method of th:Pattern
:set-one 16b-unsigned-integer Method of th:Pattern
itwo Method of th:Pattern
:set-two 1 6b-unsigned-integer Method of th:Pattern
three Method of th:Pattern
:set-three 16b-unsigned-integer Method of th:Pattern
:four Method of th:Pattern
:set-four 16b-unsigned-integer Method of th:Pattern
th:!Black Variable
tb:!dkGray ’ Variable
th:!itGray : Variable
th:!White Variable

These are the predefined pattei'ns for solid black, dark gray, light gray,

and solid white. They are effectively constants since the pattern they

represent never changes. However, they are classed as variables rather

than constants because they reside on the Macintosh side and must be

reestablished each time the Toolbox server is launched.
tb:!HidePen [I-168] Function
Makes the pen in the current grafPort invisible. All further effects of
QuickDraw traps which use the pen will be invisible. Actually,
tb:!'HidePen decrements the pnVis counter. See Inside Macintosh for
details.
tb:!ShowPen [I-168] Function
Makes the pen in the current grafPort visible. All further effects of
QuickDraw traps which use the pen will be visible. Actually,
tb:!ShowPen increments the pnVis counter. See Inside Macintosh for
details.

tb:!GetPen point [I-169] Function

Returns the current location of the grafPort pen in point.

3-10

Macintosh Toolbox Interface

£\

QuickDraw

Example: (setf pt (make-instance 'tb:point)) ;get a point Instance
(tb: !GetPen pt) ; set It to current pos
pt => #<POINT x=0 y=0> ; examine |t

The point now has the coordinates of the current grafPort's pen.
tb:!GetPenState penState [I-169] Function

Returns the current grafPort's pen status in penState. A PenState
instance is passed to the trap and the PenState is returned in the instance.

Example: (setf pnstate (make-instance 'tb:PenState))
(tb: 'GetPenState pnstate)
(send pnState :pnMode) => 8

In this example, the current pen mode is th:!patCopy.

tb:!SetPenState penState [1-169] Function
Sets the current grafPort's pen status to the values of the penSrate
instance. :

tb:!PenSize width height [1-169] Function
Sets the current grafPort's pen width (in pixels) to width, and its height
to height.

tb:!PenMode mode [1-169] Function

Sets the transfer mode which QuickDraw uses to draw onto the
grafPort's bitmap. The constants defining the available transfer modes

follow.
th:!patCopy [1-157] Constant
tb:!patOr [1-157]- Constant
tb:!patXOr [I-157] Constant
tb:!patBic [I-157] Constant
tb:!notPatCopy [I-157] Constant
tb:!notPatOr [1-157] Constant
tb:!notPatXOr [I-157] Constant
tb:!'notPatBic [1-157] Constant

These are QuickDraw transfer modes.

th:!PenPixPat pixPat [V-74] Function

tb:!PenPat pattern [I-170] Function
Set the pen pattern of the current grafPort to the pixPat or pattern
specified.

tb:!PenNormal [1-170] Function

Restores the current grafPort's pen status to the default value. The
default pen's width is one pixel, it's height one pixel. The pen mode is
tb:!patCopy and the pen pattern is black.

Macintosh Toolbox Interface 3.11

QuickDraw
:moveTo Method of th:Point
Moves the pen to the location specified by point.

tb:!MoveTo A v [I-170] Function

Moves the pen to the horizontal position 4 and the vertical position v in
the current grafPort's local coordinate system.

tb:!Move dh dv ‘ [1I-170] Function

Moves the pen dh horizontally, dv vertically, from its present position.

:lineTo § Method of th:Point
Draws a line from the pen's present position to point and leaves the pen
there.

tb:!LineTo A v [1-170] Function

Draws a line from the pen's present position to a point with local
coordinates (4,v) and leaves the pen at (h,v).

- tb:!Line dh dv [I-171] Function
Draws a line from the pen's present position to a point which is located

at a distance dh horizontally and dv vertically away, and leaves the pen
there.

Text Drawing 3.6 These routines control the characteristics of text elements:
assigning type styles, setting pen modes, etc.

tbh:!TextFont font - [@-171] Function
Sets the current grafPort's font to the font indicated. To determine the
font number of a desired font, use the Font Manager trap
tb:!GetFNum.

tb:!TextFace face [I-171] Function

Sets the current grafPort's character style. The presently defined
character styles are:

th:!Bold [I-152] Constant
tb:!Italic [I-152] Constant
th:!Underline [I-152] Constant
tb:!Outline [I-152] Constant
tb:!Shadow : [I-152] Constant
tb:!Condense [I-152] Constant
tb:!Extend [I-152] Constant

Additive masked used to defined text styles. To get any combination of
character styles you must add the masks together. For example, to set

3-12 Macintosh Toolbox Interface

QuickDraw

the current grafPort's text character style to Bold and Underline do the

following:
Example: (tb:!TextFace (+ tb:!bold tb:!Underline))
th:!TextMode mode [I-171] Function

Sets the current grafPort's text transfer mode as indicated by the integer
in mode. See tb:!PenMode for the various pen transfer modes.

tb:!TextSize size [I-171] Function
Sets the current grafPort's font size as indicated in size. To determine if
a font of the desired size exists, call the Font Manager trap
th:!RealFont.

tb:!SpaceExtra integer [I-172] Function
Sets the average number of pixels to pad out the spaces in a line of text.

tb:!DrawChar character [I-172] Function

Draws character at the present pen position and advances the pen the
character's width.

tb:!DrawString string [I-172] Function

Draws the given string at the present pen position and advances the pen
the width of the string. A '
tb:!DrawText textBuf offset byteCount ' ' [I-172] Function

Draws byteCount number of characters, starting at offset (an integer),
into a text buffer pointed to by textBuf and advances the pen the width
of the text.

tb:!CharWidth character [I-173] Function

Retums the width, in pixels, of the character indicated in character.

tb:!StringWidth string [I-173] Function
Returns the width of string in pixels, i.e, the sum of all the component
character widths.

th:!Textwidth rextBuf offset byteCount [I-173] Function

Retumns the width, in pixels, of byteCount number of characters in a text
buffer pointed to by textBuf, starting at offset.

th:!MeasureText byteCount textAddr charLocs [IV-25] Functions

This is an array-based version of the trap tb:!TextWidth. It returns an
array of the character widths in charLocs of the byteCount number of

Macintosh Toolbox Interface 3-13

QuickDraw

characters starting at textAddr. The obJect pointed to by charLocs should
be at least (byteCount * 2) bytes in size.

tb:!GetFontInfo FontInfo [I-173] Function

tb:FontInfo

:Ascent

:Descent
‘WidMax
:Leading

Example:

Returns information (ascent, descent, etc.) about the current grafPort's
font in the data structure Fontinfo. To create a new object suitable for
use as this trap's argument, make an instance of the tb:FontInfo
flavor.

[I-173] Flavor

This flavor defines a FontInfo data structure. The :init method for this
flavor automatically calls th:!GetFontInfo to initialize the new
instance. Therefore, it is generally not necessary for you to call
tb:!GetFontInfo yourself.

Init Option of tb:FontInfo
Init Option of tb:FontInfo
Init Option of th:FontInfo
Init Option of th:FontInfo

widMax

e vt e,

ascent line
ascent
base line

descent { descent line

The above diagram explains the tb:FontInfo instance variables.

(setf info (make-instance 'tb:fontinfo))
=> #<FontInfo ascent:12 descent:3 widmax:15 leading:1>
(send info :ascent) => 12

For reasons of efficiency, th:FontInfo instances reside on the
microExplorer unlike most of the Toolbox objects.

Drawing in
Color

3.7 These routines will enable applications to do color drawing. All
nonwhite colors will appear as black on black-and-white output devices.
Colors in cGrafPorts are represented by RGBColor objects. To create a
new RGBColor object, make an instance of the th:RGBColor flavor.

tb:RGBColor [V-48] Flavor

This flavor represents a color as three 16-bit unsigned integers
corresponding to the saturation levels for red, green, and blue.

3-14

Macintosh Toolbox Interface

QuickDraw

:red Method of th:RGBColor
:set-red 16b-unsigned-integer Method of tb:RGBColor
igreen Method of tb:RGBColor
:set-green /6b-unsigned-integer Method of tb:RGBColor
:blue : Method of tb:RGBColor
:set-blue 16b-unsigned-integer Method of tb:RGBColor

These methods read and write the color state of the flavor.

Example: (make-instance 'tb:RGBColor)

:= &optional red green blue Method of tb:RGBColor
Sets the RGBColor to the given red, green, and blue values.

tb:!RGBForeColor RGBcolor [V-68] Function
tb:!ForeColor color [I-173] Function

Set the foreground color of the current grafPort.

th:!RGBBackColor RGBcolor [V-68] Function
tb:!BackColor color _ [I-174] Function

Set the background color of the current grafPort.
tb:!ColorBit whichBit [I-174] Function
Tells QuickDraw into which color plane to draw (0-31).

th:!GetForeColor RGBcolor [V-69] Function
tb:!GetBackColor RGBcolor [V-69] Function

Returns the RGB components of the foreground (or background) colors
set in the current port. This call works for both grafPorts and

cGrafPorts.
Operations on 3.8 These procedures create and dispose of color tables.
Color Tables
tb:!GetCTable integer ' [V-77] Function

Allocates and returns a handle to a new color table data structure and
initializes it using the information in the "clut" resource whose resource
ID is integer.

tb:!DisposCTable colorTable [V-77] Function

Disposes of the colorTable.

Macintosh Toolbox Interface 3-15

QuickDraw

Operations on 3.9 These routines create, modify, and dispose of pixel patterns. To
Pixel Patterns create a new pixel pattern, make an instance of the tb:pixPat flavor.
tb:pixPat [V-55] Flavor

This flavor defines a pixel pattern. tb:pixPat instances have the
following instance accessor methods:

« :PATTYPE ;0 [integer]
 :PATMAP 2 [pixmaphandle]
« :PATDATA 6 [handle]
e :PATXDATA ;10 [handle]
e :PATXVALID ;14 [integer]
* :PATXMAP ;16 [handle]
* :PAT1IDATAONE ;20 [integer]
e« :PATIDATATWO ;22 [integer]
 :PAT1IDATATHREE ;24 [integer]
« :PATIDATAFOUR - ;26 [integer]
tb:!NewPixPat [V-72] Function

Creates a new pixel pattern data structure and all its associated data
structures, and returns a handle to it. The preferred method of creating a
pixPat is to make in instance of the th:pixPat flavor as shown above.

:dispose Method of th:pixPat
tb:!DispospixPat pixPat _ [V-73] Function
Dispose of a pixel pattern data structure and all its associated data
structures.
tb:!CopyPixPat srcPixPat dstPixPat " [V-73] Function
. Copies the pixel pattern in the source pixPat to the pixel pattern in the
destination pixPat. .
tb:!GetPixPat integer [V-73] Function

Creates a new pixel pattern using the information stored in the "ppat”
resource whose resource ID is integer.

tb:!MakeRGBPat pixPat RGBColor [V-73] Function

Creates a new pattern that approximates RGBColor and returns it in the
pixel pattern pixPat.

3-16

Macintosh Toolbox Interface

QuickDraw

Calculations
With Rectangles

3.10 Calculdtion routines are independent of the current coordinate
system. A calculation will operate the same regardless of which
grafPort is active. To create a new rectangle, make an instance of the
tb:Rect flavor.

Some of the following traps which have equivalent flavor methods also
carry the comment that the method version is faster. In these particular
cases, the trap functionality does not require the use of Macintosh
system data structures or of Macintosh hardware. Therefore, the
methods simply perform the trap's function in ordinary Lisp code using
flavor data structures on the microExplorer side. If you choose to use
the trap version, however, the trap must be sent to the Macintosh for
execution and results from the Macintosh-side must be returned to those
same flavor data structures back on the microExplorer side. Therefore,
the results are the same, but using a method to get them is significantly
faster.

th:Rect [1-141] Ffavor .
This flavor defines a rectangle. All of the information related to this
rectangle is maintained in instances of this flavor on the microExplorer
side. '

stop Init Option of th:Rect

:top Method of tb:Rect

:set-top integer Method of th:Rect

:left Init Option of th:Rect

dleft . , Method of th:Rect

.:set-left integer ‘ Method of th:Rect

:bottom Init Option of th:Rect

:bottom Method of th:Rect

:set-bottom integer Method of th:Rect

:right Init Option of tb:Rect

:right ‘ Method of tb:Rect

:set-right integer Method of th:Rect
These values define the sides of the rectangle.

=args... Method of tb:Rect

This method is a general purpose "rectangle definition" operator whose
action depends upon the number and type of its arguments. In each
case, the argument(s) define the new top, left, bottom, and right co-
ordinates of the modified rectangle.

¢ One argument is a th:Rect instance (i.e., simple assignment).

* Two arguments are two tb:Point instances similar to th:!Pt2Rect,

* Four arguments are top, left, bottom, and right specifications similar
to tb:!SetRect.

Macintosh Toolbox Interface

3-17

QuickDraw

Example: (setf r (make-instance '‘tb:rect))
=> #<RECT 50,50 100,100>

;;8ets x1,y1 x2,y2 (left,top right,bottom)

(send r :=1 2 5 6) => #<RECT 1,2 5,6>

(setf pl (make-instance 'tb:point :h 3 :v 4))
=> #<POINT x=3 y=4>

(setf p2 (make-instance ‘tb:point :h 7 :v 8))
=> #<POINT x=7 y=8>

;;:8ets to rect enciosed by two points

(send r := pl p2) => ¥<RECT 3,4 7,8>

(setf r2 (make-instance 'tb:rect :left 0 :top O
txright 5 :bottom 5))

=> #<RECT 0,0 5,5>

;;;86ts to values from another rect
(send r := r2) =>.#<RECT 0,0 5,5>

tb:!SetRect rect left top right bottom [I-174] Function
Sets the rectangle's coordinates. The methods are significantly faster
than the trap (see explanation under Calculations With Rectangles). See
also the := method of tb:Rect.

:width Method of th:Rect
sheight Method of th:Rect

Return the rectangle's width and height, respectively.

- ccenter-x : Method of tb:Rect
:center-y ' Method of th:Rect
Return the rectangle's center coordinate on the x and y axes,

respectively.
:center &optional point : Method of th:Rect

Returns the rectangle's center coordinates as a point. If the optional
point is supplied, it moves the rectangle to be centered around the given
point.

:offset dh dv Method of th:Rect
tb:!OffsetRect rect dh dv - [@-174] Function

Offset the rectangle by the horizontal value dh and the vertical value dv.
The method is significantly faster than the trap (see explanation under
Calculations With Rectangles).

Example: (setf r (make-instance 'tb:rect))
=> #<RECT 50,50 100,100>
(send r :offset 10 20)
=> #<RECT 60,70 110,120>

3-18

Macintosh Toolbox Interface

QuickDraw

:insert dh dv Method of tb:Rect
tb:!InsetRect rect dh dv [I-175] Function

Enlarge or shrink the rectangle rect by amounts dh and dv. The value
dh is added to the rectangle's left coordinate and subtracted from the
right coordinate. The value dv is subtracted from the rectangle's top
coordinate and added to the rectangle's bottom coordinate. The method
is significantly faster than the trap (see explanation under Calculations
With Rectangles).

Example: (setf r (make-instance 'tb:rect))
=> #<RECT 50,50 100,100>
(send r :inset 10 20)
=> #<RECT 60,70 90,80>

:intersection rectB Method of th:Rect
:intersection-p rectB Method of th:Rect
th:!SectRect rectA rectB dstRect [I-175] Function

Calculate dstRect, the intersection of the two rectangles rectA and rectB.
Note that the method :intersection destructively modifies rectA. If
you only want to test whether two rectangles intersect, use the method
:intersection-p. All of the above return true if the rectangles intersect
and false if they do not. The methods are significantly faster than the
trap (see explanation under Calculations With Rectangles above).

Example: (setf r (make-instance 'tb:rect))

=> #<RECT 50,50 100,100>

(setf rl (make-instance 'tb:rect :left 0 :top 0 ‘
:right 50 :bottom 50))

=> #<RECT 0,0 50,50>

;5;After computing the intersection, it returns true if they intersect

(send r :intersection rl) => NIL

r => #<RECT 50,50 50,50>

sunion rectB Method of th:Rect
tb:!UnionRect rectA rectB dstRect [I-175] Function

Retumn a rectangle dstRect which is the smallest rectangle enclosing the
two rectangles rectA and rectB. Note that the method :union

destructively modifies rectA.
:inside-p point-or-rect Method of th:Rect
tb:!PtInRect point rect [I-175] Function

Return true if the point is in the rectangle and false if it is not. The
method is significantly faster than the trap (see explanation under
Calculations With Rectangles). '

Macintosh Toolbox Interface 3-19

QuickDraw

Example: (setf pt (make-instance 'tb:point :h 5 :v 5))
(setf rl (make-instance 'tb:rect :left 0 :top 0 :right 10
: :bottom 10))
(setf r2 (make-instance 'tb:rect :left 1 :top 1 :right 6

:bottom 6))
(send rl :inside-p pt) : check to see if pt is in r1
(send rl :inside-p r2) ; check to see if r2 is inside r1
tb:!Pt2Rect ptA ptB rect [I-175] Function

Modifies rect to be the smallest rectangle that encloses the two points
ptA and ptB. Returns true if the point is in the rectangle and false if it is
not. The method is significantly faster than the trap (see explanation
under Calculations With Rectangles). See also the := method of

tb:Rect.
tb:PtToAngle rect point [I-175] Function
tb:!PtToAngle rect point VAR angle [I-175] Function

tb:PtToAngle returns the angle calculated from the center of the
rectangle rect to the point indicated. tb:!PtToAngle is similar except it
modifies angle to be the calculated result.

NOTE: These traps are slow and are not accurate unless rect is a
square.

sequal rectB Method of th:Rect
th:!EqualRect recrA rectB [I-176] Function

Return true if the rectangles rectA and rectB are equal. The method is

significantly faster than the trap (see explanation under Calculations
With Rectangles above).

Example: (setf rl (make-instance 'tb:rect))
=> #<RECT 50,50 100,100>
(setf r2 (make-instance ‘tb:rect))
=> #<RECT 50,50 100,100>
(send rl :equal r2) =>T

cempty-p Method of th:Rect
tb:!EmptyRect rect [I-176] Function

Return true if the rectangle is empty, false if it is not. The method is
significantly faster than the trap (see explanation under Calculations
With Rectangles above).

Example.‘ (setf rl (make-instance 'tb:rect :left 50 :top 50
tright 25 :bottom 25))
=> #<RECT 50,50 25,25>
(send rl :empty-p) => T

3-20

Macintosh Toolbox Interface

QuickDraw

Graphic 3.11 These procedures perform graphic operations on rectangles.
Operations on These traps do not move the pen. '
Rectangles
:frame Method of tb:Rect
tb:!FrameRect rect ' [I-176] Function

Draw an outline just inside the rectangle, using the current grafPort's
pen size, pen mode, and pen pattern. If there is a region open, the
rectangle is added to this region.

:paint Method of th:Rect

tbh:!PaintRect rect [I-177] Function
Fill the rectangle rect with the current grafPort's pen pattern and transfer
mode.

:erase ' Method of th:Rect

tb:!'EraseRect rect [I-177] Function

Fill the rectangle rect with the current grafPort's background pattern
(bkPat) using the transfer mode tb:!patCopy.

sinvert Method of th:Rect
tbh:!InvertRect rect [I-177] Function

Invert every pixel inside the rectangle; every white pixel becomes black,
every black one becomes white.

fill pattern Method of th:Rect
fillC pixPatHandle : Method of th:Rect
tb:!FillRect rect pattern [I-177] Function
- th:!FillCRect rect pixPatHandle [V-69] Function

Fill the given rectangle rect with the pattern specified by pattern (or
pixPatHandle) using the th:!patCopy transfer mode.

Graphic 3.12. An oval is defined by the smallest rectangle in which it will fit.
Operations on If the rectangle you specify is a square, QuickDraw draws a circle.
Ovals These traps do not move the pen.

tb:Oval Flavor

This flavor defines an oval. This flavor mixes in the th:Rect flavor so
that th:Oval has all the initialization options and instance variables of
tb:Rect. _

Macintosh Toolbox Interface 3-21

QuickDraw

:frame Method of th:Oval
:frameQOval ‘ Method of tb:Rect
tb:!FrameQOval rect " [I-177] Function

Draws an oval that fits just inside the rectangle, using the current
grafPort’s pen mode, pen size, and pen pattern. If there is a region
open, the rectangle is added to this region.

:paint Method of th:Oval
:paintOval Method of th:Rect
tbh:!PaintOval rect [I-178] Function

Fill the oval that fits inside the rectangle with the current grafPort's
transfer mode and pen pattern.

serase Method of tb:Oval
seraseQval Method of th:Rect
tb:!EraseOval rect [1-178] Function

Fill the oval that fits inside the rectangle with the current grafPort's
background pattern (bkPattern) using the transfer mode th:!patCopy.

:invert Method of tb:Oval
sinvertOval Method of tb:Rect
tb:!InvertOval rect [1-178] Function

Invert every pixel inside the oval that fits inside the rectangle; every
white pixel becomes black, every black one becomes white.

«fill pattern Method of th:Oval
fillOval pattern Method of th:Rect
fillCOval pixPatHandle Method of th:Rect
tb:!FillOQval rect pattern : [I-178] Function
tb:!FillCOval rect pixPatHandle [V-68] Function

Fill the oval that fits inside the rectangle with the pattem pattern (or
pixPatHandle) using the tb:!patCopy transfer mode.

Graphic 3.13 Round cornered rectangles are rectangles whose comers are
Operations on defined by ovals. The oval is defined by two arguments: ovalWidth
R d-C d and ovalHeight. The same oval is used for all four comers of the round
Routn " lor“ere comered rectangle. These traps do not move the pen.

ectangies
3-22

Macintosh Toolbox Interface

QuickDraw

ovalWidth ovalHeight

= O
(O >

tb:RoundRect Flavor

This flavor defines a rectangle in which the comers are asymmetrically
rounded as if each corer contained an oval rather than a circle. This
flavor mixes in tb:Rect so it shares all initialization options and
instance variables with th:Rect.

:OvalWidth integer Init Option of th:RoundRect

:OvalWidth Method of tb:RoundRect
:set-OvalWidth integer Method of tb:RoundRect
:OvalHeight : Init Option of th:RoundRect
:OvalHeight , Method of tb:RoundRect
:set-OvalHeight integer Method of th:RoundRect

These values control the degree and the orientation of the asymmetrical
rounding of the rectangle corners.

:frame Method of tb:RoundRect
tb:!FrameRoundRect rect ovalWidth ovalHeight [I-178] Function

- Draw an outline just inside the round-cornered rectangle, with the
diameter of curvature ovalWidth and ovalHeight (two integers) on a
rectangle, using the current grafPort's pen mode, pen size, and pen

‘pattern. If there is a region open, the rounded rectangle is added to this
region.

:paint Method of tb:RoundRect
tb:!PaintRoundRect rect ovalWidth ovalHeight [1-179] Function

Fill the round-cornered rectangle, with the diameter of curvature
ovalWidth and ovalHeight (two integers) on a rectangle, with the current
grafPort's pen pattern and transfer mode.

erase Method of tb:RoundRect
tb:!EraseRoundRect rect ovalWidth ovalHeight [I-179] Function

Fill the round-cornered rectangle, with the diameter of curvature
ovalWidth and ovalHeight (two integers) on a rectangle, with the current
grafPort's background pattern (bkPattern) using the transfer mode
th:!patCopy.

Macintosh Toolbox Interface 3-23

QuickDraw

zinvert Method of tb:RoundRect
tb:!InvertRoundRect rect ovalWidth ovalHeight [I-179] Function

Invert every pixel inside the round-cornered rectangle, with the diameter
of curvature ovalWidth and ovalHeight (two integers) on a rectangle.
Every white pixel becomes black, every black one white.

fill partern Method of th:RoundRect
th:!FillRoundRect rect ovalWidth ovalHeight pattern [1-179] Function
tb:!FillCRoundRect rect ovalWidth ovalHeight pixPatHandle [V-69] Function

Fill the round-cornered rectangle, with the diameter of curvature
ovalWidth and ovalHeight (two integers) on a rectangle, with the pattern
using the tb:!patCopy transfer mode.

Graphic 3.14 These procedures perform graphic operations on arcs and
Operations on wedge-shaped sections of ovals. These traps do not move the pen.
Arcs and

Arcs and wedges are defined by three parameters:

Wedges

¢ A startAngle, which is where the orientation the arc starts.
e An arcAngle, which is the compass of the arc (in degrees).
¢ A bounding rectangle.

" startangle =0 startangle =0 startangle = 0
arcAngle= -43 | i arcAngle= 45 H arcAngle= 43
'y '. ; é‘\"'.- E.-"’#
W 1 H
"-é ;n"‘ L
IFrameatc
r r startdngle =0
i arcéngle= 45
IFrameArc =| -
r
IPaintare
tb:!FrameArc rect startAngle arcAngle [I-180] Function

Draws an arc of the oval that fits inside the rectangle rect, using the
current grafPort's pen size, pen mode, and pen pattern. StartAngle and
arcAngle are integers. If there is a region open, the arc is not added to
the region.

3-24 Macintosh Toolbox Interface

QuickDraw

th:!PaintArc rect startAngle arcAngle [I-180] Function

Fills the wedge of the oval that fits inside the rectangle rect with the
current grafPort’s pen pattern and transfer mode. StartAngle and
arcAngle are integers.

tb:!EraseArc rect startAngle arcAngle [1-180] Function
Fills the wedge of the oval that fits inside the rectangle rect, with the
current grafPort's background pattern (bkPattern) using the transfer
mode th:!patCopy. StartAngle and arcAngle are integers.

th:!InvertArc rect startAngle arcAngle [I-181] Function
Inverts every pixel inside the wedge of the oval that fits inside the
rectangle; every white pixel becomes black, every black one becomes
white. StartAngle and arcAngle are integers.

th:!FillArc rect startAngle arcAngle pattern [I-181] Function
th:!FillCArc rect startAngle arcAngle pixPatHandle ~ [V-69] Function

Fills the wedge of the oval that fits inside the rectangle with the pattern
specified in pattern (or pixPatHandle) using the tb:!patCopy transfer

mode.
Calculations 3.15 Regions are complex graphic objects that are defined by the
With Regions boundary of the saved graphic object framing traps. Regions are created

by calling the trap thb:!NewRgn. The Region is defined by calling the
trap th:!OpenRgn which saves all the relevant QuickDraw traps until
tb:!CloseRgn is called. When tb:!CloseRgn is called, the region
definition is put in the new region and it can then be manipulated and
drawn. To create a new region, make an instance of the th:Region

flavor.

tb:Region . [I-142] Flavor
This flavor defines a QuickDraw region. Upon instantiation, it defines
an empty region.

:rgnSize 16b-unsigned-integer Method of tb:Region

This is the size of the region in bytes.

Macintosh Toolbox Interface 3-25

QuickDraw

:rgnBBoxTop 16b-integer , Method of tb:Region
:rgnBBoxTop Method of tb:Region
:set-rgnBBoxTop [6b-integer Method of th:Region
:rgnBBoxLeft 16b-integer Method of tb:Region
:rgnBBoxLeft Method of tb:Region
:set-rgnBBoxLeft 16b-integer Method of th:Region
:rgnBBoxBottom 16b-integer Method of th:Region
:rgnBBoxBottom Method of tb:Region
:set-rgnBBoxBottom 16b-integer Method of tb:Region
:rgnBBoxRight 16b-integer Method of tb:Region
:rgnBBoxRight Method of tb:Region
:set-rgnBBoxRight 16b-integer Method of tb:Region

tb:!NewRgn

th:!nilRgn

:open

‘These are the boundaries of the region expressed in the top, left,

bottom, and right attributes of the bounding rectangle.
[I-181] Function

Allocates a relocatable block for a new empty reglon and returns a
handle to the region. The preferred method for creating a new reglon is
to make an instance of the th:region flavor.

Constant
This constant is a tb: Reglon instance with coordinates of (0 0 0 0).
This constant is used in Lisp for those situation where the Macintosh's
documentation says to pass a (Pascal) NIL as a region.

Method of tb:Region

tb:!{OpenRgn -, [1-181] Function

:close

Make QuickDraw save all further line drawing calls for incorporation
into the region. The QuickDraw traps that are included in the definition
of the region include tb:!Line, th:!LineTo and all the tb:!Frame
traps (except tb:!FrameArc). The methods related to these traps
(:frame, for example) will also be saved in the region.

CAUTION: You can only have one region and one polygon
open at the same time. If you have more than one open at a
time, strange things will happen to the saved data
structures.

Method of tb:Region

tb:!CloseRgn region [I-182] Function

:dispose

Terminate the recording of the line drawing traps by QuickDraw. All the
saved drawing commands are used to build up a region structure and the
resulting structure is saved in region. Regions have a maximum size of
32K bytes. You can determine the size of a region by calling the
Memory Manager trap th:!GetHandleSize.

Method of tb:Region

tb:!DisposeRgn region [I-182] Function

Dispose of a region, de-allocating the relocatable block in memory.

3-26

Macintosh Toolbox Interface

= args...

QuickDraw

Method of tb:Region

This is a general purpose region modification operator whose exact
operation depends upon the number and type of its arguments. In each
case, the arguments imply a new set of region coordinates, such as:

One argument which is an instance of tb:Region similar to
th:!CopyRgn.

One argument which is nil, implying an empty region similar to
th:!SetEmptyRgn.

Tne argument which is an instance of tb:Rect similar to
!RectRgn.

Two arguments which are instances of th:Point (the comers of a
rectangle).

Four arguments which are the top, left, bottom, and right coordin-
ates of a rectangle similar to th:!SetRectRgn.

th:!CopyRgn srcRegion dstRegion [I-183] Function

Creates a copy of the source region srcRegion in the destination region
dstRegion.

tb:!SetEmptyRgn region [1-183] Function

" Destroys the previous structure and sets region back to a null (empty)
region.

“ th:!SetRectRgn region left top right bottom ' ~ [-183] Function

Destroys the previous structure and sets region to the rectangle defined
by the coordinates left, top, right, and bottom (all of which are
integers).

tb:!RectRgn region rect [I-183] Function

Destroys the previous structure and sets region to the rectangle rect.
tb:!RectRgn is the same as th:!SetRectRgn except the rectangle is
specified by a rectangle rather than its coordinate points.

:offset dh hv

Method of th:Region

tb:!OffsetRgn region dh dv [I-183] Function

Moves the region a distance of dh horizontally and dv vertically.

NOTE: The following traps use a lot of Macintosh stack space, at least
twice the size of the total region.

zinset dh hv

Method of th:Region

tb:!InsetRgn region dh dv [I-184] Function

Enlarges or shrinks region by a horizontal amount dh and a vertical
amount dv. If the value of dh or dv is positive, the region is shrunk in
that coordinate's direction; if the value is negative, the region is grown
in the coordinate's direction.

Macintosh Toolbox Interface

3-27

QuickDraw

:intersection srcRegion Method of tb:Region
tb:!SectRgn srcRegionA srcRegionB dstRegion [I-184] Function

Calculate the intersection of the two regions srcRegionA and
srcRegionB and place the result in the destination region dstRegion.
Note that the method destructively modifies the instance to which it is

sent.
sunion srcRegion Method of th:Region
tb:!UnionRgn srcRegionA srcRegionB dstRegion [I-184] Function

Calculate the union of the two regions srcRegionA and srcRegionB and
place the result in the destination region dstRegion. Note that the
method destructively modifies the instance to which it is sent.

tb:!DiffRgn srcRgnA srcRgnB dstRgn [I-184] Function

Calculates the difference of the two regions srcRgnA and srcRgnB and
places the result in the destination region dstRgn.

tb:!XorRgn srcRgnA srcRgnB dstRgn [I-185] Function

Calculates the difference between the union and the intersection of the
two regions srcRgnA and srcRgnB and places the result in the

destination region dstRgn.
:inside-p point-or-rect Method of th:Region
tb:!PtInRgn point region ‘ ' [I-185] Function
tb:!RectInRgn rect region [I-185] Function

tb:!PtInRgn returns true if the point is in the region specified.
tb:!RectInRgn returns true if any part of the rectangle is in the region.
:inside-p performs either functions depending upon the type of its

arguments.

requal regionB Method of tb:Region
tb:!EqualRgn regionA regionB [I-185] Function

Return true if the two regions regionA and regionB are absolutely
identical in size, shape, and location.

cempty-p Method of th:Region
tb:!EmptyRgn region [I-185] Function

Return true if region is an empty region.

3-28

Macintosh Toolbox Interface

QuickDraw

Graphic 3.16 These routines all depend on the coordinate system of the current
Operations on grafPort. If a region is drawn in a different grafPort than the one in
Regi which it was defined, it may not appear in the proper position inside the
egions port. These traps do not move the pen.
:frame Method of th:Region
tb:!FrameRgn region [I-186] Function
Draw an outline just inside the region using the current grafPort's pen
size, pen mode, and pen pattern. If the region is open, the outside
outline of the region being framed is added to the open region's
boundary. Under no circumstances will the frame go outside the region
boundary.
CAUTION: IT there are more than 25 intersections of a line
with the outline of a region, strange things start happening
and may eventually cause the Macintosh to die.
:paint Method of tb:Region
tb:!PaintRgn region ' [I-186] Function
Paint the region with the current grafPort's pen pattern and transfer
mode.
:erase ' | Method of th:Region
tb:!EraseRgn region [I-186] Function
Fill the region with the current grafPort's background pattern
(bkPattern) using the transfer mode tb:!patCopy.
zinvert Method of th:Region
tb:!InvertRgn region [I-186] Function
Invert every pixel inside the region; every white pixel becomes black,
every black one becomes white.
:fill &optional pattern Method of th:Region
tb:!FillRgn region pattern [I-187] Function
tb:!FillCRgn region pixPatHandle [V-69] Function

Fill the region with the pattern using the th:!patCopy transfer mode.

Creating Pixel 3.17 These procedures create, modify, and dispose of pixel maps. To

Maps

create a new pixel map, make an instance of the th:PixMap flavor.

th:PixMap [V-52] Flavor

This flavor describes a pixel map. tb:PixMap instances have the
following instance accessor methods:

Macintosh Toolbox Interface 3-29

QuickDraw

:BASEADDR
:ROWBYTES
:BOUNDSTOP
:BOUNDSLEFT
:BOUNDSBOTTOM
:BOUNDSRIGHT
:PMVERSION
:PACKTYPE
:PACKSIZE
:HRES

:VRES
:PIXELTYPE
:PIXELSIZE
:CMPCOUNT
:CMPSIZE
:PLANEBYTES
:PMTABLE
:PMRESERVED

tb:!NewPixMap

:dispose

tb:!DisposPixMap pixMap

tb:!CopyPixMap srcPixMap dstPixMap

[pointer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[longint]
[fixed]

[fixed]

[integer]
[integer]
[integer]
[integer]
[longint]
[ctabhandle]
[longint]

[V-70] Function

Creates a new pixMap data structure and returns a handle to it. The
preferred method of creating a pixMap is to make an instance of the
tb:PixMap flavor.

Method of tb:PixMap
[V-70] Function

Dispose of the pixel map and all its associated data structures.

[V-70] Function

Copies a pixel map from the source pixMap to the destination pixMap.

Bit Transfer
Operations

tb:BitMap

:baseAddr

This flavor defines a new bitmap.

:set-baseAddr pointer

:rowBytes

:set-rowBytes pointer

This is the pointer to the bitmap array.

3.18 These procedures perform bit transfer operations on either
bitMaps or pixMaps. When using these routines with pixMaps, be sure
to set the type bits in the :rowBytes field correctly or you may crash
the system. (See figure 3 on page 52 of Inside Macintosh Volume V.)
To create a new bitmap, make an instance of the tb:BitMap flavor.

[I-144] Flavor

Method of th:BitMap
Method of th:BitMap

Method of tb:BitMap
Method of th:BitMap

This is the width of a row in the bitmap measured in bytes.

3-30

Macintosh Toolbox Interface

:boundTop

QuickDraw

Method of tb:BitMap

:set-boundTop 16b-integer Method of th:BitMap

:boundLeft

Method of th:BitMap

:set-boundLeft 16b-integer Method of th:BitMap
:boundBottom Method of th:BitMap
:set-boundBottom 16b-integer Method of tb:BitMap
:boundRight Method of tb:BitMap
:set-boundRight 16b-integer Method of th:BitMap

These values define the bounding rectangle of the bitmap.

:scroll dh dv updateRegion Method of th:Rect
tb:!ScrollRect rect dh dv updateRegion [I-187] Function

Scroll the bits (pixels) that are inside the rectangle that is the intersection
of rect and the grafPort's visRgn, clipRgn, portRect, and portBits'
boundaries. This intersecting rectangle is scrolled by a distance of dh
horizontally and dv vertically. The bits scrolled off the screen are lost
and the space created by the scroll is filled with the current grafPort's
background pattern (bkPattern). This newly created area is added to the
update region updateRegion.

tb:!CopyBits srcbits dstBits srcRect dstRect mode region [I-188] Function

tb:!SeedFill

Transfers the part of the source bitMap (or source pixMap) defined by
the rectangle srcRect, to the part of the destination bitMap (or destination
pixMap) defined by the rectangle dstRect, using a transfer mode mode
(an integer) and a mask region. If you don't want to clip to the masked
region, pass th:!nilRgn.

srcPointer dstPointer srcRow dstRow height [IV-24] Function
words seedH seedV

From a source bitMap, calculates a destination bitMap which has the bits
set only where the paint can leak from a starting seed point. This is like
the MacPaint® bucket tool.

th:!SeedCFill srcBitMap dstBitMap srcRect dstRect seedH [V-71] Function

seedV procpointer matchData

From a source bitMap (or a source pixMap, calculates a destination
bitMap (or a destination pixMap) which has the bits set only where the
paint can leak from a starting seed point. This is like the MacPaint
bucket tool. Usually, tb:!nilPtr will be passed as the procPointer.
See Inside Macintosh Volume V for more details.

tb:!CalcMask srcPointer dstPointer srcRow dstRow [TV-24] Function

height words

From a source bitMap, calculates a destination bitMap which has the bits
set only where the paint could not leak from any of the outer edges.
This is like the MacPaint lasso tool.

Macintosh Toolbox Interface

3-31

QuickDraw

th:!CalcCMask srcBits dstBits srcRect dstRect RGBColor [V-72] Function
procPointer longlnt

From a source pixMap, calculates a destination pixMap which has the
bits set only where the paint could not leak from any of the outer edges.
This is like the MacPaint lasso tool. Usually tb:!nilPtr will be passed
as the procPointer.

tb:!CopyMask srcBits maskBits dstBits srcRect maskRect IV-24] Function
dstRect

This trap is like tb:!CopyBits except it copies from the bitMap srcBits
to dstBits using maskBits as the mask.

Pictures 3.19 These procedures open, close, modify, and dispose of pictures.

To make a new picture, make an instance of tb:Picture flavor

tb:Picture [I-159] Flavor
This flavor defines a QuickDraw picture.

CAUTION: Do not call thb:!OpenPicture or create a new
Picture object if another picture is already open. Always
resize the clipRgn to a suitably sized rectangle (using the
trap tb:!ClipRect) before calling tb:!OpenPicture.

:PicFrame o Init Option of tb:Picture

This flavor defines a QuickDraw data structure. Creating an instance of
this flavor has the side effect of opening the picture so that QuickDraw
begins recording all the calls to drawing routines and picture comments.

:picsize Method of th:Picture
This is the picture size in bytes.

:picframeTop Method of tb:Picture

:picframeLeft Method of tb:Picture

:picframeBottom Method of tb:Picture

:picframeRight Method of tb:Picture

These values describe the enclosing rectangle of the picFrame.

Example: (setf myRect (make-instance 'tb:rect))
(make-instance 'tb:Picture :picFrame myRect)

tb:!OpenPicture rect [I-189] Function

Makes QuickDraw begin recording all the calls to drawing routines and
picture comments. It returns a handle to the picture that has a picture
frame defined by rect. The preferred method for creating a picture is to
make an instance of the th:Picture flavor.

3-32

Macintosh Toolbox Interface

QuickDraw

CAUTION: Do not call th:!OpenPicture or create a new
Picture object if another picture is already open. Always
resize the clipRgn to a suitably sized rectangle (using the
trap tb:!ClipRect) before calling th:!OpenPicture.

:close Method of tb:Picture
tb:!ClosePicture [1-189] Function

Stop the recording of QuickDraw calls for the currently open picture.
tb:!PicComment kind dataSize dataHandle ~ [I-189] Function

Inserts a picture comment of type kind into the currently open picture.
Any additional information is passed in dataHandle, its size in dataSize.

:draw Method of th:Picture
tb:!DrawPicture picture rect [I-190] Function

Draw all of the picture inside its picture frame into rect.

:dispose Method of th:Picture
tb:!KillPicture picture [I-190] Function

Dispose of the picture, releasing any memory it uses.

Calculations 3.20 These procedures create, modify, and dispose of polygons. To
with Polygons make a new polygon, make an instance of the th:Polygon flavor. '
thb:Polygon | [I-159] Flavor

This flavor defines a data structure for a QuickDraw polygon data
structure. Making an instance of this flavor has the effect of opening the
new polygon so that QuickDraw starts saving all line-drawing calls.

CAUTION: Do not instantiate tb:!OpenPoly or create
another polygon object while another region or polygon is
still open.

:polysize Method of th:Polyvgon
This is the polygon size in bytes.

:polyframeTop Method of th:Polygon

:polyframeLeft Method of tb:Polygon

:polyframeBottom Method of th:Polygon

:polyframeRight Method of tb:Polygon

These values describe the enclosing rectangle of the polygon.

Macintosh Toolbox Interface 3-33

QuickDraw

tb:!OpenPoly [I-190] Function

Tells QuickDraw to start saving all line-drawing calls, returning a new
polygon. The preferred method for creating a polygon is to make an
instance of the tb:Polygon flavor.

CAUTION: Do not instantiate tb:!OpenPoly or create
another polygon object while another region or polygon is
still open.

:close Method of th:Polygon
tb:!ClosePoly : [I-190] Function

Stop the saving of the QuickDraw calls. The maximum size of a
polygon is 32K bytes. If you need to know the size of a polygon, use
the Memory Manager trap tb:!GetHandleSize.

:dispose "~ Method of th:Polygon

tb:!KillPoly polygon [I-191] Function
Dispose of the polygon.

:offset Method of tb:Polygon

tb:!OffsetPoly polygon dh dv [I-191] Function

Move polygon a horizontal distance of dh and a vertical distance dv.

Graphic 3.21 These routines perform graphic operations on polygons. They
Operations on do not move the pen.
Polygons CAUTION: If any line intersects the outline of a polygon
more than 50 times, strange things will happen.
:frame Method of th:Polygon
tb:!FramePoly polygon [I-192] Function

Play back the QuickDraw calls that define the polygon using the current
grafPort's pen size, pen mode, and pen pattern.

:paint Method of th:Polygon

tb:!PaintPoly polygon [I-192] Function
Paint the polygon with the current grafPort's pen pattern and transfer
mode.

rerase Method of th:Polygon

tb:!ErasePoly polygon [I-192] Function

Fill the polygon with the current grafPort's background pattern
(bkPattern) using the transfer mode tb:!patCopy.

3-.34 Macintosh Toolbox Interface

QuickDraw

:zinvert Method of tb:Polygon
tb:!InvertPoly polygon [I-192] Function

Invert every pixel inside the polygon; every white pixel becomes black,
every black one becomes white.

:fill &optional pattern Method of tb:Polygon
tb:!FillPoly polygon pattern [I-192] Function
tb:!FillCPoly polygon pixPatHandle [V-69] Function
Fill the the polygon with the pattern using the tbh:!patCopy transfer

mode.
Calculations 3.22 These routines perform calculations using points. Notice that
with Points some of these traps are matched with equivalent methods. Of these

trap/method sets, some carry the comment that the method is faster. See
the previous paragraph Calculations With Rectangles for an explanation
of the speed difference. To create a new point, make an instance of the
tb:Point flavor.

tb:Point [1-139] Flavor

This flavor defines a QuickDraw pointer. All data associated with a
point is stored in one of these instances on the microExplorer side.

th 16b-integer Init Option of tb:Point
:h Method of tb:Point
:set-h /6b-integer : Method of tb:Point
:v 16b-integer Init Option of th:Point
v Method of tb:Point
:set-v 16b-integer Method of tb:Point

These values define the horizontal and vertical coordinates of the point.

NOTE: For your convenience, the th:EventRecord flavor uses
th:Point as a mixin. Therefore, if you have an event record which
contains point information, then you can use that tb:EventRecord
instance anywhere a th:Point instance is needed.

:add dh-or-srcPoint &optional hv Method of tb:Point
tb:!AddPt srcPoint dstPoint [1-193] Function

Add the coordinates of point srcPoint and dstPoint and return the
resulting point in dstPoint. The methods are significantly faster than the
trap (see explanation under Calculations With Rectangles). :add
accepts one tb:Point instance or two positions as arguments.

:sub dh-or-srcPoint &optional hv Method of tb:Point
tb:!SubPt srcPoint dstPoint [I-193] Function

Subtract the coordinates of points srcPoint and dstPoint and return the
resulting point in dstPoint. The methods are significantly faster than the

Macintosh Toolbox Interface 3.35

QuickDraw

trap (see explanation under Calculations With Rectangles). :sub
accepts one tb:Point instance or two positions as arguments.

:= h-or-srcPoint &optional v Method of th:Point
tbh:!SetPt point h v [1-193] Function

Set the horizontal coordinate of the point to 4, and its vertical coordinate
to v. The methods are significantly faster than the trap (see explanation
under Calculations With Rectangles). := accepts one th:Point instance
or two positions as arguments. :

sequal ptB ' Method of tb:Point
th:!EqualPt ptA ptB [I-193] Function

Return true if ptA is equal to ptB. The method is significantly faster
than the trap (see explanation under Calculations With Rectangles
above).

th:!LocalToGlobal point [1-193] Function

Converts the point from the grafPort's local coordinate system to a
global coordinate system with the origin at the top left coordinate of the
grafPort's bitMap.

tb:!GlobalToLocal point [1-193] Function

Converts the point from global coordinates to the grafPort's local
coordinate system . This trap is most often used to convert a point that
contains the mouse position, which is in global coordinates, into the
local coordinates of the current grafPort.

Miscellaneous 3.23 These routines perform miscellaneous utility functions.
Routines
tb:!Random [1-194] Function

Retumns a pseudo random 16-bit integer (+ 32,767).
tb:!GetPixel h v [1-195] Function

Retumns true if the pixel at horizontal coordinate /1 and vertical coordinate
v is black, false if it is white.

tb:!GetCPixel » v RGBColor [V-69] Function

Sets RGBColor to be the RGB value of the pixel at horizontal
coordinate 4 and vertical coordinate v.

Example: (setf myRGB (make-instance 'tb:RGBColor))
(tb:!GetCPixel 25 44 myRGB) => T

3-36 Macintosh Toolbox Interface

QuickDraw

tb:!SetCPixel 2 v RGBColor [V-69] Function
Sets the color of the pixel (designated by 4 and v) to RGBColor.

tb:!StuffHex pointer string [I-195] Function

Stuffs the hexadecimal value in string into memory starting at the
location pointer.

CAUTION: This i1s a potentially dangerous trap as no range
checking is done. You could easily overwrite vital
application or system information unless you know exactly
what you are doing.

:scale srcRect dstRect Method of th:Point
tb:!ScalePt point srcRect dstRect [I-195] Function

Multiply the point's horizontal coordinate by the ratio of the destination
rectangle's width to the source rectangle's width, and multiply the
point's vertical coordinate by the ratio of the destination rectangle's
height to the source rectangle's height. The result is returned in point.

smap srcRect dstRect Method of th:Point
tb:!MapPt point srcRect dstRect [I-196] Function

Map the point in the rectangle srcRect to an equivalent position in the
rectangle dstRect. The result is returned in point.

:map srcRect dstRect _ : Method of th:Rect
tb:!MapRect resultRect srcRect dstRect [1-196] Function

Map the rectangle resultRect within the source rectangle srcRect to an
equivalently positioned rectangle in the destination rectangle dstRect.
The result is returned in resultRect.

:map srcRect dstRect Method of th:Region
th:!MapRgn region srcRect dstRect [I-196] Function

Map the region region in the rectangle srcRect to an equivalently
positioned region in the rectangle dstRect.

:map srcRect dstRect Method of th:Polygon
tb:!MapPoly polygon srcRect dstRect [I-197] Function

Map the polygon polygon in the rectangle srcRect to an equivalently
positioned polygon in the rectangle dstRect.

th:!GetMaskTable [IV 25] Function

Returns a pointer to a ROM table containing some useful bit masks. See
Inside Macintosh.

Macintosh Toolbox Interface 3-37

QuickDraw

Customizing 3.24 These are low-level QuickDraw traps, the bottleneck routines.
QuickDraw See Inside Macintosh pages I-198 through I-200 for more details if you

. want to use them.
Operations

th:!SetStdProcs
tb:!SetStdCProcs
th:!StdText
tb:!StdLine
tb:!StdRect
tb:!StdRRect
tb:!StdOval
th:!StdArc
tb:!StdPoly
tb:!StdRgn
tb:!StdBits
tb:!StdComment
th:!StdTxMeas
tb:!StdGetPic
th:!StdPutPic

3-38 Macintosh Toolbox Interface

Chapter 4
COLOR MANAGER

Introduction

Graphic Devices

Color Tables

Inverse Tables

Using the Color

4.1 The Color Manager acts as the interface between Color
QuickDraw and the display device. It provides a consistent way of
displaying color independently of the display device. However, for
most applications you will not want to use the Color Manager. Instead,

use the Palette Manager.

4.1.1 Every graphic device is characterized by a data structure
gDevice which contains information about that particular graphic device.

4.1.2 The complete set of colors in use at any given time for a
particular gDevice is kept in a color table record. This table contains a
list of all the colors, their concrete values, and their RGB values.

4.1.3 The inverse tables are used to map an RGB value into the
nearest equivalent concrete color available for that device.

4.1.4 Normally, you will not use the Color Manager directly; it is

Manager called indirectly when you use Color QuickDraw.
Color 4.2 These routines are used for color conversion.
Conversion
Traps
tb:!Color2Index myColor [V-141] Function
Returns the index of an available color that most closely resembles the
absolute color specified by myColor, an instance of tb:RGBColor.
Example: (setf myColor (make-instance 'tb:RGBColor))
(send myColor := 0 0 65535) ; Set myColor to blue.
(setf blue-index (tb:!Color2Index myColor)) => 6
tb:!Index2Color index aColor [V-141] Function
Sets aColor, an instance of tb:RGBColor, to the absolute color that
corresponds to the color table index index.
Example: (setf myColor (make-instance 'tb:RGBColor))
(tb:!Index2Color 3 myColor) ; Get the third color in the table
(send myColor :red) => 56683
(send myColor :green) => 2242
(send myColor :blue) => 1698
tb:!InvertColor myColor [V-141] Function

Sets myColor, an instance of th:RGBColor, to the complement of the
color myColor.

Macintosh Toolbox Interface

4-1

Color Manager

Example: (setf myColor (make-instance 'tb:RGBColor))
(send myColor := 0 0 65535) ; Set myColor to blue.
(tb: !InvertColor myColor) ; Get complement of blue.

(send myColor :red) => 65535
(send myColor :green) => 65535
(send myColor :blue) =>0

tb:!RealColor color [V-141] Function

Retumns true if the color in color, an instance of th:RGBColor, exists
in the current device's color table.

Example: (setf myColor (make-instance 'tb:RGBColor))
(send myColor := 65535 65535 65535) ;Set myColor to white
(tb:!RealColor myColor) => T ;s it real? '
tb:!GetSubTable myColors iTabRes targetThl [V-142] Function

Maps the absolute colors in the color table myColors onto the nearest
available colors and then stores them in the colorSpec value fields of -
myColors.

tb:!MakelTable cTabH iTabH res [V-142] Function

Generates an inverse color table for the color table cTabH with a
resolution of res bits per channel.

Color Table 4.3 These routines cbntrol color table management.
Management
th:!GetCTSeed ' [V-143] Function

Generates a unique seed value that can be placed in the CTSeed field of
a color table created by an application to uniquely distinguish it .

tb:!ProtectEntry index protect [V-143] Function

Protects or unprotects the entry index in the current grafDevice's color
table. If protect is true, the entry is protected; if false, it is unprotected.

th:!ReserveEntry index reserve [V-143] Function
Reserves or unreserves the entry index in the current grafDevice's color
table. If reserve is true, the entry is reserved; if false, the entry is
unreserved. ‘

tb:!SetEntries start count aTable [V-143] Function
Sets the values of count number of entries, starting at start, in the

current grafDevice's color table, using the ColorSpecs pointed to by
aTable.

4.2 Macintosh Toolbox Interface

Color Manager

tb:!RestoreEntries srcTable dstTable selection [V-145] Function

Sets a selection of entries from the color table srcTable into the color
table dstTable. Selection points at a ReqListRec data structure. See
Inside Macintosh for details.

tb:!SaveEntries srcTable resultTable selection [V-144] Function
Sets a selection of entries from the color table srcTable into the color

table resultTable. Selection points at a ReqListRec data structure. See
Inside Macintosh for details.

Error Handling 4.4 This trap is used to determine the last QuickDraw or Color
Manager error that occurred.

tb:!QDError [V-145] Function

Returns the error code of the last QuickDraw or Color Manager trap.

Search and 4.5 These routines allow an application to override the inverse table
Complement matching code.
Procedures

~tb:!AddSearch searchProc [V-147] Function

Prepends a procedure to the current device record's procedure search
list. searchProc is a pointer to a procedure in Macintosh memory.

tb:!AddComp compProc [V-147] Function

Adds a procedure to the head of the current device record's list of
complement procedures. compProc is a pointer to a procedure in
Macintosh memory.

tb:!DelSearch searchProc [V-147] Function
Removes a custom search procedure from the current device record's

list of search procedures. searchProc is a pointer to a procedure in
Macintosh memory.

tb:!DelComp compProc [V-147] Function
Removes a custom complement procedure from the current device
record's list of complement procedures. compProc is a pointer to a
procedure in Macintosh memory.

tb:!SetClientID id [V-147] Function

Sets the gdID field in the current device record to id to identify this
client program to its search and complement procedures.

Macintosh Toolbox Interface 4-3

Chapter 5
PALETTE MANAGER

Introduction 5.1 The Palette Manager is used to manage shared color resources,
provide exact colors for imaging, and initiate color table animation.

Color Palette 5.2 These routines initialize the Palette Manager and create, modify,
Manager and dispose of palettes.
Routines

th:!NewPalette entries srcColors srcUsage srcTolerance [V-161] Function

Creates a new palette with entries colors from the color table srcColors,
and returns the new palette as the result. th:!NewPalette sets the
usage and tolerance fields of the new palette to srcUsage and
srcTolerance, respectively.

Example: (setf myColors (tb:!GetCTable 127))
. (setf myPalette (tb:!NewPalette 20 myColors 0 0))

th:!GetNewPalette paletteID [V-162] Function

Gets a palette object from the Resource Manager and initializes it.

NOTE: A palette ID of 0 is reserved for the system palette resource
which is used as the default palette for non-color windows and color
windows without assigned palettes.

Example: (setf myPalette (tb:!GetNewPalette 128))
tb:!DisposePalette myPalette [V-162] Function

Disposes of the palette myPalette and its associated data structures.

Example: (tb:!DisposePalette myPalette)

th:!ActivatePalette srcWindow [V-162] Function
Attempts to provide the color environment described in srcWindow's
palette.

th:!SetPalette dstWindow srcPalette cUpdates [V-162] Function

Changes dstWindow's palette to srcPalette. If you want the window to
be updated whenever its color environment changes, pass T in
cUpdates; otherwise, pass NIL.

Example: (setf myWindow (make-instance 'tb:window))
(setf myPalette (tb:!GetNewPalette 128))
(tb: !SetPalette myWindow myPalette t)

Macintosh Toolbox Interface 5-1

Palette Manager

th:!GetPalette srcWindow [V-163] Function

Returns the palette associated with srcWindow.

~ tb:!PmForeColor dstEntry [V-163] Function
Sets the foreground color of the current cGrafPort to the color in palette
entry dstEntry in the current palette.
th:!PmBackColor dstEntry [V-163] Function
Sets the background color of the current cGrafPort to the color in palette
entry dstEntry in the current palette.
tb:! AnimateEntry dstWindow dstEntry srcRGB [V-164] Function
Changes the RGB value of dstEntry in the palette associated with
dstWindow to srcRGB.
tb:! AnimatePalette ds:tWindow srcCTab srcindex [V-164] Function

dstEntry dstiLength

Starting at srcIndex, the next dstLength entries are copied from srcCTab
to dstWindow's palette beginning at dstEntry.

tb:!GetEntryColor srcPalette srcEntry dstRGB [V-164] Function
Sets dstRGB to the color in the entry srcEntry in srcPalette.

tb:!SetEntryColor dstPalette dstEntry As‘rcRGB [V-165] Function
Sets the color in the entry srcEntry in srcPalette to srcRGB.

tb:GetEntryUsage srcPalette <srcEntry [V-165] Function
tb:!GetEntryUsage srcPalette srcEntry VAR dstUsage [V-165] Function
VAR dstTolerance

tb:GetEntryUsage returns two values: the usage and the tolerance
values of entry number srcEntry in the palette srcPalette.
tb:!GetEntryUsage is similar except it modifies dstUsage and
dstTolerance to be the usage and tolerance values.

tb:!SetEntryUsage dstPalette dstEntry srcUsage srcTolerance [V-165] Function

Modifies the usage and tolerance values of srcEntry in the palette
srcPalette to srcUsage and srcTolerance, respectively.

tb:!CTab2Palette myCTab myPalette srcUsage srcTolerance [V-165] Function

Copies the color table myCTab into the palette myPalette. If the
myPalette is not the same size as the color table, myPalette is resized.
The usage and tolerance fields of the new entries are set to srcUsage and
srcTolerance, respectively.

5-2

Macintosh Toolbox Interface

Palette Manager

Example: (setf myColors (tb:!GetCTable 127))
(tb:!CTab2Palette myColors myPalette 0 0)
tb:!Palette2CTab myPalette myCTab [V-166] Function

Copies the palette myPalette into the color table myCTab. If the color
table is not the same size as myPalette, the color table is resized.

Macintosh Toolbox Interface 5.3

_ Chapter 6
COLOR PICKER

Introduction 6.1 The Color Picker is a package that enables an application to ask
you to select colors. The package also contains utilities to convert
colors between the different color representational schemes.

Color Picker 6.2 This routine displays the Color Picker dialog box.
Package
Routines
tb:!GetColor where prompt inColor outColor [V-174] Function

Displays the Color Picker dialog box at a point where with a prompt
string prompt. The color displayed is inColor and the selected color is
returned in outColor only if you click the OK button. Both inColor and
outColor are instances of th:RGBColor. If you click OK, T is
returned. If you cancel, NIL is retumed.

Example: (setf where (make-instance 'tb:point))
(setf inColor (make-instance 'tb:RGBColor))
(setf outColor (make-instance 'tb:RGBColor))
(tb:!GetColor where "Pick a color"™ inColor outColor)

(send outColor :red) => 65535
(send outColor :green) => 17508
(send outColor :blue) => 15005
Color Picker 6.3 The Color Picker provides routines for converting between the
Conversion RGBcolor data structures and three other color data structures:
Routi CMYColor, HSLColor, and HSVColor. These data structures enable
outines you to use alternate color models. The smallFract data type mentioned
in the accessor methods below is a floating point number between zero
and one.
tb:CMYColor [V-176] Flavor
This flavor defines a CMY color. A new instance of this flavor defaults
to black.
:cyan Method of th:CMYColor
:magenta Method of tb:CMYColor
:yellow Method of th:CMYColor
:set-cyan smallFract Method of th:CMYColor
:set-magenta smallFract Method of th:CMYColor
:set-yellow smallFract Method of th:CMYColor

These are the three component values of a CMY color expressed as a
SmallFract numbers.

Macintosh Toolbox Interface 6-1

Color Picker

:= &optional cyan magenta yellow Method of th:CMYColor

Sets the CMYColor to the given cvan, magenta ,and yellow values.
The arguments are smallFract numbers.

tb:HSLColor [V-176] Flavor
This flavor defines an HSL color. A new instance of this flavor
defaults to black.

chue Method of tb:HSLColor

:saturation Method of th:HSLColor

:lightness Method of tb:HSLColor

:set-hue smallFract Method of th:HSLColor

:set-saturation smallFract Method of th:HSLColor

:set-lightness smallFract Method of tb:HSLColor
These are the three component values of an HSL color expressed as
SmallFract numbers.

:= &optional hue saturation lightness Method of tb:HSLColor

Sets the HSLColor to the given hue, saturation, and lightness values.
The arguments are smallFract numbers.

tb:HSVColor , [V-176] Flavor
This flavor defines a HSV color. A new instance of this flavor defaults
to black. - |

:hue ’ Method of th:HSVColor

:saturation ‘ . Method of tb:HSVColor

:value : Method of tb:HSVColor

:set-hue smallFract Method of th:HSVColor

:set-saturation smallFract . Method of tb:HSVColor

:set-value smallFract Method of th:HSVColor
These are the three component values of an HSV color expressed as
SmallFract numbers.

:= &optional hue saturation value Method of th:HSVColor

Sets the HSVColor to the given hue, saturation, and value values. The
argument values are smallFract numbers.

th:!CMY2RGB cColor rColor [V-175] Function
thb:!RGB2CMY rColor cColor [V-175] Function

This pair of functions converts between a CMY color to an RGB color.

th:'HSL2RGB hColor rColor [V-175] Function
tb:!RGB2HSL rColor hColor ' [V-175] Function

This pair of functions converts between a HSL color to an RGB color.

6-2

Macintosh Toolbox Interface

Color Picker

tb:!HSV2RGB hColor rColor [V-175] Function
tb:!RGB2HSYV rColor hColor [V-175] Function

This pair of functions converts between a HSV color to an RGB color.

tb:!Fix2SmallFract f [V-175] Function
tb:!SmallFract2Fix s [V-175] Function

This pair of function converts between a fixed-point number and a
smallFract number and retumns the converted value.

Macintosh Toolbox Interface 6-3

Chapter 7
FONT MANAGER

Introduction 7.1 The Font Manager is used by QuickDraw to generate and display
various character fonts. The only time you will use these traps is when
your application includes a Font or a Style menu. Use the Menu
Manager trap tb:!AddResMenu, with a resource type "FONT", to
generate the Font menu. This trap adds the names of all the fonts in the
currently opened resource files to the menu. The Style menu is built up
like a normal menu by appending each item to the menu. Use the trap
th:!RealFont to see if a font of a particular size is available. If it is,
use the Menu Manager trap th:!SetltemStyle to outline the font size
item.

With the introduction of the Macintosh Plus two new traps and a new
data structure, the tb:FontMetric record, were added to the Font
Manager. These traps are used for supporting fractional character
widths and are of interest only if you are printing directly to a laser

printer or making some other use of PostScript®.

The Font Manager has also been changed to handle color fonts. These
changes are transparent to the user.

Initializing the 7.2 The routine which initializes the Font Manager should be called
. once before calling any other Font Manager routine or any Toolbox
Font Manager routine that will call the Font Manager.

tb:!InitFonts ‘ [I-222] Function

Initializes the Font Manager. You do not need to call this function as it
is called for you when you launch a TbServer.

Getting Font 7.3 These routines identify font names and numbers and determine
Information whether a font of the desired size exists.
tb:GetFontName fontNum _ [I-223] Function

Returns the font name of the font number fontNum. Use this trap
instead of th:!GetI'ontName. To get the name of the font that has a
font number of 4, do:

Example: (GetFontName 4) => "Monaco"

tb:!GetFontName fontNum VAR theName [I-223] Function

Modifies theName to be the font name of the font number fontNum. To
get the name of the font that has a font number of 4, do: '

Macintosh Toolbox Interface 7-1

Font Manager

Example: (tb:!GetFontName 4 (VAR theName))
theName => "Monaco"

tb:GetFNum jfontName [I-223] Function
Retumns the font number of the font named in the string fontName. Use
this trap instead of th:!GetFNum. The constants representing the
currently defined font numbers are shown below.

tb:!SystemFont [1-219] Constant
tb:!ApplFont [I-219] Constant
tb:!NewYork [1-219] Constant
tb:!Geneva [1-219] Constant
th:!Monaco [1-219] Constant
tb:!Venice [1-219] Constant
tb:!London [1-219] Constant
tb:!Athens [1-219] Constant
tb:!SanFran [1-219] Constant
tb:!Toronto [1-219] Constant
th:!Cairo [1-219] Constant
th:!LosAngles [1-219] Constant
tb:!Times® [1-219] Constant
tb:!Helvetica® [1-219] Constant
tb:!Courier [1-219] Constant
tb:!Symbol [1-219] Constant
tb:!Mobile [1-219] Constant

th:!SystemFont is the number of the default system font such as is
used in menu titles. tb:!ApplFont is the number of the default
application font. The remaining constants represent the standard fonts.

NOTE: The presence of these constants are unrelated to the fonts which
are actually installed on any given Macintosh. The Macintosh OS will
substitute a font if the requested font is not installed.

To get the number of the NewYork font, do the following:
Example: (GetFNum "NewYork") => 2
tb:!GetFNum fontName VAR theNum [I-223] Function

Modifies theNum to be the font number of the font named fontName.
Example: - (setf theNum 0)

(tb:!GetFNum "NewYork"™ (VAR theNum))

theNum => 2
tb:!RealFont fontNum size [1I-223] Function
Retums true if the font fontNum exists in the particular font size size.

Example: ;;;D0es New York font exist in 12 point?
(tb:!RealFont tb:!NewYork 12) =>T

Macintosh Toolbox Interface

Font Manager

Keeping Fonts 7.4 This trap is used to prevent font information from being purged
in Memory from memory.
tb:!SetFontLock lockFlag [1-223] Function

Prevents the purging of the most recently used font's resource if
lockFlag is true. If lockFlag is false, purging is allowed.

Advanced 7.5 This routine is not normally used by an application directly, but

Routines may be of interest to advanced programmers who want to bypass the
QuickDraw routines that deal with text.

tb:!FMSwapFont inRec [1-223] Function

This is an internally used trap. See Inside Macintosh for more details.

Fraction"a[7.6 These routines were added to the Font Manager to support
Width Routines fractional character widths.

tb:!SetFScaleDisable scaleDis [IV-32] Function

Tells the Font Manager whether to scale a font of another size 1f it
cannot find one of the required size.

th:!FontMetrics theMetrics [TV-32] Function

Modifies theMetrics, an instance of the th:FMetricRec flavor, with
information about the current font.

tb:FMetricRec [IV-32] Flavor

This flavor defines the data structure used to record font information
(cf. tb:!FontMetrics).

:Ascentl Method of tb:FMetricRec
:AscentF Method of tb:FMetricRec
:Descentl Method of th:FMetricRec
:DescentF Method of tb:FMetricRec

Record the number of pixels the font extends above (ascent) and below
(descent) the baseline. Each pixel count is represented by two integers:
an integral count and a fractional count representing the 16 bits to the
right of the decimal.

:Leadingl Method of tb:FMetricRec
:LeadingF Method of th:FMetricRec

Record the number of pixels of white space between the descenders of
one line and the ascenders of the next line down. Each pixel count is

Macintosh Toolbox Interface 7.3

Font Manager

represented by two integers: an integral count and a fractional count
representing the 16 bits to the right of the decimal.

:WidMaxI Method of th:FMetricRec
‘WidMaxF Method of tb:FMetricRec

Record the number of pixels of the widest character in the font. Each
pixel count is represented by two integers: an integral count and a
fractional count representing the 16 bits to the right of the decimal.
:WTabHandle Method of tb:FMetricRec
A handle to the global width table describing this font.
th:!SetFractEnable fractEnable [TV-32] Function

Enables or disables fractional font widths.

1.4 : ' Macintosh Toolbox Interface

Chapter 8
EVENT MANAGER

Introduction 8.1 The Event Manager is your application's link to its user. When
the user presses the mouse button, types on the keyboard, or inserts a
disk in the disk drive, your application is notified by means of an event.
A typical Macintosh application program is event-driven, meaning it
decides what to do by asking the Event Manager for events and
responding to them in the appropriate manner.

The Event Manager is probably the most used Toolbox Manager and
tb:EventRecord the most used, and most useful, Toolbox flavor. All
Macintosh applications are event-driven with a main event loop at their
core. At the center of the main event loop are the Event Manager traps
tb:!GetNextEvent and th:!WaitNextEvent. These traps take a
tb:EventRecord instance as an argument. If there is an event,
information about it is returned in various fields of the
tb:EventRecord instance. If you pass a tb:EventRecord instance
to the trap, you can then access the various fields of the record by using
the instance variables.

If atb:EventRecord instance is passed to the trap
tb:!GetNextEvent or tb:!WaitNextEvent and there is an event,
the information returned in the instance depends on the type of event.
The event type can be determined from the :what instance variable.
The time the event was recorded is found in the :when instance
variable. The current position of the mouse is found in :V and :H.
The information returned in the message field depends on the event
type. For window-related events, Update and Activate, the window
pointer of the window in question is in :messageWindow. For key-
down events, the character of the key pressed is in :messageChar.

tb:EventRecord [I-249] Flavor

This flavor records the information returned by tb:!WaitNextEvent
and tb:!GetNextEvent.

:What Method of th:EventRecord
Returns the event code as an integer. The defined event codes are
represented by event code constants (e.g., tb:!mouseDown)
documented in paragraph 8.2.

:When Method of tb:EventRecord

Returns the time of the event as an integer.

Macintosh Toolbox Interface 8-1

Event Manager

:Message

Method of th:EventRecord

Returns the variable message portion of the event as an integer. The
meaning of this value depends totally upon the associated event code,
:What. Therefore, the value returned by this method cannot be used
until it is "interpreted” in the light of the event code. The alternate
methods :MessageWindow, :MessageChar, :MessageKey, and
:MessageDrNum described below retumn interpreted values.

:MessageWindow Method of tb:EventRecord

Assuming that the event record instance records an event related to a
window, this method returns :Message interpreted as a th: Window
instance.

:MessageDrNum Method of th:EventRecord

Assuming that the event record instance corresponds to an event code of
th:!diskEvt, then this method returns :Message interpreted as an
integer drive number.

tMessageChar Method of th:EventRecord

Assuming that the event record instance records an event related to a
key, this method returns :Message interpreted as a Lisp character
object.

:MessageKey Method of tb:EventRecord

<

:Modifiers

Assuming that the event record instance records an event related to a
key, this method returns :Message interpreted as an integer keyboard
key code.

Method of th:EventRecord
Method of tb:EventRecord

Return the coordinates of the mouse at the time the event occurred. If
these coordinates are needed for a point argument to some function,
then just pass the event record instance itself. The tb:EventRecord
flavor mixes in the tb:Point flavor so that an event record instance can
be used anywhere a point instance is required.

Method of tb:EventRecord
Retumns the modifier flags associated with this event as an integer. The

defined event modifiers are represented by event modifier masks (e.g.,
tb:!activeFlag) documented paragraph 8.2.

Macintosh Toolbox Interface

Event Manager

Event Manager
Traps

8.2 The most used trap in the Event Manager is
th:!WaitNextEvent. All applications have at their core a routine
which repeatedly calls the trap tb:!WaitNextEvent. This trap
modifies its EventRecord argument to be the next event in the event
queue, provided there is one. The Main Event Loop (MEL) keeps
calling tb:! WaitNextEvent until the trap returns true; then MEL calls
the relevant event handler routine.

tb:!GetNextEvent eventMask anEventRecordinstance [1-257] Function
tb:!EventAvail eventMask anEventRecordinstance [1-259] Function

tb:!GetNextEvent is called to locate the next available event of the
type specified by eventMask. If such an event exists, the trap returns
true with information about the event in various fields of the event
record. If the event was located in the event queue,
tb:!GetNextEvent also removes it from the queue. Normally, one
passes tbh:!everyEvent in eventMask. This tells the Event Manager to
return the next event in the event queue regardless of type.

NOTE: If using MultiFinder, tb:]WaitNextEvent should be used
instead of th:!GetNextEvent. All microExplorer applications use
MultiFinder. '

tb:!EventAvail is similar except that if it finds an event in the event
queue, it leaves the event there instead of removing it.

th:!WaitNextEvent eventMask anEventRecordinstance sleep region Function

Allows an application to use the CPU more efficiently. It helps reduce
the null event traffic an application sees by allowing the caller to
specify, in addition to anEventRecord and eventMask, a time value
sleep for which to relinquish the processor if no events are pending, and
aregion (global coordinates) which describes the current cursor
position.

The time value (in 1/60th of a second ticks) allows an application to
sleep until a real event occurs or the specified time has passed. The
region describing the current mouse position simplifies the application's
cursor tracking; the application receives a "mouse-moved" event only
when the mouse strays outside the given region. The global variable
tb:!nilrgn (an empty region) is provided in case you want to default
this argument.

It is recommended that any new application use th:!WaitNextEvent
whenever possible, enabling background events to get as much time as
possible.

NOTE: If your application calls tb:!WaitNextEvent do not call the
Desk Manager trap th:!SystemTask.

Symbolic constants for the eventMask argument and for the event codes
returned by the :what message to the event record are listed below.

Macintosh Toolbox Interface

8-3

Event Manager

Example:

Example:

;;; create eventrecord Instance only once so main event
;;; loop doesn't need to create a new instance over and over
(defun initialize()

;; create event record

~ (setf *event* (make-instance 'tb: EventRecord))
...other init code...)

(catch 'EVENT-LOOP-EXIT
(loop
(when (tb:{WaitNextEvent tb:!everyEvent *event* 0
tb:!nilrgn)
(case (the fixnum (send *event* :what))
(#.tb:!'nullEvent nil)
(#.tb: !mouseDown (MouseDownHandler))
(#.tb: !'keyDown (KeyDownHandler))
...other event handlers...))))

To find out which window a mouse-down event is in, call the Window
Manager trap tb:!FindWindow. See Chapter 9 on the Window
Manager for details).

Most of the time we ignore mouse-up events generated when the mouse
button is released. The only times you need to know about mouse-up
events are when tracking a drag selection, highlighting, and tracking the
mouse while the button is still down. In these cases it is better to use
the other Event Manager mouse button traps like tb:!StillDown,
th:!WaitMouseUp, or th:!Button. Use tb:!StillDown for
tracking a drag selection. ‘

To test for a double click in an object, see if the difference between
:when and the previous click in the object is less than
tb:*DoubleTime*. Technically, the trap tb:!GetDblTime returns
the user's latest choice for a double click interval, but calling this each
time takes too much time communicating across the bus. For this
reason th:*DoubleTime* has the value at boot time.

(defun initialize()
...add this to the initialize routine...
(setf *lasttime* Q)
...other init code...)

(defun MouseDownHandler ()
"handler for all mouse down events"
(let ((elapsed 0))
;; Double click occurs if this click occurred less than
;; tb:*DoubleTime* ticks since the last click.
(setf elapsed (- (send *event* :When) *lasttime*))
(if (<= elapsed tb:*DoubleTime*)
(...then double click detected...)
(...else single click detected...))
(setf *lasttime* (send *event* :When))))

KeyDown events are generated whenever the user presses a key on the
keyboard. AutoKey events (repeating KeyDown events) are generated
when the user holds down a key for a specified period of time. The
length of time is specified by the user with the control panel desk
accessory.

8-4

Macintosh Toolbox Interface

Event Manager

KeyDown and AutoKey are almost always handled the same way. You
get the character of the key depressed from the EventRecord by doing:

Example: (setf theKey (send *event* :MessageChar))

There are two types of window related events: activate events and
update events. There are two types of activate events: a deactivate
event which effects the current active window, and an activate event
which effects the window which is to become the active window. You
can determine which of these two types the current activate event is by
applying the tb:!activeFlag mask to the :Modifiers instance variable
or calling tb:!activeFlag-p with the :Modifiers values as its
argument. To make such a determination, do the following:

Example: (if (tb:lactiveFlag-p (send *event* :modifiers))
(activateHandler)
(deactivateHandler))

The following constants serve as masks for the value returned by the
:Modifiers message to a tb:EventRecord instance. Alternately, the
predicate functions apply the matching mask to their argument, an event

record modifier value.
th:!activeFlag [1-253] Constant
tb:!activeFlag-p eventRecordModifier Function

The constant is a mask of the event record modifier bit which is set if
th:!activeEvt event code represented an activate event; reset if it
represented a deactive event. redicate function tests its argument an
event record modifier, for this bit.

tb:!btnState [1-253] Constant
tb:!btnState-p eventRecordModifier Function

The constant is a mask of he event record modifier bit which is set if the
mouse button is still down. The predicate function tests its argument,
an event record modifier, for this bit.

th:!cmdKey [I-253] Constant
tb:!cmdKey-p eventRecordModifier Function

The constant is a mask of he event record modifier bit which is set if the
Command Key down. The predicate function tests its argument, an
event record modifier, for this bit.

th:!shiftKey | [I-253] Constant
th:!shiftKey-p eventRecordModifier Function

The constant is a mask of he event record modifier bit which is set if the
Shift Key is down. The predicate function tests its argument, an event
record modifier, for this bit.

Macintosh Toolbox Interface 8-5

Event Manager

tbh:!alphaLock [1-253] Constant
tb:!alphaLock-p eventRecordModifier Function

The constant is a mask of he event record modifier bit which is set if the
Caps Lock key is down. The predicate function tests its argument, an
event record modifier, for this bit.

th:!optionKey [I-253] Constant
tb:!optionKey-p eventRecordModifier Function

The constant is a mask of he event record modifier bit which is set if the
Option key is down. The predicate function tests its argument, an event

record modifier, for this bit.
th:!controlKey [1-253] Constant
tb:!controlKey-p eventRecordModifier Function

The constant is a mask of he event record modifier bit which is set if the
Control key is down. The predicate function tests its argument, an
event record modifier, for this bit.

The following constants are event masks used to in the eventMask
argument to functions such as tb:!WaitNextEvent,
tb:!GetNextEvent, and tb:!FlushEvents.

tb:!mDownMask [1-254] Constant
tb:!mUpMask [1-254] Constant
tb:!keyDownMask [1-254] Constant
th:!keyUpMask [I-254] Constant
th:!autoKeyMask [I-254] Constant
tb:!updateMask [1-254] Constant
th:!diskMask [1-254] Constant
tb:!activMask [1-254] Constant
th:!networkMask [1-254] Constant
tb:!driverMask [1-254] Constant
th:!app1Mask [1-254] Constant
th:!app2Mask [1-254] Constant
th:!app3Mask [1-254] Constant

These are the event masks corresponding to the event codes described
below (e.g., th:!mDownMask is the mask for the th:!mouseDown
event code). These masks may be used individually or summed
together to specify the events of interest (i.e., the eventMask argument)
for functions such as tb:!WaitNextEvent, th:!GetNextEvent, and
tb:!FlushEvents. The mask for all possible events is
tb:!everyEvent. (See the caution concerning th:!app4Mask.)

th:!everyEvent [I-254] Constant

An event mask specifying all possible events.

The following constants are event codes returned by
tb:!WaitNextEvent and tb:!GetNextEvent.

8-6

Macintosh Toolbox Interface

Event Manager

tb:!nullEvent [1-249] Constant

Event code indicating that there is no event to process.

tb:!mouseDown [I-249] Constant

Event code indicating that the mouse button was pressed. The event
record records where and when the mouse button was pressed. The
event record itself can be passed to any mouse down handling code
which requires a tb:Point instance since tb:Point is a mixin of
tb:EventRecord.

th:!mouseUp [I-249] Constant

Event code indicating that the mouse button was pressed. The event
record records where the mouse was released. This event is seldom
handled directly by application code. The meaning of a th:!mouseUp
event usually depends upon the particular tb:!mouseDown event
which preceded it. Therefore, if the time and place the mouse button
was released is important, then the tb:!mouseDown handler typically
calls a specialized tracking handler which watches for tb:!mouseUp
and acts accordingly.

th:!keyDown ' [1-249] Constant

th:!'keyUp

tb:!autoKey

Event code indicating that a key was pressed. The :messageChar
message to the event record will return the character object representing
the key which was pressed.

[1-249] Constant

Event code indicating that a key was released. There is seldom any
need for an application to handle this event since "repeat” keystrokes
caused by the user holding down one key continuously is reported
through the tb:!autoKey event code. .

[1-249] Constant
Event code similar to th:!keyDown except that it is really one of the

"repeat” keys caused when the user holds a key down. This event is
usually handled the same as tb:!keyDown.

tb:!updateEvt [I-249] Constant

th:!diskEvt

Event code indicating that the window recorded in the event record
needs to be refreshed. The :messageWindow message to the event
record will return the window which needs updating.

This event is most commonly posted when a window was closed.
Thereby, uncovering another window which then receives this
tb:!updateEvt so that it can replace the black space left by the window
which was just closed.

[1-249] Constant

Macintosh Toolbox Interface

Event Manager

Event code indicating that a floppy disk was inserted.
tb:!activeEvt [1-249] Constant

Event code indicating that the window recorded in the event record was
previously active and has now become inactive or it was previously
inactive and has become active. Apply the tb:!activeFlag mask to the
result of the :Modifiers message to the event record to distinguish the
two.

tb:!networkEvt [1-249] Constant
Event code indicating network activity.
tb:!driverEvt [1-249] Constant

Event code indicating device driver activity.

th:!lapplEvt [1-249] Constant -
th:!lapp2Evt [I-249] Constant
th:lapp3Evt ' [1-249] Constant

Event codes for events signaled by an application via tb:!PostEvent.

th:!lapp4Evt [I-249] Constant
th:!lapp4Mask ” [I-254] Constant

This event code was originally reserved for the application's use, but it
has since been preempted by the MultiFinder which is required for the
operation of the microExplorer.

CAUTION: microExplorer applications may not use
tb:!lapp4Evt or tb:!app4Mask as their use will interfere with
the operation of the MultiFinder.

th:!GetMouse mouseLoc [I-259] Function

Modifies mouseLoc, an instance of tb:Point, with the the current
location of the mouse in the local coordinates of the current grafPort.

Example: (setf mouseLocation (make-instance 'tb:Point))
(tb: !GetMouse mouselocation)
mouseLocation => #<POINT x=99 y=127>

tb:!Button [1-259] Function
Returns true if the mouse button is pressed down.

tb:!StillDown [1-259] Function

Returns true if the mouse button is down and there are no other mouse
events in the event queue.

Macintosh Toolbox Interface

Event Manager

th:!WaitMouseUp [1I-259] Function

This trap is the same as th:!StillDown eicept that if the mouse button
is not down, tb:!WaitMouseUp removes the preceding mouse-up
event before returning false.

tb:!GetKeys keyMap [1-259] Function

Returns a keyMap of the current state of the keyboard. The keyMap is a
128-bit record. If you need to know the actual key pressed on the
keyboard and not just the ASCII character equivalent, the key code can
be extracted from the event record by doing:

Example: (setf keyCode (send *event* :messageKey))

The key code mapping to the keyboard is given in Inside Macintosh
pages I-251 and V-191, 192.

tb:!TickCount [1-260] Function
Returns the current number of ticks (1/60'ths of a second) since the
system last started up.

NOTE: Don't rely on the tick count to be exact. It is usually accurate
to within one tick but if you are accessing the disk or serial ports
extensively, ticks can be lost.

tb:!GetDbITime [I-260] Function

Returns the current setting, in ticks (1/60th of a second), for the
maximum time difference between mouse-down events to be considered
a double-click. This value is set by the Control Panel desk accessory.

th:!GetCaretTime [1-260] Function
Returns the time, in ticks (1/60th of a second), between blinks of the

caret, i.e., the insertion point in a TextEdit record. (The "caret" is
typically the I-Beam cursor.)

Macintosh Toolbox Interface 8-9

Chapter 9
WINDOW MANAGER

Introduction 9.1 The diagram below illustrates the primary components of a
window.
goAwayBox title dragbar >50m bow

[l |7

E[Y==== Edit Window == |

/grnwlcon
0} «— growBox

From a user's point of view, a window is the only means of viewing
data. Actually, of course, a window is an illusion carefully maintained
by the programmer. For every possible action the user can make,
including dragging, growing, zooming, closing, scrolling through the
contents, or switching to another window, the programmer must call the
necessary functions to maintain this illusion.

In order to understand how to use these functions you need to
understand the entire main event loop which encompasses not only the
Window Manager, but the Event Manager, QuickDraw, the Control
Manager, the Menu Manager, the Dialog Manager, and the Desk

Manager.
Initialization 9.2 These routines are used to initialize windows and allocate the
and Allocation necessary memory in the Macintosh heap.
tb:!InitWindows [1-281] Function

Initializes the Window Manager. You should never need to call this
function since windows are initialized for you when you launch a
TbServer.

Macintosh Toolbox Interface 9-1

Window Manager

tb:Window

[I-276] Flavor

tb:CWindow [V-199] Flavor

:wStorage

:boundsRect

-stitle

:visible

:behind

This flavor defines a color QuickDraw window data structure.
th:CWindow is effectively a synonym for th:Window. The Toolbox
Interface does not currently implement the old-style, non-color
QuickDraw windows. All methods and initialization options of
tb:Window also apply to th:CWindow.

Furthermore, tb:Window and tb:CWindow both have
tb:cGrafPort as a mixin. As such, they inherit all of the instance
accessor methods belonging to color grafPorts, and can be used in any
routine that requires a tb:cGrafPort instance.

Init Option of th: Window
This is nominally a pointer to where to store the window. In the current

Toolbox Interface implementation, it should always be defaulted to
tb:!nilPtr, the default, which causes a new instance to be created.

Init Option of th: Window
This is a tb:Rect instance defining the bounds of new window in

global coordinates. Defaults a something appropriate to the current
screen size.

Init Option of tb: Window

This is the string to be used in the title bar. Defaults to "New Window".
If the specified title is too long to fit in the title bar, it will be truncated.

Init Option of th: Window

If this option is true, then the new window will immediately become
visible. The default is true.

Init Option of th: Window

If this option is a pointer to a window, then the new window will be
created behind the specified window. If this option is th:!onePtr, the
default, then the new window will be created in front of all other
windows.

:goAwayFlag Init Option of th: Window

:refCon

If this option is true, the default, then a GoAway box will be drawn in
the window frame.

Init Option of tb: Window

This option represents a 32-bit integer of programmer-defined
information which will be permanently associated with the new
window. The default is 0. While this user hook is needed in C and
Pascal environments, the preferred alternative on the microExplorer is to

9-2

Macintosh Toolbox Interface

Window Manager

mix tb:Window into your own window flavor which has the extra
instance variables you need.

:proclD Init Option of th: Window
This integer option determines what kind of window is created.
Constants defining the available window types are shown below. The
default is tb:!zoomDocProc.

tb:Window instances have the following instance accessor methods in
addition to those it inherits from th:cGrafPort.

¢« WINDOWKIND ;108 [integer]

« :VISIBLE ;110 [boolean]

o HILITED ;111 [boolean]

« :GOAWAYFLAG ;112 [boolean]

« :ZOOMFLAG ;113 [boolean]

¢« :STRUCRGN ;114 [rgnhandle]

e :CONTRGN ;118 [rgnhandle]

» :UPDATERGN ;122 [rgnhandle]

« WINDOWDEFPROC ;126 [handle]

« :DATAHANDLE ;130 [handle]

 TITLEHANDLE ;134 [handle]

« TITLEWIDTH ;138 [integer]

e :CONTROLLIST ;140 [controlhandle]

« NEXTWINDOW ;144 [pointer]

« :WINDOWPIC ;148 [pichandle]
tb:GetWMgrPort : ' [1-28] Function
tb:GetCWMgrPort : ' [V-210] Function

These two traps return the Window Manager port as a grafPort or
cGrafPort, respectively. The Window Manager port is generally off
limits. It belongs strictly to the Window Manager. In fact, Are You
MultiFinder Friendly? recommends that you, "Consider the call
GetWMgrPort to be for amusement only."

th:!GetWMgrPort grafPointer [I-28] Function
th:!GetCWMgrPort cGrafPointer [V-210] Function

The Window Manager port is generally off limits. It belongs strictly to
the Window Manager. In fact, Are You MultiFinder Friendly?
recommends that you, "Consider the call GetWMgrPort to be for

amusement only."

tb:!NewWindow wStorage boundsrRect title visible [I-281] Function
procID behind goAwayFlag refCon

tb:!NewCWindow wStorage boundsrRect title visible [V-207] Function

procID behind goAwayFlag refCon

Create new windows, initialize the fields, create all the associated
structures, and return a window pointer to the new window.

You should always leave wStorage set to the default value of
tb:!nilPtr. The boundsRect is the rectangle that bounds the new

Macintosh Toolbox Interface 9-3

Window Manager

window. The procID (an integer) indicates the type of window wanted
and are defined by the constants shown below.

The argument behind is a window pointer and is used if you want the
new window to be created in back of the window pointed at by behind.
Normally, you would pass tb:!onePtr and the window would be
created in front of all the other existing windows. The refCon (a 32-bit
integer) field is a place to put information of relevance to the window. It
is suggested that you do not use this field. Instead, create a new flavor
with any additional fields as instance variables.

tb:!documentProc [1-273] Constant
tb:!dBoxProc - [-273] Constant
th:!plainDBox [I-273] Constant
tb:!altDBoxProc [1-273] Constant
tb:!noGrowDocProc [1-273] Constant
tb:!zoomDocProc [I-273] Constant
th:!zoomNoGrow [1-273] Constant
tb:!rDocProc [1-274] Constant

These constants are used as the procID initialization option to
tb:Window flavors. The general appearance of these windows is
shown in the Standard Types of Windows figure below. Notice that the
degree of rounding of tb:!rDocProc can be controlled by adding by
"incrementing" this constant before using it as a procID initialization
option. See Inside Macintosh 1-274 for details.

| =0
documentProc 0 noGrowDocProc 4 rDocProc 16
dBoxProc 1 plainDBox 2 altDBoxProc 3

(3]

8
Standard Types of Windows

9-4

Macintosh Toolbox Interface

Window Manager

Example: (defflavor tb:TEWindow

(text)

(tb:Window)
:gettable~-instance-variables
:settable-instance-variables
:inittable-instance~variables)

(defmethod (tb:TEWindow :after :init) (init-options)
(declare (ignore init-options))
(let ((prtRect (send self :portRect)))
(send prtRect :inset 3 3)
(setf text .
(make-instance 'tb:TERec :viewRect prtRect
:destRect prtRect))))

(defmethod (tb:TEWindow :after :dispose) ()
(send text :dispose))

tb:!GetNewWindow windowID wStorage behind [1-283] Function
tb:!GetNewCWindow windowID wStorage behind [V-207] Function

These traps are the same as tb:!NewWindow and
tb:!NewCWindow except most of the information about the new
window is saved in a previously defined resource of type "WIND"
which has a resource ID windowID. Additionally, for color windows a
window color table resource of type "wctb" will be loaded if one is
available with the ID windowID.

tb:!CloseWindow window _ [I-283] Function
You should never need to call this function. tb:!CloseWindow is
used if you passed your own storage pointer in wStorage when creating

the window.

:dispose Method of tb:Window
tb:!DisposeWindow window [I-284] Function

Dispose of the window if you passed tb:!nilPtr in wStorage when
creating the window.

Window 9.3 These routines control the display characteristics of a window
Di Spl ay determining whether it is visible or invisible, active or inactive, etc.

:set-title string Method of th:Window
tb:!SetWTitle window string [I-284] Function

Set the title of the window.

Macintosh Toolbox Interface 9.5

Window Manager

ttitle Method of th:Window
tb:GetWTitle window [I-284] Function
th:!GetWTitle window VAR string [I-284] Function

tb:GetWTitle returns the title of the window as a string.
th:!GetWTitle is similar except that it updates string with the title

string.
Example: (tb: !GetWTitle win (VAR title))

title => "A New Title"
:select . Method of th:Window
tb:!SelectWindow window [1-284] Function

Make the selected window the active window by doing all the necessary
highlighting and generating the appropriate activate events. See the
example of a main event loop to understand when to use this trap.

chide Method of th:Window
tb:!HideWindow window [1-285] Function

Make the window invisible. If the window is the front window, it
unhighlights the window, brings forward the next window, and
generates the appropriate activate events.

:show Method of th:Window

tb:!ShowWindow window [1-285] Function
Make the window visible.

:erase Method of tb:Window

Erases the content region of the window.
tb:!ShowHide window showFlag [1-285] Function

If showFlag (boolean) is true, th:!ShowHide makes the window
visible if the window is invisible. If the window is already visible, it
does nothing. If showFlag is false, it makes the window invisible if the
window is visible and does nothing if the window is already invisible.

NOTE: Unlike th:!HideWindow or tb:!ShowWindow, this
function never changes the highlighting or front to back ordering of
windows.

tb:!HiliteWindow window fHilite [1-286] Function
Normally, you will not call this trap since the :select message will
automatically highlight the window. Highlighting a nonactive window
is contrary to Macintosh User Interface Guidelines.

tb:!BringToFront window [1-286] Function

Normally, you will not call this trap since the :select message will
automatically bring the window to the front.

9.6 Macintosh Toolbox Interface

Window Manager

tb:!SendBehind windowA windowB [1-286] Function

Normally, you will not call this trap since the :select message will
usually achieve the desired effect.

thb:!FrontWindow [I-286] Function

Returns the front-most window.

NOTE: Providing you have created a new window by making an
instance of th:Window, tb:!FrontWindow will return the same
window instance. This can be very useful if you have stored additional
local information in the window instance.

th:!DrawGrowlcon window [1-287] Function

Redraws the Growlcon and associated lines. Call this trap after
receiving an activate or update event.

Mouse Location

9.4 These routines are used to decipher the meaning of a mouse-down
event. :

tb:FindWindow point [1-287] Function
tb:!FindWindow point VAR whichWindow [I-287] Function

Example:

Given a point, tb:FindWndow returns two values: a partCode if the
point is in a recognized window, and a windowPtr if it applies. Call
this trap after receiving a mouse-down event from the Event Manager
trap tb:!WaitNextEvent.

tb:!FindWindow is similar except that it modifies whichWindow to
be the new partCode.

(defun mousedownHandler (thePt)
“"handler for all mouseDown events"®
(multiple-value-bind (partCode win)
(tb:FindWindow thePt)
(case (the fixnum partCode)
(#.tb:!inMenuBar (inMenuBarHandler thePt))
(#.tb:!inSysWindow (ignore)) ;handled by WaitNextEvent
(#.tb:!inContents (inContentHandler win thePt))

(#.tb:!inDrag (inDragHandler win thePt))
(#.tb:!inGrow (inGrowHandler win thePt))
(#.tb:!inGoAway (inGoAwayHandler win thePt))
(#.tb:!'inZoomIn (inZoomInHandler win thePt))
(#.tb:!inZoomOut (inZoomOutHandler win thePt)))
(otherwise (ignore)))))

Macintosh Toolbox Interface

9-7

Window Manager

th:!inDesk

NOTE: The (the fixnum ...) form around partCode allows the
compiler to use a microcoded dispatch function rather than a series of
compares. Since we are dispatching on the numeric value of the
symbols such as th:!inMenuBar, we need the #. reader macro to
force evaluation of the symbols (because case normally dispatches on
the symbols themselves).

[1-287] Constant

tb:!inMenuBar [I-287] Constant
th:!inSysWindow [I-287] Constant
tb:!inContents [1-287] Constant

tb:!inDrag
th:!inGrow

[1-287] Constant
[1-287] Constant

th:!linGoAway [I-287] Constant
th:!inZoomiIn [1-287] Constant
tbh:!inZoomOut [I-287] Constant

These constants collectively define the possible partCodes which may be
returned by tb:!FindWindow or th:FindWindow. This integer
code identifies the part of the window on which the mouse was clicked.
The mouseDown handler of the event loop would normally dispatch on
this partCode to determine the appropriate response to the mouse click.
Typical responses are as follows:

tb:!inDesk - This partCode can be safely ignored.

‘tb:!inMenuBar - Call tb:!MenuSelect (q.v.).

tb:!inSysWindow - The user clicked on a Desk Accessory. See the
Desk Manager for details.

tb:!inDrag - Call th:!DrawWindow.

thb:!'inGrow - First call tb:!GrowWindow and then
tb:!SizeWindow.

tb:!inGoAway - First call th:!TrackGoAway and if it returns true,
then dispose of the window.

tb:!inZoomln or th:!inZoomOut - Call tb:!TrackBox and if it
returns true, then call th:!ZoomWindow.

tb:!inContents - The action depends upon what controls, if any, your
window has. In general, if your window does have controls, call
tb:!FindControl to determine which control was selected and then
implement a control-specific dispatch similar to this one. °

If your window does not have associated controls, then treat this
partCode as a non-specific mouse event.

tb:!TrackGoAway window point [1-288] Function

Called when there is a mouse-down event in the goAwayBox of a
window. It highlights the goAwayBox until the mouse button is

Macintosh Toolbox Interface

Window Manager

released and returns T if the mouse was still inside the goAwayBox
when released. If tb:!TrackGoAway returns true, send the window a
:dispose message.

tb:!TrackBox window point partCode [IV-50] Function

If the trap th:!FindWindow returns a result of tb:!inZoomIn or
tb:!inZoomOut, call th:!TrackBox giving the current window
window, the current mouse position point, and the partCode returned by
the trap th:!FindWindow. If the trap result is true, call the trap
tb:!ZoomWindow.

tb:!ZoomWindow window partCode front [IV-50] Function
Zooms window according to partCode and will bring the window to the
front if front is true.

:zinside-p point Method of tb:Window

Returns true if point is inside the window.

Window 9.5 These procedures control the movement and size of a window.
Movement and
Sizing
. :move h v &optional (front t). Method of th:Window |
tb:!MoveWindow window h v front ' [1-289] Function

Move window to a point with coordinates (#,v) where 4 and v are
expressed in global coordinates. If front is true (the default) and
window is not the active window, tb:!SelectWindow is called to
make it the active window.

tb:!DragWindow window point boundsRect [I-289] Function

Drags an outline of window starting at the point point, specified in
global coordinates, limiting the drag area to boundsRect. (See Inside
Macintosh for details).

tb:!GrowWindow window point rect [1-289] Function

Draws a grow image of window, with size rect, that tracks the mouse
starting at point. Point should be in global coordinates. When the
mouse button is released, the trap returns two values: the new height
and width of window.

Macintosh Toolbox Interface 9-9

Window Manager

Example: (defun inGrowHandler (win startPt)
(let ((sizeRect (make-instance 'tb:rect
:top 100 :bottom 300
:left 100 :right 300)))
(multiple-value-bind (newHeight newWidth)
(tb: !GrowWindow win startPt sizeRect)
(when (and (/= 0 newHeight) (/= 0 newWidth))
;; then new values aren't 0, so the size DID change
(tb:!SizeWindow win newWidth newHeight t)))))

swidth Method of tb:Window
:height Method of th: Window

Return the width and height of the window, respectively.
tb:!SizeWindow window width height fUpdate [I-290] Function

Resizes window to width and height. If fUpdate is true, any newly
created part of the content's region is put into the update region.

Update Region 9.6 These routines control the areas that will be affected during an
Maintenance update event.

sinval ' Method of tb:Window

Adds the entire portRect of self into the update region of the window
whose grafPoxt is the current port. |

sinval Method of th:Rect

tb:!InvalRect rect [I-291] Function
Add rect into the update region of the window whose grafPort is the
current port.

:inval Method of th:Region

tb:!InvalRgn region [1-291] Function
Add region into the update region of the window whose grafPort is the
current port.

:valid Method of th:Rect

th:!ValidRect rect [1-292] Function
Remove rect from the update region of the window whose grafPort is
the current port.

:valid Method of tb:Region

tb:!ValidRgn region [I-292] Function

Remove region from the update region of the window whose grafPort is
the current port.

9.10 ‘ V Macintosh Toolbox Interface

Window Manager
tb:!BeginUpdate window _ [I-292] Function
tb:!EndUpdate window [I-293] Function

Call tbh:!BeginUpdate upon receipt of an update event for window.
Call th:!EndUpdate when you are finished handling an update event

for window.
Miscellaneous 9.7 The following section outlines the miscellaneous Window -
Routines Manager routines.
th:!SetWRefCon window longint [I-293] Function
th:!GetWRefCon window [I-293] Function

You should never need to use these traps. If you need to store
additional information about a window, create a new flavor of window
that contains any additional fields required.

tb:!SetWindowPic window picture [I-293] Function

Stores picture in the window record of window so that when the
window's contents are to be drawn, the Window Manager draws picture
instead of generating an update event.

tb:!GetWindowPic window [1-293] Function
Retumns any picture handle that may be associated with window.

:pin Method of tb:Rect
tb:!PinRect rect point [I-293] Function

Retumns two values indicating the vertical and horizontal coordinates of
the point within the rectangle rect that is closest to the point point. The

method is faster than the function.

:dragGray point &key :limitRect :slopRect :axis Method of th:Region
:actionProc

tb:!DragGrayRgn region point limitRect slopRect axis [I-294] Function
actionProc

Pulls a dotted gray outline of the region around following the
movements of the mouse until the mouse button is released. All points
and rectangles are in the local coordinates of the current grafPort. The
axis value should be one of the constants tb:!noConstraint,
tb:'hAxisOnly, or th:!vAxisOnly as described below. The
actionProc should always be tb:!nilPtr. If the mouse button is
released within slopRect, the function returns multiple values dh and dv.
If the mouse button is released outside slopRect both returned values are
-32768 (#x8000). Refer to Inside Macintosh for details.

Macintosh Toolbox Interface 9-11

Window Manager

tb:!noConstraint [1-295] Constant
th:!'hAxisOnly [I-295] Constant
tb:!vAxisOnly ' [1-295] Constant

These three constant are used as axis arguments to Window Manager
and Control Manager functions which may wish to constrain mouse
movement in some way. The choices are unconstrained motion,
horizontal motion only, or vertical motion only.

Example: tb: ; with this, we don't have to prefix everything with tb:

th:

(defun test-draggrayrgn ()
(let ((event (make-instance 'EventRecord))
(pt (make-instance 'Point))
(w (make-instance 'Window
:title "Press any key to exit™"
:boundsrect (make-instance ‘Rect
:left 50 :top 50
:right 350 :bottom 300)))
slopr r drgrgn rgn)
(!SetPort w)
(setf slopr (send (send w :portrect) :inset 50 50))
(send slopr :frame)

(setf r (send (send (make-instance 'Rect) := slopr)
:inset 50 50))

(setf rgn (send (make-instance ‘'Region) := r))

(send rgn :union (send r :offset 25 25))

(setf drgrgn (make-instance ‘'Region))

(send rgn :£i1l1)

(catch 'EVENT-LOOP-EXIT

(loop ;throw to EVENT-LOOP-EXIT to exit this loop
(when (!WaitNextEvent !everyEvent event 10
tnilRgn)

;;then we have an event we are supposed to process
(case (the fixnum (send event :what))
(#.!mouseDown
(!GlobalTolLocal (send pt := event))
(when (send rgn :inside-p pt)
;;then mouse clicked inside our region
(send drgrgn := rgn)
(multiple-value-bind (dy dx)
" (send drgrgn :dragGray
pt :sloprect slopr)
(when (and (not (= 0 dx dy))
(not (= #x8000 dx dy)))
;;then it was moved and it stayed in bounds
(send (send (send rgn :erase)
:offset dx dy) :£il1)))))
(#.!keyDown
;;@ key was pressed, that's our signal to quit
(send w :dispose)
(throw 'EVENT-LOOP-EXIT nil))))))))

!GetGrayRgn [V-208] Function

Retums the current desktop region.

9-12

Macintosh Toolbox Interface

t

b:!SetDeskCPat pixPat

Window Manager

[V-210] Function

Sets the desktop pattem to the given pixel pattern.

Low-Level

Routines

9.8 These are all low-level Window Manager traps and are unlikely

ever to be used. See Inside Macintosh for more details.

tb:!CheckUpdate
th:!ClipAbove
tb:!SaveOld
tb:!DrawNew
tb:!PaintOne
tb:!PaintBehind
tb:!CalcVis
tb:!CalcVisBehind

Color W
Manager

th:!SetWinColor window CTabHandle

indow 9.9 These traps control the color characteristics of a given window.

Traps

[V-207] Function

Sets the window's color table. If window has no auxiliary window
record, a new one is created with CTabHandle and added to the head of
the auxiliary window list. If window has an auxiliary window record,
its contents are replaced by CTabHandle. After setting the window's
color table, the window is automatically redrawn in the new colors.

th:WinCTab

:set-content.value partCode
:set-frame.value partCode

[V-202] Flavor

This flavor defines a color window color table. All fields must be

individually set after instantiation.

:set-text.value partCode

:set-hilite.value partCode
:set-titlebar.value partCode

Method of tb: WinCTab
Method of tb: WinCTab
Method of tb: WinCTab
Method of tb:WinCTab
Method of th: WinCTab

These methods initialize partCodes for the color table and must be set to
the constants th:!wContentColor, th:!wFrameColor,
tb:!wTextColor, tb:!wHiliteColor, and tb:!wTitleBarColor

respectively.

:content.red
:content.blue
:content.green

:set-content.red /6b-unsigned-integer
:set-content.blue 16b-unsigned-integer
:set-content.green /6b-unsigned-integer

Method of tb:WinCTab
Method of tb:WinCTab
Method of th:WinCTab
Method of tb:WinCTab
Method of tb: WinCTab
Method of tb: WinCTab

These methods handle the RGB color for the window background.

Macintosh Toolbox Interface

9-13

Window Manager

:frame.red Method of th: WinCTab
:frame.blue Method of th:WinCTab
:frame.green Method of tb: WinCTab
:set-frame.red 16b-unsigned-integer Method of th:WinCTab
:set-frame.blue /6b-unsigned-integer Method of th: WinCTab
:set-frame.green /6b-unsigned-integer Method of th:WinCTab

These methods handle the RGB color for the window frame.

itext.red Method of th:WinCTab
:text.blue Method of th:WinCTab
stext.green Method of th:WinCTab
:set-text.red 16b-unsigned-integer Method of th:WinCTab
:set-text.blue 16b-unsigned-integer Method of tb: WinCTab
:set-text.green /6b-unsigned-integer Method of th: WinCTab

These methods set the RGB color for window text.

shilite.red Method of tb:WinCTab
:hilite.blue Method of th:WinCTab
shilite.green Method of th:WinCTab
:set-hilite.red 16b-unsigned-integer Method of tb:WinCTab
:set-hilite.blue 16b-unsigned-integer Method of th:WinCTab
:set-hilite.green 16b-unsigned-integer Method of th: WinCTab
These methods set the RGB color for the hilite lines in the title bar when
the window is highlighted.
:titleb'ar.red Method of th:WinCTab
stitlebar.blue Method of tb:WinCTab
:titlebar.green Method of th:WinCTab
:set-titlebar.red /6b-unsigned-integer Method of th:WinCTab
:set-titlebar.blue 16b-unsigned-integer Method of th: WinCTab
:set-titlebar.green 16b-unsigned-integer Method of th:WinCTab
These methods set the RGB colors for the (unhighlighted) title bar
background.
:ctsize Method of th:WinCTab
:set-ctsize integer Method of tb:WinCTab

The number of partCodes in the table less one.

tb:!wContentColor [V-204] Constant
tb:!wFrameColor [V-204] Constant
tb:!'wTextColor [V-204] Constant
tb:!wHiliteColor [V-204] Constant
tb:!'wTitleBarColor [V-204] Constant

These constants serve as partCode identifiers for the window color table
structure. In particular, they are the initial values of the
:content.value, :frame.value, :text.value, :hilite.value, and
:titlebar.value instance variables of the tb:winCTab flavor,
respectively.

9-14

Macintosh Toolbox Interface

Window Manager

th:!GetAuxWin window AuxWinRec [V-207] Function
Sets AuxWinRec to be the window's auxiliary window record. If
window has an auxiliary record, th:!GetAuxWin returns true. If
window does not have an auxiliary record, th:!GetAuxWin returns
false and sets AuxWinRec to the default auxiliary record. If window is
tb:!nilPtr, tb:!GetAuxWin returns true and AuxWinRec becomes
the default record.

tb:AuxWinRec [V-201] Flavor
Creates a new, uninitialized auxiliary window record object.

:awnext Method of th:AuxWinRec
:set-awnext AuxWinHandle Method of tb:AuxWinRec

Handle of next record on the list.

cawowner Method of th:AuxWinRec
:set-awowner WindowPtr - Method of tb:AuxWinRec

Pointer to this window's owner window.

:awctable Meéthod of th:AuxWinRec
:set-awctable CTabHandle Method of th:AuxWinRec

Handle to window's color table.
:awrefcon Instance Variable of tb:Auf(WinRec
This instance variable is reserved for the application's use.
th:!GetWVariant window [V-208] Function

Returns the variant code for window.

Macintosh Toolbox Interface 9-15

Chapter 10
CONTROL MANAGER

Introduction 10.1 A control is an object in a window that is selected by pressing
the mouse button while the cursor is within the bounds of the object.
This either causes an immediate action or changes the value of a
program parameter which will have some later effect. The Control
Manager is used to create, change, and dispose of controls. There are
four predefined controls: buttons, check boxes, radio buttons, and
scroll bars. See the illustration below for examples of each of these
items.

[]Check Box 1 (O Radio Button 1
X1 Check Box 2 () Radio Button 2

K Check Box 3 @ Radio Button 3

Scroll Bar

The available controls are identified by integer procIDs which have the
following symbolic names in the Toolbox Interface:

tb:!pushButProc [I-315] Constant

A button is used when you want the reaction to occur immediately after
the mouse button has been pressed.

tb:!checkBoxProc : [1-315] Constant
tb:!radioButProc [I-315] Constant

Check boxes ; and radio buttons are generally arranged in groups and
are used to display settings. The difference between them is that only
one radio button of a group can be "on" at a given time, whereas any or
all check boxes in a group can be "on" at the same time.

th:!scroliBarProc [1-315] Constant

Scroll bars ; enable the user to change the part of the window that is

displayed. They are used when the contents of a window are bigger
than the window's display area.

tb:!useWFont [I-315] Constant

Add this constant to tb:!pushButProc, tb:!checkBoxProc,
tb:!radioButProc, or tb:!scroliBarProc to create a procID which
will use the window's grafPort font for annotating the control.

Macintosh Toolbox Interface 10-1

Control Manager

Initialization 10.2 These routines create and dispose of controls.
and Allocation

tb:ControlRecord [I-317] Flavor

This flavor defines a new control according to its initialization options.
An instance of this flavor may be used anywhere a ControlHandle is
called for.

NOTE: Since controls belong to windows, make sure that when
creating a control there is a window present.

:theWindow pointer Init Option of tb:ControlRecord
cowner Method of tb:ControlRecord

This is the pointer to the window which this control belongs to. The
default is the frontmost window.

¢boundsRect rect Init Option of tb:ControlRecord
stop . Method of tb:ControlRecord
:bottom : Method of th:ControlRecord
:left Method of th:ControlRecord
:right : Method of th:ControlRecord

This is a rectangle defined in the containing window's local coordinates
of where this control will appear. The default is the rectangle defined
by (50 50 100 100). The rect argument is a tb:Rect instance of a list of
four integers defining the corners of the rectangle. The methods
correspond to the tb:Rect instance variables.

:title string Init Option of th:ControlRecord
stitle Method of th:ControlRecord
:set-title StringPointer Method of th:ControlRecord

This is a string of up to 255 characters which becomes the title of the
control. The string may be empty. If it is too long, it is truncated. The
default is "Control Title".

:visible visible-p Init Option of tb:ControlRecord
:vis Method of tb:ControlRecord
:set-vis byte Method of th:ControlRecord

If this option is true, then the control will be visible. For the
initialization option, true is non-nil. For the methods, true is 1 and
false is 0. The default is true.

10-2 Macintosh Toolbox Interface

Control Manager

:value 16b-integer Init Option of th:ControlRecord

:min /6b-integer Init Option of tb:ControlRecord
:max]6b-integer Init Option of th:ControlRecord
:value Method of tb:ControlRecord
:min Method of tb:ControlRecord
:max Method of th:ControlRecord
:set-value I6b-integer Method of tb:ControlRecord
:set-min /6b-integer Method of th:ControlRecord
:set-max 16b-integer Method of tb:ControlRecord

These specify the integer initial value, the maximum value, and the
minimum value allowed for this control. Default is the range of 0..10
with an initial value of 0.

:proclD 16b-integer Init Option of th: ControlRecord

This integer value defines the type of control. The standard types (push
buttons, radio buttons, check boxes, and scroll bars) are represented by
the constant symbols tb:!pushButProc e al. defined above. The
default is a push button.

:refCon 32b-integer Init Option of tb:ControlRecord
:refCon Method of tb:ControlRecord
:set-refCon 32b-integer Method of tb:ControlRecord

This is a 32-bit integer reserved for the application's use. A hook such
as this is needed in C or Pascal environments; but a better alternative on
the microExplorer is to define a new flavor which uses
tb:ControlRecord as a mixin and then add your extra instance
variable to that.

:defProc Method of th:ControlRecord
:set-defProc handle Method of tb:ControlRecord

This is a handle to the Macintosh function which defines this control.

:controlAction Method of thb:ControlRecord
:set-controlAction procPointer Method of tb:ControlRecord

This is a pointer to the control's default action procedure.
‘next Method of tb:ControlRecord
This is a handle to the next control.

shilite Method of thb:ControlRecord
:set-hilite partCode Method of th:ControlRecord

This is the control partCode to be highlighted. A value of 255 means
that all controls are shown as inactive.

Macintosh Toolbox Interface 10.3

Control Manager

th:!NewControl theWindow boundsRect title visible value [I-319] Function
min max proclD refCon

Creates a new control of type procID, associated with the window
theWindow, and returns a handle ControlHandle to this new control. It
is bound by the rectangle boundsRect and has the title name title. It can
have a range of values from min to max, with its initial value being that
specified in value.

To set up a simple push button, do the following:

Example: (setf controlRect
(make-instance 'tb:rect :left 23 :top 79
:right 95 :bottom 97))
(setf myControl (tb:!NewControl myWindow controlRect
"OK" t 100 0 100 0 0))

th:!GetNewControl controlID theWindow [1-321] Function

This trap operates in the same manner as tb:!NewControl except that
it gets the control definition information from a resource of type
"CNTL" with a resource ID controllID.

:dispose Method of th:ControlRecord
tb:!DisposeControl theControl ’, [I-321] Function

Dispose of the control theControl and remove it from the control list and
releases any memory it uses.

tb:!KillControls theWindow : ' [1-321] Function

Disposes of all the controls associated with the window theWindow.
The traps th:!CloseWindow and tb:!DisposeWindow
automatically dispose of any controls associated with the window.

Control Display 10.3 These procedures affect the appearance of a control but not its
size or location.

tb:!SetCTitle theControl title [I-321] Function
Set the title string of theControl to title. (See also :set-title method.)

tb:GetCTitle theControl [1-321] Function
tb:!GetCTitle theControl VAR title [I-321] Function

tb:GetCTitle returns the title string of the control theControl.
tb:!GetCTitle is similar except that title is modified to be the title
string. (See also :title method.)

Example: (tb:!GetCTitle myControl (VAR title))
title => "A new title"

10-4 Macintosh Toolbox Interface

Control Manager

shide Method of tb:ControlRecord

tb:!HideControl theControl [1-322] Function
Make theControl invisible.

:show Method of tb:ControlRecord

th:!ShowControl theControl [I-322] Function
Make theControl visible.

tb:!DrawControls theWindow [I-322] Function
Draws all the controls associated with theWindow.

tb:!DrawlControl theControl [IV-53] Function
Draws theControl if it is visible within the window.

tb:!HiliteControl theControl hiliteState [1-322] Function
Highlights theControl according to the state specified in hiliteState. See
Inside Macintosh for additional information on #iliteState.

tb:!UpdtControl theWi_ndow update [TV-53] Function

Draws all the controls associated with the window theWindow that are
in the update region update.

Mouse Location

10.4 These routines handle the various responses to pressing a mouse
button. ' .

tb:FindControl thePt theWindow [I-323] Function
tb:!FindControl thePt theWindow VAR whichControl [I-323] Function

tb:FindControl is called when a mouse-down event is recorded in the
content region of a window; this trap checks to see if thePt is inside any
of the active controls associated with theWindow. If the event
happened while the mouse was inside a control, the trap returns two
values: the partCode for the part of the control the point is in and the
control's handle.

th:!FindControl is similar to th:FindControl except that
whichControl is modified to be the partCode and no value is returned.

The tb:!FindControl and th:FindControl traps expect the mouse
position in local coordinates, whereas the Window Manager
tb:!FindWindow and tb:FindWindow traps expect the mouse
position in global coordinates. You must convert the mouse position's
coordinate system using the QuickDraw trap tb:!GlobalToLocal.

Macintosh Toolbox Interface

10-5

Contiol Manager

tb:!inButton

[I-316] Constant

tb:!inCheckBox [I-316] Constant
th:!inUpButton [I-316] Constant
tb:!inDownButton [1-316] Constant
th:!inPageUp [I-316] Constant
tb:!inPageDown [I-316] Constant
tb:!inThumb [I-316] Constant

These constants name the standard control types as returned by
tb:!FindControl and tb:FindControl.

tb:!inButton - Simple push button.
tb:!inCheckBox - Check box or radio button.
tb:!inUpButton - The up arrow of a scroll bar.
th:!inDownButton - The down arrow of a scroll bar.

tb:!inPageUp - The page-up region of a scroll bar.

tb:!inPageDown - The page-down region of a scroll bar.

tb:!inThumb - The thumb region of a scroll bar.
th:!TrackControl theControl startPt actionProc [1-323] Function

If tb:!FindControl or tb:FindControl returns a partCode, call the
trap th:!TrackControl to track the mouse. This involves calling a
track action procedure, the type of action depending on what type of
control theControl is.

For example, a mouse-down event in the thumb of a scroll bar, calls a
procedure which outlines the thumb while the mouse button is still
down. tb:!TrackControl returns when the user lets up the mouse
button. th:!TrackControl returns either the partCode returned by
tb:!FindControl, or 0, which means the user moved the mouse out of
the control before releasing the mouse button. In the latter case, the
program should do nothing. Pass tb:!nilPtr in actionProc.

tb:!TestControl theControl thePoint [1-325] Function

Returns the partCode of the part of the control theControl that the point
thePoint is in.

Control
Movement and
Sizing

10.5 These routines are called when moving, dragging, or resizing a
control.

thb:!MoveControl theControl h v [I-325] Function

Moves the position of theControl to the point (h,v) in the local
coordinate system of its window, and draws theControl in its new
position.

10-6

Macintosh Toolbox Interface

Control Manager

th:!DragControl theControl startPt limitRect slopRect axis [I-325] Function
Drags a dotted outline of theControl starting at the point startPt and
draws theControl in its new position. This is similar to
tb:!DragGrayRgn.

tb:!SizeControl theControl width height [I-326] Function

Changes the size of theControl’s boundary rectangle to the new width
and height specified and redraws theControl.

tb:!SetCtlValue theControl theValue [I-326] Function

Set the current value of theControl to theValue and redraw theControl
with its new value. (See also :set-value method.)

th:!GetCtlValue theControl [I-326] Function
Returns the current value of theControl. (See also :value method.)
th:!SetCtIMin theControl minValue [1-326] Function

Sets the minimum value of theControl to minValue and redraws
theControl with its new minimum value. (See also :set-min method.)

th:!GetCtiMin theControl [I-327] Function
Rgtums the minimum value of theControl. (See also :min method.)
tb:!SetCtiMax theControl maxValue , [I-327] Function

Sets the maximum value of theControl to maxValue and redraws
theControl with its new maximum value. (See also :set-max method.)

th:!GetCtiMax theControl [I-327] Function

Retums the maximum value of theControl. (See also :max method.)

Miscellaneous 10.6 These routines set and return various fields of the control record.
Routines
tb:!SetCRefCon theControl data [1-327] Function

Sets the refCon field value of theControl to data.

tb:!GetCRefCon theControl [I-327] Function
Returns the value of the refCon field of theControl.

th:!SetCtlAction theControl actionProc [I-328] Function

Sets the field that contains a pointer to an action procedure of theControl
to actionProc.

Macintosh Toolbox Interface 10-.7

Control Manager

tb:!GetCtlAction theControl ‘ [I-328] Function
Returns a pointer to the action procedure of theControl.
th:!GetCVariant rheControl [V-222] Function

Returns the variant code of the color control theControl.

Control 10.7 When a new control is created inside a color window, a new

Manager Color color control is created and a color table is associated with it. The color

Tra table is created from the color table associated with the color window
raps and can be modified using the trap tb:!SetCtlColor.

If the control was created using the trap tb:!GetNewControl, and
there is a "cctb" (control color table) resource with the same resource ID
as the "CNTL" resource used to created the control, then the control
color table specified by the "cctb" resource is used to create the color
table for the new control.

tb:!SetCtlColor theControl newColorTable [V-222] Function

"Sets theControl's color table to be newColorTable.

Example: (setf cTab (tb:!GetCTable 127))
(tb:iSetCtlColor myControl cTab)
th:!GetAuxCtl rheControl achndl [V-222] Function

Sets acHandl to be the auxiliary control record for the color control
theControl. If theControl used the default colors, th:!GetAuxCtl
returns false. If theControl has its own color table or if theControl is
th:!nilPtr, tb:!Get AuxCtl returns true.

10-8 Macintosh Toolbox Interface

Chapter 11
MENU MANAGER

Introduction 11.1 The Menu Manager is used to:

Create menus

Build menu bars

Modify the properties of menus
Modify the properties of menu items
Dispose of the menus

Allow the user to choose from a menu

Menu bars are formed from a list of menus. Menus consist of a title and
a list of menu items.

Meiwu TSLES Hilited ltems
./
% _File" Edit view |BENCIN <«
. Clean Up -
Enabled items | Emply Jrash 4
p1 °
Erase Disk 4
et Startup 4Menu tems

. . -
Disabled tems | . \einisindor.. .

Shut Down ¢
Initialization 11.2 These routines create and dispose of menus.
and Allocation
tb:!InitMenus v [I-351,V-243] Function

Initializes the Menu Manager. You will never need to call this trap as it
is called for you when you launch a TbServer.

tb:Menulnfo . [I-345] Flavor

This flavor defines a menu.

:menulD 16b-integer Init Option of tb:Menulnfo
:menulD Method of th:Menulnfo
:set-menulD 16b-integer Method of th:Menulnfo

This is the menu ID. It must be unique within an application. The ID
may be the same as its own "MENU" resource ID, if any, but it must
not be the same as any other resource ID being used. The default is 50.

Macintosh Toolbox Interface - : 11-1

Menu Manager

:menuTitle string Init Option of th:Menulnfo

This is the ﬁde string of the menu. The default is "Menu".

:menuWidth Method of tb:Menulnfo
:set-menuWidth pixels Method of tb:Menulnfo
:menuHeight Method of tb:Menulnfo
:set-menuHeight pixels Method of tb:Menulnfo

These are the menu's width and height measured in pixels.

:menuProc Method of th:Menulnfo
:set-menuProc handle Method of tb:Menulnfo

This is the handle to the menu's definition procedure.

:menuEnableFlags Method of th:Menulnfo
:set-menuEnableFlags 32b-integer Method of tb:Menulnfo

This is a 32-bit integer composed of 32 boolean flags. Bit 0 is set if the
menu itself is enabled. Bits 1 though 31 are set if the corresponding

menu item is enabled.
:menuData Method of th:Menulnfo
:set-menuData string Method of tb:Menulnfo
This is a string of up to 255 characters containing the menu title and
other data.
The following example demonstrates the creation of a new Menulnfo
instance: -
Example: (setf myMenu (make-instance 'tb:menuinfo :menuID 128
:menuTitle "Sample Menu"))
tb:!NewMenu menulD menuTitle [I-351] Function

Allocates memory for a new menu and returns a handle to it. The new
menu has the title specified in the string menuTitle and the menu ID
specified in the integer menulD. The preferred method for creating new
menus is to make an instance of tb:Menulnfo.

To create a menu with a menu ID of 128 and a title "Sample Menu," do

the following:
Example: (setf myMenu (tb:!NewMenu 128 "Sample Menu"))
th:!GetMenu resourcelD [1-351,V-243] Function

Uses the information in a "MENU" resource, with a resource ID
specified by the integer resourcelD, to create a new menu and returns a
handle to the menu.

11-2

Macintosh Toolbox Interface

:dispose

Menu Manager

Method of th:Menulnfo

tb:!DisposeMenu menu [I-352] Function

Dispose of menus created by tb:!NewMenu. For menus created by
tb:!GetMenu, use tb:!ReleaseResource.

NOTE: Remove the menu from the menu list using the trap
th:!DeleteMenu before disposing of it. '

Forming the

11.3 These procedures form new menus.

Menus
:appendltem data Method of th:Menulnfo
tb:!AppendMenu menu data [1-352,V-243] Function
Append the string data to the menu indicated in menu. Call these traps
repeatedly to add to menus. To add three menu items to a previously
created menu named myMenu, do the following:
Example: (tb: lAppendMenu myMenu "FirstItem;SecondItem;ThirdItem")

The trap also recognizes meta characters which control the appearance
of the menu items. The presently defined meta characters are:

x;y separates menu items x and y in the data string. For example, the
above example would have created a three line menu.

An prefixes an icon number », indicating that the icon should appear
in the menu with the item.

- creates a dividing line between items.

!¢ indicates that the menu item is to be marked with the character ¢
that follows.

<c indicates that the character c that follows specifies the character
style of the menu item. The allowed character styles are:

B Bold

| Italic

U Underline
O Outline

S Shadow

/e associates a keyboard equivalent with the character c that follows.

(x disables the following menu item x in the data string.

Macintosh Toolbox Interface

11.3

Menu Manager

To add an item which is disabled, has icon 128, is in italics, and has
command key equivalent M, do the following:

Example: (tb: !AppendMenu myMenu " (Messy Item~128<I/M")
th:!AddResMenu menu resType [I-353,V-243] Function

Adds to a menu, using the resource names of all the resources of
resType in all the open resource files. To add to the standard Apple
-menu, which consists of all the available desk accessories, do the

following:

Example: (setf appleMenu (tb:!NewMenu 128 "Apple™))
(tb: !AddResMenu appleMenu "DRVR")

tb:!InsertResMenu menu resType afteritem [1-353,V-243] Function

This trap is the same as th:! AddResMenu except it adds the resource
names starting after the menu item with the index afterltem (an integer)
in menu. If afterltem is 0, it adds before the first menu item. If
afterltem is larger than the number of items in the menu, the new item is

added after the last menu item.
Forming the 11.4 These procedures create, modify, and delete menus and menu
Menu Bar - bars.
th:!InsertMenu menu beforelD - [1-353,V-244] Function

Inserts menu into the menu list before the menu whose menu ID is
beforelD. If beforelD is 0, menu is inserted at the end. To msert the
menu created in the example for th:! AppendMenu do:

Example: (tb:!InsertMenu myMenu 0)

tb:!DrawMenuBar [1-354,V-244] Function .

Redraws the menu bar and includes any changes that have been made
since the last tb:!DrawMenuBar.

tb:!DeleteMenu menulD : [I-354] Function
Removes the menu whose menu ID is menulD from the menu bar.

tb:!ClearMenuBar [1-354,V-247] Function
Removes all the menus from the menu list.

tb:!GetNewMBar menuBarID ‘ [1-354,V-247] Function
Creates a menu bar from a previously defined "MBAR" resource, which

has a resource ID of menuBarID, and returns a handle to the new menu
bar.

11-4 Macintosh Toolbox Interface

Menu Manager

tb:!GetMenuBar " [I-355] Function

Creates a copy of the current menu bar and retumns a handle to it.

tb:!SetMenuBar menuList [I-355] Function

Sets the current menu list to the given menu list.

Choosing From
a Menu

11.5 These procedures control the functions related to the selection of
menu items: exposing menus, highlighting menu items, etc.

tb:!MenuSelect startPoint [I-355,V-244] Function

This trap is called when there is a mouse-down event in the menu bar.
The value of startPoint is extracted from the where field of the event
record returned by the Event Manager trap tb:!GetNextEvent. The
trap draws the menu and highlights the selected menu item. The menu
ID and the menu item number are returned when the mouse button is
released. tbh:!MenuSelect is an unusual trap because it does a
multiple value return. To call this trap, do:

Example: (multiple-value-bind (menuID menuItemNumber)
(tb: IMenuSelect *event*)
(when (/= 0 menulD)
(MenuItemHandler menulD menultemNumber)))
The variable menulD is set to the selected menu's menu ID, and
menultemNumber to the selected menu item's item number. Notice we
used *event* instead of a point, since tb:Point is a mixin of
tb:EventRecord.
tb:!MenuKey character : [1-356,V-244] Function

The Menu Manager allows you to associate a key on the keyboard with
an item in the menu bar. Instead of having to select a menu item with
the mouse, you can select a menu item by pressing the Command Key
and the key associated with the menu item.

To handle keyboard equivalents (a command character key
combination), call the trap th:!MenuKey whenever you receive a
KeyDown event and the th:!cmdKey flag is set in the modifier field of
the event record.

If there is a menu item associated with the key, the trap returns two
values: the menu's menu ID and menu item number. If there is no
menu item associated with the key, the trap returns a menu ID of zero.

Macintosh Toolbox Interface

11-5

Menu Manager

Example: (when (tb:!cmdKey-p (send *event* :modifiers))
(multiple~value-bind (menuID menultemNumber)
(tb: !MenuKey (send *event* :messageChar)))
(when (/= 0 menulD)
(MenuItemHandler menulD menultemNumber))))

tb:!HiliteMenu menulD [1-357,V-244] Function

Highlights the title of the menu specified in menul/D. Call
tb:!HiliteMenu 0 after th:!MenuSelect or th:!MenuKey to
dehighlight the selected menu.

tb:!MenuChoice [V-240] Function

Called if the tb:!MenuSelect trap returns 0. It determines if the
mouse button was released while inside a disabled item. If so, it retums
two values: the menulD and menultem number of the disabled item.

tb:!PopUpMenuSelect menu top left popUpltem [V-241] Function

Draws the pop-up menu whose handle is menu, at the vertical position
top and horizontal position left (in global coordinates), highlighting the
menu item popUpltem. Returns the menu item and menu ID of the
menu item selected.

Controlling the 11.6 These routines create, modify, and delete individual items
Appearance of appearing on a given menu.

an Item

tb:!Setltem menu item itemString [I-357] Function

Changes the text of the menu item in item to itemString.

Example: ;3; Change the second item.

(tb:!SetItem myMenu 2 "New Item")
tb:Getltem menu integer [I-358] Function
tb:!Getltem menu integer VAR itemString [1-358] Function

tb:GetItem returns the text of the menu item in item. tb:!Getltem is
similar except it modifies itemString to be the menu item text.

Example: (tb:GetItem myMenu 2) => "New Item"
(tb:!GetItem myMenu 2 (VAR itemString))
itemString => "New Item"
tb:!InsMenultem menu itemString item [IV-55] Function

Inserts the item itemString after the item number item in menu.

11-6 Macintosh Toolbox Interface

Menu Manager

:deleteltem Method of th:Menulnfo
tb:!DelMenultem menu item [IV-56] Function

_ Delete the itern numbered item from menu.
tb:!Disableltem menu item [1-358,V-246] Function
- Disables (makes unselectable) the menu item number item in menu.
tb:!Enableltem menu item [1-358,V-246] Function
Enables (makes selectable) the menu item number item in menu.
tb:!CheckItem menu item checked [I-358] Function

Puts a checkmark on menu item item in menu if checked is true. It
removes the checkmark if checked is false.

th:!commandMark ,‘ [1-220] Constant
th:!checkMark [I-220] Constant
tb:!diamondMark [I-220] Constant
tb:!appleMark [1-220] Constant

These four characters are used as item marks in menus and elsewhere.
Notice that these constants represent character objects on the
microExplorer rather than character codes as in C.
~ tb:!SetItemMark menu item character [1-359,V-246] Function
) Places character before the menu item item in menu.

To set the mark of the menu item numbered myltem in the menu
myMenu to diamondMark, do the following:

Example: (tb:!SetItemMark myMenu 3 tb:!diamondMark)
tb:GetltemMark menu item [1-359,V-246] Function
tb:!GetltemMark menu item VAR character [1-359,V-246] Function

tb:GetIltemMark returns the marking character of the menu item item
of menu. tb:!GetltemMark is similar except that it updates character
with the marking character.

Example: (tb:GetItemMark myMenu 3) => #\x
(tb:!GetItemMark myMenu 3 (VAR itemMark))
itemMark => #\x

tb:!SetIltemIcon menu item iconiD [I-359,V-246] Function

Searches the open resource files for the icon numbered iconID and sets
the item icon of the menu item item in menu to the new icon.

Macintosh Toolbox Interface 11.7

Menu Manager

th:GetltemIcon menu item [1-360,V-246] Function
tb:!GetltemIcon menu item VAR iconlD [1-360,V-246] Function

tb:GetltemlIcon returns the icon number of the item icon of the menu
item item in the menu menu. tbh:!Getltemlcon is similar except that it
modifies iconID to be the icon number.

Example: (GetItemIcon myMenu 1) => 10
(tb:!GetItemIcon myMenu 1 (VAR icon))
icon => 10

tb:!SetitemStyle menu item style [I-360] Function

Changes the character style of the menu item item to style. The
currently defined styles are: th:!Boid, tb:!Italic, th:!Underline,
tb:!Outline, thb:!Shadow, tb:!Condense, and tb:!Extend.
These styles can be summed to specify, say, bold italic.

To set an item to underline and italics, do the following:

Example: (setf chStyle (+ tb:!Underline tb:!Italic))

(tb:!SetItemStyle myMenu 1 chStyle)
th:GetltemStyle menu item [I-360,V-247] Function
th:!GetitemStyle menu item VAR style [1-360,V-247] Function

tb:GetltemStyle returns the character style of menu item item.
th:!GetltemStyle is similar except that it modifies style with the
character style.

Example: (GetItemStyle myMenu 1) => 3
(tb:!GetItemStyle myMenu 1 (VAR chStyle))
chStyle => 3

tb:GetltemCmd menu item [V-240] Function
th:!GetltemCmd menu item VAR cmdChar [V-240] Function

tb:GetItemCmd returns the Command Character (the Menu
KeyBoard equivalent) of the menu item number item in the menu whose
handle is menu. th:!GetltemCmd is similar except that it modifies
cmdChar to be the Command Character.

tb:!SetltemCmd menu item cmdChar [V-240] Function

Sets the Command Character (the Menu KeyBoard equivalent) of the
menu item number item in the menu whose handle is menu to the

character specified in cmdChar.
Miscellaneous 11.7 These procedures perform miscellaneous functions relating to
Routines menus.

11-8

Macintosh Toolbox Interface

Menu Manager

tb:!CalcMenuSize menu [I-361] Function
‘ Recalculates the dimensions of menu. This is an internally used trap.
tb:!CountMItems menu [I-361] Function
Retumns the number of items in menu.
tb:!GetMHandle menulD [1-361] Function
Returns the handle of the menu specified by menulD.
tb:!FlashMenuBar menulD [I-361] Function

Inverts the title of the menu menulD. To flash the menu bar, do the
following:

Example: ;;; Flash the menu bar.
(tb:!FlashMenuBar 0) ; Invert to black.
(tb:!FlashMenuBar 0) ; Return to normal.

tb:!SetMenuFlash count [I-361] Function

Sets the number of times a menu item blinks when selected. This is
normally set from the Control Panel desk accessory.

Menu Manager 11.8 These routines control the color characteristics of menus and
~ Color Traps men bars. ‘
th:!InitProcMenu resourcelD [V-238] Function
This trap should only be called if the application has a custom menu bar
proc.
tb:!DelMCEntries menulD menultem [V-238] Function

Deletes entries from the menu color information table for the given
menulD and menultem.

tb:!GetMClInfo [V-239] Function

Retumns a copy of the current menu color information table.

NOTE: This is not the same type of structure as a color table. (See
Inside Macintosh Volume V, pages 231-234.)

tb:!SetMCInfo menuCTable [V-239] Function

Sets the current menu's color information table to menuCTable.

Macintosh Toolbox Interface 11-9

Menu Manager

tb:!DispMCInfo menuCTbl [V-239] Function
. Disposes of the menu color information table menuCTbl.
tb:!GetMCEntry menulD menultem [V-239] Function

Returns a pointer to the color information table entry for the menu item
menultem in the menu menulD.

th:!SetMCEntries numEntries menuCEntries [V-239] Function

Takes the pointer menuCEntries to an array of numEntries number of
color information records and adds the information to the current color
information table.

11-10 Macintosh Toolbox Interface

Chapter 12
TEXTEDIT

Introduction 12.1 TextEdit is a set of text editing routines. These routines allow
: you to write a simple text editor which supports cutting, copying, and
pasting. The TextEdit data structure is called a TextEdit Record (a
tb:TERec. This record contains all the information necessary to draw
the text: the font, the font size, where to draw it, and the text

characters.

Initialization 12.2 These routines initialize TextEdit, allocate handles for text, and
and Allocation dispose of unneeded memory.
tb:!TEInit [I-383] Function

Initializes TextEdit. You will never need to call this routine as it is
called for you automatically when you launch a TbServer.

th: TERec [1-377] Flavor

This flavor defines a TextEdit record data structure.

:destRect rect : Init Option of tb:TERec
:destRectTop Method of th:TERec
:destRectLeft B Method of th:TERec
:destRectBottom . Method of tb:TERec
:destRectRight _ Method of th:TERec

This is the destination rcctangle the rectangle in which the text is drawn

to fit. The coordinates are in the local coordinate system of the current
grafPort. The default is (50 50 100 100).

:viewRect rect Init Option of th:TERec
:viewRectTop Method of th:TERec
:viewRectLeft Method of th:TERec
:viewRectBottom Method of th:TERec
:viewRectRight Method of tb:TERec

This is the view rectangle, the area of the drawn text which is actually
shown. The coordinates are in the local coordinate system of the
current grafPort. The default is (50 50 100 100).

tb:TERec instances have the following additional instance accessor

methods:

« :LINEHEIGHT 24 [integer]
« :FONTASCENT ;26 [integer]
¢ :SELSTART 32 [integer]
» :SELEND ;34 [integer]
e :WORDBREAK ;38 [procptr]

Macintosh Toolbox Interface 12-1

TextEdit

:CLIKLOOP 42 [procptr] |

« JUST ;58 [integer]
¢ TELENGTH ;60 [integer]
« :HTEXT ;62 [handle]
¢ :CRONLY 72 [integer]
o TXFONT ;74 [integer]
« TXFACE ;76 [style]

e« TXMODE ;78 [integer]
 TXSIZE ;80 [integer]
e :INPORT 182 [grafptr]
« :NLINES 194 [integer]

th:!TENew destRect viewRect [1-383] Function

Returns a new TextEdit record which supports only a single font, size,
style, and color and which has a destination rectangle destRect and a
view rectangle viewRect. The destRect and viewRect are specified in
the local coordinates of the current port.

The TextEdit record is associated with the current grafPort. Remember
to set the current port to the port in which you want the text to appear.

:dispose Method of th:TERec
tb:!TEDispose hTE [I-383] Function

Dispose of the TextEdit record ATE.

' Access'ing the 12.3 The folloWing routines get and set the specified text.
Text of an Edit
Record

tb:!TESetText text length hTE [I-383] Function

Sets the text of the TextEdit record ATE to the first length characters in
the text buffer rext.

th:!TEGetText ATE [I-384] Function
Returns a handle to the text in the TextEdit record ATE.

Insertion Point 12.4 These routines control the placement and highlighting of text

and Selection selections.
Range '

tb:!TEldle hTE [I-384] Function

Causes a blinking caret to appear at the TextEdit record insertion point.
This trap should be called from the main event loop. You should call

12.2 Macintosh Toolbox Interface

TextEdit

this trap only when there is a TextEdit record associated with the active
window.

tb:!TEClick pt extend hTE [I-384] Function

Called when a mouse-down event is recorded in the content region of an
active window containing a TextEdit record. Set extend to T if the Shift
key is being held down.

The point pt should be in local coordinates, so call the QuickDraw trap

tb:!GlobalToLocal for the point, which is gotten from either

tb:!GetMouse or from the event record, before passing it to the trap.
tb:!TESetSelect selStart selEnd hTE [I-385] Function

Sets the selection range of the TextEdit record ATE to start at selStart
and end at selEnd. To make an insertion point, make selStart equal to

selEnd.

tb:!TEActivate hTE [I-385] Function
Called when you receive an Activate event for a window that has an
associated TextEdit record.

tb:!TEDeactivate hTE [I-385] Function

Called when you receive a Deactivate event for a window that has an
associated TextEdit record.

Editing 12.5 These routines are used to cut, copy, paste, insert, and delete
text.
tb:!TEKey key hTE [I-385] Function

Inserts the character key at the insertion point of the TextEdit record
hTE. If hTE's selStart is not equal to se/End (that is, a range of text is
highlighted), the text between selStart and selEnd is first deleted. This
trap is called when you receive a key-down event, and the current active
window has a TextEdit record associated with it.

Example: (tb: !TEKey (send *event* :MessageChar) myTEHandle)

tb:!TECut ATE [I-385] Function

Cuts the text from the TextEdit record ATE, starting at selStart and
ending at selEnd, and puts it in the TextEdit scrap.

tb:!TECopy ATE [I-386] Function

Copies the text from the TextEdit record ATE, starting at selStart and
ending at se/End, and puts it in the TextEdit scrap.

Macintosh Toolbox Interface 12-3

TextEdit

th:!TEPaste hTE [1-386] Function
Pastes the contents of the TextEdit scrap into the TextEdit record #TE at
its current insertion point. If hTE's selStart is not equal to selEnd (that

is, a range of text is highlighted), the text between selStart and selEnd is
first deleted.

tb:!TEDelete hTE [1-387] Function
Deletes the text from selStart to selEnd in the TextEdit record AhTE.

tb:!TEInsert text length hTE [I-387] Function
Inserts length number of characters from the buffer pointed to by text
into the TextEdit record ATE.
Example: :;; Output "hello world.” to a TERec
(setf hndl ; get a handle to string
(tb: !NewHandle "hello world."))
(tb: !'hLock hndl) ; lock the handle, then...
(setf text-ptr (tb:deref hndl)) ; dereference It into a ptr
(tb: !TEInsert text=-ptr 12 myTEHandle) ; output the string
(tb: !DisposHandle hndl) ; dispose of our handie

If you had started with a handle to a string rather than the string itself,
then lock and dereference that handle into a pointer as shown above.
When you are finished with this temporary pointer, then unlock it with
tb:!hUnlock rather than disposing of it.

Text Display 12.6 These routines and constants control the display of text.
and Scrolling

tb:!teJustLeft [1-376] Constant
tb:!teJustCenter [I-376] Constant
tbh:!teJustRight [I-376] Constant
tb:!teForceLeft [I-376] Constant

These constants are used as the just argument values in TextEdit
functions. They specify the justification of text.

th:!TESetJust ATE just : [I-387] Function
Sets the justification of the text in the TextEdit record hATE. The value
of the just argument should be one of the following: tb:!teJustLeft,
tb:!teJustCenter, th:!teJustRight, or th:!teForceLeft.

tb:!TEUpdate rUpdate hTE [I-387] Function

Called when an update event is received in the main event loop and there
is a TextEdit record associated with the current active window.

12-4

Macintosh Toolbox Interface

TextEdit

tb:!TextBox text length box just [I-388] Function
Draws length number of characters from the text buffer rext inside the
rectangle box with justification just. The value of the just argument
should be one of the following: tb:!teJustLeft, tb:!teJustCenter,
tb:!teJustRight, or b:!teForceLeft.

th:!TEScroll hTE dh dv [1-388] Function

Scrolls the text within ATE's view rectangle a distance of dh pixels
horizontally and dv pixels vertically.

tb:!TEPinScroll dh dv h [IV-57] Function

The same as th:!TEScroll except it stops scrolling once the last line
has scrolled into the view rectangle.

tb:!TEAutoView auto hTE [IV-57] Function
If auto is true, automatic scrolling is enabled. If quto is false, automatic
scrolling is disabled.

tb:!TESelView ATE [IV-57] Function

If the selection range of the TextEdit record ATE is not in the TextEdit
record's view rectangle, this trap scrolls the text.

Scrap Handling 12.7> These routines control your application's scrap handling.

tb:!TEFromScrap [1-389] Function
Copies the desk scrap to the TextEdit scrap.

tb:!TEToScrap [1-389] Function
Copies the TextEdit scrap to the desk scrap. You must call the Scrap
Manager trap tb:!ZeroScrap to clear the desk scrap first or this trap
will not work properly.

tb:!TEScrapHandle [1-389] Function
Returns a handle to the TextEdit scrap.

tb:!TEGetScrapLen [1-389] Function
Returns the length of the TextEdit scrap.

tb:!TESetScrapLen length [I-390] Function

Sets the length of the TextEdit scrap to length.

Macintosh Toolbox Interface 12-5

" TextEdit

Advanced 12.8 This routine is used in advanced applications only.
Routines
tb:!SetWordBreak wBrkProc hTE [1I-390] Function

Installs in the :wordBreak instance variable of ATE a special routine
which will call the word break routine pointed at by wBrkProc.

tb:!SetClikLoop clikProc hTE ‘ : [I-390] Function

Installs in the :clikLoop instance variable of ATE a special routine
which will call the click loop routine pointed at by clikProc.

tb:!TECalText hTE [I-390] Function

Recalculates the linestarts array of the TextEdit record ATE. This trap
should be called after doing anything that affects the number of
characters that can be displayed in a line, like resizing the destRect of
hTE.

12-6 Macintosh Toolbox Interface

Chapter 13
DIALOG MANAGER

Introduction 13.1 The Dialog Manager creates and manipulates a special type of
window used to get information to or from the user. If the window
requires the user to input information, it is know as a dialog box. If it
provides the user with information, it is known as an alert. One
example of a dialog box is the window that is brought up when you
select the "Save As..." menu item in a standard "File" menu. This
dialog box asks for the name of the new file.

Alerts are used to tell the user about errors or to provide some
information that the user can act upon: whether or not you want to
continue an operation, for example.

The specifications (templates) for dialog boxes and alerts are not easily
built using the Macintosh Toolbox. They are usually created with a
resource editor.

Initialization 13.2 These procedures initialize the Dialog Manager, set the sound
“associated with alerts, and set the font that will be used on text

appearing within a dialog box.
tb:!InitDialogs restartProc [I-411] Function

Initializes the Dialog Manager. You will never need to call this routine
because it is called for you when you launch a TbServer.

th:!ErrorSound soundProc [I1-411] Function

Sets the sound made by alerts to that defined in soundProc. Passing
th:!nilPtr turns off the sound.

th:!SetDAFont fontNum [I-412] Function

Sets the font appearing in the dialog box or alert to fontNum. This trap
effects only the text (static or editable) displayed in the dialog. It does

not effect the item titles.
Creating and 13.3 These routines create and dispose of dialog boxes.
Disposing of
Dialogs
tb:DialogRecord [I-408] Flavor

This flavor creates a dialog record. An instance of this flavor may be
used anywhere a dialog pointer is needed. This flavor mixes in the
tb:Window flavor.

Macintosh Toolbox Interface 13-1

Dialog Manager

:dStorage pointer Init Option of th:DialogRecord

This option controls memory allocation for the dialog box. If this value
is th:!nilPtr, the default, then a new dialog box is allocated on the
heap. Otherwise, this option must be a pointer to at least 176 bytes of
storage.

:boundsRect rect Init Option of th:DialogRecord

This option is a rectangle which controls the size and location of the
dialog box. The default is related to the screen size.

:title string Init Option of th:DialogRecord

This string becomes the title of modeless dialog boxes. Specify an
empty string as a title for modal boxes. The default is "New Dialog".

:visible visible-p Init Option of tb:DialogRecord
If this option is true, the dialog box will be visible when created. The
default is true.

:proclD integer Init Option of th:DialogRecord

This option speciftes the type of dialog box. Use one of the Window
Manager procIDs such as tbh:!documentProc (q.v.). The default is
tb:!documentProc. See Standard Types of Windows figure below
for an illustration of the available procIDs.

:behind windowPtr Init Option of tb:DialogRecord

This is a pointer to a window which this dialog box will appear behind.
If this option is th:!onePtr, which is the default, then the dialog box is
the frontmost window. -

:goAwayFlag goAway-p Init Option of tb:DialogRecord

If this option is true, then the modeless dialog boxes only will have a
close box in the window frame. The default is false.

:refCon 32b-integer Init Option of th:DialogRecord

This option is a 32-bit integer which is reserved for the application and
defaults to 0. A hook such as this is needed in C or Pascal
environments, but on the microExplorer a better way to attach
application-specific information to a dialog box is to mix
th:DialogRecord into your own flavor. You flavor then defines the
extra instance variables you need.

13-2

Macintosh Toolbox Interface

Dialog Manager

sitems handle Init Option of th:DialogRecord
items Method of tb:DialogRecord
:set-items handle Method of tb:DialogRecord

Handles to the dialog box's item list of controls. They default to an
empty handle and usually load from a resource.

itextH Method of th:DialogRecord
:set-textH TEHandle Method of tb:DialogRecord

Handles to the current editText item.

:editField ' Method of th:DialogRecord

:set-editField integer Method of th:DialogRecord
The editText item number -1. If there is no editText item in the dialog,
this value is -1.

:aDefltem Method of tbh:DialogRecord

:set-aDefltem integer Method of tbh:DialogRecord

This is the default button item number for modal dialogs and alerts.
The following is an example of how to create a DialogRecord object.

Example: (setf boundsRect
(make-instance 'tb:Rect :left 112 :top 55
cright 239 :bottom 108))
(setf myItems (tb:!GetResource "DITL" 128))
(setf myDialog (make-instance 'tb:DialogRecord
:boundsrect boundsRect :items myItems))

tb:!NewDialog dStorage boundsRect title visible procID [I-412] Function
behind goAwayFlag refCon items

Creates a new dialog box returning a dialog pointer. If you want to
allocate the memory for the dialog box (which must be at least 176 bytes
long), pass a pointer to this memory as dStorage. Most of the time you
won't, so just pass th:!nilPtr. The boundsRect is the rectangle that
defines the boundary of the new dialog window. The procID specifies
the type of dialog box required.

The pointer behind is used if you want the newly created dialog box to
be created behind an already existing window. Normally, you pass
tb:!onePtr and the dialog box is created in front of all the existing
windows. Items is a handle to the dialog items (also known as controls
or the item list) associated with the new dialog box. Items are usually
created with a resource editor and read in with the Resource Manager.

Macintosh Toolbox Interface 13-3

Dialog Manager

The dialog window types available are:

ERE=————— EBE———

documentProc 0 noGrowDocProc 4 rDocProc 16

dBoxProc 1 plainDBox 2 altDBoxProc 3

f==p=

5l

3
Standard Types of Windows
tb:!GetNewDialog dialogID dStorage behind [I-413,V-284] Function

Creates a new dialog box using information in a previously defined
"DLOG" resource which has a resource ID dialogID. If you want to
allocate the memory for the dialog box (which must be at least 176 bytes
long), pass a pointer to this memory as dStorage. Normally, you will
not, so just pass tb:!nilPtr. The behind argument is only used if you
want to display the new dialog box behind an existing window. The
usual value is tb:!onePtr.

tb:!CloseDialog dialog [I-413] Function

Disposes of the dialog box dialog, but does not dispose of the dialog
record or the item list. Use this trap if you passed a dStorage pointer
when you created the dialog box.

:dispose Method of th:DialogRecord
tb:!DisposDialog dialog [I-415] Function

Dispose of the dialog box dialog by calling th:!CloseDialog and then
release the memory occupied by the dialog's item list and dialog record.

Use this trap if you did not pass a dStorage pointer when you created
the dialog box.

13-4 . Macintosh Toolbox Interface

Dialog Manager

th:!CouldDialog dialogiD [1-415,V-284] Function
tb:!FreeDialog dialogID [1-415,V-285] Function

tb:!CouldDialog ensures that the "DLOG" resource which has a
resource ID dialogID is in memory and makes it unable to be purged.

th:!FreeDialog undoes the effect of th:!CouldDialog, allowing the
"DLOG" resource with the resource ID dialogID to be purged.

Handl ing 13.fl Thesp routines control the handling of events which occur within
Dialog Events a dialog window. .
tb:ModalDialog filterProc [I-415] Function
tb:!ModalDialog filterProc VAR itemHit [I-415] Function

tb:ModalDialog repeatedly gets and handles events in a modal dialog
window. When the trap detects a valid event inside a dialog item, it
returns the number of the item that was hit. Always pass tb:!nilPtr in
filterProc.

th:!ModalDialog is similar except that it modifies itemHit with the
number of the selected dialog item.

CAUTION: This trap assumes that the frontmost window
is a dialog window. It does not work if it is evaluated
from the Lisp Listener (it crashes!).

To handle a modal dialog box safely, do the following:

Example: tb:
(defun myModalDialog ()
(let* ((myDialogBox (!GetNewDialog dialogResID !nilPtr

tonePtr))
(itemHit (ModalDialog !nilPtr)))
(!DisposDialog myDialogBox)
) itemHit))
tb:!IsDialogEvent theEvent [I-416] Function

If your application includes any modeless dialog boxes, call this trap
from the main event loop after calling the function tb:!GetNextEvent
or th:!WaitNextEvent. This trap returns true if the event specified in
theEvent needs to be handled as part of a dialog. If the trap retumns true,
you should pass the event to the trap tb:!DialogSelect for it to
handle. See Inside Macintosh for more details.

tb:DialogSelect theEvent [1-417] Function
th:!DialogSelect theEvent VAR dialog VAR itemHit [I-417] Function

tb:DialogSelect returns three values. The first value is true if
theEvent is associated with an enabled dialog box. If the first value is
true, the second value is the dialog pointer of the associated dialog box.
The last value returned is the number of the selected dialog item in the

Macintosh Toolbox Interface) 13.5

Dialog Manager

dialog box. If the first value is false, the second and third values have
no meaning.

tb:!DialogSelect also returns true if theEvent is associated with an
enabled dialog box. However, it modifies dialog and itemHit to be the
dialog box and item selected.

This trap does not handle keyboard equivalents for menu items. If you
wish to support keyboard equivalents, check for a key-down event. If
the event was a key-down event, call the Menu Manager trap
tb:!MenuKey before proceeding.
Example: ;3 ... In the main event loop ... -
(when (tb:!WaitNextEvent tb:!everyEvent *event* 0
tb:!nilRgn))
:; Check for menu keyboard equivalent
(setf MenuKey-p
(and (= tb:!keyDown (send *event* :What))
(tb: !cmdKey-p (send *event* :modifiers))))
(if (and (not MenuKey-p) (tb:!IsDialogEvent *event¥*))
;;then this Is a dialog event without a command key
(multiple-value-~bind (result whichDialog itemHit)
(tb:DialogSelect *event*) '
...process the dialog selection...)
;;else process a normal event
cee))

tb:!DlogCut theDialog [1418] Function

Applies the TextEdit routine th:!TECut to the currently selected edit
text item in theDialog if it has one.

tb:!DlogCopy theDialog [1-418] Function

Applies the TextEdit routine th:!TECopy to the currently selected edit
text item in theDialog if it has one.

tb:!DlogPaste theDialog [I-418] Function

Applies the TextEdit routine th:! TEPaste to the currently selected edit
text item in theDialog if it has one.

th:!DlogDelete theDialog ' [1-418] Function

Applies the TextEdit routine th:! TEDelete to the currently selected edit
text item in theDialog if it has one.

tb:!DrawDialog dialog [I-418] Function
Draws the dialog box dialog.

13-6 Macintosh Toolbox Interface

Dialog Manager

Invoking Alerts 13.5 Alerts are used to report errors or give warnings to the user.
They display a Standard Alert Icon and an OK button, in addition to any
other items in the alert template.

Standard Alert lcons

L]

Stop Mote Caution
th:!Alert alertID filterProc [1-418,V-284] Function
Creates and displays an alert defined in the "ALRT" resource which has
a resource ID alertID. |
th:!stoplcon [1-420] Constant
tb:!notelcon [1-420] Constant
tb:!cautionlcon [1-420] Constant

"ALRT" resource resource IDs for the standard alert icons.
th:!StopAlert alertID filterProc [1-419,V-284] Function

Acts in the same manner as th:!Alert except that it draws a Stop icon in
the top left hand comer before drawing the remainder of the alert
window.

th:!NoteAlert alertID filterProc [I-420,V-284] Function

Acts in the same manner as th:!Alert except that it draws a Note icon
in the top left hand comer before drawing the remainder of the alert
window.

th:!CautionAlert alertID filterProc [1-420,V-284] Function
Acts in the same manner as th:!Alert except it draws a Caution icon in
the top left hand comer before drawing the remainder of the alert
window.

tb:!CouldAlert alertID [1-420,V-285] Function

Ensures that the "ALRT" resource with a resource ID alertID is in
memory and makes it unable to be purged.

tb:!FreeAlert alertID [I-420,V-285] Function

Undoes the effect of th:!CouldAlert, allowing the "ALRT" resource
with the resource ID alertID to be purged.

Macintosh Toolbox Interface 13-7

Dialog Manager

ManiPUIating 13.6 These routines modify the dialog items within a dialog box or an
Items in alert window.
Dialogs and
Alerts
tb:!ParamText param0 paraml param2 param3 [1-421] Function

Provides a means of changing the text in statText items by allowing you
to substitute the strings param0 to param3 for the special strings "A0" to

"A3".
tb:GetDItem dialog itemNo [I-421] Function
tb:!GetDItem dialog itemNo VAR type item box [I-421] Function

tb:GetDItem returns three values: the type number, item handle, and
enclosing rectangle of the dialog item number item in the dialog box
dialog. :

th:!GetDItem is similar except that it modifies type, item, and box to
be the type number, item handle, and enclosing rectangle. Notice that
item must be initialized to a handle and box must be initialized to a
rectangle.

Example: (multiple-value-bind (type myItem box)
(GetDItem myDialog 1)
...code using type, myItem, and box...)

(setf type 0)

(setf myItem (make-instance ‘tb:mac-handle))
(setf box (make-instance ‘'tb:Rect))

(tb: !GetDItem myDialog 1 (VAR type) myItem box)
...code using type, myItem, and box...

th:!SetDItem dialog itemNo type item box [I-421] Function
Sets the type, item, and box of the dialog item number item in the dialog
box dialog.

tb:!HideDItem dialog itemNo [TV-59] Function

tb:!ShowDItem dialog itemNo [IV-59] Function

Hides or shows the item numbered itemNo in the dialog box dialog.

tb:!UpdtDialog dialog updateRgn IV-60] Function
Draws all the items of the dialog box dialog that are in the update region
updateRgn.

tb:!FindDItem dialog thePoint [IV-60] Function

Returns the item number minus one of the dialog box dialog that the
point thePoint is in. If the point is not inside any dialog item, the trap
returns -1. '

13-8 Macintosh Toolbox Interface

Dialog Manager

th:GetlText item [1-422] Function
tb:!GetIText item VAR text [1-422] Function

tb:GetIText returns the text of the item if the dialog item item is a
static or editable text item. tb:!GetIText is similar except it modifies
text to be the item text.

To get the text from the editable text item with a handle myltem, do the
following:

Example: (tb:GetIText myItem) => "Sample Item"
(tb:!GetIText myItem (VAR text))
text => "Sample Item"

tb:!SetIText item text [I-422] Function
Sets the text of the item to rext, a string, if the dialog item item is a static
or editable text item.

tb:!SellText dialog itemNo strtSel endSel [I-422] Function

Sets the selection range of the text starting at strtSel/ and ending at
endSel if the item number item of the dialog box dialog is a text item.
To select all the text of an editable item, pass 0 for strzSel and 32767
(#x7FFF) for endSel.

tb:!GetAlrtStage [1-422] Function
Returns the stage of the last alert.
th:!ResetAlrtStage [1-423] Function

Sets the alert stage to zero.

Dialog Manager 13.7 The Macintosh II Dialog Manager has been expanded to support

Color Traps color dialog boxes. A color dialog box can be explicitly created using
the trap th:!NewCDialog. If you use the traps tbh:!GetNewDialog
or th:!Alert to create the dialog or alert, you can specify the creation of
a color dialog or alert by having a color table resource of the same
resource ID as the resource specifying the dialog box or alert. For
example, if a dialog box was created with the trap
tb:!GetNewDialog, then the dialog color table resource "dctb”
should have the same resource ID as the "DLOG" resource that specifies
the dialog box.

If an alert was created using the traps tb:!Alert, th:!StopAlert,
tb:!NoteAlert, or th:!CautionAlert, the alert color table resource
"actb" should have the same resource ID as the "ALRT" resource that
specifies the alert.

Macintosh Toolbox Interface 13-9

Dialog Manager

tb:!NewCDialog dStorage boundsRect title visible proclD [V-283] Function

Example:

behind goAwayFlag refCon items

This trap creates a new color dialog box. The arguments are the same
as for the trap tb:!NewDialog.

If you want to allocate the memory for the dialog box (which must be at
least 176 bytes long), pass a pointer to this memory as dStorage. If
not, pass tbh:!nilPtr. The boundsRect is the rectangle that defines the
boundary of the new dialog window. The procID specifies the type of
dialog box required.

The pointer behind is used if you want the newly created dialog box to
appear behind an already existing window. Normally, you pass
tb:!onePtr and the dialog box is created in front of all the existing
windows. Items is a handle to the dialog items (controls) associated
with the new dialog box.

This trap returns a color dialog pointer CDialogPtr.

(setf boundsRect
(make-instance 'tb:Rect :left 112 :top 55
cright 239 :bottom 108))
(setf myItems (tb:!GetResource "DITL™ 130)) -
(setf myDialog (tb:NewCDialog tb:!nilPtr boundsRect "% .t
1 tb:lonePtr nil 0 myItems))

13-10

Macintosh Toolbox Interface

Chapter 14
DESK MANAGER

Introduction 14.1 The Desk Manager traps are used to support desk accessories.
To use desk accessories inside a program you only need to use four

traps:
* tb:!SystemTask - called from the Main Event Loop.

* tb:!OpenDeskAcc - called when a desk accessory has been
selected from the Apple menu.

e th:!SystemClick - called if the Window Manager trap
tb:!FindWindow returns tb:!inSysWindow.

o th:!SystemEdit - called if a standard Edit menu item was selected.

Desk Manager 14.2 These traps open and close desk accessories and respond to
Traps mouse-down events.
tb:!OpenDeskAcc theAcc [-440] Function

Opens the desk accessory with the name theAcc and displays it.

Example.’ (defun AppleMenuHandler (menuItem)
(if (= 1 menultem)
;;then handle the "About..." dialog box
S
;:else open the selected desk accessory
(tb: !OpenDeskAcc
(tb:GetItem AppleMenu menultem))))

tb:!CloseDeskAcc refNum [I-440] Function

Closes a desk accessory. You can get the refNum from the desk
accessory's window record. The refNum is kept in the :windowKind
instance variable.

tb:!SystemClick theEvent theWindow [1-441] Function
When a mouse-down event occurs and the Window Manager trap
th:!FindWindow returns tb:!inSysWindow, your application
should call this trap to handle the event.

tbh:!SystemEdit editCmd [I-441] Function
Called when there is a mouse-down event in the menu bar and one of

the five standard edit functions was selected. If this function returns
nil, your application should do the required editing.

Macintosh Toolbox Interface 14-1

Desk Manager

tb:!Undo [1-441] Constant
th:!Cut [1-441] Constant
th:!Copy [1-441] Constant
th:!Paste [1-441] Constant
tb:!Clear [I-441] Constant

These are the standard edit functions editCmd values.

tb:!SystemTask [1-442] Function
Performs all the periodic events for any open desk accessories. This
trap should be called once in the main event loop if you wish to support
desk accessories. If your application calls tb:!WaitNextEvent
instead of tb:!GetNextEvent, do not call this function.

tb:!SystemEvent theEvent [1-442] Function
This is an internal trap used by the Event Manager.

th:!SystemMenu menuResult _ [I-443] Function

This is an internal trap used by the Menu Manager.

14-2 Macintosh Toolbox Interface

Chapter 15
SCRAP MANAGER

Introduction 15.1 The Scrap Manager is used for accessing and manipulating the
desktop scrap file. The only trap of note in the Scrap Manager is
InfoScrap, which returns a pointer to information about the desk scrap.

Getting Desk 15.2 These routines provide information about the data that is stored in
Scrap the desktop scrap file.
Information

tb:ScrapStuff [1-457] Flavor

This flavor records information about the desk scrap.

:scrapSize Method of th:ScrapStuff
This is the size of the scrap in bytes. _

:scrapHandle i Method of th:ScrapStuff
This is a handle to the scrap if it is in memory or a NIL handle if it is
not.

:scrapCount : Method of th:ScrapStuff

This integer changes every time tb:!ZeroScrap is called. If this count
changes, then you can assume that the desk scrap has changed.

:scrapState Method of tb:ScrapStuff
This value indicates where the desk scrap is:

e positive => in memory
* zero => on disk
¢ negative => hasn't been initialized by tb:!ZeroScrap

sscrap Method of th:ScrapStuff
This is a pointer to a string naming the scrap (typically "Clipboard
File").

tb:! _InfoScrap [1-457] Function

The trap tb:! _InfoScrap returns a pointer to information about the
desk scrap. Use tb:!InfoScrap, it's easier.

Macintosh Toolbox Interface 15-1

Scrap Manager

th:!InfoScrap [1-457] Function
tb:!_InfoScrap '[1-457] Function

tb:!InfoScrap returns an instance of type tb:ScrapStuff which
contains information about the desk scrap. tb:!_InfoScrap is similar
except it returns a pointer to the instance.

Example: (setf myScrapInfo (tb:!InfoScrap))
(send myScrapInfo :scrapSize) => 0
(send myScrapInfo :scrapCount) => 9

Keeping the 15.3 These functions load and unload desk scrap from memory.
Desk Scrap on
the Disk

th:!UnloadScrap [1-458] Function

Writes the desk scrap in memory to the ScrapFile on disk.
tb:!LoadScrap [I-458] Function
Loads the desk scrap from the ScrapFile on disk into memory.

Writing to the 154 These routines write to the desk scrap, add new data, or clear the
Desk Scrap Scrap.
th:!ZeroScrap [I-458] Function

Clears the scrap in memory and changes the scrap count. Call this
function before putting anything into the desk scrap.

Example: (send (tb:!InfoScrap) :scrapCount) => 9
- (tb:!ZeroScrap) => noErr
(send (tb:!InfoScrap) :scrapCount) => 17
tb:!PutScrap length theType source [I-459] Function

Puts the data pointed to by source, of type theType with a length length,
into the desk scrap.

Reading From 15.5 This trap reads information from the desk scrap.
the Desk Scrap

tb:GetScrap hDest theType [I-459] Function

Gets the scrap of type theType from the desk scrap, which is at an
offset of offset into the desk scrap, and copies it to the handle hDest.

15.2 Macintosh Toolbox Interface

The trap returns the size of the copied data. See Inside Macintosh for
details. Use this trap instead of tb:!GetScrap.

tb:!GetScrap hDest theType offset [I-459] Function

Gets the scrap of type theType from the desk scrap, which is at an
offset of offset into the desk scrap, and copies it to the handle hDest.
The trap returns the size of the copied data. See Inside Macintosh for
details.

Macintosh Toolbox Interface 15.3

Chapter 16
TOOLBOX UTILITIES

Introduction 16.1 The Toolbox Utilities are a collection of traps that are used for:
« Fixed-point arithmetic
¢ String manipulation
¢ Byte and bit manipulation
¢ Graphics utilities -

None of the arithmetic traps apply to the microExplorer environment.
These are documented for completeness only.

Fixed-Point 16.2 The Toolbox fixed-point numbers can be considered 32-bit
Arithmetic integers. A fixed-point number is essentially two 16-bit integers
packed into a 32-bit integer. See Inside Macintosh, page 1-79, for more
details. To get at the two fields of a fixed-point number use the traps
tb:!HiWord and tb:!LoWord. It is best to use Lisp functions to
perform these operations.
th:!FixRatio numer denom [I-467] Function
Returns the fixed-point quotient of the two integers numer and denom.
tb:!FixMul a b [1-467] Function
Returns the result of multiplying the two fixed-point numbers a and b.
tb:!FixRound x [I-467] Function

Rounds the fixed-point number x up to the nearest integer.

String 16.3 The following functions manipulate strings. It is important not
Manipulation to confuse the Pascal types StringHandle and Str255.
tb:!NewString theString [1-468] Function

Creates a relocatable string StringHandle containing a he text string of
up to 255 characters. To get a string handle to the string "sample
string”, do the following:

Example.‘ (setf sampleStringHandle
(tb: !NewString "sample string"))

Macintosh Toolbox Interface 16-1

Toolbox Utilities

tb:!SetString & rheString [I-468] Function

Sets the relocatable string 4 to the string theString where the string is
limited to 255 charactess.

tb:!GetString stringID [I-468] Function

Returns a handle to a "STR " type resource (there is a space after the
R), which has the resource ID stringlD.

tb:!GetIndString strListID index [1-4681 Function

Returns the indexth string from a "STR#" resource with the resource ID
strListID.
tb:mx-string-to-mac-string theString Function

Copies theString from the microExplorer to a relocatable string in
Macintosh memory and returns a handle to the Macintosh string. This
is the same as th:!NewString.

tb:mac-string-to-mx-string theString Function
Copies the string pointed at by zheString from Macintosh memory to the

microExplorer and returns a Lisp string. TheString can be either a
tb:mac-pointer or a tb:mac-handle.

B yte ' 16.4 The following three traps are very involved. Refer to Inside
Manipulation Macintosh for details.
tb:!Munger h offset ptrl lenl ptr2 len2 [I-468] Function
See Inside Macintosh.
tb:!PackBits srcPtr dstPtr srcBytes [1-470] Function
tb:!UnPackBits srcPtr dstPtr dstBytes [I-470] Function

Used for packing and unpacking MacPaint® documents.

Bit 16.5 The bit numbering scheme used for bit oriented traps is the most

Manipulation significant bit of the first 32-bit word is zero, the most significant bit of
the next 32-bit word is 32, and so on. It is better to use Lisp functions
to perform these operations.

tb:!BitTst bytePtr bitNum [I-471] Function

Returns true if the bit number bitNum from the pointer bytePtr is set,
and false if it is not.

16-2 Macintosh Toolbox Interface

Toolbox Ultilities

tb:!BitSet bytePtr bitNum [I-471] Function
th:!BitClr bytePtr bitNum [I-471] Function

Set or clear the bit number bitNum from the pointer bytePtr.

tbh:!BitAnd valuel value2 [I-471] Function
tb:!BitOr valuel value2 [1-471] Function
tb:!BitXor valuel value2 [I-471] Function

Perform a logical AND, logical OR, or logical XOR, respectively, on
the two 32-bit integers valuel and value2.

th:!BitNot value [I-471] Function
Performs a logical NOT on the 32-bit integer value.
tb:!BitShift value count [1-472] Function

Shifts the 32-bit integer value count bits to the left if count is positive,
or count bits to the right if count is negative.

Other - 16.6 These routines also perform operations on long integers. It is
Operations on better to use Lisp functions to perform these operations.

Long Integers

th:!HiWord x [I-472] Function
tb:!LoWord x- [I-472] Function

Return the integer in the most significant or least significant 16 b1ts of
the 32-bit integer x, respectively.

Gra phic 16.7 These routines act on icons, cursors, patterns, and pictures.
Utilities

tb:!ScreenRes [1-473] Function

Returns two values indicating the resolution of the Macintosh being
used. The number of horizontal pixels per inch is the first value
returned and the number of vertical pixels per inch is the second.

Example: (multiple-value-bind (scrnHRes scrnVRes)
(tb:!ScreenRes)
scrnHRes => 72
scrnVRes => 72

tb:!Getlcon iconiD [I-473] Function

Returns a handle to the "ICON" resource with the resource ID iconID.

Macintosh Toolbox Interface 16-3

Toolbox Utilities

tb:!Plotlcon theRect thelcon _ [I-473] Function

Draws the icon thelcon inside the rectangle theRect.

tb:!GetPattern patID [1-473] Function
Returns a handle to the "PAT " resource (there is a space after the T),
which has the resource ID patID.

tb:!GetIndPattern patListID index [1-473] Function
Returns the indexth pattern from the "PAT#" resource that has the
resource ID parListID.

th:!GetCursor cursorlD [1-474] Function

Returns a handle to the "CURS" resource with the resource ID
cursorlD.

The Standard Cursor resource ID's are: th:!IBeamCursor,
. tb:!CrossCursor, tb:!PlusCursor, and th:!WatchCursor.

Standard Cursors

I + S o)

iBeamCursor crossCursor plusCursor watchCursor

tb:!ShieldCursor shieldRect offsetPt . [1-474] Function
Hides the cursor if the cursor and shieldRect intersect.

th:!GetPicture picID ‘ [1-475] Function
Returns a handle to the "PICT" resource with the resource ID picID.

Miscellaneous 16.8 The following traps perform miscellaneous utility functions. It
Utilities is better to use Lisp functions to perform these operations.
tb:!DeltaPoint ptA ptB [I-475] Function

Subtracts the point ptB from the point ptA and returns the resulting
point as a 32-bit integer. The vertical coordinate of the point is the high
order 16 bits and the horizontal coordinate of the point is the low order
16 bits.

16-4 Macintosh Toolbox Interface

Toolbox Utilities

tb:!SlopeFromAngle angle [I-475] Function
tb:!AngleFromSlope slope [I-476] Function
Converts between an angle angle and a slope dh/dv as a fixed-point
number.
Fixed-point 16.9 arithmetic is better handled by the microExplorer than the
Arithmetic Macintosh. Therefore, the following traps should not be used:
tb:!Long2Fix x [IV-65] Function
tb:!Fix2Long x [IV-65] Function

Converts x between a longInt and a fixed-point number.

tb:!Fix2Frac x [IV-65] Function
tb:!Frac2Fix x , [TV-65] Function

Converts x between a fixed-point and a fractional number.

th:!'Fix2X x . [TV-65] Function
th:!X2Fix x [IV-65] Function

Converts x between a fixed-point and an extended number.
th:!Frac2X x [IV-65] Function
th:!X2Frac x [IV-65] Function
Converts x between a fractional and an extended number.

th:!FracSin x ' [ITV-64] Function
tb:!FracCos x [IV-64] Function

Returns the sine or cosine respectively of the fixed radian argument x.
x is of type fixed and the result is of type fract.

tb:!FracSqrt x [IV-64] Function

Returns the square root of x, with x interpreted as an unsigned fract in
the range of 0 through 4-(2-39), inclusive.

tb:!FracMul xy | [IV-64] Function
Returns x multiplied by y. See Inside Macintosh for details.

tb:!FracDiv xy [IV-64] Function
Returns x divided by y. See Inside Macintosh for details.

tb:!FixATan2 xy [IV-65] Function

Returns the arctangent of y divided by x in radians.

Macintosh Toolbox Interface 16-5

Toolbox Utilities

th:!FixDiv x y [IV-64] Function
Returns x divided by y. See Inside Macintosh for details.

16-6 Macintosh Toolbox Interface

Chapter 17
PACKAGE MANAGER

Introduction 17.1 The Package Manager provides access to packages, the sets of
data structures, and routines that are stored as resources and brought
into memory only when needed.

International 17.2 The routines in this package access country-dependent
Utilities information such as the formats for numbers, currency, dates, and
times. Use of this package will enable you to make your application
Package :
country-independent.
tb:1UDateString dateTime form [I-504] Function
tb:!IUDateString dateTime form VAR result - [1-504] Function
tb:IUDatePString dateTime form intIParam [I-505] Function
tb:!'TUDatePString dateTime form VAR result intIParam [I-505] Function

tb:IUDateString returns the date contained in dateTime (which is
retumed by the trap tb:!GetDateTime) as a string. The format of this
string is determined by form which is one of the constants described
below.

b:!TUDateString is similar to th:IUDateString except it modifies
result with the string.

tb:IUDatePString is similar to tb:IUDateString except that the
. form argument is overridden by the data format in intl/Param.

tb:!TUDatePString is similar to th:!IUDateString except that the
form argument is overridden by the data format in int/Param.

tb:shortDate "~ [1-504] Constant
tb:longDate [1I-504] Constant
tb:abbrevDate [1I-504] Constant

These are constants for use in the data format form argument to
tb:IUDateString and tb:!IUDateString.

tb:IUTimeString dateTime wantSeconds _ [I-505] Function

tb:!IUTimeString dateTime wantSeconds VAR result [I-505] Function

tb:IUTimePString dareTime wantSeconds intlParam [I-505] Function

tb:!IUTimePString dateTime wantSeconds VAR result [I-505] Function
initParam

tb:IUTimeString returns the time contained in dateTime (which is
returned by the trap tb:!GetDateTime) as a string. If wantSeconds is
true, the time of day is returned with seconds included. If wantSeconds
is false, only the hours and minutes are <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>